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Abstract 1: 

Up-Regulation of Erythropoietin Receptor Expression in AD and MCI Astroglia 

Background: Alzheimer Disease (AD) is a common progressive neurodegenerative 

disorder that results in impairment of memory, thinking and behavior (dementia). There 

exists ample evidence implicating oxidative stress and mitochondrial insufficiency in this 

condition. Erythropoietin (Epo) is a glycoprotein secreted by the kidney in response to 

hypoxia that stimulates erythrocyte production through interaction with Epo-receptors 

(EpoR). Both Epo and EpoR have been localized to brain capillaries, neurons and 

astroglia. Epo has been shown to confer important cytoprotective effects in various 

models of brain injury and disease. Objective: To delineate the patterns and extent of 

EpoR expression in the brains of patients with sporadic AD, Mild Cognitive Impairment 

(MCI; a frequent harbinger of AD) and normal elderly controls (NEC). Methods: Post

mortem tissues containing hippocampus and temporal cortex were procured from the 

NIH-funded Religious Orders Study. GFAP-positive astrocytes co-expressing EpoR were 

characterized by immunofluorescence confocal microscopy and quantified using dual 

label immunohistochemistry. Results: A) Temporal cortex: Percentages of GF AP

positive astrocytes co-expressing EpoR were (i) significantly increased in AD and MCI 

vs. NEC (p<O.05) in layers II and III, (ii) increased in MCI, but not in AD, vs. NEC in 

layer l, and (iii) unrelated to diagnosis (p>O.05) in layers IV, V and VI and the subcortical 

white matter. B) Hippocampus: Percentages of GF AP-positive astrocytes co-expressing 

EpoR were (i) significantly increased in AD and MCI vs. NEC (p<O.05) in the stratum 

oriens and pyramidal layer, (ii) increased in MC l, but not in AD, vs. NEC in the granular 

layer, stratum radiatum and dentate gyrus, and (iii) unrelated to diagnosis (p>O.05) in the 
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molecular layer. Conclusions: 1. Up-regulation of astrocyte EpoR in certain cortical and 

hippocampal regions is an early event in the pathogenesis of sporadic AD. 2. Based on in 

vitro and whole animal studies, glial EpoR induction may confer protection against 

oxidative stress in the brains of patients with MCl and AD. 3. Clinical neuroprotection 

trials using Epo or its derivatives in MCV AD may be warranted. 
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Résumé 1: 

Augmentation de la synthèse des récepteurs à l'érythropoïétine dans les 
astrocytes d'individus atteint de la maladie d'Alzheimer et MCI 

Fond: La maladie d'Alzheimer (AD) est un désordre de dégénération des neurons 

progressif commun qui a pour conséquence l'affaiblissement de la mémoire, de la pensée 

et du comportement (démence). Il existe une évidence suffisante impliquant le stress 

oxydatif et l'insuffisance mitochondriale de cette condition. L'érythropoïétine (Epo) est 

une glycoprotéine sécrétée par le rein en réponse à l'hypoxie qui stimule l' érythropoïèse 

par l'interaction avec les récepteurs d'érythropoïétine (EpoR). L'Epo et l'EpoR ont été 

localisés aux capillaires, aux neurones et aux astrocytes du cerveau. L'Epo a démontré des 

effets cytoprotecteur importants dans divers modèles de maladies du cerveau. Objectif: 

Tracer les modèles et l'ampleur de l'expression d'EpoR dans le cerveau de patients atteints 

de l'AD non héréditaire, l'affaiblissement cognitif doux (MCI ; un harbinger fréquent 

d'AD) et de personnes âgées en contrôle (NEC). Méthodes: Des tissus pris d'individus 

après leur mort contenants l'hippocampe et le cortex temporal ont été obtenus de l'étude 

d'ordres religieuse. Les astrocytes GF AP-positifs exprimant aussi l'EpoR ont été 

caractérisés par microscopie d'immunofluorescence confocal et mesurés en utilisant des 

traceurs colorants et l'immunohistochimie. Résultats: A) Cortex temporal: Les 

pourcentages des astrocytes GF AP-positifs exprimant aussi l'EpoR étaient (i) 

significativement accrus dans l'AD et MCI contre NEC (p < 0.05) dans les couches IV, V 

et VI et la matière blanche sous-cortical. B) Hippocampe : Les pourcentages des 

astrocytes GF AP-positifs exprimant aussi l'EpoR étaient (i) significativement accrus dans 

l'AD et MCI contre NEC (p < 0.05) dans la couche moléculaire. Conclusions: 1. 

L'augmentation de la synthèse des EpoR des astrocytes dans certaines régions corticales 
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dans certaines régions corticales et hippocampes est un événement tôt dans la pathogénie 

de l'AD non héréditaire. 2. Basées sur des études animales et in vitro, l'induction d'EpoR 

peut conférer une protection contre le stress oxydatif dans les cerveaux des patients 

atteints d'MCl et d'AD. 3. Des épreuves neuroprotectives cliniques en utilisant l'Epo ou 

ses dérivés dans MCII AD peuvent être justifiées. 
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Abstract II: 

Astroglial cytoprotection by erythropoietin pre-conditioning: Implications for 
ischemic and degenerative CNS disorders 

Background: Erythropoietin (Epo) is a glycoprotein secreted by the kidney in response 

to hypoxia that stimulates erythropoiesis through interaction with cell-surface 

erythropoietin receptors (EpoR). Pre-treatment with Epo has been shown to prote ct 

neurons in models of ischemic injury. The mechanism responsible for this 

neuroprotection and the effects of Epo on astroglial and other non-neuronal cell 

populations remain unknown. Objective: To determine whether Epo pre-treatment 

protects neonatal rat astrocytes from apoptotic cell death resulting from treatment with 

nitric oxide (NO), staurosporine (STS) and arsenic (AS20 3), and possible mechanisms 

mediating erythropoietin-related cytoprotection. Methods and Results: Epo (5-20 U/ml) 

significantly attenuated multiple hallmarks of apoptotic cel1 death in astroglia exposed to 

NO and STS, but not AS20 3. Epo 20 U/ml induced mild oxidative stress as evidenced by 

increases in heme oxygenase-l (HO-l) mRNA and protein expression that could be 

suppressed by antioxidant co-administration. Moreover, co-incubation with tin-

mesoporphyrin (SnMP), a competitive inhibitor of heme oxygenase activity, abrogated 

the cytoprotective effects of Epo (20 U/ml) in the face of STS treatment. Conclusion: 

Induction of the ho-l gene may therefore contribute to the glioprotection accruing from 

high-dose Epo exposure. Erythropoietin may augment astroglial resistance to certain 

chemical stressors by oxidative stress-dependent and -independent mechanisms. 
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Résumé II: 

Un effet neuroprotecteur pour les astrocytes par le pré conditionnement avec 
l'érythropoïétine: Implications pour des maladies neurologiques ischémiques et 
dégénératives du SNC 

Fond: L'érythropoïétine (Epo) est une glycoprotéine sécrétée par les reins en réponse à 

l'hypoxie qui stimule l'érythropoïèse par l'interaction avec les récepteurs à 

l'érythropoïétine (EpoR) de la surface des cellules. Le traitement antérieur avec l'Epo a 

montré sa capacité de protéger des neurones dans les modèles des maladies ischémiques. 

Le mécanisme responsable de cette protection neuronale et les effets de l'Epo sur les 

astrocytes et d'autres cellules non-neuronales demeurent mal connus. Objectif: 

Déterminer si le traitement antérieur avec l'Epo protège les astrocytes néonatals des rats 

contre la mort cellulaire (apoptose) résultant du traitement avec l'oxyde nitrique (NO), le 

staurosporine (STS) et l'arsenic (AS20 3), et des mécanismes possibles résultant de la 

protection reliée à l'Epo. Méthodes et résultats: Epo (5-20 U/ml) a atténué de manière 

significative les cachets multiples de l'apoptose dans l'astroglia exposé au NO et au STS, 

mais non à l'As20 3. L'induction d'un stress oxydatif modéré avec 20 Ulml d'Epo a été 

démontré par des augmentations du mRNA de hème oxygénase -1 (HO-l) et de 

l'expression de protéines qui pourraient être supprimées par l'administration simultané 

d'antioxydant. D'ailleurs, un traitement simultanée avec l'étain-mesoporphyrin (SnMP), 

un inhibiteur concurrentiel d'activité de hème oxygénase, a abrogé les effets 

cytoprotecteur d'Epo (20 U/ml) face au traitement de STS. Conclusion: L'induction du 

gène ho-l peut donc contribuer à la protection gliale originaire de l'exposition d'Epo à 

haute dose. L'Epo peut augmenter la résistance des astrocytes à certains facteurs de force 

chimiques en procédant par un mécanisme de stress oxydatif ou par autre procédé. 
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It is now widely accepted that Epo has a function beyond the haematopoietic system. The 

discovery of an Epo/EpoR system in the central nervous system (CNS) and cerebrospinal 

fluid has led to many studies aimed at elucidating sites of expression, the regulation and 

its effects on the development and maturation of the brain. Certain groups demonstrated 

the neurotrophic and neuroprotective functions of Epo in neuronal cells but there is a lack 

of knowledge on its role in astrocytes. This manuscript also explores the changes in 

expression of EpoR in elderly normals compared to those affected with AD. The further 

understanding of Epo's protective functions in the brain may lead to human recombinant 

Epo therapy being used in clinical practice, possibly limiting cerebral damage incurred by 

diseases such as cerebral ischaemia, subarachnoid haemorrhage or more chronic 

neurodegenerative diseases such as AD or schizophrenia. 
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Alzheimer Disease 

History 

Throughout history, progressive mental deterioration in old age has been recognized and 

described. Not until the early part of the 20th century did Dr. Alois Alzheimer, a German 

neuropathologist and psychiatrist, first record the clinical and pathological characteristics 

of the disorder that now bears his name (Alzheimer 1907). In 1901, a 51-year old female 

was placed under the care of Dr. Alzheimer at the Frankfurt Hospital for the Mentally III 

and Epileptics. She experienced years of severe memory problems, confusion and 

difficulty understanding questions. During the post-mortem study of her brain, the 

autopsy revealed brain atrophy and a silver-staining dye uncovered structures called 

neurofibrillary tangles and plaques. To this day, a definitive diagnosis of Alzheimer's 

disease requires a neuropathological analysis demonstrating these characteristic 

symptoms (O'Brien 1996). 

