Bridging the conceptual gap between
biological and artificial
learning systems

Arna Ghosh
Doctor of Philosophy

McGill

School of Computer Science
McGill University
Montreal, Quebec, Canada

February 24, 2025

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Doctor of Philosophy

©Arna Ghosh, 2025



Abstract

The quest to understand intelligence and its origins has taken various forms,
with one of the most recent frontiers emerging at the intersection of neu-
roscience and artificial intelligence (AI). This convergence has been fueled
by the remarkable achievements of deep neural networks in Al and advance-
ments in large-scale recording and analysis techniques in neuroscience. These
developments have opened up exciting opportunities for synergistic interdis-
ciplinary research, where artificial neural networks (ANNs) provide a testbed
for exploring theories of learning in the brain, while neuroscience findings in-
spire the design of more sophisticated AI models. In this work, we present a
framework aimed at unraveling the distinctive properties of individual learn-
ing systems. We focus on two key axes of comparison: the learning rule and
the learned representations, in the context of studying learning in brains and
ANNS.

First, we showcase how observations from computational neuroscience can
serve as inspiration for developing metrics that assess the quality of learned
representations in unsupervised representation learning, specifically within
the realm of self-supervised learning (SSL) loss functions. Second, we de-
velop a theoretical framework to understand the dynamics of SSL feature
learning and investigate the computational advantages of specific biological
mechanisms in aiding this process, thereby leading to practical recommenda-
tions that improve the sample and computational complexity of SSL. Lastly,
we leverage insights by analyzing neural networks to gain a deeper under-
standing of how the brain may employ gradient approximations for learning
and thereby, shed light on the role of certain design principles in the neu-
ronal learning process. Taken together, our work contributes to the ongoing
synergy between neuroscience and Al, bridging the conceptual gap between
learning in the brain and in machines.



Abrégé

La quéte pour comprendre l'intelligence et ses origines a pris de multiples
formes, 1'une des plus récentes se situant a l'intersection des neurosciences
et de l'intelligence artificielle (IA). Cette convergence a été alimentée par les
avancées remarquables des réseaux neuronaux profonds en IA et les progres
des techniques d’enregistrement et d’analyse a grande échelle en neurosciences.
Ces développements ont ouvert de passionnantes perspectives pour une reche-
rche interdisciplinaire synergique, ou les réseaux neuronaux artificiels (RNA)
servent de banc d’essai pour explorer les théories de I'apprentissage dans
le cerveau, tandis que les découvertes en neurosciences inspirent la concep-
tion de modeles d’IA plus sophistiqués. Dans ce travail, nous présentons un
cadre visant a élucider les propriétés distinctives des systemes d’apprentissage
individuels. Nous nous concentrons sur deux axes de comparaison: les
mécanismes d’apprentissage et les représentations apprises, dans le contexte
des neurosciences et des RNA.

Premierement, nous montrons comment les neurosciences computation-
nelles peuvent inspirer le développement de métriques pour évaluer la qualité
des représentations apprises dans I’apprentissage non supervisé, particuliere-
ment dans le domaine des fonctions de perte en apprentissage auto-supervisé
(AAS). Deuxiemement, nous développons un cadre théorique pour com-
prendre la dynamique de I’AAS et explorons les avantages computation-
nels de mécanism-es biologiques spécifiques pour faciliter ce processus, ce
qui conduit a des recommandations pratiques pour améliorer la complexité
en échantillons et en calcul de I’AAS. Enfin, nous exploitons des analyses
des réseaux neuronaux artificiels pour approfondir notre compréhension de
la maniere dont le cerveau pourrait utiliser des approximations du gradi-
ent pour 'apprentissage, éclairant ainsi le role de certains principes dans
le processus d’apprentissage neuronal. Notre travail contribue a la synergie
croissante entre les neurosciences et IA, comblant le fossé conceptuel entre
I’apprentissage dans le cerveau et dans les machines.
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Contribution

Summary of Contributions

This thesis consists of original contributions towards demonstrating the syn-
ergies between computations underlying intelligent behavior in brains and
Artificial Neural Networks (ANNs). First, I present a framework to compare
and understand intelligent systems, and thereafter, I present evidence of
shared computational motifs under specific pillars of this framework. Specif-
ically, I make the following original contributions:

e Representations in brains and ANNs: A brain-inspired metric of
representation geometry that is indicative of a shared structure of rep-
resentations across brains and large-scale Al systems and is connected
to downstream task performance, along with a pipeline to assess quality
of representations learned by self-supervised trained ANNs (Part IT).

e Dynamics of feature learning: Theoretical and empirical analysis
of learning dynamics of high-dimensional representation when optimiz-
ing a self-supervised loss function, along with insights into computa-
tional advantages of neuroscience-inspired mechanisms (like orthogo-
nality constraints and multi-view learning) and practical recommenda-
tions to improve the sample and compute-efficiency of self-supervised
learning pipelines (Part III).

e Learning with approximate gradients: Characterization of the
implications of gradient approximation, such as in brains, on learning
and generalization properties using ANNs as a model, along with in-
vestigations into the role of architectural design choices, e.g. size of
the network or non-linearity properties, on mitigating the effects of
gradient approximation errors (Part IV).
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Contribution of authors

e Chapters 1 and 2 provide introduction and background material for
this thesis, which I wrote, drawing inspiration from various published
sources and informal discussions throughout the course of my PhD.

e Part II is based on [Agrawal et al., 2022], which is a published paper
at Neural Information Processing Systems (NeurIPS) 2022. In this
project, I co-led the project ideation and design along with Kumar
Krishna Agrawal, and co-led the experiments with Arnab Kumar Mon-
dal. I was also responsible for the theoretical analysis presented in
this paper, and co-developed the code! with Kumar Krishna Agrawal
and Arnab Kumar Mondal. Arnab Kumar Mondal also led the efforts
to scale up experiments on the compute cluster. Blake Richards was
instrumental in shaping the narrative of the paper and provided over-
all supervision for the project. All authors contributed to writing the
manuscript.

e Part IIT is based on [Ghosh et al., 2024], which is a published paper
at Neural Information Processing Systems (NeurIPS) 2024. In this
project, I co-led the project ideation with Kumar Krishna Agrawal,
and led the experiment design of the project. Adam Oberman devel-
oped some of the key theoretical results presented in this paper, and
provided overall supervision on research direction and manuscript writ-
ing. I collaborated with Adam on the theoretical results about learning
dynamics. Shagun Sodhani helped run the large-scale experiments and
validate the practical recommendations on large-scale datasets, specif-
ically Imagenet. Blake Richards provided overall guidance and super-
vision on the project design, which shaped the narrative of the project.
All authors contributed to writing the manuscript, with Kumar Kr-
ishna Agrawal, Blake Richards, and I co-leading the initial manuscript
writing efforts.

e Part IV is based on [Ghosh et al., 2023], which is a published paper
at International Conference on Learning Representations (ICLR) 2023.
In this project, Blake Richards and Konrad Kording co-led the project
ideation. I led the design of the analytical framework and experimental

!FastSSL library
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setup to validate our theoretical results. Yuhan Helena Liu and Guil-
laume Lajoie helped analyze results, and contributed to discussions
that led to extending the theoretical results to incorporate the results
on generalization. Blake Richards provided the overall guidance and su-
pervision for this work, and also played a pivotal role in the manuscript
writing process. Konrad Kording contributed to the manuscript writ-
ing as well as the reviewer rebuttal process. All authors contributed to
writing the manuscript.

Chapter 9 consists of discussion and broader impact of the results pre-
sented in this thesis which is written by me, with inspiration from
discussions I have had with Blake Richards, Shahab Bakhtiari, and
Zahraa Chorghay during the final year of my PhD.
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Introduction



Introduction

Throughout its history, humanity has embarked on the quest to understand
intelligence and its origins. This quest has taken many forms, from philoso-
phy to psychology, and from biology to computer science. In recent decades,
two fields have emerged as particularly prominent in this endeavor: artificial
intelligence (AI) and neuroscience. Both AI and neuroscience aim to shed
light on the nature of intelligent systems, one from an in silico perspective
and the other from a biological perspective. While Al researchers direct most
of their efforts to create systems that can solve computationally challenging
tasks, such as image recognition, natural language processing, or decision-
making, neuroscientists aim to deconstruct the biological basis of intelligence
and behavior, seeking to uncover how the brain processes information, learns,
and adapts to changes in the agent’s environment. Despite the difference in
their approaches, Al and neuroscience share a fundamental interest in under-
standing intelligence, and their findings can and have informed and inspired
each other over the last few decades. In this thesis, I will explore the inter-
section of Al and neuroscience by highlighting key axes along which progress
in one field can be leveraged to advance the other.

A key ingredient of intelligent systems, identified by both AI and neu-
roscience, is learning. Learning can be defined as changes in the system’s



internal parameters to better adapt to its environment. Al, powered by deep
learning (DL), has made large strides towards building human-like intelligent
systems, by leveraging neural network models (ANNs) and the backpropa-
gation algorithm. The backpropagation algorithm provides a mechanism to
compute the gradient of some scalar objective function with respect to each
parameter in the ANN. The gradient vector indicates the direction of steep-
est ascent in the parameter space; following this will result in the largest
possible change in the objective function for the smallest possible change in
parameters. In practice, learning in ANNs uses a loss function (instead of ob-
jective function) and takes a step in the direction of steepest descent (instead
of ascent), therefore being termed as gradient descent. The backpropagation
algorithm, followed by a step of gradient descent underlies, in large part, the
success of ANNs.

Given this recipe for success in ANNs for learning complex tasks, it is
reasonable to ask whether the brain follows a similar approach. Specifically,
does the brain use gradient-based methods for synaptic weight changes? That
is, even if the brain doesn’t use backpropagation, might it have an alterna-
tive that achieves something similar? Furthermore, are the emergent system
properties, i.e. the representations, similar in the brain and ANNs? These
questions raise an even broader question: can our understanding of learning
in biological brains inspire the development of next-generation Al systems?
While there are undoubtedly differences between biological and artificial in-
telligent systems, exploring their potential convergence can reveal the un-
derlying principles governing intelligence more broadly. The search for these
common principles forms the foundation of the field of neuroscience-inspired
Al, an area of Al research that aims to uncover the general laws underlying
learning in intelligent systems — applicable to both biological and artificial
brains.

1.1 Marr’s levels of analysis

To answer these questions, we need a framework for comparing two learning
systems that are, at face value, very different. For this, we turn to David
Marr’s levels of analysis for understanding information-processing systems
[Marr, 1982]. Briefly, Marr proposed that a system can be understood at
three levels — computational, algorithmic and implementation.

o Computational level: This level describes the problem to be solved, the
available inputs to the system and the desired solution, i.e. the desired
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output for specific inputs.

o Algorithmic level: This level specifies the steps or procedures involved
in solving the problem, including the algorithms and data structures
required to implement the desired solution.

e Implementation level: This level details the physical realization of the
algorithm. It describes the hardware or neural circuitry that carries
out the computations.

Marr’s levels of analysis are useful to distill the inter-level relationships of
a complex system, i.e. this framework allows us to gain a mechanistic un-
derstanding of how a system uses its constituent components to perform a
particular set of computations in order to solve a task. Take, for example, the
human behavior of catching a ball. The system, in this case a human, needs
to solve the computational level of the problem by computing or estimating
the ball’s trajectory and positioning their body at the drop point of the ball’s
arc. The corresponding algorithmic level of the problem could be to process
the image, identify the ball, track it, then calculate the direction required to
run in order to keep the ball’s position relative to the body constant or mov-
ing at a constant vertical velocity. Finally, the implementation level could
be far more complicated, involving the neural substrates that are involved
in the visual processing of the image of the ball, as well as those involved
in calculating the spatial trajectory and controlling the muscle movement of
the body to ensure it matches the motion of the ball. These three levels,
taken together, provide a mechanistic explanation of a human’s behavior of
catching a ball.

1.2 Beyond Marr’s levels: Towards a Norma-
tive Framework

Understanding learning systems, however, requires one to consider how the
information processing behavior changes with experience. This requires a
more fine-grained consideration of the factors that impact the functions per-
formed by the system, at each level of Marr’s framework. To this end, what
we need is a normative framework that encapsulates the various facets of
learning and can be used to compare intelligent systems.

With this goal in mind, in this thesis, I present a more granular framework
(see Figure 1.1) that is inspired by Richards et al. [Richards et al., 2019].
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Figure 1.1: General framework for comparing learning systems and corre-
sponding projects binned into respective pillars. Subsequent chapters will
focus on projects under the Representations and Learning Rule pillars, specif-
ically those highlighted with solid-border boxes. In contrast, dashed-border
boxes indicate collaborative works that are not covered in this thesis. While
the pillars of data and loss Function are fundamental to learning systems,
they were not the focus of this doctoral research.

Note that, while Richards et al. elucidate the core pillars of designing artifi-
cial learning systems that are in turn useful for studying biological learning
systems, the framework presented here describes the key factors that can be
used to study, understand and compare the behavior of learning systems —
both biological and artificial.

The framework consists of five key pillars that govern the behavior of
learning systems, as follows:

e Data obtained from environment: The data available plays a crucial
role, following Marr’s computational level of analysis, as it determines
the input provided to the system for solving a task. Furthermore, the
quality and characteristics of the available data are essential for the
system to learn a certain behavior.

e Architecture: The system’s architecture for information processing im-
poses specific inductive biases, narrowing down the space of possible



functions it can compute.

e Learned representations: The learned representations provide insights
into the intermediate computations utilized by the system’s algorithms
to solve a (compositional) task. Studying the learned representations is
essential while comparing different learning systems that exhibit similar
behavior at the computational level, but might differ at the algorithmic
level.

e Learning rule: The learning strategy, governed by a learning rule, in-
troduces dynamics that shape the trajectory of learned functions and
ultimately determine the computations involved in supporting the sys-
tem’s learned behavior.

o Loss/Objective Function: The loss function represents the objective
that the system aims to optimize, typically measuring how closely the
system’s current behavior matches the desired behavior while satisfying
specific operational constraints. Different formulations of the objective
function can reflect differences in the operational constraints that the
system must satisfy, eventually leading to distinct solutions and compu-
tational motifs that the system employs to achieve the desired outcome.

Let us again consider the example of catching a ball. For a system to learn
how to catch a ball from experience, it needs to solve the task of tracking the
ball’s position and positioning the body accordingly. To understand how the
system accomplishes this learning, we need to inspect the experiential data
it learned the behavior from. For instance, what was the color of the ball?
What were its other physical attributes, e.g. weight or material, of the ball?
It is possible that if the color of the ball changes, the system can no longer
perceive or detect the ball. If the weight or material of the ball changes,
will its aerodynamics be altered to the extent that the system can no longer
estimate its trajectory? Along similar lines, the architecture of the system
imposes certain inductive biases over what computations the system can
perform. For instance, if the system has an architectural bias for detecting
round-shaped objects, tracking the ball’s position might be a simpler problem
than without this inductive bias. Similarly, having an inductive bias over
translation-invariant computations might help the system better track the
ball’s position.



While the data and architecture pillars provide insights into the con-
straints that the system operates under, studying the learned latent repre-
sentations provides insights into the intermediate algorithmic-level process-
ing stages used by the system while exhibiting the behavior in question. For
instance, the latent representations could indicate whether the underlying
algorithm decomposes the task into a combination of perception (ball track-
ing) and motor (body positioning) problems. Investigating how these latent
representations emerge over the course of learning provides insight into the
system’s internal mechanisms that enable learning. For instance, the system’s
internal representations might not be initially specialized for perception or
motor skills related to ball catching, but over the course of learning, such a
specialization might emerge. Understanding the learning rule used in shap-
ing these representations (and the emergent behavior) could provide insight
into how the system uses the available input and output signals to change
the computations it performs over the course of learning. For instance, the
system could rely on external global feedback signals (how well was it able to
catch the ball) to alter its computations or the system could rely on interme-
diate self-generated feedback signals (how well it could track the ball, or how
close it was able to get to the ball) to alter computations that eventually lead
to an improved behavior. Each strategy would lead likely to a different set of
computations that the system could perform, thereby leading to differences
in the algorithmic and implementation levels.

Finally, a better understanding of the loss functions that the system at-
tempts to optimize in order to solve the task provides an insight into the
constraints that the system operates under as well as the potential solutions
that the system can converge to. For instance, if the system wants to reduce
any sudden movements, it would attempt to reduce any last minute motor
movements that are required to adjust to the ball’s trajectory. Consequently,
it would devote more resources towards better tracking the ball’s trajectory
such that it is able to plan the sequence of motor actions a priori, with mini-
mal last minute adjustments. In contrast, a system with stronger constraints
over perception might learn fine-grained motor skills that are more useful for
last-minute adjustments. Understanding the loss function(s) that the system
optimizes might also provide insights into the development of specialized sub-
systems for perception and motor skills. For instance, a system might use
a loss function for object detection and tracking that considers only how to
learn the computations underlying perception. The result of these computa-
tions could then provide input to a distinct motor subsystem to output the
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motor commands required for self-positioning and catching the ball.

Although the factors are discussed in isolation, in reality, these factors
often interact extensively. For instance, a learning system could use learning
rules that are better suited to its architecture over another. Furthermore,
the behavior of an active learning system would impact the data experienced
by it. For instance, if the system is able to track the ball from far away and
is able to position itself roughly along the trajectory of the ball, it will expe-
rience more data streams where the system’s behavior needs to be adjusted
when the ball is close. Indeed, such biases in data streams can be exploited
when designing learning curricula for artificial learning systems, wherein the
system is presented with data that is easier to learn from early in the learning
process.

By analyzing and comparing information processing systems using the
five pillars of the framework I have presented, we can attain a comprehensive
understanding of learning systems. It is worth emphasizing that this frame-
work offers a normative view of the computations performed by the system,
i.e. it provides insight into how the five factors impact the computations that
are learned to successfully exhibit a behavior according to some norm.

1.3 Why Artificial Neural Networks?

To search for shared principles of intelligence between artificial and biological
systems, we can turn to ANNs. Not only can ANNS solve computationally
challenging tasks like the brain [LeCun et al., 2015], but ANNs provide a
cheaper, more observable test-bed to study the impact of different design
factors on the computations underlying a particular behavior. Therefore,
they allow us, scientists concerned with understanding intelligence, to stick to
Richard Feynman’s ideology “What I can not create, I can not understand”?.
Moreover, despite their differences at the implementation level (i.e. silicon-
based chips compared to carbon-based networks of cells), ANNs allow us
to study computations that roughly match the brain’s at an algorithmic
level, enabling a designer to increase the level of biological relevance of their
model and study the impact of its algorithmic properties on the emergent
computations.

A second, perhaps more opportunistic reason, is that connectionist mod-
els enabling intelligent behavior are increasingly lauded by the scientific com-

Thttps://www.goodreads.com/quotes/7306651-what-i-cannot-build-i-do-not-
understand



munity, most recently being validated in the form of a Nobel prize in Physics?.
The immense success of connectionist models in learning intelligent behavior
by changing the internal connection weights signifies the position of these
models as our best existing bet to build intelligent systems that can both
solve human-level tasks and perform similar computations, thereby allow-
ing us to discover the core principles that underlie intelligent behavior more
generally [Doerig et al., 2023].

In this thesis, I will present evidence of algorithmic level similarity be-
tween brains and ANNs and demonstrate three key examples of how such
similarities can be leveraged to improve several design choices of Al systems.
The three examples can be grouped under the pillars of learned represen-
tations and learning rules. My principal hope is that I may convince the
reader of the utility of using ANNs to understand and leverage shared motifs
of intelligence between biological and artificial systems. Over the rest of this
chapter, I will present the specific research questions that I sought to answer.
I will then proceed to describe a brief overview of the biological motivation
and corresponding results from ANN experiments.

1.4 Key Research Questions

This thesis will investigate the following research questions in each of the
subsequent chapters:

e Do brains and deep neural networks learn similar representations, in
terms of the geometry of the representations? Can we use the geom-
etry of the learned representations to identify ANN models with good
performance?

e Does representation geometry change similarly in brains and deep neu-
ral networks during learning? Can we leverage these similarities to
design sample and compute-efficient learning strategies for ANNs?

e Given that the brain cannot compute the exact gradient of a loss func-
tion with respect to each of its parameters, can we understand the im-
pact of using some approximation to the gradient signal on the learning
and generalization properties using ANNs?

2https://www.nobelprize.org/prizes/physics /2024 /press-release/



1.5 Preview of Results

The remaining chapters of the thesis aim to systematically answer these ques-
tions. In each chapter, we will draw inspiration from prior studies uncovering
certain properties of learning or neural activity in the brain, and use ANNs to
better understand the role of such properties in enabling the algorithms and
computations underlying intelligent behavior. As elaborated above, ANNs
provide a more observable framework than biological systems, thereby mak-
ing it easier to study the contribution of individual properties in isolation.
One (Ipcha Mistabra) might argue that such an endeavor may be unreason-
able, especially given that the five pillars often interact with each other. But
as we often adopt a reductionist view in science, our hope is to simplify the
system into its individual constituents, study and understand them better,
and then put them back together to try and reconstruct the system. I hope
to convince the reader that the results presented in this thesis can indeed
provide a better combined understanding of both biological and intelligent
systems.

This thesis first presents evidence for shared computational motifs in
brains and ANNs by investigating their learned representations. In Part II,
we draw inspiration from recent findings in the mammalian visual cortex
(V1) that demonstrate scale-free high-dimensional representations for nat-
uralistic images [Stringer et al., 2019, Kong et al., 2022]. These results are
indicative of the representation geometry in the mammalian brain, specifi-
cally, the manifold of natural image representations in the brain’s internal
high-dimensional space. Motivated by these findings, we study the geometry
of learned representations in ANNs, specifically utilizing a measure developed
from systems neuroscience. We formally connect this metric of representation
geometry to downstream task performance under certain simplistic assump-
tions. Moreover, we demonstrate that not only do representations in deep
neural networks of vision exhibit a scale-free nature like brains, but also,
that this measure of representation geometry can be used to assess the qual-
ity of ANN models, especially those trained using self-supervised learning
(SSL) frameworks. Taken together, this chapter demonstrates that advances
in systems neuroscience could lead to efficient design principles for ANNs,
and in turn, ANNs could provide a testbed for normative explanations of
observations in the brain.

In the next chapter, we build upon these results to study the learning
dynamics, i.e. how these high-dimensional representations are shaped over
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the course of learning. This chapter draws motivation from two key results in
neuroscience. First, behavioral neuroscience studies have demonstrated that
animals tend to spend more time investigating novel rather than familiar
objects: i.e. they spend more time observing the novel object from sev-
eral views or interacting with it [Antunes and Biala, 2012]. Second, systems
neuroscience studies have found that representations in mouse V1 become
more orthogonal over the course of learning [Failor et al., 2021]. In other
words, neural representations tend to increase in dimensionality as the an-
imal learns a behavior. Inspired by these two findings, we aimed to better
understand the learning dynamics of ANNs trained using a SSL loss func-
tion, i.e. training without explicit human supervision [LeCun, 2022]. To
do so, in Part III, we provide a theoretical characterization of the explicit
biases imposed by common SSL losses and the implicit biases imposed by
gradient-based optimization on the learning dynamics; specifically, we study
how these biases shape the learned feature space. We leverage this theoretical
understanding to propose a normative role for using orthogonalization con-
straints on the feature space and for using multiple views of an object during
learning. Furthermore, we demonstrate that incorporating these strategies in
non-contrastive SSL methods lead to compute and sample-efficient learning
pipelines, yielding better representations earlier in training. Taken together,
this chapter demonstrates that advances in behavioral and systems neuro-
science can act as guiding principles for designing efficient learning strategies
for ANNs, and in turn, advances in theoretical deep learning could provide
normative explanations for experimental observations in biological systems
that might seem phenomenological at first.

For the next chapter, the reader’s attention is directed towards learn-
ing mechanisms in the brain. Notably, learning in ANNs is achieved using
gradient descent, i.e. updating parameters to best follow the gradient of
the loss function, thereby ensuring each small update step in the parameter
space leads to the greatest reduction possible in the loss. Computing the
gradients for an ANN with hierarchical structure leverages the backpropa-
gation algorithm [Rumelhart et al., 1986]. Brains, however, cannot compute
the gradient of the loss using the backpropagation algorithm, owing to their
physical constraints [Lillicrap et al., 2020]. Therefore, they must have mech-
anisms to approximate the gradient if they are to rely on small updates
to their synaptic weights to learn a task [Richards and Kording, 2023]. In
Part IV, we investigate the impact of approximating the gradient and its
implications for learning and generalization. Once again, we leverage ANNS,
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owing to their observability and controllability in experimental settings, us-
ing tools from deep learning theory to characterize the impact of gradient
approximation errors on learning and generalization. Furthermore, we study
the role of different architecture design choices in mitigating the potential
negative impacts of such approximations. Specifically, we analytically and
empirically demonstrate that increasing the size of the network and adding a
sparsity promoting non-linearity on the activations helps to mitigate the neg-
ative impacts of approximation errors during training while also benefiting
from improved generalization owing to noise in the optimization process.

