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Abstract

The cosmic microwave background (CMB) is one of the prime observables in studying cosmology.
With the increased sensitivity and frequency coverage, the recent CMB experiments have allowed
us to investigate subtle secondary effects such as gravitational lensing. In this thesis, the theoret-
ical background of CMB lensing is described, and the methods used to reconstruct a map of the
gravitational lensing potential is outlined. The methodology is applied to temperature data ob-
tained by the South Pole Telescope and Planck, and the resulting lensing map is presented. We
perform numerous tests to verify that the lensing map is not dominated by systematic errors.
This lensing map will be correlated with other probes of large-scale structure, namely galaxy

density and galaxy weak lensing. We simulate each of these data sets using Flask, a code that
produces maps of correlated fields. Using the suite of simulation realizations, we calculate the
correlations between the probes and estimate the covariance. The two-point correlation measure-
ments for the individual probes are then combined to constrain cosmology. Finally we discuss the
future landscape of multi-probe cosmological analyses.

Abrégé

Le fond diffus cosmologique (CMB) est un des observables les plus importants en cosmologie.
Avec une sensibilité accrue au cours des dernières années, les expériences de mesure du CMB
nous ont permis de mesurer des effets secondaires subtils, tel que l’effet de lentillage gravitation-
nel. Dans cette thèse, nous décrivons le cadre théorique de l’effet de lentillage du CMB ainsi que
les méthodes utilisées pour reconstruire une carte de potentiel de l’effet de lentille gravitation-
nelle. Cette méthodologie est appliquée à une carte en température du CMB obtenue à partir
de données du télescope du Pôle Sud et du satellite Planck; la carte de potentiel résultante est
présentée. Nous réalisons plusieurs tests pour vérifier que la carte de lentillage obtenue ne corre-
spond pas principalement à du bruit systématique.
Cette carte de lentillage sera corrélée avec d’autres observations de la structure à grandes

échelles, plus particulièrement la densité de galaxies ainsi que le lentillage des galaxies. Nous
simulons chacune de ces observations à l’aide de Flask, un code qui produit des cartes de champs
corrélés. En utilisant ces simulations, nous calculons les corrélations entre ces observations et esti-
mons la variance. Ces différentes mesures sont ensuite combinées pour contraindre les paramètres
cosmologiques. Nous terminons en discutant le futur des analyses de paramètres cosmologiques
utilisant ces observations combin�es.
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Preface

Chapters 3, 4, 5: A version of this material is published in the Astrophysical Journal as Omori
et al. 2017 with the title “A 2500 Square-Degree CMB Lensing Map from Combined South Pole
Telescope and Planck Data”. The input CMB simulations were made by myself, and the fore-
ground components were produced by Zhen Hou. The mock observations of the simulated CMB
skies were carried out by Ryan Chown using SPT software. All other works were carried out by
myself, including the combining, lensing reconstruction and the validation tests. The paper was
mostly written by myself, but comments were provided by the members of the SPT collaboration
analysis group (Eric Baxter, Brad Benson, Lindsey Bleem, John Carlstrom, Ryan Chown, Tom
Crawford, Gil Holder, William Holzapfel, Christian Reichardt, Gabrielle Simard and Kyle Story).
Chapter 7, Section 7.2: This paper is published in the Monthy Notices of the Royal Astronomi-

cal Society as Kirk et al. 2015 with the title “Cross-correlation of gravitational lensing from DES
Science Verification data with SPT and Planck lensing”. I lead this project on the SPT side and
am listed as one of the corresponding authors, while Donnacha Kirk lead the project on the DES
side. The shear catalogue was provided by the DES shear catalogue group, and the SPT lensing
map was provided by Gil Holder. My main contributions were carrying out the cross-correlation
calculations, testing the SPT lensing map for systematics errors and the development of the flat-
sky calculations. Approximately one third of the text in the paper is written by myself (although
this section is rewritten by myself in this thesis).
Chapter 7, sections 7.3 − 7.5: Some of this material will be presented in the DES×SPT 5×2pt

multi-probe methodology paper, which is currently being written. CosmoSIS is mainly devel-
oped by Joe Zuntz with large contributions from various members of the DES collaboration.
While I take no credit in making the infrastructure, I did contribute to certain modules related
to CMB lensing and tSZ bias modelling. Many of other the DES×SPT related modules were de-
veloped by Eric Baxter, Donnacha Kirk and Simon Samuroff. Testing of the DES×SPT pipeline
was done by Eric Baxter, Chihway Chang and myself. In calculating the tSZ bias, the simulated
tSZ map from redMaPPer clusters was produced by Eric Baxter. The testing of the tSZ map,
lensing reconstruction, and the tSZ bias calculations were carried out by myself. All the likeli-
hoods presented in this thesis are calculated by myself.
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1
Introduction: The CMB and Galaxies

1.1 Cosmic Microwave Background

In the standard paradigm of modern cosmology, the universe began with a Big Bang, and un-

derwent a period of accelerated expansion, known as cosmic inflation. In this framework, micro-

scopic quantum fluctuations were expanded to cosmological scales and these inhomogeneities are

hypothesized to have seeded the large-scale structure that we observe today (Guth, 1981; Sato,

1981; Linde, 1982; Albrecht & Steinhardt, 1982).

In the post-inflationary era, the universe continues to expand, and the energy density gradu-

ally dilutes, due to the increase in volume and the redshifting of photons. This reduces the prob-

ability of a high energy photon ionizing a hydrogen atom, and hence the number of hydrogen

atoms increases (Peebles, 1968; Zel’dovich et al., 1969; Dodelson, 2003). At such temperatures,

the mean-free path of photons becomes greater than that of the horizon, and photons free-stream

without colliding with another particle. This happens more or less isotropically, and we observe
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the redshifted view of the surface at which the photons were last scattered. The surface turns out

to have a radiation spectrum that is remarkably akin to that of a blackbody (Mather et al., 1990)

at a temperature of 2.72548 ± 0.00057 K (Fixsen et al., 2009). The spectral radiance dEν/dν

peaks at 160.24 GHz or 1.063 mm, and is known as the cosmic microwave background (CMB).

The CMB is a valuable cosmological observable because it gives us insight into the early uni-

verse physics. Prior to the photon-free streaming, the photon-baryon fluid plasma was coupled

to the underlying density perturbations produced by inflation (Lyth & Riotto, 1999; Dodelson,

2003). In overdense regions, the plasma experiences both an in-fall due to the gravitational po-

tential, as well as outgoing force coming from thermal pressure (the opposite is true for under-

dense regions), resulting in an oscillatory behaviour known as acoustic oscillations (Hu & Dodel-

son, 2002). In addition, the nature of these oscillations depend on the composition of the uni-

verse (Hu et al., 1997). Therefore, by measuring the statistical properties of these fluctuations,

we are probing the state and the content of the universe when it was 379, 000 years old.

1.2 CMB Experiments

The CMB was first observed serendipitously by Penzias and Wilson while they were mapping sig-

nals from the Milky Way (Penzias & Wilson, 1965). Prior to their discovery, Gamow 1948 had al-

ready predicted that a thermal background emission should exist in a hot early universe scenario.

The discovery of the CMB was therefore a direct support for the Big Bang theory, and was a

piece of evidence against the steady state model, which was still a viable theory at the time (Dur-

rer, 2015).

In 1989, the Cosmic Background Explorer (COBE) satellite was launched. Not only did the

far-infrared absolute spectrophotometer (FIRAS; Mather et al. 1994) instrument measure the

spectrum of the CMB to extreme precision (a measurement that is deemed a major triumph in

modern cosmology), the Differential Microwave Radiometer (DMR; Smoot et al. 1992) instru-

ment measured anisotropies beyond the dipole (which was first measured by Conklin et al. 1969)

on the CMB at ∆T
T ∼ O(10−5) for the first time, providing evidence that the universe is not per-

2



fectly isotropic.

The CMB community then advanced towards measuring finer angular scales to characterize

the first few acoustic peaks. Although there were several competing experiments that attempted

to accomplish this, it is generally regarded that MAT/TOCO (Miller et al., 1999), BOOMERanG

(Netterfield et al., 2002) and MAXIMA (Hanany et al., 2000; Lee et al., 2001) experiments pro-

vided convincing evidence (Bucher, 2016). These experiments measured the CMB anisotropies

down to ∼ 0.18 degrees, and the results agreed with each other as well as certain theoretical mod-

els. At around the same time, codes that allow efficient and accurate calculations of the CMB

power spectrum for a given model, cosmological parameters, and initial perturbations were devel-

oped by several groups* (Durrer et al., 2003).

Following the initial detections of the acoustic peaks, NASA launched the Wilkinson Microwave

Anisotropy Probe (WMAP; Bennett et al. 2003a) in 2001. Arguably, WMAP is one of the most

successful science teams in observational cosmology, and has contributed to “precision cosmology”

in many ways. One important result that came out of the WMAP experiment was the detection

of the gravitational lensing effect (Smith et al., 2007), which was made possible for the first time

due to WMAP’s sensitivity and large sky coverage.

Following WMAP, the Planck satellite was launched in 2009 and observed the microwave sky

in nine frequency bands ranging from 30 GHz to 850 GHz. The initial temperature maps for all

the frequencies were made public in 2013, and the revised maps were released in 2015 in addition

to the polarization maps. On the ground, where there are fewer restrictions on the primary mir-

ror size, experiments (e.g. the South Pole Telescope (SPT; Carlstrom et al. 2011), Atacama Cos-

mology Telescope (ACT; Swetz et al. 2011), POLARBEAR (Arnold et al., 2010)) were designed

to make high resolution and low noise maps. Some of the scientific achievements to date include

the measurement of the small scale fluctuations (also known as the “damping tail”) (Fowler et al.,

2010; Das et al., 2011; Keisler et al., 2011; Reichardt et al., 2012; Story et al., 2013), detection

of high redshift galaxy clusters (Marriage et al., 2011; Reichardt et al., 2013; Hasselfield et al.,
*This is possible because CMB anisotropies can be described with linear perturbation theory, which is

well established (Seljak & Zaldarriaga, 1996; Lewis et al., 2000)
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2013; Bleem et al., 2015; de Haan et al., 2016), and the characterization of foregrounds in three

frequency channels (George et al., 2015).

In particular, SPT has completed two generations of surveys: (1) the SPT-SZ survey (2008-

2011) that observed the temperature fluctuations at ∼1 arcminute resolution using three frequen-

cies 95, 150 and 220 GHz over 2500 deg2 down to a noise level of approximately 40, 18 and 70

µK-arcmin respectively (Bleem et al., 2015) and (2) the SPT-pol survey (2012-2015) that ob-

served with the same angular resolution at 95 and 150 GHz with added polarization sensitivity

over 500 deg2 to a noise-level of 6 µK-arcmin at 150 GHz (Benson et al., 2014). The third gener-

ation camera (SPT-3G) was attached to the telescope in late 2016, and is currently observing the

sky.

This thesis is mainly based on the SPT-SZ 150 and Planck 143 GHz data, although other aux-

iliary maps provided by the Planck collaboration are used for verification purposes.

1.3 Large-scale Structure

One of the primary goals of galaxy surveys is to map out the large-scale structure of the universe.

The distribution of galaxies is not random; the cosmic web consists of highly clustered nodes,

planar sheets and filamentary structures. On the other hand, voids with few or no galaxies can

also be found (Mo et al., 2010). The origin of these structures can be traced back to the quan-

tum fluctuations that become stretched out by inflation, leaving inhomogeneities in the universe.

Regions that start off slightly denser grow faster under the influence of gravity, and continue to

grow by accumulating mass over cosmological time scales. Therefore, the large-scale structure

that we observe today is the result of both the initial perturbations and their evolution.

The clustering statistics of galaxies can be used to measure the composition of the universe

(e.g. cold dark matter cluster more compared to warm dark matter). The evolution of clustering

provides us insight into the matter density and the nature of dark energy (Munshi et al., 2004;

Coil, 2013).
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1.4 Galaxy Surveys

Broadly speaking, there are two types of galaxy surveys. First, spectroscopic surveys which use

diffraction gratings or grisms to obtain spectra of galaxies. The spectral information is used to

determine the physical features, kinematics and chemical compositions of galaxies as well as pre-

cise measurements of their redshifts. With the development of multi-object spectrographs, an

instrument that is able to take the spectra of multiple objects simultaneously, the cosmological

volume one could study with a survey increased dramatically. Two notable redshift surveys of

this type are the Two Degree Field Galaxy Redshift Survey (2dFGRS; Colless et al. 2001) and

the Sloan Digital Sky Survey (SDSS; York et al. 2000).

While spectroscopic surveys have the benefit of mapping the positions of galaxies in three-

dimensions, the downside is the longer exposure time required to reach a certain magnitude,

and hence the volume that can be surveyed within a limited observational time is smaller. In

contrast, photometric surveys use several filters to sample narrow regions of the spectral energy

distribution. Although neither the precise three-dimensional information nor the chemical compo-

sitions of galaxies are obtained, we are able to map out a larger volume of the universe at a sig-

nificantly faster rate. Some of the recent photometric galaxy surveys include the Canada-Hawaii-

France-telescope Legacy Survey (CFHTLS†), Canada-France-Hawaii Telescope Lensing Survey

(CFHTLenS; Heymans et al. 2012), Kilo-Degree Survey (KiDS; de Jong et al. 2013), Dark En-

ergy Survey (DES; The Dark Energy Survey Collaboration 2005) and Hyper Suprime-Cam (HSC;

Miyazaki et al. 2012).

1.5 ΛCDM

Although arbitrary theories could be sculpted to match observational data, a large number of

model parameters are usually required for a theory to agree well with all the observational pieces

of evidence, given the precision of modern day measurements. One cosmological model that is

commonly used to parametrize the universe is the ΛCDM model, which assumes a flat universe
†http://www.cfht.hawaii.edu/Science/CFHLS/
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dominated by a cosmological constant (Λ) and cold dark matter (CDM), with initial Gaussian

fluctuations seeded by inflation.

Six parameters are fit for in the ΛCDM framework (each of which will be explained next):

baryon energy density (Ωbh2), cold dark matter energy density (Ωch2), scalar spectral index (ns),

primordial scalar fluctuation amplitude (As), reionization optical depth (τ) and the Hubble con-

stant (H0 = 100h)‡.

The expansion of a homogeneous and isotropic universe can be characterized by the Friedmann

equation:

H2(t) =

(
ȧ

a

)2

=
8πG

3

∑
i

ρi(t)−
Kc2

a2(t)
, (1.1)

where H(t) is the Hubble parameter at a given time, ρi are the energy densities of different com-

ponents, a is the cosmological scale factor defined as a(t)=1/[1+z(t)] (with z(t) the redshift), and

K is the Gaussian curvature that could be positive, negative or zero depending on the curvature

of the universe. Dividing this equation with H2(t), we obtain:

1 =
∑
i

Ωi +ΩK , (1.2)

where we have used ρcrit = 3H2

8πG , Ωi ≡
ρi
ρcrit
, and defined ΩK = −Kc2/H2(t)a2(t) (ΩK = 0 for a

spatially flat cosmology).

The density fluctuations in the early universe can be modelled as a simple power law:

PR(k) = As

(
k

k0

)ns−1

, (1.3)

where k is the wave number, As is the amplitude of the fluctuation at a fiducial wavenumber k0,

and ns parametrizes the tilt of the spectrum.

τ is the optical depth of reionization which provides a measure of the line-of-sight free-electron
‡The last parameter is occasionally casted differently. For example, Hinshaw et al. 2013 uses ΩΛ in-

stead of H0, but the two are related via the Friedmann equation (Equation 1.1). Planck Collaboration
et al. 2014b and Planck Collaboration VIII. 2015 use θMC, which is the angular size of the sound horizon
at recombination estimated using CosmoMC.
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opacity to the CMB radiation.

1.6 Angular Power Spectra

One of the most commonly used statistics in CMB and galaxy clustering analyses is the angu-

lar power spectrum§, which characterizes the amplitude of fluctuations as a function of angular

scales. A map defined over the full sphere X(n̂) (where n̂ is the directional vector), can be de-

composed into different spherical harmonic modes:

X(n̂) =
∑
ℓ

m=+ℓ∑
m=−ℓ

xℓmYℓm(n̂), (1.4)

where Yℓm are the spherical harmonic functions, and xℓm are the coefficients that quantify the

contribution of a particular mode to the map:

xℓm =

∫
dn̂X(n̂)Y ∗

ℓm(n̂), (1.5)

where the integral is taken over all directions. The angular auto-power spectrum Cℓ of a map

X(n̂) is defined as the variance of xℓm for each ℓ:

CXXℓ =
1

2ℓ+ 1

m=+ℓ∑
m=−ℓ

|xℓm|2. (1.6)

Similarly, the angular cross-spectrum, that measures the correlation between two maps X(n̂), Z(n̂)

is given by:

CXZℓ =
1

2ℓ+ 1

m=+ℓ∑
m=−ℓ

x∗ℓmzℓm. (1.7)

These auto/cross-spectra are calculated throughout this thesis and are used to characterize tem-

perature fluctuations T , lensing potential ϕ and galaxy over-densities δg.
§A pedagogical review of angular power spectra in the context of CMB analysis is given in Hivon et al.

2002 and Hinshaw et al. 2003
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1.7 Thesis Layout

This thesis will discuss about CMB weak lensing, galaxy clustering and galaxy weak lensing, with

an emphasis on the CMB weak lensing map, and the cross-correlation with galaxy density and

galaxy weak lensing data. The goal of this work is to show how cosmology can be constrained by

combining multiple probes simultaneously, which is currently a popular effort in the field.

In Chapter 2, we provide a general overview of gravitational lensing, and some of the key equa-

tions will be derived. In Chapter 3, descriptions of the CMB temperature data used in this analy-

sis will be given and the method of combining SPT and Planck data will be detailed. In Chapter

4, we describe the methodology used to reconstruct the lensing map from the combined tempera-

ture map and systematic error tests and validations of the map are presented in Chapter 5. The

theoretical background behind cross-correlations is given in Chapter 6, and measurements made

on realistic simulations is presented in Chapter 7. In Chapter 8, the cross-correlation measure-

ments are combined with other probes and are used to produce combined constraints. In Chapter

9, we produce simulations that mimic SPT-3G and DES-Y5 data, and repeat the forecast to in-

vestigate the constraining power for these future data sets. Finally, concluding remarks are given

in Chapter 10.

1.8 Notation and Conventions

We first define galaxy density as δg(n̂) = (N(n̂) − ⟨N⟩)/⟨N⟩, where N is the number of galaxies

that fall in a pixel. Following Planck Collaboration XV. 2015 we will use ℓ,m to denote multipole

moments for temperature, and L,M to denote multipole moments for lensing. Lensing potential

ϕ generated by an isolated over-density will be defined to be negative.
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1.9 Assumed Cosmology

Throughout the chapters on the topic of CMB lensing reconstruction, we assume a spatially flat

ΛCDM Planck 2015 cosmology¶ (Planck Collaboration XV., 2015) with fitted parameters Ωbh2 =

0.0223, Ωch2 = 0.118, H0 = 100 hkm s−1Mpc−1 with h = 0.679, power spectrum of primordial

curvature perturbations with an amplitude (at k = 0.05 Mpc−1) As = 2.14 × 10−9, spectral

index ns = 0.968, optical depth to reionization τ = 0.0666. For the derived parameters, we use an

amplitude of the (linear) power spectrum on the scale of 8 h−1Mpc σ8 = 0.82, and we assume one

massive neutrino with a 0.06 eV mass. We use the subscript “fid” to denote a quantity calculated

from the best-fit Planck cosmology.

In chapters that involve DES, we use the cosmology that is adopted by the main DES analysis

group: Ωbh2 = 0.0222, Ωch2 = 0.117, Ωm = 0.295, H0 = 100 hkm s−1Mpc−1 with h = 0.688,

As = 2.26 × 10−9, ns = 0.968, and τ = 0.08. σ8 is set to 0.834, and we assume one massive

neutrino with a mass of 0.06 eV.

¶base_plikHM_TT_lowTEB_lensing from https://wiki.cosmos.esa.int/planckpla2015/images/6/67/
Params_table_2015_limit68.pdf
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2
Gravitational lensing

This chapter on the derivation of the deflection angle is based on Mo et al. 2010; Kilbinger 2015

and M. Meneghetti’s lecture notes*. In the absence of perturbations, light rays travel along the

null geodesics of the homogeneous and isotropic Friedmann-Lemaître space-time. It travels such

that the comoving separation vector x⃗ between neighbouring rays follows (Schneider et al., 1992):

d2x⃗

dχ2
+Kx⃗ = 0, (2.1)

where x⃗ is the comoving separation vector, χ is the comoving radial distance and K is the curva-

ture parameter introduced in Section 1.5. Using Equation 2.1, we can consider the path of light

rays starting from the observer, which implies the initial conditions:

x⃗|χ=0 = 0,
dx⃗

dχ
|χ=0 = θ⃗, (2.2)

*http://www.ita.uni-heidelberg.de/~massimo/sub/Lectures/gl_all.pdf
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where θ⃗ is the apparent angular separation between the light rays that the observer sees. The

general solution for this equation with the given boundary condition is:

x⃗0(χ) = fK(χ)θ⃗, (2.3)

where the subscript 0 implies an unperturbed path, and fK is the curvature parameter that de-

pends on the sign of K

fK(χ) =



K−1/2 sin(K1/2χ), K > 0

χ, K = 0

(−K)−1/2 sinh((−K)1/2χ). K < 0

(2.4)

The universe, however, contains density perturbations. We assume these perturbations to be

much smaller than the Hubble radius, and therefore localized. In such a framework, the space-

time can be described by the metric:

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
dx⃗2, (2.5)

where Φ is the Newtonian gravitational potential. Since for light, ds = 0:

(
1 +

2Φ

c2

)
c2dt2 =

(
1− 2Φ

c2

)
dx⃗2

dx⃗

dt
= c′ = c

√
(1 + 2Φ

c2
)

(1− 2Φ
c2
)
∼ c

(
1 +

2Φ

c2

)
, (2.6)

where the last term is obtained by assuming 2Φ
c2

≪ 1. This is equivalent to photons travelling

through a medium with index of refraction n = c/c′ ∼ 1 − 2Φ
c2
† , which is where the name gravi-

tational lensing originates from. In such a medium, it can be derived‡ that the apparent angular
†n>1, Φ < 0
‡See for example M. Meneghetti’s lecture notes
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difference between the lensed and unlensed ray ⃗̂α is:

⃗̂α =
2

c2

∫ λb

λa

∇⊥Φdλ, (2.7)

where λ is a parametrization of the photons’ path. In comoving coordinates, the amount of angu-

lar deflection is:

d⃗̂α =
2

c2
∇⊥Φ(x⃗, χ

′)dχ′, (2.8)

and the comoving separation between the perturbed and unperturbed rays at a distance χ is

given by:

dx⃗ = fK(χ− χ′)d⃗̂α. (2.9)

From the viewpoint of the observer, the image is located at:

x⃗ = x⃗0 +

∫
dx⃗

= x⃗0 +
2

c2

∫ χ

0
fK(χ− χ′)∇⊥Φ(x⃗, χ

′)dχ′, (2.10)

and in terms of angles (using x⃗ = fK(χ)θ⃗), this can be written as:

θ⃗0(χ) = θ⃗(χ)− 2

c2

∫ χ

0
dχ′ fK(χ− χ′)

fK(χ)
∇⊥Φ(x⃗, χ

′)

= θ⃗(χ)− α⃗(χ), (2.11)

which is the lens equation, and α⃗ is the scaled deflection angle.

In practice, the deflection caused by gravitational lensing is small (Φ/c2 ≪ 1), and therefore,

the integral can be taken along the unperturbed path (i.e. using the Born approximation), which

sets Φ(x⃗, χ′)∼Φ(fK(χ
′)θ⃗, χ′) and ∇⊥ ∼ 1

fK
∇
θ⃗
. Under this approximation, the deflection angle

can be expressed as the gradient of a projected 2D potential defined as:

ϕ(θ⃗, χ) =
2

c2

∫ χ

0
dχ′ fK(χ− χ′)

fK(χ)fK(χ′)
Φ(fK(χ

′)θ⃗, χ′). (2.12)
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From Equation 2.11, we can calculate the Jacobian, which gives:

∇
θ⃗
θ⃗0 =

∂θ1∂θ1
∂θ1
∂θ2

∂θ2
∂θ1

∂θ2
∂θ2

−

∂α1
∂θ1

∂α1
∂θ2

∂α2
∂θ1

∂α2
∂θ2


= δij −

 ∂2ϕ
∂θ1∂θ1

∂2ϕ
∂θ1∂θ2

∂2ϕ
∂θ1∂θ2

∂2ϕ
∂θ2∂θ2

 . (2.13)

The second term is a symmetric matrix which can be separated into a diagonal and a trace-free

term:  ∂2ϕ
∂θ1∂θ1

∂2ϕ
∂θ1∂θ2

∂2ϕ
∂θ1∂θ2

∂2ϕ
∂θ2∂θ2

 =

1
2

(
∂2ϕ

∂θ1∂θ1
+ ∂2ϕ

∂θ2∂θ2

)
0

0 1
2

(
∂2ϕ

∂θ1∂θ1
+ ∂2ϕ

∂θ2∂θ2

)


+

1
2

(
∂2ϕ

∂θ1∂θ1
− ∂2ϕ

∂θ2∂θ2

)
∂2ϕ

∂θ1∂θ2

∂2ϕ
∂θ1∂θ2

−1
2

(
∂2ϕ

∂θ1∂θ1
− ∂2ϕ

∂θ2∂θ2

)
 . (2.14)

Therefore, the equation can be re-written as:

∇
θ⃗
θ⃗0 = (1− κ)

1 0

0 1

−

γ1 γ2

γ2 −γ1

 , (2.15)

where we have used

1

2

(
∂2ϕ

∂θ1∂θ1
+

∂2ϕ

∂θ2∂θ2

)
=

1

2
∇2
θ⃗
ϕ = κ (2.16)

1

2

(
∂2ϕ

∂θ1∂θ1
− ∂2ϕ

∂θ2∂θ2

)
= γ1 (2.17)

∂2ϕ

∂θ1∂θ2
= γ2 (2.18)

The first term of Equation 2.15 is the isotropic component of lensing where the size of the image

is increased or decreased. The second part quantifies the anisotropic stretching, which converts

a circular image into an ellipse (see Figure 2.1). This is called the shear (often written as a com-
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plex quantity γ = γ1 + iγ2 = |γ|e2iφ, where φ is the angle between the shear components), and

is used to measure the lensing signal from the shapes of galaxies. In practice, we measure the

moments of the surface brightness:

qij ≡
∫
d2θSobs(θ⃗)θiθj , (2.19)

and quantify the two components of ellipticity (Dodelson, 2017):

ϵ1 ≡
q11 − q22

q11 + q22 + 2
√
q11q22 − q212

(2.20)

ϵ2 ≡
2q12

q11 + q22 + 2
√
q11q22 − q212

, (2.21)

which we use to define the complex ellipticity ϵ = ϵ1 + iϵ2 = |ϵ|e2iφ. For a galaxy with an intrinsic

ellipticity ϵint, the sheared ellipticity is (Seitz & Schneider, 1997):

ϵlensed =
ϵint + g

1 + g∗ϵint (2.22)

when g ≤ 1, where g is the reduced shear defined as g = γ/(1 − κ). In the weak lensing regime

where γ ≪ 1 and κ≪ 1, this reduces to ϵlensed ≈ ϵint + g ≈ ϵint +γ. Furthermore, if we can assume

that orientations of the source galaxies are random (although there are physical effects such as

intrinsic alignment that violate this assumption; See section 6.1.1), then for a large sample of

galaxies, the average intrinsic ellipticity vanishes, and we obtain ⟨ϵ⟩ = ⟨γ⟩.

