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Abstract  

Accurate and efficient methods have been developed for the quantitative electron-induced X-

ray microanalysis of homogeneous materials in order to calculate the chemical composition from 

the characteristic X-ray intensities measured using energy-dispersive spectrometry (EDS) or 

wavelength-dispersive spectrometry (WDS). However, for heterogeneous materials, quantitative 

X-ray microanalysis still faces some difficulties. For example, the accuracy of forward modeling, 

i.e., to predict X-ray emission with prior knowledge of the specimen and experimental setup, is 

influenced by the secondary fluorescence effect. Also, the complex structures of heterogeneous 

materials make it difficult to develop a universal inverse modeling algorithm to extract the 

compositional and structural information simultaneously from a series of X-ray measurements. 

The objective of this work is to improve the accuracy and universality of quantitative X-ray 

microanalysis applied to heterogeneous materials.  

In this work, a secondary fluorescence correction program was first developed for bulk and 

multilayer materials and then extended to apply to three-dimensional (3D) heterogeneous materials. 

The program calculates both the characteristic and bremsstrahlung fluorescence using a hybrid 

model that combines Monte Carlo simulations and an analytical model. For a wide range of sample 

structures, including bulk, multilayers, material couples, and spherical inclusions embedded inside 

the matrix, simulation results of the program were compared with both the experimental data from 

the literature and simulation data from other Monte Carlo software. The accuracy and practicality 

of the program were evaluated. The program provides a fast and accurate calculation of secondary 

fluorescence, which significantly improves the accuracy of forward modeling. 

Moreover, an inverse modeling algorithm was proposed for determining both the composition 

and structure of two-dimensional (2D) heterogeneous materials simultaneously from a series of X-

ray measurements under different beam energies and beam positions. The effects of the input 

parameters, including beam energies, beam positions, and voxel size, were discussed. Several 

examples of applications were presented for different types of phantom samples with one-

dimensional (1D) and 2D structures, and the sources of errors were analyzed. As a proof-of-
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concept work, the feasibility of the inverse modeling algorithm was confirmed. This algorithm, in 

principle, can be extended to be applied to arbitrary 3D heterogeneous materials.  

Also, the 3D quantitative X-ray microanalysis at the nanoscale was studied by combining the 

quantification approach with electron tomographic reconstruction. A quantification approach was 

introduced for quantifying the reconstructed 3D elemental distribution map obtained from EDS-

STEM tomography and HAADF-EDS bimodal tomography (HEBT). The reconstructed image 

qualities both before and after the quantification were compared for EDS-STEM tomography and 

HEBT. The two reconstruction techniques and the corresponding quantification processes were 

successfully applied to an experimental dataset. HEBT showed advantages in image contrast and 

noise reduction in comparison to EDS-STEM tomography. The HEBT technique will play an 

essential role in the characterization of beam-sensitive samples for which the EDS maps are quite 

noisy and in reducing experimental acquisition time. 
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Résumé 

Des méthodes ont été développées pour la microanalyse quantitative des rayons X induite par 

les électrons de matériaux homogènes afin de calculer la composition chimique à partir des 

intensités de rayons X caractéristiques mesurées à l'aide du spectromètre à dispersion d'énergie des 

rayons X (EDS) ou du spectromètre à dispersion de longueur d'onde (WDS). Ces méthodes sont 

très précises et efficaces. Cependant, pour les matériaux hétérogènes, la microanalyse quantitative 

aux rayons X a des difficultés. Par exemple, la précision de la modélisation directe, c'est-à-dire 

pour prédire l'émission de rayons X avec une connaissance préalable de l'échantillon et de la 

configuration expérimentale, est influencée par l’effet de la fluorescence secondaire. En outre, les 

structures complexes de matériaux hétérogènes rendent difficile le développement d'un algorithme 

de modélisation inverse universel pour extraire simultanément les informations de composition et 

de géométrie. L'objectif de ce travail est d'améliorer la précision et l'universalité de la microanalyse 

quantitative aux rayons X appliquée à des matériaux hétérogènes. 

Dans ce travail, un programme pour la correction de fluorescence secondaire est d'abord 

développé pour les matériaux homogènes et multicouches, puis étendu pour les matériaux 

hétérogènes tridimensionnels (3D). Le programme calcule à la fois la fluorescence caractéristique 

et bremsstrahlung en utilisant un modèle hybride qui combine les simulations de Monte Carlo et 

un modèle analytique. Les résultats de simulation du programme sont comparés à la fois aux 

données expérimentales de la littérature et aux données de simulation d'autres logiciels de Monte 

Carlo pour un large éventail de géométries d'échantillons comme: les échantillons homogènes, les 

multicouches, les couples de diffusion et les inclusions sphériques dans une matrice. La 

fonctionnalité du programme est évaluée et comparée à d'autres logiciels. Le programme fournit 

un calcul rapide et précis de la fluorescence secondaire, ce qui améliore considérablement la 

précision de la modélisation directe. 

De plus, un algorithme de modélisation inverse est proposé pour déterminer à la fois la 

composition et la structure de matériaux hétérogènes bidimensionnels (2D) simultanément à partir 

d'une série de mesures aux rayons X sous différentes énergies et positions du faisceau. Les effets 

des paramètres d'entrée comme: les énergies du faisceau, les positions du faisceau et la taille des 
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voxels sont discutées. Plusieurs exemples d'applications sont présentés pour différents types 

d'échantillons fantômes avec des structures unidimensionnelles (1D) et 2D, et les sources d'erreurs 

sont analysées. Comme preuve de concept, la faisabilité de cet algorithme de modélisation inverse 

est confirmée. Cet algorithme, en principe, peut être étendu à des matériaux hétérogènes 3D 

arbitraires. 

De plus, la microanalyse quantitative des rayons X à l'échelle nanométrique est étudiée en 

combinant l'approche de quantification avec la reconstruction tomographique électronique. Une 

approche de quantification est introduite pour quantifier la distribution spatiale élémentaire en 3D 

obtenue à partir de la tomographie EDS-STEM et de la tomographie bimodale HAADF-EDS 

(HEBT). Les qualités d'image reconstruites avant et après la quantification sont comparées pour la 

tomographie EDS-STEM et HEBT. Les techniques de reconstruction et les processus de 

quantification correspondants sont appliqués avec succès à un ensemble de données 

expérimentales. HEBT donne des images avec un meilleur contraste et de réduction du bruit par 

rapport à la tomographie EDS-STEM. La technique HEBT jouera un rôle important dans la 

caractérisation des échantillons sensibles au faisceau pour lesquels les cartes EDS sont assez 

bruyantes et dans la réduction du temps d'acquisition expérimental. 
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Chapter 1. Introduction 

Quantitative X-ray microanalysis can be performed using different incident beams: the electron 

beam (electron microscopy), X-ray beam [X-ray fluorescence analysis (XRFA)] [1], and proton 

beam [proton induced X-ray emission spectroscopy (PIXE)] [2], among which the electron beam 

provides the finest spatial resolution [3].  

Conventional quantitative X-ray microanalysis in electron microscopy calculates the chemical 

composition of an unknown specimen using the characteristic X-ray intensities, which are 

measured by wavelength-dispersive spectrometry (WDS) or energy-dispersive spectrometry 

(EDS). For homogeneous specimens, accurate and efficient quantitative analyses can be 

implemented using the k-ratio method, which has been widely applied in the field of materials 

science and geology science [4]. However, there are still some difficulties in the quantitative X-

ray microanalysis of heterogeneous materials, and those difficulties will be discussed in the 

following paragraphs. 

The quantitative X-ray microanalysis of heterogeneous materials, also termed X-ray 

microanalysis inverse modeling, requires the extraction of both the compositional and structural 

information of an unknown specimen [5]. This includes, for example, the thickness and 

composition determination of a thin film in a multilayer sample [6], and the estimation of the size 

and composition of a particle embedded in a matrix [7]. For those heterogeneous materials, the 

traditional quantitative methods are not available due to the complex relationship between the X-

ray emission and the composition and structure of the specimen. Instead, the Monte Carlo method 

is used.  

The Monte Carlo method is typically used to perform the forward modeling of the X-ray 

microanalysis, i.e., to predict the emitted X-ray intensity with prior knowledge of the composition 

and structure of the specimen [8]. It utilizes random numbers and physical models to simulate the 

incident electron trajectory inside the specimen step by step. The X-ray emission (for both 

characteristic and bremsstrahlung X-rays) for each electron trajectory segment is then calculated 

to obtain the full X-ray spectrum. Since the electron is tracked step by step as it travels through 
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the specimen, the chemical composition of the specimen can be different from one place to another, 

which means that this method can be applied to arbitrary heterogeneous materials. However, in 

real applications, the lack of secondary fluorescence limits its accuracy, especially for materials 

with complex structures [9, 10]. Secondary fluorescence X-rays are generated through the 

interaction of the primary X-rays (electron-induced) with the specimen. Since X-rays can travel 

longer distances than electrons, secondary fluorescence may occur in the places away from the 

primary interaction volume, thus increasing the measured X-ray intensity. In this work, secondary 

fluorescence correction was first studied to improve the accuracy of forward modeling.  

With an accurate forward modeling approach, we can next focus on the inverse modeling of 

the X-ray microanalysis. Previous research has been conducted for the inverse modeling of 

specimens with one-dimensional (1D) or two-dimensional (2D) structures. Those inverse 

modeling methods typically require prior knowledge about the specimen and are only available 

for a specific sample structure. For example, Campos et al. [11] calculated the thickness of thin 

films deposited on silicon (Si) substrates by least-squares fitting of the simulated k-ratios, obtained 

using the Monte Carlo method, as a function of the film thickness; Gauvin et al. [7] computed the 

calibration curves using the Monte Carlo method to determine the size and depth of spherical 

manganese sulfide (MnS) inclusions embedded in an iron (Fe) matrix. Great progress was made 

by Wagner et al. [5], who developed a more general inverse modeling algorithm that is applicable 

to arbitrary 2D and 1D structures. The algorithm used the simulated annealing method to extract 

the structural information from a series of X-ray measurements under different beam energies and 

beam positions. It, however, requires prior knowledge of the possible compositions of the 

specimen. The three-dimensional (3D) inverse modeling is currently implemented through a 

combination of the focused ion beam (FIB) and scanning electron microscopy (SEM)-EDS [12]. 

However, this technique is destructive. Therefore, it is necessary to develop a general non-

destructive inverse modeling algorithm to extract the compositional and structural information 

simultaneously for an arbitrary heterogeneous material.  

The development of scanning transmission electron microscopy (STEM) brings new 

opportunities to 3D quantitative X-ray microanalysis at the nanoscale [13]. The spatial resolution 

for STEM is much improved in comparison to conventional SEM because the increase in beam 

energy reduces the beam broadening in thin specimens. High-angle annular dark-field (HAADF) 



3 

 

STEM tomography and EDS-STEM tomography have been widely applied to 3D morphology 

characterization and chemical analysis by acquiring a tilt series of 2D projections and 

reconstructing the 3D structure [14]. Traditional EDS-STEM tomography can be used to extract 

element-specific information and perform quantitative analysis. However, it is with low signal-to-

noise ratio (SNR) due to low count rates arising from limited detector solid angles for X-ray 

detection [15]. Zhong et al. [14] proposed a HAADF-EDS bimodal tomographic (HEBT) 

reconstruction technique, which significantly improves the SNR of the reconstructed element maps, 

making use of high-resolution information from the HAADF signal. The reconstructed element 

maps, however, cannot be directly converted to quantitative compositional information. Therefore, 

we proposed a quantification approach to calculate 3D elemental weight fraction maps from the 

HEBT reconstruction. This approach was applied to both the simulated and experimental datasets.  

This thesis consists of seven chapters. Chapter 1 introduces the background and objectives of 

this work. An extensive literature review is presented in Chapter 2. Chapter 3 presents the 

developed secondary fluorescence correction program using a hybrid model that combines the 

Monte Carlo simulation with analytical modeling applied to bulk or multilayer specimens. A 

similar strategy is used in Chapter 4 to extend the secondary fluorescence program to apply to 

arbitrary 3D heterogeneous samples. A novel inverse modeling algorithm is proposed in Chapter 

5 to extract the compositional and structural information simultaneously from a series of X-ray 

intensity measurements under different beam positions and beam energies. Chapter 6 describes the 

quantification approaches for both EDS-STEM tomography and HEBT to obtain high-resolution 

3D element maps at the nanoscale. Chapter 7 presents the major conclusions, contributions to 

original knowledge, and future work. 
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Chapter 2. Literature review 

Electron microscopy is an important technique for the observation and characterization of 

various materials on a micrometer to nanometer scale [1]. Using different types of equipment 

including SEM, transmission electron microscope (TEM), and STEM and a variety of detectors, 

many characteristics of the specimen can be examined such as chemical composition, surface 

topography, and crystallography. This work focuses on the extraction of chemical composition 

and structure information through quantitative microanalysis of the electron-induced X-ray signals 

captured using a WDS or EDS.  

In this chapter, the interaction of electrons with the specimen and the process of X-ray emission 

are first introduced (section 2.1). The detection of X-ray signals and several traditional methods 

for quantitative X-ray microanalysis of homogeneous materials are then presented (section 2.2). 

The Monte Carlo method is introduced, followed by a brief review of current Monte Carlo software 

programs, which provides an accurate simulation of X-ray emission from heterogeneous materials 

with the correction of secondary fluorescence effect (section 2.3 and 2.4). The inverse modeling 

methods for different kinds of heterogeneous materials are reviewed (section 2.5). Finally, the 

STEM tomography for 3D morphology characterization and chemical analysis at the nanoscale is 

introduced (section 2.6).  

2.1 Electron-induced X-ray emission  

In this section, the physical process of X-ray generation through the interaction of an electron 

beam with a solid is introduced (section 2.1.1 and 2.1.2), and the interaction of X-rays with the 

solid is described (section 2.1.3 and 2.1.4). 

2.1.1 Electron-matter interaction  

The incident electrons interact with the solid atoms through a variety of physical processes, 

which can be broadly classified into elastic and inelastic scattering [1].  
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Elastic scattering occurs when the incident electron is deflected by the electrical field of an 

atom, causing the incident electron to change its direction. There is no energy interchange between 

the incident electron and the atom [2]. Although the electron scattering angle is typically a few 

degrees, deviations ranging from 0° to 180° are possible. One or multiple elastic scattering events 

may result in an electron being backscattered.  

Inelastic scattering happens when the incident electron interacts with the orbital electrons of 

the atom. It causes the progressive energy loss of the incident electron until, eventually, its energy 

is too low to travel farther, and the specimen absorbs it. There are a variety of energy loss processes: 

ejection of outer-shell atomic electrons with high potential energy to produce secondary electrons; 

ejection of inner-shell atomic electrons, which may result in the generation of characteristic X-

rays, Auger electrons, or Coster-Kronig transitions; deceleration of the incident electrons in the 

vicinity of the nuclear field with production of bremsstrahlung X-rays; generation of plasmons, 

oscillations of the free electron gas density; and heating of the specimen [3-5]. Although the energy 

loss is a discontinuous process, one can treat it as a continuous process as long as the energy loss 

at each scattering event is small compared with the electron energy. One of the most commonly 

used models of energy loss is the continuous slowing down approximation [6], which will be 

introduced in detail in section 2.3.1. 

2.1.2 X-ray generation 

Two types of X-rays are generated through the interaction of an electron beam with a specimen: 

characteristic X-rays and bremsstrahlung X-rays.  

Characteristic X-rays 

A characteristic X-ray is generated when a vacancy formed by inner-shell ionization is filled 

by an atomic electron from the outer shell, and the energy of the characteristic X-ray equals the 

difference between the energies of the initial and final states. Since the energy states of an element 

are sharply defined, the energy of the characteristic X-ray line from a certain element and a certain 

transition is characteristic, which can be used to identify the elements present in an unknown 

specimen. Two processes of the characteristic X-ray generation will be discussed successively: 

inner-shell ionization and atom relaxation [4]. 
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An atom can be ionized with the ejection of an inner-shell electron through the inelastic 

scattering with an incident electron. The energy of the incident electron must be greater than (or 

at least equal to) the ionization energy to ionize the atom, which is the minimum energy needed to 

move an atomic electron out of its orbital beyond the effective influence of the nuclear charge. The 

ionization energies for the K-, L3-, M5-subshells relative to the atomic number are presented in 

Figure 2.1. For the same element, the ionization energy of different subshells follows: EK > EL3 > 

EM5. Moreover, for the same subshell, the ionization energy increases as the atomic number 

increases. The probability of ionization is expressed using the ionization cross-section σ. The 

model of calculating the ionization cross-section has been studied by many researchers [7-17]. 

Bote et al. [17] proposed an analytical formula, which yields relative differences within about 1% 

between the calculated cross-sections and those in the numerical database. Figure 2.2 shows the 

excellent agreement of the ionization cross-sections of gold (Au) between data from the numerical 

database [16] and from the analytical formula of Bote et al. [17] for a wide range of accelerating 

voltages. As shown in Figure 2.2 b), the relative differences for all shells are within 1%. 

 

Figure 2.1 Ionization energy for the K-, L3-, and M5-subshells from Ref. [1] 
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Figure 2.2 a) Comparison of the ionization cross-section of subshells of Au from the numerical 

database (crosses) [16] and the analytical formulas (solid line) described by Bote et al. [17]. b) 

Relative differences between the cross-sections from the numerical database and analytical 

formulas described by Bote et al. relative to the overvoltage (the ratio of the accelerating voltage 

to the ionization energy). For all subshells presented, the vertical axis ranges from -1% to 1%. 

The figures are from Ref. [17]. 

Three atom relaxation processes are possible after the inner-shell ionization: X-ray emission, 

Auger electron emission, and Coster-Kronig transition (as shown in Figure 2.3). When an outer-

shell atomic electron fills the inner-shell vacancy, the energy can be released in the form of X-ray 

emission (Figure 2.3 a). Alternatively, possibly, the energy can be transferred into another atomic 

electron, resulting in the ejection of that electron, which is called an Auger electron (Figure 2.3 b). 

This process becomes a Coster-Kronig transition if the ejected electron and the outer-shell electron 

that fills the vacancy are at the same shell (Figure 2.3 c).  

The fluorescence yield ω is the probability of X-ray emission as a de-excitation process when 

a vacancy in a certain subshell is created [18]. Several databases are available for the values of 

fluorescence yield [19-22]. The fluorescence yields of K-shell, L3-shell, and M5-shell are presented 

in Figure 2.4 [20]. It is observed that the fluorescence yields depend strongly on the atomic number, 

and, for a certain element, 𝜔𝐾 > 𝜔𝐿3 > 𝜔𝑀5. 
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Figure 2.3 a) X-ray emission, b) Auger electron emission, c) Coster-Kronig transition as possible 

de-excitation processes after the K- or L-shell ionization from Ref. [5]. 

 

Figure 2.4 Fluorescence yield of K-shell, L3-shell, and M5-shell. Data from Ref. [20]. 

For a certain vacancy, different types of characteristic X-rays may be generated depending on 

which subshell the filling electron is from. For example, for copper (Cu), a K-shell vacancy can 

be filled by an electron from L3-shell, which produces a Cu Kα1 X-ray, or from L2-shell, which 

produces a Cu Kα2 X-ray. The possible shell transitions for the vacancies of K-shell, L-shell, and 

M-shell are shown in Figure 2.5. X-ray transition energies for different atomic numbers are 
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available from Ref. [19, 23-27]. The relative transition probability p is the weight of a single 

characteristic X-ray line of a series and can be found from Ref. [20, 28, 29].  

 

Figure 2.5 Atomic shell energy level diagrams for possible a) K-shell vacancy-filling transitions, 

b) L-shell vacancy-filling transitions, c) M-shell vacancy-filling transitions from Ref. [3]. 

 

Bremsstrahlung X-rays 

Bremsstrahlung X-rays are generated when the incident electron undergoes deceleration 

because of the negative charge cloud of the atomic electrons and loses kinetic energy [3]. The lost 

kinetic energy can be any value ranging from 0 to the total incident electron energy E0. The 

generated X-ray intensity decreases as the X-ray photon energy increases. The cut-off energy 

where the X-ray intensity turns to 0 is also called the Duane-Hunt limit, which is often used to 

monitor the incident beam energy during the experiment since the generated X-ray energy cannot 

be greater than the incident electron energy [30, 31]. Kramers [32] describes the variation of the 

bremsstrahlung X-ray intensity relative to the X-ray energy expressed as follows: 

 𝐼(𝐸) = 𝑘𝑍
𝐸0 − 𝐸

𝐸
 (2.1) 

where 𝐼(𝐸) is the intensity of the bremsstrahlung X-rays with energy E, k is a constant, Z is the 

atomic number, and 𝐸0 is the incident beam energy. This equation is adapted to the cases when the 

absorption from the specimen or the X-ray detector is not strong. The bremsstrahlung cross-section 



11 

 

models are available in Ref. [33, 34]. Bremsstrahlung X-rays are not generated isotropically 

concerning the angular distribution. They tend to be enhanced in the direction along which the 

incident electron travels [35-37]. 

2.1.3 X-ray absorption 

X-ray absorption 

When traveling in the matter, the generated X-rays may be absorbed through three mechanisms: 

Compton scattering, Rayleigh scattering, and photoelectric effect [2]. Compton scattering is an 

inelastic scattering between an X-ray and an atom, resulting in the reduction of X-ray energy. It is 

negligible within the typical energy range of electron-induced X-ray microanalysis: 1–30 keV [4]. 

Rayleigh scattering is the interaction of the X-ray photon with the whole atom, resulting in the 

deflection of the X-ray with no change in energy. Rayleigh scattering is important only for the 

absorption of collimated beams. The photoelectric effect is the most important absorption 

mechanism, in which the X-ray photon is completely absorbed with the ejection of an atomic 

electron.  

The photoelectric effect happens only when the energy of the X-ray is greater than or equal to 

the binding energy of the atomic electron. The Beer-Lambert law describes the absorption of X-

rays in a bulk sample, expressed as follows [4]: 

 𝐼 =  𝐼0 exp[−(
𝜇

𝜌
)𝜌𝑥] (2.2) 

where 𝐼 is the X-ray intensity after absorption, 𝐼0 is the incident X-ray intensity, 𝜌𝑥 refers to the 

mass thickness of the specimen, which is the product of the density and thickness, 𝜇/𝜌 is the mass 

absorption coefficient. Mass absorption coefficients of X-rays with different energies in different 

elements have been tabulated in units of 𝑐𝑚2/𝑔 [38, 39]. Figure 2.6 presents the variation of the 

mass absorption coefficient as a function of the X-ray photon energy in a Cu specimen. The mass 

absorption coefficient typically decreases as the X-ray photon energy increases. However, when 

the X-ray photon energy is just slightly higher than the excitation energy of a certain shell, the 

mass absorption coefficient increases abruptly, and this abrupt increase is called an absorption 

edge [2]. The absorption edges for K- and L-shells of Cu are marked in Figure 2.6 [40]. 
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The mass absorption coefficient of a compound is calculated by summing up the weighted 

contributions of all the constituent elements according to their weight fractions, expressed as 

follows [3]: 

 (𝜇/𝜌)𝑐𝑜𝑚𝑝
𝑖 =∑(𝜇/𝜌)𝑗

𝑖 𝑐𝑗
𝑗

 
(2.3) 

where (𝜇/𝜌)𝑐𝑜𝑚𝑝
𝑖  is the mass absorption coefficient of X-ray i in a compound, (𝜇/𝜌)𝑗

𝑖  is the mass 

absorption coefficient of X-ray i in pure element j, and 𝑐𝑗 is the weight fraction of element j in the 

compound.  

 

Figure 2.6 Mass absorption coefficient as a function of the X-ray photon energy for a Cu 

specimen from Ref. [40] 

ϕ(ρz) curve 

ϕ(ρz) curve describes the distribution of characteristic X-ray production as a function of depth, 

defined as the ratio of X-ray intensity from a thin layer of a bulk specimen with a mass thickness 

of ∆(𝜌𝑧) located at the mass depth (ρz), 𝐼(𝜌𝑧) to that from a thin, unsupported film with the same 

thickness 𝐼(∆𝜌𝑧). Thus, the total X-ray intensity for a thick sample Isam is given by, 

 𝐼𝑠𝑎𝑚 = 𝐼(∆𝜌𝑧)∫ 𝜙(𝜌𝑧)𝑑(𝜌𝑧)
∞

0

 (2.4) 

Figure 2.7 presents the generated (without absorption) and emitted (with absorption) ϕ(ρz) 

curves for the aluminium (Al) Kα line in a bulk Al sample at 15 keV. It is observed that the X-ray 

production in the first layer of the sample is greater than that in the thin unsupported film, i.e., 

𝜙(0) > 1. This is because some backscattered electrons travel back through the first layer to 



13 

 

escape the sample, which produces more X-rays. As the increase of the depth, the curves first rise 

due to the increase of elastic scattering, which increases the travel lengths of the electrons in each 

thin layer. X-ray production starts to decrease with further increase in depth because of the 

decrease in the electron number and reduced energies of the electrons as a result of energy loss. 

Then the X-ray production continuously decreases to zero [3]. 

ϕ(ρz) curves can be obtained experimentally using the tracer method by Casting and Descamps 

[41] or the wedge technique by Schmitz [42]. Also, a lot of analytical models have been proposed 

to calculate ϕ(ρz) curves, including thin film model (1966) [43], square model (1974) [44], the 

quadrilateral model (1984) [45], Gaussian model [46-48], parabolic (PAP) model [49, 50], and 

exponential (XPP) model [51, 52]. Furthermore, one can also use the Monte Carlo method (section 

2.3.1). 

 

Figure 2.7 Generated and emitted ϕ(ρz) curves for the Al Kα line in pure Al at 15 keV, simulated 

using MC X-ray [53] 

 

2.1.4 X-ray fluorescence 

As a result of photoelectric absorption, the atom will undergo a de-excitation process, as 

mentioned in section 2.1.2. If the energy of the electron-induced X-ray is greater than the excitation 

energy of a certain shell of the targeted atom, a secondary X-ray might be produced, which is 

termed X-ray fluorescence. More details of X-ray fluorescence are presented in section 2.4. 
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2.2 Quantitative X-ray microanalysis 

Following the basic principles of electron-induced X-ray emission, two questions are answered 

in this section: how X-rays are detected and how to calculate the composition of an unknown 

specimen with the detected spectrum.  

2.2.1 X-ray detection  

Once the generated X-rays get out of the sample, some of them are detected by the X-ray 

detector, through which their energies or wavelengths and counts are measured. Two systems are 

available for such analysis: WDS and EDS.  

WDS selects the X-rays to be counted according to their wavelengths using Bragg diffraction 

[54]. Bragg’s law gives the n order reflection condition of an incident X-ray with a wavelength 𝜆𝑋 

to be reflected by an analyzing crystal with lattice-plane spacing d at a certain glancing angle θ, 

expressed as follows: 

 𝑛𝜆𝑋 = 2𝑑 sin 𝜃 (2.5) 

The first order reflection (n = 1) is the most intense reflection and normally used in wavelength 

dispersive analysis. A crystal spectrometer can only detect X-rays of a certain wavelength at a time. 

A range of wavelengths can be achieved by rotating the crystal and detector at the same time, but 

the range is still limited by the range of rotating angle (𝜃 typically ranges from 15º to 70º) [5]. To 

measure the full X-ray range, different crystals are needed. Normally, two or more WDS are 

equipped to cover the full X-ray range at a time. X-rays are detected with a gas-filled proportional 

counter through which the mean amplitude of the output pulse is proportional to the energy of the 

X-ray photon. For commercial EDS systems, the energy resolution of a WDS is about 10 eV [4]; 

however, some WDS analyzers can produce an energy resolution below 1 eV [55]. 

EDS, on the contrary, detects X-rays with different energies simultaneously using a 

semiconductor (normally Si). X-rays are first absorbed in the semiconductor through the 

photoelectric effect, which results in the generation of several electron-hole pairs with a mean 

energy ϵe-h (3.8 eV for Si). The number of electron-hole pairs Ne-h is proportional to the X-ray 

photon energy, EX:  
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 𝑁𝑒−ℎ =
𝐸𝑋
ϵ𝑒−ℎ

 (2.6) 

The free electrons and positively charged holes then move to two sides of the crystal as a result 

of a strong electric field. The current is measured by a preamplifier to determine the energy of the 

X-ray photon [4]. Two kinds of EDS detectors are widely used: the lithium-drifted silicon (Si(Li)) 

detector [56] and silicon drift detector (SDD) [57, 58]. The latter detector is more advanced and 

has a higher count rate than the former. The energy resolution of an EDS is mainly limited by the 

noise amplitude of the preamplifier and the peak broadening because the number of generated 

electron-hole pairs yields a statistical fluctuation. 

Since EDS can detect X-rays with varying energies simultaneously, it takes less time for EDS 

to measure the full X-ray spectrum than WDS. People, therefore, prefer to use EDS for qualitative 

analysis. On the other hand, the energy resolution of WDS is around ten times better than EDS. 

WDS also shows advantages in count rate and peak to background ratio. Thus, WDS is more likely 

to be used for trace elements quantitative analysis. However, the difference between EDS and 

WDS is becoming smaller. Recently, research has been conducted to show that EDS measurement 

can get similar precision and accuracy as WDS for the analyses of major and minor elements [59, 

60]. 

2.2.2 Traditional quantification approaches 

Quantitative X-ray microanalysis calculates the composition of an unknown sample using the 

measured characteristic X-ray intensities. Two quantification methods are widely applied to bulk 

materials: the k-ratio method and the f-ratio method. 

k-ratio method 

The k-ratio method was first proposed by Castaing [61] and improved by many scientists [3, 

4]. The k-ratio (𝑘) is the ratio of the measured characteristic X-ray intensity of the target element 

in an unknown specimen (𝐼𝑢𝑛𝑘) to that in a standard (𝐼𝑠𝑡𝑑) [2], 

 𝑘 =
𝐼𝑢𝑛𝑘
𝐼𝑠𝑡𝑑

 (2.7) 

And the concentration of the target element in the unknown specimen 𝑐𝑢𝑛𝑘 is calculated using the 

following equation: 
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 𝑐𝑢𝑛𝑘 = 𝑐𝑠𝑡𝑑 ∙ 𝑘 ∙ ZAF (2.8) 

where 𝑐𝑠𝑡𝑑  is the concentration of the target element in the standard, and ZAF  is the matrix 

correction factor to correct for the differences between the unknown specimen and the standard in 

the electron interaction, which includes the atomic number factor (Z), X-ray absorption factor (A), 

and X-ray fluorescence factor (F).  

There are two approaches to calculating the matrix correction factor (ZAF) [3]. One approach 

calculates the three factors (Z, A, and F) directly using fundamental equations that describe the 

physical processes [62-66]. The ϕ(ρz) technique uses the ϕ(ρz) curve to calculate Z and A and an 

analytical equation to calculate characteristic fluorescence (F). Bastin and Heijligers performed 

1113 analyses of samples with known compositions to compare the accuracy of the two approaches 

[67]. They calculated the ratio of the calculated k-ratio to the measure k-ratio and plotted the error 

histogram of the number of analyses versus the ratio for the two approaches (as presented in Figure 

2.8 [3]). The ϕ(ρz) technique (Figure 2.8 b) shows better performance than the ZAF approach 

(Figure 2.8 a). 

 

Figure 2.8 Error histogram of a) the ZAF approach and b) the ϕ(ρz) technique relative to the ratio 

of the calculated k-ratio to the measured k-ratio (figure from Ref. [3] and data originally from 

Ref. [67]). The data contained 1113 analyses. 

 

In real applications, since the value of the ZAF factor depends strongly on the composition of 

the sample, which is unknown until the ZAF factor is obtained, an iteration process is typically 

performed [54]. 
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One disadvantage of the k-ratio method is that the measurements for the unknown specimen 

and standard must be carried out under identical analysis conditions, which is not always 

achievable. 

f-ratio method 

Another emerging quantification approach is the f-ratio method [68-70]. This method is similar 

to the Cliff and Lorimer ratio method [71], which connects the ratio of the characteristic X-ray 

intensities of two constitute elements A and B of the specimen to the ratio of their element 

concentrations as follows: 

  
𝑐𝐴
𝑐𝐵
= 𝐾𝐴𝐵

𝐼𝐴
𝐼𝐵

 (2.9) 

where 𝐾𝐴𝐵  is the Cliff and Lorimer K factor, which can be calculated experimentally using a 

standard. Since the characteristic X-ray intensities are obtained from the same spectrum, the 

identical analysis condition that is required for the k-ratio method is not necessary. The Cliff and 

Lorimer method is typically applied to thin films, while the f-ratio method can be applied to bulk 

specimens. 

In a binary system with element A and B, the f-ratio is defined as [72]: 

  𝑓𝐴 =
𝐼𝐴

𝐼𝐴 + 𝐼𝐵
 (2.10) 

where 𝐼𝐴 and 𝐼𝐵 are characteristic X-ray intensities of elements A and B, respectively. The benefit 

of the f-ratio method is that even when the concentration of element B is low and 𝐼𝐵 is close to 0, 

the f-ratio is still relatively stable [73]. Normally, a calibration curve of the f-ratio versus the 

element concentration is first computed using either Monte Carlo simulation or analytical models, 

and the measured f-ratio is used to determine the concentration in the unknown sample through 

interpolation. The f-ratio method has been successfully applied to binary [68, 70] and multi-

element systems [74].  

For the mentioned quantification methods and other methods that are currently available, one 

identical restriction is that they can only deal with homogeneous samples or samples that are 

homogeneous within the interaction volume. 
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2.3 Monte Carlo simulation 

For materials with complex geometries like multilayer materials and particles inside matrices, 

the traditional quantitative X-ray microanalysis methods that have been mentioned in section 2.2.2 

are not applicable. The Monte Carlo method is a useful tool to simulate electron-solid interaction 

and estimate X-ray emissions and is available for materials with arbitrary geometries [2].  

2.3.1 Monte Carlo method  

The Monte Carlo method uses random numbers to predict the result of an event [75]. In 

electron-induced X-ray microanalysis, it is used to compute the travel direction and travel distance 

after each elastic collision of the incident electron with the solid to simulate the whole electron 

trajectory. Then, the X-ray emission in each electron trajectory segment is calculated to obtain the 

full X-ray spectrum. In this section, we briefly introduce one of the most popular models of 

simulating electron-solid interaction using the Monte Carlo method, the single scattering model. 

A more detailed description of the Monte Carlo method and other models can be found in Ref. 

[75-78].  

 

Figure 2.9 Geometry used to simulate the trajectory of an electron using the single scattering 

model from Ref. [79]. 
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The single scattering model assumes that only elastic scattering events determine the trajectory 

of a given electron, and the process of how an electron loses its energy is continuous [75]. Figure 

2.9 presents the geometry used to simulate the electron trajectory using the single scattering model 

[79]. An electron travels to point 𝑃𝑗  after undergoing an elastic scattering at point 𝑃𝑗−1 . To 

determine the position of the next scattering point 𝑃𝑗+1, the travel distance 𝐿𝑗 and travel direction 

are required. Since it is assumed that only elastic scattering events are considered to determine the 

electron trajectory, the distance is related to the elastic mean free path, defined as follows: 

 λ =  
𝐴

𝑁0𝜌𝜎𝐸
 (2.11) 

where A is the atomic weight of the target, 𝑁0 is Avogadro’s number, ρ is the density of the target, 

and 𝜎𝐸 is the elastic cross-section. The travel distance 𝐿𝑗 is given by,  

 𝐿𝑗 = −λ ∙ 𝑙𝑛(𝑅𝑁𝐷) (2.12) 

where 𝑅𝑁𝐷 is a random number that is uniformly distributed between 0 and 1. The travel direction 

depends on the polar angle θ and azimuthal angle ϕ. When using the partial Rutherford cross-

section, they are expressed as [79]: 

 cos(𝜃) = 1 −
2𝛼𝑅𝑁𝐷

1 + 𝛼 − 𝑅𝑁𝐷
 (2.13) 

 𝜙 = 2𝜋 ∙ 𝑅𝑁𝐷 (2.14) 

where α is the screening parameter. With both the travel distance and direction known, the 

coordinates of point 𝑃𝑗+1  can be calculated. Notice that 𝑅𝑁𝐷  in equation (2.12) to (2.14) are 

different and generated randomly each time before being used. The energy loss during the travel 

from 𝑃𝑗 to 𝑃𝑗+1 is determined by the continuous slowing down approximation using the following 

equation: 

 𝐸𝑗+1 = 𝐸𝑗 + 
𝑑𝐸

𝑑𝑆
𝐿𝑗 (2.15) 

where 𝑑𝐸/𝑑𝑆 is the stopping power, which is typically calculated using Bethe’s model [6] or its 

modification [80]. Please refer to Ref. [75] for a detailed explanation. The electron trajectory is 

simulated step by step until the electron energy is small enough or the electron escapes out of the 

specimen. Although the same equations are used for all the electrons, the trajectories of the 

electrons vary because of the use of random numbers in each step. Therefore, with a great number 
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of simulated electrons, the Monte Carlo method can simulate the actual electron-solid interaction 

in experiments. Figure 2.10 shows the electron trajectories of 200 electrons in carbon (C) at 10 

keV using a Monte Carlo software program CASINO2 [81]. Red curves represent the trajectories 

of backscattered electrons. 