Finally, in Chapter 9, I will present a broader perspective of how the fields
of neuroscience and Al can leverage the existing synergies to accelerate the
advances in their respective domains. While operating at seemingly different
levels of systems understanding, I believe that each field has a wealth of
knowledge to offer the other, as evidenced by the results presented here.
Furthermore, I believe the emerging field of NeuroAl will help shape these
directions of convergence, eventually leading to a better understanding of
the shared physical principles that underlie both biological and synthetic
intelligence.
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Background

This chapter will introduce fundamental concepts that broadly shape the
remainder of this thesis. In addition to this, at the beginning of each chapter,
I will also discuss relevant literature that is specific to the contributions in
the chapter.)

We will explore three key topics in this chapter: artificial neural net-
work architectures, backpropagation, and self-supervised learning (SSL) loss
functions. Notably, these sections correspond to three (of five) pillars of the
NeuroAl framework: architecture, learning rule, and loss function, respec-
tively. Moreover, this chapter also presents a short section on eigenvalue
decomposition, a linear algebra technique that is used in the methodology of
all subsequent chapters. Note that this chapter is not intended to be com-
prehensive reading material for either of these topics, but rather a concise
introduction that helps the reader grasp the core contributions of the follow-
ing chapters. Readers seeking a more in-depth understanding of any of these
topics are encouraged to consult relevant literature that specifically deal with
these topics.
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2.1 Artificial Neural Networks (ANNSs)

Artificial neural networks (ANNs) have revolutionized the field of artificial
intelligence, enabling significant advancements in solving computationally
challenging problems across scientific disciplines, such as object recognition
[Krizhevsky et al., 2012], language modeling [Vaswani et al., 2017], and pro-
tein folding [Jumper et al., 2021]. It is worth mentioning that the structure
of ANNSs is inspired by our understanding of the human brain, specifically
following the ideology of connectionist models [Doerig et al., 2023]. Tradi-
tionally, to understand learning and different cognitive phenomena, connec-
tionist modeling leveraged a network of interconnected nodes, or units, that
processed information in parallel. Similarly, ANNs are composed of multiple
layers of interconnected nodes, or artificial neurons, that process and trans-
form input data into meaningful output. The connections between nodes
represent synapses, and the strength of each synapse, called its weight, de-
termines the influence that one (upstream) neuron has on the activity of
another (downstream) neuron. These weights act as adjustable parameters
that can be changed through a learning process in order to solve a task or
exhibit desired behavior. On the other hand, the connectivity pattern among
individual units imposes implicit biases over the functions that can be rep-
resented by the ANN. As a result, different architectures that are explored
in this thesis have biases toward learning specific types of functions. In this
section, we will delve into some of the most popular ANN architectures and
their key components.

2.1.1 Fully-Connected Networks (FCNs)

Fully-connected networks (FCNs), also known as multi-layer perceptrons
(MLPs), are a fundamental network architecture that apply a sequence of
linear-nonlinear transformations over its inputs [Rosenblatt, 1958]. Each
layer of an FCN can be thought to map an input vector in R%» to an out-
put vector in R%u¢. Each neuron in a layer is connected to every neuron in
the subsequent layer, thereby allowing every input feature to influence every
dimension in the output vector. While this connectivity profile allows the
network to represent highly expressive functions in high-dimensions, it also
leads to a large number of parameters in each layer, specifically O(d;, X dout)-
Therefore, the number of parameters scales linearly with both the dimension-
ality of inputs and outputs.

As noted before, each layer in an FCN applies a linear transformation
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followed by a non-linear activation function. Mathematically, the transfor-
mation at some layer [ can be written as:

h® — F (h(lfl)W(l) + b(l)) (2.1)
where:

e h() € RE*%  represents the activations in layer [ and B is the number
of input vectors,

e W ¢ RUu-1xd g the weight matrix connecting layer [ — 1 to layer [,
e b() € R% is the bias vector for layer [, and
e F(-) is an activation function, such as ReL.U, tanh, or sigmoid.

The output of layer (1), h(®, serves as the input to the next layer (I + 1),
propagating information through the network until the final layer, which
produces the output.

The subsequent chapters in this thesis will present several settings where
the objective is to classify inputs into certain discrete categories. For this
specific purpose, the desired output of the ANN is a probability distribution
that indicates the likelihood of the input to be in each category. For this
purpose, the final layer’s output is often passed through a softmax function:

e~
softmax(z); = (2.2)

Ej e

where z represents the input to the softmax layer, and the resulting vector
represents the probabilities for each class, with each element lying in the
range [0, 1] and the total summing to 1.

Despite their simple formulation and ease of implementation, FCNs are
less popular for processing high-dimensional naturalistic inputs such as im-
ages or text sequences, primarily because they do not exploit local structures.
Instead, FCNs have been widely used for demonstrating the utility of ANNs
in performing complex computations, and continue to serve as platforms for
theoretical analysis. For instance, FCNs have been used to demonstrate that
ANNs are universal function approximators [Hornik et al., 1989], a result
that has served as motivation for decades of research eventually leading to
advanced ANNs architectures that have driven the modern AI revolution.
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2.1.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are designed to efficiently process
spatial data, such as images. Images are known to possess locally con-
sistent structures, i.e. nearby pixels have similar correlated information
[LeCun and Bengio, 1995]. Furthermore, there also exists a notion of trans-
lation equivariance in low-level image structures. For instance, the left and
right edges of a black box on a white background are represented similarly in
the pixel space of the image, and therefore an edge detector should respond
similarly at the two different locations. CNNs are designed to detect such
translation-equivariant structures, by applying filters (used for convolution
operation) that detect local patterns. Notably, the convolution layer uses
a local connectivity pattern whereby each unit in the output is influenced
only by a set of spatially-connected input units, i.e. input units in a local
region on the input. Coupled with a weight sharing strategy, where different
units in the output layer apply the same filter at different spatial locations
in the input, CNNs can detect translation-equivariant local structures in an
input. Moreover, CNNs exploit the spatial hierarchy in data through a series
of convolutional and pooling layers, allowing them to identify features like
edges, textures, and shapes. This local-connectivity approach reduces the
number of parameters compared to fully-connected networks, making CNNs
more efficient for processing images.

Each convolutional layer applies a set of learnable filters over local regions
of the input. The convolution operation can be represented as:

Cin M

N
Yi; = Z Z Z Xc,i+m,j+n : Kc,m,n (23)

c=1 m=1 n=1
where:
o X € Rén*HxW ig the input feature map of c¢;,, channels, and size H x W,
e K is the convolutional kernel (or filter) of size ¢;, x M x N, and
e vy, ; is the output of the convolution at position (i, 7).

This convolution operation can be applied multiple times, resulting in an
output feature map of c,,; channels. Therefore, a convolution layer performs
a linear transformation on an input tensor of shape ¢;, x H x W to yield
an output tensor of shape c,,; X Hy X Wy, where Hy, W5 depends on the
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positions (4, j) the convolution operator was applied. The stride and padding
parameters determine the values of these positions. For more details on these
parameters, the reader is deferred to signal processing textbooks which deal
with convolution operations. Note that the number of learnable parameters
in a convolution layer is O(cous X ¢;n X M x N), i.e. it scales linearly with
number of channels in the input and output tensors but not their spatial
dimensions, contrary to FCNs.

The convolution operation is typically followed by an activation function
f, such as ReLLU, which introduces non-linearity:

cin M N
Yij = F (Z Z Z Xc,i+m,j+n : Kc,m,n> (2-4>

c=1 m=1n=1
Pooling Layers

Pooling layers reduce the spatial dimensions of feature maps, thereby de-
creasing the dimensionality of computations and providing a form of transla-
tion invariance. Since pooling layers are often applied after the convolution
layers, they perform spatial aggregation over the output of convolution lay-
ers to learn translation-invariant features. For instance, while convolution
operation with an edge detector filter leads to similar outputs at different
locations containing edges, the pooling operation aggregates over a spatially
local region and indicates if there is an edge present in that region.

For a pooling operation over a region of size M x N, the output at position
(1,7) is given by:

Vij = G(Yiitmjjtn) (2.5)

One common pooling operation is average pooling, which downsamples the
input by taking the mean value of activations over a spatially local region,
i.e. G = mean(.). Other pooling methods, such as max pooling, select
the maximum activation value within each region rather than averaging, i.e.
G = max(.). While both average and max pooling operations reduce the
dimensionality of the feature tensor and improve the signal-to-noise ratio,
they use different spatial aggregation operations. Specifically, average pool-
ing runs a spatial-smoothing operation over the feature tensor while max
pooling preserves the most prominent features.

Example Architectures: ResNet-18 and ResNet-50

ResNet (Residual Network) architectures [He et al., 2016], such as ResNet-
18 and ResNet-50, are examples of widely used ANN architectures that use
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CNNs as their early layers and FCNs as their later layers. Additionally,
these architectures employ residual connections to allow the parameters in
the network’s early layers to influence its output, allowing for stable training
of very deep networks. Each residual block in a ResNet adds a shortcut/skip
connection that bypasses the transformation within the block, allowing gra-
dients from later layers to flow directly through the skip connections in the
network. Mathematically, the output of a residual block can be written as:

y=B(X)+X (2.6)
where:

e 3(X) represents the transformations within the block, often two or
more convolutional layers with batch normalization (see section 2.1.4)
and activation functions, and

e X is the input to the block.

ResNet-18 and ResNet-50 differ in the number of layers (18 and 50, respec-
tively) but both leverage the residual structure, making them popular choices
for computer vision tasks, particularly object recognition.

2.1.3 Transformer Networks

An ANN architecture with widespread applications in image and language
processing tasks is the attention-based [Bahdanau et al., 2014] transformer
network [Vaswani et al., 2017]. Like CNNs, transformers apply local compu-
tations to every region of the input. However, unlike CNNs, they rely on
self-attention mechanisms to perform context-aware information aggregation
from other regions, thereby enabling them to capture long-range dependen-
cies. For the rest of this subsection on transformer networks, we will refer to
spatially-local regions as tokens in order to better align with the vocabulary
of the attention-based networks literature.

Self-Attention Mechanism

The core component of a transformer network is the scaled dot-product at-
tention, which calculates attention scores between elements of the input se-
quence. Given an input sequence of text/image tokens, we compute three
matrices for each element: queries (Q), keys (K), and values (V). The
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self-attention operation is computed as:

Attention(Q, K, V) = softmax (%) \% (2.7)
A=XW, ., Ac{QK,V} (2.8)

where:

e Q K,V € R"™% are the query, key, and value matrices, respectively,
derived from the input, X € R7*%» by applying linear transformations,
and T is the number of tokens/elements in the input sequence, and

e d, is the dimensionality of the keys, used to scale the dot products for
stable gradients.

In this formulation, each element of the sequence calculates an attention
score with every other element in the sequence, capturing long-range de-
pendencies across all positions. The attention score can be thought of as
the dot-product distance between different elements of the sequence, with
different dimensions weighted differently. The softmax function, similar to
Equation (2.2), normalizes these scores to sum to 1, producing a weighted
average of the values, V.

Note that the dot product inside the softmax operator can be written as
follows: QK" = X(WqWk')X” = XRX”. Here, R represents a d;, X d;,
affine transformation matrix that weighs the dimensions of X while comput-
ing the generalized dot product across all elements of the input sequence, i.e.
[QKT] = > pqg XipRpgXjq. Having a parameterized measure of distance,
instead of the standard vector dot-product, enables the network to learn
context-aware distance measures across elements of the input sequence. This
property of learning context-aware distance measures can be further extended
by adding multiple attention heads in the attention layer to learn different
contexts in different heads.

Multi-Head Attention

As noted above, to compute different context-aware distance measures for ag-
gregating long-range information, transformers employ multi-head attention.
Instead of a single set of Q, K, and V matrices, multiple sets are learned,
and their outputs are concatenated. The multi-head attention operation is
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given by:

MultiHead(Q, K, V) = Concat(heady, ..., head, )Wy (2.9)
head; = Attention(XW,, XW'i. XW1)) (2.10)

where:

o Wi, Wi, Wi, are the learned query, key, and value matrices, respec-
tively, and

e Wy as an additional learned projection matrix to transform the output
of the attention operations.

Note that the number of learnable parameters in a multi-head attention layer
is O(d;, X di, X h), i.e. it scales linearly with the input embedding dimension-
ality, query /key/value embedding dimensionality, and the number of heads,
but not with the length of the sequence. While this parameter complexity
is similar to CNNs, the space complexity of the underlying computations
is much higher since storing the attention matrix, i.e. the output of the
softmax, requires O(T?) space.

Token-Wise Feedforward Networks and Layer Normalization

Each layer in a transformer model includes a token-wise feedforward network
(FFN) applied independently to each token in the sequence. The FFN is a
MLP consisting of two linear transformations with a ReLU activation in
between:

FFN(x) = max(0,xW; + b;)W; + by (2.11)

where W1, Wy, by, and by are learned parameters. Additionally, trans-
formers use layer normalization (discussed below) and residual connections
(similar to ResNets) to stabilize training.

Positional Encoding

While the attention mechanism is adept at aggregating long-range dependen-
cies, its output is generally order-invariant, i.e. the output of the attention
module does not change if the tokens are permuted in the sequence. To make
sure transformers are sensitive to the position of tokens in the sequence, po-
sitional encodings are added to the input embeddings. A common approach
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is to use sine and cosine functions of different frequencies:

) PpOSs
PE(osa = sin (500277 )

pos
PE(pos,2i+l) = COs <W> (212)

where:
e pos is the position in the sequence,
e ¢ is the dimension, and
e d;, is the embedding dimensionality of the input.

For 2D inputs, like images, pos for each token can be assigned using different
strategies, although there is little difference between using strategies that
involve treating the image as a 1D or 2D sequence [Dosovitskiy et al., 2021,
Yuan et al., 2021].

2.1.4 Additional Layers and Techniques

Popular ANNSs leverage the aforementioned architectural motifs or a combi-
nation of them to build a hierarchical structure that sequentially processes an
input vector to return an output vector. However, training these hierarchical
stack of layers, commonly referred to as deep networks, requires additional
layers that normalize the intermediate vectors to ensure that feedforward ac-
tivities (or backpropagated gradients) do not blow up and lead to numerical
overflows. We describe two such normalization layers below.

Batch Normalization

Batch normalization (BN) is used to stabilize and accelerate training in deep
neural networks [loffe and Szegedy, 2015] by normalizing the input to each
layer . This normalization is performed over a mini-batch of data, ensuring
that each feature dimension has a mean of 0 and a variance of 1 within the
batch. For a mini-batch {x1,xa,...,x,,} of size m, the batch normalization
process for each feature j is defined as follows:

1. Compute the mean and variance for each feature j in the mini-batch:

1 & 1 —
M= Za: o =— Z(az — ;) (2.13)
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2. Normalize each feature using the batch statistics:

& = R (2.14)

N

where € is a small constant added for numerical stability.
3. Scale and shift the normalized features using learned parameters 7,
and 3;:
Yij = Vitig + B (2.15)

Here, ; and 3; are learned parameters. Batch normalization allows the
network to control the first and second-order moments of each dimension
of the activations as they are sequentially processed by different layers in a
network.

Layer Normalization

Layer normalization (LN) normalizes the inputs across all features for each
individual data point [Ba et al., 2016]. This is particularly useful in tasks
where batch statistics are less informative, such as in transformers. For an
input vector x = {x1, s, ..., 24} of dimensionality d, layer normalization is

defined as:
1. Compute the mean and variance across all features for each individual

data point:
d
> o=
j=1

2. Normalize each feature using the computed statistics:

QU
QU=

M:

> ey - ) (2.16)

N

T, = ——= 2.17
N (2:17)

3. Scale and shift using learned parameters v and /j3:
y; =7+ 0 (2.18)

As for batch normalization, v and 3 are learned parameters. Layer normal-
ization is commonly used in transformer architectures to stabilize training
and improve convergence.

For more details on architectural motifs in deep learning pipelines, the
reader is deferred to the Deep Learning textbook [Goodfellow et al., 2016].
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2.2 Gradient Descent and Backpropagation

Having provided sufficient background on the architecture pillar of the Neu-
roAl framework, we now move on to the learning rule that is used to update
the ANN parameters. Parameter updates in ANNs require solving the credit
assignment problem, i.e. determining the influence of each parameter on a
measure of the system’s performance. This measure of performance, often
referred to as the objective or loss function, is typically a mapping from the
parameter space to a scalar value. Optimizing this objective or loss function
includes two key steps: (1) assigning credit to each parameter based on its
influence on the network output, then (2) updating each parameter in order
to improve the loss function. These steps fit naturally into an optimization
framework, wherein we want to make small changes in the parameter space
that yield the greatest improvements in the loss function. In the rest of this
section, we first present gradient descent as the overarching optimization
framework, followed by the backpropagation algorithm that is widely used
to compute parameter space gradients efficiently in deep neural networks.

2.2.1 Gradient Descent as an Optimization Framework

The desiderata of updating parameters is as follows: How can we make small
changes in the parameter space that yield the greatest improvements in the
loss function? This question is similar to the standard constrained opti-
mization problem, and can be addressed with the mirror descent framework
[Bubeck et al., 2015, Nemirovskij and Yudin, 1983]. Let us indicate the loss
function as £(w), where w is a point in the parameter space. Further, let w®
indicate the parameter values at t*" step of the optimization process. The
desired optimization framework can be formulated as follows:

1
w = argmin, | L(w) + —D(w||w®) (2.19)
n

where:
e D(w|w®) indicates the distance function between w and w®, and

e 1) determines the weight of the constraint, equivalent to the Lagrangian
in a constrained optimization problem.

If we set the distance function to be 2-norm or Euclidean, i.e. impose
a Euclidean geometry assumption on the parameter space, we can write
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D(w|w®) = [Jw — w®|?. It is possible to use other distance measures,
that impose different geometry assumptions on the parameter space. For a
more detailed discussion on possible distance measures and the correspond-
ing parameter update rules, the reader is deferred to literature on the mirror
descent framework.

Now, one more trick is required in order to solve the minimization prob-
lem in Equation (2.19): Taylor series expansion of a multivariate function.
Namely, using a first-order Taylor Series expansion, we can expand L(w)
around w® as follows:

L(w) ~ LwD) + Vo LwD)(w — w?) (2.20)

Note that by using Equation (2.20), we are explicitly assuming that higher
order terms in the Taylor expansion are less significant, compared to the
zeroth and first order terms. This assumption is further justified because of
the distance penalty that is imposed to ensure that w®**1 is reasonably close
to w®, in turn ensuring that ||w—w®||? — 0 V¥p > 1. This step can also be
seen as a linear approximation of the loss function in the local neighborhood
of w®.

Incorporating Equation (2.20) in the optimization problem presented in
Equation (2.19), we get the following:

1
W) = argmin,, | £(w®) + VuLw®)(w —w®) + —[lw—wO|P| (2.21)
n

The resulting function is convex with respect to w. Therefore, we can now use
the convex optimization approach to find maxima/minima of a function using
derivatives, i.e. a smoothly changing convex function achieves its minimum
value where its slope/derivative is zero [Boyd and Vandenberghe, 2004]. Do-
ing so yields the standard gradient descent update that is popular in modern
deep learning:

wtD = ® — v, L(w?) (2.22)

In practice, it is important to keep in mind that the learning rate n cor-
responds to the weight of the distance constraint, i.e. the Lagrangian factor,
in the constrained optimization framework. Using a very large learning rate
implies a lower weight to the constraint, and thereby could break the first-
order Taylor series approximation assumption. This, in turn, could cause the
parameter update to overshoot the minimum and lead to instabilities in the
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learning process. On the other hand, choosing a very small n can make the
optimization process slow. As a practitioner, one needs to tune the n as a
hyperparameter of the optimization framework.

Gradient Descent in modern Deep Learning frameworks

In the context of modern deep learning, gradient descent is used to minimize
a loss function £(w), which typically measures the discrepancy between the
model’s output and the desired output. We will discuss the loss function
formulation in detail in the next section. The model’s parameters w are
adjusted iteratively using gradient descent (or its variants) to reduce this loss.
The overall goal of the training process is to find the parameter configuration
that minimizes the loss across all training samples. However, computing the
loss and gradients over all training samples can be computationally expensive,
especially for large networks processing high-dimensional inputs. As a result,
a variant of gradient descent, called stochastic gradient descent (SGD) is used
in practice. SGD computes the loss and parameter space gradients for one
or few examples (randomly chosen subsets from the entire training set) at a
time, and updates the parameters using this gradient information.

It is also worth mentioning that gradient descent is a first-order opti-
mization method. In other words, it only uses the first-order derivative of
the loss function with respect to the parameters to make updates in the
parameter space. It is possible to use the Hessian information, i.e. second-
order derivative of the loss function with respect to the parameters, to im-
prove the convex optimization process. However, calculating the Hessian is
computationally expensive, especially for networks with large number of pa-
rameters. The more popular variants use of gradient descent, e.g. Adam
[Kingma and Ba, 2014], leverage information about gradients from the past
optimization steps to accelerate the optimization process. For more details
about these optimization strategies, the reader is deferred to literature on
deep learning optimization.

2.2.2 Backpropagation

Thus far, we have assumed that we have access to the quantity V,,L£(.), i.e.
the gradient of the loss function with respect to the parameters. In prac-
tice, computing the loss function itself might be intractable, making gradient
computations even harder. For instance, the true performance measure is a
network’s mean performance on all possible input stimuli. Computing this
performance requires computing a mean over the input distribution, which
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itself might be unknown. As a result, most machine learning setups use some
notion of empirical risk as a way to measure the system’s performance. In
other words, the true measure of performance is often replaced with a math-
ematically tractable function that is typically indicative of the true perfor-
mance and is easy to compute given a subset of all possible input stimuli.
We will refer to this mathematically tractable version of the performance
measure as £(.), which will also be referred to as the loss function that needs
to be optimized.

Computing the gradient of £(.) is still a different challenge, especially
in deep hierarchical networks. This problem is akin to the aforementioned
credit assignment problem, where we want to compute the influence of each
parameter on the system’s performance. The problem of credit assignment
in deep neural networks is solved using the backpropagation, or backward
propagation of errors, algorithm.

Let us define a deep neural network as a composition of functions. For a
given input x, the output of the network can be represented as:

y = fr(fr—1(.  filxywi) s wroq);wi) (2.23)
where:
e [ is the number of layers,
e f; represents the function in the ¢-th layer, and
e w, represents the parameters of that layer.

Backpropagation [LeCun et al., 2015] computes the gradient of the loss, E(w; Y, Virue)s
with respect to each parameter by using the chain rule of differentiation.

Here, y;... represents the desired output for input x and w represents all
parameters of the network, {w;, wy...wy }, written as a flattened vector.

Being able to compute the gradient allows for the application of gradient

descent to adjust parameters and minimize the loss function. Specifically,

for each layer i, we compute:

0L _OL 0y  0fu . Ofum
ow; B dy Ofr Ofr— ow;

(2.24)

The backpropagation algorithm proceeds as follows:
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e Forward Pass: Compute output y by processing the input x and com-
pute empirical loss £(w; ¥, Yirue)-

e Backward Pass: Starting from the output layer, propagate the error
backward through the network using the chain rule of differentiation,
computing the gradients with respect to each parameter.

e Parameter Update: Use the gradients obtained to update the parame-
ters according to gradient descent.

Efficient Gradient Calculation: Chain Rule and Layer-Wise Com-
putation

The advantage of using backpropagation is the efficient computation of gradi-
ents through the chain rule of differentiation, allowing each layer’s gradient
to be calculated using the gradient of the following layer. This layer-wise
approach reduces the computational complexity of calculating gradients, es-
pecially in deep networks with many layers.

For example, if we denote the output of an intermediate layer ¢ as h; =
fi(h;_1;w;), the gradient of the loss L with respect to h; is computed as:

oL 9L Ohyy

= . 2.25
oh; 0Oh;,; Oh; ( )
Then, the gradient with respect to w; can be calculated as:
0L 9L Oh;
= . 2.26

By iteratively applying the chain rule of differentiation from the output
layer to the input layer, backpropagation enables credit assignment in deep
neural networks. Coupled with gradient descent and its variants, backprop-
agation forms the workhorse of the modern deep learning revolution.

For more details on popular optimizers used in deep learning pipelines, the
reader is deferred to the Deep Learning textbook [Goodfellow et al., 2016].

2.3 Self-supervised Learning (SSL)

Having covered the background for the architecture and learning rule pillars
of the NeuroAl framework, we now move on to describing the loss function
used to train neural networks. The loss function plays a crucial role in norma-
tively defining the behavior that is desired from the network when processing
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an input. Typically, the loss function is a mathematically tractable mapping
from the network’s outputs to a scalar value that is indicative of the discrep-
ancy between the current and desired outputs. This notion of discrepancy
is used to learn the parameter configurations that yield the desired network
behavior. In other words, by minimizing the loss function, the network ad-
justs its parameters to satisfy the conditions imposed by the task at hand.
The most common definition of a loss function is the supervised loss, i.e. a
loss function that compares the network’s output for an input stimuli to a
human-annotated label for the input. By learning to reduce the discrepancy
between the network’s predictions and human-annotated labels, the network
learns representations of an input that help it have a similar response as
a human to that specific input. Although supervised learning setups have
led to significant progress in computer vision tasks, e.g. object recognition,
they require large amounts of high-quality human-annotated data, which is
expensive and challenging to acquire. An alternate paradigm of learning is
unsupervised learning.