General aspects 

AD is the most frequent cause of dementia and manifests with a progressive neurological 

decline that largely affects the basal forebrain, hippocampus, and association cortices 

(Selkoe 1991). The molecular hallmarks of AD are extracellular {J-amyloid-containing 

(A{J) senile plaques and intracellular neurofibrillary tangles that are comprised of hyper

phosphorylated tau. It is neuropathologically characterised by the accumulation of 

reactive astrocytes and activated microglia that up-regulate the expression of pro

inflammatory cytokines and enhance the production of reactive oxygen species (ROS) in 

the diseased brain (John stone et al. 1999). The loss of synapses and neurons in the AD 

brain ultimately results in a progressive deterioration in cognitive functioning (Cummings 
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et al. 1998; Vickers et al. 2000). The earliest symptom of this debilitating disease is 

memory impairment, followed by deficits in language functions, praxis, visuospatia1 

abilities, and the capacity to independently conduct activities of dai1y living (Se1koe 

1997; Honig and Mayeux 2001). 

It is generally thought that the clinica1 symptoms of AD manifest themse1ves in response 

to a critica1 accumulation of brain 1esions over one's lifetime. Appropriately, aging is 

considered a major risk factor for AD. Evidence exists that brain damage leading to AD 

may accumulate for decades before symptoms present themselves or deficits in 

neuropsychologica1 measures are observed (Morris 1997). The brain's capacity to sustain 

and buffer such long-term injury in AD is akin to the situation in Parkinson's disease 

(PD) where clinica1 abnormalities are noted only after 80% of dopaminergic neurons in 

the substantia nigra pars compacta are 10st (Langston et al. 1992). As the brain's burden 

of Alzheimer pathology increases, the thresho1d for clinica1 dementia is crossed and 

impairments become progressively more severe until patients are no longer able to speak, 

walk, recognize faces, or feed themse1ves. Death following this global cognitive 

deterioration is often due to infection, typically pneumonia (Honig and Mayeux 2001). 

During the past two decades, the world's population has shifted from astate ofhigh birth 

and death rates to one characterized by 10w birth and death rates. The population of 

Americans aged 65 years and over in 2000 was approximately 35 million and by 2050, 

the projected number of elderly persons is 70 million, accounting for 1 in 5 Americans 

(United States Administration on Aging. 2004). Sporadic AD affects approximately 5-

10% of North Americans aged 65 and as many as 30-50% ofthose who survive to the end of 

their ninth decade. The term "mild cognitive impairment" is generally applied to e1derly 
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individuals who expenence graduaI cognitive decline (usually memory) of at least SIX 

months duration that fails to meet the clinical criteria for AD or other dementia. A 

significant proportion of MCl subjects will progress to probable AD over the ensuing 3-5 

years whereas other individuals exhibit a stable, non-progressive memory deficit over a long 

period of follow-up (Chertkow et al. 2001). There currently does not exist any 

neuroprotective therapy that unequivocally slows or arrests neuronal degeneration in 

established AD or prevents the conversion ofMCl to AD. 

Free radicals and AD 

Recently, support has amassed for the ide a that free radical damage may be intimately 

involved in the pathogenesis of AD (Markesbery 1997; Perry and Smith 1998; Nunomura 

et al. 2001). Free radicals are chemical species that contain one or more unpaired 

valence-shell electrons. These highly reactive agents oxidize (abstract electrons from) or 

reduce (donate electrons to) other molecules in order to reach a more favorable and stable 

energy state. Oxidative stress results from an increased fonnation of free radicals and/or 

a decreased functioning of anti-oxidant defense systems (Sies and Cadenas 1985). The 

brain is especially prone to oxidative damage due to its high oxygen consumption rate, its 

abundance of redox-active metals such as iron, its large lipid content, and its relative 

shortage of antioxidant defenses compared with other tissues (Coyle and Puttfarcken 

1993). 

The extent of oxidative damage to biological molecules in the AD brain is considerably 

greater than that in the nonnal elderly brain. Oxidative damage to nuclear DNA (Gabbita 

et al. 1998) and mitochondrial DNA (Mecocci et al. 1994), as measured by the presence 
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of oxidatively modified bases, is significantly increased in the AD brain. Such alterations 

result in DNA strand breakage and base substitutions (Halliwell and Gutteridge 1999). 

Athough AD is foremost a disease of the brain, the detection of oxidatively damaged 

DNA in blood lymphocytes derived from AD patients is suggestive of a peripheral 

component to this disorder (Mecocci et al. 1998). Furthermore, relative to normal elderly 

controls, pro teins and lipids in the AD brain are subjected to increased oxidative damage, 

leading to amino acid abnormalities and decreased membrane fluidity, respectively 

(Halliwell and Gutteridge 1999). It is still unknown whether oxidative radical generation 

in AD is a primary (causative) event or a secondary effect of other underlying 

pathologies. 

The strong association between oxidative stress and the cytopathological lesions in AD 

supports the assertion that oxidative damage is central to the disorder's pathogenesis. 

Herne oxygenase-l (HO-l), a member of the stress protein superfamily, is robustly up

regulated in response to the presence of ROS and is widely accepted as a sensitive marker 

of·oxidative stress (Vile and Tyrrell 1993). HO-l is massively overexpressed in the 

neurons and astrocytes of the AD hippocampus and cerebral cortex relative to age

matched controls (Schipper et al. 1995). In addition, senile plaques and neurofibrillary 

tangles are both immunoreactive for HO-l (Smith et al. 1994; Schipper et al. 1995). 

Furthermore, in-vitro experiments demonstrate that oxidative stress increases A{3 

production (Zhang et al. 1997) and that A{3 itself advances free radical generation (Behl et 

al. 1992). Interestingly, Hensley et al. (1994) reported that the A{3 peptide exhibits a 

chemistry that facilitates its fragmentation into neurotoxic oligopeptide radicals. They 

suggest that A{3-derived radical species may promote peptide aggregation, a process 
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which is considered to initiate the sequence of neuropathological events in AD. 

Moreover, the development of animal models of AD has allowed investigators to examine 

the in-vivo effects of A{3 overexpression. Transgenic mice harboring amyloid precursor 

protein mutations demonstrate abundant A{3 deposition and pervasive oxidative damage 

(Smith et al. 1998). 

AD Therapeutics 

In the past decade, considerable progress has been made in understanding the molecular 

basis of AD. These advances have facilitated research into various therapies that may act 

by preventing disease occurrence, deferring its ons et, or slowing its progress (Cummings 

et al. 1998). Currently available treatments for AD are of two general categories: one 

focuses on symptom alleviation through the enhancement of cholinergic functioning, and 

the second centers on neuroprotection, in part, by alleviating oxidative damage. 

The standard treatment for AD are cholinesterase inhibitors (Cummings and Cole 2002). 

In the normal brain, the major source of acetylcholine is the nucleus basalis of Meynert. 

Since the basal forebrain is affected early in AD, cholinesterase inhibitors are used to 

enhance residual cholinergic activity. Currently, four of these inhibitors are available for 

clinical use: tacrine, donepezil, rivastigmine, and galantamine. These drugs are the only 

medications approved by the US Food and Drug Administration for the treatment of AD. 

Tacrine, a first-generation cholinergic enhancer, is now rarely prescribed due to its 

significant toxicity profiles. These agents have been shown to improve cognitive 

functioning and prolong a patient's ability to perform activities of daily living, although 

efficacy varies between patients. 
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Antioxidant treatments have been investigated in AD to counter the harmful effects of 

ROS. Potent antioxidants such as alpha-tocopherol (vitamin E), and selegiline, a 

mono amine oxidase inhibitor, have been reported to slow the progression of AD when 

administered to patients with moderate disease severity (Sano et al. 1997). Other studies 

have suggested that antioxidant therapy may be a promising avenue for delaying disease 

onset (Zaman et al. 1992; Pitchumoni and Doraiswamy 1998). Such findings underscore 

the significance of oxidative stress in AD and suggest that an early antioxidant 

intervention may be particularly advantageous. 

Astrocytes 

The role of astrocytes 

In the normal brain, astrocytes serve to maintain homeostasis. They are dynamic cens 

which express many receptors enabling them to respond to most neuroactive compounds 

namely, neurotransmitters, neuropeptides, growth factors, cytokines, small molecules and 

toxins. Not only are the astrocytes important in signal transduction but they also serve to 

protect neighboring neuronal cens. The blood brain barrier phenotype develops and is 

maintained by astroglia, and consists of more complex tight junctions than in other 

capillary endothelia, and a number of specific transport and enzyme systems which 

regulate molecular traffic across the endothelial cens. In addition to a role in long-term 

barrier induction and maintenance, astrocytes and other cens can release chemical factors 

that modulate endothelial permeability over a time-scale of seconds to minutes (Abbott 

2002). 
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Astrocytes and neurodegeneration 

Oxidative stress has been implicated in chronic neurodegenerative conditions as well as in 

acute CNS injury incurred by trauma, ischemia and exposure to various neurotoxins. 

This imbalance is due to surplus of ROS production and/or insufficient antioxidant 

capacity. Many factors can contribute to this cytotoxic ROS state; transition metals, 

amyloid ,a-peptide, inflammatory cytokines, excitotoxic amino acids, NO and 

mitochondrial electron transport uncoupling agents. The presence of antioxidants and 

antioxidant enzymes prevent the formation of ROS and can diminish the ensuing damage. 

