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Abstract

The modelling of linear quadratic Gaussian optimal control problems on large complex
networks is intractable computationally. Graphon theory provides an approach to overcome
these issues by defining limit objects for infinite sequences of graphs. This permits one to
approximate arbitrarily large networks by infinite dimensional operators. This is extended
to stochastic systems by the use of Q-noise, a generalization of Wiener processes in finite
dimensional spaces to processes in function spaces. This thesis concerns the synthesis of
two types of stochastic system on large graphs: linear quadratic Gaussian problems with
estimation and linear quadratic field tracking games.

The optimal control and estimation of linear quadratic problems on graphon systems
with Q-noise disturbances are defined here and shown to be the limit of the corresponding
finite graph optimal control problem. The theory is extended to low rank systems, and a
fully worked special case is presented. In addition, the worst-case long-range average and
infinite horizon discounted optimal control performance with respect to Q-noise distribu-
tion are computed for a set of standard graphon limits. The convergence of finite network
linear system state estimates to their graphon limit counterparts is established. Computa-
tional examples of this convergence behaviour are illustrated with a set of standard graphon
examples.

In this thesis, linear quadratic games on very large dense networks are modelled with
discrete time linear quadratic graphon field games with Q-noise. In such a game, the agents
are interconnected via an undirected network with one agent per node. Gaussian distur-
bances that are correlated over nodes affect each agent. The limit of the finite-sized linear
quadratic network tracking game in discrete time is formulated, and it is shown that under
the proper assumptions, the game has a graphon limit system with Q-noise. Then, the op-
timal control of the discrete-time system is found in closed form and the Nash equilibrium
behavior of the game is demonstrated numerically. The infinite time horizon discounted case
is also analyzed, and a closed-form feedback solution is presented in the special case where
the underlying graphon is finite rank.
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Résumé

La modélisation des problèmes de contrôle optimal linéaire, quadratique et gaussien sur
de grands réseaux complexes est intraitable d’un point de vue informatique. La théorie
des graphes fournit une approche pour surmonter ces problèmes en définissant des objets
limites pour des séquences infinies de graphes. Cela permet d’approximer des réseaux de taille
arbitraire par des opérateurs de dimension infinie. Cette approche est étendue aux systèmes
stochastiques par l’utilisation du bruit Q, une généralisation des processus de Wiener dans les
espaces de dimension finie aux processus dans les espaces de fonction. Cette thèse concerne
la synthèse de deux types de systèmes stochastiques sur les grands graphes : les problèmes
gaussiens quadratiques linéaires avec estimation et les jeux de suivi de champs quadratiques
linéaires.

Le contrôle optimal et l’estimation des problèmes quadratiques linéaires sur les systèmes
de graphes avec des perturbations de bruit Q sont définis ici et il est démontré qu’ils sont
la limite du problème de contrôle optimal correspondant sur les graphes finis. La théorie est
étendue aux systèmes de rang inférieur, et un cas spécial entièrement travaillé est présenté.
En outre, les performances de contrôle optimal actualisé à long terme et à horizon infini
les plus défavorables en ce qui concerne la distribution du bruit Q sont calculées pour un
ensemble de limites de graphes standard. La convergence des estimations d’état des systèmes
linéaires à réseau fini vers leurs équivalents en limite de graphon est établie. Des exemples
de calcul de ce comportement de convergence sont illustrés avec un ensemble d’exemples de
graphon standard.

Dans cette thèse, les jeux linéaires quadratiques sur de très grands réseaux denses sont
modélisés à l’aide de modèles discrets.
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Chapter 1

Introduction

In modern society, the control and estimation of systems on large graphs is of vital

importance. Large graphs naturally occur in many situations, from physical systems such as

decentralized energy generation and distribution, to non-physical systems such as logistics

networks, social media, and financial markets. From a practical perspective, modelling these

systems directly is infeasible as they involve thousands or millions of agents acting in tandem.

These large systems are often buffeted by stochastic shocks, which increases the difficulty of

analysis from both a theoretical and a practical perspective. As such, the estimation and

control of such systems in a computationally tractable manner is critical.

This thesis concerns optimization and control of continuous-time linear quadratic prob-

lems on very large, dense graphs with stochastic shocks. The systems considered can be

broadly characterized as either optimal control problems of linear systems on large graphs

with quadratic costs, or linear games with quadratic costs where each agent attempts to

match its neighbors on the graph.

This document is structured in the following manner: Chapter 1 motivates the problems,

defines relevant notation, and gives required background on graphons, a type of graph limit

that allows functional analysis techniques to be applied to systems on graphs. Chapter 2

defines the variety of stochastic shock applied to the system, a generalization of multidimen-

sional Wiener processes to Hilbert spaces, as well as defining the linear quadratic Gaussian
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problem on large graphs, and demonstrates that the large graph state trajectory converges

to the limit graphon system. Chapter 3 introduces Kalman filter-based state estimation

for these systems, culminating in a Separation Principle for the control and estimation of

systems on large graphs. In addition, Chapter 2 and Chapter 3 also show that when the

graphon limit is finite rank, then the systems on large graphs can be modelled in a finite

number of equations (typically orders of magnitude fewer equations than the full state of

the graph system). Chapter 4 defines the graphon field-tracking game, where each agent in

a discrete-time game with stochastic shocks attempts to match their neighbors in the graph.

All chapters are supported with numerical examples.

1.1 Graphons

Large graphs are common objects in contemporary systems modelling and analysis, in par-

ticular for the purposes of optimization and control. Indeed, from the internet to electrical

generation and distribution to social networks, complex networks have been a focus of re-

search for decades. Many of these networks cannot be fully mapped; for example, it is not

possible to determine all connections on the internet currently active, as connections are

created and destroyed in real time. As such, global modelling and analysis problems are

intractable with standard methods for all sufficiently large networks.

Graphons (short for graph functions, and described in detail by Lovasz [1]) are one method

of providing qualitative properties to graph sequences of increasing size. Formally, a graphon

is any bounded, symmetric function mapping the unit square to the unit interval. Individual

graphs in a graph sequence can be mapped to the unit square by taking the adjacency

matrix and mapping them to piecewise constant step functions on the unit square, where

each partition denotes an entry in the adjacency matrix.

As explained by Lovasz, this sequence of piecewise constant step functions necessarily has

a subsequence converging to the graphon under the cut distance, which essentially quantifies

how closely two large graphs match if their nodes could be freely relabeled. To define the

2



cut distance, first it is necessary to define the cut norm as in [1],

||W ||□ = sup
S,T⊆[0,1]

∣∣ ∫
S×T

W (x, y)dxdy
∣∣, (1.1)

with the corresponding cut metric d□(U,W ) = ||U −W ||□. Further, let S[0,1] denote the set

of all invertible measure preserving transformations of [0, 1] to [0, 1], and for a graphon W ,

let W ϕ(x, y) := W (ϕ(x), ϕ(y)). The cut distance is then found by taking the infimum over

all such measure-preserving transformations of the second graphon onto the first,

δ□(U,W ) = inf
ϕ∈S[0,1]

d□(U,W
ϕ). (1.2)

Just as the adjacency matrix of a graph can have its rows and columns permuted without

changing the underlying graph, an invertible measure-preserving transformation applied to

the entries of a graphon does not change the underlying structure of the graphon. The cut

distance captures this behavior.

The compactness of the set of graphons under the cut distance allows certain questions

about large graphs to be answered by their graphon approximations. The difficulty with

the cut distance, however, is the infimization over the set of invertible measure-preserving

transformations. With this in mind, we restrict our consideration to graph sequences whose

piecewise constant step function equivalents converge to a graphon in the standard L2[0, 1]

operator norm. Thus, the intention behind this work is to apply the convergence of systems

on graphs to graphons in the L2[0, 1] function space and relate it to the analysis of stochastic

dynamic systems on large graphs. Medvedev [2] initiated the use of graphons as operators

for linear systems, though the work continued with Gao and Caines applying linear control

techniques to these graphon systems [3], [4].

The basic model is to map the adjacency matrix to a piecewise constant step function,

and then to take the limit as the graph size tends to infinity. This procedure is demonstrated

for a deterministic, continuous-time system on a graph in Figure 1.1.
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Figure 1.1: The finite-dimensional system (top) is mapped to the space of piecewise constant
step functions on the unit interval. The graphon limit is found as the size of the graph tends
to infinity. Picture credit: Shuang Gao.

Another important domain of this research is the approximation of large graph systems

by finite rank systems. In particular, when the graphon limit is rank M < ∞, then a system

on a sufficiently large graph can be approximated by an M -dimensional linear system. For

deterministic systems, this finite rank convergence was first shown by Gao and Caines [3],

[4].

This leads to the overall system model:

1. The system state on a finite graph is mapped to a piecewise constant step function on

the unit interval.

2. The graph system state tends to the graphon limit as the cardinality of the graph tends

to infinity.

3. Projecting onto M basis functions of the graphon limit yields a finite-dimensional

approximation of the graphon limit system.

4. The M -dimensional system can be used to either model or control the finite graph

system.
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Figure 1.2: The system model that allows graphs with a large number of nodes to be ap-
proximated by a system with fewer dimensions.

This is summarized in Figure 1.2.

However, in classical control linear systems theory, it is common to assume that modelled

systems have stochastic inputs. These inputs represent the fundamental limitations of the

model as compared to reality. Due to analytical difficulties of random variables in function

spaces, it is not straightforward to adapt the stochastic linear analysis in finite dimensions

to stochastic analysis in infinite dimensions. Prior research in the area of networked system

control via graphons is strictly deterministic ([3], [4]). Allowing the system to be influenced

by random perturbations enriches the modelling capabilities of the graphon-systems approach

and allows for important concepts such as state estimation under uncertainty to be well-

defined.

1.2 Stochastic Processes in Hilbert spaces

The primary extension of this thesis is to demonstrate that stochastic systems on these large

graphs also converge in a meaningful sense by using functional analytic techniques. The

approach used is to refine the notion of Q-Wiener processes to specify Wiener processes on

the unit interval. These processes, termed Q-noise, will be introduced formally in Chapter

2.

The extension of a random variable from having support in a finite-dimensional space

to an infinite-dimensional space must be attempted carefully. Even standard properties of

finite-dimensional analysis (such as the translation-invariance of the Lebesgue measure) may

5



fail to hold.

The space of square-integrable functions, L2[0, 1], is an infinite-dimensional separable

Hilbert space, so it is isomorphic to l2, the space of square-summable sequences. This is

a consequence of elements of a separable Hilbert space having an orthonormal basis—each

basis element ϕk of L2[0, 1] corresponds to the kth sequence element. Because of this fact,

in the cases we consider it is often easier to study and construct these sequences than to

analyze the corresponding square-integrable functions.

Pressingly, there is no random variable in a Hilbert space corresponding to an N -

dimensional Gaussian random vector that is independent in its dimensions. In finite dimen-

sions, a random Gaussian vector with independent dimensions has a well-defined covariance

operator so long as the covariance between any dimensions is finite. A naive approach to

constructing a “white noise” Gaussian random variable in the infinite-dimensional Hilbert

space l2 may have variance one for each index (k, 1 ≤ k < ∞), and a covariance of zero for

all (j, j ̸= k, 1 ≤ j < ∞). However, this yields a random variable that does not have a valid

probability measure, a fact proven by Kolmogorov and Khinchin in 1925 ([5][6, Theorem

2.4]).

Instead, to construct an l2 Gaussian random variable, g∞ = (g1, g2, ...), which is inde-

pendent between indices i and j, i ̸= j, it is necessary that the variances are summable.

I.e., if (w1, w2, ...) is a collection of independent Gaussian random variables, then g∞ can be

defined by

g∞ = (
√

λ1w1,
√
λ2w2, ...,

√
λkwk, ...) ∈ l2, (1.3)

∞∑
k=1

λk < ∞. (1.4)

As in [6, Section 2.4], this constructs an l2 valued Gaussian random variable. This approach

can be extended to Gaussian processes in space and time, commonly called Q-Wiener pro-

cesses (see e.g. [7], [8]). Rather than a collection of static independent Gaussian random
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variables, consider a collection of Wiener processes (W1(t),W2(t), ...); this defines the Q-

Wiener process g∞l2 (t),

g∞(t) =
∞∑
k=1

√
λkWk(t), (1.5)

∞∑
k=1

λk < ∞. (1.6)

This construction yields a time-varying l2 random process. As l2 is isomorphic to any separa-

ble Hilbert space by associating the indices of the sequence with the orthogonal dimensions

of the alternate space, if Q : L2[0, 1] → L2[0, 1] is a self-adjoint operator with eigenvalues

(λk, 1 ≤ k < ∞) and orthonormal eigenfunctions (ϕk, 1 ≤ k < ∞), then g∞l2 (t) is equivalent

to the L2[0, 1]-valued random process g∞L2(t),

g∞(t) =
∞∑
k=1

√
λkϕkWk(t) (1.7)

∞∑
k=1

λk < ∞. (1.8)

The space of square-integrable functions L2[0, 1] is very well-studied, and many domain-

specific geometric insights may be gained by considering the equivalent L2[0, 1] process rather

than the l2 sequence process.

To demonstrate why the Q-noise framework is necessary for the modelling of very large

linear systems, consider two linear stochastic systems of dimension N = 300. For each index

i ∈ {1, ..., N}, the ith state of both systems satisfies the following stochastic differential

equation with Brownian disturbance W i
t ,

dxi
t =

1

N

N∑
j=1

cos

(
π

(
i

N
− j

N

))
xj
tdt+ dW i

t ,

xi
0 =1. (1.9)
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In the first system, assume that the covariance matrix Q of the Brownian motion dis-

turbance between state i and state j is given entry-wise by Qij = 1 − max
(

i
N
, j
N

)
. This

system converges to a Q-noise system in the L2[0, 1] norm as the number of nodes increases.

In the second system, assume that the Brownian motion disturbances W i
t are independent.

The result is a system where the noise of individual states overpowers the trajectory of the

overall system. The sample trajectories of two such systems with terminal time T = 1 can

be seen in Fig. 1.3. This simulation suggests a method of identifying when a Q-noise model

is appropriate, as the system will have bounded variance.

In Dunyak and Caines ([9]), space-time Gaussian noise on the unit interval ([7] [8] [6]),

termed Q-noise, was introduced as a limit object for sequences of systems on graphs with

Brownian disturbances. Medvedev and Simpson [10] presented a numerical method of sim-

ulating such systems. Previous work on control via graphons has been primarily concerned

with deterministic systems ([11][3]), though there have been prior efforts to introduce infinite-

dimensional noise to graphon systems [12]. The intention behind defining Q-noise for graphon

systems is to create a well-defined method of applying linear quadratic Gaussian control (the

focus of Chapter 2) and estimation (Chapter 3) techniques to systems on large graph systems.

Linear quadratic Gaussian problems with Q-Wiener processes extend the standard linear

quadratic Gaussian results to infinite-dimensional systems [13]. For two positive operators

M and R, the linear quadratic Gaussian problem infinimizes

inf
ut

∫ T

0

E[⟨xs,Mxs⟩+ ⟨ut,Rut⟩ds] + ⟨xT ,MxT ⟩. (1.10)

This is commonly used to control infinite-dimensional distributed parameter systems, such

as heat equations [14].

The Kalman filter is the optimal least-squares linear estimator of a state process (initially

for discrete-time systems, but extended to continuous-time processes by Bucy [15]), i.e., for a
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Figure 1.3: Top: Trajectory of system (1.9) with independent noise at each node. Because
the magnitude of the independent noise is so high, there is no clear system structure in the
state trajectory. Bottom: the state trajectory of system (1.9) with a Q-noise disturbance.
While there is clearly noise present in the system, there is an overall structure suggesting
that the limit will be continuous in both space and time.
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stochastic linear state process xt with an observation process yt, the Kalman filter minimizes

x̂t = min
ξt

E[xt − ξt|yt]. (1.11)

We note that the Kalman filter for infinite-dimensional systems is well-known, initially char-

acterized in 1975 by Falb [16], and later extended by Curtain [17]. Curtain and Ichikawa later

classified a Separation Principle, showing that for infinite-dimensional systems the determin-

istic linear quadratic regulator problem and the least-squares state estimation problem can

be solved independently [18]. Applying this Separation Principle to a convergent sequence

of graph systems forms the culminating theorem in Chapter 3: the graphon state estimate

of a large graph system can generate an approximately optimal control for the finite graph

system. This allows the finite graph system to be controlled even when the exact data of

the underlying adjacency matrices AN and BN are unknown, so long as they converge to the

graphons A and B.

In finite-dimensional graph systems, the Kalman filter has typically been used as a method

of state estimation over sensor networks, as in [19]. Typically, it is modified to emphasize the

distributed nature of sensor networks [20]. Much as how graphon theory assumes a particu-

lar graph property—density—these distributed Kalman filter methods exploit the structure

of specific networks (for example, for bipartite graphs [21]) to overcome the difficulty of

decentralized estimation and control.

1.3 Graphon Field Games

Adapting the definition of Q-noise from continuous time to discrete time, a linear quadratic

game with correlated Gaussian disturbances on an infinitely large dense graph is investigated

where each node represents a single agent is presented in Chapter 4. To distinguish this

from the infinite-agent-per-node graphon mean-field game (GMFG) model, this approach

was termed the graphon field game model. The fundamental difference between the GMFG
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model investigated in [22], [23], [24], [25], [26] and the graphon field game model presented

here is that each agent in the graphon field game is associated with a single node in the

graph, rather than an infinite number of nodes. The GMFG model’s strongest benefit is

that agents only affect the game state as a mass—as there are an infinite number of agents

at each node, the actions of a particular agent do not influence the average state of either

the local node or the game as a whole. In both standard mean-field games and GMFGs, this

is known as the mean-field game assumption. This assumption allows the trajectory of the

limit game to be modelled as a Fokker-Planck-Kolmogorov equation [27] with an associated

McKean-Vlasov equation. Continuous-time stochastic mean-field games on graphons with

Q-Wiener processes were analyzed in [28]. GMFGs have been extended in particular to the

case of large sparse graphs in [29], [30], and [31].

A difficulty with some interpretations of the GMFG approach is that idiosyncratic noise

in space implicitly appears which would lead to singular random processes. One approach

to averting this measurability issue by Aurell et al., for linear quadratic GMFGs is to use

the Fubini extension [32], which was extended to bilinear epidemic games in [33]. The use of

discrete-time Q-Wiener processes in Chapter 4 is another attempt to solve the measurability

problem of applying idiosyncratic Wiener processes at each node.

The model presented in Chapter 4 is a stochastic, discrete-time version of a model first

proposed by Gao et al., [34]. By introducing a definition for discrete-time Q-noise (which

is much simpler than the continuous-time definition from an intuitive perspective, as it is

a sequence of Hilbert space-valued random variables rather than a continuum), we find a

closed-form solution to the game by using the mean-field game assumption and the graphon

field definition.

1.4 Contributions

In Chapter 2, we:
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• provide motivation for the approximation and control of stochastic processes on large

graphs using Q-noise.

• Demonstrate that, under the proper conditions on the system parameters, a linear

stochastic process on a finite graph converges to a graphon limit process.

• Show that the same convergence behavior holds true for linear quadratic Gaussian

problems on large graphs.

• Define the infinite time horizon long-term averaging (LTA) problem for graphon sys-

tems, and we find a closed-form solution for a natural class of such LTA problems.

In Chapter 3, we:

• Extend the work of Chapter 2 by interpreting the infinite-dimensional Kalman filter

(for infinite-dimensional linear systems driven by Q-Wiener processes) in the context

of graphon systems.

• Show that the Separation Principle of estimation and control for infinite-dimensional

systems holds, and that this allows a system on a large finite graph to be estimated

and stabilized by its limit graphon system.

In Chapter 4, we:

• Modify the graphon field game definition of [34] to discrete-time stochastic linear

quadratic games on graphons.

• Derive an optimal Nash equilibrium strategy for each agent in the game as an adapted

backwards stochastic difference equation.

• Identify a possible solution to the infinite-horizon discounted game.
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Chapter 2

Linear Quadratic Gaussian Control

2.1 Introduction

Large graphs are common objects in contemporary systems modelling and analysis, in

particular for the purposes of optimization and control. Indeed, from the internet to electri-

cal generation and distribution to social networks, complex networks have been a focus of

research for decades. However, global modelling and analysis problems are intractable with

standard methods for all sufficiently large networks.

One approach to handling large networks is to use the theory of graphons [1]. Informally,

a graphon is a function on the unit square which represents a limit of the adjacency matrices

of a sequence of graphs. Consequently, using graphons for modelling large systems allows for

the approximation of very large networks within a functional analysis framework and hence

enables their modelling, analysis, and design.

The use of graphons in system dynamics was initiated by Medvedev [2]. Previous work

on control via graphons has been primarily concerned with deterministic systems ([11][3]),

while stochastic mean-field games on graphons have been investigated in [22], [23], [24], [25],

[26] and with Q-Wiener processes in [28]. Graphon Mean-Field Games have been extended

in particular to the case of large sparse graphs in [29], [30], and [31]. The use of Q-Wiener

processes solves the measurability problem of applying idiosyncratic Wiener processes at
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each node, which was addressed by Aurell et al., for linear quadratic graphon mean-field

games using the Fubini extension in [32] and for epidemic games in [33].

In Dunyak and Caines [9], space-time Gaussian noise on the unit interval ([7] [8] [6]),

termed Q-noise, was introduced as a limit object for sequences of systems on graphs with

Brownian disturbances. Medvedev and Simpson [10] presented a numerical method of sim-

ulating such systems. This chapter demonstrates that linear quadratic Gaussian (LQG)

optimal control problems on large graphs can be approximately solved by the graphon limit

of their system. The analysis relies on the Hilbert space methods in Ichikawa [13] which

is extended here to long-range average and infinite discounted cost LQG problems, the for-

mer of which is derived with a limit argument and the latter of which is solved via the

corresponding algebraic Riccati equation in the case of purely local controls.

