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ABSTRACf 
. . 

An approximate method of analY5is i5 presented for determining 

the 1atera~ deflections of multi-storey shear wall structures. The method 

is 'used to derive differentia'l equatio~of deflection for wall structures 

subjected to a generai laterai loading. The analysis .1.S based on the. 

continuous medium technique. 

The spear wall structures considered consist of the following 

systems: single coupled-walls; linked walls, that is, linked coupled-walls, 
\ 

series of homogeneous,waiis linked to single coupled-walls, and series of 

homogeneous walls linked to linked coupled-walls; and tapered coupled.walls. 

Deflection formulae for these structures are presented for the conventional 
<0' 

loading cases: a concentrated load at the top of the structure, a uniformly 

distributed load, and a triangular1y distributed Ioad. For the tapered 

coupled-walls, deflection formulae are derived only for the first two loading 

cases. 

The developed formulae can be used for multi-storey structures 
1 
1 

~, 
/ 

having symmetrical overall plans, subj ected to symmetrical loading. 

prédictions of deflection profiles of the linked wall and the tapered 

Theoretical 

coupled-wall structures are compared with results obtained from sHffness 
( 

matrix computer analyses, of these structures' for the uniform1y distributed 

load ing case. 
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Une ~tb:x3e apprcotilnative d' analyse es~ ~ peur detel:miner 

les déplac~ latêraux de œ~ts, ~ DUrS de cd.~~, a ~taqes 
, ~, 

.-.' nultiples. La IrétlPde est employée pour obtenir des équations aiff&entielles 

.... 
1 

1XJUr les ~plaoesœnts latêraux de bâtiments A nurs soumis à des charges , . 
latérales queJ.colXjUeS. L ' analyse est ~e sur la te:::hnique de 

raèoordénent continu. 

!es structures à nurs de ~isail1ement, CQnsi.d&~ dans ce~te étude, 

~'les systêœs suivants: nurs-juiOeJ.~; murs rel.~, clest~~e, 

ltI.lrS-jumel~ re1Ms, suite d~ (trUrS pleins reliês ~ des murs-junel.és, et 

suite de rurs pleins r~ à des I1Ilrs-junel.œ reliés; et des murs-jumelés 
, <., 

a variation pyramidal e. Oes_ fOZllUles ~ ~placanents nx-izontaux sont. 

pz&entê!s peur ces structures soumises aux charges rorizontales .suivantes: 

\D'le charge o:mc::enr au scamet de la structure, une charge distr.tiœe 

unif01ll6oent, et une cbaxge distribM triangulairesœnt. Pour les nurs­

jumel& a variation d' êpaisseur pyranrldale, dês fortin] es de dêplaceœnt 

sont ~ seulement pour las deux p:remihes charges rorimntales. 

IsSfcmnnl.es ~ peuvent être, ~ pour de hautes 

structures, ayant des plans ainsi que des charges lat:&ales symétriques. 

Les ~isions thI§oriques des dêpl.acements latêraux de structllreS ii mura 
\ , 

reliés, et à JJIJrS-junel.ês à variation pyramidale SOl\t a:mpa.rées à des 
, ' 

œsw.tats o~ PIl' analyses de structures faites sur ordinateur. 
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NOTATION 

\" 

Cro:;" sectional are. (: top of wall J 

a. 1 
J -

Integrating constants 

J 
J 

" 

b Clear span of connecting beams 

C
j 

Integrating constants 

c 

g 

H 

h 

1 . 
0) 

1 
o 

1 
P 

1 po 

Depth of connecting beams 

n
th derivative 

Width of wall j 

Modtilus of elastici ty 

Reducti0tl factor for momen. i~ertia of beam,. ta 
include shear effects 

Height of structure 
J 

Storey height 

Moment' of inertia at top of wall j-

101 + 102 

Moment of inertia of con~ecting beams (reduced) 

Actual moment of inertia of connecting beams 
1 _ 

Functions necessary for the evaluation of tapered 
structure 

R/ Distance between the centroids of the walls~;n a coupled wall 

Ext ernally" applied moment 

Moment of interaction 

Integrating constants l' 

-~ 

" 

Lateral point load at top of structure (external load) 

Lateral po-int load at top of structure (int_eraCtion force).: 
" 
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P 
t,l J 

Latelal poiht load at top of structure 

p Intensity of triangular lateral load 

T Integral shear force 

t . 
0) 

t
bj 

ThielmeliS" at top of wall j 

Thiclmess at bottom of wall 

v 1 + KX 

General distributed loading (external load) 

• w. 
l 

General distributed loading (interaction force) 

w Intensity of W'dformly distributed load 

Distance along the height from top of structure' 

y Lateral deflection of structure 

z x/H, 
~ 

a Physical parameter of coupl ed -waU5. relating the shea1- and 
bending stiffness .---

a,y,n'~JV~~J$ Physical paramete~s 

5~ 

, E 
1 

Ô. 
J 

e 

Deformation of cut lamina due to external load 

Deformation j of eut lamina 

Rotation of wa115 

Measure of line'ar taper of walls 
1 

À Physical parameter of cOl,lpled-walls, mea~;ure of axial 
flexibility -

T 

Dummy var~ables of integration 

Forcing function 

Integrating constant 

J 
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CHAPTER 1 

INI'RODUcr ION 

1.1 High-Rise Ibildings 
1 

In modern multi-storey buil~ings, shea~ walls are used extensively 
/. 

t 

to resist lateral forces exerted by wind and e~rthquays. The term 1 shear . . 
walls 1 as used in this work cavers both homogeneous walls, and' coupled -walls. 

The main function of the shear walls is to increase the rigidity against 

laterall.loading as we"ll as to resist vertical loading. 

In' addit,ion to strength and stab'i1ity requiréments the behaviour 
f ' 

of a structure ûnder service loading has to be considered when designing a 

multi~storey building. The most important serviceability criterion for high­

rise buildings is the lateral deflection of the structure because, if this 

is excessive, it affects the integrity of non-structural partitions, cladding 

and glazing, as well as the comfort of the occupants. Generally, as the 

height of a building increases) the sway under lateral loading surpasses the 

strength requirements and becomes the governing factor in the design of a 

taU structure. 
c 

t- '~'11 .. 
-~, The distinguishing feature of shear walls i5 that they have much 

. giJ,r momen~s of inertia than columns, and widths which are comparable to 

the spans of adjacent' beams or slabs. The high in:plane rigidity of shear 

walls, and economies due to their speed of erection and low reinforcing steel 

'content mak~ then the most feasible and attractive lateral load resisting 

elements. 

lbmogeneous shear walls behave as vertical cantilever beams under 

the action of lateraI loading# deflecting prerlominantly in a bending mode ... 

conrigùration. They May be analysed simply in their elastic range using 

simple bending theory. 
j 

-1- . 
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She~~ walls are often weakened by vertical bands of openings for 

doors, windows or corridors, yielding highly redundant structures; such 

p~erced walls or walls with openings are often referred to as coupled shear 

walls. Coupled shea. walls also arise when two coplanar homogeneous shearl 

walls are rigidly cqnnected by coupling beams or floor slabs at each floor 
-t' , 

level.- They can be co'iisidered as frames wi th very high co lunm to beam 

stiffness ratio, thus deflecting in a shape which isa combination of bending 

and shear modes. 

The structural system of a multi-storey shear wall building 

generally ~onsists of a number of parallel ?hear walls, homogeneous and/or 

coupléd, symmetrica!1'y arTang~ f:o plan and joined by slabs. When the 

" building is subject~ to a symmetrical lateral loading, it does ~ot twist, 

" and can be idealized for analysis by an equivalent plana~llateral loaq te., 

resisting assembly; If the walls are identical, they will deflect identically 

and orylY one wall need be analyzed. Whereas when the walls are nonidentical, 

the horizontal interaction forces produced by the presence of the slabs must 

be considered ±n the analysis. Three'types of planar wall assemblies are 

investigated in this thesis, these are: 

a) two linked coupled-walls 

b) a coupled-wall linked to homogeneous walls 

c) two linked coupled~walls linked to homogeheous walls 

A great variety of structural,systems can he reduced to the above aS5emblies, 

a few layouts are illustrated in Fig. 1. 

If a building i5 very tall, it becomes necessary to increase the 

thickness of the shear walls towards the base. Such an increase in thicmess 

becomes essential' in the lower regions of the wal1s ~ecau~'p O{ the presence 

.J 
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b) Coup 1 ed Wall 5 Linked 
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c) Linked Coupled-Walls Linked to Homogeneous Walls 
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\ Fig. 1 Structural Systems of Shear Wall Buildings (Plan View) '. 0, 
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of high gravit y forces, and high bending ~oments; these, result from ~he 

accumulation of the vertical 10ads and the lateral loads respect~vely. 

1.2 Scope of the Thesis 

Tjdetermination of the lateral drift of a multi-storey building 

is important and should be undertaken in the early stages of the design 

to ensure t 1 the deflection limitations are not exceeded. The calculation 

of the lat~ral sway of tall buildings can be a long and tedious process 

because of the high degree of kinematic indeterminanc,Y involvedj therefore, 

simp,lifying assumptions are often made in the analysis. In the inital stages 

of design a computer analysis is ôften not warranted because of the conside~-

able effort and time required in the preparation of the input data and in the 
1 

relatively high cost of running the complex programs for these multi-storey 
! 

structures. Approximate deflections and actions obtained by raPid band 

methods are usually preferred. 

Single coupled shear wall structures have been extensive1y studied, 

and def1ection formulae along ,with deflection curves have bee~ained by 

<' various authors (1,2,3) for the three conv~ntionai loading cases. Acceptable 

.. deflection fOI'lllulae for tal1 single homogeneous shear wal1 structures may be 

obtained using ordinary beam theory. 

Multi-storey shear wall structures often comprise severai coupled 
A 

p 

'and/or homageneous shear walls connected together in'series, Fig. ~a, or in 

parallel, Fig. 2b, by beams or floor slabs. If, in planar structures consisting 

of distinct shear walls connected by beams or floor slabs, Fig. 2a, the 

bending stiffn'ess of the connecting members or their ~aù connections is Iow, 

the connecting members behave effectively as hinged-end links; such structures 

are often refened ta as linked series assemblies. Structures with symmetrical 

(' 

.. ~ - . 
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b) Symmetrical Parallel Assembly 
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Fig. 2 Shear Wall' Assembl.ies (Plan Yiew) 
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overall plans cons"isting C?f vertical ..shear 'walÎs in parallel connected 

by floor slabs and subjected ta symmetrical l0ac:ts such as S?own in Fig. 

2b, can be idealized by planar linked series assemblies if the tloor 
......"./ 

'diaphragms are assumed to be rigid in their own planes and ta have negligible 

rigidity in the normal direction. Therefore bot'h the ser,;i.es assemblies 

and the symmet~ical parallel assemblies can be idealized by linkêd planar 

shear wall structures. The pin-ended links simulate the effect of the 

floor slabs or connecting beams in constraining the àssemblies to translate 

identically. 

In this work, a fundamental differential èquation of deflection is 

developed for coupled shear wall st~ctures subjected .to a general distributed 

'loading and a top concentrated load. This equation is essential for the 
/ 

study of deflections of linked wall structures. Three types of linked 
, , / 

shear wall assembUes are investigated, Fig. 3; one consisting of two 

coupled-wall assemblies llnked together, and two others consisting of either 

one or two linked coupled-wall assemblies linked to a series of homogeneous J 

walls. These linked structures are analysed .. general lateral loading, 

and deflection formulae are developed for the following lateral loading 

cases: uniformly distributed loading. triangularly distributed loading, 
l 

an~ a concentrated load at the top of the structure. The uniformlY distri-

ooted and triangularly distributed loadings can be superposeq to simulate 

an equivalent static wind loading, and the triangularly distributed loading 

with the top. concentrated load to simulate an equivalent static earthquake 

loadina. The developed deflection formulae are suitable for de!?ign. office 

prel:iJninary calculations. 