The brain is at an elevated risk for oxidative damage by ROS. High O2 and glucose 

consumption, peroxidizable fatty acids and increase iron content in certain brain regions 

contribute to the susceptibility of the brain to the formation of damaging ROS. On the 

other hand, the brains defence is comparatively weak, lacking sufficient antioxidant 

defences. The advantage of astrocytes is that they contain high antioxidant 

concentrations (Peuchen et al. 1997; Wilson 1997; Dringen et al. 2000) that can prote ct 

the brain environment from oxidative damage in neurons followed by apoptotic cell 

death. 

Astrocytes secrete a number of neuroprotective substances. This is evidenced by research 

demonstrating that astrocyte-conditioned media supports neuronal survival in vitro (Liu et 

al. 1998; Wang and Cynader 1999; Eriksen and Druse 2001; Hailer et al. 2001; Takuma 

et al. 2004). Epo is one of the neuronal survival-promoting factors that are released from 

astrocytes. These secreted cytoprotective factors also promo te survival and proliferation 

in astrocytes themselves in an autocrine manner (Takuma et al. 2000; Bakhiet et al. 2001; 

Albrecht et al. 2002; Yamamuro et al. 2003). 
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The astrocytes also serve in the clearance of synaptically released neurotransmitters, 

especially glutamate. The glutamate transport is an important event that protects 

surrounding neurons from excitotoxic damage. Astrocytic gap junction channels are 

associated with neuronal injury and their inhibition leads to increased damage and 

vulnerability to oxidative stress in the neurons. 

Erythropoietin (Epo) 

Epo is a naturally occurring, 30 kDa glycoprotein hormone that stimulates proliferation 

and differentiation of erythroid cells in response to decreased oxygen delivery to the 

tissues. The development of recombinant human Epo (r-HuEpo), with identical structure 

and biological activity to the endogenous protein, led to its clinical use for the treatment 

of chronic anemia in the 1980s. Epo acts by interaction with the EpoR within 

hematopoietic cell membranes (Lappin 2003). Epo and EpoR have recently been 

identified within neurons and astrocytes of the rodent and human CNS. Both Epo and 

EpoR mRNA and protein are expressed in the temporal cortex, hippocampus, cerebellum 

and amygdala and are up-regulated in these regions in experimental models of cerebral 

ischemia (Marti et al. 1996; Kalialis and Olsen 2003). Moreover, administration of Epo 

has been shown to have potent neuroprotective properties in in vivo and tissue culture 

models of ischemiaJanoxia (Sinor and Greenberg 2000), excitotoxicity (Morishita et al. 

1997) and subarachnoid hemorrhage (Grasso et al. 2002). 
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Epo biology 

The human Epo gene, consisting of five exons and four introns, is situated on 

chromosome 7ql1-22. The 193 amino acid, single polypeptide undergoes post

translational modification including the addition of four acidic oligosaccharides, two 

disulphide bonds and the cleavage of a 27 amino acid hydrophobic secretory sequence. 

The last amino acid (Arg-166) removed from the polypeptide is thought to occur before 

Epo is released into the circulation as the mature 165 amino acid protein (J elkmann 

1992). The glycosylation of Epo makes up 40% of the molecule and 22 kDa of its 30 

kDa molecular mass. The disulphide bonds bridging two cysteine residues are 

functionally important, serving to maintain the biological activity of Epo and the ability 

for the molecule to bind to the EpoR. The high carbohydrate content of Epo, and 

particularly the sialic acid residues, allow the Epo sialoglycoprotein to remain 

biologically active by preventing the rapid removal of the hormone from the circulation 

by the liver (Ng et al. 2003). 

Epo physiology 

Epo was originally identified as the principal regulator of erythropoiesis. Initially 

produced in the liver, blood Epo's main site of synthesis after birth is shifted primarily to 

the peritubular interstitial fibroblastoid cells of the kidney, with a small amount produced 

in hepatocyte and interstitial fibroblasts of the liver. The kidney produces Epo in 

response to reduced oxygen tension of the blood. The Epo then stimulates in the bone 

marrow the proliferation and differentiation of red blood cell (RBC) progenitors resulting 

in a greater RBC mass and increased oxygen carrying capacity. 
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Rypoxia is the only physiologic stimulus for Epo production and subsequent 

erythropoiesis. Under normal conditions, there is a basal level of Epo production and 

plasma levels of Epo remain constant. At the onset of hypoxia, the transcription factor, 

hypoxia inducible factor-1 (RIF -1) is activated by a decrease in oxygen delivery to the 

tissues. RIF -1 activation leads to the binding of RIF -1 to the 3' flanking region of the 

Epo gene located on chromosome 7ql1-22 (Bracken et al. 2003). This induces a 

maximal protein transcription of the Epo gene, ultimately increasing erythropoiesis in 

order to maintain the delivery of oxygen to the vital organs. The resultant increase in 

mature RBC production upon Epo stimulation takes approximately 2 weeks to begin. If 

the hypoxic state is severe and persistent, liver production of Epo is also up-regulated. 

The main function of Epo is to stabilize the levels of plasma hemoglobin (Rb) at about 

14-16g/dl. An impairment in the production of Epo by the kidney can result in Rb levels 

of 7 -8g/dl (anemia), whereas elevated levels of Epo may lead to polycythemia. The latter 

may increase the risk ofbrain damage through stroke (cerebral infarction). 

Erythropoietin Receptor (EpoR) biology 

The un-ligated EpoR, a 66 kDa single transmembrane receptor consisting of 507 amino 

acids, exists as a dimer on the surface of erythroid progenitor cells (Fig. 1). It undergoes 

a conformational change upon binding of Epo that triggers a signal transduction cascade 

resulting in the growth and differentiation of erythroid progenitors into mature 

hemoglobinized erythrocytes. The EpoR is a founding member of the cytokine receptor 

superfamily (D'Andrea et al. 1989; Bazan 1990; !hIe and Kerr 1995) in which an 

members contain an extracellular ligand binding portion, a single hydrophobic 
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transmembrane-spanning domain and an intracellular cytoplasmic portion lacking a 

kinase domain. 

EpoR activation results in the phosphorylation of many kinases, adapter proteins and 

other molecules involved in signal transduction. These post-Epo binding phosphorylation 

events are dependant on the cell type acted on. The phosphoproteins may function in 

various pathways, delivering the Epo signal to cytoplasmic, mitochondrial and nuclear 

targets. 

The cytoplasmic domain of the EpoR, contains a Janus kinase-2 (JAK2) domain that is 

activated via transphosphorylation as a result of Epo binding. JAK2 activation, in tum, 

initiates intracellular tyrosine phosphorylation that serves as a docking site for 

intracellular proteins, including STAT5. This phosphorylation cascade results in the 

activation of various signal transduction pathways (Mulcahy 2001). Targeted disruption 

of either Epo, EpoR or JAK2 results in embryonic lethality due to unsuccessful transition 

of the mice to definitive erythropoiesis. 

Non-hematopoietic effects of Epo 

For many years, Epo was considered as a hormone that has the sole function ofregulating 

the production ofRBC. However, more recently, it has become abundantly clear that Epo 

exerts a wide variety of actions on multiple tissues and organ systems. These include 

endothelial cells, the CNS (including neurons and astrocytes), the female and male 

reproductive systems, the heart, the gastrointestinal system, muscle cells and the kidney 

itself. The Epo-mediated actions are thought to be autocrine and/or paracrine, while in 

certain cases, the endocrine action ofEpo may be involved. 
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Epo and neuroprotection 

The earliest indication that Epo is involved in CNS functions was reported in 1992. 

While investigating the expression of Epo mRNA as a response to anemia and hypoxia in 

the kidney and liver, Tan et al. discovered unexpected hypoxia induction of Epo mRNA 

in the brain, testes and spleen (Tan et al. 1992). 

Since the mid-90's, many research laboratories have documented the neuroprotective role 

of Epo. The beneficial effects of Epo administration have been observed both in in vivo 

and in vitro models ofbrain injury and disease (Olsen 2003). 

Epo and EpoR are known to be expressed in neurons and astrocytes in various brain 

areas. Epo is produced in the brain and is up-regulated during hypoxia. When 

administered to healthy rats having an intact blood brain barrier, Epo concentrations in 

the cerebrospinal fluid (CSF) increased and peaked at 3.5 h post-injection (Cerami 2001). 

Epo may contribute to neuroprotection by virtue of its documented antioxidant, 

antiapoptotic, anti-inflammatory, neurotrophic, angiogenic and synaptogenic activity 

(Siren and Ehrenreich 2001). Epo has been shown to be effective in mediating 

neuroprotection in both in vivo and in vitro rodent stroke models. Direct 

intracerebroventricular (LC.V.) infusion of Epo administered in these stroke models 

demonstrated neuroprotective effects. Attenuation of ischemia-induced leaming 

disability concomitant with rescue of hippocampal CAl neurons from ischemic damage 

were observed in gerbils treated with Epo (Sakanaka et al. 1998). The neuroprotection 

observed in those animaIs was dose-dependant and the role of Epo was confirmed using 

both an active form of EpoR, containing an extracellular ligand binding region, and an 

inactive form after an ischemic insult. AnimaIs receiving the inactive form of the 
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receptor did not exhibit neuronal damage after Epo administration, whereas animaIs 

treated with the active EpoR experienced neuronal damage evidenced by a significant 

reduction in the neuronal density of the CAl hippocampal region. Bemaudin et al. 

demonstrated that 24 h I.C.V. infusion of Epo resulted in a 47% reduction of cerebral 

infarct volume in mice following permanent left middle cerebral artery (MCA) occlusion 

relative to non-Epo treated controis (Bemaudin et al. 1999). More recently, systemic 

administration of Epo in a rat stroke modei significantly reduced neuronal damage 

ranging from 24 h pre-treatment up to 6 h post-MCA occlusion. The data presented by 

Brines et al. support a therapeutic window for treatment of 6 h after ischemic injury 

where neuroprotection can be achieved by systemic administration of Epo (Brines et al. 

2000). Currently, the therapeutic 'window of opportunity' for tissue plasminogen 

activator administration in humans after stroke is three hours. 