In the following subsections, we provide the motivation for modelling linear quadratic

Gaussian systems on large networks with their graphon and Q-noise limits. In Section 2.2.1,

we define the notation used in this thesis, as well as summarize relevant prior results for Q-

noise systems. In Section 2.2.4, we present the formal proof that the finite-dimensional linear

quadratic Gaussian system converges to the infinite-dimensional linear quadratic Q-noise

system, as well as presenting the long-range average and exponential discounting problems.

Section 2.4 extends the analysis of low rank graphons presented in [4] to Q-noise systems.

Section 2.5 demonstrates the utility of the Q-noise approach in that the solutions to LQG

problems on large unweighted random graphs are shown to be well-approximated by lower-

order systems derived from the graphon limit of the original system.

2.1.1 Motivation: Networked Systems and Graphons

Define two graphs GN
A = (VN , E

N
A ) and GN

B = (VN , E
N
B ) with N < ∞ vertices, with

associated adjacency matrices AN and BN . Let xN : [0, T ]N → R be a vector of states,

where the ith value is associated with the ith vertex of the graph, and let uN : [0, T ]N → RN

be the control input at each vertex. For clarity of notation, systems where each node has
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a scalar state are considered below. The theory extends to systems with vector states at

each node in a straightforward manner. Let the (i, j)th entry of the matrices AN and BN

represent the impact of the state and control input at node i on node j, respectively. For

each node, define a Brownian motion such that the N -component Brownian motion WN has

a strictly positive covariance matrix QN . Let aN and bN be constants describing the impact

of the state of a node and its control on itself.

Finally, define a network-averaged control system [3] on a graph with the following equa-

tion for each node,

dxi
t =(aNx

i
t +

N∑
j=1

AN
ijx

j
t + bNu

i
t +

N∑
j=1

BN
ij u

j
t)dt+ dWN

i (t), (2.1)

or in vector form,

dxN
t = ((AN + aN)x

N
t + (BN + bN)u

N
t )dt+ dWN(t). (2.2)

Subject only to the assumption that the entries of AN and BN are uniformly bounded in

N , the sequences of adjacency matrices {AN} and {BN}, 1 ≤ N < ∞, defined on the unit

square converge, as N tends to infinity, to their (not necessarily unique) associated graphon

limits [1], which are bounded measurable functions mapping [0, 1] × [0, 1] → [0, 1]. These

are denoted A and B (as in [3]). In order to disambiguate the convergence of the adjacency

matrix AN to the graphon A, the scaling term 1
N

is omitted when AN is acting as an operator.

This scaling is to ensure that the summation ANxN is bounded and converges to the correct

integral. When the underlying graph is undirected, its graphon is also symmetric. Denote

the graphon limit system as

dxt = ((A+ aI)xt + (B + bI)ut)dt+ dwt, (2.3)

where xt and ut are square-integrable functions on the unit interval, A and B are graphons,
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a and b are real constants, I is the identity operator, and wt is a Q-noise, a generalization

of Gaussian noise from finite-dimensional vectors to random time-varying functions the unit

interval as defined in Section 2.2.2, together with the conditions in Theorem 2.2.3 for the

existence of the limit in mean-square.

2.1.2 Linear Quadratic Q-noise Control

Let xN
t be the state of a networked control system on a graph GN as given in equation

(2.2). Suppose that MN is an N ×N positive matrix, and RN is an N ×N strictly positive

matrix. Then the associated linear quadratic Gaussian optimal control problem for a control

system with terminal time T is defined via the infimization of the performance function:

inf
uT
0

J(x0, u) = inf
uT
0

E
[∫ T

0

xN∗
t MNxN

t + uN∗
t RNuN

t dt

]
. (2.4)

The solution of the limit problem takes the same form as the standard finite-dimensional

LQG problem, but the equations have operator-valued coefficients and the solutions are

operator-valued. This work analyzes the properties of the operator limits of such sequences

of network-averaged optimal control problems and it is shown that the solutions of the limit

problems are obtained via the operator limits of the associated Riccati equations.

2.1.3 The Special Case of Finite Rank Systems

The systems described in the prior section are defined in the space of square-integrable

functions on the unit interval, L2[0, 1]. In general, it is not possible to find a closed-form

solution for such a system. However, when a system’s associated graphon parameters and

Q-noise covariance function are finite-rank, then the state of the system evolves on a finite-

dimensional space. This is explored in Section 2.4.
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2.2 Preliminaries

2.2.1 Notation

• The set of vectors of real numbers of dimension m is denoted Rm.

• Graphons (i.e. bounded symmetric [0, 1]2 functions used as the kernels of linear integral

operators) are denoted in italicized bold capital letters, such as A, B, and M .

• L2[0, 1] denotes the Hilbert space of real square-integrable functions on the unit inter-

val. In addition, L2[0, 1] is equipped with the standard inner product, denoted ⟨u,v⟩.

For any function v, v∗ denotes the adjoint of v. As such, ⟨u,v⟩ is sometimes written

as v∗u.

• The identity operator in both L2[0, 1] and finite-dimensional spaces is denoted I.

• Operators of the form A and B have the structure A = A+ aI, where A is a graphon

and a is a real scalar. Let M denote the set of these operators.

• A linear integral operator with the kernel Q : [0, 1]2 → R acting on a function f ∈

L2[0, 1] is defined by

(Qf)(x) =

∫ 1

0

Q(x, y)f(y)dy, ∀ x ∈ [0, 1]. (2.5)

• The operators Q are equipped with the standard operator norm ||Q||op. When unam-

biguous, the argument is dropped.

• A symmetric function Q : [0, 1]2 → R is non-negative if the following inequality is

satisfied for every function f ∈ L2[0, 1],

0 ≤
∫ 1

0

∫ 1

0

Q(x, y)f ∗(x)f(y)dxdy (2.6)

:= ⟨Qf ,f⟩ < ∞.
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Additionally, denote Q to be the set of bounded symmetric non-negative functions.

The set Q serves as the set of valid covariance functions for the class of stochastic

processes called Q-noise processes.

• For a given linear system xt satisfying ẋt = Atxt, Φ(t, s) denotes the semigroup

solution operator solving xt = Φ(t, s)xs for any given initial condition xs.

• Q-noise processes (stochastic processes over the time interval [0, T ]) will be denoted as

wt. For each t ∈ [0, T ], wt is an L2[0, 1] function. The precise definition of a Q-noise

process is given in Section 2.2.2.

• A partition of the unit interval of N increments is denoted PN = {P1, · · · , PN}, where

P1 = [0, 1
N
] and Pi = ( i−1

N
, i
N
]. An L2[0, 1] function which is piece-wise constant on the

unit interval is denoted v[N ], and a self-adjoint L2[0, 1] operator M which is piece-wise

constant on the Cartesian product PN × PN is denoted M [N ] (or M[N ], if it is of the

form M[N ] = M [N ]+mI). This formulation is necessary for mapping N ×N adjacency

matrices of networks to functions on the unit square, as in Section 2.2.5.

2.2.2 Q-noise Axioms

Q-noise processes, first applied to graphon systems in [9], are L2[0, 1] valued random

processes that satisfy the following axioms.

1. Let Q ∈ Q, and let ([0, 1]× [0, T ]× Ω,B([0, 1]× [0, T ]× Ω),P) be a probability space

with the measurable random variable w(α, t, ω) : [0, 1] × [0, T ] × Ω → R for all t ∈

[0, T ], α ∈ [0, 1], ω ∈ Ω. For notation, ω is suppressed when the meaning is clear.

2. For all α ∈ [0, 1], w(α, t) − w(α, s) is a Wiener process increment in time for all

t, s ∈ [0, T ], with w(α, t) − w(α, s) ∼ N (0, |t − s|Q(α, α)) where w(α, 0) = 0 for all

α ∈ [0, 1].
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3. Let wt−t′(α) = w(α, t)−w(α, t′). Then,

E[wt−t′(α)ws−s′(β)] = |[t, t′] ∩ [s, s′]| ·Q(α, β).

4. For almost all s, t ∈ [0, T ], α, β ∈ [0, 1], and ω ∈ Ω, w(α, t, ω)−w(β, s, ω) is Bochner-

integrable as a function taking values in the Banach space of a.s. piece-wise continuous

functions of [s, t] ∈ [0, T ]. The Bochner integral of a random variable X : (Ω,B, µ) → E

where E is a Banach space is defined as the limit of the sum of simple functions taking

a finite set of values Xn(ω), analogous to Lebesgue integration [8, Sec. 1.1.3].

An orthonormal basis example: Let {W1,W2, · · · } be a sequence of independent Brownian

motions. Let Q ∈ Q have a diagonalizing orthonormal basis {ϕk}∞k=1 with eigenvalues

{λk}∞k=1. Then

g(α, t, ω) =
∞∑
k=1

√
λkϕk(α)Wk(t, ω) (2.7)

is a Q-noise process. The common name for this formulation in the literature is Q-Wiener

process ([7] [8]).

2.2.3 Operators on Q-noise

The following theorems on the action of operators on Q-noise were originally presented

by Dunyak and Caines in [35].

Definition 2.2.1 M shall denote the set of operators of the form M = W +cI, where W is

a bounded self-adjoint Hilbert-Schmidt integral operator (hence possessing square-summable

eigenvalues) mapping L2[0, 1] to L2[0, 1], c > 0 is a positive constant, and I is the identity

operator on L2[0, 1].

Definition 2.2.2 (Operators on Q-Space Noise) Let Q ∈ Q and wt be a Q-space noise.

Let M ∈ M, and let s < t ∈ [0, T ]. Then the action of M on wt−s(·) := w(·, t) −w(·, s) is
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defined by the following Lebesgue integral for s, t ∈ [0, T ], α ∈ [0, 1],

(Mwt−s(·))(α) =
∫ 1

0

M(α, z)wt−s(z)dz. (2.8)

Lemma 2.2.1 Let M = W + cI ∈ M. Then (Mwt−s)(α) is a centered random variable for

all α ∈ [0, 1] and s, t ∈ [0, T ].

Proof: As W is a bounded operator, E[wt−s] = 0 by Axiom 2, and since wt−s is assumed to

be Bochner-integrable by Axiom 4, the expected value is

E[Mwt−s](α) = E[Wwt−s](α) + cE[wt−s](α)

= (W + cI)E[wt−s](α) = 0. □ (2.9)

By associativity, an operator W acting on an operator M acting on a function x is denoted

(W(Mx))(α) = (WMx)(α) when the following iterated integral exists,

((WM)x)(α) =

∫ 1

0

W(α, z)

∫ 1

0

M(z, y)x(y)dydz. (2.10)

Theorem 2.2.2 Let wt−t′(·) = w(·, t)−w(·, t′) and ws−s′(·) = w(·, s)−w(·, s′) be two time

increments of a Q-space process, Q ∈ Q, and M ∈ M with MQM∗ ∈ Q. Then,

cov((Mwt−t′)(α), (Mws−s′)(β)) = |[t, t′] ∩ [s, s′]|(MQM∗)(α, β) (2.11)

Proof : Recalling Lemma 2.2.1 the covariance is given by

cov((Mwt−t′)(α), (Mws−s′)(β)) = E[(Mwt−t′)(α)((ws−s′)
∗M∗)(β)] (2.12)

As wt−s is Bochner-integrable by Axiom 4 and M is a bounded self-adjoint operator, the
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operator M can be exchanged with the expectation,

cov((Mwt−t′)(α), (Mws−s′)(β))

= (ME[wt−t′w
∗
s−s′ ]M∗)(α, β) (2.13)

= |[t, t′] ∩ [s, s′]|
∫ 1

0

∫ 1

0

M(α, y)Q(y, z)M∗(z, β)dydz. □

2.2.4 Linear Dynamical Control Systems

Definition 2.2.3 (Q-noise Dynamical Systems) Let x : [0, 1]×[0, T ] → R be an L2[0, 1]×

[0, T ] function with a given initial condition x(·, 0) = x0. Let At,Bt ∈ M be bounded linear

operators from L2[0, 1] to L2[0, 1] such that AtQA∗
t ∈ Q. This defines a Q-noise denoted wt.

Let a control input ut : [0, T ] → L2[0, 1] be a function adapted to the filtration Ft, consisting

of all measurable functions of the state of the system xs, 0 ≤ s ≤ t.

Then, a linear dynamical system with Q-noise is an infinite-dimensional differential sys-

tem satisfying the following equation,

dxt(α) = ((Atxt)(α) + (Btut)(α))dt+ dw(α, t), (2.14)

where for a partition of [0, t], [0, t2, · · · , tN−2, t],

∫ t

0

dw(α, s) = lim
N→∞

N∑
k=1

(w(α, tk+1)−w(α, tk)) (2.15)

in the mean-squared convergence sense.

Definition 2.2.4 (Mild solution) A mild solution (see [7, Sec. 3.1]) to a system xt :

[0, T ]× Ω → L2[0, 1] satisfying

dxt = (Atxt + Btut)dt+ dwt, x0 ∈ L2[0, 1] (2.16)
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on [0, T ] is given by

xt = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)Btutds+

∫ t

0

Φ(t, s)dws. (2.17)

In the development of this theory, A and B will be taken to be bounded, time-invariant

operators. When At is constant, then Φ(t, s) = eA(t−s).

2.2.5 Networks

Consider a network-averaged control system of the form (2.2),

dxt = ((ANxt +BNut) + αNxt + βNut)dt+ dWN(t). (2.18)

The finite-dimensional system is mapped to piecewise constant functions on the unit square

(see [3]). Define the uniform partition on the unit interval as PN = {P1, · · · , PN}, where

P1 = [0, 1
N
] and Pi = ( i−1

N
, i
N
]. Then, the following step function graphon for N nodes

corresponding to AN is defined for all α, β ∈ [0, 1]:

A[N ](α, β) =
N∑
i=1

N∑
j=1

AN
ij1Pi

(α)1Pj
(β). (2.19)

A similar function can be defined for B[N ](·, ·). One can define the step function control

u
[N ]
t : [0, 1]× [0, T ] → R for such a graphon system using the control ut,

u
[N ]
t (α) =

N∑
i=1

1Pi
(α)ut(i) α ∈ [0, 1]. (2.20)

Finally, define the covariance of the disturbance as a piecewise constant function analo-

gously to the finite-dimensional adjacency matrix. Let w[N ] : [0, 1]× [0, 1] → R be a Q-noise

with covariance defined by the following equation,
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Q[N ](α, β) =
N∑
i=1

N∑
j=1

QN
ij1Pi

(α)1Pj
(β). (2.21)

A piecewise constant partition section of the unit interval {SN
k }Nk=1 mapping [0, 1] → R

is defined via

SN
k (α) := 1Pk

(α), α ∈ [0, 1]. (2.22)

This defines an orthogonal set corresponding to the standard RN basis {e1, e2, ..., eN}.

Then the corresponding systems in L2[0, 1] can be expressed as

dx
[N ]
t = ((A[N ] + αNI)xN

t + (B[N ] + βNI)u
[N ]
t )dt+ dw

[N ]
t , (2.23)

where

wN
t (α) :=

N∑
k=1

SN
k (α)

∞∑
r=1

cNk,rWr(t), (2.24)

in which {Wr}∞r=1 is a sequence of independent Brownian motions, and denote the L2[0, 1]

limit by

w∞
t (α) := lim

N→∞
w

[N ]
t (α) =

∞∑
r=1

√
λrϕr(α)Wr(t). (2.25)

By Mercer’s Theorem (see, e.g. [36]), Q has the eigenvalue and basis representation:

Q(α, β)t =
∞∑
r=1

√
λrϕr(α)ϕr(β) = E[w∞

t (α)w∞
t (β)]. (2.26)

To ensure the existence of this limit, we explicitly require the processes constructed in

(2.24) to be Cauchy in the L2[0, 1] norm, i.e., for all ϵ > 0, there exists M > N > N0(ϵ) such

that

E[||w[N ]
t −w[M ]||22] (2.27)

≤
∞∑
r=1

∫ 1

0

(
M∑
j=1

SM
j (α)cMj,r −

N∑
k=1

SN
k (α)c

N
k,r

)2

dα < ϵ.
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Finally, we observe that as a result of the specifications above, the state process x
[N ]
t on

partition Pi has a one-to-one correspondence with the state of the ith node of xN
t given by

[xN
t ]i := x

[N ]
t (α) for α ∈ Pi, 1 ≤ i ≤ N. (2.28)

2.2.5.1 Common Graphons

There are a few common graphons that will be further investigated in Sec. 2.5. In

this subsection, a small set of common graphons and their associated dynamical systems

properties are further investigated. In this thesis, these are primarily used to generate

random graphs using the W-random graph method [1]. Jackson [37] also provides a good

overview of random graph generation in the context of social and economic networks.

Erdős-Renyi graphs are one of the most common methods of generating random graphs.

In an ER graph for every two vertices i and j in a graph of size N , an (undirected) edge ei,j

exists with probability p. That is,

P(AN
i,j = 1) = p, 1 ≤ i, j ≤ N. (2.29)

From this, it is clear that the graphon limit of an ER graph is simply the constant function

W (α, β) = p, α, β ∈ [0, 1].

Uniform Attachment Graphs [1] are a more sophisticated increasing random graph model

which possesses a smooth graphon limit. It is constructed inductively. Start with a single-

node graph G1 (with associated adjacency matrix A1 = 0). Then, given a UAG GN−1, add

a node and connect each pair of non-adjacent nodes with probability 1
N

to create GN . This

has the graphon limit:

W (α, β) = 1−max(α, β), α, β ∈ [0, 1]. (2.30)

Small World Graphs [38] model networks with a high level of local clustering, a low level of

24



global clustering, and a low graph diameter, which demonstrates degree behavior sometimes

observed in graphs such as the Internet. Medvedev [2] presents one potential model of such

graphs called a W-small world graphon. Here, we propose a limit model of small world

graphs where the node connection probability is given by the sum of two truncated Gaussian

functions of variance σ2 on each horizontal in the unit square (2.31), these are shifted by an

offset γ so that the resulting surface (2.32) is symmetrically distributed with respect to the

diagonal; it is normalized to have a maximum value of one on the diagonal,

GSW (α, β) = exp

(
−1

2

(
α− β

σ

)2
)
, α, β ∈ [0, 1], (2.31)

W SW(α, β) = 0.5GSW (α− γ, β) + 0.5GSW (α, β − γ). (2.32)

Identifying 0 with the 0-degree position on a circle, 1 with the π location and invoking

symmetry shows this graphon shares some of the required SW network properties listed

above.

Low rank graphons are a special class of graphons which possess a finite number of

eigenfunctions. These are explored further in Sec. 2.4.

The convergence of the finite-order network system to the infinite limit graphon system

can now be analyzed.

Theorem 2.2.3 Let x[N ]
t solve the following graphon stochastic differential equation,

dx
[N ]
t = A[N ]x

[N ]
t dt+ dw

[N ]
t , x

[N ]
0 ∈ L2[0, 1], (2.33)

where Q[N ] is the covariance operator of w[N ]. Let Φ[N ](t, s) and Φ[M ](t, s) refer to the

semigroup solutions to the state systems x
[N ]
t and x

[M ]
t respectively. Assume for each triple

ϵ0, ϵ1, ϵ2 > 0 there exists N0 such that for all N > M > N0,

||x[N ]
0 − x

[M ]
0 ||22 < ϵ0, (A0) (2.34)
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Figure 2.1: Top row: An Erdős-Renyi graphon and sample graph. Middle row: A uniform
attachment graphon and graph. Bottom row: A small world graphon.
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||Φ[N ](t, s)− Φ[M ](t, s)||2op < ϵ1, (A1) (2.35)

E[||w[N ]
t −w

[M ]
t ||22] < ϵ2, (A2) (2.36)

and there exist α,C < ∞, such that, for all N,

N∑
k=1

N∑
r=1

|cNk,r|2 ≤ C, (B0) (2.37)∫ s

0

||Φ[N ](t, s)||2opds ≤ α, t ∈ [0, T ]. (B1) (2.38)

Then, for each ϵ > 0, there exists N ′
0 such that for all N,M > N ′

0

E[||x[N ]
t − x

[M ]
t ||2] < ϵ. (2.39)

Hence, there exists an L2[0, 1] limit process x∞
t constituting the unique mild solution of (2.14)

satisfying E[||x[N ]
t − x∞

t ||2] → 0 as N goes to infinity, that is,

dxt = Axt + dwt, x0 ∈ L2[0, 1]. (2.40)

□

The proof relies on the convergence of the operator norms of Φ[N ](t, s) to Φ[N ](t, s) implying

L2 convergence of Φ[N ](t, s)v for any v ∈ L2[0, 1] and is given in Section 2.6.1.

Remark: This result was provided Dunyak and Caines in [9] in the time-invariant operator

case. When A[N ]
t = A[N ] and A[M ]

t = A[M ] for all t ∈ [0, T ], assumption (A1) can be relaxed

to

||A[N ] − A[M ]||2op < ϵ1, (2.41)

i.e., the piecewise constant graphons corresponding to the finite graphs AN and AM converge

in the L2 operator norm.
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2.3 Linear Quadratic Control

2.3.1 Finite Time Horizon

Given a linear stochastic dynamical system of type (2.47), a linear quadratic Gaussian

optimal control problem with Q-noise is given by the following performance function:

J(u,x0) =E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt+ x∗
TMTxt],

xt,ut ∈ L2[0, 1], (2.42)

where M = M +mI and R = R + rI are bounded functionals composed of a non-negative

compact operator M ≥ 0 and R > 0, with m ≥ 0 and r > 0 respectively. A control

input ut is admissible when it is adapted to the sigma algebra generated by wt and where∫ T

0
|ut|2dt < ∞. Problems of this variety will henceforth be referred to as Q-LQG problems,

and denoted by their system parameters {A,B,Q,M,MT ,R}.