As opposed to supervised learning, which is limited by the availability
of high-quality human-annotated data, unsupervised representation learning
can be performed on vast sources of unlabeled data. The goal of unsuper-
vised representation learning is to learn a representation space that is similar
to the structure of the input stimuli space, and thereby can be leveraged to
learn specific downstream behavior from few labeled samples. While early
unsupervised learning approaches in deep learning relied on learning rep-
resentations that can be used to reconstruct the input, recent approaches
have demonstrated success by leveraging existing symmetries in the stimu-
lus space to generate intrinsic targets, instead of requiring extrinsic human-
generated targets. These approaches underpin the recent success of deep
learning models in natural language processing as well as computer vision
tasks, and are grouped under the self-supervised learning (SSL) umbrella
[Balestriero et al., 2023].

In vision, SSL approaches build on the core insight that similar images
should map to nearby points in the learned feature space, which is often
termed the invariance criterion. The notion of similarity among images is
defined implicitly using transformations in the pixel space that do not change
the semantic content of the image. For instance, an image of a dog or cat
remains as such even if it is rotated by a few degrees or translated by a few
pixels or even if it is blurred slightly. This invariance to affine transformations
in the pixel space or the blurring operation defines a space of operations un-
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der which representations of a deep neural network should not change. This
invariance criterion serves as the desiderata of SSL methods for computer vi-
sion, which have been able to match or in some cases surpass models trained
on labeled data [Balestriero et al., 2023, Chen et al., 2020]. Note that just
optimizing this invariance criterion has a trivial solution: mapping the entire
input space to the same representation. While this case of trivial solution,
termed as representation collapse, does satisfy the invariance criterion, it
is unfortunately not useful for any downstream tasks. In order to prevent
representation collapse while still learning representations that are invariant
to semantics-preserving transformations, SSL methods use a combination of
strategies. Based on these collapse prevention strategies, SSL methods can
be broadly categorized into four main categories — deep metric learning fam-
ily, self-distillation family, canonical correlation analysis family, and masked
image modeling.

2.3.1 Deep metric learning family

The deep metric learning family of SSL algorithms is based on the idea of
encouraging representations of semantically transformed images to be more
similar, compared to those of different images. In other words, these methods
formulate the loss as a prediction problem, wherein a network is tasked with
predicting whether two inputs are semantically similar (or not) by learning
representations that are close (or far from each other). This loss, often termed
as the contrastive loss, uses positive (semantically similar) and negative (se-
mantically dissimilar) pairs as training examples. Positive pairs are obtained
by applying semantics-preserving pixel-level transformations, whereas nega-
tive pairs are obtained by sampling two different images from the complete
pool of unlabeled data. One common examples of an SSL algorithm that
falls under the deep metric learning family is SimCLR (Simple framework for
Contrastive Learning) [Chen et al., 2020]. For a set of unlabeled examples,
denoted as D = {x;,Xs, ..., X, } and their corresponding semantics-preserving
pixel-level transformed versions, denoted as D= {X1,%X2, ..., Xy, }, the SimCLR
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loss can be written as follows:

1 exp(8i/T)
L im - l 3
D L) oo NS ST ENT S

1 5 exp(8/T)
n zi:l gz

i €TP(8i5/T) + 3254 exp(8if/T)

sij = J ()" £ ) /(LF Gl Ge))
sip = )" £ &) LF Gl )
sij = (&) F ) /LF G ) (2.27)

where:

e f(.) denotes the function applied by the feature encoder network on
the input, and

e 7 denotes the temperature hyperparameter, that determines the sensi-
tivity of the loss to the representation similarity values (s;;, Sij, 5ij)-

While the deep metric learning family of algorithms has shown promising
results in learning representations of images that are suitable for downstream
tasks, e.g. object recognition, a major design challenge is choosing the nega-
tive samples. SImCLR relies on using other elements in a batch of inputs as
negative examples, but more elaborate sampling strategies are required for
learning good representations from natural videos.

2.3.2 Self-distillation family

While the deep metric family of algorithms use negative samples to avoid
representation collapse, the self-distillation family of algorithms leverage an
asymmetry between processing the image and its transformed version. These
approaches use an online network (that processes the image) whose parame-
ters are updated using the gradient of the loss function and a target network
(that processes the transformed image) whose parameters are a running av-
erage of the online network’s parameters. One common example of an SSL
algorithm that falls under the self-distillation family is BYOL (Bootstrap
Your Own Latent) [Grill et al., 2020], whose loss is as follows:

Lavor = 3 lo(/6x) — F)|? (2:23)
where:
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e f(.) denotes the function applied by the feature encoder network on
the input, and g(.) is an additional predictor network applied on the
outputs of the online network, and

e f(.) denotes the function applied by the target network, i.e. the expo-
nential moving average version of the online network.

By having an asymmetry in the feature processing of the two inputs, self-
distillation methods avoid representation collapse, without requiring negative
examples. However, this asymmetry in the feature encoder pipeline requires
extra compute and space, thereby increasing the overall hardware resources
requirement of using these methods in practice.

2.3.3 Canonical Correlation Analysis (CCA) family

Another family of algorithms that refrains from using negative examples is
the Canonical Correlation Analysis family of SSL algorithms. Inspired by the
Canonical Correlation Analysis (CCA) framework, the core idea of this family
of algorithms is to infer the relationship between two variables by analyzing
their cross-covariance matrices. Two popular and closely related examples of
this family of algorithms are BarlowTwins [Zbontar et al., 2021] and VICReg
[Bardes et al., 2022|. BarlowTwins, which was inspired by the information-
encoding ideas of the neuroscientist, Horace Barlow [Barlow et al., 1961],
aims to optimize the cross-covariance structure of representations obtained
from the two semantically-similar views of a set of images in order to reduce
redundancies in the feature space. Variance Invarance Covariance Regular-
ization (VICReg) is a modification of BarlowTwins that added a variance
term in the loss function in order to ensure that every feature dimension has
a finite variance [Bardes et al., 2022].
The BarlowTwins loss function is as follows:

Lor=Y (Ci =1 +8) > C}

7 i jFEL

= S ()~ TN ()~ TR
Fo =23 s L TR = > ) (2:29)

where:
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e (; is the element of C' at row ¢, column j, and
e n is the batch size.

The VICReg loss function is as follows:

Lvie = w37 106) = FR)IE + Salo(f () + (/%)

+ % e(f(x.)) + c(f(%.))]

W) = 5 > mar(0, 1~ Stdev(f(x)..)

(7)) = 5 30 S CU )
i gt
Cx)) = —= S x) — TR (f ) — T (230

i=1

The BarlowTwins and VICReg loss formulations ensure that the two
semantically-similar views are represented similarly but also avoid collapse
by encouraging different feature dimensions to capture different attributes
of the input. While the CCA family of algorithms refrains from using nega-
tive examples or asymmetrical feature pipelines, they generally require large
enough batch sizes to ensure reliably estimates of the covariance (or correla-
tion) matrices.

2.3.4 Masked Image modeling

Inspired by recent progress in masked language modeling, more recent SSL
algorithms have proposed reconstructing a masked image patch from the
rest of the image. These approaches, which are modern variants of the
prominent early unsupervised learning approaches of reconstructing an im-
age from its noisy or corrupted version, heavily leverage the transformer
architecture to demonstrate promising performance at large-scale pretrain-
ing tasks [He et al., 2016]. Recent successful SSL methods, often referred
to as Joint Embedding Predictive Architectures (JEPA), have used a mix
of masked image modeling and self-distillation strategies to achieve com-
petitive performance on a wide variety of vision tasks [Assran et al., 2023,
Oquab et al., 2024]. For more details on the historical origins of each family
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of SSL algorithm as well as practical deployment tips, the reader is deferred
to the SSL cookbook [Balestriero et al., 2023].

2.4 Eigen and Singular Value Decomposition

This chapter has so far discussed key background material for the key pillars
of the NeuroAl framework. Before diving into the next chapters, we present a
short note on two linear algebra techniques that are essential in understand-
ing the learned representations and learning dynamics under gradient-based
optimization in deep neural networks [Strang, 2022]. These two techniques,
specifically focusing on matrix decompositions, are eigendecomposition and
singular value decomposition (SVD). These decompositions will frequently
be used in the subsequent chapters to characterize the spectral properties of
weight matrices, learned representations, optimization dynamics or general-
ization properties of ANNs.

2.4.1 Eigendecomposition

Eigendecomposition is a matrix factorization method that applies specifically
to square matrices. Given a square matrix A € R™*" the eigendecomposition
represents A in terms of its eigenvalues \; and eigenvectors v; as follows:

A =VAV! (2.31)
where:
e V is a matrix with eigenvectors v; as columns, and
e A is a diagonal matrix containing the eigenvalues ;.

Note that the eigenvectors form an orthonormal basis set, i.e. vIv; =1 Vi
and v v, =0Vi#j

Eigenvalues indicate the magnitude of scaling in the direction of each
eigenvector, such that when the matrix A is multiplied with a vector that is
directed along eigenvector v;, it is scaled by a factor of \;. When applied to
a covariance matrix of representations, the eigenvectors corresponding to the
largest eigenvalues are the orthogonal directions in the representation space
that capture most of the variance.

While analyzing learning dynamics under gradient-based optimization,
eigendecomposition of the Hessian matrix (second-order derivative of the
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loss with respect to the parameters) indicates the curvature of the loss land-
scape. Large eigenvalues in the Hessian indicate directions of high curvature,
i.e. small updates along those directions in the parameter space lead to large
changes in the loss function, whereas small or zero eigenvalues reveal flat
directions, i.e. updates along those directions in the parameter space have
little effect on the loss function. Eigendecomposition is a fundamental tool in
understanding the manifold structure of representations and gradient-based
optimization properties, both of which are discussed in detail in the subse-
quent chapters.

2.4.2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) generalizes eigendecomposition to any
m X n matrix, which need not be square. Given a matrix A € R"™*", the
SVD represents A as a product of three matrices:

A =UxV? (2.32)
where:

e Uc R™™and V € R"™" are orthogonal matrices containing the left
and right singular vectors of A, and

e ¥ ¢ R™*" is a diagonal matrix with non-negative singular values o; on
the diagonal.

Similar to the eigenvalues, these singular values indicate the extent to which
a vector directed along a particular singular vector is scaled when multiplied
by A.

In ANNs, SVD is often used to analyze weight matrices and dynamical
systems analysis of gradient descent. For instance, SVD can be used to de-
couple the multivariate partial differential equations obtained when analyzing
the dynamics of gradient descent in a simple fully-connected ANN. This de-
coupling effect enables tractable analysis of the emergent weight matrices
over training, thereby providing insights into the emergent representations
learned by the network as well as potential pathologies that might occur over
the course of training. These applications are investigated in detail in the
subsequent chapters, wherein the learning dynamics of supervised learning
and SSL is analyzed.

Both eigendecomposition and SVD thus serve as powerful tools in theo-
retical analyses of ANNs, offering insights into the learning trajectory and
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potential pathologies along with factors affecting them. These theoretical
insights are key to designing practical interventions that avoid pathologies in
training pipelines, and lead to efficient learning strategies for ANNs.
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Part 11

Representations in brains and
ANNSs
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Preface to Part 11

Beginning with the first pillar of the NeuroAl framework, learned represen-
tations, Part II will investigate the characteristics of representations that are
shared across brains and ANNs. As discussed earlier, intermediate represen-
tations offer an observable window into the system’s underlying mechanisms,
shedding light on how an input stimulus is processed by different stages of
the system eventually leading to behavior. To this end, similarities in the
representation characteristics between brains and ANNs can indicate poten-
tial similarities in the computational motifs employed by the two systems.
Therefore, in Part II, we ask, Do brains and ANNs learn representations that
have similar geometry?

At this point, it might be helpful to clarify what is meant by represen-
tations in an ANN and how representation geometry can help reveal shared
computational motifs: First, we define representations of an input in a par-
ticular layer of an ANN as the set of activations of all units in that layer,
written in a vectorized form. So, representations of each input are denoted
as a vector if R? space, where d is the number of units in the layer. Second,
representation geometry is a key quantity in determining how information
about the stimuli is distributed in this high-dimensional R? space.

Representation geometry is key to understanding the tradeoff between two
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fundamental properties essential for systems that map inputs to behaviors
— capacity and robustness. Capacity of a representation space indicates the
ability to discriminate between any two inputs, and a higher capacity implies
a larger discriminability between similar inputs, thereby allowing more com-
plex behavior. Robustness of the representation space, however, indicates
how drastically the representation of an input changes when it is slightly
corrupted. Higher degree of robustness implies smaller changes to represen-
tations, thereby allowing reliable decision making. Higher capacity could
often lead to overfitting to few examples, while higher robustness could lead
to underfitting due to reduced sensitivity to differences in the input stimuli.

Part II of this thesis will address this tradeoff between these two proper-
ties in detail, as well as how representation geometry serves as an indicator
of this balance. Since this tradeoff is fundamental to any intelligent system
(see Appendix Section 2 of [Stringer et al., 2019] for a detailed discussion),
similarities in the representation geometries in brains and ANNs are indica-
tive of similar computational principles being employed by the two systems
while processing and mapping the structure of the naturalistic stimuli space.

X K X

This work was published at NeurIPS 2022 and can be cited as Agrawal,
K.K.*, Mondal, A.K.*, Ghosh, A.*, and Richards, B.A. a-ReQ: Assessing

Representation Quality in Self-Supervised Learning by measuring eigenspec-
trum decay. NeurIPS 2022.
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Abstract

Self-Supervised Learning (SSL) with large-scale unlabelled datasets enables learn-
ing useful representations for multiple downstream tasks. However, efficiently
assessing the quality of such representations poses nontrivial challenges. Existing
approaches train linear probes (with frozen features) to evaluate performance on a
given task. This is expensive both computationally, since it requires retraining a
new prediction head for each downstream task, and statistically, which requires
task-specific labels for multiple tasks. This poses a natural question, how do we
efficiently determine the "goodness" of representations learned with SSL across a
wide range of potential downstream tasks? In particular, a task-agnostic statisti-
cal measure of representation quality that predicts generalization without explicit
downstream task evaluation would be highly desirable.

In this work, we analyze characteristics of learned representations fy in well-trained
neural networks with canonical architectures & across SSL objectives. We ob-
serve that the eigenspectrum of the empirical feature covariance Cov(fy) can be
well approximated with the family of a power-law distribution. We analytically
and empirically (using multiple datasets, e.g. CIFAR, STL10, MIT67, ImageNet)
demonstrate that the decay coefficient « serves as a measure of representation qual-
ity for tasks that are solvable with a linear readout, that is, there exist well-defined
intervals for o where models exhibit excellent downstream generalization. Further-
more, our experiments suggest that key design parameters in SSL algorithms, such
as BarlowTwins [1], implicitly modulate the decay coefficient of the eigenspectrum
(av). As a depends only on the features themselves, this measure can be used for
compute-efficient model selection with hyperparameter tuning for BarlowTwins.

1 Introduction

The recent success of self-supervised learning (SSL) has changed the landscape of deep learning
significantly. With well-engineered architectures and training objectives, SSL models learn useful
representations from large datasets without relying on any labels [1, 2, 3]. Despite this progress,
quantifying the representation quality for models trained with SSL is still an open problem. The
most obvious (and common) solution is to assess performance of models using these representations

TThese authors contributed equally to this work
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Figure 1: (A) One approach to evaluate representation quality is tracking the eigenspace of feature co-
variance matrix X, (f) = 1/n Y., £(2;)f(z;) " . Analysing populations of neural activation [6, 7],
suggests that the eigenspectrum for 3, (f) can be approximated by power-law, where A; o< i~<. (B)
For a ResNet-50 model pretrained on ImageNet, we extract activations from an intermediate layer. We
plot the eigenvalue spectrum {1, ..., A¢} for covariance matrix 3, (resnet50 (feats=‘block4’))
in log-1log scale. Further, fitting a linear regressor we estimate the decay coefficient &.

on downstream tasks. However, if the goal is general representations that can be used across many
domains, then this either requires a large investment of time and energy to be done well (in order
to assess performance on many tasks and datasets). Alternatively, if models are assessed on only a
small number of datasets and tasks, then it is hard to be confident in the assessment. Thus, we are left
with a question: Can we assess the quality of learned representations without explicitly evaluating the
performance on downstream tasks? To answer this question, we must formally define the “quality” of
representations and subsequently examine statistical estimators that measure this property without
needing downstream evaluation. Beyond theoretical interest, such a metric would be highly desirable
for model selection and also useful for designing new SSL algorithms.

In search of such a metric, we turn our attention to one of the more efficient learning machines in
existence — the mammalian brain. The hierarchical and distributed organization of neural circuits,
especially in the cortex, provides neural representations that support a wide array of behaviours across
many domains. For example, representations in primary visual cortex (V1) of mammalian brains are
used by animals to support downstream behaviours ranging from object categorization to movement
detection and motor control [4, 5]. This berth of downstream uses of V1 representations is desirable
for artificial vision systems trained with SSL. Thus, understanding the properties of representations
in V1 is a reasonable starting point for seeking a general metric of representation quality.

Recent breakthroughs in systems neuroscience enable large-scale recordings of neural activity. By
recording and analyzing the response to visual stimuli, [6, 7] find that activations in the mouse and
macaque monkey V1 exhibit a characteristic information geometric structure. In particular, these
representations are high-dimensional, yet the amount of information encoded along the different
principal directions varies significantly. Notably, this variance (computed by measuring the eigen-
spectrum of the empirical covariance matrix) is well-approximated by a power-law distribution with
decay coefficient ~ 1, i.e., the nth eigenvalue of the covariance matrix scales as 1/n.

Motivated by these results, we explore the use of the decay rate of the empirical eigenspectrum to
characterize representation quality in neural networks trained with SSL (Fig. 1a). Across diverse
model architectures, pretraining objectives, and downstream classification tasks, we empirically
observe an eigenspectrum decay in the representation covariance matrix that roughly follows a
power-law distribution (see e.g. Fig. 1b). We also find that the coefficient of this decay, denoted
by «, is informative of downstream generalization performance. Importantly, « can efficiently be
calculated without any labels, and thereby, could be incorporated into existing SSL pipelines for
efficient model selection on fixed compute budget. Our core contributions in this paper are:

1. « as a potential metric We observe that canonical pretrained architectures have representa-
tions which loosely conform to a power-law distribution in their covariance eigenspectrum.
Under an assumption of a power-law distribution, we prove that the convergence rate and
upper bound on generalization error are related to decay-coefficient («) of the corresponding
power-law distribution, with best values of « being neither too large nor too small.
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2. « as a label-free measure for representation quality: We empirically validate our theoret-
ical results by demonstrating a relationship between o and downstream generalization. In
particular, we find that either too high or too low an « value implies poor generalization,
both in-distribution and out-of-distribution. Generally, the best representations are those
where « is in a range that is close to 1, as observed in V1 of the real brain. Furthermore,
these results hold irrespective of the choice of network architecture or pretraining objective.

3. « for model selection in SSL: We establish « as a reliable metric for model selection in
a specific case of SSL, Barlow Twins [1]. Notably, we show that « allows us to identify
model hyper-parameters that lead to representations that generalize well without any labels,
more so than the actual loss function used to train the network.

Altogether, our results show that o is a promising task/architecture/data agnostic metric for assessing
. o . t
representation quality in SSL. We publicly release our results and code .

2 Theoretical Framework to Assess Representations in SSL

We are interested in evaluating the quality of high dimensional representations learned by neural
networks. Formally, we consider the overparameterized setting, with datasets X' C R<, and learned
mappings f : R? — R? such that f(x) is a vector of D-dimensional features.

We consider DNNs as our function approximators, where each architecture implicitly defines a
function class F = {fy : 6 € ©} where © C RP? is the feasible set of model parameters (e.g bounded
O, [~ B, B]? for some B € R). The search for good representations poses the following optimization
problem: with a dataset Dy etrain from some data distribution Ppretrain (potentially with labels),
search for optimal parameters 6* such that with pretrain objective Lpretrain(f, D)

0 = in £ in(fo, D i 1
arggsnelg pretrmn( 6 pretraln) ( )

The above optimization problem is usually non-convex, and often uses gradient based optimizer to
find an approximate solution 0. Typically, to measure the quality of fj, researchers evaluate the
quality of representations on a downstream task Dqownstream With a linear readout using some metric
R(linear(f;), Dyownstream ). A concrete example is pretraining a VGG-16 model (F) on ImageNet
dataset (Dpretrain) and evaluating the learned representations using classification accuracy (R) by
learning a linear classifier on the MIT67 dataset (Dgownstream)- FOI the rest of the paper, we denote
feature maps as fy(z) € RP where f) : X — RP, and the readout network as 8o : RP — R* where
k is the target dimensionality. For simplicity of analysis, we consider linear readouts unless explicitly
mentioned, i.e. g,(z) = 27 ¢.

2.1 Covariance estimation and eigenspectrum

For a parameterized function f, : X — R (assume centered), the (n-sample) empirical covariance
matrix is defined as:

Sulfa) = - folwi)fo(e)”

where z; is the i*" sample. The eigenspectrum of ¥,,(fy) informs us about the variance explained
by each principal component of the space spanned by representations fy(x). Using the spectral
decomposition theorem on symmetric matrices, > = UAUT, where A is a diagonal matrix with
nonnegative entries, and U is a matrix whose columns are the eigenvectors of . Without loss of
generality we assume that A} > Ay... > A, where m = min(n, D) is the rank of X, (fy).

2.2 Eigenspectrum Decay in Deep Representation Learning

Recent work in characterizing representation structure in canonical DNNs has demonstrated that the
covariance eigenspectrum roughly follows a power-law [8, 9, 10]. Specifically, the eigenspectrum

! https://github.com/kumarkrishna/fastssl
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of a covariance matrix follows a power-law distribution PL(«), or zeta distribution if for A\; €
[Amins Amaz), the eigenvalues \; are all nonnegative, and

)\j X j_a

for some o« > 0. Here, «v is the slope of the power law, and is referred to as the coefficient of decay of
the eigenspectrum. Intuitively, small « (typically o < 1) suggests a dense encoding, while a high «
(rapid decay) corresponds to a sparse encoding.

Insights from High-Dimensional Linear Regression : Recent work in theoretical machine learning
has connected bounds on generalization error for a linear regression problem to the eigenspectrum of
the feature covariance matrix. Specifically, in the infinite-dimensional setting with D — oo, [11]
studied the linear regression setting with Gaussian features, and proved that if the eigenspectrum
follows a power-law distribution (up to polylogarithm factors), the min-norm solution provides
good generalization performance iff o = 1. The asymptotic regime of infinite width is an excellent
framework to study theoretical properties of DNN representations. However, despite having a large
number of parameters, practical DNNs always possess finite dimensional representations, making it
important to investigate the implications of such results in finite width models. In particular, for the
finite dimensional setting we try to answer: Does « sufficiently larger or smaller than 1, still allow
efficient learning and strong generalizability?

To answer this question, we narrow our focus to gradient-based optimization techniques usually used
to train DNNGs. In particular, from the optimization perspective, Advani et al. showed that for deep
linear regression in high dimensions, the time required for training and the steady-state generalization
error are both (’)(ﬁ) [12]. A key difference from our work is that they assume the inputs are drawn
from an isotropic Gaussian distribution. Instead, we investigate the generalization of linear regression
on fy(x), which has a power law structure in its covariates. We show that the training convergence

time grows exponentially with « using the following theorem:

Theorem 2.1. Let §j = f5(z)T1) be an overparameterized linear regression problem where 1 is
learned using gradient descent in order to optimize the training error, B ,[(y — fo(x)T1))?], where
(2,9) ~ Dirain. If we assume a power-law distribution in the eigenspectrum of representations at
fy, i.e. \,, = # Vn > n*, where n* € {1,2...N}, then the time required by gradient descent to
minimize the training error, Teopvergence = O(N®) where N is number of training samples.

The outline of the proof builds on key results relating to gradient descent dynamics from [13]. We
show that gradient descent updates, when 1) is initialized to 0, yield a recursive relation for ¢ (k), i.e.
1) after k update steps. Plugging this relation in the gradient formulation, we show that the update step
length along the n** principal direction of f5(z) shrinks exponentially with a decay rate proportional
to \,,. Therefore, the time to convergence in training is controlled by the smallest eigenvalue which,
by design, follows the power law. In sum, Theorem 2.1 provides an explanation against arbitrarily
large values of a.

Next we show that «v can’t be arbitrarily small as the upper bound on generalization error is higher
for smaller values of .

Theorem 2.2. Let j = fy(x)T') be a linear regression problem as before. Let us further assume that
fo(x) V& ~ Diyain is a representative subset of the inputs from true data distribution: (x,y) ~ D.
Assuming a power-law distribution in the eigenspectrum of representations at fy, i.e. A, = -5 Vn >
n*, where n* € {1,2...N}, the generalization error after T weight update steps, G(T)) is:

G(T) = Eqyonl(y — fo(2)T9)?] < O (ri(S(fo))

St ghi oimgit®
where r:(3S(fh)) = =& == 2)
¢ D Ai Doy 7

Here, m = min(n, D) is the rank of 3,,(fp).