For the cas.e of coupled shear walls w1th variable thicJcn~ss, an 

approximate method i5 used to der ive defJ.ection formulae for coupled shear 

j 
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walls with tapered thiakness under the actions of uniformly distributed 

loading, and a concentrated 1000 at the top of the structure. 

The method of ana1ysis used in this work is based upon the 

contin~us medium technique which has been appIi~ in severaI papers, 

primarily for the analysis of coupIed shear wall structures under horizontal 

loading. , This technique is extended to-include the shear wall structures 

investigated in this thesis, namely: uniform coupled-walls subjected to 

general distributed lateral loading along with top concentrated load, 

1inked walls,and tapered coupled-walIs. 
J 

1.3 Continuous Medium Technique 

The method of analysis, as applied to coupled shear walls 

assumes, in its most basic forro, that' the discrete system of connecting 

. beams May be replaced by an equivalent continuous medium. The theory 

assumes ~hat the sectional propertips of the stru~ture remain constant over 

the height, that the coupling beams have a point of contraflexure at mid., 

span and that they do not deform axially. Several authors have used this 

approach to investigate the response of thesa highly indeterroinate coupled-

wall structures, but with differing choices Qf variables; aIl have yieided 

essentially the same results. 

The mèthod was first used by Chitty (4) in the analysis of a 

cantilever camposed of a number of parai leI beams interconnected by cross-

beams; Iater Chitty and Wan (5) applied the technique to the analysis of­

b:.lilding frames sub;ected to wind loading. The technique was applied to the 

analysis of coupled shear walls by Beck (1) 1 Rosman (6),' Cou11 and Choudhury 

(1) and a number of other a-uthors of which a selection of papers is listed 

in the bibliographY. 

" ~. \ 

--

c 
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1.4 Organization of the Thesis , 

The basic governing differential equations for coupled shear 

wall structures subjected to a generaI distributed loading and a top 

concentrated load are developed in Chapter II for structures having walls 

with linearly varying thicknesses. These equations are aIso valid for 

dniform coupled shear walls since they ca~_be considered as tapered coupled 
-/.,/. -----

shear walls with zero thickness variation~ 

The governing d'ifi~~~tial -eqiIations.., are used in Chapter III to 
c. 

derive a fundamental difhrential equation of defl.ection for uniform 

coupied shear walls under a generai l~teral loading, which is in turn used 
~ ..... -:.., 

to obtain &-def~~ction formula for tfte thfee convint.~on~l lateral loading . \ ,,,,,,-,,~. 

t l" 't }!, cases. ,'.1,. ;( 
L!} f \,('\ 

1 .... ~ ~ 

The fundamental equation, obtained in ChaPt1r lIII, is essential 

for the derivation of the differential equaÜoI1.s .r6f~ d.ehection as well as 
.rl 

".- _ ~ 
! _ ,#.r 

the deflection formulae which are developeèl- 'for linked structures in Chapter 

IV. The three linked structures considered are: two linked coupl~-walls, 

one coupled-wall linked to a series of homogeneous walls, and two linked 

coupied-waiis linked to a series of homogeneous walls. 

In,Chapter V, deflection formulae are developed for tapered 

coupled shear wall structures. 

Concluding remarks of the preceding chapt ers are discussed in 

the final chapter. 

J 

. , . , ~----~------------_.~~ 
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CHAPT ER II 

DERIVATION OF GOVERNINq DIFFERENTIAL EQUATIONS OF COUP LED 
, 

SHEAR'WALL STRUCTURES 

2.1 Iritroduction 

The two basic governing differential equations, necessary for 

the derivation of deflectioh formulae of uniform coup1 ed-wa1 l , tapered 

coupled-wall, and linked wall structures are developed in this chapter. 

These are the equations of deflection and integral shear force for tapered 

coupled shear wâll structures, subjected to a general horizontal 103Oing. 

The equations are applied to uniform coupled-wall structures by setting the 

taper to zero. The continuous medium technique is used for the derivation 

of the equations. 

2.2 Formulation of the Problem and Assumptions 

Considering Fig. 4a, the coup1ed-wall structure has a high degree 

of static indeterminancy. In the analogous structure, Fig. 4b, the discrete 

connecting beams of flexural stiffness El are replaced by a continuous medium 
p 

or lamina of flexural stiffness El Ih per unit height. This medium has the p 'If 

same storey to storet flexural stiffness as the connecting beams. Br cutting 

the continuous lamina along its midspan and introducing a vertical distributed 

shear force of intensity T' per unit length acting along the cut section, the 

coupled structure is reduced ta two statically determinate struçtures. The 

JX" 

integral shear force T = TI dl; becomes the staticapy redundant functicm. 
o 1 

The first of the two basic governing differential equations is 
/ 

obtained for the deflèction by considering the moment cutvature refationships 

of the two walls. The second governing differential equation is developed for 

-10-
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a) Actual Structure (Front-View) 

b) AnalogouS-Structure (Front View) 

1 ~ 

c) Tapered q'hickness (Side View) 

Fia. 4 Tapered Coupled Shear Walls 

j 
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the integral shear force T by cons~dering the compatibility of defdr.mations 
.J , ' 

of the lamina along th~ cut section. 

In the continuous medium analogy, used by the author, the 

following simplifying assumptions are- t'otroduced: 

1) AlI sections, walls and beams, are linearly elastic, and the taper of 

the vertical shear walls,is relatively s~all. such that simple engineer's 

bending theory may be applied. 
\ 

/2) The values of:-

a) the storey to storey height h 

, ~ 

b) the clear span b and the cross sectional properties of the connecting 

beams. 

c) the width ,of the walls dl and d2 "-

d) the distance t between the centroid of the cross sections qf the 

walls 

are a11 kept constant throughot.t the height H of the structure. The 

cross sectional properties of the top connecting beam are one ha1f the 

correspondt'ng values of the lower connecting beams. 

3) The ,points of contraflexure of the connecting beams are located at mid-

span. This is reasonable. unless there are large differences f.n the 

rigidities of the adjacent walls. since the cross sections of the walls 

(e much greater than the cross i'ections of the connecting beams. 

4) The connecting bèams are axially rigid in their longitudinal direction, 
/ 

such that both walls defl,ect equally. 

5) The structures are rigi-dly fixed to the foundation. 

) 

~------_ ........ _"", ,4l.".~ 
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The cross-sectional dimension,s of the tapered shear walls over 

the height o'f the structure are required prior to the calculation of the 
1 

deformations of the lamina along thé eut section. The thickness of the 

walls varies linearly ~ith height, Fig. 4c, th~t 15 for walls 1 and ~ 

respectively: 

where 

t 1 (:tJ • tOI' (1 + !OC) 2.1a 

t
2

(x) :a t<?2(l + ~) 2.1b 

1 t hl I} r { 
t b2 1 II 

IC • -
{- = -H t H to2 01 -

2.2 

high-rise structures KH.::. 4. O. and for uniform walls the value 

~ero sin~e the top ~nq bottom thicknesses are equal. 

---

'( 

The cross-sectional areas and moments of inertias of the walls 

thieknesses become: 

Al (x) = A 01 (1 + K'x) 

- A2 fx) = A 02 (1 + IcX) 

Il (x) • 101 (1 + ICX) 

12 (x) = I
02 

(1 + t<'X} 

~ 

\. 

.;.-, ' 
r 

J 

.-
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2.3 Governin~, Differentia; Equation of Deflection 

," 

, 
PI tr 

lx, > 

j 

w.CX) 

~. .1 

F~g. S Analogous Coupled Shear Wall System 

The governing diffe-rential equation of déflection for tapered 

coupled shear walls is obtained from the moment -curvature relationship of 

the two resulting walls in the analogous system, Fig. S, by virtue of the 

us"tion that bath walls deflect e:u~l1Y. 

The moment-curvature relationships of wall 1 and wall 2 
. \ 

. respective,ly are: 
1 

d 2 (b+d1) J x , 
EII (x) dx~- .. ME (x) - 2 . 0 ~'dç - ,Mi ex) 2.4 

2.S 

-, 

___ --+-~.,-,.-r, -'---------

• 

\ 

, , , 
\ 

~ 
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where ME (x) Js the external moment resul ting from the externally applied 

lateral loading and i5 given by: 

. and where M. (x) is the bending moment due te the interacting axial forces 
1. \ 

-in the connecting medium: 

M. (x) = 
l' 

2.7 

.D 
Adding Eqs. 2.4 and 2.5 and substituting t~e expressions" for Il (~) and 12(x) 

gives the following governing differentilll equation: 

where 

El 
o 

\ d2 
(1 + a) U :: M (x) -"Tf. 

ctx2 E 
J 2.8 

TaU ~ildings rigidly fixed to the foundatien can be cODsidered as canti-

,lever beams, with zero deflection and rotation at their base. The corre~­

ponding bOundary conditions are: 

• 1 

y(M) .. 0 2.9a 

) 

~(H) = O' 2.9b' 

j 
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2.4 Governing. DifferentiaI Equation of Integral Shear Force 
i 

16 

The governing differential equation of integral shear forceT 

is developed in the subsequent subsections. By.considering the various 

deformations of the eut lamina, due to the external loading and the integral 
1 , 

shear force, Fig. 5, and enforcing a compatibility condition, such that no 

resultant relative deformation of the eut is present, the governing differential 

equation of integral shear force is then establis~d. 

2.4.1 Deformations of the Cut Lamina 

The various deformations of the eut lauliIJ-a, due to the bending 
. ' 

moments and the normal forces in the wallsand due ta the shear forces iO 

the conneeting lamina, are 'derived) for an arbitrary location x ,along the eut 

in Appendix A. These are: 

a) Rotation of walls due to free bending under general external horizontal 

loading, if no base rotation is present, Fig. '6a. 

1 
= n­

o 

\ / 

-b) Reverse bending deformation in walls due to shear forces in the 

connecting beams,. Fia. 6b. 

j 
. 1 2 JH' 

= n- x 
o 

T 
(1+1C1;) dr; , 

. 

2.10 

2.11 

c) 'Bending and shear deformations of connectinglamina due to the vertical 

distributed shear force, Fig. 6c. 

TI h b3 
ô2 (x) = I2EI 

p 
2.12 

j 

---~:--~- -,,,,~--------
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(a) (h) 

---

- 1 

1 1 , 
1 • 1--r- -• -1 

• Ô:z 1 Ô:i 
\ 1 . 1 

----
} 

Cc) (d) 1 

.. Fig. 6 Deformations of the eut Lamina 
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. , 
To ~nclude the effect of shejlr in the c\,necting beams, Ip may be rèduced 

such that 
1 

l' = ~ P (1+g) 

where 1 is ~he actua1 moment of inertia ~nd g is given for rectangular 
po 

be8f1s in Appendix A. The r~uced moment of inertia should be used especially 

for deep ~am5. 

d) Axial d'eformation of the walls due to the Integral shear force, if no 

relative displacement of the base is present" Fig. 6d. 

J
H " 

x (l:Kl;) dZ; 2.13 

2.4.2 Compatibility of Deformations of the Cut Lamina 

, The compatib~lity condition requires that no resulting relative 

deformation he present at the eut section; this leads to the establisfvnent 

of the following compati bi li ty equation 

2.14 

Substituting the expressions for the deformations of the cut lamina, Eqs. 