Treatment with Epo in rodents has beneficial effects in ameliorating the extent of 

concussive brain injury, the immune damage as a result of experimental autoimmune 

encephalitis and the ensuing toxicity from kainate-induced seizures (Brines et al. 2000). 

The administration of Epo in rabbit and rat models of subarachnoid hemorrage was 

effective in causing a significant reduction in the cortical necrotic neuron count (Alafaci 

et al. 2000), increase in survivai (Buemi et al. 2000) and a normalization of the 

autoregulation of cerebral blood flow impaired by subarachnoid hemorrage (Springborg 

et al. 2002). The neuroprotective effects mediated by Epo were demonstrated in rabbits 

with experimentai spinal cord ischemic injury. Neurologicai scores from Epo treated 

animaIs were improved both acutely and within a 48 h delay (Celik et al. 2002). 
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Mechanisms of Epo-mediated neuroprotection 

The mechanisms mediating Epo neuroprotection before or after metabolic or oxidative 

challenge are complex and numerous. Neuronal cells treated with Epo 8 h prior to 

glutamate exposure, an excitotoxic insult, showed significantly less attrition than non

Epo-treated control cultures. The induction of a rapid and transient Ca2
+ influx in Epo

treated cultures is a critical initial event in enhanced resistance to glutamate toxicity 

(Morishita et al. 1997). 

Neuronal apoptosis as a result of different stimuli such as hypoxia, nutrient growth factor 

deprivation and kainate exposure is strongly inhibited by Epo exposure (Siren et al. 

2001). The Epo had to be administered 24 h before the apoptotic stimulus, indicating that 

the neuroprotective mechanism was likely dependant on gene expression. The protection 

from apoptosis occurred through activation of extracellular signal-regulated kinases and 

protein kinase Akt-1 (Siren et al. 2001). 

Epo has anti-inflammatory properties (Brines et al. 2000) as well as potent antioxidant 

effects (Boran et al. 1998; Sakanaka et al. 1998). A unique role for Epo in the protection 

of the erythrocyte membrane from oxidative damage caused by exposure to copper (II)

ascorbate (Chattopadhyay et al. 2000), and the reduction of lipid peroxidation along with 

increased antioxidant activities observed in Epo-treated patients (Boran et al. 1998), 

further implicate Epo as an important antioxidant. Epo is thought to up-regulate the 

expression of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and 

catalase) in neurons and erythrocytes (Olsen 2003). 
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Future directions of Epo 

The body of literature available on Epo investigation in the pre-clinical domain pro vides a 

compelling basis for exploiting the potential neuroprotective action of Epo-related 

cytoprotection in hum an CNS disorders. An important phase I1II trial is currently 

underway in Germany, the Gottingen Epo-stroke trial, which has shown promise for the 

use of Epo as a neuroprotectant in patients with acute stroke involving the MCA 

(Ehrenreich et al. 2002). In a safety study, 13 patients were administered intravenously 

33000 lU of r-HuEpo once daily for three days post-ischemia and no safety issues were 

noted. Patients that participated in the efficacy study treated with r-HuEpo had CSF Epo 

concentrations 60-100 times that of untreated patients, demonstrating the capacity for r

HuEpo to cross the blood brain barrier. A reduction of infarct size was also observed in 

these patients using magnetic resonance imaging. At a recent meeting on Epo in Toronto 

(Canadian Oncology Societies Epo conference, January 2004), there were also 

discussions of the potential use of Epo in the management of AD, PD and schizophrenia 

(Ehrenreich et al. 2004). 
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Objectives 

The objectives ofthis thesis were to test the following hypotheses: J. AD sub-populations 

of cortical and hippocampal astroglia up-regulate surface EpoR as an intrinsic 

neuroprotective mechanism in this neurodegenerative disorder. II. Erythropoietin pre

treatment activates cell survival pathways in astrocytes that attenuate apoptotic cell death 

accruing from subsequent exposure to chemical stressors. 

Specifically, we will (1) ascertain whether EpoR protein expression is up-regulated in AD 

and MCl-affected brain tissues relative to normal elderly controls and (2) determine 

whether previous reports on the neuroprotective role of erythropoietin in neurons and 

retinal ganglion cells also hold true in primary rat astrocytes in the face of various 

apoptogens. This dissertation provides new knowledge conceming the role of 

erythropoietin in CNS astroglia in states of normal health and disease and contributes to 

the expanding literature on the role of Epo in neural tissues. 

Specifie Aims: 1. To examine the extent of co-Iocalization between the EpoR and 

GF AP-positive astrocytes in the human brain. 2. To quantify percentages of GF AP

positive astroglial co-expression of EpoR in post-mortem temporal cortex and 

hippocampus derived from NEC, MCl and AD subjects. 3. To analyze potential 

variations in glial EpoR expression within various cortical and hippocampal sub-regions 

as a function of AD, MCl and normal aging. 4. To ascertain whether Epo treatment in 

primary rat astroglia impacts cell survival under basal growth conditions. 5. To 

determine whether Epo pre-treatment attenuates glial cell death (apoptosis) in the face of 
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NO, STS and AS20 3 challenge. 6. To determine whether rnild oxidative stress contributes 

to Epo pre-conditioning in apoptogen-exposed astroglia. 
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Materials and methods 

Experiment 1: EpoR up-regulation in AD brain 

Tissue samples 

Paraffin-embedded, post-mortem tissues containing temporal cortex and hippocampus 

were procured from the NlH-funded Religious Orders Study. Nine sporadic AD, 10 MCl 

and 9 NEC subjects were enrolled in the study. All subjects included in this study were 

deceased and autopsied participants in the Religious Orders Study, an ongoing 

longitudinal clinical-pathologic study of aging and AD. They include older catholic nuns, 

priests, and brothers recruited from about 40 sites across the United States. Eligibility 

was established at baseline and required an age of 65 years or older and the absence of a 

clinical diagnosis of dementia. Each subject signed an inforrned consent approved by the 

lnstitutional Review Board of Rush Presbyterian St. Luke's Medical Center, agreed to 

annual clinical evaluation, and signed an Anatomic Gift Act donating hislher brain to 

Rush investigators at the time of death. Since January 1994, more than 950 persons have 

enrolled in the Re1igious Orders Study and completed the baseline evaluation. 

Participation in the annual follow-up evaluations has exceeded 95% of survivors, and the 

autopsy rate exceeds 92%. Further details of the study have been previously reported 

(Bennett et al. 2002; Wilson et al. 2002b; Wilson et al. 2002a; Schneider et al. 2004). 

Immunofluorescent labelling 

Qualitative analysis was perforrned by confocal microscopy, including a control for the 

EpoR antibody (red). After application of primary polyclonal and monoclonal antibodies, 

FITC-conjugated secondary goat anti-mouse antibody was used for detection of GF AP

positive astrocytes and rhodamine-conjugated secondary goat anti-rabbit to visualize 
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EpoR. The fluorescent preparations were examined using a Bio-Rad MRC-600 laser 

scanning confocal imaging system. Images were scanned on two channels (red and 

green) and merged to produce a single profile. In this model, all regions exhibiting co

localization ofred and green emitters produce yellow fluorescence. 

Immunohistochemistry 

Six /lM tissue sections were immunostained with rabbit derived polyclonal antisera 

directed against hum an EpoR (AV ARP-9008, 1 :50, Aviva Antibodies, San Diego, USA) 

and a mouse monoclonal antibody recognizing GF AP (NCL-GF AP-GA5, 1 :50, Novo 

Castra Laboratories, UK). Vectastain Elite ABC Kits were used to visualize the reaction 

product. Slides were incubated for 16 h with anti-EpoR antibody and vizualized as a 

black precipitate with Vector SG, followed by incubation with anti-GFAP antibody for 16 

h and visualization using Vector NovaRED substrate. 

Quantification of EpoR positive astrocytes 

Percentages of EpoR positive astrocytes were computed in six layers of the hippocampus 

(stratum oriens, pyramidal layer, stratum radiatum, molecular layer, granular layer and 

hilus of the dentate gyrus) and in temporal cortex layers I-VI and the subcortical white 

matter. For each area surveyed, the numbers of GF AP-positive and EpoR-positive glial 

cells were counted in 400X fields with the aid of an ocular grid. The average number of 

cells counted per individuallayer was 216.2 ± 40.0 for the hippocampus and 217.0 ± 14.8 

for the temporal cortex. 
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Statistical analysis 

Percentages of EpoR-positive astrocytes were compared using one-way ANOV A with 

p<0.05 indicating statistical significance. A Newman-Keuls test was performed to 

determine main effects between groups. 

Experiment II: Epo protects astrocytes from apoptosis 

Materials 

Sodium nitroprusside (SNP), propidium iodide (PI), 4',6-diamidino-2-phenylindole 

(DAPI) , STS and As20 3 were purchased from Sigma (0 akville, Canada). 

Diethylenetriamine nitric oxide (DETAlNO) was obtained from Alexis Biochemicals 

(San Diego, USA). Antibodies directed against the foUowing pro teins were procured 

commerciaUy: poly ADP-ribose polymerase (PARP; dilution 1:1000; Oncogene Science, 

Cambridge, USA), HO-1 (dilution 1:1000; SPA-895; StressGen Biotechnologies, 

Victoria, Canada), Akt and phospho-Akt (CeU Signaling Technology, Beverly, USA), 

EpoR (R&D Systems, Minneapolis, USA). SnMP was purchased from Frontier Scientific 

Porphyrin Products (Logan, USA), ascorbic acid (AA) from Fisher Scientific Ltd. 

(Montreal, Canada), melatonin from ICN Biochemicals (Aurora, USA). Resveratrol was 

a gift from Pharmascience Inc. (Montreal, Canada). MDA-MB-468 ceUs were obtained 

from ATCC (Manassas, USA) and maintained in phenol red containing a-MEM (Life 

Technologies, Inc., Burlington, Canada) supplemented with 10% fetal bovine serum. 
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Astrocyte cultures and treatments 

Primary neuroglial cultures were prepared by mechanoenzymatic dissociation of cerebral 

tissue derived from 2-day old Sprague-Dawley rats (Charles River Breeding Farms, St. 

