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: ABSTRACT ’

An approximate method of analysis is presented for determining

/ +

the lateral deflections of multi-storey shear wall structures. The method

—

is used to derive differential equétio@ﬂof deflection for wall structures

subjected to a general lateral loading. The analysis is based on the

continuous medium technique. -

o

The shear/wall structures considered consist of the followingﬂ
systems: single copi)led—walls; linked walls, that is, linked coupled-walls, “ g
series of homogeneous walls linked to single c;oupled-wallls, a\nc;i series of
homogeneous walls linked to linked coupled-walls; and tapered coupled-walls,
Deflection formulae for these structures are presented for the conventional
loading cases: a concentrated lload at the ;Op of the structure, a uniformly

distributed load, and a triangularly distributed load. For the tapered

coupled-walls, deflection formulae are derived only for the first two loading

cases. !

! The developed formulae can be used for multi-storey structures ,
A ! i

" having symmetrical overall plans, subjected to symmetricai loading, Theoreticﬁ
prédictions of deflection profiles of the linked wall and the tapered‘ |

coupled-Wall structures are compared with results obtained from stiffness ];
matrix computer analyses of these structures for th; uniformly distributed /

loading case.
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RESIME

- Une méthode approximative d'analyse est presentSe pour determiner
les déplacements latBraux de MAtiments, 3 murs de cisaillement, 3 &tages
« mltiples. La méthode est employée pour obtenir des &uations différentielles

pour les déplacements latfraux de batiments & murs soumis 3 des charges
latérales quelconques. L'analyse est bas&e sur la technique de
raccordement. contini.

Les structures 3 mars de /cisaillenent, cansidérées dans cefgte &tude,
comprement’ les systSmes suivants: murs-juelés; murs relids, c'estd=dire,

mrs—j;m\elés religs, suite de murs pleins reliés 3 des mars-jumelés, et ’

suite de murs pleins reliés a Ede:a murs-junelés reli&s; et des murs-jumelés
a varie;tion pyramidale. Des formules de déplécements lm;mntawc sont
présentes pour ces Structures soumisesaux charges horizontales suivantes:
\m’e\cm:geconcen?ée au sommet de la structure, unec}argedistrimée
uniformfment, et une charge distrihuée triangulairement. Pour les murs~
jumel&s 3 variation d'é&paisseur pyramiéale, des formules de déplacement
sont présentfes seulemant pour les deux premifres charges horizontales.

Les formules développées peuvent &tre employées pour de hautes p
structures, ayant des plans ainsi que des charges latfrales symm&triques.
Iespz:évisionétkﬁoriqu des déplacements latfraux de/ structures 3 mus
relifs, et 3 murs-jumelés 3 variation pyramidale sont comparées a des
résultats obtems par analyses de structures faites sur ordinateur.
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NOTATION

¢ '
-

Cross sectional area gt top of wall j

Aol ¥ A02
al 2, s
i R . , )
BIOW -
’ /

Bj Integrating constants
b Clear span of connecting beams - -
‘ Cj Integrating constants /
c Depth of connecting beams
3 p" ath derivative . , o y
”dj Width of wall j ‘ -
E Modulus of elasticity
g Reductiop factor for moment‘ i;ertia of beam, Ato‘ )
include shear effects - ’
H Height of structure
h Storey height | a ' .
‘ Ioj Moment'of inertia at top of wall j /
Io I01 * 1 ' . y - S
Ip Moment of inertia of connecting beams (reduced) {;
Ip o Actual moment of inertia of connecting beams X
hm,Q,R,S,s,CO, SI Functions necessary for t/he evaluation of tapered
structure ‘
z/ Distance between the centroids of the walls;.in a coupied ;vall
ME E:Eternally, applied moment —
Mi Moment of interact%.cm \ ‘ ) A
) N j In;:;grat"ix;g cons;tants ’ )
PE Lateral point load at top of structure (external load)i
Pi Lateral point load at top of structure (int_e‘rai:tion force).

iV~
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Late&:al point load at top of structure

P,
+ ,/' , ‘ .
P Intensity of triangular lateral load
T Integral shear force
toj Thickness* at top of wall j
tbj Thickness at bottom of wall j
v T 1+ kx ; A .
Wy .  General distributed loading (external load) ‘ y
- W, General distributed loading (interaction force) , -
' —
w Intensity of uniformly distributed load
x Distance along the height from top of structure
y Lateral deflection of structure _
z X/H . ‘\ -
o Physical parameter of coupled-wal&s relating the shear and
bending stiffness -
B8,Y;n,u,v,$,¥ Physical parameters ,r/l '
6}5 Deformation of cut lamina due to external load \‘\
63. Deformation j of cut lamina , ’ \\
) Rotation of walls
7 ’ \
K Measure of linehr taper of walls - |
A Physical parameter of coypled-walls, measure of axial \
flexlblllty
z j Dummy \lar;ables of integration : : >
r Forcing function
T Integrating constant '
- -
. y . —
1 " ~
!
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CHAPTER I  °

INTRODUCT ION

1.1 High-Rise Buildings

\ .
In modern multi-storey buildings, shear walls are used extensively

t ~ .

to resist lateral forces exerted by wind and earthquakgs. The term 'shear

walls' as used i;x this work covers both homogeneous walls, and coupled-walls.
The main .function of the shear walls is to increase the rigidity against
lateral- loading as we€ll as to resist vertical loading.

' In addrit‘ion to strength and stability requirements tp.e behaviour
.of a structure under service loading has to be considered when designing a
multi-storey building. The mcﬁst important serviceability criterion for high-
rise buildings i’s the lateral deflection of the structure because, i\f this
is excessive, it affects the integrity of non-structural partitions, cladding
and glazing, as well as the comfort of the occupants. Generally, as the l
height of a building increases, the sway under lateral loading surpasses the
strength requirements and becomes the governing factor in the design of a

tall structure.

t

ey

ty inwwq The distinguishing feature of shear walls is that they have :mch
égh&r moments of inertia than colummns, and widths which are comparable to
the spans of adjacent bgams or slabs. The high in-plane figidity of shear
walls, and economies due to their sp;.aed of erection and low reinforcing steel
‘content make then the most feasible and attractive lateral load resisting
elements.

g Homogeneous shear walls behave as vertical cantilever beams under
the action of lateral loading, deflecting predominantly in a bending mode -
config“ﬁtation. They may be ahalysed simply in their elastic range using

)

simple bending theory.
J

-1-
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o .. Shear walls are often weakened by vertical bands of openings for

doors, windows or corridors, yielding highly redundant structures; such
pierced walls or walls with openings are often referred to as coupled shear
walls. Coupled shear walls also arise when two coplanar homogeneous shear,

/ walls are rigidly cqnnected by coupling beams or floor slabs at each floor

£ .
level.” They can be considered as frames with very high column to beam
stiffness ratio, thus deflecting in a shape which i$ a combination of bending
and shear modes.

X The structural system of a multi-storey shear wall building '
generally consists of a number of parallel shear walls, homogeneous and/or
coupled, symmetrically arranged in plan and joined by slabs. When the
building is subjected toua symﬁe{rical lateral loading, it does not twist,
and can be idealized for analysis by an equiv;ient planaﬂhiateral load «
resisting assembly: If the‘walls are identical, they will deflect identically
and 091y one wall need be analyzéd. Whereas when the walls are nonidentical,
the horizontal interaction forces produced by the presence of the slabs must

‘'be considered in the analysis. Three‘ty;;s of planar wall assemblies are
investigated in this thesis, these are:
a) two linked coupled-walls
b) a coupled-wall linked to homogeneous walls
c) two linked coupled-walls linked to homogenheous walls
A great variety of structural .systems can be reduced to the above assemblies,
a few layouts are illustrated in Fig. 1. L
\ ‘ If a building is very tall, it becomes necessary to increase the i

thickness of the shear walls towards the base. Such an increase in thickness

becomes essential-in the lower regions of the walls becausp of the presence

J
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¢} Linked Coupled-Walls Linked to Homogeneous Walls

Fig. 1 Structural Systems of Shear Wall Buildings (Plan View)
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of high gravity forces, and high bending moments; these, result from the

accumulation of the vertical loads and the lateral loads respectively.

1.2 Scope of the Thesis

The determination of the lateral drift of a mﬁlti-storey building
is important |and should be undertaken in the early stages of the design
to ensure t ' the deflection limitations are not exceeded. The calculation
of the lateral sway of tall buildings can be a‘long and tedious process
‘because of the high degree of kinemat{c indeterminancy invqlied; therefore,
simf;ifying assumptions are often made in the analysis. In the inital stages
of design a computer analysis is often not warranted because of the coﬁsider-
ab%e effort and time required in the preparation of the input data and in the
relét;vely high cost of running the complex programs for these multi-storey ‘,
structures. Approximate deflections and actions obtained by rapid hand

— -

methods are usually preferred.

- Py

Single coupled shear wall structures have been extensively studied,
and deflection formulae along with deflection curves have been obtained by

various authors (1,2,3) for the three conwentional loading cases. Acceptable

" deflection formulae for tall single homogeneous shear wall structures may be

obtained using ordinary beam theory.

Multi-g}orey shear wall structures often comprise several coupled
"and/or homogeneous shear walls cgnn;cted togeiher in’ series, Fig. 2a, or in
parallel, Fig. 2b, by beams or floor slabs. 1If, in planar structures consisting
of distinct shear walls connected by beams or floor slabs, Fig. 2a, the
bending stiffness of the connecting members or their Qail connections is low,
the conneFting members behave effectively as hinged-end links; such structures

are often referred to as linked series assemblies. Structures with symmetrical
. .

<
e
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Fig. 2 Shear Wall Assemblies (Plan View)
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overatl plans consisting of vertical shear walls in parall'el connected
by floor slabs and subjected to symmetrical loads such as shown in Fig.
2b, can be idealized by planar linked series assemblies if the floor
i ‘diaphragms are assumed to be rigid inyt:/heir own planes and to have negligible
rigidity in‘ the normal direction. Therefore both thg series assemblies
. and the symmetyical parallel assemblies can be idealized by linked planar
- shear wall structures. The pin-gnded links simulate the effect of the
floor slabs or connecting beams in constraining the assemblies to translate

identically.

In this work, a fundamental differential equation of deflection is

‘loading and a top’ concentrated load. \This equation is essential for the
study of deflections of linked wall structures. Three typeg of linked
! shear wall assemblies are investigated, Fig. 3J; one consisting of two
coupled-wall assemblies linked together, And two others consisting of either
one or two linked coupled-wall assemblies linked to a series of homogeneous
”walls. These linked structures are analysed f# general lateral loading,
and deflection formulae are developed for the following lateral loading
cases: uniformly distributed loading, triangularly distributed loading,
and a concentrated load at the top of the structure. The uniformlyg distri-
buted and triangularly distributed loadings can be superposed to ;imulate
an equivalent static wind loading, and the triangularly distributed loading
with the top.concentrated load to simulate an equivalent static earthquake
loading. The developed deflection formulae are suitable for design office
preliminary calculations. ) -
For the case of coupled shear walls with v;riable thickness, an

-

approximate method is used to derive deflection formulae for coupled shear

developed for coupled shear wall structures subjected to a general distributed‘

& e O o
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walls with tapered thickness under the actions of uniformly distributed

-~

loading, and a concentrated load at the top of the structure. Y

\ The method of analysis used in this work is based upon the
continudus medium technique which has been applied in several papers,
primarily for the analysis of coupled shear wall structures unde{ horizontal
loading. This technique is extended to-include the shear wall structures
investigated in this thesis, namely: uniform coupled-walls subjected t6
general distributed lateral loading along with top concentrated load,
li;ked walls,and tapereé coupled-walls.

y ’ /

1.3 Continuous Medium Technique

3

- The method of analysis, as applied to coupled shear walls

assumes, in its most basic form, that: the discrete system of connecting

.beams may be replaced by an equivalent continuous medium. The theory

assumes that the sectional properties of the structure remain constant over
the height, that the coupling beams have a point of contraflexure at mid-

span and that they do not deform axially. Several authors have used this

approach to investigate the response of these highly indeterminate coupled- °

wall structures, but with differing choices of variables; all have yielded
essentially the same results.