Theorem 2.3.1 ([13]) Suppose that M,R,MT are bounded positive self-adjoint L2[0, 1] op-

erators, and that R : L2[0, 1] → L2[0, 1] is invertible. Then, the performance function (2.42)

is minimized with ut = −R−1B∗Stxt, where S : [0, 1]× [0, 1]× [0, T ] → R is an L2[0, 1] linear

operator for all t whose kernel satisfies the following Riccati equation,

− d

dt
⟨Stv,v⟩ =2⟨Av, Stv⟩ − ⟨StBR−1B∗Stv,v⟩,+⟨Mv,v⟩, ∀v ∈ L2[0, 1]

ST =MT . (2.43)

Proof : See [13, Sec. 4] with F = I, D = 0, C = 0 (hence Γ(·) = 0 and ∆(St) = 0). □

Corollary 2.3.1.1 ([13]) Given a Q-LQG problem with parameters {A,B,Q,M,MT ,R}

where St is the self-adjoint L2[0, 1] operator solving (2.43), St is unique in the space of

L2[0, 1] non-negative operators.
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In addition, the value function is given by

V (xt, t) = x∗
tStxt +

∫ T

t

trace(SrQ)dr. (2.44)

□

As expected, the intensity of the Q-noise does not change the optimal control ut, but

does impact the value function of the Q-LQG problem. In order to show that the finite-

dimensional linear quadratic Gaussian problem on a network converges to an infinite-dimensional

Q-LQG problem in the sense of converging value functions, state, and control functions, it

must first be shown that the solution S
[N ]
t of the piece-wise constant Q-LQG problem is

bounded in operator norm uniformly in N ∈ Z.

Lemma 2.3.2 (Dunyak and Caines, [35]) Let AN and BN be bounded self-adjoint L2[0, 1]

operators, MN and MN
T be bounded positive L2[0, 1] operators, and RN be a bounded strictly

positive L2[0, 1] operator converging to A, B, M, MT , and R respectively in the operator

norm sense for {AN , BN ,MN ,MN
T , RN}. Let SN

t be a positive, self-adjoint L2 operator sat-

isfying

−ṠN
t = ANSN

t + SN
t AN − SN

t BNR−1BNSN
t +MN

SN
T = MN

T . (2.45)

Then, there exists 0 < cN < ∞ such that

||SN
t ||op ≤ 2||MT ||op + (T − t)cN . (2.46)

Proof: See Section 2.6.2.

From Theorem 3.1, the minimizing controls to the limit Q-LQG problem and the piece-
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wise constant Q-LQG problem are respectively

ut = −R−1B∗Stxt

and

u
[N ]
t = −(R[N ])

−1B[N ]∗S
[N ]
t x

[N ]
t

.

Theorem 2.3.3 (Q-LQG Convergence, Dunyak and Caines [35]) Let xt be a system

of the form

dxt = (Axt + But)dt+ dwt, (2.47)

and let x[N ]
t be a system of the form

dx
[N ]
t = (A[N ]x

[N ]
t + B[N ]u

[N ]
t )dt+ dw

[N ]
t , (2.48)

where A[N ] → A, B[N ] → B, and Q[N ] → Q in the L2 operator norm sense, and let assump-

tions (A0)-(A2), (B0), and (B1) of Theorem 2.2.3 be satisfied. In addition, let R[N ], M[N ],

and M[N ]
T be bounded, positive, self-adjoint operators converging to R, M, and MT in the

operator norm sense.

Let St and SN
t be the positive, bounded self-adjoint operators solving the functional Riccati

equation (2.43) for (A,B,R,M,MT ) and (A[N ],B[N ],R[N ],M[N ],M[N ]
T ) respectively. Then, for

every ϵ > 0, there exists an N(ϵ) such that for all N > N(ϵ),

E[||x[N ]
t − xt||2] < ϵ. (2.49)

Proof: See Section 2.6.3.

As the control input and state trajectory converge in the L2 sense for all time, the
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optimally controlled finite-dimensional network performance function value

inf
uN
t

E
[∫ T

0

(xN
t )

∗MNxN
t + (uN

t )
∗RNuN

t dt

]
(2.50)

converges to the value of the infinite-dimensional graphon system value

inf
u

E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt+ x∗
TMTxt], (2.51)

x0,ut ∈ L2[0, 1].

2.3.2 Long-Range Average

In contrast to deterministic systems, the infinite time horizon optimal control problem

does not have a finite value. Hence, we consider the long-range average Q-LQG problem

given by:

V∞(x0) := inf
u

lim
T→∞

JT (u,x0) (2.52)

= inf
u

lim
T→∞

1

T
E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt],

= lim
T→∞

1

T
(x∗

0S0x0 +

∫ T

0

trace(SrQ)dr).

The solution to the long-range average Q-LQG problem is given via the unique positive

solution S∞ to the algebraic Riccati equation [8]:

0 =2⟨Av, S∞v⟩ − ⟨S∞BR−1B∗S∞v,v⟩ (2.53)

+ ⟨Mv,v⟩, ∀v ∈ L2[0, 1].

The solution St to equation (2.43) converges to S∞ exponentially, yielding

V∞(x0) = V∞ := trace(S∞Q) ∀x0 ∈ L2[0, 1]. (2.54)
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In particular, below we show that when B = R = I, and A is symmetric, this can be solved

with

S∞ = A+ (A2 +M)
1
2 , (2.55)

where, for a positive operator M , (M)
1
2 is the positive operator solving (M)

1
2
∗(M)

1
2 = M .

Note that the rate of loss is given by trace(S∞Q) which is the Hilbert-Schmidt inner

product. Given an orthornormal basis of L2[0, 1], {ϕk}∞k :

trace(S∞Q) =
∑
k

⟨S∞ϕk,Qϕk⟩. (2.56)

Restricting ourselves to the case where M = I, ||Q||HS = 1 and ||A||HS = 1, this is

maximized for the eigenfunction corresponding to the largest eigenvalue of A.

Lemma 2.3.4 (Maximum Trace Lemma) Let M = I, and let {ϕk}∞k=0 be the set of or-

thonormal eigenvectors of A with eigenvalues {λk}∞k=0. Let λ = supk λk and λ = infk λk with

associated eigenfunctions ϕ and ϕ respectively if λ and λ are obtained for a finite k. Then,

for systems driven by of the form A = A+ aI,

sup
||Q||HS=1

trace(S∞Q) = sup
||Q||HS=1

∑
k

⟨S∞ϕk,Qϕk⟩ (2.57)

=(λ+ a) +

√
(λ+ a)2 + 1. (2.58)

and attains the supremum for Q = ⟨·, ϕ⟩ when λ is obtained for a finite k, and respectively

obtains the infimum for Q = ⟨·, ϕ⟩ when ϕ is attained for finite k.

Proof: Note that the operator (A2 + I) can be expressed as

A2 + I = A2 + 2aA+ (a2 + 1)I (2.59)

=
∞∑
k=1

λ2
k⟨·, ϕk⟩ϕk + 2aλk⟨·, ϕk⟩ϕk + (a2 + 1)⟨·, ϕk⟩ϕk
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=
∞∑
k=1

(λ2
k + 2aλk + a2 + 1)⟨·, ϕk⟩ϕk

=
∞∑
k=1

((λk + a)2 + 1)⟨·, ϕk⟩ϕk.

Taking the positive root of the (necessarily positive) eigenvalues gives us the operator root,

(A2 + I)
1
2 =

∞∑
k=0

√
(λk + a)2 + 1⟨·, ϕk⟩, (2.60)

which then yields

S∞ =
∞∑
k=0

(
(λk + a) +

√
(λk + a)2 + 1

)
⟨·, ϕk⟩ϕk. (2.61)

First, suppose that ϕ is attained for a finite k. Then, setting Q = ⟨·, ϕ⟩ yields

trace(S∞Q) = (λ+ a) +

√
(λ+ a)2 + 1. (2.62)

As Q is constrained by ||Q||HS = 1 and the eigenbasis is orthonormal, assigning any positive

value to a different eigenfunction cannot increase this value.

Likewise, if the infimum λ is attained for finite k, the minimum value is attained for

Q = ⟨·, ϕ⟩ and

trace(S∞Q) = (λ+ a) +
√

(λ+ a)2 + 1. (2.63)

If the supremum (or infimum, respectively) is not attained for finite k, then the limit λk→∞ =

0 implies that the supremum (respectively infimum) value is

trace(S∞Q) = a+
√
a2 + 1 (2.64)

which can be made arbitrarily close by setting Q = ⟨·, ϕk⟩ for arbitrarily large k. □
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2.3.3 Exponential Discounting

The infinite time horizon problem with exponential discounting is presented below. Unlike

the long-term averaging problem, the value function is found by explicitly solving a Hamilton-

Jacobi-Bellman equation.

Lemma 2.3.5 (Infinite Horizon Discounting) Let ρ > 0. Then the infinite horizon

discounted cost performance functional is given by

Jρ(x0,u) = E[
∫ ∞

0

e−ρt(x∗
tMxt + u∗

tRut)dt]. (2.65)

This is minimized by ut = −R−1B∗S∞, where S∞ solves the discounted Algebraic Riccati

equation

ρS∞ = S∞A∗ + AS∞ − S∞BR−1B∗S∞ +M. (2.66)

When B = R = I and A is symmetric, the unique positive symmetric solution is given by

Sρ
∞ = (A− ρ

2
I) + ((A− ρ

2
I)2 +M)

1
2 . (2.67)

Proof: For the existence and uniqueness of the solution, refer to [8, Section 2.6.1.3]. For a

function V : L2[0, 1] → R1, let DV be the Frechet derivative of V . Define the value function

Vρ : L
2[0, 1] → R1

Vρ(x) = ⟨x, Sρ
∞x⟩+ 1

ρ
trace(QSρ

∞), x ∈ L2[0, 1] (2.68)

be a classical solution of the Hamilton-Jacobi-Bellman equation of an infinite horizon dis-

counted cost performance problem, satisfying

ρVρ −
1

2
trace(QD2Vρ)− ⟨Ax, DVρ⟩ (2.69)
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− inf
u
{⟨Bu, DVρ⟩+ ⟨x,Mx⟩+ ⟨u,Ru⟩} = 0.

After evaluating the Frechet derivatives DVρ = 2Sρ
∞x and D2Vρ = 2Sρ

∞, this is equivalent to

ρ(⟨x, Sρ
∞x⟩+ 1

ρ
trace(QSρ

∞)) (2.70)

− trace(QSρ
∞)− 2⟨Ax, Sρ

∞x⟩

− inf
u
{2⟨Bu, Sρ

∞x⟩+ ⟨x,Mx⟩+ ⟨u,Ru⟩} = 0.

Noting that the infimization holds for u = −RB∗Sρ
∞x, this is equivalent to

⟨x, ρSρ
∞x⟩ =2⟨Ax, Sρ

∞x⟩ − ⟨BR−1BSρ
∞x, Sρ

∞x⟩,

+ ⟨x,Mx⟩, ∀x ∈ L2[0, 1] (2.71)

and the result follows. □

Remark: In the special case of B = R = M = I, the optimal discounted performance

control decreases the control input along all the directions of all eigenfunctions. This results

in a weaker control input for all actuators compared to the long-range averaging solution.

To illustrate Lemma 2.3.4 and Lemma 2.3.5, a selection of worst-case scenarios are pre-

sented in Table 1, comparing the S∞ value to the St value at T = 1 (with the local forcing

term a = 0). In each example, the underlying graphon A has only non-negative eigenval-

ues, and the best case scenario has the same cost (namely, trace(S∞Q) = 1). Notably, the

Erdos-Renyi Graphon A(α, β) = 0.5 and A(α, β) = cos(2π(α − β)) have the same worst

case value, due to the fact that they have the same maximum eigenvalue.

When the relevant operators are infinite-dimensional, the system cannot be fully simu-

lated. However, when the operators are finite-dimensional, the system can be fully analyzed

as an N -dimensional system.

35



Graphon Max eigenvalue of A ||S∞Q||2H.S. ||Sρ
∞Q||2H.S., ρ = 1

A(x, y) = (x2 − 1)(y2 − 1) 0.533 1.666 1.034
A(x, y) = 0.5 (Erdos-Renyi) 0.5 1.618 1.000
A(x, y) = cos(2π(x− y)) 0.5 1.618 1.000

A(x, y) = 1−max(x, y) (UAG) 0.405 1.484 0.910
S.W. (σ = 0.1, γ = 0.3) 0.183 1.200 0.783

Table 2.1: A comparison of the worst case performance of various graphons with Hilbert-
Schmidt norm bounded noise covariance Q. Calculating the H.S. norm (trace(S∞Q))2 agrees
with the maximum value calculated by Eq. (2.58). As expected, the discounting problem
with discount factor γ = 1 has a lower expected cost than the long-time averaging problem.

2.4 Low Rank Graphons

Here, the theory described in [4] is extended to Q-noise systems. The initial extension for

uncontrolled systems was shown by Dunyak and Caines in [39]. Define an invariant subspace

of a linear operator T by S ⊂ L2[0, 1] to be a subspace of L2[0, 1] such that, for all x ∈ S,

x ∈ S =⇒ Tx ∈ S. (2.72)

Denote the orthogonal complement of S to be the subspace S⊥, such that for all v ∈ S and

all v̆ ∈ S⊥, ⟨v, v̆⟩ = 0. This partitions L2[0, 1] into the two orthogonal spaces, S and S⊥,

and hence L2[0, 1] = S ⊕ S⊥. An operator T is said to be low rank (with respect to an

invariant subspace S) when, for all v̆ ∈ S⊥, Tv̆ = 0.

For a given linear Q-noise graphon process as generated by (2.14), with A = A + aI,

B = B + bI, and a Q-noise wt with covariance operator Q, make the following Low Rank

Graphon (LRG) assumptions:

• (LRG1) S is spanned by a finite number of orthonormal L2[0, 1] functions denoted

f = (f 1, ...fN).

• (LRG2) The operators A and B are finite rank self-adjoint graphon operators which

share the non-trivial invariant subspace S. That is, for all v̆ ∈ S⊥, Av̆ = 0 and
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Bv̆ = 0.

• (LRG3) wt is finite-dimensional, and has a representation of the form

wt =
N∑
k=1

√
λkfkW

k
t . (2.73)

Equivalently, the covariance operator Q is low rank with respect to S.

By (LRG1), the state process of a linear Q-noise graphon process as generated by (2.14)

can be decomposed into two orthogonal components

xt =: xf
t + x̆t, xf ∈ S, x̆ ∈ S⊥ (2.74)

where xf
t = (xt|S) is the orthogonal projection of xt into S and x̆t = (xt|S⊥) is the

orthogonal projection into S⊥. Hence, xf
t consists of a linear combination of elements of S

and x̆ consists of a linear combination of elements of S⊥. Similarly, decompose ut into

ut =: uf
t + ŭt. (2.75)

By the Q-noise axioms, wt is defined as a sum of weighted Wiener processes, each associated

with an eigenbasis of Q. Consequently, wt can also be decomposed into its orthogonal

components with respect to S and S⊥. This has the general form

wt =wf
t + w̆t, (2.76)

where

wf
t :=(wt|S) (2.77)

=
N∑
r=1

⟨
∞∑
k=1

√
λkϕkW

k
t ,f r⟩f r
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=
N∑
r=1

( ∞∑
k=1

√
λk⟨ϕk,f r⟩W k

t

)
f r,

w̆t :=(wt|S⊥) = wt −wf
t . (2.78)

By (LRG3), wt is low rank with respect to the common invariant subspace S of A and

B, hence wf
t = w, w̆t = 0, and x̆t is deterministic. Consequently, these processes evolve

according to

dxf
t = ((A+ aI)xf

t + (B + bI)uf
t )dt+ dwt, (2.79)

dx̆t = (ax̆t + bŭt)dt, (2.80)

xf
0 ∈ RN , x̆0 ∈ L2[0, 1]. (2.81)

Notably, by the low rank assumptions on A and B, the orthogonal process x̆t is diagonal—

each point on the unit interval evolves as a single-dimensional linear differential equation.

Because of this decomposition, the system can be modelled as a finite-dimensional system.

2.4.1 Projections onto the Invariant Subspace S

To project the low rank linear Q-noise graphon system to the finite-dimensional invariant

subspace S, define the RN -valued state processes xf
t , uf

t :

xf
t := [⟨xf

t ,f 1⟩, ⟨x
f
t ,f 2⟩, ..., ⟨fN ,x

f
t ⟩], (2.82)

uf
t := [⟨uf

t ,f 1⟩, ⟨u
f
t ,f 2⟩, ..., ⟨fN ,u

f
t ⟩], (2.83)

i.e., xf
t and uf

t are projections onto the coordinate space defined by f .

Similarly, define the following N ×N matrices

Aij := ⟨Af i,f j⟩, Bij := ⟨Bf i,f j⟩, (2.84)

Q = diag({λk}Nk=1), (2.85)
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and let W f
t be an N dimensional Wiener process with covariance matrix Q. Then the state

process xf
t equivalently evolves according to the finite-dimensional differential equation

dxf
t = ((A+ aI)xf

t + (B + bI)uf
t )dt+ dW f

t , (2.86)

xf
0 = [⟨xf

0 ,f 1⟩, ⟨x
f
0 ,f 2⟩, ..., ⟨fN ,x

f
0 ⟩]. (2.87)

This construction allows for a low-dimensional analysis of xf
t and uf

t , which can then

be mapped back into the L2[0, 1] space by associating each element [uf
t ]k with its respective

basis function fk,

uf
t =

∑
k=1

[uf
t ]kfk =: uf

t ◦ f . (2.88)

This approach is particularly useful for linear-quadratic problems on low-rank graphon

systems.

2.4.2 Low Rank Linear Quadratic Control

Consider a graphon Q-LQG optimal control problem with the operators A = A+ aI and

B = B + bI, and cost operators M, MT , and R.

As with the standard Q-LQG problem, the objective function is

J(u,x0) = E[
∫ T

0

(x∗
tMxt + u∗

tRut)dt+ x∗
TMTxT ]. (2.89)

By taking the orthogonal decomposition of xt and ut,

x∗
tMxt =(xf

t + x̆t)
∗M(xf

t + x̆t) (2.90)

=(xf
t )

∗Mxf
t + (x̆t)

∗Mx̆t
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and

u∗
tRut = (uf

t )
∗R(uf

t ) + (ŭt)
∗R(ŭt). (2.91)

As with the A and B operators, the N ×N real matrices M and R can be defined as

Mij := ⟨Mf i,f j⟩, Rij := ⟨Rf i,f j⟩, (2.92)

MT ij = ⟨MTf i,f j⟩. (2.93)

Then, the optimal control problem can be decomposed into the following −N -dimensional

LQG optimal control problem (which can be solved using standard Riccati equation methods)

and an L2[0, 1] deterministic orthogonal process,

J(u,x0) =Jf (uf , xf
0 ) + J̆(ŭ, x̆0), (2.94)

Jf (uf , xf
0 ) :=E[

∫ T

0

((xf
t )

∗Mxf
t + (uf

t )
∗Ruf

t )dt (2.95)

+ (xf
T )

∗MTx
f
T ],

dxf
t =((A+ aI)xf

t + (B + bI)uf
t )dt+ dCf

t , (2.96)

xf
0 =[⟨xf

0 ,f 1⟩, ..., ⟨x
f
0 ,fN⟩], xf

0 ∈ RN , (2.97)

J̆(ŭ, x̆0) =

∫ T

0

(x̆∗
tMx̆t + ŭ∗

tRŭt)dt+ x̆∗
TMT x̆T , (2.98)

dx̆t =(ax̆t + bŭt)dt. (2.99)

x̆0 ∈L2[0, 1] (2.100)

Further, when M, MT , and R are low rank with respect to f except for a diagonal constant,

then the minimizing solution to J̆(ŭ, x̆0) is effectively one-dimensional, as the feedback

control is diagonal with identical coefficients for each α ∈ [0, 1].

Theorem 2.4.1 Define a Q-LQG problem with coefficients {A+aI,B+bI,Q,M+mI,MT+
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mtI,R+ rI} where all operators are rank N with respect to an orthogonal subspace S, whose

projections onto S are denoted {A,B,Q,M,MT , R} respectively. Then, the optimizing con-

trol u0
t is given by

u0
t :=uf

t + ŭt, u0
t ∈ L2[0, 1], t ∈ [0, T ] (2.101)

uf
t :=

∑
k=1

[−(R + rI)−1(B + bI)∗Ptx
f
t ]kfk, (2.102)

ŭt :=− b2

r
ptx̆t, (2.103)

where Pt and pt are time-varying operators solving the following N-dimensional and one-

dimensional Riccati equations respectively,

−Ṗt =(A+ aI)∗Pt + Pt(A+ aI) (2.104)

− Pt(B + bI)∗(R + rI)−1(B + bI)Pt

+ (M +mI),

PT =(MT +mT I), Pt ∈ RN×N (2.105)

ṗt =2apt −
b2

r
p2t +m, (2.106)

pT =mT . (2.107)

Proof: This result is analogous to the deterministic finite-dimensional graphon LQR solution

shown in [4]. The Riccati equations (2.104-2.105) give the standard N -dimensional and one-

dimensional operator solution Pt and pt respectively. Using the solution Pt, the optimizing

controls for the finite-rank subspace LQG problem (with respect to the N -dimensional state

vector xf
t is given by

uf
t =− (R + rI)−1(B + bI)∗Ptx

f
t . (2.108)

By associating the kth entry of the control vector with the corresponding basis function fk,
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the finite-dimensional controls can be mapped back to the original space.

Similarly, while the orthogonal state complement x̆t is infinite-dimensional, the feedback

gain is one-dimensional due to the diagonal nature of the state process, and the optimal

control can be found with by solving the scalar Riccati equations (2.106-2.107).

This gives the optimal controls for uf
t and ŭt, and hence for u0

t . □

2.5 Numerical Examples

For the following numerical examples, the unit interval [0, 1] is partitioned into N seg-

ments, and the kth partition segment Ik is denoted as

I1 := [0,
1

N
], Ik := (

k − 1

N
,
k

N
]. (2.109)

In each example, N = 50, and the state of the simulated systems follows the form

dx
[N ]
t = (A[N ]x

[N ]
t + B[N ]u

[N ]
t )dt+ dw

[N ]
t , (2.110)

as in equation (2.23). This discretized system is used as an approximate solution to the

infinite-dimensional system.

In the following sections, A = A + 0.1I and B = 0.1I, where A is a symmetric graphon

and I is the identity operator. To simulate the Q-LQG problems, we set a terminal time of

T = 1 and implemented Euler’s method with a time increment of ∆t = 0.001.