Equation 2.16 can be written as:

κ =
1

2
∇
θ⃗
α⃗

=
1

c2

∫ χ

0
dχ′ fK(χ

′)fK(χ− χ′)

fK(χ)
∇2

⊥Φ[fK(χ′)θ⃗, χ′], (2.23)

and the 2D Laplacian could be described in terms of the 3D Laplacian by adding a second-order

derivative along the line of sight ∂2/∂χ2, which vanishes when an integration is performed (con-
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Figure 2.1 Left: definitions of γ1 and γ2. In the case of no shear, γ1 = 0 and γ2 = 0 as
shown in the centre. The shapes are with respect to the xy-coordinates of the image,
which in practice are lines of equal right ascension and declination in the limit of small
sky area. Right: values of tangential shear and cross shear as the sample galaxy rep-
resented in grey is rotated around a reference point at the centre (discussed in Section
7.4).

tributions coming from behind and in front of the lens cancel out). The 3D Laplacian of the po-

tential is related to the mass density via the Poisson equation, which in comoving coordinates

can be written as (see e.g. Bertschinger 1995):

∇2Φ = 4πGa2ρm

= 4πGa−1ρ̄m,0(δ + 1)

= a−1 3H
2
0Ωm,0
2

(δ + 1) (2.24)

where we have used δ = (ρm − ρ̄m)/ρ̄m, which is the definition for matter over-densities and

ρ̄m = ρ̄m,0/a3 which is the redshift scaling relation for non-relativistic matter. Substituting these
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into Equation 2.23, we obtain an expression for convergence:

κ(θ⃗, χ) =
3H2

0Ωm,0
2c2

∫ χ

0
dχ′ fK(χ

′)fK(χ− χ′)

fK(χ)

δ[fK(χ
′)θ⃗, χ′]

a(χ′)
, (2.25)

where the background term was ignored. What we often want to calculate is the mean projected

convergence for the source population (for galaxies, there is a spread in χ). In such a case, we

integrate the convergence up to the comoving horizon distance χ∗, and model the redshift distri-

bution of the sources:

κ(θ⃗) =

∫ χ∗

0
dχG(χ)κ(θ⃗, χ), (2.26)

where G(χ) describes the distribution of the sources. Plugging Equation 2.25 into 2.26 :

κ(θ⃗) =
3H2

0Ωm,0
2c2

∫ χ∗

0
dχ′W (χ′)fK(χ′)

δ[fK(χ
′)θ⃗, χ′]

a(χ′)
(2.27)

where W (χ′) is the lensing efficiency or the kernel:

W (χ′) =

∫ χ∗

χ′
dχG(χ)

fK(χ− χ′)

fK(χ)
(2.28)

Equation 2.27 describes the projected convergence signal for a given direction θ⃗. This is a general

formulation, and can be used to describe convergence calculated from both galaxy weak lensing

and CMB weak lensing. We return to this equation in Section 6.1.
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3
CMB Temperature Data

3.1 SPT Data

The South Pole Telescope (SPT; Carlstrom et al. 2011) is a 10-m telescope located at the Na-

tional Science Foundation Amundsen-Scott South Pole Station in Antarctica. From 2008 to 2011,

the telescope was used to conduct the SPT-SZ survey, a survey that mapped approximately

2500 deg2 of the southern galactic cap (Story et al., 2013). The survey footprint extends from

20h to 7h in right ascension (R.A.) and from −65◦ to −40◦ in declination (decl.). The full 2500 deg2

field is divided into 19 sub-fields, with roughly 1 degree of overlapping coverage at the field bound-

aries. These fields were observed at three frequency bands centred at roughly 95, 150, and 220 GHz.

For this analysis, we exclusively work with the 150 GHz data, since the noise level for this chan-

nel is the lowest out of the three. The main lobe of the 150 GHz beam could be approximated

by an azimuthally symmetric, two dimensional Gaussian with a full width at half maximum

(FWHM) of 1.2′ (Crawford et al., 2016) for the scales used in this analysis. Although the noise

17



levels vary field-per-field, the typical noise level of SPT-SZ maps at 150 GHz is 18 µK-arcmin.

The maps were made by combining a large number of left-going and right-going scans performed

along constant declination, with small steps in elevation between scans. Since both left and right-

going scans equally measure the underlying astrophysical signal (which is invariant over the

timescale of telescope scans), these are added to increase the signal-to-noise ratio of the map. By

taking the difference between the left and right going scans, the underlying signal is removed,

and an estimate of the noise can be obtained.

3.2 Planck Data

The Planck satellite, launched in 2009 by the European Space Agency (Planck Collaboration

I., 2015), was used to observe the millimeter sky in nine frequency bands ranging from 30 to

857 GHz using both the high-frequency instrument (HFI; Planck Collaboration VIII. 2015) and

the low-frequency instrument (LFI; Planck Collaboration et al. 2016a). It achieved better reso-

lution, higher sensitivity, and a wider range of frequencies than its predecessor, the Wilkinson

Microwave Anisotropy Probe (WMAP; Bennett et al. 2003b). In this work, we use the publicly

available Planck 143 GHz map* and beam† provided in the 2015 data release (Planck Collabora-

tion VIII., 2015). This Planck channel was chosen because it contains the greatest overlap with

the SPT-SZ 150 GHz channel. The 143 GHz beam function is similar to an azimuthally symmet-

ric Gaussian beam with a FWHM of ∼ 7′, and the instrument noise is approximately white with

an RMS of ∼ 30 µK-arcmin over 67% of the sky (Planck Collaboration VIII., 2015) and ∼ 27 µK-

arcmin over the SPT 2500 deg2 patch.
*http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/maps/HFI_SkyMap_143_2048_R2.

02_full.fits
†http://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/HFI_RIMO_Beams-100pc_R2.00.

fits
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Figure 3.1 Input power spectra for the lensed CMB, and all the other foreground compo-
nents at 150 GHz. Two components based on data are added: Poisson dusty and radio
galaxies (obs DGP+RGP), and observed tSZ emission (obs tSZ). Gaussian realizations
of the other components are generated using the derived spectra presented in George
et al. 2015.

3.3 Simulations

Simulations of the temperature and noise maps are used to obtain key building blocks of this

analysis including the SPT-SZ transfer function and the average noise ⟨|nℓm|2⟩, which are used to

define the weights used in the combining process (described in Section 3.4).

Simulated temperature maps consist of four components.

(i) Lensed CMB.

(ii) Gaussian foregrounds: thermal Sunyaev-Zel’dovich effect (tSZ), kinetic Sunyaev-Zel’dovich

effect (kSZ), cosmic infrared background (CIB), and unresolved faint radio sources in the

flux density range F150<6.4 mJy.

(iii) Individually detected point sources: radio and dusty star forming galaxies.
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(iv) Detected galaxy clusters.

For (i), lensed CMB maps are produced by running LensPix (Lewis, 2005) with an unlensed

temperature power spectrum CTT,unl
ℓ calculated using CAMB (Lewis et al., 2000) with cosmo-

logical parameters defined in Section 1.9 as input. We produce maps in HEALPix format with

Nside = 8192 and apply a cut-off in the input spectrum at ℓmax = 9500. The resulting lensed

maps are consistent (< 2% difference) with the theoretically calculated lensed spectrum CTT,len
ℓ

up to ℓ ∼ 7000. For each realization of the lensing potential, we lens two background CMB maps,

which yields two sets of lensed CMB maps. The purpose of this second set will be explained in

Chapter 4. For (ii), we add simulated Gaussian foreground components. The shapes of the tSZ

and kSZ spectrum are taken from Shaw et al. (2010) and Shaw et al. (2012) models, respectively,

with the amplitudes calibrated to match with George et al. (2015). A similar procedure is fol-

lowed for the CIB component using templates from George et al. (2015). For the clustered CIB

component, the spectrum is set to follow Dℓ ∝ ℓ0.8 (where Dℓ = ℓ(ℓ + 1)/2π × Cℓ) with an am-

plitude of Dclus
3000 = 3.46 µK2. The shot-noise or “Poisson” CIB power from galaxies dimmer than

6.4 mJy is taken to be DPoisson
3000 = 9.16 µK2. For the unresolved faint radio sources, we generate

random realizations using dN/dS taken from De Zotti et al. (2005), and calibrate the amplitude

using SPT-SZ 150 GHz observations. Correlations between these Gaussian foreground compo-

nents were neglected‡.

We place point sources at the observed locations with their measured fluxes for point sources

in the flux density range 6.4 < F150 < 50 mJy listed in the SPT-SZ point source catalogue (Ev-

erett et al. 2017, in preparation). The SPT-SZ point source catalogue is listed in units of inten-

sity MJy/sr. We first compute the energy that falls into a HEALPix pixel (using Nside = 8192)

and convert this into CMB temperature by applying the conversion factor:

∆T [KCMB]
I [MJy/sr] =

c2

2νkB

(exp(x)− 1)2

x2 exp(x) (3.1)

‡Realistically there is a tSZ-CIB correlation as shown in George et al. 2015, but the correlation ampli-
tude is small, and hence such consideration will be left for future works.

20



where ν is the frequency, x = hν/kBTCMB with TCMB = 2.7255 K. Similarly for (iv), we add

clusters with detection significance S/Nclus > 4.5§ listed in Bleem et al. (2015) and model the

Compton y profile using a projected β model (Cavaliere & Fusco-Femiano, 1976):

y0.75
′

tSZ = 2π

∫ 0.75′

0
ytSZ,0(1 + θ2/θ2c )

(1−3β)/2θdθ, (3.2)

with β = 1, where ytSZ,0 is the peak Comptonization, y0.75
′

tSZ is the integrated Comptonization

within a 0.75′ radius (Bleem et al., 2015), θ is the angular separation from the centre of the clus-

ter, and θc is the cluster core scale. This measurement is converted into temperature using:

∆T = TCMBg(ν)y (3.3)

where g(ν) = xcoth(x/2) − 4 with x = hν/kBTCMB (Carlstrom et al., 2002). This effect causes

a temperature decrement around clusters for frequencies less than 217 GHz and an increase for

above, as shown in Figure 3.2. From the sum of all these inputs, we produce the simulated SPT-

SZ and Planck maps separately.

For SPT-SZ simulations, the input HEALPix maps are passed through a mock observing

pipeline, which creates mock time-ordered data for each detector, filters those data in the same

manner as the real data, and creates maps using the inverse-noise weights from the real data.

The observation runs for each of the fields are co-added and the beams are deconvolved using

the beam models associated with those fields. All the fields are then reconvolved with a FWHM

= 1.75′ Gaussian beam, projected onto a single HEALPix map of Nside = 8192, and then

stitched to produce a map that spans over 2500 deg2.

From the noise-free mock maps, we calculate the filter transfer function:

Yℓm =
⟨T out
ℓm T

in,∗
ℓm ⟩

⟨T in
ℓmT

in,∗
ℓm ⟩

, (3.4)

§in Bleem et al. 2015 ξ is used to denote the signal-to-noise ratio. We avoid this notation and reserve ξ
for two-point angular correlations.
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Figure 3.2 Temperature decrement caused by the tSZ effect for a range of frequencies.
The grey bands correspond to the SPT-SZ 95, 150 and 220 GHz channels. Compton y
parameter is assumed to be 1× 10−4.

where the Tℓm are computed from 200 boundary masked temperature maps, and the superscripts

“out” and “in” refer to the outputs and inputs of the mock observing pipeline. The filter trans-

fer function encodes how the input data is transformed when passed through the observation

pipeline, and is deconvolved from the outputs of the real observations to obtain the estimated

true sky signal. Noise maps are produced separately by taking the difference between two SPT-

SZ observations, which effectively removes the underlying signal and leaves noise behind. We add

noise maps obtained in this way to the noise-free simulation outputs to produce realistic data-like

maps.

To produce simulated Planck maps, we simply convolve the input signal maps by the Planck

143 GHz beam and add noise from the 8th Full Focal Plane simulation set (FFP8; Planck Col-

laboration XII. 2016). We assume the SPT-SZ 150 and Planck 143 GHz channels to have similar

bandpass responses to foreground signal, and therefore, do not introduce additional free parame-

ters correcting for the small difference.
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3.4 Combining SPT-SZ and Planck

To form the nearly optimal combination of SPT-SZ and Planck data, we create the inverse-variance-

weighted sum of the two data sets in harmonic-space, after deconvolving the beam and filter-

ing from each data set. To avoid position-space artifacts, we apodize the data and mask bright

sources and galaxy clusters before transforming to harmonic-space, and we mask some noisy ℓ,m

modes before transforming the combination back to position-space. Each of these steps are de-

scribed in more detail below.

3.4.1 Boundary Mask

A binary mask defined by the nominal SPT region (20h < R.A. < 7h and −65◦ < decl. <

−40◦) is first produced. The process_mask routine in the HEALPix package is then used to

calculate the distance from the nearest masked pixel, and this distance map is smoothed using

a Gaussian beam of FWHM = 15′. This smoothing is applied to soften the corners of the mask.

The distance map is then used to apodize the binary mask with a Gaussian beam of FWHM =

20′. This results in a mask with an effective area of ∼ 2350 deg2 which we apply to both SPT-SZ

and Planck maps.

3.4.2 Bright Point Source and Cluster Masking

The brightest point sources are removed at the stage of time-stream filtering. We revisit these lo-

cations in the map and mask these regions to avoid artifacts which result from applying spherical

harmonic transforms on band-limited maps. Apertures of radii R = 6′ and R = 9′ are placed at

the locations of point sources with 50 < F150 < 500 mJy, and F150 > 500 mJy respectively. In

addition, clusters above S/Nclus > 6 are masked with an aperture of R = 6′.

3.4.3 Noise-Weighted Combining

The CMB maps from SPT-SZ and Planck have different noise characteristics, in particular as

a function of ℓ or angular scale as shown in Figure 3.3. The maps are optimally combined such
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Figure 3.3 Noise characteristics of SPT-SZ and Planck data, and the ratio of weights
used in combining the data, all shown on (ℓ,m) grids. Left: transfer-function-
deconvolved SPT-SZ noise obtained by taking the difference between the left-going
and right-going scans. The noisy low m stripe is due to the scanning strategy of SPT-
SZ. Centre: beam-deconvolved Planck noise. Right: ratio of weights for SPT-SZ and
Planck. In all the panels, high m modes (m > 0.75ℓ) where the values are small due to
the mask, have been zeroed out to retain the scale.
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that the resulting map has lower noise than the individual maps alone at all scales, which is ad-

vantageous for lensing map reconstruction. This is achieved by constructing a simple linear com-

bination of SPT-SZ and Planck in harmonic-space, weighted by their relative noise variance for

each mode (ℓ,m):

wSPT
ℓm =

1

⟨|nSPT
ℓm /YℓmbSPT

ℓ |2⟩
(3.5)

wPlanckℓm =
1

⟨|nPlanckℓm /bPlanckℓ |2⟩
(3.6)

TXℓm =

(
wSPT
ℓm

wSPT
ℓm + wPlanckℓm

T SPT
ℓm

YℓmbSPT
ℓ

+
wPlanckℓm

wSPT
ℓm + wPlanckℓm

TPlanckℓm

bPlanckℓ

)
b1.75

′
ℓ , (3.7)

where bSPT
ℓ , bPlanckℓ are the beams, Yℓm is the SPT-SZ transfer function calculated using Equa-

tion 3.4, nSPT
ℓm , nPlanck

ℓm are the noise estimates for SPT-SZ and Planck, wSPT
ℓm and wPlanck

ℓm are the

weights, T SPT
ℓm , TPlanck

ℓm are the beam convolved temperature multipole moments, and TXℓm is the

output combined SPT-SZ+Planck spherical harmonic coefficients convolved with a FWHM=1.75′

Gaussian beam b1.75
′

ℓ .

The SPT-SZ data map and the noise maps are calibrated to match with the Planck 143 GHz

data using results from Hou et al. 2017. We evaluate the sensitivity of the lensing results to the

exact value of this calibration factor in section 5.5.2.6.

3.4.4 Masking of modes

Low-m modes from SPT-SZ are noisy, primarily due to the combination of 1/f noise, the atmo-

sphere, and the SPT-SZ scanning strategy. Low-ℓ, low-m modes are improved by the combining

procedure since Planck has relatively low noise for those modes. High-ℓ, low-m modes, however,

are noisy in both data sets and hence in the combination. Transforming Tℓm into maps that con-

tain noisy modes translate to anisotropic noise that is difficult to treat in position-space. We

therefore mask these modes by setting them to zero. In our baseline analysis, we set all modes

ℓ > 2000 and m < 250 to zero (shown as the area enclosed by the orange dashed lines in Figure
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Figure 3.4 Left: map of the CMB temperature difference relative to the mean prior to
inpainting applied. The point source is located at the centre of the image. The inner
R = 2′ circle shows the region to be inpainted and the region between the inner and
outer circles is the area used to estimate the inpainting values. Right: inpainted CMB
temperature map.

3.3). Various choices of these cuts are discussed in section 5.5.2.2.

3.4.5 Faint Point Source Inpainting

In addition to the bright sources and galaxy clusters masked in section 3.4.2, the combined SPT-

SZ+Planck temperature map also contains point sources with flux densities between 6.4 < F150

< 50 mJy. These point sources are painted over in the combined map using the constrained

Gaussian inpainting method (Hoffman & Ribak, 1991; Benoit-Lévy et al., 2013). The pixel values

of the region to be inpainted are estimated using the fiducial lensed CMB correlation function

and the pixel values of the surrounding region:

T obs
i = T sim

i + ΞijΞ
−1
jj (T

obs
j − T sim

j ), (3.8)

where T obs, T sim are the data and simulated CMB map generated from the fiducial temperature

power spectrum, the matrices Ξij and Ξjj represent the cross-correlation between the region in-

26



side (denoted by subscript i) and outside the masked region (denoted by subscript j), and the

auto-correlation of the outer region, respectively. The elements of these matrices are estimated

using the correlation function calculated from a fiducial lensed CMB spectrum, using:

wTTθ =
∑
ℓ

2ℓ+ 1

4π
CTTℓ,fidPℓ(cos(θ)). (3.9)

We inpaint regions within R = 2′ centred at the point sources using the pixel values in the region

of 2′ < R < 20′. We have evaluated the validity of this method by applying this procedure on

a simulated map without point sources, and obtained a difference of ≪ 1% in power relative to

the map without inpainting. Finally, the Gaussian beam b1.75
′

ℓ convolved in section 3.4.3 is decon-

volved from the maps.

The outcome of combining the SPT-SZ 150 GHz and Planck 143 GHz temperature maps is

shown in Figure 3.5 and the benefit of the combining process is visually apparent. In position-

space, and limiting to ℓmax = 2000, the combined map resembles the Planck only map since the

modes at the largest scales stand out visually. Extending to ℓmax = 6000 (4000 for Planck), the

Planck map becomes dominated by noise, whereas the SPT-SZ+Planck map resembles the input

CMB fluctuations. In contrast, the input CMB and the SPT-SZ maps appear different due the

missing low-ℓ modes removed in the filtering, and it is evident that these modes are recovered by

combining with Planck. In the next chapter, the quadratic estimator will be used to estimate the

lensing potential from the combined SPT-SZ+Planck temperature map.
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Figure 3.5 Upper panels: simulated CMB temperature maps for the input, Planck,
SPT-SZ and SPT-SZ+Planck using multipoles up to ℓ = 2000. Lower panels: same
as above, but going to ℓ = 6000 (except for Planck, which is cut off at ℓ = 4000). For
Planck and SPT-SZ maps, the beams have been deconvolved and re-convolved with a
FWHM = 1.75′ Gaussian beam to match the resolution of the SPT-SZ+Planck map.
A point source that is not visible with ℓmax = 2000 becomes visible using ℓmax = 6000.
Since the noise coming from modes ℓ > 2000 dominates over the signal for Planck when
using ℓmax = 4000, the second panel in the bottom row is mostly noise.
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4
CMB Lensing Map Reconstruction

In this chapter, we first outline the mathematical background of CMB weak lensing. We then

describe the methods used to reconstruct the lensing potential ϕ from a temperature map, and

the output lensing map is presented as the main result.

4.1 Quadratic Estimator

The stretching and distortion of the CMB image is due to deflections of photon paths by the un-

derlying potential. Mathematically, this could be written as (Lewis & Challinor, 2006; Hanson

et al., 2010):

T len(n̂) = T unl[n̂+∇iϕ(n̂) + ϵ k
j ∇kψ(n̂)], (4.1)

where the first term is the unlensed temperature field, the second and third terms are the deflec-

tion field decomposed into the gradient and curl* components (Hirata & Seljak, 2003). The curl
*The word curl is often used to describe this component but is rather a gradient rotated by 90 degrees.
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term ϵ k
j ∇kψ(n̂), to first order, is not expected (Namikawa et al., 2012). Although there exist

mechanisms such as gravitational waves (Cooray et al., 2005) that will generate such a mode, the

amplitude is expected to be comparatively small and can be neglected. Therefore, the presence of

curl modes is an indication of systematic errors introduced in the lensing reconstruction process,

and can be used as a null test.

With the curl component neglected, we can perform a Taylor expansion on equation 4.1 to

obtain:

T len(n̂) = T unl(n̂) +∇iϕ(n̂)∇iT unl(n̂) (4.2)

to first order in ∇ϕ(n̂). Taking the spherical harmonic transform of both sides:

T len
ℓ1m1

= T unl
ℓ1m1

+

∫
dn̂Y ∗

ℓ1m1
(n̂)

[
∇i

∑
LM

ϕLMYLM (n̂)

][
∇i
∑
ℓ′1m

′
1

T unl
ℓ′1m

′
1
Yℓ′1m′

1
(n̂)

]

= T unl
ℓ1m1

+
∑
LM

∑
ℓ′1m

′
1

ϕLMT
unl
ℓ′1m

′
1

∫
dn̂Y ∗

ℓ1m1
(n̂)[∇iYLM (n̂)][∇iYℓ′1m′

1
(n̂)]. (4.3)

Now taking T len
ℓ1m1

T len
ℓ2m2

(again to first order in ϕ):

T len
ℓ1m1

T len
ℓ2m2

= T unl
ℓ1m1

T unl
ℓ2m2

+
∑
LM

∑
ℓ′2m

′
2

ϕLMT
unl
ℓ1m1

T unl
ℓ′2m

′
2

∫
dn̂Y ∗

ℓ2m2
(n̂)[∇iYLM (n̂)][∇iYℓ′2m′

2
(n̂)]

+
∑
LM

∑
ℓ′1m

′
1

ϕLMT
unl
ℓ2m2

T unl
ℓ′1m

′
1

∫
dn̂Y ∗

ℓ1m1
(n̂)[∇iYLM (n̂)][∇iYℓ′1m′

1
(n̂)].

