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_ABSTRACT
_ Steady, incompressible flow about a Joukowski airfoil section is
simulated using a IBM %60-75 digital computer and a Calcomp plotter.
The effect : of various transformation parameters as well as the stream-
line pattern and pressure distribution about the airfoil is illustrated.
" The value of the simulation technique as a teaching tool is demonstrated._
~ The method 1s shown to be particularly useful for flow visualization
ag’. all the basic features of the Joukowski transformation and the
potential flow streamline patterns are clearly depicted. Since only
very unsoﬁhisticated computing methods are required, the simulation
process provides a flexibility that is conveniently coupled with an
obvious time-saving and economic advantage in simuléting the process,
concept and phenomena of flow about an aifoil together with the wariation
of pafameters in comfutation for observing responses. For instance,
computing results showing the flow about a Joukowski airfoil at am angle
of attack ranging from O to 16 degrees have sequentially been-

photographed as a movie.

& This work was supported by McGill Computing Center
and assisted by Mr, K. 8. Wong.



INTRODUCTION _ _

The principle of aerodynamic analysis of two-dimensional incom-
pressible fluid flow about an airfoil through conformal transformation
from the flow about a circle is well established {Glavert, 1926).
Essentially, this method consists of mapping the potential flow about
a circular cylinder with circulation in a uniform flow through a kind
of mathematical transformation by which the cylinder is transformed
into an airfoil shape. The streamlines are aiso transformed hence the
flow-pattern about the airfoil is easily obtained for practical appli-
cations. By varying the coordinates of the center of the cylinder
as well as the parameter of the Joukowski transformation, different
airfoils may be obtained. _

_ One of the aims of the conformal transformation is to obtain
the velocity and pressure distributions about an airfoil so that the
aerodynamic performance of the .airfoil can be calculéted. The task
of performing the calculation manually for just one angle of attack
demands about sixteen man-hours (Pope,1951). However, the combination
of a computer and a plotter can do the work including streamlines and
pressure distributions In a matter of minutes. The time saving and

better understanding of this simulation technique are self-evident.

POTENTIAL FLOW ABOUT A CIRCULAR CYLINDER ’
It is well known that the potential function of a flow about a
circle of radius a with a circulation K in a uniform velocity V in

a complex coordinates system of z as shown in Fig. 1 can be expressed

w=V(%+a /) + ( iK/2x)in(Z/a) (1)
-WThe stream function of Eq. L is
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where the circulation K determines the location of two stagnation points.
At K = 0, these two points are located on the circle and diametrically
opposite each other. As K increases, they move closer, When K = hnaV,
they coalesce: into ome. If K is larger than this value, the coalesced

stagnation point stays outside ° the circle.
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Tdniilﬁégfate the effect of K on the flow ﬁatterns; Figs; é éﬁd 3
are plotted with K equal to 10 and 18 ft2/sec respectively., For
simplicity, one chooses a = 1 ft and V = 1 ft/sec for |
Eq; 2{..It is noted that ¥ = 0 gives stagnation streamlines including
‘the circle in Fig. 2 but not in Fig. 3. The critical value of K for
this case is lLr. For the presént application on the airfoil transformation
K.is related to the angle of attack for an airfoil. The angle is limited
to be less than 16 degreees in order to avoid flow separation and so K

is much less than the critical value.

JOUKOWSKI TRANSFOEMATION
The simplest transformation which maps the flow about a circle
in the z (not z) plane in Fig. 1 into the flow about an airfoil in

the Z plane is the Joukowski transformation
' 2 . ,
z.=z+b/Z - (5)
where b is an arbitrary real cénstant. b is a very importént parameter

which determines the shape of the airfoil trailing edge. To explain this .

one has to look into the mapping relationship

& - revst W
ﬁqﬁations 3 and haéhow thatrz =.O, +b and ;b are éingularrééinté.

To obtain a sharp trailing edge, one takes S in Fig. 1 as a
singular point of z = -b, (not b) so that the transformation is non-
conformal and the trailing edge becomes a cusp. But the velocity
at the trailing can be finite if the point § is a étagnation point.
To satisfy these two conditions with a given location of X, and Yo

for the center of the circle as in Fig. 1, one obtains

I

b

2 2
o SQRT(g --yo) - X

(5)
ﬁnav sin(a + B) | (&)

o}

K

where a = the angle of attack and _
B = arcsin( yo/a‘) _ A7)

Hence for b = bo’ we have a sharp cusped traiiing-edged airfoil,



-In engineering design of airfoils, the trailing edge is a littlé
rounded. To acheive this, the value.of b is chosen a little less
than bo. For the same X and y o Point § reamins at z = -b but
the singular point z = ~b is within the circle. After transformatlon,
Points $ becomes a rounded tfailing edge which is conformal with an

angle (Glauert 1926) at the trailing edge equal to

6 = x(2 - SQRT(5(b/bO)2 +.1) | '(8)

It can be seen that if b = bo’ e = 0.

