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Recherche du Québec Nature et Technologies) and NSERC (National Sciences and

Engineering Research Council of Canada) grant to Dr. Khadra

iv



ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease whereby T-cells of the host’s

immune system recognize and selectively kill insulin-producing β-cells of the Islets

of Langerhans in the pancreas. Treatment of this disease using nanoparticles

(NPs) coated with multiple peptide-major histocompatibility complexes (pMHC)

has been shown to effectively reverse disease progression in animal models by

expanding cognate autoregulatory T-cells, a sub-population of T-cells arising

from memory cells that kill antigen presenting cells (APCs) presenting β-cell

specific autoantigens in the pancreatic lymph nodes. We use mathematical

and computational approaches to optimize the activation and expansion of this

population of autoregulatory T-cells in both in vivo and in vitro contexts. Our

model of T-cell expansion showed that smaller NPs are more effective at increasing

T-cell population size than larger NPs, but the effect of NP-valency (i.e. number of

pMHC molecules on each NP) is rather minimal. Transmission electron microscopy

revealed that interactions between T-cells and pMHC-coated NPs take place at

two different levels: (i) a supramolecular structural level in which NPs bind to the

T-cell receptors on the T-cells in a cluster formation, and (ii) an individual pMHC-

TCR binding level equivalent to that of a generic ligand-receptor interaction. We

have developed a Markov model to represent both the supramolecular clustering

of NPs on T-cells, as well as the individual pMHC-NPs binding to the TCRs.

Markov Chain Monte Carlo methods were used to fit the parameters of the model

to experimental T-cell activation profiles and generate probability distributions
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for these parameters. Analysis of the sampling distribution of the parameter

space showed a functional relationship between the binding rate of NPs, pMHC

valency, and size of NP clusters. It also revealed that there is a unique maximal

NP binding rate to T-cells corresponding to a unique combination of cluster size

and ligand density for each NP-size. These characterizations of pMHC-NP-TCR

interactions and their stimulatory activities are key to optimizing the design of

pMHC-NPs in therapeutic treatment of autoimmune diseases.
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ABRÉGÉ

Le diabète de type 1 (DT1) est une maladie auto-immune par laquel les cellules T

du systèm immunitaire de l’hôLe reconnâıt et sélectivement tue les cellules bêta

qui est les productrices d’insuline des ı̂lots de Langerhans dans le pancréas. Le

traitement de cette maladie utilisant des nanoparticules (NP) qui sont recouverts

de plusieurs peptide-complexes majeur d’histocompatibilité majeur (pCMH) ont

demontré l’inversion efficace l’avancement de la maladie dans des modèles animaux

par l’expansion les cellules T autorégulatoires cognates, une sous-population

de cellules T provenant de cellules mémoire qui tue les cellules présentatrices

d’antigène (CPA), qui exprimant des auto-antigènes spcifiques des cellues bêta,

dans les ganglions lymphatiques du pancréas. Nous utilisons des approches

mathématiques et computationelles pour optimiser l’activation et l’expansion

de cette population de cellules T autorégulatoires telles qu’observées in vivo et

in vitro. Notre modèle d’expansion des cellules T a montré que les plus petites

NP étaient plus efficaces pour augmenter la taille de la population des cellules T

tandis que l’effet de valence (le nombre de molécules de pCMH sur chaque NP)

était assez minimes. La microscopie électronique à transmission a révélé que les

interactions entre les cellules T et les NP recouvert des pCMHs existe à deux

niveaux différents: (i) un niveau structurel supramoléculaire dans lequel les NP

sont liès à la surface des cellules T dans une formation d’un groupe, et (ii) un

niveau nanoscopique où les pCMH sont individuellement liès aux TCR, qui est

en effet une interaction générique de ligand-récepteur. Nous avons développé un
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modèle de Markov pour représenter le regroupement supramoléculaire des NP sur

les cellules T ainsi que les liaisons individuelles pCMH-NP au niveau des TCR.

Nous avons utilisé les méthodes de Monte-Carlo par châınes de Markov pour

ajuster les paramètres du modèle à des profils expérimentaux d’activation des

cellules T et pour générer des distributions de probabilité pour ces paramètres.

L’analyse de la distribution d’échantillonnage de l’espace des paramètres a montré

une relation fonctionnelle entre le taux de liaison des NP, la densité des pCMH,

et la taille des groupes NP. De plus, nous avons trouvé qu’il y a un taux de

liaison maximal des NP aux cellules T correspondant à une combinaison unique

de la taille de groupe et de la densité de ligand pour chaque taille de NP. Ces

caractérisations d’interaction pCMH-NP-TCR et les réactions stimulatoires qui

en résultent sont cruciales pour optimiser la conception de pCMH-NP dans le

traitement thérapeutique générique des maladies auto-immunes.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Autoimmune diseases from a modeling perspective . . . . . . . . . 1
1.1.1 Modeling APCS . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Modeling T-cell dynamics . . . . . . . . . . . . . . . . . . . 6

1.2 Nanoparticle treatment of T1D . . . . . . . . . . . . . . . . . . . 8
1.2.1 T-cell expansion in vivo . . . . . . . . . . . . . . . . . . . . 9
1.2.2 in vitro stimulation experiments . . . . . . . . . . . . . . . 10

1.3 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Markov Chain Monte Carlo for parameter estimation . . . . . . . . . . . 14

2.1 Statistical approaches of estimation . . . . . . . . . . . . . . . . . 14
2.2 Numerical optimization . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Numerical MCMC algorithm . . . . . . . . . . . . . . . . . 18
2.3 Markov Chain Monte Carlo in differential equations models . . . . 20

2.3.1 Example and usage . . . . . . . . . . . . . . . . . . . . . . 22

3 Model of in vivo T-cell proliferation . . . . . . . . . . . . . . . . . . . . . 27

3.1 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



4 Model of in vitro activation . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Model of cluster binding . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 IFNγ production kinetics . . . . . . . . . . . . . . . . . . . 42
4.1.2 Activation kinetics of T-cells . . . . . . . . . . . . . . . . . 44

4.2 Parameter estimation with data fitting . . . . . . . . . . . . . . . 49
4.2.1 Error function . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 MCMC fitting results . . . . . . . . . . . . . . . . . . . . . 51

4.3 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Filtering parameters for lowest errors . . . . . . . . . . . . 58
4.4.2 Cluster binding rate and cluster size by valency . . . . . . . 61
4.4.3 ec50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Model of nanoparticle binding . . . . . . . . . . . . . . . . . . . . 65
4.5.1 NP binding rate . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 NP dissociation rate . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Co-operativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Future Considerations . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.1 Kinetic proof reading as a model of T-cell activation . . . . 84
5.1.2 Probability of activation . . . . . . . . . . . . . . . . . . . 88
5.1.3 Estimation of number of nanoclusters . . . . . . . . . . . . 90

A IFNγ production data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 Running MCMC Toolbox . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 Sum-of-square error function . . . . . . . . . . . . . . . . . . . . . 94
B.3 DE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



LIST OF TABLES
Table page

2–1 Six simulated experiments on the growth of Escherichia coli in LB
broth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2–2 Modes of estimated parameters in the logistic model . . . . . . . . . . 24

3–1 Values of known parameters . . . . . . . . . . . . . . . . . . . . . . . . 32

3–2 Parameter values close to the median (50th percentile) and at the
90% confidence envelopes (between 5th percentile and 95th per-
centile). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4–1 Table showing the modes of the parameters corresponding to Eqs.
(4.1) – (4.7) as determined by the MCMC toolbox. . . . . . . . . . . 53

4–2 Table of parameter estimates for fitting Eq. (4.31) to the joint distri-
bution of k1 and m in Fig. 4–9. . . . . . . . . . . . . . . . . . . . . 61

4–3 Table of parameter for fitting Eq. (4.32) to the ec50 from Table 4–2. . 62

4–4 Table of parameter for fitting k1 as a function of m and valency. . . . 65

4–5 The maximum number of pMHC/cluster that can be attained when
kon is optimal along with the valency per NP that can achieve this
maximum and the distance between pMHCs at that valency. . . . . 73

4–6 NP binding (kon), unbinding (koff ) and dissociation rate (KD) pa-
rameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4–7 Comparison of model selection criteria AIC and BIC applied to serial
digestion model and unsaturated digestion. . . . . . . . . . . . . . . 81

5–1 Estimates of Emax and EC50 based on kinetic proof reading model. . . 88

xi



A–1 IFNγ produced by 2.5×105 T-cells/ml incubated in vitro with 20 nm
radius NPs of various valency and dose for 48 hours corresponding
to Fig. 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A–2 IFNγ produced by 2.5×105 T-cells/ml incubated in vitro with 14 nm
radius NPs of various valency and dose for 48 hours corresponding
to Fig. 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii



LIST OF FIGURES
Figure page

1–1 Role of APC mediating anti-β cell autoimmune response adapted
from Fig. 1B of [28] with permission. . . . . . . . . . . . . . . . . . 5

1–2 Percentages of tetramer+ splenic CD4+ T-cells in NOD mice treated
with 8 nm diameter core NPs with different pMHC valencies and
dose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1–3 Transmission electron micrograph of T-cell after treatment with pMHC-
NPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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CHAPTER 1
Introduction

1.1 Autoimmune diseases from a modeling perspective

Predictive mathematical models of complex diseases, such as those involved in the

development of autoimmune disorders, can help improve our understanding of the

underlying physiological processes that lead to clinical manifestation of symptoms

and direct development of therapeutic strategies. In autoimmune type 1 diabetes

(T1D), T and B cells of the host’s own immune system recognizes and selectively

attacks the host’s own tissue. In the human subjects as well as animal models such

as the non-obese diabetic (NOD) mouse, up to 90% of the total insulin-secreting β-

cell population in the pancreatic islets of Langerhans is destroyed by effector CD4+

and cytotoxic CD8+ T lymphocytes that infiltrate the islets [12, 43, 46, 50, 57],

leading to deficiency in insulin secretion and elevated levels of glucose in diabetic

individuals. In particular, CD8 + T-cells can target β-cells directly to induce cell

death.

T-cells recognize and react to foreign or, in the case of autoimmunity, self-

antigens through antigen-specific interactions via T-cell receptor (TCR) with

peptide-major histocompatibility complexes (pMHC) class I [41], expressed on the

surface of all nucleated cells such as β-cells and recognized by CD8+ T-cells, and

class II [40], expressed only on professional antigen presenting cells (APCs) such

as B-cells, macrophages, and dendritic cells which is recognized by CD4+ T-cells.
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In healthy individuals, the T-cell repertoire is carefully regulated through positive

and negative selection in the thymus to respond against pathogen-derived foreign

antigens and not those found naturally within the body. Negative selection, a

process designed to kill T-cells recognizing self-antigen with high affinity [53], is an

imperfect process that leaves some potential for autoimmunity in every person, yet

not everyone develops autoimmunity [2]. Better understanding of T1D can provide

some insights into other chronic autoimmune diseases.

Genetics is recognized to play a role in determining life-time susceptibility.

However there is still a great amount of debate and uncertainty about the factors

that trigger the clinical onset of T1D. The basic understanding for the develop-

ment of T1D, first proposed by Eisenbarth [16], postulates that genetic background

provides all individuals with some level of susceptibility to the disease. Exposure

to environmental triggers such as certain viruses or foods leads to abnormal ac-

tivation of the T-cell mediated adaptive and B-cell mediated humoral immune

response in the pancreas. During T1D progression, autoreactive T-cells undergo

a process of “avidity maturation” [1], defined as an increase in the avidity level

of T-cells over the course of the autoimmune response, accompanied by a gain in

pathogenic potential. Islet autoantibodies manufactured by mature B-cells have

been able to serve as reliable surrogate predictive markers of clinical presentation

of disease [30, 45, 61]. The presence of one or more type of antibody can precede

the clinical onset by years or even decades, with increased titres or positivity of

multiple antibodies corresponding to increased likelihood of hyperglycemia and

progression to clinical disease[32].
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The role of APCs such as macrophages in T1D development remains an

outstanding question. Macrophages serve dual roles of phagocytosis of cellular

debris following an immune reaction, and processing antigens in engulfed particles

for presentation on class II MHC as well as class I MHC through cross presenta-

tion [5]. Defects in macrophage engulfment, such as those reported in NOD mice

[36, 38], could lead to a buildup of fragments of β-cells destroyed as part of natural

processes such as the β-cell apoptotic wave during the neonatal period [18, 58] or

due to external stressors such as infections. Defective cleanup of cellular debris

could trigger the production of chemotactic factors such as CCL2 to further recruit

macrophages and inflammatory factors such as tumor necrosis factor (TNF) that

prime APCs for T-cell activation. Overall, the polyclonal nature of the immune

responses against multiple autoantigens and the uncertainty in the role of APCs

in disease initiation and progression [38] make identifying and designing thera-

peutic strategies, such as the monoclonal antibody-based approaches [4, 27] and

autoimmune-specific nanovaccines [59] very challenging.

Mathematical approaches to understanding T1D typically involve developing

dynamical models expressed as sets of ordinary differential equations (ODEs)

or partial differential equations (PDEs) that describe the temporal dynamics of

the population sizes of immune cells, β-cells, as well as the expression level of

autoantigens and titre level autoantibodies implicated in the disease. Numerical

simulations incorporating estimated or experimentally derived parameters and

bifurcation analysis are typically used to examine their short and long term

(steady-state) behaviour. Once these models are perfected and validated against
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experimental data, they can eventually serve as diagnostic tool(s) of the disease

in clinical settings. A brief overview of the application of mathematical models,

including model set-up and main results, is presented in the next sections.

1.1.1 Modeling APCS

Antigen presenting cells play a central role in the immune response. A model

of T1D development termed the Copenhagen model [42] was proposed to anal-

yse their dynamics (Fig. 1–1). In brief, the model is described as follows: after

ingesting antigenic particles such as dead β-cell fragments in the case of T1D au-

toimmunity, APCs upregulate antigen processing pathways, secrete chemokines to

further recruit other APCs to the islets and increase expression of co-stimulatory

molecules to activate β-cell specific autoreactive CD4+ and CD8+ T-cells. These

activated APCs also upregulate the secretion of cytokines such as interleukine-1

(IL-1), TNF and reactive oxygen species (ROS) which lead to further stress-

induced β-cell death [11, 56], accumulation of dead β-cell debris of APC engulf-

ment, and amplification of the autoimmune response.