(4.4)

Using T unl
ℓ1m1

= (−1)m1(T unl
ℓ1−m1

)∗, and taking the average over many CMB realizations:
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⟨(T unl
ℓ1−m1

)∗T unl
ℓ′2m

′
2
⟩ = CTT,unl

ℓ1
δℓ1ℓ′2δ−m1m′

2
and ⟨(T unl

ℓ2−m2
)∗T unl

ℓ′1m
′
1
⟩ = CTT,unl

ℓ2
δℓ2ℓ′1δ−m2m′

1
we obtain:

⟨T len
ℓ1m1

T len
ℓ2m2

⟩CMB =(−1)m2CTT,unl
ℓ2

δℓ2ℓ1δ−m2m1

+
∑
LM

∑
ℓ′2m

′
2

ϕLM (−1)m1CTT,unl
ℓ1

δℓ1ℓ′2δ−m1m′
2

∫
dn̂Y ∗

ℓ2m2
(n̂)[∇iYLM (n̂)][∇iYℓ′2m′

2
(n̂)]

+
∑
LM

∑
ℓ′1m

′
1

ϕLM (−1)m2CTT,unl
ℓ2

δℓ2ℓ′1δ−m2m′
1

∫
dn̂Y ∗

ℓ1m1
(n̂)[∇iYLM (n̂)][∇iYℓ′1m′

1
(n̂)],

(4.5)

which gives us:

⟨T len
ℓ1m1

T len
ℓ2m2

⟩CMB =(−1)m2CTT,unl
ℓ2

δℓ2ℓ1δ−m2m1

+
∑
LM

ϕLM (−1)m1CTT,unl
ℓ1

∫
dn̂Y ∗

ℓ2m2
(n̂)[∇iYLM (n̂)][∇iYℓ1−m1(n̂)]

+
∑
LM

ϕLM (−1)m2CTT,unl
ℓ2

∫
dn̂Y ∗

ℓ1m1
(n̂)[∇iYLM (n̂)][∇iYℓ2−m2(n̂)]. (4.6)

The term in the integral can be rewritten using the identity ∇2Yℓm(n̂) = −ℓ(ℓ + 1)Yℓm(n̂) (Hu,

2000), such that:

∫
dn̂Y ∗

ℓm(n̂)∇iYLM (n̂)∇iYℓ′m′(n̂) =
1

2
[L(L+ 1) + ℓ′(ℓ′ + 1)− ℓ(ℓ+ 1)]

∫
dn̂Y ∗

ℓm(n̂)YLM (n̂)Yℓ′m′(n̂),

(4.7)

and the integral of three spherical harmonics could be rewritten using the Wigner-3j symbol:

∫
dn̂Y ∗

ℓm(n̂)YLM (n̂)Yℓ′m′(n̂) = (−1)m
√

(2L+ 1)(2ℓ+ 1)(2ℓ′ + 1)

4π

ℓ L ℓ′

0 0 0


 ℓ L ℓ′

−m M m′


(4.8)
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and therefore:

⟨T len
ℓ1m1

T len
ℓ2m2

⟩CMB =(−1)m2CTT,unl
ℓ2

δℓ2ℓ1δ−m2m1

+
∑
LM

ϕLM (−1)m1+m2CTT,unl
ℓ1

1

2
[L(L+ 1) + ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1)]

√
(2L+ 1)(2ℓ1 + 1)(2ℓ2 + 1)

4π

ℓ2 L ℓ1

0 0 0


 ℓ2 L ℓ1

−m2 M −m1


+
∑
LM

ϕLM (−1)m2+m1CTT,unl
ℓ2

1

2
[L(L+ 1) + ℓ2(ℓ2 + 1)− ℓ1(ℓ1 + 1)]

√
(2L+ 1)(2ℓ1 + 1)(2ℓ2 + 1)

4π

ℓ1 L ℓ2

0 0 0


 ℓ1 L ℓ2

−m1 M −m2

 , (4.9)

which can be written as:

⟨T len
ℓ1m1

T len
ℓ2m2

⟩CMB =(−1)m2CTT,unl
ℓ2

δℓ2ℓ1δ−m2m1

+
∑
LM

ϕLM (−1)MCTT,unl
ℓ1

Fℓ2Lℓ1

 ℓ1 ℓ2 L

m1 m2 −M

 (−1)ℓ1+ℓ2+L

+
∑
LM

ϕLM (−1)MCTT,unl
ℓ2

Fℓ1Lℓ2

 ℓ1 ℓ2 L

m1 m2 −M

 , (4.10)

using the symmetry properties of Wigner-3j symbols (see Appendix A.2), and

Fℓ2Lℓ1 =
1

2
[L(L+ 1) + ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1)]

√
(2L+ 1)(2ℓ1 + 1)(2ℓ2 + 1)

4π

ℓ2 L ℓ1

0 0 0

 , (4.11)

Fℓ1Lℓ2 =
1

2
[L(L+ 1) + ℓ2(ℓ2 + 1)− ℓ1(ℓ1 + 1)]

√
(2L+ 1)(2ℓ1 + 1)(2ℓ2 + 1)

4π

ℓ1 L ℓ2

0 0 0

 . (4.12)

Furthermore, ℓ1 + ℓ2 + L must be even since

ℓ2 L ℓ1

0 0 0

 = 0 otherwise (which is one of the
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properties of the Wigner-3j symbol), and therefore:

⟨T len
ℓ1m1

T len
ℓ2m2

⟩CMB =(−1)m2CTT,unl
ℓ2

δℓ2ℓ1δ−m2m1

+
∑
LM

(−1)M

 ℓ1 ℓ2 L

m1 m2 −M

 [CTT,unl
ℓ1

Fℓ2Lℓ1 + CTT,unl
ℓ2

Fℓ1Lℓ2 ]ϕLM

=(−1)m2CTT,unl
ℓ2

δℓ2ℓ1δ−m2m1 +
∑
LM

(−1)M

 ℓ1 ℓ2 L

m1 m2 −M

W TT
ℓ1Lℓ2ϕLM , (4.13)

where we have defined the weight function†:

W TT
ℓ1Lℓ2 = [CTT,unl

ℓ1
Fℓ2Lℓ1 + CTT,unl

ℓ2
Fℓ1Lℓ2 ]. (4.14)

This states that for a fixed lensing potential ϕ and multiple realizations of the unlensed CMB,

lensing generates correlations between previously uncorrelated modes, which introduces off-diagonal

terms in the harmonic-space covariance of the CMB modes. In this framework, we can write a

general form that links two temperature multipole moments and the lensing potential:

ϕ̂LM = ÂLM
∑

ℓ1m1ℓ2m2

(−1)M

 ℓ1 ℓ2 L

m1 m2 −M

 gTTℓ1Lℓ2Tℓ1m1Tℓ2m2 , (4.15)

where ϕ̂LM represents the estimated lensing potential, ÂLM is a normalization factor and gTTℓ1Lℓ2 is

a weight function that correlates temperature modes ℓ1,ℓ2 and lensing mode L. Ideally, we would

like to obtain gTTℓ1Lℓ2 that gives the minimum variance estimate of ϕ̂LM . For isotropic noise, this

has been derived in Okamoto & Hu 2003 and is given by:

gTTℓ1Lℓ2 =
W TT
ℓ1Lℓ2

2CTT,len+noise
ℓ1

CTT,len+noise
ℓ2

, (4.16)

†This is for the particular case of using two temperature fields Tℓ1m1 , Tℓ2m2 , and is, in general, different
for other combinations that include polarization. For such cases, see Okamoto & Hu 2003.
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where CTT,len+noise
ℓ = CTT,len

ℓ +NTT
ℓ , with NTT

ℓ the noise power spectrum. Therefore, the estima-

tor that is at first order in ϕ, formally optimal, can be written as:

ϕ̄ =
ϕ̂LM

ÂLM
=

∑
ℓ1m1ℓ2m2

(−1)M

2

 ℓ1 ℓ2 L

m1 m2 −M

W TT
ℓ1Lℓ2 T̄ℓ1m1 T̄ℓ2m2 , (4.17)

where ϕ̄ represents the filtered (or unnormalized) estimate of ϕ, and T̄ℓm=Tℓm/CTT,len+noise
ℓ ≡FℓT ‡.

However, we modify the filtering slightly since the combined SPT-SZ+Planck temperature map

has large variations across m for a given ℓ due to the SPT-SZ noise, which can be seen in Figure

3.3. Instead, we use a filter that is both ℓ and m dependent, constructed by taking the sum of

the lensed CMB spectrum, foreground components§, and noise:

Fℓm =
1

|Tℓm,fid|2 + ⟨|Tℓm,foregrounds|2⟩+ ⟨|Tℓm,noise|2⟩
, (4.18)

where |Tℓm,fid|2 is an expansion of the fiducial CMB input spectrum, ⟨|Tℓm,foregrounds|2⟩ is the av-

erage foreground power measured from simulations and ⟨|Tℓm,noise|2⟩ is the average noise power.

The purpose of this filtering process is to down-weight the contribution from noisy modes.

4.2 Reconstruction Process

We use the Tℓm of the optimally combined and inpainted SPT-SZ+Planck temperature map, and

ϕ̄ is calculated using the Quicklens¶ package written by D. Hanson, which is widely used for

various lensing analyses. Naive brute-force calculation of Equation 4.17 requires O(ℓ4maxL
2
max)

operations (ℓ4max to loop over the ℓm grids for the two Tℓm, and L2
max to loop over the LM grid),

which is a computationally heavy calculation. Quicklens instead calculates W TT
ℓ1Lℓ2

efficiently by

exploiting the separability of the weight function and running the calculation in position-space
‡Equal value is assumed for all m for a given ℓ
§We assume the foregrounds to be unlensed in this study although the high redshift foregrounds such

as the CIB are likely to be lensed by the low redshift large-scale structure. We will leave this consideration
for future studies.

¶https://github.com/dhanson/quicklens
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(see Appendix A.3 for the derivation).

To produce an unbiased estimate of the lensing potential ϕ̂LM , one must subtract off the re-

construction artifacts known as the mean-field bias ϕ̄MF
LM and normalize by the response function

Rϕ̄ϕ̄
LM = 1/ÂLM

ϕ̂LM =
1

Rϕ̄ϕ̄
LM

(ϕ̄LM − ϕ̄MF
LM ). (4.19)

The mean-field bias originates from any experimental features and analysis steps that introduce

statistical anisotropies (such as inhomogeneous noise and mode-coupling induced when a spheri-

cal harmonic transform is applied to a masked map). The mean-field for a specific realization is

produced by first splitting the set of ϕ̄LM reconstructed from simulated temperature maps into

two halves, and taking the average, omitting the realization that we are trying to calculate the

mean-field bias for:

ϕ̄
MF,(1)
LM,i =

1

(N/2− 1)

∑
0<j<N/2

i̸=j

ϕ̄LM,j (4.20)

ϕ̄
MF,(2)
LM,i =

1

(N/2− 1)

∑
N/2<j<N
(i+N/2) ̸=j

ϕ̄LM,j , (4.21)

where N is the number of simulations used (198 in this case), and the (i + N/2)-th realization

is omitted in (2) to match the number of realizations to calculate (1). The splitting of the mean-

field step is to ensure that the auto-correlation of the mean-field bias is omitted in the lensing

auto-spectrum calculation. The response function Rϕ̄ϕ̄
LM is often assumed to be azimuthally sym-

metric and is only calculated as a function of L. In the presence of strong m-dependence in the

noise (which is the case for SPT-SZ and hence SPT-SZ+Planck also), it is necessary to obtain

the response function as a function of L and M (i.e. Rϕϕ
LM ). We compute this using simulations,

taking the ratio of the average cross-spectrum of output (ϕ̄LM ) and input (ϕLM ) lensing poten-
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tials to the average auto-spectrum of the input potentials:

Rϕ̄ϕ̄(1,2)
LM,i =

∑
j ̸=i ϕLM,jϕ̄

∗
LM,j∑

j ̸=i ϕLM,jϕ∗LM,j

, (4.22)

where the summations run over 0 < j < N/2, j ̸= i for calculating Rϕ̄ϕ̄(1)
LM,i and N/2 < j < N , j ̸=

i + N/2 for Rϕ̄ϕ̄(2)
LM,i . However, the response function obtained this way is rather noisy. Therefore,

we apply a scale dependent Gaussian smoothing in M , with smoothing scale λ = L/20. The ratio

of the smoothed and an M -independent response function on an (L,M) grid is shown in Figure

4.1.

In summary, we first compute the unnormalized estimate of the lensing potential ϕ̄, normalize

ϕ̄ using equation 4.19, apply factors of L using the definition κ̂LM = −1
2L(L + 1)ϕ̂LM

‖, apply

a spherical harmonic transform to convert κ̂LM into a map κ̂(n̂) , and apply the final analysis
‖Such a conversion is often desirable in practice, since it makes the spectrum flatter, which makes

mode-coupling due to masks less severe.
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Figure 4.1 Ratio of the smoothed 2D response function with λ = L/20 against the
M -averaged response function Rϕϕ

LM/Rϕϕ
L presented on an (L,M) grid, where Rϕϕ

L =∑
M⟨ϕLM ϕ̄∗

LM⟩/
∑

M⟨ϕLMϕ∗
LM⟩.
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Figure 4.2 Reconstructed convergence map on a zenithal equal-area projection with a
Gaussian FWHM=2◦ smoothing.

mask:

ϕ̃LM = K−1

∫
dn̂Y ∗

LM (n̂)M(n̂)

[∑
L′M ′

YL′M ′(n̂)Kϕ̂L′M ′

]
(4.23)

where K = −1
2L(L + 1), and M(n̂) is the final analysis mask. The tilde on ϕ is used to denote

that the final analysis mask has been applied. For our baseline analysis, the final mask removes

circular patches of R = 2′ at the locations of point sources with flux density 6.4 < F150 < 50 mJy,

and R = 5′ at the locations of clusters between 4.5 < S/Nclus < 6 in addition to the mask defined

in Section 3.4.2.

The final lensing map produced using the methods outline in this chapter is shown in Figure

4.2. This lensing map is the largest lensing map yet produced using a high-resolution ground-

based experiment—and with nearly 100% overlap with the Dark Energy Survey (Omori et al.,

2017). The map will be used for cosmological parameter analysis (Simard et al. 2017, in prepara-

tion) and various cross-correlation analyses with DES, until the arrival of SPT-3G data.
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5
Validation of The Lensing Map

In this chapter, the validity of the lensing map produced in Chapter 4 will be tested by measur-

ing its auto-spectra and cross-spectra with external data sets. In Section 5.1, the method used

to calculate the auto-spectra will be outlined first. Secondly, we will show the bandpowers of the

mean auto-spectrum from the simulations and compare this with the theoretical input spectrum,

which are expected to match for a valid reconstruction. Auto-spectrum of the data map calcu-

lated using the same pipeline will be shown next, and the amplitude will be compared against

the theoretical prediction. In Sections 5.2 and 5.3, we also test whether the lensing map is prop-

erly correlated with galaxies and CIB in comparison to the Planck 2015 lensing map.

In producing auto- and cross-spectra, numerous analysis choices are made (e.g. mask, ℓ ranges,

calibration factor), and these choices potentially introduce systematic errors in the lensing map.

The degree of contamination is assessed by carrying out null tests, which are measurements that

we expect to be consistent with zero for a map free of systematic errors (Section 5.5.1). We ad-
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ditionally recalculate the auto- and cross-spectra by altering the analysis choices to test whether

these impact the results (Section 5.5.2).

5.1 Ĉϕϕ
L Auto-spectrum

5.1.1 Methods

The general auto-spectrum calculation is given by Equation 1.6. Here we calculate the auto-

spectrum of the lensing map:

C ϕ̃ϕ̃L =
1

2L+ 1

∑
LM

(ϕ̃LM )∗ϕ̃LM , (5.1)

where tilde denotes ϕ with a final analysis masked applied. In this calculation, we are using two

ϕ̃LM , but each of these are produced from two temperature maps, and is therefore effectively cor-

relating four temperature fields.

C ϕ̃ϕ̃L calculated directly using Equation 5.1 is not equivalent to the true lensing spectrum CϕϕL

since it contains bias terms arising from correlations between the CMB and the lensing potentials.

These are known as the N (0)and N (1) biases, and are additional components which we subtract

off from the measured raw spectrum (Hu & Okamoto, 2002; Kesden et al., 2003; Hanson et al.,

2011):

ĈϕϕL = C ϕ̃ϕ̃L −N
(0)
L −N

(1)
L + · · ·. (5.2)

The superscripts (0), (1) denote the order at which the noise terms depend on the lensing poten-

tial power spectrum, and the relative amplitudes are shown in Figure 5.1. Higher-order terms in

the equation above can be neglected under the assumption that the CMB and the lensing poten-

tial follow Gaussian statistics (Kesden et al., 2002).

The N (0) bias arises from chance correlations in the Gaussian CMB, foreground and noise

(Story et al., 2015), and is present even in the absence of lensing (Cooray et al., 2008). It can
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be calculated by*:

N
(0)
L =

⟨
C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ2j )ϕ̃(2)(S̄ϕ1i S̄ϕ2j )] + C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ2j )ϕ̃(2)(S̄ϕ2j S̄ϕ1i )]

⟩
i,j

, (5.3)

where S̄ϕai is the i-th simulated temperature map lensed with the potential ϕa and filtered using

equation 4.18. i, j imply different CMB simulation realizations. Cross-correlation of two ϕ̃LM cal-

culated using different mean-fields and response functions (denoted by the superscripts (1), (2))

are used to ensure that the auto-spectra of these components do not affect the resulting spec-

trum. The N (0) bias is calculated from 198 mock observed simulations that contain all the fore-

ground components (point sources, Gaussian foregrounds and clusters).

Although simulations are produced to resemble the observed data as closely as possible, not

all of the features are captured perfectly with the correct statistics due to our incomplete knowl-

edge of the sky signal. Therefore, simply subtracting off Equation 5.3 (which is purely simulation

based) from Equation 5.1 leads to a biased spectrum. The estimation of this N (0) bias in the

data measurement can be improved by replacing one of the simulated temperature maps with

data D̄ to form a “realization dependent N (0)” (Namikawa et al., 2013):

N
(0),RD
L =

⟨
C ϕ̃ϕ̃L [ϕ̃(1)(D̄S̄ϕ1i )ϕ̃(2)(D̄S̄ϕ1i )]

+C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i D̄)ϕ̃(2)(S̄ϕ1i D̄)]

+C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i D̄)ϕ̃(2)(D̄S̄ϕ1i )]

+C ϕ̃ϕ̃L [ϕ̃(1)(D̄S̄ϕ1i )ϕ̃(2)(S̄ϕ1i D̄)]

−C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ2j )ϕ̃(2)(S̄ϕ1i S̄ϕ2j )]

−C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ2j )ϕ̃(2)(S̄ϕ2j S̄ϕ1i )]

⟩
i,j

. (5.4)

Replacing N (0) with N (0),RD has been shown to reduce the covariance Cov
(
C ϕ̃ϕ̃L C ϕ̃ϕ̃L′

)
signifi-

*This is written in the most general form, and can be simplified to N (0)
L =2×⟨Cϕ̃ϕ̃

L [ϕ̃(1)(S̄ϕ1

i S̄ϕ2

j )ϕ̃(2)(S̄ϕ2

j S̄ϕ1

i )]⟩
for the case of TT , but the simplification can not be made when using asymmetric pairs i.e. TE, TB, EB,
where E and B are the E and B-mode polarizations.
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cantly (Hanson et al., 2011).

The N (1) bias arises from the sensitivity of the four-point correlation (trispectrum) to angular

scales that are not of interest for a given configuration (also known as secondary contractions

(Kesden et al., 2003; Hanson et al., 2011; Planck Collaboration et al., 2014a)) and can be ob-

tained numerically by using simulated temperature maps with different CMB realizations lensed

by the same potential:

N
(1)
L =

⟨
C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ1j )ϕ̃(2)(S̄ϕ1i S̄ϕ1j )]

+C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ1j )ϕ̃(2)(S̄ϕ1j S̄ϕ1i )]

−C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ2j )ϕ̃(2)(S̄ϕ1i S̄ϕ2j )]

−C ϕ̃ϕ̃L [ϕ̃(1)(S̄ϕ1i S̄ϕ2j )ϕ̃(2)(S̄ϕ2j S̄ϕ1i )]

⟩
i,j

. (5.5)

To accelerate the calculation for the N (1) bias, we use simulations that contain the lensed CMB

only.

5.1.2 Results

The measured mean N (0) and N (1) bias subtracted auto-spectrum calculated from simulation re-

alizations is shown in Figure 5.1 to demonstrate that our lensing reconstruction pipeline recovers

the input lensing signal starting from lensed CMB maps.

In Figure 5.2, we show the auto-spectra of ϕ̂ maps reconstructed from SPT-SZ+Planck and

SPT-SZ only temperature maps. The ĈϕϕL from Planck 2015 (Planck Collaboration XV., 2015)

is also shown for reference. Band powers in the range of 50 < L < 3000 are binned logarithmi-

cally using 20 bins, and the variance is calculated using the 198 simulation realizations. While

the points above L > 2000 are likely to be affected by non-Gaussian foreground sources such as

the CIB and tSZ from galaxies and low-mass galaxy clusters, the full L range up to L = 3000 is

shown here for completeness to illustrate the raw spectrum of the lensing map itself. The ratio of

the mean-field power and input spectrum is approximately unity at L = 50. To ensure that the
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mean-field bias is not affecting our analysis, no modes below L = 50 are considered. The name

“baseline” is assigned to the SPT-SZ+Planck sample with ℓmax = 3000, ℓmin = 100, (ℓ,m) cut

= [2000, 250], clusters with S/Nclus > 6 masked, and point sources with F150 > 6.4 mJy masked

prior to the lensing reconstruction process†. The “SPT-SZ only” sample is produced using the

same masking scheme and calibration, but without the combining step with Planck and using

ℓmin = 550 and m > 250.

We compare the mean simulated baseline, data baseline, SPT-SZ only and Planck lensing

auto-spectrum amplitudes relative to our fiducial model assuming diagonal covariance over the

range of 50 < L < 3000. For the simulated baseline, we obtain a best-fit amplitude of ηϕϕ =

ĈϕϕL /ĈϕϕL,fid = 1.012+0.004
−0.004 with χ2/ν = 11.9/19. While the measured mean amplitude is 3σ away

from the input value, this bias is smaller than the statistical uncertainty and we therefore treat
†In calculating the final spectrum, a stricter mask described in Section 4.2 is used.
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Figure 5.2 Plot showing the consistency between the measured lensing auto-spectrum
and the fiducial spectrum, as well as the consistency of the curl, unlensed and L-R
spectrum with respect to null. Left: Ĉϕϕ

L auto-spectrum for SPT-SZ+Planck (purple),
SPT-SZ only (blue), Planck only using 67% of the sky (grey). The solid line is the fidu-
cial Ĉϕϕ

L spectrum using a spatially flat ΛCDM Planck 2015 cosmology. Upper right:
the Ĉψψ

L spectrum calculated from the map. The solid purple line represents the mean of
the simulation realizations, which is used to calculate the χ2 and PTE. Centre right:
Ĉϕϕ
L spectrum from one L-R realization with the amplitude multiplied by a factor of 10.

Lower right: Ĉϕϕ
L spectrum for one unlensed realization. These are similar to the plots

published in Omori et al. 2017.
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this difference as a systematic uncertainty in the calibration of the simulations‡.

For the data baseline sample, we obtain a best-fit amplitude of ηϕϕ = 0.92+0.06
−0.06(Stat.)+0.01

−0.01(Sys.)

with χ2/ν = 12.2/19 (the χ2/ν is calculated using the statistical uncertainties only). After remov-

ing the fractional lensing biases due to foregrounds, we obtain ηϕϕ = ĈϕϕL /ĈϕϕL,fid = 0.95+0.06
−0.06(Stat.)+0.02

−0.02(Sys.)

with χ2/ν = 12.1/19, where the goodness-of-fit is calculated using the statistical uncertainty only.

Using the variance of unlensed simulations, we reject the null hypothesis of no lensing at ∼ 24σ.

For SPT-SZ only, we obtain ηϕϕ = 0.91+0.06
−0.06(Stat.)+0.01

−0.01(Sys.) with χ2/ν = 16.3/19 when fore-

ground biases are neglected and ηϕϕ = 0.94+0.06
−0.06(Stat.)+0.02

−0.02(Sys.) with χ2/ν of 16.2/19, when fore-

ground biases are considered. In comparison, we obtain a best-fit amplitude of ηϕϕ = 0.98+0.02
−0.02

with χ2/ν of 25.1/18 when Planck band powers over ∼ 67% of the sky presented in Planck Col-

laboration XV. 2015 are fit to our fiducial model. The Planck lensing map is less affected by fore-

ground biases since (i) it is constructed from foreground-cleaned maps, (ii) it utilizes polarization

maps that are less prone to contamination, and (iii) the lower resolution and higher noise level

reduce the contribution from small scales where foregrounds have the largest effect.

We find that the SPT-SZ+Planck and SPT-SZ only measurements are consistent with each

other and with Planck over ∼ 67% of the sky to within 0.5σ. All the results reported here are

summarized in Tables 5.1 and 5.2.

5.2 Ĉ
ϕδg
L Cross-spectrum

5.2.1 Data

One of the scientific uses of the SPT-SZ+Planck lensing map is for cross-correlations with exter-

nal data sets. We calculate the cross-spectrum with the publicly available§ all-sky WISE cata-

logue (Wright et al., 2010). The WISE survey mapped the sky at four wavelengths 3.4, 4.6, 12,

and 22 µm (W1, W2, W3, W4) with an angular resolution of 6.1, 6.4, 6.5, and 12.0 arcseconds,

respectively. We make one single cut in magnitude 15 < W1 < 17 and remove all the flagged
‡In other lensing analyses this is bias is labelled as “MC correction” and is at most a 10% effect. Here,

the correction is ∼1%.
§http://wise2.ipac.caltech.edu/docs/release/allsky/
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Figure 5.3 Plot showing the consistency between SPT-SZ+Planck and Planck-only lens-
ing maps, by comparing the cross-correlations with WISE galaxies. Cross-correlations
between WISE and curl, unlensed and L-R maps are also shown to be consistent with
null. Left: cross-correlation between WISE and: SPT-SZ+Planck lensing map over
2500 deg2 (purple), SPT-SZ only over 2500 deg2 (blue), Planck 2015 over 2500 deg2

(gold), and Planck 2015 over the 67% of the sky (grey boxes). Right: cross-correlation
of the galaxy sample with upper right: the data curl-mode map, centre right: a sin-
gle realization of a noise-only reconstructed map, lower right: a single realization of an
unlensed map. In each of the panels, a power-law fit to the Planck result is shown.

sources. The sample contains 2 × 108 sources in total using the mask employed in the Planck

lensing analysis, and 2× 107 in sources in the nominal SPT region.

5.2.2 Methods

We make no attempt to estimate the redshift distribution of the galaxies, and hence a theoreti-

cal prediction of the cross-correlation amplitude is not computed. Instead, lensing maps recon-

structed using various ℓmin,max, (ℓ,m) cuts, masking, and calibrations are cross-correlated with

the galaxies to probe the sensitivity of the reconstructed lensing map to these variations.