The X-ray production (both characteristic and bremsstrahlung) is calculated for each segment 

of the electron trajectories and summed up to obtain the total X-ray intensity. The characteristic 

X-ray intensity in a certain segment j is calculated using the following equation [75]: 

 𝐼𝑐ℎ𝑎,𝑗 = 𝜎𝑁𝐴𝜌𝜔 ∙ 𝐿𝑗/𝐴 (2.16) 

where 𝜎  is the ionization cross-section for the emission of characteristic X-rays, 𝜔  is the 

fluorescence yield, and 𝐿𝑗 is the segment length. The bremsstrahlung X-ray intensity is calculated 

as follows: 

 𝐼𝑏𝑟𝑒𝑚,𝑗 = 𝑄𝑁𝐴𝜌 ∙ 𝐿𝑗/𝐴 (2.17) 

where 𝑄  is the ionization cross-section for the emission of bremsstrahlung X-rays. An X-ray 

spectrum of a Si substrate with a 200 nm chromium (Cr) coating simulated using MC X-ray [53] 

at 15 keV is presented in Figure 2.11 a).  

 

Figure 2.10 Electron trajectories of 200 electrons at 10 keV in carbon using CASINO2 [81] 
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Figure 2.11 a) Simulated X-ray spectrum and b) ϕ(ρz) curves for a Si substrate with a 200 nm Cr 

coating at 15 keV using MC X-ray [53] 

Monte Carlo simulation has also been widely used in studying the spatial distribution of 

electrons and X-rays in bulk samples [82-85]. Good agreements in ϕ(ρz) curves between the Monte 

Carlo simulation and experiments were found [85]. Figure 2.11 b) presents the generated depth 

distribution curves for both the Si K line and Cr K line for a Si substrate with a 200 nm Cr coating, 

in which the boundary at a depth of 200 nm is clearly shown.  

Monte Carlo simulations are also applicable to heterogeneous materials, for example, 

multilayer materials [86, 87], particles [88], and grain boundaries [89].  

2.3.2 Monte Carlo program 

In this section, three commonly used Monte Carlo programs for X-ray microanalysis are briefly 

introduced: MC X-ray [53], DTSA-II [90], and PENEPMA [91]. 

Gauvin’s group developed MC X-ray [53] as an extension of CASINO [81, 92] and Win X-ray 

[79]. It computes the full X-ray spectrum for materials with various types of structures, which can 

be a combination or subtraction of several basic structures: box, sphere, and cylinder. It uses the 

single scattering model and continuous slowing down model and allows users to choose different 

physical models. The graphical user interface (GUI) of MC X-ray makes it easy to use. 

Furthermore, MC X-ray can also output the spatial distribution of the emitted X-rays. Recently, it 

has been integrated into Dragonfly, a software platform for image analysis, to provide more 

flexibility in simulated specimens and improve simulation efficiency [93]. 
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DTSA-II [90] is an important tool to visualize, compare, manipulate, and quantify the measured 

spectra, and also provides a fast simulation of X-ray spectrum for arbitrary complex samples. 

Similar to MC X-ray, it uses the continuous slowing down approximation for calculating X-ray 

emission. One advantage of DTSA-II is that it includes the calculation of secondary fluorescence, 

which improves the accuracy of the simulated X-ray spectrum [35].  

PENEPMA, on the contrary, uses a different approach to simulating the electron-solid 

interaction based on a general-purpose MC package, PENELOPE, which simulates the coupled 

transport of electrons and photons [91]. It tracks not only the primary electrons but also all 

secondary (or even higher order) electrons and photons generated during the interaction. This 

generality provides a more sophisticated simulation; however, it also requires much more 

simulation time. 

2.4 Secondary fluorescence effect 

 

Figure 2.12 Secondary fluorescence of the Fe Kα line in an Fe-Ni alloy from the characteristic 

X-rays (dark gray) and bremsstrahlung X-rays (light gray) from Ref. [4]. The spectrum is 

obtained from Win X-ray with a beam energy of 15 keV and a take-off angle of 40º. 

Secondary fluorescence is generated due to the photoelectric absorption of the primary X-rays 

by the solid atom, which produces an inner-shell vacancy and further emits a secondary X-ray 

when an outer-shell electron fills the vacancy. To produce a secondary fluorescence X-ray, the 
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energy of the primary X-ray has to be greater than the excitation energy of the target X-ray line. 

Two types of secondary fluorescence may occur depending on the type of primary X-rays: 

characteristic fluorescence and bremsstrahlung fluorescence. As shown in Figure 2.12, to emit Fe 

Kα X-rays through secondary fluorescence, the energy of the primary X-rays must be greater than 

the excitation energy 7.12 keV. For characteristic X-rays, both Ni Kα and Ni Kβ X-rays contribute 

to the emission of the Fe Kα line, termed characteristic fluorescence. The bremsstrahlung X-rays 

shown in the light area can cause the fluorescence of the Fe Kα line, which is called bremsstrahlung 

fluorescence.  

2.4.1 The importance of secondary fluorescence 

The magnitude of secondary fluorescence is typically small for homogeneous materials [1]; 

however, it can be large in some cases when two elements with close atomic numbers are present, 

which may result in strong characteristic fluorescence for the element with a lower atomic number. 

Furthermore, since X-rays can travel a greater distance than electrons, the interaction volume of 

secondary fluorescence is much larger than the primary interaction volume [2]. As a result, 

secondary fluorescence may occur in a region that is far from the primary interaction volume. This 

brings difficulties in quantitative analysis of heterogeneous materials or even qualitative analysis 

in some cases. Several examples are presented in the following paragraph.  
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Figure 2.13 Variation of measured (stars) and calculated (squares) Cr concentration (in ppm) for 

a coupled mid-ocean ridge basalt (MORB) glass and Cr2O3 at 15 keV from Ref. [94]. The solid 

straight line represents the referenced concentration of Cr in the MORB glass: 275 ppm. 

Borisova et al. [94] showed that a second phase could affect the quantitative analysis of a minor 

element through secondary fluorescence even when the distance between the boundary and beam 

position is 100 μm or larger. They performed quantitative analyses using both experimental and 

simulated data to obtain the Cr concentration in a mid-ocean ridge basalt (MORB) glass, which is 

coupled with a Cr2O3 as the change of the distance between the beam position and the crystal-glass 

interface. As presented in Figure 2.13, the estimated Cr concentration decreases as the distance 

increases and gets close to the reference value (275 ppm) only when the distance is greater than 

125 μm. Cox et al. [95] mentioned that for a thin film coated on a substrate, the contribution of the 

secondary fluorescence could amount to 20% when the element in the thin film is fluoresced by 

the primary X-rays generated in the substrate. Pfeiffer et al. [96] computed the k-ratios of the 

molybdenum (Mo) Kα line with and without bremsstrahlung fluorescence for a Mo thin film 

coated on a Si substrate with various film thicknesses at 25 keV and 35 keV, as shown in Figure 

2.14. The difference resulting from the fluorescence correction can rise to 22%.  
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Figure 2.14 k-ratios for the Mo Kα line of Mo films with various thicknesses deposited on a Si 

substrate with and without bremsstrahlung florescence correction at beam energies of 25 keV 

(with ◊ and without +) and 35 keV (with □ and without ×) [96]. 

2.4.2 Fluorescence correction approaches 

Currently, there are three available approaches to the secondary fluorescence correction: the 

Monte Carlo method, analytical modeling, and hybrid modeling that combines the former two.  

Monte Carlo method 

The Monte Carlo method has been introduced in section 2.3. It uses random numbers and 

physical models to simulate the result of an event. To compute the secondary fluorescence, the 

primary X-ray is propagated into a random direction for a random distance determined by the mean 

free path of photoelectric absorption, calculated by [35], 

 𝜆 =
1

(𝜇/𝜌)𝑀𝜌𝑀
 (2.18) 

where (𝜇/𝜌)𝑀 is the mass absorption coefficient in the sample and 𝜌𝑀 is the density of the sample. 

If the X-ray trajectory terminates within the sample, a secondary fluorescence event may occur at 

the position where the trajectory ends. The advantage of the Monte Carlo method is that it can be 

applied to materials with arbitrary geometries. However, this method requires a long computation 

time. Both DTSA-II and PENEPMA use the Monte Carlo method to compute secondary 

fluorescence [35]. With the help of variance reduction techniques, DTSA-II is orders of magnitude 

more efficient in computation than PENEPMA when similar accuracies are obtained [35]. 
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Analytical modeling 

The second approach is the analytical modeling. It computes the probability of secondary 

fluorescence considering the physical process consisting of three steps: the primary X-ray travels 

through the sample, a target element absorbs the primary X-ray, and the secondary X-ray is emitted. 

The analytical modeling takes much less time than the Monte Carlo method; however, it is limited 

in the specimen geometry and mostly based on some simplifications or approximations.  

a) Bulk samples 

Castaing [61] first proposed a formula for characteristic fluorescence correction of bulk 

homogeneous samples, and the formula was improved by Reed [66, 97] using the primary intensity 

formula given by Green and Cosslett [98]. The improved formula calculates the characteristic 

fluorescence ratio, the ratio of the fluorescence intensity of element A emitted by the primary X-

rays of the element B to the primary intensity of element A, and is expressed as follows [66]: 

 

𝐼𝑓,𝐴
𝐼𝑝,𝐴

= 0.5𝐶𝐵
𝜇𝐵
𝐴

𝜇𝐵

𝑟𝐴 − 1

𝑟𝐴
𝜔𝐵
𝐴𝐴
𝐴𝐵
∙ (
𝑈𝐵 − 1

𝑈𝐴 − 1
)
1.67

∙ 

(
ln(1 + 𝑥)

𝑥
+
ln(1 + 𝑦)

𝑦
) 

(2.19) 

where 𝐶𝐵 is the weight fraction of element B, 𝜇𝐵
𝐴 and 𝜇𝐵 are the mass absorption coefficient of 

pure A and the specimen respectively for the primary X-rays of element B, 𝑟𝐴 is the jump ratio of 

element A, 𝜔𝐵 is the fluorescence yield of element B, 𝐴𝐴 and 𝐴𝐵 are the atomic weight of element 

A and B, 𝑈𝐴 and 𝑈𝐵 are the overvoltage for element A and B, 𝑥 and 𝑦 are absorption parameters 

calculated by, 

 𝑥 = (
𝜇𝐴
𝜇𝐵
) 𝑐𝑜𝑠𝑒𝑐(𝜃)  (2.20) 

 𝑦 =  𝜎/𝜇𝐵  (2.21) 

where 𝜇𝐴 is the mass absorption coefficient of the specimen for the X-ray of element A, 𝜃 is the 

take-off angle, and 𝜎 is the electron mass absorption coefficient (Lenard coefficient) representing 

the depth distribution of the primary X-rays. The factor (
𝑈𝐵−1

𝑈𝐴−1
)
1.67

 represents the dependent of the 

primary X-ray intensity ratio of B to A on the incident beam energy. The main assumptions made 



27 

 

to apply equation (2.19) are that all primary X-rays are generated from the same point located on 

the surface of the specimen, and the X-ray depth distribution follows a simple exponential form. 

Springer [99] proposed a bremsstrahlung fluorescence model for homogeneous bulk materials, 

expressed as follows: 

 
𝐼𝑓,𝐴
𝐼𝑝,𝐴

= 4.34 × 10−6
𝑟𝐴 − 1

𝑟𝐴
𝐴𝐴𝑍̅𝐸𝑘

𝜇𝐾
𝐴

𝜇𝐾
𝑓𝑎𝑏𝑠 (2.22) 

where 𝑍̅ is the mean atomic number of the specimen, which is calculated by 𝑍̅ = ∑𝐶𝑖𝑍𝑖, 𝐸𝑘 is the 

excitation energy of X-ray radiation of element A, 𝜇𝐾
𝐴 and 𝜇𝐾 are the mass absorption coefficients 

of pure A and the specimen on the high side of the absorption edge, and 𝑓𝑎𝑏𝑠 is the absorption 

factor [97, 100]. This equation has been modified or simplified by several researchers [101-103]. 

In general, the correction is mostly smaller than 1% and no larger than 5% [100, 104]. 

b) Thin films and multilayer samples 

In terms of thin films and multilayer samples, Cox et al. [95] developed an analytical model to 

calculate the secondary X-rays generated in a coating caused by the characteristic X-rays of the 

substrate with the thin film assumption, i.e., the mean mass depth of X-ray production is much 

greater than the mass thickness of the film. Youhua et al. [105] extended Cox’s model and made 

it available for both thin films and multilayers with multicomponent. Benhayoune [106] computed 

both the characteristic and bremsstrahlung fluorescence of thin coating with an oblique surface 

based on the formula from Cox et al. All these models ignore the depth distribution of the primary 

X-ray production and assume that the characteristic X-rays are generated from the mid-point of a 

certain layer. 

Waldo [107] derived an equation for multilayer samples and incorporated ϕ(ρz) analytical 

models into the fluorescence correction to take the depth distribution of the primary X-ray 

production into account. The final solution was obtained analytically, which makes it applicable 

to all multilayer samples but extremely complicated because of multiple integrals and the complex 

expression of ϕ(ρz) models. Waldo also evaluated the performance of multiple ϕ(ρz) models, 

including the PAP model from Pouchou and Pichoir [52], linear-exponential models, and Gaussian 

model from Packwood and Brown [46].  
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Figure 2.15 Schematic for the characteristic fluorescence in an irregular sample from Ref. [108]. 

Armstrong and Buseck [108] developed a general formula that applies to bulks, thin films, and 

single particles, and the solution of the formula can be obtained using numerical integration. For 

an irregular specimen, 3D X-ray distribution [𝜙 (𝑥, 𝑦, 𝑧)] must be known in advance instead of the 

depth distribution. The schematic for the characteristic fluorescence is presented in Figure 2.15. 

The total characteristic fluorescence intensity of the k line of element A, 𝐼𝑓,𝐴𝑘  is expressed as [108], 

 

𝐼𝑓,𝐴𝑘 = 𝐶𝐴
𝑟𝐴 − 1

𝑟𝐴
𝜔𝐴𝑘𝑝𝑘

∆𝛺

(4𝜋)2
∑∑𝐼𝐵,𝑗

′′ 𝜇𝐵,𝐴
𝑗

𝑗𝐵

 

×∫
1

𝑎0
∫ ∫ ∫ ∫ ∫

𝛾2(𝑧,𝑦,𝑥,𝜉,𝜃)

𝑠=𝛾1(𝑧,𝑦,𝑥,𝜉,𝜃)

𝜋

𝜃=0

2𝜋

𝜉=0

𝛽2(𝑦,𝑧)

𝑥= 𝛽1(𝑦,𝑧)

𝛼2(𝑧)

𝑦= 𝛼1(𝑧)

𝑇

𝑧=0

 

× [𝜙𝐵,𝑗(𝑥, 𝑦, 𝑧) tan 𝜃 𝑒
−𝜇𝐵

𝑗
sec𝜃𝑠𝑒−𝜇𝐴

𝑘𝑔(𝑧,𝑦,𝑥,𝜉,𝜃,𝑠)] 

× 𝑑𝑠 𝑑𝜃 𝑑𝜉 𝑑𝑥 𝑑𝑦 𝑑𝑧 

(2.23) 

where 𝐶𝐴  is the weight fraction of element A at P2, 𝑟𝐴  is the absorption jump ratio, 𝜔𝐴𝑘  is the 

fluorescence yield of the k line of element A, 𝑝𝑘 is the relative intensity, ∆𝛺 is the solid angle, 𝐵 

and 𝑗 represent the X-ray line j of element B that can fluoresce the k line of element A, 𝐼𝐵,𝑗
′′  is the 
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generated X-ray intensity of the j line of element B, 𝜇𝐵,𝐴
𝑗

 is the mass absorption coefficient of pure 

A for the primary X-ray of the j line of element B, x, y, and z represent the coordinates of P1, where 

the primary X-rays are generated, 𝑎0 is the projected area of the top surface of the specimen, 𝜉, 𝜃, 

and 𝑠 determine the position of P2, where the secondary X-rays are generated (as shown in Figure 

2.15), 𝜙𝐵,𝑗(𝑥, 𝑦, 𝑧) is the spatial distribution of the primary X-rays of the j line of element B, 𝜇𝐵
𝑗
 

and 𝜇𝐴
𝑘 are the mass absorption coefficients of the specimen for the j line of element B and the k 

line of element A, respectively, 𝑒−𝜇𝐵
𝑗
sec𝜃𝑠 represents the absorption factor of the primary X-rays 

during the path from P1 to P2, and 𝑒−𝜇𝐴
𝑘𝑔(𝑧,𝑦,𝑥,𝜉,𝜃,𝑠)  represents the absorption factor of the 

secondary fluorescence X-rays during the path from P2 to P3. Please refer to Ref. [108] for more 

details about the derivation. 

As for bremsstrahlung florescence, only Pfeiffer et al. [96] developed a model for film-

substrate samples using a depth distribution function for the bremsstrahlung X-rays to calculate 

their contributions to secondary fluorescence.  

c) Non-diffusion couples 

The secondary fluorescence of non-diffusion couples is also an important topic. A non-

diffusion couple is formed when two different materials are separated by a sharp boundary and no 

diffusion is allowed between the two materials. Henoc et al. [109] and Escuder et al. [110] 

developed the equations of both characteristic and bremsstrahlung fluorescence for non-diffusion 

couples that are separated by vertical boundaries. The derivation was based on the assumption that 

all primary X-rays are generated from a point source that locates at the surface of the sample (see 

Figure 2.16 for the schematic). Bastin et al. [111] extended the model for characteristic 

fluorescence to be applied to more cases of two homogeneous alloys separated by both straight 

and curved boundaries, as shown in Figure 2.17.  
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Figure 2.16 Schematic of fluorescence correction for non-diffusion couples separated by a 

vertical boundary from Ref. [112]. O is the beam position at which the primary X-rays are 

generated, and P is the position where secondary X-rays are emitted. 1 and 2 represent two 

different materials. d is the distance between the beam position and the vertical boundary.  

 

Figure 2.17 Sample geometries of a) a lamella embedded in a matrix, b) a thin layer on the top of 

a substrate, c) a hemisphere embedded in a matrix. The figure is from Ref. [111]. LA and LB 

represent two different materials. 

Hybrid modeling  

The third approach is the hybrid modeling, which combines the Monte Carlo method and 

analytical modeling. Specifically, Monte Carlo simulations are used to obtain some required 

physical parameters to be used in the analytical modeling for the fluorescence calculation. 
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Armigliato et al. [113] performed the characteristic fluorescence calculation for elements from 

thin films fluoresced by the primary X-rays generated from substrates using ϕ(ρz) curves obtained 

from Monte Carlo simulations and an analytical model that incorporates ϕ(ρz) data numerically. 

Myklebust and Newbury [114] used Monte Carlo simulations to calculate the discrete distribution 

of primary X-ray generation and an analytical expression to calculate characteristic fluorescence 

intensity for a non-diffusion couple. Llovet et al. [115] extracted the required physical interaction 

parameters from the Monte Carlo program PENEPMA and used them in an analytical model for 

both characteristic and bremsstrahlung fluorescence of bulks and non-diffusion couples. The 

numerical results from the hybrid model were compared with both experimental data and 

simulation data from PENEPMA, in which close agreements were found [115]. The hybrid 

modeling is more efficient than the Monte Carlo method and more accurate than the analytical 

modeling. 

2.5 Inverse modeling of heterogeneous materials  

X-ray microanalysis forward modeling is used to predict the intensity of X-ray emission with 

prior knowledge of the specimen and experimental setup. Inverse modeling, on the contrary, 

extracts the structure and composition information of an unknown specimen from a series of X-

ray intensity measurements [116]. The inverse modeling of 1D, 2D, and 3D materials will be 

introduced in the following sections.  

2.5.1 1D samples 

1D samples are heterogeneous along the depth direction (the direction that is perpendicular to 

the specimen surface) and homogeneous on the plane that is parallel to the specimen surface. 1D 

samples include thin films on substrates and multilayer samples. The inverse modeling of 1D 

samples typically aims to determine the thickness or composition of a thin layer from the measured 

k-ratios.  

Methods have been developed to determine the thickness of a thin film when the composition 

of each layer of the specimen is known [86, 117-119]. For example, Armigliato et al. [86] 

constructed a calibration curve of the k-ratio versus the film thickness using a Monte Carlo code 

and fit the measured k-ratio to determine the film thickness. Similarly, the calibration curve can 

be computed using analytical models [120]. Youhua [118] developed an iteration method to 
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calculate the mass thickness of each layer in a multilayer specimen by fitting the predicted k-ratios 

from a simplified Monte Carlo simulation to the measured experimental k-ratios. The calculated 

thicknesses agree well with the measured data. 

A similar method as Youhua’s method [118] was used by Hu and Pan [121] to calculate the 

chemical composition of a thin film deposited on a substrate with knowledge of the film thickness 

and the composition of the substrate. Good agreements were found with the referenced 

compositions, even for a film with a thickness of the order of 0.01 μm. 

Waldo [122] developed an iteration procedure to calculate both the composition and thickness 

of materials with two thin films and a substrate simultaneously using the experimental k-ratios of 

each element in each layer. The sample geometry is shown in Figure 2.18. Figure 2.19 presents a 

flowchart of the iteration procedure. With knowledge of the experimental k-ratios, the procedure 

starts with the initialization of the film thickness and composition. Then, the analytical ϕ(ρz) model 

is used to calculate the initial theoretical k-ratios 𝑘𝑖,1. The new concentrations and film thickness, 

for the first iteration, are then computed by comparing the experimental and theoretical k-ratios 

𝑘𝑖,𝑒𝑥𝑝 and 𝑘𝑖,1. This process is repeated until the experimental and theoretical k-ratios are close 

enough. The method to calculate the new compositions and thicknesses for the mth iteration is 

given by the following equations. 

For the surface layer,  

 𝑐𝑖,𝑚+1 = 𝑐𝑖,𝑚
𝑘𝑖,𝑒𝑥𝑝
𝑘𝑖,𝑚

 (2.24) 

 
𝛿𝑚+1
𝑓1

= 𝛿𝑚
𝑓1∑ 𝑘𝑖,𝑒𝑥𝑝𝑖

∑ 𝑘𝑖,𝑚𝑖
 

(2.25) 

For the subsurface layer, 

 𝑐𝑖,𝑚+1 = 𝑐𝑖,𝑚
𝑘𝑖,𝑒𝑥𝑝
𝑘𝑖,𝑚

exp [−𝛿𝑚
𝑓1
(𝜒′ − 𝜒)]

exp [−𝛿𝑚+1
𝑓1

(𝜒′ − 𝜒)]
 (2.26) 

 
(𝛿𝑚+1
𝑓2

− 𝛿𝑚+1
𝑓1

) = (𝛿𝑚
𝑓2
− 𝛿𝑚

𝑓1
)
∑ 𝑘𝑖,𝑒𝑥𝑝𝑖

∑ 𝑘𝑖,𝑚𝑖
 

(2.27) 

For the substrate, 
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 𝑐𝑖,𝑚+1 = 𝑐𝑖,𝑚
𝑘𝑖,𝑒𝑥𝑝
𝑘𝑖,𝑚

exp [−𝛿𝑚
𝑓1
(𝜒′ − 𝜒)]

exp [−𝛿𝑚+1
𝑓1

(𝜒′ − 𝜒)]

exp [−(𝛿𝑚
𝑓2
− 𝛿𝑚

𝑓1
)(𝜒′′ − 𝜒)]

exp [−(𝛿𝑚+1
𝑓2

− 𝛿𝑚+1
𝑓1

)(𝜒′′ − 𝜒)]
 (2.28) 

where 𝑖  represents an element in the target layer, 𝜒, 𝜒′  and 𝜒′′  are the absorption term in the 

subsurface layer, surface layer, and substrate, respectively (see details in Ref. [122]). The accuracy 

of this method greatly depends on the accuracy of the ϕ(ρz) model. Examples show that good 

convergence can be obtained within ten iterations. However, this method requires that no common 

element is present in different layers, or the k-ratios of the common element from different layers 

are measured separately.  

 

Figure 2.18 Sample geometry for Waldo’s model [122] 

 

Figure 2.19 Flowchart of the iteration procedure in Waldo’s model [122] 
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A software program, GMRFILM [123], was developed based on Waldo’s model [122]. There 

are other software programs available to determine the composition and film thickness 

simultaneously, including XFILM [124], Strata [120], and Multifilm [120].  

2.5.2 2D samples 

The structures of 2D samples are more complex than those described above, and as a result, 

the analytical ϕ(ρz) models are not applicable to the computation of the X-ray emission. Only the 

Monte Carlo method can be used for the forward modeling of 2D samples. 

With prior knowledge about the structure or compositions of a specimen, a specific problem 

about the specimen may be solved. For example, Ro et al. [125] estimated the chemical 

composition of a single homogeneous particle that lies on a flat surface with known composition 

using an iteration procedure. In each iteration, the simulated characteristic X-ray intensities are 

calculated using a Monte Carlo simulation, and a new concentration is generated by successive 

approximation, 

 
𝐶𝑖
(𝑘+1)

=
𝐶𝑖
(𝑘)
𝐼𝑖,𝑒𝑥𝑝

𝐼𝑖,𝑠𝑖𝑚
(𝑘) ∑ (

𝐶𝑗
(𝑘)𝐼𝑗,𝑒𝑥𝑝

𝐼𝑗,𝑠𝑖𝑚
(𝑘) )𝑛

𝑗=1

 

(2.29) 

where 𝐶𝑖
(𝑘+1)

 is the (k+1)th approximation for the concentration of the ith element, 𝐼𝑖,𝑒𝑥𝑝 and 𝐼𝑖,𝑠𝑖𝑚
(𝑘)

 

are the experimental and the kth simulated X-ray intensity for the ith element. They also estimated 

the C layer thickness coated on a glass particle with known composition using the simulated 

calibration curves of the C/O intensity ratio versus the C layer thickness at various accelerating 

voltages [125]. 

Gauvin et al. [126] constructed a calibration curve using Monte Carlo simulations to determine 

the depth and size of a spherical MnS inclusion embedded in an iron matrix.  

Wagner [116] developed a procedure using the simulated annealing method to extract the 

structural information of arbitrary 2D structures from a set of X-ray intensity measurements at 

different beam energies and beam positions. The procedure is based on χ2 minimization between 

the experimental and theoretical X-ray intensities, and the theoretical X-ray intensities are 

computed using the Monte Carlo method. Figure 2.20 presents a flowchart of Wagner’s method. 
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The simulated annealing is an optimization algorithm similar to the physical process of annealing 

of solids [127]. Slow cooling of a liquid enables the freezing and crystallization of a material into 

a state of minimum energy. The objective function to be minimized is the analog of the energy of 

the state of the crystal, and the control parameter is the analog of the temperature. In each iteration, 

a random modification of the state is generated, and the modification is either accepted or rejected 

depending on the change in the objective function and the control parameter. If the state is 

improved like the decrease of energy, it is always accepted. If the energy is increased, this 

modification is accepted with a probability 𝑝 = 𝑒𝑥𝑝 (−∆𝐸/𝑇), where ∆𝐸 is the change of energy 

and T is the control parameter. The control parameter T is slowly decreased to make the resulting 

state close to the global optimum. The objective function here refers to the χ2 deviation between 

the experimental and theoretical X-ray intensities. Figure 2.20 also presents the variation of the 

cost function and simulated sample structure relative to the control parameter for three Al2Cu 

precipitates of varying sizes and depths embedded in a matrix of Al with 2 wt% Cu on a Si substrate. 

As the control parameter slowly decreases, the simulated structure converges to the real structure. 

However, the method is based on the assumption that the possible compositions of the specimen 

are known in advance.  

Current 2D inverse modeling methods are available only with prior knowledge of the specimen 

(either the composition or structure). 
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Figure 2.20 Flowchart of the inverse modeling using the simulated annealing algorithm [116] 

 

2.5.3 3D samples 

The inverse modeling of 3D samples is normally implemented using a dual-beam microscope 

formed by an SEM equipped with a FIB by sequentially sectioning a specimen and performing the 

EDS mapping for each slice [128]. Figure 2.21 shows the 3D elemental distribution of a ceramic 

sample of (Ca)MgTiOx reconstructed from a series of EDS mapping.  

Burdet et al. [129] proposed an enhanced quantification method of 3D EDS microanalysis to 

correct EDS data for the effects of the large volume of X-ray emissions. The benefit of this method 

is that for a tiny detail that is smaller than the X-ray emission volume, the X-ray emitted from the 

deeper features is corrected during the milling so that an improved quantification is obtained. 

However, this method is not perfect. By using FIB, the samples are destructed, which means the 

measurement could only be performed once no matter how the result is.  
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Figure 2.21 3D elemental distribution of the a) calcium (Ca), b) magnesium (Mg), and c) 

titanium (Ti) reconstructed from EDS data [128] 

 

2.6 STEM tomography 

STEM is a technique used to characterize a wide range of materials in nanoscale or atomic 

scale by scanning the specimen with a fine-focused electron beam in a raster pattern and detecting 

the transmitted electrons [130]. Compared to conventional transmission electron microscopy 

(CTEM), in which electrons that emerge from an area of the specimen are projected onto a screen 

[131], STEM shows advantages in image resolution and lacking interference artifacts due to 

incoherent imaging [132]. It is also able to detect different kinds of signals simultaneously using 

a lower total current, which is beneficial for beam sensitive samples [130, 133]. 

2.6.1 Imaging modes in STEM  

Different imaging modes are available in STEM: bright-field (BF), dark-field (DF), and 

annular dark-field (ADF). BF imaging collects the direct-beam electrons that are not scattered 
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when traveling through the specimen. DF imaging, on the contrary, selects the scattered electrons 

and shows complementary images to BF images. It can be done using the BF detector by simply 

shifting the stationary diffraction pattern. Alternatively, we can use an annular detector in which 

DF imaging is termed ADF imaging. When the collection angle of the annular detector is relatively 

high, typically larger than 80 mrad [130], the high-angle (HA) ADF images are formed [131]. 

Since low-angle scattering is mainly dominated by diffraction effects [134], BF images show 

diffraction contrast information, while ADF and HAADF images predominately present Z-contrast.  

Combing with EDS, STEM can be applied to chemical composition analysis. The EDS signals 

provide element-specific information but have much worse SNR compared with ADF or HAADF 

signals [130]. Recently, by incorporating multiple SDDs, the new generation EDS system has the 

advantage of increased solid angle, which provides an improvement in count rate. The acquisition 

of high-resolution (atomic resolution) EDS maps is, therefore, possible [135].  

2.6.2 Quantitative EDS analysis using STEM  

There are two traditional approaches to EDS quantification of thin specimens: the Cliff-

Lorimer (k-ratio) method and the ζ-factor method. The Cliff-Lorimer method [71] has been 

introduced in section 2.2.2 [equation (2.9)]. The Cliff-Lorimer factor (k-ratio), 𝐾𝐴𝐵  can be 

estimated using theoretical calculations or experiments [136]. The theoretical calculation is easy 

to implement but with relatively low accuracy, while experimental determination is with little error 

but complicated to perform. The experimental determination requires multi-elements thin film 

standards, which may not always be available. Another limitation emerges from X-ray absorption 

correction, since prior knowledge of the specimen (mass thickness and composition) is required to 

apply the absorption correction, whose measurements in turn may bring some errors [136].  

Those two limitations are overcome by the ζ-factor method, which assumes that the X-ray 

intensity of element A is proportional to its weight fraction CA and the mass-thickness of the 

specimen 𝜌𝑡, written as follows [136]: 

 𝜌𝑡 = 𝜁𝐴
𝐼𝐴
𝐶𝐴𝐷𝑒

 (2.30) 

where 𝜁𝐴 is the ζ-factor and 𝐷𝑒 is the total electron dose. Since the ζ-factor is only related to one 

constitute element, the pure standard can be used instead of a multi-element standard. Moreover, 
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with known mass-thickness, the X-ray absorption correction is much easier than the Cliff-Lorimer 

factor method. 

2.6.3 3D STEM tomography  

Electron tomography is a technique used to retrieve 3D structural or morphological information 

in nanoscale from a tilt series of 2D projection images [137]. The input data for tomography 

reconstruction needs to satisfy the projection requirement, that the intensity of the signal is a 

monotonic function of the reconstructed quantity [133, 138]. HAADF-STEM images are thus the 

most suitable due to its Z-contrast and high resolution.  

The basic principle of electron tomography is demonstrated in Figure 2.22 [139], that the 

projection image b can be calculated as a matrix multiplication of the projection matrix A and the 

object x,  

 𝒃 = 𝑨𝒙 (2.31) 

where an element ai,j in the matrix A represents the contribution of the pixel xi to the projection ray 

bj. The purpose of tomographic reconstruction is to determine the object x to minimize the 

difference between b and 𝑨𝒙. 

Tomographic reconstruction algorithms include direct back-projection [140], weighted back-

projection [141], algebraic reconstruction technique (ART) [142], simultaneous iterative 

reconstruction technique (SIRT) [143], and total variation minimization (TVM) reconstruction 

algorithm [144]. Only SIRT is briefly introduced in this section. SIRT starts from a reconstructed 

object obtained using the back-projection algorithm and updates the object in each iteration by 

comparing the re-projections of the object simultaneously with the experimental projections. In 

each iteration, the updated object is expressed as follows [145]: 

 𝑥𝑘+1 = 𝑥𝑘 + 𝐶𝐴𝑇𝑅(𝑏 − 𝐴𝑥𝑘) (2.32) 

where C and R are the diagonal matrices of the inverse column and row sums of matrix A, 

respectively. The process is repeated until convergence, which typically takes 20 to 30 iterations. 

SIRT is tolerant of noise of the measured data and has been widely applied to tomography 

reconstruction [146]. 
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Figure 2.22 Schematic for projection in a tomographic experiment from Ref. [139]. X represents 

the object to be projected with size 𝑤 × ℎ. aij is an element in the projection matrix. 

 

In summary, the interaction of electrons with the specimen and the process of X-ray emission 

have been explicitly introduced. Several traditional quantitative X-ray microanalysis methods of 

homogeneous materials have been presented. The Monte Carlo method has been presented. Brief 

reviews on secondary fluorescence correction, inverse modeling of heterogeneous materials, and 

STEM tomography have also been presented. In the following chapters, the results of this work 

will be shown.  
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Chapter 3. Secondary fluorescence correction for 

characteristic and bremsstrahlung X-rays using Monte 

Carlo X-ray depth distributions applied to bulk and 

multilayer materials 

 

In electron microscopy, the accuracy of the prediction of X-ray emission for heterogeneous 

materials is limited by the lack of secondary fluorescence correction. This chapter introduces a 

secondary fluorescence correction program for both characteristic and bremsstrahlung 

fluorescence of bulk and multilayer materials using a hybrid model. The hybrid model that 

combines the Monte Carlo method and analytical modeling has shown great accuracy and 

efficiency. Through the addition of the correction program, the accuracy of X-ray intensity 

predictions of MC X-ray is significantly improved.  