2.10-2.13, into the above compatibility equation gives 
\ -

T' hb3 1 12 Ao J H T t J li ME (r;) 
mr + E (1 + A A) X (1+1<1;) dl; = ru x (1+1<:l;) dl; 

P _ 0 01 02 0 

where 1 = 1 l + 1 2 and A o 0 0 0 

dividing through by hb
3
/12EI 

P 

--------

=. A . + A 
01 02 

and introducing the a bbrevia tions : 

) 

2.15 
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2 12I 1.
2 

Cl = P (1 + À) 
1 hb3 
0 

121 R-
B = E 

1 hb3 
0 

r 

l A' 
( 

0 0 
À = 2 

1. (Aol ~A02) 

Eq. 2.15 can be rewritten 

~ 2 J H T dr,; = a J: MS (1,;) 
TI + Cl x (1 +I(t) (1+1C1,;) dl; 

Finally differentiating the above equàtion and using the fact ~hat 

d JH , dx ( x f (r;} dr; ) :: -f (x) 

the following governing differential equation is ,obtained 

T 
(l+ICX) = -6 

or multiplying through by (l+Kx) the above equation becomes 

19 

2.16a 

l 
2.16b 

2.16c 

2.17 

The left-band side of the above equaÜon relates to the physical parametérs·, 

of the structure,whereas the right-hand side relates to the external loads 

applied to the struèture. 

The boundary conditions for the above equations are.: 

T (0) = 0 

dT (H) = 0 
<lx 

2.18a 

2.18b 

,/ 
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the first one represents a zero accumulation of TI at the top of the walls. 

and th_~ second is introduced assuming that the foundation restrains any 

relative rotation and vertical translation at the base of the walls. 

2.5 Discussion 

The governing differential equations of deflection ~nd of integral 

/ shear force, established in this chapter. Eqs. 2.8 and 2.17. for tapered 

coupled shear walls subjected to a general lateral loading s are the basic 

equations necessary for the development of deflection formulae of the shear 

wall structures considered in the subsequent chapters. 

For the case of uniform coupled shear walls (K=O) loaded by a 

uniformly distributed load (W
E 

ex) = w; P
E 

:: 0) the governing equations reduce 

to 

where 

w 
f!' ... 2" a 

2 2 
El ~ .. ~ - TI. 

o di 2 

which tu"e identical to the ones ol>tained br Rosman (6) and by Coull and 

Choudhury (1). 

) 

) 
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2.6 Summary 

The governing differential equations of tapered coupled shear 
\ 

walls subj ected to a 'general IB;tera1 loading are now established, namely: 

" ---the differential equation of deflection 

2.8 

and the differential equation of integral shea.r force 

2.17 

These equations are to be used, for the development of ,the differential 

equations of deflection, and the deflection formulae of the shear wall 

assemblies investigated Ï:Jl-/ this thesis. 

J 

) 

, " 
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CHAPT.ER III 

UNIFORM COUPLED SHEAR WALLS 

3.1 Introduction 

In the previous chapter a differential equat4ln for deflection • 
f 

bas been obtain!d for tapered coupled shear walls, as a function of the 

external load an~ ~f the integral shear force. In this section a fundamental 

...cfifferential equ~tl.on for deflection is derived for uniform coupled-walls, 

as a function of only the external load. Such an equation is essenti.al for 

the development of differential equations of deflection of the linked wall 

structures investigated in Chapter IV since, in the latter structures, 

coupled-walls sUb~ected to general horizontal loading are present. 

3.2 Derivation of Fundamental DifferentiaI Equation of Deflection 

For uniform coupled shear waUs K is set to zero in both Eq. 2.8 

and Eq. 2.17 , which yield 

3.1 

3.2 

with boundary conditions given by Eqs. 2.9a, band-Eq. 2.l8a,b. 

Solving for the integral shear force T in Eq. 3.2 

and, differentiating 'twice 

j 

-22-
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Subst i tuting these expressions into Eq. 3. l and rearranging and mui tiplying 

through by t gives 

4 2 2 
d ME(x) 2 

El {~ _ (12 ~} = - (Cl - t~) ME (x) 3.3 
dx

4 dJc2 dJc2 

',' 

from Eqs. 2.16a a'nd b 
- --

121 12 2-----
1.B E Cl = 

Ihb3 = (1+>') 

Substituting the above exp,ression into Eq. 3.3 gives the fundamental equation 

of deflection for a uniform coupled shear wall under general horizontal loading. 

r ,~ 

Only two of the boundary conditions are in tems of y; these 

are as given by Bq. 2. 9a and b. The other two. Eqs. 2.18a and b. ,have to 
1 

be rewritten in terms of y. By substituting the boundary condition T(O)=O 

Eq. 2.18a, in Eq. 3.2 the following boundary condition resul ts 

2 
El ~ (0) = ME(O) 
, d.x2 

, \ 

For the case of structures loaded by latera1 forces ME (0) = 0, consequently 

the above boundary condi tion reduces to 

2 
U (0) =_0 
dJt2 

,\ ,,1 
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For the second boundary condition, Bq. 3.2 is differentiated ~....;..:... 

dT 
once and. evaluated at·x = H. Substituting dx = 0 for x = H, Bq. 2.18b, 

the last boundary condition yields 

d3 CH) ciME CH) 
El ~ = -r'--dx3 dx 

Introducing for simplicity the differentiai operator D, where 

Eq. 3.3 1s rewri tten 

with bçundary conditions/ 

-, 

y = 0 

Dy = 0 

2 
Dy" 0 

3 
El D Y = 0 ME 

at 

3.4 

x = H 3.Sa 

x ... H 3.Sb 

x = 0 3.Sc -

x = H ·3.5d 

Thi1:~differential operator is introduced to simplify the derivatiOns of . 
the differential equations for the linked sheM' wall structures. 

3 . .3 DefI ectlon Pormulae . 
Deflechon formulae for uniform coupled shear ,walls_ have beén 

derived by various authors for the three commonJateral loading cases. Also, 
/ 

curves are available for the rapid evaluation of maximUlll deflection (1,2,3). 
~ --

These were obtained by solving fOr the integral shear force T in Bq. 3.1, 

inserting thls result in Eq. 3.2 and integrating twice the latter equation./ 

/, 

'1: 

" 
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For the sake of cOl!1pleteness, deflection formulae are obtained for the three 

conventional loading cases by solving Eq. 3.4 subjected ta the boundary 
. 

conditions given by Eqs. 3,5. 

The most general deflection formula which comprises the three 

loading cases, viz., concentrated load at top of structure, uniformly distributed 

load, and triangular~y distributed load, i5 given by; 

3.6 

where z = x/H 
/ 

Evaluating the above expression at z = 0, the top deflection is obtained 

YTOP = T{ BI + C } 3.6b 
0 

where 

BI = 
-2 NZ 

(aH) 2 ! 
./" 

-' 

/ B2 
NI 

BI tanh (aH) = (aH)cosh (aH) 

\ 
Cl = - {N1,+ 2N2 + 3N3 

+ 4N4 + SNS} 

The exprêssions for T ând N 's are liS'ted in Table l,for the three lateral 

loading cases. " 

-0 1 / 

~~:~,'~ '>~,::-' --------·~t1:·~·~...,-------
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Concentrated Load at Top , Uniformly Distributed Load < Triangularly Distributed Load 

- \ 

2 
\ 

2 1 

*** ME (x) Px* 
wx ** P X

2 
{! - ~} 

~ 

-2-

- PH3 ' 4 
PH

4 
T wH 

~ 

~ El El lEI 
-

~ " 1 ~ 
Ns .. 0 0 - - 60 (l-t-;l) 

N
4 

0 
1 À 

24 (l+~) -SNs 
, 

, 
(1 - 12 N

4
) ~ 

L ( >. ) 
,-\ , 

N3 6" 1+). 0 -
3 (aH) 

2 r 
~ " r-

- ;"y 
-(1 - 24 N ) , /'f 

\ . ~ 4 -3N N2 0 
2 (aH)2 3 

\ . 
NI 

1 

(1 - 6 N3) 
-2N2 

(1 -t- 2 N2 - 12 N
4

) 

(aH) 
2 • (aH) 

2 

~-~--_.-

* P is the magnitude of the concentrated load. ** w i5 the uniform intensity of the load 

*** p is the maximum intensity of the load at the top. 

TABLE l tonstants in Bq. 3.6 

'-

N 
0\ 

" 

i 
'\ 

:.\ 
\ \ 
1 ; 
1 
i 

t 
i 

l 

j 
1 
i 

.1 
j 

1 
! 
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3.4 Discussion 

A. fundatnental differential equation for the deflection y of 

uniform èoupled shear walls under general ho:rizon~,al external lo~ing is 

now available uniquely as a funcÙon of the external load. 

For the specia"l case of' a uniform coupled 5hear wall ";:otructure 
j 

loaded by a uniformly distributed lO~ loi Bq. 3.,4 reduces, after rearranging, 

to 

\ 

which is the same diffèrential equation as obtained by Kuster (9)"\·~or coupled 

structures under a uniformly dutributed load, by introducing an un1cnown 
) 

interaction force. 

3.5 Summary 

In the foregoing chapter a fundamental differential equation of 

deflection has been obtained for uniform coupled shear wa~ 15 under a genera1 

external lateral loading. This fWldamental equation i5 

3.4 

This equation is essential\ for the developmen~:of differential equations of 

deflection of linked wall structures comprisin"g coupl~ shear waUs. 

Also, Il- general deflection formula is given for uniform coupled 

s hear wa1.h) val id for the t hree copon loading cases. 
" 

.. 
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CHAPTER IV 

LINKED SHEAR, WALL STRUCTURES, 

~t 

Linked planar shear wal} structures. Fig. 13. are idealized 

" structures comprising a number of shear walls. both homogeneous and/or 

coupled, acting together to resist ·latera\l forces. They arise in the case 

of_planar bents consis~ing o~ shear wa11s connected by beams or floor slabs, 

when the stiffnéss of the connecting members or their wall connections is 

1ow. They arise al~o in plan s~etrical sets of parallel shear wall bents 

, connected by floor slabs and subj ected to syuunetricai Iaterai loading. In 

these casès tl\e floor slabs are -assumed to he rigid0 in their own plane and 

of.'negligible rigidity transverse'to their plane. The pin-ended links in -. 
the ideali~ed pl anar structures simulate the effect of the connectin~ beams 

o 
• q 

'or slabs in constraining the shear walls to deform identically. The hori-

zontal interaction through the links causes redistribution of the external 

loSding iffiongst the resisting shear walls. 

In the previous section a general differential equation for 

the deflection of a coup1ed shear wall under a generaI horizontal loading 

was obtained. 
\ 

This equation ,is used to derive deflection formulae for the 
p 

three loading cases acting upon: 

a) linked coupléd-walls 
l' 

b)' a single coupled-wall linked to a series of linked 

homogeneous walls: 

c) linked coupled-walls link~d to a series of linked , 
ft 

homogen~ous walls. 
; 
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4.2 Formulation\ of the Problem and Assumptions 

PI! 

0 Cl !~ 
. D' 0 

CJ CJ H 

CJ 0 
... 

0 ·CJ '1> 

1 

E~ a, À1 E1:r c.Y:z 
~ 

( '~ , -
Fig. 7 Llnked Coupled Shear Wall System 

\ 

The planar structure of Fig. 7 has a high degree of statie 

, indetermlnancy. To solve for the deflection along the height of the assembly 

"" t;he discrete links are replaced by a continuous medium of~pin-ended links. 
• 1 

This' medium constrains the two walls to deflect equally 1 thus redistributing 

the external load between the two walls. The medium is eut along it5 height ' 

and equai and opposite distributed horizontal interaction force w. (x) and 
, l 

concentra1:e4 top in.teraction force ~i-tH:<4I applied ta the wa.lls 1 and 2 to 

8. Consequently th~ 

linked shear wall 5ystem~ce5 to two individual shear wall systems lOaded .. 

externall1'- 'System l i5 1 ~ed br t~e exte~l forces minus thefi'"interacting 

forces, and system 2 is oaded by tl'îe interacting forces only ~ with both systems 

def~ectini equalIr, thus resulting in a system of differential equations. 