Apoptotic or necrotic β-cells that are not removed promptly were shown to

trigger the secretion of high levels of inflammatory cytokines of from activated

macrophages in NOD mice [51]. A possible mechanism for the initiation of this

positive autoimmune feedback loop was hypothesized to be related to defects in

macrophage engulfment and clearance of the neonatal wave of apoptotic β-cells

[18, 58] which triggers increased inflammatory response in NOD mice but not in

healthy Balb/c mice. Based on experimental data, Marée et al. [36, 37] showed

mathematically that macrophages from healthy Balb/c mice engulfed apoptotic
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Figure 1–1: Role of APC mediating anti-β cell autoimmune response adapted from
Fig. 1B of [28] with permission.

cell bodies 2.6 – 5.5 times faster than macrophages isolated from NOD mice and

that the digestion of apoptotic cells bodies was also at least twice as slow in

NOD mice compared to Balb/c macrophages [36, 37]. This quantitative analysis

was performed using Markov state models developed to describe the process of

macrophage engulfment and digestion of apoptotic cells bodies, where each state

of the model represented the number of macrophages with a given number of

engulfed apoptotic bodies inside vesicles within the cell. The model showed that

though an activation step and an accelerated engulfment following macrophage

activation exists in both Balb/c and NOD strains, albeit smaller in NOD than in

Balb/c mice. This decrease in macrophage activation and engulfment in NOD mice
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contribute to the build-up of apoptotic β-cell debris in the pancreatic environment

and sustains the inflammatory feedback leading to β-cell death.

1.1.2 Modeling T-cell dynamics

Mathematical models of T1D progression have two main goals: testing possible

mechanisms underlying the function of effector CD4+, cytotoxic CD8+ and

(auto)regulatory T-cells during the development of T1D, and analyzing as well as

optimizing the effect(s) of certain interventional therapies.

T-cells play a central role in all autoimmune diseases and are the main

therapeutic targets. T-cells require two signals for activation: the engagement of

TCR with its cognate antigen-specific pMHC ligand and a co-stimulatory signal

selectively expressed on the surface of professional APCs. Because näıve T-cells

experience anergy and apoptosis when stimulated with pMHC in the absence

of costimulation, treatment with peptides or soluble pMHCs is an attractive

therapeutic approach that, unfortunately, only led to limited success at reversing

hyperglycemia in NOD mice [9]. Counter-intuitively, administration of certain

peptides designed to induce tolerance or deletion of autoreactive T-cells mostly

failed to blunt the poly-specific autoimmune response. For example, despite

effective deletion of IGRP206−214-reactive T-cells, where IGRP is a dominant β-cell

specific autoantigenic peptide, there was only moderate delays in onset of diabetes

[24].

Mathematical model of this process consisting of two competing clones of

T-cells, with various levels of avidities, revealed that deletion of all IGRP206−214-

reactive clones creates a vacuum in the homeostatic pool of T-cells that promote
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the expansion of pathogenic sub-dominant specificities [38], a result verified

experimentally [24]. It has long been known that homeostatic mechanism maintain

the total population size of the T-cell pool at a near constant steady state level.

Deletion of all T-cells reactive to one specific antigen by peptide treatment allows

other clones to occupy the T-cell niche emptied by the treatment and return

the T-cell population to its natural levels [38, 54]. In order to be successful, the

mathematical model predicted that it would be critical to foster the expansion

and recruitment of low-avidity clones that are non-pathogenic. Evidence such a

population of non-pathogenic low-avidity T-cells exist from studies by Santamaria

et al. [59], showing that a reversal of diabetes through treatment with antigen-

specific pMHC conjugated to nanoparticles (NPs) correlated with an expansion in

a small pool of low-avidity T-cells. These low-avidity CD8+ T-cells are thought

to be part of the population of T-cell that prevent the expansion of high-avidity

pathogenic populations through APC deletion [1, 59].

The protective role of low-avidity CD8+ T-cells was investigated from math-

ematical perspective by developing a model comprised of two interacting popula-

tions of T-cells [31]: low-avidity T-cells enriched for memory cells and high avidity

T-cells consisting mostly of näıve and effector cells. The role of APCs in T-cell

activation, and the ability of dead β-cells to increase the autoimmune response

was also studied [31]. The model was used to test two important hypotheses

suggested by experimental data : (i) the expanded pool of low-avidity memory

T-cells infiltrate the islets, crowding out effector high avidity cells and interfering
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with their ability to kill β-cells, (ii) low-avidity memory T-cells delete APCs pre-

senting the IGRP206−214 peptide on their surface thereby inhibiting the activation

of high-avidity T-cells. It was shown under hypothesis (i), the level of β-cells in

the diseased state rapidly increases with increasing expansion rate of low-avidity

T-cells, which is incompatible with observed data, making hypothesis (ii) more

plausible. The model revealed that progressive accumulation of memory T-cells

during disease progression makes treatments aimed at expanding these protective

T-cell types more effective close to, or at the onset of clinical disease.

1.2 Nanoparticle treatment of T1D

The idea of conjugating pMHCs to NPs have several advantages over soluble

peptides or pMHCs: (i) NPs provide scaffolding to enhance TCR-crosslinking,

a critical requirement for T-cell activation and (ii) NP-bound pMHCs would

be protected from degradation thus increasing its half-life in circulation [10, 8].

Treatment with monospecific NPs, composed of a variable sized iron oxide core

surrounded by 10 nm layer of pegylation, conjugated to islet-specific antigenic

pMHCs (pMHC-NPs) were able to both blunt T1D progression in prediabetic

mice and newly diagnosed diabetic animals by expanding the subset of memory

autoregulatory CD8+ T-cells [59]. These autoregulatory CD8+ T-cells arose

spontaneously during chronic disease progression through repeated autoantigen

exposure and function as a negative feedback by inhibiting the activation and

recruitment of näıve pathogenic T-cells to islets via deletion of autoantigen-

presenting APCs [8, 10, 59]. The pMHC-NPs lack the necessary co-stimulatory

molecules required to activate pathogenic T-cells thus leading to their suppression.
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These results were predicted by the mathematical model in [31] as well as verified

experimentally in [59].

Mathematical model of pMHC-NP treatment was used to predict the outcome

of the pMHC-NP therapy, to understand the dynamics of competition between

T-cell clones as a guide to optimize treatment frequency and dose [52]. It was

shown that increasing the frequency of injection is more effective therapeutically

than increasing the dose [31]. By taking into account that the expansion of

autoregulatory T-cells and deletion of autoantigen-loaded APCs by these T-

cells are biphasic, that is, no T-cell expansion at low NP doses, expansion at

intermediate dose and cell deletion at high NP doses, effective range of doses and

ranges in pMHC-NP valency were also be identified. It was found in this study

that NP injection dose should exceed 8µg for the treatment to become effective.

At this dose, moderate increase (≥1.6-fold) in the NP-dependent expansion rate of

autoregulatory T-cell population led to a significant increase in the efficacy and the

area corresponding to the effective treatment regiment [52].

1.2.1 T-cell expansion in vivo

Follow-up experimental studies by the Santamaria group aimed at providing quan-

titative information on the expansion of the memory population were completed

by treating cohorts of 10 week old female NOD mice injected i.v. with pMHC-

coated NPs of various valency in PBS twice a week for 5 weeks. Changes in the

percentage of antigen-specific autoregulatory T-cell population of CD4+ T-cells

collected from the spleen and quantified using flow cytometry (FACS) (Fig. 1–2)

showed that population expansion to be proportional to dose, but not valency.
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Figure 1–2: Percentages of tetramer+ splenic CD4+ T-cells in NOD mice treated
with 8 nm diameter core NPs with different pMHC valencies and dose.

Understanding the effects of valency on the expansion of the autoregulatory T-cell

population and extending to the effect of NP size is the first goal of this thesis.

1.2.2 in vitro stimulation experiments

Experimental attempts to gain insights into the possible mechanisms underlying

the effects of pMHC-NPs on T-cell activation observed in vitro were pursued. It

was found that pMHC-NPs bind to cognate T-cells from TCR-transgenic 8.3-NOD

mice as clusters of several NPs spanning approximately up to 400 nm (Fig. 1–3).

This binding geometry was seen within 30 minutes of incubation at 4◦C, and reach

their maximum size after a further 90 minutes at 37◦C (unpublished data).

To investigate the agonistic properties of pMHC-NPs, in vitro stimulation

experiments were conducted with näıve FACS-sorted splenic CD8+ T-cells from

TCR-transgenic mice. Cells were suspended to a concentration of 2.5 × 105

cells/mL and incubated with various concentrations of pMHC-NPs for 48 h at
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Figure 1–3: Transmission electron micrograph of T-cell after treatment with
pMHC-NPs.

37◦C. The supernatants were assayed for the cytokine interferon gamma (IFNγ)

by enzyme-linked immunosorbent assay (ELISA) (Fig. 1–4). 8.3-CD8+ T-cells

produced negligible amounts of IFNγ when cultured in the presence of NPs coated

with 8 pMHC monomers per NP, but produced substantially higher amounts of

IFNγ in response to NPs coated with higher pMHC valencies, even as low as 11

pMHCs/NP, in a dose-response manner. However, whereas 25× 1011 NPs (per ml)

carrying 11 pMHCs/NP had similar agonistic activity as 5 × 1011 NPs (per ml)

carrying 54 pMHCs/NP, increasing the number of NPs carrying 8 pMHCs/NP to

values as high as 40 × 1011 NPs/ml had minimal effects. Similarly for larger 20

nm NPs, increasing NP dose to as high as 75 × 1011 NPs/ml using NPs coated

with 9 pMHC/NP resulted in negligible IFNγ production. These results indicate

that there is a threshold of pMHC valency for 8 nm NPs lying between 9 and 11

pMHCs/NP, and for 20 nm NPs lying above 13 pMHC/NP below which increases
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Figure 1–4: Amount of IFNγ produced by näıve splenic CD8+ T-cells from TCR-
transgenic 8.3-NOD mice detected by ELISA after stimulation with cognate
pMHC-NPs with 8 nm diameter core or 20 nm diameter core with different pMHC
valencies and doses.

in the number of NPs (i.e. 5-fold) cannot overcome the low agonistic activity of

pMHC-NPs coated at low valencies.

Collectively, these results indicate that pMHC density is a critical parameter

in the design of pMHC-based nanomedicines. The importance of the experimental

system and the modeling associated with it arise from the fact that they could

be generalized to other autoimmune disorders and could eventually serve as

computational tools to understand and optimize pMHC-NP-based therapies in

these diseases.

1.3 Aims

T-cells are the key mediator of a host of autoimmune disease and the treatment

schema presented here need not be limited to one disease. With this understand-

ing of the biological foundations of autoimmune diseases such as T1D and an

experimental framework of treatment using pMHC-NPs, in this thesis, we will use

mathematical models to understand the results of two experimental paradigm of
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T-cell-NP interactions. Our mathematical approach to understanding the action

of the NPs begins with an overview of parameter estimation methods with a focus

on the method of Markov Chain Monte Carlo (MCMC), a method of parameter

estimation arising from statistical inference, which is well-suited to biological ap-

plication that contain variation due to heterogeneity (Chapter 2). We will see how

MCMC can be generalized from statistics to fit the kinetic parameters of ODE

systems, and determine how the underlying statistical theory can be transferred to

provide stationary distributions of parameter estimates. In Chapter 3, we develop

a model to explain the level of T-cell proliferation in vivo following intravenous

injections of pMHC-NPs shown in Fig. 1–2. In Chapter 4, we develop a model

to understand the biophysical dynamics of the pMHC-NP and T-cell interaction

starting from the formation of nanoclusters seen in Fig. 1–3, to the binding of

individual NP and also analyse the co-operativity of binding in pMHCs that

are coated on each NP, and how these different levels of interaction produce the

activity in Fig. 1–4. Chapter 5 addresses concerns with the model developed in

Chapter 4 especially with regards to some quantitative feature of nanoclusters and

the activation kinetics of pMHC-NP stimulation, and recommend adjustments to

the model.
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CHAPTER 2
Markov Chain Monte Carlo for parameter estimation

2.1 Statistical approaches of estimation

A primary concern in model development is finding a set of parameter values that

produce a good fit to a set of empirical data using results of model simulation.

The broad branch of statistics that deals with producing reasonable parameter

estimates based on data that has a random component is called Inference Theory.

The probabilistic approach to this type of estimation used here assumes that the

data is drawn from some probability distribution that depends on the parameters

of interest.

The two main components of statistical estimation are the experimental

or empirical data, (x1, x2, . . . , xn) = x, that we wish to reproduce using the

mathematical model and the corresponding parameters, θ. The quantity of

interest in parameter estimation is the posterior probability p(θ | x) which is the

probability of the parameters θ after taking into account the observed data x.

By Bayes’ rule, this posterior distribution can be expressed as a consequence of a

prior probability of the parameter, π(θ) and the likelihood for the observed data

p(x | θ):

p(θ | x) =
p(x | θ)π(θ)

p(x)
. (2.1)
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The likelihood p(x | θ) is calculated as joint density function for all (indepen-

dent and identically distributed) observations given the parameters θ:

p(x | θ) = p(x1, x2, . . . , xn | θ) =
n∏
i=1

p(xi | θ) (2.2)

and π(θ) represents the prior knowledge we have about θ. The denominator of the

expression p(x) represents the probability of the data averaged over all parameters.

Since the denominator is independent of θ, this factor is the same for all possible

parameters being considered. Therefore, we can simplify Eq. (2.1) to:

p(θ | x) ∝ p(x | θ)π(θ) (2.3)

Since our goal is to estimate the parameters, the problem of estimation can

often be framed as an optimization problem to minimize the error function:

e = θ̂ − θ, (2.4)

where θ̂ represents an estimate of the true parameter values. Since the true

parameter values are often unknown, the alternative is to find an estimate that

minimizes the mean square error (MSE) between the observed data and the model

simulation, given by

MSE =
1

n

n∑
i=1

(X̂i −Xi)
2, (2.5)

where X̂i represent the outcomes of the model which correspond to the i-th

observation given by Xi. Estimators such as the minimum mean square error

(MMSE), as its name implies, minimizes the MSE.
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In the case of Bayesian inference, the optimization problem is one of max-

imization. The posterior p(θ | x) expressed in Eq. (2.1) can be viewed as a

function where the observed values x1, x2, . . . , xn are fixed quantities whereas θ is

the variable allowed to vary freely. The method of maximum a posterior (MAP)

estimation is to find θ̂MAP such that:

θ̂MAP(x) = arg max
θ

p(θ | x) = arg max
θ

p(x|θ)π(θ). (2.6)

It is normal to ignore p(x), the term in the denominator of Eq. (2.1), in optimiz-

ing p(θ | x), since it is a constant normalizing factor to ensure p(θ | x) ≤ 1.

2.2 Numerical optimization

The basic procedure of a numerical approach to optimization involves three basic

steps:

• initiation: define the model and an initial guess θ(0).

• iteration: refine the initial guess by making adjustments using some update

function.

• termination: stop iteration with some stopping or convergence criteria.