Starting with the WISE galaxy catalogue, we first project all the galaxies onto a HEALPix
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map of Nside = 2048, apply a simple binary mask (value=1 if there is at least one galaxy in

the pixel, otherwise 0)¶, and compute the mean number of galaxies ⟨n(n̂)⟩. Using this, the over-

density map is calculated with:

δg(n̂) =
n(n̂)− ⟨n(n̂)⟩

⟨n(n̂)⟩
. (5.6)

We take a spherical harmonic transform of this map to obtain δg,LM and the cross-spectrum is

calculated using:

Ĉ
ϕδg
L =

1

2L+ 1

∑
M

(ϕLM )∗δg,LM . (5.7)

In practice, this is calculated using PolSpice‖ (Szapudi et al., 2001; Chon et al., 2004), which

deconvolves the mask effects from the calculated cross-spectrum Ĉ
ϕδg
L . We derive the uncertain-

ties by cross-correlating the WISE galaxy density map with the 198 simulated ϕ̂ maps and com-

puting the variance for each bin. This method neglects the common sample variance between ϕ

and δg. To assess the importance of this term, we compare this with errors obtained using the

“block jackknife” method (see Section A.1) with 128 equal-area patches. We acquire similar re-

sults from this method and conclude that the original estimate is adequate.

5.2.3 Results

Cross-spectra between WISE galaxy density and the various ϕ̂ maps are shown in Figure 5.3.

The CMB lensing maps used are: SPT-SZ+Planck, SPT-SZ only, Planck-only over 2500 deg2,

and Planck-only over 67% of the sky. We additionally overplot a power-law of the form pL =

a(L/L0)
−b, with parameters a = 2.15 × 10−8, b = 1.35, L0 = 490, which are obtained by

performing a least-squares fit to the cross-spectrum between Planck and WISE over 67% of the

sky in the range of 50 < L < 1864. We then fit this power-law with an amplitude parameter

ηϕδg = −L(L + 1)/2 × Ĉ
ϕδg
L /pL to the other cross-spectra. We obtain best-fit amplitudes of

¶Since this mask does not distinguish between the masked pixels and pixels with no galaxies, the mean
is likely to be slightly overestimated. However, this shift is small since the mean number of galaxies per
pixels is high (6.5 galaxies/pixel), and the pixels with zero galaxies is likely to be a masking effect, not
physical.

‖http://www2.iap.fr/users/hivon/software/PolSpice
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ηϕδg = 0.94+0.04
−0.04 for SPT-SZ+Planck, ηϕδg = 0.93+0.04

−0.04 for SPT-SZ only, ηϕδg = 1.00+0.02
−0.01 for

Planck-only over ∼ 67% of the sky, and ηϕδg = 1.02+0.08
−0.08 for Planck-only over 2500 deg2. There-

fore, while the Planck lensing map is exceptional for cross-correlations with galaxy surveys that

extend beyond the SPT 2500 deg2 footprint, a better signal-to-noise ratio is obtained using the

SPT-SZ + Planck map for correlations within the SPT footprint. These results are summarized in

Table 5.1.

Results ηϕϕ χ2 (PTE) ηϕδg χ2 (PTE)
Baseline 0.92+0.06

−0.06(Stat.)+0.01
−0.01(Sys.) 12.2 (0.88) 0.94+0.04

−0.04 12.0 (0.45)

SPT-SZ only 0.91+0.06
−0.06(Stat.)+0.01

−0.01(Sys.) 16.3 (0.63) 0.93+0.04
−0.04 9.6 (0.65)

Planck-67% 0.98+0.02
−0.02 25.1 (0.12) 1.00+0.02

−0.01 6.1 (0.53)

(SPT patch) 1.02+0.08
−0.08 3.8 (0.80)

Curl 23.4 (0.22) 15.6 (0.27)
L-R 28.6 (0.10) 11.1 (0.60)

Unlensed 18.9 (0.53) 10.3 (0.67)

Table 5.1 Table summarizing the fits to fiducial theory without foreground biases consid-
ered, and null tests fitted to zero.

Results ηϕϕ χ2 (PTE)
Baseline 0.95+0.06

−0.06(Stat.)+0.02
−0.02(Sys.) 12.1 (0.88)

SPT-SZ only 0.94+0.06
−0.06(Stat.)+0.02

−0.02(Sys.) 16.2 (0.64)

Table 5.2 Table summarizing the fits to fiducial theory with foreground biases consid-
ered.

5.3 Cross-correlation with the Cosmic Infrared Background

5.3.1 Data

We calculate the cross-correlation between the SPT-SZ + Planck lensing map and the 545 GHz

channel from Planck**, which traces the CIB emission (in addition to galactic thermal dust). The

CIB mainly consists of dusty star forming galaxies at high redshifts (1 < z < 3). We expect a
**HFI_SkyMap_545_2048_R2.02_full.fits
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strong correlation between CMB lensing and CIB since the signal from these probes peak at sim-

ilar redshifts, and a 42σ detection has already been made by Planck Collaboration et al. 2014c

by cross-correlating the CMB lensing map presented in Planck Collaboration et al. 2014a and

the 545 GHz channel. We repeat this measurement using the SPT-SZ + Planck lensing map and

verify that we obtain a consistent correlation amplitude.

In 2016, Planck released a CIB map produced by utilizing the generalized needlet internal lin-

ear combination (GNILC) technique. The algorithm uses spatial information to disentangle the

emission from galactic thermal dust and the CIB (Planck Collaboration et al., 2016b). This map

is used to estimate the residual contamination from the non-Gaussianity of the CIB emission in

the SPT-SZ + Planck lensing map.

−0.03 0.03CONVERGENCE κ

−0.018 0.018CIB INTENSITY [Mjy/sr]

6h

4h 2h 0h 22h

−40◦−65◦

Figure 5.4 Contours of GNILC 545 GHz CIB map over the SPT-SZ + Planck conver-
gence map smoothed with a FWHM=2◦ Gaussian beam. The lower left corner is masked
additionally to remove the masked region in the GNILC map.
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Figure 5.5 Left: ratio of the cross-correlation between the combined SPT-SZ+Planck
temperature map × GNILC CIB 545 GHz map over the auto-spectrum of GNILC
CIB 545 GHz map, which is the scaling to be applied to the GNILC CIB 545 GHz
map. Right: correlation between the SPT-SZ+Planck lensing map and the Planck
545 GHz channel, which is predominantly composed of the CIB. We observe a strong
correlation between ϕ̂ and the 545 GHz map that is consistent with a theoretical
model constructed using a modified black body and employing a single spectral en-
ergy distribution model given in (Hall et al., 2010). The purple line corresponds to the
ϕ̂(TGNILC150, TGNILC150)×I545 bispectrum calculated from the GNILC 545 GHz and Planck
545 GHz maps.

5.3.2 Methods

The cross-correlation between the SPT-SZ + Planck lensing map and Planck 545 GHz is calcu-

lated in a standard way by taking the angular power spectrum after deconvolving the beam from

the Planck 545 GHz map.

To estimate the level of CIB contamination, we first calculate the cross-correlation between the

SPT-SZ + Planck 150 GHz temperature and GNILC 545 GHz temperature maps††. The ampli-

tude of this correlation indicates the amount of CIB emission in the 150 GHz data. The GNILC

545 GHz map is then multiplied by an ℓ dependent scaling function (shown in Figure 5.5), such
††http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/maps/component-maps/

foregrounds/COM_CompMap_CIB-GNILC-F545_2048_R2.00.fits
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that the CIB map matches in amplitude with the residual amplitude. The quadratic estimator

technique is applied to this map to produce a ϕ̂(TGNILC150, TGNILC150) map, where the subscript

GNILC150 denotes the residual GNILC 545 GHz emission at 150 GHz. The lensing map is recon-

structed using the same masking and filtering as done in the making of ϕ̂(T150, T150), and this is

cross-correlated with the Planck 545 GHz channel map.

5.3.3 Results

The two cross-correlations are shown in Figure 5.5, and the ϕ̂ × CIB measurement made by

Planck (Planck Collaboration et al., 2014c) is also presented as a reference. We observe a strong

correlation between SPT-SZ + Planck lensing and the Planck 545 GHz maps that is consistent

with a theoretical model constructed using a modified blackbody and employing a single spectral

energy distribution model as demonstrated in (Planck Collaboration XV., 2015). The

ϕ̂(TGNILC150, TGNILC150)× Planck 545 GHz correlation is found to be negative at angular multi-

poles L < 2000 and positive L > 2000, with a fractional amplitude ranging from 2% to 10% in

the range of 50 < L < 3000.

5.4 Gains from Adding Planck

By comparing the SPT-SZ + Planck and SPT-SZ only band powers shown in Figures 5.2 and 5.3,

it can be seen that the signal in the combined map is dominantly from SPT-SZ. Nonetheless, the

addition of Planck reduces the scatter for modes L > 1500. In particular, the scatter in the cross-

correlation for the angular bin 2762 < L < 3000 is reduced by a factor of ∼ 2. Characterizing

the lensing map at high L is important, especially for cross-correlation studies, since we could po-

tentially probe astrophysical effects at these scales. The improvement is the result of additional

mode pairs in the ϕ̂ reconstruction process; for a particular lensing mode of interest L, the num-

ber of temperature mode pairs ℓ1, ℓ2 that can be used increases‡‡ and the statistical uncertainty
‡‡More specifically, the sum in Equation 4.17 is restricted by the selection rule |ℓ1 − ℓ2| < L < ℓ1 + ℓ2

of the Wigner-3j symbol. By introducing low-ℓ modes, the number of valid high-ℓ+low-ℓ mode pairs in-
creases.
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of a particular L mode is reduced.

5.5 Validations

The auto-spectrum of a map produced by passing an unlensed CMB temperature map through

the lensing reconstruction process should be consistent with ηϕϕ = 0. This could potentially fail

if the reconstruction process creates spurious temperature correlations that lead to false lensing

signals. We therefore apply lensing reconstruction on temperature maps that we expect to have

zero signal (curl, unlensed, and L-R maps), and verify that the resulting spectra are consistent

with the null hypothesis.

Additionally, we also probe the robustness of the map by varying ℓ,m cuts, masking, calibra-

tion, beams and the normalization method to verify that the map is insensitive to any processing

choices that we make.

5.5.1 Null Tests

5.5.1.1 Curl

In estimating the lensing potential, we have so far used the gradient component as described in

Equation 4.1. It is instead possible to estimate the contribution from the curl-mode lensing field

ψ̂, by exchanging the weight function with:

Wψ
ℓ1ℓ2L

= −
√

(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

× CTTℓ1

(
1− (−1)ℓ1+ℓ2+L

2

)ℓ1 ℓ2 L

1 0 −1


×
√
L(L+ 1)ℓ1(ℓ1 + 1) + (ℓ1 ↔ ℓ2). (5.8)

Systematic contaminations introduce non-Gaussianities in the CMB temperature maps, which get

decomposed into gradient and curl components. Since we expect the amplitude of the curl modes

to be small relative to the gradient mode for a systematics-free map, a significant detection of
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it is an indication of a systematic bias. The ψ̂ map is reconstructed using the same masking, fil-

tering and response function as ϕ̂. The auto-spectrum is also calculated in a similar fashion by

subtracting off N (0),RD
L calculated from data and simulated ψ̂ maps. As noted in Planck Collab-

oration XV. (2015); Kesden et al. (2003); van Engelen et al. (2012); Benoit-Lévy et al. (2013),

the curl mode also includes a N (1) type bias. In our analysis, instead of removing this term, we

compare with the mean curl-mode spectrum from the simulations, which includes the N (1)
L bias.

From this, we obtain χ2/ν = 23.4/19, giving a probability to exceed (PTE) of 0.22 for the null

hypothesis of no contamination. From correlating the ψ̂ map with the WISE galaxy sample, we

obtain a correlation that is consistent with respect to null with χ2 = 15.6 for 13 degrees of free-

dom giving a PTE of 0.27. The results are shown in the upper right panels of both Figures 5.2

and 5.3.

5.5.1.2 L-R Reconstruction

Many potential sources of systematic contamination are coupled to the telescope scanning strat-

egy. We perform a test of reconstructing ϕ from a noise map formed by differencing left-going

(L) from right-going (R) scans. We first combine the SPT-SZ L-R map with a noise realization of

Planck (since no L-R map exist for Planck). We then pass this combined map through the lens-

ing pipeline using the same filtering and response function as the standard ϕ̂ reconstruction case.

From this, we obtain a χ2/ν = 28.6/20 for the auto, and 11.1/13 for the cross-spectrum giving

a PTE of 0.10 and 0.60 respectively. The results are shown in the centre right panel of both Fig-

ures 5.2 and 5.3.

5.5.1.3 Unlensed Maps

Lensing reconstruction relies on the non-Gaussian statistical properties that lensing imprints on

the observed CMB. In the absence of lensing, the reconstructed map will be purely noise, and

therefore, should be consistent with zero-signal. We simply test this by (i) replacing the lensed

CMB with an unlensed CMB, (ii) producing both SPT-SZ and Planck simulated skies, (iii) com-
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bining SPT-SZ and Planck, (iv) running the lensing estimator in the same manner as a lensed re-

alization, and (v) finally using the response function for the lensed case to produce a map. Since

this makes use of simulations only, this is purely a test of the reconstruction pipeline. We com-

pute both the auto and cross-spectrum with WISE using this map, and we see no evidence of

inconsistency with respect to null. Measuring χ2/ν, we obtain 18.9/20 for auto, and 10.33/13

for the cross-spectrum giving a PTE of 0.53 and 0.67 respectively. Maps reconstructed this way

are used to calculate the significance of the no-lensing hypothesis, as well as estimating the lens-

ing reconstruction noise, which is used for forecasting and covariance estimation. The results are

shown in the lower right panel of both Figures 5.2 and 5.3.

5.5.2 Systematic Error Tests

In this section, we modify certain aspects of the lensing reconstruction pipeline to test for possi-

ble sources of systematic errors in the data. We quantify the effects by quoting the maximum de-

viation defined as max{(ĈL,modified − ĈL,baseline)/σ(ĈL,baseline)} across all the bins in each system-

atics test relative to the statistical uncertainty. For auto-spectra, we additionally quantify the

deviation of the systematically modified results from the baseline results by calculating the χ2

and corresponding PTE relative to zero, which are summarized in Table 5.3. The same measure-

ment is not carried out for cross-spectra since our method of cross-correlating the galaxy map

with different ϕ̂ realizations under-estimates the variance in (Ĉϕδg
L,sim − Ĉ

ϕδg
L,sim,modified), which are

the error bars shown in Figure 5.7. Nonetheless, the goal of this section is to illustrate that sys-

tematic variations lead to small changes in the resulting map, in comparison to the statistical

uncertainty.

5.5.2.1 ℓmax, ℓmin Cut

Although including temperature modes out to higher ℓ increases the total number of modes one

can use in the lensing reconstruction, these modes are more likely to include contributions from

extragalactic foregrounds (point sources, tSZ, CIB; see Figure 3.1). We therefore apply a cut-off
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in the maximum ℓ used, to minimize the bias in the lensing map.

As described in Section 5.1.2, we use the ℓ range of 50 < ℓ < 3000 in our baseline analysis.

Two alternative cuts at ℓmax = 2500 and 3500 are also made to verify that the maps we obtain

are not highly contaminated by foregrounds. We observe that changing ℓmax does affect the scat-

ter, and the biggest change in any bin is seen when ℓmax is reduced to 2500 (maximum deviation

of 1.4σ for the auto and 2.1σ for the cross). When varying ℓmin from 100 to 50, we see negligible

shifts (maximum deviation of 0.027σ for ĈϕϕL and 0.10σ for Ĉϕδg
L ). The results are shown in the

first panel of both Figures 5.6 and 5.7.

5.5.2.2 ℓ,m Cuts

High ℓ, low m modes of the combined temperature map are dominated by noise since both SPT-

SZ and Planck are noisy for those modes. To remove the high noise modes, we apply cuts on the

(ℓ,m) grid, and test the sensitivity of the reconstructed ϕ̂ map to this adopted cut. In calculat-

ing ĈϕϕL , we calculate all the bias terms including N
(1)
L , using the same (ℓ,m) cuts. We test three

cuts: (i) ℓ > 2000 and m < 350, (ii) ℓ > 1200 and m < 350 and (iii) ℓ > 2200 and m < 150.

The comparison between the baseline sample and (i) demonstrates whether we are including ex-

cessive noise from SPT-SZ at low m. (ii) is a conservative cut in ℓ,m, effectively removing noisy

modes from both SPT-SZ and Planck. (iii) is the least conservative cut extending to higher ℓ and

lower m. It should be noted that including slightly noisier temperature modes does not neces-

sarily translate to noise bias since the filtering downweights these modes. Sample (ii) shows the

biggest deviation from the baseline sample with 0.82σ in ĈϕϕL and 0.83σ in Ĉϕδg
L . The results are

shown in the second panel of both Figures 5.6 and 5.7.

5.5.2.3 Cluster Masking

One of the main concerns of temperature-based single-frequency lensing reconstruction is the

contamination from the tSZ effect produced by clusters and galaxies. ϕ̂ maps reconstructed us-

ing temperature maps that contain tSZ power will be biased. The measured ĈϕϕL will include
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terms proportional to the tSZ 4-point function ϕ(TtSZTtSZ) × ϕ(TtSZTtSZ) and the ϕ−tSZ cor-

relation ϕ(TCMBTCMB) × ϕ(TtSZTtSZ) (van Engelen et al., 2014). This bias will also result in a

ϕ(TtSZTtSZ) × δg bispectrum when calculating cross-spectra with galaxies. These biases are dom-

inantly due to the massive clusters, which we mask in our analysis. We vary the masking radii

and cluster selection to investigate the optimal masking to mitigate the contamination, while

minimizing the sky area lost by the masking.

We make variations in the radius used to mask the locations of clusters in the reconstructed ϕ̂

map. We tested using masks of larger radii for clusters with S/Nclus > 6 and 4.5 < S/Nclus < 6,

using RS/Nclus>6 = 10′, 15′ and R4.5<S/Nclus<6 = 5′, 10′. We found a maximum difference of only

∼ 0.5 and ∼ 0.7σ discrepancies between our baseline auto and cross-spectrum respectively.

For the “baseline” sample, we mask clusters listed in Bleem et al. (2015) with S/Nclus > 6 prior

to running the quadratic estimator, and mask down further to S/Nclus > 4.5 when calculating

ĈϕϕL and Ĉϕδg
L . Tests in reconstructing ϕ̂ maps with less strict cuts using S/Nclus = 10, 20 are

also made, and the results show that the ĈϕϕL amplitude for both cases are consistent with the

S/N > 6 cut sample with a maximum difference of 0.56σ for ĈϕϕL and 0.56σ for Ĉϕδg
L . In calcu-

lating these spectra, a common mask that removes clusters above S/Nclus > 4.5 is applied to

all maps. This test illustrates the amount of tSZ power that gets spread out to the unmasked

regions during the reconstruction process. The results are shown in the fourth panel of both Fig-

ures 5.6 and 5.7.

5.5.2.4 Response Function Smoothing

Due to the large scatter at high L, the response function is smoothed to prevent the scatter ap-

pearing in ĈϕϕL and Ĉ
ϕδg
L . The smoothed response function is shown in Figure 4.1 and the results

of varying the smoothing length is shown in the fifth panel of both Figures 5.6 and 5.7. In both

auto- and cross-spectra, the variations show negligible differences, with a maximum discrepancy

of 0.3σ when using a 1D response function.
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Table 5.3. Table summarizing Ĉϕϕ
L systematic test fits

Systematic change χ2/ν PTE

ℓmax = 3500 15.3/20 0.76
ℓmax = 2500 10.5/19 0.94
ℓmin = 50 14.6/20 0.80

Cut=[2000, 350] 15.6/20 0.74
Cut=[1200, 250] 19.6/20 0.48
Cut=[2200, 150] 31.5/20 0.05

Rclus = [10′, 5′] 27.8/20 0.11
Rclus = [15′, 10′] 12.3/20 0.90

S/Nclus > 10 16.1/20 0.71

S/Nclus > 20 22.8/20 0.30

λ = L/10 15.0/20 0.77
λ = L/40 14.1/20 0.82
λ = ∞(1D) 11.5/20 0.93

Note. — χ2 and corresponding PTE
relative to zero for the deviation of the
systematically modified Ĉϕϕ

L from the
baseline Ĉϕϕ

L .
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5.5.2.5 SPT-SZ Beam Error

Due to the modifications made to the telescope between the observing years, each field has a

slightly different beam. In the baseline analysis, we deconvolve each field with a specific year

beam, and convolve with a common Gaussian beam of FWHM=1.75′. We also test the lensing

reconstruction using (i) the four single year beams for all the fields (e.g. incorrectly applying the

2008 beam to observations from all four years) and (ii) the average of the year beams for all the

fields. This effectively probes the sensitivity of the resulting map to the uncertainty of the beam,

which is smaller than the variations between the different years.

The effect of the beam is most prominently seen in Ĉϕδg
L with a maximum deviation of 0.41σ

when assuming the 2008 beam to all the fields. Deconvolving all the fields with a mean beam

produces a maximum deviation of 0.021σ and 0.029σ for ĈϕϕL and Ĉϕδg
L respectively, suggesting

that it is a good approximation of the baseline method. The results are shown in the sixth panel

of both Figures 5.6 and 5.7.

5.5.2.6 SPT-SZ Calibration Error

The CMB power as measured by SPT-SZ is calibrated to align with the measurements made by

Planck in the same patch of sky to an accuracy of ∼0.3% (Hou et al., 2017). The results of vary-

ing this calibration parameter by ±1% (which is purposely set larger than the actual uncertainty

we have to amplify the effect), is shown in the bottom panel of Figures 5.6 and 5.7. The resulting

ĈϕϕL and Ĉϕδg
L vary by at most 0.20σ and 0.16σ, respectively, through this variation.

5.5.2.7 Biases Due To Faint Foreground Sources

Temperature-based lensing reconstruction is fractionally biased due to correlations with fore-

ground components. We therefore consider the fractional lensing biases due to tSZ-4 point (ϕ(TtSZ, TtSZ)×

ϕ(TtSZ, TtSZ)), CIB-4 point (ϕ(TCIB, TCIB)× ϕ(TCIB, TCIB)), tSZ2-ϕ (ϕ(TtSZ, TtSZ)× ϕ(TCMB, TCMB))

and CIB2-ϕ (ϕ(TCIB, TCIB) × ϕ(TCMB, TCMB)) correlations for sources that are unmasked in the

analysis. We interpolate the results presented in van Engelen et al. 2014 using the four compo-
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nents as a function of L, and apply it to the fiducial model when calculating the best-fit ampli-

tudes. The results are summarized in Table 5.2, and it can be seen that the amplitude fits in-

crease by ∼ 0.5σ.
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Figure 5.6 Systematic tests for the lensing power spectrum Ĉϕϕ
L . Ratio of measured Ĉϕϕ

L

with variations made against input baseline Ĉϕϕ
L , where baseline Ĉ

ϕϕ
L is calculated using

ℓmin = 100, ℓmax = 3000, (ℓ,m) cut at [2000, 250], Rclus = [5′, 5′], σ = L/20 and beams
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6
Cross-correlation theory

6.1 Theory

The dominant constituent of the total mass in the universe is dark matter. Unlike baryonic mat-

ter, dark matter does not emit electromagnetic radiation (although theories of gamma-ray emis-

sion through self-annihilation of dark matter exist), and therefore its distribution can not be

mapped using a standard telescope. Therefore, this is achieved by either (i) studying the distri-

bution, clustering and kinematics of galaxies to infer the amount of underlying dark matter, or

by (ii) using distortions in the background image such as high redshift galaxies or the CMB to

infer the location and amount of matter. Since all of these observables are related to the under-

lying mass distribution, the galaxy and CMB weak lensing fields are statistically correlated with

each other.
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In Chapter 2, it was shown that the projected convergence in a given direction is:

κ(θ⃗) =
3H2

0Ωm,0
2c2

∫ χ∗

0
dχW (χ)fK(χ)

δ[fK(χ)θ⃗, χ]

a(χ)
(6.1)

where W (χ) is defined as:

W (χ) =

∫ χ∗

χ
dχ′ns(χ)

fK(χ
s − χ)

fK(χs)
, (6.2)

with ns being the source galaxy redshift distribution, which for the CMB is taken to be a delta

function at χ = χCMB. We will denote CMB convergence as κCMB and galaxy weak lensing

convergence as κE. From this point on, we will assume a flat universe, which sets fK(χ) = χ

using Equation 2.4. The convergence is related to the projected gravitational potential ϕ by

κ(θ⃗) = 1
2∇

2ϕ(θ⃗) in position-space or κLM = −1
2L(L+ 1)ϕLM in harmonic-space.

A galaxy survey with a redshift distribution dnl/dz that extends up to z = zl gives a projected

over-density

δg(θ⃗) =
∫ χ(zl)

0
dχb(χ)

dnl(χ)

dz

dz

dχ
δm(χθ⃗, χ), (6.3)

in a given direction, where b(z) is the galaxy bias defined as the ratio of galaxy and dark matter

clustering, and δm(χθ⃗, χ) is the underlying matter fluctuation at a given comoving distance in a

given direction. In Equation 6.3, we have explicitly added the subscript nl to denote the redshift

distribution of lens galaxies, which are different from the source galaxies used for weak lensing

measurements denoted by ns.

The auto/cross-angular power spectra (using the Limber approximation) relevant to this work

are:

C
δgδg
L =

∫
dχ

1

χ2
W δg(χ)W δg(χ)P (k = L/χ, χ(z)), (6.4)

C
κCMBδg
L =

∫
dχ

1

χ2
W κCMB(χ)W δg(χ)P (k = L/χ, χ(z)), (6.5)

CκCMBκE
L =

∫
dχ

1

χ2
W κCMB(χ)W κE(χ)P (k = L/χ, χ(z)), (6.6)

where P (k, χ(z)) is the non-linear matter power spectrum at a given comoving distance, and
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GG II GI IφGφ

Figure 6.1 Schematic drawings of various lensing effects from left to right: GG, II, GI,
ϕG, ϕI. In each case, the planes represent different redshift slices and the central grey
haze represents a massive structure. Orange ellipses represent galaxy images that are
distorted through the weak lensing effect, whereas the blue ellipses represent galaxies
that are stretched or rotated due to tidal forces. The coloured planes on the right panels
represent the CMB lensing map.