To transform the flow about a circle into that about an airfoil,
one has to rotate and translate the z coordinates system in.order to get the =z
system as showm in Fig. 1 and then transform the z system inno the
Z system by the Joukowski transformation. The variation of Joukowski
airfoil dgpends on these three parameters: b, xé and Yo For instance
X, = 0.yields circular arc airfoils and Y= ¢ yields_symmetrical airfoils.,
-The variation of b will be used as an example as follows:

_ Given V = 1 ft/seec, a = 1 ft, @ = 10 degrees, X, = = 0.05a and
y, = C-Oka (Bairstow, 1946), one obtains K = 2.193 ft /sec and b = 0.9588
from Eqs. 6 and 5 respectlvely. _

Figures 4 and 5 show the streamlines about airfoils with the
value of b equal to 0.94868 and 0.9110Lk and the angle © (Eq. 8)
equal to : L 2. 851 and 13. 5&8 respectively. In these

two cases, the trailing edge is observed to be a stagnation point

so. that the flow proceeds smoothy over the airfoil. The forward
stagnation point lies on the underside and near the nose of the airfoil.
.Leading edge suction effects are evident as the streamline spacing. |
is observed to be smaller. : - R

Figure 6 is a typical chordwise pressure distribution corrésponding
to an angle of attack of © degree for an airfoil as in Fig. 5. It can
be seen that the major portion of the 1lift contribution from the pressure

-distribution-is derived from the suction and compression on the |
upper surface and underside, respectively, around the leading edge of
the airfoil. |

Numerical integration of the pressure distribution in the chordwise
and normal dirction can lead to the determination of the 1ift coefficient

‘of the airfoll. This shows that the lift force can exist in a perfect
fluid and obeys the Kutta-Joukowski theorem of 1lift. Further computation

can give the moment of the Joukowski airfoil.

!



CONCLUDING REMARKS

The objective of adequately simuléting the performance of Joukowski
airfoils with a digital computer and plotter has been paftiallj
accdmplished. It. 18 evident that the simulation procedure has a high
educational value with regard to the visualization of streamlines
around circles and airfoils etc. All the essential features of the
potential flows are clearly and effectively demonstrated by this
téchnique. The difficult aspects in sigular points as well as the
variety of Joukowski airfoils can be easily and aptly illustrated. The
computing techniques involved are relatively simple and straighﬁ—
forward for students with an elementary knowledge of comuter programming.
_ Finally, the time saving and self-interest of this simulation technique
are evident, and a computer has to go with alplotter-for educational

“stimulation.
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Fig. 1 Geometrical construction



“Fig. 2 'Potential flow about a circle with K =1’f) ftglsec_,
a=1¢€ft and V = 1 ft/sec.






Fig. U Potential flow about a Joukowski airfoil with b, = 0.9588, b = 0.9487,
' 0 = 2.831 degrees and o = 10 degrees.



_ Fig. 5 Potential flow about a Joukowski airfoil with b, = 0.9588, b = 0.9110,
© = 13.348 degrees and o = 10 degrees.
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Steady, incompressible flow about a Joukowski airfoil section
is simulated at moderate angles of attack using a digital computer and
plotter. The effect of various transformation parameters as well as the
streamline pattern and pressure distribution about the airfoil is illus-
trated. MNumerical integration of the pressure distribution at 6.SOoangle
of attack yields a lift coefficient that agrees faﬁorably with known ex-
perimental results.

The value of the simulétion technique as a teaching tool is
demonstrated. The method is shown to be particularly useful for fléw
visualization as all the basic features of the Joukowski transformation
‘ aﬁd the potential flow streamline patterns are clearly depicted. Since
'only relatively unsophisticated computing methods are required, the simu-
lation process provides a flexibility that is conmveniently coupled with
an obwvious time¥saving and economic advantage as compared to that done by

slide rules_or desk calculators.

