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Abstract

'This thesis presents a theoretical study of the stability of pinned-clamped and clamped-
pinned coaxial cylindrical shells conveying internal and/or annular incompressible
viscous fluid flow.

In the present analytical model, fluid viscous effects are taken into considera-
tion. Generally, the viscous nature of the fluid results in both steady and unsteady
viscosity-related loads being exerted on the shells, the latter of which are approxi-
mated by their inviscid counterpart in this thesis. Upstream pressurization of the
flow (to overcome [rictional pressure drop) and skin friction on the sh:ll surfaces
are taken into account, generating time-averaged normal and tangential loads on the
shells. In this model, the shell motions are described by Fliigge’s shell equations, suit-
ably modified to incorporate the time-averaged stress resultants arising from viscous
cffects. The unsteady fluid-dynamic forces in these equations are formulated from
potential flow theory: the perturbation pressures on the shells are determined from
the perturbation velocity potentials via the unsteady Bernoulli equation; those veloc-
ity potentials are governed by the Laplace equation, which is solved by the Fourier
transform technique.

For the clamped-pinned system, since the downstream end of the shell is sim-
ply supported, a so-called out-flow model is utilized in modelling the decay of flow
perturbations beyond the pianed end.

Comparison is made with the existing results for clamped-clamped and clamped-
free cases.

Finally, future work is suggested with regard to setting up a new analytical model

with the unsteady viscous effects taken into account.
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Résumé

Cette these présente une étude théorique sur la stabilité de coques cylindriques coaxi-
alles épinglées-encastrées et encastrées-épinglées, dont la coque interne ct/ou 'espace
annulaire sont sounis & un écoulement de fluide visqueux et incompressible.

Dans le modele présent analytique, les effets fluides visqeux sont partiellement
pris en considération. Généralement, le nature visqueuse du fluide aboutit a de
forces visqueuses stationnaires et instationnaires agissant sur la coque, la dernicre
desquelles est négligée dans cette these. La pressurisation en amont dans I'écoulement
(pour surmonter la chute de pression frictionelle) et la friction agissant sur la surface
de la coque sont tenues en compte. générant les forces normales et tangentieles temps
permanentes agissant sur la coque. Dans ce modele, les déplacements des coques
sont décrits par les équations de Fliigge, modifiées convenablement afin d’incorporer
les forces permanentes provenant des eflets visqueux. Les forces fluides dynamiques
instationaires dans ces équations sont formulées par la théorie des écoulements po-
tentiels: les perturbations de pression sur la coque sont déterminées via 1’équation
instationnaire de Bernoulli aprés que ’équation de Laplace est solutionnée en utilisant
la technique de la transformée de Fourier.

Pour le systéme encastré-épinglé, puisque le bout de la coque en aval est supporté
simplement, un modéele dit out-flow model est utilisé pour modéliser 'amortissement
des perturbations de I’écoulement audela du bout épingle.

Une comparaison est faite avec les résultats existants pour les cas encastré-cncastré
et encastré-libre.

Finalement, des travaux connexes futurs sont suggérés dans le but d’établir un

nouveau modele analytique avec tenant compte des effets visqueux instationnaires.
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Chapter 1

Introduction

The dynamics and stability of cylindrical structures containing, or immersed in, flow-
ing fluid have been inves_t.igated quite intensively over the past thirty years or so.
Although the rescarch in this field is fundamental, applications are found in many en-
gineering constructions, such as in the power-generating, chemical, and petrochemical
industries; e.g., in the form of piping of all kinds, marine risers, and chimneys; fuel
pins, monitoring, and control rods in nuclear reactors; heat exchanger tube arrays
and bundles of electrical conductors in transmission lines; and thin-walled shrouds
and flow-containment shells in nuclear reactors, aircraft engines, jet pumps; etc..

Generally, cylindrical structures may be excited by either azzal flow or cross flow,
the former of which could be divided into three classes, according to the disposition
of the flow vis-a-vis the cylindrical structures: (a) axial flow within tubular struc-
tures; (b) axial flow outside the cylindrical structures, i.e., along the long axes of the
cylinders; (c) annular flow in systems of coaxial cylinders.

Here, only key references will be cited to show historical stages of research de-
velopment on azial flow—the type of flow to be considered in this thesis. This

Introduction follows closely the review by Paidoussis (1987).
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1.1 Internal Flow in Tubular Structures

This is the oldest and most fundamental problem. A serics of experiments by Aitken
(1876), on travelling chains and elastic cords, illustrating the balance between motion-
induced tensile and centrifugal forces, is perhaps among the carliest work related to
the study of dynamics of flexible pipes conveying fluid. Fendos’ev (1951), Housner
(1952) and Niordson (1953) were among the first to study the stability of a straight
pipe with pinned-pinned ends conveying fluid. With different means of analysis, they
obtained the same basic equation of motion and reached the same conclusion that, at
sufficiently high velocities, pinned-pinned pipes may buckle like columns subjected to
compressive axial loading. This phenomenon is commonly referred to as divergence,
which is another term for buckling instability.

Divergence is the expected form of instability for pipes conveying fluid with both
ends supported, since the system is conservative. However, it is of the gyroscopic
conservative variety, by virtue of the presence of the Coriolis terms; Lence, although
the system should lose stability by divergence, in principle it could also be subjected to
coupled-mode flutter—by coalescence of two modes in the complex-frequency plane.
Paidoussis and Issid (1974) determined that, according to linear theory, coupled-mode
flutter should occur at approximately twice the critical flow velocity for divergence.
The theoretical predictions for divergence of pipes with ends supported have been well
confirmed by series of experiments conducted by Naguleswaran and Williams (1968),
Liu and Mote (1974), and more recently Jendrzejczyk and Chen (1985). lowever, by
nonlinear analysis, Holmes (1978) and Ch’ng (1978) found that coupled-mode flutter
cannot occur, which is also supported by experimental evidence, since post-divergence
oscillatory instability has never been observed.

Benjamin (1961a,b) examined the dynamics of a cantilevered system of articulated
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pipes containing flowing fluid; this system is non-conservative. It is found that it
loses stability by flutter (single degree-of-freedom flutter, otherwise known as a Hopf
bifurcation) and possibly by divergence if gravity is operative and if the fluid is
sufficiently heavy. The flutter motion of continuously flexible, rather than articulated
cantilevered pipes was later verified by Gregory and Paidoussis (1966a,b) theoretically
and experimentally. Paidoussis (1970) subsequently found that vertical, continuous
flexible pipes are never subject to divergence.

Thin-walled pipes (or cylindrical shells) conveying incompressible fluid flow are
subject to both shell- and beam-mode instabilities at sufficiently high flow veloc-
ities, as found by Paidoussis and Denise (1970, 1971, 1972) both theoretically and
experimentally: shells with both ends clamped lose stability by divergence, while can-
tilevered ones do so by flutter. In those studies, the motions of the pipe were described
by Fliigge’s thin-shell equations and the fluid forces were obtained by potential flow
theory; reasonably good agreement was obtained between analytical results and ex-
periments. Similar predictions were also reported for the case of pinned-pinned shells
by Weaver and Unny (1973). The problem was later re-examined by Shayo and Ellen
(1974), who derived asymptotic expressions for the generalized pressures, thus avoid-
ing considerable numerical computation required in previous methods of solution,
and showed the relationship between travelling wave and standing wave instabilities
for shells of large length-to-radius ratio. The problem was further studied by Pham
and Misra (1981) with special attention given to the effect of a superimposed linearly
varying or constant axial loading on the shell.

It should be specially mentioned that Shayo and Ellen (1978) studied the impor-
tance of the behaviour of the fluid beyond the free end of the shell on the dynamics of

cantilevered shells conveying fluid, an aspect not considered in earlier analyses because
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of the utilization of different methods of solution (e.g., Paidoussis and Denise 1972),
by introducing the so-called downstream flow models to describe fluid behaviour in
that region, in conjunction with the Fourier-transform technique.

Horacek and Zolotarev (1984) investigated the cffects of different synumetric and
nonsymmetric boundary conditions upon thin-walled pipes conveying inviscid fluid
flow. They suggested that, for a clamped-pinned system, if the fluid in the shell flows
from the clamped to the pinned end or, for a free-clamped system, from the free to the
clamped end, the system loses stability for any arbitrarily small internal flow velocity
(in the absence of any structural damping). They pointed out that this phenomenon

does not correspond sufficiently to physical reality.

1.2 External Axial Flow around Cylindrical Struc-
tures

The dynamics and stability of cylinders in external axial flow are closely similar to
those of a pipe conveying fluid.

The first theoretical study on unconfined axial flow by Paidoussis (1966a) showed
that cylinders with ends supported lose stability by divergence and at higher flow ve-
locities by coupled-mode flutter; similarly, cantilevered cylinders first lose stability by
divergence, but then at higher flow velocities by single-mode flutter. It is of particular
interest that in this case the post-divergence behaviour, whether it is coupled-mode
flutter for cylinders supported at both ends or single-mode flutter for cantilevered
ones, actually does materialize in the experiments (Paidoussis 1966b).

If the flow about the cylinder is confined, by a conduit or by adjacent struc-

tures, then the virtual mass of the fluid becomes larger and the instabilities occur at
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lower flow velocities (Paidoussis 1973), but the fundamental nature of the stability
behaviour is not altered. A more sophisticated analysis of the problem was conducted
Ly Paidoussis and Ostoja-Starzewski (1981), on the effect of slenderness of the cylin-
der and compressibility of the fluid, but once again the fundamentals of the stability
behaviour are the same. Interestingly, compressibility was found to have only a mi-
nor effect on the stability of the system—at least, for the range of system parameters
investigated.

Chen (1975) was the first to examine the dynamics of arrays of parallel cylinders in
dense fluid, bringing to light the important fluid-dynamic coupling in their motions,
especially when the cylinders are closely spaced relatively to one another. Because
of this coupling, and because the diagonal terms in the virtual mass matrix are
much larger than for a solitary cylinder, the instabilities occur at much lower flow
velocities than for either a solitary flexible cylinder or a flexible cylinder surrounded
by rigid ones. This was studied further, and more completely, in the case of cylinder
clusters within a flow-containing pipe (confined flow) by Paidoussis and Suss (1977).
Both invisid and viscous hydrodynamic coupling in motions of the cylinders was
treated; in addition, the confinement of the fluid, due to the small spacing among
cylinders as well as between the channel wall and the adjacent cylinders, was taken
into account completely. It was found that the theoretical model and experiment agree
qualitatively in most essential features of the dynamical behaviour of the system, and
quantitative agrcement for the critical flow velocities was found to be remarkably
good (Paidoussis 1979; Paidoussis, Curling and Gagnon 1982).

The stability of tubular cylindrical and conical beams simultaneously subjected to
both internal and external axial flow was examined theoretically and experimentally

by Hannoyer and Paidoussis (1978, 1979a,b).
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All of the foregoing refer to flow-induced instabilities of cylindrical bodies of suf-

ficient wall-thickness, if hollow at all, that they may be treated as beams.

1.3 Annular Flow in Coaxial Cylindrical Struc-
tures

It should be mentioned that annular-flow-induced instabilities are sometimes referred
to as leakage-flow-induced oscillations, or instabilitics, which 1eflects the fact that in
most cases of practical concern, the annular flow passage is quite narrow. Some of
the practical situations where annular-flow-induced instabilitics have occuired are:
control rods in guide tubes, fuel strings in coolant channels, and feedwater spargers,
in various types of nuclear reactors; and certain types of jet pumps, pistons, and
valves.

Some work on the stability of flexible cylinders in axisymmetrically confined flow
was undertaken by Paidoussis and Pettigrew (1979), and Paidoussis and Ostoja-
Starzewski (1981). The mathematical models developed therein are in principle ap-
plicable to any degree of confinement; however, the viscous effects in very narrow
passages cannot reliably be adapted from those formulated for less confined flows,
casting some doubt on the validity of that aspect of the model.

Hobson (1982) considered a rigid cylindrical body, hinged at one point and coax-
ially positioned in a flow-carrying duct, generally of nonmuniform cross-sectional area;
he showed that, at sufficiently high flow velocitics of the annular fluid, oscillatory
instability ensued, via a negative-damping mechanism. Morcover, the model was ca-
pable of dealing, in an approximate manner and some degree of empiricism, with

situations of sudden constriction or enlargement in the flow passage.
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A more rigorous, purely analytical model was formulated by Mateescu and Paidou-
ssis (1985), once again for a rigid body (the center-body) hinged at one point and
coaxially positioned in a flow-carrying conduit. It was found that there is a critical
location of the hinge: if the hinge is situated downstream of that location, then
the system may lose stability at sufficiently high flow velocity; the necessary flow
velocity becoming progressively smaller as the hinge is moved farther downstream.
The fluid-dynamic forces become larger as the annular passage becomes narrower,
destabilizing the system. The rigid body model was extended to take into account, in
an approximate manner, viscous effects (Mateescu and Paidoussis 198¢). One of the
principal findings of this work is that viscous effects stabilize the system, becoming
more important as the annulus becomes narrower, whick is reasonable on physical
grounds. Recently, the theory has been further extended to deal with turbulent
annular flow (Mateescu, Paidoussis and Bélanger 1991b).

The first studies on stability of coaxial shells with annular flow were independently
conducted by Weppelink (1979) and Paidoussis, Chan and Misra (1984). The latter
study considered shells conveying incompressible or compressible inviscid fluid in the
annulus and in the inner shell. For the clamped-clamped system considered, it was
found that stability was lost, at sufficient high flow, by divergence, followed by either
divergence in another mode or by coupled-mode flutter. It was also found that, for
annular flow, the critical flow velocity is lowered as the annulus is made narrower.
If both shells are flexible, the instability threshold is lower than if the outer shell
is rigid, the system losing stability first in the antisymmetric modes. The effect
of compressibility on the dynamics of the system is rather small. The analytical
model was subsequently extended to take into account the steady viscous effects

due to surface traction and pressurization (to overcome frictional pressure drop) by
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Paidoussis, Misra and Chan (1985). It was found that pressurization in the flow
within the inner shell tends to stabilize the system, as is physically reasonable. In
contrast, pressurization in the annular flow is destabilizing, if the outer shell is rigid.
On the other hand, pressurization in the annular flow when both shells are flexible
could either stabilize or destabilize the system, depending on the system parameters;
this becomes clear when it is realized that in this case the effect on the inner shell is
destabilizing, whereas it is stabilizing on the outer shell, and that motions of the two
are coupled.

El Chebair, Misra and Paidoussis (1990) attempted to account for the unsteady,
time-dependent viscous forces in an approximate way by adapting the work originally
developed for quiescent fluids by-Yeh and Chen (1977) to flowing fluids. This attempt
was only partially successful, having run into difficulties when the no-slip boundary
condition was rigorously applied at the shell surface in the method of solution. Al-
though the Navier-Stokes equations were used for the calculation of the unsteady
viscous forces exerted on the shells, they were in fact never solved. In any event, for
shells with both ends supported, unsteady viscous forces were found to have only a
slight influence on the dynamics of the system. At the same time, the first experimen-
tal study of annular-flow-in-duced instabilities of clamped-clamped coaxial shells was
undertaken (El Chebair, Paidoussis and Misra 1989), which verified the dynamical
behaviour of the system, qualitatively very well indeed, but quantitatively only within
the usual margin of uncertainty associated with the effect of shell imperfections.

Recently, two new analytical models for study of the stability of clamped-free
coaxial cylindrical shells subjected to internal and annular inc wpressible viscous
flow were presented by Paidoussis, Nguyen and Misra (1991), ana . .guyen (1992). In

the first model, Fliigge’s shell equations were used to describe the shell motions; in
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solving the governing equations of motion, the complexity of the free-end boundary
conditions of the shells was dealt with by the eztended form of the Galerkin method.
It was found that, for internal flow, with the system parameters taken for the analysis,
loss of stability is not always by flutter; for some large circurnferential wave numbers,
divergence occurs first, followed by single- or coupled-mode flutter. In the case of
annular flow, the system may lose stability either by flutter directly, or by divergence,
followed by flutter at a higher flow. In the second model, much attention was given
to the unstcady viscous effects of the annular flowon the stability of the system with
narrow annular gaps. Such effects, which had been neglected in previous studies, were
evaluated in a formal manner for the first time. It was found that, for sufficiently
small widths of the annular gap, the unsteady viscous effects of the annular flow
destabilize the system, and they become diminished as the gap is reduced. Both new

theorics agreed quite well with the experimental results.

1.4 Objectives and Thesis Organization

The primary objective of this thesis is to develop an analytical model for predicting
instabilities of pinned-clamped and clamped-pinned coaxial cylindrical shells sub-
jected to flowing incompressible viscous fluid in the annular region between the two
shells and/or within the inner shell, and to compare the results with those obtained
for clamped-clamped and cantilevered systems. Another objective is to verify the
conclusion by Hordgek and Zolotarev (1984) who suggested that clamped-pinned and
free-clamped systems lose stability for any arbitrarily small flow velocity.

The analytical model takes into consideration the main effects of fluid viscosity,

namely, the steady (time-independent) viscous loads on the shells. The unsteady fluid



CHAPTER 1. INTRODUCTION 10

forces are calculated approximately by neglecting unsteady viscous effects and using
potential flow theory, the solution of which is then obtained by means of the Fourier
transform technique.

This thesis consists of five chapters. Chapter 1 has given a bricf review of previous
studies closely related to the research work of the thesis. It has also stated the
objectives undertaken by the thesis, and now presents the outline of the thesis.

In Chapter 2, the development of the analytical model for predicting instabilities of
pinned-clamped and /or clamped-pinned coaxial cylindrical shells conveying internal
and/or annular flows is given in detail. Presented are (a) the formulation of the
problem with Fligge's modified shell equations and potential flow theory, (b) the
solution of the fluid-dynamic forces acting on the shells by means of the Fouricr-
transform generalized-force approach, (c) the solution of the governing cquations of
motion with the Galerkin method.

Chapter 3 has presented the results ;)f calculations conducted to verify some im-
portant aspects of the present theory. Thus, (a) the natural frequencies of a cylindrical
shell in vacuo were calculated to assess how well the Galerkin solution works; (b) to
check the computer program under the condition of the fluid being conveyed is in-
viscid, comparison was made between the results of the present theory and those of
beam theory.

Chapter 4 is focused on calculations and analytical results. Both systems of
pinned-clamped and clamped-pinned shells are considered. Calculations are con-
ducted for (a) internal flow only, (b) annular flow only, and for the effects on stability
of (c) gap width, (d) shell length, (e) shell-wall thickness.

Finally, Chapter 5 wraps up the thesis with a summary of theimportant findings of

the thesis, conclusions regarding the contributions of the thesis, and recommendations
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for future work.
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Chapter 2

An Analytical Model

2.1 Introduction

The main purpose of this chapter is to develop an analytical model to investigate the
dynamics and stability of either pinned-clamped or clamped-pinned coaxial cylindrical
shells conveying internal and/or annular incompressible flowing fluid. In this study,
the physical system is replaced by a pre-stressed flexible shell subjected to inviscid
flow. The key assumption here is that the forces pre-stressing the shells are the same
as those resulting from flow pressurization and traction effects on the shells surfaces
in the original system. The unsteady fluid forces will be formulated with potential-
flow theory. Thus, although steady viscous efflects are taken into account, unstcady
viscous effects are not.

The following theory is presented for the general system in which both shells are
flexible. Certain important aspects of the theory will be verified by solving a set of
problems that have been studied before and comparing the results with the cxisting
ones. For practical reasons, the theory will then be used to study a simple case with

the outer shell replaced by a rigid cylindrical tube whereas the inner one remains

12
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flexible. This simplified system, nevertheless, still retains most of the important

dynamical characteristics of the general one.

2.2 Formulation of the Analytical Model

2.2.1 System Definitions and Assumptions

The system under consideration is shown in Figure 2.1. It consists of two coaxial
cylindrical shells of length L. In the case of the pinned-clamped system, the shells
are assumed to be pinned at the upstream end (z = 0) and clamped at the downstream
end (z = L) onto semi-infinite rigid cylinders of same radii and wall thicknesses as
the two shells; in the clamped-pinned case the situation is reversed. The innet and
outer shells have mean radii @ and b, and wall thicknesses h; and h,, respectively,
such that h,/a, h,/b < 1. The shells are assumed to be elastic and isotropic with
Young’s moduli E; and E,, densities p,; and p,, and Poisson’s ratios »; and v,; in all
cases subscripts ¢ and o being associated with the inner and outer shell, respectively.
Incompressible fluid is generally flowing both inside the inner shell and in the annulus,
with densitics p; and p, , and flow velocities U; and U,, respectively.

Shell motions are assumed to be sufficiently small, so that linear shell theory may
be employed. As already mentioned, these perturbations will be formulated using
potential-flow theory. Nevertheless, the flows are considered to be viscous, in the
steady scnse, and hence pressurization, necessary to overcome pressure drop, and
traction effects on shells are indeed taken into consideration. Finally, in the case of
the pinned-clamped system, the perturbations are assumed to vanish immediately
upstream and downstream of the flexible shells, whilst in the clamped-pinned case

the perturbations are assumed to vanish upstream and far downstream of the flexible
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shell.

2.2.2 Governing Equations of Motion

In its most general form, in the present theory both cylinders are considered to be
flexible thin shells. Shell motions are described by Fliigge’s (1960) shell equations,
as modified by Paidoussis, Misra and Chan (1985) to take into account the stress
resultants due to steady viscous effects.