W κCMB(χ), W δg(χ), W κE(χ) are the CMB lensing, galaxy density and galaxy weak lensing kernels

defined as:

W κCMB(χ) =
3H2

0Ωm
2c2

χ

a(χ)

χCMB − χ

χCMB
(6.7)

W δg(χ) = b(χ)
dnl(χ)

dz

dz

dχ
(6.8)

W κE(χ) =
3H2

0Ωm
2c2

χ

a(χ)

∫ χ∗

0
dχ′dn

s

dz

dz

dχ

χ′ − χ

χ′ . (6.9)

6.1.1 Intrinsic Alignment

In making a galaxy weak lensing measurement, the fundamental assumption is that the source

galaxies are oriented randomly for a sufficiently large sample. Lensing induces a coherent distor-

tion in a galaxy image, which we statistically infer as the lensing signal. However, due to tidal

torquing, galaxies may not be randomly oriented. This effect aligns galaxies in such a way that

the projected semi-major axis becomes aligned with the tidal field of a structure, which intro-

duces a bias in the measurement of weak lensing (Joachimi et al., 2015). This effect, known as in-

trinsic alignment (IA), has different configurations, and the various types are illustrated in Figure
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6.1. GG (galaxy-galaxy) type correlation is the desired signal in galaxy weak lensing two-point

correlation measurements, whereas II (intrinsic-intrinsic) and GI (galaxy-intrinsic) type corre-

lations are contaminations to the GG measurement since it creates false signal. In the case of

CMB weak lensing - galaxy weak lensing cross-correlations, the desired signal is ϕG correlation,

whereas ϕI correlation is a contamination term. The effect of IA can be modelled using Equation

6.6 but by replacing the galaxy lensing kernel with that of IA assuming a non-linear alignment

(NLA) model (Hirata & Seljak, 2004; Bridle & King, 2007):

W I(χ) = −C1ρcrit,0
Ωm
D(χ)

ns(χ) (6.10)

where ρcrit,0 = 3H2
0/8πG is the critical density at z = 0, C1 = 5 × 10−14h−2M−1

⊙ Mpc3 is a

normalization constant that is scaled to match the observed amplitude from SuperCOSMOS at

low redshift (Brown et al., 2002) and D(χ) is a linear growth function normalized at z=0. This

introduces an additional term in the cross-correlation:

CκCMBκE
L,obs = CκCMBκE

L,true + CκCMBI
L . (6.11)

6.1.2 Tangential Shear

An alternative widely utilized method to extract the weak lensing signal is using tangential shear,

which uses galaxy shapes directly to measure the excess projected mass within an aperture (Miralda-

Escude, 1991; Squires & Kaiser, 1996). Following the derivation given in Kilbinger 2015, the

mean convergence κ̄ within radius θ is:

κ̄(≤ θ) =
1

πθ2

∫ θ

0

∫ 2π

0
κ(θ′, φ)θ′dθ′dφ (6.12)

=
2

θ2

∫ θ

0
dθ′θ′⟨κ(θ′)⟩φ, (6.13)
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where we have used ⟨κ(θ′)⟩φ = (2π)−1
∫ 2π
0 dφ κ(θ′, φ). We can compute the derivative of this and

obtain:
∂[θκ̄(≤ θ)]

∂θ
= −κ̄(≤ θ) + 2⟨κ(θ)⟩φ. (6.14)

Alternatively, we can apply the divergence theorem on Equation 6.12 (and using κ = 1
2∇ · ∇ϕ):

κ̄(≤ θ) =
1

πθ2

∫ θ

0

∫ 2π

0
κ(θ′, φ)θ′dθ′dφ

=
1

πθ2

∫ 2π

0

1

2
∂θϕ(θ, φ) θdφ

=
1

2πθ

∫ 2π

0
∂θϕ(θ, φ)dφ. (6.15)

Taking a derivative in the radial direction gives:

∂[θκ̄(≤ θ)]

∂θ
=

∫ 2π

0

dφ

2π
∂θ∂θϕ(θ, φ) = ⟨κ(θ)⟩φ − ⟨γt(θ)⟩φ. (6.16)

Equating this expression with Equation 6.14, we obtain:

⟨γt(θ)⟩φ = κ̄(≤ θ)− ⟨κ(θ)⟩φ, (6.17)

and therefore the mean tangential shear at radius θ is the difference between the total projected

mass within θ and the mean convergence at radius θ.

Tangential shear is equivalently the real part of the complex shear γ = γ1 + iγ2 and can be

written as:

γt = −Re{γe−2iφ} (6.18)

where the minus is a sign convention to ensure positive γt around over-densities and negative γt

around under densities. The imaginary part is referred to as the cross-shear component:

γ× = −Im{γe−2iφ}. (6.19)
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Using these, two-point correlations between γt and γ× can be calculated. While ⟨γtγt⟩ and ⟨γ×γ×⟩

are non-zero, ⟨γtγ×⟩ is expected to vanish in a parity symmetric universe (Kilbinger, 2015). The

non-zero two point correlation functions are combined to form two cosmic shear measurements :

ξ+ = ⟨γγ∗(θ)⟩φ = ⟨γtγt(θ)⟩φ + ⟨γ×γ×(θ)⟩φ (6.20)

ξ− = Re
[
⟨γγ∗(θ)⟩φe−4iφ

]
= ⟨γtγt(θ)⟩φ − ⟨γ×γ×(θ)⟩φ. (6.21)

While these cosmic shear measurements are not explicitly presented in this thesis, it is part of

the covariance matrix that is used in Chapter 8 to constrain cosmological parameters.

6.1.3 Power Spectra and Correlation Functions

We work in both harmonic-space using angular power spectra CL and in position-space using

angular correlation functions ξθ, depending on the application. The two are related by the trans-

formations (Peacock, 1999; Ansari & Magneville, 2010):

ξαβθ =
L=∞∑
L=0

(
2L+ 1

4π

)
PL(cos(θ))CαβL (6.22)

CαβL = 2π

∫ +1

−1
ξαβθ PL(cos(θ))d(cos(θ)), (6.23)

where α, β = {κCMB, δg, κE}, and PL are the Legendre polynomials. The theoretical spectrum of

κCMB × γt correlation is computed by calculating CκCMBκE
L first, and converting to position-space

via (Harnois-Déraps et al., 2017):

ξκCMBγt
θ =

1

2π

∫ ∞

0
dLLC

κCMBκgal
L J2(Lθ), (6.24)

where J2 is the Bessel function of the first kind of order 2.
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Figure 6.2 Comparison of theory spectra calculated with Lmin=0, 30, Lmax=3000, 45000
and with and without Gaussian smoothing of FWHM = 5.4′. We observe that compar-
ing our measurements with a theoretical spectrum that assumes a different Lmin will
underestimate our amplitude.

6.1.4 Scale Cuts

The CMB convergence map is primarily reconstructed in harmonic-space, resulting in harmonic

coefficients of the convergence map κLM . However, not all of the modes are useful since the low-

L modes are not accurately measured due to our finite sky area. These modes are often removed

from the analysis, and the same treatment must be made in calculating the theory spectrum. Fig-

ure 6.2 shows the difference in the theory calculation with and without the Lmin cut, suggesting

that omitting this consideration will bias the amplitude significantly. On the other hand, ap-

plying a sharp Lmax cut introduces oscillations in the calculated spectrum (due to the limit on

the sum in Equation 6.22). This effect is reduced when a FWHM = 5.4′ Gaussian beam (i.e. a

smooth transition to zero) is applied.
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6.2 Flask Simulations

In the standard paradigm of gravitational structure growth, the initial density field is assumed to

be Gaussian. As structures grow, the over-densities and under-densities evolve differently*. When

the universe expands, background matter gets displaced somewhat less near over-densities, which

allows for a quicker gravitational turn-around (where gravitational collapse dominates over the

expansion), and will therefore have more time to accumulate mass. The statistics of the evolved

density field is difficult to describe analytically down to galactic scales due to non-linear gravita-

tional evolution that affects cosmic structures in an intricate way.

One model that can be used to approximate the evolved density field is the lognormal distri-

bution. As the name suggests, a lognormal distribution is a distribution where the logarithm of a

random variable is normally distributed. It is guaranteed to have a density ρ > 0 and is arbitrar-

ily close to a Gaussian field at early times (Coles & Jones, 1991). Furthermore, it was recently

verified that the convergence measured from the DES galaxies can be well-approximated by a

lognormal distribution (Clerkin et al., 2017).

The lognormal characteristic is naturally embedded in N-body simulations, which are there-

fore ideal in producing mock data. However, generating multiple N-body realizations is a com-

putationally intensive task. Although the DES collaboration is producing O(10) realizations

for Y1-data analysis, we take a slightly different approach here and produce lognormal fields us-

ing the publicly available code Full-sky Lognormal Astro-fields Simulation Kit (Flask, Xavier

et al. 2016), which is capable of producing multiple correlated Gaussian or lognormal fields on a

sphere.

We run Flask in lognormal mode, and use theoretical angular power spectra CijL where i, j ∈

{δ1g , δ2g , δ3g , δ4g , δ5g , γ1, γ2, γ3, γ4, κCMB}, where δg is the galaxy density field, γ is the galaxy weak

lensing field and the superscript denotes the redshift bin (summarized in Table 6.1). κCMB is

taken to be the convergence field at z = 1089. In total, we use 55 angular power spectra to pro-
*Taking the definition of δ = (ρ − ⟨ρ⟩)/⟨ρ⟩, there is a restriction on the value that underdensities can

reach (δ = −1, when ρ = 0), whereas there are no limits on overdensities. In linear-theory, where |δ| ≪ 1,
underdensities are similar to overdensities.
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duce 10 maps, all of which are correlated with each other according to the set of spectra that we

provide to the code. The input spectra are produced using the cosmology chosen by the DES col-

laboration (Ωm = 0.295, ΩΛ = 0.705, Ωb = 0.0468, σ8 = 0.834, As = 2.26 × 10−9, Ωk = 0,

h = 0.688, ns = 0.968, w = −1, Ωνh2 = 0.0006). For the lens galaxies (making up the δg fields),

the redshift distributions of redMaGiC samples are used, number densities are set to n̄l =

[0.013, 0.034, 0.051, 0.030, 0.009] gal/arcmin2 and the galaxy biases are set to b = [1.45, 1.55, 1.65, 1.80, 2.00].

For the source galaxies (making up the γ fields) we set the shape noise to σγ = [0.37, 0.42, 0.39, 0.40],

and number densities to n̄s = [1.50, 1.52, 1.59, 0.79] gal/arcmin2 (Troxel et al., 2017) and the red-

shift distributions of the Metacalibration samples (Sheldon & Huff 2017; described in Section

7.4) are used. The maps are produced at a HEALPix resolution of Nside = 4096 with a maxi-

mum multipole of L = 4096. The lens galaxy catalogues are generated by drawing from a Poisson

distribution with an expectation value of n̄(1 + δg) for a given pixel, where n̄ is the average num-

ber of galaxies, and δg is the density field produced by Flask. For the source galaxy catalogue,

γ1 and γ2 values are taken from each pixel of the shear maps produced by Flask and a noise

component σγ/
√
2 × N (0, 1) (where σ2γ=σ2γ,1+σ2γ,2 and N is a normal distribution with µ = 0,

σ = 1) is added.

For the CMB convergence field, Gaussian realizations of the noise maps produced from the

N
(0)
L noise spectrum are added to the noiseless convergence maps from Flask to produce realis-

tic κCMB maps. We apply the same mask used in the lensing reconstruction where the mask is

a combination of SPT boundary mask that is apodized with FWHM = 30′, and a mask that re-

moves point sources detected above 50 mJy and clusters above S/Nclus > 6 using an aperture of

R = 5′. We then transform to harmonic-space, remove modes in the ranges L < 30 and L > 3000,

and transform back to position-space to apply a Gaussian smoothing of FWHM = 5.4′, which are

the same procedures applied to the data map.

Overall, these simulations are produced to resemble the data as closely as possible. However,

some systematics that are present in the data are not in the simulations (e.g. atmospheric effects,

PSF shapes that deteriorate shape measurements and extragalactic foregrounds such as tSZ/CIB
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Table 6.1. Table summarizing the Flask simulation inputs.

sample

galaxy density field n̄l [gal/arcmin2] b
0.15 < z < 0.30 0.013 1.45
0.30 < z < 0.45 0.034 1.55
0.45 < z < 0.60 0.051 1.65
0.60 < z < 0.75 0.030 1.80
0.75 < z < 0.90 0.009 2.00

galaxy weak lensing field n̄s [gal/arcmin2] σγ
0.20 < z < 0.43 1.50 0.37
0.43 < z < 0.60 1.52 0.42
0.60 < z < 0.90 1.59 0.39
0.90 < z < 1.30 0.79 0.40

κCMB field
z = 1089

that affect the CMB lensing map).
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7
CMB lensing cross-correlations with the

Dark Energy Survey

7.1 Overview

The Dark Energy Survey (DES) is an optical survey that covers 5000 deg2 of the sky. The sur-

vey is conducted using the 570 Megapixel DECam instrument (Honscheid et al., 2008; Flaugher

et al., 2015) mounted on the Cerro Tololo Inter-American Observatory (CTIO) 4-meter Victor

Manuel Blanco telescope located in Chile. The goal of the survey is to shed light on the nature

of dark energy as well as other cosmological parameters using galaxy clustering, galaxy weak lens-

ing, galaxy clusters and supernovae (The Dark Energy Survey Collaboration, 2005).

To test the performance of DECam and the data reduction pipeline, the DES collaboration

first conducted the science verification (SV) survey. The SV observations were taken between
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Figure 7.1 Comparison of SPT nominal, DES-Y1 shear (SPT patch only) and DES-SV
shear footprints. The area covered are approximately 2500 deg2, 1100 deg2 and 140 deg2

for SPT, DES-Y1 and DES-SV respectively.

November 2012 and February 2013, and were conducted on a ∼140 deg2 patch that lies within

the SPT footprint. The survey used ten exposures to mimic the depth of the full 5-year survey,

but achieved a shallower effective depth due to variable weather and early operational difficul-

ties. Results of various analyses including galaxy clustering (Crocce et al., 2016), galaxy-galaxy

lensing (Prat et al., 2016; Clampitt et al., 2017), cosmic shear (Becker et al., 2016) and cross-

correlations with CMB lensing maps from SPT-SZ and Planck (Giannantonio et al., 2016; Kirk

et al., 2016) were published in 2015/2016, and the galaxy catalogue, photometric redshifts and

shape measurements are now publicly available*. We include the published results from Kirk

et al. 2016 et al. in this thesis.

The DES year-1 (Y1) data were taken between August 2013 to February 2014 and covers

∼1300 deg2 but to a shallower depth compared to DES-SV (four exposures instead of ten). The

SPT, SV and Y1 footprints are shown in Figure 7.1. The Y1 footprint additionally overlaps with
*https://des.ncsa.illinois.edu/releases/sva1
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the Sloan Sky Digital Sky Survey (SDSS; Eisenstein et al. 2011) stripe-82 region where spectro-

scopic redshift data exist, which are used to calibrate photometric redshifts of galaxies. Analysis

of the Y1 data is currently being conducted and will be completed towards the end of 2017. Due

to the blinding strategy taken, the results for DES-Y1 cross-correlations are not permitted to be

presented as official results. Therefore, in this thesis, we present the results based on Flask sim-

ulations, and treat the results as a forecast.

The first measurement of the CMB weak lensing effect was achieved (Smith et al., 2007) by

cross-correlating CMB lensing derived from WMAP (Bennett et al., 2003c) with the overden-

sities of radio galaxies in the NRAO VLA Sky Survey (Condon et al., 1998). More recently, a

(42σ) detection has been achieved by cross-correlating CMB lensing and CIB maps from Planck

(Planck Collaboration et al., 2014c). Higher resolution ground based CMB experiments such as

SPT (Bleem et al., 2012; Giannantonio et al., 2016) and ACT (Allison et al., 2015) have also

measured cross-correlations with galaxies. Additionally, initial measurements of the galaxy weak

lensing - CMB weak lensing correlation have been made using CMB experiments such as SPT,

ACT, Planck, and galaxy weak lensing surveys such as CFHTLenS, RCSLenS and KiDS-450

(Hand et al., 2015; Liu & Hill, 2015; Harnois-Déraps et al., 2016, 2017).

This chapter is organized as follows. The data, methodology used, and the results of the cross-

correlation between DES-SV galaxy weak lensing and SPT-SZ CMB weak lensing are presented

in Section 7.2. Descriptions of the Y1 data and simulations are presented in Sections 7.3 and 7.4.

Finally, a discussion of biases in the cross-correlation measurements due to extragalactic fore-

grounds are given in Section 7.5.

7.2 DES-SV Galaxy Weak Lensing

7.2.1 Data

The DES-SV weak lensing data covers ∼140 deg2, and this is cross-correlated with the SPT-SZ

CMB lensing map. Descriptions of the DES-SV shear catalogues can be found in Jarvis et al.

2016, and shapes measured by two independent pipelines ngmix (Sheldon, 2014) and im3shape
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(Zuntz et al., 2013) are used in the analysis. Shape measurements were tested against system-

atic errors and were shown to be robust, and the catalogues are used to measure different cosmo-

logical probes (see e.g. Becker et al. 2016; Prat et al. 2016; Clampitt et al. 2017). In this study,

ngmix is chosen for the main analysis since the source galaxy number density is slightly higher

(5.7 galaxies/arcmin2) compared to im3shape (3.7 galaxies/arcmin2). We project the calibrated

shear components γ1 and γ2 onto a HEALPix map of Nside = 2048. This corresponds to a max-

imum resolution of ∼ 1.7′ or L ∼ 6000 although we do not attempt to reach these scales due to

the noise in the CMB lensing map.

The lensing map used for SV analysis is based on the SPT-SZ 150 GHz data alone. While the

same 150 GHz data are used for the lensing map reconstruction described in Chapters 3-5, the

two lensing maps are reconstructed using independent pipelines, and are therefore, similar but

different maps. In particular, the lensing map used in the SV analysis is reconstructed under the

flat-sky approximation, using temperature modes of ℓ < 4000, and ℓx > 500. Point sources de-

tected by SPT-SZ above >15σ and clusters above S/Nclus > 6 were removed by applying a mask

of 16′ × 16′ at their locations, and the final map is provided as a HEALPix map of Nside = 2048.

In addition to the SPT-SZ lensing map, the DES-SV weak lensing data are correlated with the

publicly available† Planck 2015 lensing map (Planck Collaboration XV., 2015). This lensing map

was produced by taking a linear combination of temperature and polarization data from different

frequency bands (ranging from 30-353 GHz) from the Planck satellite using the Spectral Match-

ing Independent Component Analysis (SMICA; Cardoso et al. 2008). The lensing potential map

ϕ̂ is produced by applying the standard quadratic estimator technique (Okamoto & Hu, 2003).

All the possible combinations between temperature and polarizations {ϕTT , ϕEE , ϕTE , ϕTB, ϕEB}

were used to construct an estimate of ϕ, and these were combined to form a minimum variance

estimate of the lensing potential ϕMV .
†http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/maps/component-maps/lensing/

COM_CompMap_Lensing_2048_R2.00.tar
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7.2.2 Methods

Galaxy shear is intrinsically a spin-2 quantity since rotations of ellipses by 180◦ give the same

shape. We can convert the raw ellipticity measurements into convergence (spin-0/scalar quantity)

using two methods. The first method is the traditional flat-sky Kaiser-Squires reconstruction

(Kaiser & Squires, 1993) of producing a convergence map from galaxy shear measurements. A

rotation of the form:

γ1 = cos(2φ)γcat
1 − sin(2φ)γcat

2 (7.1)

γ2 = sin(2φ)γcat
1 + cos(2φ)γcat

2 , (7.2)

is first applied to the shear measurement listed in the catalogue, which is measured with respect

to lines of equal right ascension and declination. The transformation rotates the shear measure-

ment with respect to the image coordinates. The γ1, γ2 maps are converted into κE by Fourier

transforming γ1, γ2 using (see A.5 for derivation):

κE(ℓx, ℓy) = γ1(ℓx, ℓy)
ℓ2x − ℓ2y
ℓ2x + ℓ2y

+ γ2(ℓx, ℓy)
2ℓ2xℓ

2
y

ℓ2x + ℓ2y
, (7.3)

where ℓx = 1/θx and ℓy = 1/θy. Similarly, its counterpart, κB is written as:

κB(ℓx, ℓy) = γ1(ℓx, ℓy)
ℓ2x − ℓ2y
ℓ2x + ℓ2y

− γ2(ℓx, ℓy)
2ℓ2xℓ

2
y

ℓ2x + ℓ2y
, (7.4)

and these can be correlated with κCMB(ℓx, ℓy).

The second method is decomposing the spin-2 field from galaxy shape measurements using

spin-weighted spherical harmonics (Bartelmann, 2010):

±2p =
1

2
(γ1 ∓ iγ2) =

∑
LM

±2pLM ±2YLM . (7.5)

This procedure is commonly used in decomposing the linear polarization of the CMB, however
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with γ1 → Q and γ2 → −U , where Q and U are the Stokes parameters. The linear combinations

of these spin-weighted spherical harmonic coefficients can be used to decompose the fields into

scalar (spin-0) fields (Bartelmann, 2010):

κE,LM = −(p2,LM + p−2,LM ) (7.6)

κB,LM = −i(p2,LM − p−2,LM ). (7.7)

It can be shown that this reduces to the Kaiser-Squires reconstruction in the flat-sky limit. The

cross-correlation between κCMB and κE,LM/κB,LM is analogous to computing correlations between

the temperature and polarization in the CMB literature, and there are numerous tools that are

capable of computing this efficiently. We use the public code PolSpice (Chon et al., 2004; Sza-

pudi et al., 2001) to compute this cross-correlation, where the triplet {κCMB, γ1, γ2} is used as

input. The advantage of using this method is that the code processes the mode-couplings due to

the masks, which we must manually compute otherwise (See Section A.4).

7.2.3 Results

The results of measurements using the full-sky estimator are shown in Figure 7.2. The measure-

ments are made over the multipole range of 64 < L < 1600 using 16 bins. These results are

compared with the theory spectrum calculated using Equation 6.6. We vary the amplitude of this

theory spectrum by multiplying by a single multiplicative scaling constant A, and compute the

χ2 using:

χ2 =
∑
L

(CκCMBκE
L,obs −ACκCMBκE

L,theory)
2

(σκCMBκE)2
, (7.8)

where we have assumed a diagonal covariance. We obtain a best-fit amplitude of A = 0.88 ± 0.30

for DES-SV × SPT-SZ and A = 0.86± 0.39 for DES-SV × Planck, which corresponds to a signal

of 2.9 and 2.2σ respectively. As a consistency check, we also check the amplitude using the flat-

sky Kaiser-Squires reconstruction and obtain an amplitude of A = 0.92±0.30 for DES-SV × SPT-

SZ and A = 0.91 ± 0.39 for DES-SV × Planck, with χ2/dof of 1.18 and 1.17, which is consistent
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Figure 7.2 Cross-correlation between κCMB and κE, κB. Shown in blue are the correla-
tion band powers for SPT-SZ and in grey are for Planck. These are similar to the plots
published in Kirk et al. 2016.

with the full-sky method.

7.2.4 Systematics

In this section, we investigate whether our measurements are significantly affected by systematic

effects, and verify that these effects are not dominating the measurement.

7.2.4.1 B-mode

Galaxy weak lensing signal can be decomposed into curl-free (E) and divergence-free (B) modes

(Bartelmann, 2010). To first order, true physical weak lensing signals produce curl-free modes

only. Therefore, the presence of B-modes is an indication of a systematic error present in the

reconstruction process, which could either be astrophysical (e.g. intrinsic alignment (IA) of galax-

ies, source redshift clustering (Schneider et al., 2002)) or non-astrophysical (e.g. miscalibration

of the point spread function, atmospheric fluctuations, shape calibration bias). We measure the
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cross-correlation between κCMB and κB, and obtain best-fit amplitudes of AB = 0.18±0.21 (χ2/dof =

0.79) and AB = 0.17 ± 0.25 (χ2/dof = 0.92) for DES-SV × SPT-SZ and DES-SV × Planck re-

spectively. Additionally, we compute the fit with respect to AE = 0, and obtain χ2/dof = 0.83

and 0.95 for DES-SV × SPT-SZ and DES-SV × Planck respectively. This confirms that the am-

plitude is consistent with AE = 0.

7.2.4.2 photo-z uncertainties

The uncertainty in the redshift distribution affects the amplitude of the theoretical spectrum.

The results in the main analysis are based on a theory spectrum calculated using photo-z from

the SkyNet2 code (Graff et al., 2014). Here, theoretical spectra calculated using three other

photo-z codes BPZ2 (Benítez, 2000), ANNz2 (Sadeh et al., 2016) and TPZ (Carrasco Kind &

Brunner, 2013) are compared. Detailed descriptions of these codes and validation tests can be

found in Bonnett et al. 2016. We take the redshift distribution n(z) from different photo-z codes,

compute the theoretical prediction for CκCMBκE
L given in Equation 6.6, and compare the results

with the spectrum for SkyNet2. The results are shown in Figure 7.3, and it can be seen that

the scatter between the different photo-z codes is much smaller than the statistical uncertainty

from our cross-correlation measurement.