$ This work was supported by McGill Computing Center.




1. Introduction

The.principle of aerodynamic analysis of two-dimensional flow
abqut an airfoil thrqugb conformal transformation is well established
{Glauert, 1926); Essentially, this'méthod consists of mapping the poten-
.tial flow about an‘infinite circuiar cylinder with circulation into é
complex plane in which the cylinder is transformed into an airfoil shape.
The.streamlines are transfdrmed as well, hence the flow pattern about the
airfoil is easily obtained. By varying the origin of coordinates in the
complex plane associated’with the cylinder and the parameters of the

transformation, different airfoil shapes may be obtained.

2. Potential Flow About a Circular Cylinder

In order to successfully apply the technique of conformal
transficdrmation, the flow must be steady, two.dimensional, incompressible
"and irrotational. Under these conditions the velocity potential §5 and
éhe stream function 9& may be defined. Since these functions are harmonic,
| i.e., everywhere continuous and orthogonal, lines of constant $b {(which
~represent the streamlines) are also subject to conformal transformation.
The transformation from one coordinate sysfem.to another sYSfem"

is aécomplished with the aid of the complex potential function ®
W= fCF) = iy e (1)

which is defined in terms of the complex coordinate

3 o= Xt L% - e’

.\

For the flow about a circular cylinder with circulation in a uniform stream



parallel to the x-axis, the potential function &) is given by
, :
— j% |
U(3+§)+m~-~ 1--- : (2)

where [J i1s the free stream velocity, O. is the radius of the cylinder
and r‘ is the circulation. In the present application, the streamlines
are of primary interest and according to (1) the appropriate stream

function is (see Figs. 2 and 3)
2.

Ugt(/‘- ag) 7T I 1+’5) (3)

Thus the line {P = () corresponds to the stagnation streamline, part of

which is coincident with the boundary of the cylinder Jf = L.

The Joukowski Transformation

The simplest transformation which maps the flow about an
infinite circular cylinder in the 3 =X +{ g plane intoc a flow about
an airfoil in the new C = E +L?Z plane is the Joukowski transformation
= bl o
g = 3’ + = % | &)
where b is an arbitrary, but real, constant. The singular points of the
transformation are 8 =0 , ib . Therefore the constant D should be
chosen so that these points (which lie on the Y —axis) fall within or on
the circle ) = . . 1In the '5' plane, the point }= /L e"e is trans-

formed into the plane accotrding to the relations
, g

b* By sing o
§=(f?~+7,j')w$@, | 92:(1},-*75)5;@9 (5)



Furthermore, a circle of radius in the plane corresponds to the
) P

—rT + oy

equation in the ?; plane 2

hence in the gemeral case the circle is transformed into an ellipse.
The manner in which velocities are transformed can be inferred
from equation (1) since the velocity components & and VU~ relative to the

-~ and y axes respectively are given by
A W
4 %

The analogous expression in the g plane leads to the velocity transfor-

= 4L -“AZ'UV

mation relation . \/ '
&

V., =

z (6)

oG
A %

where \/g and 3 are the velocities at corresponding points in the g’

and 5 planes respectively. For the present case where the transformation
is given by (4) it is evident that

2 :. 2 'R : bz L L
5] | - - - fenrconsd

A more conventional airfeil shape and flow pattern can be obta-ined
by expleiting several features of the transformation. The airfoill will have
a finiterthickn_ess and caﬁaber if the center of th'e circle /L =@, 1is offset
by an amount 5’!:: 4‘:&0""‘:30 from the origin of coordinates (Figure 1). In
particular, a circula'r arc airfoil results (zero thickness) if X =0 and a
symmetrical.profile (zero camber) is obfained if ’? =0 . The shape of the
airfoil section is also dependgnt upon the choice of the.parameter -5:- R

which is more or less arbitrary. Specifically, the angle ﬁ controls the



camber of-the airfoil wﬁile the ratio = fixes the thickness. Referring
fo,Figure (1) and Equation (5); it can bé seen that the point S (8 =~T7)
where the circle cuts the negative I axis will be transformed to the trail-
ling edge of the éirfoil, 1f :; is a singularity of the transformaﬁion the
-mapping is no longer coﬁformal at this point,.and the airfoil takes on a
sharp trailing edgé. For this reason ID is frequently chosen as the dis-
tance -h? in the diagram, and this choice always results in a cusped trail-
ing edge as. cLE/fci3, is then zero at J; . Although this ébaracteristic
is usually avoided in the design of most aircr;s‘.f‘t wings, this proceduré re=
sults in an airfoil with a well rounded 1eading.edge, as the other singula-
rities 3-=0, 4h will then lie well inside the circle in the F plane.
- Several ﬁethods may be employed to eliminate the cusped trailing
edge, and these usually involwve modiffing the transformation so that a
finite trailing edge angie is produced with-b<:bo, i. e;, reducing the
value of b slightly so that the singuiarity lies just inside the circle

and the trailing edge becomes slightly rounded (Bairstow, 1946).