With inner-shell and outer-shell quantities characterized by subscripts ¢ and o,
respectively, the equations of motion for the two shells are given by

"

Ly (1,0, w,) = u:' + —1-(1 - u,)u:' + -l-(l + u.)v? + u.w: + k,{%(l - u,')u:' — w;

2
1 d*u;
50— w)w]"} + ] + (o] +w) + @l =~ w)l = w{GEE =0, (1)
Lai(ui, viywi) = ’;'(1 + vy, +o) + 5(1 — n)v; +w, + k.{§(l - n)v,
1 He " o D 02v.
- '2‘(3 —v)w, } + [quv, +gailv +w)] - ‘Y-{’a—t{} =0, (2.2)
Ly (u;, vi,w;) = u.u + v, +w, +k, { (1 - vy, o u:-" — %(3 - u.-)v:“ + Viw,
azwl qi _
+ 2wi + w;} - [qnw + ‘IS.( v + w )] + {57 oz P.n'hi} =0, (2.3)
L1o(to, V0, wo) = u s (1 Volu; + ;(1 + uo)v + u,,w + k, { — Vo)u, — w;”
1 ) 0%*u
+ 5(1 - Vo)wo } + [qlouo + q20(vo + wo) + q30(uo - wo)] { atg } 0 (2 4)
Lo (to,v5, w,) = -;—(1 + uo)u: +u, + %(1 - u,,)v;, +w, + ko{—z-(l - ua)vo
1 1 1 (Y . 32vo ‘
= '2'(3 - Vo)w, } + [(Ilovo + 930(v, + w,)] — 70{’5{{'} =0, (2.5)
9 . 1 ee ’ 3 %
Lo (o, vy Wo) = Vott, + v, + Wo + ko{—(l - v)u, - - -(3 vo)v,  + Viw,
') M a W, 0
+20) +w,} — [qiow) + guolty — v + )+ Wl G~ -} =0, (26)

a? Psoho

where

|

0 =20 (r=a0, (7 =a), k= o k= R
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2 2 2 2 2 2 2 2
_p,,a(l—u,) _psob(l—%) 2 _ 2 9 9 2_1,22_ _6__
n= E, 1 To = E, » Vi =a dz?  90%’ Vo= Jz? + 00?’

u(z,0,t),v(z,0,t) and w(z,0,t) are the axial, circumferential and radial displace-
ments of the middle surface of the undeformed shell; ¢, ¢2 and g3 denote the
nondimensional forces associated with steady viscous effects (Section 2.3.3); ¢; =
(i = Po)lr=a and go = (Po — Pe)lr=s, With pi; po and p. being the perturbation pres-
sures in the inner fluid, the annular fluid and the fluid surrounding the outer shell,
respectively. Thus, g, and ¢, represent the unsteady radial forces acting on the shells
per unit area (Section 2.3.2.3).

Shell motions must satisfy the following boundary conditions:(i) at the clamped
end, u,v,w and dw/dz are all equal to zero; (ii) at the pinned end, v = w = 0 and
since the flexible shell can slide along the rigid cylinder, the normal force N, and
the bending moment M, must vanish. Thus , in terms of shell displacements, these
boundary conditions are equivalent to

(i) at a clamped end,

u, =v, = w; =0, %—Z—' =0 (2.7)
o = Vo = W, = 0, 36";" =0; (2.8)
(ii) at a pinned end,
v =w; =0, (29)
u:- + u.-v: + vw; — k;w:-' =0, (2.10)
w; + viw; — v, — u, =0, (2.11)
v, = w, =0, (2.12)
u; + Vv, + Vow, — kow;’ =0, (2.13)

[} [} ]

w, + vewy — Vb, —t, = 0. (2.14)
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2.2.3 Perturbation Pressures

As mentioned in the last section, the unsteady fluid forces (g, and ¢,) in the governing
equations of motion are simply the differences between the perturbation pressures on
the two sides of the shell. Thus, the determination of these forces reduces to that
of the perturbation pressures. Since the analysis here applies equally to internal and
annular flows, the subscripts ¢ and o will be suppressed, until required for clarity.

The perturbation pressures will be formulated by means of potential flow theory!.
Thus, for this purpose, the flow is considered to be inviscid and irrotational and also
isentropic. Hence, the velocity V may be expressed in terms of a velocity potential
¥(x,0,r,t), such that

V =VY. ' (2.15)

Moreover, ¥ is considered to consist of a steady component due to the mean, undis-
turbed flow velocity U in the z-direction and an unstcady component ¢ associated

with perturbations due to shell motions; in other words,
¥ =Uz+¢. (2.16)

Hence, from equation (2.15), the velocity components of the perturbed flow field may

be expressed as

.0 9¢
VI—U+61’ Ve or’

With the substitution of equation (2.16) into (2.15) and then into the continuity

104

= ;507’ V,- = (2]7)

equation for an incompressible flow, V.V = 0, ¢ is found to be governed by the

Laplace equation,
0 104 1% 04 _
r? " ror  r200®  9z?

YThis is clearly an approximation. Nevertheless, as mentioned in the foregoing, certain aspects

0, (2.18)

of the viscous nature of the fluid flow are taken into account (Section 2.3.3)
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which is subject to the impermeability boundary conditions on the shell surface(s),

requiring that

B %,y (2.19)

V'=5Fss‘az oz’

Thus, for the annular flow, equations (2.18) and (2.19) take the form

39, , 194, , 196, &4,

ar* r or + 2 892 + 9z 0 (2:20)
[ dw; dw;
+U, for0<z<1L,
(’gﬁo - | ot tVoar (2.21)
T lr=a | 0 forz < 0and z>> L;
[ dw o)
+U, for0<z<L,
%qs‘,, _) ottt (2.22)
L B |0 forz <0and z>» L.

A similar set of equations also applies to the internal flow,

¢ 104, , 10%; 03¢

Jw; ow
_ + U, for0<z<L,
%ﬁ _] o t%ar (2.24)
T lr=a 0 forz <0and z> L.

Here, a note should be given, concerning the boundary conditions (2.21), (2.22) and
(2.24). Since ¢, and ¢, are both shell-motion-induced, it is reasonable to assume
that ¢; = ¢, = 0 for z < 0; i.e., lows entering the system are undisturbed. On the
other hand, for the pinned-clamped system it can be assumed that ¢; = ¢, = 0 for
r > L. But for the clamped-pinned system, since the downstream end of the shell
has a varying slope, it is unrealistic to assume that ¢; = ¢, = 0 for z = L + AL,
where AL — 0. However, ¢; and ¢, should vanish when AL is sufficiently large; this
matter is discussed in detail in Appendix C.

Once ¢ has been determined, the perturbed pressure may be evaluated from

Bernoulli’s equation for unsteady flow,

, (2.25)
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where V2 = V2 4+ V? + V2 P, is the stagnation pressure, and P is the pressure in
the perturbed flow field. Expressing the pressure in terms of its mean, undisturbed
value P and its perturbation counterpart p, such that P = P + p, and substituting

(2.16) and (2.17) into equation (2.25) gives

{%U*+§-%}+{£+U§i’ ’;} {( )2+(“3‘3)+(0)}=0(2.26)

In this equation, the first term is time-independent, while the second and third ones
are time-dependent. Equation (2.26) therefore implies that its first two terms must

individually vanish, giving
P = P,— -,oU2 (2.27)

_ ¢ ¢ ,
p = {(?t +Ua$} (2.28)

for which it has been assumed that all second-order perturbations, grouped in the
third term of equation (2.26), are negligibly small-—by considering motions of the shell
to be small. It is seen that pis readily given by (2.28) once ¢ has been determined
from equations (2.20)-(2.22) for the annular flow, or from equations (2.23) and (2.24)

for the internal flow.

2.3 Method of Solution

2.3.1 Introduction

In Section 2.2 two different sets of equations were presented, which are integral parts
of the theory and must be solved scquentially.
The first set of equations, known as the Laplace equations, needs to be solved in or-

der to determine the unsteady fluid-dynamic forces exerted on the shells. The method
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to be used for the solution for these equations is the Fourier-Transform Generalized-
Force technique (Section 2.3.2), also employed by Paidoussis et al. (1984, 1985). Such
forces, once calculated, are substituted into Fligge’s modified shell equations, which
are then solved with Galerkin’s method (Section 2.3.4). With rega-d to the second
set of equations, all steady viscosity-related forces on the shells have been evaluated
and given by Paidoussis, Misra and Chan (1985); since the same procedure will be
followed here, only the final results wili be presented without details of the derivation
(Section 2.3.3).

For the purpose of satisfying equations (2.1)-(2.6), the solution for the shell dis-

placements is expressed in the following functional forms:

r u; l ' A, cos nb(ad/0z) W

1 v L = iiﬁ B, sinnf &, (z)e™, (2.29)

| W """“ L C,, cosn@ ‘

' U \ | Dy, cos n0(b3/0x) W

1 Y = )o_i,] i:l \ E,,sinnf L‘I’m(m)e'm, (2.30)
W, - Fy, cosn@

\ J \ J

where m and n are the axial and circumferential wave number, respectively; Ap, ...,
F., are constants to be determined; ®,,(z) are appropriate eigenfunctions for the
z-variations of shell displacements, here taken to be the eigenfunctions of a clamped-
pinned or a pinned-clamped beam, and  is the angular frequency of oscillation.
The solutions to the perturbation velocity potentials and pressures are taken to

be of the form

# =§ Hlz ) cos nd e™, %o =§: folaar) cosnf e, (2.31)

Pi n=1 ]3,(1',1') Do n=1 ﬁo(zﬂ')

The determination of @,, @,, p; and p, is the subject of the analysis of the next
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section.

2.3.2 Solution for the Perturbation Pressurcs

2.3.2.1 Annular Flow

Substituting ¢, from equation (2.31) into (2.20) and taking the Fourier transform of

the resulting equation gives

o0 2 Tx Te 2
Z {_03—?22 + la(')d:o - (02 + %) Jb;} cosnl = 0, (2.32)

n=1

where ¢ denotes the Fourier transform of ¢,, defined by

- oo L
8 (ayr) = / do(z,r)e = dz, (2.33)
and e # 0 (in fact,|e'™| = 1) has been taken into consideration.

It is noted that the right-hand side of equation (2.32) is zero whercas the left-hand

side is an infinite series of cos nf. Since cosnfd, n = 1,2,...,00 form an orthonoimal

set, the coefficient of cosnf for any given n must equal zero, or

2 Jm A* 2
0¢o+l?i"g_(a2+'_'_) 6 =0. (2.34)

ar? r Or

Equation (2.34) is known as Bessel’s modified equation, admitting solutions of the

general form

&;(a,r') = Cyol(ar) + C. K, (ar), (2.35)

where I,(ar) and K,(ar) are the nth-order modified Bessel functions of the first
and second kinds, respectively, and C;, and C3, are constants of integration to be

determined from the boundary conditions at the shell surfaces, namely equations

(2.21) and (2.22).
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The procedure to evaluate Cy, and Cy, is as follows. Equations (2.29)-(2.31) are
appropriately substituted into cquations (2.21) and (2.22), then the Fourier trans-
forms of the resultant equations are taken, and finally @] is replaced by its functional
form in (2.35). Thus, boundary conditions (2.21) and (2.22) are effectively equivalent

to

i {la 1, (aa)] Cy, + [aK;(aa)] Cap} cosnl =

n=1

i; { (= Usa) E Cn|®r. () + R, ‘(a)]} cosné, (2.36)

m=1

Z {lal! (ab)] Cyo + [aKK, (ab)] C2,} cosnd =

i {i(ﬂ - U,a) f: Fu[®%(a) + R,‘n(a)]} cos n#. (2.37)

n=1 m=1

Before C;, and C,, are obtained from equation (2.36) and (2.37), it is important
to discuss the reasons for introducing into these equations the new function R;, (a),
which is the Fourier transform of R,,(z) (refer to Appendix C).

As previously touched upon, the method of solution being employed is the Fourier
transform method (see, for example, Bracewell 1974), implicit in which is the specifi-
cation of (i, r), 8¢/0z, and j(z,r) at £00, whereas the variations of these quantities
are dependent on x through the beam-eigenfunction expansions, which are specified
only within the interval [0, L]. Furthesmore, on physical grounds, although it may
reasonably be argued that perturbations in flow and pressure are nearly zero for z < 0
(and hence at £ = —o0), the same would be quite unreasonable if applied for z > L in
the case of the clamped-pinned system; perturbations should die out in a finite length

beyond the pinned end of shells and do so as smoothly as in reality. Hence, the need
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arises, both mathematically and physically, of specifying how ¢ and p decay beyond
z = L—since decay they must, on physical grounds, by dissipation and diffusion.
The functional form of the decay of perturbations is given by R,,(x), which may be
visualized as an extension of the beam eigenfunctions ®,,(x), 0 < # < L. For the
pinned-clamped system, however, it is just assumed that R, (z) = 0.

The functional form of R,,(z) constitutes what has been terised an out-flow model;
such models were first proposed by Shayo and Ellen (1978) and later elaborated fur-
ther by Paidoussis, Luu and Laithier (1986). Since such models cause some difficul-
ties because of numerical non-convergence, a more proper model was suggested by
Paidoussis, Nguyen and Misra (1991). The detailed description of such a model and
its corresponding functional form of R,,(z) may be found in Appendix C.

Equating the coefficients of cosn8 on the two sides of (2.36) and of (2.37) leads to

[al!(aa)] Cy, + [aK(aa)] Cap = i(R - U,a) i Cul®).(a) + R (a)), (2.38)

m=1

[al’(ab)] Cio + [aK' (ab)] Cao = i( = Una) 3 Fn[®2(c) + Reu(a)],  (2.39)

m=1

from which C, and Cj, are found to be

Gy = 0= Vo) & { ~ K (ab)C,p + K (a) Fry

| 1,'.(05)1\','.(00)—l,’,(aa)l\’,'.(ab)}[q):"(a)+Rv‘n(")], (2.40)

i(Q-Uoo) & f  h(ab)Cp ~ I(ca) P _
¢ - d’m « R:n a)l. (2.41
’ a mz—:l { I'(ab) K! () — I,',(aa)l{,g(ab)}[ (a) + R, (a)]. (2.41)

As a result of (2.40) and (2.41), equation (2.35) may be rewritten as

bi(ar) = L20) $° (Wi )G + Wil )Pl (@) + Bl (242
where
_ I (ab)K,(ar) — I (ar) K} (ab)
Win(eur) = I'(ab)K! (aa) — I'(aa)K!(ab)’ (2.43)
Wan(o, 1) = I(ar)K}(aa) — I,(aa)K.(ar) (2.44)

= Ty(ab)K(aa) — I'(aa)K1(ab)’
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in these expressions C,, and F,, have been defined in equations (2.29) and (2.30),
respectively; prime denotes differentiation with respect to the argument of Bessel's
modified functions. To obtain j:, equations (2.31) are substituted into (2.28), and
then the Fourier transform of the resultant equation is taken with ¢}(c,r) replaced
by its value in (2.42) and, finally, the coefficients of cosnf on the two sides of the
cquation are equated, giving

Pl — e °(Q Voc Z{[“ 1n(0t, 7)Cm + Wan(a, ) B ][®5, (@) + RS, ()]} (2:45)

m=1

polayr) =

2.3.2.2 Internal Flow

With the same procedure as was carried out for the annular flow, ¢:(a,r) for the
internal flow is also found to be governed by a modified Béssel equation, similar to

equation (2.34),

62$: 1 a&: 2 n2 Te __
‘5;2—'{‘;_‘?— (0 +-—') ¢; =0, (2.46)

which admits solutions of the form
é:(a,r) = Cylu(ar) + CyKa(ar). (2.47)

Here, it should be recalled that lim,_o Ku(ar) = oco. Hence, for ¢; to be finite as
r approaches 0, C;, must be set to zero (Cz; = 0). Meanwhile, Cy; is determined
from boundary condition (2.24). Substituting (2.29) and (2.31) into (2.24), taking
the Fourier transform of the resulting equation and making use of (2.47), and finally

equating the coefficients of cos nf on the two sides of the equation yields

a

(@l (aa)} Cyi = i(R — Usa) 21 Cnl®:.(a) + R;, (a)], (2.48)
or equivalently,
R R W LACREAC! (2.49)
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With Cy, given by (2.49) and C3, = 0, equation (2.47) becomes

- (- U« I(a .

Fior) = BB 5 2o o) + B @50)

thus, 57 (a,r) can now be obtained from (2.28). Procceding in the same manner as

was done for p;(a,r) results in

5(a,r) = 28 U") Z Iu(ar) v 192 (a) + R2,(a)] (2.51)

m=1 (
2.3.2.3 Nondimensionalization and Generalized Forces

As it is more convenient to deal with dimensionless quantitics, equations (2.1)-(2.6)
will be nondimensionalized prior to being solved. For this purpose, the following

reference velocities and forces per unit area are defined:

E; 1/2 E, 1/2
= [p,.a - u?)] » U= [p.ou - uz)] ’

pulil  EhL  _  puhol _ EohlL

(i M = () (252
from which the following dimensionless parameters are introduced:
B U,‘ - U.,-_Qa—_Qb __Q.-__au,,
U,———', Uo"'"':, nl_ '1 o—uov Qr"'ﬂo“ bu.',
r a b _ T L' .
E—Z,E.—Z,eo—z,a—aL,f—Z,l——L‘-, (2.03)
— An & Bm—_Cm-_Dm—_Em-_Fm
Am—T,B ""_L—) m—Ta Dm— L ’Em“‘ L)Fm— L

Thus, in terms of (2.52) and (2.53), the perturbation pressures evaluated in (2.45)

and (2.51) may be written as

e =M _gal 3 HEIo @ @) @)

& ,’,c‘x

2 0. _ 0o _ _
I_’o(&’e) = oflo {;?S}i: - 0&} mE;-l {wln(a,E)Cm + W2n(&’5)Fm}

x {#,.(a) + R (@)}, (2.55)
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where

I' (ag,) K (ag) — I.(ae) K (ace,)
I' (ae,) K (ae,) — Ii(ae,) K (ae,)’
I(ae)K!(ag;) — I} (ae,)Ka(ac)
I'(Ge,) K (ae;) — I'(ae,) K. (ae,)

W],.((—Y,E) = (2.56)

(2.57)

Wgn(c_l', 6) =
Finally, the terms ¢, and ¢, in equations (2.3) and (2.6), respectively, are given by

q = (pl - po)ir:-_a’ qo = (po _pe)|r=b = polr:b? (2'58)

where the quiescent fluid surrounding the outer shell has been assumed to have a
negligibly small inertial effect on the dynamics of the system (e.g., if the fluid is air),
or p. = 0; p, and p, are obtainable from (2.54) and (2.55), respectively, after inverse
Fourier transformation and utlization of (2.31). The following analysis will be devoted
to the evaluation of the gencialized forces associated with perturbation pressures in
the flows.
For the inner shell, if ¢; is taken to have the form
q:(€,0,t) = io:l f:‘ Qumn(€) cos nfe ™, (2.59)
n=1m=

then substituting (2.31) and (2.59) into the first of (2.58), taking its Fourier trans-
form and utilizing (2.54) and (2.55), then taking inverse transform and equating the

coefficients of cos n8 on the two sides of the resulting equation will give

Q@) =27= [~ { ‘—Z— - '7"5}2 {f—%} [@,(a) + R (@)]e~*da

_pdh; /°° 1{ __ ‘oa}z{wl,.(a, €)Cm + Wan(@,€)Fin }

2” -0 a Eonr

x {®: (&) + R (a)}e % da. (2.60)

In the process of solving the equations of motion by the Galerkin method (Section

2.3.4), all the terms are made to have the same common factor L. It is noted that the



CHAPTER 2. AN ANALYTICAL MODEL 26

resulting term v,q,/(p, kL) from equation (2.3) is simply ¢,/@, with ¢ having been
defined in (2.52). Thus, for later convenience, Qmn(€) needs to be nondimensionalized
with respect to g,. In the present method of solution, Q,,,(£) is eventually multiplied

by ®«(£) and integrated over the domain [0,1] of £. Hence, the dimensionless gener-

alized force may be written as

kan = %Al ¢k(£)erlu(£)d£ (261)

Substitution of (2.60) into (2.61) gives

2A o TR _
Quun = 2502 [ A% 0} {2 @)+ Muntaa

_ pods
2rq,

/w'l‘{ = —‘7'}2{W (6,€)Cm + Wan(a, €) Frn}
-0 O Eoﬂr o (@, €)0m €)'y
X { Him(&) + Ni(a)}da, (2.62)

where Hy, (&) and Ni,, (&)are defined as

Him(@) = { [ ' m({)e-'&fdg} {[ ' Bu(£)e ], (2.63)
Nen@) = { [ 0ut@re- e} { [ Rulreae} (261)
both of which can be determined analytically. The evaluation of Hy,,(&) and Ny, (&)

is presented in Appendices B and C, respectively. Qimn may also be expressed ex-

plicitly as a quadratic function of €};,

Qimn = {aaCon + rimnFu } 02 + 2 (g0} .Con + 1 P} O + {4 Cn + 1 P},
(2.65)

where

i = (- 1>’+""”’{": 2 & D b @)+ Vo))

27 G; (ae;)

+(~ I)JPO { U3 );—1} [_ & Wi (@) { Him(a) + Nin(a)}da,

(o9
Pouz

G) _ (_1y
Timn = ( 1) 27“-1-‘,

{(Elg-)la_,}/ & Wy, (@e){ Him(@) + Nim(a)}da,
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with the value of j being 1, 2 or 3.

Similarly, for the outer shell, g, may be written as

0.(£,0,) = f: f“ Smn(€) cos nhe'; (2.66)

using the same procedure as was carried out for the generalized force on the inner

shell results in

Sk'""l = {skmnC + tscln)znpm} ﬁlz + 2 {322"),"(7". + tgr)lnF } Q' + {sgr)mc + tgr)mF_'m} ’
(2.67)

where

() _ j+1/’0u3 U ® 2 - - N g
Skmn = ( 1) 270 {(COQ )32 /_ o Wln(aeo){Hkm(a) +Nkm(a)}da,

pa

(J) — (_1)J+l o

kmn

{(eoUJ-:_J}/ & Wi (ae,){ Him(@) + Nim(a)}da.