7.2.4.3 Intrinsic Alignments

Galaxy weak lensing measurements are contaminated by the non-random galaxy orientations due

to gravitational forces during the galaxy formation. We model this effect using the non-linear

alignment model (Equation 6.10) and the estimated IA spectrum is shown in the right panel of

Figure 7.3. From taking the ratio between between κCMBκE and κCMBκE + κCMBκI, we infer that

the effect can be as large as 23%, when the redshift distribution from SkyNet2 is assumed. In-

cluding such an effect in the theoretical modelling of the cross-correlation shifts our best-fit am-

plitude for DES-SV × SPT-SZ from AE,no IA = 0.88± 0.30 to AE,with IA = 1.08± 0.36.
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Figure 7.3 Left: Difference in the theory spectrum ∆CκCMBκE
L = CκCMBκE

L,alt−z − CκCMBκE
L,SkyNet2,

where alt-z refers to an alternative photo-z estimating pipeline. Plotted in grey are the
1σ statistical uncertainties of the measurement. Right: Amplitude of κCMBκE (black
dashed), κCMBI correlations (blue) and the sum of the two (red). These are also similar
to the plots published in Kirk et al. 2016.

7.2.4.4 Systematics in the CMB Lensing Map

In addition to the systematic uncertainties in the galaxy shear catalogue, we test for any system-

atic errors in the SPT-SZ lensing map. One of the key contaminations in a temperature based

CMB lensing map is the tSZ effect. While we make no attempt to evaluate how the masking of

the temperature map affects the reconstructed lensing map in the analysis, we conduct a sim-

ple test of applying a stronger mask post reconstruction. For the stronger mask, clusters with

lower detection significances (4.5 < S/Nclus < 6) are masked in addition to the fiducial mask,

which removes a 16′ × 16′ patch around clusters detected with S/Nclus > 6. We also additionally

mask point sources between 5 < S/N < 15 using a 2′ radius circular aperture, in addition to the

16′ × 16′ mask applied to sources detected with greater than S/N > 15 in the main mask. With

this mask applied, we obtain a best-fit amplitude of AE = 0.88± 0.30 with χ2/dof=0.98, which is
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highly consistent with the fiducial results.

7.3 DES-Y1 Galaxy Density

Galaxies are useful in studying the large-scale structure since they are both abundant and suf-

ficiently bright to be observed over cosmological distances (Mo et al., 2010). While galaxies are

not perfect tracers of the underlying mass distribution, it is believed that the clustering of galax-

ies is linked to the clustering of underlying mass by a simple relationship given in Equation 6.3

for scales larger than the non-linear regime.

The cross-correlation between DES-SV galaxy density (using a wide redshift bin 0.2 < z < 1.2)

and SPT-SZ CMB lensing was measured in Giannantonio et al. 2016, and was detected at 6σ.

Additionally, the data were divided into five redshift bins and each of the bins were correlated

with CMB lensing, from which > 2σ measurements were made for all the bins.

In this section, we conduct a similar tomographic analysis using DES-Y1-like simulations, and

the results will be used as part of the Y1 multi-probe analysis forecast discussed in Chapter 8.

7.3.1 Data

The Y1 observations were taken between August 2013 and February 2014 (Dark Energy Survey

Collaboration et al., 2016). The depth and area makes it a valuable data set to carry out tomo-

graphic lensing analyses. The Y1 footprint covers approximately 1300 deg2 including weights,

and extends beyond the SPT-SZ only lensing map that was used for cross-correlations with DES-

SV data. We therefore, correlate the galaxy data with the SPT-SZ+Planck CMB weak lensing

map presented in Chapter 4, which is a refined data product specifically produced for this pur-

pose.

In the SV analysis, galaxies in the “benchmark” sample (see Giannantonio et al. 2016 for the

full description) with magnitudes 18.0 < imag < 22.5 were used for analysis. For Y1, we use

the redMaGiC galaxy sample to stay consistent with the 3×2pt project that is described in

Chapter 8. redMaGiC (Rozo et al., 2016) is an algorithm that selects Luminous Red Galaxies
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(LRGs) while minimizing the uncertainties in the photometric redshifts. The selection is based

on how well the photometry of the galaxy matches with the red-sequence template. There are

three redMaGiC catalogues that are used in the Y1 analysis. The first catalogue is the “high-

density” catalogue that covers the redshift range of 0.1 < zredMaGiC < 0.7 with galaxies brighter

than L/L∗ > 0.5, where L∗ is the characteristic luminosity (calculated using SDSS redMaGiC

galaxies at z = 0.1). The density of this catalogue is ∼ 10−3 (h−1Mpc)−3, and is primarily

used as lenses in galaxy-galaxy lensing analyses. The second catalogue is the high luminosity

catalogue that has a higher cut-off in zredMaGic at 0.95 and includes galaxies that are brighter

than L/L∗ > 1. The density of this catalogue is ∼ 4 × 10−4 (h−1Mpc)−3, and is mainly used

for large-scale structure and baryonic acoustic oscillation analyses. The third catalogue is the

“higher luminosity” catalogue that includes galaxies brighter than L/L∗ > 1.5 and has a density

of 1 × 10−4 (h−1Mpc)−3. We use redMaGiC galaxies in the redshift range of 0.15 < z < 0.90,

with five tomographic bins. The first three z-bins (0.15<z<0.30, 0.30<z<0.45, 0.45<z<0.60)

use the high-density sample, the fourth z-bin (0.60 < z < 0.75) uses the high-luminosity sample

and the fifth z-bin (0.75< z < 0.90) uses the higher-luminosity sample (Elvin-Poole et al., 2017).

The redshift distributions of the five samples are shown in Figure 7.4. These redMaGiC sam-

ples have redshift uncertainties of σz = [0.014, 0.025, 0.022, 0.033, 0.028].

7.3.2 methods

We calculate the galaxy density × galaxy density (δg × δg) and CMB lensing × galaxy density

(κCMB×δg) two-point correlation functions using the TreeCorr (Jarvis et al., 2004; Jarvis, 2015)

package. For δg × δg, the code calculates the Landy-Szalay estimator (Landy & Szalay, 1993):

ξ
δgδg
θ =

(
1

NDD
θij

∑
i

∑
j Bθij −

2
NDR

θij

∑
i

∑
j Bθij +

1
NRR

θij

∑
i

∑
j Bθij

)
1

NRR
θij

∑
i

∑
j Bθij

, (7.9)
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Figure 7.4 Redshift distributions of redMaGiC lens galaxy samples. The CMB lensing
kernel is also shown to illustrate the lensing efficiency as a function of redshift.

where i, j are indices that loop though the entries of the catalogues, Bθij is the binning function

which equals 1 when the i-th and j-th galaxies are separated by θ + δθ and 0 otherwise. Nθ is

the number of galaxy pairs that are separated by θ + δθ. The superscript denotes the catalogue

type that are being correlated, where D and R represent the data and random catalogues respec-

tively. Random catalogues are generated by placing ten times the number of galaxies in the data

catalogue, at random locations within the survey mask.

For δg × κCMB, TreeCorr calculates:

ξ
κCMBδg
θ =

1

NκCMBD
θxi

∑
x

∑
i

wκxκxBθxi −
1

NκCMBR
θxi

∑
x

∑
i

wκxκxBθxi (7.10)

where Bθxi is now the binning function that equals 1 when the i-th galaxy and x-th pixel coordi-

nates in the κCMB map are separated by θ + δθ and 0 otherwise.

We compare the auto and cross-correlation measurements with our fiducial model calculated
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Figure 7.5 The angular auto-correlation measurement of Flask Y1-mock redMaGiC-
like galaxies for the five individual redshift bins 0.15 < z < 0.30, 0.30 < z < 0.45, 0.45 <
z < 0.60, 0.60 < z < 0.75, 0.75 < z < 0.90. In each panel, the mean of 1200 realizations
is shown as a red line, and the points are for a single realization. The angular scales
filled in grey are excluded in the combined analysis discussed in the next chapter.

using Equations 6.4, 6.5 and 6.22:

ξ
δgδg
θ,fid =ξ

δgδg
θ (b2), (7.11)

ξ
κCMBδg
θ,fid =Alensξ

κCMBδg
θ (b), (7.12)

and search for the best-fit amplitude parameter Aδgδg = b2 and AκCMBδg = bAlens. We estimate

the covariance matrix using 1200 lognormal Flask realizations, and compute the best-fit ampli-
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Figure 7.6 The angular cross-correlation measurement between galaxy density δg and
CMB convergence κCMB for the five individual redshift bins.

tudes for the parameters b and AκCMBδg over the tomographic bins:

χ2 =
∑
ij

(ξαi,obs − ξαi,fid)C−1
ij (ξαj,obs − ξαj,fid), (7.13)

where α = {δgδg, δgκCMB}.

7.3.3 results

The angular auto-correlation measurements made on the DES-Y1-like simulations are shown

in Figure 7.5. The corresponding cross-correlation measurements are shown in Figure 7.6. The

mean of the best-fit amplitudes for 1200 simulation realizations and for a single realization are

summarized in Table 7.1 and the distributions of the best-fit amplitudes relative to the input

values are shown in Figure 7.7. While there is scatter between the simulation realizations, the
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average of 1200 simulations recover the input auto- and cross-correlation amplitudes well, devi-

ating away by at most 1%. We obtain a signal-to-noise ratio ranging from 13σ and 37σ for the

auto-correlations and between 8σ and 14σ for the cross-correlations, and expect to see similar

detection significances when repeating the same measurement on the true data.
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Figure 7.7 Histograms of the best-fit amplitudes relative to the input amplitudes for δg ×
δg (top row), κCMB × δg (middle row), and κCMB × γt (bottom row) using 1200 Flask real-
izations.
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Measurement binput ⟨b⟩ bsim=1 χ2
sim=1/dof (PTE) S/N

redMaGiC × redMaGiC
0.15 < z < 0.30 1.45 1.45 1.48± 0.11 10.7/7 (0.15) 13
0.30 < z < 0.45 1.55 1.55 1.48± 0.07 7.7/9 (0.56) 22
0.45 < z < 0.60 1.65 1.65 1.66± 0.06 5.3/10 (0.87) 28
0.60 < z < 0.75 1.80 1.80 1.84± 0.05 11.7/11 (0.39) 37
0.75 < z < 0.90 2.00 2.00 2.00± 0.07 8.8/12 (0.72) 29

Measurement A
κCMBδg
input ⟨AκCMBδg⟩ A

κCMBδg
sim=1 χ2

sim=1/dof (PTE) S/N
redMaGiC × SPT-SZ+Planck κCMB

0.15 < z < 0.30 1.45 1.44 1.58± 0.19 11.5/16 (0.77) 8
0.30 < z < 0.45 1.55 1.55 1.59± 0.14 31.0/16 (0.01) 11
0.45 < z < 0.60 1.65 1.66 1.69± 0.13 18.0/16 (0.32) 13
0.60 < z < 0.75 1.80 1.81 1.85± 0.13 10.9/16 (0.81) 14
0.75 < z < 0.90 2.00 2.01 1.66± 0.18 7.3/16 (0.97) 11

Table 7.1 Table summarizing the best-fit auto- and cross-correlation amplitudes for the
mean of the 1200 Flask simulations and a single realization. S/N is calculated using the
mean amplitude and the variance.

7.4 DES-Y1 Galaxy Weak Lensing

7.4.1 Data

The effective overlap between DES-year 1 (Y1) weak lensing data and the SPT 2500 deg2 patch

is approximately 1100 deg2, after accounting for weights. There exists two different shape mea-

surement pipelines for Y1 analysis: im3shape and Metacalibration.

Metacalibration is a new technique that is used to measure the weak lensing signal based

solely on the imaging data, without any prior knowledge of the properties of the galaxies being

measured. The method was first introduced in Huff & Mandelbaum 2017, and has been exten-

sively tested in Sheldon & Huff 2017 using image based simulations with realistic observational

complications such as stellar contamination and variations in the detection thresholds. The code

is applied to the Y1 galaxy shape catalogue using r, i, z-bands. We refer the reader to the afore-

mentioned papers for details of the calibration processes and results from applying this method

on simulations as well as Zuntz et al. 2017, where the descriptions of the catalogues are given.

These independent pipelines produce shape catalogues with different redshift distributions (as
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Figure 7.8 Redshift distributions for Metacalibration galaxy samples for the four
redshift bins.

shown in Figure 7.8) and number densities. We produce our simulations based on the properties

of Metacalibration samples, since the galaxy number densities are higher, the calibration is

more stable, and are used in other analyses (Troxel et al., 2017).

7.4.2 Methods

Redshift cuts are applied to to the full shape catalogues to extract four tomographic bins 0.2 < z

< 0.43, 0.43 < z < 0.6, 0.6 < z < 0.9, and 0.9 < z < 1.3, which were determined to be optimal

for galaxy-galaxy lensing and cosmic shear analyses (see e.g. Prat et al. 2017 and Troxel et al.

2017). Noise calibration bias is applied to each tomographic sample separately.

For Y1 analysis, the average correlation between CMB weak lensing and tangential shear ξκCMBγt
θ

is calculated using the TreeCorr package. Unlike the SV analysis, we make our measurements

in position-space to remain consistent with all the other correlation analyses. Like with δg × δg

and δg × κCMB correlations, the covariance is calculated using 1200 Flask realizations.
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Figure 7.9 The position-space correlation between galaxy tangential shear γt and CMB
convergence κCMB for the four individual redshift bins 0.2 < z < 0.43, 0.43 < z < 0.6, 0.6
< z < 0.9, 0.9 < z < 1.3.

7.4.3 Results

The main results are shown in Figure 7.9. The measurements that we obtain are visually noisy,

and appear to fit the theoretical predictions poorly. However, this is largely due to strong corre-

lations between the first few bin as shown in Figure 7.10. We fit a best-fit amplitude by comput-

ing:

χ2 =
∑
ij

(ξκCMBγt
i,obs − ξκCMBγt

i,fid )C−1
ij (ξκCMBγt

j,obs − ξκCMBγt
j,fid ) (7.14)

where C−1 is the inverse covariance matrix and i, j are bin numbers. We restrict our calculation

to θ > 20′ since we find that the mean of 1200 realizations disagrees with the input theory corre-

lation function at approximately 2% below this scale.
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Measurement AκCMBγt
input ⟨AκCMBγt⟩ AκCMBγt

sim=1 χ2
sim=1/dof (PTE) S/N

Metacalibration × SPT-SZ+Planck κCMB
0.20 < z < 0.43 1.00 1.01 0.83± 0.35 20.8/10 (0.02) 3
0.43 < z < 0.60 1.00 1.00 1.13± 0.26 11.4/10 (0.33) 4
0.60 < z < 0.90 1.00 1.00 1.10± 0.14 10.3/10 (0.41) 7
0.90 < z < 1.30 1.00 1.00 1.00± 0.13 12.1/10 (0.28) 8

Table 7.2 Table summarizing the cross-correlation amplitudes between κCMB and γt, for
the mean of 1200 Flask realizations and a single realization.

We obtain best-fit amplitudes of AκCMBγt = 0.83 ± 0.35, 1.13 ± 0.26, 1.10 ± 0.14, 1.00 ± 0.13,

with χ2/dof of 20.8/10, 11.4/10, 10.3/10, 12.1/10 for the four redshift bins, for a single realiza-

tion. While the scatter is large for a single realization, we obtain mean amplitudes of ⟨AκCMBγt⟩ =

1.01, 1.00, 1.00, 1.00 using all 1200 realizations, which match with the input amplitude of AκCMBγt =

1. The distributions of best-fit amplitudes for the 1200 realizations are shown in Figure 7.7. The

signal-to-noise ratio varies from ∼ 3 (lowest redshift bin) to ∼ 8 (highest redshift bin).

7.5 Biases to Cross-correlations due to Foregrounds in the CMB Lensing Data

Numerous rigorous tests are carried out to validate the galaxy samples. This is especially im-

portant for shear measurements, where systematics must be controlled to at least O(∼ 1%) to

extract useful signal. Cross-correlations are often less prone to non-astrophysical systematics,

such as issues related to the modelling of the point spread function, scan patterns and depth vari-

ations. This is particularly true for cross-correlations between different probes using separate

surveys, since instrumental and observational systematics are not correlated. There are, however,

astrophysical correlations which bias the cross-correlation measurements.

The 150 GHz map has emission from the primary CMB as well as astrophysical foregrounds

such as tSZ and CIB. These foreground components are late time effects induced by non-linear

structures; tSZ is due to inverse Compton scattering of photons by energetic gas in galaxy clus-

ters (Carlstrom et al., 2002), and CIB is due to dusty star forming galaxies with a redshift dis-

tribution that peaks at 1<z<3 (Viero et al., 2013). These secondary anisotropies imprint non-

Gaussian signatures onto the observed sub-millimeter sky. Some of the components, such as
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bright AGNs can be readily identified and removed due to their brightness. For fainter sources,

the amount of contribution to the total power spectrum must be modelled, and subtracted out.

The off-diagonal terms in the covariance are generated by non-Gaussian foregrounds in addi-

tion to the lensing effect. Therefore, the reconstructed lensing map will contain some contami-

nation. This is picked up when cross-correlating the CMB lensing map with galaxies and galaxy

weak lensing, since these foreground contaminants are correlated with the large-scale structure.

tSZ bias (κtSZ × δg/κE correlation)

We estimate the amplitude and the shape of the bias by first creating a simulated tSZ map from

the DES redMaPPer cluster catalogue (Rykoff et al., 2014, 2016). We select clusters with rich-

ness (denoted with λ, defined as the sum of the membership probability of all the galaxies near

the cluster (Rykoff et al., 2016)) greater than 20. While the most massive redMaPPer clusters

are also detected by SPT-SZ, the majority of the clusters in this sample fall below the SPT-SZ

detection threshold.

From the richness measurement of the galaxy clusters, masses are estimated using the mass-

richness relation given in Melchior et al. 2017:

M(λ, z) ≡ ⟨M |λ, z⟩ =M0

(
λ

30

)Fλ
(
1 + z

1.5

)Gλ

, (7.15)

where M0, Fλ, Gλ are parameters determined from fitting the model to data, λ is the richness,

and z is the redshift of the galaxy cluster. Melchior et al. 2017 reports log
10
M0 = 14.371, Fλ =

1.12, Gλ = 0.18 as their best-fit values. However, we increase the amplitude of this relation by 1σ

to obtain an upper limit of the tSZ power. Using these mass estimates, we convert to tempera-

ture decrement using:

∆T (θ⃗,M, z)

TCMB
= gνy(θ⃗,M, z) (7.16)

= gν
σT
mec2

∫
LOS

dlPe(
√
l2 + d2A|θ⃗|2,M, z), (7.17)
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where σT is the Thomson cross-section, me is the electron mass, and the term in the integral is

the electron pressure (l is the line of sight distance, dA is the angular diameter distance and θ⃗ is

the angular separation relative to the cluster centre). For a fully ionized medium, the electron

pressure is Pe = 2 × Pth(XH + 1)/(5XH + 3), where Pth is the thermal pressure and XH = 0.76 is

the primordial hydrogen mass fraction. We employ the Battaglia et al. 2012 profile for Pth:

Pth(x)
P200,c(M200,c, z)

= P0(M200,c, z)
(x/xc)

[1 + (x/xc)]β(M200,c,z)
, x ≡ r/r200,c (7.18)

where M200,c denotes the total mass enclosed in a region with density 200 times the critical den-

sity (obtained from 7.15) and r200,c =
(

M200,c
4
3
πρcrit200

)1/3
. P200,c, P0, xc and β depend on the mass

and redshift of the individual clusters, and the form is fitted using simulations (Battaglia et al.,

2012; Hill & Pajer, 2013):

P200,c(M200,c, z) =
200GM200,cρcrit(z)Ωb

2Ωmr200,c
(7.19)

P0(M200,c, z) = 18.1

(
M200,c
1014M⊙

)0.154

(1 + z)−0.758, (7.20)

xc(M200,c, z) = 0.497

(
M200,c
1014M⊙

)−0.00865

(1 + z)0.731 (7.21)

β(M200,c, z) = 4.35

(
M200,c
1014M⊙

)0.0393

(1 + z)0.415. (7.22)

Using these equations, we model the temperature decrement around redMaGiC clusters with

λ > 20, and apply the lensing reconstruction procedure to generate a κtSZ map, which is an es-

timate of the tSZ bias in the SPT-SZ × Planck lensing map due to galaxy clusters that do not

reach SPT-SZ’s detection threshold. A mask that removes circular regions of R = 5′ centred at

redMaPPer clusters with λ > 80 is applied to this map and is then cross-correlated with galaxy

density and galaxy weak lensing maps. The results are shown as coloured points in Figure 7.11.

For κCMB × δg cross-correlations, the tSZ bias is found to be strongest for the lower redshift bins

and tends to decrease towards higher redshifts. This tSZ redshift evolution trend agrees with the

measurements in works such as Hurier et al. 2014. The bias has a characteristic shape that is
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negative at scales L < 2000, and is positive for scales L > 2000. The cross-correlations between

κtSZ × κE‡ are also negative but significantly smaller in amplitude. We fit a function to these

biases in Chapter 8 and incorporate this effect in the theoretical modelling.
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Figure 7.11 The ratio of bias to input signal (CκtSZ/CIBδg
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L ).
Equations 8.4 and 8.5 are fit to each C

κtSZ/CIBδg
L /C

κCMBδg
L and C

κtSZ/CIBκE
L /CκCMBκE

L ratio,
and the fits are used in Equation 8.6 to compute the biased cross-spectra for each
probe and redshift bin. The error bars shown are calculated using the block jackknife
method. Biases are not calculated for redshift bins that involve galaxies z > 0.6 since
the redMaPPer catalogue is not complete at those redshifts. We instead employ the
fits for the last redshift below z = 0.6 and consider the biases as upper limits (since the
biases are expected to be smaller for higher redshifts, as it can be seen from the plot).

CIB bias (κCIB × δg/κE correlation):

To quantify the κCIB × δg/κE bias, we utilize the κCIB map presented in Section 5.3. The corre-
‡The modelling is done in harmonic-space and hence κE is used instead of γt.
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lation between DES galaxies and CIB is expected to be small since the CIB is mostly composed

of dusty sub-millimeter galaxies peaking at z ∼ 2, whereas the distribution of DES galaxies peaks

at z ∼ 0.7. This is confirmed by cross-correlating δg and κE with κCIB, for which the results are

shown as grey points in Figure 7.11. We find that the cross-correlation measurements are noisier

than that of κtSZ × δg/κE and no strong evidence of bias is found.
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8
Multi-Probe Analysis

One of the key goals of measuring the cross-correlations between CMB weak lensing, galaxy den-

sity and galaxy weak lensing is to combine the measurements to attain the most stringent cosmo-

logical constraints. Forecasts in the literature show that adding CMB cross-correlation measure-

ments improve the constraints on σ8, sum of neutrino masses
∑
mν , galaxy bias and shear cali-

bration bias relative to galaxy surveys alone (Vallinotto, 2012; Das et al., 2013; Pearson & Zahn,

2014; Liu et al., 2016; Schaan et al., 2016). Recently, multiple studies have attempted to perform

a joint analysis of three cosmological probes from galaxy surveys (van Uitert et al., 2017), and

also with CMB lensing, using data (Nicola et al. 2017; Doux et al. 2017). Such multi-probe anal-

yses are expected to become extremely powerful in the coming era (Schaan et al., 2016). Combin-

ing DES and SPT will be the first study to include tomographic measurements of cosmic shear,

galaxy-galaxy lensing, CMB lensing-galaxy density and CMB lensing-galaxy lensing correlations,

with the source and lens galaxy samples from the same survey. This will have considerable statis-

95



tical power relative to non-tomographic measurements (Hu, 1999; Hildebrandt et al., 2017), and

will be self-consistent in terms of data reduction procedures.

The DES collaboration internally combined measurements of galaxy clustering (δg×δg), galaxy-

galaxy lensing (δg × γ) and cosmic shear (γ × γ) using the five lens and four source redshift bins

(Krause et al., 2017; DES Collaboration et al., 2017). It was shown that the constraints from

DES-Y1 data are comparable to the constraints found by Planck, and therefore, our understand-

ing of the early and late universe can be on placed on equal footing (DES Collaboration et al.,

2017). The combined measurement involves three two-point correlation measurements, δg × δg,

δg × γt, γ × γ (although γ × γ is separated into ξ−/ξ+, and there are 45 different measurements

including all the tomographic bins), and is therefore referred to as “3×2pt”.

Since the SPT footprint overlaps with DES, 3×2pt could be extended to include the cross-

correlations with CMB lensing. Using SPT-SZ+Planck × DES-Y1 Flask simulated data, we

measure all the two-point correlation functions and forecast the constraints that we will obtain

by combining all the results. We will refer to this as “5×2pt” (since we are using five two-point

correlation measurements).

8.1 Methods

Obtaining parameter constraints from a tomographic multi-probe analysis is challenging due to

the vast number of data vectors and the elements in the covariance matrix which must be evalu-

ated. We estimate the full covariance using the 1200 lognormal Flask simulations presented in

Chapter 7.1 with realistic noise estimates and masks applied. Measurements for δg×δg, κCMB×δg,

κCMB × γt were presented in Chapter 7.1, but the additional correlations (δg × γt, ξ−, ξ+) are also

measured. For simplicity, the input fiducial spectrum is treated as the data vector (which we

refer to as the theory data vector), while the covariance is constructed from the measurements

made on Flask realizations.
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8.2 Likelihood Calculation

The publicly available code CosmoSIS* (Zuntz et al., 2015) is utilized to calculate the cosmo-

logical parameter constraints. Within CosmoSIS, the internal DES libraries and the relevant

modules built specifically for DES×SPT cross-correlations are used. We let the cosmological pa-

rameters Ωm, h0,Ωb, ns, As vary in the ranges listed in Table A.2 and fix the other cosmological

parameters. The list of nuisance parameters being considered in the likelihood calculations are

also summarized in Table A.2, and we give brief descriptions of each of these below.

Photometric redshift bias

The redshift distribution of galaxies affects the amplitude and the shape of the fiducial spectrum.

The uncertainty of the redshift distribution is modelled as a single shift parameter in the galaxy

distribution:

nli(z) = n̂li(z −∆l
i) i ∈ {1, 2, 3, 4, 5}, (8.1)

ns
i(z) = n̂s

i(z −∆s
i) i ∈ {1, 2, 3, 4}, (8.2)

where i is an index for the redshift bin, n̂li, n̂s
i are the estimated photometric redshift distribu-

tions, and ∆l
i, ∆s

i are the photometric redshift biases for the lens and source samples respectively.