There are three key results to be presented: first, the convergence of a linear quadratic

Gaussian finite graph system to a graphon system. Next, that a graph system with a low

rank graphon limit can be efficiently represented by a low rank decomposition. Finally, we

demonstrate that the finite time horizon feedback solution converges to the infinite time

horizon solution. In order to compare trajectories, we introduce the root squared distance
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of two system trajectories xt and yt at time t,

rmd(xt,yt) =
√

⟨xt − yt,xt − yt⟩. (2.111)

2.5.1 Low Rank Finite Graph Convergence

Consider a finite graph generated using the following W-random graph [1] kernel:

A(α, β) = (α2 − 1)(β2 − 1), α, β ∈ [0, 1]. (2.112)

Clearly, A is a rank one graphon, with a basis function given by

f(α) =
(α2 − 1)√∫ 1

0
(β2 − 1)2dβ

, α ∈ [0, 1]. (2.113)

For each pair of gridpoints of the partition I, independently sample a Bernoulli random

variable to generate an edge between that pair, with edge probability given by

P(eij = 1) = A(αi, αj), αi, αj ∈ [0, 1], i, j ∈ {1, ..., N}. (2.114)

This creates a graph of 50 nodes, shown in Fig. 2.2 along with its adjacency matrix. Despite

having a rank-one limit, the finite adjacency matrix A[N ] is full rank.

As with Section 2.3.2, to simulate the worst case scenario, the Q-noise disturbance is

placed on the basis function f ,

wt(α) = f(α)Wt, α ∈ [0, 1]. (2.115)

Then, the finite graph LQG problem can be solved with standard methods, and the limit

system can be solved with Theorem 2.3.3. The finite graph system trajectory is shown in Fig.

2.3-I, and the low rank system created by projecting A[N ] onto the normal basis function f
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Figure 2.2: Left: a fifty-node W-random graph. Right: the associated adjacency matrix to
be used for the numerical examples. Yellow squares represent an edge, blue squares represent
a lack of an edge. The adjacency matrix is rank 49, despite the limit system being rank one.

is given by Fig. 2.3-II. This is accomplished by simulating the system

dxf
t =

(
(⟨A[N ]f ,f⟩+ 0.1)xf

t + 0.1uf
t

)
dt+ dW f

t , (2.116)

dx̆t = (0.1x̆t + 0.1ŭt)dt, t ∈ [0, 1], (2.117)

xf
0 ∈ R1, x̆0 ∈ L2[0, 1], (2.118)

where ⟨A[N ]f ,f⟩+0.1 is simply equal to the constant 1.7251. Even though the finite graph’s

adjacency matrix is full rank, the (piecewise constant) system projected onto the eigenspace

spanned by f captures the behavior of the finite graph trajectory.

The limit system generated with A in place of A[N ] is shown in Fig. 2.4-I, and the root

squared difference over time of the trajectory of the finite graph system and the limit system

are shown in Fig. 2.4-II.
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Figure 2.3: I–Top: the system generated with the finite graph using the piecewise constant
graphon A[N ]. II–Middle: The system trajectory generated when A[N ] is projected onto
the eigenspace spanned by f . III–Bottom: the root squared distance of the finite graph
system trajectory and the projected graph system trajectory. The root squared distance has
a maximum deviation of 0.023, showing that the two trajectory surfaces are very similar.
The transient is a result of the spectral difference between the finite graph and the graphon.
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2.5.2 Long-Range Average Comparison

This can be found using the analysis of Section 2.3.2. We apply the infinite horizon control

found using the algebraic Riccati equation solution (2.55), and the resulting trajectory is

shown for a terminal time of T = 10 in Fig. 2.5-I. A comparison of the Hilbert-Schmidt

norms of both St, the time-varying solution to the differential Riccati equation associated

with the system and the infinite horizon solution of the algebraic Riccati equation is shown

in Fig. 2.5-II. The time varying Riccati solution converges exponentially to the algebraic

Riccati solution in the interval t = [0, 8] as t tends to 0, and it diverges from the infinite

horizon solution as t approaches the terminal time.

2.6 Proofs

2.6.1 Proof of Theorem 2.2.3

Recall

x
[N ]
t =Φ[N ](t, 0)x0 +

∫ t

0

ΦN ](t, s)dw[N ]
s . (2.119)

Then,

E[||x[N ]
t − x

[M ]
t ||2] (2.120)

≤ E[||Φ[N ](t, 0)x
[N ]
0 − Φ[M ](t, 0)x

[M ]
0 ||2]

+ E[||
∫ t

0

Φ[N ](t, s)dw[N ]
s −

∫ t

0

Φ[M ](t, s)dw[M ]
s ||2].

The Cauchy condition is established in two steps. To address the first expectation,

eA
[N ]tx[M ] is added and subtracted inside the norm, which allows assumptions (A0, A1) in

conjunction with (B1) to be invoked to bound the term by any ϵ′0 > 0 for sufficiently large

N and M .
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Figure 2.4: Top: the trajectory of the system under the rank one limit control. Bottom: the
positive root of the squared distance between the finite graph system and the limit system
over time.
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Figure 2.5: I: the trajectory of a system under infinite horizon control. II: The Hilbert-
Schmidt norms of the infinite horizon Riccati equation solution and the time-varying Riccati
equation solution.
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Next, define x̃
[N ]
t by:

x̃
[N ]
t =

∫ t

0

Φ[N ](t, s)dw[N ]
s . (2.121)

Then, the second expectation can be evaluated by using the Ito isometry for one-dimensional

adapted processes,

E[||
∫ T

0

Xtdwt||22] = E[
∫ T

0

||Xt||22dt]. (2.122)

Then, via the same approach of adding and subtracting
∑N

k=1 e
A[N ]SM

k cMk,r, the definition of

the operator norm gives

E[||
∫ t

0

Φ[N ](t, s)dw[N ]
s −

∫ t

0

Φ[M ](t, s)dw[M ]
s ||22] (2.123)

≤
∫ t

0

(
||Φ[N ](t, s)||2op ·

M∑
r=1

||(
N∑
i=1

SN
i c

N
i,r −

M∑
j=1

SM
j cMj,r)||22

)
ds

+

∫ t

0

(
||Φ[N ](t, s)− Φ[M ](t, s)||2op ·

M∑
j=1

M∑
r=1

||SM
j cMj,r||22

)
ds

+

∫ t

0

||Φ[N ](t, s)||2opds
N∑

r=M+1

N∑
i=1

||SN
i ||22|cNi,r|2.

Hence, by the Cauchy property assumptions (A1, A2), the boundedness assumption (B0),

and noting that for all i, ||SN
i ||2 = 1

N2 , and by choosing a smaller ϵ2 if necessary, we see that

for any ϵ′1 > 0, and all sufficiently large N and M ,

E[||x̃[N ]
t − x̃

[M ]
t ||22] (2.124)

<

(∫ t

0

||Φ[N ](t, s)||2opds ϵ2 + ϵ1
C

N2

+

∫ t

0

||Φ[N ](t, s)||2opds
C

N2

)
< ϵ′1.

By the Cauchy-Schwartz inequality applied to the inner product ⟨X, Y ⟩ = E[XY ],

E[||x̃[N ] − x̃[M ]||2] =
√
E[1 · ||x̃[N ] − x̃[M ]||2] (2.125)
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≤
√

E[12]
√

E[||x̃[N ] − x̃[M ]||22]

<
√

ϵ′1

Hence for any ϵ > 0, there exists N and M sufficiently large such that
√

ϵ′1 <
ϵ
2

and ϵ0 <
ϵ
2

giving E[||x[N ]
t − x

[M ]
t ||2] < ϵ. Then, by completeness of L2[0, 1], there exists x∞

t such that

E[||x[N ]
t − x∞

t ||2] → 0 as N goes to infinity, yielding the desired result. □

2.6.2 Proof of Lemma 2.3.2

Apply the operator norm to both sides of equation (2.45). As R (and hence R−1) is strictly

positive, −SN
t BNR−1BNSN

t is negative, and by assumption {AN , BN , QN ,MN ,MN
T , RN}

converges to {A,B,Q,M,MT , R} in the operator norm sense,

||SN
t ||op ≤ ||MN

T ||op +

∫ T

t

(||ANSN
t + SN

t AN

− SN
t BNR−1BNSN

t +MN ||op)dt (2.126)

≤ ||MN
T ||op +

∫ T

t

(4||A||op||SN
t ||op + 2||M||op)dt. (2.127)

Then, by Gronwall’s inequality, ||SN
t ||op satisfies

||SN
t ||op ≤(2||MT ||op + 2(T − t)||M||op)

· exp(4(T − t)||A||op). (2.128)

By assumption, A,M,MT ,R are bounded, and hence there exists 0 < cN < ∞ such that

||SN
t ||op ≤ 2||MT ||op + (T − t)cN , ∀t ∈ [0, T ], N > N0. (2.129)

□
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2.6.3 Proof of Theorem 2.3.3

Recall that the linear quadratic Q-noise problem is solved by

ut = −R−1B∗Stxt, t ∈ [0, T ], (2.130)

u
[N ]
t = −(R[N ])

−1B[N ]∗S
[N ]
t x

[N ]
t , t ∈ [0, T ], (2.131)

which places the system in linear feedback form. Then, by Theorem 2.2.3, x[N ]
t converges to

xt if

lim
N→∞

S
[N ]
t = St, 0 ≤ t ≤ T (2.132)

in the operator norm sense. Let

∆N
t := St − S

[N ]
t , 0 ≤ t ≤ T. (2.133)

Define the evolution of ∆N
t in terms of the evolution of St and S

[N ]
t ,

∆̇N
t =Ṡt − Ṡ

[N ]
t (2.134)

=(A[N ]S
[N ]
t − ASt) + (S

[N ]
t A[N ]∗ − StA∗)

− (S
[N ]
t B[N ]R[N ]−1B[N ]∗S

[N ]
t − StBR−1B∗St)

+ (M[N ] −M),

∆N
T =MT −M[N ]

T , (2.135)

and hence

∆N
t =MT −M[N ]

T (2.136)

+

∫ T

t

(A[N ]S
[N ]
t − ASt) + (S

[N ]
t A[N ]∗ − StA∗)

− (S
[N ]
t B[N ]R[N ]−1B[N ]∗S

[N ]
t − StBR−1B∗St)
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+ (M[N ] −M)dt.

Focusing on the first term A[N ]S
[N ]
t − ASt:

A[N ]S
[N ]
t − ASt = A[N ]S

[N ]
t − ASt + A[N ]St − A[N ]St

= (A[N ] − A)St − A[N ]∆N
t . (2.137)

Similarly,

S
[N ]
t A[N ]∗ − StA∗ = St(A[N ]∗ − A∗)−∆N

t A[N ]∗ (2.138)

For the quadratic term, let

H = BR− 1
2 , H [N ] = B[N ]R[N ]−

1
2 , (2.139)

where R−1 = R− 1
2R− 1

2
∗.

Then,

StHH∗St = StBR−1B∗St, (2.140)

S
[N ]
t H [N ]H [N ]∗S

[N ]
t = S

[N ]
t B[N ]R[N ]−1B[N ]∗S

[N ]
t , (2.141)

S
[N ]
t H [N ]H [N ]∗S

[N ]
t − StHH∗St (2.142)

= S
[N ]
t H [N ]H [N ]∗S

[N ]
t − StHH∗St

+ StHH [N ]∗S
[N ]
t − StHH [N ]∗S

[N ]
t

+ StH(H [N ]∗S
[N ]
t −H∗St)

52



Employing the identities of the form used in (2.137) and (2.138) with A = H and A[N ] = H [N ],

this is equal to

S
[N ]
t H [N ]H [N ]∗S

[N ]
t − StHH∗St

=
(
St(H

[N ] −H)−∆N
t H

[N ]
)
H [N ]∗S

[N ]
t

+ StH
(
(H∗ −H [N ]∗)St −H [N ]∗∆N

t

)
. (2.143)

Using equations (2.137), (2.138), (2.143), define the operator valued functions PN , Y N ,

PN(t) :=(M[N ] −M) + (A[N ] − A)St (2.144)

+ St(A[N ]∗ − A∗)

+ St(H
[N ] −H)H [N ]∗S

[N ]
t

+ StH(H∗ −H [N ]∗)St,

Y N(t,∆N
t ) :=− (A[N ]∆N

t +∆N
t A[N ]∗ (2.145)

+∆N
t H

[N ]H [N ]∗S
[N ]
t + StHH [N ]∗∆N

t ),

in terms of which (94) yields

∆N
t = (MT −M[N ]

T ) +

∫ T

t

PN(t) + Y N(t,∆N
t )dt. (2.146)

Then,

||∆N
t ||op ≤

∫ T

t

||PN(s) + Y N(s,∆N
s )||opds (2.147)

+ ||MT −M[N ]
T ||op

≤
∫ T

t

||PN(s)||opds+

∫ T

t

||Y N(s,∆N
s )||opds
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+ ||MT −M[N ]
T ||op. (2.148)

Further, define the time process ZN(t) : [0, T ] → R,

||Y N(t,∆N
t )||op ≤(2||A[N ]||op + ||H [N ]H [N ]∗S

[N ]
t ||op

+ ||StHH [N ]∗||op)||∆N
t ||op

=:ZN(t)||∆N
t ||op. (2.149)

Then, by applying Gronwall’s inequality to ||∆N
t ||op in (2.149),

||∆N
t ||op ≤(||MT −M[N ]

T ||op (2.150)

+

∫ T

t

||PN(s)||opds) exp(

∫ T

t

||ZN(s)||opds).

By assumption A[N ] → A, H [N ] → H, M[N ] → M, M[N ]
T → MT in operator norm, and as

St, S
[N ]
t are uniformly bounded operators for all N, t,

||PN(t)||op (2.151)

= ||(M[N ] −M) + (A[N ] − A)St

+ St(A[N ]∗ − A∗)

+ St(H
[N ] −H)H [N ]∗S

[N ]
t

+ StH(H∗ −H [N ]∗)St||op

≤||(M[N ] −M)||op + ||(A[N ] − A)||op||St||op (2.152)

+ ||St||op||(A[N ]∗ − A∗)||op

+ ||St||op||(H [N ] −H)||op||H [N ]∗||op||S
[N ]
t ||op

+ ||St||op||H||op||(H∗ −H [N ]∗)||op||St||op.
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Hence, by the convergence of M[N ]
T → MT and equation (2.152), as N → ∞,

(||MT −M[N ]
T ||op +

∫ T

t

||PN(s)||opds) → 0 (2.153)

and ||Z(t)||op < ∞ =⇒ exp(

∫ T

t

||Z(s)||opds) < ∞. (2.154)

Hence, by (2.150)

||∆N
t ||op → 0. (2.155)

As ||∆N
t ||op converges to zero, S[N ]

t converges to St in the operator norm sense as N increases

to infinity. Then the finite-dimensional network operator (A[N ] − B[N ]K[N ]
t ) converges to the

operator on the graphon system (A− BKt) and Theorem 2.2.3 can be applied, yielding

E[||x[N ]
t − xt||2] < ϵ, (2.156)

as required. □

55



Chapter 3

State Estimation

3.1 Introduction

Previous work on graphon systems has been primarily concerned with deterministic anal-

ysis and control ([11][3][2]), while stochastic mean-field games on graphons have been in-

vestigated in ([22] [23] [24] [25]). As the systems were deterministic (with potentially a

non-deterministic initial condition), there was no great need for estimation.

Dunyak and Caines [9] showed that Gaussian noise on the unit interval ([7] [8] [6]), termed

Q-noise, is an appropriate limit object for sequences of systems on graphs with Wiener

process disturbances. This model, as well as its extensions to control, were demonstrated

in Chapter 2. Medvedev and Simpson [10] provide a numerical scheme for simulating such

systems.

This work builds on the results of infinite-dimensional filtering ([17], [16]) and applies

them to systems on large graphs; it is established that for systems on large graphs the

Kalman filter state estimation processes converge to the filter processes generated by the

limit filter systems on the limit graphon networks. The Separation Principle for control and

estimation of these limit graph systems is then defined as a natural consequence of the linear

filtering and control. The chapter concludes with some computational examples in which

these convergence properties are illustrated with a set of standard graphons.
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3.1.1 Motivation: partially observed network systems

As in Chapter 2, define two graphs GN
A = (VN , E

N
A ) and GN

B = (VN , E
N
B ) with N < ∞

vertices, with associated adjacency matrices AN and BN . Let xN : [0, T ]N → R be a

vector of states where the ith value is associated with the ith vertex of the graph, and let

uN : [0, T ]N → RN be the control input at each vertex. For clarity of notation, we consider

systems where each node has a single state. The theory extends to systems with vectors of

states at each node in a straightforward manner. Let the (i, j)th entry of the matrices AN and

BN represent the impact of the state and control input at node i on node j, respectively. For

each node, define a Wiener process WN disturbance with instantaneous positive covariance

matrix QN . Let aN and bN be constants describing the impact of the state of a node and its

control on itself.

Finally, define a network-averaged control system [3] on a graph with the following equa-

tion for each node,

dxt =((AN + aNI)xt + (BN + bNI)ut)dt+ dWN
t , (3.1)

with the l-dimensional instantaneous system observations given by the operator CN : RN →

Rl with a Wiener process disturbance vN with instantaneous covariance matrix RN ,

dyNt = CNxN
t dt+ dvNt . (3.2)

The processes WN and vN are orthogonal to each other and to the initial condition xN
0 .

Given these system parameters, the Kalman filter [15] generates the least squares estimate

of the system state x̂N
t , with estimation error covariance matrix PN

t satisfying

dx̂N
t =[(AN + aN)x̂

N
t + (BN + bN)u

N
t ]dt 0 ≤ t ≤ T

+ PN
t (CN)T(RN)T(dyNt − CNxN

t dt), (3.3)
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d

dt
PN
t =(AN + aNI)PN

t + PN
t (AN + aNI)T 0 ≤ t ≤ T,

+QN − PN
t (CN)T(RN)−1CNPN

t , (3.4)

PN
0 = Cov(x̂N

0 − xN
0 , x̂

N
0 − xN

0 ). (3.5)

As the graph becomes larger, the networked system adjacency matrices AN and BN con-

verge in the cut-norm sense to their associated graphons [1], which are bounded measurable

functions mapping [0, 1]× [0, 1] → [0, 1], denoted A and B (as in [3]). When the underlying

graph is undirected, its graphon is also symmetric. As the cut norm is difficult to manipulate

we henceforth consider only graphs which converge in the stronger L2[0, 1] operator norm

sense to limits which are assumed to be unique. Denote the graphon limit system as

dxt = ((A+ aI)xt + (B + bI)ut)dt+ dwt, x0 ∈ L2[0, 1] (3.6)

where xt and ut are square-integrable functions on the unit interval, A and B are graphons,

a and b are real constants, I is the identity operator, and wt is a Q-noise, a generalization

of Gaussian noise from finite-dimensional vectors to the unit interval [9]. The observations

are necessarily finite-dimensional from a practical standpoint and from the requirement that

the observation noise have an invertible covariance operator [14]. The corresponding l-

dimensional limit observation process yt satisfies

d[yt]k : = [Cxt]kdt+ d[vt]k (3.7)

= ⟨ck,xt⟩dt+ d[vt]k, k = {1, ..., l},

where the process vt is an l-dimensional real centered Wiener process with covariance oper-

ator R. This section also shows that the finite rank nature of the filter necessarily cannot

model the system trajectory when the graphon limit system and its associated Q-noise is

higher (or infinite) dimensional.
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Section 3.4 summarizes some results of linear quadratic control on these stochastic

graphon systems, and shows a Separation Principle for the control and estimation of lin-

ear stochastic graphon systems with quadratic costs.

Relying on classical results of Kalman filters in Hilbert spaces ([17], [16]), we show that

the Kalman filter of the finite graph x̂N
t is well-approximated by the graphon Kalman filter

process x̂t.

3.2 Preliminaries

We adopt the same notation as Chapter 2, Section 2.2.1. With the addition of the

observation process, we slightly modify the definition of a linear Q-noise system.

Definition 3.2.1 (Partially Observed Q-noise Dynamical Systems) As in Chapter 2,

define the state trajectory x : [0, 1]× [0, T ] → R be an L2[0, 1]× [0, T ] function with a given

initial condition x(·, 0) = x0. Let A,B ∈ M be bounded linear operators from L2[0, 1]

to L2[0, 1] such that AQA∗ ∈ Q. This defines a Q-noise noise denoted wt. Let a con-

trol input ut : [0, T ] → L2[0, 1] be a function adapted to the filtration Ft, consisting of all

measurable functions of the state of the system xs, 0 ≤ s ≤ t. In addition, let yt be a

finite-dimensional observation process, C : L2[0, 1] → Rl be a finite-dimensional operator,

and vt be an l-dimensional Wiener process observation noise with instantaneous covariance

operator R ∈ Rl×l.

A partially observed linear dynamical system with Q-noise is an infinite-dimensional dif-

ferential system satisfying the following equation,

dxt(α) =((Axt)(α) + But(α))dt+ dw(α, t), (3.8)

dyt =Cxtdt+ dvt (3.9)
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where for a partition of [0, t], (0, t2, · · · , tN−2, t),

∫ t

0

dw(α, s) = lim
N→∞

N∑
k=1

(w(α, tk+1)−w(α, tk)) (3.10)

in the mean-squared convergence sense.

Definition 3.2.2 (Mild solution) A mild solution (see [7, Sec. 3.1]) to a state and ob-

servation process of type (3.8) is the function xt : [0, T ]× Ω → L2[0, 1] given by

xt =eAtx0 +

∫ t

0

eA(t−s)Busds+

∫ t

0

eA(t−s)dws, (3.11)

yt =C
[
Φ(t, 0)x0 +

∫ t

0

Φ(t, s)Busds+

∫ t

0

Φ(t, s)dws

]
+ vt (3.12)

3.3 Network Models and Limit Processes

For convenience, we reiterate the definition of a graph system (Equation 2.2) here, which

is a networked control system of the form (3.1),

dxN
t = ((AN + aNI)xN

t + (BN + bNI)uN
t )dt+ dWN(t),

xN
t ∈ RN , (3.13)

with the standard map to piecewise constant step functions on the unit interval to piecewise

constant functions on the unit interval ([3]).