To recap, what has been done in the foregoing analysis is the derivation of the
unsteady fluid-dynamic forces exerted on two coaxial cylindrical flexible shells due to
the internal and annular flows. For the system with a flexible shell concentrically in-
side a rigid cylinder, the force on the outer cylinder [equation (2.67)] is of no practical

interest, while the one on the inner shell, equation (2.65), reduces to

Qkmn = {qgr)mém} QF + {2‘11(37)1716"3} Q; + {‘I;c?r)mé'n} ’ (2.68)

where the ¢{?)  are the same as those defined for equation (2.65). Note that, in this

case, since U, = 0o, the following term in equation (2.65) should be redefined as:

Cup [ 03! ,pouz Ui-1 A
( 1) 27rq—. {(EOQ )3-1 ( ) 27rq‘ 3 J’ Uo— u‘..

For the reason to be discussed next, attention is now focused on Wy, (&, ¢;), which

appeared in the second integrand of qm and can be obtained directly from (2.56),

kmn

I,"((_!EO)K,,(&E.') - I,.(&E,‘)K,’l(&e?o)
I (ae,) K! (ag;) — I'(ae;) K. (ae,)’

Win(@, &) = (2.69)
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It is seen that, as the radius of the outer cylinder becomes very large, €, — o0, i.e.
when the inner shell becomes simultaneously subjected to internal and unconfined
ezternal axial flows, this becomes a configuration similar to that analyzed by Han-
noyer and Paidoussis (1978) with becam theory. The present theory is sufficiently
general to handle such a problem; all that needs to be done here is to cvaluate
lim, 00 Wia(&,€,), because Wy,(a,¢;), given by (2.69), has the form oofoo as ¢,

approaches co. From the limiting values of the modified Bessel functions,
Jim I(z) = 00, lim Ky(z) =0,
and from their recurrence relationships,

I (z) = ';'l'ln(m) + Ly (),

K(®) = ZKn(z) = Kna(2)
it may be seen that
Jim I(z) =00, lim K!(z) =0. (2.70)

As a result of (2.70), the limiting value of (2.69) is found to be

1{= _ _
cli—ronoo Wln(aaei) = elim I"(OEO)Kn(ag') _ K"(QE.)

0 T (Ge,)Ki(aes)  Ki(ae:) 271)

2.3.3 Steady Viscous Effects

As explained earlier, the viscous nature of the fluid results in both steady and un-
steady viscosity-related loads being exerted on the shells, the latter of which are not
considered in this thesis but will be the subject of future investigation. The steady
loads have already been derived by Paidoussis, Misra and Chan (1985) from the time-

averaged Navier-Stokes equations for the case of clamped-clamped shells. The same
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procedure will be followed here to calculate such loads acting on the clamped-pinned
and pinned-clamped shells. Since details of the derivation have been given (Paidoussis
ct al. 1985), they will not be repeated here; however, the final results with all the
assumptions involved will be presented.

The steady loads are evaluated under the assumption of a fully-developed turbu-
lent, incompressible flow. The fluid pressure and the surface frictional force inside
a circular cylinder and in the annulus between two coaxial cylinders are derived by
further assuming that the cylinders are rigid.

Figure 2.1 is referrcd to once more in this section. The flow velocity components
in the cylindrical coordinates z, 0 and r are V; + V], V/ and V/, respectively; V.
is the mean velocity in the axial direction while V, Vj and V are the fluctuating
velocity components of the turbulent flow (here, V3 = V, = 0). For a flow velocity V;
and static pressure P, the time-averaged Navier-Stokes equations may be written as

(Laufer 1953):

10P  1d oy  vd [ dV;
7oz “;ra:{"‘@"r}*m{’z‘:}’ (2.72)
19P 1d ¢ 5z Vs)?
Jor - O+ B (213)
d gy L ViV
0 = —{V}+2-2, (2.74)

where () denotes the time mean of ( ); p and v are the density and the kinematic
viscosity of the fluid, respectively. These equations apply to both internal and annular
flows.

After lengthy mathematical manipulations, the solutions of the above equations
for the internal and annular fluid regions are obtained. The results of interest are

given below.
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e For the internal flow,

P(z,r) = -2 (p')Uzz—-p.(V,’, 2-{-p./ (V)" ~ - (Ve)* dr + P,(0,a), (2.75)

with U,,, the so-called stress velocity, being given by

' 1/2 1/2 1/2
u,..={_u.""=" } ={”;—} =} e

dr
where U; is the mean axial velocity of the internal fluid, 7, is the fluid frictional

force per unit area on the interior surface of the inner shell, P,(x,r) is the time-
averaged pressure of the internal fluid, and P;(0,a) is the internal-fluid pressure

at the position £ =0, r = a.

For the annular flow,

Po(m»r) = - {bz 2b }PonQoo Po( )2 + P / (VOa ( ) dr + PO(O,G),
(2.77)

with U,., being the stress velocity on the inner surface of the outer shell,

dv. 1/2 {1' }1/2 {l b2 — }1/2
Usroo = § —Vo—— =422 WU (2.78
{ } 3 sio—s (278)

dr
here U, is the mean axial velocity of the annular fluid, 7,,, is the fluid frictional

force per unit area on the interior surface of the outer shell, P,(z,r) is the
annular time-averaged pressure, P,(0,a) is the annular-fluid pressure at z = 0

and r = @, and 7,, is the radius at which the mean velocity V., is maximum.

In equations (2.77) and (2.78), r,, cannot be evaluated analytically; it is therefore
determined from a multi-linear representation of Brighton and Jones’ (1964) exper-
imental measurements. Nevertheless, these measurements showed that if a/b > 0.8
then r,, can be approximated by its counterpart in the case of laminar flow; in other

words,

P = {5'%-(%;%}”2. (2.79)
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The friction factor f, appearing in equations (2.76) and (2.78), is a function of
the Reynolds number, Re, and of the relative roughness of the cylinder, k/d, where
k is the average height of surface protrusions and d is the diameter of the cylinder.
The friction factor may be found graphically from a Moody diagrain, which is a plot
of f versus Re for different values of k/d. Alternatively, it may be determined from a
number of empirical formulas. A common practice is to use the Colebrook equation

(Murdock 1976),

1 k/d 251

To avoid solving the above implicit equation, Moody himself derived the following
approximation, which matches equation (2.80) to within +5% for k/d <0.015 and

Re< 107:
K\ 108]"°
f. = 0.0055 {1 + [20000 (Zi) r=| 1 (2.81)

The accuracy of f, can be significantly improved if f, is substituted back into equation

(2.80), namely

1 kfd 251 |
7= 21<>g,,0{3_7 + 5 \/T} (2.82)

the value of f so obtained is then within £0.7% that of equation(2.80) for k/d < 0.05
and Re< 108 .

Equations (2.81) and (2.82) are valid for both internal and annular flows. For
internal flow, d; is the diameter of the inner cylinder, 2a, and Re; = Uid; Jvi = 2aU; /[ v;.
For annular flow, d, is equal to the equivalent hydraulic diameter ds = 2(b — a), and
Re, = U,d, /v, = 2(b — &)U,/ v,.

With the fluid pressures determined, the basic loads on the shells can now be

evaluated. The steady radial differential pressure on the inner shell is given by P =



CHAPTER 2. AN ANALYTICAL MODEL 32
P,(z,a) — Py(z,a) which, in terms of (2.75) and (2.77), may be written as
D 2b 2p| HE
P"" = {b’) 2 pol 300 - TU;I‘} I+ P,(O,(l) - PO(O'a)? (Zb’*})

where subscript I stands for initial or steady-state, and use has been made of the

condition that at the surfaces of the inner shell,

F,(0,a) and P,(0, a) may be determined from equations (2.75) and (2.77), respectively,
if the static pressures of the two flows at either end of the shell are known. Here, the

inner and annular static pressure are set equal at z = L, i.c.,

e LA (2.84)

m

AP, = P,(0,a) — P,(0,a) = 2”‘U’L -

The corresponding surface traction in the axial direction on the inner shell is P,;, =
TWl + TWO!, 0r7

xll = plU2 + poUrgon (285)

with 71, being the fluid frictional force per unit area on the exterior surface of the
inner shell, U,; being the stress velocity defined in equation (2.76), and U,,, being

the stress velocity on the outer surface of the inner shell,

dVy, 12 Twoi 1/2 172 —a? 2 12
UTO‘ - {_'Vo r=a} bl { po } s {ga(b_ a)foluo} . (2'86)

dr
Similarly, with the presumption that the outer shell is surrounded by quiescent

fluid at pressure P, the steady radial differcntial pressure on the outer shell is found

from P.j, = P,(z,b) — P., or

B 2b b V’az—' Vr’a2
Prla= {b2 ) polj‘?oo}z'*"pa./“l ( 0) 7‘( ) dr+Po(0,a) —'Pc, (287)



CHAPTER 2. AN ANALYTICAL MODEL 33

where the fact that (V,’o)zl = 0 has been utilized. Also the annular and the outer

static pressures are assumed equal at z = L,

AP, = P(0,a) — Pr = o pUR, L (2.88)

2 .2 T00 "
b —rk

The quantities in the integral in equation (2.87) correspond to the mean-squared
tangential and radial flow velocities in the annular flow; the value of this integral is

quoted from Paidoussis et al. (1985),

b 1 \2 __ 1 \2 , . 2 .
I =/ (Veo) " (V) dr = {0.7864 . 9.567m + [ 0.56ry, _ 0 50647‘"‘] In (—b—)}U’

b—rn  L(b—tm)?  b=Tm )

.2
_ {0.7864 _ 0.56ry, 4 [ 0.56r7, 0.50641',,,] n (If')} 0?2

rm—a |(rm—a)? rm—a Tov?

(2.89)

and has been found to be numerically rather insignificant, as compared to the other
terms on the right-hand side of equation (2.87). Finally, the corresponding traction

load on the outer shell is given by

P:rlo = Twoo = pouzoa- (2-90)

It is noted that, for both internal and annular flows, equations (2.85) and (2.90),

as well as (2.83) and (2.87), may be expressed in the functional forms

Py=B, Py=-(Cz+D) (2.91)
where
B; = p,U%+p,U%,;, B, = p,UZ,,,
Ci = gfiUf.- - g%%n-polffoo, C, = ﬁ—i—b;,":poU?ao, (2.92)
D, = —AP; D, = —(poI + AP,),

with AP, AP, and I being defined in (2.84), (2.88) and (2.89), respectively.
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Now that the pressures and stresses acting on the shells have been fully deter-
mined, they will be transformed into the terms gq, to gs, in equations (2.1)-(2.3) and
f1o to g3, in equations (2.4)-(2.6). By balancing forces on an infinitesimal shell el-
ement in the r—, 08— and r—direction, the stress resultants may be deteimined and

are found to be

. ONz;  10Ngy ON; 1 ON,a1

= r e e T —_ - e 43
Ng; = P, e 290 Ha Py = ~Hp (2.93)

where Ngp and N, are the hoop and axial stress resultants, respectively, while Ny is
the shear stress resultant; 7 is equal to a for the inner shell and b for the outer one. In
(2.93), the first equation shows that Ny is independent of 0, or ANy /I8 = 0; hence
the second equation becomes Ny = f1(0), and the thitd simplifies to dN,;/dr =
-P,; - ,lf,'(O) or Ny = —Bz + f;(0). However, since the shells are axisymmetric,

Nzor and N;; must be functionally independent of 0; in other words,
Nzol = C], N,,-[ = —Bz + Cg, (294)

where C, and C3 may be determined from the boundary conditions, as follows:

(i) for the pinned-clamped system, at = 0, Ny = 0or Cy = 0, and Ny = 0
(the pinned end of the flexible shell can slide along the rigid cylinder, for the reasons
explained in Section 2.3.4), or C; = 0. Thus, with the substitution of these values

into (2.94) and P, from (2.91) into(2.93), the following relationships are obtained:
Nzl = —B(E, NOI = —f‘(C.’B + D)s N:cl?l = 0; (295)

(ii) for the clamped-pinned system, at =0, Nz =00r C), =0 at = L, Ny =
0 (the pinned end of the flexible shell can slide along the rigid cylinder), or C; = BL.

With a similar procedure, it is easy to get,

Noy=—B(z = L), Noyy=—#(Cz+ D), Ny =0. (2.96)
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Finally, the terms ¢, to g3 may be calculated from the following relationships

(Paidoussis, Misra and Chan 1983):

1 —? (1 —v?)) - 1-02
0 = {_EI;_}‘ =1 @2 = {'-LE,-;V—l} P, 413={ Ehu }Nu, (2.97)

where subscripts ¢ or o may be added as necessary, with ¥ = a or b, respectively. It is

noted that ¢, g2 and g3 as given by (2.98) are dimensionless and may be expressed

in the following functional terms:
@ =Aé+ B, @= By, g5 = Ast + B, (2.98)
where £ is a nondimensionalized length variable defined in (2.53), and
. 1 -2 - 1~ v? _
Al——{ Eh }BL, A3——{ Eh }CLT,

0, pinned-clamped

By = (2.99)

{I_E'Ti”_z} BL, clamped-pinned

. 1,2 R .
Bg={%}3i', B;,:—{lEhV }DF,

are all dimensionless constants, resulting from the substitution of (2.91), (2.95) and(2.96)

into (2.98).
Thus, equations (2.98), together with (2.84), (2.88), (2.89) and (2.92), fully specify

these dimensionless steady viscous forces acting on the shells.

2.3.4 Solution to the Governing Equations of Motion

With the unsteady generalized fluid forces and steady viscous friction acting on the
shells completely determined, the solution for the governing equations of motion (2.1)-

(2.6) subject to the pinned-clamped and clamped-pinned boundary conditions can
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now be carried out using Galerkin's method, of which the variational statement can

be written as

§E = §E, + §E, =0, (2.100)
with
2 'D' 1
§E, = /0 {ET /0 (Lyibu; + Lg.ﬁv.-—L;,.&u.-]d{}do, (2.101)
2r Do 1
6E, = /0 {Ea— /0 (Lyobu, + stv,,—La,,ﬁw,,]dc} a0, (2.102)

where D; = Eh,/(1 —v?) and D, = E,h,/(1 = v?); and subscripts ¢ and o are
associated with the inner and outer shells, respectively. The minus signs associated
with the terms L, 6w, in (2.101) and Lj,6w, in (2.102) are necessary, as Ly and Ly,
represent the negative of the load per unit surface (unit length and unit radian).
Since 6 E; and 6 E, are generally independent, the implication of equation (2.100)

is that both 6 E; and § E, must individually vanish, or
0E; =0, 0E, =0, (2.103)

and hence these two equations must be solved simultaneously. Each of the variational
statements (2.103) may be derived from an extended form of the principle of virtual
work (Altman and De Oliveira 1988) or from Hamilton’s principle. It should be men-
tioned here that all the boundary conditions (2.7)-(2.14) arc automatically satisfied
by the comparison functions chosen for u, v and w [equations (2.29) and (2.30)}.

As the procedure to solve the first equation of (2.103) is exactly identical to that
of the second one, only the former will be presented in full herein, whereas the final
results from the second equation will be given in Appendix D.

The variations in u;, v; and w; are simply derived from (2.29). Expressed in terms

of dimensionless parameters as were defined in (2.53), these variations may be written
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as follows:
[ fu, | [ §, coslt(e,8/6)
{ v L‘i"i 5Bsinle  p Pe(OeT. (2.104)
| Sw; | o | 8Ccos 10 J

In the above expressions, for the purpose of evaluating (2.101, different indices have
been used for the two summations— -k and ! denote the axial and circamferential wave
numbers, respectively.

Substituting (2.29) and (2.59) into equations (2.1)-(2.3) and multiplying the re-

sulting L’s by the appropriate variations in (2.104) yields the following products

o0 0

Lyiby; = z E cos l0cos n@ f,(n), (2.105)
=11n=1 .

La;év; = 2 E sin l0sinn@ fy,(n), (2.106)
=1 n=1
N

Lybw; = Y, z cos [§cos 8 f3,(n), (2.107)
I=1n=1

where

fuln) = L’e"‘“‘iiaﬁk{[(ﬂ?—f(ukf)(l-w)—qs.-n') ()DL (0

k=1 m=1

F(1 4002 (0] An + 31 +0)LOE)

 aaene i €10a(0)] Bat [ (- G- 10 — ) 285090, 00
= kel () D10 + queti(€)8n(6)] Cu}, (2:108)
ful) = 2y 3 (= [F0+ wde©)ene)] A
k=1m=1

+[ (- n2(0140) 2OP)
+ (R0 43R0~ 1) +au) 204007 (0] Brm

+[325°-(3—u,)€m(5)¢u() n(1+q3.-)d>k(£)¢>m(£)] C'm}, (2.109)

fal) = DY S aék{ [(w - ";"‘(1 - vi) —qs.-) €(E) D)

k=1 m=1
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- ktqu:n q’k({)(bvn({)] fim + [n(l + qs:)¢k(€)¢vrl(€)

_Ek_(:} — 1,)eld () 4’::.(5)]

+ [(1 F Rehh 4 k(n? = 1) 4 n2gsi - 22) @4(6)®0n(¢)

- (21:;712 + ql!)sn?(bk (b” (6)] - —¢k(€)Q1nvt(£)} (21 10)

where the eigenvalues for a pinned-clamped beam, A,,, are the roots of the tran-
scendental equation tanh),, = tan,,; more information on A,, may be found in
Appendix A.

Before further analysis is made, it is useful to recall the orthogonality property of

the sine and cosine functions: for any two integers  and n,

2r 2x 0 ifl#n
/ cos 10 cosnfd@ = / sinlfsin nddl = 7~
0 0

T ifl =mn

this leads to

D> { [ *" cosl0 cos n0} fo(n)d0

=1 n=1

[ (EEmtvomoro)

=1 n=1

= Y whin), (2.111)
Ji " {f: 3" sin 105inn® f,(n)} do
0 n=1

It
S~
e,
=
Sy,
D
2]
- o
—

-
=4
< S
[
-
Van Y
-y
-~
=
s

= Y wfy(n), (2.112)

where f,(n) and f,(n) are some particular functions of 2. In cffect, equations (2.111)
and (2.112) show how the terms cos 10 cosnf and sinl@ sinnd in cquations (2.105)-
(2.107) are decoupled once the Galerkin method is applied via equation (2.100).
Now, if all the terms ¢;;, g2; and g3; in equations (2.108)-(2.110) are replaced by
their functional forms in (2.98), then substituting (2.105)-(2.107) into (2.101) and

performing (i) the integration over the domain [0,2x] of 0 with (2.111) and (2.112)
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taken into account and (ii) the integration over the domain {0,1] of £ will lead to
2 2t D
rrzen (26) 3 S Wik Ay + WaknS B + WaindCi} =0,
$ /n=lk=1

and because w L2e*(D, J¢,) # 0 for all 2,

o M _ _ _

Y D {WiknbAr + WainbBi + W3n6Ci } = 0. (2113)

n=1 k=1
In cquation (2.113), M is the number of admissible functions taken for the analysis,
thus replacing the upper limits of the summations of the axial wave numbers in (2.29)

and (2.104),i.e. 1<k <Mand 1<m <M. The coefficients Wiky, Wakn, Wars are

functions of A, By, Cwm associated with the inner shell,
M

Wikn = 2{[(02——[(1+k)(1—u‘)+2Bs.) /<1> (€)' (¢)de

m=1

— wetAas [ ERLEPMEE+ (1 + Bulel [ SO
vebdn [ €0U©)000d] Ant [20+wet [ SO O
el [ O Bn(e)iE] Ba

+[(u.-— —2-(1 —v)- B;,,) / @,(6)®7,, (6)de
By AGLANT
ket [ AOSIOe + cibu [ SO0 (O] Cnf,  (2110)

M

Wi = 3 {[~2 01+ w)e [ 0u(0)0(€)de] An

m=1

+ [0 =m0+ B [ @0 (€ - n2n [ €0OPmE)E

+ (R0 + om0 —w)+ B [ onper o

seth [ (0u(©)01(0de] Bt [ 20— il [| uBLEN
11+ By [ @u(O)0n(E)dt -0 Asi [ £@L(O8 (€] O}, (2:115)

Won = S{[(~1550 == i+ B) € [ Buewicoree

m=1
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vedds [ €3OO + ke [ 9O (0] An

+ [ 50 = e [ o0k — n(1+ B [ @ut0uE)t
s [ €04(E)Bum (€)dE] B

4 [(@ -1 +retag kit -7 4 B [ o) 0ue0de

~ ity [ EO(EPMOE + (2 + B) [ aeren e

+e2hi [ €oOOn O] Cnt L [ 0OQuieNE], (2110

where A4, ..., B, are as defined in equations (2.99).

Because §4;, 6B, and 8C; are totally arbitrary, cquation (2.113) is cquivalent to

o0 00 o0
Z Wik =0, Z Wakn =0, Z Wakn = 0. (2.] ]7)
n=1 n=1 n=1

As may be seen from equations (2.114)-(2.116), each term of any of the above three

series is a function of n and isindependent of other terms in the same series. Equations

(2.117) thus imply that individual Wy, Wai, and Wy, must be equal to zero, namely

Wi = Z{ kmnA + kan : kanC + Jk Dm + Jk;rsmbm + kanF } =0,

m=1

(2.118)

Wik = E{JznlmA + kaan +kanC +kanD + kanE + kmnnn} 0.

m=1
Note that D,,, E,, and F,, are arising from the last term in equation (2.116). Sim-
ilarly, with the foregoing analysis carried out for the second equation of (2.103), the
following equations will be obtained

Win = Z{ kmnA + kanB + kané + J:;r‘m[)m + kanE + J}:v’:nii‘"!} =0,

m=1

(2.119)

Wskn = Z{ kmnA + Jfran"l + JI?mnC sznD + kanEm + J:;gnFM} =0.

m=1
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Thus, cquation (2.100) is in effect equivalent to a set of 6 M equations, equations
(2.118) and (2.119), in which A, B, ..., F, are the unknowns to be solved for.

Equations (2.118) and (2.119) may be grouped together and put in the matrix
form

([M1Q2 + [CI + [K]) {X} = {0}. (2.120)

It should be emphasized here that [M], [C] and [K] in equation (2.120) are not
the traditional mass, damping and stiffness matrices but are proportional to them.
[M],[C) and [K] are the coefficient matrices of 022, 2} and €, respectively. The
elements of [M], [C], [K] and {X} are given in Appendix D.