 

• This chapter has been published as: Y. Yuan*, H. Demers, S. Rudinsky, R. Gauvin, Secondary 

Fluorescence Correction for Characteristic and Bremsstrahlung X-Rays Using Monte Carlo 

X-ray Depth Distributions Applied to Bulk and Multilayer Materials, Microscopy and 

Microanalysis, 25 (2019) 92-104. 
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3.1 Abstract 

Secondary fluorescence effects are important sources of characteristic X-ray emissions, 

especially for materials with complicated geometries. Currently, three approaches are used to 

calculate fluorescence X-ray intensities. One is using Monte Carlo simulations, which are accurate 

but have drawbacks such as long computation time. The second one is to use analytical models, 

which are computational efficient but limited to specific geometries. The last approach is a hybrid 

model, which combines Monte Carlo simulations and analytical calculations. In this article, a 

program is developed by combining Monte Carlo simulations for X-ray depth distributions and an 

analytical model to calculate the secondary fluorescence. The X-ray depth distribution curves of 

both the characteristic and bremsstrahlung X-rays obtained from Monte Carlo program MC X-ray 

allow us to quickly calculate the total fluorescence X-ray intensities. The fluorescence correction 

program can be applied to both bulk and multilayer materials. Examples for both cases are shown. 

Simulated results of our program are compared with both experimental data from the literature and 

simulation data from PENEPMA and DTSA-II. The practical application of the hybrid model is 

presented by comparing with the complete Monte Carlo program.  
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3.2 Introduction 

MC X-ray [1, 2], an extension of CASINO [3] and Win X-ray [4], is one of the most well-

known Monte Carlo programs for quantitative X-ray microanalysis. It can predict full X-ray 

spectra obtained from energy dispersive spectroscopy (EDS) by simulating electron trajectories 

and calculating X-ray intensities. It also allows different kinds of sample geometries such as 

spheres, cylinders, and boxes. Furthermore, MC X-ray provides full X-ray depth distributions 

[ϕ(ρz)] for both characteristic and bremsstrahlung X-rays. With a user-friendly graphical user 

interface, simulations can be performed easily and rapidly. However, as a compromise to ensure a 

fast computation, the secondary fluorescence X-rays are not simulated, which limits its accuracy. 

Secondary fluorescence X-rays are emitted by primary X-rays instead of electrons, and their 

intensities are normally in small magnitudes for bulk materials [5]. But for materials with complex 

geometries, like multilayer materials, couples, and particles, the contribution of secondary 

fluorescence can be significant [6, 7]. This is because the range of X-ray-emitted secondary 

fluorescence far exceeds the primary X-ray range as X-rays have a larger mean free path than 

electrons. Thus, materials far away from the primary interaction volume can contribute to the X-

ray emission. Cox et al. [8] mentioned that the difference in total intensity resulting from the 

fluorescence effect can reach 15%. It is therefore necessary to make corrections for fluorescence 

effects during quantitative X-ray microanalysis.  

The intention of this paper is to improve the accuracy of MC X-ray in the case of complex 

geometries by calculating secondary fluorescence effect for bulk and multilayer materials.  

As noted, there are three approaches to secondary fluorescence correction: Monte Carlo 

simulations, analytical models, and hybrid models. The Monte Carlo method uses random numbers 

and physical models to determine whether secondary fluorescence happens and where secondary 

X-rays are emitted. This method can be applied to any geometry. However, it requires long 

computation time. Only two widely used Monte Carlo programs include secondary fluorescence, 

PENEPMA [9], which is based on PENELOPE [10], and DTSA-II [11]. PENELOPE simulates 

the coupled transport of electrons and photons using a combination of numerical and analytical 

differential cross-sections. This means that not only the primary X-rays, but also the secondary X-

rays (and higher order fluorescence) are simulated [9]. Unsurprisingly, this generality with 
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minimal approximations results in long computation time. DTSA-II uses a simpler continuous 

slowing down model for electron transport, after which the ionization of the primary X-ray is 

modeled in each electron trajectory segment [12]. Then the secondary fluorescence is simulated 

by propagating the primary X-rays isotropically. DTSA-II is much faster than PENEPMA but still 

not as efficient as analytical models [12]. 

Analytical modeling calculates the probability of secondary fluorescence X-rays being emitted 

by primary X-rays. It considers the physical process which dictates how the primary X-ray travels 

through the sample, the primary X-ray is absorbed by a target element, and a secondary X-ray is 

emitted. It is much faster than the Monte Carlo method but also has some limitations. In the early 

days, fluorescence correction analytical methods, mostly characteristic fluorescence corrections, 

were either based on some simplification or limited in application. For example, Cox et al. [8] 

developed an equation for X-ray fluorescence produced in a coating by characteristic X-rays 

generated in the substrate material with the assumption that the mass thickness of the coating is 

much less than the mass depth of X-ray production in the target, i.e., thin coating. Benhayoune [13] 

calculated the characteristic and bremsstrahlung fluorescence at oblique incidence based on Cox 

et al.’s equation. Later, Youhua et al. [14] derived an equation, which allows the computation for 

both thin and thick films. However, they assumed characteristic X-rays in certain films were 

emitted from the mid-point of the films. This assumption is overly simplistic because the emitted 

X-ray intensity arises from different depths and varies a lot within a thick film. As the X-ray depth 

distribution [ϕ(ρz)] models improved, people started to apply ϕ(ρz) models to the fluorescence 

equation derivations. Waldo [15] developed an equation which could be applied to multilayer 

samples. He evaluated the performance of different ϕ(ρz) models including the Pouchou and 

Pichoir (PAP) model [16], linear-exponential model, and Gaussian model from Packwood & 

Brown [17]. The final solution became extremely complicated because of complex ϕ(ρz) 

expressions and multiple integrals. Other attempts have been made to compute the ϕ(ρz) model 

numerically. However, the methods are not readily used by readers as they require multiple steps 

including determining the ϕ(ρz) expression, computing the ϕ(ρz), and then calculating the multiple 

integral in the fluorescence correction equation numerically [18, 19]. As for the bremsstrahlung 

fluorescence correction, only a few papers have discussed the method [6, 20, 21], in which the 

correction for film-substrate samples was only mentioned once [6]. In general, analytical models 
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are fast to compute, but the accuracy of the method cannot be guaranteed due to all the 

simplifications and approximations and the limitations of applicability of ϕ(ρz) models.  

Some have tried to combine the Monte Carlo method and analytical models together. Llovet et 

al. [22] developed a hybrid model applied to material couples by obtaining some physical 

parameters and the primary intensity from Monte Carlo simulations. However, the calculation of 

the secondary fluorescence is only for bulk material and material couples. Armigliato et al. [23] 

performed the characteristic fluorescence corrections for a thin film on a substrate using Monte 

Carlo simulations for the computation of the X-ray ϕ(ρz) curves and analytical models for the 

calculation of the secondary fluorescence. Monte Carlo simulations provide accurate numerical 

predictions of X-ray ϕ(ρz) curves [4]. On the other hand, analytical models can be used to develop 

a fluorescence correction equation from one thin layer to another. The known X-ray depth 

distribution permits a rigorous computation of the fluorescence excitation by integrating over thin 

layers numerically. This method provides an accurate and fast secondary fluorescence correction 

model. In this paper, the X-ray ϕ(ρz) curves are obtained directly from MC X-ray. The physical 

processes which cause characteristic and bremsstrahlung fluorescence are the same. They differ 

only by the energy of the exciting X-rays. A consistent equation for the bremsstrahlung and 

characteristic fluorescence correction is developed. This method is applied to bulk and multilayer 

materials as a start and will be extended to arbitrary materials in the future. 

In the present study, a fluorescence correction program, which is available for bulk and 

multilayer materials, is constructed. The effects of two simulation parameters on the calculation 

of the fluorescence correction are discussed. By comparing calculated results with experimental 

data and simulated data from PENEPMA [9] and DTSA-II [11], the reliability and efficiency of 

the program are assessed. Through the addition of our correction program, the accuracy of X-ray 

intensity predictions of MC X-ray is improved.  

3.3 Method  

A derivation of the secondary fluorescence correction from both characteristic and 

bremsstrahlung X-rays is carried out for a multilayer sample. The electron-induced primary X-ray, 

Xb, can be either a characteristic or bremsstrahlung X-ray. Using MC X-ray, its mass depth 

distribution intensity [I(ρz)] was obtained and used as input for the fluorescence correction 
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program. And then, the fluorescence intensity of element Ea’s X-ray line Xa, 𝐼𝑋𝑎,𝑐ℎ𝑎𝑓 and 𝐼𝑋𝑎,𝑏𝑟𝑒𝑚𝑓 

are computed, where 𝐼𝑋𝑎,𝑐ℎ𝑎𝑓 and 𝐼𝑋𝑎,𝑏𝑟𝑒𝑚𝑓 represent the characteristic fluorescence intensity and 

bremsstrahlung fluorescence intensity, respectively. Figure 3.1 shows the geometry used for the 

equation derivation.  

 

Figure 3.1 Schematic representation of the derivation of the secondary fluorescence correction 

for slice A, emitted by X-ray Xb, the electron-induced primary X-ray which are generated at P1. 

 

In Figure 3.1, 𝑑(𝜌𝑧)𝐵 and 𝑑(𝜌𝑧)𝐴 are the slice mass thicknesses in layer n (where X-ray Xb is 

generated) and layer m (where X-ray Xa is excited by X-ray Xb), respectively, which are determined 

by the layer number (NL) in MC X-ray. The NL is the number of thin differential slices within the 

primary X-ray range of the sample and it determines the step size of the depth distribution curve 

calculation.  

In reality, the emission of the bremsstrahlung X-rays is not isotropic. However, considering 

the extremely high computational expense required to compute anisotropic emissions, the 

following calculation assumes that the emission of the bremsstrahlung X-rays is isotropic. For bulk 

materials, the difference between the correct angular distribution and isotropic production is not 

significant [11]. In the case of a thin film where the approximation is not valid [12], the effect of 

the approximation on the bremsstrahlung fluorescence correction can be ignored as the 
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bremsstrahlung intensity generated from the thin film is relatively small. The energy of the 

bremsstrahlung X-rays involved in the computation is determined by the number of energy 

windows (NW) in MC X-ray. The energy of the bremsstrahlung X-rays for the ith energy window 

is (𝑖 − 1/2)𝐸0/𝑁𝑊, where E0 is the beam energy [4]. The depth distribution curve for each energy 

window is computed by MC X-ray [4]. The effects of the NL and NW on the accuracy of secondary 

fluorescence emissions are discussed in the next section. 

Let us consider the secondary fluorescence emission of slice A (in layer m), whose mass depth 

ranges from (𝜌𝑧)𝐴 to (𝜌𝑧)𝐴 + 𝑑(𝜌𝑧)𝐴, as an example. Here P2 represents the emission position, 

and it must be noted that the excitations from the primary X-rays of all slices in the sample need 

to be taken into account. Slice B, whose mass depth ranges from (𝜌𝑧)𝐵 to (𝜌𝑧)𝐵 + 𝑑(𝜌𝑧)𝐵, is 

where the primary X-ray Xb is generated. Xb can be either a characteristic or bremsstrahlung X-ray, 

whose energy is greater than the ionization energy of X-ray Xa. The generated primary X-ray 

intensity of Xb in slice B is known as 𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵). Thus, the fluorescence X-ray intensity of Xa, 

which is generated in slice A and excited by X-ray Xb in slice B, 𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵 ), is expressed 

as follows [6, 8, 14, 15, 18, 23]: 

 𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵)

=
1

2
 𝑐𝐸𝑎𝑑(𝜌𝑧)𝐴 (

𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎(𝐸1 [∑(𝜌𝑠)𝑖 (

𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

])

∙ 𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵), 

(3.1) 

where 𝑐𝐸𝑎 is the weight fraction of element Ea in layer m, 𝑑(𝜌𝑧)𝐴 is the mass thickness of slice A, 

𝑟𝑋𝑎 is the jump ratio of X-ray line Xa, 𝜔𝑋𝑎 is the fluorescence yield of X-ray line Xa, 𝑝𝑋𝑎 is the 

relative intensity, (𝜌𝑠)𝑖 is the mass distance during which X-ray Xb travels in layer i, (𝜇/𝜌)𝐸𝑎 and 

(𝜇/𝜌)𝑖  are the mass absorption coefficient of X-ray Xb absorbed by pure Ea and layer i, 

respectively, and 𝐸1(𝑡) is the exponential integral [24] whose value can be directly obtained 

through the C++ library boost [25]. 

The details of the equation derivation are given in Appendix A. 

Equation (3.1) is valid if slice B does not overlap with slice A. However, when they are the 

same slice (or at the same mass depth), the above equation is not available, and the fluorescence 

intensity is calculated using numerical integration, which is described in Appendix B in detail. 
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In equation (3.1), some factors depend on the mass depth, while some are either constant or 

composition related. Those factors are divided into two parts, factor Fc (for constants and 

composition-related factors) and factor Fd (for mass depth dependent factors): 

 𝐹𝑐 =
1

2
 𝑐𝐸𝑎𝑑(𝜌𝑧)𝐴 (

𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎 , (3.2) 

   

 
𝐹𝑑 = 𝐸1 [∑(𝜌𝑠)𝑖 (

𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

]. (3.3) 

   

So, 

 𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) = 𝐹𝑐 ∙ 𝐹𝑑 ∙ 𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵). (3.4) 

The fluorescence intensity of Xa generated in the entire layer m emitted by X-ray Xb generated 

in the entire layer n is then obtained by integrating over (𝜌𝑧)𝐵 and (𝜌𝑧)𝐴,  

 
𝐼𝑋𝑎,𝑓(𝑚, 𝑛) = 𝐹𝑐∫ ∫ 𝐹𝑑𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵)

(𝜌𝑧)𝑛

(𝜌𝑧)𝑛−1

(𝜌𝑧)𝑚

(𝜌𝑧)𝑚−1

 𝑑(𝜌𝑧)𝐵𝑑(𝜌𝑧)𝐴. (3.5) 

For the characteristic fluorescence, a summation over all lines with energy greater than the 

ionization energy of X-ray Xa is needed: 

 𝐼𝑋𝑎,𝑐𝑓(𝑚, 𝑛) = ∑ (𝐼𝑋𝑎,𝑓(𝑚, 𝑛))

𝑎𝑙𝑙 𝑠𝑢𝑏𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑋𝑏

. (3.6) 

As for the bremsstrahlung fluorescence, an integral over EBrem, which is the energy of the 

bremsstrahlung X-ray, from the ionization energy of X-ray line Xa, 𝐸𝑥,𝑋𝑎, to the beam energy 𝐸0 

is applied. So,  

 
𝐼𝑋𝑎,𝑏𝑓(𝑚, 𝑛) = ∫ 𝐼𝑋𝑎,𝑓(𝑚, 𝑛)𝑑𝐸𝐵𝑟𝑒𝑚

𝐸0

𝐸𝑥,𝑋𝑎

. (3.7) 

The total fluorescence intensity in the whole sample is calculated by summing up intensities 

from layer 1 to layer N, where N represents the NL in the whole sample: 

 

𝐼𝑋𝑎,𝑓 = ∑ ∑𝐼𝑋𝑎,(𝑐𝑓/𝑏𝑓)(𝑚, 𝑛)

𝑁

𝑛=1

𝑁

𝑚=1

. (3.8) 
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In the program, the calculation for 𝐼𝑋𝑎,(𝑐𝑓/𝑏𝑓)(𝑚, 𝑛) is performed only when two criteria are 

met: element Ea exists in layer m and X-ray Xb is generated in layer n. Those integrals and 

summations are numerically calculated in the program through iterations. Notice that the above-

mentioned X-ray intensities are all generated intensities and the absorption needs to be considered 

to calculate the emitted intensities (see Appendix A for more details). 

3.4 Results and discussion 

3.4.1 The effect of parameters – the Layer Numbers and the Number of Energy 

Windows 

Two parameters in MC X-ray determine the step size of the numerical integral. One is the 

Layer Number in z (NL), and another one is the Number of Energy Windows (NW) (which only 

matters for the bremsstrahlung fluorescence correction). In this part, their effects on the accuracy 

of the fluorescence correction are discussed. An Al thin film on the top of a Si substrate is taken 

as an example.  

NL, the number of slices in the entire sample, determines the mass thickness of a differential 

slice, 𝑑(𝜌𝑧). When a larger NL is used, the slices get thinner, which results in a smoother depth 

distribution curve; however, the computations for both MC X-ray and the fluorescence correction 

program become more time-consuming because the number of calculations increases with an 

increasing number of slices. One should notice that the number of electrons should also be 

increased when increasing the NL, otherwise the noise of the curve will increase. This is because 

fewer electrons are distributed in each layer so that the appropriate distribution cannot be obtained.  

Figure 3.2 shows the variation of the fluorescence ratio 𝐼𝐸𝑎,𝑓/𝐼𝐸𝑎,𝑝 of the Al Kα line versus the 

NL at 30 keV for a 10nm Al film on a Si substrate. 𝐼𝐸𝑎,𝑓 and 𝐼𝐸𝑎,𝑝 are the secondary fluorescence 

intensity and primary intensity, respectively. It is observed that as the NL increases, the simulated 

fluorescence ratio decreases dramatically for low NLs and then reaches a plateau. The blue labels 

show corresponding slice thicknesses for different NLs. When the NL is smaller than 1000, the 

slice thickness is larger than the Al film thickness (10 nm). In this case, the depth distribution curve 

expected for the Al film has only one data point, and the slice represented by this data point is 

partly (or even mostly) composed of the Si substrate. Thus, the factor 𝑑(𝜌𝑧)𝐴 is overestimated, 

which makes the fluorescence ratio deviate tremendously. On the other hand, a large NL implies 
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a longer simulation time. The time taken for the Monte Carlo simulations was 3 minutes for a NL 

of 1024 and 20 minutes for a NL of 6,000 when 10,000 electrons were simulated. All the simulation 

results in this paper were obtained using a computer with Windows® 7, an Intel® Core TM i7-970 

processor and 16 GB RAM. As for the fluorescence correction, the computation time was <1 s 

and around 2 s when the NLs were 1,024 and 6,000, respectively. The NL needs to be properly 

chosen. It should neither be too small to accurately describe the fluorescence effect, nor too large 

so that the simulation is slowed down with little improvement in accuracy. Figure 3.2 shows that 

the fluorescence ratio stabilizes when the NL is larger than 4,000, where the differential slice 

thickness is around 1/5 of the thin film thickness. This can be taken as a reference for choosing the 

NL in other cases.  

 

Figure 3.2 Variation of the fluorescence ratio as a function of the NL at 30 keV for the Al Kα 

line of a 10 nm Al film on a Si substrate. Blue labels are the slice thicknesses in nm. The take-off 

angle is 40°. 

 

NW is the number of energy windows of the bremsstrahlung X-rays included in the calculation 

of the X-ray intensity depth distribution (equally distributed between 0 and the beam energy). It is 

only considered in the bremsstrahlung fluorescence correction. When the bremsstrahlung X-ray 

energy varies near the absorption edge of element Ea, the mass absorption coefficient changes 

greatly, which affects the fluorescence correction significantly.  
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Figure 3.3 shows the case of a 138nm Al film on a Si substrate. The variation of the 

bremsstrahlung fluorescence ratio versus the NW for Al Kα and Si Kα at different beam energies 

(as shown in Figure 3.3 a) exhibit the same trend as that for NL: the value varies dramatically at 

the beginning and then converges toward a stable value. However, the deviation induced by the 

change of the NW for the Si Kα line is much smaller than that for the Al Kα line. In addition, for 

the Al Kα line, with the increase of the beam energy (from 10 keV to 30 keV), the fluorescence 

ratio plateaued after a larger NW. This phenomenon is better demonstrated in Figure 3.3 b), in 

which the difference between values with different NW was calculated by |𝑅𝑁𝑊,𝐸0 − 𝑅1024,𝐸0|/

𝑅1024,𝐸0, where 𝑅𝑁𝑊,𝐸0 represents the fluorescence ratio when the beam energy is E0 for certain 

NW. To obtain a fluorescence ratio with a difference smaller than 5% (the blue line) for the Al Kα 

line, the smallest NW for 10, 20, and 30 keV is around 100, 256 and 490, respectively. For the Si 

Kα line, however, the difference is always smaller than 5%. This is affected by the relationship 

between the excitation energy of the secondary emitted photons and the bremsstrahlung X-ray 

energies. Take a beam energy of 20 keV as an example. For the Al Kα line, the excitation energy 

is 1.56 keV. The bremsstrahlung energy window just above the absorption edge of the Al Kα line 

corresponds to an energy of 1.88 and 1.58 keV, when the NWs are 64 and 1,024, respectively. The 

corresponding mass absorption coefficients are 2,713.91 and 3,981.01 cm2/g. Given that the latter 

is 50% larger than the former, it is to be expected that the difference in the bremsstrahlung ratios 

for the two cases is 28%. The effect tends to be more serious as the beam energy increases due to 

the increase of the energy interval of energy windows. However, for the Si Kα line whose 

excitation energy is 1.84 keV, the bremsstrahlung energy window just above its absorption edge 

corresponds to 1.88 and 1.86 keV when the NWs are 64 and 1,024, respectively. The difference of 

the corresponding mass absorption coefficient is 2% only. Thus, the fluorescence ratio does not 

vary a lot. Consequently, the variation of the fluorescence ratio with respect to the NW depends 

on both the elements and the beam energy.  
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Figure 3.3 a) Variation of the bremsstrahlung fluorescence ratio with the NW at 10 keV 

(squares), 20 keV (triangles), and 30 keV (stars) for a 138 nm-thick Al film on a Si substrate. b) 

The difference with the corresponding value when the NW is 1,024 with respect to the NW. 

Black points represent data for the Al Kα line and red points represent data for the Si Kα line. 

The take-off angle is 40°. 

Still, in general, a larger NW can result in more accurate results. However, increased simulation 

time is required to compute the bremsstrahlung X-ray intensity depth distribution in MC X-ray for 

a larger NW. One possible solution is to use an interpolation scheme so that the NW used in the 

fluorescence calculation can be increased without increasing it in the Monte Carlo simulations [4]. 

This method has not been implemented yet. For now, to choose the NW, the excitation energy of 

emitted photons and the bremsstrahlung X-ray energies should be compared. 

3.4.2 Bulk example: Fe-Ni system 

The fluorescence correction of a bulk material was performed using the Fe-Ni system. In Fe-

Ni alloys, the X-ray energy of the Ni Kα line is 7.48 keV, which is greater than the ionization 

energy of the Fe Kα line, 7.11 keV. Consequently, both the characteristic fluorescence and 

bremsstrahlung fluorescence need to be corrected. Figure 3.4 a) shows the depth distribution curve 

of the Fe Kα line for a material of 40% Fe and 60% Ni (in weight fractions) at 30 keV. The black 

curve shows the depth distribution curve [ϕ(ρz)] for the primary characteristic X-ray, which was 

directly obtained from MC X-ray. And the blue and red curves are the ϕ(ρz) curves with 

bremsstrahlung fluorescence and with characteristic fluorescence, respectively, which were 

computed through the correction program. The top-right figure magnifies the portion of the ϕ(ρz) 

curve, which approaches 0 in log-log scale. It is shown that the interaction volume of secondary 

fluorescence X-rays is much larger than that of primary X-rays. 
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Figure 3.4 a) Depth distribution curve of the Fe Kα line for an Fe concentration of 40% in a bulk 

Fe-Ni alloy at 30 keV obtained from MC X-ray. b) The fluorescence ratio If/Ip with respect to the 

Fe concentration at 30 keV for the Fe Kα line for the three software [MC X-ray (points), DTSA-

II (solid lines), and PENEPMA (dashed lines)]. Black (ChaF) represents results for characteristic 

fluorescence only, red (BremF) represents results for bremsstrahlung fluorescence only. and 

green (Total) represents results for both characteristic and bremsstrahlung fluorescence. The 

take-off angle is 40°. 

 

Figure 3.4 b) shows the variation of the fluorescence ratio of the Fe Kα line with respect to the 

Fe concentration at 30 keV. The fluorescence ratio, If/Ip, is the ratio between the fluorescence 

intensity and the primary intensity. The bremsstrahlung fluorescence ratio (red point) changes by 

a minimal amount with respect to the concentration of Fe because the bremsstrahlung intensity is 

proportional to the mean atomic number of the material and Fe and Ni have close atomic numbers. 

On the other hand, the characteristic fluorescence ratio (black points) decreases drastically when 

the Fe concentration increases. This is due to the fact that the intensities of the Ni K lines (including 

Kα1, Kα2, and Kβ1), as the source of the characteristic fluorescence, decrease significantly when 

the Ni concentration decreases. When comparing the simulation results from DTSA-II and 

PENEPMA, it is shown that the simulation results from PENEPMA are slightly larger than those 

from MC X-ray, while the results from DTSA-II are slightly lower. It should be noted that in the 

following text, “MC X-ray” denotes the results computed through our fluorescence correction 

program, where the ϕ(ρz) curves are obtained by MC X-ray. The characteristic fluorescence ratios 

obtained from the three pieces of software are similar. The average difference between the 

characteristic fluorescence ratios computed by MC X-ray and DTSA-II is around 6.5%, while the 

difference between MC X-ray and PENEPMA is around 6.2%. For the bremsstrahlung ratio, the 
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results from PENEPMA yield a better match with MC X-ray showing an average difference of 

11%. The value from DTSA-II compared with MC X-ray has an average difference of 23%. The 

difference in bremsstrahlung fluorescence ratio is partly explained by the use of a variety of models 

to compute the bremsstrahlung X-ray intensities, which will be discussed later. 

3.4.3 Bulk example: Alloy steel, Ag-Cr, and Bi-Cr 

In this section, the simulated fluorescence intensity (both characteristic and bremsstrahlung) of 

the Cr Kα line from our program is compared with the calculated data from Llovet et al. [22] for 

different bulk samples. Llovet et al. calculated the characteristic and bremsstrahlung fluorescence 

data using a hybrid model by performing Monte Carlo simulations using PENEPMA to get 

physical interaction parameters and the primary intensities and calculating the fluorescence 

intensity using an analytical model. Figure 3.5 shows the results from three specimens, an alloy 

steel (composition Si 0.26 wt%, Cr 1.16 wt%, Mn 0.47 wt%, Fe 96.44 wt%, Ni 0.10 wt%, Cu 0.06 

wt% and Mo 1.42 wt%), a Ag-Cr system (Ag 99 wt% and Cr 1 wt%), and a Bi-Cr system (Bi 99 

wt% and Cr 1 wt%). For each specimen, the variation of the simulated fluorescence intensity and 

the primary intensity with respect to the beam energy is displayed.  

It is observed that the X-ray intensities (both the primary intensities and the fluorescence 

intensities) increase as the beam energy increases. Strong agreements between the results from 

MC X-ray and Llovet et al. are shown in all three cases. The average differences for the primary 

intensities, the characteristic fluorescence and the bremsstrahlung fluorescence intensities are 6.4, 

12.2, and 9.7%, respectively.  
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Figure 3.5 Primary, characteristic fluorescence (ChaF) and bremsstrahlung fluorescence (BremF) 

intensities for the Cr Kα line emitted from three homogeneous specimens a) an alloy steel, b) 

Ag-Cr, and c) Bi-Cr with respect to the beam energy. Solid lines are results from MC X-ray and 

crosses connected with dash lines are results from Llovet et al. [22]. 

3.4.4 Thin film on a substrate 

Pd coating on a Ti substrate 

To further test the bremsstrahlung fluorescence model, a 400 μg/cm2 Pd coating on a Ti 

substrate was investigated. This is a case where a thick heavy element coating is put on a light 

element substrate and the primary intensity of the substrate can be 0 at low beam energies. Under 

these circumstances, all emitted X-rays from the substrate element are due to the fluorescence 

effect. By comparing with experimental data, the accuracy of the fluorescence correction program 

can be determined. The experimental data was obtained from Bastin & Heijligers [26]. The X-ray 

energy of the Pd Lα line is smaller than the ionization energy of the Ti K shell. Thus, for the Ti 

Kα line, only the bremsstrahlung fluorescence effect is possible. 
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Figure 3.6 shows the variation of the k-ratio for the Ti Kα line as a function of the beam energy. 

The solid lines represent the k-ratio, which is the ratio of the X-ray intensity from the specimen 

(with fluorescence) and that from the standard (with fluorescence). The standard is pure Ti in this 

case. The dashed lines represent the contribution from the primary intensity, which is the ratio of 

the primary X-ray intensity from the specimen (without fluorescence) and the total intensity from 

the standard (with fluorescence). Thus, the difference between the solid line and dashed line is the 

contribution of the fluorescence effect. Black, red, and green lines represent results from our 

program (with the primary intensity obtained from MC X-ray), DTSA-II, and PENEPMA, 

respectively. 

 

Figure 3.6 Variation of the k-ratio of the Ti Kα line with the beam energy for a 400 μg/cm2 Pd 

coating on a Ti substrate. Black lines are the results from MC X-ray, red lines are the results 

from DTSA-II, and blue points are the experimental data from Bastin & Heijligers [26]. Solid 

lines represent the k-ratios and dashed lines represent the contribution from the primary X-rays. 

The take-off angle is 40°. 

 

When the beam energy is smaller than 12 keV, the contribution from the primary X-ray 

intensity is 0 (as shown by the dashed line). The fluorescence effect contributes entirely to the 

emitted X-rays. It is observed that the k-ratio from MC X-ray approaches experimental results, 

which demonstrates the accurate correction of our program. As the beam energy increases, 

PENEPMA shows higher k-ratios than MC X-ray while DTSA-II produces the lowest values. The 

best matches with experiments are obtained from PENEPMA. Since the difference between the 
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solid line and dashed line remains constant for the three software, the difference in k-ratios mainly 

comes from the discrepancy in the primary intensities.  

Ni coating on an Fe substrate 

Characteristic fluorescence has a significant effect when two elements have close atomic 

numbers. For example, in the case of a 1.17 μm Ni coating on an Fe substrate, the Fe Kα line can 

be strongly excited by the Ni K line. The sources of Fe Kα X-rays include the primary electron-

induced X-rays, characteristic fluorescence X-rays, and bremsstrahlung fluorescence X-rays.  

 

Figure 3.7 a) k-ratio of Fe Kα line for 1.17 μm Ni coating on an Fe substrate, solid lines 

represent k-ratios, and dashed lines represent relative intensities resulting from the primary X-ray 

intensity only. b) Relative intensities of the characteristic fluorescence contribution (solid line) 

and of the bremsstrahlung fluorescence contribution (dash line). The take-off angle is 40°. 

 

Figure 3.7 a) shows the k-ratio of the Fe Kα line obtained from different software. The results 

from DTSA-II and PENEPMA were compared with our calculations. Blue points represent the 

experimental data from Pouchou & Pichoir [27]. Solid lines represent the k-ratios with 

fluorescence correction, and the dashed lines represent the contributions from primary intensities 

only, which are calculated by the ratio of primary intensities in the specimen and the total X-ray 

intensities in the standard. At low beam energies (lower than 25 keV), the three software all show 

very similar results with the experimental data. The primary intensity is 0 and the contribution 

from the fluorescence effect reaches up to 10% at 20 keV, which again demonstrates the necessity 

for the fluorescence correction. At high beam energies (higher than 25 keV), the three curves 

diverge and the result from MC X-ray are larger than the experimental data, while DTSA-II and 
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PENEPMA are a bit lower. Correspondingly, the primary X-ray contribution also shows the same 

trend, that the data from MC X-ray is larger than the other two, which explains the difference 

observed.  

To better investigate the fluorescence intensity itself, the k-ratios containing contributions from 

the characteristic fluorescence (solid line) and bremsstrahlung fluorescence (dashed line) are 

shown in Figure 3.7 b). They are the ratio between the fluorescence intensity (characteristic and 

bremsstrahlung, respectively) in the specimen and the total intensity of the standard. The 

characteristic fluorescence data from the three software is, overall, consistent even though there 

are small deviations at high beam energies. As for the bremsstrahlung fluorescence contribution, 

although they all show the same trend, the values from MC X-ray are higher than the other two. 

This is due to the difference in the bremsstrahlung X-ray intensities resulting from the difference 

in bremsstrahlung generation cross-section models [4, 28-30]. DTSA-II and PENEPMA use the 

Seltzer and Berger model [29], while MC X-ray uses the Kirkpatrick and Wiedmann model [28]. 

As shown in Figure 3.8, the generated bremsstrahlung X-ray intensities for different X-ray energies 

at different beam energies are different for MC X-ray (solid line) and PENEPMA (dashed line). 

The bremsstrahlung emission from MC X-ray is consistently larger than that from PENEPMA, 

which results in larger bremsstrahlung fluorescence intensities in MC X-ray. It is hard to say which 

cross-section model is more accurate until further investigation is made. 

 

Figure 3.8 Bremsstrahlung X-ray generated intensities for different X-ray energies comparing 

MC X-ray and PENEPMA. Solid lines are results from MC X-ray, and dashed lines are results 

from PENEPMA. 
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3.4.5 Practicality of different models  

Besides accuracy, another important feature of the secondary fluorescence correction model is 

the ability to compute the correction in a few minutes. Three models were compared using a Ni 

coating on an Fe substrate sample at different beam energies. The simulations were repeated 10 

times to evaluate the uncertainty of the model. Table 3.1 shows the time per simulation (seconds), 

and the average and standard deviation of the total intensity (including the primary, characteristic 

fluorescence, and bremsstrahlung fluorescence intensity). To facilitate the comparison of the three 

models, an efficiency-like value was computed for a quantity Q, using a equation defined by Llovet 

& Salvat [30], 

 
𝜖𝑄 = (

𝑄̅

𝜎𝑄
)2
1

𝑇
 (3.9) 

where 𝑄̅ is the average value of Q after N simulations, 𝜎𝑄 is the standard deviation of Q, and T is 

the average simulation time for a single simulation with units of second. The simulated electron 

number for all the simulations was 1,000. Table 3.2 shows the parameters used in MC X-ray. A 

PENEPMA input file (take 10 keV as an example) is shown in Appendix C. The same electron 

number and take-off angle are used in DTSA-II. Figure 3.9 compares the average X-ray intensities 

(primary, characteristic fluorescence, bremsstrahlung fluorescence, and total) obtained from the 

three pieces of software at different beam energies. It is shown that in all three cases, similar results 

are obtained. Figure 3.10 compares the simulation efficiencies of the total X-ray intensity 

computed from each piece of software. It is observed that the efficiencies of MC X-ray at low 

beam energies (smaller than 15 keV) are larger than DTSA-II. When the beam energy is greater 

than 15 keV, DTSA-II has a better efficiency than MC X-ray. The efficiencies of PENEPMA are 

much lower than the other two software. Table 3.1 shows that PENEPMA is faster to simulate 

1,000 electrons for all energies; however, the uncertainties for the total intensity are between 22 

and 138%. In contrast, uncertainties for DTSA-II are below 5% (except for 8 and 9 keV) and 

uncertainties are below 2.5% at all energies for MC X-ray with a simulation time of <90 s. It is 

concluded that MC X-ray together with our program provides a practical fluorescence correction 

method.  
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Figure 3.9 The variation of X-ray intensities (primary, characteristic fluorescence, 

bremsstrahlung fluorescence, and total) as a function of the beam energy for a Ni coating on an 

Fe substrate. Solid lines represent data from MC X-ray, points represent data from DTSA-II, and 

dash lines represent data from PENEPMA. 

 

 

Figure 3.10 The variation of the efficiencies of the total X-ray intensity as a function of the beam 

energy for a Ni coating on an Fe substrate. Black represents results from MC X-ray, red 

represents results from DTSA-II, and blue represents results from PENEPMA.  

 

Table 3.1 Comparison of three software 
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Table 3.2 Simulation parameters used in MC X-ray 

Electron number 1000 

Number of energy windows (NW) 256 

Number of layer in z (NL) 256 

Take off angle 40 

 

3.5 Conclusion  

An equation for secondary fluorescence correction for both characteristic and bremsstrahlung 

X-rays was derived. The numerical calculations of multiple integrals using the ϕ(ρz) curves 

obtained from MC X-ray not only simplify the equation derivation but also improve the reliability. 

The equation is applicable to homogeneous bulk materials and multilayer materials.  
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The depth distribution intensity is obtained from MC X-ray, in which two parameters strongly 

affect the accuracy of the fluorescence correction: the NL (Layer Number in z) and NW (Number 

of Energy Windows). Their effects on the fluorescence ratio were discussed, and results showed 

that the NL should be chosen to have five differential slices in the thin film. As for the NW, an 

interpolation scheme will help increase the accuracy of the bremsstrahlung fluorescence correction 

without increasing the NW in MC X-ray.  