Angle of Attack and Circulation

VThe-Jbquwski transformatibn.does not alter the flow pattern at
j% ==:t ¢, hence if the :(_,%f axes are at some angle of relative to
the free stream velocity {J , the airfoil will be at an angle of attack A
in the 2; plane. Howevér, for arbitrary values of the circulation 7, the
traﬁsformation usually leads to the physically inadmissable situation of
infinite velocities at the trailing edge of the airfoil. For the case of
aICusped airfoil this difficulty is overcome by applying the Kutta condiFion
| which states that the circulation should be such that the flow leaves the

trailing edge smoothly but with a finite velocity, and is equivalent to

demanding that the point :; be a stagnation point on the circular cylinder.



This procedure leads to a unique relation between the circulaticn f1 and

the angle of attack «

K

N \ : .
4at o (&+3) (8)
where the angle ﬂa is defined in Figﬁre 1, Although in this case Equation
(6) leads to an indetéfminate expression, a simple application of L'Hespitals'
rule shows that the velocity of the trailing edge is indeed finite.

When the trailing edge,is rounded, some authors remark that the
Kutta condition "is lost' (Glauert, 1926; Pope, 1951). Despite this, one
can still demand that point ,§ fe-a stagnation point in the 3 plane so
that Equation (8) remains valid., The only difference is that a&§}/€f5. is
‘now finite since E} is inside the circle so that the point S {(the trailing
~edge) is also a stagnation point in the § plane.

The flow field around the airfoil can then be completely deter-
mined. However, the potential and ;tream functions defined by Equations (1),
(2) and (3) correspond to the case where the uniform [/ stream is parailel
to the > -axis. Thus points in the flow field are computed in this
coordinate system (Figure 1) and are then rotated through an angle A by

the rotational matrix

R L -~ Sth ol
" (9)
3ind o CesH

and translated by the amount ’3(): 2, + La.o into the 3; plane from which

the transformation takes place.

Pressure Distribution and Lift

The ultimate aim of the_conformal transformation is to obtain



the velociﬁy &istribution in the Z: plane so that t.h;a aerody_namic perform=-
ance of the airfoil caﬁ be calculated. in particular, the Lift is of
primary interest, and this is determined by computing the velocity (and

" hence the pressure} on the sﬁrface cf the airfeil. This ;\relocity, which
is purely tangential to the i)ody surface and corresponds to the 55' =g
streamline, is denoted by the subscript (o) and in the 2»/ plane (relative

¥
to the X - '33 axes

oY n
Vo = = a/u/,z, o 20 56" “* 2ma

Then according to (6) and (7) the velocity in the g plane is

L= (205in 6"+ 2;{:&)/[(!“ 2 (s 26) - +/--~5m 29)]

where ( }y , & ) are the coordinates in the X - g’ system that correspond
‘ , , _
to the cylinder coordinates ( A’, & ) in the X - %}' system.
Since the flow is incompressible and irrotational, the pressure

distribution is given by Bernoulli's equation
/P -+ J = tant -+ { £
i = a = s,
° 5 F’V; constan ‘ﬁ) 3 FV

where TJ is the pressure on the surface of the airfoil while f? and ’F
& .
are the density and free stream pressure respectively. The pressure coeffi-

cient for the airfoil is then given by

- 2 :
CP = /fjne(jjz' = /- (“{%ﬁ (11)
FAR

Despite the fact that the lift force in the direction perpendicular to the

(10)

free stream can be computed directly by the well known Kutta-Joukowski theorem

pul’



The same result can be obtained by integrating the pressure force
around the airfoil. In the E and 7? directions (parallel and
perpendicular to the airfoil chord) the net forces are (see Flig. 9 for F_ )