So far, energy dissipated internally in the material of the shells has been neglected.
If dissipation is considered to be a hysteretic eflect (structural damping), it may be
taken into account by replacing Young’s modulus £ by F (l + &38?) in equations
(2.1)-(2.6), where p is called the structural damping factor. Alternatively, dissipation
may be considered to be a viscoelastic effect (viscoelastic damping), in which case
E is replaced by E (1 + x;%), where x is the viscoelastic damping coefficient. In
general, E may be replaced by E {1 + (ﬁ + x) Ba?} with the understanding (purely
for convenience) that either g or x will be zero for a given system. As a reminder of
the notation used in equations (2.1)-(2.6), E {1 + (5- + x) aa?} is to be written with
the subscript ¢ for equations (2.1)-(2.3), namely E; {1 + (ﬁ- + x.-) Ba-t-}, and with the
subscript o for equations (2.4)-(2-6), namely E, {l + (‘ﬁl + xo) g?}

To give a simple illustration of the changes equation (2.120) will be subject to
when internal damping is included, it is assumed that both inner and outer shells are
made of the same material and hence neither subscript ¢ nor o is required for u and

x (and other material properties). Equation (2.120) then becomes

(IMQ2 + [CI% + [1 + (s + xV)[K]) {X} = {0}. (2.121)
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Since

=i () (4 (3)- (240,

equation (2.121) may be rearranged and rewritten as

([M107 + [C)9 + [K") { X} = {0}, (2.122)
where
M) = [M], [C'] = [C] + (Eiii’—) (K], (K] = (1 + pi)[). (2.123)

If a new vector {Y'} is introduced and defined as

(x)
ry={ “7 4, (2124)
.(X)

equation (2.120) [or cquation (2.122) if internal dissipation is to be accounted for] can

be transformed into the first-order form

(P) + 2[Q)) (¥} = {0}, (2.125)
where
0 1 -1} [0
Pl = o] [1) lal- -1} [o] |
(K] [C] o] [M)]

with (] being the identity matrix of the same order as [M], [C] and [K]. Equation
(2.125) represents a generalized eigenvalue problem and can readily be solved by any
available computer subroutines such as those of IMSL (International Mathematical

and Scientific Libraries), giving the cigenfrequencies of the system.

2.3.5 Summary

Section 2.3 has presented in detail (i) the evaluation of the unsteady generalized fluid

forces acting on the shells by means of the Fourier transform technique, (ii) all final,
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important results for the steady viscous forces appearing in the governing equations

of motion, and (iii) the procedure of solving the governing equations of motion using

Galerkin’s method.
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Chapter 3

Verification of the Computer

Program

3.1 Introduction

Before the theory presented in the last chapter was actually applied to the system
under consideration (Chapter 4), a series of preliminary calculations were couducted
to examine different aspects of the theory and to verify the computer program.

Firstly, natural frequencies of a cylindrical shell in vacuo were calculated (Section
3.2). The aim of these calculations was to assess how well the Galerkin method
works and hence to validate certain segments of the computer program developed for
Chapter 4. Thus, equation (2.100) was used to solve the equations of motion [(2.1)-
(2.6)] subject to the pinned-clamped and/or clamped-pinned boundary conditions.

Sccondly, calculations were conducted for a cylindrical shell conveying inviscid
flow (Section 3.3). The purpose of these calculations was to validate the computer
program in the case of a shell conveying inviscid flow.

It should be noted that the results to be presented in this chapter were obtained

45
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without steady viscous effects (Section 2.3.3). There were two reasons for doing so:
(i) all the above-mentioned aspects are part of the inviscid theory only, and (ii) the
present results could be compared with previous theoretical ones which did not involve

any viscous effects.

3.2 Natural Frequencies of a Shell in the Absence

of Flow

3.2.1 Weingarten’s Theory

There already exist many theories to estimate the lowest natural frequencies of cylin-
drical shells. The one presented here was developed by Weingarten (1964), who
neglected the longitudinal and circumferential inertial terms in the Donnell equation.
With this simplification, based on the radial character of the motion associated with

the lowest natural frequencies, the Donnell equation reduces to:

h? _q 1 — vt P, 1 -2 _,0%;
st I} . s ' = 0’ 3.1
12V wi t a? ozt te E; v ot? (3.1)
where
0? 1 6
2 _ oy
vi= dz? + a 80?’

and subscript ¢ stands for the inner shell, corresponding to the present theory.

If it is assumed that
w; = (Z Cme“"""/l‘) cos nl cos S, (3.2)

equation (3.1) becomes

h? (n\8 22 a?\*' 1-u? (A YO\ rn\t A2 a?\?
‘1'5(2) (1" n2L2) Tz ( L) "('J) (’a') 1= ) =% 39
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where €, is the dimensionless frequency defined in equation (2.53). This eighth degree
cquation relating Ann and Q; is reduced to a fourth degree equation by using Yu'’s

(1955) assumption:
[Aanla’
n2L?

<1, (3.4)

which restricts the solution to long cylinders and high circumferential wave-numbers.

With this assumption, equation (3.3) is replaced by

4 8 12
(1-v2) (A_leg> =t = R (35)

The lowest estimated dimensionless natural frequency is found by rearranging

cquation(3.5), as follows:

822 4 ’
o [P g (Peee)] L
Q= [120’2'*'(1 V-)( I ):I ’ (3.6)

or, in dimensional terms,

/2
U [n® (h\? Anaa)? '

where Ay, is the mth eigenvalue (axial mode number m), and U; is the reference

velocity defined in Section 2.3.2.3.

3.2.2 Comparison of the T'wo Theories

To satisfy Yu’s (1955) assumption (3.4), the ratio L/a should be large. The following
system paramcters were selected for calculations, and it should be noted that L/a =

20:

E;=2.1x10" N/m?, v, =028, p,; =7.8x10%kg/m?,

hy =08 mm, a =50mm, L =1.0m; pg; and x, are zero.
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In addition to a large L/a, for the same reason of meeting Yu' assumption (3.4),(i)
the axial mode number m should be fairly low in order to keep A, small, and (ii) large
n is required. Hence, calculations were conducted with m =1 -3 and n = 1 — 12
From Yu’s assumption (3.4), it can be seen that the left-hand side will give the
maximum value (€, = 0.26 in the case of a pinned-clamped or clamped-pinned shell)
when m = 3 and n = 1, which leads to the worst results when using equation (3.7)
for calculating the natural frequencies. For the purpose of comparison, calculations
were conducted using the present theory with same system parameters as mentioned
above. Results of both Weingarten’s and the present theories are presented in Figure
3.1 and Table 3.1.

In Figure 3.1, the results obtained with three comparison functions (M = 3) by
using the present theory are compared with those obtained by using the estimated
natural frequency formula (3.7), i.e. Weingarten’s theory. It is scen that the agree-
ment is quite good, except for n = 1 and n = 2, for which Yu's assumption (3.4)
and Donnell’s theory (3.1) used by Weingarten are inaccurate. The results improve
further, if only slightly, when the calculations are carried out with a larger M
the number of comparison functions used, since the natural frequencies then become
smaller. However, because the effect of A on the natural frequencies is not over-
whelming, especially for low m (= 1,2), quite a number of the calculations that follow
have been ccnducted with M = 6, or even 3, to reduce the computing time required.

In general, the theoretical results are better for higher n, the circumferential wave
number, and lower m, and vice versa, as expected from Yu’s assumption (3.4). It is

noted that in Figure 3.1 Weingarten's theory gives much gicater values when n =1
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than the present theory does; in other words, the present theory is better and more

general, because it is not restricted by Yu's assumption.

3.3 Natural Frequencies of a Shell Conveying In-

viscid Fluid Flow

3.3.1 Straight Pipes Conveying Steady Inviscid Flow

In order to verify the present computer program when internal inviscid fluid flow is
taken into account, comparison should be made between the results obtained with
the present theory and by previous theory. The theory of straight, thick-walled pipes
with stcady flow (i.e. the so-called beam theory) has been discussed thoroughly.
With the assumption that gravity, internal damping, externally imposed tension, and
pressurization effects are either absent or neglected, the equation of motion of beam-

like pipes conveying inviscid flow takes the particularly simple form

w;
la4

aw. w

2
E L —— + MU +2M]U.a 3t

o (M,+m,) 3 f =0, (3.8)
where E;I; is the flexural rigidity of the pipe, M; is the mass of the fluid per unit
length flowing with a steady flow velocity U;, m, is the mass of the pipe per unit
length, and w, is the lateral deflection of the pipe; z and ¢ are the axial coordinate
and time, respectively.

Here only the first mode of beam functions (for the pinned-clamped or clamped-

pinned system) is taken, i.e., the radial displacement takes the following form:

w; = C,®,(€)e™. (3.9)
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By using Galerkin's method, we have:

[ (Bt + Moo + 2Miin e

= (M +m,)02%,(6)| @1(6)d€ = 0. (3.10)
Finally, the frequency can be expressed as

O MUR
o (B (3) -t |
i = M, ¥, (3.11)

1/2

where
h; 2
m, =21 {a+ 3 hipse, My =ma’p,,
r\°
ll' = 7l'h.' ((l + 'é!') ’ Uc = ut[]l's

and by, is the integral involving the first mode beam cigenfunction defined in Appendix

A.

3.3.2 Comparison of Results

The following system parameters were chosen for calculations conducted both by

using the present theory and the beam theory (3.11):

E, =21 x10" N/m®, v, =028, p,=17.8x10%kg/m*, p; =1.0 x 10°kg/m",

hi=08mm, a=50mm, L=1.0m; u, and x; are zcro.

It is noted that the ratio L/a is 20, to make the system more beam-like. The
variation of frequency ); with dimensionless flow velocity U; is shown in Figure 3.2
and Table 3.2. In Figure 3.2, the results obtained with three comparison functions
M =3 and with circumferential wave number n = 1 (corresponding to the beam-

like motion) by using the present theory are compared with those obtained by using
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the beam theory (3.11). It is seen that the agreement between the two theories
is reasonably good and, in fact, the present results are better, since the frequencies
obtained with the present theory are lower than those obtained with the beam theory.
Note that Galerkin’s method yields upper bounds. The results of the beam theory
could of course be improved by increasing the number of the comparison functions to

more than just the first comparison function.

3.4 Summary

In Charpter 3 are presented the results of preliminary calculations conducted to verify

some important aspects of the present theory.

¢ To check Galerkin’s method, natural frequencies of a pinned-clamped or clamped-
pinned shell in the absence of fluid (in vacuo) were calculated and found to be
in excellent agreement with the results obtained by Weingarten’s theory when

the circumferential wave number n is large.

e To check the computer program under the condition that the fluid conveyed is
inviscid, comparison was made between the results of the present theory and

those of beam theory. The agreement is reasonably good.
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Table 3.1: Comparison between natural frequencies of a pinned-clamped shell, as
calculated by Weingarten’s theory and by the present theory with three comparison
functions (M = 3) , for different circumnferential and axial mode numbers, n and m,

respectively.

Natural Frequencies (kHz)
n
m=1 m = 2 m =3

Estimated Present | Estimated | Present | Estimated Present
Value Theory Value Theory Value Theory
1 4.031 2.671 12,972 7.773 27.050 14. 388
2 2.233 1.616 3.806 3.116 7.050 5.783
3 4.515 3.824 4.718 4.064 5.405 4.771
4 7.992 7.282 8.029 7.355 8.165 7.545
5 12.483 11.763 12.492 11.810 12.528 11.906
6 17.974 17.250 17.977 17.291 17.990 17.365
7 24.465 23.737 24.466 23.7717 24.471 23.845
8 31.954 31.224 31.955 31.263 31.957 31.330
9 40.442 39.711 40.442 39.750 40.443 39.815
10 49.928 49.196 49.928 49.235 49.929 49.301
11 60.413 59.680 60.414 59.720 60.414 59. 785
71.897 71.163 ___71.897 71;203 71.897 71.268
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Table 3.2: Comparison between the lowest natural frequencies of a pinned-clamped

shell (steel) conveying internal fluid (water) with dimensionless velocity U;, as cal-

culated by beam theory with one comparison function (M = 1) and by the present

theory with three comparison functions (M = 3), for circumferential wave number

n =1 and axial mode number m = 1.

Beam Theog

Present Theory

0,x10? Frequency Hz 0,x102 Frequency Hz

|  o.000 1,278.2 0.000 1,205.6 |

I 1.000 1,267.7 1.000 1,191.7 I

PI 2.000 1,235.5 2.000 1,149.4
3.000 1,179.9 3.000 1,083.5
4.000 1,097.3 4.000 973.8
5.000 980.9 5.000 833.1
6.000 816.5 6.000 643.6
7.000 563.3 7.000 359.1
7.755 134.1 7.200 271.1
7.760 126.1 7.400 138.2
7.765 117.6 7.450 75.5
7.770 108.3 7.452 71.9 H
7.775 98.2 7.454 68.1
7.780 87.0 7.456 64.0
7.785 74.0 7.458 59.7
7.790 58.1 7.464 44.3
7.795 35.9 7.468 30.0 l
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Figure 3.1: Comparison between natural frequencies of a pinned-clamped shell, as
calculated by Weingarten’s theory and by the present theory with three comparison

functions (M = 3), for different circumferential and axial mode numbers, n and m,

respectively.
0 0 a0
The lowest estimated The lowest estimated The lowest estimated
natural frequency natural frequency natural frequency
A H A A
Present theory Present theory Present theory

—o— —o— —-o—

[+] “l‘ 4 [ ] [ ) t0 12 14 °o 2 ; ; ; "o 12 14 /] 2 q [ ] ; 10 12 14
Circumferential wave number, n Circumferentiat wave number, n Circumferential wave number, n
Axial mode number, m=1 Axlal mode number, m=2 Axial mode number, m=3
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Figure 3.2: Comparison between the lowest natural frequencies of a pinned-clamped
shell (steel) conveying internal fluid (water) with dimensionless velocity U;, as cal-
culated by beam theory with one comparison function (M = 1) and by the present
theory with three comparison functions (M = 3), for circumferential wave number

n = 1 and axial mode number m = 1.
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Chapter 4

Theoretical Results

4.1 Introduction

Although the theory given in Sections 2.2 and 2.3 was developed for the general case
of two coaxial flerible shells, nevertheless for the calculations to be conducted here
the outer shell is replaced by a rigid cylinder. This is done partly in order to achicve
some computational economy, but also because most physical problems of interest
are like that; another reason is that, at least for shells with both ends supported, the
dynamical behaviour of such systems is qualitatively the same whether one or both
shells are flexible (Paidoussis et al. 1984, 1985), the main effect of an outer flexible
shell being to diminish the critical flow velocities.

The calculations were conducted for shells with the same geometries and properties
as those in earlier studies of clamped-clamped shells (Paidoussis et al. 1984, 1985)

and of clamped-free shells (Paidoussis et al. 1991), namely:

E; = 2.0 x 10" N/m?, v, = 0.3, p,; = 7.8 x 10°kg/m®, p; = p, = 10°kg/m’,

b= 100mm, a = (10/11)b for the so-called 1/10-gap system,

56
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a = (100/101)b for the 1/100-gap system, L = 1.00 m, h, = 0.5 mm;

thus, {4, = 5308 m/s and p,a/(pshi) = 23.30. (4.1)

It is known (Evensen 1974, Evensen and Olson 1968) that shells are subject to
important softening-type nonlinearities. Since the present theory is linear, the results
generated are expected to be physically correct only for sufficiently small-amplitude
perturbations; thus, the intricate behaviour of the system beyond the first loss of
stability as predicted by the present theory may not be reliable. However, the results
are still of academic interest and are therefore presented.

Two different cases of flows will be considered and discussed in the following

order: (i) internal flow alone, U, = 0 (Section 4.3), and (ii) annular flow alone, U; = 0

(Section 4.4).

4.2 Some Numerical Considerations

Since the computer program of the present theory was obtained by implementing
the computer program written by Nguyen (1992), optimum values of some of the
parameters involved in the calculations had been already selected. To save computing
time, the same values of these parameters are used in the present calculations:

(1) the integration stepsize (e.g., in the integrals in (2.62)) is Aa = 2.0;

(i) the domain of integration (for the same numerical integration, approximating
~00 < z < 00) is (—z,2) = (-200,200);

(iii) the number of comparison functions in the Galerkin expansions is M = 6;

(iv) € = 3, if the out-flow model is taken into account (see Appendix C).
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4.3 Internal Flow Alone

4.3.1 General Dynamics of the System

Typical results of the variation of the real and imaginary parts of the dimension-

less eigenfrequencies, €,, with increasing dimensionless internal flow velocity, U,, are
shown in Figure 4.1 (for n = 3, m =1, 2, 3); the annular fluid is stagnant and its
static pressure is equal to that of the internal fluid at z = L. These results were ob-
tained with inviscid theory. They are the same whether the system is pinned-clamped
or clamped-pinned. Structural damping is ignored in these calculations. The system
being conservative, the (; are real, up to the point of loss of stability by divergence
at U; = 2.12 x 10-2, which is denoted by A in Figure 4.1. Beyond A, the first
(m = 1) mode locus bifurcates and the eigenfrequencies become purely imaginary.
The behaviour of the second (m = 2) mode is different, since its cigenfrequencies
never become purely imaginary as those of the first mode do. However, at point B
(Ui = 2.73 x 10~?), the loci of the first and second modes coalesce and the cigenfre-
quencies become complex; one of the two has a negative imaginary part, indicating
that beyond B the system is subject to coupled-mode flutter.

It is stressed that both results of the pinned-clamped system and of the clamped-
pinned (with outflow model) system in the case of inviscid flow are the same, which
indicates that the slope effect at the downstream pinned end has little influence upon
the stability of the system. This is in contrast to the observation by Hordéek and
Zolotarev (1984) that a clamped-pinned shell loses stability for any infinitesimally
small inviscid flow.

A typical Argand diagram for the pinned-clamped systemn conveying inner viscous

flow is shown in Figure 4.2 (for n = 3, m = 1, 2, 3). It can be scen that for
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the first axial mode (m = 1) the system loses stability by divergence at point A
(U, = 3.98 x 10~2, which is higher than for inviscid flow), followed by single mode
flutter at point B (U, = 4.17 x 10~2), as opposed to coupled-mode flutter for the
clamped-clamped system (Paidoussis et al. 1985). For the clamped-pinned system,
the dynamical behaviour is qualitatively similar to that of the pinned-clamped one.

More extensive results in which n was varied are shown in Table 4.1 for the pinned-
clamped system, and in Table 4.2 for the clamped-pinned system. It is seen that all
modes are stabilized, by varying degrees, by the inclusion of steady viscous terms. It is
also seen that stability according to inviscid theory is lost in the third circumferential
mode, n = 3, for both the pinned-clamped and clamped-pinned systems. On the
other hand, when the steady viscous forces are taken into account, stability is lost
in the fifth circumferential mode, n = 5, for the pinned-clamped system (Table 4.1),
but in the fourth circumferential mode, n = 4, for the clamped-pinned system (Table
4.2).

The physical explanation for this stabilizing influence of viscous effects is the same
as for clamped-clamped shells (Paidoussis, Misra and Chan 1985): the steady loads
due to viscosity induce a tensile hoop stress, and either a tensile axial load in the
clamped-pinned system or a compressive axial load in the pinned-clamped system,
the former being the dominant factor since the hoop stress is much greater than
the axial one. The hoop stress effectively renders the shell stiffer, thus raising the
dimensionless critical flow velocity, U;.. However, this effect is not very pronounced,
since for this shell L/a is only 11; calculation: for larger L/a will be presented in
Section 4.3.3.

A final point of interest in the results of Tables 4.1 and 4.2 is associated with the

fact that the dimensionless critical viscous flow velocities in the case of the pinned-
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clamped system are higher than those in the case of the clamped-pinned system,
because the distribution of pre-stress resultants caused by basic loads along the flexible
shell is different, which results in the pinned-clamped system being effectively stiffer
than the clamped-pinned system in the case of inner viscous flow. This is because the
highest levels of hoop pre-stress occur at the upstream end, where the pinned-clamped
system is softest and hence most susceptible to being stiffened by this pressurization

effect (refer to Figure 4.9).

4.3.2 Effect of Annular Gap

The effect of narrowing the annular gap on stability of the system was investigated
by means of inviscid theory only. Although the annulus is filled with quicscent fluid,
this fluid nevertheless does participate in the dynamics since it adds to the system
inertia; examination of the generalized fluid forces [equation (2.62)] on the inner shell
shows that setting U/, = 0 does not totally eliminate the forces associated with the
annular fluid. The results for the critical flow velocity, U,., corresponding ton = 1 -8
are shown numerically in Table 4.3 and graphically in Figure 4.3.

It is seen that there is a reduction in U, for n > 3 as the annular gap size is
diminished; a tenfold diminution in the annular gap leads to a 5% reduction in the
overall (the lowest) critical velocity U,., which corresponds to the n = 3 mode. The
physical reason for this destabilizing effect of stagnant annular fluid is associated
with the correspondingly large increase in virtual, or added, mass. Thus, although
the stiffness of the system is not affected by the annular gap size, the increase in
added mass may be thought of as an effective reduction in stiffness, hence causing a
reduction in the overall critical flow velocity U,., namely U%. The effect of annular

gap on U;, for small n (n = 1, 2) is negligible, as seen in Figure 4.3.
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4.3.3 Effect of Length of the Shell

The results for the overall critical flow velocity U7, and the associated circumferential
wave number n are presented in Table 4.4 and Figure 4.4 for different length-to-radius
of the shell, L/a; the radius a was fixed at (10/11) x 100 mm as listed in Section 4.1.