Notably, r;(¥(fp)) can be thought of as a measure of effective rank of the covariance matrix and
grows with decreasing values of «. Therefore, the upper bound for generalization error is higher
for lower . Taken together, Theorems 2.1 and 2.2 suggest that « can neither be too high nor too
low and there exists a tradeoff region which results in efficient learning and strong generalizability,
where these representations form a good basis for gradient-based optimization on downstream task
performance.
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Figure 2: Overparameterized linear regression, with inputs drawn from Gaussian distribution with
power-law in the covariance matrix. Models are trained with gradient descent with initialization
1o = 0. Note that o > 1 particularly suffers from high train, test MSE loss, with low generalization
error with o ~ 1.

Another motivating example Before exploring the link between « and generalization performance
of deep networks, we validate our theorems in a simple linear regression setting.

We first consider its relationship to the finite dimensional regression setting as in [11]. Specifically,
Theorem 6 of their paper states that the conditions for “benign overfitting”, wherein a model can
perfectly fit noisy training data without any subsequent loss of performance on testing data, may be
looser in finite dimensions as opposed to the necessary and sufficient condition of & = 1 in infinite
dimensions. To empirically test this in the finite high dimensional setting, we examine linear least
squares regression using different covariate structures for the input data. Formally, we consider
covariates {z;}, such that z; € R? is sampled from a Gaussian distribution with covariance
structure ¥ = diag{\1,...Aq} where \; ~ PL(a), i.e \; o ¢j~®. We assume access to the
corresponding labels {y;}¥, generated under a teacher function 6*, such that y; = 27 0* + ¢;. We
find that in this scenario there is a clear relationship between the proximity of o to 1 and the presence
of benign overfitting. As shown in Fig. 2, when « is close to 1, the training loss is low, but the
validation loss is also low. Thus, when « is close to 1, the generalization properties are at their best.
This example thus provides another hint that « is a potential measure for how well a model will be
able to generalize.

3 Experimental Setup

Our theoretical results suggest the following: for representations with power-law characteristics, the
decay-coefficient («) effects the adaptiviry, where the convergence rate of linear regression with
gradient descent scales exponentially O(n®) with «.. On the other hand, if trained sufficiently long,
the upper bound for generalization error improves with larger «. Together, these items imply that
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Figure 3: «is predictive of out-of-distribution object recognition performance. « is strongly correlated
to object recognition performance on STL10 across different architectures and pretraining loss
functions. More transparent (opaque) points indicate representations obtained from earlier (later)
layers of a network.
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Figure 4: « is predictive of out-of-distribution object recognition performance. « is strongly correlated
to object recognition performance on MIT67 across different architectures and pretraining loss
functions. More transparent (opaque) points indicate representations obtained from earlier (later)
layers of a network.

if one wants to use gradient descent to train a downstream task then « for the representations used
should be neither too large nor too small, i.e. high quality representations are those with « in a
“Goldilocks” zone. Building on these insights, we now design experiments to empirically study the
potential for « to be used as a representation quality metric. We do so by measuring the relationship
between « and the standard metric of representation quality, i.e. downstream task generalization
performance. In this work, we restrict our scope to vision tasks, specifically object classification and
scene recognition. In particular, our experiments:

* measure the eigenspectrum decay & generalization : We systematically evaluate in-
distribution and out-of-distribution generalization, and simultaneously, we also measure «,
across diverse choices for network architectures, pretraining learning objectives, and across
multiple datasets. We then look at whether « values near some neighbourhood around 1 are
indeed predictive of representations that generalize well to downstream tasks.

* explore o as a metric for model-selection in SSL: Measuring « is label-free and computa-
tionally inexpensive, as it requires a single forward-pass on the downstream dataset. We thus
ask, is « predictive of generalization capabilities for current SSL algorithms, and if so, can
it be used for model selection? We run extensive ablations on design of the BarlowTwins
[1] algorithm in an effort to answer this question.

3.1 Measuring eigenspectrum Decay & Generalization

Evaluation Protocol: To measure « for the learned representation f(x;), we first extract features
from intermediate layers of a DNN pretrained on Dy, .ctrqin and estimate the corresponding covariance
matrix %, (f). Next, we compute the full set of numerical eigenvalues, and estimate « by a fitting a
linear model on the eigenspectrum in log-1log scale. Our pretrained models are taken from PyTorch
Hub [14] and timm [15]. Given that we observed no significant difference between the observed «
values in the train and test sets, we refer to this empirical estimate as the « for the dataset.

To estimate the capacity of intermediate representations in solving the downstream task, we train
a linear readout layer, g(.), from representations to target logits. Intuitively, this comes down to
establishing a relationship between the manifold geometry and linear separability of representations
[16]. Thereafter, we observe the correlation between estimated « and the linear readout performance.
Notably, we also tried non-linear g(.) and observed a similar trend in results (see Appendix B.1).

Inductive bias of Model Architecture In this section, we investigate the relationship between «
of the representation covariance matrix and object/scene recognition performance in DNNs with
different backbones and the role of depth. In order to do so, we examine varying depth configurations
within network architectures across three generations of models on the STL10 and MIT67 dataset
[17]. We choose both object and scene recognition task as they fundamentally differ in the nature
of the features that must be extracted to perform well. For scene recognition, the model focuses on
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global features in the entire image, while for object recognition, the model focuses on local features
of the image containing the object[18].

We examine deep Convolutional Neural Networks (CNNs) without any residual connection as our
first family of models. Specifically, we choose three different configurations of VGG-Net [19],
namely VGG-13, VGG-16 and VGG-19. We inspect representations that are input to the dropout
and MaxPool layers during the forward pass of the network. Second, we consider Deep Residual
Networks [20] which are widely used in computer vision. We inspect the representations that are
input to each of the residual blocks as well as the Adaptive average pool in ResNet-13, ResNet-50
and ResNet-101 during their respective forward passes. Finally, owing to the recent success of
transformers in object recognition tasks we consider Vision Transformers (ViT) [21] as the third
family of models, namely ViT-Base/8 , ViT-Large/16 and ViT-Huge/14. Unlike VGG and ResNet, we
only look at features in the intermediate layers because it summarizes the entire input image and is
used in practice for class prediction. For all model architectures, we use the weights obtained from
pretraining on ImageNet.

Fig. 3 and Fig. 4 illustrate the relation between performance and « for all the nine architectures
across intermediate layer representations, as described above. We found that, while most intermediate
representations in CNN's (with or without residual connections) exhibit a < 1, representations in ViTs
mostly exhibit o > 1. Nevertheless, representations extracted from the deepest layers of all the models
exhibit « close to 1, irrespective of the total depth of each model (see Appendix B). Furthermore, the
performance on downstream task increases with depth. This is unsurprising because all networks
were trained to perform object recognition on ImageNet [22] and thereby would have leveraged
hierarchical processing to learn features that are tuned towards object recognition. Surprisingly
enough, we observe a strong significant correlation between « and performance on the STL10 dataset,
i.e. a different data distribution than the training dataset, across layers and model architectures
(p = —0.922, *p < 0.05 for representations exhibiting « > 1 and p = —0.922, *p < 0.05 for
representations exhibiting o < 1). It is worth noting here that the correlation was weaker for the
earliest layers of each model. We believe that early layers learn more task invariant features that
reflect the statistics of natural images [23, 24] and therefore lack task relevant information in their
representations. Taken together, this observation confirms our hypothesis that « is a good indicator of
out-of-distribution generalization performance when representations possess task relevant information.
Thus, « has a necessary but not sufficient relationship with generalization (Appendix C).

Learning objective In this section, we first aim to understand how the « value changes across
the layers of a fixed architecture DNN when trained with different learning objectives. We take a
ResNet-50 model [20] pre-trained using three different SSL algorithms, namely SimCLR [2], BYOL
[25] and Barlow Twins [1], and the supervised learning loss objectives on ImageNet-1k[22] dataset.
We use a similar procedure as before to extract representations from the network and estimate .

Similar to results in the previous section, all networks irrespective of the pretraining loss function,
exhibit « closer to 1 in the deeper layers in contrast to intermediate layers (see Appendix Fig. 9). This
surprising result indicates that although the pre-training loss function was different, representations
extracted from deepest layers are reflective of the object/scene semantics in natural images. Further-
more, Fig. 3 and Fig. 4 illustrate the strong correlation between « and generalization performance
on STL10 and MIT67 across all pre-training loss functions. Together with results from the previous
section, we validate our hypothesis that the representations that demonstrate good out-of-distribution
generalization performance are characterized by « in the neighbourhood of 1. This suggests that high
quality representations are indeed those with « in this region.

3.2 Label-agnostic metric for Model selection

With empirical evidence of o being a good measure for generalization, we now wish to study its
suitability as a metric for identifying the best among models pretrained with SSL algorithms. A label-
free metric like o could be beneficial when we don’t have access to the downstream task annotations,
and the SSL loss is not useful to distinguish models with good generalization performance (see
Fig. 5). To investigate this, we exhaustively ablate the relationship between o and model performance
across a wide range of hyper-parameters for a representative non-contrastive SSL algorithm.

Current SSL algorithms struggle with dimension collapse (characterized by large «), due to patholo-
gies in training dynamics. To study a across a wide-range of values, for our model selection
experiments, we pick the Barlow Twins[1], a non-contrastive SSL algorithm that explicitly optimizes

46



>

pdim-normalized % B test accuracy C Qt(decay coefficient)

| R

ES
o
@
>

£
O 2048 2048
S
=
3
= 512 512
o
o
128
0.001 0.01 01 05 0.001 0.01 01 05 0.001 0.01 0.1 05
A (redundancy coefficient) A (redundancy coefficient) A (redundancy coefficient)
D CIFAR10 F
pdim-normalized %T test accuracy Ql(decay coefficient)
& 4096

4096
2048
512
128

10* 0.01 10* 0.01 05 10° 10% 0.01 0.5
)\ (redundancy coeffi cnent) )\ (redundancy coefficient) A (redundancy coefficient)
STL10
| ee— ] | — ] | e
12 3 456 70 75 80 85 90 08 13 1.7 22
(%r)/proj_dim accuracy (%) Qt(decay coefficient)

Figure 5: « as a metric to inform model selection. The SSL loss (training for same number of
gradient steps) is no longer useful to distinguish models with superior downstream performance.
However, decay coefficient o shows strong correspondence to downstream test accuracy over a large
hyperparameter ranges. Measuring in-distribution generalization for (A-C) BarlowTwins trained and
evaluated on CIFAR10. (D-F) BarlowTwins trained and evaluated on STL10.

to avoid dimension collapse. In particular, the Barlow Twins learning objective (Lp) proposes
imposing a soft-whitening constraint :

£ Edj(l C(f) )2+>\§:§:C(f )2 st C(fy) T fo@ifo@®); 5
BT = — Lo )ii 0);; st.C(fg)i; =
S =1 i VI B4 5, BB

Invariance redundancy-reduction

Notably with sufficient large A, the model would impose an a = 0 constraint on the representations
[26]. Despite the intuitive connection between « and A, it is unclear whether this relationship holds
across a wide-range of values for model hyperparameters. To empirically establish this connection,
we vary A (redundancy coefficient), projection head dimensionality and learning rate, and train a
ResNet50 encoder using Barlow Twins learning objective. We provide the results for CIFAR10 [27]
and STL10 [28] in Fig. 5 demonstrating that « is a strong indicator of in-distribution generalization
performance across a large range of hyperparameter ranges of £ 7. We defer the reader to Appendix
Fig. 14 & Fig. 15 for similar trends in optimization hyperparameters. Furthermore, « is predictive
of out-of-distribution generalization performance in these settings (see Appendix B.3). The same
relation also holds in contrastive SSL frameworks, specifically for SImCLR [2] (see Appendix B.4).

Model 'Selection ona Compute Bud- Type 1 we report the compute time for CIFAR10, STL10, and
get: With a constrained compute bud-  ymageNet. While CIFAR10 and STL10 are trained for 200 epochs
get, using « for model selection is  for downstream classification ImageNet is trained for 100 epochs.
significantly cheaper than evaluating (tested in 1 A100)

the representations on a suite of down-
stream tasks. To illustrate this, con-
sider the standard alternative of train- ~ Dataset

w/ eigenspectrum  w/ linear perf.

* . - coefficient (&) probe gains
ing a linear classifier on the represen-

tations and evaluating test accuracy. _ CIFARI0(s) 3+ 02 48x7  ~ 16X
Compared to training a linear probe,  STLI10 (s) 5+0s 8010  ~16x
which requires multiple epochs of for- TmageNet (mins) 4108 58 s ~ 15x%

ward & backward passes through the
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training dataset’s features, to achieve

reasonable estimates of downstream accuracy, computing « requires a single PCA step on the valida-
tion dataset’s features. In Table 1, we contrast the compute times for « and evaluating a linear probe.
A detailed algorithm to use « for model selection is provided in Algorithm 1 and its complexity
analysis in Appendix B.6.

Algorithm 1 Model selection using «

Number of models that can be trained in parallel
Number of sequential steps of model training
Number of top models to log in memory for model selection

HHH
o=

Qmin = 0
Omazr = OO
models_dict = {}

for iter in range(H):
# train M models in parallel, each with different hyperparam config
trained_models = train_SSL_models(num_parallel_models=M)

# evaluate o for the trained models

alpha_trained_models = evaluate_alpha(trained_models)

best_trained_models = {model: alpha for model, alpha in
alpha_trained_models if alpha € [amin>Qmazl?}

models_stat = {model: run_linear_eval(model) for model, alpha in
best_trained_models.items ()}

# Update oymin and amaz
amin = max ({am | am >a; & accy > acc; V m,j € models_statl})
maz = min({om | am < aj & accm >acc; V m,j € models_stat})

# Trim models_stat to keep only top K models

threshold = get_best_models(model_statistics, topk=K)

models_stat = {model: acc for model, acc in models_stat.items() if acc >
threshold}

# Return best model performance from the ‘selected’ models
best_model_acc = max ({acc,, V m € models_stat})
return best_model_acc

4 Related Work

Evaluating representations and model quality We note a substantial body of work aiming to
empirically characterize the structure of emergent representations in DNN without requiring labels
[29, 30]. One such index that quantifies the similarity of representations across layers (of the same or
different models) is Centered Kernel Alignment (CKA) [23]. While CKA does not provide explicit
guidance for downstream performance, [31] shows that the in-distribution generalization gap can be
predicted using a different index based on the model’s parameters. In particular, they show that the
Empirical Spectral Density (ESD) of weight matrices for many DNNs obey a power-law, with the
decay coefficient being predictive of in-distribution performance. In the present work, we explore
similar indices that potentially correlate with out-of-distribution generalization by examining the
eigenspectrum of activations.

Generalization in Overparameterized Models Modern neural networks often have significantly
more parameters than the number of training samples, challenging the classical understanding of the
bias-variance tradeoff. Overparameterization permits neural networks to overfit to noise in training
data without impairing their generalization to unseen data. In recent work, Bubeck et al. proved that
overparameterization is a necessary condition for smooth interpolation in neural networks [32].

Furthermore, this benign overfitting phenomenon in an overparameterized linear regression problem
has been linked to the power law coefficient of the input covariance matrix [11]. Specifically, Bartlett
et al. showed that benign overfitting is possible for an infinite-dimensional linear regression problem
iff the eigenspectrum satisfies a power law (up to polylog factors). More recently, Lee et al. found
that the tail eigenvalues of infinite-width network kernels exhibit a power law decay [33]. Following
this, Tripuraneni et al. explored high-dimensional random feature regression settings and analytically
showed a dependence between the eigenspectrum decay rate of the feature covariance matrix and
generalization error [34]. While these characterizations provide a theoretical understanding of

48



generalization error in the asymptotic or random feature settings, corresponding questions in the
finite-dimensional DNN trained with gradient descent are open problems.

For deep linear networks trained using gradient descent, the eigenvalues of input covariance determine
the generalization error dynamics [12]. Advani et al. demonstrated that small eigenvalues determine
the convergence of training dynamics as well as the overfitting error at convergence. For overpa-
rameterized 2-layer neural networks, Arora et al. provided a fine-grained analysis of generalization
bounds [35]. In contrast, we study modern DNN architectures and explore the covariance structure of
their learned features on visual recognition tasks.

5 Discussion

Summary Our experiments suggest a strong correlation between the decay coefficient for sample
eigenspectrum of representations, «, and both in-distribution and out-of-distribution generalization
performance on tasks central to computer vision.

Representation Quality in High-Dimensional SSL. We demonstrate that assessing the quality of a
pretrained model with our label-free metric («) is consistent with downstream generalization. While
being computationally efficient, our procedure removes the dependence on labels, making the model
selection more robust and amenable for privacy critical applications.

Necessary, but not sufficient condition Notably, a task-agnostic measure like « is a necessary but
not sufficient condition for assessing good performance. To elaborate on this point, let us present
a thought experiment. Suppose we have our ideal representation space that satisfies our claims of
exhibiting alpha close to the Goldilocks zone. If we perform a set of permutation operations on
individual datapoint representations, the structure of the representation space remains the same, but
the mapping from representation to label is now destroyed. In doing this set of permutations, we
have now arrived at a different set of representations that would exhibit the same (or similar) alpha
but demonstrate a lower task performance when measured using a linear readout layer. A similar
argument is presented as theorem C.1 in [36]. Extending the conclusions of this thought experiment
to our observations, it is clear that we could have models with similar alpha values but distinctly
different performances. But an alpha value that is not in the Goldilocks zone would be associated
with inferior model performance. This property is the core of our claim and allows us to propose
alpha as a measure for model selection in SSL pipelines.

Redundancy in ViT representations Unlike other models that we considered, representations
from early layers of ViT had a rapid eigenspectrum decay with o >> 1 (see Fig. 3 and Fig. 4).
The transformer architecture has a notable difference by design, i.e. early layers possess global
receptive field context via self-attention on patch embeddings. Raghu er al. found that early ViT
layers incorporate both local and global information [30]. Based on these insights, one intuitive
interpretation of our results is that the representations have a low effective rank and encode redundant
information relevant across multiple scales.

Limitations While the role of « and its relationship to generalization performance is better understood
in the asymptotic setting for linear regression, similar questions in finite-dimensional nonlinear models
are unanswered. It is also worth noting that the empirical correlation was weaker for the earliest
layers in each model. We believe that early layers learn more task invariant features such as corners
and edges [23, 24], and thereby lack rich semantic information for the fine-grained downstream task.
In this case, distinguishing between poorly-trained models may be inconsistent with a.

Future Directions Learning efficiently at scale from unlabelled datasets poses an exciting open
problem in deep representation learning. We hope this work encourages new perspectives into model
selection for SSL pipelines and informs the design of learning objectives and model architectures
to learn task-agnostic, adaptive features. Understanding the behaviour of « (notably, a scale-
invariant metric) in high-dimensional representation learning might provide insight into developing a
theoretically grounded understanding of generalization in deep neural networks.
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A Appendix

A.1 Proofs

In this section, we present a formal proof of Theorem 2.1. In order to do so, we will use a lemma
pertaining to iterative expression of the linear regression parameters over training epochs. This lemma
is inspired by the results presented in [13]

Lemma A.1. Let § = xTw be a finite dimensional linear regression problem where w is learned
using gradient descent in order to optimize the training error,

L=Eayl(y = 9)°] = Eoylly — 2Tw)?] @)

where (z,Yy) ~ Dirain, €. the training dataset. Then wy, i.e. w after training for k epochs can be
written as

wp = XT(XXT)"H I - (I -nXXT)*Y (5)
where X,Y indicate the entire training dataset, i.e. X € RN>*% and Y € RN

Proof. We start with the gradient of the regression loss function for a defined training set denoted by
(X,Y) in a vectorized notation:

F(wy) = Y — Xwg|?
— VF(wp) = X7 (Xwp —Y) (6)
(N
We assume that the weights are initialized at 0, i.e. wg = 0. Using the gradient descent update:
Wry1 = wp —NVE =wp —nXT(Xwy —Y) = (I — X" X)wy, +nXTY
(I = X" X)w, +nXTY =nXTY
Let wi = nXTukY — w1 =1
Wo = nXTuQY
= —nXTX)XTY + XY = nXT[(I —nXXT)+ 1Y

= up= (I —nXXT)+1

w1

k
up = (I —nXXD)up_y +1 = Z(] —nXXxTy—t
1=0

k
=T —T-nXX") I = (IT-nXX")Y (I —nxXx")"~
=0

k
(XXM = (I =X XT)> (T —nXX")~
=0

k
_1 XX = nx X"y = (T =X XT)]
77 =0
= L(XXT) I~ (I - X XY
U
— wp =X Y = XT(XXT) I - (I —nXXT)k)y ®)
O

This proves Lemma A.1. We will now use this lemma to prove Theorem 2.1. From this result, we can
also write:
Awy, = nXT (I —nXXT)ky )

We restate the theorem from the main text. Note that the notations are simplified here from the
theorem statement to improve readability.

53



Theorem A.2. LetY = XTw be a finite dimensional linear regression problem where w is learned
using gradient descent. If we assume power law distribution in eigenspectrum of X, i.e. A\, =
<Vn € {1,2..N}, then the time required by gradient descent to minimize the training error,

Tconvergence = O(Na)

Proof. Using result from Lemma A.1, it is clear that the gradient converges to 0 if \; < % where A\q
is the leading eigenvalue of X X7

Thus, n < )\ , 1.e. small learning rate setting. So, we setn = Where 7 < 1. Plugging this in
Eq. (9)
Awy, = LxTr— Dy xTyy (10)
A1 A1

Let X = U Az VT denote the singular value decomposition (SVD), which implies X X* = U AUT.
Using the SVD, we get (I — /\”1 XXk = (I - /(71 U A UT)E, 1t is worth noting that eigenvalues

and eigenvectors of (I — iU A UT) are related to that of X X7 as shown below:

(I - D n Uu; = u; — —(U AU uy)

)\1 /\1
= Dy [Using UTU = 1
)\1
— (I—A—U/\UT) (1——/\) (11
1

Using Eq. (11), we can write (I — /\ilU A UT) in the eigendecomposition form as UAU” where

- . k ~
X =12, Thus, ( — AU A UT) — UAFUT . Plugging this in Eq. (10), we get:

Aw, = Ly Ab UTURRUTY = Ly ad Akg (12)
/\1 >\1

; N ~ k
where S = UTY € RN For the i element, we get Aw|’ = iV AA Sy =
25 Ui/ A (L — A2 bw Since all other factors remain constant across training, i.e. do

k
not change with k, the convergence of gradient descent depends on the factors (1 — ﬁf\‘—]l) . Note

that we define gradient descent to converge when Aw,(j) ~ 0V i. Therefore, the limiting factor that
determines rate of convergence is (1 — ﬁi—i)k, which in turn is limited by the smallest eigenvalue

factor: )S\—N

Assunnng <<1:>77)\ <lasn<l = (1- )‘A—N)kzl—kA%.

Hence the convergence time, k* = O(7 /\N) = ()’\\—le)

If \; follows power law, i.e, \; = ¢i~* and 3% >‘ = N~% then k* = O(N®) i.e. k* grows exponen-

tially with a. O

Theorem A.3. Let jj = f5(x)T ) be a linear regression problem as before. Let us further assume that
fo(x) V& ~ Dyyain is a representative subset of the inputs from true data distribution: (x,y) ~ D.
Assuming a power-law distribution in the eigenspectrum of representations at fy, i.e. A, = =% Vn >

n*, where n* € {1,2...N}, the generalization error after T weight update steps, G(T) is

G(T) :=Eqgyonlly — fo(z)"¢)?] <O (ri(3(fy))
Do g i degit®

where ri(X(fp)) = S, T S
=1 i=1

13)

Here, m = min(N, d) is the rank of Xy (fy).