S

'zrﬁax fh’lﬁx.
/:,-*-*-"'/'(‘DUL (Cp -, )7 inpul G, -C )d}' (12)
L 2 SRR , Foz A Cr
%ﬂm , fmf}; _ :
Whefe the subscripts (+) and (-).refer to locations that‘are positive
or negative with respect to the 5 and 7(7 axes. However, since the
airfoil (i.e., § axis) is at an angle of attack o( relartive to the
free stream, the net 1ift perpendicular to the O{ direction 1s

| .—,.-'/Zg cre L - 1[’:2‘5”?@(.

and the ‘ - 1ift coefficient per unit span is

L A wmd - smd
CL = / L= (13)
z FUC -

where ( is the chord of the airfoil ( € = % max - E‘min). In
accordance with the theoretical considerations the 1ift and drag forces

should be equal to (ofj/h'and zero respectively,

" Computer Simulation

Once the airfoil shape and free stream conditions are decided
upon ( (U, a , ol , b s x‘o"?c are specified) the computational
procedure is straightforward. First, the angle ﬂ is calculated and

the circulation /_’ is computed from Equation (8). The streamlines in



the 'a) plane are determined b& specifiying S& and varying one of the
coordinates in the 3 plane (say X ) and calculating the other ( éf )
from Equation (3) by iteration. These coordinates are then rotated by
-(9), translated by an amount 3.0 and finally transformed into the
plane according to Equation (5). Velocities are transformed by Equation
(10) and the pressﬁre &istribution is determined %rom Equation (11}.
Finally, the iift force components are calculated by.Equation (12} with
the aid of a numerical integration scheme and the lift coefficient is
computed from Equation (13).

The above procedqre is a relatively simple operation on a
digital computer and the results can be conveniently displayed by a
&igital plotter. 1In tbié way various @arameters associated with the
transformation can be varied systematically and visual results obtained
rapidly with comparitive ease. Computer simulation of tbe phenomena
tﬁerefore has.a high instructional value,

A specific airfoil was chosen for the simulation and a descrip-
‘tion of the physical characteristics as well as the results of wind tunmnel
tests are presented in the literature, and it is denoted as aiffoil nA

(Bairstow, 1946). This airfoil is constructed with the transformation

parameters

| " L4
xoz'oq\a'j- '3‘02'0561") b=(d“g:)1*lo=,?éaJ b°$,9/5{.

which yield a slightly rounded trailing edge due to the fact that b is
a little less than the value b;==0.96 required to place the singularity
3 = - b on the circle J), =€ . The Joukowski transformation associated

with these parameters gives an airfoil with a maximum thickness and camber



of about 8% and 6% respectively.

For the simulation, the radius of the circle and the freestream

velocity were conveniently chosen as

oL =1 ft., {/ =1 ft/sec.

=

.and the angle of attack was varied between 0 and ;0 degrees.. éollowing

the procedure out}ined above,.the streamlines in both the é?’and a: planés-
were constructed and the 1lift characteristics of the airfoil were determined.
The simulation was carried out on an IBM 360 computer with the aid of a
CALCOﬂP digital plotter. A compﬁter—plotter program together with a

sampling plot is included in this report.

Results and Discussion

In order to clarify as well as‘viSUalize the influence of the
parameter b/a. on the airfoil shape, sﬁreamline patterns were plotted
for several values of é% . As noted above, %% = 0.96 will yield a cusped
trailing edge while sméller vaiues give a rounded trailing edge. Figures 4 to 8
show tbis.influence rather dramaticélly for the cases of various‘%‘ at an

angle_of attack of 10°. Clearly, the airfoil takes on a nearly elliptical

shape for relatively small values of li and a more conventional shépe as

a.
approaches the value appropriate to a cusped trailing edge. It is interest-
ing to note that if the critical value ji = 0.96 is exceeded and b/a =1 is
Q. . . '

used, the airfoil profile becomes that of a flattened figure 8. Figure

aléo illustrate the influence of parameter b/ upon the rounding of

the léading edge, thickness and camber; In addition, the validity of the
- Rutta formula (equation 8 ) relating circulation and angle ofrattack is

clearly demonstrated: 1In all cases the trailing edge, although rounded, is



'Vobserved to be a stagnation point so that the flow proceeds smoothly over
the airfoil. |

Figufe_e and 3 show the streamline pattern and transformation
parameters appropriate to airfoil "-A " for the circulation r1 = 5, 10 ftZ/sec.
and. .. these ;esuits correspond to the unrealistic values of A = 200,.50O
respectiﬁely. © They aptly illustrate the effects of circulation on the
streamline pattern associated with the potential flow about a circular cylin;
ﬁe?( In particulér, the downward movement of the stagnation points is clearly
and dramatically illustrated by the CALCCMP plotter.