According to inviscid-flow theory, U% is diminished monotonically with increasing
L/a. Furthermore, as previously found for the clamped-clamped system (Paidoussis
and Denise 1972) and the clamped-free system (Paidoussis et al. 1991), the value of
n associated with loss of stability becomes smaller as L/a is increased. The situation
is slightly more complicated when steady viscous eflects are taken into account. As
L/a is increased sufficiently, there is a stabilizing effect, with U, becoming larger
(Ut = 0.0365 for L/a = 15, and even 0.0443 for L/a = 25); the physical reason
for this phenomenon is that the stabilizing effect of the steady viscous forces of the
internal flow, which increases with L/a due to higher pressurization effects, overcomes
the destabilizing effect of increased L/a due to the inviscid forces. Here, it should
be recalled that the dimensionless U, does not involve length; thus, variations of U},
with L/a correspond to similar variations of the critical dimensional flow velocities,
U;..

Perhaps, the most important point that emerges from Table 4.4 is that the relative
difference in U}, between inviscid and viscous versions of the theory increases with
L/a: for L/a = 5, this difference is 55% (based on the inviscid results) whereas it
becomes 175% for L/a = 25. It is quite obvious that steady viscous effects are hardly

negligible for long shells.
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4.4 Annular Flow Alone

4.4.1 General Dynamics of the System

In the present case, the flow is purely annular, while the fluid filling the interior of the
inner shell is stagnant. Results were again obtained with both inviscid and viscous
versions of the theory, so that steady viscous effects of the annular flow could be
assessed.

In the case of inviscid annular flow, typical results of the variation of the real and
imaginary parts of the dimensionless eigenfrequencies, §),, with increasing dimension-
less annular flow velocity, U,, are shown in Figure 4.5 (for n = 3, m = 1, 2, 3);
the internal fluid is stagnant and its static pressure is equal to that of the annular
fluid at £ = L, and the system is either pinned-clamped or clamped-pinned. The
situation is more complex than that of the inviscid internal flow. The system be-
ing conservative, the €, are real, up to the point of loss of stability by divergence,
which is denoted by A in Figure 4.5. Beyond A, the first (m = 1) mode locus bifur-
cates and the eigenfrequencies become purely imaginary. Beyond point B, the first
mode becomes stable again. The behaviour of the second (m = 2) mode is different,
since its eigenfrequencies never become purely imaginary as those of the first mode
do. However, at point C, the loci of the first and second modes coalesce and the
eigenfrequencies become complex; one of these two has a negative imaginary part,
indicating that beyond C the system is subject to coupled-mode flutter; beyond point
D, the coupled-mode flutter vanishes and the second (m = 2) mode becomes stable
again, but the first mode loses stability by divergence (although which locus belongs
to which mode is really arbitrary after C). Similarly to the behaviour of the second

mode, the real parts of the eigenfrequencies of the third (m = 3) mode never go to
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zero. From Figure 4.5, it is seen that, at point E, the loci of the second and third
modes coalesce and the eigenfrequencies become complex, one of which has a nega-
tive imaginary part, indicating that beyond E the system is subject to coupled-mode
flutter again.

Similarly to the case of internal flow, it is noted that the results for both the
pinned-clamped system and of the clamped-pinned (with outflow model) system in
the case of inviscid annular flow are the same, which indicates that the slope effect
at the downstream pinned end has little influence upon the stability of the system.
This is in contrast to the observation by Horitek and Zolotarev (1984).

A typical Argand diagram for the pinned-clamped system conveying annular vis-
cous flowis shown in Figure 4.6 (for n =3, m =1, 2). It can be seen that the system
loses stability by divergence in the first axial mode (m = 1) at Uy = 0.267 x 1072,
which is denoted by A in Figure 4.6. Beyond A, the first-mode locus bifurcates and
the eigenfrequencies become purely imaginary. The behaviour of the second mode is
similar. At point C, i.e. when U; = 1.03 x 1072, the eigenfrequencies of both the first
and the second mode become complex; one of the two has a negative imaginary part,
indicating that beyond C the system is subjected to coupled-mode flutter, similar to
coupled-mode flutter for the clamped-clamped system (Paidoussis et al. 1985). It
should be noted that this flutter is here initiated with vanishingly small real frequency
(point C in the figure). For the clamped-pinned system, the dynamical behaviour is
qualitatively similar to that of the piw: ed-clamped one.

The values of U, for different -: are sh~wn in Table 4.5 for the pinned-clamped
system and in Table 4.6 for the clamped pinned system. It is observed that, for all
n, U,. according to the viscous theory is much less than that obtained via inviscid

theory in both pinned-clamped and clamped-pinned cascs. It is also seen that, for
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both the pinned-clamped system (Table 4.5) and the clamped-pinned system (Table
4.6), stability according to the inviscid theory is lost in the third circumferential
mode, n = 3, but when the steady viscous forces taken into account, stability is lost
in the fourth circumferential mode, n = 4.

The physical explanation for this destabilizing influence of viscous effects is the
same as for clamped-clamped shells (Paidoussis et al. 1985): the steady loads due
to viscosity induce a compressive hoop stress, and cither a tensile axial load in the
clamped-pinned system or a compressive axial load in the pinned-clamped system,
the hoop stress being the dominant factor since it is two orders of magnitude greater
than the axial one. The hoop compressive stress effectively reduces the shell stilfness,
thus greatly lowering Uo..

A final point of interest in the results of Table 4.5 and Table 4.6 is associated
with the fact that the dimensionless critical viscous flow velocities in the case of the
pinned-clamped system are lower than those in the case of the clamped-pinned system,
because the distribution of pre-stress resultants caused by basicloads along the flexible
shell is different, which results in the pinned-clamped system being eflectively more
flexible than the clamped-pinned systen in the case of annular viscous flow. This is
so, for the same reason that was discussed in the last paragragh of Section 4.3.1 (refer

to Figure 4.10).

4.4.2 Effect of Length of the Shell

Shown in Figure 4.7 are the results for U, as a function of the ratio L/a in a 1/10-
gap system [i.e., (b—a)/a = 1/10]. It should be reiterated here that U}, denotes the
overall (lowest) critical flow velocity, whereas U, refers to the critical flow velocity

associated with some particular n. Two variants of the theory have been used to
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calculate I77; in the inviscid variant, the fluid is assumed to be purely inviscid, while

in the viscous variant, steady viscous effects of the flow are taken into account. The

system is pinned-clamped.

The value of U2, predicted by the viscous variant of the theory is of the order of
three to five times smaller than that by the inviscid counterpart as L/a is varied from
5to 25. This destabilizing effect of the steady viscous forces with increasing L/a is not
surprising since, the destabilizing effect of the crushing compressive load g3 appearing
in equations (2.1)-(2.3) is in fact proportional to L; thus, these resulls quantify the
influence of L/ on stability. The results here are similar to those obtained by Nguyen
(1992) for a clamped-clamped system under the same conditions.

In general, as L/a is increased, U}, decreases, and so does the circumferential mode
associated with U2,. Consequently, if L is large enough, the shell will eventually lose
its stability by divergence in the n = 1 (beam) mode. This observation is similar to
that made earlier by Paidoussis and Denise (1972) for the system of an unconfined

clamped-clamped shell containing internal flow.

4.4.3 Effect of Shell Thickness

The variation of U%, with shell thickness, expressed nondimensionally as h;/a, is
plotted in Figure 4.8, for the pinned-clamped system. Again, the steady viscous
forces have a destabilizing effect on the system. As may be seen from the figure, U,
increases with h;/a, whereas the circumferential mode n associated with Uy, decreases.
The effect of h,/a on U2, and n may be understood by considering the strain energies
resulting from circumferential bending and stretching of the shell.

For shells with both ends supported, if the strain ‘encrgies are plotted against

the circumferential wave number n, it will be observed that the bending energy &,
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increases with n, while the stretching energy £, varies in the reverse manner, resulting
in a curve for the total strain energy & (i.e., & = & + &,) of quasi-parabolic form
(Arnold and Warburton 1949). The approximate value of 2 at which & is minimum
may be determined when & = &,. Considering an element of the shell, so small as
to be approximated as a plate of thickness hj, it has been shown (Timoshenko and
Woinowsky-Krieger 1959) that for such a plate £ is proportional to h? while €, is

proportional to h,. The notional relationships between &, &, and h, arc thus

C’ hia
n

£ =Cenld, &=

where C}, and C, are some proportionality constants. llence, equating & = &, leads
to

2 . C‘
= Gk

n

which implies that, as far as (€ )m.n is concerned, n decreases with increasing h;, and
(gt)min =2 Cbcah?-

On the other hand, the energy supplied by the flowing fluid £;, required to over-
come &, and hence to collapse the shell, comes from the centrifugal fluid-dynamic
force, which is known to be proportional to U? according to inviscid theory. Implic-

itly, £ is also proportional to U2,
& =U?[(n),

where f(n) is some unknown function of the circumferential wave nunber n. It is

obvious that the system loses stability when
81 - gj =g¢ — sz(n) = (.

Since (& )min is proportional to h? and f(n)is a weak function of n, this implics that

0;, will become higher if there is an increase in (&;)min due to increasing h,.
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4.5 Comparison of Results

Dimensionless critical flow velocities (of only the annular or the inner fluid) for inviscid
and viscous flow with pinned-clamped and clamped-pinned end conditions are shown
in Table 4.9 for a 1/10-gap system. For comparison purposes, the results obtained
with clamped-clamped (Paidoussis et al. 1985) and clamped-free (Paidoussis et al.
1991) end conditions are also presented.

It is recalled that the critical velocities obtained from the inviscid theory for
pinned-clamped end conditions are identical to those obtained with clamped-pinned
ones, which means that the slope effect at the downstream pinned end has little influ-
ence upon the stability of the system. This is in contrast to the findings by Hordcek
and Zolotarev (1984). It may also be noted that in the case of inviscid flow (either only
annular or only internal), the system with either pinned-clamped or clamped-pinned
end conditions loses stability by divergence first (U, = 1.14x 1072, U;. = 2.12x107?),
followed by coupled-mode flutter (U, = 1.54 x10~2, U;. = 2.73x 10~2), behaving like
one with clamped-clamped end conditions conveying inviscid flow (Paidoussis et al.
1984).

Similarly to the cases considered in the previous studies (Paidoussis et al. 1985,
1991), viscous effects destabilize pinned-clamped or clamped-pinned shells for annular
flow, but stabilize them for internal flow. In contrast to the case of inviscid flow, the
critical viscous flow velocities for the pinned-clamped system are not the same as those
for the clamped-pinned system but are lower in the case of annular flow and higher
in the case of inner flow, because the distribution of pre-stress resultants caused by
the basic loads along the shells (induced by pressurization and surface traction) is
different, which results in the pinned-clamped system being effectively more flexible

than the clamped-pinned system in the case of annular viscous flow, but stiffer in
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the case of internal viscous flow. The 1cason was discussed in the last paragragh of
Section 4.3.1. The interested reader can refer to Figures 4.9 and 4.10 from which it
is seen that the highest levels of hoop pre-stress resultant Ny occur at the upstream
and are much greater than axial pre-stress resultant N,.

From Table 4.9, it is noted that in the case of cither inviscid or viscous flow, the
critical velocities obtained with clamped-pinned or pinned-clamped end conditions are
lower than those with clamped-clamped end conditions and higher than those with
clamped-free end conditions, since the clamped-pinned or pinned-clamped system is
more flexible than the clamped-clamped system and stiffer than the clamped-free
system. This is another verification that the present theory is correct, since it makes

sense in physical terms.

4.6 Summary

Chapter 4 has presented in detail the results for the dynamical behaviour of the system
of either clamped-pinned or pinned-clamped coaxial, thin cylindrical conduits, with
the outer cylinder being rigid while the inner one (the shell) remains flexible. The
system was subjected to internal flow or annular flow. Investigated were the effects
of varying annular gap, of varying length of the shell, and of steady viscous loads on
stability of the system.

In the case of internal flow, the clamped-pinned or pinned-clamped system loses
stability by divergence first. If the fluid is considered to be inviscid, this is followed
by coupled-mode flutter; for viscous flow, this is followed by single-mode flutter. For
large n (n > 2), reducing the annular gap diminishes the critical flow velocities. It is

found that the critical velocities are diminished with increasing I /a for inviscid flow,
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but they increase with increasing L/a for viscous flow, as discussed in Section 4.3.3.
Viscous effects stabilize the system, and result in the clamped-pinned system being
cffectively more flexible than the pinned-clamped system.

In the case of annular flow, the system loses stability by divergence first, followed
by coupled-mode flutter. As L/a is increased, the critical flow velocity decreases,
as disscused in Section 4.4.2. It is found that the critical velocity increases with
increasing h,/a. In all cases, viscous effects destabilize the system, and result in the
clamped-pinned system being stiffer than the pinned-clamped system.

Finally, comparison between results obtained by the present theory and those ob-

tained carlier with clamped-clamped and clamped-free end conditions were presented.
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Table 4.1: The dimensionless inner critical flow velocities, U,., with n =1 — 8 for the
1/10-gap system subjected to internal flow according to the inviscid and viscous (i.c.,
including steady viscous effect) versions of the theory, with the axial mode number m
involved in each case. The system is pinned-clamped. The instability type is marked

as: D=divergence, S=single-mode flutter, C=coupled-mode flutter.

Pinned-Clamped, Internal Flow Only

Critical Flow Velocity, U, ||
Inviscid Theory Type m “ Viscous Theory Type m ]
0.0726 D * * *
0.0998 C
0.0285 D 0.0461 D 1
0.0452 C 0.0505 S 1
0.0212 D 0.0398 D 1
0.0273 c 0.0417 S 1
0.0233 D 0.0365 D 1
0.0262 C 0.0413 S 1
0.0259 D 0.0353 D 1
0.0272 C 0.0420 S 1
0.0307 D 0.0393 D 1
0.0293 C
0.0317 D * * *
0.0343 Cc
0.0388 D * * *
0.0440 C

* No calculations were conducted for these circumferential
mnodes.
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Table 4.2: The dimensionless inner critical flow velocities, U, with n =1 — 8 for the
1/10-gap system subjected to internal flow according to the inviscid and viscous (i.e.,
including steady viscous effect) versions of the theory, with the axial mode number m
involved in cach case. The system is clamped-pinned. The instability type is marked

as: D=divergence, S=single-mode flutter, C=coupled-mode flutter.

Clamped-Pinned, Internal Flow Only

Critical Flow Velocity, U
n
Inviscid Theory Type m “ Viscous Theory Type m l

1 0.0726 D * *
0.0998 C

2 0.0285 D * *
0.0452 C

3 0.0212 D 0.0328 D
0.0273 C 0.0424 S

4 0.0233 D 0.0315 D
0.0262 C 0.0385 S

5 0.0259 D 0.0319 D
0.0272 C 0.0393 S

6 0.0307 D * *
0.0293 C

7 0.0317 D * *
0.0343 C

8 0.0388 D * *
0.0440 C

* No calculations were conducted for these circunmferential
modes.
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Table4.3: The critical flow velocities, Uj,, associated with n = 1—8 for the (1/10)- and
(1/100)-gap systems subjected to internal flow according to inviscid theory, with the
axial mode number m involved in each case. The system is cither pinned-clamped or
clamped-pinned. The instability type is marked as: D=divergence, C=coupled-mode

flutter; thus, 1D means divergence associated with m = 1.

Critical Flow Velocity, U;,

n =

II 1/10-Gap m Il 1/100-Gap m
1 0.0726 1D || 0.0743 1D
2 0.0285 1D || 0.0295 1D

|

3 0.0212 1D l 0.0201 1D
4 0.0233 1D 0.0217 1D
5 0.0259 1D 0.0238 1D
6 0.0293 1+2C 0.0261 iD
7 0.0317 1D 0.0283 1D
8 “ 0.0388 1D || 0.0331 1D
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Table 4.4: The effect of varying the length-to-radius ratio on the overall critical flow

velocity, U2, for the 1/10-gap system subjected to internal flow only, according to the

1c)

inviscid and viscous (i.e., including steady viscous effects) versions of the theory; the

circumferential wave number n associated with Uy, is shown in each case.

The Overall Critical Flow
L/a Velocity U, "
Inviscid n Viscous n | Difference
Flow Flow in %

5 0.0265 4 0.0411 6 55.1%
10 0.0217 3 0.0353 5 62.7%
15 0.0207 3 0.0365 4 76.3%
20 0.0178 2 0.0393 3 120.8%
25 0.0161 2 0.0443 2 175.2%
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Table 4.5: The dimensionless annular critical flow velocities, U,,, with n =2 -5 for
the 1/10-gap system subjected to annular flow according to the inviscid and viscous
(i.e., including steady viscous effect) versions of the theory, showing the axial mode
number m involved in each case. The system is pinned-clamped. The instability type

is marked as: D=divergence, C=coupled-mode flutter.

Pinned-Clamped, Annular Flow Only

Critical Flow Velocity, U,

n -
Inviscid Theory Type m Viscous Theory Type m
2 0.0127 D 1 0.0067 D 1
0.0212 C 1+2 0.0191 C 1+2
3 0.0114 D 1 0.00267 D 1
0.0154 Cc 1+2 0.0103 C 1+2
4 0.0144 D 1 0.00260 D 1
0.0216 Cc 1+2 0.0093 C 1+2
5 * * * 0.00305 D 1

* No calculation was conducted for this circumferential
mode.
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Table 4.6: The dimensionless annular critical flow velocities, U, with n =2 -5 for
the 1/10-gap system subjected to annular flow according to the inviscid and viscous
(i.c., including steady viscous effect) versions of the theory, showing the axial mode
number m involved in each case. The system is clamped-pinned. The instability type

is marked as: D=divergence, S=single-mode flutter, C=coupled-mode flutter.

Clamped-Pinned, Annular Flow Only

Critical Flow Velocity, U,
n

Inviscid Theory Type m Viscous Theory Type m
2 0.0127 D 1 * * *

0.0212 C 142
3 0.0114 D 1 0.00306 D 1
0.0154 C 1+2 0.00910 C 1+2
4 0.0144 D 1 0.00295 D 1
0.0216 C 142 0.00851 S 2
5 * * * 0.00329 D 1
0.00787 S 3

*No calculations were conducted for these circumferential
modes.
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Table 4.7: The effect of varying the length-to-radius ratio on the overall critical flow

velocity, Uz, for the 1/10-gap system subjected to annular flow, according to the

oc?

inviscid and viscous (i.e., including steady viscous effects) versions of the theory; the

circumferential mode number n associated with U}, is shown in each case.

The Overall Critical Flow Velocity Ug."

L/a
Inviscid n Viscous n

Flow Flow

5 0.0165 4 ) 0.0059 5
10 0.0117 3 0.0029 4
15 0.0097 2 0.0017 3
20 0.0079 2 0.0013 3
25 0.0071 2 0.0011 2
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Table 4.8: The effect of varying the thickness-to-radius ratio on the overall critical
flow velocity, Uz, for the 1/10-gap system subjected to annular flow, according to the
inviscid and viscous (i.c., including steady viscous effects) versions of the theory; the

circumferential mode number n associated with U], is shown in each case.

h;/a | The Overall Critical Flow Velocity U,.* x 102
x103 .. :
Inviscid n Viscous n
Flow Flow

5 1.05 3 0.25 4
10 1.77 2 0.55 3
15 2.29 2 0.97 3
20 2.81 2 1.49 3
25 3.35 2 1.89 2
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Table 4.9: Comparison between critical flow velocities. [7,. and [7,., as calculated by

the present theory and by Paidoussis et al. (1985, 1991) for the 1/10-gap system with

a rigid outer cylinder, for the circumferential mode number n = 3. The instability

type is marked as : D=diveigence, C=usual coupled-mode flutter*, SM=same-mode

coupled-mode flutter, S=single mode flutter. * (C142) means: the first (1 =1) and

the second (m = 2) axial modes are involved.

critical Flow Velocities, U;.x10® and U, x10?

System Flow Inviscid | Type Viscous Type
Theory Theory
Annular 1.14 D1 0.267 D1
Pinned- Flow Only 1.54 Cl+2 1.03 Cl+2
Clamped
Internal 2.12 D1 3.98 D1
flow Only 2.73 Cl+2 4.17 SM1
Annular 1.14 D1 0.306 D1l
Clamped- Flow Only 1.54 Cl+2 0.910 Cl+2
Pinned
Internal 2.12 D1 3.28 D1
Flow Only 2.73 Cl+2 4.24 SM1
Clamped- Annular 2.46 s3 0.28 Dl
Free Flow Only 1.02 Cl+2
{(Paidoussis
et al. 1991) Internal 2.77 s3 3.11 53 II
Flow Onl
Clamped- Annular 1.36 D1 0.36 Dl
Clamped Flow Only 1.85 Cl+2 1.04 Cl+2
(Paidoussis |
et al. 1985) | Internal 2.55% D1 4.14 D1l
Flow Only 3.14 Cl+2 4.86 Cl+2 ]
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Figure 4.1: The real and imaginary parts of the dimensionless cigenfrequencies, €,
of the 1/10-gap system (sec cquation (4.1)) with inviscid internal water flow and a
stagnant anrular fluid (water), as functions of the dimensionless inner flow velocity,
U,, when the outer cylinder is rigid and the imer shell (steel) is pinned-clarped or

clamped-pinned; forn =3, m=1, 2, 3.
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Figure 4.2: The real and imaginary parts of the dimensionless eigenfrequencies, f,,
of the 1/10-gap system (sce equation (4.1)) with viscous internal water flow and a
stagnant annular fluid (water), as functions of the dimensionless inner flow velocity,

U,, when theouter cylinder is rigid and the inner shell (steel) is pinned-clamped; for

n=3m=1,2, 3
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Figure 4.3: The dimensionless critical flow velocity, I/,.. of a pinned-clamped system,
surrounded by quicscent annular fluid (water) while conveving intetnal water flow,

as a function of the circumferential wave number n for two different annular gaps.