In Bayesian parameter estimation, the posterior p(θ | x) is only a function of the

parameters θ.

If p(θ | x) is differentiable, then the maximum and minimum must be attained

when

∂p(θ | x)

∂θi
= 0. (2.7)

We can then employ a number of iterative root-finding algorithms, such as

Newton’s method, to solve for ṗ(θ | x) = 0.
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When p(θ | x) is not differentiable, the parameter space will have to be

sampled directly to obtain the maximum likelihood. Markov Chain Monte Carlo

(MCMC) is a technique that solves the problem of sampling from a complicated

distribution. The Monte Carlo involves performing a large number of simulations

each with randomly drawn parameters. If these randomly drawn parameters are

part of a random walk in a Markov Chain, then the stationary distribution of this

chain can be constructed to simulate the posterior distribution of the parameters.

The parameter estimate is obtained by “wandering around” on the surface

given by the posterior p(θ | x) in such a way that the amount of time spent in

each location is proportional to the height of the distribution at that location. In

the Metropolis-Hastings algorithm [25, 39], the random walk is directed in such a

way that it is always favourable to be walking in the direction that increases p(θ |

x). However if the proposed location (selected uniformly across the entire surface)

is lower than the current location, then the move is assignment a probability

p, where p is the ratio of the height of proposed point to the current location.

As the walk confined to the hilltops of the surface and quickly moves out of the

valleys, stationary distribution of this random walk, representing its behaviour

over long time, converges to the distribution of p(θ | x). One distinct advantage of

MCMC methods over other point-estimators, which produce parameter estimates

that are single-valued, is that MCMC provides with parameter estimates with an

associated probability density. Studying distributions of parameters is a much

more informative approach than knowing a single value of parameters in biological

systems where heterogeneity is inevitable.
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2.2.1 Numerical MCMC algorithm

The Metropolis-Hasting algorithm is a popular MCMC method when the posterior

distribution has no conjugacy to known distribution consisting of more than two

parameters. Since these types of problems are quite frequent in Bayesian inference,

the Metropolis-Hastings algorithm is a popular algorithm to implement MCMC.

The Metropolis-Hastings Algorithm follows the following steps:

Initiation Step

Given some data, X1, X2, . . . , Xn sampled from a distribution f(X | θ), the

Bayesian approach is implemented by calculating the posterior probability, given

by:

p(θ | X) ∝ f(X | θ)π(θ) =

(
n∏
i=1

f(Xi | θ)

)
π(θ). (2.8)

Often, it is the log-likelihood `(θ | X) = log p(θ | X) that is computed to simplify

the product in Eq. (2.8) to a sum.

The algorithm begins with an initiation step where an initial guess θ(0) is

made inside the parameter space Θ, and `(θ(0) | X) is computed as

`(θ(0) | X) = `(θ(0)) +
n∑
i=1

`(Xi | θ), (2.9)

where `(Xi | θ) = log (f(Xi | θ)) and `(θ(0)) = log π(θ(0)).

Update (Iteration) Step

In the iteration phase, the choice of a new parameter θ(i+1) is selected based

on the current parameter values θ(i), a random noise term ω, and the standard
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deviation of the prior Σ. The resulting new parameter is thus given by:

θ(i+1) = θ(i) + ωΣ (2.10)

Since this parameter update for θ(i+1) is dependent on the previous parameter θ(i),

this sampling method is called random walk Metropolis sampling.

To ensure the new parameter stays within the domain of valid values, Θ,

parameter updates that fall outside of the domain are rejected.

Acceptance-Rejection Step

The key element of the acceptance-rejection decision is based on the accep-

tance criteria α, sometimes called the “likelihood ratio”, to determine whether the

new parameters improve the log-likelihood computed, where.

α = log

(
p(θ(i+1) | X)

p(θ(i) | X)

)
= `(θ(i+1) | X)− `(θ(i) | X). (2.11)

If α ≥ 0, i.e. p(θ(i+1) | X) ≥ p(θ(i) | X), then θ(i+1) is accepted. If α < 0, then

θ(i+1) is accepted with a probability determined by the criterion:

1. draw a value u using the U(0, 1) distribution.

2. if α ≥ log(u), accept θ(i+1), otherwise, the parameter update is rejected and

θ(i+1) is set to θ(i).

This incorporation of random chance in acceptance of a new parameter allows the

sampler to traverse through more unfavourable regions of the parameter space in

order to find multiple minimas.
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Termination Step

The update and acceptance-rejection steps are repeated till the specified

number of iteration is reached, which represents the termination criterion.

Performance and validity of an application of the Metropolis-Hastings

algorithm can be assessed using the acceptance rate, the proportion of parameters

proposals from the update step that pass the acceptance-rejection criterion. If the

acceptance rate is too high, it means that the chain is not moving around enough

in the parameter space because the update steps are too small. If the acceptance

rate is too low, it means the algorithm is too inefficient with the possibility that

each update step is too large. In general, an acceptance ratio between 0.25 and

0.50 is recommended [3, 47].

Convergence to the stationary distribution usually occurs regardless of the

initial starting point; however, the time it takes for the chain to converge does

depend on the starting point. In practice, a certain set of initial iterations in the

MCMC chain is thrown out, called the burn-in. Such a step guarantees that the

draws are closer to the stationary distribution and less dependent on the starting

point.

2.3 Markov Chain Monte Carlo in differential equations models

MCMC methods and the Metropolis-Hastings algorithm are not restricted to

probabilistic models. In fact, the basic premise of MCMC methods rely on taking

random walks in the parameter space constructing a Markov Chain that has the

same equilibrium distribution as the desired distribution.

20



In biological systems we typically have some data D(ti) which are measure-

ments made at discrete time points ti and a proposed model of a system of ODEs

ẋ(t | θ), where θ represents a set of free, typically kinetic, parameters that changes

the outcomes of the model, and x(t | θ) is the solution of the ODE model given by

x(t|θ) =
∫
ẋ(t | θ)dt. The MCMC methods can thus be used to find the stationary

distribution of the parameters by finding the best fit according to some criterion

defined by the error function. The most common is the sum of square errors given

by

χ2 =
∑
i

(D(ti)− x(ti|θ))2

2σ2
(2.12)

where σ is a normalizing factor that represents some estimate of the standard

deviation of the data.

The likelihood for observing the recorded data is assumed to have a Gaussian

distribution:

p(D|θ) =
∏
i

1

σ
√

2π
e

(
(D(ti)−x(ti|θ))

2

2σ2

)
∝ e

(∑
i
(D(ti)−x(ti|θ))

2

2σ2

)
= exp(−χ2). (2.13)

Thus the log-likelihood is simply equal to the negative of the sum of square error

function, which is maximal when the error is minimal.

Applying the Metropolis-Hasting algorithm to do a maximum likelihood esti-

mation, and finding the set of parameters that minimizes the error follows similar

steps as in most statistical applications. In other words, when implementing this

method, we:

1. start with some initial guess for the parameter values and compute χ2
current;

2. propose a new set of parameter values and calculate χ2
proposed;
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3. compute the acceptance criterion, given by;

α = log

(
p(D|θproposed)

p(D|θcurrent)

)
= −χ2

proposed + χ2
current; (2.14)

4. pick a uniform random number u from U(0, 1);

5. accept if α ≥ log u and set θcurrent = θproposed, otherwise reject θproposed;

6. repeat steps 2–5 until the desired number of iterations is reached.

In the 45 years since the Metropolis-Hastings algorithm was established,

many aspects of this method have been improved upon to enhance parameter

convergence and computational efficiency including taking adaptive step sizes when

proposing new parameters as well has delaying rejection sampling [23, 22]. The

implementation of MCMC in this thesis was done using the MCMC Toolbox in

MATLAB developed by Haario et al. (http://helios.fmi.fi/∼lainema/mcmc/).

2.3.1 Example and usage

We will use a simple example to demonstrate the steps of the MCMC algorithm

as applied to an ODE system. Consider the logistic equation modeling population

growth:

dP

dt
= rP

(
1− P

k

)
, (2.15)

with P as the population size, r as the growth rate and k as the carrying capacity.

Starting with an small initial population of P0, growth is unimpeded and is

governed by the first term rP in the early phase of the system. As the population

grows, the second term rP 2/k dominates due to an increase in competition

for critical resources. This antagonistic effect is governed by the value of the

parameter k. The competition diminishes the total growth rate, until P reaches a
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Population (103 cells/ml)
Time (h) 1 2 3 4 5 6 mean σ

0 1 1 1 1 1 1 1
1 18 18 4 11 19 20 15 6.26
2 63 43 43 32 70 27 46.3 16.97
3 240 260 270 310 290 270 273.3 24.22
4 700 740 770 760 710 720 733.3 28.04
5 930 940 950 960 990 960 955 20.74
6 960 1000 940 1040 990 1000 988.3 34.88
7 940 990 1090 1010 1010 970 1000 50.76
8 970 930 990 920 1060 1050 986.7 58.88

Table 2–1: Six simulated experiments on the growth of Escherichia coli in LB
broth.

steady state. With an initial population of P0, the analytical solution to Eq. (2.15)

is:

P (t | r, k) =
kP0e

rt

k + P0 (ert − 1)
, (2.16)

where

lim
t→∞

P (t) = k. (2.17)

The logistic equation models only very simple conditions which do not have

other factors that affect population growth such as predator/prey dynamics,

migration etc., conditions that are typically found in a petri dish in a lab. We

simulated concentration of the bacterium Escherichia coli cultured in Luria broth

(LB), a nutrient-rich media, with an initial seed of 1000 cell/ml in 6 experiments

(Table 2–1). Data was generated with r = 2 h−1 and k = 1000 × 103 cell/ml, and

adding Gaussian noise to each time point proportional to the size of the population

at the time.
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Figure 2–1: Distribution of estimated parameters r and k

Parameter Mode
r 1.97 h−1

k 998.7 ×103 cell/ml
Table 2–2: Modes of estimated parameters in the logistic model

To illustrate how MCMC algorithm works, we will re-estimate the values of

the growth rate r and the carrying capacity k using these iterative methods and

the noisy (artificial) data listed in Table 2–1. Starting with an initial guess of

r = 10 h−1 and k = 100 × 103 cell/ml, the negative of the log-likelihood function,

which follows the formulation in Eq. (2.13) and defined to be the sum-of-square

error, is calculated by:

χ2 =
6∑
i=1

8∑
t=1

(Datai(t)− P (t | r = 10, k = 100))2

2σ2(t)
, (2.18)

where Datai represents the data from the i-th experiment, and P (t | r, k) is the

expression given by Eq. (2.16).
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Figure 2–2: Fitting the logistic model (solid line) to bacteria growth data (black
dots). The grey bands represent confidence intervals with the darker colors repre-
senting higher confidence.

Following this initial guess, the MCMC Toolbox is run for 100 000 iterations,

repeating the procedure of making a guess at a new parameter, calculating the

difference in χ2 and accepting or rejecting this new parameter based on this

difference. The resulting Markov Chain and distribution is shown in Fig. 2–1.

Table 2–2 shows that the mode of the two distribution is r = 1.97 h−1 and

k = 998.7 cell/ml (Table 2–2), which is remarkably close to the true parameter

values (r = 2 h−1 and k = 1000×103 cell/ml). Using the distribution of parameters

in Fig. 2–1, we can use the model given in Eq. (2.16) to create a fit through the
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experimental data as well as assign confidence intervals of where the data is likely

to be observed.

For more complicated model, the ODE system generally does not lend itself

to an explicit analytical solution. In those cases, numerical ODE solvers such as

ode45 or ode15s are typically used to obtain numerical solution to the model

P (t | r, k) for parameter estimation.
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CHAPTER 3
Model of in vivo T-cell proliferation

The treatment of T1D in NOD mice using nanoparticles coated with pMHC

depends critically on the ability of pMHC-NPs to expand the population of

autoregulatory T-cells to therapeutic levels [8, 59]. Understanding how the

design of pMHC-NPs, in relation to pMHC valency, size of NP and dose, affect

the steady-state population of autoregulatory T-cells is key to optimizing the

therapeutic efficacy of treatment.

In this chapter, we develop a model to understand how stimulation with

pMHC-NPs of various valencies, sizes, and concentrations affect T-cell proliferation

in vivo following the protocol described in Section 1.2.1. We use steady-state

analysis to predict the long-term behaviour of our model corresponding to experi-

mental data (Fig. 1–2). Our model is based on aspects of previous work by Marée

et al. [38] and provides insights on the relative effects of NP size and valency for

T-cell expansion.

3.1 Model development

We present in Fig. 3–1 the scheme describing the interaction of pMHC-NPs with

T-cells in vivo. The NPs bind to and unbind from T-cells with a certain rate,

given by bon and boff respectively. The scheme shows that, after binding, a certain

fraction of T-cells F will activate and proliferate whereas the rest (1 − F ) will

remain dormant. The dynamics of this system can be described by the equations:
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Figure 3–1: Model of T-cell proliferation in vivo.

dX

dt
= (1− F )boffXb + FMboffXb − bonsfX −X(δ + εX) (3.1)

dXb

dt
= bonsfX − boffXb, (3.2)

where X is the number of free T-cells and Xb is the number of NP-bound T-cells.

In this model, M represents the number of cells produced through proliferation

by one T-cell, sf represents the number of available NPs for binding, δ represents

the death rate of activated T-cell and ε represents the homeostatic competition

between T-cells to maintain a constant T-cell population size.
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At steady state, the number of NP-bound and free T-cells are:

Xb =
bon
boff

sfX (3.3)

X =
F (M − 1)bonsf − δ

ε
. (3.4)

Since in reach replication cycle, the dividing cell produces two daughter cells,

we may conclude that the number of cells produced through replications is:

M = 2d, (3.5)

where d is the number of divisions each proliferating cell undergoes.

In this model, we assume the fraction of T-cells that are activated after

binding, F , is a sigmoidal function of the number of pMHC-TCR complexes (mt),

described by:

F =
m2
t

a2 +m2
t

. (3.6)

Since NPs tend to cluster on the T-cell surface (Fig. 1–3), we can estimate the

maximum number of NPs at a binding site by calculating the number of circles of

radius r that can lie entirely inside a larger circle of radius R > r. Following the

schematic in Fig. 3–2, the number of layers that small circles can form within the

larger circle in a concentric ring structure is given by

N =
R

2r
− 1

2
(3.7)

layers. Each layer, n , is occupied by 6n circles, with the center defined to be layer

0. This makes the total number of NPs to be
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Figure 3–2: Schematics representing A) the estimation of the maximum number of
NPs of radius r that fills a binding site of radius R and B) the contact area (red)
between the spherical NP and the relatively flat surface of the T-cell surface.

nNP = 1 + 3

(
R

2r
− 1

2

)(
R

2r
+

1

2

)
(3.8)

at each binding site.