J 
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t; 

D D 
D D 

WPX) 
D D 
D 

~IX) 

D 
/ D D 

Fig. 8 Interaction Forces in ~inked Coupled Shear Wall Systems 

In the analysis of linked shear wall structures the following _ 

additional assumptions are introduced: 

a) the shear wall systems deflect equally 
\ 

b) the links are pin-ended.to the walls 

c) the link,s are axially rigid 

d) homogeneous shear walls behave as cantilever beams 

when loaded laterally in their elastic range - an 

acceptable assumption for high-rise structures. 

4.3 Linked Coupled Shear Walls 

Deflection formulae are derived for two coupled shear walls 

j 

linked together as shown in Fig. 7. This assembly is reduced to two coupled 

shear walls, loaded as shawn in Fig. 8. Each conforms to the differential 
\ 

equation given by Eq. 3.4 with bound~ry cQnditions given by Eqs. 3.5, since 

'bath behave as coupled shear walls loaded by general lateral loads. They ) 

result. therefore. in a system of two differential equations. 

: 

j 
1 

l 
! 
! 
l 
,j 

l 
1 
1 
l • 
J 
1 , 

~ , 
1 
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i 
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4.3.1 Derivation of Governing,Differential Equation 

The interaction forces Pi and wi ex) create equal and opposite 

moment M. (x), where 
~ 

Aiso 

M. = M. (x) = 
l ~ 

4.1 

4.2 

COUpl~ shear wall 1 is subject te an external moment equal te ME - Mi' 

whereas coupled shear wall 2 is subject ta M .. 
~ 

Now applying the governing differential equation for the 

deflection of coupled shear walls, as given by Eq., 3.4. 

For coupled shear wall l ' 

El D2 '{D2 _ a 2 }y = \{02 
1 1 

with boundary conditions frdm Eqs. 3.5 

y(H) = 0 

Dy(H) = 0 

2 
. D y(O) = 0 

E~lD3Y(H) = D~E(H) - Mi (H)) 

'For coupled shear wall 2 
2 

2 2 2 2 a2 ~2 
SI2D {D - al }y = {D - (l+À )} 

2 

with boundary conditions 

M. 
~ 

4.3 

': 

1 -
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y(H) = 0 

Dy(H) = 0 

D
2
y(O) = 0 

-EI203Y(H) ~ 0 Mi(H) 

Adding Eqs. 4.3 and 4.5 and introducing th~ following abbreviations: 
~ -

2 

=~ 
a j (l+Àj) 

for j = 1,2 

gives 

32 

4.6a 

4.6b 

4.6c 

4.6d 

4.7a 

~ 

4.7b 

4.7c 

{EIT 0
4 

,- cp
2
n

2
} y = {D

2 
- al} M~ + (al ,- a2) Mi 4.8 

-...../ 
When al - a2 F 0 or al ;. a2, the interacting moment is obtained and is 

given by 

4.9 

The special casé when al = a 2 will be investigated later in this section. 

Substitutin~ back Eq. 4.9 into Eq. 4.8 and ~earranging yields 

Dividing through by EIT and introducing the fOllowing abb~iations 

( 
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~ 
i 
~ 

i 
~ 

2 l 2 
+, al )E12 + 

2 
+ aZ) EI

l
} n = Elr 

{ (a
2 (al 4.10a 

~ 
1< 

, ~ 4 1 2 2 Y "" ru, {a
l
a

2 
EI

2 + a2<l1 EII} 
r 4.10b 

~ 

• yields the gove!lling differential equation of deflection as a function of 

the external load ' 

2 4 2 2 4 4 2 ME (x) 
D {D - n D + Y }y:: {D - (a

1
+a

2
)D + a

l
a

2
} ~ 

TI 
4.11 

This is a sixth-order differential equation in Y. therefore six boundary 

conditions are required to solve it. Four boundary conditions can be 

readily obtained by adding the botfndary conditions of Eqs. 4.4 and 4.6. 

yielding 

y(H) :: 0 4.1Za 

Dy-(H) :: 0 4.12b 
'1 

D2y (0) 1 :: 0 4.12c 

D
3
y (H) :: D M

É 
(H)/EI

T 4.12d 

Two other boundary conditions are required ta get a unique deflected shape 

y for a given external lateral load. 

A fifth boundary Icondition is obtained by evaluating Eq. 4.8 

at x :: 0 

4.13 

but 

02y (0) = 0 from Eq. 4.12c 

ME (0) :: Mi (0) :: a from Eqs. 4.1 and 4.2 
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substituting these in Eqs. 4.13 and divid~ng through EIT ~i.ves 

4.14 

To obtain the last boundary condition Eq. 4. B is differentiated 

once and evaluated at x = H, which gives 

,2D\CH) = D3
ME (H) - a1DME(H) + (al-aZ) DMi(H) 

,i 

but 

3 
DMi CH) = El 20 Y (H) from Eq. 4.6d 

D
3y CH) = DM

E 
(H)/EIT 

from Eq. 4.12d 

Substituting these into Eq. 4.15 and rearranging gives 
/ 

where 

4.15 

4.16 

4.17 

Therefore, for a given lateraJ,.. loading, for the case al f:. a 2, 

a deflection formula for linked coupled shear walls may be obtained by solving 

differential Eq. 4.11, subjected to the boundary conditions given by Eqs. 

4 • 12 J 4. 14, and 4. 16. 

/ 

4.3.1.1 Special Case when al = a Z 

2 2 
When al = a 2 or al À1/(1+À1)= a2ÀzI(1+~) Eq. 4.8 reduces to 

2 

{ DZ al "1 
= - (1+À

1
) } ME(xJ 4.18 

! ,-- t. r,r;&;; 
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By introducing the following abbreviations: 

2 
Cl 

(1+),) = 

Eq. 4.18 can be rewritterr- as 

~-

~;-

3S 

4.19a 

4.19b 
'" 

'J.~ 

,1 4.20 

The above equation is identical to Eq. 3.4 and 1lâs the ,same b()u~dary 

conditions. Therefore, deflection formulae for linked coupled shear walls 

having al ~ aZ are equal to the d~flection formulae of a single coupled 

shear wall with the foilowing physical parameters . 
.--/ 

2 
Cl = 4.2Ia 

4.21b 

4.21c 

The above expression for À 15 easU>,: 'obtained by solving for À from Eqs. 

4.198, and b taking into account the fact that al = a
2

. 

When the linked coupled shear walls are identical, EII = EIZ' 

2 2 d' '.' E 4 21 ed al Il aZ' an 11.1 11. 2' qs. • r uce to 

2 
Cl 

• J 
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Substituting these into Eq. 4.20 and dividing through by 2 yields 

2 
2 2 2 2 -alÀl MECx) 

EIID {D - Cl.l}.Y = {D - (l+À
l
)} -2-' 
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Now comparing the above equatian ta Eq. 3.4, it is noted that the two linked 

identical coupled shear walls have the same deflection formulae as a single 

coupled shear wall ~oaded by' one-balf of the total external load; this was 

ta be expected for the case of two identical coupled shear walls linked 

togetner. 
lU 

j ~ 

Linked coupled she~r walls with al = a
2 

will not he pursued 

further in tms work since their deflection formulae are equal ta the 

deflection farmulae of single coupled shear wall~ with properties given by 

Eqs. 4.21. The latter deflection fornulae have been obtained for the three 
f 

'common l0a4ing cases, and are gi ven in Section 3.3. 

4.3.2 Derivation of Deflection Formulae 

Eq. 4.11 is rewritten here as;' ) 

4.22 

where r (x) is the forcing function eqoal ta . 

r (x) = {04 _ (a' ) D2, } ~ (x) 
1 + a2 + al a 2 ---ru--

T 

Solving for the homogeneous solution br ~~tting r(x) = 0 in Eq. 4.22, 

the indicial roots are 

0, 0 + ~ and' + v 

where 

, 
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• 

4.23a 

v = 4. 23.b 

Therefore, the homogeneous solution for any arbitrary forcing function r(x) 

i5 

thus, for any~arbitrary external lateral loading, MS (x) , the homogeneous 

solution is yh(x) and the general solution is: 

y(x) = Yh(X) + y ex) , p 4.25 

where y (x) is the particular solution to, the differential equation with 
p 

forcingJfunction r (x) • 

A complete solution is obtained by solving for the constants 

in Eq. 4.24 u~ing the appropriate boundary conditions. 

The general deflection formula for linked coupled shear walls 

subjected to the three conventional lateral loading cases used in the static 

analysis of a tall building is 

from which the ~op deflection is given by 

) 



Ct 

) 

The constants are 

2 
2 ,N6 + (\tH) N

2 B ,,-
(pH) 2 1 NI 

2 
-2 N,6 + (}lH) P2 

B ,,-
(vH)~ 3 N

l 

N;'+ (VH)~8 1 B .. - 3 2 NI (pH) cosh(JlH) 

2 - N
7 

+ (pH) N
S -1 B- =-

3 4 NI (vH~ cosh(vH) 

- BI tanh (J,lH) 

/ 

- B3 tanh (vH) 

3 
N7 - ('lH) NS } 

+ ' 22 
j (pH) (vH) ! 

" 

J 

, " 

38 

/ 
Co" (Cl +N2 +N

3
+'N4+NS+ B1CoSh(PH) +B2sinh (\JH) +BScosh(vH) +B

4
sinh(vH) } 

1he constants T, N's are given in Table II for the three loading cases. 

'-

• 
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C'oncentrated Load at Top Uniformly Distributed Load 

ptt wH
4 

T E1T EIT 

-
NS 0 0 

, 
. 

N
4 

0 
a

1
a

2 \ 

24y4 

\ 

,--

). a
1

a 2 > 

N3 6)'4 
0 

2 2 

N
2 0 - 24 (flH) N

4 
- (al +a2)H • 

(yH)4 

NI 
2 2 

().tH) - (vH) 
2 ' 2 

().tH) - (vH) 

. 

N
6 

0 (1 - 24N
4
)/2 

N
7 ;~;(~ (I/IH) 

2 
\ . 

~ 

NB -(1 - 6 N ) , 3 - 2N 
6 - . 

, 

., 

TABLE II Constants in Eq .. 4.26 
'-
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Triangularly Distrihlted Loadj 

' 4 
~ 
2ELr 

, a
1
a

2 
- 6Oy4 

- SN . 
. 5 

-12 (nH)lN4+(al+a2)Ht 

4 
\ 

. , , 

'3 (rH) 

- 3N ...... 3 

2 2 
().tH) - (vH) 

IJ 
, 

- (1 - l2N
4

) -1 ~-- --
1 

(1/IH) 2 - 2N6-
• 

, 
\ i 

.. (2N
2 

+ N
6
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4;4 Coupled Shear Wall Linked to Homogeneous Shear Walls 

The de_flection formulae of a coupled s~ear wall linked ta 

a series of n homogeneous shear walls, Fig. S, are investigated. Br 

introducing n interacting moments, as given by Eq. 4.1, this assemb1y 

can be reduced to a coupled shear wall and n individual homogeneous shear 

walls, aIL 16aded externally and aIL constrained to deflect equaliy. This 

assembly results in a system of n+l differential equations, ,with n+l 

unknown functions, the n interacting moments and the deflection y. 

/p! 

.0 
0 
0 
0 ."i 

0 
1 

A. 
, 1 , 

El. cr. El, El" 
j 

Fig. 9 Coupled Shear Wall Linked to n Homogeneous'Shear Wal1s 
) 

4.4.1 Derivation of Governing DifferentiaI Equation 
, 

The links of the series assembIy of Fig. 9 are replaced by a 
) 

continuum of pin-ended links which are then eut a10ng their height. Now, 

n interacting moments given by ~q. 4.1 are introducèd te constrain the walls 

to d6flect equatly, c~nsequentlY the n+1 differential equations are obtained • 



• 

• 1 1 

(~) 

For coupled shear wall L hem Eq. 13.4 ......... 
2- .. 