The method was first used by Chitty (4) in the analysis of a
cantilever composed of a number of parallel beams interconnected by cross-
beams; later Chitty and Wan (5) applied the technique to the analysis of.
building frames subjected to wind loading. The technique was applied éo the
analysis of coupled shear walls by Beck (1), Rosman (6), Coull and Choudhury
(1) and a number of other authors of which a selection of papers is listed

/

in the bibliography. [
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1.4 Organization of the Thesis ., -

The basic governing differential equations for coupled sheéar
wall structures subjected to a general distributed loading and a top
ééncéntrated load are developed in Chapter II for structures having walls
with linearly varying thicknesses. Tpese equations are also valid for /

dniform coupled shear walls since they can.be considered as tapered coupled
J .= .

shear walls with zero thickness variation.

The governing diéﬁ%fegtial eqhatiOns‘are used in Chapter III to ,

derive a fundamental differential equation of deflection for uniform

coupled shear walls under a general lateral loading, which is in turn used

to obtain a-deflgction formula for the thiee céﬁVéﬁﬁgongl lateral loading

>

cases %i{ﬁg‘ "'”lf
‘ [t 270, =N

(Y

The fundamental equation, obtained in Cﬁhpt%E;III, is essential
for the derivation of the differential equa;ionﬁ‘%?~&bf1ection as well as

loer
the deflection formulae which are developed. for linked structures in Chapter

_—

IV. The three linked structures considered are: two linked coupled-walls,

"one coupled-wall linked to a series of homogeneous walls, and two linked

coupled-walls linked to a series of homogeneous walls,
In Chapter V, deflection formulae are developed for tapered
coupled shear wall structures. _ _

Concluding remarks of the preceding chapters are discussed in

the final chapter. - .

. M -
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CHAPTER 11
DERIVATION OF GOVER“ING DIFFERENTIAL EQUATIONS OF COUPLED

*

SHEAR“WALL STRUCTURES

—

2.1 Introduction ' ! .
The two basic governing differential equations, mecessary for
the derivation of deflection fd%mulae of uniform couplea—wall, tapered
coupled-wall, and linked wall structures are developed in this chaptef.
These are the equations of deflection and integral shear force for tapered
coupled shear wdll structures, subjected to a general horizontal loading.
The equations are applied to uniform coupled-wall structures by setting the )
taper to zero. The continuous meﬁium technique is used for the derivation

of the equafions.

-~

2.2 Formulation of the Problem and Assumptions

Considering Fig. 4a, the coupled~wall structure has a high degree
of static indeterminancy. In the analogous structure, Fig. 4b, the discrete
connecting beams of flexural stiffness EIp are replaced by a continiious medium
or lamina of flexural stiffness EIp/h per un%t height. This medium has the
same storey to storef flexural stiffness as the connecting beams. By cutting
the continuous lamina along its midspan and introducing a vertical distributed
shear force of intensity T' pér unit length acting along the cut section, the
coupled structure is reduced to two statically determinate structures., The

integral shear force T =4[

o T' dr becomes the statically redundant function.

The first of the two basic governing differential equations is
/
obtained for the defléction by considering the moment curvature relationships

of the two walls. The second governing differential equation is developed for

<10~

X" /
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the integral shear force T by considering the compatibility of deformations
J i {
of the lamina along the cut section.

In the continuous medium analogy, used by the author, the

following simplifying assumptions are }n;roduced:

1) All sections, walls and beams, are linearly elastic, and the taper of
the vertical shear walls.is relatively small, such that simple engineer's

bending theory may be applied. - -
LY u

—

’2) The values of:-
a) the storey to storey height h
b) the clear span b and the cross sectional prbberties of the connecting
beams.

c) the width of the walls d, and d2 <

1

d)} the distance % between the centroid of the cross sections of the

>
7/

walls 3
*  are all kept constant throughott the height H of the structure. The
cross sectional properties of the top connecting beam are one half the

corresponding values of the lower connecting beanms. .

~

3) The points of contraflexure of the connecting beams are located at mid-
span. This is reasonable, unless there are large differences in the
rigidities of the adjacent walls, since the cross sections of the walls

?e much greater than the cross sections of the connecting beams.

4) The connecting beams are axially rigid in their longitudinal direction,
J
such that both walls deflect equally.

5) The structures are rigidly fixed to the foundation.




- 13
The cross-sectional dimemsions of the tapered shear walls over -
the height of the structure are required prior to the calculaﬁion of the

N
- deformations of the lamina along the cut section. The thickness of the

walls varies linearly with height, Fig. 4c, that is for walls 1 and 2

respectively: °
. / tl(;t) -’tol(l + KX) 2.1a
tz(x) = t92(1 + Kx) ‘ 2.1b . _
R /
where
1, m r o, %2 y B
k=g {y= -1} =5 { -1} . 2.2 .
ol - 02 . '

ical high-rise structures xH < 4.0, and for uniform walls the value

zero since the top and bottom thicknesses are equal.

The cross-sectional areas and moments of inertias of the walls

with tapered* thicknesses become: ‘ —
A (x) =A . (1 + kx) ' 2.3a
1 ol - /
K v' o /\, - 4
. -Azgx) = A, 1 +xx) ‘ ‘ 2.3b
s e '
Il(x) = Iol (1 + xx) _ 2.3¢c
® -
Iz(x) = 102 (1 + xx) | 2.3
' ; \ J
- /-
4
S, ! )
- / -
' - i ” ,‘.’:

ooy PR £ S e - A - o e
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2.3 Governing Differential Equation of Deflection
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F1g 5 Analogous Coupled Shear Wall System

The governing differential equatio;x of deflection for tapered

coupled shear walls is obtained from the moment -curvature relationship of

”

the two resulting walls in the analogous system, Fig. 5, by virtue of the

assmktion that both walls deflect equ}ally. B

i

The moment -curvature relationships of wall 1 and wall 2

- \
.respectively are: .
[

a2 (b+d,) x . ,
EII(X) d:%f Mp(x) - —3 ‘fo Tdg - M (x) 2.4 , -

2 ) fx
mzcxyi-;g a - —s-\-i—i— jo TdE ¢ M) 2.5
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where ME(x) is the external moment resulting from the externally applied

lateral loading and is given by: :

1

\ X re; - _‘ , \
(MEEx) = [O f{, WE(;I) ,dcl r:l,t;2 + f: PEdc 2.6

/

Y
-

" and where Mi (x)\ is the bending moment due to the interacting axial forces

‘in the connecting medium:

x 1&g, ) ' x
M, (x) = j f W.(g,) -dg, dz +[ P.dg . 2.7
i o o i1 1 2 9 i |

0
Adding Eqs. 2.4 and 2.5 and substituting the expressions' for I1 (x) and IZ(x)

gives the following governing differential equation: \ /
. \ dz
ey - |-
(EIo (1 + kx) dxz ME(x) Te /’ 2.8

{

where

Io = Iol * Ioz

{

Tall buildings rigidly fixed to the foundation can be considered as canti-

/

Jlever beams, with zero deflection and rotation at their base. The corres-

ponding boundary conditions are:

. " y(H) = 0 - 2.9

- d -
| ) = 0

PR Tl P MY N say
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2.4 Governing Differential Equation ofllnml Shear Force

The governing differential equation of integral shear force T
is developed in the éubsequent subsections. By,consi;lering the various
deform;ations of the cut lamina, due tc‘> the external loading and the integral
shear force, Fig. 5, and enforcing a comx‘)atibility condition, such that no
resultant relative deformation of the cut is present, the governing differential

/ t

equation of integral shear force is then establisl}ed. /

2.4.1 Deformations of the Cut Lamina

" The various deformations of the cut lamina, due to the bending
] £}
moments and the normal forces in the walls and due to the shear forces in
the connecting lamina, are'derived for an arbitrary location x along the cut

in Appendix A. These are:

a) Rotation of walls due to free bending under general external horizontal

loading, if no base rotation is present, Fig. 6a.
i

g j’H ME(t) |
5E(X) = 'E"I"o—' x m) d; 2.10

/
"b) Reverse bending deformation in walls due to shear forces in the

connecting beams, Fig. 6b.

22]!{\ T .
J 61()() = ﬁ: x —_——(I*KC) dc ) 2.11

i
c) Bending and shear deformations of connecting lamina due tc; the vertical \
distributed shear force, Fig. 6c.

T' h b

§.(x) =
2 . 12E1
P
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Fig. 6 Deformations of the Cut Lamina




o e et nam S nen

18

/ . . \
-

‘ -
To include the effect of shear in the co<mecting beams, Ip may be reduced

such that ' ‘ . .
. I -
I = B2
, P (1+g)

where Ipo is the actual moment of inertia and g is given for rectangular
/ - N

beams in Appendix A. The reduced moment of inertia should be used especially

for deep beams.

d) Axial deformation of the walls due to the integral shear force, if no

relative displacement of the base is present, Fig. 6d.

= Pl

’ A, j'u T
6, (X) = w2 e dZ 2.13
3 I-:(A01 AoZ) x (l+xg)

2.4.2 Compatibility of Deformations of the Cut Lamina

* The compatibility condition requires that no resuiting relative

deformation be present at the cut section; this leads to the establishment

of the following compatibility equation ‘

8 (x) + az(x) + 63(x)"= GE(x] 2.14

Substituting the expressions for the deformations of the cut lamina, Eqs.

2.10-2,13, into the above compatibility equation gives
\ L

o T’hb3+}_(ﬁ+~_j2~)jH_Z__d;=.}_fHT§£d; 2.15
. 12EI ‘E I° Aol A02 X (1+xg) F.I0 x (1+kg) ]

'

where Io = Iol + 102 and A0 = Aol + A02

dividing through by hb:”/IZEIp and im:.roducing the abbreviations:

-
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Q 5 ~/ i
, 121 22 -
of = —F— @+ 1) . 2.16a
I hb
o .
121_% : - " )
p = —Es : 2.16b
I,hb ‘
. ' I A !
by - 7 o 0 " 2.16¢c
‘ t (Aol Aoz)
-

Eq. 2.15 can be rewritten »e
) H H M.(z)
2 f T i j E
e Jx Ten 5B < e @
Finally differentiating the above equation and using the fact that

d H
D, F@Y ) = £

the following governing differential equation is obtained

d?r 2 7 Mg (x)
PR ¢T3 R ¢TT=3)

or multiplying through by (l+kx) the above equation becomes

2
amx) S5 -’ = -8 M () 2.17
v dx ! ]
The left-hand side of the above equation relates to the physical parametérs
of the structure,whereas the right-hand side relates to the external loads
applied to the structure. /
The boundary conditions for the above equations are:

, T(0) = 0 - 2.18a

(S ‘ g'_'_r_ - ‘ ’
, . ax (H) =0 2.18b
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/
the first one represents a zero accumulation of T' at the top of the walls,
and the second is introduced assuming that the foundation restrains any

relative rotation and vertical translation at the base of the walls.