Because T-cells are much larger in size than NPs, one can assume that only a

proportion of the spherical structure of NPs make effective contact with the T-cell

(Fig. 3–2B). Assuming the angle of contact is no more than 45◦, we can calculate

the area of contact as follows:

A = 2π

∫ π/2

π/4

r cos θ

√
r2 +

(
dr

dθ

)2

dθ = 2π

∫ π/2

π/4

r2 cos θdθ

= (2−
√

2)πr2 ≈ 1

7
4πr2. (3.9)

The surface of the spherical NPs making effective contact with the relatively

flat surface of the T-cells is approximately 1/7 of the total surface area of the

NP. This means that only 1/7 of the total pMHCs carried by each NP can make
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contact with the TCR. As a result, the effective valency of NPs is given by:

v̂ = v/7. (3.10)

Combining (3.8) and (3.10) gives

mt = nNP × v̂ =

(
1 + 3

(
R

2r
− 1

2

)(
R

2r
+

1

2

))
× v̂, (3.11)

which represents the total number of pMHC-TCR complexes formed as a result of

binding by NPs.

The number of available NPs for binding is

sf = stot − αXb, (3.12)

where α represents the number of NPs bound to each T-cell. Substituting the

steady state values from (3.3) and (3.4) for the number of NP-bound and free

T-cells, we get

sf = stot − αsf
bon
boff

X

= stot − αsf
bon
boff

(
F (M − 1)bonsf − δ

ε

)
=⇒

0 = εstot +

(
α
bon

boff
δ − ε

)
sf −

(
α
bon
boff

F (M − 1)bon

)
s2f ,

where, k =
bon
boff

. This equation is quadratic in sf which can be solved explicitly for

the positive real root:

sf =
−(αkδ − ε) +

√
(αkδ − ε)2 + 4(αkF (M − 1)bon)(εstot)

2αkF (M − 1)bon
. (3.13)
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Homeostatic competition is assumed to increase as T-cell population increase,

induced by increasing dosage of NPs (NP-dependent increase in population size

will increase competition between T-cells due to limited space [14]) and thus is set

as a linear function of the total NPs injected, i.e.

ε = ε1stot + ε2. (3.14)

By combining Eqs. (3.5),(3.6), (3.11), (3.13), (3.14) with Eq. (3.4), we obtain:

X =
−(αkδ − ε) +

√
(αkδ − ε)2 − 4(αkF (M − 1)bon)(εstot)

2αkε
− δ

ε

=
1

2αk
+

√(
δ

2ε
− 1

2αk

)2

− F (M − 1)bonstot
αkε

− 2δ

ε

=
1

2αk
+

√(
δ

2ε
− 1

2αk

)2

−
(

mt

a+mt

)(
(2d − 1)bonstot

αkε

)
− 2δ

ε
. (3.15)

Equation (3.15) expresses the total number of free T-cells as a function of only

model parameters. In the next section, we will address how these parameters are

estimated.

Parameter Meaning Value Ref.
a pMHC concentration for half-maximum 130 pMHC [38]

activation of T-cells
d Number of cell divisions per proliferating cell 6 [38]
δ death rate of effector T-cells 0.3s−1 [38]

Table 3–1: Values of known parameters
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3.2 Parameter estimation

Based on previous work by Marée et al. [38], which studies competition between

autoreactive T-cells in the pancreatic lymph nodes, we have published estimates of

some of the parameters used in our model. In particular, the model Marée et al.

developed to represent T-cell processes such as activation, death, and replicative

potential are expected to be identical to those in our model. As such, these values

were used for the known parameters (see Table 3–1). Of these parameters, the

number of cell divisions per proliferating T-cell d is a well-studied quantity with

consensus reached by several reports [44, 60, 62], the death rate of effector T-cells

δ is calculated based on its lifespan [13], and the pMHC level at which half of the

T cells become activated is a parameter estimated by Marée et al. [38].

The unknown parameters are those involved in the NP-binding and interac-

tion with T-cells for which no previous work can be relied on. These parameters

have been estimated using MCMC as described in Chapter 2 [22, 23]. The MCMC

Toolbox (http://helios.fmi.fi/∼lainema/mcmc/) created by Haario et al. was used

to produce probability distributions of estimated parameters (Fig. 3–3) by fitting

the steady-state population of free T-cells given by Eq. (3.15) to the experimental

results shown in Fig. 1–2.

The outcomes of the MCMC estimation are displayed in Table 3–2. In the

following sections, we will use the values of the parameters at the median (50th

percentile) to simulate the total number of free T-cells. Moreover, Table 3–2 also

displays the 90% confidence envelopes that have been generated using values of the
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parameters at the 5th percentile and the 95th percentile. These envelopes enclosed

all the data points generated experimentally.

Parameter Meaning Percentile
5 50 95

ε1 Slope of competition 9.23× 10−11 2.20× 10−10 3.76× 10−10

ε2 Basal level of competition 107 353 853
bon On-rate of NPs 0.39 0.53 0.69

k =
bon
boff

Association constant 0.16 0.22 0.30

α No. of NPs bound per cell 23 31 42

Table 3–2: Parameter values close to the median (50th percentile) and at the 90%
confidence envelopes (between 5th percentile and 95th percentile).

3.3 Results

One important question that we would like to analyse is the role of valency in

determining the efficacy of NPs in expanding T-cell population. In this section, we

utilize the T-cell model, described by Eqs. (3.1) – (3.2) to address this question

based on the parameter estimates obtained in the previous section. Our results

show that the level of T-cell expansion does not vary greatly with varying valencies

of NPs with 8 nm diameter core (28 nm diameter including pegylation described

in Section 1.2). In fact, Fig. 3–4 shows that T-cell population plateaus at around

105 cells when stimulated with NPs coated with both 29 and as well as 61 pMHCs

per NP. The 90% confidence envelopes show similar results. Using the model to

explore the effect of modifying the size of the NPs, we found that at the same

valency, larger NPs are worse at expanding the T-cell population compared to

smaller NPs (Fig. 3–5). Interestingly, we also found that for small, 8 nm diameter
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Figure 3–3: The distributions of the estimated parameters: A) ε1 B) ε2 C) bon D)
k = bon/boff and E) α from MCMC [22].
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NPs, the maximum level of expansion remains at 1.2 × 105 cells when expanded

with either 20 or 61 pMHCs per NP. Using the larger, 40 nm diameter NPs, the

expansion reaches a maximum of 7 × 104 cells at the higher valency while at the

lower valency, the level of expansion only reaches a maximum of 4× 104 cells. The

model seems to support the hypothesis that beyond a certain valency threshold,

increasing the number of pMHCs per NP has no effect on the maximal expansion

level, and that this threshold depends on the size of the NPs. Moreover, for small,

8 nm diameter NPs, increasing the valency does not improve the level of T-cell

expansion. However, for larger 40 nm diameter NPs, 20 pMHCs per NP appears to

be below the threshold for effective T-cell activation, whereas a valency as high as

61 pMHC per NP is more effective at T-cell activation and proliferation.

Analysis of Eq. (3.15) to understand why valency does not seem to matter

while NP size is important shows that both factors play a role in determining a

single term, mt, given by Eq. (3.11). From Eq. (3.11), we conclude that mt is

linearly proportional to valency and inversely proportional to the square of the NP

radius, i.e.

mt ∝ v and mt ∝ 1/r2. (3.16)

This means that mt depends quadratically on 1/r and linearly on v, making it

much more sensitive to changes in NP size than valency. In other words, variations

in valency are inconsequential while variations in NP size can induce more than

2-fold change in T-cell proliferation. Other parameters may have similar effects by

are not investigated here.
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The outcome of this mathematical model predicts that the optimal pMHC-NP

design (i.e. the one displaying the highest T-cell expanding properties) would

consist of small NPs, even when coated at lower valencies than their larger

counterparts. In other words, it predicts that pMHC-NPs designed according to

these principles would have higher agonistic activity and T-cell expansion capacity

at lower doses of total pMHC (i.e. smaller, low valency NPs at lower NP doses is

more effective than larger, high valency NPs at high doses).

These predictions were tested experimentally by comparing the autoregulatory

T-cell expanding properties of 20 nm and 8 nm diameter NPs coated with pMHCs

(see the unpublished data in Fig. 3–6). Studies using 8 nm preparations carrying

22 – 44 pMHCs/NP indicated significantly higher autoregulatory T-cell expanding
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Figure 3–6: Autoregulatory CD4+ expansion potency of 8 nm core NPs compared
to 20 nm diameter core NPs at similar valencies and dose.

effects, at all doses tested (0.75 µg, 7.5µg and 25µg of total pMHC/dose), than

20 nm diameter particles carrying 29 – 45 pMHCs/NP (Fig. 3–6). Experiments

testing the autoregulatory T-cell expansion properties using 8 nm diameter NPs

carrying 7 different valencies between 29 – 61 pMHCs/NP (Fig. 1–2) showed clear

dose-dependent effects for each individual valency, but no significant differences

within the range of pMHC valencies tested.

Collectively, these results support the idea that pMHC density is a criti-

cal parameter in the design of pMHC-based nanomedicines. Thus, the in vivo

therapeutic potency of these compounds (smallest dose required to yield mean-

ingful expansions) is clearly more a function of pMHC density and dose than

valency. This is significant because high-density coating significantly reduces the

total amount of pMHC required to induce therapeutic levels of regulatory T-cell

expansion in vivo.
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CHAPTER 4
Model of in vitro activation

In this chapter, we use mathematical models to understand the activation of

näıve T-cells treated in vitro with pMHC-NPs of various valencies, sizes and

concentrations as described in Section 1.2.2. We make a more detailed examination

of the binding kinetics of pMHC-NP on T-cells, including a thorough treatment

of the observed phenomenon of NP cluster formation shown in Fig. 1–3. Whereas

Chapter 3 treated the binding and unbinding of pMHC-NPs using terms involving

one single parameter, bon and boff respectively, the controlled environment of

in vitro stimulation without cell proliferation or death allows us to incorporate

more factors that influence NP-binding and study it in finer time scales. Our

modeling approach is used to understand key biophysical parameters of pMHC-NP

interaction with T-cells.

4.1 Model of cluster binding

We know that the NPs bind to the surface of T-cells in clusters and that there are

multiple clusters per cell (Fig. 1–3). We begin by modeling the cluster binding

to cells as a Markov model in which each state represents the class of T-cells

with certain number of NP-clusters bound to them, and the transition between

two states represents the gain or loss of one cluster at a time. The maximum

number of clusters that can be bound to each cell should be finite. Within the

Markov model, two types of T-cells are considered: unactivated and activated
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Figure 4–1: Markov model of nanocluster serial binding and swallowing.

T-cells. Transitions from unactivated to activated T-cells occur as a function of the

number of clusters bound as well as the number of NPs per cluster. From these

consideration, we generated the schematic diagram of the Markov model shown in

Fig. 4–1.

In the Markov model, we let Xi and Ai represent the fraction of unactivated

and activated T-cells, respectively, with i clusters bound, N denote the number of

free NPs, and mi represents the number of NPs in the i-th cluster. For simplicity

and as an approximation, we assume that mi = m so every cluster has the same

number of NPs. The kinetics of binding is given by the cluster binding rate k1. We

consider the unbinding of clusters to be negligible. Clusters can only by removed

through internalization (and digestion) with rate k2. T-cells transition from the

unactivated to activated state with rates ri, where ri+1 ≥ ri. The maximum
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number of clusters that can form on T-cells is n. Based on this, the corresponding

ODE model of this system is:

Model 1: Serial Swallowing

dX0

dt
= −k1

N

m
X0 + k2X1 (4.1)

dXi

dt
= −k1

N

m
Xi + k2Xi+1 + k1

N

m
Xi−1 − k2Xi − riXi (4.2)

dXn

dt
= k1

N

m
Xn−1 − k2Xn − rnXn (4.3)

dA0

dt
= −k1

N

m
A0 + k2A1 (4.4)

dAi
dt

= −k1
N

m
Ai + k2Ai+1 + k1

N

m
Ai−1 − k2Ai + riXi (4.5)

dAn
dt

= k1
N

m
An−1 − k2An + rnAn (4.6)

dN

dt
= −k1N

n−1∑
i=0

(i+ 1) (Xi + Ai) , (4.7)

where i = 1, . . . , n− 1. Note that An = Ttot −
∑n−1

i=0 (Xi + Ai)−Xn since the total

number of T-cells remains constant (Ttot is the total number of T-cells).

4.1.1 IFNγ production kinetics

The model Eqs. (4.1) – (4.7) describe the number of cells in various states of

binding and activation. The readout for this activation is the amount of IFNγ in

ng/ml produced by T-cells as detected by ELISA. In order to fit the mathematical

model to experimental data, we will need to determine the relationship between

the number of cells in an activated state and the amount of IFNγ that would

be produced by these activated cells. Campbell et al. [6] and Schuerwegh et al.

[48] are two experimental reports that study T-cell activation via the detection

of IFNγ produced. In the same experiments, the authors present quantification
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of number of activated T-cells (defined as cells that express IFNγ intracellularly)

obtained using Fluorescence-activated cell sorting (FACS). Both papers show that

the relationship between the number of IFNγ+ T-cells and the amount of IFNγ

excreted to the medium to be exponential. We prefer using Campbell et al.’s

results for the following reasons:

1. Campbell et al. reported the cell number and concentration (2× 106cells/ml)

in the methods section as opposed to using blood volume as in Schuerwegh et

al. which contains a variable number of cells.

2. The stimulant used by Campbell et al., Staphylococcus enterotoxin B (SEB),

activates T-cells by binding to multiple TCRs in an antigen-indiscriminant

manner. This mechanism triggers TCR-proximal signaling events similar to

the antigen-specific binding of TCRs to pMHCs. This differs from the use of

PMA/ionomycin1 in Schuerwegh et al., which activates the downstream ERK

pathway directly without activating upstream signaling.

3. Campbell et al. incubated the cells for 20 hours, a time course that is

closer to the 48 hour incubation time used in our experimental data than

the 6-hour stimulation used by Schuerwegh et al. Part of the reason for

the difference in time duration used between the two groups is due to the

difference in kinetics of activation as a result of the two stimulants.

1 PMA is a small organic compound that can diffuse through the cell membrane
into the cytoplasm, where it directly activates Protein Kinase C (PKC). Iono-
mycin, a calcium ionophor, triggers calcium release.
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4. Campbell et al. used ELISA to detect of extracellular IFNγ, the same

method used in the experimental results that we are interested in fitting,

while Schuerwegh et al. used beads.