Cases for both bulk and thin films on a substrate were presented and simulation results were 

compared with both experimental data from references and simulation data from other software 

(DTSA-II and PENEPMA). The characteristic fluorescence correction showed a good match with 

other software, while the bremsstrahlung fluorescence gave larger values in an Fe substrate with a 

Ni coating. The differences in bremsstrahlung fluorescence were explained by the differences in 

the bremsstrahlung X-ray intensities, which is due to different cross-section models used for 

bremsstrahlung X-ray emission. 

The three software were compared when 1,000 electrons were simulated. PENEPMA took 

shorter time to run but had high uncertainties. The uncertainties for DTSA-II and MC X-ray were 

much lower, although MC X-ray performed better. The uncertainties for MC X-ray were below 

2.5% at all energies for a simulation time less than 90 s. MC X-ray together with our fluorescence 

correction model provides a practical quantitative correction for X-ray microanalysis. 
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3.8  Appendix 

3.8.1 Appendix A 

The derivation of the fluorescence correction equation from one differential slice to the other 
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The derivation of the fluorescence correction equation has been mentioned numerous times in 

the literature, but not all the details are given [6, 8, 15, 18, 23, 29]. In this appendix, all the details 

of the derivation are explained. 

As shown in Figure 3.1, a primary X-ray Xb is generated at P1, and it travels through multiple 

layers to P2, where it is absorbed by element Ea and excites X-ray Xa. With knowledge of the 

generated primary intensity of X-ray Xb emitted from slice B [ with mass depth from (𝜌𝑧)𝐵 to 

(𝜌𝑧)𝐵 + 𝑑(𝜌𝑧)𝐵] , 𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵), the corresponding generated fluorescence X-ray intensity in slice 

A [with mass depth from (𝜌𝑧)𝐴  to (𝜌𝑧)𝐴 + 𝑑(𝜌𝑧)𝐴 ], 𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) , is calculated. The 

following factors are considered: 

The fraction of the primary X-ray Xb that travels through the polar angle β to 𝛽 + 𝑑𝛽 and 

azimuthal angle 𝑑𝜑 is  

 
𝐼1 =

𝑠𝑖𝑛𝛽𝑑𝛽𝑑𝜑

4𝜋
𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵), (3.A1) 

where 4𝜋 is a full solid angle, the solution of the integral, ∫ ∫ 𝑠𝑖𝑛𝛽𝑑𝛽𝑑𝜑
𝜋

0

2𝜋

0
. 

Among those X-rays, the fraction that travels through multiple layers arriving at P2 and are not 

absorbed is 

 
𝐼2 = 𝐼1 exp(−𝑠𝑒𝑐𝛽 [∑(𝜌𝑠)𝑖 (

𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

]) , (3.A2) 

Some of the X-rays are absorbed by slice A with mass thickness 𝑑(𝜌𝑧)𝐴,  

 
𝐼3 = 𝐼2 (1 − exp (−(

𝜇

𝜌
)
𝑚

𝑠𝑒𝑐𝛽𝑑(𝜌𝑧)𝐴)) . (3.A3) 

As 𝑑(𝜌𝑧)𝐴 approaches 0, using the first two terms of the Taylor expansion, 𝑒𝑥 ≈ 1 + 𝑥,  

 
1 − exp (−(

𝜇

𝜌
)
𝑚

𝑠𝑒𝑐𝛽𝑑(𝜌𝑧)𝐴) ≈ (
𝜇

𝜌
)
𝑚

𝑠𝑒𝑐𝛽𝑑(𝜌𝑧)𝐴. (3.A4) 

From those X-rays, only the part that is absorbed by element Ea can ionize X-ray Xa: 

 
𝐼4 =

𝐼3𝑐𝐸𝑎(𝜇/𝜌)𝐸𝑎
(𝜇/𝜌)𝑚

 . (3.A5) 

The portion of the remaining radiation resulting in the certain line X-ray emission (Xa) is  
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𝐼5 = 𝐼4 ∙

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
∙ 𝜔𝑋𝑎𝑝𝑋𝑎 . (3.A6) 

The total fluorescence radiation generated from slice A, emitted by X-ray Xb generated from 

slice B, 𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) is calculated by integrating over β from 0 to π/2 (because the depth of 

layer n and layer m are settled) and over φ from 0 to 2π, 

 
𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) = ∫ ∫ 𝐼5𝑑βdφ

π
2

0

2π

0

. (3.A7) 

So, by combining equations (3.A1) to (3.A6) into equation (3.A7), the fluorescence equation 

is expressed as follows: 

𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) = 𝑐𝐸𝑎𝑑(𝜌𝑧)𝐴 (
𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎 

∙ ∫ ∫ 𝑡𝑎𝑛𝛽exp (−𝑠𝑒𝑐𝛽 [∑(𝜌𝑠)𝑖 (
𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

])𝑑𝛽

𝜋
2

0

2𝜋

0

𝑑𝜑
𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵)

4𝜋

=
𝑐𝐸𝑎𝑑(𝜌𝑧)𝐴

2
(
𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎 

∙ ∫ 𝑡𝑎𝑛𝛽exp (−𝑠𝑒𝑐𝛽 [∑(𝜌𝑠)𝑖 (
𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

])𝑑𝛽

𝜋
2

0

𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵) 

 

 

 

(3.A8) 

The integral over 𝛽 is analytically solved by setting 𝑥 =  𝑠𝑒𝑐𝛽, thus 

 𝑡𝑎𝑛𝛽 =  √𝑥2 − 1, (3.A9) 

   

 
𝑑𝛽 =  

𝑑𝑥

𝑥√𝑥2 − 1
. (3.A10) 

So, 

 
𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) =

𝑐𝐸𝑎𝑑(𝜌𝑧)𝐴

2
(
𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎 

∙ ∫
1

𝑥
exp (−𝑥 [∑(𝜌𝑠)𝑖 (

𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

])𝑑𝑥
∞

1

𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵) 

 

(3.A11) 
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Since ∫ 1/𝑥 ∙ exp (−𝑥𝑡)𝑑𝑥
∞

1
 is defined as 𝐸1(𝑡) [or −𝐸𝑖(−𝑡)], the exponential integral [24] 

whose value can be directly obtained through the C++ library boost [25], 

𝐼𝑋𝑎𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵)

=
1

2
 𝑐𝐸𝑎𝑑(𝜌𝑧)𝐴 (

𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎 (𝐸1 [∑(𝜌𝑠)𝑖 (

𝜇

𝜌
)
𝑖

𝑚

𝑖=𝑛

]

∙ 𝐼𝑋𝑏,𝑝((𝜌𝑧)𝐵). 

(3.A12) 

The calculated fluorescence X-ray intensity above is the generated intensity. The emitted 

intensity, 𝐼𝑋𝑎,𝑓,𝑒𝑚𝑖𝑡((𝜌𝑧)𝐴, (𝜌𝑧)𝐵), that exits the sample and is detected by the EDS detector is 

calculated by, 

 𝐼𝑋𝑎,𝑓,𝑒𝑚𝑖𝑡((𝜌𝑧)𝐴, (𝜌𝑧)𝐵)

= 𝐼𝑋𝑎,𝑓((𝜌𝑧)𝐴, (𝜌𝑧)𝐵) exp(−𝑐𝑒𝑐𝜓 [∑(𝜌𝑠)𝑖 (
𝜇

𝜌
)
𝑖

𝑚

𝑖=0

]). 
(3.A13) 

Table 3.3 gives the definitions of all symbols used in equations (3.A1) to (3.A13). Table 3.4 

shows all the models used for each parameter. 

Table 3.3 Symbols definitions 

Parameter Meaning 

β Polar angle 

𝜑 Azimuthal angle 

(𝜌𝑠)𝑖 The mass depth during which X-ray Xb travels in layer i 

(
𝜇

𝜌
)
𝑖

 
The mass absorption coefficient of X-ray Xb in layer i 

𝑑(𝜌𝑧)𝐴 The thin slice thickness of slice A where X-ray Xa is generated 

(
𝜇

𝜌
)
𝐸𝑎

 
The mass absorption coefficient of X-ray Xb absorbed by pure Ea 

𝑐𝐸𝑎 The weight fraction of element Ea in layer m 

𝑟𝑋𝑎 The jump ratio of the X-ray line Xa 

𝜔𝑋𝑎 The fluorescence yield of the X-ray line Xa 
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𝑝𝑋𝑎 The relative intensity of the X-ray line Xa 

ψ Take off angle 

 

Table 3.4 Models used for each parameter 

Mass absorption coefficient MacChantler2005 [31, 32] 

Absorption jump ratio MacChantler2005 [31, 32]  

Fluorescence yield Goldstein1992 [33]  

Relative line intensity Schreiber & Wims1982 [34]  

 

3.8.2 Appendix B 

The derivation of the fluorescence correction when 𝜷 =
𝝅

𝟐
 (when X-ray Xa and X-ray Xb are 

at the same differential slice) 

When X-ray Xa and X-ray Xb are at the same differential slice, the equation derivation in 

Appendix A is not available because 𝑐𝑜𝑠𝛽 = 0, which makes the absorption factor incalculable 

and changes the integral limit of β. The calculation needs to be performed numerically.  

 

Figure 3.11 Schematic for the derivation of the secondary fluorescence correction when X-ray Xb 

and X-ray Xa are at the same differential slice. 

As shown in Figure 3.11, P1 and P2 are at the same layer m and the same slice. The horizonal 

axis x is added. X-ray Xa that is generated from (𝜌𝑥) to (𝜌𝑥) + 𝑑(𝜌𝑥) in the polar angle 𝛽 to 𝛽 +
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𝑑𝛽 and azimuthal angle 𝑑𝜑, 𝐼𝑋𝑎,𝑓(𝜌𝑥, 𝛽, 𝜑) is calculated in a similar way with a derivation in 

Appendix A, 

 

𝐼𝑋𝑎,𝑓(𝜌𝑥, 𝛽, 𝜑) =  
𝑠𝑖𝑛𝛽𝑑𝛽𝑑𝜑

4𝜋
𝐼𝑋𝑏,𝑝 ∙ exp (−

𝜌𝑥

𝑠𝑖𝑛𝛽
(
𝜇

𝜌
)
𝑚

) ∙ (
𝜇

𝜌
)
𝑚

𝑑(𝜌𝑥)

𝑠𝑖𝑛𝛽

∙

𝑐𝐸𝑎 (
𝜇
𝜌)
𝐸𝑎

(
𝜇
𝜌
)
𝑚

∙
𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
∙ 𝜔𝑋𝑎𝑝𝑋𝑎 . 

 

 

(3.B1) 

A triple integral is needed to calculate the total fluorescence intensity of X-ray Xa in this slice, 

 𝐼𝑋𝑎,𝑓 = ∫ ∫ ∫ 𝐼𝑋𝑎,𝑓(𝜌𝑥, 𝛽, 𝜑)
𝛽2

𝛽=𝛽1

2𝜋

𝜑=0

∞

𝜌𝑥=0

, (3.B2) 

where 𝛽1 = arctan (2𝜌𝑥/𝑑(𝜌𝑧)𝐴) and 𝛽2 =  𝜋 − 𝛽1. Since X-ray fluorescence is the same when 

β is from 𝛽1 to 𝜋/2 and when it is from 𝜋/2 to 𝛽1, 

 𝐼𝑋𝑎,𝑓 = ∫ ∫ ∫ 2𝐼𝑋𝑎,𝑓(𝜌𝑥, 𝛽, 𝜑)
𝜋/2

𝛽=𝛽1

2𝜋

𝜑=0

∞

𝜌𝑥=0

 (3.B3) 

Thus, 

 

𝐼𝑋𝑎,𝑓

=
1

2
𝑐𝐸𝑎 (

𝜇

𝜌
)
𝐸𝑎

𝑟𝑋𝑎 − 1

𝑟𝑋𝑎
𝜔𝑋𝑎𝑝𝑋𝑎𝐼𝑋𝑏,𝑝∫ ∫ exp [−

𝜌𝑥

𝑠𝑖𝑛𝛽
(
𝜇

𝜌
)
𝑚

]
𝜋/2

𝛽=𝛽1

𝑑𝛽𝑑(𝜌𝑥)
∞

𝜌𝑥=0

. 

 

(3.B4) 

This double integral does not have an analytical solution. So, it is numerically solved in our 

program by setting the upper limit of the integral over 𝜌𝑥, ∞ as (𝜌𝑥)1, the X-ray range, defined 

as the mass depth where 99% of X-rays are absorbed, i.e., exp(−(𝜌𝑥)1(𝜇/𝜌)𝑚) = 0.01. 

3.8.3 Appendix C 

PENEPMA input file for a Ni coating on an Fe substrate  

TITLE  Ni on Fe 

>>>>>>>> Electron beam definition. 

SENERG 10e3                                                       [Energy of the electron beam, in eV] 

SPOSIT 0 0 1                                                          [Coordinates of the electron source] 

SDIREC 180 0                                              [Direction angles of the beam axis, in deg] 
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SAPERT 0                                                                                   [Beam aperture, in deg] 

       . 

>>>>>>>> Material data and simulation parameters. 

MFNAME Ni.mat                                                              [Material file, up to 20 chars] 

MSIMPA 1e2 1e1 1e2 0.2 0.2 1e2 1e1                         [EABS(1:3),C1,C2,WCC,WCR] 

MFNAME Fe.mat                                                              [Material file, up to 20 chars] 

MSIMPA 1e2 1e1 1e2 0.2 0.2 1e2 1e1                         [EABS(1:3),C1,C2,WCC,WCR] 

       . 

>>>>>>>> Geometry of the sample. 

GEOMFN layer.geo                                                  [Geometry definition file, 20 chars] 

DSMAX  1 1.0e-5                                         [IB, Maximum step length (cm) in body IB] 

DSMAX  2 1.0e-5                                         [IB, Maximum step length (cm) in body IB] 

       . 

>>>>>>>> Interaction forcing. 

IFORCE 1 1 4 -5       0.9  1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 1 1 5 -250    0.9  1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 1 2 2  -10    1e-3 1.0                     [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 1 2 3  -10    1e-3 1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 2 1 4 -5        0.9  1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 2 1 5 -7        0.9  1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 2 2 2  -10     1e-3 1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

IFORCE 2 2 3  -10     1e-3 1.0                      [KB,KPAR,ICOL,FORCER,WLOW,WHIG] 

       . 

>>>>>>>> Bremsstrahlung splitting. 

IBRSPL 1 2                                                                                            [KB,splitting factor] 

IBRSPL 2 2                                                                                            [KB,splitting factor] 

       . 

>>>>>>>> X-ray splitting. 

IXRSPL 1 2                                                                                            [KB,splitting factor] 

IXRSPL 2 2                                                                                             [KB,splitting factor] 

       . 
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>>>>>>>> Emerging particles. Energy and angular distributions. 

NBE         0 20e3 300                                                       [E-interval and no. of energy bins] 

NBANGL   45 30                                              [Nos. of bins for the angles THETA and PHI] 

       . 

>>>>>>>> Photon detectors (up to 25 different detectors). 

IPSF=0, do not create a phase-space file. 

IPSF=1, creates a phase-space file. 

PDANGL 5 15  0 360 0                                                          [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                     [Energy window, no. of channels] 

       . 

PDANGL 15 25 0 360 0                                                         [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                     [Energy window, no. of channels] 

       . 

PDANGL 25 35 0 360 0                                                         [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                     [Energy window, no. of channels] 

       . 

PDANGL 35 45 0 360 0                                                         [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                     [Energy window, no. of channels] 

       . 

PDANGL 45 55 0 360 0                                                         [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                     [Energy window, no. of channels] 

       . 

PDANGL 55 65 0 360 0                                                        [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                    [Energy window, no. of channels] 

       . 

PDANGL 65 75 0 360 0                                                        [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                    [Energy window, no. of channels] 

       . 

PDANGL 75 85 0 360 0                                                        [Angular window, in deg, IPSF] 

PDENER 0.0 0.5e4 1000                                                    [Energy window, no. of channels] 

       . 
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>>>>>>>> Spatial distribution of x-ray emission events. 

GRIDX  -1e-5 5e-5 60                                              [X coords of the box vertices, no. of bins] 

GRIDY  -3e-5 3e-5 60                                              [Y coords of the box vertices, no. of bins] 

GRIDZ  -6e-5 0.   60                                                 [Z coords of the box vertices, no. of bins] 

XRLINE 26010300                                                  [X-ray line, IZ*1e6+S1*1e4+S2*1e2+S3] 

       . 

>>>>>>>> Job properties 

RESUME dump1.dat                                                     [Resume from this dump file, 20 chars] 

DUMPTO dump1.dat                                                            [Generate this dump file, 20 chars] 

DUMPP  60                                                                                           [Dumping period, in sec] 

       . 

RSEED  -10 1                                                                  [Seeds of the random-number generator] 

REFLIN 26010300 1 1.5E-3                                          [IZ*1e6+S1*1e4+S2*1e2,detector,tol.] 

NSIMSH 1.0e3                                                               [Desired number of simulated showers] 

TIME   2.0e5                                                                             [Allotted simulation time, in sec] 
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Chapter 4. Secondary fluorescence of 3D 

heterogeneous materials using a hybrid model 

 

Chapter 3 demonstrated an approach to secondary fluorescence correction for bulk and 

multilayer materials. The approach was shown to be accurate and efficient. In this chapter, the 

approach was extended to apply to 3D heterogeneous materials by replacing thin layers with voxels. 

Examples of applications were shown for materials couples and spherical inclusions embedded 

inside matrices.  

 

• This chapter has been published as: Y. Yuan*, H. Demers, X. Wang, R. Gauvin, Secondary 

Fluorescence of 3D Heterogeneous Materials Using a Hybrid Model, Microscopy and 

Microanalysis, 26 (2020) 484-496.  
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4.1 Abstract 

In electron probe microanalysis (EPMA) or scanning electron microscopy (SEM), the Monte 

Carlo method is widely used for modeling electron transport within specimens and calculating X-

ray spectra. For an accurate simulation, the calculation of secondary fluorescence is necessary, 

especially for samples with complex geometries. In this study, we developed a program, using a 

hybrid model that combines Monte Carlo simulation with an analytical model, to perform 

secondary fluorescence correction for 3D heterogeneous materials. The Monte Carlo simulation is 

performed using MC X-ray, a Monte Carlo program, to obtain the three-dimensional primary X-

ray distribution, which becomes the input of the analytical model. The voxel-based calculation of 

MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation 

of the analytical model in detail and present the three-dimensional X-ray distributions for both 

primary and secondary fluorescence to illustrate the capability of our program. Examples for non-

diffusion couples and spherical inclusions inside matrices are shown. The results of our program 

are compared with experimental data from references and with results from other Monte Carlo 

codes. They are found to be in good agreement. 
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4.2 Introduction 

MC X-ray [1], based on Win X-ray [2] and CASINO [3], is a Monte Carlo program for 

simulating electron trajectories and computing X-ray intensities. With a user-friendly graphical 

interface, one can easily set all the parameters of electron beam, detector, specimen, and physical 

models to simulate the experimental conditions. The specimen in the program is composed of 

various regions, defined by their geometries and compositions. The geometries are built from 

several basic shapes including spheres, cylinders, and boxes, as well as their sums or differences, 

which allow great flexibility in describing the specimen. Moreover, one can obtain the X-ray 

distribution in three-dimensional (3D) space for both characteristic and bremsstrahlung X-rays. 

However, one drawback of MC X-ray is the lack of the modeling of secondary fluorescence (SF), 

which has limited its application in some cases [4].  

Primary X-rays are those produced by electron-beam ionization of atoms [5]. There are two 

types of primary X-rays: characteristic X-rays, which are produced by inner-shell transitions; and 

bremsstrahlung X-rays, which are generated through deceleration of beam electrons in the electric 

field of the specimen atoms. SF, on the other hand, is generated through the ionization of atoms 

by higher-energy X-rays, which can be either characteristic X-rays or bremsstrahlung X-rays [5]. 

Since X-rays can travel greater distances compared to electrons, SF may be generated at places far 

away from the primary interaction volume, which leads to errors in quantitative analysis or even 

qualitative analysis under some circumstances. SF is typically negligible for bulk materials. 

However, for materials with complex structures, it can be important [6]. Although SF corrections 

of bulk and multilayer materials for MC X-ray have been implemented [7], it has not been 

formulated or applied to materials with arbitrarily complex structures. This paper provides an 

accurate solution to this widely appreciated problem.  

Currently, three approaches are adopted for SF calculation: analytical modeling, Monte Carlo 

simulation, and hybrid modeling that combines the two. Attempts have been made in the 

development of analytical models for SF correction for non-diffusion couples [8-12] and single 

particles [13]. The analytical models provide efficient calculations for SF. However, most of them 

either rely on some assumptions or only consider characteristic fluorescence. For example, Bastin 

et al. [9], Escuder et al. [12], and Henoc et al. [8] all assumed that primary radiation is emitted 

from a point source located at the surface of the specimen, without considering the X-ray 
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distribution in depth. The derivation of an analytical model relies strongly on the specimen 

structure; and it is not possible to find a general formula adapted to all structures. 

Monte Carlo simulation, on the other hand, is capable of handling complex geometries due to 

the stochasticity of the simulation for electron and X-ray transport [14, 15]. Only two programs 

for electron microanalysis use the Monte Carlo method to simulate SF: DTSA-II [16] and 

PENEPMA [17]. DTSA-II adopts the fractional X-ray model for primary X-ray emission and adds 

SF by propagating primary X-ray intensity in a random direction until it is absorbed by 

photoionization, followed by relaxation with possible emission of secondary X-rays. With the 

utilization of a variance reduction technique, DTSA-II provides an efficient simulation. In contrast, 

PENEPMA simulates the coupled transport of electrons and photons, which means SF (or even 

higher order fluorescence) is naturally included. This generalization without any approximation 

requires high computational cost [16]. The results from this work will be compared with the 

simulation data from DTSA-II and PENEPMA.  

Llovet et al. [18] first described a hybrid method for the fast calculation of SF of material 

couples. They obtained physical interaction parameters from PENELOPE and calculated SF using 

an analytical model. Following Llovet et al. [18], Yuan et al. [7] proposed a hybrid model which 

used MC X-ray to calculate the depth distribution of X-ray intensity and adopted an analytical 

model to calculate both characteristic and bremsstrahlung fluorescence. It can be applied to any 

bulk or multilayer materials. The hybrid method is more efficient than the Monte Carlo method 

and more accurate than analytical models since MC X-ray provides an accurate X-ray distribution 

in depth. Thus, the same strategy is used in this paper.  

This paper develops a SF correction program using a hybrid model based on MC X-ray. The 

program can be applied to materials having arbitrary 3D heterogenous structures. In the following 

sections, the details of the correction method will be discussed and demonstrated using examples 

of couples with grain boundaries and spherical inclusions embedded in matrices. The results of 

our program will be compared with experimental data available in the literature and with results 

from other Monte Carlo codes including DTSA-II and PENEPMA, along with the semi-analytical 

data from Llovet et al. [18]. 
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4.3 Method 

It is difficult to develop a general analytical model adapted to all specimens because its 

derivation relies strongly on specimen structure. The voxel-based calculation of X-ray distribution 

in MC X-ray provides a solution. The simulated specimen is partitioned by a regular grid in 3D 

space and split into a number of arbitrarily small cuboids. Each of the cuboids is called a voxel, 

which represents the smallest unit of homogeneous structure used for electron scattering and X-

ray generation. In other words, within each voxel, it is assumed that the volume is homogeneous, 

and all X-rays are generated from a point source, which is the center of the voxel in our model. 

Based on the two assumptions above, we can easily convert the structure of an arbitrary specimen 

into a voxel-based volume and calculate SF exclusively using the analytical model for voxels. In 

the following sections, the details of this model will be discussed from four perspectives: Monte 

Carlo simulation, estimation of the SF range, analytical modeling, and a computation reduction 

algorithm.  

4.3.1 Monte Carlo simulation 

The Monte Carlo simulation is performed using MC X-ray. Since the focus of this paper is SF 

correction, we mainly introduce the required output of parameters from MC X-ray. The most 

important data required for SF correction is the primary X-ray distribution in 3D space, and thus, 

we need the generated primary X-ray intensities (both characteristic and bremsstrahlung) of each 

voxel as well as the voxel’s position represented by the 3D coordinates of its center. For the 

bremsstrahlung X-rays, the input parameter Number of Energy Window (NW) determines the 

energy of each window by 𝐸𝑖 = (𝑖 − 1/2)𝐸0/𝑁𝑊, where E0 is the beam energy and 0 < 𝑖 ≤ 𝑁𝑊 

[2]. The number of voxels in the output is given by 𝐿𝑁𝑥 × 𝐿𝑁𝑦 × 𝐿𝑁𝑧, where 𝐿𝑁𝑥, 𝐿𝑁𝑦, and 

𝐿𝑁𝑧 represent Layer Number along axes X, Y and Z, respectively. The size of each voxel is 

determined by the primary X-ray range together with the Layer Numbers. More specifically, for 

given Layer Numbers, the dimension of the voxels increases with the primary X-ray range. 

Moreover, other simulation parameters for electron beam, specimen, and detector are also required. 

All the data above are input into our SF correction program for further calculations. 
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4.3.2 Estimation of the SF range 

The first step of the SF calculation is to estimate the SF range. Since X-rays can travel greater 

distances compared to electrons, the X-ray-induced X-ray emission (fluorescence) has a much 

larger interaction volume than the electron-beam-induced X-ray emission (primary). For the 

primary X-ray data obtained from MC X-ray, all the voxels are located within the primary X-ray 

range. If the program only performs SF calculations for those voxels, the fluorescence intensity 

may be significantly underestimated. Therefore, in our model, the fictitious boundary for the SF 

calculation is extended from the primary X-ray range to the SF range, estimated as the distance 

where 99% of the primary X-rays are absorbed. To simplify the calculation, it is assumed that all 

primary X-rays are generated at the point where the electron beam strikes the sample. Note that 

this simplification is made only for the estimation of the SF range, not for the following 

calculations. For the characteristic SF, the travel distance of the characteristic X-ray is calculated. 

As for the bremsstrahlung SF, the bremsstrahlung X-ray with energy just higher than the excitation 

energy of the fluoresced X-ray is considered, which has the greatest possibility to be absorbed and 

to generate SF. The estimation of the SF range is a rough yet reasonable approximation because 

the SF range is typically an order of magnitude larger than the primary X-ray range. Moreover, for 

the voxels close to the SF calculation boundary, their contribution to SF intensity is small due to 

the fact that only a small fraction of primary X-rays successfully arrives at those voxels without 

being absorbed. Thus, the error in SF intensity resulted from the rough estimation of the SF range 

should be negligible. 

The SF ranges along three axes X, Y, and Z can be the same or different depending on the 

specimen structure. The Z-axis is perpendicular to the specimen surface. For example, take the 

case of the characteristic fluorescence of the Fe Kα line for a Cu spherical inclusion embedded in 

an Fe matrix and exposed at the surface (see the sample structure in Figure 4.1), and the electron 

beam strikes on the top center of the Cu inclusion. To fluoresce Fe K X-rays, along the Z-axis the 

primary Cu Kα X-rays have to travel through the Cu inclusion to reach the Fe matrix. However, 

along the X- or Y-axis, the X-rays can directly enter the Fe matrix due to the point source 

assumption of the primary X-rays. Hence, with an increase in the inclusion size, the travel distance 

of the Cu Kα X-rays along the Z direction increases because of the enlarged Cu region in which 

the X-rays have a lower mass absorption coefficient than in the Fe matrix, resulting in an increase 
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in the SF range as shown in Figure 4.2. On the contrary, the SF ranges along the X- and Y-axes 

are the same due to the symmetry and remain constant despite the change of the inclusion size. 

 

Figure 4.1 Sample structure for a Cu spherical inclusion embedded in an Fe matrix. 

 

 

Figure 4.2 Variation of the SF range along X- or Y- and Z-axes relative to the inclusion radius 

for characteristic fluorescence of the Fe Kα line in the case of a Cu spherical inclusion embedded 

in an Fe matrix. 

4.3.3 Analytical modeling 

Following the estimation of the SF range, the generated SF intensity is calculated using 

analytical modeling. For the element of interest in each of the voxels, the generated SF intensity 

is computed by summing up the contributions of the primary X-rays from different voxels located 

within the primary X-ray range. The SF intensities of all the voxels are then summed up together 

to obtain the total intensity. 
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For specimens with curved boundaries, the simplification of the voxel-based volume with flat 

surfaces may introduce errors due to spatial sampling. However, the errors are negligible because 

the volume of the voxels located at the curved boundaries is relatively small compared to that of 

the whole SF range, and the errors can be minimized by diminishing the size of the voxel. We have 

reviewed the magnitude of this error and determined that it is negligible. 

The analytical model used to perform the SF correction of voxels is an extension of the model 

used for multilayers [7], which is based on analytical models from previous research [6, 13, 19-

22]. The derivation of the model is discussed below.  

Take the SF calculation of voxel VA fluoresced by the primary X-rays from voxel VB as an 

example. Figure 4.3 shows the schematic of the derivation. The positions of voxel VB and voxel 

VA, represented by the 3D coordinates of their centers, are (𝑥𝐵 , 𝑦𝐵, 𝑧𝐵) and (𝑥𝐴, 𝑦𝐴, 𝑧𝐴), respectively. 

The generated primary X-ray intensity of the X-ray XB in voxel VB is 𝐼𝑝,𝑋𝐵(𝑉𝐵), and XB can be 

either a characteristic or bremsstrahlung X-ray. To calculate the SF intensity of the characteristic 

X-ray line XA generated in voxel VA and ionized by XB from voxel VB, 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑉𝐵) , the 

following physical processes are considered.  

 

Figure 4.3 Schematic of the SF calculation for voxels. 

Consider the fraction of the generated radiation of X-ray line XB that travels toward voxel VA 

in the direction between 𝜃 and (𝜃 + 𝑑𝜃) for the polar angle, and between 𝜑 and (𝜑 + 𝑑𝜑) for the 

azimuthal angle: 
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𝐼1 = 𝐼𝑝,𝑋𝐵(𝑉𝐵) ×

𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑

∫ ∫ 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
𝜋

0

2𝜋

0

=
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑

4𝜋
𝐼𝑝,𝑋𝐵(𝑉𝐵) , (4.1) 

where ∫ ∫ 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
𝜋

0

2𝜋

0
 is the full solid angle in steradians, which equals 4π, and 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 is 

the solid angle toward voxel VA, in which 𝑠𝑖𝑛𝜃 is calculated by 

 
𝑠𝑖𝑛𝜃 =  

√(𝑥𝐴 − 𝑥𝐵)
2 + (𝑦𝐴 − 𝑦𝐵)

2

√(𝑥𝐴 − 𝑥𝐵)
2 + (𝑦𝐴 − 𝑦𝐵)

2 + (𝑧𝐴 − 𝑧𝐵)
2
 . (4.2) 

See Table 4.1 for the descriptions of the symbols. 

Table 4.1 Description of symbols 

Parameter Meaning Unit 

θ Polar angle steradian 

𝜑 Azimuthal angle steradian 

(
𝜇

𝜌
)
𝑋𝐵

𝑖

 Mass absorption coefficient of X-ray XB in voxel i m2/kg 

𝜌𝑖 Density of voxel i kg/m3 

𝑑𝑖 Travel distance within voxel i m 

𝑐𝐸𝐴 Weight fraction of element EA in voxel VA  

(
𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

 
Mass absorption coefficient of X-ray XB absorbed by pure 

EA 
m2/kg 

𝑟𝑋𝐴 Jump ratio for X-ray line XA  

𝜔𝑋𝐴 Fluorescence yield for X-ray line XA  

𝑝𝑋𝐴 Relative intensity for X-ray line XA  

𝑑𝑥, 𝑑𝑦, 𝑑𝑧 Voxel size along the X-, Y-, and Z-axes m 

ψ Take-off angle degree 

𝛺 Solid angle of the detector  steradian 

𝜀𝑖 Detector efficiency for X-rays with energy i  

𝐸𝑖 X-ray energy of i keV 
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During the travel of XB toward voxel VA, some X-rays are absorbed and the remaining intensity 

that arrives at voxel VA, I2, is calculated considering the absorption in all the voxels through which 

XB passes 

 

𝐼2 = 𝐼1 exp( ∑ [−(
𝜇

𝜌
)
𝑋𝐵

𝑖

𝜌𝑖𝑑𝑖]

𝑝𝑎𝑡ℎ 𝑉𝐵−𝑉𝐴 

), (4.3) 

where ∑ [−(
𝜇

𝜌
)
𝑋𝐵

𝑖
𝜌𝑖𝑑𝑖]𝑝𝑎𝑡ℎ 𝑉𝐵−𝑉𝐴  represents the summation over all voxels in the path from VB to 

VA.  

The portion of the remaining radiation (I2) absorbed by element EA in voxel VA is 

 
𝐼3 = 𝐼2 (1 − exp(−𝑐𝐸𝐴 (

𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴𝑑𝑉𝐴)) , (4.4) 

where 𝑑𝑉𝐴 is the travel distance in voxel VA. 

The fraction of I3 that results in certain shell ionization is 

 
𝐼4 = 𝐼3

𝑟𝑋𝐴 − 1

𝑟𝑋𝐴
 , (4.5) 

where 𝑟𝑋𝐴 represents the jump ratio for X-ray line XA. Among those X-rays, the part that results in 

X-ray generation of the line of interest (XA) for element EA is successfully fluoresced: 

 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐵)  = 𝐼4𝜔𝑋𝐴𝑝𝑋𝐴  . (4.6) 

Substituting equations (4.1) through (4.5) into equation (4.6), the fluorescence intensity is 

expressed as follows: 

 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐵) 

=
sin 𝜃 𝑑𝜃𝑑𝜑

4𝜋
𝐼𝑝,𝑋𝐵(𝑉𝐵) exp( ∑ (−(

𝜇

𝜌
)
𝑋𝐵

𝑖

𝜌𝑖𝑑𝑖)

𝑝𝑎𝑡ℎ 𝑉𝐵−𝑉𝐴 

) × 

 

(4.7) 
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(1 − exp (−𝑐𝐸𝐴 (
𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴𝑑𝑉𝐴))
𝑟𝑋𝐴 − 1

𝑟𝑋𝐴
𝜔𝑋𝐴𝑝𝑋𝐴 . 

The calculations of 𝑑𝜃 and 𝑑𝜑 are shown in Appendix A.  

The SF intensity fluoresced by the primary X-rays generated from the same voxel cannot be 

calculated using the model above. Instead, a triple numerical integral is used. Please see Appendix 

B for more details. 

The total X-ray fluorescence intensity of XA in voxel VA ionized by the primary X-rays 

generated from voxel VB, 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑉𝐵) is calculated by summing up the contributions from all 

primary X-ray lines (both characteristic and bremsstrahlung) whose energies are higher than the 

excitation energy of XA: 

 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑉𝐵) =∑𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐵) 

𝑋𝐵

. (4.8) 

To calculate the total fluorescence intensity of XA in the whole specimen, a double summation 

for voxel VB over voxels within the primary X-ray range and for voxel VA over voxels within the 

SF X-ray range is needed: 

 𝐼𝑓,𝑋𝐴 = ∑∑𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑉𝐵)

𝑉𝐵𝑉𝐴

 . (4.9) 

The summation over voxel VA starts from the calculations for the voxels within the primary X-

ray range. The program then extends the calculation boundary by repeatedly adding a slice of 

voxels at the corresponding direction and performs the calculation for the added voxels until the 

boundary is extended to the SF range. Notice that the calculation is only performed if element EA 

is present in voxel VA.  

All the intensities mentioned above are the generated intensities. To obtain the emitted intensity, 

the X-ray absorption along the direction paths is calculated: 

 
𝐼𝐸𝑚𝑖𝑡𝑡𝑒𝑑,𝑋𝐴 = 𝐼𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑,𝑋𝐴 exp(−𝑐𝑠𝑐𝜓 [∑(

𝜇

𝜌
)
𝑋𝐴

𝑖

𝜌𝑖𝑑𝑖
𝑖

]) ,  (4.10) 
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where i represents all the voxels through which a given X-ray travels out of the sample in the 

direction of the take-off angle 𝜓. The detected X-ray intensity can be calculated by 

 
𝐼𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑,𝑋𝐴 = 𝐼𝐸𝑚𝑖𝑡𝑡𝑒𝑑,𝑋𝐴

𝛺

4𝜋
𝜀𝐸𝑋𝐴

 . (4.11) 

Table 4.2 shows the models for the physical parameters used in our program. 