These parameters are varied independently for the five lens and four source redshift bins.

Linear galaxy bias

Galaxy bias bi is a multiplicative function that directly affects the amplitude and shape of galaxy

auto- and cross-correlations. Under the assumption of linear galaxy bias (i.e. scale-independent)

galaxy bias is a multiplicative constant, which is directly degenerate with the correlation ampli-

tude and hence with combinations of σ8 and Ωm. Therefore, these parameters must be varied

simultaneously. A measurement that involves the galaxy density field will inevitably contain this

bias; the amplitude of galaxy clustering measurements (galaxy auto-correlation) is proportional
*https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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to b2i , and galaxy-galaxy lensing, galaxy-κCMB correlations are proportional to bi. Although we

assume a simple linear galaxy bias model in this forecast, higher order terms are currently being

implemented.

Shear calibration bias

Multiplicative shear bias arises from the mismatch between the inferred and the true underlying

shear signal, which can be parametrized by a single multiplicative factor (1 + mi), where i is

an index for the redshift bin. Calibration errors result from failures in the shear measurement

method itself, stellar contamination in the galaxy sample, false object detection and selection

bias (Heymans et al., 2006). The amplitude of galaxy-galaxy lensing and κCMB × γt correlations

are proportional to (1 +mi), and cosmic shear correlations are proportional to (1 +mi)(1 +mj).

Similar to the linear galaxy bias, these parameters are varied independently for the four source

redshift bins.

Intrinsic alignment

The non-linear alignment model given in Equation 6.10 is employed to capture the effect of in-

trinsic alignment. The basic form is slightly modified to additionally capture the redshift evolu-

tion:

−C1ρcrit
Ωm
Dχ

ns(χ) → −AIA
(

1 + z

1 + z0

)αIA

C1ρcrit
Ωm
Dχ

ns(χ). (8.3)

Following Krause et al. 2017, we use the values z0 = 0.62, C1ρcrit = 0.0134 and let AIA and αIA

vary.

tSZ/CIB biases

We ignore the CIB bias in this section, as it has been shown in Section 7.5 that the contamina-

tion is negligible. The κtSZ × δg bias is modelled by fitting a function of the form:

y(L) = a(|(L− b)/c|)p × 10−8 + d (8.4)
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to the ratio CκtSZ×δg
L /CκCMB×δg

L,fid
† for each redshift bin, where a, b, c, d, p are free parameters ob-

tained by fitting the model to the measurements. Similarly, a function of the form:

y(L) = −aL exp(−(L/b))1.2 × 10−4 + c (8.5)

is fit to CκtSZ×κE
L /CκCMB×κE

L,fid . The measurements and the fits for the various redshift bins are shown

in Figure 7.11, and the best-fit parameters are tabulated in Table 8.1. The biased cross-spectrum

is written in terms of a scaling constant AtSZ, the fitted function y(L), and the unbiased spec-

trum CκCMBα,unbiased
L,fid :

CκCMBα,biased
L,fid = [1 +A2

tSZy(L)]C
κCMBα,unbiased
L,fid (8.6)

where α = {δg, κE}. Rather than varying the amplitude of this bias, we set AtSZ = 1 and inves-

tigate the angular scales at which the bias impacts the constraints the most, and remove those

scales from the analysis. We run two types of likelihood calculations: one with tSZ bias con-

volved in the theory data vector, and one without. We run each of these calculations with min-

imal cuts (using θ > 5′ for κCMB × δg and θ > 20′ for κCMB × γt, which are the angular scales

for which we trust the Flask covariance as shown in Sections 7.3 and 7.4) and conservative cuts.

The conservative cuts are chosen such that all angular bins with |ξbiased
θ −ξunbiased

θ |/σ > 0.3 (where

σ is the standard deviation for a particular bin, calculated from Flask simulations) are removed,

as illustrated in Figure 8.1.
†The motivation for this is purely computational – as it reduces the time to load a file.
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Figure 8.1 Scale cuts used in the analysis. For “minimal cuts”, we remove angular bins
smaller than 5′ for κCMB × δg and 20′ for κCMB × γt. For “conservative cuts”, we addi-
tionally remove all angular bins where the difference between the biased and unbiased
theory correlation functions are greater than 0.3σ (shown as faint points). This results
in removing angular bins smaller than [10.4′, 17.7′, 17.7′, 16.9′, 14.3′] for κCMB × δg and
[20.0′, 20.0′, 54.0′, 42.0′] for κCMB × γt.

8.3 Results

In Figure 8.2, the constraints on Ωm and S8 = σ8(Ωm/0.3)0.5 obtained for the different test cases

are shown. We observe that the tSZ bias does have a significant impact on the results if left un-

treated (blue contours in the left panel). Specifically, the inferred value of S8 is shifted towards a

lower value, and Ωm is shifted towards a slightly higher value at the level of ∼ 1.4σ and ∼ 0.4σ

respectively. We find that the effect can be mitigated by applying the conservative scale cuts

(teal contours in the left panel) reducing the shift to ∼ 0.3σ in S8 and 0.04σ in Ωm. However, by

applying these scale cuts, we also lose signal, and our constraining power is weakened, as shown

in the right panel. Nonetheless, the constraints that we obtain are slightly tighter than that of

3×2pt.

Similar conclusions can be drawn for the other parameters as shown in Figures 8.3 and 8.4.

We find that the best-fit values for b3, m3 and ∆s
3 (and also for the other redshift bins as shown

100



Redshift bin a b c d p

κtSZ × δg
(0.15 < z < 0.30) 24.40 941.52 1.26 −0.24 2.05
(0.30 < z < 0.45) 17.15 844.34 0.14 −0.21 1.57
(0.45 < z < 0.60) 9.19 851.80 0.82 −0.13 1.97
(0.60 < z < 0.75) ′′ ′′ ′′ ′′ ′′

(0.75 < z < 0.90) ′′ ′′ ′′ ′′ ′′

κtSZ × κE
(0.20 < z < 0.43) 12.23 584.29 0.03
(0.43 < z < 0.60) 8.36 578.84 0.01
(0.60 < z < 0.90) ′′ ′′ ′′

(0.90 < z < 1.30) ′′ ′′ ′′

Table 8.1 Table summarizing the best-fit parameters for fitting y(L) = a(|(L − b)/c|)p ×
10−8 + d to CκtSZδg

L /C
κCMBδg
L and y(L) = −aL exp(−(L/b))1.2 × 10−4 + c to CκtSZκE

L /CκCMBκE
L .

For κtSZ × δg, the fit for the 0.45 < z < 0.60 redshift bin is also used for the fourth and
fifth redshift bins since the redMaPPer catalogue is not complete at z > 0.6. Similarly
for κtSZ × κE, the fit for 0.43 < z < 0.60 is used for the third and fourth redshift bin.
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Figure 8.2 Left: Constraints on Ωm and S8 = σ8(Ωm/0.3)0.5 for 5×2pt with or without
the tSZ bias effect included in the theory data vector and with minimal or conserva-
tive scale cuts applied. Right: comparing the constraints that we obtain from 5×2pt
without tSZ bias using conservative scale cuts (teal), 5×2pt without tSZ bias and with
minimal scale cuts (blue) and 3×2pt using galaxies only (black). We see marginal im-
provements in constraining Ωm and S8. In each panel, the inner and outer contours
represent the 68% and the 95% confidence intervals.
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in Figure A.1) are shifted towards a higher value, but we recover (to within 0.3σ) the unbiased

case when the conservative cuts are used.

These results show that we are able to gain subtle improvements in the cosmological parameter

constraints by adding CMB weak lensing cross-correlations to the 3×2pt analysis, provided that

systematic errors are handled with care. Although only the tSZ bias is considered here, other ef-

fects such as baryonic feedback, breakdown of linear galaxy bias, redshift evolution of galaxy bias

and redshift space distortions could also impact the measurements. We leave these considerations

for future work.
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Figure 8.3 Constraints on b3, m3, AIA, α, ∆s
3, ∆l

3 for 5×2pt without tSZ bias and with
conservative scale cuts (black), 5×2pt with tSZ bias and conservative scale cuts (teal)
and 5×2pt with tSZ bias and minimal scale cuts (blue). Here we only show results for
the third redshift bin (for all the other redshift bins see Figure A.1).
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Figure 8.4 Constraints on b3, m3, AIA, α, ∆s
3, ∆l

3 for 3×2pt (black), 5×2pt without tSZ
bias and with conservative scales cuts (teal) and 5×2pt without tSZ bias and with min-
imal scales cuts (blue). We see marginal improvements in b3 and AIA when adding the
cross-correlations with the CMB. The results for all the parameters are shown in Figure
A.2.
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9
Future Data and Prospective Work

Cross-correlations between CMB lensing and the large-scale structure have become increasingly

popular in the past decade due to the improvement in the signal-to-noise ratio of the CMB lens-

ing maps and the increased cosmological volume covered by galaxy surveys. In the previous chap-

ters, the current state-of-the-art measurements from SPT-SZ+Planck and DES-Y1-like simula-

tions have been presented. In this chapter, we forecast the noise levels of these surveys in the

coming years (DES-Y1/Y3 data is planned to be released in December 2017, and DES-Y5 data

will be released in 2019), and predict the cosmological constraints that we will obtain using these

data sets.

9.1 SPT-3G and DES-Y5

SPT-3G was deployed in the winter season of 2016 and is planned to observe for four years. The

camera has ∼ 15000 detectors, and is planned to cover 2500 deg2 down to a noise level of 3.5/
√
2
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and 3.5 µK-arcmin in temperature and polarization respectively at 150 GHz. The 95 and 220

GHz channels will observe down to a noise level of ∼ 6/
√
2 µK-arcmin and ∼ 6 µK-arcmin for

temperature and polarization respectively (Benson et al., 2014). By having multiple frequencies

observing the same patch of the sky, we are able to separate out the various foreground compo-

nents, since their emission characteristics are different in the three frequency channels. This re-

quires all three frequency channels to be low in noise; component separated maps are produced

by taking combinations of the raw frequency maps and hence including a channel with excess

noise degrades all the output maps. For SPT-SZ, the high noise in the 220 GHz channel made it

challenging to separate CMB, tSZ and dust. With the noise level of SPT-3G, these maps are pro-

ducible and will be used in various analyses (e.g. lensing reconstruction on a tSZ free CMB map,

tSZ cross-correlated with galaxies or clusters).

DES will also complete its nominal five-year observing campaign in 2018. The depth will ap-

proximately reach 24th magnitude (10σ limits in 1.5′′ apertures assuming 0.9′′ seeing for faint ex-

tended sources) in griz filters over 5000 deg2 and is expected to observe 300 million galaxies with

photometric redshifts, of which 200 million will have shape measurements (The Dark Energy Sur-

vey Collaboration, 2005; Dark Energy Survey Collaboration et al., 2016). The DES-Y5 footprint

covers almost all of the SPT 2500 deg2 nominal region as well as the stripe-82 region as shown in

Figure 9.1.

9.1.1 Forecast: DES-Y5 galaxies

The true redshift distribution of the source galaxies is modeled using the functional form (Fore-

man et al., 2016):

n(z) ∝ zα exp
[
−
(
z

z0

)β ]
, (9.1)

and we use the values α = 1.75, z0 = 0.25, β = 1.0. We further take in account for the uncertain-

ties in the measured redshift by assuming a Gaussian spread:

p(zp|z) =
1√
2πσ2z

exp
[
−(zp − z −∆z)

2

2σ2z

]
, (9.2)
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Figure 9.1 Blue: SPT nominal 2500 deg2 footprint, Orange: DES-Y5 footprint.

where p(zp|z) denotes the probability of measuring zp for a galaxy with a true redshift z, σz is

the scatter or spread in the distribution, and ∆z is the photo-z bias. The true source galaxy dis-

tribution is first divided into four redshift bins 0.20 < z < 0.43, 0.43 < z < 0.60, 0.60 <

z < 0.90, 0.90 < z < 1.30. Secondly, a zp drawn randomly from Equation (9.2) is assigned

to each galaxy based on its true redshift z. Finally, galaxies that fall in a particular redshift bin

are selected based on zp, and their true redshift are retrieved. The total number of galaxies is set

to 10 galaxies/arcmin2 (Kirk et al., 2016), and each of the tomographic bins are scaled accord-

ingly. This results in average galaxy densities of 3.39, 2.43, 2.79, 1.40 galaxies/arcmin2 for the

four source redshift bins. Shear noise σγ is set to 0.30 for all four redshift bins.

For the redMaGiC lens galaxy sample, the number density is not expected to increase signifi-

cantly for DES-Y5 since the existing data is already volume limited. Therefore, the same redshift

distribution as the DES-Y1 data is assumed for DES-Y5. While the redshift distribution will not

change, our statistical power will still improve since the survey area will increase. The redshift

distributions of the source and lens galaxies are shown in the left panel of Figure 9.2
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9.1.2 Forecast: SPT-3G κCMB noise level

Following Section 9.1, the CMB lensing noise is estimated by assuming noise levels of 3.5/
√
2 and

3.5 µK-arcmin in temperature and polarization respectively. Here we restrict our analysis to the

150 GHz channel only. The beam width is set to FWHM=1.4′, and we use multipoles up to ℓmax

= 3000 for temperature (due to foregrounds) and 5000 for polarization. We estimate the noise

levels by taking the inverse of the analytical response function*:

Rα
L =

1

2L+ 1

∑
ℓ1ℓ2

1

2
Wα
ℓ1ℓ2LW

α
ℓ1ℓ2LF

(1)
ℓ1
F

(2)
ℓ2
, (9.3)

where α = {ϕ(TT ), ϕ(EE), ϕ(TE), ϕ(TB), ϕ(EB)}, Wα
ℓ1ℓ2L

is the weight function (Equation 4.14,

but generalized to include polarization) and F (1)
ℓ , F

(2)
ℓ are filtering functions (Equation 4.18). We

reconstruct the noise levels for each non-zero component pair {TT,EE, TE, TB,EB}, and com-

bine them by taking:

NMV
L =

∑
αN

α
LRα

L∑
αRα

L

(9.4)

with Nα
L = 1/Rα

L to form the minimum variance estimate of the CMB convergence noise spec-

trum. The cross-components between the fields (e.g. RTT
L REE

L ) are ignored. The amplitude of

NMV
L in comparison to the individual noise components are shown in the right panel of Figure

9.2.

9.1.3 Simulations

The input CijL are produced using CosmoSIS assuming the central values of DES-Y1-fiducial cos-

mology listed in Table A.2, and the derived galaxy redshift distribution described in Section 9.1.1.

Flask is run in lognormal mode to produce 300 full-sky realizations. The procedures described

in Section 6.2 are used to produce realistic CMB maps and galaxy catalogues. We extract four

patches from a single realization as shown in Figure 9.3, producing 1200 DES-Y5-like realizations
*This is a direct consequence of using the optimal quadratic estimator, as described in Okamoto & Hu

2003
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Figure 9.2 Left: The predicted redshift distribution of DES-Y5 galaxies. Distributions
shaded in blue are the source galaxy samples, and in red are the lens galaxy samples.
The dashed lines show the overall distribution. The solid line represents the CMB weak
lensing kernel W κCMB which represents the lensing efficiency as a function of redshift.
Right: forecast of CMB lensing noise levels from different estimators. We utilize the
minimum variance noise spectrum (red) for the forecast. The fiducial lensing spectrum is
shown as the black solid line.

in total. From these mocks, all the correlation functions between δg, γ and κCMB are measured

in the same way as described in Chapter 7. One important aspect of this forecast is that we pre-

sume that polarization maps will be used to reconstruct the lensing map. Since the tSZ effect is

SPT-3G Resolution NT [µK-arcmin] NP [µK-arcmin] ℓmax,T ℓmax,P fsky

1.4′ 3.5/
√

2 3.5 3000 5000 0.06

DES-Y5 n̄l [10−2arcmin−2] galaxy bias n̄s [arcmin−2] σγ ℓγmax fsky
[1.3, 3.4, 5.0, 3.0, 0.9] [1.45, 1.55, 1.65, 1.8, 2.0] [3.39, 2.43, 2.79, 1.40] 0.3 4096 0.12

Table 9.1 Table summarizing the experimental setups used for SPT-3G and DES-Y5.
For SPT-3G, only the 150 GHz channel (temperature and polarization) is considered
over the 2500 deg2 footprint. For DES-Y5, we use the same redshift bins as DES-Y1:
(0.15 < z < 0.30, 0.30 < z < 0.45, 0.45 < z < 0.60, 0.60 < z < 0.75, 0.75 < z < 0.90) for
the lenses, and (0.20 < z < 0.43, 0.43 < z < 0.60, 0.60 < z < 0.90, 0.90 < z < 1.30) for
the sources.
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Figure 9.3 Footprints of four SPT and DES cut-outs from one full-sky Flask realiza-
tion shown in Mollweide projection. The darker grey regions are equivalent to the SPT
2500 deg2 patch, and the lighter grey regions corresponds to the DES-Y5 footprint.

expected to be small in polarization, we assume that the lensing map will be free of tSZ bias, and

is therefore ignored. This allows us to use a wider angular range without being biased†.

9.1.4 Results

The correlation function measurements for κCMB × δg and κCMB × γt using simulated SPT-SZ

+Planck× DES-Y1 and SPT-3G × DES-Y5 data are shown in Figure 9.4. The size of the uncer-

tainties are reduced by factors of ∼ 2 and ∼ 5 for κCMB × δg and κCMB × γt respectively. The

smaller improvements in κCMB × δg can be explained by the similarity between the DES-Y5 and

DES-Y1 lens samples, and the difference is solely due to the increased survey overlap area and

the decrease in the κCMB noise (i.e. the galaxy number density remains the same). For κCMB × γt,

we observe a significant improvement since the number density of source galaxies increases, and

the noise in shear is reduced (since σ = σγ/
√
N), in addition to the reduced κCMB noise and the

increased area.

Cosmological parameter constraints are obtained using the theory SPT-3G × DES-Y5 data

vector (fiducial correlations computed using the central parameter values), and the covariance ob-
†Here we are only considering the tSZ bias, which is the dominant bias. At the level of SPT-3G, other

effects may be significant.
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tained from the Flask realizations. We again use CosmoSIS to sample through the parameter

space using the same initial values, priors and ranges as described in Chapter 8.

The likelihoods that we obtain are shown in Figures 9.5 and 9.6, and we observe that con-

straints will be significantly better for DES-Y5. Some of the key improvements are:

- Constraints on cosmological parameters such as S8 and Ωm improve from ∆S8 = 0.023 to

0.009 and ∆Ωm = 0.034 to 0.017 (such an improvement is due to both the improvement in

the CMB lensing data as well as the lower shape noise in DES-Y5)

- Error on galaxy biases are reduced by ∼ 50% (due to improvements in δg × δg, δg × γt and

κCMB × δg )

- Uncertainty in the amplitude of intrinsic alignment is reduced to ∆AIA = 0.062 from 0.147

(due to improvements in ξ+, ξ−, δg × γt and κCMB × γt correlations)

The forecasts presented here are conservative since we have only considered the SPT 150 GHz

frequency channel and we could expect further improvements when temperature and polarization

data from the 95 and 220 GHz channels are added.

9.1.5 Future work

Using the existing pipeline of two-point correlation measurements and likelihood calculations, the

simulated data vectors will be replaced with the SPT-SZ+Planck CMB lensing map and galax-

ies/galaxy weak lensing data from DES-Y1. Such a measurement is expected to give the most

stringent cosmological constraint from large-scale structure to date, and the results are expected

to be released by the end of 2017.

In the next decade, galaxy surveys such as LSST (LSST Science Collaboration et al., 2009),

WFIRST (Spergel et al., 2013) and Euclid (Laureijs et al., 2011) are planned to cover ∼ 18000,∼

2200,∼ 15000 deg2 respectively, of the sky at an unprecedented depth, looking at larger cos-

mological volumes. These surveys will probe more distant galaxies, which is advantageous for

cross-correlation with CMB lensing, since the galaxy and galaxy lensing kernels will have more
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Figure 9.4 The estimated errors calculated using 1200 Flask lognormal realizations for
κCMB × δg (upper five panels) and κCMB × γt (lower four panels). Results for SPT-SZ
+Planck × DES-Y1 simulated data are shown in grey and in colour for SPT-3G × DES-
Y5 simulated data.

112



0.25 0.30 0.35 0.40
Ωm

0.80

0.85

0.90

S 8
=
σ

8(
Ω

m
/0
.3

)0.
5

3×2PT
5×2PT WITH TSZ CONSV CUTS
5×2PT NO TSZ MIN CUTS Y5
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shown in Figure A.3.
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overlap with the CMB lensing kernel. WFIRST and Euclid will be conducting observations in

space allowing for excellent shape measurements without contamination from atmospheric fluc-

tuations. While LSST will not have this advantage, it is planned to cover a larger area to fainter

magnitudes. Most importantly, these surveys are planned to operate in synergy, where Euclid

and WFIRST will be used to calibrate systematic errors in LSST shape measurements as well as

identifying blended galaxy images (Jain et al., 2015).

The next generation proposed ground based stage-4 CMB experiment (CMB-S4), is a collabo-

ration of many CMB groups using multiple telescopes at various locations such as the South Pole

and Atacama desert. While the specifications of the instruments are currently under discussion,

forecasts are being carried out to explore the optimal designs to ensure maximum scientific gain.

One important scientific aspect is the synergy of CMB-S4 and optical surveys, and therefore the

footprint is likely to overlap with the aforementioned future-generation galaxy surveys (Abaza-

jian et al., 2016).

The analysis presented in this thesis could be directly applied to future data sets. With the

precision that is expected, characterization of systematic errors and biases to high precision will

be crucial. Cross-correlation measurements are expected to become increasingly useful since they

are less sensitive to systematic biases, and therefore can be used as a valuable cross-check.
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10
Summary and Conclusion

10.1 Summary

This thesis begins by describing the background and history of observational cosmology, and in

particular, the historical developments of CMB and galaxy surveys as well as the scientific mile-

stones reached in our current data rich era. While the individual results are not described in

depth, it is important to realize that our current understanding of the universe is an accumula-

tion of successive knowledge acquired through past experiments.

Chapter 2 is dedicated to the theoretical framework of weak gravitational lensing. The equa-

tions derived in the chapter are used to quantify our measurements and to map theoretical mod-

els to observables.

In producing a map of the gravitational potential, we make use of CMB temperature data

from the South Pole Telescope (which has the best signal-to-noise ratio per mode over the SPT

2500 deg2 patch) and Planck (which covers a large fraction of the sky, with high signal-to-noise
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ratio for the large angular modes), both of which are described in Chapter 3. We optimally com-

bine temperature maps from the two experiments to produce a map that is valid across a wider

range of angular scales than the individual maps alone. The combined temperature map has

many useful applications (including the measurement of the CMB power spectrum and the mak-

ing of component separated maps), but is particularly suited for CMB lensing reconstruction

since mode pairs with large L separations in harmonic-space can be used.

In Chapter 4 we use the quadratic estimator technique presented in Hu 2000 and Okamoto

& Hu 2003 to reconstruct a map of the gravitational potential, which is a widely used method,

since it is easily applicable to data. The resulting map from this procedure is presented in Figure

4.2. This is the largest lensing map produced using a high-resolution ground-based experiment,

and has the highest signal-to-noise ratio over the SPT 2500 deg2 patch. In the near future, we

will have a lensing map from SPTpol, reconstructed from polarization maps in addition to the

temperature map (Mocanu et al. 2017, in preparation). However, this map will only cover 500

deg2, and therefore, the lensing map presented in this thesis will remain valuable until the next

generation 2500 deg2 lensing map is produced (upon completion of the SPT-3G survey).

Chapter 5 is dedicated to the various validation tests carried out on the CMB weak lensing

map obtained in the previous chapter. We first demonstrate that the mean lensing power spec-

trum calculated from simulated lensing maps matches with the input spectrum to high accuracy

(see Figure 5.1). We measure the power spectrum of the data map and obtain ηϕϕ = ĈϕϕL /ĈϕϕL,fid =

0.95+0.06
−0.06(Stat.)+0.02

−0.02(Sys.) after removing foregrounds biases, which is consistent with the theoret-

ical prediction of ηϕϕ = 1.

We perform null tests by calculating the auto/cross-spectra of the curl mode, unlensed and

the L-R (equivalent to noise) maps. We find that all these results are consistent with a lensing

amplitude of zero. We additionally vary the temperature multipole range used for the lensing

reconstruction, mode masking on a (ℓ,m) grid, masking radii, cluster masking level, response

function smoothing length, SPT-SZ beam and SPT-SZ calibration to probe whether the auto and

cross-spectra (with WISE) are sensitive to these systematics. We conclude that these variations

117



only lead to a small difference in the resulting spectra relative to our statistical uncertainties and

that our map making pipeline is robust to systematic errors.

One of the primary uses of the SPT-SZ+Planck lensing map is for cross-correlations with ex-

ternal tracers such as galaxies from DES. In particular, the DES-Y5 is planned to almost com-

pletely cover the SPT nominal footprint, and is therefore ideal for cross-correlation analyses,

which is the main focus of Chapter 7. While cross-correlations have been measured using other

CMB lensing maps and galaxies catalogues, SPT×DES cross-correlations are unique in that they

are cross-correlations between high S/N CMB lensing maps (relative to Planck) and deep galaxy

data over a large sky area. In the chapter, the galaxy lensing - CMB weak lensing cross-spectrum

is presented. More specifically, the cross-correlation between the DES-SV ngmix shear catalogue

and the SPT-SZ weak lensing map is calculated, and the correlation amplitude relative to the

fiducial mode was found to be A = 0.88± 0.30 giving us a ∼ 3σ measurement. We show that this

measurement is robust against systematics by calculating the cross-spectrum using a different

pipeline such as the Kaiser-Squires reconstruction for which we obtain consistent results. Sys-

tematics errors such as photometric redshift bias are also tested for, and the effects are found to

be smaller than our statistical uncertainties. A simple test of varying the tSZ mask is also con-

ducted to test the contamination in the CMB weak lensing map, and this effect is shown to have

negligible impact on the resulting spectrum. Although the results are not ground breaking, it is

nonetheless important that such a correlation can be measured at all. We will soon have higher

signal-to-noise ratio measurements using future data sets with more sky coverage, higher galaxy

number density and improved shape measurements.