Constant, Canada) as previously described (Chopra et al. 1995). The cells were grown in 

Ham's F-12 and high glucose Dubelcco's modified Eagles medium (DMEM) 

supplemented with 1 OmM HEPES, 5% heat-inactivated horse and 5% fetal calf sera, and 

penicillin (50 U/ml)/streptomycin (50 jLg/ml). 5x105 cells/ml media were plated directly 

onto coated 25-cm2 plastic flasks. The cultures were incubated at 37°C in humidified 

95% air-5% C02 for 6 h at which time the flasks were vigorously shaken by hand to 

remove loosely adherent oligodendrocytes and microglia followed by replacement of 

fresh media. The cultures were incubated under the above-mentioned conditions for an 

additional 6 days at which point more than 98% of the cells comprising the mono layer 

were astroglia as determined by immunohistochemical labeling for the astrocyte-specific 

marker, glial fibrillary acidic protein (Chopra et al. 1997). 

Propidium iodide staining/flow cytometry 

Quantification of cell death was performed as previously described (Hardin et al. 1992). 

Astrocytes were pre-treated with Epo for 16 h followed by exposure to STS (0.5 !lM), NO 

(administered as 300 !lM SNP or 1 mM DETAlNO) or AS20 3 (1 !lM) for 48 h. Cells 

were trypsinized, washed twice in buffer (PBS/ 5% FBS/ 0.01 M NaN3) at 4° C, pelleted, 

and resuspended in 0.5 ml of hypotonic fluorochrome solution containing 50 !lg/ml PI, 

0.1 % sodium citrate, and 0.1 % Triton X-100. Fluorescence was measured on a Becton

Dickinson flow cytometer. Dead cell fractions (sub-Go compartments) were quantified 

using CellQUEST software. 
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DAPI staining 

Astrocytes were seeded onto sterile coverslips, pre-treated with Epo for 16 h followed by 

exposure to STS, NO or AS20 3 for 48 h. After two PBS washes, the cells were fixed with 

4% parafonnaldehyde for 45 min on ice. Two additional washes in cold PBS were 

performed and then the cells were penneabilized with 0.2% Triton X-IOOIPBS for 5 min 

followed by DAPI (2 Ilg/ml) staining for 5 min at 25°C. The cells were fixed onto glass 

slides, sealed with nail polish and allowed to dry ovemight. Apoptotic nuc1ei were 

identified on morphological grounds by DAPI staining (Kulkami and McCulloch 1994; 

Kawakami et al. 2001). Apoptotic nuclear morphology was surveyed in a minimum of 

100 cells per treatment group using an Olympus BX51 fluorescent microscope at 100x 

magnification. 

DNA fragmentation analysis 

DNA fragmentation assay, a qualitative index of apoptotic cell death, was performed 

using agarose gel electrophoresis (Gong et al. 1994a). 2xl06 cells were fixed with 70% 

ethanol, stored at -20°C for 24 h and collected by centrifugation. Degraded 

oligonuc1eosomal DNA was extracted with 40 III of phosphate-citric acid buffer at room 

temperature for 1 h and vacuum-dried for 15 min. The powder was resuspended in 3 III 

of 0.25% Nonidet P-40 and 3 III of 1 mg/ml RNase, and was then incubated at 37°C for 

30 min. Three microliters of 1 mg/ml proteinase Kwas added to the solution and 

incubated at 37°C for another 30 min. The mixture, together with 12 III ofloading buffer, 

was loaded on 0.8% agarose gel containing 0.5 mg/ml ethidium bromide, and 

electrophoresed at 2 V/cm ovemight. The DNA laddering was recorded with a 

Chemilmager 4000 image analyzer (Alpha Innotech Corporation, San Leandro, USA). 
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Northern Blotting 

Northem blotting was perfonned to measure mRNA levels of HO-l, a sensitive marker of 

oxidative stress and potential detenninant of astroglial survival (Schipper 2004). 

Astrocytes were treated with various concentrations of Epo for 16 h. RNA was isolated 

by acid-guanidinium thiocyanate-phenol-chlorofonn extraction (Mehindate et al. 2001). 

Five micrograms of RNA were size separated by gel electrophoresis, transferred on 

Hybond-N filter paper and covalently cross-linked to the membrane using UV light. 

Hybridization probe (fulllength rat HO-1 cDNA [EcoRI-HindIII], 1 kb, in pB1uescript 

SKII+, a gift from Dr. S. Shibahara, Tohoku University School of Medicine, Miyagi, 

Japan) was prepared with the random Primer DNA labelling system (Amersham 

Biosciences, Baie d'Urfe, Canada). Hybridization was perfonned using 32P-labelled 

denatured DNA probe. Equalloading was confinned by hybridization with cDNA for the 

housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). RNA 

hybridization was visualized using autoradiography. 

Western Blotting 

Cell extracts were washed with cold PBS and resuspended in 0.4 mllysis buffer (5 mM 

NaH2P04, 1mM DTT, 10% glycerol, 1mM PMSF, 10 )lg/ml each of aprotinin and 

leupeptin, pH 7.4) at 4°C. Extracts were centrifuged at 14,000 rpm at 4°C, and 

supematants transferred to new tubes. Protein concentrations were detennined using the 

Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, USA). To detect the protein of 

interest (PARP, HO-l, phospho-Akt, Akt, and EpoR), 50 )lg ofprotein were added to an 

equal volume of 2x sample buffer and run on a 10% SDS-polyacrylamide gel. Pro teins 

were transferred to nitrocellulose membranes (Bio-Rad), stained with Ponceau S in 5% 
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acetic acid to ensure equal protein loading, and blocked with 5% milk in PBS containing 

0.5% Triton X-100 for 1 h at room temperature. The membranes were hybridized 

ovemight at 4°C with specific polyclonal antibodies and then washed three times with 

PBS and 0.5% Triton X-100, blots were incubated with the appropriate secondary 

antibody (1: 10,000) for 1 h at room temperature. Bands were visualized by enhanced 

chemiluminescence (Amersham Biosciences). Immunostaining for {J-actin was used to 

confirm equal protein loading. 

Growth Assays 

Astrocytes were seeded at 1x105 cells/ml in 24-well plates. Cells were pre-treated with 

Epo for 16 h and then treated with STS for three days. SnMP (1 JLM), a competitive 

inhibitor of heme oxygenase activity, was administered with light shielding to obviate 

metalloporphyrin photo activation as previously described (Schipper et al. 1999). Viable 

cells were counted by trypan blue exclusion on day 3 post-treatment. 

Statistical Analysis 

Differences between groups were determined usmg a one-way analysis of variance 

(ANOV A) with p<0.05 indicating significance. A Newman-Keuls post-hoc test was 

applied to delineate significant main effects between groups. The data were analyzed 

using Prism 3.0 statistical analysis software. 
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Results 

Changes in EpoR expression in AD and MCI subjects 

To delineate the pattern and extent of EpoR expression in AD, MCI and NEC patients in 

the temporal cortex and hippocampus, paraffin-embedded, post-mortem tissue samples 

were procured from the NIH-funded Religious Orders Study (Table 1). The 

quantification of EpoR positive astrocytes was performed and the results demonstrated a 

significant increase in certain cortical and hippocampal regions early in the progression of 

the disease (Fig. 2-4). The up-regulation of EpoR positive astrocytes was significant in 

MC l, but not AD in layer l of the temporal cortex and the stratum radiatum, granular 

layer and dentate gyrus of the hippocampus. Other regions, viz, layers II-III of the 

temporal cortex and the stratum oriens and pyramidal layer of the hippocampus, 

demonstrate significant increases in astroglial EpoR expression in both MCI and AD 

subjects relative to NEC values. Nonetheless, there are regions that do not show a 

significant change in the levels of EpoR positive astrocytes as a function of clinical 

diagnosis (Fig. 5). 

Given our observations of augmented astroglial EpoR expression in certain cortical and 

hippocampallayers in AD and MCI subjects, we then proceeded to ascertain whether up-

regulation ofEpo confers cytoprotection to this cell compartment in vitro. 

Epo pre-conditioning protects cultured rat astroglia from apoptosis induced by 
NO and STS, but not As20 3 

We examined the effects of different apoptosis inducers, independently and in 

combination with Epo, on rates of cell death in cultured rat astroglia. Apoptosis was 

evaluated by PI, DAPI staining, P ARP cleavage and DNA fragmentation. As shown in 
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Fig. 6A, treatment with STS markedly attenuated the density of the astroglial monolayers. 

Similar cytotoxicity was obtained with NO exposure but not with AS20 3 (data not shown). 