By plotting T-cell number and IFNγ detected on a log-log plot, Campbell

et al. reported a linear fit with a slope of 2.5 (CI 1.0 - 3.1) for healthy human

subjects (Fig. 4b from [6]), which means that the amount of extracellular IFNγ

produced as a function of the number of IFNγ+ T-cells is of the form y = cx2.5,

where x is the number of IFNγ+ cells and y is the amount of IFNγ produced in

ng/ml.

We verified these results by digitizing the data from Fig. 4b in [6] and fitting

a power trend line. Our results showed similar outcomes to those obtained for R2

and exponential relationship presented in [6]. This allowed us to estimate the value

of the unreported constant c in the equation. More specifically, we found that the

best fitting trend line to the data was given by the equation:

y = 4.47× 10−13x2.53. (4.8)

4.1.2 Activation kinetics of T-cells

We consider the activation rate ri of T-cells to be affected by three factors: a rate

constant κ in units of hr−1, a probability function Pi, assumed to be monotonic

with respect to the number of bound clusters i, and the activation due to the

number of pMHCs making contact with TCRs on the T-cell surface F . The rate of

transition from an unactivated state Xi to the activated state Ai is thus given by:

ri = κPiF (m, v). (4.9)
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Figure 4–2: Quantifying the relationship between the number of activated IFNγ+

T-cells following stimulation and the amount of IFNγ these cells excrete in the
medium. Panel A) is a reproduction of Fig. 4b from Campbell et al. [6] used with
permission from the publisher and B) is the same data displayed on a linear scale
showing the equation of the best fitting trend line.

Estimating κ

If we were to consider activation to follow some sigmoid function of the

stimulant with a maximum rate, then that maximum would be described with

κ. Within our experimental paradigm, we do not have the necessary time-course

data to be able to identify what value κ should take. Experimental data by

Caraher et al. [7] can offer some insights. The authors stimulated splenocytes,

which contains a mix of T-cells, B-cells, and APCs, with different concentrations

of PMA/ionomycin over a period of 8 hours, and quantified the amount of

activated IFNγ+ cells using FACS in two-hour intervals. This information on the

kinetics of activation was used to estimate κ. However, much like the previous

section, we expect, by bypassing all upstream activation, stimulation with the

potent PMA/ionomycin to lead to much faster activation compared to TCR-

stimulation. We can therefore assume, with a certain level of accuracy, that the
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effect of PMA/ionomycin can be quantified by the maximum activation rate κ,

and that this effect is separate from Fp which describes the stimulation due to

PMA/ionomycin that depends on its own set of parameters. In other words, we

can model the activation of T-cells in the following way:

dA

dt
= κFp(Atot − A), (4.10)

where A is the number of activated T-cells, Atot is the maximum percentage of

T-cells that can be activated, Fp describes PMA/ionomycin-specific effects and κ is

the maximum activation rate underlying the process of T-cell activation (assumed

to be identical to κ expressed in Eq. (4.9), because they represent the same effect).

We define Fp to be:

Fp(P ) =
P n

kn + P n
, (4.11)

where P is the concentration of PMA, k is the half-activation constant, and n is

the Hill coefficient. Combining Eqs. (4.10) and (4.11), we obtain the following

equation for PMA-dependent T-cell activation:

dA

dt
= κ

P n

kn + P n
(Atot − A). (4.12)

Equation (4.12) is a simple linear ODE with initial condition A(0) = 0, and an

analytical solution given by:

A(t) = Atot

(
1− e−κ

Pn

kn+Pn
t
)
. (4.13)

Fitting this model to the data from Fig. 4a in [7], we found that the activation

rate κ attains a mean value of 0.2 hr−1, as shown in Fig. 4–3.
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Figure 4–3: A) Fitting of T-cell activation using various concentrations of PMA,
published in [7] (circles), to the model given by Eq. (2.16) (line). Graph shows the
mean and standard deviation of 100 simulation using randomly drawn parameters
from the stationary distribution. B) Distribution of estimated parameters κ, k, T
and n.

Probability of activation Pi

As more NP-clusters bind to the T-cell surface, we expect these cells to

more likely become activated. We also expect such a binding to follow saturating

kinetics since the formation of enough NP-clusters on T-cells to eventually reach

its maximum rate of activation. As a result, we choose a sigmoidal function to
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represent the effect of multiple cluster-binding Pi, described by:

Pi =
i

p+ i
, (4.14)

where i is the number of bound clusters and p is the number of clusters required to

reach the half-maximum probability of activation.

Activation by NPs F (m, v)

T-cells activation is mediated by TCR binding to pMHC, initiating a signaling

cascade. We again use Marée et al’s formalism of T-cell activation in [38], where

the strength of the signal is thought of as a Hill function with Hill coefficient n = 2

that depends on the number of TCR-pMHC complexes formed. In any cluster,

there are v̂ pMHCs exposed to the T-cell surface for each NP bound, where v̂ is

the effective pMHC delivered as described in Eq. (3.10). Since there are m NPs

in each cluster, there are mv̂ pMHCs being delivered to the T-cell. Thus we can

express the activation of T-cells by the action of pMHC-TCR binding as:

F (m, v) =
(mv̂)2

a2 + (mv̂)2
, (4.15)

where a is the concentration for half-maximum activation.

Combining equations (4.9), (4.14), and (4.15), we can express the activation

rate of T-cells with i clusters bound by

ri = κ

(
i

p+ i

)(
(mv̂)2

a2 + (mv̂)2

)
. (4.16)
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4.2 Parameter estimation with data fitting

Similar to Section 3.2, we have a mix of known parameters from previous pub-

lished results and newly defined parameters unique to the model described by Eqs.

(4.1) – (4.7). We use Marée et al.’s estimate of a = 130 pMHC/cluster, where

a is the pMHC concentration for half-maximum activation [38]. There are other

kinetic parameters involved in NP-T-cell interaction; namely, the binding rate of a

NP cluster given by k1, the swallowing rate of a NP cluster k2, the size of each NP

cluster m, and the maximum number of clusters that bind n, as well as a set of ki-

netic parameters involved in T-cell activation; namely, the rate of T-cell activation

κ and the number of clusters bound for half maximum probability of activation

p. These are estimated using MCMC methods as described in Chapter 2. Since

we have no prior knowledge for any of these parameters except for κ, their prior

distributions will be set to a uniform distribution. With the knowledge of κ gained

in Section 4.1.2 (Fig. 4–3), we defined the prior of κ to be Normally distributed

with mean 0.2 and standard deviation 0.1.

4.2.1 Error function

To implement MCMC methods using MCMC Toolbox (http://helios.fmi.fi/

∼lainema/mcmc/) as described in Section 2.3, we needed to provide a proper

sum-of-square error function. Other aspects of the algorithm such as size of update

(Step 2), acceptance-rejection decision making (Step 3-5), and termination criteria

(Step 6) have already been provided by the Toolbox itself.

Numerical solutions to Xi(t), Ai(t), and N(t) were obtained by solving Eqs.

(4.1) – (4.7) using the ODE solver ode15s built in MATLAB. The system was
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numerically solved for 48 hours, the length of the experimental incubation time.

Equation (4.8) was then used to find the amount of IFNγ produced sINF based in

model simulations, given by:

sINF = 4.47× 10−13

(
n∑
i=0

Ai(48)

)2.53

. (4.17)

To assess the goodness of fit, a least-square error measure was used. The

use of absolute error was not very successful since the amount of IFNγ produced

ranged between 0.005 ng/ml - 2.9 ng/ml. From a numerical perspective, large

fold changes produce very small numerical differences in absolute error, unlike

relative error. However, the latter is very lax to variations at the higher NP

doses, but creates a very tight fit to lower doses. We lack experimental repetitions

to calculate variance in the data, making it infeasible to use the normal sum-

of-square error presented in Eq. (2.12). However, since the exact value of the

standard deviation σ is not critical, we can construct our own error function which

incorporates more appropriate normalizing factor. More specifically, we use

error ≡ χ2 =
(Data− sINF )2

arctan2(Data/2)
, (4.18)

where arctan2(Data/2) is an approximation for 2σ2, and sINF is given by (4.17).

To account for the number of data points available for fitting, the sum-of-squares

error was normalized to the number of available data points.
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4.2.2 MCMC fitting results

We implemented the MCMC Toolbox created by Haario et al. (http://helios.fmi.fi/

∼lainema/mcmc/), using the error function in Eq. (4.18), to estimate the param-

eters involved in NP-T-cell interaction, as well as the parameters involved in the

activation of T-cells (see Section 4.2).

A summary of the parameters sampled, initial guesses (Initiation Step in

Section 2.2.1), their ranges, and priors is provided as output by the Toolbox (Fig.

4–4). To take for computational and convergence time into consideration, we set

the MCMC algorithm (see Chapter 2) to run for 20 000 iterations.

Sampling these parameters:

name start [min,max] N(mu,s^2)

k1: 1e-06 [1e-15,1] N(0,Inf)

k2: 1e5 [500,1e+07] N(0,Inf)

kappa: 0.2 [0.1,0.7] N(0.2,0.1^2)

n: 10 [2,50] N(0,Inf)

m: 50 [3,300] N(0,Inf)

p: 1 [0,100] N(0,Inf)

Figure 4–4: The output of the MCMC Toolbox showing the parameters sampled,
starting points, their ranges, and priors. N(0,Inf) means the distribution is uni-
form.

The results of the fitting (Fig. 4–5) converged reasonably well to data

observed in Fig. 1–4, implying a level of validity in the model development from

which further analysis is pursued. The model accurately captured the “threshold”

effect, whereby low-valency NP were unable to induce significant IFNγ production

even at high doses whereas low dose of high-valency NP were much more effective

at inducing IFNγ production. For an 8 nm diameter core NP with 10 nm layer
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Figure 4–5: Fitting the INFγ data of Fig. 1–4 to model simulations. INFγ produc-
tion by T-cells stimulated with pMHC-NPs with radius A), B) 14 nm and C), D)
20 nm coated with various valencies were fitted to the model given by Eqs. (4.1) –
(4.7), where B) and D) show the distributions of estimated parameters according
to their respective NP-size. Panels A) and C) show mean and standard deviation
of model predictions using 100 random draws from the parameter distributions
depicted in B) and D), respectively.
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of pegylation (as described in Section 1.2), the NP radius r is 14 nm (r14), while

larger NPs with a 20 nm diameter core with the same amount of pegylation, the

radius r is 20 nm (r20). The modes of the distribution are listed in Table 4–1. To

determine the spread of data, we numerically solved Eqs. (4.1) – (4.7) using 100

randomly selected parameter sets to obtain the mean and standard deviation of

the model prediction as shown in Fig. 4–5.

Parameter 14 nm radius NP 20 nm radius NP
k1 7.69×10−7 3.67×10−6

k2 1.27.5×10−5 2.51×105

κ 0.37 0.38
n 4 4
m 56 16
p 0.04 0.05

Table 4–1: Table showing the modes of the parameters corresponding to Eqs. (4.1)
– (4.7) as determined by the MCMC toolbox.

4.3 Mathematical analysis

A key question we are trying to answer about this system is what design of NPs,

with respect to valency and radius, would result in the most amount of T-cell

activation (and by extension, amount of IFNγ produced). The typical approach

to these problems is to find the steady state and perform bifurcation analysis to

examine how this steady state changes as we modify each of these two parameters

of the system. However, the system described by Eqs. (4.1) – (4.7) has non-

isolated and infinite number of steady states, where different initial conditions lead

to different steady states. We will show here the existence of non-isolated steady

states by solving for the fixed points of the system.
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To solve for the steady state of Eq. (4.7), we set:

dN

dt
= −k1N

n−1∑
i=0

(i+ 1) (Xi + Ai) = 0. (4.19)

The non-negative physiological solutions to this equation are either (i) Xi = Ai =

0, for i = 0, . . . , n− 1, since Xi, Ai ≥ 0, or (ii) N = 0.

Case 1: Using solution (i) where Xi = Ai = 0 and N 6= 0, we deduce using Eqs.

(4.3) and (4.6) that:

0 =
dXn−1

dt
= k2Xn (4.20)

0 =
dAn−1
dt

= k2An, (4.21)

which means that Xn = An = 0. Based on (i), it follows that

n∑
i=0

Xi + Ai = 0. (4.22)

However, this is not possible since it violates the condition that the total popula-

tion of T-cells is conserved (i.e. no cell death processes are involved) and non-zero.

Thus we may conclude that solution (i) is not valid.

Case 2: Using the solution (ii) in which N = 0, we can show by induction that

Xi = 0, i = 1, ..., n and Ai = 0, i = 1, ..., n using Eqs. (4.1) – (4.6). More

specifically, according to Eq. (4.1), we have:

0 =
dX0

dt
= −k1

N

m
X0 + k2X1 = k2X1 =⇒ X1 = 0. (4.23)
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For the induction step, we assume Xi = 0 for i = 1, . . . , h for some h < n, then

apply Eq. (4.2) to obtain:

0 =
dXh

dt
= k2Xh+1 =⇒ Xh+1 = 0. (4.24)

This concludes our proof showing Xi = 0, for i = 1, . . . n. Similar arguments can be

used to show that Ai = 0, for i = 1, . . . , n.

This analysis shows that in the system described by Eqs. (4.1) – (4.7), the

only populations with non-zero steady state values are X0 and A0. However, by

employing solution (ii) along with Eqs. (4.1) and (4.4) we find that:

0 =
dX0

dt
= −k1

N

m
X0 + k2X1 = (0)X0, and (4.25)

0 =
dA0

dt
= −k1

N

m
A0 + k2A1 = (0)A0. (4.26)

This means that X0 and A0 can take on any value at steady state as long as

X0 + A0 = Ttot, and they cannot be calculated by analytical means. This is the

characteristic of having steady states that are non-isolated and precludes the

application of existing theories in bifurcation analysis.

4.4 Correlations

It is still possible to answer the question of optimizing the NPs without using

bifurcation analysis per se, but applying the same principles by taking the level

of activated T-cells at 48 hours of stimulation (rather than using steady state

analysis), and evaluate how T-cell activation level changes with variations in

the parameters. While it is mathematically possible to vary the value of each

parameter k1, k2, m, and v independently of one another, it is unlikely that these
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Figure 4–6: Joint distributions A) k1 and k2 showing linearly correlation and joint
distribution of B) k1 and m

parameters are mutually independent of each other physiologically. In fact, we

can see from Fig. 4–6A of the joint density of k1 and k2 that they are linearly

correlated. This is not surprising given that the ratio of these two parameters

play a major role in controlling the steady state of the system. We expect other

parameters in the system to be correlated as well. More precisely, the binding rate

k1 should be controlled by the size of the NP, which is encoded in the parameter

m. This does not seem to be the case when we examine the joint distribution of

k1 and m shown in Fig. 4–6. However correlation becomes clearer when we fit the

model to individual series of data generated using NPs of one valency (Fig. 4–7).