El D2 {D2 2 2 Q >-
a e } y • {D .. (~+~ ) } ~ - Ml) 4.27 

e e 

l'dr the'n homogeneous shear walls usiitg simple bending theory 

2 
El,! D Y = Ml - M2 / 

<;; 
, 0 
2 

'1> ElZO Y = M2·- M3 , 
" 4.28 

2 . 
ElOy • M n n . , 

where Ml to Mn are tpe n inter~cting moments. 

The right band sides of Eqs. 4.28 form a telescopie series,. 
, 

therefore, by summing Bqs. 4.28 the following simple equation is obtained: 

" 4.29 
. . 

El. 4.30 
J 

Which shows tlu!-t n linked homogeneous shear walls can be idealized for', 

defJection purposes br a sinale lumped homogeneous shear wall having a 
1 

stiffness equal to the SUIQ of the stif~ness~s of the n individual walls. 
1 l , 

Tbe systems Of n+l differential equations ha~ been reduced to 
1 

., 

a syst. of two differeri;ial equations g~ven by Eqs. 4 .. 27 and 4.29. Substi .. 

tuting the expression for Mt €rOll Eq. 4. 29 ~to Eq. 4;27 and rearranging, 
, ) 

- y'ields -
. " 

J 

, t ... 1' ... ."..~ 
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, , 
1 " 

~ introducing the following abbreviations 

ÉI .. El + El 
} è s 

El "\ 
< 

À • À 
{l"+2.} 

e Ele 

2 2 À 
a = Cl (-!) (1+>' ) Il 

e >. l+À e 

Bq. 4.31 can be rewritten 'as 

4,2 

4.31 

... 
4.32a 

, .. 4.32b ., 

4.32c 

wall, as 

1 

identical to t~e differential equation for a single coupled Sh",' 

given by Eq. 3.4. Consequently. the deflection formulae for a ! 

~hich is 

coupled shear wall linked to n, homogeneous shear walls are the same as those 

obtained for a single coupled shea'I' wall with physical parameters as given 

by Eqs. 4.32.. The deflection formulae for a single coupled shear wall, 

for the three common loading cases used in tall buildings analysis, are 

given in Section 3.:;. 

4.5 Linked Coupled Shear Walls Linked to Homogeneous Shear Walls 
} 

The deflection formulae of two link~ coupled shear walls 

link~ to a ..pertes or n homogeneou~h~ar walls and loaded by general latel'al 
" 

forces, Pig. 10, are investigated in this section. By introducing ,11+1 inter-

1 

action moments. as was done in Section 4. 4J the assembly can be idealized by 

n+2 discrete structures, n homogeneous shear walls aild two coupled shear 

walls. loaded externally and constrained to defl~ct equally. This planaI' 

assemb1y results in a system of n+2 differentiat' equaltions, with' n+2 unknown 

e 1 '~\.!'.:f."'->t .t-~"'-"'-.L:ë>'ëC,------"""--"""--------

) 

-
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functions, n+l interacting moments and the deflection y. / -

\ 

Fig. 10 Linked Coupled Snear Walls Linked to n Homogeneous Shear Walls 

4.5.1 Derivat ion of Governing Differentia! Equations 

Going through the same procedure as followed in Section '4.4.1, 

that is 1 replacing the lin'ks of the series assembly 1 Fig. 10, by a continuum 

of pin-ended links and then cutting the~ aiong their height, n+l interacting 

moments, each one of the form given by Eq. 4.1, are introduced to constraln 

the planar assembly to deflect 'equalÎy. ~ fOllowlng this procedure a 

systêm of n+2 differential equations is obtained. 

For the two coupled shear walls from Eq. 3.4 

2 
2 acÀc 

{D - ~)} 
, c 

4.33 

." 
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f, 
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r .. 

t () 

'-~. - --..- ~ 

2 

{O
Z 2}' '.... {OZ (le >"e ' 

- Cl e y = - (1 +>. ) } (Mi - M~) 
e 

. For the n homogeneous shear walls from simple benling theory 

2 
EII D Y = Ml - MZ 

2 
EI 2D Y = M2 - M~ 

where Mi and Ml to Mn are the n+l interaction moments. 

,4.34 

4.35 

As was done in Section 4.4.1, by summing Eqs. 4.35 the follQwing 

simple equation is obtained. 

2 
E1sD y = Ml 

where 

El = fI El. 
s J= J 

Substituting the above expression for Ml into Eq. 4.34 and rearranging, 

redudes the system of n+2 differential' equations to a system of two 

differentiai eq~~ons given by 

4.368 

4.36b 

Br introducing the following abbreviations + 

--------- --'--' 

j 
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1 1 

Eqs.J4.36 

-
,_.~ .".L,,~ ____ ~_~_ li ~ 1& Ai"" 

= El c 

,SIZ = El + El e, S 

À '" ). 
1 C 

'\ El 

>'2 ). {l + E/ } e 
-- - - è 

2 2 
QI '" Cl 

c 

2 2 
À 1+À

2 a
2 '" Cl (xe) (i+À ) e 2 e 

:.-

can be rewritten as 

*bc $".'" 1 "_Il i. • 

4S 

4.37a 

4.37b 

4.37c 

4.37d 

4.37e 

4.37f 

The above system of di:Êferential equations is identical to the one obtained 
• 

for two 1inked coupled shear walls and given by Eqs. 4.3 and ~ .5. Therefore, 

series assemblies consisting of -two linked coupled shear walls linked to n l' 

homogeneous shear walls can be idealized for defle~~}.on -pdrposes by two ' 

linked coupled shear walls haVin~ __ p].ty-sical--parameters as given by Eqs. 4.37. 
---- --

: - Their deflection f9nw.ae-ror the three conventional loading cases are given 
\ 

in Section 4.3. Z for the general case al f:. aZ' For the special case- when 
J 

al == a2 'the results of Section 4.3.1.1 should be used • 

. ' 

, \ 

) 
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4,.6 - Exampl es and Discussion 

The deflection curves of two assemblies, one consis~ing of two 

linked coupled shear walls and the other consisting of a coupled, shear wall 

linked ta a homogeneous shear wall, subj ected ta a unifarmly distributed 

lateral loading are calculated using the deflection equations derived in the 

foregoing sections. These deflection curves are compared with deflection 

curves obtained by computer analyses of these assemblies. For the computer 
",-

analyses, the '~SAP IV" (10) structural analysis program bis been used. Il) 
,)\.~~. 

the compu-t-fij- analysis, coupled shear walls are idealized using the wide-column 

frame method and links are simulated by pin-ended axially rigid members. 

The idea1iz~ structural elements used in the computer analysis are shawn 

in Fig. 11. / 

j 

# ' 1 \ 

1 ."~r-·~~.,.~' :.t,:\l :d~\~j~"q~·~ll':"''', j 
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2 3 2 1 2 3 2 1 
.r-- -

-
1 

- --
4 4 4 4 4 

H 

-
-----

1 -
7,7" 1 

7'rr ï7 1 - 7.7-
dl2 b d.J2 

Tt 
1 

1. Links: pin-ended and axially rigid. 

2. Rigid arms: axially rigid and infinite moment of inertia with length 
• 1 

equal to one half of width of connected wall. 

3. Coupling beams: axially rigid, with actual dimensions ~nd properties . 

.4. Shear walls: Hne elements with actual dimensions and properties: 

Fig. 11 Idealized Elements Used in Computer Analysis 

, """""'T". ------

j 
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(a) Assembly (h) Lateral Deflection 

, Fig. 12 Deflection Profile of Linked Coupled Shear Walls 

Properties: 

H = 75.0 m; h = 3.75 m; t = 300 DUD;W= lS kN/m 

Ipl = 675. x 106 4 
Apl 90. x 103 mm 2 

mm "" 

III 675. x 109 4 
AIl = ~OO. x 106 mm 2 

= mm 

c 9 4 Ap2 
180. 103 mm 

2 
I
p2 

= 5.4 x 10 uun = x 
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1.8 X 10
6 mm 2 

6 2 
1. 5 x 10 mm 

The physica1 parameters necessary for the eva1uati~n of the 

def1ection formu1ae are ca1cu1ated from Eqs. 2.16. 

For coup1ed wall 1 

EI
1 

= 1.35 x 10
12 

E 

1.35 x 1012 x 1.8 x 10
6 

5000
2 

(900x10
3

X900x10
3

) 
= 0.120 

al = (12 x 675 X 10
6 

x 5000
2 

(1+0.120))1/2 = 74.833 x 10-6 mm-l 

1.35 x 1012 x 3750 x 2000 

<llH = 5.6125 

Similarly, for coupled wall 2 

EIZ = 8.525 x 10
12 

E 

>-2 = 0.144 

<l2 '" 78.780 x 10-6 mm-1 

In order to use the appropriate def1ection .!formula for the 

eva1uation of the de~lection profile, the condition al ! a
2 

must he checked. 

The formula for linked coupled walls, Eq. 4.26, must be used when al ! a
2

, 

whereas for the special case a~ = a 2 the two coup1ed-wa1ls reduce to a 

single coup1ecl-wall with a new set of physica1 param~ters as outlined in 

Section 4.3.1 and in this case the formula for single coup1ed-walls, Eq. 3.6. 

must be used. 

" -

1.4 .. 
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50 

(74.833 x 10-6)2(0.120) 
600.00 x 10-12 -2 

al = == mm (1 + 0.120) 

1 

{78.780 x lO-6~2(0.144~ 
782.21 x 10-12 -2 a 2 '" (1 + 0.144) == mm 

Since al ;. a
2

, the approximate deflection profile of the two linked coupled 

walls assembly is obtained by using Eq. 4.26 for uniform1y distributed 1oads. 

The physical par~etel'~j are used to eva1uate the constants of Eq. 4.26. then 

this equat:ion 15 evaluated along the height of the structure, from z = 0 

to z = l, thus obtaining the deflection profile of Fig. 12b. 

o 

• 
,', 

.. ------- ---;-----_ii4 
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Exampl e 2 C,?upled Shear Wall Linked to Homogeneous Shear Wall 

J 

t /.~ 
0.0 4.081 

0 
0 , 

~ 
, 

0 0.2 

"" 0"2 A2 

D-
r-- '" ~ "2 '2 " O ... 

w ~ 
r-:t .:. 

L...J 
) 

0 ) 

H 
XtH 

~ 
'J 

0.8 
, 
1 
î 
j 

0 r- D - . 

0 : 
. 

" n· > . 

111111,/11 111// 

, 
O.B 

~ 
pj 

'i 
__ App·rox. Sol. 

1 
- Computer SOl • 

1,0 
1 3 Som 

8.0 3.0 5.0 

1".Om 

(a) Assembly Ch) Lateral DefI ection 

Fig. 13 Deflection Profile of a Coup1ed Wall Linked to a fbmogeneous Wall 

Properti es: ' 

E = 28,000 MPa : 
r -... ~,;;11~ .. 

H" 75.0 m; h .. 3':75 111; t .. 300 1IUll; W" 15.0 kN/m 
n _ .. 

12 4 6 2 
1
2 

= 8.575 x ln lIUll j A2 = 2.1 x la -mm 

- .. - -.. - -~---------.• -,-, . \, 
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1. 
The section properfies of the coupled w.all are the same as those of 

Example 1. 
1 

The physical parameters are 

EIl '"' 8.525 x 10
12 

E 

>'1 .. 0.144 

0
1 

.. 74.833 x 10 -6 mm-1 

EI 2 = 8.575/X-1012E 

1 ... 