2.5 Discussion

The governing differential equations of deflection and of integral
shear force, established in this chapter, Eqs. 2.8 and 2.17, for tapered
coupled shear walls subjected to a general lateral loading, are the basic
equations necessary for the development of deflection formulae of the shear
wall structures considered in the subsequent chapters. |

For the case of uniform coupled shearwalls (xk=0) loaded by a

uniformly distributed load (WE (x) = w; PE = 0) the governing equations reduce

to
2 \
e
dx
&
-~ /
d2 WX
EI __1213_7__ - TR
dx
where
W
B! = 5 B

»

which are identical to the ones obtained by Rosman (6) and by Coull and

Choudhury (1) . -
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2.6 Summary ;
The governing differential equations of tapered coupled shear -

walls subjected to a general lateral loading are now established, namely:

*the differential equation of deflection

. ,
B (1+xx) Z—;()Z'— = M. () -T2 2.8

and the differential equation of integral shear force

2 .
(r)EL - o%r - g M () 2.17
. \

These equations are to be used for the development of the differential
equationé of deflection, and the deflection formulae of the shear wall

assemblies investigated in-this thesis.

13
i

- L
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CHAPTER III
_ UNIFORM COUPLED SHEAR WALLS

3.1 Introduction

/
In the previous chapter a differential equatipn for deflection .

has been obtain‘id for tapered coupled shear walls, as a function of the
external load and of the integral shear force. In this section a fundamental
'differer;tial equition for deflection is derived for uniform coupled-walls,
as a function of only the external load. Such an equation is essential for
the development of differential equations of deflection of the linked wall
structures investigated in Chapter IV since, in the latter structures,

coupled-walls sub? ected to general horizontal loading are present.

3.2 Derivation of Fundamental Differential Equation of Deflection

For uniform coupled shear walls k is set to zero in both Eq. 2.8

and Eq. 2,17, which yield

dT
2

L5 - =-BME(x) . 3.1 _

y dx
dz . v
EI =ME(x) -T2 3.2
dx

with boundary conditions given by Eqs. 2.9a, b and ‘Eq. 2.18a,b,

%

Solving for the integral shear force T in Eq. 3.é

. 2
T3 o0 -m LY
B ’ dx ! ; )
and, differentiating ‘twice .
J
-22-
e
/
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d {x) 4 -
Gy,
dx dx dx

Substituting these expressions into Eq. 3.1 and rearranging and multiplying

through by 2 gives

2
4 2 d™M.(x)
BT &Y -a? 4Ly —E - @? g M) 3.3
dx dx dx
from Eqs. 2.16a and b .
’ 1252112 2
28 = =
Ihb3 (1+1)

Substituting the above expression into Eq. 3.3 gives the fundamental equation

of deflection for a uniform coupled shear wall under general horizontal loading.

4 2 dM, (x) .2 |
er (4r - 24y . ZMEZ - (91-%) Mo(x)
dx dx dx *

Only two of the boundary conditions are in terms of y; these
are as given by Eq. 2.?3 and b. The other two, E.qs. 2.18a and b, ‘have to
be rewrit_:ten in terms of y. By substituting the boundary condition T(0)=0
Eq. 2.18a, in Eq.‘s.z the following boundary condition results

2 , S
d

el &L (0) = M_(0)

—clx2 E

For the case of structures loaded by lateral forces ME (0) = 0, consequently

the above boundary condition reduces to
2

dy .
2 (0) =0 e

-

P ke TR
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For the second boundary condition, Eq. 3,2 is differentiated .

once and evaluated at - x = H. Substituting g% = 0 for x = H, Eq. 2;18b,

the last boundary condition yields

e T

3 (H)
prdr ™ . _E
dx
1 1 /
. Introducing for simplicity the differential operator D, where ]
D" - a?_ - \ ‘
ax" ~ -
Eq. 3.3 is rewritten ‘
er 02 (0% - &% y = {Dz'-—‘i‘i&} M. (x) : 3.4 1
ey a+x)’ “E : ' :

with boundary conditions,

. y=0 at x =H 3.5a

Dy =0 x =H 3.5b i

3 py =0 x =0 ‘ B AT : \* ;
: . EIDy =DM x = H - 5.5

E

Thi%jidifferential operator is introduced to simplify the derivations of i

the differential equations for the linked shear wall structures.

3.3 Deflection Formulae - ) - ]

Deflecéion formulae for uniform coupled shear walls have been
_derived by various authors for the three common lateral loading cases. Also,
- curves are available for the rap/i_d evaluation of maximum d/eflection (1,2,3).
These were obtained by solving for the integral shear force T in Eq. 3.1, — /

) inserting this result in Eq. 3.2 and integrating twice the latter equation.,
/ v
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4

For the sake of completeness, deflection formulae are obtained for the three
conventional loading cases by solving Eq. 3.4 subjected to the boundary
conditions given by Egs. ‘3,5.

The most general deflection formula which comprises the three

a

loading cases, viz., concentrated load at top of structure, uniformly distributed

load, and triangular}ly distributed load, is given by:

) 2 3 4 .5
y(z) = T{Blc&?sh(uﬂ)z + Bysinh(aH)z + C_ + C1z+'sz + Npzo + N,z° + Nz }

- 3.6

where z = x/H

- 7

Evaluating the above expression at z = 0, the top deflection is obtained

Yoop = T{B, * €} ' 3.6b ‘

where ' ;
-2 N2

B = 2 ! :

(aH) 5 5 i

" ;

/ B - B, tanh (aH) - 4

2 (aH)cosh(aH) 1

\

- AN}, * 2N, + 3N, + 4N, + SN.} : ;

(]
4]

(]
t

= - {C1+N2+N3+N4+NS+Blcosh(uH) + st‘inh(aH)} | .

The expressions for T and N's are listed in Table I for the three lateral

loading cases. -

I i




o i
- A \\ ~ { %
s i
| |
)" ; i {
Concentrated Load at Top «  Uniformly Distributed Load « Triangularly Distributed Load : '
| — a : o
WX~ R ! X X *hk ) 1
! ME (X) Px* _ = - P = {1 - gﬁ} [
B
T - PH3 WH4 - EH4 E
. EI ET 2F1 ;
|
‘ - -~ 1 A ?
‘, N5 . 0 ‘ 0 . -0 (i:xi
| N 0 Ly 5N %
4 24 “1+a 5 i
— s E
| N Ly,  © o b-uR). s
3 . 6 “1+A PR : S@mZ :
. ¥
-(1 - 24 N,)
N 0 ) = -3N
- 2 \ 2(uH)2 . 3
' (1 -6N,) (1+2N, -12N)) \
N, -2 N, 2
. {aH) - ’ (aH)

* P is the magnitude of the concentrated load,f ** w is the uniform intensity of the load
*#** 5 is the maximum intensity of the load at the top.

A

TABLE 1 Constants in Eq. 3.6

v i o Ay o A o G A A P L g b M W ey i
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3.4 Discussion

3% A fundamental differential equation for the deflection y of “

uniform coupled shear walls under general horizontal external loading is

T~ now available uniquely as a function of the external load.

For the special case of a uniform coupled shear wall .structure
; :

loadéd by a uniformly distributed load w Eq. 3.4 reduces, after rearranging,

- to )

} .
4 2 2 2 X
S-S go -y B
% dx d;c

which is the same différential equation as obtained by Kuster (9) “for coupled
structures under a uniformly distributed load, by introducing an unknown

‘ J
interaction force.

3.5 Summary . .

In the foregoing chapter a fundamental differential equation of

*

P deflection has been obtained for uniform coupled shear walls under a general

.
P A

external lateral loading. This fundamental equation is

azl

2,2 2. .2
BL D (07 - %)y = 0% - 5y

} ME (x) 3.4 / ;
N . ! t 3

-

This equation is essential for the development. of differential equations of i

"

deflection of linked wall structures comprising coupled shear walls.

Also, a general deflection formula is given for uniform coupled

shear wall:‘;‘l, valid for the three common ioading cases.

-

1
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A

LINKED SHEAR WALL STRUCTURES -

4.1 Introduction
—_— . !
. i
Linked planar shear wall structures, Fig. ‘3, are idealized
N o
structures comprising a number of shear walls, both homogeneous and/or

coupled, acting together to resist —latera\l forces. They arise in the case
e

of planar bents consisting of shear walls connected by beams or floor slabs,
when the stiffness of the connecting members or their wall connections is

low. They arise also in plan symmetrical sets of parallel shear wall bents

. connected by floor slabs and subjected to symmetrical lateral loading. In
these casés the floor slabs are assumed to be z:igidoin their own plane and
of negligible rigéditydtransverée'to th_?ir plane. The pin-ended links in

thg idealiZed planar structures simulate the effect of the connecting beams

]

‘or slabs in constraining the shear walls to deform identiczlly. The hori-

o

zontal interaction through the links causes redistribution of the external

loading amongst the resisting shear walls.

. .
In the previous section a general differential equation for

the deflection of a coupled shear wall under a general horizontal loading

&

' was obtained. This equation is used to derive deflection formunlae for the
three _loading cases acting upon:
a) linked coupled-walls .
b)" a single coupled-wall linked to a series of linked

. homogeneous walls. o

- ¢) linked coupled-walls linked to a series of linked

&

homogeneous walls.

.
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Fig. 7 Linked Coupled Shear Wall System
\

The planar structure of Fig. 7 has a high degree of static

‘indeterminancy. To solve for the deflection along the height of the assembly

[ 4

the discrete linksﬂare replaced by z continuous medium of‘gin-em}ed links.
This medium constrains the two walls to deflect equally, thus redistributing
the external load between the two walls. The medium is cut along its height
,and equal and opp‘osité distributed horizontal- interaction force s (x) and

i

concentrated top interaction force applied to the walls 1 and 2 to

maintain compatibilit\y of lat fal.deflect on, Fig. 8. Consequent\ly the
linked shear wall system reduces to itwo individual shear wall systems loaded .
. ‘ externally.- ‘System 1 is lpdded by the extemz:ll forces minus therinteracting
N uforces, and system 2 is Yoaded by the interacting forces only, with both systems

deflecting equally, thus resulting in a system of differential equations.