The plot of the joint densities of k1 and m from MCMC fittings using unique

combinations of NP size and valency v (Fig. 4–7) show a progressive change in the

shape of this chain as v increases. The m vs k1 relation is linear for low valency,

but shifts to a Hill-like structure as valency increases. This trend is most obvious

for smaller NPs, though it is similar for larger NPs as well. We excluded the
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A                                  B

C                                  D

Figure 4–7: Joint distribution of k1 and m according to several Markov chains ob-
tained using one valency on A) 14 nm radius NP and C) 20 nm radius NP. The
color of the dot indicates the relative error obtained at that particular parameter
value. B) and D) show these chains obtained in panels A) and C) displayed on
the same plot, respectively.
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joint density for NPs of radius r = 14 nm and v = 14 pMHC/NP because it is

considered an outlier based on the experimental result where at the same dosage

of NPs, the amount of IFNγ secreted with 14 pMHC/NP was lower than that

of 11 pMHC/NP. This may be a result of T-cell heterogeneity and experimental

variability.

We postulate that there is a functional relationship between k1 and both

m and v. We can imagine the plots in Fig. 4–7A and 4–7C as planar slices of a

surface in the (m, v, k1) space. To better define this relationship, we require further

analysis of the parameter distributions and use it to find some sort of non-linear

function for k1 in terms of m and v.

4.4.1 Filtering parameters for lowest errors

To best discern the relationship between the parameters k1, m and v, we limit our

analysis to only the parameters sets that produce the least amount of error (as

defined by Eq. (4.18)) in fitting. Analysis of the distribution of errors from the

Figure 4–8: Distribution of error from MCMC fitting.
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MCMC fitting in Fig. 4–8 is roughly exponentially distributed with some offset η,

representing the minimal error attained, which is different for each radius-valency

combination. To select the cutoff that filters for parameter producing fitting-error

in the lowest 30th percentile, we need to construct quantile functions for the error

distribution.

We model the error, χ2, as exponentially distributed random variables with

density ferr(χ
2) = λ · e−λ(χ2−η), where η is an offset taken to be minimum fitting

error attained. By letting µ be the sample mean (where µ = 1/n
∑
χ2) and using

the Law of Large Numbers, we can conclude that

µ→ E(X) =

∞∫
η

xλe−λ(x−η)dx = η +
1

λ
. (4.27)

From Eq. (4.27), we find λ =
1

µ− η
, which is a known quantity that can be

calculated from the sample mean and the minimum error attained. We use λ

to calculate the cutoff, Q(p), required to select for only the parameter sets that

generate an error in the lowest p = 30% range as follows:

p =

Q(p)∫
η

λe−λ(x−η)dx = 1− e−λ(Q(p)−η) (4.28)

log(1− p) = −λ(Q(p)− η)

log(1− p)
−λ

+ η = Q(p). (4.29)
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Figure 4–9: Fitting of Eq. (4.31) to the joint densities of k1 and m displayed in
Fig. 4–7. Panel A) and C) show the fitting (in red) to the Markov chains corre-
sponding to pMHC-NPs of radius A) 14 nm and C) 20 nm. Panels B) and D)
show the corresponding distributions of estimated parameters (L, ec50 for each NP
valency, and the Hill coefficient n) for their respective NP-size.
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To ensure that the MCMC fitting of k1, as a function of m, can account for

very low variance in certain regimes (compared to larger spreads in others), we

need calculate the variance (σ2) at each value of m and scale the absolute error

(errraw) as follows:

err =
errraw

2σ2
. (4.30)

This formulation is based on MCMC theory described by Eq. (2.12).

4.4.2 Cluster binding rate and cluster size by valency

As suggested earlier, panels A and C from Fig. 4–7 were thought to possess

Hill-like characteristics, leading to the selection of the candidate function:

k1 = L
mn

(ec50)n +mn
(4.31)

to describe the joint densities of k1 and m, limiting the analysis for now to k1 −m

relations only. We assume that the maximum L, in Eq. (4.31), to remain constant

for each valency of the same NP-size (with each NP-size possessing a different

maximum L). The half-maximum of activation, ec50, would vary greatly between

different valencies and radii of NPs analysed. The result of fitting Eq. (4.31) to the

Parameter valency 14 nm NP Parameter valency 20 nm NP
L all 62.4 L all 82.8

ec50

54 4.17

ec50

210 12.2
31 40.95 61 16.9
11 126.2 13 89.7
8 136.5 9 77.8

n all 2 n all 2

Table 4–2: Table of parameter estimates for fitting Eq. (4.31) to the joint distribu-
tion of k1 and m in Fig. 4–9.
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Figure 4–10: Fitting of a decreasing Hill function with coefficient n = 2 to the ec50
of k1–m fitting of A) 14 nm radius NPs and B) 20 nm radius NPs.

joint densities of k1 and m (Fig. 4–7) after applying the error cutoff in Eq. (4.29)

and scaling in Eq. (4.30) is shown in Fig. 4–9. In other words, Fig. 4–9 shows the

fitting of Eq. (4.31) to only parameter sets that attain an error in the lowest 30th

percentile as defined by the cutoff Q(p) .

4.4.3 ec50

Fitting of Eq. (4.31) shown in Fig. 4–9 generated reasonable fits to the joint

density of k1 and m by only changing the ec50 of the Hill function for each valency

of the NPs analysed. In effect, the ec50 can be viewed as a function of the valency,

with higher valencies achieving lower values of ec50 (see Table 4–2). The plot of

Parameter 14 nm radius NP 20 nm radius NP
E 172.6 87.23
b 16.76 28.72
c 2×10−8 6.83

Table 4–3: Table of parameter for fitting Eq. (4.32) to the ec50 from Table 4–2.

62



ec50 as a function of the valency (Fig. 4–10) shows a distinct trend. We use a

simple least-square fit method to fit to the decreasing Hill function given by:

ec50 = E
b2

b2 + v2
+ c (4.32)

to the ec50 values obtained in Fig. 4–9 using cftool in MATLAB, where E is

the maximum possible value that the ec50 can be, b is the valency at which the

half-maximum value of ec50 is attained, and c is a vertical offset (since it is not

necessary that ec50 vanish as v → ∞). This function creates an almost perfect fit

as seen in Fig. 4–10 (see also Table 4–3). Substituting Eq. (4.32) in the proposed

form for k1 in Eq. (4.31), we obtain the complete expression of k1 as a function of

both the valency and the number of NPs per cluster:

k1(m, v) = L
mn(

E b2

b2+v2
+ c
)n

+mn
. (4.33)

Using the expression in Eq. 4.33 to fit the distribution of k1, m, and v (Fig.

4–11), we find the estimates of the distribution of each parameter L (the maximum

value k1 attains), E (the maximum value ec50 attains), b (the valency at which

half-maximum of ec50 is attained), c (the lowest possible ec50), and n (the Hill

coefficient for k1) to be listed in Table 4–4. This has further implications as when

analysing the individual NP binding dynamics.
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Figure 4–11: Fitting of Eq. (4.31) to the joint distribution of k1, m and v. Panel
A) and C) show fitting to pMHC-NPs of radius A) 14 nm and C) 20 nm. Panels
B) and D) show the corresponding distributions of estimated parameters (L, E, b,
c, and the Hill coefficient n) for their respective NP-size.
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Parameter 14 nm radius NP 20 nm radius NP
L 6.29×10−6 7.99×10−6

E 174.5 98.9
b 16.15 19.4
c 0.94 9.07
n 2 2

Table 4–4: Table of parameter for fitting k1 as a function of m and valency.

4.5 Model of nanoparticle binding
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Figure 4–12: Model of NP-binding to T-cells in the process of forming a new clus-
ter, depicted as a series of transitions representing single NP bindings within the
Markov model of Fig. 4–1.

Recall how the schematic model of Fig. 4–1 depicts the Markov model of nan-

oclusters binding to T-cells, whereby transition between two states represent the

gain and loss of a single cluster. Within this Markov model, a single transition

step, i.e. the transition from Xi to Xi+1 (or Ai to Ai+1 ), involves the binding of

the m individual NPs that compose a new nanocluster. At the NP-binding level,

we interpret a single transition step in the Markov model as an m-step binding
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process represented by the schematic in Fig. 4–12. The transition at the single

NP-binding is mediated by the binding rate kon, and the NP unbinding rate koff .

Xj
i represents the number of T-cells with i clusters of NP bound, and j individual

NPs in the process of forming a new cluster. Therefore, according to this notation,

X0
i ≡ Xi and Xm

i ≡ Xi+1.

4.5.1 NP binding rate

We use studies of multi-step chemical reactions [63] to understand how binding

at the cluster level relate to individual NP binding. The observable quantities in

chemical reactions are the products and the reactants. However, a reaction may

involve multiple intermediary steps that are not observable. Understanding these

intermediary steps of a chemical reaction require similar approach to unravel the

intermediary NP-bindings underlying transitions within the Markov model.

Since the nanocluster digestion rate is much slower than the cluster binding

rate, we may conclude that the transition time of X0
i → X0

i+1 at the supramolecu-

lar cluster binding level (Fig. 4–1) is given by

tc =
1

k1N/m
. (4.34)

At the NP-binding level, the unbinding of NPs is much slower than the binding.

As a result, the transition time of Xj
i → Xj+1

i is given by the forward binding rate

as:

tj =
1

(m− j)konN
. (4.35)
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Since both transition through binding of a nanocluster in the supramolecular

Markov model (Fig. 4–1) and the binding of m NPs as described through individ-

ual NP bindings (Fig. 4–12) is describing the same process, the transition times

given by the nanocluster binding model in Eq. (4.34) is identical to the transition

time given by m-steps through the NP-binding model, i.e.:

tc =
m−1∑
j=0

tj =⇒ (4.36)

1

k1
N
m

=
m−1∑
j=0

1

(m− j)konN
=⇒

kon =
k1
m

m∑
j=1

1

j
= L

mn−1

(ec50)n +mn

m∑
j=1

1

j
. (4.37)

Equation (4.37), obtained by substituting Eq. (4.33) for k1, can be analysed by

applying Riemann sum approximations to
m∑
j=1

1

j
. By treating this summation as

the Left Riemann Sum (LRS) or the Right Riemann Sum (RRS) approximation of

the function f(x) = 1/x, a monotonically decreasing function, we find as the LRS

m∑
j=1

1

j
≥

m+1∫
1

1

x
dx = log(m+ 1) (4.38)

and as the RRS

m∑
j=1

1

j
= 1 +

m∑
j=2

1

j
≤ 1 +

m∫
1

1

x
dx = 1 + log(m). (4.39)

67



Substituting these bounds on the summation to Eq. (4.37), we establish upper and

lower bounds on kon as follows:

L
mn−1

(ec50)n +mn
log(m+ 1) ≤ kon ≤ L

mn−1

(ec50)n +mn
(1 + log(m)). (4.40)

Establishing these bounds using continuous functions provides an analytical tools

to study the behaviour of kon at its extreme values, i.e. when m→∞ and m→ 0.

upper bound: kon = L
mn

(ec50)n +mn
·

1 + log(m)

m

By taking the limit as m→∞, we obtain:

lim
m→∞

kon = lim
m→∞

L
mn

(ec50)n +mn
· 1 + log(m)

m
= L lim

m→∞

1/m

1
= 0. (4.41)

At the other extreme, by taking the limit as m→ 0, we obtain:

lim
m→0

kon = lim
m→0

L
mn−1

(ec50)n +mn
· (1 + log(m)) = L lim

m→0

1 + log(m)

(ec50)nm1−n +m
=⇒

= L lim
m→0

1/m

(1− n)(ec50)nm−n + 1
= L lim

m→0

mn−1

(1− n)(ec50)n +mn
= 0. (4.42)

lower bound: kon = L
mn

(ec50)n +mn
·

log(m+ 1)

m

Similarly, by taking the limit as m→∞, we obtain:

lim
m→∞

kon = lim
m→∞

L
mn

(ec50)n +mn
· log(m+ 1)

m
= L lim

m→∞

1
m+1

1
= 0, (4.43)

and as m→ 0, we obtain:

lim
m→0

kon = lim
m→0

L
mn−1

(ec50)n +mn
· (log(m+ 1)) = 0 · log(1) = 0. (4.44)
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Applying the Squeeze theorem as m → ∞ using Eq. (4.41) and Eq. (4.43), as

well as when m→ 0 using Eq. (4.42) and Eq. (4.44), we obtain the following:

lim
m→∞

kon = lim
m→0

kon = 0. (4.45)

We assume that kon is a non-negative, non-constant function reaching its minimum

at the boundary of its domain. As a result, there must be at least one maximum

attained by kon for some m ∈ N. This maximum is not particularly easy to

calculate analytically, since kon is a function of the integer variable m. Standard

methods of finding critical values by differentiation and solving for
dkon
dm

= 0

cannot be applied. We can, however, numerically calculate the maximum by

solving for kon for m ∈ [0,∞) (Fig. 4–13) and obtain the value of m which

produces the maximum kon , i.e., derive:

mmax = arg max
m

kon. (4.46)

Recall that the parameters m represents the number of pMHC-NPs binding to a

cluster and v is the number of pMHCs on each NP. The mmax given by Eq. (4.46)

depends on the valency (mathematically, this arises from k1, which is required to

calculate kon given by Eq. (4.37), being dependent on valency in Eq. (4.33)). In

fact, within the range of m assessed (m ∈ [1, 300] NPs/cluster), we find there is

a unique mmax for each valency (see. Fig. 4–13). Varying valency v and finding

the corresponding mmax, we can calculate the total number of pMHCs within each

cluster when kon is optimal to be:

pMHCmax = mmax(v)× v. (4.47)
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Figure 4–13: Numerical calculation of kon using Eq. (4.37) for m = 1, . . . , 250 for
A) 14 nm radius NP coated with 54 (blue), 31 (red), 11 (yellow), and 8 (purple)
pMHCs/NP and B) 20 nm radius NP coated with 210 (blue), 61 (red), 13 (yel-
low), and 9 (purple) pMHCs/NP . Panels C)and D) show the number of pMHCs
presented at each cluster (pMHCmax) when the optimal kon is attained for NP of
radius A) 14 nm and B) 20 nm.
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A B
x

Figure 4–14: Schematics of the estimation of distance between adjacent pMHCs
on a NP. Panel A) visualizes the fraction of the NP surface associated with each
pMHC as a spherical cap and panel B) shows that spherical cap as defined on a
Cartesian axis.

The plot of pMHCmax as a function of v (Fig. 4–13C and Fig. 4–13D) shows

that a the number of pMHCs in a cluster at an optimal kon is attained at a local

maximum given by ∼1500 pMHCs/cluster. This result was identical for both NP

sizes assessed.