S4 

This structure is of the tYpe studied in Section 4.4, consequent1y the 

results obtained in that section are used to calculate the deflected shape. 

That is, this linked wall structure can be idealized for deflection purposes 

by an equiva1ent coupled shear wall having physical parameters as given 

by Eq. 4.32. The new physica1 parameters are 

El .. 8.525 x 10l2E + 8.575 x lOUE = 17.10 x 1012 E 

, 12 
À .. 0.144 (1 + 8.575 x 10 E) .. 0';289 

8.525 x 10
12 

E 

a .. (74.833 10-6) (~ x 0.289 

oH .. 4.207 

These physical parameters are used to eva1uate the constants of Eq. 3.6, 

which in turn are used to evaluate the equation itse1f a10ng the height of 

the structure, from which the deflection curve, Fig-. 13b. is obtained. 

The results obtained for the deflection of the two sample structures 

considered, linked coupled shear walls. and a coupled shear wall linked ta a 
J 

homogeneous shear wall. are in close agreement with the resul ts obtained by 

the more exact stiffness matrix computer analysis. In fact, for the two 

--
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) 

specifie examples the di fference . between the approximate and the "exact" 

solution is less than 1.0% throughout the height of the structure. The 
" deflection curves of a number of other structures,falling into the categories 

of linked assemblies considered in this section have also been obtained by 

t}le approximate and "exact" methods and these were always in close agreement. ' 

The deflection curves of a gr,eater varièty of high-rise shear 

wall structures May now he evaluated from the results obtained in this section. 

a few of these were illustrated in Fig. 1. 

A practical out come of this chapt,er is that, assemblies of single 

coupled shear walls or linked coupled shear walls which are linked to n linked 

homogeneous shear walls May be idealized for defl~ction purposes by single 

coupled shear walls or linked coupled shear walls, rejspectively, by changing 

the physical parameters of the latter two structures. 

RThe evàluation of the deflecti6n formulae obtained in this section 

May become quite cumbersome, but with the use of a simple computer pro gram 

of severai Iines these formulae can be evaluated over the height of a structure 

by specifyin~ only a few parameters, whereas. if a computer structural analysis 
j 

were used several hundred input lines would have to be t~ed. Therefore, an 

economy'of time and effort May be introduced by using the approximate method 

instead of the "exact" method. 

" 
4.7 Summary 

The deflection formulae of three types of linked shear wall 

structures are studied in the foregOing chapteri' viz •• linked cçmpled-walls • .. 
coupled-walls link~ tq a series of homogeneous wal1s, and linked coupled-walis 

linked to a series of homogeneous walls. 

-----~~-_. -. 

i 1 
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Fundamental di~ferential equations of deflection are developed 

for these shear wall structUl'es. For the linked c~upled-wa1l5~ a general 

deflection formula for the three loading cases is developed. The oth~r two 

structures~ the coupled-wall linked to a series of homogeneous walls~ and 

the linked coupled-walls linked to a series of homogeneous walls, ca~n be 

idealized for deflection purposes br a coupl~-wall, and br linked c;oupled 

walls respectively, by introducing new phrsical parameters. Therefore~ the 

deflection formulae) of the fonn~r two structures are identical to the ones 

of the latter equivalent structures. 
o 

The results obtained from the approximate deflection formulae 

developed are in close agreement with the ones obtained by the more exact 

stiffness matrix compùt'er analrsiS."~ '1 

" 

.1 

" 

r 
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CHAPTER V 

TAPERED COUPLED SHEAR WALLS 

5': 11 Introduction , 

.' 

• 

1 .. 

v 
In high rise shear wall structures, i~ the building is very 

taU, it i5 usua1 to reduce the walls cross section with height. In practice 

this reduction i5 done in st~ps. 

In this section approximate deflection formulae for the parti-

cu1ar case of coupled shear wa1l5 wi th variable thickness are obtained. 
1 

A linear variation o. thickness is used to approximate the ac~ual stepped 

variation of thickness found in praetice, Fig. 14. Two lateral load cases 

are considered: a uniformly distributed loading, and a concentrated load 

at the top of the structure. 
, t' 

<" ' 

(a) Stepped Variation (b) Linear variation 

Fig. 14 • Variable Thickness of Walls in Ta11 Bu~ldings • 

-55-
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The deflection formulae being in terms of power series, a 

variable cross section of the coupling beams would make it impossible to 

obtain the géneral tèrms of these power series, consequently in thes'e 

approximate solutions of tapered coupled shear walls only the shear~alls, 

haye varying thicknesses with height, the cross section of the coupling 

beams is kept constant throughout the height of the,structure. 

The differential equations obtained in Chapter II for tapered 

coupled shear walls with constant connecting beams are used in the derivation 

of the deflection formulae. 

, 5.2 Derivation of Deflection rorttlulae 
o ~ 

. / 

... 

.. . , 

The deflection formulae are obtained by first so1ving for the 

integra1 shear force from Eq. 2.17 and, secondly, br substituting this result 

in Eq. 2.8 and then by integrating this latter equation twice. The two­

governing differential equations for tapered coupled shéar walls as obtained 

in Chapter 1) are rewritten here for convenience. 

',~ d~ 2 
(1 + teX) - - a T '" - f3 ME ex) 

'dx 2 
0 

El (1 + tex) d 2~ '" ME (x) ( Tt 
dx 

S.2.1 Integral Shear Force 
f 

2.8 

~q. 2.17, being a linear differential equation with variable 
1 ) ~ • 

'coefficients, can be solved usina poweroseries solutions. The solutions 

will con~erge at least for: 

Ixl 
" 

l < o-
K • 

" . .. .~, ~ ~ 

, . 
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Since, only the rài1ge 0 '< X ~ H i5 of interest a converging series solution 

is obtained for 

IeH < 1 

ot, from Bq. 2.2 

.' 

meaning that for convergence of the series solutüms, the thickness at the 

bottom of the wall should not exceed twice the corresponding thickness at 
\ 

the top of the wall. This is the least radius of convergence. 

Solving for the homogeneous part of Eq. 2.17, seeking a solution 

in the from of a power sedes. 
\ . ... 

Th(x) = L 
n=() 

Substituting this series in Eq. 2.17 yields 

then rearranging the indices gives 

"'" 
(282 - (

2
8

0
) ... ~ [n(n-l)Bn + lC,(,n-l) (n-2) Bn_l - a2Bn_2]xn-2= 0 

n-Z 

5.1 

For this to be true a11 the coefficients of xj must vani5h, which leàds to 

and the recurrence formula 
2 

B • -1( (n-2) B 1 +.J!..- B 
n n n- n(n-I) n-2 

Using ~he above recurrence formula, the general terms in the series can be 

inferred from the first few terms and thon established by mathematic.al 

\1 

-' 

. , 
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induction. Part 'of this series solution can he expressed in terms of 

hyper~lic functions. The homogeneous solution obtained after rearranging 

is; 

Th(X) = B [cosh(ax) 
0 

+ Sl(X)1 + BI [sinh (ax) + S2 (x)) 5.2 

where 
, ... 

(-l)j 
(ax,l 2n+j 

SI (x) = L a (~)j 
n,j=l nj a (2n+j)1 5.3a 

... 
(ax~2n+j+l or .... 

S2 (x) = ( -1)j bnj 
(~)j 

n,j=l a (2n"'j ... l) ! " ~ .. - S.3b 

in which the coefficient s are given by: 
j 

a . = 
nJ 

[--[ Ê (2i H[ (2j -1)])---] 
2 . l 1 

• 5.4a 
j =1 

2 

.1 

- JI· 

S.4b 

Th-erefore the general solution for integral shear force of tape;ed coupled 

" shear walls for thé two loading cases under consideration is given by: 
g' 

where T (x}/~epresent5 the particular solution of Eq. 2.17. The constants 
p . .' 

Bo and BI are obtained by applying the boundary conditions, .Eq. 2.18, ta, 

the above equation. The constants B and BI and the particular solution o . 

are listed in Table III fpr the two loading cases considered. 

JI. j 
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L 
T (x) 

P 

B 
0 

'-

BI 

Si1x) 

------

Concentrated Load at Top P Uniformly Distributed LO~"'1>I" 
.- ...... ' 

pa 

a r' 
e ". .1~ -, . '. ~ .... 

a. ._..::... __ "'"!s"'~ 
.,. ........... ~ ... i ... ,.."":.:. .. ' .. #·,# ,----

Tx 

o 

- T 
Q' (cosh (aH) + Si (H)) 

CD =2: (-I)ja (~j (ax)2n+
j

-1 
n.j=l nj a~ (2n+j-I)! 

W r* .............. .".",-

~> ..... 
.............. 

26 
e 

-4 
a 

2 x2 
T(l + KX + Q :r) 

TABLE III Particular Solutions and Constants in Eq. 5.5 
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For the particular case of uniform walls, K=O. and a uniformly 

distributed load. Bq. 5.S reduces ta 

T(x) 
r 213 

e = -4 
Ct 

{(sinh aH - aH ) 
cash aH 

2 2 
sinh (ax) - cosh (ax) +1 + a ~ } 

which is the solution for uniform coup1ed shear wal1s as obtained by Rosman 

(6) and, Coull and Choudhury (1); this serves as a partial check on the 

developed theory. 

5.2.2 Deflection Formulae J 

The external moment ME(X) and the integral shear force Tex) are 
) 

now explicitly available for the two loading cases considered. Therefore, 

the deflection formulae may now be obtained by integrating twice Eq. 2.8, and 

by applying the appropriate boundary conditions. Eq. 2.8 is rewritten as 

d 2 1 1 ~ = - .~,...---=-
d 

2 El (1+KX) x 0 
{~(x) - (Th(X) + T (x))R.} 
" P 

5.6 

Since TpCX) is a function of the external moment ME(X). by introducing the 

simplifying abbreviations 

ME (x) .: T (x).t 
Q" ex) - p - (1 + "x) 

Th(X)~ 
Rit (x) = (l+Kx) 

Eq. 5.6 becomes 

d 2y 1 - {Q"(x) - Rif (x)} 
dx2 - Ela 

5.7a 

S.7b 

~ integrating twice the above equation, the general deflection formula is 

obtained and 1s given by 

,/ 
'/ 

. ( 

" , 

---------------------------------;,"":",,-. -
\ 
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y(x) 5.8 

The constants Co and Cl are obtained by app1ying the boundary-conditions. 

The function Q(x) is reiatively easy to obtain since it involve~ two 

successive integrations of Q"(x) which itself is a rational function. R(x), 

however, is not 50 easy to obtain since Oit involves integrations of hyperbo1ic 

functions and power series divided by a lineal' function,. and bath result in 

new power $eries. The derivation of Eq. 5.8 is shown in Appendix B. 

The constants of integration, Eq. 5.8, are also evalpated 'in Appendix B, and 

are given by 

Cl = R' (H) - Q' (H) 

Co = R(H) - Q(H) - C1H 

The functions Q(x), Rex) and, their first derivatives along with the functions 

necessary for their evaluation are listed in the subsequent tables for the 
'1 

1aterai Ioadings considered. 

.. 

J 

. \ 

l 
J 



--(----- _~_ .. _ . .,,_ ... .".. .. .,............,... "'.,.......,4~~ .. ...."....~ ..... _. ",._~~..-,.i""..,.~_ ... _ 

r--., 

" 1 

, Concentrated Load . Uniformly Distributed Load 

1 3 v 2 . w 1 4 v3 2 . (l~À) Q(x) p (-) {- + v - v log V } * - [(-) {- - V - V + V log v} 
K 2 2 K 6 . -

R(x) BoR. {RI (x) + R2 (X)} + B11 (R3 (X); + .R4 (x)} ** 
.' -, 

RI (x) 
1 a av . a av 

(Ka) {cosh (-) CO (- ) - 5mh (-) SI (- )} 
K K K K , 

, 

61 " 

R3~x) 
1 a av . a av 

. (Ka) {cosh (-) SI (f( ) - s~nh (-) CO (- )} 
K K K /' 

... 
. 2 Lî . (v) 

, 

R
2

(x) (l...}2 L -1 J a ~ n n+J 
K . l ( ) nj (K) (2n+j) 1 . 