These calculations were done with the inviscid theory.
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Figure 4.4+ The efiect of Lfc on the overal! (lowest) critical dimensionless flow veloc-

ity, U*

1c?

for the 1/10-gap system conveying internal water flow and quiescent annular
fluid (water); the circumferential wave number n associated with the first loss of

stability is shown in the figure. The system is pinned-clamped.
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Figure 4.5: The real and imaginary parts of the dimensionless cigenfrequencies, €2,
of the 1/10-gap system with inviscid annular water flow and a stagnant internal
fluid (water), as functions of the dimensioniess annular flow velocity, Us, when the
outer cylinder is rigid and the inner shell is pinned-clamped or clamped-pinned, for

n=3, m=1, 2, 3.
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Figure 4.6: Typical Argand diagram involving the real, Re(,), and imaginary,
Im(Q,), parts of the dimensionless eigenfrequencies of the so-called 1/10-gap sys-
tem with viscous annular water flow and a stagnant internal fluid (water). as the
dimensionless annular flow velocity U, is varied, when the outer cylinder is rigid and

the inner shell (steel) is pinned-clamped; forn =3, m =1, 2.
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o
i

Figure 4.7: The effect of L /a on the overall (lowest) eritical dimensionless flow veloce-

ity, Uz,

for the 1/10-gap system with internal water flow and quiescent annular fluid
(water); the circumferential wave number n associated with the Jrst loss of stability

is shown in the figure. The system is pinned-clamped.
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Figure 4.8: The overall critical dimensionless annular flow velocity, U2,

in the 1/10-
gap system as a function of the dimensionless wall-thickness of the shell A, /a, with
the circumferential mode, n, associated with the first loss of stability indicated in the

figure. The shell (steel) is pinned-clamped and the inner fluid (water) is stagnant.
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Fignie 4.9: Comparison between stresses induced by internal viscous flow in the case of
pinned-clamped or elamped-pinned system and those in the case of clamped-clamped

system.
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Figure 4.10: Comparison bevween stiesses :nduced by annular viscons flow in the

case of pinned-clamped or clamped-pinned system and those mn the case of damped

clamped system.
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Chapter 5

Conclusion

5.1 Contributions of the Thesis

This thesis presented an analytical model for the study of the stability of pinned-
clamped and clamped-pinned coaxial cylindrical shells subjected to internal and/or
annular incompressible viscous fluid flow. The viscous nature of the fluid results in
both steady and unsteady viscosity-related loads being exerted on the shells, the latter
of which is neglected here and will be the subject of future investigation. Upstream
pressurization of the flow (to overcome frictional pressure drop) and skin friction on
the shell surfaces are taken into account, generating time-averaged normal and tan-
gential loads on the shells. In this model, the shell motions were described by Fligge’s
shell equations, suitably modified to incorporate the time-averaged stress resultants
atising from viscous effects. Such steady viscous effects were evaluated for clamped-
pinned and pinned-clamped shells, using the same procedure previously proposed by
Paidoussis, Misra and Chan (1985) for the system of clamped-clamped shells. The
unsteady fluid-dynamic forces in these equations were formulated from potential flow

theory: the perturbation pressures on the shells were determined from the perturba-

88
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tion velocity potentials via the unsteady Bernoulli equation, these velocity potentials
are governed by the Laplace equation, which was solved by the Fouier transfoim
method.

For the clamped-pinned system, since the downstream end of the shell was simply
supported, a so-called out-flow model was utilized in modelling the decay of flow
perturbations beyond the pinned end.

The theory was first used to solve test problems involving pmned-clamped ylin-
drical shells: (i) the natural frequencies of a shell i vacuo, which were found to be
in excellent agreement with the 1esults obtained by Weingarten’s (1964) theory; and
(ii) the natural frequencies of a shell conveying inviscid flow, which was found to be
in good agreement with the results obtained by beam theory.

The theory was then applied to investigate the dynamic behaviour of a pinned-
clamped or clamped-pinned steel shell located coaxially within a rigid cylinder; the
system had water flowing within the shell or in the annular region. The following

were the main findings.

e In the case of internal flow, both systems lose stability by diveigence, followed
by the usual coupled-mode flutter, if the flow is inviscid; however, if the fuid is
viscous, the system may lose stability by divergence first and then followed by
coupled-mode flutter involving branches of the same mode. It was found that,
for shell-type motions (n > 2), flow pressurization and skin friction stabilize
the shell by a considerable amount, especially if the shell is long. The presence
of the quiescent annular fluid lowers the natural frequencies by increasing the
effective inertia of the system. A reduction in the arvular gap destabilizes the

system by increasing the virtual mass of the annular fluid and hence reducing
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the effective stiffness of the system. It was also found that there is no differ-
ence between the pinned-clamped system and the clamped-pinned system when
conveying inviscid fluid. This is because the comparison functions used (beam
eigenfunctions) are not dependent on slope explicitly. However, in the case of
inner viscous flow, the pressurization effect makes the pinned-clamped system
effectively stiffer than the clamped-pinned system and hence, the former system

loses stability at a greater flow velocity than the latter.

o In the case of annular flow, both systems lose stability by divergence, followed by
normal type of coupled-mode flutter, if the flow is inviscid; however, if conveying
viscous fluid, the system may lose stability by divergence first and then by
either same-mode or the usual type of coupled-mode flutter (depending on the
circumferential wave number, n). The principal effect of the steady viscous
forces is to severely destabilize the system, due to the fact that pressurization of
the annular flow results in inward-direction, crushing compressive loads acting
on the shell. The value of U}, is decreased as the length of the shell, L, is
increased or its thickness, h,, is reduced. If the flow is inviscid, the two systems
have the same dynamic behaviour; however, viscous effects cause the pinned-
clamped systen, to become more flexible than the clamped-pinned system. This
is because the highest levels of hoop pre-stress occur at the upstream end,
where the pinned-clamped system is softest and hence most susceptible to being

softened by this pressurization effect.

o In the calculations, the slope effect of the pinned end of the clamped-pinned
system was taken into account in the out-flow model. It was found that it

has little influence upon the stability of the system. No difference in dynamic
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behaviour was found between the two systems if the flow, either internal or
annular, is inviscid; this is in contiast to the results obtained by Horacek and
Zolotarev (1984); thus, perhaps due to the simplifications introduced by these

resecarchers, their results must be wrong.

Comparison was made with the existing results for clamped-clamped (Paidoussis,
Misra and Chan 1985) and clamped-fice (Nguyen 1992) cases, which showed that the

present theory is physically reasonable.

5.2 Suggestions for Future Work

Since the analytical model of this thesis neglected the unstcady viscous cffects, a new
analytical model with these effects taken into account should be developed. Also the

resulis obtained by theory here should be tested experimentally.
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Appendix A

Definition of Eigenfunctions and

Related integrals

A.1 Comparison Functions

In order to satisfy all the boundary conditions (2.7)-(2.14) automatically, suitable
comparison functions ®,,(z) should be chosen for u, v and w [equations (2.29) and
(2.30)]. In the present theory, the dimensionless comparison functions are beam

functions ®,(¢), which have the general form
®,(€) = (cosh A, — cos A,€) — a,(sinh A, € —sin A)€) (A.1)
and satisfy the equation
®}(€) = X79,(¢), (A-2)

where prime denotes differentiation with respect to the argument of the function, §;

for a clamped-pinned beam, the constants o, are

v = cosh A, + cos A,
77 sinh A, +sin )’

(A.3)
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and the cigenvalues A, are the roots of the transcendental equation
tanh A, —tan}, = 0. (A.4)
The boundary conditions of a clamped-pinned beam are as follows:

at clamped end:
®,(0) = 0,
®!(0) = 0,
V(0) = 2,
V'(0) = —20,), (A.5)

at pinned end:

(bJ(l) = 0,
‘p’(l) = 2AJ('—1)J
’ Ma}-{-l—{-(—l)’,/a}—l’
(1) = o,
er(1) = 20 (A.6)

JoTT + ()T

If the system is pinned-clamped, just let £ = 1 — 7 and substitute it into (A.1), or

PO,(n) = @,(£) = 2,(1 - n), (A.7)

where P, () are beam eigenfunctions of a pinned-clamped beam with the constants

o, and )\, satisfying (A.3) and (A.4). There exist following relations:

Po,(n) = o,(8),
POl (n) - (¢),
Poi(n) = 9)(6),

PoY(n) = -9(¢), (A.8)

1l
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The corresponding boundary conditions of a pinned-clamped beam are as follows:

at pinned end:
*,(0)

7$3(0)

"44(0)

77'(0)

at clamped end:

"e,(1)

Pei(1)

J

0,

Jo? +1+(—1) \/ci—:"l
0,

2X(—=1y+!

o+ 14 (=1t /jo? — 1
0,
0,
2A2,
20,,\?,

(A.9)

(A.10)

A.2 Integrals Involving Beam Eigenfunctions

A number of definite integrals involving beam cigenfunctions were encountered in

Chapter 2 (Section 2.3.4), as a result of the Galerkin method being utilized to solve

the equations of motion. Such integrals were denoted by the following constants in

the case of the clamped-pinned system :

Akm

- /'«v()m(ﬁ)de,
. / AL
- /0 ®,,(6) Py (£)de,
= [ oueenene,

n 1
bkm ZA 6‘1’2(

i = [ €0 DO,

@' (€)dE,
1

b = /0 £DL(£)D,(€)dE,

dim = [ EBOB(EIE,
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1 f k #m,

b = [ Pu(E)Om(E)dE =

0 1 ifk=m,

where € = /L is a dimensionless length variable, defined in (2.53). If the system

is pinned-clamped, the corresponding integrals should be denoted by the following

constants:
1 1
Paj = /0”‘1’1(7)) ”(l)m(q)d”’ p&km:‘/o ’lp(pk(’?)p(pm(”)dnv
Ph,, = o0t (n) PO (n)d Phy,, = P (n) PO (n)d
N A «(n) PO (n)dn, km = |1 x(n) P, (n)dn,
1 1
P = [P0, P = [ 0P 0(n) @ (),
1 n 1
Pdyy, = /0 P () PO, (1)dn, Pdyym = /0 7P (n) oo (n)dn,

where = z/L is a dimensionless length variable, and *®,,(n) are beam eigenfunc-
tions of a pinned-clamped beam defined in (A.7). To evaluate the above constants

conveniently, following integrals are defined:

1 1
e = [ BOVOE  Peen= [ P0uln) PR (n)dn.

The above integrals are evaluated using the same procedure as introduced by
Gregory and Paidoussis (1966a). Firstly, we evaluate the following constants by

integration by parts:

1 1

n = T [\, — 010!, + BL0L ~ &L} (A.11)
1 1

bon = ST {M0.0), — &y}, + OO - A0} ; (A.12)
1 1

€km = A: _ A"" {q);c”(p:: - Av‘nq);c’(bm + A:" ;gq):" - ’\:"Qk¢:‘}|0; (A.13)

But it is noted that when k = m the above constants become undefined and should
be reevaluated, which lead to:

1 1
— 2
Qyum = 5¢m ’

(A.14)

0
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b = %{34,,,@' +EOR — 260,07 — —--¢::,¢::: :nm:::*} ; (A.15)
erm = 2;4 ol (A.16)
m 0
Secondly, by integration by parts, and with the above constants we have:
A = Y] 1/\3‘{ (€xm — €mk)
+E[0)'D,, — 1! + BLD,, — 0,0 ], (A.17)
b = X.j 7 {20%eim — Mews) + [(OL0u01, — o797,
+<x>"¢;;; M0 ,,) + (0, — o) } (A.18)
b = 3 A;‘n — {26[30,. 01 — ¢, 01] + (AL, (A.19)
+ q»:,'f 20/,0] + 4072 — 60,0}, (A.20)
bum = 5 M {2¢[3)8, 0 @1, ¢;:,¢"’]+52[,\:n¢;§ (A.21)
+ 0" 2\ @7 D, ] + 4017 - 60 O (A.22)

Finally, we can evaluate the remaining constants by using the above results and

the boundary conditions (A.5)-(A.6):

Cim = "bkma (A23)

dim = M6, (A.24)

ékm = _akm — Amk, (A25)

‘ikm = —€im — Ay‘n&km, (A26)
and then:

pakm = —OGim, (A27)

Poim = bim, (A28)

pckm = '_'bﬁ.m, (A29)
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Pdiye = — A% 8im, (A.30)
Pigm = Okm = Gkm s (A31)
Phem = bk — ks (A.32)
Pkm = —bim ~ Chm, (A'33)
Pdm = —A 6t — dim (A.34)

All of the above definite integrals expressed in terms of boundary conditions have

been tested to be true by numerical integrations.



Appendix B

Expression for Hy, . (a) and PH;, (a)

H\,,(&) was defined in Equation (2.63) as
Hi (@) = Hi(—a)H o (&), (B.1)

where k and m are indices such that 1 <k, m < M, and

1 -
H(@) = [ @, (@)e<de. (B2)

In the above integral, ®,(£) are clamped-pinned beam eigenfunctions defined in (A.1).

By successive integration by parts, it is found that

1 i

(&) = 3 (9510~ ()90 + (/95 6) - G°,0] | . (83)
It is noted that H,(a) becomes undefined when
a=a"=%A), H1}A;, (B.4)

because the right hand side of (B.3) has the form 0/0; in such cases, applying
L’Hospital’s rule to equation (B.3) leads to

1

H(@) = == {[#°®,() +ia"e(€) —a'9;(€) - 197 (€)]¢
+ [-3ia20,(¢) + 2a°9)(€) + ()] } . - (B.5)
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The boundary conditions of a clamped-pinned beam are given by (A.5) and (A.6).
If the system is pinned-clamped, then using a pinned-clamped beam function

*d,(n) defined in (A.7) to replace @,(£), we have:

PHyn(a) = PHi(—a)"Hu(&)
= [ ot [ ol
_ /‘O . (6)e~ 51 -04(1 — g)/lo &, (6)e*1d(1 - &)
= /0 L@ (E)ettde /0 o (£)e o de
= Hy(@)Hu(-&) = Hni(a)

or rewriting,

PHy (&) = Homi (&) (B.6)



Appendix C

Out-Flow Model

In a recent study by Paidoussis et al. (1991), it was shown that, if the shells are
cantilevered, the effet::t of flow perturbations beyond the downstream end of the shells
must be taken into account. This also applies to clamped-pinned and pinned-pinned
boundary conditions. Three different so-called out-flow models, previously introduced
by Shayo & Ellen (1978) and Paidoussis et al. (1986), werec examined by Paidoussis
et al. (1991). Since the downstream flow perturbations vanish at £ = ¢, £ should be
sufficiently large for as gradual a decay as possible. However, numerical difficulties
were experienced in previous studies. The non-convergence of the solution was therein
identified as resulting from the non-existence of limy—.o, Nim(@), even though Ny, (&)
is finite for any value of £. A similar example of non-convergence, because of the
nature of the functional form involved, pertains to £cos ¢; for any large €, Lcos € is
finite, yet the limit, as £ — 0o, do:s not exist.

Therefore, a new outflow model with the requirement that the model does not
lead to the numerical difficulties experienced in previous studies should be developed.
This has been successfully accomplished by Nguyen et al. (1993) and is presented as

follows.
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The functional form of the new model is given by R, (£), defined over 1 <§ < ¢,
where £ is the location at which flow perturbations vanish. R, (§) may be considered

as an extension of the beam eigenfunctions (the admissible functions), ®.(), beyond

E=1.
The characteristic function Ri.(€) of the new model satisfies the following bound-

ary conditions:

Rm(f)l(-_—l = (pm(l)’ R'm(£)|{=1 = d’:n(l)a

Ru(O)eztpmoo =00 Fra(Eletmco = 0- (C.1)

By intuition, R,,(£) has been taken to be of the form

R,.(¢) = (A€ + B)e', (C.2)

which automatically satisfies the last two boundary condition because of the term
e!€. The constants A and B can easily be determined from the first two conditions;

they are

A=0,(1)+@.,(1), B=-8,(1). (C.3)

For the clamped-pinned system herein, $,,,(1) = 0, hence R, (£) can be written

Ru(£) = @, (1)(1 = €)e! ¢ for 1 < £ <€ (C.4)

In the process of obtaining the generalized fluid forces acting on the shells (Chapter

2), another function Nj,,(@) closely related to R.,(¢) was defined [equation (2.64)],
NkM(&) = Hk(—&)Nm(&)a (C5)

where

Hi(-a)= /(,l di(¢)e¢dE, Nm(a)= /,l Rin(€)e'*¢de. (C.6)
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It should be recalled that Hi(—a) was completely determined in Appendix B; thus

what remains to be done in this appendix is to evaluate N, (@) corresponding to the

new model.

In order to do so, the following functions are defined:

. ¢ 1 - e .
No(a) f— '/1 e(l0—1)£d£ — ;E__-_l_ {C( l)l —e l}, (().7)
\ ¢ o 1 G- o R [ o

N,(&) = ,/1 Ee(m_l)fd{ = -—m {C('o l)l(l —_ mé’ -{ () ~— Qe 3 l} . (CS)

Finally, Np(&) for the new model is determined from {C.2), together with (C.6),
(C.7) and (C.8),

No(@) = /llRm(f)e"“dg
= —@l(1)e [ (1 - eteag

= 9. (1)e[N(a) — No(a)]. (C.9)



Appendix D
Definition of [M], [C] and [K]

The following are the elements of [M], [C] and [K].
Matrix [M]

Ml.l — 5.2bkm; M:;: = akm; M:ﬁ = 6km + q{l,,l; Ml::;-: = rg)l;

M = €2b/Q% MES = 6 /0% MES = s MES = 61 /Q2 + 1

the remaining elements are zeros.

Matix [C]

032 =24, €38 =20 CE2 = 25{; Cp =27

m km

the remaining elements are zeros.
Matrix [K]: [K] = [Ki] + [K2]

Each constituent part of [K] has a different physical basis. Matrix [K;] results
from the strain energy associated with the standard Fliigge's shell theory; matrix
[K) represents a change in the effective stiffness of the system due to steady viscous

effects of the flowing fluid.
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The elements of [A] are:

1(11;\1"1 = _%nz(l + kl)(l - Uu)efbkm + F.:dkm;
1
Ix'um = En(l + u,)e?bkm;

K:S" = {V. - %n’k.(l - u,)} E:"bm - k.e‘:dkm;

1
1";2le = _5"(1 + V,)E?Ckm;
1
K = —n6im +5(1 4 3k)(1 = v)elcin;
1
K?,:,, = —nk.(3 - 1/.):;2‘:,\,,. — néip;

3.1 1 -3,2 23
I{lkm = {5"‘ kl\] - Vt) - V!}E Cm+ LE' m6k1711 l‘lkm = Kk

I(?k::n = _[kl("’2 ) +kE?At4n 1]6"" +2k'u2€l2ckm {'v;r)n I(Ikm—' ﬁc)m
1
Kig = —5112(1 + k)1 = 1,)e2bym + £3dim;

K&, = %n(l + Vo)e2bim;

KiS = {uo - %n’ko(l - uo)}egb,m — koetdim;

K3 = —%n(l + Vo) Cim;

K,km = —nm + ?12-(1 + 3k, )(1 — v,)edchm;

Kl,m = lnk o(3 — Vo) Chm — Nékrm;

KSA = {; 2k (1 = 1) ~ Vo}e Com + kot NS Sems K5 = KO8,

KSS, = —[ko(n? = 1) + k,e3A%, + 1]bim + 2kone3chm + qon; Kion = 3\im-

the remaining elements are zeros.

The elements of matrix [K,)] are:
I(2km = 6: [All(ikm + Bhdkm] - n2€.2 [/iihi’km + Biicbkm] 3
I(;fm = nB?|5|akm; 1(21',‘3"‘ = BQ:elakm - E? [/i:}li’km + B.'hbkm] )

. I(zkm = E? [f‘ih'ékm + thkm] —n? [As.&km + Bs.ka] )
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I(gl‘cam = —n [ASt&Lm + Bal6hn] ) l<?l'¢lm = 5.2 [A.'}lékm + BS:Ckm] 3

l(gl‘?m = 1"§i.?n; Kgﬁ,. = 53 [Altékm + leckm] - n2 [/iihékm + BSchm] )
l(;l':m = 6: [/ilo(ikm + j?ladkm] - n253 [ASozkm + BSobkm] )

K;iesm = "Bzoﬁoﬂm; K;iﬁn = B2o€oakm - 63 [/‘igoi)km + f?;,obkm] ;

Ky, = € [/iloél.m + Blockm] —n’ [/i\'}oakm + Bso5km] ;

5,6 Ao > L84 204 a : .
,(ka = —-n [A.'Soakm + B3o6km] ) 1{2km = £, [ASOCkm + B3ockm] ’

-6,5 -56 66 _ 2 1 -~ > 2 4 3 > .
K 2%km = K 2hm K2km =& [Alockm + Blockm] -n [A3oakm + BSoakm] )

the remaining clements are zeros.

In the above matrix elements, A’s and B’s are constants defined in (2.99), while
for the clamped-pinned system constants @i, ... ,drm and g, .- 2 ka are defined
in Appedix A. Constants g) 0 s and t{) (with j =1, 2, 3.) are defined in
Chapter 2 in equation (2.65) and (2.67).

If the system is pinned-clamped, P®,,(£) defined in Appendix A should replace
®,,(£), and hence, in the above expressions, the constants @im, - . -, dkm and Gim, ---, Jk,,.

should be replaced by Paypm, ..., Pdkm and Pagy, ..., ”ka respectively.

The clments of vector X are:

{X}T = {Am Bm Cn D En Fin}.

It should be noted that, since k and m are indices such that 1 < k,m < M,
cach clement of [M], [C], or [K] is in effect an M x M submatrix of scalars, and each

element of X is a subvector of M (scalar) elements.