Proof. We start with the gradient of the regression loss function for a defined training set denoted by
(X, Ys) in a vectorized notation where X € RV*? and Y € R™. For the brevity of notation let us
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denote fy(x) by x. The loss/error for the regression problem can be given by:

1
E= §<YS - Xs¢)T<YS - Xs¢)
This gives gradient of weight vector as:

E— A¢:—UV¢E:1]XTY777XTX¢ (14)
where 7 is the learning rate. Now, let the true labels be generated by Y, = X ¢* 4 ¢ where ¢
is a random variable denoting noise. Also, let X, = U, A2 VT which gives X7 X, = V A VT
and X7V, = VA2 ULY = V A2 Swhere S = UTY = UL (U, A2 VIg* +€) = A2 Z* + 0,
Z*=VT¢*andé = Ule. Let ¢ = V Z, i.e. expressing ¢ using the eigenbasis V of X7 X and Z as
the new parameters. This gives:

AZ=VTA=qVT (VAT S+VAVTH) =n(A28 — NZ) (15)
— AZ=nA(Z*—=Z)+nATE (16)

This implies no mixing between the eigenmodes. Solving Eq. (16) we get:
ZF — Zi(t) = (ZF — Zi(0))e ™t — (1 — e (17)

VA
Now, let ¢* — ¢ = 6 and Z* — Z = p = V1§, which gives p;(t) = p;(0)e "t — %(1 —eTmhit),
Then the generalization error is:

G=<(¢"— )" XTX(¢" —¢) >=<p" Ap>=<D Np} >=> \i<pl> (I8
i=1 i=1

where X is the datapoints from the total dataset for which we care about the generalization error
and m is the rank of the covariance matrix, X7 X. Without loss of generality, we can assume
m = min(N, d). Note that (.) denotes the expectation over different network weight initialization
and label noise. We define X to be a reliable sample of dataset X if both X TX and X STX s have
the same eigenvectors, i.e. V. Therefore, we could write X7 X = XT X, in Eq. 18. Note that
the reliability of the sample indicates the inherent structure of the data, i.e. the variance along
the principal components in the data space have been captured by X,. Subsequently, we get the
expression for generalization error for a fixed training budget upto time/epoch (T):

T)= Z )\iaiefzmiT +02(1 - e~mhiT)2 (19)
i=1

where o, indicates the noise due to weight initialization and o, indicates the noise in labels. It is
clear from Eq. (19) that directions corresponding to larger eigenvalues converge faster and contribute

to the generalization error through second term. Let us, therefore, assume that the top d eigenmodes
have converged. Therefore, e—maT < co Vi < d < m, where ¢g is some small number. Hence,

eI < cg Vi< d and e ™7 > co Vi> d
— e 2T <2 vi<d and (1—e ™12 <(1-¢)? Vi>d
Also (1—e ™12 <1 Vi<d and e ?NT <1 Vi>d (20)

Plugging inequalities from Eq. (20) in Eq. (19), we can upper bound the generalization error:

p

M

d
Nio2e AT 4 52(] — emMiT)2 < a§c§ E A +o?
i=1
m

> Niose PN 4 g2(1— e T2 <02 NN+ 02(1 - co)? Q1)
i=d+1 i=d+1
Therefore, the generalization error can be upper bounded as follows:

d m
<ol Y Ni+oltor Y Ai+ol(l—c)’ (22)
i=1 i=d+1
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Now, we can choose ¢ to be such that 0(2) Z?Zl A; = Ko where kg is some constant independent of
T'. Furthermore, we impose the power-law assumption in the eigenvalues, i.e. A; = ci~“. With these
assumptions, we can simplify Eq. (22) as follows:

G(T) < aimo +02 (14 (1—co)?) + Ugc Z i
i=d+1

Z@JH i 2 Z@JH i
1= — X 1=
71@7"()() K+ o0, [var( )]72211 —a

where £ is another constant (used for brevity), k = 02kg + 02 (14 (1 — ¢o)?). Also, we used the

relation: var(X) = Y, \; = ., ¢i~®. Therefore, we can set d = d — 1 and subsequently prove the
statement of the theorem:

= G(T) < ki + oaclvar(X)) (23)

S 0y (2(8) @)

G(T)<k+ ai[var(X)] S e
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B Additional Experimental results

In this section we provide additional results, evidence to support our hypothesis of « being a useful
measure of downstream generalization performance.

B.1 Generalization & Eigenspectrum Decay on STL10 and ImageNet
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Figure 6: To measure downstream performance, one alternative is using non-linear readouts. With
fixed feature-set, the performance of non-linear readout on STL-10 demonstrates correlation with «
(across different pretraining loss functions) The trends are similar to the performance of a linear
readout, as shown in Fig. 3. *p < 0.05.

Test Accuracy (Linear readout) vs eigenslope (a) of Representations for Train accuracy > 20.0 (ImageNet)
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Figure 7: Unless specified explicitly, our models are pretrained on the ImageNet dataset. Here, we
evaluate in-distribution generalization for ResNet-50 models pretrained with multiple learning
objectives. We see « is correlated with the generalization on ImageNet. Note that the input images
are downsampled for this experiment to get lower dimension features for intermediate layers, which
facilitates the Eigendecomposition of the large covariance matrix for ImageNet. However, this is not
a problem when we work with the features extracted from the final layers, which suggests that the
model selection algorithm proposed in this paper also works for high-resolution images.
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B.2 Layerwise evaluation on STL 10 and MIT 67

Eigenspectrum Slope (a) of Supervised network Representations (STL10 test)
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Figure 8: « for intermediate layer representations from different backbone architectures demonstrates
the contrasting representations learned by CNNs and ViT.
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Figure 9: « for intermediate layer representations from networks trained using different loss functions
show similar trends. Representations from deeper layers exhibit « closer to 1 as compared to middle
layer representations.

Eigenspectrum Slope () of Supervised network Representations (MIT67 test)
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Figure 10: « for intermediate layer representations from different backbone architectures in MIT67.
Representations learned by ViT is qualitatively different from those is CNNs both in object and scene
recognition datasets.
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Eigenspectrum Slope (@) of Representations (MIT67 test)
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Figure 11: « for intermediate layer representations from networks trained using different loss
functions show similar trends in MIT67. Empirical evaluations suggest that representations from
deeper layers exhibit « closer to 1 as compared to intermediate layer representations.
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B.3 Visualizing design landscape for BarlowTwins

As a diagnostic metric for measuring representation quality, we chart the learning landscape for
self-supervised learning algorithms (Barlow Twins here). To this effect, we empirically investigate
the role of different critical hyperparameters in learnability and generalization. In particular, we
ablate across projection-dimensionality, redundancy coefficient, weight-decay and learning rate.
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Figure 12: For ResNet-50 model architecture, we measure out-of-distribution generalization for
BarlowTwins pretrained on STL10 and evaluated with linear-probes on CIFAR10.
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Figure 13: For ResNet-50 model architecture, we measure out-of-distribution generalization for
BarlowTwins pretrained on CIFAR10 and evaluated with linear probes on STL10.

60



Pretrained and evaluated on CIFAR10
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Figure 14: Measuring in-distribution generalization for BarlowTwins trained on CIFAR10 and
evaluated on CIFAR10 when sweeping over different optimization hyperaprameters, namely learning
rate and weight decay.

Pretrained and evaluated on STL10
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Figure 15: Measuring in-distribution generalization for BarlowTwins trained on STL10 and evaluated
on STL10 when sweeping over different optimization hyperaprameters, namely learning rate and
weight decay.
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B.4 Visualizing design landscape for SimCLR
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Figure 16: Hyperparameter sweep for SImCLR pretraining on CIFARI10: the correspondence
between o and downstream accuracy holds for contrastive SSL methods as well. (A) SIimCLR loss,
(in-distribution) classification accuracy on CIFAR10 and corresponding « of learned representations
when sweeping over different values of temperature and batch size, two key hyperparameters for
SimCLR training. (B) Accuracy vs « plot for all models trained with different values of temperature,
batch size and projector dimensionality. (C-D) Same as A and B for downstream (out-of-distribution)
classification accuracy evaluated on STL10.
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STL10 pretraining
Evaluating performance on CIFAR10
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Figure 17: Hyperparameter sweep for SImCLR pretraining on STL10: the correspondence between
« and downstream accuracy holds for contrastive SSL methods as well. (A) SimCLR loss, (out-of-
distribution) classification accuracy on CIFAR10 and corresponding « of learned representations
when sweeping over different values of temperature and batch size. (B) Accuracy vs « plot for all
models trained with different values of temperature, batch size and projector dimensionality. (C-D)
Same as A and B for downstream (in-distribution) classification accuracy evaluated on STL10.
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B.5 Model Selection on Compute Budget

Algorithm 2 Model selection using «

# M: Number of models that can be trained in parallel
# H: Number of sequential steps of model training
# K: Number of top models to log in memory for model selection

models_dict = {}

for s in range (H):
# train M models in parallel, each with different hyperparam config
trained_models = train_SSL_models(num_parallel_models=M)

# evaluate o for the trained models
alpha_trained_models = evaluate_alpha(trained_models)

# choose models based on alpha to run linear evaluation
for model in trained_models:
if alpha_trained_models[model]l € [amin,>®maz]:
model_alpha = alpha_trained_models[modell]

model _performance = run_linear_eval (model)

models_dict.insert ({model:(model_alpha ,model_performance)})
else:

pass

# Update aumin and Qmax
amin = max ({am | am > a; & performancen > performance; V m,j € models_dict})
maz = min({am | am <aj & per formancey, > performancej V m,j € models_dict})

# Trim models_dict to keep only top K models
performance_thresh = get_top_K_model_performance (models_dict)
for model in models_dict:
if model.performance < performance_thresh:
models_dict.pop(model)

# Return best model performance from the ‘selected’ models
best_model_performance = max ({performance,, V m € models_dict})
return best_model_performance

B.6 Average complexity analysis of Algorithm 1

Let us assume that the compute budget is characterized by M, i.e. the number of SSL models that
can be trained parallely on the compute infrastructure. Let us assume H such parallel steps are run
sequentially in order to train M x H different model configurations (e.g. sweeps over different
hyperparameter configurations). Let us denote the probability of performing linear evaluation on a
model trained in the r*" sequential step as e,.. Therefore, expected number of linear evaluations in
the rt" step will be Me,. Now, clearly €, < 1, and hence:

H H
E[linear_evals] = Z Me, < Z M=MH (25)
r=1 r=1

This relationship provides the worst case complexity of Algorithm 2. We can further assume that the
probability of linear evaluation decays with each sequential step. Therefore, the average number of

linear evaluations would be less than M H. Assuming €, = O (1) " we can write:
H H 1
Elli Is] = Me, = MO~ =0 (Mlog(H 26
[linear_evals] ; € ,,Z_:l (7") (Mlog(H)) (26)

Taken together, the above equation shows that the average case complexity of model evaluation using
« is less than the standard complexity of model evaluation, i.e. M H linear evaluations.

"Verified in Fig. 18
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Figure 18: Our analysis suggests a range [(m,in, Qmaz) for a which indicates the best model in a set
of pretrained models. If this range is known, using « is significantly more compute efficient that
standard exhaustive search which requires multiple linear evaluations, as noted in 1. Furthermore, an
effective search algorithm using offline-metric a allows us to reduce the number of linear evaluations
from O(M H) to O(M log H), assuming that the likelihood of linear evaluation for models decays

as ———. This assumption is verified in (a,c)
steps

C On necessary and sufficiency conditions for predicting generalization

Understanding the correlation between « and generalization requires probing the natural question of
whether « in a given range is sufficient for good downstream performance. To further elaborate on
this question, consider the following: Let us suppose that we have our ideal representation space that
exhibit alpha within the Goldilocks zone. If we perform a set of permutation operations on individual
datapoint representations, the structure of the representation space remains the same but the mapping
from representation to label is now destroyed. In doing this set of permutation operations, we have
now arrived at a different set of representations that would exhibit the same (or similar) alpha but
demonstrate a lower task performance when measured using a linear readout layer. Extending the
conclusions of this thought experiment to our observations, it is clear that we could have models
with similar alpha values but distinctly different performance. But an alpha value that is not in the
Goldilocks zone would be associated with inferior model performance. This property is the core of
our claim and allows us to propose alpha as a measure for model selection in SSL pipelines.
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Figure 19: The x-axis represents estimated «, y-axis is evaluating linear-probes on STL-10. Dif-
ferent models correspond to pretraining on ImageNet with different learning objectives (we fix the
architecture to ResNet-50).
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Figure 20: The x-axis represents estimated «, y-axis is evaluating linear-probes across different
layers across multiple architectures on STL10. All models are pretrained with supervised learning on
ImageNet (we fix learning objective to be cross-entropy).
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Figure 21: The x-axis represents estimated «, y-axis is evaluating linear-probes on MIT-67 (scene
recognition). Different models correspond to pretraining on ImageNet with different learning
objectives (we fix the architecture to ResNet-50).

100+
resnet18

resnet50
resnet101

vgg13 @ vit_base
vgg16 @ vit_large
vgg19 A vit_huge

>onm

Accuracy

1.2 1.4 1.6 1.8 2.0

Figure 22: The x-axis represents estimated «, y-axis is evaluating linear-probes across different
layers across multiple architectures on MIT-67 (scene recognition). All models are pretrained with
supervised learning on ImageNet (we fix learning objective to be cross-entropy).
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Part 111

Dynamics of feature learning
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Preface to Part 111

In Part I, we move on to the learning dynamics pillar of the NeuroAl frame-
work. Previously, I presented evidence for shared characteristics between
learned representations in the early visual cortex and in ANNs trained using
SSL. Both systems have high-dimensional scale-free representations that can
be characterized with a powerlaw in their eigenspectrum. A natural question
that arises, specifically for SSL-trained ANNs, is What are these represen-
tations and how do they emerge over the course of learning? In Part III,
we study the learning desiderata and dynamics of feature learning in these
networks. Specifically, we study the core quantity that every SSL objective
aims to learn and the influence of gradient descent in shaping the learned
features.

In line with the NeuroAl framework, Part III also investigates the nor-
mative role of two mechanisms that are thought to aid biological learning
in feature learning by studying them in the context of ANNs trained using
SSL: (1) orthogonality constraints on neural activities (thought to be imple-
mented by inhibitory neurons), and (2) multiple views of inputs while learn-
ing the invariance relationships. It is worth noting that these two mechanisms
have been explored in previous literature as heuristics for improving feature
learning. Consequently, Part IIT also aims to leverage this normative un-
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derstanding to improve the compute and sample-efficiency of SSL pipelines,
thereby offering practical benefits to the AI community. Overall, the follow-
ing chapter extends the utility of representation geometry, not only as a tool
for understanding computational motifs of intelligent systems, but also for
studying the learning dynamics that yield the observed representations.

This work is accepted to be published at NeurIPS 2024 and can be cited
as Ghosh, A.* Agrawal, K.K.*, Sodhani, S., Oberman, A. and Richards, B.A.

Harnessing small projectors and multiple views for efficient vision pretraining.
NeurIPS 2024.
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Harnessing small projectors and multiple views for
efficient vision pretraining

Arna Ghosh *! Kumar Krishna Agrawal *2 Shagun Sodhani 3

Adam M. Oberman’ 4 Blake A. Richards T 156

Abstract

Recent progress in self-supervised (SSL) visual representation learning has led to
the development of several different proposed frameworks that rely on augmenta-
tions of images but use different loss functions. However, there are few theoretically
grounded principles to guide practice, so practical implementation of each SSL
framework requires several heuristics to achieve competitive performance. In this
work, we build on recent analytical results to design practical recommendations
for competitive and efficient SSL that are grounded in theory. Specifically, recent
theory tells us that existing SSL frameworks are actually minimizing the same
idealized loss, which is to learn features that best match the data similarity ker-
nel defined by the augmentations used. We show how this idealized loss can be
reformulated to a functionally equivalent loss that is more efficient to compute.
We study the implicit bias of using gradient descent to minimize our reformulated
loss function, and find that using a stronger orthogonalization constraint with a
reduced projector dimensionality should yield good representations. Furthermore,
the theory tells us that approximating the reformulated loss should be improved
by increasing the number of augmentations, and as such using multiple augmenta-
tions should lead to improved convergence. We empirically verify our findings on
CIFAR, STL and Imagenet datasets, wherein we demonstrate an improved linear
readout performance when training a ResNet-backbone using our theoretically
grounded recommendations. Remarkably, we also demonstrate that by leveraging
these insights, we can reduce the pretraining dataset size by up to 2x while main-
taining downstream accuracy simply by using more data augmentations. Taken
together, our work provides theoretically grounded recommendations that can be
used to improve SSL convergence and efficiency.

1 Introduction

Unsupervised representation learning, i.e., learning features without human-annotated labels, is
critical for progress in computer vision. Modern approaches, grouped under the self-supervised
learning (SSL) umbrella, build on the core insight that similar images should map to nearby points in
the learned feature space — often termed as the invariance criterion. Current SSL methods can be
broadly categorized into contrastive and non-contrastive algorithms, based on whether they formulate
their loss functions using negative samples or not, respectively.

*Equal Contribution, T Co-senior authorship, Correspondence: blake.richards @mcgill.ca

"Mila - Quebec Al Institute & Computer Science, McGill University, Montréal, QC, Canada

2UC Berkeley, CA, USA, * Meta FAIR, Toronto, ON, Canada

“Mila - Quebec Al Institute & Mathematics and Statistics, McGill University, Montréal, QC, Canada
5Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montréal, QC, Canada
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Figure 1: Design of existing SSL algorithms relies on heuristics. (A) Augmentation graphs are
common in vision pretraining, providing generalizable features for downstream tasks. (B) We
propose an equivalent loss function for SSL pretraining that recovers the same eigenfunctions more
efficiently than existing approaches.

Despite this difference in their loss formulations, recent theoretical work has established an equiva-
lence between the contrastive and non-contrastive SSL frameworks [20]. This work shows that these
different SSL formulations are ultimately minimizing a loss that encourages the learning of features
that best match the data similarity kernel defined by the augmentations used. However, this notion of
theoretical equivalence holds only in the limit of ideal pretraining settings, i.e. with access to infinite
data and compute budget, and the feature learning behavior of different SSL algorithms in practical
scenarios is still not well understood. Therefore, researchers often use empirically driven heuristics
that are theoretically ungrounded to design successful applications, such as (i) a high-dimensional
projector head for non-contrastive SSL or (ii) the use of two augmentations per image [3]. Moreover,
existing SSL algorithms are extremely data-hungry, relying on large-scale datasets [34] or data en-
gines [31] to achieve good representations. While this strategy works exceptionally well in data-rich
settings (like training on natural-images), it is not viable in data-constrained settings (like medical
imaging), where samples are relatively scarce.

With these challenges in mind, the primary focus of this work is to develop theoretically grounded
recommendations for improving the effectiveness and efficiency of feature learning, both with respect
to the required compute budget as well as data points. Like any unsupervised representation learning
algorithm, features learned through SSL depend on three factors: (i) implicit bias of the architecture,
(i) explicit invariance imposed by data augmentations, (iii) implicit bias of the learning rule. While
previous works predominantly studied the role of the model architecture capacity and loss function,
and their interplay with data augmentations [10, 45], our approach broadens this perspective by
also considering the role of the learning rule (gradient descent) in optimizing these loss functions.
Specifically, we extend the previous theoretical findings [45] that unified the desiderata of different
SSL algorithms. We reformulate the idealized unifying loss to propose a functionally equivalent
loss that is more compute-efficient (see Figure 1). Based on our loss formulation, we provide two
practical recommendations that can help improve the efficiency of SSL pipelines while maintaining
good performance. First, we show that optimizing the reformulated loss using gradient descent can
often reduce the orthogonality among the learned embeddings, thereby leading to an inefficient use
of the projector network’s capacity. Consequently, we recommend using a stronger orthogonalization
constraint to eliminate the requirement of high-dimensional projector heads, thereby significantly
reducing the parameter overhead of good feature learning. Second, we show that increasing the
number of augmentations leads to a better estimate of the data similarity kernel. Consequently, we
recommend using more augmentations to improve optimization convergence and learn better features
earlier in training.

We empirically verify our theoretically grounded recommendations using the popular ResNet back-
bone on benchmark datasets: CIFAR, STL and Imagenet. Strikingly, we show that our multi-
augmentation approach can learn good features even with half of the samples in the pretraining
dataset. Our recommendations provide a path towards making SSL pretraining more data and
compute-efficient without harming performance and could unlock massive performance gains in
data-constrained setups. In summary, our core contributions are as follows:
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* Efficient SSL loss formulation: We propose an functionally equivalent and compute-
efficient formulation of the SSL desiderata that yields the eigenfunctions of the augmentation-
defined data similarity kernel.

¢ Role of heuristics: Based on our loss formulation and the implicit bias of gradient descent
in optimizing this loss, we provide a mechanistic explanation for the role of projector dimen-
sionality and the number of data augmentations. Consequently, we empirically demonstrate
that low-dimensional projector heads are sufficient and that using more augmentations leads
to learning better representations.

* Data efficient SSL: Leveraging the convergence benefits of the multi-augmentation SSL
framework, we empirically demonstrate that we can learn good features with significantly
smaller datasets (up to 2x) without harming downstream linear probe performance.

2 Preliminaries

Existing SSL approaches in computer vision In recent years machine learning researchers have
developed a number of effective approaches for learning from data without labels. The most popular
approaches use augmentations of data points as targets for themselves. One of the first was a Simple
framework for Contrastive Learning (SimCLR), which relied on an infoNCE loss with augmentations
of an image as positive targets and augmentations of other images as negative samples (to construct the
contrastive loss) [13]. Other works have relied on non-contrastive approaches, notably BarlowTwins
[44] and VICReg [5]. BarlowTwins, which was inspired by the ideas of the neuroscientist Horace
Barlow [6], also uses augmentations of images, but it instead aims to optimize the covariance structure
of the representations in order to reduce redundancies in the feature space [44]. Variance Invariance
Covariance Regularization (VICReg) was a modification of BarlowTwins that added a variance term
in the loss in order to ensure that every feature dimension has a finite variance [5]. In this paper
we will focus on non-contrastive methods like BarlowTwins and VICReg, but in line with previous
work [45], our results can also be adapted to contrastive methods like SimCLR. Notably, all SSL
approaches leverage the use of a multi-layer fully-connected network, termed the projector, during
pretraining to transform the features learned by an encoder to some embedding space where the
aforementioned properties are imposed through optimization.

Formalizing the self-supervised learning problem Now, we will formalize the unsupervised
representation learning problem for computer vision. In particular, we assume access to a dataset
D = {x1,x2,...,x,} with x; € RP consisting of unlabeled images. The objective is to learn a
d-dimensional representation (d < p) that is useful across multiple downstream applications. We
focus on learning the parameters of a deep neural network fy € Fg, using the multi-augmentation
SSL framework, wherein multiple views of an image are used to optimize the pretraining loss function,

Lpretrain (f9 ’ D)

Non-Contrastive Self-Supervised Learning (NC-SSL) algorithms impose invariance to data aug-
mentations, while imposing regularization on the geometry of the learned feature space. More
generally, Ly, ctrqin can be formulated with two terms (i) Linvariance: to learn invariance to data
augmentations and (ii) Lconapse: regularization to prevent collapsing the feature space to a trivial
solution.

Lpret'rain = ‘Cinvariance + Bﬁcollapse (1)

where 3 denotes a hyperparameter that controls the importance of the collapse-preventing term relative
to the invariance term. This formulation separates features that are invariant to the augmentations
from those that are sensitive to them. Intuitively, the ideal feature space is more sensitive to semantic
attributes (e.g. “that’s a dog”) and less sensitive to irrelevant attributes (e.g. “direction the dog is
facing”), facilitating generalization to new examples.

Data Augmentation graph was introduced by [23] to analyze contrastive losses, like SimCLR [13].
Briefly, we define a graph G(.A, W) that captures the relationship between images derived from all
possible data augmentations. The vertex set (A, p4) is each augmented sample in a dataset, X', and
the adjacency matrix, WV, denotes the similarity between pairs of vertices. Let xy be an image in X,
and let z = M (z¢) € A be a random data augmentation of the image, x,. We define the probability
density of reaching z from x via a choice of mapping M:

p(z | 2o) = P(z = M(20)), 2)
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Since the mapping is not generally invertible (e.g., cropping), we observe that p(xq | 2) # p(z | o).
Using this definition, we now formally define the strength of the edge between nodes x, z € A of the
augmentation graph as the joint probability of generating augmentations z, z from the same image
o ~ px. Notably, the edge strength of the (degree-normalized) augmentation graph is equivalent to
the data similarity kernel, defined in [45]. Formally,

(x| o) p(z | x0)
p(x)  p(z)
The magnitude of w,, captures the augmentation-defined similarity between x and z. A higher value

of w,, indicates that both patches are more likely to come from the same image and, thereby, are
more similar.

kDAF (

3)

p
T,2) = Wz i= Egpmpy

The desiderata of different SSL algorithms can be understood as learning features F' that best capture
EPAF (1. 2), ie. F(x)TF(z) ~ kPAF(x,z). Recent theoretical work has shows that different
SSL losses can be formulated as special cases of the objective function that recovers the top-d
eigenfunctions of kPAF (. 2) [45].

Lost(F) =Eqca [(KPA (2,2) — F(z)TF(2))?] “)

Note that all rotations of F' that don’t change its span define an equivalence class of solutions to
Equation (4) and make no difference for the downstream generalization of a linear probe. Based on
this insight, we define an equivalence among learned feature spaces:

Definition 2.1. Let F(z) = (fi(x),... f4(z)) be a d-dimensional feature vector (a vector of
functions). Define the subspace

V=V(F)={h:X >R |h(z) =w-F(z), weR'} (5)

to be the span of the components of F'. Given an n-dimensional feature vector, G(z) =
(g1(x),- .., gn(x)) we say the features G and F are equivalent, if V(F) = V(G).

3 Implicit bias of non-contrastive SSL loss and optimization

We extend the recent theoretical results [45] to propose a compute-efficient reformulation of the
loss function of the SSL desiderata that yields equivalent features, i.e. the functions spanning the
eigenfunctions of the augmentation-defined data similarity kernel, EPAF | Furthermore, we study the
role of gradient descent in optimizing this loss function and uncover a selection and primacy bias in
feature learning. Specifically, we find that gradient descent tends to learn the dominant eigenfunctions
(eigenfunctions corresponding to larger eigenvalues) earlier during training, and often over-represents
these eigenfunctions under weak orthogonalization constraints.

Consequently, we propose employing a stronger orthogonalization constraint during optimization
when using a low-dimensional projector to ensure that learned features are equivalent to those learned
with a high-dimensional projector. Furthermore, we argue that using more augmentations improves
our sample estimate of k4% thereby aiding the eigenfunction optimization problem. We dedicate
the rest of this section to highlight our key theoretical insights, and practical recommendations that
follow them.