J,n= -
,-

i,' ,,; 
• 1 

co 
. 2 1 L2 . 1 (v) 

R4 (x) (.l..)2 L (_1)J b . ~) n+ n+~+ 

K j ,n=1 nJ K • (2n+J+l) 1 

\ 

-.1 , ! 

~r 

'Il V ::: l+KX 

, ** Bo and BI fromTable III 

TABLE IV Function Q(x) and R(x) 
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i 
1 

~Q'(X) 
À 

R' (x) 

Ri (x) 

R3 (x) 

Ri (X) 

R4 (x) 

-
Concentrated Load at Top Uniformly Distributed Laad 

1 2 P (-) {v - log v } 
le 

2 
~ [(!.);) { ~ - 2v + log v} 
2 le 2 

B01 {Ri (x) + RiCx)} + B
1

1 {R3(x) + R.i(X)} 

1 {- a av . a av} (-) cash (-) CO' (- ) - smh (-) SIl (- ) 
le le IC le le 

1 { a a v . a a v (-) cash (-) SI' (- ) - slnh (-) CO' (- )} 
IC le K K le 

co 
1 \' . . L' () 

(j() /.- (_I)J a . (~/n - 2n+j v 
J ,n=l n) le (2n+j)! 

(!.) 
K 

co 

l 
J ,n=l 

l' . L' ( ) 
(_I)J b . (~)2n+l 2n+j+l v 

nJ K (2n+j+l) t 

TABLE V First Derivatives of Q(x) and R(x) 
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Function F(v) - First Derivative\F'(v) 
\ 

. 

'r: V
2j

+
1 ~ V

2j 
• CQ(v) v log v - v + (2")(2"+1)1 log v + 1-. ...;(2;..,. . ."....)"'""(2""'"'.)1 

J= ] J , J=l J J 

f' v2f - ,~v2j -1 

SI (v) f.;l. (2j-I)(2j)1 ~l (2j-l)(2j-l)! 

m-l m-l , 'L m-r+l L m-r m r,m v m r ID v 
Lm (v) (-1) v {log v - l} +c (-l)"lr) (m-r)(m-r+I) (-1) log v + (-1) Cr) (m-r) 

r=O r=O , 

TABLE VI Functions CO(y). SI(v), L (v) and Their First Derivatives m 
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5.3 
1 

Example and Discussion 
\' '-.' 

The deflection curve of a tapered coupled shear wall loaded br 
1 

a uniformly distributed load is calculated using; th~ deflection formulae 

derived in the preceding section. The deflected shape of the structure is 

obtained. using a computer program which sums the various power series by 

"do" loops and evaluates the' deflection formula along the height of the 

structure. This deflection curve is compared with the deflection curve 

obtained by a stiffness matrix computer analysis of the structure. Here again 

the "SAP IV" (10) program is used for the computer analysis. In the stiffness 

analysis the tapered coupled shear wall is idealized using th~ wide column 
-. 

frame method discussed in Section 4.,6. The vertical tapered shèar walls are 

simulated by rolumns with discrete steps in thi~ess throughout their height. 
1 

) 

. \ 

--~-----------~ -/"",_\ " 
" 
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Example: Tapered Coupled Shear Wall 

, 

~ 

-

H . 

. 
1· -

J///"I 7 /7711/7 

1 .. 450mm .l 
1S.0m 

'a) coupled-wall bl tapered°thickness c) stepped thickness 

J 
Fia. 15 Sample Tapered Coupled Shear Wall 

.E .. '28. 000 MPa 

H = 75.0 m; h = 3.75 ln w .. 15.0 lcN/m 

Coupling,beams are of constant size throught the height (17SX2S0x4S00'mm) 

except the top beam which bas half the moment of inertia of the lower 

beus. 
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A = 43.75 x 103 mm2 
p 

A = A = 1.6875 x 106 mm
2 

01 02 
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The approximate deflected curve of the taper'ed coupled shear 

wall is obtained from Eq. '5.8 for the uniformly distributed loading. 

The physica1 parameters are irom Eq. 2.16 and Eq. 2.2: 

El = 12.814 x 1012 mm4 
o 

12 6 
À = 12.814 x 10 x 3.375 x 10 = 0.120 

11250
2

(1.6875 x 19
6 x 1.6875 x 10

6 

a = 

K = 

( 
12 x 111.65 x 106 x 112502 (1 + 0.120) :\1/2 = -JO -6-1 

- - J 6. 586 x.l 0 JDDl 
12.814 x 10

12 x. 3750 x 4500
3 

~l;..."..,,_ (4
25
50

0 
-1) :: 10.667 x 10-6 mm-1 

75000 

or aH = 0.494 and KH = 0.80 

Substituting these into the def1ection formula, Eq. 5.8, and 

using the computer program for the evaluation, the top deflection of the 

tapered coup1ed wall, Fig. l~b, is obtained 

YTOP = 9.712 cm 

When using the computer'structural analysis on the stepped model; Fig. ISe, 

the fol1owing top def1ection is obtained 

YTOP = 9.581 cm • 

The deflection profiles from both the approximate def1ection 

formula of the tapered coup1ed shear wall and the computer structural 
/1 

analysis of the stepped coup1éd shear wall are shown in Fig. 16. 
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o ) 

X/H 

'0.0 

0.2 

0.4 

0.6 
} 

0.8 

0, 

- Appr Olt. 

-.eomput~, 

4 • . 12 cm 

, } 

Fi,. 16 Lateral Deflection of a Tapered'Coupled ~hear Wall 

. ) 

Fig. 16 shOws close agreem:nt between'the apP~OXimate'~nd the 

<"exàct!ld~fle~tion profiles, the difference between the two' sollution,s d?or 
1 
\ 

not exc,eed 1.5\ throuahout the htlight of the structure. 

At first 'glance the,evaluation of th~ deflection formulae of 

tapered coupleâ sbear wails seems to b,e'-almost imposSible but, with the use 

,of "do" loops in a computer program. t,hese deflection formulae can be 

relatively easily evalua\:ed. Onée this pro gram is available the deflection 
'. 

profile for .each new t~pered couple<! sllear wall is r,adily obtained. by 
" , . 

.. 
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, , . 
specifying the taper an4 ,physical parameters of the top of the structure; 

whereas, if a stiffness matrix computer analysis were used, this would 

involve several hundred lines of input ,for each new tapered shear wall 

structure. Cons equentl y , for preliminary "design purpos~s, the use oi. 

the approximate metbod becomes more convenient than the "exact" method 

as the required number of tapered coupled shear wal~s deflection profiles 

to be evaluated increases. 

UnfC?rtunately a disadvantage of this lIlethod i~ that the approxi­

mate solution does not behave weIl, converging'only slowly for BH > l.O'and 
" ' -

KH ~ 1.0, and requiring a great deal of computing tise for each evaluation 

of the deflection formulae. Also, if the computer program is not written 

with high accul,"acy in mind, it might not even converge. To"increase the ~ 
/ 

accuracy of the results of a Fortran Program, which evaluates the deflection , , 

formulae of tapered coupled shear walls, a number of steps should be takenj 

three of these a~e: to use double precision throughout the calculations; 

to use logarithmic and g8llllll8 fW1C:tions when summing the power series such ., , 
that, for example, the Fortran expression for the general term" of Eq. 5. 3a 

~ 

(K/a)j (ax) 2n+j 1 (2n+j) , i5 
, >' 

" DEXP (j* DLOG(K/a) + (2*n+j)*DLOG (a*x) - DLGAMA (2*n+j»; 

thus prevenUng the manipulation of exceeding~y large numbers; and to 

properly nest the ftoo
ft loops pj double summatid'ns such·that the alternating 

1 

terms or- the double-summations" Eq. 5.-3, are- sUIIIIIled first, ISO atS to avoid 

Jhe mani~ulation of large nu;nbers. 

1 

, 1 

>---'-, -1-'­
~ "'~r.1 ,'" ~ 

,,\. IL' 

1 • 



. -

1, 

" 

~.() 

n 

• 

10 

5.4 Stimmatz 
1 

Deflection formulae for coupled shear wall structures. having 

wall! with tapered thickness. are developed in tpe chapter for two lateral 
, d 

lolding cases: a distriwted loading.· and a point load at the top of 

,the structure. The formulae are in the form of power series. and converge 

rapidly for aH < 1. 0 and ICH < 1. O. For this range. the results 0 btained 
, \ 

from the approxima~e formulae are in close agnemellt with the more exact 

on~s 0 btained by computer. structural analysis. 
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CHAPTER VI 

CONCLUDING RE~KS 
• 

S-', 

A method based on the continuous'~medi~ analogy has been ") 

presented for the evaluation of the deflection profiles of linked shear 

wall as well as for tapered coupled ,shear wall structur~s. Thè method of 
1 

computation presented is an approximation and holds for the elastic range 

of the structures prior ta crackink rand inelastic actions. 

The worked examples show that the results obtained for the l.\D,ked 
, 

shear wall structures .are in ,excel ~ ent agreement wi th the "exact" computer 

stiffness matrix analysis. The method is suitable for hand calculations 

as, weIl as for programmabl e calculators or digital comput ers . The method 

,becomes more; attractive when faced with the ~lternative of a long and tedious.,. , 
o 

computer structural analysis. The 4ifference in accuracy does not warl::'ant 
\~~ 

the use of a stiff'ness matrix analysis; over the approximate" analysis. 

For the case of tt;Lpered coup1ed shear walls, the approximate 

results also show very clo,se agreement Idth the "exact" computer analysis. 

Unfortunately # as discussed in Section 5.'3, a disadvantage of the approximate :' 

method is that the deflection formulae converge only slowly for aH ~ 1.0 

and 1<1;1 ~ 1.0 and may require a great _deal of compùtati~n before convergence 

is attained. For this reason, it might in such cases become more feasible 

and accurate ta use a computer structural analysis. 

The expressions involved :ln the evaluation of "the deflection 

formulaé of tapered coupled shear walls are len4thy and it would become more " . , 
! practical to usè a lPfo&f8llllJl8.blè ca~culator or à small capacity computer to 

evaluate 'thém; Even if a large capacity com~ter is ,availab1e, the evaluation 

of the defl ecti~n profile for the range of aH and ~ pre~iously mentioned ~ii 1 

-11- ,--

( 
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~> 

be as accurate and less time consuming than by more conventional computer 

analysis methods. 

A practical equation developed in this thesls is the fundamental 

differential equation of deflection obtained for a coupled shear wall 

subj ected to a general lateral loading. This equation can he used for the 

analysis of other structural systems comprising one. or more coupled shear 

walls, along with other lateral load resisting assemblies. The procedure 
1 

to be followed for the analysis of such structural systems would be identical 

to the one used in Chapter IV ~ n~ely by introduting interacting forces. 

Alternatively the results obtained in this thesis can be utilized .., 

further for solving the deflection profiles of other laterai load resisting 

assemblies. comprising rigid frames, braced fr~es, coupled-walls, and homo­

.geneous walls, by reducing the .~ormer two structures to their equivalent 

coupled-walls with parameters aH and ~ as developed by Kuster (9). 

A valuable result which emanate5 from the study of linked wall 

assemblies i5' that. a structural system comprising III coupléd-walls and n 
D 

homogeneous walls can be idealizea for deflection purposes by a new structural 

system comprising m coupled/-walls by changin~. the physical parameters of one ,\ \ 

of the coupled-walls. 