Table 4.2 Models for the physical parameters. 

Mass absorption coefficient Chantler2005 [23-25] 

Absorption jump ratio Chantler2005 [23-25] 

Fluorescence yield Goldstein et al. [26] 

Relative line intensity  Schreiber & Wims [27]  

 

4.3.4 Computation reduction algorithm 

As the size of the computation boundary increases, there is also a dramatic increase in the 

number of voxels that require calculations. Considering the voxel-based volume as a multilayer 

shell structure in which each layer is composed of several slices of voxels along different directions, 

the SF calculation starts from the inner-most layer, which is the closest one to the primary beam, 

and extends to the outside layers as the extension of the boundary. If the structure is a cube, the 

number of voxels in the ith layer is 𝑖3 − (𝑖 − 1)3, which equals 3𝑖2 − 3𝑖 + 1. For example, for the 

10th layer, the number of voxels is 271, whereas the value for the 20th layer is 1,141, which shows 

an increase of more than a factor of 3. On the other hand, the SF intensity of each voxel becomes 

smaller as the calculation moves to the outside layers due to the increase of the travel distance for 

the primary X-rays and the decrease in solid angle. The result of the two effects is that the 

magnitude of the intensity becomes small compared to the computational time spent for the outside 

layers. 

To reduce the computation load and at the same time minimize the loss in accuracy, an 

algorithm “SkipVoxel” was developed, which skips the computation for some voxels located in 

the enlarged region according to the solid angle. In this algorithm, 𝑑𝜃 and 𝑑𝜑 of voxel VA, which 

represent the size of the solid angle, are calculated taking the voxel on which the electron beam 
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strikes as the source of primary X-rays and are compared with those for voxels within the primary 

X-ray range. The smallest values of 𝑑𝜃 and 𝑑𝜑 for voxels within the primary X-ray range are 

found and defined as (𝑑𝜃)𝑚𝑖𝑛 and (𝑑𝜑)𝑚𝑖𝑛. The Skip Value for voxel VA, 𝑆𝐾𝑉𝐴 is defined as the 

integer part of the ratio of (𝑑𝜃)𝑚𝑖𝑛 × (𝑑𝜑)𝑚𝑖𝑛 and (𝑑𝜃)𝑉𝐴 × (𝑑𝜑)𝑉𝐴. When the SF calculation 

for a new layer of voxels starts, layer Li (i is the index number) for example, the minimum value 

of the Skip Values of the voxels in the last layer (layer Li-1) is chosen to be the Skip Value of this 

new layer, which is written as 𝑆𝐾𝐿𝑖. Then the following (𝑆𝐾𝐿𝑖 − 1) layers are skipped without 

performing the SF calculation. Next, the calculation for layer 𝐿𝑖+(𝑆𝐾𝐿𝑖−1)
 is performed, after which 

the intensities for those skipped voxels are calculated using the linear interpolation method.  

Figure 4.4 shows the Skip Value of voxels for a non-diffusion couple of Cu and Fe with a 

vertical boundary to calculate the SF intensity of the Fe Kα line at 20 keV. The specimen structure 

is shown in Figure 4.5. The boundary of Cu and Fe is a vertical plane with the coordinate X= 0, 

and the sample is homogeneous along the Y- and Z-axes. The distance between the electron beam 

and the vertical boundary is 3 μm. It is observed that the Skip Value increases with the increase of 

the distance between the voxel and the electron beam. Table 4.3 compares the SF intensities of the 

Fe Kα1 line as well as the computation time with and without using “SkipVoxel” when 100,000 

electrons were simulated. It is indicated that more than 83% of time is saved when the differences 

in the intensities are less than 0.1% for both emitted and generated intensities (bremsstrahlung and 

characteristic).  

Table 4.3 Comparison of fluorescence intensities for the Fe Kα1 line and computation time with 

and without “SkipVoxel”. 

 

Characteristic Fluorescence 

intensity 

(photons/electron/sr) 

Bremsstrahlung Fluorescence 

intensity 

(photons/electron/sr) 

Computation 

time (min) 

 Emitted Generated Emitted Generated  

Without 

Skipping 
1.743 × 10−6 2.118 × 10−6 6.803 × 10−7 8.330 × 10−7 201 

Skipping 1.745 × 10−6 2.120 × 10−6 6.809 × 10−7 8.337 × 10−7 33 

Difference (%) 0.091 0.090 0.080 0.079 83.58 
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Figure 4.4 Skip Values of voxels for a non-diffusion couple of Fe and Cu to fluoresce Fe Kα line 

at 20 keV when the distance between the electron beam and the boundary is 3μm. 

 

Figure 4.5 Specimen structure for a non-diffusion couple of Cu and Fe. 

4.4 Results and discussion 

4.4.1 Fe and Cu coupled with a vertical boundary 

In order to assess the reliability of our program, an Fe and Cu non-diffusion couple was taken 

as an example. The parameter d is used to indicate the distance between the electron beam and the 

boundary. The simulation results presented in this paper were all measured at 40° take-off angle. 

Figure 4.6 and Figure 4.7 show the simulation results for d of 1 μm and the beam energy 20 

keV. In this case, most of the electrons interact with Cu in the left region (where X < 0 μm), and 

only a few electrons interact with Fe in the right region (where X > 0 μm) and emit Fe K-line X-
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rays. Thus, the emitted primary X-ray intensity for the Fe Kα line (including Kα1 and Kα2), 

6.45 × 10−10 photons/electron/steradian (photons·(e·sr)-1), is much smaller than that for the Cu 

Kα line, 8.13 × 10−5 photons·(e·sr)-1. However, some Cu Kα X-rays and bremsstrahlung X-rays 

might travel to the right region and fluoresce Fe Kα line X-rays. The SF X-ray intensities of Fe Kα 

for characteristic and bremsstrahlung are 4.05 × 10−6  and 1.90 × 10−6  photons·(e·sr)-1, 

respectively, whose summation is more than 9,000 times greater than the primary X-ray intensity. 

Figure 4.6 shows the primary X-ray distribution in 3D space for a) Cu Kα1 and b) Fe Kα1 with 

voxel size 0.4 × 0.4 × 0.2 𝜇𝑚. Figure 4.7 a) displays the characteristic SF intensity distribution 

in 3D space for Fe Kα1.The color of each point represents the X-ray intensities at the corresponding 

voxel in log scale with units of photons per electron per steradian. As the distance between the 

voxel and the electron beam increases, the fluorescence intensity decreases. By comparing Figure 

4.6 a) and Figure 4.7 a), it is also shown that the characteristic SF has a much larger interaction 

volume and much lower intensities than the emitting X-rays (primary X-rays for Cu Kα1 line). 

Figure 4.7 b)–d) present the cross-section views of the characteristic SF intensity distribution on 

three planes X = 0, Y = 0.2 μm, and Z = 0 μm, respectively. It is worth noticing that at the plane 

X = 0 (Figure 4.7 b), for deeper positions where Z > 2 μm, the SF intensity increases at first and 

then decreases as the voxel moves away from the plane Y = 0. A similar phenomenon is observed 

at the plane Y = 0.2 μm (Figure 4.7 c) as the X coordinate increases. This can be explained by the 

variation of 𝑑𝑉𝐴, the travel distance of XB in voxel VA, as the relative position of VA and VB changes. 

For example, for voxels on the plane X = 0, the travel distance of XB within a certain voxel VA 

increases with an increase in the azimuthal angle φ within a certain range. The travel distance in 

the voxel with coordinates (0, 0, and 4 μm) is smaller than that in the voxel (0, 5, and 4 μm) because 

the former one has an azimuthal angle close to 0, which results in a lower chance of secondary 

fluorescence according to equation (4.7). 
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Figure 4.6 The X-ray intensity distribution in 3D space for the primary X-rays of a) Cu Kα1 and 

b) Fe Kα1. The intensity values are shown in ‘log scale’ with unit photons per electron per 

steradian. 

 

Figure 4.7 a) The X-ray distribution in 3D space for the characteristic SF intensity for the Fe Kα1 

line. The cross-section views of the characteristic SF intensity distribution on plane b) X = 0; c) 

Y = 0.2 μm; and d) Z = 0. The intensity values are shown in ‘log scale’ with unit photons per 

electron per steradian. 
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Figure 4.8 shows the variation of the k-ratio, the ratio of the emitted X-ray intensity of the 

target element measured in an unknown specimen and a standard, versus the distance between the 

electron beam and the boundary (at 20 keV). For all the results presented in this paper, we used 

pure element standards and included the fluorescence effect for the X-ray radiation. The results of 

this work were compared with experimental data from Valovirta et al. [28], semi-analytical 

modeling from Llovet et al. [18], and simulation results from Ritchie [16] and PENEPMA [17]. 

Figure 4.8 a) presents the results for the Fe Kα line when the electron beam strikes the Cu region, 

which includes the contributions of both characteristic and bremsstrahlung fluorescence, while 

Figure 4.8 b) presents the results for the Cu Kα line when the electron beam strikes the Fe region, 

which exclusively includes the bremsstrahlung fluorescence. As the distance d increases, the k-

ratio decreases due to the reduction of the fraction of the primary X-rays that arrives at the left 

region [Fe for a) and Cu for b)]. Computation results of this work are found to be in good agreement 

(with relative differences smaller than 15%) with both experimental data from Valovirta et al. [28], 

and simulation data extracted from Llovet et al. [18] and PENEPMA. However, in Figure 4.8 b), 

slight differences are found between our results and the simulation data from Ritchie [16] with an 

average relative difference of 15.4%. The differences can be attributed to differences in the cross-

section models of the two programs, which are listed in Table 4.4 [2, 29].  

Table 4.4 Cross-section models used in MC X-ray, DTSA-II, and PENEPMA 

 MC X-ray DTSA-II PENEPMA 

Electron cross-section 
Mott & Browning 

[30, 31] 

NIST electron elastic-

scattering cross-

section database [32]  

Numerical 

calculation from 

ELSEPA [33]  

Characteristic X-ray 

cross-section 
Casnati et al. [34]  Bote & Salvat [35]  Bote & Salvat [35]  

Bremsstrahlung X-

ray cross-section 

Kirkpatrick & 

Wiedmann [36]  
Seltzer & Berger [37] Seltzer & Berger [37] 
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Figure 4.8 Variation of the k-ratio as the change of the distance between the electron beam and 

the boundary at 20 keV for a) Fe Kα line when the electron beam strikes the Cu region, and b) 

Cu Kα line when the electron beam strikes the Fe region.  

 

Figure 4.9 Variation of the k-ratio for the Co Kα line as a function of the distance between the 

electron beam and the boundary at 20 keV for a) a Cu matrix with 4.1 wt% Co coupled with a Co 

matrix with 4.1wt% Cu, and b) a Cu matrix with 2.1 wt% Co coupled with a Co matrix with 4.1 

wt% Cu. 

4.4.2 Cu and Co alloys coupled with a vertical boundary  

To further validate our model, the SF intensities were calculated for a non-diffusion couple 

with two regions having the same elements but different compositions. Figure 4.9 displays the 

variation of the k-ratio for the Co Kα line as a function of the distance between the electron beam 

and the grain boundary at 20 keV. Figure 4.9 a) shows the case of a Cu matrix with 4.1 wt% Co 

coupled with a Co matrix with 4.1wt% Cu, while Figure 4.9 b) shows the case of a Cu matrix with 
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2.1 wt% Co coupled with a Co matrix with 4.1 wt% Cu. For both cases, the electron beam strikes 

the copper-rich region. Higher k-ratios for the Co Kα line are observed due to a higher weight 

fraction of Co in the region that the electron beam strikes. The simulation results of our program 

are compared with results from PENEPMA [17] and Ritchie [29], and analytical results from 

Bastin et al. [9]. As can be seen in Figure 4.9, there is a very good agreement between different 

simulation methods. 

4.4.3 Cu inclusion embedded in an Fe matrix 

In this section, we present results for the structure of a spherical inclusion embedded in a matrix. 

As displayed in Figure 4.1, a spherical Cu inclusion is embedded in an Fe matrix and attached to 

the surface, and the electron beam is positioned at the center of the Cu inclusion. The SF intensities 

were calculated for a Cu inclusion with a radius of 5 μm measured at 10 keV.  

Figure 4.10 a) shows the electron trajectories of 200 electrons. The interaction volume has a 

radius of 0.3 μm, which is much smaller than the inclusion radius (5 μm), resulting in a small 

primary X-ray intensity for the Fe Kα line, 1.3% of that for the Cu Kα line. Thus, the Fe Kα line 

peak is barely seen in the simulated convolved spectrum without the fluorescence correction as 

shown in Figure 4.10 b) with a black solid line. However, because of the strong fluorescence of 

Fe, the simulated spectrum including fluorescence, as displayed in Figure 4.10 b) with red dots, 

shows the Fe Kα and Kβ peaks. When performing qualitative analysis for this spectrum, an analyst 

might interpret the Fe peaks as a trace constituent, while in fact it is produced by SF effects. This 

demonstrates the importance of SF both as an observed feature in an energy-dispersive spectrum, 

and of the need to perform simulation analysis. 
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Figure 4.10 a) Electron trajectories of 200 electrons. b) Simulated spectra using MC X-ray with 

(red dots) and without (black solid line) the SF at 10 keV for a Fe matrix with a Cu inclusion 

embedded with a radius of 5 μm. The spectra were simulated with an energy channel width of 10 

eV. 

 

Figure 4.11 Variation of the k-ratios of the total (black), primary (green), characteristic 

fluorescence (red), and bremsstrahlung fluorescence (blue) for the Fe Kα line as functions of a) 

beam energy for a Cu spherical inclusion with a radius of 5μm and b) inclusion radius for 15 

keV. 

Figure 4.11 a) and b) show the variation of the k-ratios of the total (black), primary (green), 

characteristic fluorescence (red), and bremsstrahlung fluorescence (blue) for the Fe Kα line as a 

function of variable beam energy for a fixed inclusion radius of 5μm and of variable inclusion size 

for a fixed beam energy of 15 keV, respectively. The k-ratios of the primary, characteristic 

fluorescence, and bremsstrahlung fluorescence are the ratio of the primary, characteristic 

fluorescence, and bremsstrahlung fluorescence intensities of the specimen and the total intensity 
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of the standard, respectively. We observe good agreements of our simulation results with those 

from DTSA-II [16] and PENEPMA [17].  

For both figures, the SF contribution is much higher than that of the primary X-rays. As shown 

in Figure 4.11 a), the k-ratio increases dramatically as the beam energy increases due to the 

enlarged interaction volume. When the beam energy is below 15 keV, the k-ratios of the 

bremsstrahlung fluorescence are higher than that of the characteristic fluorescence. However, as 

the beam energy increases, the characteristic fluorescence dominates. This is because the intensity 

of the Cu Kα line, which is the main source of the characteristic fluorescence, largely increases as 

the beam energy increases from 10 keV to 15 keV. Similar results are found for MC X-ray 

compared with DTSA-II and PENEPMA. In Figure 4.11 b), as the inclusion size increases, both 

the characteristic and bremsstrahlung fluorescence decrease since the emitting X-rays (Cu Kα line 

or bremsstrahlung X-rays) travel farther to enter the Fe region in order to fluoresce Fe X-rays. 

When the inclusion size is smaller than 5μm, we observe better agreement between MC X-ray and 

DTSA-II in comparison to between MC X-ray and PENEPMA. Conversely, as the inclusion radius 

increases above 5 μm, better agreement is observed with PENEPMA than DTSA-II. We attribute 

this to differences in physical models used in the different software algorithms as shown in Table 

4.4.  

4.4.4 Four Co inclusions embedded in a Cu matrix 

To show the flexibility of our program in sample structure, an example of four Co spherical 

inclusions embedded in a Cu matrix is presented. Figure 4.12 shows the specimen structure in the 

X-Y plane, where A is the electron beam position with coordinates (0, 0, 0). The four Co spheres 

have coordinates of their centers at (1.5, 1.5, 1.5), (1.5, -1.5, 1.5), (-1.5, 1.5, 1.5), and (-1.5, -1.5, 

1.5), respectively (unit in μm). The SF calculations were performed for various values of beam 

energy and inclusion radius. For all the setups presented in this section, the primary intensities for 

Co are 0 since the inclusions are outside the primary X-ray range. However, the Co Kα X-rays are 

still detected because of the fluorescence effect from both the Cu Kα X-rays and bremsstrahlung 

X-rays. Figure 4.13 shows the variation of the emitted X-ray intensities for the Co Kα1 line as a 

function of beam energy for Co spherical inclusions with a radius of 500 nm and of inclusion 

radius at 15 keV. It is observed that the characteristic fluorescence intensities are greater than the 

bremsstrahlung fluorescence intensities for both figures. The strong characteristic fluorescence is 
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attributed to the strong absorption of Cu Kα X-rays in Co [25]. In Figure 4.13 a), as the beam 

energy increases, the SF intensity increases because of an increase in the emitting X-rays (both Cu 

Kα line and bremsstrahlung X-rays). In Figure 4.13 b), an increase of the SF intensity is shown 

with an increase in the inclusion radius due to the increased X-ray production as the volume of Co 

spheres increases.  

 

Figure 4.12 Specimen structure in the X-Y plane for four Co spherical inclusions embedded 

inside a Cu matrix. The white area represents the Cu matrix, and the gray areas represent the Co 

particles.  

 

Figure 4.13 Variation of the emitted intensity for the Co Kα1 line with the changes of a) beam 

energy for Co spherical inclusions with radius of 500 nm and b) inclusion radius at 15 keV. 

4.5 Conclusion 

In this work, a program was developed using a hybrid model which combines the Monte Carlo 

simulation and the analytical modeling to calculate SF intensities. The program can be applied to 
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materials with arbitrary 3D heterogeneous structures, and it includes the accurate calculation of 

both characteristic and bremsstrahlung fluorescence. An improvement in computation using 

“SkipVoxel” saves more than 80% of the simulation time with a less than 0.1% change in 

intensities by skipping the fluorescence calculation for some of the voxels and utilizing linear 

interpolation instead. Using the 3D intensity distribution of the primary X-rays obtained from MC 

X-ray, our program accurately computes the 3D distribution of the fluorescence X-rays. We have 

shown applications using material couples and embedded spherical inclusion structures and 

demonstrated very good agreement with experimental and analytical results from the previous 

studies and other Monte Carlo codes. MC X-ray combined with our fluorescence correction 

program provides accurate predictions of X-ray intensity for a diverse set of materials.  
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4.8 Appendix 

4.8.1 Appendix A 

Calculations of 𝒅𝜽 and 𝒅𝝋 

There are two geometry-related parameters which need to be calculated for different voxels, 

𝑑𝜃 and 𝑑𝜑. The parameter 𝑑𝜃 is the angle between BA1 and BA2 and is expressed as follows (as 

shown in Figure 4.14): 
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 𝑑𝜃 = 𝜃1 − 𝜃2 , (4.A1) 

where  

 

𝜃1 = arctan(
√(𝑥𝐴 − 𝑥𝐵)

2 + (𝑦𝐴 − 𝑦𝐵)
2

|𝑧𝐴 − 𝑧𝐵| −
𝑑𝑧
2

) , (4.A2) 

 

 

𝜃2 = arctan(
√(𝑥𝐴 − 𝑥𝐵)

2 + (𝑦𝐴 − 𝑦𝐵)
2

|𝑧𝐴 − 𝑧𝐵| +
𝑑𝑧
2

) . (4.A3) 

dφ is calculated by (as shown in Figure 4.15 a and b) 

 

𝑑𝜑 = 2 × arctan(

𝑑(𝐴3𝐴4)
2

√(𝑥𝐴 − 𝑥𝐵)
2 + (𝑦𝐴 − 𝑦𝐵)

2
) , (4.A4) 

where 

 𝑑(𝐴3𝐴4) = min (
𝑑𝑥

𝑠𝑖𝑛𝜑
 , 

𝑑𝑦

𝑐𝑜𝑠𝜑
) , (4.A5) 

 
𝑠𝑖𝑛𝜑 =

𝑑𝑦

√(𝑥𝐴 − 𝑥𝐵)
2 + (𝑦𝐴 − 𝑦𝐵)

2
 , (4.A6) 

and 

 
𝑐𝑜𝑠𝜑 =

𝑑𝑥

√(𝑥𝐴 − 𝑥𝐵)
2 + (𝑦𝐴 − 𝑦𝐵)

2
 . (4.A7) 
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Figure 4.14 Schematic for the derivation of dθ. Point B, A, A1, and A2 and angle dθ, θ1, and θ2 lie 

on the same plane, which is perpendicular to the X-Y plane. 

 

Figure 4.15 a) Schematic for the derivation of dϕ. The angle dϕ lies within the X-Y plane. b) 

Schematic for the derivation of dϕ on the X-Y plane. 

Figure 4.16 a) and b) show the values of dθ and dφ (in steradian) in 3D space, respectively, to 

calculate the SF intensity of the Fe Kα line for a non-diffusion couple of Fe and Cu at 20 keV and 

the distance between the electron beam and the grain boundary is 3 μm (see Figure 4.5 for the 

sample structure). The electron beam strikes the Cu region. The volume of each voxel is 0.032 

μm3 (0.4 × 0.4 × 0.2 𝜇𝑚). The coordinates of each point in the figure represent the position of 

voxel VA, and voxel VB is the voxel where the electron beam hits. Since the calculation was only 

performed at the Fe region, data is shown only for voxels whose X coordinate is smaller than 0. 

The parameter dθ decreases as the voxel VA moves away from voxel VB, and dφ does not change 

as the Z coordinate changes. The values of dθ and dφ also depend on the size of the voxel. As 

shown in Figure 4.17, both two angles increase with an increase in the voxel volume. 
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Figure 4.16 Values of a) dθ and b) dφ for each voxel to calculate the SF intensity of Fe Kα line 

for a non-diffusion couple of Fe and Cu at 20 keV. The distance between the electron beam and 

the boundary is 3 μm and the electron beam strikes the Cu region. 

 

Figure 4.17 Variations of dθ and dφ versus the voxel volume (Note that the side lengths along 

the X- and Y-axes are the same and are double the side length along the Z-axis).  

4.8.2 Appendix B 

Fluorescence correction from the same voxel 

To calculate the SF intensity fluoresced by X-rays from the same voxel (as shown in Figure 

4.18), a triple numerical integral is required. In this case, we only need to consider the fraction of 

X-rays which are absorbed before exiting the voxel. Assuming that the primary X-rays are 

generated at point A (the center of the voxel) and absorbed at point A′ with the distance between 𝑠 
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and 𝑠 + 𝑑𝑠 in the direction with the polar angle 𝜃 and the azimuthal angle 𝜑, based on equation 

(4.7), the following equation can be easily obtained: 

 
𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐴) =

sin 𝜃 𝑑𝜃𝑑𝜑

4𝜋
𝐼𝑝,𝑋𝐵(𝑉𝐴) exp (−(

𝜇

𝜌
)
𝑋𝐵

𝑉𝐴

𝜌𝑉𝐴𝑠) × 

(1 − exp (−𝑐𝐸𝐴 (
𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴𝑑𝑠))
𝑟𝑋𝐴 − 1

𝑟𝑋𝐴
𝜔𝑋𝐴𝑝𝑋𝐴 . 

(4.B1) 

To obtain the total SF intensity, a triple integral over 𝑑𝜃, 𝑑𝜑, and 𝑑𝑠 is performed as follows: 

 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐴) 

= 𝐼𝑝,𝑋𝐵(𝑉𝐴)
1

4𝜋

𝑟𝑋𝐴 − 1

𝑟𝑋𝐴
𝜔𝑋𝐴𝑝𝑋𝐴∫ ∫ ∫ sin 𝜃 exp (−(

𝜇

𝜌
)
𝑋𝐵

𝑉𝐴

𝜌𝑉𝐴𝑠)
𝑠𝑚𝑎𝑥

0

𝜋

0

2𝜋

0

× 

(1 − exp (−𝑐𝐸𝐴 (
𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴𝑑𝑠))𝑑𝜃𝑑𝜑, 

 

 

 

(4.B2) 

where 𝑠𝑚𝑎𝑥 is the maximum path length that an X-ray travels within voxel VA starting from the 

center of VA as a function of 𝜃 and 𝜑. As ds gets close to 0, we have 

 
1 − exp(−𝑐𝐸𝐴 (

𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴𝑑𝑠)  ≈  𝑐𝐸𝐴 (
𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴𝑑𝑠.  (4.B3) 

Substituting equation (4.B3) into equation (4.B2), 

 
𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐴) = 𝐼𝑝,𝑋𝐵(𝑉𝐴) ×

1

4𝜋
𝑐𝐸𝐴 (

𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴
𝑟𝑋𝐴 − 1

𝑟𝑋𝐴
𝜔𝑋𝐴𝑝𝑋𝐴 × 

∫ ∫ ∫ sin 𝜃 exp (−(
𝜇

𝜌
)
𝑋𝐵

𝑉𝐴

𝜌𝑉𝐴𝑠) 𝑑𝑠𝑑𝜃𝑑𝜑
𝑠𝑚𝑎𝑥

0

𝜋

0

2𝜋

0

. 

(4.B4) 

Because of the central symmetry of the voxel, equation (4.B4) can be written as follows: 

 𝐼𝑓,𝑋𝐴(𝑉𝐴, 𝑋𝐵,𝑣𝐴) 

= 𝐼𝑝,𝑋𝐵(𝑉𝐴)
1

4𝜋
𝑐𝐸𝐴 (

𝜇

𝜌
)
𝑋𝐵

𝐸𝐴

𝜌𝑉𝐴
𝑟𝑋𝐴 − 1

𝑟𝑋𝐴
𝜔𝑋𝐴𝑝𝑋𝐴 × 

(4.B5) 



111 

 

8∫ ∫ ∫ sin 𝜃 exp (−(
𝜇

𝜌
)
𝑋𝐵

𝑉𝐴

𝜌𝑉𝐴𝑠) 𝑑𝑠𝑑𝜃𝑑𝜑
𝑠𝑚𝑎𝑥

0

𝜋/2

0

𝜋/2

0

. 

The triple integral ∫ ∫ ∫ sin 𝜃 exp(−(
𝜇

𝜌
)
𝑋𝐵

𝑉𝐴
𝜌𝑉𝐴𝑠) 𝑑𝑠𝑑𝜃𝑑𝜑

𝑠𝑚𝑎𝑥
0

𝜋/2

0

𝜋/2

0
 is solved numerically 

using a triple computational loop in our program. 

 

Figure 4.18 Schematic for the derivation of SF intensity from the same voxel. The primary X-

rays are generated at point A (the center of the voxel) and absorbed at point A′. 
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Chapter 5. Inverse modeling for quantitative X-ray 

microanalysis applied to 2D heterogeneous materials 

 

In Chapter 3 & Chapter 4, the developed secondary fluorescence correction program has 

significantly improved the accuracy of X-ray emission forward modeling using the Monte Carlo 

method, especially for heterogeneous materials. We can next focus on the inverse modeling 

algorithm. In this chapter, a novel inverse modeling algorithm was proposed to extract the 

compositional and structural information of an unknown specimen from a series of X-ray intensity 

measurements. 

 

• This paper has been published as: Y. Yuan*, H. Demers, N. Brodusch, X. Wang, R. 

Gauvin, Inverse Modeling for Quantitative X-ray Microanalysis Applied to 2D 

Heterogeneous Materials, Ultramicroscopy, 219 (2020) 113117. 
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5.1 Abstract  

Current quantitative X-ray microanalysis methods are only available for homogeneous 

materials. This paper presents a newly developed inverse modeling algorithm to determine both 

the structure and composition of two-dimensional (2D) heterogeneous materials from a series of 

X-ray intensity measurements under different beam energies and beam positions. It utilizes an 

iterative process of forward modeling to determine the optimal specimen to minimize the relative 

differences between the simulated and experimental characteristic X-ray intensities. The Monte 

Carlo method is used for the forward modeling to predict the X-ray radiation for a given specimen 

and experimental setup. Several examples of applications are presented for different types of 

samples with one-dimensional and two-dimensional structures, in which the simulated X-ray 

intensities from phantom samples are used as input. Most of the results obtained from our 

algorithm agree well with the phantom samples. Some discrepancies are found for the voxels 

located at deeper depths of the two-dimensional samples. And the discrepancies may be attributed 

to errors from the Monte Carlo simulations and from the variation of the X-ray range with beam 

energy. As a proof-of-concept work, this paper confirms the feasibility of our inverse modeling 

algorithm applied to 2D heterogeneous materials. 

  



114 

 

5.2 Introduction 

The technique of energy dispersive spectroscopy (EDS) or wavelength dispersive spectroscopy 

(WDS) allows users to collect X-ray signals emitted through the interaction of the electron beam 

with the specimen and accurately measure their intensities with the help of scanning electron 

microscopy (SEM) or electron probe microanalysis (EPMA) [1]. Qualitative X-ray analysis can 

then be carried out using characteristic energies of X-ray lines of different elements to identify the 

elements present in an unknown specimen [2]. Furthermore, one can also perform quantitative X-

ray microanalysis, i.e., calculating the concentrations of the constituent elements [3, 4].  

One of the most common techniques of quantitative X-ray microanalysis, the k-ratio method, 

describes the relationship between the ratio of the characteristic X-ray intensities from an element 

of interest in the unknown and the standard sample and the ratio of the concentration of the element 

in the unknown and the standard sample (with matrix corrections) [2, 4, 5]. However, this method 

requires the same conditions of analysis for the unknown and the standard sample, which are not 

always achievable. Another emerging method is the f-ratio method, which uses the ratio of the 

characteristic X-ray intensity of the element of interest to the sum of the intensities of all the 

constituent elements with calibration factors for the calculation [6-9]. Although the same analysis 

conditions are not necessary, the calibration factors for different systems require further 

calculations. For the two above-mentioned methods and others which are currently available, one 

identical restriction is that they can only be applied to homogeneous samples, or, more precisely, 

samples that are homogeneous within the interaction volume [1].  

For materials with complex structures such as multilayers and inclusions inside matrices, the 

characteristic X-ray intensity of the element of interest is relative to both the structure and 

composition of the specimen and cannot be simply expressed in a mathematical form. Therefore, 

the traditional quantitative X-ray microanalysis methods are not applicable. X-ray microanalysis 

inverse modeling is a methodology to extract the structural and compositional information of an 

unknown sample from a series of X-ray intensity measurements using EDS or WDS [10]. 

To understand the inverse modeling methodology, we must first explain the Monte Carlo 

method, which is currently the most important forward modeling approach to predict X-ray 

production with knowledge of the sample (both structure and composition) and experimental setup 
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[11, 12]. The Monte Carlo method uses random numbers to predict the outcome of an event [13]. 

In X-ray microanalysis, it is used to compute the travel direction and travel distance of an electron 

after each elastic collision event to obtain the whole electron trajectory in the solid sample. 

Furthermore, both characteristic and bremsstrahlung X-ray productions are calculated to obtain 

the full X-ray spectrum [14]. The method can be applied to arbitrary heterogenous samples, and 

the simulation results are found to agree well with experimental data [15-19].  

Several Monte Carlo programs have been developed for X-ray microanalysis [14, 20-23]. One 

of them is MC X-ray [20]. A feature of MC X-ray is that it is scriptable using Python, which means 

that all the input parameters, including specimen and experimental parameters, can be modified 

using the script. In this way, a large number of simulations with various series of experiment setups 

can be easily performed with a single loop in the script. Moreover, the voxel-based specimen can 

be defined using several matrices representing the weight fractions of elements at different 

positions, making the sample structure and composition easy to modify. MC X-ray is used to 

perform the forward modeling in our work. One can also use other programs with the help of 

pyMonteCarlo, an open source code that runs various Monte Carlo programs using Python script 

[24]. 

Previous research has been conducted on one-dimensional (1D) and 2D inverse modeling. 1D 

inverse modeling is intended to estimate the thickness or composition of thin layers coated on 

substrates or multilayer samples. For example, methods have been developed to determine the 

thickness of a coating film on a substrate with prior knowledge of the compositions of both the 

coating and the substrate [25-28]. One can first perform a series of Monte Carlo simulations or 

analytical calculations using depth distribution models [ϕ(ρz)] for various film thicknesses and 

beam energies to get the calibration curves of the k-ratio, and then use the experimental k-ratios to 

find the correct film thickness. Several programs have been developed to calculate the composition 

and film thickness simultaneously [29-32]. For example, a commercial software AZtec LayerProbe 

is available for the analysis of both thin films and multilayers using a single beam energy when 

the possible sample structure is known [30]. Some of the developed programs can even deal with 

the problem of common elements in different layers, like Strata [32] and XFilm [31]. Since both 

Strata and XFilm use ϕ(ρz) curves to calculate the X-ray emissions of a given specimen, the 
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accuracy of the estimated composition and film thickness greatly depends on the accuracy of the 

ϕ(ρz) model.  

2D inverse modeling is more difficult because 2D materials have more complex structures than 

1D materials, bringing difficulties to the analytical calculation of X-ray emission. Current 2D 

inverse modeling algorithms all use the Monte Carlo method to simulate X-ray emission. A 

specific problem can be solved only when the structure or the possible compositions for different 

regions of the sample are known in advance. For example, Ro et al. [12] estimated the thickness 

of carbon layers coated on glass particles with known composition by comparing the simulated 

C/O X-ray intensity ratios with the experimental one. Gauvin et al. [33] computed the calibration 

curves to determine the depth and size of spherical manganese sulfide (MnS) inclusions embedded 

in an iron (Fe) matrix. Wagner et al. [10] developed a more general model, which uses the 

simulated annealing method to extract structural information from a set of X-ray intensity 

measurements under different beam energies and beam positions for arbitrary 2D and 1D structures. 

However, this method can only be implemented when possible compositions of the specimen are 

known.  

With respect to the samples with three-dimensional (3D) structures, people typically use a 

technique that combines focused ion beam (FIB) and SEM-EDS to perform 3D quantitative X-ray 

microanalysis by serially sectioning the specimen and performing EDS mapping for each slice 

[34-36]. However, this technique is destructive. Overall, it is necessary to propose a non-

destructive method that can be generally applied to 2D and 3D inverse modeling to simultaneously 

extract the structural and compositional information of an unknown sample. 

In this work, we introduce a new inverse modeling algorithm for quantitative X-ray 

microanalysis of heterogeneous materials. As a proof-of-concept prototype, the developed 

algorithm is currently applicable to 2D and 1D heterogeneous materials. 

5.3 Methods  

Our inverse modeling algorithm uses iterations of forward modeling, which is implemented 

through a Monte Carlo program, MC X-ray, to find the optimal structure and composition of an 

unknown sample to minimize the relative differences between the simulated and experimental X-

ray intensities. 
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5.3.1 Voxel-based 2D sample structure 

The 2D inverse modeling assumes that the 2D heterogeneous samples are homogeneous along 

the Y-axis and heterogeneous along the X- and Z-axes. The coordinate system is defined in the 

way that the surface of the specimen is on the X-Y plane and the direction perpendicular to the 

specimen’s surface is the Z direction (the direction that points inside the specimen is the positive 

direction of Z). As shown in Figure 5.1 b), the whole sample is split into small cuboids, which are 

infinite along the Y-axis. Each cuboid is called a voxel, representing the smallest homogeneous 

structure within the sample. The sample is also assumed to be infinite along the X-axis and positive 

direction of the Z-axis, and the composition for the extended area is the same as that of the nearest 

voxel. By changing the size and composition of each voxel randomly, arbitrary 2D materials can 

be simulated. Figure 5.2 shows the cross-section views of some examples of the sample structure 

on the X-Z plane. Figure 5.2 a) presents a simulated multilayer sample, in which each region with 

the same color represents a thin layer. Figure 5.2 b) uses the red voxels to represent grain 

boundaries and yellow voxels to represent grains. Furthermore, when some of the voxels on the 

surface are left empty, the fracture surface can be displayed as shown in Figure 5.2 c). The voxel-

based sample structure may have some limitations when dealing with samples with smooth 

concentration gradient due to the abrupt boundary assumption. In an ideal situation, the limitations 

can be minimized by choosing a small voxel size because, in principle, any smooth gradient can 

be described in a discrete form as long as the step size is small enough. Further research is needed 

to understand the tolerance of our inverse modeling algorithm to such kind of samples, and this 

will be conducted in the future. 
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Figure 5.1 Voxel-based sample structure, a) the sample; b) the sample is split into small cuboids, 

which are homogeneous along the Y-axis and heterogeneous along the X- and Z-axes. 