3.1 Features in terms of data augmentation kernels

Let us define a kernel operator, T}, for a positive semi-definite data augmentation kernel, kP4%.
Tif(2) = Eonpy [k(2, 2) £ ()] (6)
such that Equation (4) can be equivalently written as (Equation 5 of [45])
Loa(F) = (F,(I = Tx)F),., )

We can now use Mercer’s theorem to factorize k4% into corresponding spectral features G : X — £o
(where /5 represents square summable sequences) [16, 17, 32]. However, note that computing EDAEF
(or Ty,) is expensive as it requires computing the overlap among all augmentations of every pair of
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data points. Instead of computing the eigenfunctions of T}, directly, we propose using an alternative
operator Th;:

Tr f(z) = Eggars () [f(20)] = Z [p(zo | ) f(20)] (®)

Zo

which averages the values of the function, f, over the augmented images xo = M () of the data, x.
‘We show that TAT/}TM is equivalent to T}, and therefore T; and 7}, have shared eigenfunctions.

Theorem 3.1. Let G(x) be the infinite Mercer features of the backward data augmentation covariance
kernels, kPAB. Let F(x) = (f1(z), ..., fn, (z)) be the features given by minimizing the following
data augmentation invariance loss

Ny,

L(F) =Y 1T fi = fillZzgpn)  subjectto (fi, fi)ox = 6 9)
i=1

which includes the orthogonality constraint. Then, V(F) C V(G), limy, 0 V(F) = V(G).

As shown in the Appendix B, L(F') is equivalent to a constrained optimization formulation of
the BarlowTwins loss. Furthermore, L(F') with the additional constraint that (f;, f;) > v Vi €
{1,2... Ny} is the constrained optimization formulation of the VICReg loss.

3.2 The implicit bias of gradient descent

Next, we investigate how the use of gradient descent for optimizing L(F’) influences the characteristics
of the learned feature space, V' (F'). Given the similarity in its form with that of the BarlowTwins
loss, we build on recent findings that demonstrate the sequential nature of learning eigenfunctions
when optimizing the BarlowTwins loss under a strong orthogonalization regularization [37]. Since
strong orthogonalization is seldom used in practice due to instabilities in training [44, 5], we believe
studying the learning dynamics under weak orthogonalization regularization (i.e. low values of 3 in
Equation (1)) is more relevant to provide recommendations for practitioners.

Theorem 3.2. (Informal) Let us denote the span of the feature space at initialization as V (Fy) and
after training as V (Fr). For small initialization of the network’s weights, the alignment of V (Fr)
with the eigenfunctions of T, depend on two factors: (i) alignment of V (Fy) with the eigenfunctions
of Ty, (ii) singular values of Ty,.

Under weak orthogonalization constraints, the network tends to learn features that are strongly
aligned with eigenfunctions corresponding to large singular values. We refer to this property as the
“selection” bias of gradient descent, wherein gradient descent selects certain eigenfunctions based on
the corresponding singular values. This selection bias leads to redundancy among the learned feature
space, thereby reducing the effective dimensionality of the network’s output space compared to its
ambient dimensionality. We will leverage this finding to improve the parameter overhead of good
feature learning using BarlowTwins and VICReg loss frameworks.

3.3 Takeaway 1: Low-dimensional projectors can yield good representations

Given the proximity of the formulation of Equation (9) to that of BarlowTwins and VICReg losses,
we will leverage existing heuristics that have been shown to work in practice. As such, BarlowTwins
and VICReg frameworks call for high-dimensional projectors while using a weak orthogonalization
regularization to facilitate good feature learning. We know, from Theorem 3.1, that the eventual
goal of these frameworks is to learn the eigenfunctions of the underlying data similarity graph.
For example, since the intrinsic dimensionality of Imagenet is estimated to be ~ 40 [33], it is not
unreasonable to expect that the span of desired features would be of similar dimensionality. It is, thus,
intriguing that the current practice would suggest using an ~ 8192-dim projector head to capture the
intricacies of the corresponding augmentation-defined data similarity kernel. This discrepancy can
be explained by analyzing the learning dynamics, as in Theorem 3.2. Notably, a high-dimensional
projector is likelier to have a greater initialization span than its low-dimensional counterpart, thereby
increasing the alignment between V' (F)) and relevant eigenfunctions of T),. We hypothesize that a
stronger orthogonalization constraint for low-dimensional projectors can rectify this issue, reducing
the redundancy in the network’s output space and rendering it sufficient for good feature learning.
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3.4 Takeaway 2: Multiple augmentations improve kernel approximation

By comparing the invariance criterion formulation in the standard BarlowTwins and VICReg losses
to Equation (7), it can be inferred that current practices use a sample estimate of 7. Using only
two augmentations per sample yields a noisy estimate of T}, yielding spurious eigenpairs [42] (see
Appendix C). These spurious eigenpairs add stochasticity in the learning dynamics, and coupled
with Theorem 3.2, increase the redundancy in the learned feature space [12]. We hypothesize that
improving this estimation error by increasing the number of augmentations could alleviate this issue
and improve the speed and quality of feature learning.

Of course, increasing the number of augmentations (m) in the standard BarlowTwins and VICReg
loss improves the estimate of 7}, but comes with added compute costs — a straightforward approach
would involve calculating the invariance loss for every pair of augmentations, resulting in O(m?)
operations. However, Theorem 3.1 proposes an alternative method that uses the sample estimate
of Ty, thereby requiring only O(m) operations, and hence is computationally more efficient while
yielding functionally equivalent features (see Appendix B). In summary, Theorem 3.1 establishes a
mechanistic role for the number of data augmentations, paving the way for a computationally efficient
multi-augmentation framework:

N m

L(F) = Eppy ZZ 1fi(x) = filxj)72(pny | »  subjectto  (fi, fj)px =055 (10)
i=1 j=1

where f;(x) = - Y7 fi(z;) is the sample estimate of Ty f;(z).

4 Experiments

In our experiments, we seek to (i) provide empirical support for our theoretical insights and (ii)
present practical primitives for designing efficient SSL routines. Since our proposed loss function
is closest to the formulation of BarlowTwins/VICReg, we present empirical evidence comparing
our proposal to these baselines. In summary, with extensive experiments across learning algorithms
(BarlowTwins & VICReg) and training datasets (CIFAR-10, STL-10 & Imagenet-100), we establish
the following:

* low-dimensional projectors can yield good representations.
* multi-augmentation improves downstream accuracy, as well as convergence rate.

* multi-augmentation improves sample efficiency in SSL pretraining, i.e., recovering similar
performance with significantly fewer unique unlabelled samples.

Experiment Setup: We evaluate the effectiveness of different pretraining approaches using image
classification as the downstream task. Across all experiments, we pretrain a Resnet feature encoder
backbone for 100 epochs (see Appendix E.1 for longer pretraining results) and use linear probing
on the learned representationsl. All runs are averaged over 3 seeds; error bars indicate standard
deviation. Other details related to optimizers, learning rate, etc., are presented in the Appendix D.

4.1 Low-dimensional projectors can yield good representations

Barlow Twins VICReg
fixed 3 | optimal 8* fixed 3 | optimal 5*
64 73.6+0.9 | 82.1£0.2 | 68.9+£0.2 | 81.9+0.1
256 | 75.9+0.7 | 834+£04 | 75.3+£0.2 | 81.9+0.3
1024 | 81.34+1.0 | 82.94+0.3 | 79.24+0.9 | 825+ 0.9
8192 | 82.24+0.4 | 8224+0.4 | 804£15 | 80.4+£1.5
Table 1: Optimizing for orthogonality appropriately allows low-dimensional projectors to match the
performance (on CIFAR-10) of much higher-dimensional projectors.

pdim

Existing works recommend using high-dimensional MLPs as projectors (e.g., d=8192 for Imagenet in
[44, 5]), and show significant degradation in performance when using lower-dimensional projectors

!Code: https://github.com/kumarkrishna/fastssl
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Figure 2: Low-dimensional projectors can yield good representations. We demonstrate that using a
higher orthogonality constraint, 3, for lower projector dimensionality can achieve similar performance
over a wide range of projector dimensions (d).

for a fixed redundancy coefficient (3). To reproduce this result, we run a grid search to find the
optimal coefficient (35195) for d = 8192 and show that performance progressively degrades for lower
d if the same coefficient 33,4, is reused for d € {64, 128,256,512, 1024, 2048, 4096, 8192}.

Our insights in Section 3.3 suggest low-dimensional projectors should recover similar performance
with appropriate orthogonalization. To test this, we find the best S by performing a grid search
independently for each d € {64, 128,256, 512,1024, 2048, 4096, 8192}. As illustrated in Figure 2,
using low-dimensional projectors yield features with similar downstream task performance, compared
to the features obtained using high-dimensional projectors. Strikingly, we also observe that the
optimal 84 o 1/d, which aligns with our theoretical insights.

Recommendation: Start with low-dimensional projector, using 8 = (’)(é), and sweep over
(pdim =d,5 =0 (é)) if needed.

4.2 Multiple Augmentations Improve Performance and Convergence

Although some SSL pretraining approaches, like SWaV [11], incorporate more than two views,
the most widely used heuristic in non-contrastive SSL algorithms involves using two views jointly
encoded by a shared backbone. In line with this observation, our baselines for examining the role of
multiple augmentations use two views for computing the cross-correlation matrix.
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2 _ S
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g 0 55
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Epochs Epochs Epochs

Figure 3: Using multiple augmentations improves representation learning performance and conver-
gence. (A-C) Across BarlowTwins for CIFAR-10, STL-10 and Imagenet-100 pretraining, using 4
augmentations instead of 2 helps improve performance. Please see Appendix E.3 for more results.
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augs | pdim | BarlowTwins VICReg
Time (min) Time (min)
2 8192 | 99.36 £0.01 | 94.36 £0.01
2 256 | 62.34£0.06 | 51.73 £0.04
4 256 43.09 + 0.20 | 39.02 £ 0.05
Table 2: Using multiple augmentations yields faster convergence, with reduced time to reach baseline
performance on CIFAR-10, i.e. performance of feature encoder pretrained with an §192-dim projector
and 2 augmentations.

To demonstrate the role of multiple augmentations in pretraining, we adapt the invariance criterion
of BarlowTwins/VICReg to be in line with Equation (10). In particular, for #augs € {2, 4,8}, we
pretrain a Resnet-50 encoder with our proposed loss. Building on the insight from the previous
section, we use a 256-dimensional projector head for all multi-augmentation experiments.

In Figure 3, we track the downstream performance of the pretrained models across training epochs.
For performance evaluation, we use the linear evaluation protocol as outlined by [14]. Figure 3(A-
C) shows that pretraining with multiple augmentations outperforms the 2-augmentation baseline.
Furthermore, we observe that the four-augmentation pretrained models converge faster (both in
terms of the number of epochs and wall-clock time) than their two-augmentation counterparts (see
Figure 3(D-F)). Additionally, we show in Appendix E.2 that our framework can also be applied to
multi-augmentation settings like SWaV, where not all augmentations are of the same resolution.

Recommendatation: Using multiple augmentations ( > 2) is likely to improve convergence as
well as downstream accuracy.

4.3 Sample Efficient Multi-augmentation Learning

Data Augmentation can be viewed as a form of data inflation, where the number of training samples
is increased by k (for k augmentations). In this section, we examine the role of multi-augmentation in
improving sample efficiency. In particular, we are interested in understanding if the same performance
can be achieved with a fraction of the pretraining dataset, simply by using more augmentations.

A90- CIFAR-10 BarlowTwins %0_ STL-10 BarlowTwins ~ C Imagenet-100 BarlowTwins

§ saee ettt & 60+
> 801 551
©
8 701 50
% 601 4 45+ /
= 501 ¢ 40
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Epochs Epochs Epochs
®» 2 augs, pdim=256 (100% pretraining samples) # 2 augs, pdim=8192 (100% pretraining samples)
® 4 augs, pdim=256 (50% pretraining samples) 8 augs, pdim=256 (25% pretraining samples)

Figure 4: Multi-augmentation improves sample efficiency, recovering similar performance with signif-
icantly fewer unique samples in the pretraining dataset. Across BarlowTwins pretraining on CIFAR-
10, STL-10 and Imagenet-100 for the same effective dataset size (Faugs x #unique_samples),
using more patches improves performance at the same epoch (A-C). However, a tradeoff exists
wherein more data augmentations fail to improve performance in the scarce data regime.

To examine the relation between the number of augmentations and sample efficiency, we fixed the
effective size of the inflated dataset. This is achieved by varying the fraction of the unique samples in
the pretraining dataset depending on the number of augmentations k € {2, 4,8}, e.g., we use 50% of
the dataset for 4 views. We then evaluate the performance of the pretrained models on the downstream
task, where the linear classifier is trained on the same set of labeled samples. Strikingly, Figure 4
shows that using multiple augmentations can achieve similar (sometimes even better) performance
with lesser pretraining samples, thereby indicating that more data augmentations can be used for
feature learning to compensate for smaller pretraining datasets.
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augs | pdim | Percentage | BarlowTwins VICReg
of Dataset Time (min) Time (min)
2 8192 100 % 63.43 £0.02 | 66.05 £ 0.01
2 256 100 % 39.52 £ 0.04 | 40.64 £ 0.04
4 256 50 % 28.25 £0.01 | 32.39 £ 0.01
8 256 25 % 27.74 £ 0.01 | 34.76 = 0.01

Table 3: Time required to pass 80% accuracy on CIFAR-10 when pretraining on fraction of the
dataset, while using multiple augmentations. See Figure 5 for further discussion.

Recommendation: In a low-data regime, using diverse & multiple augmentations can be as
effective as acquiring more unique samples.

5 Related Work

Self-Supervised Pretraining requires significant compute resources and most practitioners rely on
empirical heuristics (see SSL cookbook [3] for a summary). While recent advances in SSL theory
explore learning dynamics in linear (or shallow) models [40, 41], with a focus on understanding
dimensionality collapse [21, 25], the theoretical underpinnings of most of the heuristics considered
essential for good feature learning, are missing.

Contrastive SSL has received more theoretical attention, owing to its connection with metric learning
and noise contrastive estimation [30, 4, 26]. In particular, HaoChen et al. [23] provide a theoretical
framework for the SIimCLR loss from an augmentation graph perspective, which leads to practical
recommendations. Subsequently, Garrido ef al. [20] establish a duality between contrastive and
non-contrastive learning objectives, further bridging the gap between theory and practice.

Non-contrastive SSL algorithms’ theoretical foundations have received more attention recently
[10, 45]. Prior works [2, 20, 19] have demonstrated that with modified learning objectives, low-
dimensional projectors yield representations with good downstream performance. Similarly, previous
works have demonstrated notable performance boosts when using a multi-patch framework in
contrastive [18] and non-contrastive SSL [11, 43]. However, the theoretical basis for the benefits and
trade-offs of either low-dimensional projectors or multiple augmentations is largely unclear. It is
worth noting that Schaeffer er al. [35] present an information-theoretic perspective of the recently
proposed non-contrastive SSL loss that leverages multiple augmentations, namely MMCR [43], but
the computational advantages of using multiple augmentations on the learning dynamics is an active
area of research.

Deep Learning theory has made significant strides in understanding the optimization landscape
and dynamics of supervised learning [1]. In concurrent works [45, 10], the interplay between the
inductive bias of data augmentations, architectures, and generalization has been explored from a purely
theoretical perspective, establishing an equivalence among different SSL losses [45]. Furthermore,
Simon et al. [37] used a more straightforward formulation of the BarlowTwins loss and investigated
the learning dynamics in linearized models for the case when the invariance and orthogonalization
losses have equal penalties. Although such a setting rarely used in practice, their approach serves as
an inspiration for our work in studying the learning dynamics of non-contrastive SSL losses.

6 Discussion

Summary: Our work builds on existing theoretical results that establish an equivalence among
different SSL frameworks, and proposes a compute-efficient reformulation of the common SSL
loss. Using this loss reformulation and a study of the optimization dynamics, we proposed practical
recommendations to improve the sample and compute efficiency of SSL algorithms. Specifically,
we recommended low-dimensional projectors with increased orthogonality constraints and multi-
augmentation frameworks, and we verified the effectiveness of these recommendations empirically. It
is worth noting that our multi-augmentation formulation improves the efficiency of learning without
altering the desiderata of SSL, i.e. the network learns the same feature space using our proposed
multi-augmentation framework as with the original SSL formulation in the limit of infinite pretraining
budget. To demonstrate this equivalence between the original SSL loss and our proposed version, we
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show in Appendix E.I that longer pretraining on the 2-augmentation loss leads to similar downstream
performance as the multi-augmentation versions (4 and 8 augmentations).

We also showed that the multi-augmentation framework can be used to learn good features from fewer
unique samples in the pretraining dataset simply by improving the estimation of the data augmentation
kernel. This result has direct implications on improving the Pareto frontier of samples-vs-performance
for SSL pretraining, wherein we can achieve better downstream performance when limited number
of samples are available in the pretraining dataset.

Pareto Optimal SSL In the context of sample

efficiency, training a model using two augmenta- : I\B/IUI“_'AUQ 2 A
tions with different fractions of the dataset leads 50 P 43\36 ne (2-Aug)
- ug

to a natural Pareto frontier, i.e., training on the
full dataset achieves the best error but takes the X
most time (Baseline (2-Aug)). Our extensive S 30
experiments demonstrate that using more than L

8-Aug

two augmentations improves the overall Pareto 20
frontier, i.e., achieves better convergence while
maintaining accuracy (Multi-Aug). Strikingly, 10

as shown in Figure 5, we observe that we can
either use a larger pretraining dataset or more
augmentations for a target error level. Therefore,
the number of augmentations can be used as a  Figure 5: Using > 2 augmentations with a frac-
knob to control the sample efficiency of the pre-  tion of the dataset improves overall Pareto fron-
training routine. tier, speeding runtime up to ~ 2.

0 25 50 75 100
Runtime (min)

Connections to Downstream performance: While our core theoretical results are aimed at acceler-
ating convergence of the SSL loss itself, our empirical results highlight an improved downstream task
performance earlier during pretraining. While this discrepancy might seem counter-intuitive at first,
it is worth noting that the SSL loss inherent influences downstream performance as it encourages
clustering of semantically similar images in the representation space. Such clustering properties in
the representation space facilitates easier classification through methods k-nearest neighbors or linear
decoding for a large number of tasks that rely on the semantic content of images. Previous works
[21, 2, 19, 38] have discussed in detail how certain geometric properties of the learned representation
space are connected to the linear classification performance for arbitrary decision boundaries, in
expectation. However, an in-depth analysis of downstream tasks that are more amenable to linear
decoding from the learned SSL representation space requires framing metrics of alignment between
the pretraining objective (SSL desiderate) and the downstream task labels, and is an active area of
research.

Open Questions: Looking ahead, it would be exciting to extend this analysis to other categories of
SSL algorithms, such as Masked AutoEncoders (MAE). Furthermore, our insights provide opportu-
nities to explore sample-efficient methods that rely on less data, which is particularly important in
critical domains such as medical imaging, where data is often relatively scarce and expensive. On
a different note, it is intriguing that animals often spend extended periods of time exploring novel
objects, likely to gain multiple views of the object [7, 29]. Given the theoretical underpinnings of
the computational benefits of multi-augmentation SSL outlined in our work, it would be exciting
to develop models of biological learning that leverage these insights and enable sample-efficient
continual learning in similar environments.

Limitations: Our algorithm relies on multiple augmentations of the same image to improve the
estimation of the data-augmentation kernel. Though this approach speeds up the learning process,
it also adds some extra computational overhead, which means that the impact of faster learning on
wall-clock time is less than might be hoped for. One way to mitigate the effects of this limitation
would be to scale up to a multi-GPU setting, since the computations for each augmentation can be
run on a separate GPU in parallel. This could help ensure that the improved speed of learning directly
translates to a significantly reduced wall-clock time for training.

Impact Statement: The goal of our work is to advance the general field of visual representation
learning. Although there are potential downstream societal consequences of our work, we feel there
are no direct consequences that must be specifically highlighted here.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are backed by theoretical and empirical results. Theorem 3.1
presents our functionally-equivalent compute-efficient formulation of the SSL objective, and
Theorem 3.2 demonstrates the implicit bias of gradient descent during optimizing the SSL
loss. Our empirical results demonstrate the utility of our theoretical insights in improving
the parameter overhead of good feature learning, optimization convergence and the sample
efficiency.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a section on limitations in the discussion.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The formal statements alongside proofs are presented in the supplementary
material (Appendices A to C).

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in the supplementary material (Ap-
pendix D). We have also released our code base in the public github repo, FastSSL, to
facilitate the implementation of our proposed framework.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We use open-access datasets, like CIFAR, STL and Imagenet. Our code base
can be found in the public github repo, FastSSL

Guidelines:
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present details of the experiment setup and results in Section 4 of the main
paper, and additional implementation details in Appendix D.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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11.

12.

13.

14.

Justification: We report standard error bars, computed over 3 seeds, for all result plots and
tables.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our CIFAR and STL experiments were done on a single 48-GB RTX8000
GPU and all Imagenet experiments were performed on 2 40-GB A100 GPUs. All exper-
iments were performed on the Mila cluster, aided by compute resources, software and
technical help provided by Mila (mila.quebec).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics in our work, and research in general.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We add a statement on societal impact in the Discussion section. Since the
goal of our work is to advance the general field of visual representation learning, we feel
there are no direct consequences that must be specifically highlighted here. Although we
recognize that there might be potential downstream consequences that warrant attention
while building intelligent systems that leverage this work.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any new data or state-of-the-art models.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We acknowledge and cite the datasets and model architectures used in this
work. Our codebase is publicly available on our github repo, FastSSL. Moreover, our
codebase relies on the Python packages of PyTorch, FFCV [28] and FFCV-SSL [8], which
are referred to in the github repo README.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|

Justification: Our work does not involve research with human subjects.
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A Hilbert Space of functions

A.1 Functions and inner product space

Definition A.1. Given X, py, and f,g : X — R, define the L?(px) inner product and norm,
respectively,

(F9)ox = [ F@a@idox (@), 112, = (. D (an
Define
Lo, X)={f: X =R [|fl?, < oo}
to be the (equivalence class) of functions with finite px norm.

A.2  Spectral theory

In this section we quote the relevant (abstract) Hilbert Space theory.

Definition A.2 (Spectral Operator). Given orthogonal functions, ® = (¢;);cs in L?(px), and
non-negative A = (\;);es, with [|A||3 = >, .; A? < oo. Call (®, A) a spectral pair and define the
corresponding spectral operator by

eIl
Toa(h) =X (h,¢;) 65, (12)

Jj=1

Theorem A.3 (Spectral Decomposition). Suppose H is a Hilbert space. A symmetric positive-
definite Hilbert-Schmidt operator T : H — H admits the spectral decomposition equation 12 with
orthonormal ¢; which are the eigenfunctions of T, i.e. T (¢;) = Xj¢;. The ¢; can be extended to
a basis by adding a complete orthonormal system in the orthogonal complement of the subspace
spanned by the original ¢;.

Remark A.4. The ¢; in equation 12 can thus be assumed to form a basis, but some )\; may be zero.

From [24]. Theorem proved in [22]. Denote by L the space of bounded (continuous) linear operators
on H with the norm
1Tz = sup{||T(@)[| | [|=]| <1}

Definition A.5 (Compact Operators). An operator T' € L is said to be compact if there exist two
orthonormal bases {g;} and { f;}, and a real sequence {\;} converging to zero, such that

T(h) = Z)‘j(hagj)fja h € H, (Compact)
J=1

The \; may be assumed positive. The existence of representation equation Compact is equivalent
to the condition: 7" maps every bounded set into a compact set. Compact operators are also called
completely continuous operators. Representation equation Compact is called the singular value
decomposition.

Definition A.6 (Hilbert-Schmidt Operators). A compact operator admitting representation equa-
tion Compact is said to be a Hilbert-Schmidt operator if Zj’;l )\? < o0. The space S of Hilbert-
Schmidt operators is a separable Hilbert space with the scalar product

o}

(T, To)s = > (TL (£:), Ta (f3)) s (13)

i=1

where {f;} is an arbitrary orthonormal basis. Note the value of equation 13 is independent of the
basis. The corresponding norm is

ITIIE => X (HS)
i>1
One can show that
1Tz <ITls
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Definition A.7. An operator T' € L is said to be symmetric if

(T(f),9) =(,T(9), [fgeH,
and positive-definite if
(T(f),f) =0, feH.

(An operator with the last property is sometimes called positive semidefinite, and the term positive-
definite is used when the inequality is strict.)

B Data augmentation kernel perspective of non-contrastive SSL

Theorem B.1. Let G(x) be the infinite Mercer features of the backward data augmentation covariance
kernels, kPAB. Let F(x) = (f1(x), f2(x), ..., fu(x)) be the features given by minimizing the
following data augmentation invariance loss
Ny,
L(F) =Y 1T fi = fillZzgpn)  subjectto (fi, fi)ox = 6 (14)
i=1
which includes the orthogonality constraint. Then, V(F) C V(G), V(F) = V(G) as N, — oc.

The idea of the proof uses the fact that, as linear operators, Tpas = T]\ETM and that Tj,par =
T Ty, Then we use spectral theory of compact operators, which is analogue of the Singular Value
Decomposition in Hilbert Space, to show that eigenfunctions of 7)), T operator are the same as
those obtained from optimizing L(F). A similar result can be obtained using kP4 and T}.