" 

;' 
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APPENDIX A 

DEFORMATIONS OF THE CONNECTING LAMINA IN TAPERED COUPLED 

SHEAR WALLS 

Derivation of Deformations of the eut Lamina 

The defotmations of the eut lamina of the analogous tapered 

co~pled shéar wall system, Fig. 5, are developed here. These are used 

to derive the governing differential equation of integral shear force 

in Section 2.4. 

a) Rotat ion of walls. due to bending under external loading J and shear 

forces in the connecting beams. 

~ 

Fig. 17 BencUng Deformation of Wall s 
/ 
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For small rotations, which' is the case here, 
é 

ê (x) 
(b+d

1 
) 

e (x) 
(b+dZ) 

e (x) = 2 + 
2 = 

r 
~e (x) 

where the rotation of the wa11s at leve1 x is 

e (x) = * 
The rotation e (x) is obtained by dividing Eq. 2.8 by El (1+KX) and 

o 

integrating from C = x ta 1,; ~ H yie1ding: 

R-
ê (x) = ET J: 

o 
~2 JxH 

- Ël 
o 

T 
(1+K7;) dl; 

74 

The first term of the above expression is the defomation of the walls 

due to free bending under external load, while the second is the reverse 

bending deformation of the walls due to shear in cannecting beams. 

Ô
E 

'(x) JI. J: ME,CC) 
dl; = il (l+Kr;) 

0 

ô
1 

(x) 
Jl.2 JH T 

dl,; ËI (l+KÇ) 
0 X 

2.10 

2.11 

~, '~ ,~ 
, ' .. 



1 

t , 
\ 

f 

1 
l 

\ 
t 
1 

, . 

1 

7S 

b) Bending and shear deformations of connecting beams 

,', , 1 

1 
• 

1 TCix 

1 
_1 

p- Ô 
-t2 

Tox 

!-

bl2 b/2 

Fig': 18 Deformatio~ of Lamina Due to Bending and Shear in Beams 

Assuming the be,ams to hre the same cross section Ip through the height 

of structure. At lever'x. for a strip of lamina of height dx, the distributed 

moment of inertia is given by , 

l dx 
dl '" -1L­h 

, . 
The apphed force of this strip i5 

dT 
dT '" dx dx .. T 'dx 

J. 

For a cantilever beam loaded by a concentrated 'load at the free end, the 

deflection at the free end is. 

, ,."-:", ------ --------·-i·-.. ~ .... 
". , , , , 

',~ r 
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Using this expression on the strip of lamina of height dx, ~he deflect~on 

02Cx) is given by 

from which 

'" 2 (dT) (b/2)~ = 
3EdI 

T' hb
3 

ô 2 (x) = 12El 
P 

UT'dx) (b/2)3 
lax 

3ECrJ 

2.12 

To include the effect of s hear in the connecting beams. l may 
p . 

be reduced such that " 

where l is the actual moment of inertia and fér rectangular connecting po 

beams 

in which c and b are the depth and clearspan of the connecting beams. 

The reduced mOlgent of inertia should be used. especially for' deep 

connecting beams. 

• 

'-

1 
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c) Axial 'deformation of walls due to integral shear force . 

. T T 

l- -1-----

f 

Pig. 19 Axial Defomation of Walls 

-T dl; 
EA

2 
(ç) 

but from Eqs. 2.3 in Section 2.2 l 

Substituting these expressions' into the exp~ession for t5 3 ex) and 

rearranging, the following i5 obtained 

-------'''---'\ 

~-- .:;.. ......... -

77 
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J: ô
3 

(x) 1 (_1_ + _1_) T d ::: -
E A

o1 A
02 

(1+Kr;) r,;-

A JH , 
} 

ô
3 

ex) 1 ( A.~ ~ x 
T dr,; = -

(1+Kr,;) 2.13 E 
01 02 

il 

f ) 

{ 
l ' 
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APPENDIX B 

DEFLECI'ION FORMULAE OF TAPERED COUPLED SHEAR, WALLS 

Derivation of Deflect!i.on Formulae 

The deflect ion formulae for two loading cases, a concentrat'ed 

-1oad at the top of the structure and uniformly distributed loading are 

'derived frOID the curvature equation in Section 5.1. 2. 

d
2
y '" _1_ {QI! ex) _ R" ex}} 

d 
2 El 

where 

x 0 

_ d 2Q 
Q"(x) -

dx
2 

ME (x) - T (x)R. 
= P (1 + ta(.) . 

d2R _ Th(x) R. 
R" ("") 

.A '" -2 - (1+KX) 
dx 

with boundary conditions: 

y(H) = 0 

~(H) = 0 
dx 

Bl 

82 

53 

5.2 

2.9a 

2.9b 

The constants 8
0 

and Bl and the func'tion T
p 

(x) are listed for the two 

loading cases 'considered in Table III .. 

Integrating Bq. BI gives 

dv l 
;;;.L. = - { Q' (x) 
dx El 

o 
R' (x) + Cl } B4 

Cl is evaluated byapplying boWldary condition, Eq. 2.9a. which yields 

Cl .. R' (H) - Q' (H) 
0 
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Now in~egra~ing Eq. B4 to solve for y(x) 

i l > 

y(x) 1:: El" {Q(x) - R{x) + Ct + C } 
u 0 o. 

5.8 

Dy applying. boundary condition, Eq. 2.9b, C is obtained,"and is given by 
·0 

C = R(H) - Q(H) - C H o l 

In order to evaluate the deflection y(x) given by Eq. 5.8 the functions 

Q(x) and R(x) and their first derivatives have to be solved for the loading 

cas~s considered. 

• J , 
1) _Rex) and its first derivativè 

", ... ,,\, 1 _~ ___ 

a) Concentrated 10ad at top of structure 

MB(x) =Px 

from Table III 

T (x) = p f x 
p " 2 a 

Substituting these into Eq. ·82 

, -al 'x 
Q"(x) = P(I- a 2 ) (1+1Ot) 

Sub'Sti tuting the expression for al from Section 3.2 

Q"(x) = P(l:À) Çl~l<:X) 

Introducing the abbreviation 

v .. (1+ KX) 

and integrati~~ the desired results are obtained)and are given by 

Â 1 2 
Q' (x) Sil P (1+).) (K-) {v - lbg v} 

À 1:5 v2 
Q(x) a: P(l+).) (ië) {T + v - v log v} 

t. 
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b) ~niIormly distributed 
2 

Me (x), :::. w
X

2 " 

load 

" 

from Table III 

~ 
.) T (x) 

P 

Following the procedure used fàr the previous 

2 
Q" (x) = ,! (-1-) x w . 

, 2 1+>' (l+KX) (12 (1+),) 

81 
,1 

" 
/"" 

- Jo ' 

\ 

. 
loading tase ' 

Now integrating the above expression and using ~he sam,e abbreviation 
"v 

used in the first loading case. 

). 1 3 V2 \ 
Q' () w ( ) (_, { 2 1 } x = 2 1+>' Ie.l T - v + og v 

2) Rex) and its first derivative 

w 
-;;-2--'- x 
Il (1+>')' 

w 
2 x 

T 

The function R(x) is. the same for all" loading" cases since 'i:t 

1s a function ~f T h'(~) the solution to the homogeneous part of Eq. 2.17. 

Eq. ,5.2 1s identical fOr aU loading cases since it is ihdependent of , ~ 

the external load. 

Rewri t ing the expression for R" (x) 

.. 
Rrt (x) =- B 1 {R" (x) + R" (x)} + B R. {RU (x} + Rtl (x)} 

o 1 2 l 3 4 

where 

R" (x) • 1 
cosh (CLX) 

(1+1OC) 

1· 

, ..... 
1 '. 

1 

\ 
\ 

,~- .. 

, 

1 

1 
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R" (x) 2 

51 (x) 
a-

(1+1<X) 
, 

R'3' (~) = sinh (ax? 
(1 + lOt) 

52 (x) .. -(l+I<X) 

" 

al RI ~x~ and R3 (x) and their first derivative 

Ri (x) 
_ f cosh (ClX) dx ,,-

(1 +ICX.) 

R3(x) ,. j 5inh (wc) 
(1+ICX) . 

dx 

. 

1 ..Jo 

.. 

82 

using the hyperbolic identities and v for (l+IOt) the f0110wing are 0 

obtained 

R' () (1\ {cosh -CCI) co' (!!. v) 
1 x " te:J )'te: te: 

*' 

where • 
co' (~) ~ r cosh t dt;. log' t + r. L 

, " • j a 1 (2j )(2j) J . , 

, 2j-1 
G ' , 

(2j -Il (2j -1) 1 , . '. .. 
1 

" , '.' 

Integrating the ,~xpr,e5sions "f~r Ri -ex) and R2'{x) the fOl.lrwing· exp~ess~ons . . 
. aJ,'e obtained 

i 1 , 
• CI' '(~ 'vn RI (x) • tjâï) {cosh (~) CO ci v) - sinh .(-) SI 

.te ~ , 
/ 

,. 

, : 
,\' 

- -(.!al {co~h -<il SI ~ v) 
, 

a CI v R
3

(x) • Sinh (-), CO (- )} 
le " te K , , " . 

! wMre 
'.... "'. " 1 ~ .. :>:~ 

... 
• " \ . ' 

.' ~. 
:. j 

.p 
! • 

, 1 {"J! ... 1 
~ 1,. " .' -- ------' 

" 
11/ 

" 

J 

/. 
~ 

"1 
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.. , 
- 2j+l -

• 

,CO(l;;) :1 1 CO' (~) 'dl; = 1; . 
(2j )(2j +1) 1 

.. " 
51(1;) = f S7' (~) dl; = 

l' 

~) 14 (x) "a~d. R4 (x) and their first' derivative 
.... , 

Si (x) 
R2Cx) ~ 1 (1+1<X) dx 

" '''' 
• 52 (x) 

R4Cx) = f (l+KX) dx , . " ' . . " 
Sinee both 51 (x) and 52 (x) ~re 'power seri'es in 1 (lX both RZ (x) and RJ (x) " 

h\ve terms proportional to 

(ax)m 
Sm(x) = 1 (l+KX) dx 

\ 

--5ubstituting v for l+icx t~is reduc s to 

, 

~ntroducing the abbrevia.!J.0n. 
i.. m 

L' (v) :II f .t::!I dv 
m v '-.... 

Expanding the tem i~ ~ braGket and 

the binomial coefficient 1 gi ves, 

m-l 
L~ (v) '* (_l)m log v + ~1 

" _ r'*O 

as ... 

integrating each term, then using . . 

86 

Substituting this expression into Eq. BS, the followi~g, general term 

is obtained 

Usini this result for the evaluation of the expre~sion'$ for I\i{x) ~d RA (X)' 

y-ield~ 
:~ . 

..J 

,. . 

_1 
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• 
) 

(-1) j . CI '2n Lzn+j (~ 
anj (1<), "( 2n+j) ! 

L
CD 

, L' Cv) 
= (1) (-l)j b . ~~2n+l 2n+~+1. 

J( j 1 'nJ le ' (2n+J+1) ! ,n= 

IntegTating the above twe expressions. gives 

(-l)j a . ~)2n L2n+/v) 
nJ K (2n+j) 1 

84 

1 

where L Cv) is, obtain~d by integrating the expression for LI, (y) given 
'm ' m 

in Eq. B6 wi~h respect te 

L (v) = (_l)mv 
m· 

V, this is given by: '\ 

m-l m-r+l 

fi og v -l} :; L ( -1) r -:'(m-:-r-=-) -=-(m---r-+ l') 
r=O 

, These results are ta~lated in Section 5.2.2, Tables IV, V, and VI. , 
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