3.3.1 Kalman Filtering in Finite and Infinite Dimensions

Theorem 3.3.1 ([17]) Consider a linear Q-noise state system satisfying

dxt = ((A+ aI)xt + (B + bI)ut)dt+ dwt,

x0 ∈ L2[0, 1], (3.14)
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with the observation process

dyt = Cxtdt+ dvt, yt ∈ Rl (3.15)

where the observation noise vt is a Wiener process with instantaneous covariance matrix

R. Let Pt be the L2[0, 1] linear operator satisfying the following Riccati equation for any

f , g ∈ L2[0, 1]

〈[
dP t

dt
− AP t − P tA∗ −Q+ P tC

∗R−1CP t

]
f , g

〉
= 0 (3.16)

P 0 = Cov(x̂0 − x0, x̂0 − x0), (3.17)

and let the filter gain Kt be defined by

Kt = P tC
∗R−1. (3.18)

Then, the L2[0, 1] estimation process of system 3.14 is generated by the stochastic differential

equation

dx̂t = (Ax̂t + But)dt+Kt(dyt −Cx̂tdt), (3.19)

x̂0 = E[x0]. (3.20)

□

Note that by substitution of dyt := Cxtdt+ dvt

dx̂t = (Ax̂t + But)dt+Kt(dyt −Cx̂tdt) (3.21)

= [(A−KtC)x̂t + But]dt+KtCxtdt+Ktdvt.

As in the finite-dimensional case, the solution P t to equation (3.16) can be interpreted as
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the covariance of the error process [14],

P t = E[(xt − x̂t)(xt − x̂t)
∗]. (3.22)

Recalling from Equations (3.3)–(3.5), the Kalman filter generates the least-squares state

estimate given the observations yt of equation (3.13). For clarity, we restate the equations

here.

dx̂N
t =(AN + aNI)x̂N

t + (BN + bNI)uN
t (3.23)

+ Pt(C
N)T(RN)T(dyNt − CNxN

t dt),

d

dt
PN
t =(AN + aNI)PN

t + PN
t (AN + aNI)T (3.24)

+QN − PN
t (CN)T(RN)−1CNPN

t ,

PN
0 =cov(x̂N

0 − xN
0 , x̂

N
0 − xN

0 ). (3.25)

The following theorem establishes that the state estimation process generated by the

filter for a system defined on a graph with N nodes converges to the state estimation process

generated by the limit Kalman filter on the limit graph. For simplicity, we assume that the

control ut is equivalent to u
[N ]
t .

Theorem 3.3.2 Let the piecewise constant process x
[N ]
t converge to the graphon process xt

under the assumptions of Theorem 2.2.3, and let x̂
[N ]
t be the N-dimensional Kalman filter

process estimating the state process x
[N ]
t . Then, in addition to assumptions A0-A2, B0, and

B1 of Theorem 2.2.3 (restated below for clarity), assume there exists an N0 such that for any

tuple {ϵk}5k=0 where, for N > N0,

||x[N ]
0 − x

[M ]
0 ||22 < ϵ0, (A0) (3.26)

||Φ[N ](t, s)− Φ[M ](t, s)||2op < ϵ1, (A1) (3.27)

E[||w[N ]
t −w

[M ]
t ||22] < ϵ2, (A2) (3.28)
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N∑
k=1

N∑
r=1

|cNk,r|2 ≤ C, (B0) (3.29)∫ s

0

||Φ[N ](t, s)||2opds ≤ α, t ∈ [0, T ]. (B1) (3.30)

||RN −R||op < ϵ3, (C1) (3.31)

||C [N ] −C||op < ϵ4, (C2) (3.32)

||x̂[N ]
0 − x̂0||2 < ϵ5, (C3) (3.33)

and that the l-dimensional observation processes yNt and yt share the observation noise pro-

cess vt. Then

E[||x̂[N ]
t − x̂t||2] < ϵ. (3.34)

Proof: First, we note that by Theorem 2.2.3, first demonstrated in [40], when (A[N ],C [N ],Q[N ], RN)

converges to the tuple (A,C,Q, R), then the associated Riccati equation converges. This

shows that the filter gain K
[N ]
t corresponding to the finite graph converges to the graphon

filter gain Kt.

In a similar manner, define

ηNt = x̂t − x̂
[N ]
t . (3.35)

Unlike in [40], ηNt is stochastic, hence a Gronwall’s inequality argument cannot be applied

directly. However, using equation (3.21),

dηNt =dx̂t − dx̂
[N ]
t (3.36)

=[(A−KtC)x̂t + But]dt+KtCxtdt+Ktdvt

− [(A[N ] −K
[N ]
t C [N ])x̂

[N ]
t + B[N ]u

[N ]
t ]dt

−K
[N ]
t C [N ]x

[N ]
t dt−K

[N ]
t dvt.
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To shorten this equation, introduce the notation

H t := A−KtC, HN
t := A[N ] −K

[N ]
t C [N ]. (3.37)

Then, by assumption, ut = u
[N ]
t , and dηNt has the form

dηNt =[H tx̂t]dt+KtCxtdt+Ktdvt (3.38)

− [HN
t x̂

[N ]
t ]dt−K

[N ]
t C [N ]x

[N ]
t dt−K

[N ]
t dvt.

By adding and subtracting (H tx̂
[N ] +KtCx

[N ]
t )dt, equation (3.38) can be rewritten as

dηNt =[H t(x̂t − x̂
[N ]
t ) + (H t −HN)x̂

[N ]
t (3.39)

+KtC(xt − x
[N ]
t ) + (KtC −K

[N ]
t C [N ])x

[N ]
t ]dt

+Ktdvt −K
[N ]
t dv[N ]

=[H tη
N
t + (H t −HN

t )x̂
[N ]
t +KtC(xt − x

[N ]
t )

+ (KtC −K
[N ]
t C [N ])x

[N ]
t ]dt

+ (Kt −K
[N ]
t )dvt.

Note that only the first term depends on the trajectory of ηt. Letting Φ(t, s) be the evolution

operator generated by H t, applying the Ito integral from 0 to t yields

ηNt =Φ(t, 0)ηN0 +

∫ t

0

(Hs −HN
s )x̂

[N ]
s ds (3.40)

+

∫ t

0

Φ(t, s)KsC(xs − x[N ]
s )ds

+

∫ t

0

Φ(t, s)(KsC −K [N ]
s C [N ])x[N ]

s ds

+

∫ t

0

Φ(t, s)(Ks −K [N ]
s )dvs.

Applying E[|| · ||2] to ηNt , the definition of the operator norm, the triangle inequality, and
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Jensen’s inequality yields

E[||ηNt ||2] ≤E[||Φ(t, 0)||op||ηN0 ||2] (3.41)

+ E[
∫ t

0

||(Hs −HN
s )||op||x̂

[N ]
s ||2ds]

+ E[
∫ t

0

||Φ(t, s)||op||KsC||op||xs − x[N ]
s ||2ds]

+ E[
∫ t

0

||Φ(t, s)||op ||(KsC −K [N ]
s C [N ])||op||x[N ]

s ||2ds]

+ E[||
∫ t

0

Φ(t, s)(Ks −K [N ]
s )dvs||2].

The first term of (3.41) converges by assumption (C3), and the second, third, and fourth

terms converge via the convergence of the operator norms of (A,C,Q, R).

The fifth term can be shown to converge, as follows from the Cauchy-Schwarz inequality

applied to the inner product ⟨X, Y ⟩ = E[XY ] and the Ito Isometry [7, Theorem 2.3]. By

the boundedness of Φ(t, s) and the convergence of K [N ]
t to Kt in operator norm, for every

ϵ > 0, there exists an N such that

E||
∫ t

0

Φ(t, s)(Ks −K [N ]
s )dvs||2 (3.42)

≤
√
E[12]

√
E||
∫ t

0

Φ(t, s)(Ks −K [N ]
s )dvs||22

=

(∫ t

0

||Φ(t, s)(Ks −K [N ]
s )||2opds

)1/2

(by the Ito Isometry)

≤
(∫ T

0

||Φ(t, s)||2op||Ks −K [N ]
s ||2opds

)1/2

< ϵ.

This yields the desired boundedness in expected norm. □

Note: The requirement that the finite graph system and the limit system have identical

observation disturbances vt is intuitive. As N increases, the graph becomes more complex,
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but the same number of observations is taken.

3.3.2 Observability and Finite Rank Decomposition

As in [3] and [35], when the underlying graphon limits of the system are finite rank (that

is, A and Q have finite rank), then the Kalman filter may be expressed as the solution of a

finite number of equations. Thus, even when the large, finite graph has a nearly full rank

adjacency matrix AN , the Kalman filter can be calculated efficiently due to the finite rank

nature of the limit. First, recall the notion of (approximate) observability ([41, Sec. 6.2]).

3.3.2.1 Observability

For deterministic systems, this is the property that the initial condition can be uniquely

determined as a function of the output and input processes.

Definition 3.3.1 (Observability, [41], Corr. 6.2.15) For a linear Q-noise system with

a state operator of the form A = A + aI generating the evolution operator Φ(t, s) and the

observation operator C, (C,A) is observable if

CΦ(s, 0)v = 0 ∀ s ∈ [0, T ] =⇒ v = 0. (3.43)

□

Recall that for A = A+aI, where A is a graphon with distinct eigenvalues {λk, λ1 > λ2 >

· · · }∞k=1 with multiplicity rk corresponding to the orthonormal basis {ϕnj
, j = 1, 2, · · · rk} of

L2[0, 1], A acting on a function f ∈ L2[0, 1] can be expressed as the operator

Af =
∞∑
n=1

(λn + a)
rn∑
j=1

⟨ϕrj
,f⟩ϕrj

. (3.44)

The following observability test for (C,A) is given in [41, Theorem 6.3.4].
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Theorem 3.3.3 ([41]) Given a system evolution operator A of the form 3.44 and a finite-

dimensional observation operator C of the form

Cf = [⟨c1,f⟩ ⟨c2,f⟩ · · · ⟨cl,f⟩]T, (3.45)

ck ∈ L2[0, 1] ∀ k = (1, ..., l),

(A,C) is observable if and only if for all n

rank


⟨c1, ϕn1

⟩ · · · ⟨cl, ϕn1
⟩

...
...

⟨c1, ϕnrn
⟩ · · · ⟨cl, ϕnrn ⟩

 = rn. (3.46)

□

This implies that if A is finite rank (i.e., has a finite-dimensional range), the system is

necessarily unobservable in an infinite number of subspaces.

In the context of Q-noise systems, it is natural to couple the notions of observable and un-

observable spaces with the notions of noise-controllable and noise-uncontrollable subspaces.

By duality of observability and controllability, if the tuple (C,A) is observable, then (C∗,A∗)

is controllable [41, Lemma 6.2.14]. The noise-controllable and observable subspaces can then

be decomposed as in standard finite-dimensional analysis.

Definition 3.3.2 For a Q-noise system with the parameters (C,A,Q), for all t ∈ (0, T ],

the following hold:

The unobservable subspace UNOB is the span of the set of functions v ∈ L2[0, 1] such

that

CΦ(s, 0)v = 0 ∀ s ∈ [0, t]. (3.47)

The observable subspace OB is the orthogonal complement of UNOB.
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The noise-uncontrollable subspace UNCONQ is the set of functions v ∈ L2[0, 1] such

that

QΦ∗(s, 0)v = 0 ∀ s ∈ [0, t]. (3.48)

The noise-controllable subspace is the orthogonal complement of CONQ.

The noise controllable and observable subspace is the intersection of OB and CONQ is

denoted CONQOB.

Remark: As the unobservable subspace UNOB is the largest subspace invariant with respect

to Φ(·, 0) contained in kerC, and CONQ is the smallest subspace invariant with respect to

Φ(·, 0) containing the range of Q, then the noise-controllable and unobservable subspace is

equivalent to

CONQUNOB = (ker(CΦ(·, 0))) ∩ (ran(Φ(·, 0)Q)). (3.49)

Even if (C,A) contains unobservable modes, when the initial condition of the system x0

is an element of OB, wt is A-invariant, the space of initial condtions X0 is A-invariant,

and the noise-controllable and unobservable subspace CONQUNOB is empty, the system

trajectory is fully contained in the observable subspace. This distinction is important, as

when A and C have finite rank, the system necessarily has unobservable modes. With this in

mind, we introduce the observable A-invariant subspace and the notion of Q-observability.

Definition 3.3.3 For any graphon A, the subspace SA graphon A is the largest A-invariant

subspace of OB, i.e.,

SA = {f ∈ OBs.t.Af ∈ OB}. (3.50)

Definition 3.3.4 Consider a Q-noise graphon system with state operator A = A + aI,

observation operator C, Q-noise covariance operator Q, and set of initial conditions X0.
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The tuple (C,A,Q,X0) is Q-observable if:

1. The A-invariant subspace SA ⊂ L2[0, 1] is equal to the domain of A, and is spanned

by the basis functions {ϕk}Mk=1, with M possibly infinite.

2. The noise-controllable, unobservable subspace CONQUNOB is empty, and the noise-

controllable observable subspace is contained in SA.

3. The set of initial conditions X0 is contained in SA.

4. For C = [⟨c1, ·⟩, ..., ⟨cl, ·⟩]T defined by Eq. (3.45) and the set {ϕk}Mk=1 spanning SA, for

1 ≤ k ≤ M ,

rank


⟨c1, ϕk⟩

...

⟨cl, ϕk⟩

 ≥ 1. (3.51)

□

Remark: In standard Kalman filter theory, the system tuple (C,A,B) is typically assumed

to be detectable and noise-controllable. Here, as the observable subspace is not necessarily

invariant with respect to A, it is necessary to assume that the set of initial conditions X0

and the Q-noise wt exist are observable and invariant with respect to the graphon A.

A trivial example of such a state system is given by

dxt = (

∫ 1

0

xα
t dα + xt)dt+ dwt, (3.52)

x0(α) = 1 ∀α ∈ [0, 1], (3.53)

dyt =

∫ 1

0

xα
t dα + dvt (3.54)

with the rank one Q-noise process wt(α) = Wt for all α ∈ [0, 1]. The system is not technically

rank one; the state operator A = 1 + I includes the identity operator, and any square-
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integrable odd function shifted to the right by 0.5 is both unobservable and an eigenfunction

of A. However, because the Q-noise, the initial condition, and the observation operator are

contained in the subspace of functions which are constant for α ∈ [0, 1], the system trajectory

is confined to (and is observable in) that subspace.

With this example in mind, we introduce finite rank decomposition for Kalman filtering,

analogous to the decomposition for control in [35] and for deterministic systems in [3].

3.3.2.2 Finite rank decomposition

In general, the Kalman filter requires the solution of an L2[0, 1] operator Riccati dif-

ferential equation. When the state operators A and Q have finite rank, and the tuple

(C,A,Q,X0) is Q-observable, then the Kalman filter is equivalent to the solution of a

finite-dimensional Riccati equation. Effectively, this is because the limit system exists on

a finite-dimensional subspace. For clarity, assume that the system is uncontrolled. The

analysis still applies for controlled systems.

Definition 3.3.5 A Q-observable tuple (C,A,Q,X0) is finite rank if the observable A-

invariant subspace SA is spanned by the set of M orthonormal functions denoted VM =

span{ϕk}Mk=1.

Theorem 3.3.4 Given a finite rank Q-observable tuple (C,A,Q,X0), assume that the ob-

servation operator C is of the form

Cf = [⟨c1,f⟩ . . . ⟨cl,f⟩], (3.55)

and that

rank


⟨c1, ϕk⟩

...

⟨cl, ϕk⟩

 ≥ 1, 1 ≤ k ≤ M. (3.56)
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Then, the Riccati equation of the Kalman filter is M ×M-dimensional.

Proof: Define the M ×M matrices A and Q as

Aij = ⟨ϕi,Aϕj⟩ (3.57)

Qij =


µi, i = j

0, i ̸= j

(3.58)

Similarly, define the l ×M observation matrix C by

Cij =


⟨c1, ϕ1⟩ . . . ⟨c1, ϕM⟩

... . . . ...

⟨cl, ϕ1⟩ . . . ⟨cl, ϕM⟩

 (3.59)

(3.60)

This allows the decomposition of the system state xt into two components: the projection

onto the subspace spanned by VM (denoted S) and its orthogonal complement (denoted S⊥),

xt =xV
t + xV⊥

t , (3.61)

xV
t :=

M∑
k=1

⟨xt, ϕk⟩ϕk (3.62)

xV⊥
t :=xt − xV

t . (3.63)

Note that xV
t has M dimensions, and xV

0 ∈ X0. This allows the definition of the M dimen-

71



sional system xM
t projecting xt to S (as well as the corresponding control uM

t , if any),

xM
t =



⟨xt, ϕ1⟩

⟨xt, ϕ2⟩
...

⟨xt, ϕM⟩


, xM

t ∈ RM , (3.64)

As Q is assumed to be finite-dimensional, the Q-noise wt is equivalent to the M dimensional

Wiener process

wM
t =

M∑
k=1

√
µkW

k
t , wM

t ∈ RM . (3.65)

Further, this satisfies the M dimensional stochastic differential equation,

dxM
t =[(A+ aI)xM

t ]dt+ dwM
t , (3.66)

xM
0 =

M∑
k=1

⟨x0, ϕk⟩ϕk (3.67)

By assumption on the span of the observation operator, the observation process only acts

on the xV
t process. The observation noise process vt (with covariance matrix R) is already

l-dimensional, and hence does not need to be redefined. The decomposed system can then

be written as the solution to the coupled differential equations,

xt =xV
t + xV⊥

t , (3.68)

dxM
t =[(A+ aI)xM

t ]dt+ dwM
t , (3.69)

xM
0 =


⟨x0, ϕ1⟩

...

⟨x0, ϕM⟩

 , xM
0 ∈ RM (3.70)

dxV⊥
t =axV⊥

t dt, (3.71)

72



xV⊥
0 =x0 −

M∑
k=1

xM
0 ϕk, (3.72)

dyt =CxM
t dt+ dvt (3.73)

This allows the full decomposition of the Kalman filter process x̂t on a finite-rank graphon

system into the M -dimensional process x̂M
t and its orthogonal complement, x̂V⊥

t . These

jointly satisfy the following coupled differential equations,

x̂t =
M∑
k=1

[x̂M
t ]kϕk + x̂V⊥

t , (3.74)

dx̂V⊥
t =ax̂V⊥

t dt, x̂V⊥
t ∈ L2[0, 1], (3.75)

x̂V⊥
0 =x0 −

M∑
k=1

[xM
0 ]kϕk, (3.76)

dx̂M
t =(A+ aI)x̂M

t dt+ PM
t (C)T(R)T(dyt − CxM

t dt),

x̂M
t ∈ RM x̂M

0 given, (3.77)

where PM
t ≥ 0 is the M ×M dimensional matrix satisfying the Riccati equation,

d

dt
PM
t =(A+ aI)PM

t + PM
t (A+ aNI)T (3.78)

+QM − PM
t (C)T(R)−1CPM

t ,

PM
0 =cov(x̂M

0 − xM
0 , x̂M

0 − xM
0 ), Pt ∈ RM ×RM . (3.79)

□

Note: As the noise-controllable and unobservable subspace is empty, the Q-noise process

wt is wholly contained in the finite-dimensional space spanned by VM . This allows the

calculation of x̂V⊥
t as

x̂V⊥
t = eatx̂V⊥

0 . (3.80)
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By the definition of Q-observability, the initial condition is contained in the observable

subspace OB. For systems where the initial condition is not known, the filter error is

unstable unless the system is stable in any unobserved modes.

The requirement that C only measure the system state contained in the span of VM is

restrictive. Relaxing this to allow measurement of the orthogonal complement process would

not allow the system to be solved with an M×M Riccati equation, and would instead require

an infinite-dimensional Riccati equation.

3.4 Separation Principle

For every graph-averaging system in the sequence xN
t converging to the graphon limit

system xt, the Separation Principle applies. Hence, there is a natural question: under which

circumstances does the separation principle apply to the graphon limit system?

For this section, we assume that the limit control operator B = B+ bI has non-zero local

forcing constant b. This ensures that the system is always controllable. First, we restate the

linear quadratic regulator problem with fully observed system state:

Definition 3.4.1 (Linear Quadratic Regulator) Given a linear Q-noise system with state

process xt satisfying

dxt = (Axt + But)dt+ dwt, x0 ∈ L2[0, 1], (3.81)

find the control uo
t ∈ L2[0, 1] adapted to the filtration consisting of {xs, 0 ≤ s ≤ t} that

infimizes the performance function

J(x0,u) =E
[ ∫ T

0

⟨xs,Mxs⟩+ ⟨us,Rus⟩
]

+ E
[
⟨xT ,MTxT ⟩

]
. (3.82)

where M : L2[0, 1] → L2[0, 1], M ≥ 0 and R : L2[0, 1] → L2[0, 1], R > 0.
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This optimal control problem (abbreviated Q-LQG) has the well-known solution given by

the following theorem.