Pre-treatment with Epo 20 U/ml for 16 h ameliorated the rare faction of the glial 

monolayers induced by STS an NO. As depicted in Fig. 6B and C, flow cytometric 

analysis of PI stained cells revealed that STS (0.5 /LM) induced apoptosis in 66% ± 1.42 

of the cells vs. 6.7% ± 0.34 in the untreated control cultures. Pre-treatment of astrocytes 

with either 5 or 20 U/ml Epo for 16 h significantly reduced STS-induced glial cell death 

(Fig. 6C i). Epo protection against STS-mediated apoptosis was dose-dependent. Lower 

concentrations of Epo (0.5 and 2 U/ml) conferred no glioprotection, whereas Epo (5 and 

20 U/ml) conferred protection with pre-incubation periods as short as three hours (data 

not shown). NO (administered either as SNP or DETAlNO) increased by more than 30% 

the number of cells undergoing apoptosis. As in the case of STS, cell death induced by 

both NO donors was significantly attenuated by Epo 5 U/ml pre-treatment but there was 

no further increase in Epo-mediated cytoprotection when the cells where pre-treated with 

20 U/ml Epo (Fig. 6C ii). AS20 3 also induced apoptosis in rat astrocytes. However, in 

contradistinction to STS and NO, Epo pre-treatment had no effect on glial apoptosis 

induced by AS20 3 in our model (Fig. 6C iii). Epo alone did not significantly increase 

apoptosis at any time point or concentration used. To further demonstrate the 

cytoprotective effect of Epo, nuc1ear morphology of cultured rat astroglia was analyzed 

by DAPI staining following apoptogen challenge (Fig. 7 A). Fig. 7B shows that STS and 

NO increased apoptosis by 38% ± 1.72 and 29% ± 2.35, respectively. Pre-treatment with 

Epo significantly decreased numbers of apoptotic cells in the face of STS and NO 

challenge. Consistent with the flow cytometric data, Epo pre-treatment had no effect on 

glial apoptosis induced by AS20 3. In addition, we evaluated P ARP c1eavage and DNA 
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fragmentation, qualitative hallmarks of apoptosis (Fig. 8A,B). STS, and to a lesser extent 

NO and AS20 3, elicited proteolysis of the nuc1ear enzyme P ARP, as evidenced by a 

dec1ine in total protein levels relative to control and Epo-treated cells. Pre-treatment of 

STS- or NO-, but not AS20 3-challenged cells with Epo substantially decreased P ARP 

c1eavage. Furthermore, there was significant DNA fragmentation in STS-, NO- and 

As20 3-treated cultures (Fig. 8B). Pre-treatment with Epo reduced the amount of DNA 

fragmentation observed after STS and NO, but not AS20 3 treatment. Finally, all doses of 

Epo utilized in this study promoted up-regulation of the astroglial EpoR as determined by 

Western blotting (data not shown). Collectively, our data indicate that Epo pre

conditioning induces the EpoR and significantly attenuates multiple indices of apoptotic 

cell death in astroglia exposed to NO and STS, but not AS20 3. 

Role of HO-l in Epo pre-conditioning of cultured astroglia 

Epo has been shown to enhance superoxide formation in leukocytes and promote 

oxidative stress in erythrocytes (Zachee et al. 1993; Chen et al. 1997). Therefore, we 

investigated the role of oxidative stress in Epo pre-conditioning of cultured astroglia. 

HO-1 expression is widely accepted as a sensitive and reliable marker of cellular 

oxidative stress (Schipper 2004). Moreover, the products of the heme oxygenase 

reaction, free iron, CO and biliverdin/bilirubin, are biologically active molecules that can 

directly impact cellular redox homeostasis (Dennery 2000; Ryter and Tyrrell 2000). As 

depicted in Fig. 9A and B, low concentrations of Epo (0.5-5 U/ml) had no apparent effect 

on HO-1 mRNA and protein levels in the cultured astroglia. In contrast, 20 U/ml Epo, a 

c1inically achievable concentration of the hormone (Assandri et al. 1999; Ashley et al. 

2002), induced the expression of HO-1 mRNA and prote in in these cells. These data 
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indicate that exposure to high dose Epo induces oxidative stress in these glial cultures 

implicating a possible pre-conditioning effect of HO-I. Considering that the protection 

against STS-mediated apoptosis were increased when higher Epo concentrations were 

used (50.5% STS + Epo 20 U/ml vs 37.9% STS + Epo 5 U/ml) and that Epo 20 U/ml 

induces HO-I mRNA and protein levels, we queried whether inhibition of heme 

oxygenase activity would abrogate the added protection conferred by Epo 20 U/ml. At 1-

5 IlM concentrations, the metalloporphyrin, SnMP competitively blocks heme oxygenase 

activity without interfering with the action of nitric oxide synthase (Schipper 1999). As 

shown in Fig. 10A, co-incubation with 1 IlM SnMP (light-shielded to prevent potential 

metalloporphyrin photoactivation), abrogated the cytoprotective effects of high dose Epo 

pre-conditioning in the face of STS treatment for 72 h. Further experiments were 

conducted to determine whether ROS generation and oxidative stress contribute to Epo

related pre-conditioning in our glial cultures. Cells were pre-treated with Epo 20 U/ml 

and AA (200 IlM) or melatonin (100 IlM) for 16 h followed by STS challenge for an 

additional 72 h. Fig. lOB and C show that AA or melatonin administered alone did not 

significantly impact cellular viability as determined by PI staining and flow cytometry. 

As expected, STS increased glial cell death by more than 60% relative to unchallenged 

cultures, and pre-treatment with Epo significantly protected the ceUs from STS-mediated 

toxicity. Co-administration of AA, melatonin (Fig. 10B,C) or the potent antioxidant, 

resveratrol (data not shown) during Epo pre-treatment significantly attenuated the 

cytoprotective effects of Epo in these ceUs. Furthermore, AA or melatonin administration 

suppressed the elaboration of HO-1 protein accruing from exposure to Epo 20 U/ml (Fig. 

10D). Taken together, our findings indicate that mild oxidative stress induced by Epo 
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pre-conditioning lS responsible, at least III part, for the observed Epo-mediated 

cytoprotection. 

Effects of Epo on the Akt signaling pathway 

We examined the effects of Epo on the Akt signaling pathway because Akt activation has 

been implicated in Epo-related cytoprotection in several cell types (!hIe and Kerr 1995; 

Ratajczak et al. 2001; Weishaupt et al. 2004). Astrocytes were treated with various 

concentrations of Epo. Western blotting was performed using antibodies for Akt and 

PhosphoAkt. As shown in Fig. 11, treatment with Epo in doses ranging from 0.5 to 

20U/ml and exposure times of 1-16 h had no appreciable effect on total Akt levels or Akt 

phosphorylation (activation). Whole cell extracts from MDA-MB-468 breast cancer cells 

that express constitutively active Akt (Clark et al. 2002) were used as positive controis. 

Similar results were obtained following Epo incubation for 24 to 72 h (data not shown). 
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Discussion 

EpoR up-regulation in AD brain 

Cognitive abilities in the population aged 65 and over range from normal, to mild 

impairment, to obvious dementia. The term MCl is generally applied to elderly individuals 

who experience graduaI cognitive decline (usually memory) that fail to meet the clinical 

criteria for AD or other dementia. MCl is increasingly recognized as an important public 

health problem because it is highly prevalent and confers a significantly augmented risk 

of progression to incipient AD relative to age-matched, cognitively-intact individuals. 

There have been relatively few large longitudinal studies that have directly compared 

change in different cognitive abilities and other key clinical milestones in persons with 

MCl to those without cognitive impairment (Rubin et al. 1989; Chertkow et al. 2001). 

The Religious Orders Study is an ongoing longitudinal clinical-pathologic study of aging 

and AD in older Catholic c1ergy, to examine the natural history of MCl (Bennett et al. 

2002). Subjects enrolled in this study underwent a uniform structured clinical evaluation, 

including a medical history, neurologic examination, cognitive performance testing, and 

review of a brain scan when available. Twenty-one cognitive performance tests were 

administered that assessed a broad range of cognitive abilities commonly affected by 

aging and AD, as previously described (Bennett et al. 2002; Wilson et al. 2002b). 

Cognitive test results were reviewed by a board-certified neuropsychologist, and 

participants were evaluated in person by a physician with expertise in the assessment of 

older persons with and without dementia. On the basis of this evaluation, participants 

were c1assified with respect to AD and other common conditions with the potential to 

affect cognitive function. Details of the clinical evaluation have been previously 
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published (Schneider et al. 2003). An annual follow-up evaluation was performed by 

examiners that were blinded to data collected previously. At the time of death, all 

available clinical data were reviewed, and a summaryopinion was rendered regarding the 

most likely clinical diagnosis at the time of death. The reviewers were also blinded to all 

postmortem data (Bennett et al. 2004). 

There are currently many published pre-clinical studies outlining the potential 

neuroprotective properties of Epo in neonatal and adult models of various human central 

and peripheral nervous system disorders. Erythropoietin has been demonstrated to be 

cytoprotective in retinal ganglion cells, neurons and astrocytes following conditions of 

metabolic as well as oxidative stress. The up-regulation of the EpoR observed in this 

study may mediate to sorne degree the cytoprotection observed in the various in vitro 

models. Further work will be required to determine whether EpoR expression in other 

cellular compartments (e.g. neurons, microglia) is also affected in Alzheimer-diseased 

CNS tissues. Since 1986, epoetin alfa has proven safe and effective for management of 

anemia in adult and pediatric patients with chronic kidney disease (Winearls et al. 1986; 

Henry et al. 2004). In light of the findings presented herein, and given that Epo is 

produced endogenously, has a positive safety profile, and is generally well tolerated, the 

advent of clinical trials using Epo as a potential neuroprotective agent in AD patients may 

be warranted. 

These observations are the first to demonstrate altered levels of EpoR expression in the 

brain of MCI and AD subjects relative to the NEC. These findings may lead to 

significant developments in the understanding of the role of erythropoietin in the brain 

and implications for treatment of chronic neurodegenerative diseases with r-HuEpo. 
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Whether the up-regulation of EpoR in the astrocytes is specifie to Alzheimer pathology or 

is a non-specifie indication of reactive gliosis remains to be determined. 

Epo protects astrocytes from apoptosis 

Previous reports have documented Epo-related cytoprotection of CNS neurons, retinal 

ganglion cells, dorsal root ganglion cells, and microglia in vivo and in vitro (Sadamoto et 

al. 1998; Bemaudin et al. 1999; Brines et al. 2000; Lewczuk et al. 2000; Sinor and 

Greenberg 2000; Kawakami et al. 2001; Celik et al. 2002; Junk et al. 2002; Vairano et al. 

2002; Weber et al. 2002; Campana and Myers 2003). To our knowledge, the CUITent 

study is the first to demonstrate astroglial cytoprotection by Epo pre-conditioning. In this 

study, astroglial apoptosis was induced by three unrelated stressors: NO, STS and AS20 3. 

Epo pre-conditioning at doses ranging from 5 to 20 U/ml produced significant 

glioprotection following exposure to NO and STS, but had no effect on AS203-induced 

cell death. 