P WS F LT
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Fig. 8 Interaction Forces in Linked Coupled Shear Wall Systems

In the analysis of linked shear wall structures the following

additional assumptions are introduced:

. a) the shear wall systems deflect equally 3
b) the links are ﬁin-;n&ed.to the walls :
c) the links are axially rigid o \
d) homogeneous shear walls behave as cantilever beams

{

when loaded laterally in their elastic range - an

acceptable assumption for high-rise structures. /

4.3 Linked Coupled Shear Walls

Deflection formulae are derived for two coupled shear walls

-
B S e TR s

~—

it

raed T iR L

TR

linked together as shown in Fig. 7. This assembly is reduced to two coupled
shear walls, loaded as shown in Fig. 8. Each conforms to the differentiql -
equation given by Eq. 3.4 with boundary cqnd;tions given by Eq;. 3.5, since
"both behave as coupled shear walls loaded by general latéral loads. They /

result, therefore, in a system of two differential equations,

o - L
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4.3.1 Derivation of Governing.Differential Equation ’ '

> The interaction forces Pi and Wi (x) create equal and opposite

moment Mi {x), where

3 j‘x j';z - ,fx '
M=M= Jo o wlg)dg dey v J ) Pide 4.1 ]
Also fxftz fx
Mg =Mg(x) = J o, wg(§)) dgydey + ), Ppds 4.2 I

Couple shear wall 1 is subject to an external moment equal to ME - Mi’
whereas coupled shear wall 2 is subject to \Mi.

{

Now applying the governing differential equation for the

deflection of coupled shear walls, as given by Eq. 3.4.

‘ [N

For coupled shear wall 1 ' ‘ % .
uz A -
2 17 L '

\

2.2 2
E1,D {D° -a] ly =

with boundary conditions from Eqs. 3.5

y(H) = 0 . S 4 ,
Dy (H) = 0 o 4.4b
. . \
2
D )’(0) =0 4.4c
. 51103y(n) = DM (H) - M; (1)) - 4.4

‘For coupled shear wall 2

I 5 s TR AT ) e tion 5 7

o behy

- EI D2 {02 - } M, ' 4.5 .

2 2
5 az}y={D -

with boundary conditions
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M, = [{EL, D* - +20° 1y - 0% - at M)/ (a;-a))

ot

L) A

The Special case when 8, = a,

\
Substituting back Eq. 4.9 into Eq. 4.8 and gearranging yields

\
2 4 2 2 2 2 -
D {EITD - (4" alﬁI2 + azﬁll)D *+ (ala2 512 *aay EIl)} y

: - % - al)(n2 - a,) M

. Dividing through by EIT and introducing the following abb?!yiations

)
~

N 32
C S
3 N /
F ) l(
y(H) = 0 4.6a
,
Dy(H) = 0 4.6b
i 2 ~
D7y(0) = 0 4,6¢
- 3 ' . ‘ \
EIZD y(H) =D Mi(H) 4.6d
Adding Egs. %.3 and 4.5 and introducing the following abbreviations:
- ! az A
1 = _.L-j— 3 = i
aj (1+xj) ‘ for j = 1,2 , 4.7a
R l/'
EL, = EI, + EI 4.7b
T 1 2, )
D N \ ’
62 = o? EI. +a? I 4.7¢
1 2 72 :
gives
4 22 2 J
{EIT D" -4¢D }y=1{D" - al} ME + (a1 - az) Mi 4.8
r‘ .\/
When a, -a, # 0 or a, # a,, the interacting moment is obtained and is
given by

4.9

will be investigated later in this section.
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C , \

2 2
i {(az +«al)}312 + (oz1 + az) EII} 4.10a

3
"
m
[
£

-

2
T {atlcr.2 EIZ + a

2 ‘ ~
- 287 EL} . 4.10b

m

— 2
. yields the governing differential equation of deflection as a function of

the external load °

Mg (x)
132} EIT 4,11

/

D2 {D4 - n2D2 + y4 ly = {D4 - (al+az)D2 + a

This is a sixth-order differential equation in y, therefore six boundary

conditions are required to solve it. Four boundary conditions can be

, Treadily obtained by adding the boundary conditions of Eqs. 4.4 and 4.6,

-

yielding -
y(H) =0 4.12a !
Dy(H) =0 4.12b
D%y (8) = 0 4.12¢
oy =p Mg (H)/EL ‘ 4.12d

Two other boundary conditions are required to get a unique deflected shape

y for a given external lateral load. '

\ A fifth boundary condition is obtained by evaluating Eq. 4.8

at x = 0 /
B1.0% (0) - ¢%0%(0) - p’M (0) - a M (0) + (a,-8,). M, (0) 4.13
but ’
2y (0) = 0 from Eq. 4.12c

MECO) = Mi(O) = 0 from Eqs. 4.1 and 4,2
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. -
substituting these in Eqs. 4.13 and dividing through EIT gives
oty (0) = DZME(O)/EIT/ 4.14

To obtain the last boundary condition Eq. 4.8 is differentiated

once and evaluated at x = H, which gives

5 2.3 3
EL Dy (H) - 6Dy (H) =D ME(H)K_ - a, DM (H) + (a,-a,) DM, (H) 4.15
but
.
DM, (H) = ELD%y (H) from Eq. 4.6d -
D’y () = DMy, (H)/E L from Eq. 4.12d \

v

Substituting these into Eq. 4.15 and rearranging gives
/

Doy (H) = gh— (DM (H) + DM, ()} 416
- T
2 2
«? EI o% EI
2 1 % B 2 EL,
where ¢° = == ( + ) 4,17
Elp 1+ 142, \

Therefore, for a given lateral loading, for the case a; # 24,
a deflection formula for linked coupled shear walls may be obtained by solving
differential Eq. 4.1l1, subjected to the boundary conditions given by Egs.

4.12, 4.14, and 4.16.

4.3.1.1 Special Case when a, = a, )

2 2
When a, = a, or alll/(lul)- azl?_/(lﬂz) Eq. 4.8 reduces to

1 -
2
a’A
(g1, 0% - oD% y = (0 - Aoy M@ 4.18
\ 1
i




By introducing the following abbreviations:

a2 = ¢2/EIT .
— 2
2 al Al

(%) © @)

Eq. 4.18 can be rewritter as

EITDZ 02 - o% y = {0°

azl

T

} ME(x)

-
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4,19a

4.19b

4.20

The above equation is identical to Eq. 3.4 and has the same boundary

conditions.

having a, =

shear wall with the following ph}sical parameters.

-

EI

!

Therefore, deflection formulae for linked coupled shear walls

a

=

2

are equal to the deflection formulae of a single coupled

2 2
ay EIl *a, EI2

EIT

EIT .
J
+ AZEI1

A A,
172 AlEI2

EIT = EIl + EI2

4.21a

4.21b

4.21c

$

The above expression for A is easily obtained by solving for A from Egs.

4.19a, and b taking into account the fact that a

2 2 .
a, = a, and Al = Az, Egs. 4.21 reduce to

1

a

2
When the linked coupled shear walls are identical,

EI1 = EIZ,
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L C , |
;/ Substituting these into Eq. 4.20 and dividing through by 2 yields
i A
L aa M_ (x) ]

. 2 ,.2 2 rn2 171 E
EIlo {D - “1}.)’ = {D - (1""11) 2 T g

Now comparing the above equation to Eq. 3.4, it is noted that the two linked

identical coupled shear walls have the same deflection formulae as a single

coupled shear wall loaded by one-half of the total external load; this was

!

x - to be expected for the case of two identical coupled shear walls linked

!
together. :

[
- /
Linked coupled shear walls with a, =a, will not be pﬁsued
, further in this work since their deflection formulae are equal to the
deflection formulae of single coupled shear walls with properties given by
3

Eqs. 4.21. The latter deflection formulae have been obtained for the three

‘common loading cases, and are given in Section 3.3,

4,3.2 Derivation of Deflection Formulae

Eq. 4.11 is rewritten here as: N ) , .

2 .4

02 0 - n®% vy y = T , 4.22

where T'(x) is the forcing function equal to .
4 . 2. M. (x)
T(x) = {D - (a1 + a2) D° '+ a,a, } EIT _

et o 1 vt s e mpnar i RS TN A TR

Solving for the homogeneous solution by spiting T(x) = 0 in Eq. 4.22,

the indicial roots are

0,0iuand‘iv

where
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2[5 4
b= @Iyl ,‘ 4.23%
2 /3 _a /
v = (P--:-lz‘—:“l—)}/z - . 4.23p

Therefore, the homogeneous solution for any arbitrary forcing function I (x)
is , /

Yh(x) = T{Blcosh(ux)+B251nh(ux)+BSCOsh(vx)+B451nh(vx)+C° + Clx} 4.24

thus, for anysarbitrary external lateral loading, ME(x), fhe homogeneous

solution is yh(x) and the general solution is:
o /

yx) =y (x) + )'p(X) 4.25

where yp(x) is the particular solution to the differential equation with
_ forcing function I(x). "
A complete solution is obtained by solving for the constants

in Eq. 4.24 using the appropriate boundary conditions.

The general deflection formula for linked coupled shear walls

subjected to the three conventional lateral loading cases used in the static

analysis of a tall building is -

»

ylz) = T/{Blcosh(uH)z+stinh(uH)z+B3cosh(thz+B4sinh(vH)z + CD + Clz

2 3 4 5.
+N22 + st + N4z + st } 4.26

—

from which the top deflection is given by

Yrop = TiB + By + C)} 4.26b




g
The constants are
2 ) =
- 2 ‘N6 + (vH) NZ -
1 N )
1 (uH)
2 . ¢
. By = § T
1 (vH)*

LN + (vH)ZNB .
B, = N 3 - B1 tanh (uH)
1 (uH) cosh(uH)/

= 2
N7 + (uH) NB

- B, tanh (vH) *
4 N1 (vHQ 3cosh (vH) 3 j
» A N, - (nH) N -
Cl 3‘\ - {2N2 + 3N3 + 4N + SNS + -—'-'!—-—2——————"- }‘

, () om? . : ,

C, = - {C +N +N3+N +Ne+ B, cosh(uH)+B ,Sinh (uH)+B cosh(vH)+B s1nh(vﬂ)}

The constants T, N's are given in Table II for the three loading cases.

E




s

-

Concentrated Load at Top

Uniformly Distributed Load

Triangularly Distributed Load

P wh® pH
EIT EIT ZELT
= a.a
0 0 _ li
60y
a.a
\
0 1 2 _ .
24y
y)
aa, . -12(nH) N4+(a1+a2)H2
4 4 N
6y -3(yH)
2 2
24 (nH)"N, - (a.+a,)H
0 4 1 72 .
4 - 3N3
(yH) ~

wH - m?

wl? - wH)?

w2 - (vy?

0 (1r - 24N4)/2 - a - 12N4) -
. e GO wn? -,
%
) -(l -6 NS) - 2N6 -'(ZNZ + N6)

6¢

TABLE 11

Constants in Eq. .4.26

PO,
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4:4 Coupled Shear Wall Linked to Homogeneous Shear Walls

The deflection formulae of a coupled shear wall linked t.ol
a series of n homogeneous shear walls, Fig. 9, are investigated. By
introducing n interacting moments, as given by Eq. 4.1, this assembly
can be reduced to a coﬁpled shear wall and n individual homogeneous shear
walls, all loaded externally and all constrained to deflect equaliy. This

assembly results in a system of n+l differential equations, -with n+l

unknown functions, the n interacting moments and the deflection y.