Theorem 3.4.1 ([13]) Suppose that M,R,MT are bounded positive self-adjoint L2[0, 1] op-

erators, and that R : L2[0, 1] → L2[0, 1] is invertible. Then, the performance function (3.82)

is minimized by ut = −R−1B∗Stxt, where S : [0, 1]× [0, 1]× [0, T ] → R is an L2[0, 1] linear

operator for all t whose kernel satisfies the following Riccati equation,

− d

dt
⟨Stv,v⟩ =2⟨Av, Stv⟩ − ⟨StBR−1B∗Stv,v⟩+ ⟨Mv,v⟩, ∀v ∈ L2[0, 1]

ST =MT . (3.83)

Proof : See [13, Sec. 4] with F = I, D = 0, C = 0 (hence Γ(·) = 0 and ∆(St) = 0). □

The convergence of the standard LQG problem on a network sequence to the graphon

Q-LQG problem is shown in [35]. The Separation Principle for Q-Wiener Process Linear

Quadratic Regulator problems (derived by Curtain and Ichikawa [18]) yields the following

optimal control law and linear state estimator for the system adapted to graphon Q-LQG

systems:

Theorem 3.4.2 (Separation Principle) Consider a Q-LQG problem minimizing the per-

formance functional J on the time interval [0, T ],

J(x0,u) =E
[ ∫ T

0

⟨xs,Mxs⟩+ ⟨us,Rus⟩
]
+ E

[
⟨xT ,MTxT ⟩

]
, (3.84)

subject to M ≥ 0, R > 0,

dxt = (Axt + But)dt+ dwt, x0 ∈ L2[0, 1], (3.85)

with the finite-dimensional observation process

dyt = Cxtdt+ dvt, yt ∈ Rl, (3.86)
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the optimal linear state estimator x̂t satisfies equation (3.21) where P t equation (3.23) and

Kt = P tC
TR−1, and the optimal control uo

t = −R−1B∗Stx̂t, where St is the solution to the

infinite-dimensional Riccati equation (3.83), and the optimal control has the value

J(x0,u
o) =trace(MtP T ) +

∫ T

0

+trace(MP s)ds (3.87)

+

∫ T

0

trace(SsP sC
∗R−1CP s)ds.

See [14, Section V] for details. □

Finally, for the case of sequences of partially observed Q-LQG problems on graph-

averaging systems which converge to graphon Q-LQG problems, we present the following

theorem.

Theorem 3.4.3 Define a graph-averaging Q-LQG problem with partial observations with

system parameters (A[N ],B[N ]), state noise covariance operator Q[N ], cost operators

(M[N ],M[N ]
T ,R[N ]), observation operator C [N ], and observation noise operator R converging

to the respective operators (A,B,Q,M,MT ,R,C,R) in operator norm and initial condition

x
[N ]
0 converging to x0 in L2[0, 1] norm. Then the optimal linear filter x̂

[N ]
t and the optimal

control for the finite graph problem u
[N ],o
t converges to the optimal linear filter x̂t and the

optimal control of the graphon problem, uo
t in mean,

lim
N→∞

E[||x̂[N ]
t − x̂t||2] = 0, t ∈ [0, T ], (3.88)

lim
N→∞

E[||u[N ],o
t − uo

t ||2] = 0, t ∈ [0, T ]. (3.89)

Proof: The first limit is found by fixing ˆ
u

[N ]
t as the input for both the finite graph-

averaging system and the limit graphon system, and applying Theorem 3.3.2 to find the

Kalman filter of the graphon system. The second limit is necessarily true as a consequence

of Theorem 2.2.3.

□
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Consider a sequence of linear quadratic Gaussian problems on a sequence of increasingly

large finite graph systems that converges to the Q-observable finite rank system in the sense

that the graphon operators of the LQ Gaussian filtering problems defined on a given sequence

of increasingly large finite graph systems converge. Then, the theorem below holds.

Theorem 3.4.4 Let the piecewise constant tuple (A[N ],B[N ],C [N ],Q[N ],M[N ],M[N ]
T R[N ]) con-

verge to the tuple (A,B,C,Q,M,MT ,R) in L2[0, 1]-operator norm and the piecewise constant

initial condition x
[N ]
0 converge to the L2[0, 1] initial condition x0.

Further, assume that the following conditions of the limit system hold:

1. The tuple (C,A,Q,X0) is Q-observable by Definition 3.3.4.

2. The tuple (C,A,Q,X0) is finite rank by Definition 3.3.5, and satisfies the conditions

of Theorem 3.3.4.

3. The cost operators satisfy M ≥ 0, MT ≥ 0, and R > 0.

Then, the Kalman filter process of the finite graph system x̂
[N ]
t converges to the limit graphon

Kalman filter x̂t, and the optimal control input of the finite graph system u
[N ]
t converges to the

optimal control input of the limit graphon system ut. Further, the limit graphon Kalman filter

x̂t and the limit optimal control input ut are determined by finite-dimensional differential

Riccati equations.

Proof: The result is a direct consequence of a system satisfying Definition 3.3.4, and the

assumptions of Theorem 3.3.4, and Theorem 3.4.3.

□

Next, we demonstrate Theorem 3.4.4 by modeling and controlling finite graph systems

with many nodes using the finite rank limit.
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3.5 Numerical Demonstrations

The strongest motivating case for the convergence results of the graphon Kalman filter

is to show that systems on large graphs in a sequence converging to a graphon limit can be

analyzed in the limit. In particular, when the limit is low rank, the finite graph system can be

approximated with a number of equations lower than the number of nodes of the graph. This

would not require the specific structure of the graph to be known. We demonstrate this with

two numerical examples. First, it is shown that the Kalman filter on an uncontrolled Erdos-

Renyi graph system is well-approximated by the graphon Kalman filter with observation of

the average state at each node, though the filter itself is unstable due to the unobserved

modes of the random graph system. Then, it is shown that even though the graphon filter

is unstable for the finite graph system, the system can be stabilized using the Q-Linear

Quadratic Gaussian control applied to the graphon filter.

For each example, a uniform 100-point discretization of the unit interval is used to rep-

resent a graph of 100 nodes, and the graph is generated using the W-random graph method

[1]. The W-random graph method is as follows:

• Let W : [0, 1]× [0, 1] → [0, 1] be a graphon.

• Begin with a set of N vertices in a graph GN with no edges and a uniform partition

P of the unit interval into N − 1 segments, each segment denoted Pk = [k−1
N

, k
N
) 1 ≤

k ≤ N − 2 and PN−1 = [k−1
N

, k
N
].

• For 1 ≤ k ≤ N − 1, assign vertex vk to the point αk =
k−1
N

, and assign vN to the point

αN = 1.

• For every pair of vertices i, j, 1 ≤ i, j ≤ N , assign an edge between vi and vj with

probability W (αi, αj) independently.

As N tends to infinity, the adjacency matrix of GN tends to the graphon W in the cut

metric [1]. The following experiments show that, even for relatively small numbers of nodes,
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the graphon limit can be used to model stochastic systems on graphs.

3.5.1 Erdos-Renyi system

To demonstrate this on the simplest L2[0, 1] system, set both the graphon A to be the

Erdos-Renyi graphon and the Q-noise covariance to be a one-dimensional noise sharing the

same eigenspace. Set the graphon limit to be the constant function A(α, β) = 0.2, (α, β) ∈

[0, 1]2, with the initial state and filter conditions x0(α) = 1, α ∈ [0, 1]. The terminal time T

is 10.

The adjacency matrix AN of a finite graph of 100 nodes (generated using the W-random

graph method) is shown in Fig. 3.1-A. This is used to create the piecewise constant graphon

A[N ], as described in Section 2.2.5.

The eigenfunction of the Erdos-Renyi graphon A is the constant function ϕ(α) = 1. The

observation operator C is the average value of the state over the unit interval:

Cxt =

∫ 1

0

xt(α)dα, (3.90)

with the observation error vt ∼ W (0, 0.1), and let wt be the one-dimensional Q-noise with

constant covariance operator Q(α, β) = 0.05. Then the system xt with observation process

yt satisfies

dxt(α) =

(∫ 1

0

A[N ](α, β)xt(β)dβ

)
dt+ dwt, (3.91)

x0(α) = 1, (3.92)

dyt = Cxtdt+ dvt, yt ∈ Rl, (3.93)

and the filter x̂t satisfies

dx̂t = 0.2

∫ 1

0

x̂t(α)dαdt+Kt(dyt −Cx̂tdt), (3.94)
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x̂0(α) = 1. (3.95)

The finite graph system is not Q-observable, as the random finite graph adjacency matrix

(Fig. 3.1-A) is not observable with the observation operator C. However, the low rank

graphon limit provides a reasonable approximation of the graph system trajectory. Fig. 3.1-

B shows the state trajectory of the finite system. The ridges in the node index dimension are

caused by the random construction of the adjacency matrix. Fig. 3.1-C shows the Kalman

filter of the system calculated using the graphon A(α, β) = 0.2. The Kalman filter in this

instance is one-dimensional, and can be calculated as a single equation.

Fig. 3.1-D shows the root squared distance of the graph system state and the Kalman

filter, calculated as

rsd(xt,xt, t) =

∫ 1

0

√
⟨(xt(α)− x̂t(α)), (xt(α)− x̂t(α))⟩dα,

showing that the filter approximates the average state of the system. While the filter accu-

rately tracks the average state value at each time, the filter is unstable due to the random

construction of A[N ].

Despite the filter of the uncontrolled system being unstable, the graphon limit can be

used to stabilize the system. Modifying the system by adding the (local) control ut,

dxt(α) =

(∫ 1

0

A[N ](α, β)xt(β)dβ + ut(α)

)
dt+ dwt,

x0(α) =1, dyt = Cxtdt+ dvt, yt ∈ Rl, (3.96)

with the filter x̂t satisfying

dx̂t =

(
0.2

∫ 1

0

x̂t(α)dα + ut

)
dt+Kt(dyt −Cx̂tdt), (3.97)

x̂0(α) = 1. (3.98)
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Figure 3.1: A: The finite graph adjacency matrix generated using the W-random graph
method. This adjacency matrix is used to define A[N ].B: The state trajectory of the finite
graph system. There are two sources of randomness: the random generation of the graph
and the Q-noise in the system. C: The Kalman filter trajectory of the system. D: The root
squared difference of the finite graph system trajectory and the graphon Kalman filter.
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We extend the previous system to a Q-Linear Quadratic Gaussian problem by defining the

cost operators M = I, R = I, and the graphon limit A is used to calculate the LQG

solution. The terminal time is extended to T = 20 in order to show that the controlled

system is stable. Then, the optimal feedback control is the function ut = −Stx̂t satisfying

the Separation Principle, Theorem 4.2.

Fig. 3.2-A shows the controlled state trajectory of the graph system, Fig. 3.2-B shows

the Kalman filter trajectory, and Fig. 3.2-C shows the root squared distance between the

filter and the state trajectory.

Despite the Kalman filter and the LQR control equations using the graphon limit system

(the first of which can be calculated with one equation, and the second of which can be

calculated with two equations [39]) instead of the full finite graph, the root squared distance

between the state and the filter is stable about the origin. This agrees with Theorem 3.4.4.

While directly using the full graph AN to calculate the Kalman filter and LQG solution

would yield a more accurate state estimate, this would require the full knowledge of the

network and the solution of a 100× 100 dimensional Riccati equation.

3.5.2 Uniform Attachment Graphon

For one further uncontrolled system to examine, consider a system where both the

graphon A and the covariance operator Q are given by the Uniform Attachment Graphon

(UAG), A(α, β) = 1 − max(α, β) ([1]), and Q = 0.05A(α, β). The uniform attachment

graphon is infinite rank with strictly positive eigenvalues, and hence the system is unstable.

As shown in [25], the eigenfunctions and eigenvalues of the Uniform Attachment Graphon

are

(ϕk(α), λk) =

(√
2 cos

(kπα
2

)
,

4

k2π2

)
, k = {1, 3, 5, ...}. (3.99)

As with the E-R graph, the single observation is the average value of the system at each
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Figure 3.2: A: The state trajectory of the finite graph system controlled using the graphon
Kalman filter. B: The graphon Kalman filter of the system. C: The root squared distance
of the graph state trajectory and the filter.
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Figure 3.3: A: The finite graph adjacency matrix generated using the W-random graph
method with the Uniform Attachment Graphon. This adjacency matrix is used to define
A[N ]. B: The state trajectory of the finite graph system, uncontrolled. There are two sources
of randomness: the random generation of the graph and the Q-noise in the system. C: The
Kalman filter trajectory of the UAG system. D: The root squared difference of the finite
graph system trajectory and the graphon Kalman filter.

time.

Unlike the Erdos-Renyi graph, the adjacency matrix of the UAG shown in Fig. 3.3-A

has much more structure based on the node index. As in the Erdos-Renyi case, the state

trajectory of the finite graph system (shown in Fig. 3.3-B) is not smooth in the state index

as the adjacency matrix is not smooth. The graphon filter (Fig. 3.3-C) effectively tracks

the state average, even in the presence of observation and state noise. The root squared

distance between the UAG graph system and the graphon limit filter (Fig. 3.3) increases

exponentially due to the instability of the uncontrolled system and the difference between

the finite graph and the graphon limit in the operator norm.

As with the Erdos-Renyi graph, the unmodelled modes cause the filter to be unstable.

As with the Erdos-Renyi graph, the UAG graph system can be stabilized by applying the

graphon state estimate in the optimal control feedback, as expected from Theorem 3.4.3.
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The controlled UAG system is shown in Fig. 3.4-A, and the graphon Kalman filter is shown

in Fig. 3.4-B. The root squared distance (Fig. 3.4-C) shows that the system is stabilized.
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Figure 3.4: A: The state trajectory of the finite UAG system controlled using the graphon
Kalman filter. B: The graphon Kalman filter of the system. C: The root squared distance
of the graph state trajectory and the filter.
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Chapter 4

Field Tracking Games

Chapter 4 extends the work of Gao, Foguen-Tchuendom, and Caines [34] by applying the

Q-noise foundations of Dunyak and Caines [9] to discrete-time systems. This model is anal-

ogous to the limit behavior of a finite-dimensional graph system with a correlated Gaussian

disturbance impacting each node at each time step. It is demonstrated that the discrete-time

linear quadratic Q-noise tracking game has an adapted Nash equilibrium solution, and the

behavior of the equilibrium solution is demonstrated numerically.

4.1 Introduction

Large systems composed of interacting non-cooperative agents arise in many applications

such as cellular networks, financial markets, and electrical grids. The modelling and control

of such systems is intractable due to the size and complexity of their respective networks.

In the case of a game with a large number of identical agents, one can use Mean-Field

Game theory to find the approximate system behavior by simulating a system with an

infinite number of agents and finding the distribution of agents’ states under different control

methods ([42],[43],[44]). The mean-field game approach simplifies the game, as rather than

optimizing with respect to the actions of every individual player, one can optimize with

respect to a single representative player.
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Standard mean-field games can be extended to games on networks where each node has

an infinite population of players by the use of graphons ([23],[45],[22]). Graphon theory [1]

allows the adjacency matrix of an infinitely large graph to be represented as a bounded,

symmetric operator, providing a limiting object for large, dense graphs. Under the Graphon

Mean-Field Games (GMFG) model each node in a network contains a separate, infinite

population interacting with the agents local to their node uniformly and the agents in the

network through the graphon. As there are an infinite number of agents, the actions of a

single agent do not change the mean-field.

Expanding on previous work [46], a linear quadratic game with correlated Gaussian

disturbances on an infinitely large dense graph is investigated where each node represents

a single agent. A continuous-time, deterministic model with stochastic initial conditions

for this type of linear-quadratic game was investigated by Gao, Foguen-Tchuendom, and

Caines [34]. To distinguish this from the infinite-agent-per-node GMFG model, this approach

was termed the Graphon Field Game model. As in the GMFG model, the actions of any

individual agent do not directly affect the field of the system. The Nash equilibria of such

a system require the optimality of each agent’s chosen actions with respect to the field

generated by the ensemble of agents’ optimal strategies.

Parise and Ozdaglar [47] present a model for static graphon games. Carmona et al. [48]

extend this model to the idiosyncratic noise case using the Fubini extension of standard white

noise affecting all agents. Vasal, Mishra, and Vishwanath [49] find a backwards recursive

solution to discrete-time graphon games without noise.

This work extends the work of Gao, Foguen-Tchuendom, and Caines [34] by applying the

Q-noise foundations of Dunyak and Caines [9] to discrete-time systems. This model is anal-

ogous to the limit behavior of a finite-dimensional graph system with a correlated Gaussian

disturbance impacting each node at each time step. It is demonstrated that the discrete-time

linear quadratic Q-noise tracking game has an adapted Nash equilibrium solution, and the

behavior of the equilibrium solution is demonstrated numerically.
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Section 4.3 presents the finite network, finite time field-tracking game as motivation for

taking the infinite node limit, called the graphon field-tracking game. The general approach

used to solve the graphon field tracking game in Section 4.3.2 is:

1. Use the mean-field game principle: a given agent optimizes against an exogenous signal

that is indifferent to their own control and state input,

2. Use dynamic programming to find the solution of an arbitrary stochastic tracking

problem (Section 4.4.1), and

3. Use the graphon field to recursively generate the tracked signal for each time step

(Section 4.4.2).

The second step generates the tracking signal solution in reference to a stochastic adjoint

process, which is defined recursively backwards. The third step uses the graphon field to

generate the adjoint process for each agent by finding a deterministic backwards operator

equation. This is called the Consistency Condition, as it ensures that the graphon field

is consistent with each agent’s optimizing control input. This behavior is demonstrated

numerically in two scenarios: where the maximal eigenvalue of the graphon M is less than

one, and where the maximal eigenvalue is equal to one. This causes the state of all players

of the game to either stabilize about zero or stabilize about an eigenfunction of the game,

respectively.

Section 4.5 extends the analysis to infinite time horizon games with multiplicative dis-

counting. Unlike in the finite time horizon case, the operator equation solutions for the

discounted game have multiple solutions. For the case where the graphon M is low rank, a

finite number of closed-form solutions are found. It is demonstrated that it is nontrivial to

determine which solution is rational for all agents numerically.

For simplicity, the initial formulation is presented where each agent has a scalar state and

a scalar control. The extension to games where each agent has multiple states and controls

is straightforward, and the notation is presented in Appendix 4.6.1.
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4.2 Preliminaries

4.2.1 Notation

• The set of vectors of real numbers of dimension m is denoted Rm.

• Graphons (i.e., bounded symmetric [0, 1]2 functions used as the kernels of linear integral

operators) are denoted in italicized bold capital letters, and in this chapter are typically

written as M .

• L2[0, 1] denotes the Hilbert space of real square-integrable functions on the unit inter-

val. In addition, L2[0, 1] is equipped with the standard inner product, denoted ⟨u,v⟩.

For any function v, v∗ denotes the adjoint of v. As such, ⟨u,v⟩ is sometimes written

as v∗u.

• The identity operator in both L2[0, 1] and finite-dimensional spaces is denoted I.

• A linear integral operator with the kernel Q : [0, 1]2 → R acting on a function f ∈

L2[0, 1] is defined by

(Qf)(x) =

∫ 1

0

Q(x, y)f(y)dy, ∀ x ∈ [0, 1]. (4.1)

• The operators Q are equipped with the standard L2[0, 1] operator norm ||Q||op.

• A symmetric function Q : [0, 1]2 → R is non-negative if the following inequality is

satisfied for every function f ∈ L2[0, 1],

0 ≤
∫ 1

0

∫ 1

0

Q(x, y)f ∗(x)f(y)dxdy (4.2)

:= ⟨Qf ,f⟩ < ∞.

Additionally, denote Q to be the set of bounded symmetric non-negative functions. All

valid Q-noise covariance functions are members of Q.
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• Discrete-time Q-noise processes (stochastic processes over the time interval (0, 1, ..., T ))

will be denoted by the bold font gk. For each k ∈ (0, 1, ..., T ), gk is an L2[0, 1] function.

The precise definition of a Q-noise process is given in Section 4.2.2.

• The expectation of a random variable at time k with respect to a sigma algebra Fk is

denoted:

E[·|Fk] := Ek[·]. (4.3)

This chapter focuses on games where each agent possesses a scalar state. The extension

to vectors of states is straightforward, and is presented in Section 4.6.1.

4.2.2 Discrete-Time Q-noise Processes

Discrete-time Q-noise processes are L2([0, 1]) valued random processes satisfying the fol-

lowing axioms (modified from [9] for discrete-time processes):

1. Let Q ∈ Q, and let ([0, 1] × {0, 1, ..., T} × Ω,B([0, 1] × {0, 1, ..., T} × Ω),P) be a

probability space with the measurable random variable gk(α, ω) : [0, 1]×{0, 1, ..., T}×

Ω → R for all k ∈ {0, 1, ..., T}, α ∈ [0, 1], and ω ∈ Ω. For notation, ω is suppressed

when the meaning is clear.

2. For all α ∈ [0, 1], gk(α) ∼ N (0,Q(α, α)).

3. For all α and β, E[gk(α)gk(β)] = Q(α, β).

An orthonormal basis example: Let {W 1
k ,W

2
k , · · · } be a sequence of independent standard

normal random variables for each k ∈ {0, 1, ..., T}. Let Q ∈ Q have a diagonalizing or-

thonormal basis {ϕr}∞r=1 with eigenvalues {λr}∞r=1. Then

gk(α, ω) =
∞∑
r=1

√
λrϕr(α)W

r
k (ω) (4.4)
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is a discrete-time Q-noise process. See, for example, [6] and [7] for the construction of general

Gaussian measures in Hilbert spaces.

4.3 Problem Statement

4.3.1 Discrete-Time Network System Games

Consider a discrete-time game on a graph GN = (V N , EN) where each node i represents

an agent. The state of agent i at time k (denoted xi
k with control ui

k) evolves with the

following stochastic difference equation:

xi
k+1 = (axi

k + bui
k + c

1

N

N∑
j=1

MN
ij x

j
k) +W i

k (4.5)

where a, b, c ∈ R, MN is the weighted adjacency matrix of GN , and {W i
k} is a collection of

Gaussian disturbances with covariance matrix QN for each k. Subject to the actions of all

other agents, each agent i minimizes the expected quadratic cost function with respect to

their information set F i
k, which is the sigma algebra generated by the set {xi

k, z
i
k}Ni=0,

J i(ui, u−i|{zik}Ni=1) = E

[
T−1∑
k=0

||xi
k − zik||2S + ||ui

k||2R + ||xi
T − ziT ||2S

∣∣∣∣F i
0

]
, (4.6)

where zik =
1
N

∑N
j=1M

N
ij x

j
k, ||v||2S = Sv2 for some S ∈ R, R ∈ R, S ≥ 0 and R > 0.