Appendix E

Computer Program Listing

Following is a listing of the computer program developed for Chapter 2. This program
was written in FORTRAN 77 (Standard FORTRAN). It has the following character-

i1stics:

® Most variables used in the program have the same physical meanings as those

in the theory.

o All multi-dimensional arrays have the pseudo dimensions, which change auto-

matically according to the data provided.

o All physical data are read in by the program; i.e. all changes in the data are

made in the data file, not in the comnputer program.
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aann

20

60

120
140

200
250
300
C 400

1000
2000

1

. MAIN PROGRAM
. CLAMPED-PINNED AND PINNED-CLAMPED SHELLS USING THE INVISCID THEORY (WITH
. OR WITHOUT STEADY VISCOUS FORCES)

INNER SHELL : FLEXIBLE, OUTER SHELL : RIGID
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
COMMON /CONST/¥I, RGAMA, JSC, JIN, JOUT, 1JOB, IOP1, IOP2
COMMON /WORKSP/RWKSP (73748)

COMMON A (40000)

CALL IWXIN (73748)

CALL ERRSET (207,1,0,0,1,0)

CALL ERRSET (208,300,-1,1,1,0)

CALL ERRSET (209,1,0,0,1,0)

NMAX= 40000

READ (JIN,1000) MTTMES, INFO

WRITE (JOUT,1000) MITMES,INFO

DO 250 ITIME=1,MTIMES

CALL INPUT (NT)

NR= NT*NT*3

NS= 3*NT

NX= 6*NT

NO= 1

Nl= NO + 2*NR
N2= N1 + NR -
N3= N2 + NS**2
N4= N3 + NS*»2
N5= N4 + NS**2
N6= N5 + NX**2
N7= N6 + NX**2
N8= N7 + NX
N9= NB + NX

N10= N9 + NX**2

NDIF= N10 - NMAX

IF (NDIF) 20,20,300

IF (INFO) 60,40,60

CALL FORCES (A(NO),A(Nl),6NT,1)

GO TO 250

CALL FORCES (A(NO),A(N1),NT,2)

READ (JIN,1000) NTIMES

DO 200 JTIME=1,NTIMES

CALL CLEAR (A(N1),N10-N1)

CALL FORCES (A(NO),A(N1),NT,3)

CALL MCK (A(N1),A(N2),A(N3),A(N4),NT,NS)

CALL DAMP (A(N1),A(N3),A(N4),NT,NS)

IF (IOP1l) 120,140,120

CALL VISFOR (A(N4),NT,NS)

CALL REDUCE (A(N2),A(N3),A(N4),A(N5),A(N6),NS,NX)

CALL DGVCCG (NX,A(N5),NX,A(N6),NX,A(N7),A(N8),A(NI), NX)

CALL OUTPUT (A(NS),A(N6),A(N7),A(N8),A(N9),NX)

CONTINUE

CONTINUE

STOP

WRITE (JOUT,2000) NDIF

STOP

FORMAT (5X,2D25.16)

FORMAT (2I5)

FORMAT (53H * * * PROGRAM STOPPED... ALLOWED STORAGE EXCEEDED ,
10HBY NDIF =,15)

END

COMPLEX FUNCTION CIN*16 (A,N)
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IMPLICIT COMPLEX*16(A-H), REAL*8(0-2Z)
DOUBLE PRECISION CDABS, DREAL,DIMAG
COMMON/CONST/PI,RGAMA,JSC,JIN,JOUT, 1JOB, 10P1, IOP2
IF (CDABS(A).GE.20.D0) GO TO 140
AA= 0.5DO*A
K= 0
CIN= (0.D0,0.D0)
100 CNEW= AA*x (2*K)/RFAC(K)/RFAC(N + K)
CIN= CIN + CNEW
IF (CDABS(CNEW).LT.1.D-10) GO TO 120
K= K + 1
GO TO 100
120 CIN= CIN*AA**N
RETURN
140 CcI= (0.D0,1.DO)
CN1l= (4.DO*N**2 — 1.D0)/(8.DO*A)
CN2= CN1*(4.DO*N**2 - 9.,D0)/(16.D0*A)
CN3= CN2*(4.DO*N**2 - 25.D0)/(24.DO*A)
CNA= CDEXP(A)/CDSQRT(2.DO*PI*A)
CNB= CNA*CDEXP(~2.D0O*A)
IF (DIMAG(A)) 160,200,180
160 CIN= CNA*(1.DO-CN1+CN2-CN3)+(-1)**(N+1)*CI*CNB* (1.DO+CN1+CN2+CN3)
RETURN
180 CIN= CNA*(1.DO-CN1+CN2~-CN3)+(-1)**N*CI*CNB*(1.DO+CN1+CN2+CN3)
RETURN
200 IF (DREAL(A)) 220,240,240
220 CIN= (-1)**N*CI*CNB*(1.DO + CN1 + CN2 + CN3)
RETURN
240 CIN= CNA*(1.D0 - CN1 + CN2 - CN3)
RETURN
END

COMPLEX FUNCTION CKN*16 (A,N)
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
DOUBLE PRECISION CDABS, DREAL,DIMAG
COMMON/CONST/PI,RGAMA,JSC, JIN, JOUT, IJOB, IOP1, IOP2
IF (CDABS(A).GE.15.D0) GO TO 200
AA= 0.5D0*RA
B= (0.D0,0.DO0)
IF (N.EQ.0) GO TO 150
K= 0
100 BNEW= (-1)**K*RFAC (N-K-1)/(RFAC(K)*AAR** (N-2*K) )
B= B + BNEW
IF (N-1-K) 140,140,120
120 K= K + 1

GO TO 100
140 B= 0.5D0*B
150 K= 0

CKN= (0.D0O,0.D0)
160 CNEW= (AA*#*(2+*K)/RFAC(K)/RFAC(N + K))*(0.5D0*(RFI(K) + RFI(N + K))
1 - (CDLOG(AR) + RGAMA))
CKN= CKN +CNEW
IF (CDABS(CNEW).LT.1.D-10) GO TO 180
K= K + 1
GO TO 160
180 CXN= CKN* (-AAR)**N + B
RETURN
200 CN1= (4.DO*N**2 - 1.D0)/(8.DO*A)
CN2= CN1*(4.DO*N**2 - 9.D0)/(16.D0*A)
CN3= CN2*(4.DO*N**2 - 25.D0)/(24.D0*A)
CNA= CDEXP (-A)*CDSQRT(0.5D0*PI/A)
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220
240
260

20

C ...
20

40
c LN ]
60

80

C s

CKN= CNA*(1.D0 + CN1 + CN2 +CN3)

IF (DREAL(A)) 220,240,240

IF (DIMAG(A)) 240,260,240

RETURN

B= -A

CNA= CDEXP(-B) *CDSQRT (0.SDO*PI/B)

CKN= CKN + (-1)**N*CNA*(1.DO - CN1 + CN2 - CN3)
RETURN

END

SUBROUTINE CLEAR (CF,N)
IMPLICIT COMPLEX*16(A-H)
DIMENSION CF(1)

DO 20 I=1,N

CF(I)= (0.D0,0.DO)
RETURN

END

SUBROUTINE DAMP (CQ,CXC,CXK,NT,NS)

IMPLICIT COMPLEX*16(A-H), REAL*8(0-Z)

COMMON/ISHELL/DHI,DVI,QI,REI, SKI,PSI

COMMON /CONST/PI ,RGAMA, JSC, JIN, JOUT, IJOB, IOP1, IOP2

DIMENSION CQ(NT,NT,1),CXC(NS,1),CXK(NS,1)

IF (IOP2) 20,60,20

MODIFY MATRICES C AND K TO ACCOUNT FOR HYS. AND VIS. DAMPING

DO 40 I=1,NS

DO 40 J=1,NS

CXC(I,J)= CXC(I,J) + DVI*CXK(I,J)

CXK(I,J)= DHI*CXK(I,J)

ADD TO THE STIFFNESS MATRIX K THE GENERALIZED FORCES CQ(K,M,3)

DO 80 M=1,NT

J= M + 2*NT

DO 80 Ks=1,NT

I= K + 2*NT

CXK(I,J)= CXK(I,J) + CQ(K,M,3) |
RETURN |
END

BLOCK DATA

DATA FOR CLAMPED-FREE BEAMS

IMPLICIT REAL*8(0-2)

COMMON /CONST/PI,RGAMA, JSC,JIN, JOUT,IJOB, IOP1, IOP2

COMMON /COAX/RLA(10) ,RHO(10) ,OMR,RINT, NINT, N, IOP3

COMMON/SVFOR/SAL(11), SBT(11),RDI,RDO, RGI,RGO, VISI, VISA, SL

DATA PI/3.141592653589793D0/, RGAMA/0.5772156649015328D0/,

Jsc/4/, JIN/S/, JOUT/6/, 1JOB/2/

DATA RLA/ 3.926602312047912D0, 7.068582745628738DO0,
10.21017612281303D0, 13.35176877775410D0,
16.49336143134641D0, 19.63495408493620D0,
22.77654673852600D0, 25.91813939211580D0,
29.05973204570559D0, 32.20132469929538D0 /,

RHO/ 1.000777311907269D0, 1.000001449897657D0,
1.000000002707595D0, 1.000000000005056D0,
1.000000000000010D0, 1.000000000000000D0,
1.000000000000000D0, 1.000000000000000D0,
1.000000000000000D0, 1.000000000000000D0 /

DATA SAL/0.06411D0,0.1D0,0.2D0,0.3D0,0.4D0,0.5D0,0.6D0,

0.700,0.8D0,0.9D0,1.0D0/, SBT/ 0.56388DO0,
0.63925D0,0.72964D0,0.78990D0,0.83964D0,0.88330D0,
0.92316D0,0.95143D0,0.97183D0,0.98919D0, 1.0D0/

[
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END
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SUBROUTINE FORCES (FR,CQ,NT,ID)
C ... CALCULATE UNSTEADY INVISCID FORCES

IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
DOUBLE PRECISION DABS,DREAL
COMMON/IFLUID/RHOI,UI, UIR
COMMON /AFLUID/RHOA,UA, UAR
COMMON/ ISHELL /DHI, DVI,QI,REI, SKI,PSI
COMMON /OSHELL /DHO, DVO, QO, REO, SKO, PSO
COMMON /CONST/PI, RGAMA, JSC, JIN, JOUT, 1IJOB, IOP1, IOP2
COMMON/COAX/RLA(10) ,RHO(10) ,OMR, RINT, NINT, N, IOP3
COMMON/SVFOR/SAL(11),SBT(11),RDI,RDO,RGI,RGO,VISI,VISA,SL
DIMENSION FR(NT,NT,1),CQ(NT,NT,1),XG(2),WGT(2),WG(2)
DATA XG/-0.577350269189626D0,0.577350269189626D0/, WGT/1.D0,1.DO/
GO TO (20,360,420), ID

20 DO 100 J=1,2

100 WG(J)= 0.SDO*RINT*WGT(J)
RLIM= O.SDO*RINT*NINT
FN= N
MT= 6*NT*NT
CALL CLEAR (FR,MT)
DO 300 I=1,NINT
RLOW= RINT*(I - 1) - RLIM
RHI= RLOW + RINT
DO 300 J=1,2
WT= WG(J)
RA= 0.5DO*(RLOW + RHI + RINT*XG(J))
AEI= RA*REI
RALFA= RA*REO
AEO= RALFA
Bl= CIN(AEI,N)
B2= CIN(AEI,N+1)
CONl= B1l/(B1*FN/AEI + B2)
Cl= CKN(AEI,N)
C2= CKN(AEI,N+1)
IF (DABS(RALFA).GT.87.D0) GO TO 120
B3= CIN(AEO,N)
B4= CIN(AEO,N+1)
C3= CKN(AEO,N)
C4= CKN(AEO,N+1)
CON= (B3*FN/AEO+B4)*(C1*FN/AEI-C2)~-(B1*FN/AEI+B2)*(C3*FN/AEO-C4)
CON2= ( (B3*FN/AEO + B4)*Cl - B1*(C3*FN/AEO - C4) )/DFEAL(CON)
GO TO 140

120 CON= (C1*FN/AEI - C2)
CON2= C1/DREAL (CON)

140 DO 200 IT=1,3
RB= RA** (IT - 2)
DO 200 M=1,NT
DO 200 K=1,NT
HN= GH(RA,K,M,2)
FR(K,M,IT)= FR(K,M,IT) + WI*RB*HN*DREAL (CON1)

200 FR(K,M,3+IT)= FR(K,M,3+IT) + WT*RB*HN*DREAL (CON2)

300 CONTINUE
DO 320 IT=1,6
DO 320 M=1,NT
DO 320 K=1,NT

320 WRITE (JOUT,2000) FR(K,M,IT)
RETURN

C ... READ IN VALUES OF INTEGRALS IN EXPRESSIONS OF FLUID FORCES

360 DO 380 IT=1,6

DO 380 M=1,NT
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DO 380 K=1,NT
380 READ (JSC,2000) FR(K,M,IT)
RETURI'
C ... READ DATA FOR THE INTERNAL AND ANNULAR FLUIDS
420 READ (JIN,1000) VISI,RHOI,UIR
READ (JIN,1000) VISA,RHOA,UAR
DO 600 1IT=1,3
IF (IT - 2) 440,460,480
440 Rl= RHOI*UI**2/(2.DO*PI*QI*REI**2)
R2= -RHOA*UA*%2/(2.DO*PI*QI*(REO*OMR)**2)
GO TO 500
460 Rl= —RHOI*UI**2*UIR/(PI*QI*REI)
R2= RHOA*UA**2*UAR/(PI*QI*REO*OMR)
GO TO 500
480 Rl= RHOI®UI**2*UIR#**2/(2.DO*PI*QI)
R2= —RHOA*UA**2*UAR**2/(2.DO*PI*QI)
500 DO 600 M=1,NT
DO 600 K=1,NT
600 CQ(K,M,IT)= R1*FR(K,M,IT) + R2*FR(K,M,3+IT)
RETURN
1000 FORMAT (3D15.6)
2000 FORMAT (5X,2D25.16)
END

SUBROUTINE INPUT (NTERMS)
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
COMMON/ISHELL/DHI,DVI,QI,REI,SKI,PSI
COMMON /OSHELL/DHO, DVO, QO, REO, SKO, PSO
COMMON/ IFLUID/RHOI,UI,UIR
COMMON /AFLUID/RHOA, UA, UAR
COMMON/COAX /RLA(10) ,RHO(10) ,OMR, RINT,NINT, MODE, 2OP3
COMMON/CLFR/RL, MODEL
COMMON /CONST /PI,RGAMA, JSC, JIN, JOUT, IJOB, IOP1, I0P2
COMMON/SVFOR/SAL(11),SBT(11) ,RDI,RDO,RGI, RGO, VISI,VISA,SL
C ... READ DATA FOR THE INNER AND OUTER SHELLS
READ (JIN,1000) YNI,PSI,SDENI,THIKI,RDI,RGI,SHI,SVI
READ (JIN,10600) YNO,PSO,SDENO, THIKO,RDO, RGO, SHO, SVO
WRITE (JOUT,1000) ¥YNI,PSI,SDENI,THIKI,RDI,RGI,SHI,SVI
WRITE (JOUT,1000) YNO,PSO, SDENO, THIKO, RDO,RGO, SHO,SVO
C ... READ VARIOUS PARAMETERS FOR THE COMPUTATION
READ (JIN,1100) SL,RL,RINT,NINT,MODEL,MODE, NTERMS, IOP1, IOP2, IOP3
WRITE (JOUT, 1100) SL, RL,RINT, NINT, MODEL, MODE, NTERMS, IOP1, IOP2, IOP3
C ... GENERATE SPECIFIC DATA FOR LATER USE
SKI= (THIKI/RDI)**2/12.DO
SKO= (THIKO/RDO)**2/12.DO
REI= RDI/SL
REO= RDO/SL
QI= YNI*THIKI*SL/(RDI**2%(1.D0 - PSI**2))
QO= YNO*THIKO*SL/(RDO**2#(1.D0 - PSO**2))
UI= DSQRT(YNI/(SDENI*(1.DO - PSI*%2)))
UA= DSQRT(YNO/(SDENO*(1.DO - PSO**2)))
OMR= RDI*UA/(RDO*UI)
cl= (0.D0,1.D0)
DHI= 1.D0 + SHI*CI
DHO= 1.D0 + SHO*CI
DVI= SVI*UI*CI/RDI
DVO= SVO*UA*CI/RDO
RETURN
1000 FORMAT (3D20.12/3D20.12/3D20.12)
1100 FORMAT (3D15.8,4I5,312)
END
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c...

C ...

C LI

100
200

C ...
c.l.

SUBROUTINE MCK (CQ,CXM,CXC,CXK,NT,NS)

IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)

COMMON /CORX/RLA (10) , RHO(10) , OMR, RINT, NINT, N, IOP3
COMMON /ISHELL/DHI,DVI,QI,REI, SKI,PSI

COMMON /OSHELL /DHO, DVO, QO, REO, SKO, PSO

DIMENSION CQ(NT,NT,1),CXM(NS,1),CXC(NS,1),CXK(NS,1)
DIMENSION AM(3,3),AC(3,3),AK(3,3)

DO 200 M=1,NT

DO 200 K=1,NT

CALL CLEAR (AM,9)

CALL CLEAR (AC,9)

CALL CLEAR (AK,9)

Ul= RE1(K,M)

V2= RE4(K,M,2)

V3= -v2

V4= RE2(K,M,4)

Wl= N

W2= Wlww2

CALCULATE ELEMENTS OF THE MASS MATRIX M

AM(1,1)= REI**2*V2

AM(2,2)= Ul

AM(3,3)= Ul + CQ(K,M,1)

CALCULATE ELEMENTS OF THE DAMPING MATRIX C :
AC(3,3)= CQ(K,M,2)

CALCULATE ELEMENTS OF THE STIFFNESS MATRIX K
AK(1,1)= -0.5DO*W2*(1.D0 + SKI)*(1.DO - PSI)*REI**2#V2 + REI**4*V4
AK(2,1)= -0.5D0*W1*(1.D0 + PSI)*REI**2%V3

AK(3,1)= ( 0.SDO*W2*SKI*(1.DO - PSI) - PSI )*REI**2*V3
1

+ SKI*(REI*RLA(M))**4*Ul

AK(1,2)= 0.5DO*W1*(1.D0 + PSI)*REI**2+V2

AK(2,2)= -W2*U1 + 0.5DO0*(1.DO + 3.DO*SKI)*(1.DO - PSI)*REI**2+V3
AK(3,2)= W1*( -Ul + O0,5DO*SKI*(3.DO - PSI)*REI**2+V3 )

AK(1,3)= (PSI-0.5DO*W2+SKI*(1.DO-PSI))*REI**2%V2 ~ SKIRFI**4+V4
AK(2,3)= W1*( 0.SDO*SKI*(3.DO - PSI)*REI**2+V3 - Ul )

AK(3,3)= -(SKI*((W2 - 1.D0O)*#*2 + (REI*RLA(M))**4) + 1.D0)*Ul

1 4+ 2.DO*SKI* (WL1*REI)**2+*V3

DO 100 J=1,3

JI= M + NT*(J - 1)
DO 100 1I=1,3

II= K + NT*(I - 1)
CXM(II,JJ)= AM(I,J)
CXC(II,JJ)= AC(I,J)
CXK(II,JJ)= AK(I,J)
CONTINUE

RETURN

END

SUBROUTINE OUTPUT (AP,AQ,EIGA,EIGB,EIGVEC,NX)
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)

COMMON /CONST/PI , RGAMA, JSC,JIN,JOUT, 1JOB, IOP1, IOP2
COMMON/IFLUID/RHOI,UI,UIR

COMMON /AFLUID/RHOA, UA,UAR

COMMON /SVFOR/SAL(11), SBT(11),RDI,RDO,RGI,RGO,VISI,VISA,SL
DIMENSION AP(1),AQ(1),EIGA(1),EIGB(1),EIGVEC(1)
WRITE (JOUT,2000) UIR,UAR

CALCULATE THE PERFORMANCE INDEX

PFINX= DGPICG(NX,NX,AP,NX,AQ,NX, EIGA,EIGR, EIGVEC, NX)
WRITE (JOUT,2020) PFINX

CALCULATE THE EIGENVALUES

CON= UI/RDI
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DO 100 I=1,NX
100 EIGA(I)=~EIGA(I)/EIGB(I)
CALL SORT (EIGA,NX)
DO 200 I=1,NX
200 WRITE (JOUT,2040) I,EIGA(I)
RETURN
2000 FORMAT (54H * * * VALUES OF NON-DIMENSIONALIZED FLUID VELOCITIES,
1 //20X,5HUIR =,D15.6,10X,5HUAR =,D15.6//
2 35H * * * RESULTS FOR THE FREQUENCIES/)
2020 FORMAT (/28H > > > PERFORMANCE INDEX = ,F8.3/)
2040 FORMAT (4H I =,15,5X,8HOM = (,2D24.16,2H ))
END

SUBROUTINE REDUCE (CXM,CXC,CXK,AP,AQ,NS,NX)
IMPLICIT COMPLEX*16(A-H)
DIMENSION CXM(NS,1),CXC(NS,1),CXK(NS,1),AP(NX,1),AQ(NX,1)
MX= NX*NX
CALL CLEAR (AP,MX)
CALL CLEAR (AQ,MX)
DO 100 I=1,NS
AP(I,NS+I)= (1.DO,0.D0)
100 AQ(I,I)= (~1.D0,0.D0)
DO 200 J=1,NS '
DO 200 I=1,NS s
AP (NS+I,J)= CXK(I,J)
AP (NS+I,NS+J)= CXC(I,J)
200 AQ(NS+T,:3+J)= CXM(I,J)
. RETUKN
END

DOUSBLE PRECISION FUNCTION RFAC (N)
IMPLICIT REAL*8(0O-2)
RFAC= 1.DO
IF (N.LE.1) RETURN
X= 2.D0
DO 20 I=2,N
RFAC= RFAC*X
20 X= X + 1.D0
RETURN
END

DOUBLE PRECISION FUNCTION RFI (N)
IMPLICIT REAL*8(0-Z)
RFI= 0.DO
IF (N.EQ.O) RETURN
X= 1.D0
DO 20 1I=1,N
RFI= RFI + 1.D0/X
20 X= X + 1.D0
RETURN
END

SUBROUTINE SORT (DT,NX)
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
DOUBLE PRECISION DREAL
DIMENSION DT(1)