The differential effects of Epo glioprotection likely reflect disparate signalling pathways 

mediating glial apoptosis in response to the various apoptotic stimuli utilized in this 

study. NO, STS and AS20 3 reduce cell viability and induce apoptosis, as evidenced by 

nuclear fragmentation and condensation, DNA degradation to oligonucleosomes, decrease 

in mitochondrial membrane potential, cytochrome c release and caspase activation. NO 

has been shown to promote apoptosis via mitochondria-dependent and -independent 

apoptotic signaling pathways (Beltran et al. 2000). STS prevents the binding of ATP to a 

broad spectrum of kinases that play essential roles in cell survival (Meggio et al. 1995). 

STS aITests progression of normal non-transformed cells in the G] phase of the cell cycle 

suggesting that cell cycle associated-kinases essential for cell transit through G] are 
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sensitive to STS (Gong et al. 1994b). Epo may confer cytoprotection to astrocytes in the 

face of SIS and NO challenge by interfering with one or more of these signaling 

pathways. Arsenic selectively activates p38 and JNK3 (a neural-specific isoform), but 

not JNK1 or JNK2 in cerebellar neurons. Blockade of p38 or JNK signaling pathways 

using specific inhibitors protected cerebellar neurons against AS203-induced apoptosis 

suggesting that activation of p38 and JNK3 MAP kinases plays an important role in 

arsenite neurotoxicity (Namgung and Xia 2001). In contrast to STS and NO, AS20 3-

mediated gliotoxicity in the CUITent study was not ameliorated by Epo pre-treatment 

suggesting that Epo exerts little or no effect on the p38/JNK3 signalling in rat astroglia. 

These disparate effects do not appear to be dependant on the dose or toxicity of the 

apoptotic inducer utilized. Despite the fact that both NO and AS20 3 were equally toxic to 

the glial cultures (approximately 30% cell death), Epo protected these cells against NO

but not As20 3-mediated apoptosis. Furthermore, Epo pre-conditioning was effective in 

mediating cytoprotection in the face of the relatively more toxic STS challenge that, when 

administered alone, resulted in 66% cell death. 

The mechanism by which Epo protects neuronal cells from apoptosis has not been 

completely elucidated; however, it has been shown that Epo activation of EpoR prevents 

apoptosis of CNS neurons by triggering cross-talk between the Epo-induced JAK2 

activation and several downstream signaling pathways, including Ras-mitogen-activated 

protein kinase (MAPK) and PI-3-kinase/Akt (Ihle 1995). Phosphorylation of the latter, in 

turn, interrupts several cell death pathways, including those involving glycogen synthase 

kinase 3~, caspases-9, BAD (BCL-2 antagonist of cell death), and forkhead transcription 

factor. Chong et al. (2003) demonstrated that in neurons obtained from the hippocampi 
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of E-19 Sprague-Dawley rat pups, Epo (10 ng/ml) substantially increased levels of 

phospho-Akt, an effect that could be prevented by exposure to wortmannin. 

Digicaylioglu and Lipton (2001) observed PI-3-kinase activation after 30 min ofEpo (10 

U/ml) exposure in cortical neurons. In addition, Weishaupt et al. (2004) demonstrated 

that Epo-induced Akt phosphorylation and survival-promoting Epo effects in 

immunopurified retinal ganglion cells are completely abolished by inhibition of PI-3-

kinase. However, we did not observe any change in total Akt at any time or dose used. 

Nor was the protein activated as indicated by failure to detect increased levels of 

phosphorylated Akt. Taken together, these results indicate that the mechanism of Epo 

protection at these doses is not related to Akt activation. Although it is known that Epo 

activates phosphatidylinositol 3-kinase in BalF3 cells (Damen et al. 1993) and inhibits 

apoptosis through an Akt-dependent pathway in endothelial cells (Chong et al. 2002), we 

demonstrated that this mechanism is not activated in rat astrocytes. Astrocytes express 

EpoR (Nagai et al. 2001) and, in the present study, the latter was up-regulated by Epo at 

all doses tested. In neurons, EpoR-mediated activation of JAK2 leads to phosphorylation 

of the inhibitor of NF-kB, subsequent translocation of the transcription factor to the 

nucleus and NF-kB-dependent transcription of neuroprotective genes (Digicaylioglu and 

Lipton 2001). Whether EpoR-mediated activation ofNF-kB signaling contributes to cell 

survival in astrocytes as well remains to be determined. Augmentation of cellular 

glutathione peroxidase activity and other antioxidant defenses (Gene et al. 2002) may 

also have contributed to the hormone's glioprotective action in our model. 

Finally, very short-term Epo exposure (minutes) has been shown to protect 

cardiomyocytes by raising the threshold for mitochondrial permeability transition (pore 
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opening) and attendant ROS generation in these ceUs (Juhaszova et al. 2004). Whether 

similar exposure to Epo impacts permeability transition in astrocytes and other ceU types 

remains unknown. 

Epo-mediated cytoprotection may not be entirely due to the hormone's anti-apoptotic 

effects. For example, Epo has been implicated in the proliferation and differentiation of 

erythrocytes (Krantz 1991; Sawyer 1994) and enhances BrdU-incorporation (indication of 

ceUs in S phase) in rat neonatal astrocytes (Sugawa et al. 2002). Thus, both anti

proliferative and anti-apoptotic actions of Epo may mediate astroglial cytoprotection in 

vitro. 

In both neuronal and non-neuronal brain ceUs, oxidative stress and other noxious stimuli 

induce the rapid up-regulation of HO-1 at the transcriptionallevel (Dwyer et al. 1995; 

Manganaro et al. 1995). We observed that 20 U/ml Epo, but not lower doses of the 

hormone, up-regulated HO-1 mRNA and protein levels, indicating that elevated but 

c1inicaUy relevant concentrations of Epo may subject astrocytes to oxidative stress. 

Attenuation of both glial HO-1 protein synthesis and the protective effect of high-dose 

Epo by antioxidant co-administration during the pre-conditioning phase further supports 

this contention. The oxidative stress accruing from exposure to Epo (20 U/ml) must be 

relatively mild in so far as astroglial viability was not compromised when Epo (20 U/ml) 

was administered alone. In astrocytes exposed to NO, HO-1 up-regulation had no 

appreciable effect on ceU survival. On the other hand, HO-1 induction resulting from 

high-dose Epo pre-treatment contributed significantly to protection against STS toxicity. 

Enhanced HO-I biosynthesis may have conferred cytoprotection by catalyzing the 

degradation of pro-oxidant heme to the radical scavengers, biliverdin and bilirubin 
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(Stocker et al. 1987; Nakagami et al. 1993; Llesuy and Tomaro 1994; Dore et al. 1999; 

Baranano and Snyder 2001). Previous studies have shown that Epo increases HO-1 

mRNA levels in blood monocytes and augments plasma antioxidant capacity in 

hemodialysis patients (Calo et al. 2003). Thus, mild antecedent oxidative stress may be a 

common mechanism mediating the cytoprotective effects of Epo pre-conditioning in 

disparate cell types. As such, Epo pre-conditioning may be analogous to induction of a 

cellular heat shock response that confers a degree of tolerance to subsequent stressors 

(Verbeke et al. 2001). 

Epo-related glioprotection may also play an important role in human neurodegenerative 

and ischemic CNS disorders. It was observed that the proportions of GF AP-positive 

astrocytes co-expressing immunoreactive EpoR are significantly increased in the 

temporal cortex and hippocampus of subjects with sporadic AD and MCI, a frequent 

harbinger of incipient AD (Assaraf et al. 2004). These findings suggest that induction of 

the astroglial EpoR gene is a very early event in the pathogenesis of this common 

dementing disorder. Of note, glial HO-1 overexpression and other markers of oxidative 

stress are also augmented in the brains of patients with MCI and early AD (Schipper et al. 

1995; Nunomura et al. 2001; Pratico et al. 2002). Expression ofboth Epo and its receptor 

is also augmented in the brains of patients with ischemic stroke (infarction) and cerebral 

hypoxia complicating cardiorespiratory arrest relative to neurohistologically normal 

subjects (Siren et al. 2001). Finally, enrichment for glial EpoR has recently been reported 

in the brains of schizophrenie patients (Ehrenreich et al. 2004). These hum an 

neuropathological studies implicate astroglia as major substrates of Epo and EpoR up

regulation under a host of adverse conditions. In light of the in vitro data presented 
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herein, it is conceivable that astroglial Epo secretion confers cytoprotection to this 

cellular compartment by autocrine or paracrine regulation of key apoptotic cell death 

pathways. In degenerative and ischemic brain disorders, protection of the astroglial 

compartment may have a profound impact on the survival of indigent neuronal 

populations. For example, glutamate uptake by astrocytes normally prevents the 

accumulation of this neurotransmitter to excitotoxic levels in brain extracellular space, a 

critical determinant of neuronal survival in the ischemic penumbra (Swanson et al. 2004). 

Astrocytes also influence neuronal redox homeostasis through release of AA and uptake 

of its oxidized form, dehydroascorbate, and by indirectly supporting neuronal glutathione 

metabolism (Swanson et al. 2004). 

In a completed phase IIII trial for acute ischemic stroke, intravenous high-dose r-HuEpo 

was reportedly well tolerated and associated with improvement in clinical outcome at one 

month (Ehrenreich et al. 2002). A caveat to the use of Epo as a neurotherapeutic 

modality is the potentially deleterious expansion of the red cell mass (hematocrit) and 

increased platelet aggregability. AsialoEpo, a de-glycosylated congener of Epo, crosses 

the blood brain barrier, provides neuroprotection but does not significantly affect the 

hematocrit (Erbayraktar et al. 2003; Wang et al. 2004). Further experiments will be 

required to determine whether asialoEpo (or other Epo derivatives) pre-conditioning 

recapitulates the glioprotective effects ofEpo observed in the CUITent study. 
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Conclusions 

1. EpoR co-Iocalizes to a proportion of GF AP-positive astrocytes in the adult hum an 

temporal cortex and hippocampus, corroborating earlier reports (Sugawa et al. 

2002). 