A Nash Equilibrium of the game exists when no agent can benefit by deviating from its

current strategy. If the optimal strategy tuple is {ui∗}Ni=1, this implies

J i(ui∗, u−i∗) ≤ J i(ui, u−i∗) ∀i ∈ {1, ..., N}. (4.7)

As the network size grows, the networked system adjacency matrix MN approaches its

associated graphon which is a bounded measurable function mapping [0, 1]× [0, 1] → [0, 1],

denoted M (see [3], [1]). When the underlying graph is undirected, its graphon is also
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symmetric.

4.3.2 Graphon Field Tracking Games

In graphon analysis, as the size of the network tends to infinity, each agent in the system is

associated with a point α on the unit interval. Define the discrete-time Q-noise gα
k , α ∈ [0, 1],

and the resulting discrete-time system evolves according to

xα
k+1 =(axα

k + buα
k + czα

k ) + gα
k , (4.8)

zα
k =

∫ 1

0

M (α, β)xβ
kdβ ∀ α ∈ [0, 1]. (4.9)

The local field for an agent designated by α refers to the value zα
k found using the above

integral and expectation.

The objective function for the single agent at node α has the limit

Jα(uα,x0) = E

[
T−1∑
k=0

||xα
k − zα

k ||2S + ||uα
k ||2R

∣∣∣∣Fα
0

]
, (4.10)

and its goal is to minimize the objective function for the control strategy uα adapted to the

information pattern Fα
k . For the purposes of this chapter, the full-state information pattern

is used, where Fα
k = Fk := {xβ

k , β ∈ [0, 1]} for each agent α. This is sufficient for each agent

to calculate the entire graphon field zk at time k. This has the value function form:

V α
k (Fα

k ) = E
[
||xα

k − zα
k ||2S + ||uα

k ||2R + Vk+1(Fα
k+1)|Fα

k

]
, k = (0, 1, ..., T − 1),

V α
T (Fα

T ) = ET [||xα
T − zα

T ||2S] = ||xα
T − dα

T ||2S. (4.11)

The agents are in a Nash equilibrium when the following inequality holds,

Jα(uα∗,u−α∗) ≤ Jα(uα,u−α∗), ∀ α ∈ [0, 1]. (4.12)
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Unlike in the case of finite agent games, taking the limit as the number of agents tends

to infinity yields an indifference to the costs of a particular agent α with respect to the

strategies of any other specific agent β. Only the strategies of the agents as a mass (taken

as a function over the unit interval) affect the cost of a given agent.

As with mean-field games and graphon mean-field games, the graphon field term zα
k is

not dependent on both the state xα
k and the action uα

k of any single agent, in the sense that

altering {xα
r }0≤r≤k or {uα

r }0≤r≤k for a particular α does not change zα
k . This is evident from

the integral operator definition of zα
k . As with many mean-field game problems, this changes

the limit problem from a game to a tracking control problem where each node in the network

is penalized for deviating from its associated graphon field.

4.4 Solution to the Q-noise Graphon Field Tracking Game

The game is solved in two steps, first by formulating the response of an individual agent

α ∈ [0, 1] as a stochastic tracking problem, then by showing that the individual actions of

each agent generate a Nash equilibrium.

4.4.1 Solution to the Stochastic Control Tracking Problem

Assume an agent α is tracking an exogenous square-integrable drift process dk(α), α ∈

[0, 1]. Define the state transition equation as

xα
k+1 =(axα

k + buα
k + cdα

k ) + gα
k , (4.13)

The value function is found using dynamic programming, and, as above, has the form

V α
k (Fα

k ) = E
[
||xα

k − dα
k ||2S + ||uα

k ||2R + Vk+1(Fα
k+1)|Fα

k

]
, k = (0, 1, ..., T − 1),

V α
T (Fα

T ) = ET [||xα
T − dα

T ||2S] = ||xα
T − dα

T ||2S. (4.14)
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As stated above, this work considers the case where all agents have the full-information set

Fk consisting of xη
k and dη

k for all η ∈ [0, 1].

Lemma 4.4.1 The value function of agent α at time k, V α
k , is given by

V α
k (Fα

k ) =Ek[Pk(x
α
k )

2 + 2xα
ks

α
k +mα

k ], (4.15)

k = {0, ..., T},

where E[·|Fk] := Ek[·]. Here, Pk is a positive scalar, and sk and mα
k are L2([0, 1]) valued

functions for all k = {0, ..., T} derived from the following backwards recurrence relations:

Fk =(R + b2Pk+1)
−1abPk+1, (4.16)

Gk =(R + b2Pk+1)
−1bcPk+1, (4.17)

Hk =(R + b2Pk+1)
−1b, (4.18)

Pk =S +RF 2
k + Pk+1(a− bFk)

2, (4.19)

sαk =− Sdα
k + FkR(Gkd

α
k +HkEk[s

α
k+1]) (4.20)

+ (a− bFk)Pk+1

×
[
(c− bGk)d

α
k − bHkEk[s

α
k+1]

]
+ (a− bFk)Ek[s

α
k+1],

mα
k =Sdα

kd
α
k + (Gkd

α
k +HkEk[s

α
k+1])R (4.21)

× (Gkd
α
k +HkEk[s

α
k+1])

+
[
(c−Gk)d

α
k − bHkEk[s

α
k+1]

]
Pk+1

×
[
(c−Gk)d

α
k − bHkEk[s

α
k+1]

]
+ 2

[
(c−Gk)d

α
k − bHkEk[s

α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1],
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with the terminal conditions

PT =S, (4.22)

sαT =− Sdα
T , (4.23)

mα
T =S||dα

T ||22. (4.24)

Further, the optimal control is given by

uo,α
k =− (R + b2Pk+1)

−1b[Pk+1(ax
α
k + cdα

k ) + Ek[s
α
k+1]] (4.25)

=:− Fkx
α
k −Gkd

α
k −HkEk[s

α
k+1]. (4.26)

Proof : The proof follows from the ansatz (4.15). See Section 4.6.2. □

The cost mα
k does not affect the control input uα

k and does not have a simple closed-form

solution, so it is not calculated here. The structure of the tracking control solution (with the

feedforward term in the costate sk+1) is common in discrete-time tracking problems [50].

The value function above solves the general discrete-time stochastic optimal control prob-

lem where an agent α tracks an exogenous signal dα
k . The problem is ill-defined in general

since it requires the computation of the expectation of the offset, Ek[s
α
k+1] in terms of the

expected terminal value of dα
T , which requires additional assumptions on the process dk.

However, in the graphon field game setting, at each time step k the chosen strategy must

generate the local field term z, i.e. the optimal input {uo
k, k = 0, ..., T − 1} must generate

a trajectory satisfying zα
k = [Mxk](α) = dα

k for all α. This provides additional structure

to the tracked stochastic process, and is known as the Consistency Condition for the Nash

equilibrium in the limit game [34]. In the full state feedback case, the Consistency Condition

allows the expectation of the offset sk to be explicitly calculated as a linear state process in

terms of zk.
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4.4.2 Nash Equilibrium Consistency Condition with Full State Information

By the Consistency Condition, for each k, the local field zk is given by zk = Mxk. As

xk is square-integrable for each k when generated by the optimal strategy uk and M is an

L2[0, 1] to L2[0, 1] operator, the graphon field zk is square-integrable as well. For the game

to yield a Nash equilibrium, it is necessary for all agents to apply their respective control uα
k

and generate the local field process zα
k . To denote the function over the whole index set the

superscript α is omitted.

To do this, define two new, time varying operators: Γk : L2[0, 1] → L2[0, 1] which cal-

culates the expected graphon field zk+1 at the next time-step given the state of all agents

at the current time-step, and Ψk : L2[0, 1] → L2[0, 1] which calculates the tracking adjoint

process sk as a linear function of the current graphon field zk.

Lemma 4.4.2 Let the signal to be tracked be given by zk = Mxk for time k. Let Γk and

Ψk be L2([0, 1]) operators which are defined by the backwards recursion equations

Ψk =− SI+ FkR(GkI+HkΨk+1Γk) (4.27)

+ (a− bFk)Pk+1

[
(c− bGk)I− bΨk+1HkΓk

]
+ (a− bFk)Ψk+1Γk,

Γk =(I+ bHkMΨk+1)
−1[(a− bFk)I+ (c− bGk)M ] (4.28)

with the terminal condition

ΨT =− SI. (4.29)

Assume that for all k = {0, ..., T − 1}, the inverse (I+ bHkMΨk+1)
−1 exists. Then,

Ek[zk+1] =Γkzk, (4.30)

sk =Ψkzk, (4.31)
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and the trajectory generated by

uk = −Fkxk − (GkI+HkΨk+1Γk)zk (4.32)

gives the optimal tracking trajectory for each α.

Proof: See Section 4.6.3.

Combining Lemma 4.6.2 and Section 4.6.3 yields the Nash equilibrium of the game.

Theorem 4.4.3 Given the limit graphon tracking game of the type (4.10) for the family of

systems (4.8), where each agent α indexed by [0, 1] has the total information pattern (that

is, each agent knows the states of all other agents at the current time step), Fα
k = {xk, zk}

for all α ∈ [0, 1], the control strategy given in equations (4.27), (4.28), and (4.32) yields a

Nash equilibrium.

4.4.3 Numerical Simulation

To demonstrate the behavior of the field tracking game, we illustrate some numerical

examples. There are two general phenomena depending on the maximal eigenvalue of the

graphon M . Namely, as the state xα
k attempts to track the field average zα

k , the optimal

trajectory (without noise) would satisfy

xk = zk := Mxk. (4.33)

This is an eigenvalue and eigenfunction relation, satisfied by either the trivial function xα
k = 0

for all agents α ∈ [0, 1], or when xk is an eigenfunction of the operator M with associated

eigenvalue λ = 1. When max(λ(M )) < 1, tracking the graphon field contracts the state of all

agents to zero. Two contracting examples, with varying graphons and Q-noise disturbances

are presented first, and two normalized examples are presented second. In order to create

examples where the maximal eigenvalue is one, the graphon M is normalized by its maximal
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eigenvalue.

In all examples, the states are scalar, with the system parameters a = 1, b = 1, and

c = 0.1. To illustrate that the system effectively tracks the perturbed graphon fields with

noise, the disturbance covariance will be scaled to be small relative to the effect of the

graphon field.

To verify the definitions of Γk and Ψk, for all examples we compute ∆(Γk), the L2 norm

between the expected value of the graphon field zk+1 given zk and the operator Γk acting

on the current graphon field zk, i.e.,

∆(Γ) := max
0≤k≤T

||M(axk + buk + czk)− Γkzk||2. (4.34)

In all four sample paths below, ∆(Γ) was calculated to be below the order of 10−9, often

on the order of 10−14. This confirms numerically that the operator Γk is equivalent to the

expected value of the graphon field zk at the next time step.

4.4.4 Contracting graphon, |max(λ(M ))| < 1

4.4.4.1 Erdos-Renyi: M (α, β) = 0.9, Q(α, β) = (1−max(α, β))/20

Here, set the initial state for each agent to xα
0 = 3 sin(πα). This initial condition is arbi-

trary, it only needs to be set to be non-constant to demonstrate the graphon field behavior.

The state xk and field zk are shown in Fig. 4.1, as well as the trajectory of the error between

the two, xk − zk. The error is low, but due to the addition of noise at each time step, it is

never zero.

For the contracting Erdos-Renyi graphon, ∆(Γ) is zero on the order of 10−14.

4.4.5 M (α, β) =
√
|x− y|, Q(α, β) = cos(α− β)

The trajectory of the state in this example is shown in Fig. 4.2. Unlike in the Erdos-

Renyi case, the graphon field zk is non-constant at each k, but the controlled game is still
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Figure 4.1: Top: The state trajectory of the system xk when the graphon field is given
by the Erdos-Renyi graphon M = 0.9. As the graphon is contracting, the controlled state
trajectory is near zero for all agents. Middle: The associated graphon field. As this is
a rank-one graphon equivalent for all agents, the field is flat at each time step. Bottom:
The difference between the graphon field and state, which determines the cost to particular
agents.
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stable about the origin xα
k = 0, α ∈ [0, 1]. For the contracting square root graphon, ∆(Γ) is

zero on the order of 10−15.

4.4.6 Normalized graphon, max(λ(M )) = 1

When the graphon M is normalized by its maximal eigenvalue, instead of sending the

state of each agent to zero, the calculated optimal control uk instead moves the state xk

towards the associated eigenfunction of M . As c = 0.1 and a = 1, the system is unstable,

and the system tracks a scaling of an eigenfunction of M .

4.4.6.1 Erdos-Renyi: M (α, β) = 1, Q(α, β) = (1−max(α, β))/20

This trajectory is shown in Fig. 4.3. Unlike the case where M (α, β) = 0.9, the controlled

game is stable near the eigenfunction initial condition. For the normalized Erdos-Renyi

graphon, ∆(Γ) is zero on the order of 10−9.

4.4.7 M(α, β) =
√
|x− y| (Normalized), Q(α, β) = cos(α− β)

The trajectory shown in Fig. 4.4 shows that the controlled state is attracted to a scaled

eigenfunction of the system. For the normalized square root graphon, ∆(Γ) is zero on the

order of 10−10.

4.5 Infinite Horizon Discounted Cost

Due to the addition of disturbance of bounded variation, the standard horizon field

tracking problem does not have a well-defined value function in the infinite time horizon

case. This can be addressed in the standard manner by using a multiplicative, stage-wise

discount factor ρ.

Even then, this poses some conceptual questions. The graphon field process to be tracked

is non-deterministic and non-constant, and the backwards equation method of deriving the

operators Ψ and Γ cannot be used directly. As a starting point, consider the finite time
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Figure 4.2: Top: The state trajectory of the system xk when the graphon field is given by
the graphon M(α, β) =

√
|α− β|. This graphon is also contracting, and the controlled state

trajectory approaches zero. Middle: The associated graphon field. Bottom: The difference
between the agents’ states and graphon fields.
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Figure 4.3: Top: The state trajectory of the system xk when the graphon field is given by the
Erdos-Renyi graphon M = 1. As the system is unstable (c = 0.1), the state of each agent
tends to infinity. Middle: The associated graphon field. Bottom: The difference between
each agent’s state and field. Despite the controlled system being fundamentally unstable,
the state of each agent very closely tracks the graphon field.
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Figure 4.4: Top: The state trajectory of the system xk when the graphon field is given by
the graphon M =

√
|α− β| after normalization by its maximal eigenvalue. As the system is

unstable (c = 0.1), the state of each agent tends to infinity. Middle: The associated graphon
field. Bottom: The difference between each agent’s state and field. Despite the controlled
system being fundamentally unstable, the state of each agent very closely tracks the graphon
field.

104



horizon discounted case; for 0 < ρ < 1, define the finite horizon discounted tracking problem

for a system of the form (4.13),

Jα
ρ (u,x0) =

T−1∑
k=0

ρkE[||xα
k − zα

k ||2S + ||uα
k ||2R | Fα

0 ] (4.35)

+ ρTE[||xα
T − zα

T ||2S|FT ]. (4.36)

By the same proof approach to the finite time non-discounted game, this is associated

with the sequence of value functions

V α
k (Fα

k ) =Ek[Pk(x
α
k )

2 + 2(xα
k )s

α
k +mα

k ], (4.37)

k = {0, ..., T},

where P ρ
k is an positive scalar, and sk and mα

k are L2([0, 1]) valued functions for all k =

{0, ..., T} derived from the following backwards recurrence relations,

F ρ
k =ρ(R + ρP ρ

k+1b
2)−1P ρ

k+1ab, (4.38)

Gρ
k =ρ(R + ρP ρ

k+1b
2)−1P ρ

k+1bc, (4.39)

Hρ
k =ρ(R + ρP ρ

k+1b
2)−1b, (4.40)

P ρ
k =S +R(F ρ

k )
2 + ρ2(a− bF ρ

k )
2P ,

k+1 (4.41)

sαk =− Sdα
k + F ρ

kR(Gρ
kd

α
k +Hρ

kEk[s
α
k+1]) (4.42)

+ ρ(a− bF ρ
k )P

ρ
k+1

[
(c− bGρ

k)d
α
k − bHρ

kEk[s
α
k+1]

]
+ ρ(a− bF ρ

k )Ek[s
α
k+1],

mα
k =dα∗

k Sdα
k + ρ

[
(Gρ

kd
α
k +Hρ

kEk[s
α
k+1])

∗R(Gρ
kd

α
k +Hρ

kEk[s
α
k+1]) (4.43)

+
[
(c− bGρ

k)d
α
k − bHρ

kEk[s
α
k+1]

]
P ρ
k+1

[
(c− bGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
+ 2

[
(c− bGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
Ek[s

α
k+1] +Q(α, α) + Ek[m

α
k+1]

]
,
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with the terminal conditions

P ρ
T =S, (4.44)

sαT =− Sdα
T , (4.45)

mα
T =S||dα

T ||2. (4.46)

Further, the optimal control is given by

uo,α
k =− ρ(R + ρb2P ρ

k+1)
−1[P ρ

k+1(ax
α
k + cdα

k ) + Ek[s
α
k+1]] (4.47)

=:− F ρ
kx

α
k −Gρ

kd
α
k −Hρ

kEk[s
α
k+1]. (4.48)

As in the non-discounted case, the process to be tracked is given by zk = Mxk at time

k. Let Γk and Ψk be L2([0, 1]) operators defined by the backwards recursion equations

Ψρ
k =− SI+ F ρ

kR(Gρ
kI+Hρ

kΨ
ρ
k+1Γ

ρ
k) (4.49)

+ ρ(a− bF ρ
k )

∗P ρ
k+1

[
(c− bGρ

k)I− bΨk+1HkΓk

]
+ ρ(a− bFk)

∗Ψk+1Γk,

Γρ
k =(I+ bHρ

kMΨk+1)
−1[(a− bF ρ

k )I+ (d− bGρ
k)M ] (4.50)

with the terminal conditions

Ψρ
T =− SI. (4.51)

Assume that for all k = {0, ..., T − 1}, the inverse (I+ bHkMΨk+1)
−1 exists. Then, for the

system (4.13) as with the non-discounted game,

Ek[zk+1] =Γρ
kzk, (4.52)

sk =Ψρ
kzk, (4.53)

106



and the trajectory is generated by

uρ
k = −F ρ

kxk − (Gρ
kI+Hρ

kΨk+1Γ
ρ
k)zk (4.54)

gives the optimal tracking trajectory for each α.

It is assumed that the infinite horizon feedback solution (when it exists) is given by the

fixed point to the following algebraic Riccati and operator equations:

F ρ
∞ =ρ(R + ρb2P ρ

∞)−1P ρ
∞ab, (4.55)

Gρ
∞ =ρ(R + ρb2P ρ

∞)−1P ρ
∞bc, (4.56)

Hρ
∞ =ρ(R + ρb2P ρ

∞b)−1b, (4.57)

P ρ
∞ =S + F ρ∗

∞RF ρ
∞ + ρ(a− bF ρ

∞)∗P ρ
∞(a− bF ρ

∞), (4.58)

Ψρ
∞ =− SI+ F ρ

∞R(Gρ
∞I+Hρ

∞Ψρ
∞Γρ

∞) (4.59)

+ ρ(a− bF ρ
∞)∗P ρ

∞
[
(c− bGρ

∞)I− bH∞Ψ∞Γ∞
]

+ (a− bF ρ
∞)∗Ψ∞Γρ

∞,

Γρ
∞ =(I+ bHρ

∞MΨ∞)−1[(a− bF ρ
∞)I+ (c− bGρ

∞)M ]. (4.60)

Under the condition that c = 0 (that is, the states of each agent evolve with strictly local

state and controls) and that the graphon M has finite rank K, then the operators can be

explicitly solved with (K ×K) + 1 equations.

Define the orthogonal subspaces SM to be the the linear subspace spanned by the basis

of the system graphon M , and S̆ to be the orthogonal complement of SM such that

L2[0, 1] =: SM ⊕ S̆. (4.61)
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Then, define the K ×K matrix M to be

Mi,j := ⟨Mϕi, ϕj⟩, i, j ∈ (1, ..., K) (4.62)

and the complement identity operator Ĭ : L2[0, 1] → S̆ to be the projection operator satisfying

Ĭd = d−
K∑
k=1

⟨d, ϕk⟩ϕk, ∀d ∈ L2[0, 1]. (4.63)

Theorem 4.5.1 (Finite Rank Closed-Form Feedback) If the state of each node is a

scalar, c = 0, and the system graphon M is of rank K < ∞ with associated orthonormal

basis {ϕk}Kk=1, then Ψ∞ and Γ∞ is a solution of the quadratic operator equation

BH∞MΨ2
∞ + (CI+ SBHρ

∞M )Ψρ
∞ + SI = 0, (4.64)

where

C := 1− (a− bF ρ
∞)[F ρ

∞R− ρ(a− bF ρ
∞)P ρ

∞b (4.65)

− ρ(a− bF∞)2] (4.66)

Then, in the low rank case equation (4.64) is solved by the orthogonal operator equations

Ψ∞ := Ψ̆∞ +
K∑
i=1

K∑
j=1

[ΨM
∞ ]ij⟨ϕi, ·⟩ (4.67)

cΨ̆∞ + SĬ = 0, Ψ̆∞ : L2[0, 1] → S̆ (4.68)

bH∞M(ΨM
∞ )2 + (C + bSH∞)ΨM

∞ (4.69)

+ SIK = 0, ΨM
∞ ∈ RK×K

where IK is the K-dimensional identity operator.
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Proof: Note that if c = 0, then G∞ = 0. Equation (4.64) is attained by substituting the

definition of Γ∞ into Eq. (4.59), and multiplying on the right by I + bH∞MΨ∞. The

equation can then be solved explicitly in two orthogonal subspaces SM and S̆ using the

definitions provided in the lemma. □

Remark: When M is rank one, then equation (4.69) is a simple quadratic equation in

one variable. Thus, there are two solutions due to the square root.

In simulations, when the system parameters are changed, the solution of the finite-horizon

operator equations (4.49)–(4.51) may converge to either of the solutions of the infinite-horizon

quadratic equation. In particular, the operator may converge to the solution with the positive

radical when the eigenvalue associated with the eigenfunction of M is less than one, and to

the solution with the negative radical when the eigenvalue is equal to one. Further, while

the operator found through equations (4.49)–(4.51) is necessarily a Nash equilibrium for the

finite-horizon game, this may not be the case for the other solution of the infinite-horizon

game.