Note that L(F) is the constrained optimization formulation of the BarlowTwins loss. Furthermore,
L(F) with the additional constraint that (f;, f;) >+ Vi € {1,2... Ny} is the constrained optimiza-
tion formulation of the VICReg loss.

B.1 Proof of theorem 3.1

We show we can factor the linear operator, leading to a practical algorithm. Here, we show that we
can capture the backward data augmentation kernel with the forward data augmentation averaging
operator

Lemma B.2. Using the definitions above, and with k in equation 6 given by
Ty = Ty Tr

kDAB’

Proof. First, define the non-negative definite bilinear form

BYAR(f,9) = (Tarf, Trrg)px (15)
Given the backwards data augmentation covariance kernel, k?45, define

BDAB(fa g) = (kav g)px
We claim, that

BVAR _ BDA,B (16)
This follows from the following calculation,
BB (f,9) = (Tif.9)px an
= Em[ka(‘T)v g(x)] = Esz[kDA,B(Zv x)f(z)g(:r)} (18)
p(zo | @) p(wo | 2) }
=E,E,E;, 19
PP LD g (0) (19)

= Eq, lz (Wa(m) > (’sz)f(z))] (20)

" . p(xo)

=By | Y (p(x | 0)g(2)) D (p(= | Io)f(z))] [Using Bayes’ rule] ~ (21)
= Eo, [Tar f (20)Targ(20)] = (Tarf, Trig)ox = BYAE(f,9) (22)
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For implementations, it is more natural to consider invariance to data augmentations.

Theorem B.3 (equivalent eigenfunctions). Assume that T; is a compact operator. Define the
invariance bilinear form

B"™V(f,9) = (Tarf — f,Trg — 9) (23)
Then BNV, BVAR share the same set of eigenfunctions. Moreover, these are the same as the
eigenfunctions of BP4B . In particular, for any eigenfunction fi of BVAR with eigenvalue Aj, then
f; is also and eigenfunction of BINV with the corresponding eigenvalue given by (\/x —1)2

Proof. Define TJWM by,
Tvnf =Ty Tu f 24)
Define
Tas = (T — 1) T (T — 1) (25)
Note, by the assumption of compactness, T has the Singular Value Decomposition, (see the Hilbert
Space section for equation SVD),

Tar(h) = Xj(h,g5)f; (SVD)
j=1

Let f; be any right eigenvector of T's, with eigenvalue 11;. Then f; is also a right eigenvector T — I,
with eigenvalue p; — 1. So we see that T/, has f; as an eigenvector, with eigenvalue \; = ,u? and

T s has f; as an eigenvector, with eigenvalue (1/A; — 1)2. Finally, the fact that there are no other
eigenfunctions also follows from equation SVD.

The final part follows from the previous lemma. O

Equivalence of Barlow Twins loss to Equation (9). The BarlowTwins loss from [44] is as follows:

2 2
Lpr = Z(Cu —1)"+ 52 Zcij (26)
i i g
where C is the cross-correlation matrix computed between the outputs of the network to two different
augmentations. First, the BarlowTwins loss can be seen as the unconstrained optimization form of

the following constrained optimization objective:

Lpr = Z(ci,; —1)2 ,subjectto C;j =0 Vj#i (27)
where (3 is the Lagrangian multiplier [9]. In [44], the cross-correlation matrix C' is computed by a dot
product between normalized functions f;’s such that (f;, f;),, = 1 Vi. The network output for one
augmentation of z, a, can be thought of as a Monte-Carlo estimate (with one sample) of Ty f; (),
where f; is the it" dimension of the network’s output. Therefore, the BarlowTwins loss can be written
in its following equivalent form:

N
szT(F) = Zk ((T]VIfi; T]\/[fi)px — 1)2 S subject to (f,, fj)PX = (Sij (28)
i=1
As shown by [45], the eigenvalues of T, Ty are always less than 1. Therefore, we do not need the
square in Equation (28). Rewriting it, we get the following:
Ny
LPT(F) = i(TAIfiaTA4fi)px ,subjectto  (fi, f5)px = 0ij (29)
Using Theorem B.3, we shovz/:tilat the loss recovers the equivalent eigenfunctions for the following

reason. We can rewrite the loss as
Ny

LPT(F) = ((Ts = D iy (Tar = D) fi)py - subjectto  (fi, f5)px = 0ij
1=1

Ny
— LPT(F) =Y T fi = fillT2(oy) »sublectto  (fi, fj)px = bij
i=1

(30)
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which recovers the loss Equation (9). Note that the VICReg loss [5], in addition to the constraints
imposed by the BarlowTwins loss, ensures that the norm of f;’s are more than some threshold. This
can be easily incorporated into the constraint with a constant along with d;;. In conclusion, both
BarlowTwins and VICReg losses can be seen as equivalent forms of the loss Equation (9).

Theorem B.4. (Informal) Let us denote the span of the feature space at initialization as V (Fy) and
after training as V (Fr). For small initialization of the network’s weights, the alignment of V (Fr)
with the eigenfunctions of T depend on two factors: (i) alignment of V (Fy) with the eigenfunctions
of T (ii) singular values of T.

Theorem B.4. (Formal) Let T = VAV represent the eigendecomposition of T, and define z as the
projection of the weight vectors in W onto singular vectors of I, V. Formally, z = WV . Assuming
small initialization (as in Simon et al. (2023), i.e. |2,;(0)| << 1 for all p,i, we can derive the
following conclusions:

1. szgn(Az‘”E()t)) = sign(\;)

2. Forall \j,\; > 0, jméé)) (Z”’((é))) i where \; denotes the i'" singular value, i.e. it"

element of diagonal matrix A.

Proof. We will first show that the above holds for a linear network, i.e. the output of the network
with weights W € R™*" is W X for some input X € R™*®, where m is the output dimensionality,
n is the input dimensionality and b is the batch size.

Let us first analytically compute the cross-correlation matrix C' following [37].

C=wxx"wr =wtw?”
Cpq = Z WyiTiiWei » Cpp = Z WpiTiiWh;
i,5 i,J

where X and X' are matrices € R"*? containing two augmentations of a each image in a batch of
images. Also, we have defined 7 = X X' T ie. the augmentation-defined data correlation matrix.
Rewriting the BarlowTwins loss function from [44]:

ﬁBT:Z( +BZZ
i i jF£u

To study the learning dynamics, we need to compute the gradient of £ w.r.t. the parameters W.

dWpq . 8[,31“ . 8011 B aCij
i = g, = 2 Z i 2776;;0” oW 31

Let us now analytically compute the derivatives of Cj; and C;; w.r.t Wy, to simplify each of the
terms in Equation (31).

oC;;
“ WZ WZ W’L W’L 6 %
o, 8qu Jz;; i TiWik, = 8W Z i TikWik0p

= Z TikWpkdjq + Z W Tik0kq | Opi

7,k

= Zﬁlkwpk‘FZWm ja | Opi

=2[W

8Ciz
= ) (Cii—1) oW~ 2(C,p — 1) [WT]pq (32)

i
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Using similar algebra steps, we can simplify the second term:

0C;
aqu = [Wﬂ]q 6pi + [Wﬂzq 6p]

= 3 Cugge = 3 O (W Ty b+ W Ty 1)

i jFi [ E)
= Z ij [Wﬂjq + Z Cip [W
Jj#q i#q
Substituting Equations (32) and (33) into Equation (31), we get:
dw, oL
P — ot = —dn(Cyy — 1) W], — 408 [(C = DWT],, +4nB(Cpp — 1) [W'T],,,
dt OWpq
= —4n(1 = B)(Cpp — 1) WT],, —4nB[(C — DHWT],, (34)

Note that setting 5 = 1 yields the dynamics equation presented by [37]. However, in practice, 3 is
orders of magnitude less that 1. For sake of simplicity, we will analyze the extreme case of 8 = 0,
which will yield us insights into the weak-orthogonality constraint case. Therefore,

AWpq
dt

~ —4n(Cpp — 1) [WT],, (35)

Let us denote the eigendecomposition of 7~ be written as 7 = VAV’ Here, A is a diagonal matrix
with singular values as the diagonal elements. Let us also denote the projection of the weight vectors
onto the singular vectors of 7, i.e. V as z. So, z = WV.

Therefore, using these definitions, we can write the following:

Cpp = WTWT] = [ZAZ7], Z

WT =WVAVT = ZAVT
Now, writing the update equations Equation (35) in terms of z;:
dei deq

dt a v
q

—an (D22 =1 D am e O Vi Vi)
J k q

=—dn [ D 2N — 1| ki (36)
J

Assuming small initialization of weights W, we can assume that | z,;(0) |<< 1, i.e. magnitude z;
at time O is very small.
Let us define f,,(t) = 1 — 3 2,;(¢)?A;. For small initialization, h,,(t) > 0 V¢. Therefore,

sign (W zlm> = sign(\;) (37)

It is clear from Equation (37) that if \; < 0, limy_,o 2,;(t) = 0. Similarly, if A\; = 0, then
Therefore, akin to the conclusions of [37], the BarlowTwins loss recovers directions corresponding to
positive singular values in the augmentation-defined covariance matrix, 7 and suppresses directions
corresponding to negative singular values. Thus, the network outputs span the top singular vectors of
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It is worth noting from Equation (36) that the following holds:
1 dlog(zy) 1 dlog(zp;)

N dt N, dt

- =)’
O

Without loss of generality, if A\; << A;, then z,;(t) ~ z,;(0). Therefore, under small initialization,
i.e. 2;(0) is small V4, gradient descent biases the p'* weight vector to be more strongly aligned to
the eigenvector corresponding to the strongest eigenvalue, for all p’s. Hence, under weak orthogo-
nalization constraints, the BarlowTwins loss will over "represent” the strong singular vectors of the
augmentation-defined cross-correlation matrix.

When using high-dimensional projectors, specifically when m >> . 15,50, wherein 1 is the indi-
cator function that is 1 when condition ( is true and 0 otherwise, this problem might be ameliorated
because there are multiple weight vectors that might be aligned with the top singular vectors of T
at initialization. However, when using low-dimensional projectors, we do not have such a luxury
and therefore, using a weak orthogonalization constraint leads to dimensionality collapse in the
representation space.

Extending to deep non-linear networks. Similar to the analysis in [37], we can repeat the above
analysis by replace X and X’ by the corresponding kernel versions, where the kernel corresponds to
the Neural Tangent Kernel (NTK) of the network. Therefore, the implicit bias of gradient descent
to yield dimensionality collapse in the representation space when using weak orthogonalization
constraints still remains.

Dimensionality collapse under noisy optimization. From the rest of this section, we have seen that
the BarlowTwins loss is a Monte-Carlo estimate of the true data-augmentation defined covariance
matrix. Moreover, stochastic gradient descent adds noise due to mini-batch sampling to the optimiza-
tion process. Note that there exist symmetries in our linear network, i.e. an orthogonal rotation of
the weight matrix yields the same loss function. As explained in [12], such symmetry-invariant sets
are potential candidates for stochastic collapse when performing noisy gradient-based optimization.
Therefore, the presence of noise in the data-augmentation covariance matrix, 7, as well as the batch
noise can further worsen the dimensionality collapse problem where different weight vectors become
parallel to each other due to noise in updates. One possible mitigation strategy is to obtain a better
estimate of the true augmentation-defined covariance matrix (see Figure 7), which we discuss in the
next section.

Empirical validation. We empirically validate our results on the learning dynamics on simplistic
2-dimensional settings. These results, demonstrating the difference in feature learning dynamics for
weak vs strong orthogonalization, are presented as GIFs in the supplementary material, and can also
be viewed at the project website.

C Multi-Augmentation Learning

C.1 Augmentation graph

We use the population augmentation graph formulation introduced in [23]. Briefly, we define a graph
G(X, W), where the vertex set X comprises of all augmentations from the dataset (could be infinite
when continuous augmentation functions are used) and W denotes the adjacency matrix with edge
weights as defined below:

Wy = Ezupy [A(z]Z)A(2|T)] (39)

, i.e. the joint probability of generating ‘patches’ x, 2’ from the same image Z. Here A defines the set
of augmentation functions used in the SSL pipeline. It is worth noting that the magnitude of w,,,
captures the relative similarity between - and z’. A higher value of w,, indicates that it is more
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Figure 6: Schematic of augmentation graph. (A) Augmentations from each image span a region in the
image space which could overlap with the augmentation span of other images. (B) An augmentation

graph schematic that uses probabilities to characterize the interactions among augmentation spans of
different instances.

likely that both patches came from the same image, and thereby are more similar. The marginal
likelihood of each patch x can also be derived from this formulation:

Wy = Em’w)( [wrx’] (40)

C.2 Contrastive and non-contrastive losses suffer from the same issues

We will now show that the proposal of using multiple patches for the L;,pariance 1S pertinent to
both the contrastive and non-contrastive SSL. Following [23], we use the spectral contrastive loss
formulation and incorporate the augmentation graph relations:

Lo=Epue [F@)TF@H)] + BBuir |(f@)7 £(a))]
L. ||ZZT =D *WD 2|2 = ||1Z2Z" — W 41)

where z := \/w, f(z), Disa N x N diagonal matrix with entries {w,} and W = D=2 WD~ z.

We extend the duality results between contrastive and non-contrastive SSL loss, established by [20],
to demonstrate how Equation (41) can be decomposed into the invariance and collapse-preventing
loss terms.

122" W% =127 Z — 14| + 2T [ZT(In = W)Z] + & (42)
=27z - IdHF+2221—wxz =23 agrzizj+r (43)
i x,x!

where « is some constant independent of Z. The first term in Equation (42) is the covariance
regularization term in non-contrastive losses like BarlowTwins (implicit) or VIC-Reg (explicit),
and the second term in Equation (43) is the variance regularization. Simplifying the third term in
Equation (43) gives us:

Z war’zz'z; = Z wax’f( z = Z ZExNPX QS|I) ( /‘j)f(x)zf(x/)z]

i xz,x’ 1 xz,x’ 1 xz,x’

Y, [z A 10T, 1)

= By [Z Aelz) (#() T @) - If(x)IIQ)] 44

This term encourages f(x) to be similar to f(x), i.e. the mean representation across all augmentations
of Z, thereby requiring to “sufficiently” sample A(.|Z). Given that both the contrastive and non-
contrastive losses rely on learning invariance properties from data augmentations, we believe that
our multi-patch proposal would improve the probability density estimation of A(.|Z) and yield better
performance with few training epochs.
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C.3 Explaining training dynamics in low patch sampling regime

We now turn to a simple form of the augmentation graph to understand how using low number of
augmentations affects the evolution of ZZ7. Minimizing Equation (41) implies that the spectral
decomposition of Z would align with the top eigenvectors (and values) of V. We will demonstrate that
in the low sampling regime (using few augmentations), the eigenvectors of the sampled augmentation

graph W may not align with those of .

Augmentation graph setup. We define an augmentation graph with only two instances from
two different classes, similar to the one presented in [36]. Let us denote the four instances as 7;
for ¢ € 1,2,3,4, where Z1,Z5 belong to class 1 (i.e. y;,y2 = 1) and Z3,Z4 belong to class 2
(i.e. y3,ys = 4). Let us further assume that z,, 3 have the highest pixel-level similarity among
(Z1,Z,;)Vi € 2, 3,4, thereby making it more likely to have similar patches. We denote this relationship
among input examples using G to indicate (pixel-wise) global similarity groups. So, G1,Gs = 1 and
Ga, G4 = 2. We can use the following probabilistic formulation to model our augmentation functions
(see Figure 6B):

pifj =i
_ ' ifj#iandy; =y; and G; # G;
Alz;lz;) = : _ 45
(x]|$) Vl lfj#zandy]#yzandg]:gl ( )

8 ifj#iandy; #y; and G; # G;

In our setting, p’ + ¢/ + v/ + &’ = 1. The adjacency matrix of our augmentation graph (as shown in
Figure 6C) is as follows:

W = (46)

AT D
ANIESTRSIR~
=TT > %
TE X >

We defer the relations between p’, i/, v'¢" and p, u, v, ¢ to the appendix. The eigenvalues of this
matrix are: (p+pu+v+d, p+pu—v—36p—p+v—46, p—p—rv+9). Corresponding
eigenvectors are along [1,1,1, 1]T, [1,1,-1, —1]T. [1,-1,1, —1]T, [1,-1,-1, l]T. Assuming that
the augmentation functions induce semantically-relevant invariance properties that are relevant for
identifying y; from f(x;), we can say that p’ > maz{y’, v’} and min{v/, '} > ¢&’. When we have
sufficiently sampled the augmentations, any SSL loss will learn Z such that its singular values are
span the top eigenvectors of the augmentation graph, and the eigenspectrum of ZZ7 would simply be
the above eigenvalues. In practical settings, the augmentation graph would have significantly higher
dimension that the feature/embedding dimension 2. Therefore, singular vectors of Z would span
the top eigenvectors of YV and the smaller eigenmodes are not learned. When we have accurately
sampled the augmentation graph, ;4 > v and therefore, the class-information preserving information
is preferred over pixel-level preserving information during learning. But what happens when we do
not sufficiently sample the augmentation space?

Ansatz. Based on our empirical experience, we define an ansatz pertaining to the eigenvalues of a
sampled augmentation graph and validate it in tractable toy settings, such as the one described above.
Specifically, we claim that when the augmentation space is not sufficiently sampled, {|u —v|,d} — 0.
In other words, we claim that when only few augmentations per example are used, it is more likely to
have an equal empirical likelihood for augmentations that preserve (pixel-level) global information
and class/context information. Moreover, it is very unlikely to have augmentations that change both
the class and global information. This is demonstrated in Figure 7.

Consequences of the Ansatz. When only a few augmentations are sampled, learning can suppress the
class information at the cost of preserving the pixel-level information, thereby leading to an increased
smoothness in the learned feature space.

“Contrastive algorithms use a large batch size, thereby optimizing a high-dimensional ZZ” whereas non-
contrastive algorithms use a large embedding dimension, thereby optimizing a high-dimensional Z7 Z.
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Figure 7: Empirical verification of the subsampling Ansatz.

D Implementation Details

Number of patches

Image Classification Datasets Across all experiments, our settings mainly follow [14]. In particular,
Table 4a summarizes our pretraining settings on Cifar-10 [27], STL-10 [15] and Imagenet-100 [34].
The Imagenet-100 dataset was generated by sampling 100 classes from the original Imagenet-1k
dataset, according to this list [39]. In Table 4b, we outline the corresponding linear evaluation settings
for Resnet-50 (for CIFAR-10 and STL-10) and ResNet-18 (for Imagenet). Note that we add a linear
classifier layer to the encoder’s features and discard the projection layers for evaluation. Our code
base is publicly available on github.

config value

optimizer Adam

learning rate le-3

batch size 128 (Imagnet), 256 (CIFAR, STL)
epochs 100

weight-decay le-6

(a) Pretraining

Table 4: Experiment Protocol for comparing SSL algorithms

config value
optimizer Adam
learning rate le-3
batch size 512
epochs 200
weight-decay | le-6
test-patches 16

(b) Linear Evaluation

The key SSL loss functions that we use in this work are BarlowTwins [44] and VICReg [5]. Let us
suppose that the embeddings of two augmentations of a batch of images are denoted as z and 2’. The

BarlowTwins loss function is as follows:

Lpr=> (Ci—172+8).3 %

i jFi

(47)

(48)

C;; is the element of C' at row 7, column j and n is the batch size. For each projector dimensionality,
d, we search for the hyperparameter, /3, that yields the best downstream task performance.



The VICReg loss function is as follows:

1 «— 1 1
Lyic = 5#2 2k — 21.|I” + SH [w(Z) +v(Z")] + 3 [c(Z) + c(Z2")] (49)
k=1

d
where v(Z) = é Zmax(O, 1 — Stdev(z.,:))
i=1

and C(Z)zézz[az%jf 2 = ——S o= ) — )T

n—1
i i k=1

For each projector dimensionality, d, we search for the hyperparameter, u, that yields the best

downstream task performance.

D.1 Empirical results for low-dimensional projectors

A CIFAR-10 BarlowTwins B 84 CIFAR-10 VICReg

3 84 — A m s PRI
S R B AP . . ) & T
> il i8S ians 80 gt |
8 801 Lt
5 1 76 R
[}
(]
o761 4 72
¢ 1 @ Optimal B, x ©® Optimal By
© 7oL A Fixed B (0.0004) 68 A Fixed B (0.0013)
c .1e2. 1e3 1e4 D .1e2 1e3 1e4
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©
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Figure 8: Low-dimensional projectors can yield good representations for both BarlowTwins and
VICReg. We demonstrate that using a higher orthogonality constraint, 3, for lower projector
dimensionality can achieve similar performance over a wide range of projector dimensions (d). Note
that for VICReg, we plot the ratio of the coefficient of the covariance loss to the coefficient of the
invariance loss, i.e. 8 = T where 1 is the coefficient of the invariance loss. (See Equation (49) for

details of the loss formulation.)

dim | Projector params (approx) Barlow Twins VICReg
p 4 p PP fixed 8 optimal 8~ fixed 3 optimal 3~
64 135k 73.6+09 | 82.1+02 | 689+0.2 | 81.9+0.1
128 278k 747+ 14 | 830+ 1.1 | 70.6+03 | 823 +04
256 589k 759+07 | 834+04 | 753+02 | 81.9£0.3
512 1.3M 792+0.8 | 8284+05 | 7934+04 | 82.1+0.6
1024 3.1M 81.3£1.0 | 829+£03 | 792+09 | 82.5+09
2048 8.3M 81.0+09 | 823+£05 | 80.64+0.0 | 81.9+ 1.2
4096 25.2M 823+04 | 823+£04 | 80.5+03 | 81.0+04
8192 83.9M 822+04 | 822+04 | 804+1.5 | 80415

Table 5: Extended version of Table 1. Optimizing for orthogonality appropriately allows low-
dimensional projectors to match the performance for BarlowTwins and VICReg (on CIFAR-10) of
much higher-dimensional projectors.

97



D.2 Empirical results with multi-augmentations along with Time
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Figure 9: Using multiple augmentations improves representation learning performance and conver-
gence. (A-C) Across BarlowTwins and VICReg for CIFAR-10 and STL-10 pretraining, using 4

augmentations instead of 2 helps improve performance. (D-F) Although the 4-augmentations take
longer for each epoch, its performance still trumps the 2-augmentation version of the algorithm at the

same wall clock time. Please see Appendix E.3 for more results.
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Figure 10: Multi-augmentation improves sample efficiency, recovering similar performance with
significantly fewer unique samples in the pretraining dataset. Across BarlowTwins and VICReg pre-
training on CIFAR-10 and STL-10, for the same effective dataset size (#augs X #unique_samples),
using more patches improves performance at the same epoch (A-C) or wall clock time (D-F). How-
ever, a tradeoff exists wherein more data augmentations fail to improve performance in the scarce
data regime.
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Pretrain & eval on Imagenet-100
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Figure 11: BarlowTwins pretraining on full Imagenet-100 dataset with 2, 4 and 8 augmentations.
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Figure 12: BarlowTwins pretraining on fraction of Imagenet-100 dataset with 2, 4 and 8 augmenta-
tions.
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D.3 Empirical results on transfer learning

In this section, we present extended version of results presented in Figure 3, Figure 4 but pretraining
on CIFAR-10 (or STL-10) and evaluating on STL-10 (or CIFAR-10). These results, coupled with
the ones in Figure 3 Figure 4, present a strong case for the advantage of using the proposed multi-
augmentation loss for better convergence as well as downstream accuracy.
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Figure 13: BarlowTwins pretraining on CIFAR-10, linear evaluation on STL-10 labelled set.
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Figure 14: VICReg pretraining on CIFAR-10, linear evaluation on STL-10 labelled set.
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Figure 15: BarlowTwins pretraining on STL-10, linear evaluation on CIFAR-10 labelled set.
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Pretrain on CIFAR-10 & eval on STL-10
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Figure 16: BarlowTwins pretraining on fraction of CIFAR-10 trainset, linear evaluation on STL-10
labelled set.
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Figure 17: VICReg loss pretraining on fraction of CIFAR-10 trainset, linear evaluation on STL-10
labelled set.
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Figure 18: BarlowTwins loss pretraining on fraction of STL-10 unlabelled set, linear evaluation on
CIFAR-10 train set.
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E Additional Experiments probing multi-augmentation learning

E.1 Longer Pretraining to determine early stopping
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Figure 19: BarlowTwins pretraining on full CIFAR-10 dataset for 400 epochs.

Algorithm Best accuracy | Best accuracy @ epoch
Barlow-Twins (2-augs) w/ pdim=256 | 92.04 +/- 0.16 400
Barlow-Twins (4-augs) w/ pdim=256 | 92.39 +/- 0.17 340
Barlow-Twins (8-augs) w/ pdim=256 | 92.64 +/- 0.10 140

Table 6: BarlowTwins pretraining on full CIFAR-10 dataset at 400 epochs (with early stopping)

E.2 SwAV-like augmentations for compute efficient multi-augmentation framework
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Figure 20: BarlowTwins pretraining on full STL-10 dataset for 100 epochs using SwAV-like augmen-
tations. Specifically, the 2-augmentations setting uses two views that are 64 x 64, whereas the 4 (or
8) augmentation setting uses additional two (or six) augmentations that are 32 x 32.
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E.3 Training with full dataset with 4/8 augmentations

Pretrain & eval on CIFAR-10
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Figure 21: BarlowTwins pretraining on full CIFAR-10 dataset with 2, 4 and 8 augmentations.