»

100000

i77777 77777777 ] 7 7 7+ 77

E. a, )‘- El, El /

!/ “

Fig. 9 Coupled Shear Wall Linked to n Homogeneous Shear Walls
/

-

4.4.1 Derivation of Governing Differential Equation

o

The links of the series assembly of Fig. 9 are replaced by a
/
continuum of pin-ended links which are then cut along their height. Now,
n interacting moments given by Eq. 4.1 are introduced to constrain the walls

to déflect equally, consequently the n+l differential equations are obtained.

. . .-
N . f ot T oegii T % i e ot o ' y
LA e st e e Taabe L e




-~ yields

/
For coupled shear wall 1. from Eq. 3.4

-
RN
L

4.27

g1 0% (0% - o’} y = 02oge ) o - M,)
e e ilﬂe) (ME 1

Por the'n homogeneous shear walls using simple bending theory

'
1

2 ' .
EI\lD Y =M1 - MZ . : B
g ) . (2 <@

iz - IZDY=M2'— M3 ,

' 1 ' ; % . 4.28

1 t 1]

- 2 : . ) 7
EI“_ID y Mn-l -_Hn . ., .

» 2 A

5
EInD y = Mn

where M1 to Mn are the n interacting moments. :

The right hand sides of Eqs. 4.28 for;n a telescopic series,.

theréfore, by summing Eqs. 4.28 the following simple equation is obtained:
] T

élsu y = M \ | 4.29
where \ T
BI = ,1&1 Bl

Which shows that n linked homogeneous shear walls can be idealized for.

4.30

def;e;:tion purposes by a single lumped homogeneous shear wall having a
stiffness equal to éhe sum of the stiffnesses of the n individual walls. ‘ ’
The sy'stm of n«»ll differer/u:ial equations ha$ been reduced t(\)

a system of two differential equations given by Eqs. 4.27 and 4.29. Substi-

tuting the expression for MI{ from Eq. 4.29 into Eq. 4.27 and rearranging,

v . o

J ) - - ‘ P }
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Cé, . ) ‘ 21 2 | EI A, i u‘:xe -
. {(E1, + E1)D" - al[EI_+ (m )]} Dy = { m—)} M (x)  4.31

¥ ! -~

By .introducing the following abbreviations

El = EI, + EI_ , 4.32a
EI.
A=A (1% =2} 4.32b - ;
I e EI, ‘ -
2 1+ S ‘ L Co
SO ( )(1,2 ) . 4.32

" Eq. 4.31 can be rewritten as
' o 2 . ol
: g0 0 - By = (of W} M ) _ 5
J |
which is identical to the differential equation for a single coupled shea "

) wall, as given by Eq. 3.4. Consequently, the deflection formulae for a -
coupled shear wall linked to n homogeneous shear walls are the same as those
obtained for a single coupled shear wall with physicﬂal parameters as given
- by Eqs. 4.32. The deflection formulae for a single coupled shear wall,

for the three common loading cases used in tall buildings analysis, are \

given in Section 3.3.

4.5 Linked Coupled Shear Walls Linked to Homogeneous Shear Walls . .
- ° i

The deflection formulae of two linked coupled shear walls

oy

linked to a jeﬁes of n homogeneous shear walls and loaded by general lateral

g forces, Fig. 10, are investigated in this section. By introducing n+1 inter-

action moments, as was done in Section 4.4,the assembly can be idealized by

n+2 discrete structures, n homogeneous shear walls and two coupled shear !

walls, loaded externally and constrained to deflect equally. This planar

N—.»\ -
{ Y
p—

assembly results in a system of n+2 differential equations, with n+2 unknown

)
1
5
. [
3
. .-
L
. -
. . ]
' . "}
- h ' g
a
C . R
! ~ R - y <
. .
~
. ¥ t
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Fig. 10 Linked Coupled Shear Walls Linked to n Homogeneous Shear Walls

4.5.1 Derivation of Governing Differential Equations

'

Going through the same procedure as followed in Section 4.4. 1,
that is, replacing the links of the series assembly, Fig. 10, by a continuum
. of pin-ended links and then cutting them along their height, n+l interacting ’ ;

" moments, each one of the form given by Eq. 4.1, dre introduced to conmstrain

the planar assembly to deflect equally. B‘f following this procedure a
syst‘em of n+2 differential equations is obtained.

For the two Eoupled shear walls from Eq. 3.4 _

2 azl ' ' R

2 .2 2 c’c
EICD {D -ac}yﬂ {D --(—1—';'1:)} (ME-Mi) 4,33

P
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°, 2
4 [ A‘
2 .2 2.0~ 2 %’ ! :
EIBD {D - ae} )’ - {D - (1+Ae) } (Mi Ml) . \4'34’

"For the n homogeneous shear walls from simple bending theory |

2
EI, D%y = M, - M, |
EI D2y = M. - M.
20 Y =My =¥
v 1 v ’
o , . 4.35
\ 2 \
ELpaly =My - ¥4 - .
. e \
EI"Dzy = M
n n

-

where Mi and M1 to Mn are the n+l interaction moments.
As was done in Section 4.4.1, by summing Eqs. 4.35 the following

simple equation is obtained.

2
EISD y = Ml .
where

,EI=£EI. . ‘ 3
s J=1 773 .

Substituting the above expression for M. into Eq. 4.34 and rearranging, 1

1
reduceé the system of n+2 differential equations to a system of two

*

differential equsyzions given by

. \ 2,

2 .2 2, 2 % v} -
EIcD {D -ac}y = {D* - (1”‘: } (ME - Mi) 4.36a :

2
. EI A a’A )
2 2 s'e 2. . pl ee -
{(BI*E1 )0 - o [EI_ + o 1} D% = {D° - i } My 4,36b ,4
By introducing the following abbreviations B 3

»
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. Eqs./4.36 can be Tewritten as .

) 45
EI, = El 4.37a
1 C \ i ¥
’EIZ = EIe + EIS s / 4.37b
A, = A . 4,37c
1 c .
ISIs .
>‘2 Reil + E—I——} ’ . 4.,37d
' T - T T@
2_ 2 J—
o = u.c 4,37e
A 142
. - 2 e, "2
ay = a ()‘2) (1+X ) ‘ 4,37f
. ;

v azl
2 1M
Ty T M o M)

2

A

2,2 2 2 %2%2
EIZD {D —02})' {D -t—l—*z)/} Mi

EIIDZ 0°-olty =0

1

< 3

The above system of differential equations ils;‘id‘entical to the one obtained

for two linked coupled shear walls and given by Eqs. 4.3 and 4.5. Therefore,
series assemblies consisting of-two linked coupled shear walls linked to n >z
ixomogeneous shear walls can be idealized for deflecgion ‘piirposes by two

linked coupled shear walls having pjxsical"p?{r/an‘leters as given by Eqs. 4.37.

/// -
. - Their deflection formulae for the three conventional loading cases are given

\
in Section 4.3.2 for the general case 3, # a,. For the special case- when
/
= az‘the results of Section 4.3.1.1 should be used,

4
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4.6 'Examplés and Discussion

@

The deflection curves of two assemblié;, one consisting of two
linked coupled shear walls and the other consisting of a coupled shear wall
linked to a homogeneous shear wall, subjected to a uniformly distributed '
lateral loading are calculated using the deflection equations derived in the
foregoiﬁg sections. These deflection curves are compared with deflection

curves obtained by computer analyses of these assemblies.

For the computer
ey -

£y

analyses, the "SAP IV" (10) structural analysis program has been used. In
T

the comput?;“ analysis, coupled shear walls are idealized using the wide-column
frame method and links are simulated by pin-ended axially rigid members.
The idealized structural elements used in the computer analysis are shown

=

in Fig. 11. -

\ !
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2 3 2 1 2 3 2 1
/
/
——— ﬂ‘ —t .
4 4 4 4 4
:[ 1 |
| * I
nr YZZa T el ]
d,/: b dZ/z
) l o Ba v
‘

Links: pin-ended and axially rigid. )
: i

Rigid arms: axially rigid and infinite moment of inertia with length
equal to one half of width of connected wall.

Coupling beams: axially rigid, with actual dimensions and properties.
Shear walls: line elements with actual dimensions and properties:

Fig. 11 Idealized Elements Used in Computer Analysis
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Example 1, Linked Coupled Shear Walls ) g
1 / ;
! — T S 0,0 - 4.215 ;4228
A A /?
— -] b ] s 0.2
W [ m ] :
T ©d e B
| O O i
| === 3
- 0.8 . ;‘E
] -
l I l I i —— Approx, Sol *'
' ~—— Computer Sol. *
- I l l I 1 A ] L ?
7777777777 7T TTITTIT 0 ™ ] T
1 3 S5cm %
3.0 |20] a0 60 |3.0] s0 ‘ 1
| D] f i E
8.0m 14.0m
(a) Assembly ,‘ (b) Lateral Deflection ‘
Fig. 12 Deflection Profile of Linked Coupled Shear Walls
Properties: L
E = 28,000 MPa
H=75.0m; h=3.75m t = 300 mm; v = 15 kN/m : :
- 6 m? . - 3 2 ‘
IPl 675. x 10" mm ; , Apl = 90, x 10" mm . «
] 9 4. - g 6 2 . 3
111 =675, x 107 mm~ ; All 900. x 10" mm e
I =54 x10° ma® ; A, = 180. x 10° mm? | .8
P2 p2 3
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-

124 6 2
I, =5.4x 10 ma ;» Ay = 1.8 x 107 m

_ 12 _ 4 6 2
I, = 3.125 x 10°° mm" ; Ay = 1.5x10° mn

1

The physical parameters necessary for the evaluation of the

deflection formulae are calculated from Egs. 2.16.

For coupled wall 1

EI, = 1.35 x 101 E
1.35 x 1012 x 1.8 x 10° )
A = x - = 0.120 . ,
5000 (900x10°x900x10°) T
- 12 x 675 x 10° x 5000° (1+0.120).1/2 _ .. .° -6 -1
a, = 2 212005172 . 74 833 x 10 m
1.35 x 10%% x 3750 x 2000
a,H = 5.6125 :
Similarly, for coupled wall 2 )
EL, = 8.525 x 1042 E
A, = 0.144
o, = 78.780 x 10° mn”
u2H = 5,9085

In order to use the appropriate deflection formula for the

evaluation of the deglection profile, the condition a # a, must be checked.