2. In AD and MC l, there are significant increases in the proportion of astroglia 

expressing EpoR in layers II-III in the temporal cortex as well as the stratum 

oriens and pyramidal layer of the hippocampus relative to NEC values. In certain 

regions, viz, layer l of the temporal cortex and the stratum radiatum, granular 

layer and dentate gyrus of the hippocampus, glial EpoR expression is augmented 

in MCI relative to NEC, whereas AD values do not differ significantly from the 

normal controls. No differences in glial EpoR expression among the three groups 

were discerned in the molecular layer. 

3. Our findings indicate that astroglial EpoR is induced in certain cortical and 

hippocampal regions in patients with sporadic AD. In sorne regions (Layer l of 

the temporal cortex and stratum radiatum, granular layer and dentate gyms of the 

hippocampus), the EpoR response may be transient with return to baseline (NEC) 

levels with advancing disease. 

4. Epo pre-conditioning protects cultured rat astroglia from apoptosis induced by NO 

and STS, akin to the cytoprotection previously reported in neurons (Chong et al. 

2003). In contrast, Epo has no effect on glial apoptosis induced by As20 3 in our 

model. Furthermore, the protection against STS-mediated apoptosis conferred by 

Epo (5-20 U/ml) pre-conditioning was dose dependent, whereas protection against 
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NO-mediated apoptosis by Epo plateaued at 2 U/ml. The differential effects of 

Epo glioprotection likely reflect disparate signalling pathways mediating 

apoptosis in response to various apoptogens utilized in this study. For example, 

STS prevents the binding of ATP to a broad spectrum of kinases that play 

essential roles in cell survival (Meggio et al. 1995). NO induces apoptosis 

through genomic DNA fragmentation and inhibition of mitochondrial respiration 

(Beltran et al. 2000), and AS20 3 induces apoptosis by JNK activation and 

generation of ROS (Miller et al. 2002). 

5. HO-1 is a sensitive marker of cellular oxidative stress and, under certain 

circumstances, contributes to cell survival (Schipper 1999). Epo 2 and 5 U/ml had 

no effect on HO-1 mRNA and protein levels in rat astroglia suggesting that, 

contrary to hypothesis, (i) pre-conditioning via mild oxidative stress is not 

responsible for Epo glioprotection and (ii) HO-1 plays little or no role in Epo

related astroglial survival at low Epo concentrations. 

6. Epo 20 U/ml, a high but clinically achievable concentration (Assandri et al. 1999; 

Ashley et al. 2002), up-regulates HO-1 mRNA and protein expression in cultured 

astroglia. Our findings suggest that, in contrast to the effects of lower Epo doses, 

(i) Epo 20 U/ml induces mild oxidative stress in cultured astroglia and (ii) the up

regulation of HO-1 in these cells may contribute to the cytoprotection observed in 

the face of STS, but not NO, challenge. 

7. The up-regulation of EpoR in AD-affected cortical and hippocampal astroglia 

together with the cytoprotective role of Epo pre-treatment on rat astrocytes may 
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contribute to the beneficial effects of EpolEpoR interaction observed in multiple 

models of CNS injury and disease (Bemaudin et al. 1999; Digicaylioglu and 

Lipton 2001; Agnello et al. 2002; Cerami et al. 2002). If confirmed, clinical 

studies using Epo as a potential neuroprotectant in early AD may be warranted. 
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Future Directions 

Future studies should (i) establish the relation between EpolEpoR protein expression in 

brain regions affected by MCl and AD, (ii) further delineate the role of HO-l in Epo

mediated glioprotection and (iii) determine whether systemically- or centrally

administered Epo impacts astroglial survival in vivo. 
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Figure Legends: 

Figure 1: Hypothetical structure of the EpoR dimer and its interaction with 
Epo. 
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Figure 1. 
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Table 1. Demographie information. 

Ali (n=28) NEC (n=9) MCI (n=10) AD (n=9) 

Age, mean years 83.5 80.1 84.5 85.7 
(SO, range) (5.8, 72-97) (5.9, 72-90) (6.1, 76-97) (3.9, 80-91) 

Sex 50% / 50% 77.8% / 22.2% 40% /60% 33.3% / 66.7% 
(Male/Female) 

Education, mean years 18.5 19.9 19.0 16.7 
(SO, range) (3.0, 14-25) (2.8, 16-25) (3.0,15-24) (2.1,14-21) 

MMSE, mean 22.7 28.4 26.9 12.2 
(SO, range) (8.2,0-30) (1.3, 26-30) (1.8, 25-30) (6.3,0-18) 
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Figure 2: Representation of layers analyzed in the adult human hippocampus. 
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Figure 3: EpoRlGFAP co-Iocalization in human hippocampus. 

A. Control for anti-EpoR (red) antibody. The astrocytes fluoresce green following staining 
with anti-GFAP antibody and FITC. In Fig. l, A-D, bars = 25 Ilm. 

B. NEC subject. GFAP-positive astrocytes are depicted (green). EpoR staining (red) does 
not co-localize with the astroglia. 

C. MCI patient. Yellow fluorescence (arrow) indicates extensive co-localization of EpoR 
(red) to astrocytes (green). Arrowhead denotes EpoR-positive blood vessel. 

D. AD patient. There is co-localization of EpoR (red) to astroglia (green) yi el ding yellow 
fluorescence (arrow). 
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Figure 3. 
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Figure 4: Dual-label EpoRlGFAP immunohistochemicallocalization in human 
temporal cortex and hippocampus. 

Arrows denote EpoR positive astrocytes, whereas arrowheads indicate EpoR negative 
astrocytes. Full figures are shown at 400x magnification. Insets represent lOOOx 
magnification. 
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Figure 5: EpoR expression in human cortical (A) and hippocampal (B) 
astrocytes. 

DifferentiaI expression of EpoR within the layers of the human temporal cortex and 
hippocampus in NEC, MCI and AD subjects. In aU figures, * denotes a significance of 
p<O.05, ** = p<O.Ol, *** = p<O.OOl, relative to the NEC cases. () = # of cases per group. 
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Figure 5. 
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Figure 6: Effects of Epo pre-conditioning on astroglial cell death induced by 
NO, STS and As203. 

A. Light micrographs of astroglial monolayers under various treatment conditions (40x 
magnification). 

B. Flow cytometric analysis of PI-positive cells. Astrocytes were pre-treated with Epo for 
16 h, followed by exposure to STS (0.5 )lM), NO (administered as 300 )lM SNP or 
DET NNO 1 mM) or ASzÜ3 (1 )lM) for 48 h. 

C. Percent ages of sub-Go (dead) cells treated as described in B. Graphs depict means of 
three independent samples. Verticallines denote standard deviations. Asterisks indicate 
significant differences (p<O.OOI) from NO or STS-treated cells. Pound signs indicate 
significant differences (p<O.Ol) from STS + Epo 5 U/ml-treated cells. 
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Figure 6 A. 
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Figure 6 B. 
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Figure 6 C. 
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Figure 7: Effects ofEpo pre-conditioning on NO and STS-rnediated astroglial 
apoptosis. 

A. Astrocytes were seeded onto sterile coverslips, pre-treated with Epo 20 Ulml for 16 h 
followed by exposure to STS (0.5 IlM), NO (administered as 300 IlM SNP) or AS20 3 (1 
IlM) for 48 h. Micrographs (60x magnification) are representative oftwo independent 
experiments, each performed in triplicate. 

B. Quantification ofDAPI-positive apoptotic cells in a minimum of 100 cells per treatment. 
Each bar represents an average of two independent samples. Verticallines denote standard 
deviations. Asterisks indicate significant differences from NO (p<0.001) or STS-treated 
cells (p<0.01). 
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Figure 8: Effects ofEpo pre-conditioning on PARP cleavage and DNA 
fragmentation in cultured astroglia. 

A. Western blotting for PARP cleavage. ~-actin staining was used as a loading control. 
Results are representative ofthree independent experiments, each performed in duplicate. 

B. DNA fragmentation assay. Oligonucleosomes were isolated as described in Materials 
and Methods. The figure is representative ofresults obtained in three independent 
experiments. 
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Figure 9: Effects ofEpo on HO-l mRNA and protein levels in cultured 
astroglia. 

A. Northern blot for HO-l mRNA levels. GAPDH mRNA served as loading control. Data 
is representative of three independent experiments. Graph depict analyse of HO-l / ~-actin 
band ratio in arbitrary units (AU). 

B. Western blot for HO-l protein levels. ~-actin staining was used as loading control. 
Results are representative ofthree independent experiments. Graph depict analyse ofHO-l 
/ ~-actin band ratio in arbitrary units (AU). 
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Figure 10: Role of HO-1 and reactive oxygen species in Epo-mediated 
glioprotection against STS toxicity. 

A. Rat astrocytes were left untreated (Control) or were pre-treated with Epo 20 U/ml, or 
SnMP 1 mM, and then treated with STS (0.5 IlM) for 72 h as indicated. Cell viability was 
evaluated on day 3 by trypan blue exclusion. Values represent the means ± SD ofthree 
independent experiments, each performed in triplicate. Asterisks denote significant 
differences (p<O.OOl) from Epo + STS-treated cells. 

B,C. Effects of antioxidants on Epo-mediated glioprotection. Rat astrocytes were pre
treated with Epo 20 U/ml and AA (200 IlM) or melatonin (100 IlM), followed by exposure 
to STS for 48 h. PI staining and flow cytometric analysis were performed as described in 
Materials and Methods. Values represent the means ± SD oftwo independent experiments, 
each performed in triplicate. Asterisks indicate significant differences from STS-treated 
cells (**p<O.Ol, ***p<O.OOl). Pound signs denote significant differences (p<O.Ol) from 
Epo + STS -treated cells. 

D. Western blot for HO-l protein levels. ~-actin staining was used as a loading control. 
Results are representative ofthree independent experiments. 
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Figure 10. 
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Figure Il: Effects of Epo on Akt activation. 

Rat astrocytes were left untreated (Control) or were treated with Epo as indicated. Western 
Blotting was performed for total Akt or activated Akt (phospho-Akt). Whole cell extracts 
from MDA-MB-468 breast cancer cells were used as positive controls. ~-actin staining was 
used as a loading control. Results are representative of three independent experiments. 
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