DES-Y1 data are currently blinded for the cross-correlation analyses, and we are unable to

present the scientific results we have obtained so far. Therefore, instead, we produced realistic

simulations of galaxy density δg, galaxy weak lensing γ and CMB weak lensing κCMB to forecast

the signal-to-noise ratio that we will obtain for SPT-SZ+Planck × DES-Y1 cross-correlations.

Correlated maps (five lens, four source bins and one CMB lensing bin) were generated using

Flask, and galaxy catalogues were extracted by sampling the maps. The simulations were tai-

118



lored to match the Y1 data as closely as possible by using the same galaxy redshift distributions,

number densities and shear noise. Realistic CMB weak lensing maps were obtained by computing

the shear field at the redshift of last scattering surface, and adding a noise realization.

The two-point correlation functions between κCMB × δg and κCMB × γt using the Flask sim-

ulations were calculated, and the results are summarized in Tables 7.1 and 7.2. We find that the

signal-to-noise ratios for κCMB × δg range between 15 and 28, while for κCMB × γt the ratios range

between 3 and 8. For both of these probes, the correlation with the convergence map produced

from a simulated tSZ map (using DES redMaPPer galaxies with λ > 20) and Planck GNILC

545 GHz CIB map were calculated to quantify the κtSZ/CIB × δg and κtSZ/CIB × κE bispectra,

which are biases of concern in cross-correlations with CMB weak lensing. While we find that the

bias due to CIB is small, bias due to tSZ can not be neglected. In this thesis, we simply exclude

the angular scales that are affected by this bias from the analysis. Characterization of these bis-

pectra have never been attempted before in the literature, but is essential for any future cross-

correlation analyses that involve CMB lensing maps derived from temperature data.

In Chapter 8, we add the two cross-correlations that involve CMB weak lensing to the galaxy/galaxy

weak lensing measurement-only framework (3×2pt), and investigate the improvements that we

gain in constraining cosmological parameters. We additionally test whether the κtSZ bias impacts

the constraints by comparing the likelihood obtained from data vectors with and without the tSZ

bias and scale cuts. We compare the constraints obtained from five setups:

- 3×2pt,
- 5×2pt with tSZ bias with minimal scale cuts,
- 5×2pt with tSZ bias with conservative scale cuts,
- 5×2pt without tSZ bias with minimal scale cuts, and
- 5×2pt without tSZ bias with conservative scale cuts.

The results are shown in Figures 8.3 and 8.4. We find improvements in constraining Ωm, S8 and

linear galaxy bias b when adding the cross-correlation probes. However, we also find that the tSZ

bias does shift the constraints, but the effect could be mitigated by applying conservative scales

cuts.
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Finally in Chapter 9, we model the anticipated noise levels of SPT-3G and DES-Y5 to forecast

the constraining power that these data sets will provide. This is accomplished by producing 1200

SPT-3G-like CMB lensing maps and DES-Y5-like galaxy catalogues using Flask and calculat-

ing all the two-point correlation functions which is then used to calculate the covariance matrix.

Results (Figure 9.4) show that we could expect significant improvements if SPT-3G × DES-Y5

data are used in comparison to SPT-SZ+Planck × DES-Y1 data. In particular, the uncertainties

on κCMB × γt correlations are expected to reduce to ∼ 35% of the SPT-SZ+Planck × DES-Y1

values. This leads to significant improvements in the cosmological parameter constraints as well

as constraints on systematics as shown in Figure 9.6).

10.2 Conclusion

With the vast amount of CMB and galaxy data available today, we are currently in a golden age

of observational cosmology, on the verge of making various ground breaking discoveries pertain-

ing to the origin and growth of the universe. However, the universe does not reveal its nature on

its own; raw data must be cleaned and processed in order to extract accurate and precise cosmo-

logical information. The development of robust and reliable analysis tools is therefore critical in

moving towards a better understanding of the universe.

Data analysis techniques are continuously evolving according to the resources available. One

of the factors that is driving this is the growth of high-performance computing facilities. With

more computing power, higher-order calculations that were intractable previously become feasi-

ble. For example, while we have shown that our quadratic estimator technique is sufficient given

our current noise levels, Carron & Lewis 2017 recently developed a maximum-likelihood lensing

reconstruction method which is able to extract more signal, in exchange for computational ex-

pense. Such advancements are imperative for future CMB lensing analyses, which will require

unprecedented precision.

A major aspect that is missing from this thesis is the prospect of using the SPT-SZ+Planck

lensing map for delensing; an increasingly important technique to reverse the gravitational lens-
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ing effect to recover the undistorted view of the CMB. Such an effort is essential in searching

for signatures of primordial gravitational waves imprinted on the CMB, which will give us new

insights into the very early universe. While delensing can be done using existing data, it is antic-

ipated that we will only be able to do so partially, given our noisy estimate of the lensing poten-

tial. Future CMB experiments with much lower noise such as SPT-3G and CMB-S4 will provide

better results.

The 5×2pt analysis between SPT-SZ+Planck and DES-Y1 data will be the first analysis to

combine 3×2pt from a single galaxy survey and CMB lensing data generated from a high-resolution

ground-based experiment. While the combination of these two data sets will already provide com-

petitive results, improvements will be made rapidly; DES-Y3 data are presently available, DES-

Y4 data are being processed and DES-Y5/SPT-3G observations are currently being conducted.

Therefore, our understanding of the universe will progressively improve over the next few years.

On a longer timescale, the next generation CMB experiments as well as new galaxy surveys

such as LSST, Euclid and WFIRST will be launched. These experiments will work in synergy,

complementing each other by reducing systematic errors by serving as cross-checks. The various

probes will slice through the cosmological parameter space differently, and are expected to yield

some of the tightest constraints on cosmological parameters yet obtained.
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A
Appendix A

A.1 Block Jackknife Method

The most common approach in estimating uncertainties for a cosmological measurement is by

using simulations. However, we frequently encounter situations where simulations that match the

data do not exist. In such cases, we resort to resampling error estimation techniques, which use

the data themselves.

One popular resampling technique is the jackknife method developed by Quenouille 1949, and

in particular, the “delete one jackknife” method detailed in Shao 1986. In this method, the data

is first divided into N sub-samples, and the measurement is made by removing one of the sub-

samples. The same measurement is repeated N times removing a different sub-sample each time,

and the scatter in the N measurements are used to estimate the covariance. Mathematically, this
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is calculating:

Cjackknife
ij =

N − 1

N

N∑
k=1

(xki − ⟨xi⟩)(xkj − ⟨xj , ⟩) (A.1)

where N is the number of sub-samples, xk is the measurement made by removing the k-th sub-

sample, i, j are bin indices, and

⟨xi⟩ =
N∑
k=1

xki /N. (A.2)

In the context of large-scale structure analyses, the data map is divided into sub-regions and

each jackknife sample is computed by calculating the correlation function with one sub-region

(or block) removed (hence the name “block jackknife” ). A comprehensive analysis comparing the

jackknife method with other resampling techniques and errors estimated through simulations can

be found in Norberg et al. 2009; Friedrich et al. 2016 and references therein.

A.2 Wigner-3j Properties

The integral of three spherical harmonics can be written in terms of Wigner-3j symbols. For reg-

ular spin-0 spherical harmonics this is:

∫
dn̂ Yℓ1m1(n̂)Yℓ2m2(n̂)Yℓ3m3(n̂)

=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

ℓ1 ℓ2 ℓ3

0 0 0


 ℓ1 ℓ2 ℓ3

m1 m2 m3

 , (A.3)

and for spin-weighted spherical harmonics (if s1 + s2 + s3 = 0):

∫
dn̂ s1Yℓ1m1(n̂)s2Yℓ2m2(n̂)s3Yℓ3m3(n̂)

=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

 ℓ1 ℓ2 ℓ3

−s1 −s2 −s3


 ℓ1 ℓ2 ℓ3

m1 m2 m3

 (A.4)
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The 3j symbol is invariant under an even permutation of its columns:

 ℓ1 ℓ2 ℓ3

m1 m2 m3

 =

 ℓ2 ℓ3 ℓ1

m2 m3 m1

 =

 ℓ3 ℓ1 ℓ2

m3 m1 m2

 , (A.5)

and gains a phase factor under an odd permutation:

 ℓ1 ℓ2 ℓ3

m1 m2 m3

 = (−1)ℓ1+ℓ2+ℓ3

 ℓ2 ℓ1 ℓ3

m2 m1 m3

 = (−1)ℓ1+ℓ2+ℓ3

 ℓ1 ℓ3 ℓ2

m1 m3 m2

 , (A.6)

and also when the sign of m are flipped:

 ℓ1 ℓ2 ℓ3

−m1 −m2 −m3

 = (−1)ℓ1+ℓ2+ℓ3

 ℓ1 ℓ2 ℓ3

m1 m2 m3

 . (A.7)

The Wigner-3j symbol also obeys the orthogonality relation:

∑
m1m2

 ℓ1 ℓ2 ℓ3

m1 m2 m3


 ℓ1 ℓ2 ℓ4

m1 m2 m4

 = δℓ3ℓ4δm3m4

δ(ℓ1, ℓ2, ℓ3)

2ℓ3 + 1
(A.8)

where δ(ℓ1, ℓ2, ℓ3) = 1 when the triangular relation |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 is satisfied, and equals

0 otherwise. These properties are used in Sections A.3 and A.4.

A.3 Separability of the Building Blocks

A brief description of Quicklens is given in Section 4.1. Here, we give a more thorough deriva-

tion of the calculation that is being carried out internally. We begin by rewriting Equations 4.12
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as

0Fℓ1Lℓ2 =

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

16π
[L(L+ 1) + ℓ2(ℓ2 + 1)− ℓ1(ℓ1 + 1)]

ℓ1 L ℓ2

0 0 0


= −

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

√
L(L+ 1)ℓ2(ℓ2 + 1)

ℓ1 ℓ2 L

0 −1 1

(1 + (−1)ℓ1+ℓ2+L

2

)

(A.9)

(and similarly for Equation 4.11). Equation 4.14 can then be written as:

W TT
ℓ1ℓ2L =−

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

(
1 + (−1)ℓ1+ℓ2+L

2

)

×
[
CTT,unl
ℓ1

√
L(L+ 1)ℓ1(ℓ1 + 1)

 ℓ1 ℓ2 L

−1 0 1


+ CTT,unl

ℓ2

√
L(L+ 1)ℓ2(ℓ2 + 1)

ℓ1 ℓ2 L

0 −1 1

] (A.10)

(any permutation in the ordering of the Wigner-3j does not affect the sign since ℓ1 + ℓ2 + L is

always even, which is ensured by the last term of the first line). This can be further broken up
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into:

W TT
ℓ1ℓ2L =−

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

(
1 + (−1)ℓ1+ℓ2+L

2

)

×
[
1

2
CTT,unl
ℓ1

√
L(L+ 1)ℓ1(ℓ1 + 1)

 ℓ1 ℓ2 L

−1 0 1


+

1

2
CTT,unl
ℓ1

√
L(L+ 1)ℓ1(ℓ1 + 1)

ℓ1 ℓ2 L

1 0 −1

 (−1)(ℓ1+ℓ2+L)

+
1

2
CTT,unl
ℓ2

√
L(L+ 1)ℓ2(ℓ2 + 1)

ℓ1 ℓ2 L

0 −1 1


+

1

2
CTT,unl
ℓ2

√
L(L+ 1)ℓ2(ℓ2 + 1)

ℓ1 ℓ2 L

0 1 −1

 (−1)(ℓ1+ℓ2+L)
]
, (A.11)

and we can set (−1)ℓ1+ℓ2+L = 1 since it is always even. This can be rewritten as:

W TT
ℓ1ℓ2L = (−1)S

ϕ,j
L

4∑
j

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

 ℓ1 ℓ2 L

−sTT,jℓ1
−sTT,jℓ2

STT,jL

wTT,jℓ1
wTT,jℓ2

wTT,jL ,

(A.12)
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with

(j = 1) :

sTT,jℓ1
= 1, sTT,jℓ2

= 0, STT,jL = 1, wTT,jℓ1
=
√
ℓ1(ℓ1 + 1)CTT,unl

ℓ1
, wTT,jℓ2

=
1

2
, wTT,jL =

√
L(L+ 1)

(j = 2) :

sTT,jℓ1
= −1, sTT,jℓ2

= 0, STT,jL = −1, wTT,jℓ1
=
√
ℓ1(ℓ1 + 1)CTT,unl

ℓ1
, wTT,jℓ2

=
1

2
, wTT,jL =

√
L(L+ 1)

(j = 3) :

sTT,jℓ1
= 0, sTT,jℓ2

= 1, STT,jL = 1, wTT,jℓ1
=
√
ℓ2(ℓ2 + 1)CTT,unl

ℓ2
, wTT,jℓ2

=
1

2
, wTT,jL =

√
L(L+ 1)

(j = 4) :

sTT,jℓ1
= 0, sTT,jℓ2

= −1, STT,jL = −1, wTT,jℓ1
=
√
ℓ2(ℓ2 + 1)CTT,unl

ℓ2
, wTT,jℓ2

=
1

2
, wTT,jL =

√
L(L+ 1).

The net weight function is now written as the product of three different weight functions wTT,jℓ1
, wTT,jℓ2

, wTT,jL .

This separability allows us to write Equation 4.17 as:

ϕ̄ =
∑

ℓ1m1ℓ2m2

4∑
j

(−1)M

2

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

 ℓ1 ℓ2 L

m1 m2 −M


 ℓ1 ℓ2 L

−sTT,jℓ1
−sTT,jℓ2

STT,jL


× (−1)S

TT,j
L wTT,jℓ1

wTT,jℓ2
wTT,jL T̄ℓ1m1 T̄ℓ2m2 , (A.13)

and therefore, using the relationship between Wigner-3j symbols and spin-weighted spherical

harmonics (Equation A.4):

ϕ̄LM =
1

2

∫
dn̂
∑
j

sTT,j
L

Y ∗
LM (n̂)wTT,jL

[∑
ℓ1m1

sTT,j
1

Yℓ1m1(n̂)w
TT,j
ℓ1

Tℓ1m1

][∑
ℓ2m2

sTT,j
2

Yℓ2m2(n̂)w
TT,j
ℓ2

Tℓ2m2

]
(A.14)

which is a calculation of O(jmaxℓ2maxLmax) instead of O(ℓ4maxL
2
max), leading to a considerable

speed-up in computations (Planck Collaboration XV., 2015).

127



A.4 Mode-Coupling due to the Mask

This section follows the derivation presented in (Hivon et al., 2002). The spherical harmonic

transform is an idealization in the case of a full-sphere. In most real applications, the full sphere

is not available, either due to the survey area or masking of foregrounds (most commonly the

Galactic plane). Therefore, in practice, the spherical harmonic expansion we take is:

ãℓ2m2 =

∫
dn̂a(n̂)W (n̂)Y ∗

ℓ2m2
(n̂)

=
∑
ℓ1,m1

aℓ1m1

∫
dn̂Yℓ1,m1(n̂)W (n̂)Y ∗

ℓ2,m2
(n̂)

=
∑
ℓ1m1

aℓ1m1Kℓ1m1ℓ2m2 , (A.15)

where tilde is used to denote the biased aℓm, W (n̂) is the weight map, and K is the mode cou-

pling kernel:

Kℓ1m1ℓ2m2 ≡
∫
dn̂Yℓ1m1(n̂)W (n̂)Y ∗

ℓ2m2
(n̂)

=
∑
ℓ3m3

wℓ3m3

∫
dn̂Yℓ1m1(n̂)Yℓ3m3(n̂)Y

∗
ℓ2m2

(n̂)

=
∑
ℓ3m3

wℓ3m3(−1)m2

[
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

]1/2ℓ1 ℓ2 ℓ2

0 0 0


 ℓ1 ℓ2 ℓ2

m1 −m2 m3


(A.16)
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where we have used Y ∗
ℓ2m2

= (−1)m2Yℓ2−m2 and the property of the Wigner-3j symbol. Therefore,

when computing the spectrum:

⟨C̃ℓ1⟩ =
1

2ℓ1 + 1

ℓ1∑
m1=−ℓ1

⟨ãℓ1m1 ã
∗
ℓ1m1

⟩

=
1

2ℓ1 + 1

ℓ1∑
m1=−ℓ1

∑
ℓ2m2

∑
ℓ3m3

⟨aℓ2m2a
∗
ℓ3m3

⟩Kℓ1m1ℓ2m2K
∗
ℓ1m1ℓ3m3

=
1

2ℓ1 + 1

ℓ1∑
m1=−ℓ1

∑
ℓ2

⟨Cℓ2⟩
ℓ2∑

m2=−ℓ2

|Kℓ1m1ℓ2m2 |2, (A.17)

where ⟨aℓ2m2a
∗
ℓ3m3

⟩ = ⟨Cℓ2⟩δℓ2ℓ3δm2m3 was used. We can substitute Equation A.16 here and ob-

tain:

⟨C̃ℓ1⟩ =
1

2ℓ1 + 1

∑
ℓ2

⟨Cℓ2⟩
∑
ℓ3m3

∑
ℓ4m4

wℓ3m3wℓ4m4

×
[
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

]1/2 [(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ4 + 1)

4π

]1/2

×

ℓ1 ℓ2 ℓ3

0 0 0


ℓ1 ℓ2 ℓ4

0 0 0

 ∑
m1m2

 ℓ1 ℓ2 ℓ3

m1 −m2 m3


 ℓ1 ℓ2 ℓ4

m1 −m2 m4

 , (A.18)

and use the orthogonality relations of the Wigner-3j symbols (A.8) and simplify the equation to:

⟨C̃ℓ1⟩ =
∑
ℓ2

Mℓ1ℓ2⟨Cℓ2⟩ (A.19)

where

Mℓ1m1ℓ2m2 =
2ℓ2 + 1

2π

∑
ℓ3

(2ℓ3 + 1)Wℓ3

ℓ1 ℓ2 ℓ3

0 0 0


2

(A.20)

and Wℓ3 = 1
(2ℓ3+1)

∑
m3

|wℓ3m3 |2 is the angular power spectrum of the weight function. This calcu-

lation is used in the Section 7.2, when calculating the κCMB × κE cross-spectra in flat-sky.
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A.5 Derivation of Kaiser-Squires Reconstruction

The shear components and the convergence can be written as the partial derivatives of the gravi-

tational potential:

γ1 =
1

2

(
∂2ϕ(θ1, θ2)

∂θ21
− ∂2ϕ(θ1, θ2)

∂θ22

)
(A.21)

γ2 =
∂2ϕ(θ1, θ2)

∂θ1∂θ2
(A.22)

κ =
1

2

(
∂2ϕ(θ1, θ2)

∂θ21
+
∂2ϕ(θ1, θ2)

∂θ22

)
(A.23)

Taking the definition of Fourier transforms:

f(θ1, θ2) =

∫ +∞

−∞
F (k1, k2) expik1θ1+ik2θ2 dk1dk2 (A.24)

∂

∂θ1
f(θ1, θ2) =

∫ +∞

−∞
F (k1, k2)ik1 expik1θ1+ik2θ2 dk1dk2 (A.25)

∂2

∂θ21
f(θ1, θ2) =

∫ +∞

−∞
F (k1, k2)(−k21) expik1θ1+ik2θ2 dk1dk2 (A.26)

Therefore Equations A.21, A.22, A.23 can be written as (in Fourier space):

γ̃1 = −1

2
(k21 − k22)ϕ̃(θ1, θ2) (A.27)

γ̃2 = −k1k2ϕ̃(θ1, θ2) (A.28)

κ̃ = −1

2
(k21 + k22)ϕ̃(θ1, θ2) (A.29)

A.27 and A.28 can be written in terms of κ̄:

κ̃ =
k21 + k22
k21 − k22

γ̃1 → γ̃1 =
k21 − k22
k21 + k22

κ̃ (A.30)

κ̃ =
k21 + k22
2k21k

2
2

γ̃2 → γ̃2 =
2k1k2
k21 + k22

κ̃ (A.31)
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This is in essence a linear equation of the form:

γ̃1
γ̃2

 =
1

k21 + k22

k21 − k22

2k1k2

 κ̃ (A.32)

[k21 − k22, 2k1k2]

γ̃1
γ̃2

 =
1

k21 + k22
[k21 − k22, 2k1k2]

k21 − k22

2k21k
2
2

 κ̃
=

1

k21 + k22
(k41 + k42 − 2k21k

2
2 + 4k21k

2
2)κ̃

=
(k21 + k22)

2

k21 + k22
κ̃

=(k21 + k22)κ̃ (A.33)

Dividing both sides with (k21 + k22) gives:

κ̃ =
k21 − k22
k21 + k22

γ̃1 +
2k21k

2
2

k21 + k22
γ̃2 (A.34)
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κCMBδg

1-1 [5.0/10.4, 250.0]
1-2 [5.0/17.7, 250.0]
1-3 [5.0/17.7, 250.0]
1-4 [5.0/16.9, 250.0]
1-3 [5.0/14.3, 250.0]

κCMBγt

1-1 [20.0/20.0, 250.0]
1-2 [20.0/20.0, 250.0]
1-3 [20.0/54.0, 250.0]
1-4 [20.0/42.0, 250.0]

δgδg

1-1 [43.0, 250.0]
2-2 [27.0, 250.0]
3-3 [20.0, 250.0]
4-4 [16.0, 250.0]
5-5 [14.0, 250.0]

γt

1-1 [64.0, 250.0]
1-2 [64.0, 250.0]
1-3 [64.0, 250.0]
1-4 [64.0, 250.0]
2-1 [40.0, 250.0]
2-2 [40.0, 250.0]
2-3 [40.0, 250.0]
2-4 [40.0, 250.0]
3-1 [30.0, 250.0]
3-2 [30.0, 250.0]
3-3 [30.0, 250.0]
3-4 [30.0, 250.0]
4-1 [24.0, 250.0]
4-2 [24.0, 250.0]
4-3 [24.0, 250.0]
4-4 [24.0, 250.0]
5-1 [21.0, 250.0]
5-2 [21.0, 250.0]
5-3 [21.0, 250.0]
5-4 [21.0, 250.0]

ξ+

1-1 [7.195005, 250.0]
1-2 [7.195005, 250.0]
1-3 [5.715196, 250.0]
1-4 [5.715196, 250.0]
2-2 [4.539741, 250.0]
2-3 [4.539741, 250.0]
2-4 [4.539741, 250.0]
3-3 [3.606045, 250.0]
3-4 [3.606045, 250.0]
4-4 [3.606045, 250.0]

ξ−

1-1 [90.579750, 250.0]
1-2 [71.950053, 250.0]
1-3 [71.950053, 250.0]
1-4 [71.950053, 250.0]
2-2 [57.151958, 250.0]
2-3 [57.151958, 250.0]
2-4 [45.397414, 250.0]
3-3 [45.397414, 250.0]
3-4 [45.397414, 250.0]
4-4 [36.060448, 250.0]

Table A.1 Scale cuts applied to measurements in the likelihood calculations in Chapters
8 and 9. The first column for each section corresponds to the z-bin pairs and the second
column corresponds to the angular ranges in arcminutes.
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Parameter value prior

cosmological Parameters
Ωm 0.295 [0.10, 0.90]
h0 0.688 [0.55, 0.90]
Ωb 0.047 [0.01, 0.07]
ns 0.968 [0.8, 1.3]
As 2.26× 10−9 [0.5, 5.0]× 10−9

τ 0.08 fixed
ΩK 0 fixed
Ωνh

2 0.0006155 fixed
w −1.0 fixed
YHe 0.245341 fixed

Nuisance Parameters

linear galaxy bias
b1, b2, b3, b4, b5 1.45, 1.55, 1.65, 1.8, 2.0 [0.8, 2.5]

shear calibration bias
m1,m2,m3,m4 0.013, 0.013, 0.013, 0.013 (0.021, 0.021, 0.021, 0.021)

Intrinsic alignment parameters
AIA 0 [−5, 5]
αIA 0 [−5, 5]
z0 0.62 fixed

lens photoz error
∆l

1,∆
l
2,∆

l
3,∆

l
4,∆

l
5 0, 0, 0, 0, 0 (0.01, 0.01, 0.01, 0.01, 0.01)

source photoz error
∆s

1,∆
s
2,∆

s
3,∆

s
4 −0.0037,−0.0171, 0.0200, 0.0224 (0.017, 0.015, 0.0138, 0.0215)

tSZ amplitude
AtSZ 0 (1 for tSZ biased data vector) fixed

Table A.2 Table summarizing the central values and priors used in the analysis. Square
brackets denote a flat prior in the range given, while regular brackets denote a Gaussian
prior with µ and σ listed in the “value” and “prior” columns respectively.

133



5×2PT NO TSZ CONSV CUTS
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Figure A.1 Constraints on all the parameters for 5×2pt without tSZ bias and with con-
servative scale cuts (black), 5×2pt with tSZ bias and conservative scale cuts (teal), and
5×2pt with tSZ bias and minimal scale cuts (blue). Same as Figure 8.3, but for all 26
parameters (and less smoothing applied).
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Figure A.2 Constraints on all the parameters for 3×2pt (black), 5×2pt without tSZ bias
and with conservative scales cuts (teal), and 5×2pt without tSZ bias and with minimal
scales cuts (blue). Same as Figure 8.4, but for all 26 parameters (and less smoothing
applied).
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Figure A.3 Constraints on all the parameters for DES-Y1 3×2pt (black), SPT-SZ
+Planck × DES-Y1 5×2pt with tSZ bias and conservative scale cuts (teal), and SPT-
3G × DES-Y5 5×2pt without tSZ bias and with minimal scale cuts (blue). Same as
figure 9.6, but for all 26 parameters (and less smoothing applied).
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