2
The formula for linked coupled walls, Eq. 4.26, must be used when a1 # a,,

whereas for the spééial case a, = a, the two coupled-walls reduce to a

single coupled-wall with a new set of physical parameters as outlined in
Section 4,3.1 and in this case the formula for single coupled-walls, Eq. 3.6,

must be used.
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o o (74.833 x 10°%%00.120) _ 600.00 x 1072 mn2
1 (L +0.120) '
~ (78.780 x 10-9%(0.144) a2 -2
a, = = = = 782,21 x 10 mm

2 (1 +0.144)

Since a, # a5 the approximate deflectjon profile of the two linked coupled
walls assembly is obt:amed by using Eq 4.26 for uniformly distributed loads.
The physical parameters are used to evaluate the constants of Eq. 4.26, then
this equation is evaluated along the height of the structure, from z = 0

to z =1, thus obtaining the deflection profile of Fig. 12b,

T et § A et
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Example 2 Coupled Shear Wall Linked to Homogeneous Shear Wall
J
R .
R prathiin\ 0.0~ 4.050 4.061
A D A, A,
oo DAI | . 0.4
] E 12 2 e
H p
w ________J XH
- | o =
T g
| O]
‘ ] . — — Approx. Sol.
- . - = Computer Sol.
1, 1ol ; 4~ '
T 77777777 JTTTT777 3 5 om
o.on.ol 5.0
140m 7.0m
(a) Assembly (b) Lateral Deflection
Fig. 13 Deflection Profile of a Coupled Wall Linked to a Homogeneous Wall
Properties: © .
E = 28,000 MPa '
H=75.0m h=3:75m t = 300 mm; w=15.0 k/m : /
I, = 8.575 x 10 am®; A, = 2.1x 10%.mm?
/
7
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The section properties of the coupled wall are the same as those of
Example 1.
The physical parameters are

: 8.525 x 1012 E

N
m
-d

H

0.144

>
L]

74.833 x 10’6 —

tn
L]
n

8.575.x 10-2E ‘ \

‘ This structure is of the type studied in Section 4.4, consequently the
Tesults obtained in that section are used to calculate the deflected shape.
That is, this linked wall structure can be idealized for deflection purposes
by an equivalent coupled shear wall having physical parameters as given

by Eq. 4.32. The new physical parameters are

ot e enm e sttt ot At iy | e o b e by e e oapein v ol Mt

EI = 8.525 x 10°%E + 8.575 x 10°%E = 17.10 x 10°2 E
. ‘ 12
e 0.100 (14 33BXI0E o ’
‘ 8.525 x 1012 E , .

« = (74.833 x 10°%) (8-'—-;% (i'ﬁg))l/z = 56.087 x 1070 mn! ’ -

< aH = 4,207

These physical parameters are used to evaluate the constants of Eq. 3.6,

which in turn are used to evaluate the equation itself along the height of

' the structure, from which the deflection curve, Fig. 13b, is obtained.
]

The results obtained for the deflection of the two sample structures

considered, linked coupled shear walls, and a coupled shear wall linked to a

/
homogeneous shear wall, are in close agreement with the results obtained by

( ’ the more exact stiffness matrix computer analysis. In fact, for the two

¢ - /
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specific examples the difference.between the approximate and the "exact"
solution is less than 1.0% throughout the height of the structure. The
deflection curves of a number of other structures .falling into the categories
of linked assemblies considered in tl;is section have also been obtained by
the approximate and "exac/t" methods and these were always in close agreement. -

‘ The deflection curves of a greater variety of high-rise shear
wall structures may now be evaluated from the results obtained in this section,
'a few of the’se were illustrated in Fig. 1.

A practical outcome of this chapter is that, assemblies of single
coupled shear walls or linked coupled shéar walls which are linked to n linked
homogeneous shear walls may be J:.dealized for deflection purposes by single
coupled shear walls or linked coupled shear walls, re,si:ectively; by changing
;
the physical parameters of the latter two structures.

“The evaluation of the deflectién formulae obtained in this section
may become‘quite cumbersome, but with the use of a simple computer program
of several lines these formulae can be evaluated over the height of a structure
by specifying only a few parameters, whereas, if a computer structural analysis
were used several hundred/input lines would hav;. to be typed. Therefore, an

economy’ of time and effort may be introduced by using the approximate method

instead of the "exact" method..
\

4.7 Summary

The deflection formulae of three types of linkéd shear wall
structures are studied in the foregoing chapter;. viz., linked cqupléd—walls,
coupled-walls linked to a series of homogeneous walls, and linked coupled-walls

linked to a series of homogeneous walls.

PTIIS P- S B U - i M ey " VA . "’ T k) 7
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. Fundamental differential equations of deflection are developed
for these shear wall structures. For the linked coupled-walls, a general
deflection formula for the three loading cases is developed. The other two -.
structures, the coupled-wall linked to a series of homogeneous walls, and
the linked coupled-walls linked to a series of homogeneous walls, can be
idealized for deflection purposes by a coupled-wall, and by linked coupled
walls respectively, by introducing new physical parameters. Therefore, the !
deflection formulae J of the former two structures are identical to the ones

of the latter equivalent structures.
/ Q

The results obtained from the approximate deflection formulae
developed are in close agreement with the ones obtained by the more exact

stiffness matrix comphrer analysis."% 7

s
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" CHAPTER V
TAPERED COUPLED SHEAR WALLS

v ) v @ ° &

5.1/ Introduction

-In high rise shear wall stmctu?:es, if the building is.very
tall, it is usual to reduce the walls cross section with height. In practice
this reduction is done in steps, |

In this section approximate deflection formulae for the part’i-
cular case /of coupled shear walls with variable thickness are obtained.
A linea'r variation o@ thickness is used to approximat;e tl;e actual stepped
variation of thickness found in practice, Fig. 14. Two 1ater.a1 load cases

are considered: a uniformly distributed loading, and a concentrated load

at the top of the structure.

- A

(a) Stepped Variation (b) Linear variation

Fig. 14 Variable Thickness of Walls in Tall Buildings

-

z
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The deflection formulae being in terms of power series, a
vériable cross section of the coupling beams would make it impossible to
obtain the ge';\gral terms of these power series, consequently in these
appx-'oximate solutions of’ tapered coupled shear walls only the shear walls.
have varying thicknesses with height, the cross section of the coupling
beams is kepf constant throughout the height of the structure.

The differential e(lluatuiops obtained in Chza{pter I1 for tapered
coupled shear walls with constant connecting beams are used in the derivation

of the deflection formulae.

" 5.2 Derivation of Deflection Formulae

-
The deflection formulae are obtained by first solving for the

integral shear force from Eq. 2.17 and, secondly, by substituting this result
in Eq. 2.8 and then by integrating this latter equation twice. The two

governing differential equations for tapered coupled shear walls as obtained

in Chapter Il are rewritten here for convenience.

n

A ’ 3 .
A+ kx) -"—Z—Tf - a’T = - g M (x) ‘ ~2.17
A.dx [« . R ‘ N
FY: R . -
BI (1 +xx) =M} TR * - 2.8
dx . - .
/ 2
5.2.1 Integral Shear Force ’ . - “

’ﬁ\q. 2.17, being a linear differential equation with variable

- Ay - . .

coefficients, can be solved using power’ series solutions. The solutions
will converge at least for: . ,

A &
Ix| < o

4
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t
3

Since, only the range 0 < x < H is of interest a converging series solution
is obtained for

nd'i <1
or, from Eq. 2.2

o1 € o

meaning that for comvergence of the series solutions, the thickness at the

bottom of the wall should not exceed twice the corresponding thickness at
\ .

«

the top of the wall. This is the least radius of convergence.

Solving for the homogeneous part of Eq. 2.17, sleeking a solution

in the from of a power series.
o '

n B
T, (x) = Z B x . 5.1
) h =y 0

Substituting this series in Eq. 2.17 yields

] L] . .
n-2 2 Z n_- " \ ‘
Z n(n-l)an -a th =0 ) .

(@ + kx)
- n=2, n=Q

1S
then rearranging the indices gives

¢
o

) 2 Z o 2 n-2_
(28, - o"B) + 2, [n(-LIB, 4 k(D@28 ) - 078y Gl 0

For this to be true all the coefficients of x? must vanish, which leads to
]

2 -
a 0
B2 TR ‘
~and the recurrence formula ‘ o
« 2 ’l \
« @2 a_ _ , :
B R Bl taeeD Bz n=3,4,5..= '

8

o

Using the above recurrence formula, the general terms in the series can be

inferred from the first few terms and then established by mathematical n

v
“~
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induction. Pa?t of this series solution can be expressed in terms of

hyperbolic functions. The homogeneous solution obtained after rearranging

is:

T,(x) = B [cosh(ax) + § (x)] + B [sinh (ax) + 5,00]

-

where ,
by j €5 _(ax)2™
s = ) (0 ey 7GRy
n,j=1
o0
° . . 2n+j+1 . -
) _1y) K,J _(ax '
§,(x) = n,j=1 (-1) bnj (a) (2n+j+ 1)1 o

in which the coefficients are given by:

.
nj

J J
[--[_Z3 (23’2)[_22]t (23,-D11---]
2

3 il
n b ' Jz .
be ) [l @i [L (25p1]---] :
e T P N '
/

‘Therefore the general solution for integral shear force of tapefeh coupled

shear walls for thé two loading cases under consideration is given by:

T(x)'- Bo[cosh‘(ax) + SI(x)] + Bi[sinch (ax) + Sz(x)] + Tb(x)

where Tp(i}{?epresents the particular solution of Eq. 2.17. The constants
Bo and Bl are obtained by applying the boundary conditions, Eq. 2.18, to.

the above equation. The constants Bo and Bl and the particular solution

are listed in Table III for the two loading cases considered.

-

)
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5.5

5‘2

5.3a

5.3b

5.4a

5.4b




LR

S0 = ), (1 a9 L)

el nj a (2n+j-1)!

83 (x) = §: (-1)3 b

~ ‘
L ’/ A
‘ Concentrated Load at Top P Uniformly Distributed qud.nw""
i - W ,.«-""” -
‘Be PB ) ‘,Z'ﬁ“
Iy e
7 r_
T EE. ) W ’_,.,n;f'«}“x‘/ 288
, 2 - «:;‘.7”' - 4 ,
\‘»-.”"""."‘“‘“"" a
TP(X) X T(l + xx + a -‘2—)
B 0 -7
o _ ‘
1 T{sinh (aH) + S} (H) - aH - x/a}
Bl a [cosh(aH) + Sé(H)) cosh ( H) + S} (H)
= 2n+j -1 =

& T

n3=1 Y (Zn+3)1

2

TABLE III Particular Solutions and Constants in Eq. 5.5
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For the particular case of uniform walls, «=0, and a uniformly
distributed load, Eq. 5.5 reduces to

- 28 , 2.2
_ e sinh aH - aH . a’x
T(x) = 7 {C—_TEEHTTET—_) sinh (ax) - cosh (ax) +1~+ > }

a <

|

which is the solution for uniform coupled shear walls as obtained by Rosman
(6) and, Coull and Choudhury (1); this serves as a partial check on the
developed theory.

»

5.2.2 Deflection Formulae )

The external moment ME(x) and the integral/shear‘force T(x) are
now explicitly available for the two loading cases considered. Therefore,
the deflection formuiae may now be obtained by integrating twice Eq. 2.8, and
by applying the appropriate boundary conditions. Eq. 2.8 is rewritten as

dy _ 1 1
dx

2% B T {f"g(x) - (TR0 + T ()2} 5.6

]

Since Tp(x) is a fuqction of the external moment ME(x), by introducing the

simplifying abbreviations

1

M (x) - Tp (x)%

Q' (x) = ) _5.73
‘ Th(x)z ;
R' (J() = m . 5.7b

Eq. 5.6 becomes

%y L1 ey - )
dxz EID ’

By integrating twice the above equation, the general deflection formul4d is

@

obtained and is given by

h A e wm e
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yx) = -E-%—— (Qex) - R(x) + C_ +\F1x } 5.8
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The constants ‘Co and C1 are obtained by applying the boundary conditionms.