The more intgregting situyation of the flow pattefn in the Z’ plane
is shown in figure 6 which depicts the streamlines correspon&ing to air-
foil " A " at an angle of attack of 10 degrees. Firsé, it should be mnoted
that the choice of b/a = .911 yields an airfoil shape that is quife.con-
ventional with only a slightly rounded trailing edge and a well rounded
leading edge. As éxpected, the rear.stagnation point occurs at the trailing
edge while the forward stagnation point lies on the underside but near the
nose of. the airfoil; Leading edge suction effects are evident as the stream;
line spacing is observed to decrease as the angle of attack incfeases. " Here,
the usefulness an& power of the Joukowski transformation is vividly demon-
strated.

The chordwise ( %f direction) pressure distribution corresponding
to an angle of attack of 6° is shown in figure (9), and it is evident that
the figure is typical of conventional airfoil shapes. Particularly evident
is the leading edge suction, although the sudden rise in pressure at the
trailing edge (stagnation point) is not realistic owing to the relatively
small wake that would be observed at this angle of attack.in practice.. |

‘Clearly demonstrated is the well known fact that most airfoils derive the



major portion of their lift from the suction on the upper surface of the
airfoil rather than the positive pressure on the undersidé, as might be

supposed by é.layman.

Concluding Remarks

The stated objective of adequately simulating the performance
of a practical'Joukowski airfoil section with a digiﬁal computer and plotter
has been successfully accomplished for moderate angles of attack. Generally,
the theoretical results with regard to the flow pattern and pressuré distri-
bution are reasonable, and comparison with the limited experimental results
that are available is quite fayorable.
It is evident that‘the simulation procedure has a high educa-
tional value, particularly with regard to streamline pattern viéualization.
" All of the essential featureé of the potential flows involved as well_as
the lifting characteristics of airfolls are ciearly and efficiently demon-
strated by this technique. 1In addition, the finer points as well as the
‘flexibility of the Joukowski transformation can be aptly illustrated; The
computing techniques involved are relatively simple and straightforward,
and despite the usual debugging problems that arisé, the method can be
applied by'students with an elementary knowledge.of‘computer programming,
Finally; the time saving and economic advantageé of this simula-
tion.technique are-self#evident. Indeed, the task of performing the calcu-
lations manuallf for just one angle of attack demands about sixteen man-hours
(Pope, 1951) while the computer does the job in.a matter of minutes, and for

a fraction of the cost, and provides the streamline patterns as well,
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Fig. 1 Geometrical construction
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Flg 2 _Potential flow about a circle with K :10-ft2/sec )
a =1 ft and V = 1 ft/sec. :






Fig.4 ©Potential flow about a Joukowski airfoil with bé = 0.9588 and b = 0.7748 and o = 10 degrees



—// .

Fig.5 Potential flow about a Joukowski airfoil with b0 = 0.9588, b = 0.8568. and @ = 10 degrees |



Fig. 6 Potential flow about a Joukowski airfoil with b =0.9588, b = 0.9110, and @ = 10 degrees



;—‘#;—#'—ﬂﬂf‘;“;‘_f’__f_,_,_uﬂ;-———~‘"*“"*' , | ——"%;—h;-“hf_“;“-*;f“‘"-____ﬁ

Fig. T Potential flow about a Joukowski airfoil with b = 0.9588, b = 0.9487, and @ = 10 degrees




Fig. 8 Potential flow about aJoukowski airfoil with b, = 0.9588, b =

1.C and @ = 10 degrees
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G LEVEL

801

15 MATIN 7 DATE = 71084

DIMENSICH ITINFSE#OO?,X(éOC)'Y(AOO} YTRIAL(Z0Q),
1 ZATA(4COY,ETAL400)

DIMENS IGN XP{@GO),YP(éQO},XRBDDY(4OG),YRBGDY{4003
CALL PLOTON '

XLIMIT=8.0

PSILIM=3,5

U=1,0

CALL SYMBLL{640:2+0,0.25,

1 I7THJLUKDWSKI AIRFOIL,00.0,17)

CALL SYMBGL{T7e0,:1e53022 '