We can estimate the distance between two adjacent pMHCs on a NP assuming

NPs to be spheres with radius r, having a total surface area of 4πr2. Thus for a

NP coated with v pMHCs, the surface area associated with to each pMHC is:

4πr2

v
. (4.48)
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We approximate the region of NP of associated with each pMHC by spherical cap

(see Fig. 4–14) whose surface area is given by:

4πr2

v
= 2πr2

π/2∫
x

cos θdθ = 2πr2 − 2πr2 sinx =⇒

sinx = (1− 2/v) =⇒

x = arcsin

(
1− 2

v

)
. (4.49)

where the angle subtended by the spherical cap ϕ is π/2− x, i.e. :

ϕ = π/2− arcsin

(
1− 2

v

)
= arccos

(
1− 2

v

)
. (4.50)

Assuming that each pMHC sits at the center of this spherical cap subtended by

ϕ, and that two pMHC occupy roughly the same sized region, then the distance d

along the great circle that links the two pMHCs is given by:

d = rϕ = 2r arccos(1− 2/v). (4.51)

Then maximum the number of pMHCs/cluster is attained when the NP

valency is between 20 - 30 pMHC/NP (in fact, 18 pMHC/NP for the smaller

14 nm radius NP and 29 pMHC/NP for the larger 20 nm radius NP). At these

valencies and sizes, the distance between two pMHCs on each NPs is estimated to

be:

2(14) arccos(1− 2/(18)) = 13.3247 nm (4.52)
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NP size max pMHC/cluster valency pMHC distance
14 nm 1526 pMHC/cluster 18 pMHC/NP 13.3247 nm
20 nm 1530 pMHC/cluster 29 pMHC/NP 14.9424 nm

Table 4–5: The maximum number of pMHC/cluster that can be attained when kon
is optimal along with the valency per NP that can achieve this maximum and the
distance between pMHCs at that valency.

for smaller NPs (r = 14 and v = 18), and

2(20) arccos(1− 2/(29)) = 14.9424 nm, (4.53)

for larger NPs (r = 20 and v = 29), which is remarkably consistent between the

two different NP sizes. These results involving pMHCmax are summarized in Table

4–5.

4.5.2 NP dissociation rate

The model in Fig. 4–12 is valid for any transition Xi → Xi+1 defined by the

Markov model (Fig. 4–1), including the very first transition X0 → X1. By solving

this Markov model for a very short period of time dt at the start of the experiment

(where dt is short enough, it does not allow T-cells to accumulate beyond X1), we

can limit ourselves to the first transition X0 → X1 only. Numerically speaking, this

means that dt is short enough that X2(dt)/X1(dt)� 1 and Ai(dt) ∼ 0. The model

describing the single NP binding within that specific transition (as described by
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Fig. 4–12) is given by:

dX0

dt
= koffX

1 −mkonNX0 (4.54)

dXj

dt
= (m− j + 1)konNX

j−1 + (j + 1)koffX
j+1 − (jkoff + (m− j)konN)Xj

(4.55)

dXm

dt
= konNX

m−1 −mkoffXm, (4.56)

where Xj = Xj
0 for j = 0, . . . ,m, and Xm = Xm

0 = X1(= X0
1 ). Solving for steady

state solution of this system, we obtain:

Xj =

(
m− j + 1

j

)(
konN

koff

)
Xj−1, (4.57)

which is a recursive relationship. Solving for Xm in terms of X0, we obtain:

Xm =

(
1 · 2 · 3 . . .m

m(m− 1)(m− 2) . . . 1

)(
konN

koff

)m
X0 =

(
konN

koff

)m
X0. (4.58)

Since X0(dt) = X0(dt) and X1(dt) = Xm(dt), we can solve for koff as follows:

koff =

[
konN(dt)X0(dt)

X1(dt)

]1/m
. (4.59)

Setting dt = 0.3 s was sufficiently short for the conditions X2(dt)/X1(dt) � 1

and Ai(dt) ∼ 0 to be satisfied and sufficiently long for the system described by

Eqs. (4.54) – (4.56) to reach steady state. Fig. 4–15A shows the values of koff

for each NP-size at every valency using Eq. (4.59) and the value of kon used to

calculate koff in Fig. 4–15A (shown in Fig. 4–15B). The dissociation constant of

NP-binding KD = koff/kon is also shown in Fig. 4–15C. Values used for these

plots are given in Table 4–6. These results indicate that at smaller valencies
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Figure 4–15: The kon and koff rates of NP binding. The NP A) unbinding rate
koff as given by Eq. (4.59), and B) binding rate kon used to calculate koff ac-
cording to Eq. (4.59) for each NP-size and valency. C) Dissociation constant
KD = koff/kon of NP-binding for each NP-size and valency. D) Change in co-
operativity as NP size and valency are varied according to Eq. (4.61).
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NP radius valency (pMHC/NP) koff kon KD = koff/kon

20 nm

210 1.96 2.68×10−5 7.32×104

61 1.21 3.97×10−5 3.05×104

13 1.14 3.75×10−5 3.03×104

9 1.11 3.75×10−5 2.97×104

14 nm

54 1.13 3.63×10−5 3.10×104

31 1.14 3.39×10−5 3.36×104

14 1.10 2.97×10−5 3.70×104

11 1.13 2.23×10−5 5.05×104

8 1.10 2.60×10−5 4.25×104

Table 4–6: NP binding (kon), unbinding (koff ) and dissociation rate (KD) parame-
ter values.

(v < 60), larger NPs bind longer to T-cells and thus more effective, whereas at

larger valencies (v > 60), smaller NPs bind longer and are more effective.

4.6 Co-operativity

Mammen et al. [34] used the notion of Gibb’s free energy to derive a relation

between the association constant of a polyvalent ligand binding to its monovalent

counterpart. This relation is given by:

Kpoly
N = (Kpoly

avg )N = (Kmono)αN , (4.60)

where Kpoly
N represents the association constant of the polyvalent ligand having N

ligands, Kpoly
avg represents the association constant of each ligand in the polyvalent

system, Kmono represents the association constant of a monovalent ligand, and

α is a measure of co-operativity of binding conferred by polyvalency. One can

apply the theory to NP-binding by treating pMHC-NPs binding to TCRs as a

polyvalent version of the monovalent pMHC-TCR interaction. This is achieved
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by interpreting Kpoly
N as the association constant of NP-binding given by KA =

kon/koff , where kon is given by Eq. (4.37) and koff is given by Eq. (4.59), and

Kmono as the association constant for each pMHC-TCR binding (KpMHC), a

quantity that is unknown. Our interest in Mammen et al.’s work is in the co-

operativity constant of polyvalent (NP) binding. In the case of NP-binding, the

relationship described by Eq. (4.60) can be interpreted as:

(Kmono)αN ≡ (KpMHC)αv = KA =
kon
koff

≡ Kpoly
N =⇒

(KpMHC)α = K
1/v
A =⇒

α log(KpMHC) =
logKA

v
, (4.61)

where v is the NP valency. On the left hand side, both the co-operativity α and

KpMHC are unknown, which makes it impossible to solve for α. However, since the

pMHCs used in the experimental conditions presented in this thesis are identical,

we can safely assume KpMHC is a constant in this system. This means that

logKA

v
∝ α, (4.62)

and changes in co-operativity due to the effect of valency would be evident from

changes in
logKA

v
.

The plot of
logKA

v
(Fig. 4–15D) shows that co-operativity α is increasing

with respect to the valency v. However, this increase reaches a plateau at ap-

proximately 60 pMHC/NP, meaning that further increases in valency beyond 60

pMHC/NP will lead to no further increases in co-operativity. This characteristic in
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co-operativity seems to be the case for both large (20 nm radius) and small (14 nm

radius) NPs.

4.7 Other models

We considered a slight variation of the model of nanocluster binding (Fig. 4–1) by

changing the swallowing rate of the NPs to reflect the possibility that the T-cells

can internalize multiple NP-clusters at a time shown in Fig. 4–16.
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Figure 4–16: Markov model of nanocluster unsaturated binding and swallowing.

Implementing MCMC methods to estimate the parameters of this model (in a

manner similar to what was done in Section 4.2), revealed that this model is also

able to produce reasonable fits to the IFNγ production data as shown in Fig. 1–4

(compare to Fig. 4–17).
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Figure 4–17: Fitting the INFγ data of Fig. 1–4 to model simulations. INFgamma
production by T-cells stimulated with pMHC-NPs with radius A), B) 14 nm and
C), D) 20 nm coated with various valencies were fitted to the model depicted
by Fig. 4–16, where B) and D) show the distributions of estimated parameters
according to their respective NP-size. Panels A) and C) show mean and stan-
dard deviation of model predictions using 100 random draws from the parameter
distributions depicted in B) and D), respectively.
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4.7.1 Model selection

To objectively assess whether the unsaturated digestion model is better or worse

than serial digestion model in describing the physiological data, we employ two

common measures for model selection called the Akaike Information Criteria (AIC)

and Bayesian Information Criteria (BIC). Both measures assess goodness of fit

that favours smaller residual error in the model, but penalise for adding complexity

(i.e. parameters) to avoid overfitting. The latter, however, adds more weight to the

high-dimensionality penalty. These model selection measures are calculated using

the expressions:

AIC = n log(SSE)− n log(n) + 2P (4.63)

and

BIC = n log(SSE)− n log(n) + log(n)P, (4.64)

where P is the number of parameters in the system, n is the number of data points

available and SSE is the sum-of-square residual error. The model that produces

the lowest AIC/BIC values is considered to be the better model. A p-value given

by:

p = exp

(
AICmin − AICi

2

)
, (4.65)

where AICmin is the minimum AIC of all models and AICi is the AIC of the i-th

model, can be calculated from the AIC test (or BIC test) to determine whether the

two models differ significantly from each other. Typically, a value of p ≤ 0.05 is

used to determine whether one model is significantly better than another, which is

obtained when AICmin − AICi ≤ −6.
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Serial Digestion Unsaturated Digestion p-values
AIC BIC AIC BIC AIC BIC

14 nm 163.6 (1.57) 170.2 (1.57) 164.4 (0.28) 172.4 (0.28) 0.6656 0.3419
20 nm 117.0 (3.38) 122.2 (3.38) 119.0 (0.35) 125.3 (0.35) 0.3572 0.2119

all 150.5 (1.25) 155.7 (1.25) 151.8 (0.20) 158.1 (0.20) 0.5058 0.3000

Table 4–7: Comparison of model selection criteria AIC and BIC applied to serial
digestion model and unsaturated digestion.

We applied these measures to compare the serial and unsaturated digestion

models by calculating the SSE using Eq. (4.18) and evaluating the error of fit

using 100 randomly selected parameters, followed by reporting the average and

standard deviation of AIC and BIC in Table 4–7. The results consistently showed

that the serial digestion model is numerically better than the unsaturated digestion

model by both AIC and BIC tests, but the p-values were not significantly different

between the two models. A likely explanation for this is that there may be a mix

of both types of digestion taking place within the system.
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CHAPTER 5
Conclusion and Discussion

This thesis has focused on developing models to understand the interaction

between T-cells and nanoparticles coated with peptide-MHC, the cognate ligand

of TCRs. The use of pMHC-NPs in experimental treatment of T1D in NOD

mice showed very promising results in blunting the autoimmune response against

pancreatic β-cells [59]. Spurred by its potential as a therapeutic agent, our

mathematical models were developed with the goal of guiding pMHC-NP design to

optimize the efficacy of treatment.

In animal models, pMHC-NPs reverse T1D symptoms through the activation

and expansion of a subset of autoregulatory T-cells that suppress the autoimmune

response. The activation and replication of T-cells is a complicated process that

involves the organized interaction of many molecular players besides the TCR,

such as co-stimulatory molecules CD28, structural molecules CD8 and CD4, and

signaling molecules such as CD3 as well as the formation of a supramolecular

adhesion complex (also known as an immune synapse). Additionally, heterogeneity

is a factor in all measures of biological responses, including the data presented here

(Fig. 1–2, 1–4).

The method of MCMC was discussed in Chapter 2 to account for heterogene-

ity in T-cell responses. Estimating a distribution of parameters provides a better

description of biological variations within the system which can be incorporated
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into mathematical approaches to predict the range of responses. The model of

T-cell expansion in vivo developed in Chapter 3 showed consistently that smaller

NPs, (i.e. smaller in diameter), were capable of inducing greater expansion of T-

cell population, even when coated at lower valencies. In Chapter 4, we presented a

more complicated, Markov Model to better understand the biophysical parameters

that govern the pMHC-NP interaction. In particular, we broke down these inter-

actions to three levels: (i) nanocluster binding to T-cells, (ii) NP binding within a

nanocluster, and (iii) single pMHCs on multivalent NPs binding to TCRs. At the

nanocluster level, analysis of joint distribution of the binding rate of nanoclusters

k1 and the size of these clusters m led us to conclude that k1 can be mathemati-

cally determined using m and the valency of NPs. Zooming in to individual NPs

interacting with TCRs revealed that there is a unique, optimal NP binding rate

corresponding to a unique combination of cluster size and valency for each NP-size.

At the single pMHC-TCR interaction level, we were able to describe the effects of

coating single NPs with multiple pMHCs on co-operativity of binding.

In addition to thoroughly investigating the biophysical and kinetic param-

eters of pMHC-NP interactions with T-cells, this work presents a framework to

analysing complex nano-scale interactions from a top-down hierarchical approach.

Activation and proliferation of T-cells through treatment of NPs conjugated to

multiple pMHCs presents a very unique and new approach to examining pMHC-

TCR binding. The structural design (density) of pMHC-NP and the size of contact

region of NPs for binding would not play a role in soluble or even tetrameric

pMHC binding. Studies using pMHCs on stabilized monolayers allows control of
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Figure 5–1: Kinetic proof reading model of T-cell activation.

the distance between pMHC molecules which can accomplished using pMHC-NPs

[21] however spherical construction of the NPs presents a different topology which

merits separate investigations. Compared to pMHCs were presented on APCs,

which are many times larger than T-cells, the use of pMHC-NPs can create a more

controlled environment in terms of the number of pMHCs and pMHC density.

One further important way in which T-cell activation through pMHC-NP stimu-

lation differ from natural APC-mediated activation is the lack of co-stimulatory

molecules. We can theorize T-cells binding to pMHC-NPs without the presence

of costimulation to be akin to T-cells naturally binding to resting APCs, which

express co-stimulatory molecules at lower levels than activated APCs. Resting

B-cells acting as APCs have demonstrated effects in inducing tolerance in näıve

T-cells [17] and we can postulate the same tolerogenic pathways may be activated

when stimulated with pMHC-NPs. Future work from this thesis should focus on

providing better understanding of T-cell activation kinetics.