For M of rank K, a matrix quadratic formula is required, for which there are 2K solutions.

Intuition suggests only one of the solutions will be stable (as in the finite-dimensional analysis

of linear quadratic systems), but this has yet to be proven.

As will be explored in the following numerical simulations, there are typically multiple

solutions for the operator equations. Given initial conditions aligned with the eigenfunctions

of the graphon M , some of the generated solutions are clearly worse for all players.

4.5.1 Numerical Simulation

The following numerical solutions demonstrate the existence of multiple solutions of the

infinite time horizon discounted problem, and that the finite horizon discounted problem can

converge to both of them depending on whether or not the underlying graphon operator is

normalized.

For each of the simulations, the discount factor ρ = 0.95 is used, with system parameters
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Figure 4.5: Finite time horizon discounted game with a contracting graphon. As expected,
the state trajectory of the finite time horizon controlled system approaches zero.

a = 1, b = 1, c = 0 and costs S = 1 and R = 1 and a 200-node discretization of the unit

interval. The rank one graphon M (α, β) = (α2−1)(β2−1) was used to generate the graphon

field. In the first set of three simulations, the graphon is non-normalized (contracting), and

for the second set of three simulations, the graphon is normalized. For all agents in all

simulations, the initial condition x0(α) = 1, α ∈ [0, 1] was used.

Figure 4.5 shows the state trajectory of the finite time discounted game when the graphon

is non-normalized.

Figure 4.6 demonstrates that when the positive root solution of equation (4.69)is used to

calculate Ψρ
∞ and Γρ

∞, the solution very closely tracks the controlled state trajectory shown

in Fig. 4.5. Indeed, the operator norm distance of Ψρ
2Γ

ρ
1 and Ψρ

∞Γρ
∞ was on the order of

machine precision, indicating that the sequence converged. Meanwhile, Fig. 4.7 shows that

when the negative root solution of Eq. (4.69) is used, the controlled state trajectory is

exceptionally unstable.
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Figure 4.6: The controlled state trajectory of the game when the positive root solution of Eq.
(4.69) is used, which closely resembles the finite time horizon discounted game trajectory.

Figure 4.7: The system is unstable using the negative root solution of Eq. (4.69).
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Figure 4.8: The controlled trajectory of the finite horizon discounted game closely tracks
the eigenfunction of the system, even under noise, when M is normalized by its largest
eigenvalue.

Next, consider the case where the graphon M is normalized by its eigenvalue. As with

the nondiscounted game, the solution of the finite time horizon discounted game approaches

a scaled eigenfunction of the graphon, in this case, ϕ(α) = α2 − 1. Figure 4.8 shows this

behavior.

However, unlike the previous case, the positive root solution of equation (4.69) does not

create a trajectory that closely matches the finite time horizon game. It instead creates a

trajectory that approaches zero for all agents, even though that seems sub-optimal, shown in

Fig. 4.9. When the graphon M is normalized, the finite horizon discounted game solution

instead converges to the negative root solution. A calculated trajectory of the controlled sys-

tem using the negative root solution is shown in Fig. 4.10, which approaches an eigenfunction

of the graphon M in a similar manner to the finite horizon discounted game trajectory.
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Figure 4.9: The controlled state trajectory of the normalized system using the positive root
solution approaches zero for all agents, instead of approaching an eigenfunction.

4.6 Extensions and Proofs

4.6.1 Multivariate State Notation

Let each agent α ∈ [0, 1] have n local states and m local controls, and let A ∈ Rn×n, D ∈

Rn×n, B ∈ Rn×m. Then, define the state evolution equation as

xα
k+1 =(Axα

k +Buα
k +Dzα

k ) + gα
k , (4.70)
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Figure 4.10: When M is normalized, the backwards recursion instead converges to the
negative root solution.

where the graphon field zα
k is an n dimensional real vector for all α defined by the following

blockwise form, with graphons M 11,M 12, ...Mnn

zα
k :=



(zα
k )1

(zα
k )2
...

(zα
k )n


(4.71)
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=



∫ 1

0

[
M 11(α, β)(x

β
k)1 +M 12(α, β)(x

β
k)2

+ · · ·+M 1n(α, β)(x
β
k)n
]
dβ∫ 1

0

[
M 21(α, β)(x

β
k)1 +M 22(α, β)(x

β
k)2

+ · · ·+M 2n(α, β)(x
β
k)n
]
dβ

...∫ 1

0

[
Mn1(α, β)(x

β
k)1 +Mn2(α, β)(x

β
k)2

+ · · ·+Mnn(α, β)(x
β
k)n
]
dβ



(4.72)

=



M 11 M 12 · · · M 1n

M 21 M 22 · · · M 2n

...
... . . . ...

Mn1 Mn2 · · · Mnn





(zk)1

(zk)2
...

(zk)n


(4.73)

By abuse of notation, we denote this blockwise form

zk := Mxk (4.74)

as in the single-state-per-node case.

Following this, the relevant Rm dimensional controls for each α ∈ [0, 1] would be defined

by

Fk =(R +B∗Pk+1B)−1B∗Pk+1A, (4.75)

Gk =(R +B∗Pk+1B)−1B∗Pk+1D, (4.76)

Hk =(R +B∗Pk+1B)−1B∗, (4.77)

Pk =S + F ∗
kRFk + (A−BFk)

∗Pk+1(A−BFk), (4.78)

sαk =− Szα
k + F ∗

kR(Gkz
α
k +HkEk[s

α
k+1]) (4.79)

+ (A−BFk)
∗Pk+1

[
(D −BGk)z

α
k −BHkEk[s

α
k+1]

]
+ (A−BFk)

∗Ek[s
α
k+1],
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mα
k =zα∗

k Szα
k + (Gkz

α
k +HkEk[s

α
k+1])

∗R (4.80)

× (Gkz
α
k +HkEk[s

α
k+1])

+
[
(D −Gk)z

α
k −BHkEk[s

α
k+1]

]∗
Pk+1

×
[
(D −Gk)z

α
k −BHkEk[s

α
k+1]

]
+ 2

[
(D −Gk)z

α
k −BHkEk[s

α
k+1]

]
Ek[s

α
k+1]

+Q(α, α) + Ek[m
α
k+1],

with the terminal conditions

PT =S, (4.81)

sαT =− Szα
T , (4.82)

mα
T =S||zα

T ||22. (4.83)

Further, the optimal control is given by

uo,α
k =− (R +B∗Pk+1B)−1B∗[Pk+1(Ax

α
k +Dzα

k ) + Ek[s
α
k+1]] (4.84)

=:− Fkx
α
k −Gkz

α
k −HkEk[s

α
k+1]. (4.85)

Similarly, Γk and Ψk would be defined by

Ψk =− SI+ FkR(GkI+HkΨk+1Γk) (4.86)

+ (A−BFk)
∗Pk+1

[
(D −BGk)I−BΨk+1HkΓk

]
+ (A−BFk)

∗Ψk+1Γk,

Γk =(I+BHkMΨk+1)
−1[(A−BFk)I+ (D −BGk)M ] (4.87)
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with the terminal condition

ΨT =− SI. (4.88)

The infinite time horizon discounted problem has a similar formulation:

By the same proof approach to the finite time non-discounted game, this is associated

with the sequence of value functions

V α
k (Fα

k ) =Ek[(x
α
k )

∗Pk(x
α
k ) + 2(xα

k )
∗sαk +mα

k ], (4.89)

k = {0, ..., T},

where P ρ
k is an positive scalar, and sk and mα

k are L2([0, 1]) valued functions for all k =

{0, ..., T} derived from the following backwards recurrence relations,

F ρ
k =ρ(R + ρB∗P ρ

k+1)
−1B∗P ρ

k+1A, (4.90)

Gρ
k =ρ(R + ρB∗P ρ

k+1)
−1B∗P ρ

k+1D, (4.91)

Hρ
k =ρ(R + ρB∗P ρ

k+1)
−1B∗, (4.92)

P ρ
k =S + F ρ∗

k RF ρ
k + ρ(A−BF ρ

k )
∗P ρ

k+1(A−BF ρ
k ), (4.93)

sαk =− Sdα
k + F ρ∗

k R(Gρ
kd

α
k +Hρ

kEk[s
α
k+1]) (4.94)

+ ρ(A−BF ρ
k )

∗P ρ
k+1

[
(D −BGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
+ ρ(A−BF ρ

k )
∗Ek[s

α
k+1],

mα
k =dα∗

k Sdα
k + ρ

[
(Gρ

kd
α
k +Hρ

kEk[s
α
k+1])

∗R (4.95)

× (Gρ
kd

α
k +Hρ

kEk[s
α
k+1])

+
[
(D −BGρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]∗
P ρ
k+1

×
[
(D −Gρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
+ 2

[
(D −Gρ

k)d
α
k −BHρ

kEk[s
α
k+1]

]
Ek[s

α
k+1]

117



+Q(α, α) + Ek[m
α
k+1]

]
,

with the terminal conditions

P ρ
T =S, (4.96)

sαT =− Sdα
T , (4.97)

mα
T =S||dα

T ||2. (4.98)

Further, the optimal control is given by

uo,α
k =− ρ(R + ρB∗P ρ

k+1)
−1B∗[P ρ

k+1(Ax
α
k +Ddα

k ) + Ek[s
α
k+1]] (4.99)

=:− F ρ
kx

α
k −Gρ

kd
α
k −Hρ

kEk[s
α
k+1]. (4.100)

Let the process to be tracked be given by zk = Mxk for time k. Let Γk and Ψk be

L2([0, 1]) operators which are defined by the backwards recursion equations

Ψρ
k =− SI+ F ρ

kR(Gρ
kI+Hρ

kΨ
ρ
k+1Γ

ρ
k) (4.101)

+ ρ(A−BF ρ
k )

∗P ρ
k+1

[
(D −BGρ

k)I−BΨk+1HkΓk

]
+ ρ(A−BFk)

∗Ψk+1Γk,

Γρ
k =(I+BHρ

kMΨk+1)
−1[(A−BF ρ

k )I+ (D −BGρ
k)M ]

with the terminal conditions

Ψρ
T =− SI. (4.102)

Assume that for all k = {0, ..., T − 1}, the inverse (I+BHkMΨk+1)
−1 exists. Then, as with
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the non-discounted game,

Ek[zk+1] =Γρ
kzk, (4.103)

sk =Ψρ
kzk, (4.104)

and the trajectory is generated by

uρ
k = −F ρ

kxk − (Gρ
kI+Hρ

kΨk+1Γ
ρ
k)zk (4.105)

gives the optimal tracking trajectory for each α.

Assume that the infinite horizon feedback solution (when it exists) is given by the fixed

point to the following algebraic Riccati operator equations:

F ρ
∞ =ρ(R + ρB∗P ρ

∞B)−1B∗P ρ
∞A, (4.106)

Gρ
∞ =ρ(R + ρB∗P ρ

∞B)−1B∗P ρ
∞D, (4.107)

Hρ
∞ =ρ(R + ρB∗P ρ

∞B)−1B∗, (4.108)

P ρ
∞ =S + F ρ∗

∞RF ρ
∞ + ρ(A−BF ρ

∞)∗P ρ
∞(A−BF ρ

∞), (4.109)

Ψρ
∞ =− SI+ F ρ

∞R(Gρ
∞I+Hρ

∞Ψρ
∞Γρ

∞) (4.110)

+ ρ(A−BF ρ
∞)∗P ρ

∞
[
(D −BGρ

∞)I−BH∞Ψ∞Γ∞
]

+ (A−BF ρ
∞)∗Ψ∞Γρ

∞,

Γρ
∞ =(I+BHρ

∞MΨ∞)−1[(A−BF ρ
∞)I+ (D −BGρ

∞)M ]. (4.111)

4.6.2 Proof of Lemma 4.15

The dynamic programming principle is applied to find the optimal control. From the

terminal condition

V α
T (xk) = ||xα

T − dα
T ||2S. (4.112)
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Then, PT = S, sαT = −Sdα
T , and mα

T = ||dα
T ||2S.

By the dynamic programming assumption,

V α
k (xk) = min

u
Ek

[
||xα

k − dα
k ||2S + ||u||2R + V α

k+1(xk+1)
]

(4.113)

=min
u

||xα
k − dα

k ||2S + ||u||2R + Ek[V
α
k+1(xk+1)] (4.114)

=min
u

||xα
k − dα

k ||2S + ||u||2R (4.115)

+ Ek[Pk+1(x
α
k+1)

2 + 2(xα
k+1)s

α
k+1 +mα

k+1]

=min
u

||xα
k − dα

k ||2S + ||u||2R (4.116)

+ Ek[(ax
α
k + buα

k + cdα
k + gα

k )
2Pk+1]

+ 2Ek[ax
α
k + buα

k + cdα
k + gα

k ]Ek[s
α
k+1]

+ Ek[m
α
k+1]

=min
u

||xα
k − dα

k ||2S + ||u||2R (4.117)

+ (axα
k + buα

k + cdα
k )Pk+1(ax

α
k + buα

k + cdα
k ) +Q(α, α)

+ 2(axα
k + buα

k + cdα
k )Ek[s

α
k+1] + Ek[m

α
k+1].

Note that the right-hand expression of (4.117) is differentiable and convex in u, and hence

the optimal control is

uo,α
k =− (R + b2Pk+1)

−1b[Pk+1(ax
α
k + cdα

k ) + Ek[s
α
k+1]] (4.118)

=:− Fkx
α
k −Gkd

α
k −HkEk[s

α
k+1]. (4.119)

Applying the optimal control to the value function and rearranging terms gives equations

(4.16–4.21) as required. □
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4.6.3 Proof of Lemma 4.4.2

First, recall that by definition zk = Mxk, and hence when applying the optimal control

at time k = T − 1,

ET−1[zT ] = ET−1[MxT ] (4.120)

=ET−1[M (axT−1 + buT−1 + czT−1 + gT−1)]] (4.121)

=M [axT−1 + b(−FT−1xT−1 −GT−1zT−1 −HT−1ET−1[sT ]) + czT−1] (4.122)

=M [(a− bFT−1)xT−1 + (c− bGT−1)zT−1 − bGT−1ET−1[sT ]] (4.123)

=(a− bFT−1)MxT−1 + (c− bGT−1)MzT−1 − bHT−1MET−1[sT ] (4.124)

=(a− bFT−1)zT−1 + (c− bGT−1)MzT−1 − bHT−1MET−1[sT ]. (4.125)

Then, applying the terminal condition sT = −SzT ,

ET−1[zT ] = (a− bFT−1)zT−1 + (c− bGT−1)MzT−1 (4.126)

+ bHT−1MET−1[SzT ]

ET−1[zT ]− bHT−1MET−1[SzT ] = (a− bFT−1)zT−1 (4.127)

+ (c− bGT−1)MzT−1.

Hence,

ET−1[zT ] =(I− SBHT−1M )−1[(A−BFT−1)I+ (c− bGT−1)M ]zT−1 (4.128)

=: ΓT−1zT−1. (4.129)

Observing this, make the following inductive hypothesis:

Ek[zk+1] =Γkzk, (4.130)

sk =Ψkzk, (4.131)
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where Ψk and Γk are L2([0, 1]) operators for each k ∈ {0, ..., T}. Applying the inductive

hypotheses to the expectation of zk+1,

Ek[zk+1] = [(a− bFk)I+ (c− bGk)M ]zk (4.132)

− bHkMEk[sk+1]

= [(a− bFk)I+ (c− bGk)M ]zk (4.133)

− bHkMEk[Ψk+1zk+1]

= (I+ bHkMΨk+1)
−1[(a− bFk)I+ (c− bGk)M ]zk (4.134)

=: Γkzk, (4.135)

which shows equation (4.130). Applying the inductive hypotheses to the recursion for sk,

sk =− Szk + FkR(Gkzk +HkEk[sk+1]) (4.136)

+ (a− bFk)Pk+1

[
(c− bHk)zk − bHkEk[sk+1]

]
+ (a− bFk)

∗Ek[sk+1]

=− Szk + FkR(Gkzk +HkEk[Ψk+1zk+1]) (4.137)

+ (a− bFk)Pk+1

[
(c− bGk)zk − bHkEk[Ψk+1zk+1]

]
+ (a− bFk)

∗Ek[Ψk+1zk+1]

=− Szk + FkR(Gkzk +HkΨk+1Ek[zk+1]) (4.138)

+ (a− bFk)
∗Pk+1

[
(c− bGk)zk − bΨk+1HkEk[zk+1]

]
+ (a− bFk)

∗Ψk+1Ek[zk+1]

=− Szk + FkR(Gkzk +HkΨk+1Γkzk) (4.139)

+ (a− bFk)Pk+1

[
(c− bGk)zk − bΨk+1HkΓkzk

]
+ (a− bFk)

∗Ψk+1Γkzk

=:Ψkzk. (4.140)
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Then, the optimal control uo
k is given in

uo
k =− Fkxk −Gkzk −HkEk[sk+1] (4.141)

=− Fkxk −Gkzk −HkEk[Ψk+1zk+1] (4.142)

=− Fkxk − (GkI+HkΨk+1Γk)zk. (4.143)

□
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Chapter 5

Conclusion

Chapter 2 introduced the notions of Q-noise linear systems and defined the Q-noise

linear quadratic Gaussian optimal control problem. We then proved the convergence of a

system on a finite graph to a system on a limit graphon in mean square. In addition, it

was demonstrated that when the limit graphon is low rank, the linear quadratic Gaussian

problem could be solved exactly in a finite number of equations.

Chapter 3 accomplished one of the desired research directions of [35] and [39] by demon-

strating that partially observed Q-noise linear quadratic systems can be controlled and esti-

mated using the Kalman filter. When the underlying graphon limit is finite rank (and stable

in unobserved dimensions), then the state trajectory of the finite graph can be controlled by

the finite-dimensional filter approximation.

There are two immediate future directions for this work. First, the extension to graphs

embedded in metric spaces using graphexon theory ([31],[51],[52]). This theory generalizes

the concept used implicitly in the numerical simulations above, where each node in the

graph is located uniformly at a point on the unit interval. Embedded graph limit theory

describes graph limits that exist in geometric spaces more general than the unit interval,

for instance, those where each node is located in R2 or R3. In the dense graph case, this

is a straightforward generalization, but may not have a direct solution analog for sparse

graphs. So long as the fundamental space the system is embedded in is a Hilbert space, the
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Q-noise formalism holds. Further, much of the literature for optimal control and estimation

in Hilbert spaces allows for unbounded evolution operators, and it may be possible to extend

the convergence analysis of the Q-noise linear quadratic Gaussian problem and graphon

Kalman filter to such a system. Second, the systems considered in this work have strictly

linear noise. This can be expanded into systems of the form of [53], where the noise intensity

depends on the state of the system.

One application that was not explored in Chapter 2 or Chapter 3 is that of “point”

control and estimation, a classical method of controlling infinite-dimensional systems [41].

By averaging over a few nodes in the graph system corresponding to a small segment of

the unit interval (approximating a point observation without invoking the mathematical

and intuitive difficulties associated with unbounded observation operators), the system may

still be observable. This would allow the estimation of the graph system from only the

observation of a few nodes, and a similar assumption on controllability could allow the

system to be stabilizable while only issuing control inputs to a few nodes in the graph.

Providing qualitative criteria for the graphon for such a point control and estimation scheme

to work would greatly increase the scope of applications for this modelling approach.

One particular area that may be of interest is in the area of epidemic modelling, particu-

larly compartmental SIR models. The system would need to be extended from strictly linear

to bilinear systems, as in SIR models; the rate of infection depends upon the proportion of

the population that is susceptible as well as infected. A deterministic, uncontrolled graphon

SIR model that modelled communities interacting with each other rather than strictly ho-

mogeneous models was presented in [54]. By applying filtering methods to this SIR model,

one may be able to identify the effects of a public health intervention on the trajectory of

an epidemic and compare it to the estimated system trajectory.

The graphon field game model presented in Chapter 4 provided a closed-form control

solution for every agent in an infinite-dimensional stochastic system. The proof and opti-

mal control construction for each agent had two major steps. First, the mean-field game
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assumption was applied—by taking the limit as the number of agents increases to infinity

and fixing the strategies of all other agents, each agent solves an optimal control problem

with regard to the graphon field. This problem can be solved using dynamic programming.

After this, each agent’s response to the graphon field is fixed as a linear function, and it

suffices to define a consistent, recursive method of generating the expected graphon field.

Because of the linearity of the system, this recursion yields an adapted forwards-backwards

stochastic difference equation.

However, there are some ways the work may be extended. First, as with the Q-LQG

sections, the graphon field game could be extended to graphexon systems. This would yield

a modification of the mean-field games on graphexons presented in [51], in the same way

that the graphon field games of Chapter 4 and Gao et al [34] were a modification of the

graphon mean-field game model. Unlike the Q-noise linear quadratic Gaussian and filtering

problems, there is not as much literature defining the solutions of such systems. They may

not have a well-behaved, closed-form solution as there is for the graphon case.

The numerical analysis showed interesting behaviour for the game trajectory depending

on whether the graphon was normalized by its maximal eigenvalue. This has interesting par-

allels with the operator group action convergence proposed by Backhausz and Szegedy [55].

They investigate the different convergence behavior of operators that correspond roughly to

sums over rows of the adjacency matrix of a graph scaled by its spectral radius rather than

divided by the number of nodes in the graph (which is the standard dense graphon scaling).

The precise criteria for the convergence of the operators Ψρ
k and Γρ

k to Ψρ
∞ and Γρ

∞ is a

topic for open investigation.

Chapter 4 considered Nash equilibria with full state information. This may be expanded

to other information sets, such as those where each agent has only local information and,

hence, estimation of the status of the overall graphon field may be of value. In particular,

applying it to the case where each agent uses Kalman filtering to estimate the overall graphon

field would be of interest, as in Chapter 3. Further research in this area would require the

126



consideration of common noise [44], where, unlike in the full information case, the local state

xα
k would not be conditionally independent of the full state {xβ

k , β ∈ [0, 1]}.
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