1 EHANGLE # 4000,8) |

ALPHA=AMGLE CF ATTACK{INCICCENCE), GAMMA=CIRCULATION
XG=0p 0 4%A

YG={sCERA

BATA=ARSINIYG/A)

CALL REOGCY{A;XRBLDY,YRBODY M)
ALPHAR=10,.0

ABC=,82

ALPHA=ALPHAD#3,14159/180,.5
CAMMA=4,0%2, 141 56xUAXSIN(ALPHA+BATA)
NSTOP=( '

OO 881 TA=1,200
Y{IA}I=(,0
CONTINLE

CALL KC%KI(&PC XRBQDY,YRBGCY 2y AL ALPHAL,ZATALETA)
ZATA(M41 Y==5,0 ’
ETA{M+1}==-5,C

IATAIM42)=1,.0

ETA{M+Z)i=1.D

CALL DASEY{8,030s0:8s0,5100s 941

CALL DtSHY(“uez 590 16&1503 4)

CALL NLMBERiE«B,laS,GeZgALPHAD,O.G,—IF
CALL LINE{ZATAGETAM,1,0,0)

P51=NaC

KX=0

I=1

X{I)=—xLIN]T

YTRIAL{L1}=PSI/U

J=0

IF{I-12) 210,4210,220
YL=YTRIAL{I}={GAMMA+D.4)
YR=YTRIAL{I}+{GAMMA+C. &)

GO 7O 1CC

YL=YTRIALLI}-0,2

YR=EYTRIAL{I}+40a.2

YM=YL+ {YR=-YL) /2,

FCNY= U*YN-(A**Z#YM*U}/(X{I}**2+YN**23+ SAMMA/
1 (4+0%3414159)%ALOG{X{ 1) *¥2+4YMEX2)~PST
J=J+1
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C
IF{J-2€) 104,104,1000
1600 WRITE{E,4) 1 4X{T),¥YMFCNY,PST,GAMMA
4 FORMAT {0, *CANNCT GET CUT CF LOOP AFTER TRYING 277,
1 ' TI’“ES, ‘&**X{'y I%' ' ,='1F803,' YMz',
2 FB.B;' FChYz‘QF‘lOoS"‘ PSI=—",F6¢2. .
3 U GAMMARY,  F6,2)
o WRITEL{€,5)
5 FORMAT {# === e e e e e e e ')
GO TO zD

1C4 IF(PSINICE,105,1C06

CID5 IF{ABS{FONYI-l.0E-4) 20,20,10
106 IF(ABS{FCNY)=1u0E~3) 20,200,190
16 IF{FCNY) 30,20,4C

3¢ YL=YM
GO 1O 100
40 YR=YM :
GO 70 10¢C
C

20 Y{Ii=y¥V
IF{Y{1)+5,0) 31,32,32
31 IF(PSTY 33,33,34
32 PST=-P 1 '
34 NSTOP=CG2
GO T4 49
32 ITIMESI{I}=
IF{PST) 21,201,221
201 IF{X{I3+{A+0.2)}) 21,202,202
202 RADIUS=SERT{X{I1®=2+Y(1}#%2}.
IF(RADIUS-{A+0,01}112008,203,21
20¢0 I=1-1 Co
203 CALL KCSKI(ABC +XoY s T4A,ALPHALZATA,ETA}
IATA(I+1)==-8.0
ETA{I+1)=-5,D
IATA(I42)=1.0
ETA{T+2)=1.0
CALL LINE{ZATAETA,1,1,0,0)
WRITE{E,11
WRITECE,2) (XUI) oy YUJY L ITIMESTIY yZATALU) 4 ETALYY 3 =141
K=1 : , . ‘ :
BO 204 L=1,K
XP{L)=-X{1)
YP{LY=Y{1)
ITIMES{L)=0
I=1-1
204 CONTINLE
CALL KOSKI{ABC XP,YP4KyA,ALPHA,ZATA,ETAY -
CALL LINE{ZATASETAK,1,+0,0)
WRITEL{E, 1)
WRITE(E,2Z) (XPUJYsYPUJYHITINES(UY,ZATA(I) yETALI) yJ=1,K)
GO TO 4CC ' :
21 I=1+1
YTRTAL(I)=Y{1I-1}
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1i