NMIN= NX - 1

100 IFLAG= O
DO 200 I=1,NMIN
Cl= DT(I)

C2= DT(I+1)
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aon

200

20

40
60
80

100
120

IF (DREAL(C1).GE.DREAL(C2)) GC TO 200
DT(I)= C2

DT(I+1)= Cl

IFLAG= 1

CONTINUE

IF (IFLAG.EQ.1) GO TO 100

RETURN

END

SUBROUTINE VISFOR (CXK,NT,NS)

CALCULATE STEADY VISCOUS FORCES FOR CLAMPED-PINNED AND PINNED-CLAMPED

SHELLS

IMPLICIT COMPLEX*16 (A-H), REAL*8(0-2)

DOUBLE PRECISION DLOG10,DSQRT

COMMON/IFLUID/RHOI,UI,UIR

COMMON/AFLUID/RHOA, UA, UAR

COMMON/ ISHELL/DHI,DVI,QI,REI, SKI,PSI

COMMON /COAX /RLA(10) , RHO(10) ,OMR, RINT,NINT, N, IOP3

COMMON /SVFOR/SAL(11),SBT(11),RDI,RDO,RGI,RGO,VISI,VISA,SL
DIMENSION CXK(NS,1),CV(3,3)

R13= 0.3333333333333333D0

RM= DSQRT(O.5DO*(RDO*#*2 — RDI**2)/DLOG(RDO/RDI))

DETERMINE THE LOCATION OF THE MAXIMUM VELOCITY USING A MULTILINEAR
REPRESENTATION OF THE CURVE BY BRIGHTON \& JONES (1963)

RAB= RDI/RDO

Do 5 I=1,11

IF (RAB-SAL(I)) 10,5,5

CONTINUE

SBETA= SBT(I-1)+(RAB=-SAL(I-1))*(SBT(I)-SBT(I-1))/(SAL(I)-SAL(I-1))
RM= RDO*(RAB + 0.5DO*SBETA*(1.DO - RAB))

IF (UIR) 40,40,20

RNI= 2.DO*(UIR*UI)*RDI/VISI

WFAI= 0.0055D0*(1.DO + (2.D+04*RGI + 1.D+06/RNI)**R13)

WFI= -0.5D0/DLOG10(RGI/3.7D0 + 2.51D0/(RNI*DSQRT(WFAI)))

UTI= UI*UIR*WFI/DSQRT(8.DO)

GO TO 60

UTI= 0.D0

IF (UAR) 100,100,80

RNA= 2.DO*(UAR*UA)*(RDO - RDI)/VISA

WFAOI= 0.0055D0*(1.D0 + (2.D+04*RGI + 1.D+06/RNA)**R13)

WFAOO= 0.0055D0*(1.DO + (2.D+04*RGO + 1.D+06/RNA)**R13)

WFOI= -0.5D0/DLOG10(RGI/3.7D0 + 2.51D0/(RNA*DSQRT(WFAOI)))
WFOO= -0.5D0/DLOG10(RGO/3.7D0 + 2.51D0/(RNA*DSQRT (WFAOO)))
UTOI= UA*UAR*WFOI*DSQRT((RM**2 - RDI**2)/(8.DO*RDI*(RDO - RDI)))
UTOO= UA*UAR*WFOO*DSQRT( (RDO**2 — RM#*+*2)/(8.DO*RDO*(RDO ~ RDI)))
GO TO 120

UTOI= 0.DO

UTOO= 0.D0

WBI= RHOI*UTI**2 + RHOA*UTOI**2

WCI= 2.DO*(RHOI*UTI**2/RDI - RDO*RHOA*UTOO**2/(RDO**2 —- RM**2))
WDI= -SL*WCI

RCONI= 1.DO/(QI*REI**2)

AlI= -RCONI*WBI

BlI= -All

B2I= RCONI*WBI*REI

A3I= —RCONI*WCI*RDI

B3I= -RCONI*WDI*REI

EN= N

DO 300 K=1,NT

DO 300 M=1,NT

CALL CLEAR (CV,9)
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CV(1,1)= REI**4*( A1I*RE3(K,M,4) + IOP3*BlI*RE2(K,M,
1 - (EN*REI)*#*2%( A3I*RE3(K,M,2) + B3I*RE2(K,M,
CV(3,1)= REI**2*( A3I*RE3(K,M,3) + B3I*RE2(K,M,3) )
CV(1,2)= B2I*EN*REI*RE2(K,M,1)
CV(2,2)= REI**2*( AlI*RE3(K,M,3) + IOP3*B1I*RE2(K,M,3) )
1 - EN*#%2%( A3I*RE3(K,M,1) + B3I*RE1(K,M))
CV(3,2)= -EN*( A3I*RE3(K,M,1) + B3I*RE1(K,M) )
CV(1,3)= REI*(B2I*RE2(K,M,1)-REI*(A3I*RE3(K,M,2)+B3I*RE2(K/M,2)))
cv(2,3)= CV(3,2)
cv(3,3)= CV(2,2)
po 200 J=1,3
JJ= M + NT*(J - 1)
po 200 1I=1,3
II= K + NT*(I - 1)
200 CXK(II,JJ)= CXK(II,JJ) + CV(I,J)
300 CONTINUE
RETURN
END

4) )
2) )

COMPLEX FUNCTION GH*16 (RA,K,M,ID)
C ... FUNCTIONS GKM AND HKM FOR CLAMPED-PINNED OR PINNED-CLAMPED BEAMS
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
COMMON /COAX/RLA (10) ,RHO( 10) ,OHMR, RINT,NINT, N, IOP3
cI= (0.D0,1.D0)
GH= HH(RA,K,-1)*(HH(RA,M,1)+IOP3*CN(RA,M) )
C ... ID=1 FOR GKM, ID=2 FOR HKM
Go TO (100,200), ID
100 GH= CI*RA*GH
200 RETURN
END

COMPLEX FUNCTION HH*16 (RA,M,I)

C ... FUNCTIONS HK AND HM FOR CLAMPED-PINNED AND PINNED-CLAMPED BEAMS
IMPLICIT COMPLEX*16(A-H), REAL*8(0-2)
COMMON/COAX/RLA (10) ,RHO(10) ,OHMR, RINT, NINT, N, IOP3

C ... I==1 FOR HK, I=+1 FOR HM
cI= (0.D0,1.D0)

CA= CI*RA*I
CB=CA* (~1)**(IOP3+1)
RM= RLA(M)
RDIF= DABS(RA) - RM
IF (DABS(RDIF).LT.1.D-16) GO TO SO
H1=CB**3*RFB(M,2,1)~CB**2~RFB(M, 2, 2)+CB*RFB(M,2,3)-RFB(M,2,4)
H2=CB*#*3*RFB(M,1,1)-CB**2~RFB(M, 1,2)+CB*RFB(M,1,3)-RFB(M,1,4)
HH= (CDEXP (CB) *H1-H2) / (RA* *4-RM**4)
HH=CDEXP (CA* (1-IOP3) ) *HH
RETURN

50 H1=CB**3*RFB(M,2,1)-CB**2*RFB(M,2,2)+CB*RFB(M,2,3)~RFB(M,2,4)
+  +3,DO*CB**2*RFB(M,2,1)-2.DO*CB*RFB(M,2,2)+RFB(M,2,3)
H2=3.DO*CB**2+RFB(M,1,1)~-2.DO*CB*RFB(M,1,2)+RFB(M,1,3)
HH=(CDEXP (CB) *H1-H2) /CB**4/4.D0
HH=CDEXP (CA* (1-IOP3) ) *HH
RETURN
END

COMPLEX FUNCTION CN*16 (RA,M)

IMPLICIT COMPLEX*16(A-H),REAL*8(0-Z)
COMMON/COAX/RLA (10) ,RHO(10) ,OHMR, RINT, NINT, N, IOP3
COMMON/CONST/PI, RGAMA, JSC, JIN, JOUT, 1JOB, IOP1, IOP2
COMMON/CLPI /RL, MODEL
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CN=(0.D0,0.D0)
IF (MODEL) 20,20,40

20 RETURN

40 RB=RFB(M,2,2)
RD=RL-1.DO
CI=(1.D0,0.D0)
€J=(0.D0,1.D0)
CA=CJ*RA
CD=CA-CI
CE=CD*RD
CF=CDEXP (CA)
CG=CDEXP (CE)

C ... THE NEW OUTFLOW-MODEL
CN=-RB*CF* (CG* (CD*RD+1.D0)~1.D0)/CD**2
RETURN
END

DOUBLE PRECISION FUNCTION RFB (M,ID1,1D2)
C... BOUNDARY CONDITIONS OF CLAMPED-PINNED BEAMS
IMPLICIT REAL*8(0-2)
COMMON /COAX/RLA (10) ,RHO(10) , OHMR, RINT,NINT, N, IOP3
GO TO (100,200),1D1
C... ID1=1 MEANS THE LEFT END X=0
100 GO TO (10,20,30,40),ID2

10 RFB = 0.0D+00
RETURN

20 RFB = 0.0D+00
RETURN

30 RFB = 2.0D+00*RLA(M)**2
RETURN

40 RFB =-2.0D+00*RLA(M)**3*RHO(M)
RETURN

C... 1ID1=2 MEANS THE RIGHT END X=L

200 GO TO (50,60,70,80),ID2

50 RFB = 0.0D+00
RETURN

60 RFB = 2.DO*RLA(M)*(-1)**M/(DSQRT(RHO(M)**2+1.D0)
+ +(=1)**M*DSQRT (RHO (M) **2-1.D0) )
RETURN

70 RFB = 0.0D+00
RETURN

80 RFB = 2.DO*RLA(M)*#*3*(~1)*%(M+1)/(DSQRT(RHO(M)**2+1.D0)
+ +(=1)**(M+1)*DSQRT(RHO(M)**2-1.D0))
RETURN
END

DOUBLE PRECISION FUNCTION RE1 (K,M)
C ... INTEGRALS INVOLVING CHARAC. FUNCTIONS OF CL-PI AND PI-CL BEAMS

IMPLICIT REAL*8(0-Z)
COMMON /COAX/RLA (10) ,RHO{10) , OHMR, RINT, NINT, N, IOP3

100 IF (K.EQ.M) GO TO 120
REl= 0.DO
RETURN

120 REl= 1.DO
RETURN
END

DOUBLE PRECISION FUNCTION RE4 (K,M,ID)
C ... INTEGRALS INVOLVING CHARAC. FUNCTIONS OF CLAMPED-PINNED BEAMS
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a C ... AND PINNED-CLAMPED BEAMS
IMPLICIT REAL*8(0O-2)
COMMON /COAX/RLA(10),RHO(10) ,OHMR, RINT,NINT,N, IOP3
RK= RLA(K)
RM= RLA(M)
IF (K.EQ.M) GO TO 100
GO TO (20,40,60), ID
20 T1=RK**4*RFB(K,2,1)*RFB(M,2,1)-RFB(K,2,4)*RFB(M,2,2)
+ +RFB(K,2,3)*RFB(M,2,3)-RFB(K,2,2) *RFB(M,2,4)
T2=RK**4*RFB(K,1,1)*RFB(M,1,1)-RFB(K,1,4)*RFB(M,1,2)
+ +RFB(K,1,3)*RFB(M,1,3)-RFB(K,1,2)*RFB(M,1,4)
RE4=(T1-T2)/ (RK**4-RM**4)
RETURN
40 T1=RK**4*RFB(K,2,1)*RFB(M,2,2)-RFB(K,2,4)*RFB(M,2,3)
+ +RFB(K,2,3)*RFB(M,2,4)~RFB(K,2,2)*RFB(M,2,1)*RM**4
T2=RK**4*RFB(K,1,1)*RFB(M,1,2)-RFB(K,1,4)*RFB(M,1,3)
+ +RFB(K,1,3)*RFB(M,1,4)-RFB(K,1,2)*RFB(M,1,1)*RM**4
RE4=(T1-T2)/(RK**4-RM**4)
RETURN
60 T1=RFB(K,2,4)*RFB(M,2,4)+(-RFB(K,2,3)*RFB(M,2,1)
+ +RFB(K,2,2)*RFB(M,2,2)-RFB(K,2,1)*RFB(M,2,3))*RM**4
T2=RFB(K,1,4)*RFB(M,1,4)+(-RFB(K,1,3)*RFB(M,1,1)
+ +RFB(K,1,2)*RFB(M,1,2)~RFB(K,1,1)*RFB(M,1,3))*RM**4
RE4=(T1-T2)/(RK**4-RM**4)
RETURN
100 GO TO (120,140,160),1D
120 RE4=0.DO
RETURN
140 T1=RFB(M,2,2)*RFB(M,2,2)-RFB(M,2,3)*RFB(M,2,4) /RM**4
+ +RFB(M,2,4)*RFB(M,2,4) /RM**4
T2=-RFB(M,1,3)*RFB(M,1,4) /RM**4
RE4=(T1-T2)/4.DO

RETURN

160 RE4=0.5DO* (RFB(M,2,4)*RFB(M,2,4)
+ ~RFB(M,1,4)*RFB(M,1,4))/RM**4
RETURN
END

DOUBLE PRECISION FUNCTION RES (K,M,ID)
C ... INTEGRALS INVOLVING CHARAC. FUNCTIONS OF CLAMPED-PINNED BEAMS
C ... AND PINNED-CLAMPED BEAMS
IMPLICIT REAL*8(0-2)
COMMON /CORX /RLA(10) ,RHO(10) ,OHMR, RINT, NINT, N, IOP3
RK= RLA(K)
RM= RLA(M)
IF (K.EQ.M) GO TO 60
GO TO (20,40), ID
20 RES=( RFB(K,2,4)*RFB(M,2,1)-RFB(K,2,3)*RFB(M,2,2)
+ +RFB(F,2,2)*RFB(M, 2,3)-RFB(K,2,1) *RFB(M,2,4)
+ -2.DO*RE4 (M,K,3)+2.DO*RE4 (K,M,3)) / (RK**4-RM**4)
RETURN
40 RES5=(RK**4*RFB(K,2,1)*RFB(M,2,2)-RFB(K,2,4)*RFB(M,2,3)
+ +RFB(K,2,3) *RFB(M,2,4)-RFB(K,2,2)*RFB(M,2,1) *RM**4
+ +RFB(K,2,4) *RFB(M, 2, 2)-RFB(K, 2,2) *RFB(M, 2,4)
+ -2.DO*RK**4*RE4(M,K,1)+2.DO*RM**4*RE4 (K,M, 1))/ (RK**4-RM**4)
RETURN
60 GO TO(80,100),1ID
80 T1=2.DO*(3.DO*RFB(M,2,1)*RFB(M,2,4)-RFB(M,2,2) *RFB(M,2,3))
++ (RM**4*RFB(M,2,1)**2+RFB(M,2,3)**2-2.DO*RFB(M,2,2) *RFB(M,2,4))
+ +4.DO*RFB(M,2,2)**2-6.DO*RFB(M,2,1) *RFB(M, 2, 3)
‘ T2= 4.DO*RFB(M,1,2)**2-6.DO*RFB(M,1,1)*RFB(M,1,3)
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RES=(T1-T2)/8.DO/RM**4
RETURN
100 T1=2.DO*(3.DO*RFB(M,2,1)*RFB(M,2,2)*RM**4-RFB(M,2,3)*RFB(M,2,4))
++RM**4 % (RFB(M,2,2)**2-2.DO*RFB(M,2,3)*RFB(M,2,1))+RFB(M,2,4)**2
+ +4 .DO*RFB(M,2,3)**2-6.DO*RFB(M,2,2) *RFB(M,2,4)
T2= 4.DO*RFB(M,1,3)**2-6.DO*RFB(M,1,2)*RFB(M,1,4)
RES=(T1-T2)/8.DO/RM**4
RETURN
END

DOUBLE PRECISION FUNCTION RE2 (K,M,ID)
C ... INTEGRALS INVOLVING CHARAC. FUNCTIONS OF CLAMPED-PINNED BEAMS
C ... AND PINNED-CLAMPED BEAMS
IMPLICIT REAL*8(0-2)
COMMON /COAX/RLA (10) , RHO(10) , OHMR, RINT, NINT, N, IOP3
RK= RLA(K)
RM= RLA (M)
Go TO (20,40,60,80),1D
20 RE2=(-1)**(IOP3+1)*RE4(K,M,1)
RETURN
40 RE2=RE4(K,M,2)
RETURN
60 RE2=-RE4(K,M,2)
RETURN
80 RE2=~RM**4*RE1 (K,M)
RETURN
END

DOUBLE PRECISION FUNCTION RE3 (K,M,ID)
C ... INTEGRALS INVOLVING CHARAC. FUNCTIONS OF CLAMPED-PINNED BEAMS
C ... AND PINNED-CLAMPED BEAMS
IMPLICIT REAL*8(0-2)
COMMON /CORX/RLA (10) ,RHO(10) , OHMR, RINT, NINT, N, IOP3
RK= RLA(K)
RM= RLA(M)
GO TO (20,40,60,80),1D
20 RE3=(-1)**(IOP3+1)*RES5(K,M,1)+(1-I0P3)*RE1 (K, M)

RETURN
40 RE3=(-1)**(IOP3+1)*RES5(K,M,2)+(1-IOP3)*RE2(K,M,2)
RETURN
60 RE3=(-1)**(IOP3+1)*(-RE4(M,K,1)~RE5(K,M,2))+(1~IOP3)*RE2(K,M, 3)
RETURN
80 RE3=(-1)**(IOP3+1)*(-RE4(K,M,3)-RM**4*RE5(K,M, 1))
+ +(1-IOP3)*RE2(K,M,4)
RETURN
END
1 1
2.0000D+11 0.30D+00 7.8000000D+03
0.5000D-03  0.09090909091D+00 0.00D+00
0.0000D+00 0.000D+00
2.0000D+11 0.30D+00 7.8000000D+03
0.5000D-03  0.10000000000D+00 0.00D+00
0.0000D+00 0.000D+00
1.0000D+00 3.00D+00 2.000D+00 200 3 3 6001
1

1.121000D-06 1.000000D+03 0.02000D+00 1
1.121000D-06 1.000000D+03 0.00000D+00

1 1



APPENDIX E. COMPUTER PROGRAM LISTING

0.200000000000D+12
0.500000000000D-03
0.000000000000D+00
0.200000000000D+12
0.500000000000D-03
0.000000000000D+00

0.300000000000D+00
0.909090905100D-01
0.000000000000D+00
0.300000000000D+00
0.100000000000D+00

0.000000000000D+00

0.10000000D+01 0.30000000D+01 0.20000000D+01

L

v

O e bt b bbb bt el bd bl bt b Sl Dt el b e e S b et et e e ek e b e e e

L

n *

> > PERFORMANCE
= 1 oM =
= 2 oM =
= 3 OM =
= 4 oM =
= 5 OM =
= 6 OM =
= 7 OM =
= 8 oM =
= 9 oM =
= 10 OM =
= 11 OM =
= 12 oM =
= 13 oM =
= 14 oM =
= 15 oM =
= 16 OM =
= 17 OM =
= 18 OM =
= 19 oM =
= 20 OM =
= 21 oM =
= 22 OM =
= 23 OM =
= 24 oM =
= 25 OM =
= 26 OM =
= 27 OM =
= 28 OM =
= 29 OM =
= 30 oM =
= 31 OM =
= 32 OM =
= 33 OM =
= 34 oM =
= 35 oM =
= 36 oM =

UIR

INDEX =

S, i D S, S~~~ p— S~~~ T~~~ — — S~~~ S~ P~ S~ L S~ S~ S~ A~ L~ p—— o~ g~ S~

0.200000D-01

RESULTS FOR THE FREQUENCIES

550,750

0.3486091897466983D+01
0.3347329169784129D+01
0.3228825238110891D+01
0.3133065037988444D+01
0.3062476956661809D+01
0.3019154164656023D+01
0.2240326917869975D+01
0.2028610077240330D+01
0.1946327646016872D+01
0.1879598819915037D+01
0.1828208326939845D+01
0.1793089007203285D+01
0.4485657047500065D-01
0.3094610549019855D-01
0.2054619149802507D-01
0.1177916767588317D-01
0.5080333746931395D-02
0.9663690915345615D-03
-0.9663690915361852D-03
~-0.5080333746806315D-02
=0.1177716767699853D-01
-0.2054619149350455D~-01
-0.3094610550539888D~-01
-0.4485857045468787D-01
=0.1793089007203285D+01
~-0.1828208326939847D+01
=0.1879598819915022D+01
=0.1946327646016879D+01
-0.2028610077240312D+01
~0.2240326917869974D+01
-0.3019154164656041D+01
~0.3062476956661864D+01
~-0.3133065037988432D+01
-0.3228825238110839D+01
-0.3347329169784118D+01
~0.3486091897466920D+01

VALUES OF NON-DIMENSIONALIZED FLUID VELOCITIES

UAR 0.000000D+00

0.1039543870264284D-13
=-0.7647929192126422D-13
0.8385120647854616D-13
-0.2862784199760782D-14
-0.2608736068596212D-14
-0.1006989456891162D-14
0.2338137875847423D-14
-0.1792545860097676D-14
0.1355707837505615D-14
0.3154402237765462D-14
-=0.6715131398261934D-15
-0.1657128807190817D-15
0.7022883434978871D-15
-0.4114248720879916D-15
~0.2510996102895470D-14
0.1560478595473382D-14
-0.1110705123751779D~14
0.2506741895573173D-14
0.2504991747857112D-14
-0.1104722823258334D-14
0.1558440983910724p-14
~0.2459499534541495D~-14
-~0.4584217604226748D-15
0.7303670266083322D-15
-0.1266337031486691D~-15
-0.4587570802467386D-15
0.3023587763280680D-14
0.2338400356301398D-14
=0.3148459903657773D-14
0.2357380351744562D-14
~0.2680124780395467L-15
~0.2236056351176150D-14
-0.43377016357132170~-14
0.8454349435231693D-13
~0.7765204592868956D~13
0.1113458223487697D-13

128
0.780000000000D+04
0.000000000000D+00
0.780000000000D+04
0.000000000000D+00

200 3 3 6001
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