 

Figure 5.2 Examples of sample structure simulated using cuboids on the X-Z plane. a) 

Multilayer, b) grain boundaries, and c) fracture surface. Each color represents a certain 

composition.  

 

5.3.2 Forward modeling using MC X-ray 

MC X-ray is scriptable in Python, which facilitates running a batch of simulations. The 

structure and composition of a voxel-based 2D specimen can be expressed as a 3D matrix C, which 

is composed of a series of two-dimensional matrices, whose sizes are equal to the number of voxels, 

representing the weight fraction of each element. For example, 𝑪(𝑙, 𝑖, 𝑗)  denotes the weight 

fraction of element Al for the voxel located at the ith row and the jth column. In the following text, 

C is used to represent the specimen directly.  
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In each iteration, MC X-ray is used to simulate the emitted X-ray intensities for a new generated 

specimen C. For a known specimen C, the simulated X-ray intensity for a certain characteristic X-

ray line and a specific experimental setup (with two variables: beam energy and beam position) is 

given by: 

 
𝐼𝑠𝑖𝑚( 𝑋𝐴, 𝐸0, 𝑃𝑋) = 𝑀𝐶(𝑪, 𝑋𝐴, 𝐸0, 𝑃𝑋, 𝑆), 

(5.1) 

where MC denotes the Monte Carlo simulation, 𝑋𝐴 is the characteristic X-ray line of a certain 

element A, 𝐸0 is the beam energy, 𝑃𝑋 is the beam position along the X-axis, and 𝑆 represents other 

fixed experimental parameters; for example, solid angle and take-off angle. Since the specimen is 

homogeneous along the Y-axis, the beam position along the Y-axis does not affect the X-ray 

radiation. Thus only 𝑃𝑋 is considered. In addition, the X-ray emission range, RX, which is defined 

as the depth where 98% of the emitted characteristic X-rays (including absorption) are generated, 

is also output from MC X-ray. For the results presented in this paper, the electron number of 1,000 

was used for the forward modeling.  

5.3.3 Problem to solve 

For a given specimen C, the absolute value of the relative difference between the simulated 

and experimental characteristic X-ray intensities is expressed as follows: 

 

|𝑑𝑟(𝑋𝐴, 𝐸0,  𝑃𝑋)| = |
𝐼𝑠𝑖𝑚(𝑋𝐴, 𝐸0,  𝑃𝑋) − 𝐼𝑒𝑥𝑝(𝑋𝐴, 𝐸0,  𝑃𝑋)

𝐼𝑒𝑥𝑝(𝑋𝐴, 𝐸0,  𝑃𝑋)
| , (5.2) 

where 𝐼𝑒𝑥𝑝(𝑋𝐴, 𝐸0,  𝑃𝑋) is the experimental intensity of the characteristic X-ray line 𝑋𝐴 at the beam 

energy 𝐸0 and beam position 𝑃𝑋. 

The purpose of the inverse modeling is to find a specimen C to minimize the absolute values 

of relative differences between the simulated and experimental X-ray intensities |𝑑𝑟| for a series 

of measurements under different beam energies and beam positions. 

5.3.4 Algorithm of the inverse modeling 

The composition information along the Z- and X-axes is extracted from the measurements 

under varying beam energies and varying beam positions, respectively. The composition of each 

voxel of the sample is optimized by iteratively comparing the simulated and experimental X-ray 
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intensities for the corresponding beam energy and beam position and updating the composition 

accordingly. The corresponding beam energy is determined according to the X-ray emission range, 

RX, obtained from MC X-ray.  

 

Figure 5.3 Flowchart for the inverse modeling algorithm 
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The process of the inverse modeling algorithm will be introduced in the following four steps. 

A flowchart of the algorithm is presented in Figure 5.3.  

Step 1: Input parameters 

The input parameters include experimental data and other parameters. The experimental data 

is obtained through a series of EDS or WDS measurements under different beam energies and 

beam positions and input into our algorithm as a 3D matrix 𝑰𝒆𝒙𝒑
𝑁𝑋𝐴×𝑁𝐸0×𝑁 𝑃𝑋 , where 

𝑁𝑋𝐴 × 𝑁𝐸0 × 𝑁 𝑃𝑋 is the matrix size, and 𝑁𝑋𝐴, 𝑁𝐸0, and 𝑁 𝑃𝑋 are the number of the X-ray lines, the 

beam energies, and the beam positions, respectively. 𝑰𝒆𝒙𝒑 (𝑙,𝑚, 𝑛)  is used to represent the 

experimental X-ray intensity for the X-ray line 𝑋A𝑙  with a beam energy of 𝐸0𝑚  for the beam 

position  𝑃𝑋𝑛, where l, m, and n are the index of the X-ray line, the beam energy, and the beam 

position, respectively, and 0 < 𝑙 ≤ 𝑁𝑋𝐴, 0 < 𝑚 ≤ 𝑁𝐸0, and 0 < 𝑛 ≤ 𝑁 𝑃𝑋. The lists of the X-ray 

lines, beam energies, and beam positions are also required, and the beam energies and beam 

positions are sorted from small to large. We typically choose only one X-ray line for each element 

so that the number of X-ray lines is equal to the number of elements.  

Other input parameters include the voxel’s side length along the Z-axis (LZ), the number of 

voxels along the Z-axis (NZ), and the initial error tolerance ε. Note that the voxel’s side length 

along the X-axis (LX), the number of voxels along the X-axis (NX), and their positions are 

determined directly by the beam positions in the way that the X coordinates of the voxels’ centers 

equal the beam positions, and NX equals the number of the beam positions. 

The input parameters including the voxel’s side length along the Z-axis, beam energies, and 

beam positions, greatly influence the accuracy and the smallest feature that could be distinguished 

of the final solution C, and different parameters correlate with each other. We have not found an 

appropriate algorithm to determine the optimal input parameters. However, the effects of the input 

parameters will be discussed in the results and discussion section, which may be helpful to users.  

Step 2: Initialize C 

The initial guess of the specimen C0 is calculated using the k-ratio method without correction 

factors, written as 𝑐𝑢𝑛𝑘 = 𝑘 × 𝑐𝑠𝑡𝑎𝑛, where k is the k-ratio, the intensity ratio of the characteristic 

X-ray line in the unknown and standard sample, and 𝑐𝑢𝑛𝑘 and 𝑐𝑠𝑡𝑎𝑛 are the concentrations of the 
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element of interest in the unknown and standard sample. The concentration of a certain element of 

a certain voxel C0(𝑙, 𝑖, 𝑗) is initialized using the experimental X-ray intensity 𝑰𝒆𝒙𝒑(𝑙,𝑚, 𝑗), which 

is obtained at the beam position that has the same X coordinate as the voxel’s center and under the 

beam energy, which corresponds to the X-ray emission range that is just greater than the Z 

coordinate of the voxel. It is expressed as follows: 

 
𝑪𝟎(𝑙, 𝑖, 𝑗) =

𝑰𝒆𝒙𝒑(𝑙, 𝑚, 𝑗)

𝐼𝑠𝑡𝑎𝑛(𝑙,𝑚)
𝑐𝑠𝑡𝑎𝑛(𝑙), (5.3) 

where m satisfies the condition 𝑅𝑥(𝑙,𝑚 − 1) < 𝑑𝑉(𝑖,𝑗) < 𝑅𝑥(𝑙,𝑚), in which dV(i, j) is the depth of 

the voxel V(i, j), represented by the Z coordinate of the voxel’s center, 𝑅𝑥(𝑙,𝑚 − 1) and 𝑅𝑥(𝑙,𝑚) 

are the X-ray range of the X-ray line 𝑋A𝑙 in the standard for the (m-1)th beam energy and the mth 

beam energy, respectively, 𝑪𝟎(𝑙, 𝑖, 𝑗) is the weight fraction of the element Al for the voxel V(i, j), 

𝐼𝑠𝑡𝑎𝑛(𝑙,𝑚) is the X-ray intensity of the X-ray line 𝑋A𝑙 in the standard under the beam energy 𝐸0𝑚, 

and 𝑐𝑠𝑡𝑎𝑛(𝑙) is the weight fraction of element Al in the standard. 𝑋A𝑙  is the X-ray line of the 

element Al. The X-ray intensities of the standard sample can be obtained through either 

experiments or simulations. But in this work, all measurements of the standard samples were 

conducted through Monte Carlo simulation. Normally, pure bulk sample is used as standard, in 

which the concentration of the target element is 1.  

The composition of each voxel is then normalized, written as follows: 

 
𝑪𝟎(𝑙, 𝑖, 𝑗) =  

𝑪𝟎(𝑙, 𝑖, 𝑗)

∑ 𝑪𝟎(𝑧, 𝑖, 𝑗)𝑧=1 𝑡𝑜 𝑁𝐴

 , (5.4) 

where 𝑁𝐴 is the number of elements in the unknown sample.  

In this step, the algorithm tries to get an initial guess close to the final solution to decrease the 

number of iterations taken for the optimization.  

Step 3: Update the simulated X-ray intensities 

Following the initialization of C, Monte Carlo simulations are performed for all the beam 

energies and beam positions for the specimen C0 to obtain the simulated X-ray intensities 

𝑰
𝒔𝒊𝒎,𝒌 

𝑁𝑋𝐴×𝑁𝐸0×𝑁𝑃𝑋  and X-ray ranges 𝑹
𝒙,𝒌

𝑁𝑋𝐴×𝑁𝐸0×𝑁𝑃𝑋 , where k is defined as the number of times that 
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the forward modeling is performed to monitor the variation of simulated X-ray intensities. k is 

equal to 1 in this step.  

Step 4: Optimize C for a certain ε 

Step 4 is composed of iterations of four sub-steps (step 4-1 to step 4-4).  

Step 4-1: Sort the pairs of (𝑋𝐴, 𝐸0) 

The pairs of the X-ray line and the beam energy (𝑋A, 𝐸0) are sorted by the average X-ray 

emission range of different beam positions from small to large, and the average X-ray emission 

range is calculated using 𝑅𝑥,𝑘,𝑎𝑣𝑒(𝑋A𝑙 , 𝐸0𝑚) = ∑ 𝑹𝒙,𝒌(𝑙,𝑚, 𝑛)
𝑁𝑃𝑋
𝑛=1 /𝑁 𝑃𝑋. The purpose of this step 

is to make sure that the optimization starts from the pairs with smaller X-ray ranges, which 

corresponds to the voxels located at shallower depths, considering the great effect of those voxels 

on the X-ray emission of the voxels located at deeper depths.  

Step 4-2: Determine the pair to be updated 

According to the sorted pairs of (𝑋A , 𝐸0), the index of the pair that will be updated 𝑖𝑝  is 

determined to satisfy two conditions. The first condition is that, for all the pairs (𝑋A, 𝐸0)𝑖 with 

index 𝑖 <  𝑖𝑝 , the absolute values of their relative differences between the simulated and 

experimental X-ray intensities (|𝑑𝑟|) are all smaller than ε. The second condition is that, for the 

pair that is chosen to be updated (𝑋A, 𝐸0)𝑖𝑝, not all of the |𝑑𝑟| values are smaller than ε. 

Step 4-3: Update C for the pair (𝑋𝐴, 𝐸0)𝑖𝑝 

For the chosen pair (𝑋A, 𝐸0)𝑖𝑝, the concentrations of the element 𝐴𝑙 for some chosen voxels 

are updated using the following equation (𝑙 and 𝑚 are the index of the X-ray line and the beam 

energy for (𝑋A, 𝐸0)𝑖𝑝): 

 

𝑪𝒌(𝑙, 𝑖, 𝑗) = 𝑪𝒌−𝟏(𝑙, 𝑖, 𝑗)
𝑰𝒆𝒙𝒑(𝑙,𝑚, 𝑗)

𝑰𝒔𝒊𝒎,𝒌(𝑙, 𝑚, 𝑗)
 , (5.5) 

where j is for all the beam positions, i.e., 0 < 𝑗 ≤ 𝑁 𝑃𝑋, and i is selected accordingly to satisfy the 

condition 𝑹𝒙,𝒌(𝑙,𝑚 − 1, 𝑗) < 𝑑𝑉(𝑖,𝑗) < 𝑹𝒙,𝒌(𝑙,𝑚, 𝑗), where 𝑹𝒙,𝒌(𝑙, 𝑚 − 1, 𝑗) and 𝑹𝒙,𝒌(𝑙,𝑚, 𝑗) are 
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the simulated X-ray emission range of the X-ray line 𝑋A𝑙 for the kth forward modeling for the beam 

position  𝑃𝑋𝑗 when the beam energy is 𝐸0𝑚−1 and 𝐸0𝑚, respectively.  

The compositions are then normalized for the modified voxels using the following equation: 

 

𝑪𝒌(𝑦, 𝑖, 𝑗) =  
𝑪𝒌−𝟏(𝑦, 𝑖, 𝑗)

𝑪𝒌(𝑙, 𝑖, 𝑗) + ∑ 𝑪𝒌−𝟏(𝑧, 𝑖, 𝑗)
𝑒𝑥𝑐𝑒𝑝 𝑙
𝑧=1 𝑡𝑜 𝑁𝐴

 (5.6) 

and, 

 

𝑪𝒌(𝑙, 𝑖, 𝑗) =  
𝑪𝒌(𝑙, 𝑖, 𝑗)

𝑪𝒌(𝑙, 𝑖, 𝑗) + ∑ 𝑪𝒌−𝟏(𝑧, 𝑖, 𝑗)
𝑒𝑥𝑐𝑒𝑝 𝑙
𝑧=1 𝑡𝑜 𝑁𝐴

 , (5.7) 

where 𝑦 represents the index of other elements, whose concentrations are not changed, ranging 

from 1 to NA except 𝑙. 

With this new generated solution Ck, the forward modeling is implemented again to get the 

updated intensity matrix. Since, in this step, only the |𝑑𝑟| values for the beam energy 𝐸0𝑚 are used, 

the forward modeling is only performed for 𝐸0𝑚 to save simulation time. The number of times that 

the forward modeling is performed 𝑘  increases by 1. And the absolute values of the relative 

differences for the X-ray line 𝑋A𝑙 at 𝐸0𝑚, |𝑑𝑟(𝑙, 𝑚, 𝑗) |, are calculated for all beam positions. If 

any of the values is larger than the error tolerance ε, step 4-3 is repeated. Otherwise, we move on 

to step 4-4. 

Step 4-4: Update the simulated X-ray intensities 

This step is similar to step 3. The Monte Carlo simulations are performed for all the beam 

energies and beam positions to update the simulated X-ray intensities 𝑰
𝒔𝒊𝒎,𝒌 

𝑁𝑋𝐴×𝑁𝐸0×𝑁 𝑃𝑋  and X-ray 

ranges 𝑹
𝒙,𝒌

𝑁𝑋𝐴×𝑁𝐸0×𝑁 𝑃𝑋 . k increases by 1. 

Sub-steps 4-1 to 4-4 are repeated until the absolute values of the relative differences 

|𝑑𝑟(𝑋𝐴, 𝐸0,  𝑃𝑋)| for all the X-ray lines, beam energies, and beam positions are smaller than ε, 

which means that the optimization for the error tolerance ε is finished. 
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Step 4 is repeated multiple times during which the error tolerance ε is successively decreased 

until the convergence cannot be obtained. The minimum error tolerance with which the 

convergence can be obtained is written as 𝜀𝑚𝑖𝑛. Decreasing ε successively helps save simulation 

time because, instead of spending a lot of time for the first several rows of voxels (the case for a 

small ε), our algorithm finds a rough answer first (for a large ε) and then converges to the real 

specimen slowly. This is especially important considering the complex effect of voxels among 

each other, i.e., the compositions of the voxels located at deeper depths influence the X-ray 

emission of the voxels located at shallower depths through backscattered electrons, and on the 

other hand, the compositions of the voxels located at shallower depths influence the X-ray 

emission of the voxels located at deeper depths by changing the direction and energy of the incident 

electrons that travel through. Though any value ranging from 0% to 20% can be chosen as ε, it is 

recommended to start with a value larger than 10%, and then decrease it by 15 to 25% for each 

iteration.  

As a proof-of-concept work, the developed algorithm can only be applied to 2D and 1D 

heterogeneous materials. But in principle, the algorithm can be extended to 3D heterogeneous 

materials by extracting the composition information along the Y-axis in the same way as that along 

the X-axis. Specifically, the required experimental data is acquired through mapping instead of 

line scan, and the lateral information is extracted by changing the beam position on the X-Y plane.  

5.3.5 One simple example 

In this section, the inverse modeling algorithm is further presented through an example. A 

sample structure with 9 × 9 voxels is designed, which is composed of two elements: Al and Cu. 

The phantom image of the sample structure is shown in Figure 5.4. It consists of a matrix of 98 

wt% Al and 2 wt% Cu (light yellow region) and an Al2Cu precipitate embedded in the center (red 

region). The voxel size of the phantom sample on the X-Z plane is 200 × 200 nm.  

Step 1: Input parameters 

The blue arrows shown in Figure 5.4 represent the beam positions to perform a line scan along 

the X-axis with an interval of 200 nm. The line scan was repeated 11 times for varying beam 

energies ranging from 10 keV to 20 keV with an interval of 1 keV. The simulated X-ray intensities 

for both the Al Kα line and Cu Kα line (as shown in Figure 5.5) were taken as the “experimental 
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data” to input, and the predicted composition was compared with the reference value to test the 

validity of our algorithm. The voxel size along the Z-axis is 200 nm, and the number of voxels 

along the Z-axis is 9. 

 

Figure 5.4 Al weight fraction distribution on the X-Z plane of the designed sample structure 

consisting of a matrix of 98 wt% Al and 2 wt% Cu and an Al2Cu precipitate embedded in the 

center. 

 

Figure 5.5 Input X-ray intensities for the a) Al Kα line and b) Cu Kα line under varying beam 

energies ranging from 10 keV to 20 keV with an interval of 1 keV and for 9 different beam 

positions. a) and b) have the same legend. 

Step 2: Initialize C 

The inverse modeling starts with the initialization of the specimen C. Figure 5.6 a) shows the 

Al weight fraction distribution for the initial guess of the specimen C. Since the initialization 

simply takes the k-ratio as the weight fraction without considering the matrix correction, the initial 

guess has a strong bias and differs significantly from the designed structure. Slight differences in 

composition are found among the voxels of the initial guess. For example, the weight fraction of 
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Al is 0.983 for the voxel with coordinates X = 0 and Z = 100 nm, while that is 0.961 for the voxel 

with coordinates X = 0 and Z = 1700 nm.  

 

Figure 5.6 a) Al weight fraction distribution on the X-Z plane for the initial guess of the 

specimen C b) X-ray emission ranges for the Cu Kα line and Al Kα line under different beam 

energies at beam position X = 0 for the initial guess. 

Step 3: Update the simulated X-ray intensities 

MC X-ray was used to perform Monte Carlo simulations for all beam energies and beam 

positions to obtain the simulated X-ray intensities and X-ray ranges. Figure 5.6 b) shows the 

simulated X-ray ranges for both the Cu Kα line and the Al Kα line under different beam energies 

when the electron beam is at X = 0. The horizontal lines and different colors in the background 

indicate voxels at different depths. It is observed that the X-ray ranges increase as the beam energy 

increases, and the X-ray ranges of the Cu Kα line are smaller than that of the Al Kα line since Cu 

Kα has a higher excitation energy. 

Step 4: Optimize C for a certain ε 

The initial error tolerance ε was set to be 12% in this case. The pairs of the characteristic X-

ray line and beam energy (𝑋A, 𝐸0) were sorted according to their X-ray ranges in the specimen C0, 

which were obtained from MC X-ray (step 4-1). As shown in Figure 5.6 b), the optimization started 

from the pair (Cu Kα line, 10 keV), which has the smallest X-ray range (around 180 nm), by letting 

the index of the pair 𝑖𝑝 equal 1. Its X-ray range corresponds to the voxels at the first row with a 

depth ranging from 0 to 200 nm. And the Cu weight fractions of those voxels were updated by 

comparing the simulated and experimental X-ray intensities of the Cu Kα line at 10 keV using 

equation (5.5) and then normalized.  
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The tested beam energy 𝐸0𝑡 for the forward modeling is defined as 𝐸0𝑚, the beam energy of 

the pair (𝑋A, 𝐸0) for the step 4-3 and as the highest beam energy (20 keV in this case) for the step 

3 and step 4-4. The average of the absolute values of the relative differences between the simulated 

and experimental X-ray intensities for a certain X-ray line and a certain beam energy 

|𝑑𝑟(𝑋A𝑙  ,𝐸0𝑚)|𝑎𝑣𝑒
 is calculated using the following equation: 

 
|𝑑𝑟(𝑋A𝑙  ,𝐸0𝑚)|𝑎𝑣𝑒

=
1

𝑁 𝑃𝑋
 ∑ |𝑑𝑟 (𝑋A𝑙 ,𝐸0𝑚 , 𝑃𝑋)|

 𝑃𝑋

 , (5.8) 

where 𝑁 𝑃𝑋 is the number of beam positions, and ∑ |𝑑𝑟 (𝑋A𝑙 ,𝐸0𝑚 , 𝑃𝑋)| 𝑃𝑋  represents the sum over 

all the beam positions. Figure 5.7 presents the variations of 𝐸0𝑡 and |𝑑𝑟(𝐶𝑢 𝐾𝛼, 𝐸0𝑚)|𝑎𝑣𝑒
 relative 

to the number of times that the forward modeling is performed 𝑘. Only data for 𝑘 > 1 is shown 

because 𝐸0𝑚 was not determined yet when 𝑘 = 1. Since the phantom sample is a two-element 

system, the accurate prediction of the weight fraction of one element would result in the accurate 

prediction for both elements. Thus, the pairs with the Al Kα line were never chosen to be updated 

in the step 4-2, and only the values of |𝑑𝑟|𝑎𝑣𝑒 for the Cu Kα line need to be presented. 

In Figure 5.7, the first two iterations (𝑘 = 2, 3) are the iterations of step 4-3 for the first pair 

(Cu Kα line, 10 keV), in which the tested beam energy stays at 10 keV and |𝑑𝑟|𝑎𝑣𝑒 goes down 

dramatically. When 𝑘 = 4, the optimization for the pair (Cu Kα line, 10 keV) is finished because 

all |𝑑𝑟| values for the Cu Kα line at 10 keV are smaller than ε (12%), and the forward modeling is 

performed for all beam energies (step 4-4), which results in an increase in the tested beam energy 

to 20 keV. All sudden increases of the tested beam energy to 20 keV in Figure 5.7 indicate the 

performance of step 4-4. Following step 4-4, step 4-1 to step 4-4 are repeated for other pairs whose 

|𝑑𝑟| values are larger than ε. The iterations move on to the pair (Cu Kα, 13 keV) at 𝑘 = 5. Under 

some circumstances, the pair that has been optimized may be chosen again. For example, when 

𝑘 = 51, 16 keV is chosen as the tested beam energy after it has been optimized from 𝑘 = 33 𝑡𝑜 43. 

This is because the composition changes of the voxels at 17 keV (𝑘 = 45 𝑡𝑜 51) have impact on 

the X-ray emission of 16 keV. Another reason is that the results of the Monte Carlo simulations 

for the same specimen might be different because of the stochastic nature of the Monte Carlo 

method. It is also observed that the iteration still proceeds after 𝑘 = 17 although |𝑑𝑟|𝑎𝑣𝑒 is smaller 

than 12% as some of the |𝑑𝑟| values are still greater than 12% despite the small value of |𝑑𝑟|𝑎𝑣𝑒.  
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Figure 5.7 Variation of the tested beam energy(blue) and the |𝑑𝑟|𝑎𝑣𝑒 for the Cu Kα line and 𝐸0𝑚 

(red) as the change of the number of times that the forward modeling is performed k when ε = 

12%. 

The resulting Al weight fraction distribution when ε =12% is presented in Figure 5.8 a), which 

shows that the voxels located in the center of the specimen have a slightly lower concentration of 

Al compared with the rest voxels. 

Iterations of step 4 

Based on the result of ε =12%, the optimization process (step 4) was repeated for a reduced 

error tolerance ε = 7% and then for ε = 1.5%. As shown in Figure 5.8 b), the result for ε = 7% 

better shows the feature in the center with a much lower Al weight fraction, which is more similar 

to the phantom image than the result of ε = 12% (Figure 5.8 a). The optimization for ε = 1.5% 

(Figure 5.8 c) failed to converge for high beam energies since the conditions were not satisfied 

after over 500 iterations. The reason will be discussed in section 5.4.4. The iteration was, therefore, 

performed again for an error tolerance of 7% based on the result of ε = 1.5%, and the final result 

is shown in Figure 5.8 d). Although the same error tolerance was used, Figure 5.8 b) and d) show 

slight differences as a result of different initial states of step 4 (Figure 5.8 a) for Figure 5.8 b), and 

Figure 5.8 c) for Figure 5.8 d), respectively).  
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Figure 5.8 Evolution of the inverse modeling output (Al weight fraction distribution on the X-Z 

plane) with the iterations of step 4. The values of ε for different iterations are a) ε = 12%; b) ε = 

7%; c) ε = 1.5%; and d) ε = 7%. 

 

5.3.6 Clustering algorithm  

It is observed in Figure 5.8 that the voxels with the same composition in the designed structure 

might end up with slightly different weight fractions. This is due to several reasons. First, during 

the optimization, not only the actual information of the specimen is fitted but also the noise 

contained in the input data. Secondly, the results from Monte Carlo simulation vary slightly even 

for an identical sample and experimental setup (refer to section 5.4.4). To provide a suggestion on 

the specimen segmentation according to the voxels’ compositions, we use the K-means algorithm 

to perform clustering for all the voxels despite the voxel position [37]. Note that the clustering 

algorithm itself does not retrieve extra information, and the reconstructed data with and without 

clustering have the same merit. The clustering algorithm only enhances the apparent information 

so that users can take it as reference to recognize the main components of the specimen. More 

details about the algorithm can be found in Appendix. 
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In real applications, it is recommended to use the clustering algorithm only when it is known 

that there are discrete regions of homogeneous composition within the specimen, for example, in 

the case when a specimen has been fabricated in layers, or there are uniform inclusions with sharp 

boundaries. 

The K-means algorithm was applied to the inverse modeling result shown in Figure 5.8 d), and 

the resulting Al weight fraction distribution is presented in Figure 5.9. Using the clustering 

algorithm, two clusters representing the precipitate and matrix are successfully distinguished. 

Please refer to Appendix for the determination of the number of clusters, K. For the matrix, the 

estimated Al weight fraction is 97.93%, which is smaller than the reference value (98%) with a 

difference of 0.07%. The precipitate in the center has 52.08% Al, which is higher than the reference 

value (45.9%) with a difference of 6.18%.  

 

Figure 5.9 Al weight fraction distribution on the X-Z plane after clustering for the result shown 

in Figure 5.8 d).  

5.4 Results and discussion  

In this section, we examined the performance of our algorithm when applied to some types of 

sample where the structures are known but the extent and composition are unknown. In section 

5.4.1, tests on 1D samples along the X-axis are presented and the effects of the input parameters 

including beam energy and beam positions are discussed. Section 5.4.2 shows two examples of 

1D samples along the Z-axis: a multilayer sample and a thin film coated on a substrate. And section 

5.4.3 presents several examples of 2D inverse modeling. Following the examples of applications, 

the sources of errors are analyzed in section 5.4.4. Notice that for the results presented, the 

clustering algorithm was not applied unless stated otherwise. Unfortunately, we have not been able 
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to develop and test any strategy to analyze a completely unknown sample. But this will be the goal 

for future work. 

5.4.1 1D inverse modeling along the X-axis 

Inverse modeling at 10 keV 

The first phantom sample is an Al-Cu compound with a vertical sandwich structure. The 

structure of the phantom sample on the X-Z plane is presented in Figure 5.10 a), in which a 200 

nm width Al2Cu feature (region 2) is placed in between two regions (region 1 and region 3), 

composed of 98 wt% Al and 2 wt% Cu. The center of the phantom sample is at X = 0. Since the 

phantom sample is homogeneous along the Z-axis, measurement is only needed for one beam 

energy. To recognize the feature along the X-axis, three beam positions were selected: -200 nm, 0, 

and 200 nm. Figure 5.10 b) presents the predicted Al weight fraction when the beam energy is 10 

keV and εmin = 1%. The inverse modeling algorithm successfully estimates the compositions of the 

three regions: 98 wt%, 45.9 wt%, and 98 wt% Al, respectively, which are the same as the reference 

values. 

 

Figure 5.10 a) Phantom sample on the X-Z plane, b) Predicted Al weight fraction distribution on 

the X-Z plane 

Effect of the beam energy 

The effect of the beam energy was investigated when other parameters were kept the same as 

in the last section. Table 5.1 compares the predicted Al weight fractions of the three regions, 

number of times that the forward modeling is performed (𝑘), and X-ray range of the Cu Kα line 

when the electron beam is at X = 0 under different beam energies. At 10 keV, the predicted 

compositions of the three regions are the same as the reference values. However, as the beam 

energy increases, the Al weight fraction of region 2 is marginally larger, while the weight fractions 
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for the other two regions are smaller than the reference values. And 𝑘 also increases dramatically. 

These changes are due to the increase in the X-ray range as the beam energy increases.  

The voxel size along the X-axis, determined by the beam positions, represents the expected 

lateral resolution of the inverse modeling. In this case, the value is 200 nm. On the other hand, the 

real or achievable lateral resolution is determined by the X-ray emission range, which mostly 

depends on the beam energy for a given specimen. Although the X-ray range varies for different 

elements or X-ray lines, the smallest X-ray range, typically for the X-ray line with the highest 

excitation energy (Cu Kα line in this case), is considered as the real resolution. At 10 keV, the X-

ray range for the Cu Kα line is 111 nm (as shown in Table 5.1), which is smaller than the expected 

resolution. Under the circumstance, all the Cu Kα signals at a certain beam position are emitted 

from the same region, which makes the compositions easy to converge. However, at 15 keV, the 

X-ray range for the Cu Kα line (837 nm) is much larger than the expected resolution, indicating 

that the Cu X-ray signals from all three regions are collected for each beam position. Therefore, 

the composition of a certain region is also affected by the other two regions. As a result, the 

predicted Al weight fraction for region 2 is larger than the reference value, and that for region 1 

and region 3 are smaller.  

Table 5.1 Comparison of the predicted Al weight fractions, number of times that the forward 

modeling is performed (k), and X-ray range for the Cu Kα line at X = 0 under different beam 

energies 

Beam energy 

(keV) 
Region1 Region2 Region3 𝒌 

X-ray range for 

Cu Kα (nm) 

10 0.980 0.459 0.980 160 111 

15 0.976 0.461 0.976 440 837 

20 0.976 0.464 0.980 1000 1809 

Reference value 0.980 0.459 0.980 N/A N/A 

 

Normally, it is recommended to choose the beam energy for which the real resolution is smaller 

than the expected resolution. The real resolution can be estimated using the Monte Carlo 

simulations. For 2D inverse modeling in which a series of beam energies are used, one should 

make sure that the above criterion is satisfied at least for the lowest beam energy. 
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Effect of the beam positions 

When handling unknown samples, the chosen voxel size (beam position interval) might not be 

equal to the feature size. To investigate the effect of the voxel size and voxel positions, which are 

determined by the beam positions, four inverse modeling setups were selected and compared for 

the same phantom sample as shown in Figure 5.10 a): 

1) 3 voxels each with a width of 600 nm, and the X coordinate of the center voxel is 0.  

2) 9 voxels each with a width of 200 nm, and the X coordinate of the center voxel is 0.  

3) 18 voxels each with a width of 100 nm, and the X coordinates of the center two voxels are 

-50 and 50 nm, respectively. 

4) 19 voxels each with a width of 100 nm, and the X coordinate of the center voxel is 0. 

 

Figure 5.11 Variations of the Al weight fraction, relative difference in X-ray intensity (dr) for the 

Al Kα line and Cu Kα line relative to the number of times that the forward modeling is 

performed, k ,for four different setups with voxel size and voxel number as follows: setup 1:600 

nm × 3 (a, b, and c), setup 2: 200 nm× 9 (d, e, and f), setup 3: 100 nm× 18 (g, h, and i), and setup 

4: 100 nm × 19 (j, k, and l) at 10 keV for the same phantom sample. Horizontal lines in a), d), g), 

and j) represent the reference value of the Al weight fraction. And the black horizontal lines 

show the relative difference, dr = 0. Each curve represents the results for a certain voxel, marked 

by its position (the X coordinate of the voxel’s center) in the legend. 
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The beam energy of 10 keV was used, and the error tolerance was set to be 2%. As shown in 

Figure 5.11, each column represents the results for a certain setup, and three rows present the 

variation of Al weight fraction, the relative difference in X-ray intensity for the Al Kα line, and 

the relative difference for the Cu Kα line, respectively, relative to k, ranging from 0 to 80. 

Setup 1, 2, and 3 present the case when the selected voxel size is larger than, equal to, and 

smaller than the feature size, respectively. When the selected voxel size is the same as the feature 

size (setup 2), the Al weight fractions converge to the reference values within ten times of forward 

modeling (Figure 5.11 d, e and f). For setup 1 with a larger selected voxel size, the Al weight 

fractions rise and fall in cycles as shown in Figure 5.11 a). This is because that 𝑑𝑟 for the Al Kα 

line and Cu Kα line can not converge to 0 simultaneously (as shown in Figure 5.11 b and c), 

especially for the voxel with X = 0 (blue lines). The inverse modeling for setup 1 proceeds until 

𝑘 = 500, during which the weight fractions of Al and Cu never converge simultaneously. For the 

case with a smaller selected voxel size (setup 3), as presented in Figure 5.11 g), the total number 

of times that the forward modeling is performed, 52, is much greater than that for setup 2. This is 

due to that the selected voxel size 100 nm is smaller than the X-ray range at 10 keV which has 

been discussed in section 5.4.1, and more X-ray intensities need to be fitted because of the increase 

in the number of voxels in comparison to setup 2 (18 voxels instead of 9 voxels). 

Setup 4 differs from setup 3 in the voxel position. In setup 4, two voxels cross the boundaries 

between different regions of the phantom sample: X = -100 nm and X = 100 nm. The Al weight 

fractions of those two voxels gradually converge to the average Al weight fraction of the two 

crossed regions (72 wt% around) as presented in Figure 5.11 j). The relative differences of both 

the Al Kα line (Figure 5.11 k) and the Cu Kα line (Figure 5.11 l) vary to a larger extent than that 

for setup 3, and it is, therefore, hard to make all the absolute values of 𝑑𝑟smaller than 2%. 

In summary, to converge, the selected voxel size along the X-axis has to be smaller than the 

expected resolution and feature size. Although the effect of features not aligning on voxel 

boundaries has been briefly discussed, its consequences can be more complicated in real 

applications, and further investigation is needed in the future. 
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5.4.2 1D inverse modeling along the Z-axis 

Multilayer sample 

The inverse modeling was implemented for a multilayer phantom sample with four thin layers 

on a substrate, and the thicknesses of the four layers from top to bottom are 400, 200, 200 and 400 

nm, respectively. The Al weight fraction distribution of the phantom sample is shown in Figure 

5.12 a) in which the red regions represent Al2Cu and the light yellow regions represent the matrix 

with 98 wt% Al and 2 wt% Cu. Since the sample is homogeneous along the X- and Y-axes, only 

one beam position is needed. 

 

Figure 5.12 Al weight fraction distribution for a) phantom sample, b) initial guess, c) final 

prediction before clustering, d) final prediction after clustering. 