5.1 Future Considerations

5.1.1 Kinetic proof reading as a model of T-cell activation

The model we chose for the activation kinetics is very simplistic. Biologically,

activation is very complex and known to be regulated by a number of protein
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modification steps [26, 49]. Experiments using panels of different TCRs and pMHC

complexes have reported various relationships between the TCR-pMHC binding

parameters and T-cell activation, as measured by downstream functional readouts

such as cytokine secretion [15, 19, 20, 29]. These observations have, in part,

motivated the formulation of a variety of models to reproduce the observed T-cell

activation phenotypes [33]. A prevailing model is the kinetic proof reading model,

which proposes that T-cell activation is proportional to the fraction of pMHC-

TCRs that have been bound for long enough to achieve a competent signaling

state (Fig. 5–1).

The kinetic proof reading model, shown in Fig. 5–1, is an alternative approach

to describing T-cell activation. It is described by the following equations:

dP

dt
= −kaPT + kb

N∑
i=0

Ci (5.1)

dT

dt
= −kaPT + kb

N∑
i=0

Ci (5.2)

dC0

dt
= kaPT − (kb + kp)C0 (5.3)

dCi
dt

= kpCi−1 − (ka + kp)Ci i = 1, . . . , N − 1 (5.4)

dCN
dt

= kpCN−1 − kaCN , (5.5)

where P is the number of free pMHCs, T is the number of free TCRs, which bind

to form the complex C0. Each biochemical modifications step of the complex

proceed with rate kp and the number of complexes with i chemical modification, is

given by Ci. Competent signaling state is achieved only after N modifications, i.e.

only complexes in the CN state yield productive signal. These modification steps
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Figure 5–2: Fitting Hill functions with Hill coefficient n = 1 to in vitro stimulation
data of T-cells using A) 14 nm radius NPs and B) 20 nm radius NPs .

that transition C0 to CN are stopped immediately upon pMHC unbinding. In this

model, the binding rate of the pMHC to TCR is given by ka, and the unbinding

rate by kb.

Solving this system at steady state, we find that the total number of pMHC-

TCR complexes CT =
N∑
i=0

Ci is related to the number of productive signaling

complexes by CT =
1

λN
CN , where λ =

kp
kp + kb

. In other words:

CN = λNCT (5.6)

If we let PT and TT denote the total number of pMHCs and TCRs, respectively, it

follows that:

PT = P + CT (5.7)

TT = T + CT . (5.8)

86



Solving for the steady state of Eq. (5.1), we obtain:

kbCT = kaPT = kaP (TT − CT ) =⇒

(kb + kaP )CT = kaPTT =⇒

CT =
kaPTT
kb + kaP

=
PTT
kD + P

, (5.9)

where kD = kb/ka represents the dissociation constant of pMHC-binding (as

opposed to KD from Chapter 4 which represents the dissociation constant of NP-

binding). Since CT is the number of pMHC-TCR complexes, we may conclude that

CT ≤ min(PT , TT ). As PT →∞, (i.e. P →∞) we have:

lim
PT→∞

CT = TT , (5.10)

which represents the Emax of the system. To obtain the EC50 of the dose response

curve, on the other hand, we have to set CT = TT/2. In this case, P = kD. From

Eq. (5.7), we have:

P = PT − CT = PT − TT/2 =⇒

PT = P + TT/2 = kD + TT/2 (5.11)

Based on fittings of Hill-functions, with Hill coefficient of n=1, to the INFγ

data obtained from following in vitro T-cell stimulation experiments (Fig. 5–2),

the estimated EC50 (Table 5–1) obtained were in the order of 107 molecules/cell

or higher. Since there is on average 8 − 10 × 104 TCRs per T-cell (TT ) [55],

we conclude from the kinetic proof reading formalism that kD, which is the

dissociation constant at the level of pMHC binding, is ∼ 107 molecules. Recall
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NP radius valency (pMHC/NP) Emax EC20

20 nm

210 3.97 3.68×107

61 3.82 4.37×107

13 2.75 5.01×108

9 2.02 2.48×1011

14 nm

54 3.99 1.48×107

31 3.61 4.58×107

14 2.71 5.03×107

11 3.99 1.48×107

8 3.63 8.28×107

Table 5–1: Estimates of Emax and EC50 based on kinetic proof reading model.

from Chapter 4 that the dissociation constant KD at the NP-binding level is ∼ 104

(Table 4–6). Mammen et al. [34] provides a way to relate the association constant

of polyvalent NP binding (KA = 1/KD) to monovalent pMHC binding given

by kA = 1/kD, unlike the kinetic proof reading model which cannot explain the

observation that the monovalent kD is different for each valency (Table 5–1).

5.1.2 Probability of activation

In our models (Fig. 4–1 and 4–16), we defined the rate of transition from an

unactivated state to an activated state ri in Eq. (4.9) as

ri = κPiF (m, v) = κ · i

p+ i
· (mv̂)2

a2 + (mv̂)2
.

Based on MCMC fittings, we found that the mode of p << 1 (see Table 4–

1), making the probability that each state transitions to the activated state

Pi =
i

p+ i
≈ 1 for i ≥ 1. This implies that T-cell activation is induced by

the binding of very few clusters, which appears to be not in agreement with the

imaging data shown in Fig. 1–3. One potential explanation for this discrepancy
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Figure 5–3: Behaviour of Pi based on Eq. (5.12).

between simulation and data is that T-cells do not require the binding of too many

NP-clusters to activate. Another explanation could be that the functional choice

made for Pi is not accurate.

In future work, we intend to try other expressions to describe the probability

of transitions. One such candidate is:

Pi =

(
i

n

)n−i
. (5.12)

As shown in Fig. 5–3, this function has the characteristics of a steep Hill

function, but with transition probabilities that are small for small i (the number

of clusters bound to T-cells). Testing such a function will allow us to determine if

large number of cluster binding is necessary for T-activation.
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r = 4000 nm
400 nm

Figure 5–4: Schematics of the NP-cluster binding to the membrane of T-cells as
visualized by an EM image.

5.1.3 Estimation of number of nanoclusters

The EM image of nanoclusters bound to T-cells (Fig. 1–3) provides insights onto

how to estimate the total number of nanoclusters that bind to the surface of a

T-cell. By assuming that each T-cell is roughly a sphere with a radius of 4 µm

[35] and each image slice of the cell is a slice through the center of the sphere,

we can estimate the total number of nanoclusters. Since each image shows 4 – 5

nanoclusters bound, with each nanocluster being maximally 400 nm in diameter,

we can postulate that the imaging data provides a sample of the number of

nanoclusters that are bound through a band on the surface of the T-cell (see Fig.

5–4). The surface area occupied by this band is give by:

SAband =

2π∫
0

1/10∫
−1/10

4 cosϕ · 4dϕdθ = 64π sin(1/10), (5.13)

where 1/10 is the angle in radian subtended by the band.

90



The area occupied by the band, SAband, is roughly 1/10 of the area of the

sphere representing the T-cell (SAcell = 4πr2 = 64π). Since 4 – 5 nanoclusters

are observed in 1/10 of the surface of the T-cell, we should then expect 40 – 50

nanoclusters to be bound to the entire cell, which is far greater than obtained

from the mode of the parameter estimation using MCMC fitting. By imposing this

number of nanoclusters on model fitting, we should expect that the total number

of parameters required for estimation to decrease but the major results obtained in

Chapter 4 to remain roughly the same.
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APPENDIX A
IFNγ production data

Valency (pMHC/NP) Dose (×1011 NP/ml) IFNγ (ng/ml)
210 0.061 0.04
210 0.125 0.07
210 0.25 0.12
210 0.5 0.26
210 1 0.88
210 2 1.86

61 0.125 0.01
61 0.25 0.03
61 0.5 0.085
61 1 0.2
61 2 0.41
61 4 1.05

13 5 0.004
13 10 0.03
13 19 0.07
13 37.5 0.166
13 75 0.279

9 0.5 0.001
9 1 0.005
9 2 0.02
9 4 0.04

Table A–1: IFNγ produced by 2.5×105 T-cells/ml incubated in vitro with 20 nm
radius NPs of various valency and dose for 48 hours corresponding to Fig. 1–4.
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Valency (pMHC/NP) Dose (×1011 NP/ml) IFNγ (ng/ml)
54 0.15 0.09
54 0.3 0.19
54 0.6 0.29
54 1.2 0.41
54 2.375 0.976
54 3 1.9
54 4.75 2.27

31 0.94 0.06
31 1.875 0.13
31 3.75 0.49
31 7.5 0.85

14 0.19 0.015
14 0.375 0.021
14 0.75 0.025
14 1.5 0.055
14 3 0.143
14 6 0.241

11 1.5 0.2
11 3 0.31
11 6 0.5
11 12 1.09
11 24 2.32
11 48 2.9

8 2.5 0.01
8 5 0.03
8 10 0.1
8 20 0.29
8 40 0.75

Table A–2: IFNγ produced by 2.5×105 T-cells/ml incubated in vitro with 14 nm
radius NPs of various valency and dose for 48 hours corresponding to Fig. 1–4.
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APPENDIX B
Code

B.1 Running MCMC Toolbox

function [ res , chain , s s cha in ] = mcmc run ser ia l ( r , nsim , i n i t , f i l ename , rows )

data = g e t i f n d a t a ( r , rows ) ;

opt i ons . nsimu = nsim ;

model . s s fun = @i fn e r r ode15 s ;

params = {{ ’ k1 ’ , i n i t ( 1 ) , 1e−15, 1} ,{ ’ k2 ’ , i n i t ( 2 ) , 5 , 10 e6 } , . . .

{ ’ kappa ’ , i n i t ( 3 ) , 0 . 1 , . 7 , . 2 , . 1 } , { ’ n ’ , i n i t ( 4 ) , 2 , 8 0 } . . .

{ ’m’ , i n i t ( 5 ) , 3 , 300} , { ’ p ’ , i n i t ( 6 ) , 0 , 100}} ;

[ res , chain , s2chain , s s cha in ] = mcmcrun(model , data , params , opt ions ) ;

save ( sprintf ( ’ data/ r%.0 f s e r i a l %s ’ , r , f i l ename ) , ’ chain ’ , ’ r e s ’ , ’ s s cha in ’ )

end

B.2 Sum-of-square error function

function [ e r r ] = i f n e r r o d e 1 5 s ( par , data )

e r r = 0 ; x0=2.5 ; T=48; sim = zeros ( length ( data ) , 2 ) ;

%% arg pars ing

global k1 k2 m

k1 = par ( 1 ) ; k2 = par ( 2 ) ; kappa = par ( 3 ) ; n s t a t e = f loor ( par ( 4 ) ) ;

m = zeros ( n s ta t e , 2 ) ; m ( 2 :end , : ) = f loor ( par ( 5 ) ) ; p = par ( 6 ) ;

opts=odeset ( ’ RelTol ’ ,1 e−6, ’ AbsTol ’ ,1 e−12, ’ I n i t i a l S t e p ’ , 0 . 0001 , ’MaxStep ’ , 0 . 5 ) ;
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for i = 1 : length ( data ( : , 1 ) )

d = data ( i , : ) ; sim ( i ,1)=d ( 3 ) ; v=d ( 1 ) / 7 . 0 ; a=130;

%% ca l c u l a t i n g a c t i v a t i o n ra t e

f i = (v∗m( : , 1 ) ) . ˆ 2 . / ( aˆ2 + (v ∗ m( : , 1 ) ) . ˆ 2 ) ;

f = kappa ∗ ( [ 0 : n s ta t e −1 ] ./ ( p+[0 : n s ta t e − 1 ] ) ) . ’ . ∗ f i ;

%% ODE so l v e

u0 = zeros (3∗ n s ta te , 1 ) ; u0 (1 ) = d(2)∗1 e11 ; u0 ( n s t a t e+1) = x0 ;

s o l 15 = ode15s ( @fun ode , [ 0 ,T] , u0 , opts , f ) ;

sim ( i , 2 ) = 4 .47 e−13∗(1 e5∗sum( s o l 15 . y (2∗ n s t a t e +1:end , end ) ) ) ˆ ( 2 . 5 ) ;

end

%% error c a l c u l a t i o n

e r r = sum ( ( ( data ( : ,3)− sim ( : , 2 ) ) . / ( atan ( data ( : , 3 ) ) / 2 ) ) . ˆ 2 ) ∗ 100 ;

e r r = e r r /( length ( data ) ) ;

end

B.3 DE model

function [ du ] = fun ode ( t , u , f )

global m k1 k2

n s t a t e = s ize (u , 1 ) / 3 ; s t a t e s = [ 1 : ( n s t a t e ) ] . ’ ;

X = u( n s t a t e +1:2∗ n s t a t e ) ; A = u(2∗ n s t a t e +1:end ) ; Nf = u ( 1 , 1 ) ;

dNf = − k1 ∗ 1e5∗ Nf ∗ (sum (X( 1 :end−1).∗ s t a t e s ( 1 :end−1)) + . . .

sum(A( 1 :end−1).∗ s t a t e s ( 1 :end−1) ) ) ;

dX0 = − k1 ∗ Nf / m(2 ,1 )∗ X(1) + k2 ∗ X( 2 ) ;

dXi = −k1 ∗ Nf ∗ X(2 :end−1) . / m( 3 :end , 1 ) . . .

+ k1 ∗ Nf ∗ X(1 :end−2) . / m( 2 :end− 1 , 1 ) . . .
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− k2 ∗ X(2 :end−1) + k2 ∗ X(3 :end ) . . .

− f ( 2 :end−1).∗ X(2 :end−1);

dXn = k1 ∗ Nf ∗ X(end−1) / m(end , 1 ) . . .

− k2 ∗ X(end) − f (end) ∗ X(end ) ;

dA0 = − k1 ∗ Nf / m(2 ,2 )∗ A(1) + k2 ∗ A( 2 ) ;

dAi = −k1 ∗ Nf ∗ A(2 :end−1) . / m( 3 :end , 2 ) . . .

+ k1 ∗ Nf ∗ A(1 :end−2) . / m( 2 :end− 1 , 2 ) . . .

− k2 ∗ A(2 :end−1) + k2 ∗ A(3 :end ) . . .

+ f ( 2 :end−1) .∗ X(2 :end−1);

dAn = k1 ∗ Nf ∗ A(end−1) / m(end , 2 ) . . .

− k2 ∗ A(end) + f (end) ∗ X(end ) ;

du = zeros ( s ize (u ) ) ; du (1 ) = dNf ; du ( n s t a t e+1) = dX0 ;

du ( n s t a t e+2 : 2∗ n s ta te −1) = dXi ; du (2∗ n s t a t e ) = dXn ;

du (2∗ n s t a t e+1) = dA0 ; du (2∗ n s t a t e+2 : 3∗ n s ta te −1) = dAi ;

du (3∗ n s t a t e ) = dAn ;

end
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