The function Q(.x) is relatively easy to obtain since it involves two
successive integrations of Q" (x) which itself is a rational function’. R{x),
however, is not so easy to obtain since "it involves integrations of hyperbolic
functions and power series divided by a linear function, and both result in
new po‘wer series. The derivation of Eq. 5.8 is shown in Appendix B.

. The constants of integration, Eq. 5.8, are also evalpated in Appendix B, and

i
are given by

C, =R'(H) -Q (1) .

C
v o

R(H) - QH) - C1H

The functions Q(x), R(x) and, their first derivatives along with the functions

necessary for their evaluation are listed in the subsequent tables for the

lateral loadings cons idered.
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~ .
« Concentrated Load . Uniformly Distributed Load
(1+1) 1.3 v2 ; w . 1.4 v3 2 : x2
0y Q(x) P(;) {—2—+v-vlogv}* -2-[(-K—) {—é—-v - v + v log v} -3 1
. a
R{x) BOR. {Rl x) + Rz(x)} + B2 {Rs(x); +_R4(x)} *w
1 .
R, (x) ) {cosh (%) o &) -sinh @ s1 & ‘f)}
& . .
Ry (x) () {cosh S st ¢ -sinh O co &0
= . L: . (v) .
1.2 Z b a.2n " 2n+j
Ryx) e . (-1) 23 @ (Zn+j) !
jsn=1 -
R, (x) =8 i (1 b, @ el )
4 = CR nj ‘¥ o501
* v = l4kx
i B"J and Bl from' Table III
- TABLE IV Function Q(x) and R{x)
2 o
N
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Concentrated Load at Top

P (%)2 {v -log v}

Uniformly Distributed Load

&

1
L2"[(;)3{117---2v+logv} -2

[PV

B L R} (x) + Ré(x)} + B2 {RE(x) + R‘;(X)}

(%) fcosh & cor &Y) -sinh & s &V))

AUV PG PO NPV

(;1(-) {cosh &) s1' (£ ) - sinh (D) CO' (& 1))

od

&) z 1 17 2

J,n=

e e e st € e e 4 e

& ) bys &
j,n=1 .

oo Yy )

L . (v)
a, 2n+1 2n+j+1
(2n+j+1) L
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TABLE V First Derivatives of Q(x) and R(x)
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Function F(v)

First Derivative F'(v)
Al

2j+1 2 zj

' v v

‘ Co(v) viegv -v+ ;i; ThED! log v ;;; Y
- 2j - 2j-1
j= (2j-1) (23)! 5 @-DeEi-n!

m-1 -1 °

‘ . m-r+l n m-r

» Lm(\l) (-l)m v {log v - 1} hé;o (-1)ff:)?;_m (—l)m log v + Igo (_1)1‘ (:) \zm—r)

TABLE

VI Functions CO(v), SI(v), Lm(v) and Their First Derivatives
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5.3 Example and Discussion

The deflectioh curve of a tapered coupled shear wall loaded by
a uniformly distributed load is calcﬁlated using'the deflection formulae
derived in the preceding section. The deflected shape of the structure is
obtained, using a computer program which sums the various power series by
'do'' loops and evaluates the deflection formula along the height of the
structure. This deflection curve is compared with the deflection curve
obtained by a stiffness matrix computer analysis of the structure. Here again
the "SAP IV" (10) program is used for the computer analysis. In the stiffness
analysis the tapered coupled shear wall is idealized using the wide column
frame method discussed in Section 4.6. The vertical tapered sh;;f walls are

simulated by columns with discrete steps in thitkness throughout their height.
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Example: Tapered Coupled Shear Wall

!gsg }-250, |
’ %
o
Ay
)
\ /
w H
L J._-—————E L=
| pr— .r——————w -
-
h
R (v v A iy A v v v v i A 7777777 TI7I77747
6.75 |45 6,75 430mm . 450mm
18.0m ’
‘a) coupled-wall b) tapered-thickness c) stepped thickness

!
Fig. 15 Sample Tapered Coupled Shear Wall
E = 28,000 MPa
H= 75.0 m; h=3.75m; w=15.0 kN\/m
Coupling beams are of constant size throught the height (175x250x4500 mm)
except the tcp'beam which has half the moment of inertia of the lower

beams .
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.
I, = 11165 x 10% m*; A, = 45.75 x 10° m?
1. =1.=6.407x 102 m?, A =A_ =1.6875 x 10° mn?
ol 02 ol 02 .

The aﬁproximate deflected curve of the tapered coupled shear

wall is obtained from Eq. 5.8 for the uniformly distributed loading.

The physical parameters are from Eq. 2.16 and Eq. 2.2:

EI_ = 12.814 x 10'? po? . :
, - 12.814 x 102 x 3.375 x 10°
-~ 2 . 6 6 = 0.120
11250“(1.6875 x 10~ x 1.6875 x 10
12 x 111.65 x 10° x 11250 (1 + 0.120) .1/2 Iy -6 -l
a = ( T 7 : )/ = 6,586 x-10"° mm
12.814 x 10* x_ 3750 x 4500 \
- 1 450 -1 -6 -1 ’
K = gsse— (535 ) = 10.667 x 107 mm N
or aH = 0.494 and xH = 0.80

-

Substituting these into the deflection formula, Eq. 5.8, and
using the computer program for the evaluation, the top deflection of the
tapered coupled wall, Fig. 15b, is obtained

= 9.712 cm o !

YToP
When using the computer'struciural analysis on the stepped model, Fig. 15c,

the following top deflection is obtained

-

! Yrop = 9.581 cm »

. The deflection profiles from both the approximate deflection
formula of the tapered coupled shear wall and the computer structural
analysis of the stepped coupled shear wall are shown in Fig. 16.

1]

/
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Fig. 16 Lateral Deflection of a Tapered Coupled Shear Wall

- Fig. 16 shows close agreement between the approximate: a]nd the

N \

.;"'eacéct!' deflection profiles, the difference between the two sollution,s does

5

not exceed 1.5% throughout the height of the structure. . -
At first ‘glance the evaluation of the; deflection formulase of .

tapered coupled shear wafls seems to be almost imposSible but, with the use . ;

.of "do" loops in a computer program, these deflection formulae can be

relatively easily evaluated. %Onée this program is available the deflection

, profile for .each new tapered coupled shear wall is rgadily obtained by

, .‘. ‘. : R
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spe‘cifyihg the taper and .physical parameters of the top of the structure;

whereas, if a stiffness matrix computer analysis were used, this would

involve several ‘hundre& lines of input .for each new tapered shear wall ;

wr wew

structure. Consequently, for preliminary design purposés, the use of‘_
the approximate method becomes more convenient than the ';exact" method
as the required number of tapered coupled shear walls deflection profiles-
s to be evaluated increases. , ’
Unfortunately a disadvantage of this method is that the approxi-

mate solution does not behave well, converging only slowly foy aH > 1.0 and

RTURENCL NN Wo03 ST AN LT 0 AN i, 05 S sty <

kH > 1.0, and requiring a great deal of computing time for each evaluation -
of the deflection formulae. Also, if the compu;:er progran is ﬁot written
with high accuracy in mind. it might not even converge. To”incréase the
accurac; of the results of a Fortran Program, which evaluates the deflectign

formulae of tapered coupled shear walls, a number of steps should be taken;

° three of these are: to use double precision throughout the calculations;

’ to use logarithmic and gamma functions when summing the power series such
. .

that, for example, the Fortran expressic}n for the general term'of Eq. 5.3a
g

/a) (@x)2*/(2neg) , is .

DEXP (j* DLOG(K/(;) + (2*n+j)*DLOG (a*x) - DLGAMA (2*n+j)); ,'
. thus preventing the manipulation of exceedingly large numbers; and to

- properly nest the ''do" loops of double summatidns such-that the alternating
¥ -—

terms of the double summations, Eq. 5.3, are swmed first, so as to avoid
* ’ ~
. jhe manipulation of large numbers. ..
§
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5.;1 Summary . 3 L o
i Deflection formulae for coupled shear wall structures, having
- P
walls with tapered thickness, are developed in the chapter for two lateral v
i ‘ » : AU} . N >
loading cases: a distributed loading, 'and a point load at the top of
) . ! A
.the structure. The formulae are in the form of power series, and converge
rapidly for aH < 1.0 and xH < 1.0. For this range, the results obtained
. \
I A v ’
. from the approximate formulae are in close agreement with the more exact
ones obtained by computer, stiuctural analysis. 1
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CHAPTER VI

\ CONCLUDING REMARKS

A method based on the continuous*medium analogy has been

LI
o 5

presented for the evaluation of the deflection profiles of linked shear
wall as well as for tapered coupled shear wall structures. The method of
computation presented is an approximation and holds for the elastic range

of the structures prior to cracking and inelastic actions.

The worked examples show that the results obtained for the l_finkéd

‘

shear wall structures .are in excellent agreement with the "exact" computer
stiffness matrix analysis. The method is suitable for hand calculations
. F

as well as for programmable calculators or digital computers. The method

w

becomes morg attractive when faced with the alternative of a long and tedious
. 1

comi)uter structural analysis. The difference in accuracy does not war¥ant i

the use of a stiffness matrix analysis, over the approximaée analysis.

o

For the case of tapered coupled shear walls, the approximate

results also show very close agreement with the "exact' computer analysis,

Unfox:tunately, as discussed in Section 5.3, a disadvantage of the approximate )
method is that thé deflection formulae converge only slowly for aH > 1.0

and «H > 1.0 and may require a great deal of computation befofe convergence
is attained. For this reason, it might in such cases become more feasible

and accurate to use a computer structural analysis.

o The expressions involved in éhe evaluation of the deflection
formulaéd of tapered coupled shear walls are lenfthy and it would become more -
practical to us® a mfog;st‘mébl"e‘ calculator or & small capacity computer to
evaluate them. Even if a large capacity compﬁter is available, the evaluation

of the deflection profiled for the range of aH and xH previously mentioned will

& \
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be as accurate and less

analysis methods.

72

!
time consuming than by more conventional computer

-

A practical equation developed in this thesis is the fundamental

differential equation of deflection obtained for a coupled shear waTll

subjected to a general lateral loading. This equation can be used for the

analysis of other structural systems comprising one. or more coupled shear

walls, along with other lateral load resisting assemblies,

The procedure

/ ’ .
to be followed for the analysis of such structural systems would be identical
A

to the one used in Chapter IV, namely by introducing interacting forces.

o

Alternatively the results obtained in this thesﬁis can be utilized

further for solving the deflection profiles of other lateral load resisting

assemblies, comprising rigid frames, braced frames, coupled-walls, and homo -

geneous walls, by reducing the.former two structures to their equivalent

coupled-walls with parameters aH and A as developed by Kuster (9),

A valuable result which emanates from the study of linked wall

assemblies is that, a structural system comprising m coupléd-walls and n

a

homogenecus walls can be idealized for deflection purposes b)nr a new structural

system comprising m coupled-walls by changing the physical parameters of one

of the coupled-walls.
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C,L ) APPENDIX A
" DEFORMATIONS OF THE CONNECTING LAMINA IN TAPERED COUPLED
SHEAR WALLS

'

Derivation of Deformations of the Cut Lamina
Iva

T I A T My 4 A e T B TIT L W PP ST AT Y T

The deformations of the cut lamina of the analogous tapered

coupled shear wall system, Fig. 5, are developed here. These are used

Xy -

to derive the governing differential equation of integral shear force

in Section 2.4,

a) Rotation of walls due to bending under external loading, and shear

forces in the connecting beams.