For the inverse modeling, a voxel size along the Z-axis of 200 nm and beam energies ranging 

from 10 keV to 19 keV with an interval of 1 keV were used. εmin is 2%. Figure 5.12 b) presents the 

Al weight fraction distribution of the initial guess, in which none of the layers are identified 

correctly. After the optimization process, as shown in Figure 5.12 c), four layers and the substrate 

are successfully recognized. However, for most of the layers, the compositions of the first row of 

voxels in that layer slightly deviate from the reference values and tend to be close to the 

compositions of the voxels located above them. A possible reason is that, for the voxels located at 
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deeper depth, only a small portion of the total emitted X-rays is generated from the voxel itself, 

and the rest is from the voxels located at shallower depths, which brings difficulties to the 

estimations of their compositions. The voxels were successfully classified into two clusters using 

the clustering algorithm (Figure 5.12 d). The predicted Al weight fraction is 45.72 wt% for the 

second and fourth layers, and 95.86 wt% for the rest.  

A thin Fe-oxide layer on a steel substrate 

The inverse modeling algorithm can also handle multi-elements system, i.e., system with more 

than two elements. We created a phantom sample with a simplified steel substrate with 95 wt% Fe 

and 5 wt% C, coated by a 50 nm Fe-oxide layer with 70 wt% Fe and 30 wt% O. The weight fraction 

distributions of Fe, O, and C for the phantom sample are presented in Figure 5.13 a), b), and c), 

respectively. One difficulty in the inverse modeling of this phantom sample is that the Fe oxide 

layer is so thin that it requires an improved resolution along the Z-axis. Therefore, lower beam 

energies were used ranging from 2 keV to 9 keV with an interval of 1 keV. Accordingly, the X-

ray line with a lower excitation energy, Fe Lα line, was considered instead of the Fe Kα line.  

Figure 5.13 d), e), and f) present the result of the inverse modeling when the voxel size along 

the Z-axis is 50 nm and εmin is 10%. The thin oxidation layer is found to be in a perfect match with 

the phantom sample. For slices in the substrate, slight variations are observed. The composition 

after clustering is shown in Figure 5.13 g), h), and i). Two clusters were successfully found with 

compositions of 68.79 wt% Fe and 31.21 wt% O for the oxidation layer, and 95.38 wt% Fe, 4.16 

wt% C, and 0.46 wt% O for the substrate.  

Figure 5.14 a) shows the variations of the tested beam energy and |𝑑𝑟|𝑎𝑣𝑒 for the Fe Lα line 

and 𝐸0𝑚 relative to the number of times that the forward modeling is performed k. It is observed 

that the tested beam energy starts from 2 keV and gets larger as k increases. Figure 5.14 b) presents 

the result of the same phantom sample when an increased voxel thickness 100 nm was used. Since 

the voxel size is larger than the feature size, convergence cannot be achieved and the tested beam 

energy changes from 2 keV to 3 keV and comes back to 2 keV repeatedly. It is concluded that, in 

order to converge, the voxel size must be smaller than the feature size. 
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Figure 5.13 Weight fraction distributions of Fe, O and C for the phantom sample (a, b, and c), 

and predicted results before (d, e, and f) and after (g, h, and i) clustering. 

 

Figure 5.14 Variations of the tested beam energy (blue curve) and the |𝑑𝑟|𝑎𝑣𝑒 for the Fe Lα line 

and 𝐸0𝑚 (red curve) as the change of the number of times that the forward modeling is 

performed k for different voxel size along the Z-axis a) 50 nm and b) 100 nm. 
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5.4.3 2D inverse modeling 

Four 2D phantom samples of Al-Cu compound were investigated for the structure of a particle 

embedded in a matrix with different size and depth. The first column of Figure 5.15 presents the 

Al weight fraction distribution of the four phantom samples on the X-Z plane, in which the light 

yellow area represents the matrix (98 wt% of Al and 2 wt% Cu), and the red area represents Al2Cu 

precipitate (45.9 wt% Al and 54.1 wt% Cu). The precipitates for the 1st, 2nd, and 4th phantom 

samples are at the same depth with an increased size, and the precipitates for the 2nd and 3rd samples 

are with the same size but at different depths. For the inverse modeling, the input X-ray intensity 

data was acquired for 10 beam positions. The voxel size was set to be 200 × 200 nm, and the voxel 

number was 10 × 10. The beam energies and the minimum error tolerance are listed in Table 5.2.  

Table 5.2 Inverse modeling parameters used for four phantom samples 

Sample 1st 2nd 3rd 4th 

Beam energies (keV) 

(1 keV interval) 
From 10 to 16 From 10 to 20 From 10 to 19 From 10 to 21 

Minimum Error tolerance 5% 8% 10% 10% 

 

The predicted specimens before and after clustering are presented in the second and third 

columns of Figure 5.15, respectively. The inverse modeling of the 1st sample (Figure 5.15 c) shows 

the best result, in which all the voxels of the precipitate were recognized, and close compositions 

with the phantom sample were found for both the matrix and the precipitate. For the result of the 

2nd sample, as shown in Figure 5.15 f), several voxels located at the center of the precipitate were 

mistakenly classified as matrix, and two voxels of matrix right below the precipitate were classified 

as precipitate. A similar phenomenon was found for the 3rd (Figure 5.15 i) and the 4th (Figure 5.15 

l) samples, that the top half area of the precipitate was successfully recognized while some voxels 

located at the bottom of the precipitate were mistakenly classified. Besides, for the area of the 

matrix right below the precipitate, the predicted Al weight fractions are slightly lower than the 

reference value. In general, for the results of 2D inverse modeling, in terms of the structure, the 

top half of the boundaries between the matrix and the precipitate matches well with the phantom 

sample, while the prediction for the bottom half needs to be improved. As for the composition, the 

predicted weight fractions of the red area (recognized as precipitate) agree well with the reference 

value. The predicted Al weight fractions for the 1st to the 4th samples are 46.10%, 40.49%, 44.74%, 
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and 44.05%, respectively. And the Al weight fractions of the matrix are lower than the reference 

value. For some voxels located at deeper depths, large deviations were found.  

 

 

Figure 5.15 Al weight fraction distribution for phantom sample, predicted structure before and 

after clustering from left to right for four samples (a, b, c for the 1st; d, e, f for the 2nd; g, h, i for 

the 3rd; and j, k, l for the 4th sample). The red voxels represent the Al2Cu precipitate and the light-

yellow voxels represent the matrix with 98 wt% Al and 2 wt% Cu. 

 



141 

 

5.4.4 Sources of errors 

Error from forward modeling  

One of the sources of errors of the inverse modeling algorithm is from the forward modeling 

implemented by MC X-ray. Because of the stochastic nature of the Monte Carlo simulation, the 

simulated X-ray intensities for the same specimen and experimental setup might be different when 

the simulation is performed several times. If the selected error tolerance ε is smaller than the 

relative variation of the Monte Carlo simulation, the solution might be hard to find.  

The variation of the simulated X-ray intensities for the same specimen and experimental setup 

depends on many factors, and one of the most important factors is the simulated electron number. 

Figure 5.16 presents the average and standard deviation of the emitted X-ray intensities for the Al 

Kα line and Cu Kα line relative to the electron number when the simulation is repeated 10 times 

for each electron number. The specimen is shown in Figure 5.4. The beam energy is 15 keV, and 

the beam position is X = 0. It is shown that the standard deviation decreases as the electron number 

increases. The values of the relative standard deviation, which is the ratio of the standard deviation 

to the average, are also listed in Table 5.3. When the electron number is 1,000, the relative standard 

deviation for the Cu Kα line is 2.46%, which is larger than the error tolerance used in Figure 5.8 

c), 1.5%. This can explain why the optimization for the error tolerance of 1.5% fails. The relative 

standard deviation of X-ray intensity may be used to determine the optimal error tolerance by 

choosing the value that is slightly higher than the relative standard deviation.  

Table 5.3 also presents the average simulation time taken for different electron numbers. The 

simulations were performed using a computer with Windows® 7, 16 GB RAM, and Intel® Core TM 

i7-970 processor. Note that the presented simulation time is for a single simulation, and the overall 

computation time for analysis depends also on the number of beam positions, the number of beam 

energies, and the number of iterations. A trade-off between the simulation time and accuracy in 

the inverse modeling is observed. For example, when the electron number changes from 1,000 to 

5,000, the simulation time increases by more than 2.5 times while the standard deviation decreases 

by 38% (average for the Al Kα line and Cu Kα line). For the simulations presented in this paper, 

an electron number of 1,000 was chosen. An improvement might be obtained by increasing the 

electron number as the error tolerance decreases with iterations. 
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Figure 5.16 Variation of the average X-ray intensity and standard deviation of X-ray intensity for 

the Al Kα line and Cu Kα line relative to the electron number at 15 keV and beam position X = 0 

for the sample shown in Figure 5.4 (the simulation is repeated 10 times for each electron 

number). 

Table 5.3 Average time taken and relative standard deviations for different electron numbers 

Electron number 500 1,000 5,000 10,000 

Average time (s) 18 26 92 169 

Relative standard deviation for 

the Al Kα line 
1.03% 0.48% 0.33% 0.28% 

Relative standard deviation for 

the Cu Kα line 
3.41% 2.46% 1.36% 1.04% 

 

Error from the change of X-ray range 

Another important source of errors comes from the increase in X-ray range as the beam energy 

increases due to the limitation of the algorithm. This has been mentioned in section 5.4.1. Figure 

5.17 compares the contributions of each voxel to the emitted X-ray signals of the Cu Kα line at 

different beam energies when beam position is X = 0 for the sample shown in Figure 5.4. At 10 

keV, more than 90% of the X-ray signals are generated from the targeted voxel, making it easy to 

converge. When the beam energy is increased in order to compute the compositions of the voxels 

located in deeper depths, the X-ray emission range also increases. As shown in Figure 5.17 b), the 

X-ray intensity at 13 keV is used to determine the Cu weight fraction of the targeted voxel, which 

is marked with a red box. The algorithm assumes that the discrepancy between the simulated and 

“experimental” X-ray intensity at 13 keV completely results from the wrong composition of the 
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targeted voxel. However, both the voxels with coordinates (-200, 700) and (200, 700) nm 

contribute to the X-ray intensity, which undoubtedly brings difficulties to the optimization. It is 

even worse for 16 keV. In Figure 5.17 c), the contribution of the targeted voxel (marked with a red 

box) is only 0.53% because of the high Cu concentration of the voxel right on the top of the targeted 

voxel. Both the small contribution of the targeted voxel and the influences from the neighboring 

voxels make it difficult to determine the composition. Furthermore, it is possible that various 

combinations of compositions for different voxels might lead to identical X-ray intensities, which 

means that there may be more than one solution of the specimen for the same experimental data.  

 

Figure 5.17 Contributions of each voxel to the emitted X-ray signals for the Cu Kα line under 

different beam energies a) 10 keV, b) 13 keV, and c) 16 keV for the sample shown in Figure 5.4. 

Error from experimental measurement 

In real applications, experimental measurements may also bring some inaccuracies to the 

inverse modeling. For example, the inaccuracy in beam position resulted from the specimen drift 

and switch of the primary beam energy [10], and the inaccuracy in the measured X-ray intensities 

due to errors related to the EDS detector system and data processing. Further investigation is 

needed to study the effects of those factors. 

5.5 Limitations and possibilities 

This newly proposed inverse modeling algorithm still has some limitations. For example, the 

errors from MC X-ray and from the change of X-ray emission range with beam energy limit its 

application for the voxels located in deeper depths; the variations of the input parameters have 

great impact on the accuracy and the smallest feature that can be distinguished of the result. 

Moreover, the practicality of this algorithm needs to be further tested and discussed regarding the 
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computation time, determination of experimental parameters, the precision of the voxel 

composition to ensure convergence, etc. 

However, as a proof-of-concept work, this work is a successful attempt to extract structural 

and compositional information from a series of EDS/WDS measurements under different beam 

energies and beam positions. We hope that this work will encourage people in the community to 

explore more on the extraction of hidden information from the acquired experimental data. Some 

more advanced studies about this inverse modeling algorithm can be conducted in the future: using 

both the K-line and L-line simultaneously for the optimization to improve its accuracy; applying 

deep learning to the simulated data generated during the iterations to find out the relationship 

between the specimen and simulated X-ray intensities; etc.  

5.6 Conclusion 

In this paper, we developed an inverse modeling algorithm for determining the structure and 

composition of an unknown sample from a series of EDS/WDS experimental measurements at 

different beam energies and beam positions. The algorithm can be applied to arbitrary 2D 

heterogeneous materials by extracting the information along the X- and Z-axes through 

measurements under different beam positions and beam energies. It utilizes an iterative process of 

forward modeling to find the optimal composition of each voxel of the specimen to minimize the 

relative differences between the simulated and experimental X-ray intensities. A clustering 

algorithm was implemented for the result of the inverse modeling to smooth the reconstructed data 

and provide a suggestion on the voxel clustering. The algorithm was successfully applied to a 

phantom sample of an Al2Cu precipitate embedded in a matrix of 98 wt% Al and 2 wt% Cu, in 

which the area of the precipitate and matrix were distinguished, and close compositions with the 

reference values were found. 

Tests were performed for a 1D sample along the X-axis to recognize a 200 nm width Al2Cu 

feature from the matrix. The effects of the input parameters including beam energy and beam 

positions were investigated. It was shown that to converge, the voxel size must be smaller than the 

feature size, and a more accurate result can be obtained when the X-ray emission range under the 

chosen beam energy is smaller than the voxel size. We have also shown that the algorithm works 

well for a multilayer sample and a 50 nm thin film coated on a substrate.  
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Four 2D phantom samples of Al-Cu were presented for precipitates of different sizes and 

positions embedded in matrices. Accurate compositions were found for the top half area of the 

precipitates, while some discrepancies were shown for the bottom half. Three sources of errors 

were discussed: the errors from forward modeling, from the increased X-ray range with beam 

energy, and from experimental measurement.  

Overall, we have shown the feasibility of our inverse modeling algorithm applied to 2D 

heterogeneous materials for quantitative electron-induced X-ray analysis when appropriate input 

parameters including beam positions, beam energies, and voxel size are chosen.  
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5.9 Appendix 

The details of the clustering algorithm are explained in this section. Assume that 𝑋 = {𝑥𝑖}, 𝑖 =

1,… , 𝑛  is the set of n d-dimensional points to be clustered into a set of K clusters, 𝐶𝐿 =

{𝑐𝑙𝑘 , 𝑘 = 1,… , 𝐾}  [38]. In our case, n is the number of voxels in the specimen, 𝑥𝑖  is a d-

dimensional point in which each value represents the weight fraction of a certain element despite 

the voxel position, and K is the number of different compositions in the specimen. Since the 

composition is normalized each time the specimen C is updated, which means that the sum of the 

weight fractions of all elements for a certain voxel is always 1, we only need to know the weight 

fractions of (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 1) elements, where 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the number of elements that are present in 
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the specimen. Thus, d equals (𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 1). The basic idea of the K-means algorithm is to find a 

partition to minimize the squared error between the centroid of a cluster and the points in the 

cluster, also known as cost function, which is written as follows [38]: 

 

𝐽(𝐶𝐿) ≡
1

𝑛
∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖

2

𝑥𝑖𝜖𝑐𝑙𝑘

𝐾

𝑘=1

  (5.9) 

where 𝜇𝑘 is the centroid of the cluster 𝑐𝑙𝑘, which is defined by the mean of points assigned to the 

cluster 𝑐𝑙𝑘. The procedure of the K-means algorithm is as follows [37]: 

1. Randomly initialize K cluster centroids; Repeat step 2 and step 3 until the cluster 

membership stabilizes. 

2. Generate a new partition by assigning each point to its closest cluster centroid.  

3. Compute the new cluster centroids.  

To choose the number of clusters K, the elbow method is used [39]. The basic principle of the 

elbow criterion [40] is that one should choose a number of clusters so that adding another cluster 

doesn’t yield much better improvement in the cost function after training. Specifically, the 

variation of the cost function after training, 𝐽(𝐶𝐿), is calculated as the increase of the number of 

clusters K starting with 1. At some values of K, the cost drops dramatically, and it reaches a plateau 

when K is further increased. This is the value K one wants to choose. One can also use other 

methods to determine the number of clusters [41]. Figure 5.18 presents the curve of the cost 

function after training as the variation of the number of clusters K for the result shown in Figure 

5.8 d). According to the elbow criterion, the value of K =2 is chosen as the best number of clusters. 

 

Figure 5.18 Variation of the cost function after training as the change of K (the number of 

clusters). 
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Chapter 6. Extraction of 3D quantitative maps using 

EDS-STEM tomography and HAADF-EDS bimodal 

tomography 

 

In this chapter, we further explored the quantitative X-ray microanalysis of heterogeneous 

materials at the nanoscale by using electron tomography. A quantification approach was proposed 

to quantify the 3D elemental maps reconstructed using EDS-STEM tomography and HAADF-

EDS bimodal tomography (HEBT). The approach was successfully applied to both simulated and 

experimental datasets. 

 

• This paper has been published as: Y. Yuan*, K. E. MacArthur, S. M. Collins, N. 

Brodusch, F. Voisard, R. E. Dunin-Borkowski, R. Gauvin, Extraction of 3D 

Quantitative Maps using EDS-STEM Tomography and HAADF-EDS Bimodal 

Tomography, Ultramicroscopy, 220 (2021) 113166. 
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6.1 Abstract  

Electron tomography has been widely applied to three-dimensional (3D) morphology 

characterization and chemical analysis at the nanoscale. A HAADF-EDS bimodal tomographic 

(HEBT) reconstruction technique has been developed to extract high resolution element-specific 

information. However, the reconstructed elemental maps cannot be directly converted to 

quantitative compositional information. In this work, we propose a quantification approach for 

obtaining elemental weight fraction maps from the HEBT reconstruction technique using the 

physical parameters extracted from a Monte Carlo code, MC X-ray. A similar quantification 

approach is proposed for the EDS-STEM tomographic reconstruction. The performance of the two 

quantitative reconstruction methods, using the simultaneous iterative reconstruction technique, are 

evaluated and compared for a simulated dataset of a two-dimensional phantom sample. The effects 

of the reconstruction parameters including the number of iterations and the weight of the HAADF 

signal are discussed. Finally, the two approaches are applied to an experimental dataset to show 

the 3D structure and quantitative elemental maps of a particle of flux melted metal-organic 

framework glass.  

  



151 

 

6.2 Introduction 

Electron tomography is a technique that characterizes the three-dimensional (3D) structure of 

a typically nanoscale object from a tilt series of two-dimensional (2D) projections [1] and has been 

widely used in biological science [2, 3] and materials science [4]. Different image modes are 

available for electron tomography. The scanning transmission electron microscope (STEM) high-

angle annular dark-field (HAADF) image is typically used for most cases in the field of material 

science to minimize the diffraction contrast that dominates in low-angle scattering which is the 

case for conventional bright-field (BF) or dark-field (DF) images of crystalline materials [5]. The 

intensity of the HAADF-STEM signal is strongly dependent on the atomic number and the 

projected thickness. HAADF tomography is thus sensitive to 3D chemical composition 

information. One disadvantage of HAADF tomography is that it only contains the accumulated 

information of all elements, which means the structures with different compositions but similar 

average atomic numbers cannot be distinguished. On the other hand, energy dispersive 

spectroscopy (EDS) STEM tomography can be used to extract element-specific distribution maps, 

and it has been applied to a wide range of materials including bimetallic nanoparticles [6], 

metallurgical samples [7], and semiconductor nanowires [8]. However, in comparison to HAADF-

STEM tomography, it has poor signal-to-noise ratio (SNR) because of low count rates associated 

with the low probability of X-ray emission and the poor signal collection efficiency of available 

X-ray detectors [9, 10]. 

HAADF/ADF-STEM images have been used in EDS-STEM tomography for object contour 

determination [11], absorption correction [12], and shadowing effect correction [13]. Zhong et al. 

[14] proposed a HAADF-EDS bimodal tomographic (HEBT) reconstruction technique that uses 

HAADF-STEM and EDS-STEM simultaneously to extract 3D elemental maps. The technique 

links the HAADF image and EDS maps through response ratio factors using a linear relationship, 

i.e., the HAADF image is a weighted summation of the EDS maps of different elements. Using 

this technique, the element-specific features of EDS maps are extracted while also preserving the 

high SNR of the HAADF image. It has been successfully applied to the characterization of a 

nanowire device [15]. Nevertheless, it is not straightforward to obtain quantitative compositional 

information from the reconstructed intensities. To obtain the 3D elemental weight/atomic fraction 

maps, a quantification method needs to be applied. 
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There are currently three approaches to the quantification of EDS-STEM images: the Cliff-

Lorimer method [16], the ζ-factor method [17], and the partial cross-section method [10]. The 

Cliff-Lorimer method connects the weight fractions, 𝐶𝐴 and 𝐶𝐵, of two constituent elements A and 

B to their detected characteristic X-ray intensities, 𝐼𝐴 and 𝐼𝐵 using the following equation [16]: 

 𝐶𝐴
𝐶𝐵
= 𝑘𝐴𝐵

𝐼𝐴
𝐼𝐵
 , (6.1) 

where 𝑘𝐴𝐵  is the Cliff-Lorimer factor (k-factor), which can be estimated using theoretical 

calculations or experiments [17]. The theoretical calculation of k-factors is fast but gives rise to 

relatively high systematic errors (±10%− 20% for the quantification of 2D elemental map) [17, 

18], while the experimental determination is accurate with relative errors around ±1% but is often 

complicated and time-consuming [17]. An improved quantitative approach, the ζ-factor method, 

gives the relationship between the detected X-ray intensity of element A, 𝐼𝐴 and the mass thickness 

𝜌𝑡 (𝜌 and 𝑡 are the specimen density and thickness) as follows [17]: 

 
𝜌𝑡 = 𝜁𝐴

𝐼𝐴
𝐶𝐴𝐷𝑒

 , (6.2) 

where 𝜁𝐴  is the ζ-factor and 𝐷𝑒  is the total electron dose. The ζ-factor method shows great 

advantages in absorption correction, spatial resolution calculation, etc. because it refines the 

thickness information. Moreover, the experimental determination of the ζ-factor is easier as it can 

be performed using single element standards. 

A further, recently emerging approach uses EDS partial cross-sections to quantify X-ray counts 

in an absolute manner [10, 19]. The EDS partial cross-section of a single atom of element A is 

determined from a pure element standard using the following equation: 

 
𝜎𝑝𝑎𝑟
𝐴 =

𝐼𝐴
𝐷𝑒𝑛𝐴𝑡

  , (6.3) 

where 𝑛𝐴𝑡 is the atom density per unit area in atoms/m2, in which 𝑛𝐴 is the atom volume density 

and 𝑡 is the thickness. Although this approach is based on the ζ-factor method, the implementation 

of this approach is simpler because it is on an absolute scale [19]. A similar quantification method 

to the ζ-factor method and partial cross-section is used in our calculation, although here the 

correction factor is determined through physical models instead of experiments. 
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The main objective of this paper is to present a quantification method using theoretical cross-

sections to obtain 3D elemental maps from both EDS-STEM tomography and HEBT through the 

simultaneous iterative reconstruction technique (SIRT). The effects of the reconstruction 

parameters are also studied in this work. Using a 2D phantom sample, the image qualities of the 

direct reconstructed maps and the quantified maps are investigated and compared for EDS-STEM 

tomography and HEBT. Both techniques are then applied to an experimental dataset of a particle 

of flux melted metal-organic framework glass, denoted ag [(ZIF-67)0.2(ZIF-62)0.8], where ag refers 

to amorphous glass structure, ZIF-67 and ZIF-62 refer to two compositionally distinct zeolitic 

imidazolate frameworks, and the subscripts refer to the relative fraction in the bulk glass. The 

synthesis and traditional quantitative EDS tomography of the glass particle have been explicitly 

described in previous reports [20, 21]. Here we look specifically at the implementation and results 

from the quantified HEBT reconstruction. 

6.3 Methods 

The following calculations are based on the thin film approximation, which means that the 

absorption and secondary fluorescence are negligible, as is the multiple scattering of the incident 

electrons. The quantifications of the EDS-STEM tomographic and HEBT reconstructions and the 

simulation of the HAADF and EDS signals using MC X-ray [22] will be introduced in this section. 

6.3.1 Quantification of the EDS-STEM tomographic reconstruction 

The measured characteristic intensity of a certain X-ray line of element A from a thin film is 

expressed using the equation [23]: 

 
𝐼𝐴 = 𝑁𝑉

𝜎𝑖𝑜𝑛
𝐴 𝜔𝐴𝑝𝐴
𝑀𝐴

𝐶𝐴𝜌𝑡𝐷𝑒 (
𝛺

4𝜋
) 𝜀𝐴 , (6.4) 

where 𝑁𝑉 is Avogadro’s number, 𝜎𝑖𝑜𝑛
𝐴 is the ionization cross-section, 𝜔𝐴 is the fluorescence yield, 

𝑝𝐴 is the relative intensity, 𝑀𝐴 is the atomic weight, 𝛺 is the detector solid angle, and 𝜀𝐴 is the 

detector efficiency. To better demonstrate the relationship between the X-ray intensity and the 

weight fraction, equation (6.4) can be written as follows, 

 𝐼𝐴 = 𝑛𝑓𝐴𝐶𝐴𝜌𝑡, (6.5) 

where 𝑛 is a constant for a certain measurement and 𝑓𝐴 is an element-specific factor, which are 

calculated as follows:  
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𝑛 = 𝑁𝑉𝐷𝑒 (

𝛺

4𝜋
), (6.6) 

 
𝑓𝐴 =

𝜎𝑖𝑜𝑛
𝐴 𝜔𝐴𝑝𝐴𝜀𝐴
𝑀𝐴

.  
(6.7) 

In electron tomography, for a heterogeneous sample, the measured characteristic X-ray 

intensity for a single measurement of the projection image can be expressed in an integral form 

along the electron trajectory inside the sample, 𝑡′, 

 
𝐼𝐴 = 𝑛𝑓𝐴∫𝐶𝐴(𝑡′)𝜌(𝑡′)𝑑(𝑡

′). (6.8) 

The continuous line integral can be replaced by a discrete ray-sum [14]: 

 

𝐼𝐴 = 𝑛𝑓𝐴∑𝑤𝑗𝐶𝐴,𝑗𝜌𝑗

𝑁

𝑗=1

 , (6.9) 

where 𝑤𝑗 is determined by the volume intersected between the electron beam and the jth voxel [24]. 

N is the number of voxels in the specimen for the reconstruction.  

For EDS-STEM tomography, multiple measurements are performed for various beam positions 

and tilt angles. The number of measurements, M, equals the product of the number of tilt angles 

and the number of beam positions. For a certain element A, the X-ray intensity for the ith 

measurement, 𝐼𝐴,𝑖 can be expressed as follows: 

 

𝐼𝐴,𝑖 = 𝑛𝑓𝐴∑𝑤𝑖𝑗𝐶𝐴,𝑗𝜌𝑗

𝑁

𝑗=1

 . (6.10) 

The tomography reconstruction is often formulated as a least square minimization, 

 𝑿𝐴
∗ = argmin

𝑋𝐴

||𝑰𝐴 −𝑾𝑿𝐴||2
2 , (6.11) 

where 𝑰𝐴 ∈ 𝑹
𝑀 is the X-ray intensity matrix, 𝑾 ∈ 𝑹𝑀×𝑁 is the projection matrix, and 𝑿𝐴 ∈ 𝑹

𝑁 is 

the reconstruction quantity. According to equation (6.10), we know that the reconstructed quantity 

for the jth voxel, 𝑿𝐴,𝑗 =  𝑛𝑓𝐴𝐶𝐴,𝑗𝜌𝑗 . Since the sum of the weight fractions of the constituent 

elements for a certain voxel is always one, i.e., ∑ 𝐶𝐴,𝑗
𝑘
𝐴=1 = 1, where k is the number of elements, 

using a similar calculation to the ζ-factor method, considering that the solid angle is the same for 

all the elements, we have 
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𝐶𝐴,𝑗 =

𝑿𝐴,𝑗/𝑓𝐴

∑ 𝑿𝐴,𝑗/𝑓𝐴
𝑘
𝐴=1

 . (6.12) 

According to the definitions, the partial cross-section can be calculated using the factor 𝑓𝐴 by 

𝜎𝑝𝑎𝑟
𝐴 = 𝑓𝐴 ∙ 𝛺/4𝜋 ∙ 𝑀𝐴.  

SIRT is used to solve the least square problem [25]. SIRT updates the reconstructed values at 

each iteration using the data from all the projections simultaneously [26]. Its primary advantage is 

a reduced sensitivity to noise or other errors in under-sampled experimental data [27]. 

Unfortunately, it has the semi-convergence property, that the error initially decreases but starts to 

increase after some iterations when dealing with noisy data [28]. In this work, a non-negativity 

constraint was applied to SIRT algorithm by setting individual negative voxels to zero in each 

iteration since the reconstructed values should always remain non-negative [29].  

The normalization in equation (6.12) may magnify the noise of the reconstructed map by 

changing a small value to one. Therefore, prior to this normalization, a thresholding was performed 

in order to define the voxels within the particle, that any intensities smaller than the threshold were 

set to zero based on the summation of all the elemental maps of 𝑿𝐴,𝑗/𝑓𝐴. The exact threshold value 

was determined using a modified edge spread function (ESF) fitting approach [21]. The approach 

calculates the particle volume for a series of threshold values, and the variation of the threshold 

relative to the particle volume can be fitted using the ESF. Therefore, the smallest gradient of the 

particle volume over the threshold corresponds to the most appropriate threshold value. The same 

process was applied to the quantification of the HEBT reconstruction. For both the EDS-STEM 

and HEBT reconstruction, the thresholding step was applied after the reconstruction process as a 

post-processing step for the purpose of visualizing and interpreting the quantification within the 

volume of the particle. 

6.3.2 Quantification of the HEBT reconstruction 

It is worth noticing that HEBT can be applied only when two conditions are satisfied: first, 

both the HAADF and EDS data fulfill the projection requirement, that the signal is a monotonic 

function of the thickness and composition [30], and secondly, the HAADF signals are the weighted 

sum of the EDS signals for all the elements present [31].  
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The HAADF-STEM signal IH is the number of electrons that are scattered at high angles and 

can be expressed as the sum of the scattered electrons by each element present in the specimen 

[14]: 

 

𝐼𝐻 = 𝐷𝑒
𝐻𝑁𝑣∑𝜎𝑒𝑙𝑎

𝐴 ∫𝐶𝐴(𝑡′)𝜌(𝑡′)𝑑(𝑡′)

𝑀𝐴

𝑘

𝐴=1

 , (6.13) 

where 𝐷𝑒
𝐻 is the electron dose for HAADF measurement, A is the index of the constituent element, 

k is the number of elements in the specimen, 𝜎𝑒𝑙𝑎
𝐴  is the elastic scattering cross-section, and 𝐶𝐴(𝑡′) 

is the weight fraction of element A at 𝑡′. It can be written in the same form as equation (6.9): 

 

𝐼𝐻 = 𝐷𝑒
𝐻𝑁𝑣∑𝑧𝐴∑𝑤𝑖𝑗𝐶𝐴,𝑗𝜌𝑗

𝑁

𝑗=1

𝑘

𝐴=1

 , (6.14) 

where 𝑧𝐴 = 𝜎𝑒𝑙𝑎
𝐴 /𝑀𝐴.  

The HEBT reconstruction technique proposed by Zhong et al. [14] links the HAADF signals 

with the EDS signals using a response ratio factor 𝑟𝐴: 

 

𝐼𝐻 = ∑𝑟𝐴𝐼𝐴

𝑘

𝐴=1

 (6.15) 

and, 

 
𝑟𝐴 =

𝐷𝑒
𝐻𝑁𝑣𝑧𝐴
𝑛𝑓𝐴

 . (6.16) 

Since the value of 𝑟𝐴 might differ for various instruments or experimental setups, it is typically 

estimated using the measured intensities 𝐼𝐻 and 𝐼𝐴 through linear regression. The reconstruction 

using HEBT aims to minimize the least square of the measured and estimated signals (see [14] for 

more details),  

 𝑿𝒃
∗
= argmin

𝑋𝑏
||𝑰𝒃 −𝑾𝒃𝑿𝒃||2

2 (6.17) 

where 𝑰𝒃 =

(

 
 
 

(1 − 𝛼)𝑟1𝑰1
⋮

(1 − 𝛼)𝑟𝐴𝑰𝑒
⋮

(1 − 𝛼)𝑟𝑘𝑰𝑘
𝛼𝑰𝐻 )

 
 
 

, 𝑾𝒃 =

(

 
 
 

(1 − 𝛼)𝑾 … ∅ … ∅
⋮ … ⋮ … ⋮
∅ … (1 − 𝛼)𝑾 … ∅
⋮ … ⋮ … ⋮
∅ … ∅ … (1 − 𝛼)𝑾
𝛼𝑾 … 𝛼𝑾 … 𝛼𝑾 )

 
 
 

, 
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and 𝑿𝒃 =

(

 
 

𝑿𝟏
𝒃

⋮
𝑿𝑨
𝒃

⋮
𝑿𝒌
𝒃)

 
 

, where 𝑿𝑨
𝒃 ∈ 𝑹𝑁, in which 𝑋𝐴,𝑗

𝑏 = 𝑧𝐴𝐶𝐴,𝑗𝜌𝑗, and 𝛼 is the balance factor between 

the HAADF and EDS terms, which indicates the weight of the HAADF term (0 < 𝛼 < 1). 

With the reconstructed quantity 𝑿𝒃, the composition of element A for the jth voxel can be 

calculated as follows:  

 
𝐶𝐴,𝑗 =

𝑋𝐴,𝑗
𝑏 /𝑧𝐴

∑ 𝑋𝐴,𝑗
𝑏 /𝑧𝐴

𝑘
𝐴=1

 . (6.18) 

6.3.3 Forward modeling using MC X-ray 

The required physical parameters for the quantification including scattering and ionization 

cross-sections are extracted from MC X-ray [22], a Monte Carlo program for simulating electron 

trajectories within the solid and computing X-ray emissions. The physical models used for 

calculating those parameters are shown in Table 6.1. And the extracted physical parameters used 

in this work are listed in Table 6.2. 

MC X-ray [22] was used to calculate the simulated HAADF and EDS signals from a phantom 

sample. The quantification processes using both EDS-STEM tomography and HEBT were applied 

to the simulated signals, and the reconstructed images (both before and after quantification) were 

compared with the phantom sample to assess the accuracy of each process. The HAADF detector 

inner collection angle used in MC X-ray for high angle and low angle are 611 and 94 mrad, 

respectively.  

Table 6.1 Physical models used in MC X-ray [22] 

Physical parameters Physical models 

Elastic scattering cross-section Mott & Browning 1991 [32] 

Ionization cross-section Bote 2009 [33] 

Fluorescence yield Perkins et al. 1991 [34] 

Relative intensity Perkins et al. 1991 [34] 
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Table 6.2 Physical parameters extracted from MC X-ray 

X-ray line Ag Lα Au Mα Co Kα Zn Kα 

Incident beam energy (keV) 100 80 

Elastic scattering cross 

section (barn) 
9.90×106 1.98×107 5.59×106 6.51×106 

Ionization cross section 

(barn) 
2.44×103 7.46×103 420 302 

Fluorescence yield 0.057 0.030 0.369 0.466 

Relative intensity 0.816 0.999 0.891 0.890 

 

6.4 Results and discussion  

6.4.1 A 2D phantom sample  

Input 

To assess the accuracy of the proposed quantification approaches, a 2D phantom sample of an 

alloyed Ag-Au nanoparticle, a slice on the X-Z plane, was created. The weight fractions of Ag and 

Au are presented in Figure 6.1. The phantom sample has a core-shell structure, in which the 

composition of the core is 80 wt% Au and 20 wt% Ag, while the shell has 20 wt% Au and 80 wt% 

Ag.  

 

Figure 6.1 Weight fractions of a) Ag and b) Au for the phantom sample: a slice of Ag-Au alloyed 

particle with a core-shell structure. Core: 80 wt% Au and 20 wt% Ag; Shell: 20 wt% Au and 80 

wt% Ag. 
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Simulations were performed using MC X-ray at 100 keV for 97 beam positions from -72 to 72 

nm with a step size of 1.5 nm and 31 tilt angles from -75° to 75° with a step size of 5°. The HAADF 

sinogram (as presented in Figure 6.2 a) was obtained with a simulated electron number of 100,000 

per pixel, which corresponds to an electron fluence of 444 e/A2 (electrons per square angstrom). 