IF{X{I-13} 22,300,300
IF(ABS{X(I-1}$~(A+1.0)) 23,23,24
XK{IY=X(I-1}+0

IF{PST} 200, 25 ZC”'
TRF{ABSI{X(I-1})=(A+D41)) 26,426,200
X{I}=X(1-1}+0,01

GO 1D zz0¢ -

XTI =X{I-114045
GO TO zGC

WRITE(E,2) PST,,GAMMALALPHAL

FORMAT{/ /12X, Y0 PSI=1',F7, 1,IGX,‘GAMMA“',F? 3910%,
1 'ALPEA=',F7.1,' DEGREES 1"}

N=1-1

K=2%N

DO 301 J=1,K

X{Jd}==%(M

Y{Ji=Y{N)

ITIMES{J}=0

N=N-1

CENTINLE

CALL KUOSKT{ABC ;XY sK3A ALPHALZATALETA)

WRITE(E511% :

FORMAT (800 22X,y Pt X 30k ¥, 22X, et Y &kt LN VTRTIALSY ,5X,
1 FZATAY,TXLETAYY

WRITECEL,2) (X(I) YT, ITIVES(T),ZATAL{T},ETALT),I= ng}
FORMAT{Z2FRa3,14,2FBe3,2X:2F8,s 3,1’,2F9 342X 2F8, 3,IA
12F 8. 3}

IATA{RKALY==8,0C

ETAIK+]1}==5,0

IATA(R42)=1.0

ETA{K+4Z2)=1e0

CALL LINE[ZATALETAK 1,0,0)

IF{PS]148,400,48

IF{NSTEP) 49,50,49
PSI=PSI+{, &

KHALF=K/2 . :
TF{Y(KFALF) -2, 5} 100,700,500
PSI=-pP L1 .

KX=KX+ 1]

IF{MOD(KXe2)} )Y TCL400,70C
FSI=PSI+Ls5 N
IR(PSI-PSILIMYTOG,T0C0,500
CALL PLOTH{18.040,0,-3)

CALL EMNDPLT

STQP ’

END

kS IN EFFECT# 1D ,BCC,SOURCE,NOLIST,NNDECK,LOAD,NOMAP
NS IN EFFECT* NANME = MAIN y LINECNT = 56
SOURCE STATEMENTS = 1364 PROGRAM SIZE = 19394

CTAGNOSTICS GENERATED

SN S X ey
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SUBROUTINE RBODY(A,XsY M)
DIVENSION X{400),Y {4001}
RACIAN=0,0 '
. I=1
10 X{1)=A4CCS(RADIAN}
- Y{I1=A2SIN{RADIAN) _
RACIAN=RADIAN+3,14159/180,0
I1=1+1
- IF{RACIAN=3.14159) 10,1¢,20"
20 N=1
h M=2%(1=-1)
L=N-1
DO 30 I=RN,M
X{Iy=%1{L})
Y{TI}==Y(L)
_ L=L~-1 -
30 CONTINLE
WRITE(£,1) :

1 FORMAT {/ g tmmmm mm e e e e 1}
RETURN
END

S IN EFFECT®  ID,BCD, SOCURCE,NOLIST yNCDECK, LOAD ; NOMAP

5 IN EFFECT®  NAFE = RBODY + LINECKNT = 54

F1CS* SOURCE STATEMENTS .= 214PROGRAM SIZE = 748
TICS*  NOQ CIAGNDSTICS GENERATED

14/33/209
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SUBROUTINE KCSKI {ABC s Xy YNy Ay ALPHA, ZATAR,ETAR}
DIMENSICN X{400),Y (40001, ZATAR{4D0Y ,ETAR{4D0)

iaNeNel

ZATAR=ZATA RCTATED, -~ ETAR=ETA ROTATED

BSQA=ABCH({A»*2)
DO 1 I=1,N
XROTAY=X{I)%COS{ALPHA) +Y {T )% STN{ALPHA}
YROTAY==X{I}2STN{ALPHA}+Y{I)2COS{ALPHA)

- XPRIME=XECTAY+0, 04%A
YPRINE=YFCTAY+ D, 05%A
ROU=SQRT{XPRIME**2 +¥YPRIME#*2)
ZATA={FOU+BESCA/ROCUI%(XPRIME/RCUY)
ETA=(RCU-BSCA/RCU) *{YPRINME/RQU)
ZATAR(I)=7ATA*COS(~ALPHA)+ETARSIN{-ALPHA}
ETAR(I })==ZATARSIN(=ALPHA)+ETAXCOS{~ALPHA)

1 CONTINLE

RETURN
END

N LT
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