'
iy 9 I A YRR, | SR g

et v v by Ty g e

Fig. 17 Bending Deformation of Walls
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For small rotations, which'is the case here,

(b+d1) '(;)+dé)
§(x) = ———0(x) + —52—8(x) = 28(x)
, ~

where the rotation of the walls at level x is

6 (x) =%§

The rotation 8 (x) is obtained by dividing Eq. 2.8 by EIo (1+kx) and

integrating from f = x to § = H yielding:

) f” Mg (%) g2 [H T
8x) = E:: x  (1+x3) ¢ - BT, Jx +xa) dz

The first term of the above expression is the deformation of the walls

due to free bending under external load, while the second is the reverse

bending deformation of the walls due to shear in connhecting beams.

‘ e fH ME‘(C) .
" 6E(x) = E-i: x TL9kE) dg 2.10
2 H
= T :
Gl(x) = Io fx (T+vc) dg 2,11
J
' —
& ¢
r -

¢
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b) Bending and shear defarmations of connecting beams

Tdx

- e -
!
v-\l
e -
~N
{

~ - l bss 9 b/2

L]

Tdx l
' .
|

Fig: 18 Deformatiom of Lamina Due to Bending and Shear in Beams

Assuming the beams to have the same cross section Ip through the height

. of structure. At level'x, for a strip of lamina of height dx, the distributed

moment of inertia is given by

I'e

I dx
B

dl = h

The applied force of this strip is

de%dan'ax ‘

For a cantilever beam loaded by a concentrated ‘load at the free end, the

wr

deflection at the free end is.
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pL3

= 3y

_—

Using this expression on the strip of lamina of height dx, the deflection

62(x) is given by

3 , 3
§,(x) = 2(dT) (b/2)7 _ 2(T cbIc) (b/2)

3EdI dx
3E (~B—)
h
from which
3 .
T' hb
Sz(x) = IZEIp | 2.12

To include the effect of shear in the connecting beanms, Ip may

be reduced such that -

_ 1
L =T T

s A

where Ipo is the actual moment of inertia and for rectangular connecting 4
beams ‘ q
c,2 g

g = 2.4 ('6') :

N : . 2
in which ¢ and b are the depth and clear span of the connecting beams. o
The reduced moment of inertia should be used, especially foxr'deep ’ - %:

connecting beams.
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Fig. 19 Axial Deformation of Walls
fH T jH T
$ = D e dT - e d
s =) med S mE®
but from Eqs. 2.3 in Section 2,2 ‘ '
- Al x) = Aol (1 + xx)
! . Az(x) = AQ2 (1 + xx)
Substituting these expressions into the expression for
rearranging, the following is obtained
. / )
™ F ; - “_.—:‘-'7« ¥ Pt L e -
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H

1 1 1 f T
[ = P — R
3(x) = g (Ao * R ) x drg) 45

t
1

&

7

85(x) = & ( «L)f = d
3 E A -Ao X (1""(;) 14 2.13
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(__’ " - APPENDIX B

DEFLECTION FORMULAE OF TAPERED CQUPLED SHEAR WALLS

e o, o H A AR TN e

Derivation of Deflection Formulae /

-

The deflection formulae for two loading cases, a concentrated
-loa@ at the top of the structure and uniformly distributed loading are

derived from the curvature equation in Section 5.1.2.

2
2 . 5‘-—5— = E’%‘ Q'x) - R" () . Bl
b dx o] -
where . . ) :
2 M.(x) -T_ (x)2
't = d_g. = E 2 -
Q) = e , B2
2 T, (x)2 ; *
- i = Sl_R = ——————h
R" (x) 2 ) B3
) T (x) = B [cosh(sx) + 5 (x)] + B/[sinh (ax) + 5,01 ‘ 5.2

i

with boundary conditions:

e N ‘ Y(H) = Q ' . ’ 2.9
’ [24
dy(d) _
ax 0 2.9 u
The constants Bo and Bl and the function Tp (x) are listed for the two - - -
loading cases ‘considered in Table III. f ‘ <07

Integrating Eq. Bl gives

1

d 1 . . ' ' -
. 'a%=-ﬁ-;{Q(x)-R(x)+Cl} B4 u

G is evaluated by applying boundary condition, Eq. 2.9a, which yields

. . <

C, = R'(H) - Q' (1)
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Now integrating Eq. B4 to solve for y(x)
AN

; y(x) = E‘%" {Q(x) - R(x) + Cx+ C} 5.8
o 1

By applying boundary ceonditiomn, Eq. 2.9b, Cy is obtained ‘and is given by
C, = R(H) - Q(H) - C,H

In order to evaluate the deflection y(x) given by Eq. 5.8 the functions

Q(x) and R(x) and their first derivatives have to be solved for the loading
2 \

cases considered.

@
‘,/

1) _Q(x) and its first derivative
Ay o

/ -
a) Concentrated load at top of structure

ME(x) = Px
from Table III “
8
T (x) =P -~ X
NS " .

Substituting these into Eq.-B2
cpal By X
Q') = PU- ) i

Substituting the expression for g2 from Section 3.2 '

\ . 3 ’ ﬂff
Q') = P o) ‘

Introducing the abbreviation -0

v = (1+ kx)
and integrating the desired results are obtained}and are given by

Q@) = PEOE? v - log v)
2

Qlx) = P(‘f}'{) (%)3 {‘-%- +v - v log v}

o

3
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b) Uniformly distrituted load , Y ‘ :
2 : ® \ } ‘
~ X . \ i
_ ME(X)¢ = W'-z—‘ ] - .
A —
] from Table III , .
Nt vk B e :
P ) uz 2 ot '
Following the procedure used for the previous loading dase °
. , ‘ .
M A X L - -
- e =5 G - :
\ CTII TR T 2y ‘ )
Now integrating the above eg\c}pression and using the same abbreviation
| . . used in the first loading case.
. w o, A 1.3 v2 N W ’
&) =5 G @ {5 -2velogv} - 5—x
; a‘(1+r)
3 . 2
’ Q(x) = % (1—%-)'(%(—)4 {16— - vz -v + vlog v} - Zw %—- .
' a” (1+2)
a ) I .
| 2) R(x) and its first derivative v
The function R(x) is the same for all- loading cases since ‘it ‘
is a function of Th_(qc) the solution to the homogeneous part of Eq. 2.17.
Eq. 5.2 is ideptigal for all loading cases since it is ihdependent of
the external load. ,
Rewriting the expression for R"(x) TN
| . . ‘ .
- " = " " 11 1
R" (x) Boz {R1 (x) + R2 x)} + Blﬂ, {RS (x) + R"‘(x)} \
e * * \
where _ ~ . \
- " cosh (ax) : o »
L ;‘ Rl (x) B (I'HCX) .
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° Rz (X) = (I‘HCX)
, - 3 . T k] \:A ,
. . RY (x) = sinh (ax) ’
‘ 3™ (1 + x) ; ¥
S,00) ‘ -
”" - - . -
Re &) = T - o N ,
- o . Q‘ » ‘ . ;‘i. "‘
a) R, (x) and Ry (x) and their first derivative A
i ’ s ‘ %o ‘\ 3 =~
- r cosh (ax) v ; "
RJ" x) =/ e dx S K
& . ’ . h ‘ N f‘ 2
- ' 8inh (xx) . , - o <
Ry = I Taeay ~ & . L ,
| using the hyperbolic identities and v for (lﬂét) the following are
obtained S
1 - av . ; vy !
‘ Ri(x)*s- () {cosh 'g%) o' ") - sinh (D sr &)} |
J B 4
. o :‘c K ) }
‘ , R§) = () {cosh & s10 V) - sinh B cor & V1. 7 L
where ) ' T ) ' '
. co* (;) - fts.g_sl‘._:_ d;:lolg‘t + i 2j * E | -
| ) s T o f1 Gz i , . ‘
' A o o ' o
Lo . ‘ o v 2j-1 .
“ : Y(g) m g SEDRE 4 G s ; . -
\L e O e e R CEM G I R
. j»xl , e - ) v -
Integrating the expressions afor Rl' {x) and Ré"'{xB the foldlfwin“g'exp‘ress:gons
. , . are obtained ) 4 " d , L L
‘ d 1 a v ; a, LV ' . P ’
Ry (x) = () {eosh () €O ") - sinh (D s1 (% )} 2 '
1 ' v’ E a a v < T .
Ry(x) = (35) {eosh Q) ST ") - sinh @00 & N $o
- .. -y +Where : . s ., o - T oo
O SR RO
) . \ ‘: o ' *"
* \\ li " N ° ; |
e : ‘1' ﬁ’ PR R -t P
* ' l{-:, -/ "“‘l' , ‘ * ‘ ] : /u
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_ - ® 23-«-1
co I co’ dr = lo -g+
) =$ (2)dg = ¢ log ¢ C &1 (23)(2i*1)‘ .
.. o i ' o
\ SI(r) = J SI'(g) dg = IS SYVED)
’ %) g (z) dg j§1 D (23! o
2 ) \ " |

w0 [y

) \{lz(x) *and. R, (x) and their first' derivative -
~ .

Sl (X) N " , = b L]
o R' (X) (14. ) ' - . ¢
- . ' . sz(x) i : (. \
R4(x) = f —~_~(1+Kx) dx . J "" .

u

Since both S (x) and S (x) are ‘power series :m/ax both R'(x) and R (x)

P hiive terms proportional to : ' -

)" [
S x) = f s KX) dx -
—Substituting v for l+kx this reducgs to . > L
. - ’4m , ;
- L E_m (v-l 3 * - / . A
A\ a0 = QG vl gy . - BS
ilntroducing the abbrev:‘fa‘gion .
’ (v~ 1!
\ Lm(V) * f v dv& / . ’ .

Lowe o

Expanding the term in % bracket and integrating each term, then using

3

the binomial coefficient, gives,

Y

a m-1 JmT ,
! 4 f= +
L) = (1 dog v e 3 Q) G5 . Bs

Substituting this expression into Eq. BS, thevfollow’ipg general term

L3

¥ e v /
is obtained s~ ; .

&) = " A :

&

Using this result for the evaluation of the express:.ons for R} {x) and Ry(x)
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' L j g_Zn 2n+j
. R300 ”;,Zn:l (-1)7 2y, G, @
et i j b (a 2n+l 2n+1+1(v)
Ry(x) = (-,g)j L, D o T

. B .
Integrating the above two expressions, gives -

L . (v)

. )
. 2N 3.2n  Zn+j
LR = () ,i;l (17 a, @7 HhT

o 21 L2n+j+1(v)

R, (s) = (~) ;1 -1 b by; G (2n+j+])!
J

i
where Lm(v) is obtained by integrating the expression for Lx;i(v) gi\}en

in Eq. B6 with respect to v, this is given by: “
m-1

: - m-r+1
n Y
Lm-(v) = (-1) lv {log v-11 912;0 (-1) @) (m-r+l)

/
~

" These resylts are tabulated in Section 5.2.2, Tables IV;, V, and VI.
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