Pixels along the horizontal and vertical axes represent the signals for varying beam positions and 

varying tilt angles, respectively. To mimic reasonable experimental conditions, an acquisition time 

of 0.5 s for each pixel and a beam current of 100 pA were used, indicating an electron number of 

3.12×108 per pixel, which corresponds to an electron fluence of 1.39×106 e/A2. Since the 

experimental EDS signals follow a Poisson distribution [35], Poisson noise was applied to the 

simulated EDS sinograms, and the resulting sinograms of the Ag Lα line and Au Mα line are shown 

in Figure 6.2 b) and c), respectively. 

 

Figure 6.2 Sinograms of a) HAADF, b) EDS for the Ag Lα line, c) EDS for the Au Mα line, d) 

EDS for the Ag Lα line adding a Gaussian filter, and e) EDS for the Au Mα line adding a 

Gaussian filter. Pixels along the horizontal and vertical axes represent the signals for varying 

beam positions and varying tilt angles, respectively. 

Before performing the tomography reconstruction, a Gaussian filter with a standard derivation 

of 0.8 was applied to the EDS elemental maps as a denoise process to improve the SNR. It was 

implemented using the multidimensional Gaussian filter function in Python library SciPy [36]. The 

EDS sinograms with Gaussian filter are presented in Figure 6.2 d) and e). For both EDS-STEM 
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tomography and HEBT, the EDS sinograms with Gaussian filter were used as input. And the 

original HAADF sinogram was used for HEBT. 

EDS-STEM tomographic reconstruction 

The EDS-STEM tomographic reconstruction was first performed using SIRT for the sinograms 

shown in Figure 6.2 d) and e). The reconstructed images were computed for different numbers of 

iterations, n = 20, 50 and 100, to investigate its effect. The reconstructed images of the quantity 

𝑿𝐴 for Ag and Au are presented in Figure 6.3. Note that the quantity 𝑿𝐴 is not on an absolute scale. 

For Ag after 20 iterations (as shown in Figure 6.3 a), the core-shell structure can be distinguished, 

in which the intensity of Ag is higher in the shell than the core. However, the boundaries between 

the core and shell as well as between the object and background are blurry. When n increases to 

50 (Figure 6.3 b), the contrast is improved, and the boundaries become clearer. At a higher n, 

however, an increased noise is observed (Figure 6.3 c) because of the over-fitting problem. As for 

Au, similarly, an increased noise is presented with an increase in n (as shown in Figure 6.3 d, e, 

and f). For all three numbers of iterations, the shape of the core with an increased Au intensity is 

well-preserved, while part of the boundaries is not correctly recognized. For example, several 

pixels in the bottom of the shell are recognized as background, which is due to the low SNR and 

large tilt angle increment (5° for this case) of the projection images and the relatively low 

concentration of Au in the shell.  
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Figure 6.3 Ag and Au element maps reconstructed using SIRT through EDS-STEM tomography 

when the number of iterations n = 20, 50, and 100, respectively. a), b), and c) are on the same 

intensity scale, and d), e), f) are on the same intensity scale. 

To better assess the quality of the reconstructed image, two types of image quality metrics are 

calculated: structural similarity index (SSIM) and mean squared error (MSE). SSIM [37] evaluates 

the structural similarity between two images considering three components: luminance, contrast, 

and structure. Since the intensities of the reconstructed images are not on the same scale with the 

reference image (phantom sample), only the structure component is compared. The structure 

component, s, of two signals x and y (with the same size) are calculated as follows [37]: 

 
𝑠(𝒙, 𝒚) =  

𝜎𝑥𝑦 + 𝐶

𝜎𝑥𝜎𝑦 + 𝐶
 , (6.19) 

where 

 

𝜎𝑥𝑦 = 
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑁

𝑖=1

, (6.20) 



162 

 

 

𝜎𝑥 = (
1

𝑁 − 1
∑(𝑥𝑖 − 𝜇𝑥)

2

𝑁

𝑖=1

)1/2 , 
(6.21) 

 

𝜎𝑦 = (
1

𝑁 − 1
∑(𝑦𝑖 − 𝜇𝑦)

2
𝑁

𝑖=1

)1/2 , 
(6.22) 

and C is a factor to avoid instability when 𝜎𝑥𝜎𝑦 is very close to zero, 𝑁 is the size of x and y, 𝜇𝑥 

and 𝜇𝑦 are the average intensity of x and y. C is set to zero in our calculations but still included in 

equation (6.19) for consistency with common implementations. An SSIM value that is close to one 

means better structural similarity than for a value close to zero. MSE is the average of the squares 

of the errors between two signals. MSE between the direct reconstructed image 𝑿𝐴  and the 

reference image (Figure 6.1 a and b) is computed using a scaling factor since they are in different 

scales, and the scaling factor is chosen to minimize the MSE. For the quantified weight fraction 

maps, MSE is calculated directly without scaling.  

 

Figure 6.4 Variation of a) SSIM and b) MSE relative to n, the number of iterations for the EDS-

STEM tomographic reconstruction. 

Figure 6.4 shows the variations of a) SSIM and b) MSE relative to the number of iterations for 

the reconstructed images obtained using the EDS-STEM tomographic reconstruction. For both 

metrics, a better image quality for Au is found than for Ag. This difference is likely due to the 

slightly higher X-ray intensities of the Au Mα line (as shown in Figure 6.2 d and e), which means 

lower noise from the sinogram. Alternatively, the higher contrast between the shell and the 

background for Ag than for Au may impair the image quality for Ag to a greater extent due to an 

imperfect boundary. As n increases, the image quality for Ag initially improves but then starts to 

fall off after 50 iterations, whilst for Au this drop off occurs after only 20 iterations. This is 
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consistent with what we can observe qualitatively in Figure 6.3. Therefore, the approximately 

optimal value for the number of iterations for Ag and Au are 50 and 20, respectively.  

From the reconstructed images of 𝑿𝐴, Figure 6.3, the true weight fractions of Ag and Au were 

computed using equation (6.12). The computed weight fraction maps for different numbers of 

iterations are presented in Figure 6.5. In general, the core and shell are well segmented, and the 

compositions of both regions are close to the reference values. The boundary between the object 

and the background appears sharper after quantification primarily because the noise outside the 

object is removed by the thresholding step. The image quality of the quantitative element maps as 

shown in Figure 6.6 is thus slightly improved relative to the image quality of 𝑿𝐴 . The 

quantification process to a certain extent neutralizes the difference between the intensities of Ag 

and Au, making the relatively sharp boundary between the core and shell (as shown in Figure 6.3 

a and d) become a ‘belt-like’ region (Figure 6.5 a and b) when the number of iterations is 20. The 

variation of the image quality relative to the number of iterations (Figure 6.6) presents a similar 

trend as that for the images of 𝑿𝐴 (Figure 6.4). 

 

Figure 6.5 Quantitative elemental maps (weight fraction) of Ag and Au for different numbers of 

iterations, n = 20, 50, and 100. All figures are on the same intensity scale.  
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Figure 6.6 Variation of a) SSIM and b) MSE for the reconstructed weight fraction maps from 

EDS-STEM tomography as a function of n, the number of iterations. 

HEBT reconstruction 

In this section, results obtained using the HEBT reconstruction are presented. Figure 6.7 shows 

the reconstructed Z-contrast image from the HAADF-STEM sinogram after 50 iterations. 

Compared with the reconstructed elemental maps shown in the last section, the boundaries 

between the object and background as well as between the core and shell can be distinguished 

clearly, and there is notably higher contrast. It also shows an excellent agreement with the input 

phantom structure. Therefore, it is reasonable to assume the HEBT reconstruction has some 

advantages over the EDS-STEM tomographic reconstruction as it incorporates the HAADF signal.  

The response ratio factors 𝑟𝐴𝑔 and 𝑟𝐴𝑢 were calculated using the gradient descent method [38] 

to link the HAADF-STEM and EDS-STEM images by a linear relationship. The calculated 𝑟𝐴𝑔 

and 𝑟𝐴𝑢 are 805 and 987, respectively, with a coefficient of determination R2 of 0.982, indicating 

that more than 98% of the measured data can be explained by the linear model. 

 

Figure 6.7 Reconstructed Z-contrast image from HAADF-STEM tomography after 50 iterations 

using SIRT. 
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Two parameters affect the HEBT reconstruction process: n, the number of iterations and α, the 

weight of the HAADF signal. We performed the HEBT reconstruction for different n: 100, 200, 

and 500, and varying α, ranging from 0 to 1. Note that the number of iterations required for the 

HEBT reconstruction is much larger than that for the EDS-STEM tomographic reconstruction due 

to the increased data volume. For the EDS-STEM tomographic reconstruction, the input data is 

the EDS sinogram for a certain X-ray line with a pixel size of M, while for the HEBT 

reconstruction, the input data is the EDS sinograms for all the X-ray lines of the elements present 

and the HAADF sinograms, with a total size of 𝑀 × (𝑘 + 1), where k is the number of elements 

present in the specimen. Therefore, more data needs to be optimized for the HEBT reconstruction, 

requiring an increased number of iterations. Several numbers of iterations smaller than 100 were 

also tested, however they demonstrated far worse quality than the results presented here. The 

qualities of the reconstructed images for the quantity 𝑿𝒃  are evaluated, taking Figure 6.1 as 

reference images.  

The variations of SSIM and MSE are shown in Figure 6.8 a) and b), respectively, as a function 

of α for different n. A better image quality of Au is observed compared with Ag, which is similar 

to the results from EDS-STEM tomography. For each number of iterations, the image quality is 

first improved as α increases, and then deteriorates after reaching the best. To better investigate 

the effect of α, the weight of the HAADF signal, we present the reconstructed images for α = 0.7, 

0.8, and 0.9 after 200 iterations in Figure 6.9. As α changes from 0.7 to 0.8, the noise level appears 

suppressed since the low noise HAADF data dominates more. As it continues increasing to 0.9, 

though with less noise, the boundary between the shell and core becomes blurry, and the contrast 

deteriorates. Figure 6.18 presents the intensity profiles across the boundary for the elemental maps 

shown in Figure 6.9 to better observe the variation of the boundary with α. The variation is because 

as α increases, the EDS-STEM terms contribute less, which makes the optimization process to 

minimize the residuals of the EDS-STEM terms inefficient. If the residual of the HAADF-STEM 

term has been minimized while those for the EDS-STEM terms remain large, the back projection 

from the HAADF-STEM image will appear in the reconstructed elemental maps. Therefore, in this 

case, the reconstructed elemental maps of both Ag and Au become similar to the image from the 

HAADF-STEM reconstruction (Figure 6.7), showing worse contrast. 
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Figure 6.8 Variation of a) SSIM and b) MSE of Ag and Au as a function of α, the weight of the 

HAADF signal, for different n: 100 (green), 200 (blue), and 500 (red) for the direct reconstructed 

maps using HEBT. Solid lines represent the data for Ag, and dashed lines represent the data for 

Au. The yellow horizontal lines indicate the best image quality obtained using the EDS-STEM 

tomographic reconstruction.  

 

Figure 6.9 Elemental maps directly reconstructed using HEBT for Ag and Au for different α, the 

weight of the HAADF signal: 0.7, 0.8, 0.9 after 200 iterations. a), b), and c) are on the same 

intensity scale, and d), e), and f) are on the same intensity scale. 

As n increases, the image quality typically improves before subsequently deteriorating due to 

the overfitting problem. Just as shown in Figure 6.10 d) e) and f), the Au elements map shows an 

improved contrast when n increases from 50 to 200. However, upon increasing to 500 iterations, 
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the noise begins to dominate again. The approximately optimal value of n is thus found to be 200. 

The optimal value of n changes as α increases. As shown in Figure 6.8, the approximately optimal 

value of n for Ag is 100 when α is smaller than 0.6, and the value changes to 200 when α is between 

0.6 and 0.8. An optimal value around 500 is found for α larger than 0.8. This results from the 

inefficiency of the optimization process for the EDS-STEM terms as α increases. An increased 

number of iterations is required to reduce the appearance of the back projection of the HAADF-

STEM image in the reconstructed elemental maps in the case when the residual of the HAADF-

STEM term is minimized and those for the EDS-STEM terms remain large. 

The horizontal yellow lines in Figure 6.8 represent the best reconstruction image quality 

obtained using the EDS-STEM tomographic reconstruction to be compared with the HEBT 

reconstruction. The best image quality is obtained when n=50 for Ag (yellow solid line) and 20 

for Au (yellow dashed line). For both Ag and Au, the HEBT tomographic reconstruction shows 

better images under most circumstances as long as α is larger than 0.5. The element maps for Ag 

demonstrate a greater improvement in image quality compared to Au possibly due to the fact that 

the image quality of Ag is more sensitive to the change in the boundary resulting from higher 

contrast between the shell and the background. When comparing the reconstructed images from 

EDS-STEM tomography (Figure 6.3) with that of HEBT (Figure 6.9 and Figure 6.10), one 

improvement that stands out is that the boundary between the object and the background is defined 

more clearly for HEBT (see Figure 6.19 for the comparison of the intensity profiles across the 

boundary). This is primarily a benefit of the high SNR of the HAADF sinogram. Within the object, 

the segmentation of the core and shell relies partly on the choice of the reconstruction parameters 

like n and α. 
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Figure 6.10 Elemental maps for Ag and Au directly reconstructed using HEBT for different n, 

the number of iterations: 50, 200, and 500 when α=0.9 (α is the weight of the HAADF signal). 

a), b), c) are on the same intensity scale, and d), e), f) are on the same intensity scale. 

From the reconstructed images of 𝑿𝒃, the quantitative elemental maps of Ag and Au were 

calculated using equation (6.18). The quantitative elemental maps of Figure 6.9 and Figure 6.10 

are shown in Figure 6.11 and Figure 6.12, respectively. Similar effects of n and α are observed as 

previously seen in the reconstructed images of 𝑿𝒃. For the same number of iterations, an increase 

in α can reduce the level of noise but simultaneously results in a blurring of the boundary between 

the core and shell (see Figure 6.20 for the intensity profiles of the elemental maps shown in Figure 

6.11). For a constant α, an increase in n initially improves the contrast but subsequently brings 

more noise at higher α due to the over-fitting problem.  
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Figure 6.11 Quantitative elemental maps of Ag and Au (weight fraction) from HEBT for 

different α, the weight of the HAADF signal: 0.7, 0.8, 0.9 after 200 iterations. All figures are on 

the same intensity scale. 

 

Figure 6.12 Quantitative elemental maps of Ag and Au (weight fraction) from HEBT for 

different n, the number of iterations: 50, 200, and 500 with α=0.9 (α is the weight of the HAADF 

signal). All figures are on the same scale. 
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The variations of SSIM and MSE as a function of α for the quantitative elemental maps are 

presented in Figure 6.13 for different n. The yellow horizontal lines correspond to the best image 

quality obtained from the quantification of the EDS-STEM tomographic reconstruction (solid line 

for Ag and dashed line for Au). The quality of the Ag elemental map is greatly improved by the 

well-determined object boundary. However, the quality of the Au elemental map is at a comparable 

level with the Au map before quantification. The different effect on Ag and Au is intrinsic, i.e., 

because the particle contains higher Ag content in the shell (80 wt%) and it therefore should 

demonstrate a higher contrast in the quantified composition map. The unusual fluctuation of the 

two metrics with α results from the threshold determination to define the particle volume, because 

this was done independently via the ESF method each time. 

 

Figure 6.13 Variation of a) SSIM and b) MSE as a function of α for different n: 100 (green), 200 

(blue), and 500 (red) for the quantitative elemental maps obtained using HEBT. Solid lines 

represent the data for Ag, and dashed lines represent the data for Au. The yellow horizontal lines 

indicate the best image quality obtained using the EDS-STEM tomographic reconstruction. 

6.4.2 A particle of flux melted metal-organic framework glass 

The two reconstruction techniques and quantification processes were next applied to 3D 

characterisation of a real experimental dataset obtained from a multicomponent zeolitic 

imidazolate framework (ZIF) glass: the ag [(ZIF-67)0.2(ZIF-62)0.8] flux melted glass. 

Specimen and experimental data 

ZIFs, a subcategory of metal-organic framework, are composed of tetrahedral metal nodes 

connected by imidazolate-based organic ligands [39]. ag [(ZIF-67)0.2(ZIF-62)0.8] is generated 

through the melting of ZIF-67 [Co(mlm)2, mlm: 2-methylimidazolate, C4H5N2
−] mixed with ZIF-
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62 [Zn(lm)1.75(blm)0.25, lm: imidazolate, C3H3N2
− , and blm: benzimidazolate, C7H5N2

−  ] and 

brought to above the melting point of ZIF-62 [20]. The subscripts, 0.2 and 0.8, refer to the weight 

fraction of each component, and ag refers to melt quenched glass. For additional details of the 

synthesis and previous EDS tomography analysis of this sample, refer to [20] and [21], 

respectively.  

The experimental maps were acquired on a Thermo Fisher 80-200 keV probe corrected Titan 

with a four quadrant Super-X EDS detector operating at 80 keV. The EDS spectrum image data 

sets were acquired for different tilt angles ranging from -72° to 54° with a tilt increment of around 

9°. For each tilt angle, an ADF image was simultaneously obtained using a Fischione HAADF 

detector. ADF images have been proved to satisfy the projection requirement, that the signal is a 

monotonic function of the thickness in a prior report [21]. It is, therefore, reasonable to use this 

signal in conjunction with EDS for a HEBT reconstruction. Please refer to reference [21] for more 

details about the experimental setup. 

EDS maps were recorded with a pixel size approximately equal to the beam diameter, and then 

subsequently re-binned to make sure that each pixel contains enough X-ray counts. Both the EDS 

spectrum images and ADF images (required to have the same size as EDS maps) were re-binned 

to half of their original number of pixels in both spatial dimensions. The pixel size after re-binning 

is 2.74 ×  2.74 nm. For the acquired EDS spectra, the background was subtracted, and the 

intensities of the peak of the C, N, Co, and Zn Kα line were integrated respectively to generate 

EDS maps using HyperSpy [40], an open source Python library. The ADF images and EDS maps 

for the same tilt angle were aligned by aligning the center of mass of ADF image with the elemental 

map of N. To reduce the shadowing effect, the total signals of a tilt series EDS maps for a certain 

element were normalized to the same value [41]. The in-plane alignment and tilt-axis shift and 

rotation were then performed for both ADF and EDS images. Figure 6.14 shows the processed 

ADF and EDS images of the C, N, Co and Zn Kα line for tilt angles: -45°, 0°, and 45°.  
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Figure 6.14 ADF and EDS maps for the C, N, Co, and Zn Kα line for tilt angles of -45°, 0°, and 

45° . Note the presence of the carbon support film is visible in both the ADF maps and the EDS 

maps for the C Kα line, and the ADF maps are presented here on an inverted intensity scale. 

Tomographic reconstruction 

Since the weight fraction of H is relatively small for both components (4.6 wt% in ZIF-67 and 

3.1 wt% in ZIF-62), the contribution of H to the elastic scattering of electrons, i.e., HAADF signals 

is ignored. Therefore, only four elements: C, N, Co, and Zn are considered for the HEBT 

reconstruction.  

The HEBT reconstructions were performed for around 260 slices with 𝛼 = 0.8 and n = 100. 

The computed response factors for the four elements are 𝑟𝐶 = 1921, 𝑟𝑁 = 3792, 𝑟𝐶𝑜 = 5179, and 

𝑟𝑍𝑛 = 6502 with a coefficient of determination 𝑅2 = 0.92. The reconstructed elemental maps are 

compared with the results from the EDS-STEM tomographic reconstruction in Figure 6.15, which 

presents the 2D reconstructed images for slice number 70, 130, and 190.  

For both EDS-STEM tomography and HEBT, no clear boundaries between the Zn-rich and 

Co-rich components is observed. Instead, the interface displays the diffusion of the two 

components resulting in a region comprised of both Co and Zn, consistent with what has been 
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presented in prior reports [20, 21]. Moreover, a higher intensity of Co and little intensity of Zn are 

shown in the upper-left region of the particle, likely referring to remnant pure single-phase ZIF-

67. Meanwhile the bottom of the particle, displaying high Zn intensity and an apparent absence of 

Co, likely contains a region corresponding to pure ZIF-62 domain. As we increase of the slice 

number from 70 to 190, the cross-sectional area of the particle increases.  

 

Figure 6.15 Reconstructed elemental maps for xz orthoslice (the cross-section view in/out of the 

paper for the maps shown in Figure 6.14) using the traditional single signal tomography 

reconstruction and HEBT reconstruction for three slices: no. 70, 130, and 190. 

Compared with the EDS-STEM tomographic reconstruction, the HEBT reconstruction, in most 

cases, displays clearer boundaries and a better contrast. For example, for the Co element map at 

slice no.190, noise shows in the bottom-right region outside the particle for the EDS-STEM 
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tomographic reconstruction, while it is mostly absent in the reconstructed map from HEBT, 

making the blurry boundary between the particle and the background much sharper.  

Some slight discrepancies in the shape of the particle between the two reconstruction 

techniques are observed. For example, for slice no.70, a “stripe-like” region along the bottom-right 

side in the HEBT reconstruction is missing in the elemental maps of the EDS-STEM tomographic 

reconstruction. This might be due to the misalignment between the ADF images and EDS maps 

considering that ADF images have only one frame, while EDS spectrum images were acquired as 

a summation over multiple frames with drift correction. 

Quantification  

The reconstructed images were then quantified using the physical parameters acquired from 

MC X-ray. Considering that the X-ray intensities of the C and N Kα lines extracted from the 

spectra can be inaccurate because of the poor background simulation at low energies, presence of 

the carbon support film underneath the particle, and possible enhancement in the absorption effects 

[21], C and N were not included in the quantification. We use the weight ratios of Zn and Co to 

the total weight of Zn and Co [Zn/ (Zn + Co) and Co/ (Zn +Co)] to indicate the quantities of Zn 

and Co, respectively. The HEBT quantification factors for Co and Zn are 𝑧𝐶𝑜 = 9.49 × 10
4 𝑏 ∙

𝑚𝑜𝑙/𝑔 and 𝑧𝑍𝑛 = 9.96 × 10
4 𝑏 ∙ 𝑚𝑜𝑙/𝑔, where b is the symbol of barn. And the EDS-STEM 

quantification factors are 𝑓𝐶𝑜 = 2.25 𝑏 ∙ 𝑚𝑜𝑙/𝑔  and 𝑓𝑍𝑛 = 1.84 𝑏 ∙ 𝑚𝑜𝑙/𝑔 . According to the 

definitions of the partial cross-section 𝜎𝑝𝑎𝑟
𝐴  and the EDS quantification factor 𝑓𝐴 , we have 

𝜎𝑝𝑎𝑟
𝐶𝑜 𝜎𝑝𝑎𝑟

𝑍𝑛⁄ = (𝑓𝐶𝑜 ∙ 𝑀𝐶𝑜) (𝑓𝑍𝑛 ∙ 𝑀𝑍𝑛)⁄ . In comparison to the partial cross-section ratio of 

𝜎𝑝𝑎𝑟
𝐶𝑜 𝜎𝑝𝑎𝑟

𝑍𝑛⁄ = 1.08, determined experimentally by Collins et al. [21], our calculation obtains a 

close value of (𝑓𝐶𝑜 ∙ 𝑀𝐶𝑜) (𝑓𝑍𝑛 ∙ 𝑀𝑍𝑛)⁄ , 1.10, which indicates the reliability of our model.  

Figure 6.16 presents the absolute weight fraction of Co and Zn for three slices using the two 

different reconstruction techniques. Similar features as observed in Figure 6.15 are shown in 

Figure 6.16, that high Co concentration is found in the upper-left region, and high Zn concentration 

in the bottom-right region. Even though the same threshold determination method was used, the 

HEBT reconstruction shows smoother boundaries and a more similar shape to the reconstructed 

images before quantification as observed in Figure 6.15 than the EDS-STEM tomographic 

reconstruction. Again, small discrepancies in the shape might result from the misalignment 

between the ADF images and EDS maps.  
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Figure 6.16 Weight fraction maps of Co and Zn [Co/(Co + Zn) and Zn/(Co + Zn)] using the 

EDS-STEM tomographic and HEBT reconstruction for slice no. 70, 130, and 190 (cross-section 

view on the xz plane). 

 

Figure 6.17 3D volume rendering of the flux melted particle using the HEBT reconstruction. Red 

represents Co, and blue represents Zn. 
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Figure 6.17 presents a 3D volume rendering of the flux melted particle obtained using the 

quantification of the HEBT reconstruction, which provides a complete view to observe the 3D 

morphology and diffusion of the Co-rich domain (red) and Zn-rich domain (blue) in the particle. 

6.5 Conclusion  

We have proposed a new quantification approach combining the physical parameters acquired 

from MC X-ray with tomographic reconstruction to characterize 3D elemental distribution of 

nanostructures quantitatively. Two types of tomographic reconstruction were investigated using 

the simultaneous iterative reconstruction technique (SIRT): the traditional EDS-STEM 

tomographic reconstruction and HAADF-EDS bimodal tomographic (HEBT) reconstruction. The 

two types of reconstruction technique and the corresponding quantification approaches were 

applied to a simulated dataset of a 2D phantom sample of a Ag-Au nanoparticle and an 

experimental dataset of a particle of flux melted metal-organic framework glass.  

Using the simulated dataset of a 2D phantom sample (a single slice), the effects of the 

reconstruction parameters were investigated through two types of image quality metrics: SSIM 

and MSE. For both EDS-STEM tomography and HEBT, the quality of the reconstructed image is 

initially improved as a function of the number of iterations, before falling off at higher values due 

to the over-fitting problem. A similar trend was observed for α, the weight of the HAADF signal, 

in the HEBT reconstruction. Moreover, as α increases, the approximately optimal value for the 

number of iterations increases since the optimization becomes less efficient as α increases. In 

general, with appropriate reconstruction parameters, HEBT shows a better contrast and a reduced 

noise level compared with EDS-STEM tomography. The quantified elemental maps obtained from 

the HEBT reconstruction also present a better similarity and lower errors in comparison to the 

reference images when compared to that from the EDS-STEM tomographic reconstruction.  

The quantification approaches of both reconstruction techniques were successfully applied to 

an experimental dataset of a particle of flux melted metal-organic framework glass, displaying the 

quantified 3D elemental distribution of Co and Zn. The diffusion of the Co-rich domain and Zn-

rich domain into each other was shown. The EDS-STEM tomography quantification factors 

calculated using our approach have shown a good consistency with the experimentally measured 

partial cross-sections from the reference.  
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We have shown the feasibility of our quantification approaches for EDS-STEM tomography 

and HEBT applied to experimental datasets. Using SIRT, both EDS-STEM tomography and 

HEBT have revealed physically meaningful results. Although requiring an optimal alignment of 

ADF and EDS maps in conventional multi-frame acquisitions, HEBT has shown advantages in 

image contrast, boundary determination, and noise reduction compared with EDS-STEM 

tomography. The HEBT technique will play an important role in the characterization of beam-

sensitive samples for which the EDS maps are quite noisy and in reducing experimental acquisition 

time. In the future, the method to better align the ADF and EDS maps will be explored. And the 

integration of other advanced tomography algorithms as a replacement of SIRT will be 

implemented to improve the reconstructed images. 
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6.8 Supplementary materials 

To visualize the intensity variation across the boundary, we plotted the intensity profiles for 

the reconstructed elemental maps along the red line shown in Figure 6.18 a). Figure 6.18 b) and c) 

show the intensity profiles for the elemental maps reconstructed using HEBT when n = 200 (Figure 

6.9). The boundaries between the core and shell of the particle locate at the position of ~65 and 

~115 nm. As α increases, the slope of the intensity profile near the boundaries decreases for both 

Ag and Au, indicating that the boundary becomes blurry.  
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Figure 6.18 a) Elemental map of Ag reconstructed using HEBT for α = 0.7 and n = 200. Intensity 

profiles for elemental maps of b) Ag (Figure 6.9 a, b, and c) and c) Au (Figure 6.9 d, e, and f) 

reconstructed using HEBT with different α when n = 200. The intensity profiles were taken along 

the red line shown in a). 

 

 

Figure 6.19 Intensity profiles for elemental maps of a) Ag and b) Au reconstructed using the 

EDS-STEM tomography when n = 50 and 20 for Ag and Au, respectively (Figure 6.3 b and d), 

and using the HEBT when n = 500 and α = 0.9 (Figure 6.10 c and f) along the red line shown in 

Figure 6.18 a). Note that the intensities for each elemental map were divided by the maximum 

value along the line since the intensities for the EDS-STEM tomography reconstruction and the 

HEBT reconstruction are not at the same scale.  
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Figure 6.20 Intensity profiles for quantitative elemental maps of a) Ag (Figure 6.11 a, b, and c) 

and b) Au (Figure 6.11 d, e, and f) reconstructed using HEBT with different α when n = 200 

along the red line shown in Figure 6.18 a). 

 

Figure 6.19 compares the intensity profiles of the elemental maps reconstructed using the EDS-

STEM tomography and HEBT for Ag and Au. For both reconstruction techniques, the elemental 

map with the best image quality was chosen for comparison, which is obtained when n = 50 for 

Ag (Figure 6.3 b) and n = 20 for Au (Figure 6.3 d) for the EDS-STEM tomography, and when n = 

500 and α = 0.9 for HEBT (Figure 6.10 c and f). Since the intensities for the elemental maps 

reconstructed using the two techniques are not at the same scale, the intensities for each line profile 

were divided by the maximum value along the line to be compared with each other. The exterior 

boundaries of the particle show up at the position of ~30 nm on the left and ~125 nm on the right. 

The slope for the boundary on the left side is similar for the two techniques, while the boundary 

on the right side is sharper for HEBT (red line) than the EDS-STEM tomography (black line). 

Figure 6.20 presents the intensity profiles for the quantitative elemental maps reconstructed 

using HEBT when n = 200 with various α (Figure 6.11). Similarly, the boundary between the core 

and the shell becomes blurrier as α increases.  
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Chapter 7. Concluding remarks  

7.1 Conclusions 

The main objective of this work is to improve the accuracy and universality of quantitative 

electron-induced X-ray microanalysis for heterogeneous materials. Specifically, a secondary 

fluorescence correction program, available for three-dimensional (3D) heterogeneous materials, 

was developed in Chapter 3 and Chapter 4; Chapter 5 introduced a novel inverse modeling 

algorithm to extract the compositional and structural information simultaneously; and Chapter 6 

focused on the quantitative scanning transmission electron microscopy (STEM) tomographic 

reconstruction. The conclusions are summarized as follows:  

1. A secondary fluorescence correction program, applicable to homogeneous and multilayer 

specimens, was developed using a hybrid model that combines the Monte Carlo simulation 

and an analytical model. The program uses MC X-ray, a Monte Carlo program, to obtain the 

generated X-ray intensities and depth distribution curves of the primary X-rays (both 

characteristic and bremsstrahlung). This information is then used to calculate the multiple 

integrals in the analytical formula numerically to obtain the secondary fluorescence intensity.  

2. The accuracy of the program was tested by comparing the results with both experimental 

data from references and simulation data from other software (DTSA-II and PENEPMA). In 

general, suitable matches were shown for both homogeneous bulk and multilayer samples. 

However, for an Fe substrate with a Ni coating, the calculated bremsstrahlung fluorescence 

intensity of the Fe Kα line was slightly larger than the data from other software. This was 

explained by the difference in the bremsstrahlung X-ray intensities arising from different 

bremsstrahlung cross-section models used in Monte Carlo programs.  

The practicality of the program was evaluated using an efficiency-like metric ϵQ, which 

considers both the computation time and the uncertainty of the value, and compared with 

other software. When the simulated electron numbers were the same, PENEPMA showed 
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the worst efficiency due to the high uncertainty. The efficiencies of DTSA-II and our 

program were at a similar level. 

3. The secondary fluorescence correction program was then extended to apply to arbitrary 3D 

heterogeneous materials using a similar hybrid model by extracting 3D distribution of the 

primary X-rays from MC X-ray and deriving the analytical formula for small voxels instead 

of thin slices. An algorithm “SkipVoxel” was proposed to improve the computation 

efficiency for the voxels out of the primary interaction volume, and it saved more than 80% 

of the simulation time with a less than 0.1% change in fluorescence intensity. The application 

of the program was presented for non-diffusion couples and spherical particles embedded 

inside a matrix. The results demonstrated good agreement with experimental and analytical 

results from previous studies and simulation results from other Monte Carlo codes. MC X-

ray, combined with the fluorescence correction program, provides an accurate prediction of 

X-ray emission. 

4. Following the secondary fluorescence correction, a novel inverse modeling algorithm was 

introduced to determine the structure and composition of an unknown specimen 

simultaneously from a series of EDS/WDS experimental measurements under different 

beam energies and beam positions. The algorithm can be applied to arbitrary 2D 

heterogeneous materials. It uses an iterative process of forward modeling to determine the 

optimal composition of each voxel of the specimen to minimize the relative differences 

between the simulated and experimental X-ray intensities. 

Tests were performed for the simulation dataset of phantom samples to evaluate the 

performance of the algorithm. For 1D specimens, including multilayer samples and coupled 

samples separated by vertical boundaries, the results were found to be very close with the 

phantom samples when appropriate input parameters, including beam positions, beam 

energies, and voxel size, were chosen. For 2D specimens, the features located at shallower 

depths were well recognized, while some discrepancies were shown for the features located 

at deeper depths. These discrepancies were attributed to the errors from the forward 

modeling and the increased X-ray range with beam energy.  

5. A new quantification approach was proposed using the physical parameters acquired from 

MC X-ray to quantify the 3D elemental distribution of nanostructures reconstructed from 
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electron tomography. We have shown the feasibility of the quantification approach for EDS-

STEM tomography and HAADF-EDS bimodal tomography (HEBT) applied to a simulation 

dataset of a 2D phantom sample (a single slice) and an experimental dataset of a particle of 

flux melted metal-organic framework glass.  

For the flux melted metal-organic framework glass, the reconstructed weigh fraction maps 

showed the diffusion of the Zn-rich domain and the Co-rich domain into each other. The 

EDS-STEM tomography quantification factors calculated using our approach have shown 

good consistency with the experimentally measured partial cross-sections from reference. In 

general, HEBT has shown advantages in image contract, boundary determination, and noise 

reduction in comparison to EDS-STEM tomography due to the high signal-to-noise ratio 

(SNR) information from the HAADF signal.  
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7.2 Contributions to original knowledge 

The contributions to original knowledge made in this work are summarized as follows: 

1. For the first time, this study quantitatively evaluated the practicality of a secondary 

fluorescence correction program using an efficiency-like metric. The metric considers both 

the computation time and the uncertainty of the calculated quantity. 

2. This is the first study to calculate the secondary fluorescence for voxels, making the 

approach applicable to arbitrary 3D heterogeneous materials.  

3. The inverse modeling algorithm proposed in this work is the first to extract the 

compositional and structural information simultaneously for an arbitrary 2D heterogeneous 

material.  

4. This is the first study to use the clustering algorithm to estimate possible specimen 

segmentation in X-ray microanalysis inverse modeling. 

5. This study, for the first time, quantified the 3D elemental distribution reconstructed from 

HEBT, through which high-resolution elemental weight fraction maps were obtained. 

6. This is the first study to compare the image qualities of the quantified elemental maps from 

EDS-STEM tomography and HEBT. 
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7.3 Future work 

1. The developed secondary fluorescence correction program, together with MC X-ray, will 

be integrated into Dragonfly, a software platform for image analysis, through which the 

efficiency of the code will be improved, and the new version can simulate the X-ray 

emission for both designed phantom specimens and experimental datasets.  

2. For the inverse modeling algorithm, the determination of the input parameters, including 

beam energies, beam positions, and voxel size, needs to be further investigated. The 

algorithm needs to be optimized to recognize the feature located in deeper depths. 

Furthermore, using the K-line and L-line simultaneously may improve the accuracy of the 

algorithm. 

3.  With a better understanding of the algorithm, the 2D inverse modeling algorithm can be 

extended to 3D inverse modeling in the future. 

4. In the current study, the simultaneous iterative reconstruction technique (SIRT) was used 

for both EDS-STEM tomographic and HEBT reconstruction. More advanced 

reconstruction techniques can be used to replace SIRT for future work to improve the 

reconstructed image. 
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