Algorithm #augs=2 #augs=4 #augs=8

Barlow-Twins w/ pdim=256 | 86.43 +/-0.72 | 91.73 +/- 0.16 | 92.71 +/- 0.19

Barlow-Twins w/ pdim=8192 | 85.44 +/- 0.54 | 91.40 +/- 0.32 | 92.40 +/- 0.13
Table 7: BarlowTwins pretraining on full CIFAR-10 dataset at 100 epochs
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Part 1V

Learning with approximate
gradients
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Preface to Part IV

In Part IV, we focus on a different aspect of the learning rule pillar of the
NeuroAl framework, specifically the credit assignment problem. Previously,
I presented evidence for how tools from deep learning theory can be used to
study the dynamics of feature learning and understand the impact of certain
biologically-inspired mechanisms on the learning dynamics in ANNs trained
using SSL. While this line of research can elucidate the computational advan-
tages of employing certain neural mechanisms, it relies on using properties of
gradient-based optimization. A common critique, often by neuroscientists, is
that unlike ANNs, the brain cannot use gradients of the loss function com-
puted using the backpropagation algorithm for learning. While it is true that
the brain cannot use backpropagation as ANNs do, the brain may employ
alternate strategies that might do something similar, i.e. compute some ap-
proximate gradient signal that can be used as the credit signal for synaptic
weight updates. A natural question that arises at this juncture is Can brains
learn using some approzimation to the gradient signal? In Part IV, we study
the impact of approximating the gradient signal on learning in a controlled
setting. Specifically, we use ANNs as a model to study the impact of approx-
imating the gradient signal on its learning and generalization performance,
as well as different architectural factors that influence this impact.
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Advances in neuroscience have focused on mechanistic or phenomenolog-
ical models of plasticity in the brain by studying specific neurophysiological
substrates underlying synaptic plasticity [Bredenberg and Savin, 2024]. In
contrast, studies using ANNs have attempted to propose normative mod-
els of synaptic plasticity by developing biologically-plausible rules for learn-
ing complex behavior [Lillicrap et al., 2020]. While the aim of most norma-
tive models of synaptic plasticity has been to approximate the backprop-
agation algorithm as closely as possible using biologically-plausible mecha-
nisms, it can be argued that phenomenological models of synaptic plasticity
can also be framed as approximations of gradient of certain loss function
[Richards and Kording, 2023]. In Part IV, we demonstrate that it is indeed
possible to learn complex behavior in ANNs even when using approxima-
tion to the true gradient signal. We also study the architectural factors that
might help mitigate the harmful effects of gradient approximation, thereby
demonstrating that the problem of credit assignment should not be treated as
independently from the system architecture. Overall, this chapter supports
the utility of ANN studies using gradient-based optimization in elucidating
potential mechanisms of learning in the brain.

X K X
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ABSTRACT

There is growing interest in understanding how real brains may approximate
gradients and how gradients can be used to train neuromorphic chips. However,
neither real brains nor neuromorphic chips can perfectly follow the loss gradient,
so parameter updates would necessarily use gradient estimators that have some
variance and/or bias. Therefore, there is a need to understand better how variance
and bias in gradient estimators impact learning dependent on network and task
properties. Here, we show that variance and bias can impair learning on the training
data, but some degree of variance and bias in a gradient estimator can be beneficial
for generalization. We find that the ideal amount of variance and bias in a gradient
estimator are dependent on several properties of the network and task: the size
and activity sparsity of the network, the norm of the gradient, and the curvature of
the loss landscape. As such, whether considering biologically-plausible learning
algorithms or algorithms for training neuromorphic chips, researchers can analyze
these properties to determine whether their approximation to gradient descent will
be effective for learning given their network and task properties.

1 INTRODUCTION

Artificial neural networks (ANNs) typically use gradient descent and its variants to update their
parameters in order to optimize a loss function (LeCun et al., 2015; Rumelhart et al., 1986). Impor-
tantly, gradient descent works well, in part, because when making small updates to the parameters,
the loss function’s gradient is along the direction of greatest reduction.! Motivated by these facts, a
longstanding question in computational neuroscience is, does the brain approximate gradient descent
(Lillicrap et al., 2020; Whittington & Bogacz, 2019)? Over the last few years, many papers show
that, in principle, the brain could approximate gradients of some loss function (Murray, 2019; Liu
et al., 2021; Payeur et al., 2021; Lillicrap et al., 2016; Scellier & Bengio, 2017). Also inspired by the
brain, neuromorphic computing has engineered unique materials and circuits that emulate biological
networks in order to improve efficiency of computation (Roy et al., 2019; Li et al., 2018b). But, unlike
ANNS, both real neural circuits and neuromorphic chips must rely on approximations to the true
gradient. This is due to noise in biological synapses and memristors, non-differentiable operations
such as spiking, and the requirement for weight updates that do not use non-local information (which
can lead to bias) (Cramer Benjamin et al., 2022; M. Payvand et al., 2020b; Laborieux et al., 2021;
Shimizu et al., 2021; Neftci et al., 2017; N. R. Shanbhag et al., 2019). Thus, both areas of research

'Tf we assume a Euclidean metric in weight space.
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could benefit from a principled analysis of how learning is impacted by loss gradient variance and
bias.

In this work, we ask how different amounts of noise and/or bias in estimates of the loss gradient
affect learning performance. As shown in a simple example in Fig. 1, learning performance can be
insensitive to some degree of variance and bias in the gradient estimate, and even benefit from it,
but excessive amounts of variance and/or bias clearly hinder learning performance. Results from
optimization theory shed light on why imperfectly following the gradient—e.g. via stochastic gradient
descent (SGD) or other noisy GD settings—can improve generalization in ANNs (Foret et al., 2020;
Chaudhari et al., 2019; Yao et al., 2018; Ghorbani et al., 2019). However, most of these results treat
unbiased gradient estimators. In contrast, in this work, we are concerned with the specific case of
weight updates with intrinsic but known variance and bias, as is often the case in computational
neuroscience and neuromorphic engineering. Moreover, we also examine how variance and bias can
hinder training, because the amount of variance and bias in biologically-plausible and neuromorphic
learning algorithms is often at levels that impair, rather than improve, learning (Laborieux et al.,
2021), and sits in a different regime than that typically considered in optimization theory.
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Figure 1: Train and test accuracy of a VGG-16 network trained for 50 epochs (to convergence) on
CIFAR-10 using full-batch gradient descent (with no learning rate schedule) with varying amount of
variance and bias (as a fraction of the gradient norm) added to the gradient estimates. These results
(avg of 20 seeds) indicate that excessive noise and bias harms learning, but a small amount can aid it.

The observations in Fig. 1 give rise to an important question for computational neuroscientists and
neuromorphic chip designers alike: what amount of variance and bias in a loss gradient estimate
is tolerable, or even desirable? To answer this question, we first observe how variance and bias in
gradient approximations impact the loss function in a single parameter update step on the training
data. (We also extend this to multiple updates in Appendix A.) We utilize an analytical and empirical
framework that is agnostic to the actual learning rule, and derive the factors that affect performance
in an imperfect gradient setting. Specifically, we assume that each update is comprised of the
contribution of the true gradient of the loss function with respect to the parameter, a fixed amount of
bias, and some noise. Similar to Raman et al. (2019), we derive an expression for the change in the
loss function after a discrete update step in parameter space: w(t + At) = w(t) + Aw(t)At, where
At is akin to learning rate in standard gradient descent algorithms. We then characterize the impact
on learning using the decrease in loss function under an approximate gradient setting as compared to
the decrease in loss function when following the true gradient.

Our analysis demonstrates that the impact of variance and bias are independent of each other.
Furthermore, we empirically validate our inferences in ANNSs, both toy networks, and various VGG
configurations (Vedaldi & Zisserman, 2016) trained on CIFAR-10 (Krizhevsky & Hinton, 2009). Our
findings can be summarized as follows:

1. The impact of variance is second order in nature. It is lower for networks with a threshold
non-linearity, as compared to parameter matched linear networks. Under specific conditions,
variance matters lesser for wider and deeper networks.

2. The impact of bias increases linearly with the norm of the gradient of the loss function, and
depends on the direction of the gradient as well as the eigenvectors of the loss Hessian.

3. Both variance and bias can help to prevent the system from converging to sharp minima,
which may improve generalization performance.
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Altogether, our results provide guidelines for what network and task properties computational
neuroscientists and neuromorphic engineers need to consider when designing and using noisy and/or
biased gradient estimators for learning.

2 ESTIMATING THE IMPACT OF VARIANCE AND BIAS ON TRAINING

Our analysis focuses on situations where the synaptic weights of a network, w, are trained to optimize
aloss, L[w]. We use an auxiliary variable, ¢, to denote different points in this optimization trajectory
and At to denote a single step in this trajectory. (We extend to the multi-step case in Corollary A.2 of
the Appendix.) Compared to standard optimization protocols in the ANN literature, At is akin to the
learning rate. Therefore, the loss as measured at one particular point in the trajectory is denoted as
L[w(t)], and the loss at the next point in the trajectory, i.e., after a weight update step, is denoted by
L{w(t + At)]. In the rest of this work, we characterize L[w(t + At)] — L{w(¢)] as a function of the
variance and bias in the weight update.

We assume that £ is twice differentiable and A¢ is small enough such that L[w(t 4+ At)] can be
effectively approximated around £[w(t)] using a second order Taylor series, i.e., higher order terms
beyond the second order can be ignored. Furthermore, we define a weight update equation that
consists of the gradient, a fixed bias, and some noise. We denote the bias vector as bg, where 3 is a
norm +/ N vector that indicates the direction of bias in the N-dimensional parameter space. A special

case of B would be B = 1 when all parameters have the same bias. Similarly, we assume white
noise in the gradient estimates. With these assumptions, we define the weight update equation to be:

Aw(t) = — Vo Llw(t)] + b8 +or/f(N)i (1)

where V,, L[w(t)] denotes the first derivative of the gradient of £ evaluated at w(¢) and 7 is a unit
vector in the N-dimensional parameter space whose elements are zero-mean i.i.d. (see Appendix
A for generality of this assumption), such that the total variance of Aw(t) is o2 f(N), where f(N)
denotes the dependence of variance on the total number of network parameters, N. Finally, we
define AL;(b,0?) as the change in £[w(t)] when performing the aforementioned weight update as
compared to the change in £[w(t)] when the weight update step follows the true gradient, i.e.,

AL(b,0?) = [Clw(t + At)] = Llw(D)]] 02y — [Llw(t + Ab)] = L{w(t)]] .0, )

where [Llw(t + At)] — Llw(t)]] 4, 52 is the change in loss with bias b and variance o2. For brevity,
we drop the ¢ is the subscript in the rest of the paper. Formally, we present the following Lemma:

Lemma 2.1. Second order Taylor series expansion. Assuming a small learning rate, the bias, b, and

variance, o2, in gradient estimates can be linked to changes in L upon one weight update step as
compared to the change in L under a true gradient descent weight update step:

En [AL(b,02)] = Eq [[Clw(t + A8)] — Llw(t)]], 02 — [Llw(t + A8)] — Liw ()] 0]

/ ; —\ 1., = o e 5

=b(VwLlw(t)], B) At + ;b‘ (B, VuLw(t)]B) At
L.y — 9 T« L2 f(N . .
—=b(VwL[w(t)], (Vi Llw(t)] + Vi, Llw(t)] )ﬁ/; Af3+50 f\( ) Tr[VZ Llw(t)]]At?

3)

where (-, -) denotes the dot product, Tr denotes the Trace operator of a square matrix, orange terms
indicate the impact of bias, and the green term indicates the impact of variance.

In the next section, we present an in-depth analysis of the impact of variance when f (V) is sublinear,

as is the case for some learning algorithms, e.g. Equilibrium Propagation (Laborieux et al., 2021).
We present a more general analysis along with the proofs of all lemmas and theorems in Appendix A.

110



Published as a conference paper at ICLR 2023

2.1 ANALYSIS OF THE IMPACT OF VARIANCE AND BIAS ON TRAINING LOSS

One of the corollaries that follow from Lemma 2.1 is that the impact of variance and bias on the
expected AL (b, 0%) are independent of each other. Moreover, it is clear that the impact of variance
is directly proportional to the trace of V2, L[w(t)], i.e., the loss Hessian, and inversely proportional
to NV, i.e., the number of trainable parameters in the network.

Previous work investigating the object categorization loss landscape for feedforward ANNs demon-
strated a pronounced effect of width, i.e., increasing width leads to smoother loss landscapes (Li et al.,
2018a), thereby leading to lower trace of Hessian (Hochreiter & Schmidhuber, 1994). This empirical
observation in deep ANNSs implies that increasing the width both lowers the trace of the Hessian
in addition to its obviously increasing the number of trainable network parameters. Therefore, we
can say directly from Lemma 2.1 that the impact of variance is lower for wider networks. However,
the role of depth is more complicated. Notably, increasing depth (with no skip connections) could
theoretically make the loss landscape less smooth (Li et al., 2018a). Thus, we begin by analyzing
the case of increasing depth in linear feedforward networks. We prove that, in fact, increasing depth

leads to lower values for %ﬁ,ﬁ]’ thereby implying a lower impact of variance.

Theorem 2.2. Increasing depth lowers impact of variance For linear feedforward ANNS, the impact

of variance on AL(0,02) for a (L + 1) layer network is less than that of a L layer network, i.e.,
Aﬁt(07 02)(L+1)7layer < A‘C(0> UQ)L*layer “4)

where each layer has d units and weights initialized by the Xavier initialization strategy and the
total variance in gradient estimates does not grow with the size of the network, i.e., f(N) is some
constant®

Although these assumptions on layer weights may not strictly hold over the course of training,
empirical experience suggests that there exists a loose correspondence among these quantities if the
conditions hold true during initialization. Taken together, overparameterization in either width or
depth leads to a lower impact of variance in gradient estimates on the network’s training.

Besides the network architecture, the non-linearity used in the network also impacts the function
implemented by the network, and therefore affects the trace of the loss Hessian. Specifically, we
demonstrate that the trace of the loss Hessian is lower for networks with a threshold non-linearity with
gain less than or equal to 1, such as a ReLU operation, as compared to a linear network. Formally,

Theorem 2.3. ReLU lowers impact of variance Let ¢(.) denote a threshold non-linearity function.
The impact of variance on AL (0, o2) for a network with such non-linearities is less than that of an
equivalent linear network, i.e.,

A‘Ct(ov 02)(15 S A['t (Oa 02)Linea7' (5)
where the gain of ¢(.) is less than or equal to 1 (e.g. ReLU).

Summarily, the standard practices in deep neural networks, like overparameterized networks or the use
of ReLU as a non-linearity, lead to a lower impact of variance on the network’s training. Interestingly,
brains are also arguably overparameterized and characterized by threshold non-linearities that lead to
sparse activations. These properties could offer a potential solution to countering any negative impact
of variance in gradient estimates in the brain and allow biological agents to reliably train complex
tasks despite not being able to actually conduct true gradient descent (Lillicrap et al., 2020). It also
suggests neuromorphic chips could tolerate more noise in gradient estimators if they are made larger.

In contrast to the impact of variance, the impact of bias is more nuanced and depends on the norm and
direction of gradient, the direction of the bias vector, as well as the eigenvectors of the loss Hessian.
Using a few algebraic manipulations, Lemma 2.1 can be extended to show that:

Theorem 2.4. The impact of bias on AL:(b,0) grows linearly with the norm of the gradient.

AL(b,0) = %bQQAtQ B[V L[w ()] PA ©)

Vs Llw(t)]]|

where P, Q) are terms that are independent of the norm of the gradient,

Check Appendix A for an extension to the general case where variance changes with number of parameters.
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This result implies that initialization and architectural considerations could play important roles in
mitigating the impact of bias on training by limiting the norm of the gradient. In the next section, we
will empirically validate these results in linear and shallow networks trained on toy datasets as well
as in VGG networks trained on CIFAR-10.

2.2  EMPIRICAL VERIFICATION OF THE VARIANCE AND BIAS RESULTS

Our experimental setup (illustrated in Fig. 2) is motivated by Raman et al. (2019), and follows the
standard student-teacher framework. A “teacher” ANN is initialized with fixed parameters. The
task is for a randomly initialized “student” network to learn the input-output mapping defined by the
teacher. We defer the reader to the Appendix B for experimental details.

Teacher Network B
Fixed weights - ¢ﬁ,2rc;a%2ii¢em
Teacher
/ Output 3
Error w
Input 2
i 3 ALy(b,0?)
O;,' > C Student }J
;;% Output

Student Network Learnlng Rule

Figure 2: Experimental setup for empirical validation of our results, focusing on AL (b, 0?) to
understand how gradient approximations impact learning in one update step. (A) The student-teacher
framework motivated by Raman et al. (2019). (B) Illustration of AL (b, o) (defined in Eq. (2))

First, we validate our analytical results pertaining to the impact of variance, i.e., Theorems 2.2 and 2.3
in relatively shallow (1-8 hidden layers) fully connected ANNs. We fix the teacher network archi-
tecture and use a ReLU non-linearity to threshold the intermediate layer activations. Subsequently,
we vary the depth and width of the student network with no non-linearity and observe AL;(0, o2)
at different points in the loss landscape. For each such setting, we add a ReLU non-linearity to the
student network to validate the effect of a threshold non-linearity on AL;(0, 0%). We plot the mean
AL(0,0?) across different points in the loss landscape in Fig. 3. Note that in order to use a sample
accurately reflecting the loss landscape that would be encountered during a learning trajectory, we
train a control network with the same architecture and non-linearity as the student network using the
true gradient and evaluate AL;(0, o2) for each update step along the learning trajectory. In doing so,
we are able to observe the desired quantities across a wide range of gradient norm values.

. +02=0.1 . -+ 2 layers
A 1074 +02=0.2 B -+ 4 layers C
: +02=0.3 R -+ 6 layers
0%2=0.4 10710 SS 8 layers 107104

10.11_ 10—11_

10-12_

- T : T * T
10 100 10° 104 10 100
Network width Number of parameters Network width

Figure 3: Impact of variance is lower for wider, deeper, and ReLU networks. Solid lines indicate
linear networks, dashed lines indicate networks with ReLLU non-linearity, and dotted line indicate
the teacher network architecture. (A) Varying hidden layer width in one hidden layer linear ANNS,
keeping input/output dimensions same. (B) Linear and ReLU networks with varying width and depth
plotted with number of parameters in x-axis. (C) Same as B but plotted with network width in x-axis.
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Furthermore, we validate Theorems 2.2 and 2.3 on VGG networks trained on the CIFAR-10 dataset.
Specifically, we maintain the student-teacher framework and fix the teacher network to be a VGG-19
network trained on CIFAR-10 to 92.6% test accuracy, and we use different networks from the VGG
family as student networks (with variance set to 02 = 20). For each network, we use both random
weight initialization and Imagenet-pretrained weights to determine whether initialization has an effect
on the impact of variance. Fig. 5 demonstrates that our results pertaining to depth and width hold for
deep convolutional neural networks (CNNs).

Similarly, we validate Theorem 2.4, first in shallow fully connected ANNs and subsequently in deep
CNNs trained on CIFAR-10. Specifically, we demonstrate in Fig. 4 that the impact of bias (with
b = 0.02) on performance of a linear shallow network grows with the norm of the gradient. Note
that the sign duality of AL;(b,0) in this figure follows from Theorem 2.4 where the quantities P
and @) depend on the direction of the bias vector with respect to the direction of gradient and the
eigenvectors of the loss Hessian (see proof in Appendix A for more details). Therefore, bias can
help or hinder learning depending on its direction. This behaviour is in contrast to variance, which
always hinders learning for a convex loss (Lemma 2.1). Nonetheless, it is worth noting that when the
gradient norm is small as bias increases it always hinders training (see Fig. 4B).

A B o008
0.06—]
0.04—]

0.02—

0

-0.02—
_0.2—] ebias = 0.20
ebias = 0.35
ebias = 0.50

0 1.2 3

-0.04—

5 6 7 8 0 0.5 15 2

4 1
Ve v
Figure 4: Impact of bias grows linearly with gradient norm and has a quadratic relationship with
the amount of bias when the gradient norm tends to 0, i.e., validating expression from Theorem 2.4:
ALy (b,0) = $02QAL> +b|| Vo L[w(t)]|| PAt. (A) Impact of bias grows linearly with gradient norm,
with the slope being the amount of bias (see second term in equation). (B) Impact of bias grows
quadratically with amount of bias when gradient norm is small (see first term in equation).

Following this, we measure the absolute value of AL;(b,0) and plot its mean across multiple
update steps in VGG networks trained on CIFAR-10. In Fig. 6, we show that the relation stated
in Theorem 2.4 holds across different VGG architectures, irrespective of the weight initialization.
Furthermore, deeper VGG networks have a lower impact of bias owing to a lower gradient norm.

A two-way ANOVA vgg configuration *p = 1.67e-11 B one-way ANOVA *p = 4.78e-5
1e-7— 1e-7—
4—]
8—|
S 3
0 6]
~
©
o
377 o
<
1— 2—]
0. 0
vgg11 vgg13 vgg16 vgg19 vgg11 vgg13 vgg16 vgg19 32 16 8 4 2
untrained pretrained factor of downsampling on vgg19

Figure 5: Impact of variance is lower for deeper and wider VGG networks when training on
CIFAR-10. (A) Deeper VGG configurations, both Imagenet-pretrained or untrained, exhibit lower
impact of variance. (B) Wider VGG-19 configuration networks exhibit lower impact of variance.
Factor of downsampling indicates the reduction in the number of filters in convolutional layers and
dimensionality of intermediate fully connected layers compared to the original VGG-19 configuration.
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A __ two-way ANOVA vgg config *p = 2.05e-5 B
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Figure 6: Impact of bias is lower for (A) deeper VGG networks when training on CIFAR-10. (B)
Deeper VGG networks exhibit lower gradient norm, thereby mitigating the impact of bias in training.

3 ESTIMATING THE IMPACT OF VARIANCE AND BIAS ON GENERALIZATION

In the previous section, we studied how variance and bias in gradient estimates impacts training.
However, from a machine learning perspective, an important question is to understand the impact on
the system’s generalization. Specifically, we ask the question: under what conditions could variance
and bias in gradient estimates aid generalization performance? Interestingly, current deep learning
practices rely on not following the exact gradient of the loss function to train models, which have
been demonstrated to help generalization performance. Some common examples of such practices
include stochastic gradient descent (SGD) and dropout®.

In this section, we use our framework to understand how variance and bias in gradient estimates
could alter the learning trajectory, thereby impacting generalization. Specifically, we investigate the
conditions under which a parameter update would necessarily lead to descent on the loss landscape.
This matters for understanding generalization because the flatness of the loss landscape is a good
proxy for generalization (Baldassi et al., 2020; Jiang et al., 2019; Sankar et al., 2021; Tsuzuku et al.,
2020; Petzka et al., 2021): flatter minima tend to have better generalization performance than sharper
ones. We leverage this viewpoint to understand the impact of variance and bias on generalization.
Specifically, we investigate the conditions under which gradient approximations could help to avoid
sharp minima, thereby promoting convergence to wide flat minima.

3.1 ANALYSIS OF THE IMPACT OF VARIANCE AND BIAS DESCENT OF NARROW MINIMA

To quantify the flatness of loss landscape, we use eigenvalues of the loss Hessian. Without loss of
generality, we assume that the loss Hessian is a normal square matrix, i.e., its eigenvectors form an
orthogonal basis of the N-dimensional parameter space. In order to understand the properties of loss
minima that the network could potentially converge to, we derive the sufficiency conditions under
which a parameter update ascends (or descends) the loss landscape. This strategy indicates that noise
in gradient estimates would lead to the system not descending the loss landscape when the minima is
too sharp, which can aid generalization.

Theorem 3.1. Noise helps avoid sharp minima The sufficient condition under which noise prevents
the system from descending the loss landscape, i.e., Llw(t + At)] > Llw(t)], is

2 1
A > AN > —

T A ()

where \1 > M\a... > A\ denote the eigenvalues of V2, L around the minima.

(7

Interestingly, the condition presented in Theorem 3.1 presents a lower bound for the smallest
eigenvalue, i.e., the eigenvalue associated with the direction of least curvature, and connects it to the
variance to gradient norm ratio. This ratio can be thought of as the inverse noise ratio when there is

3Discussion on the relationship between our analysis and SGD and dropout in the Appendix C.2
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no bias in the approximation. Furthermore, we also show in Appendix A that the sufficient condition
for descending the loss landscape is similar to the one presented in Theorem 3.1, but provides an

upper bound for the largest eigenvalue, i.e., Ay < %ﬁ Note that as we get closer to
T¥wZ

the minimum, the gradient norm would decrease (property of smooth £), and therefore, the inverse
noise ratio would increase. Thus, the upper bound on curvature of loss minima that the system can
potentially converge to decreases. Taken together, this shows that variance helps the system avoid
converging to sharp minima and instead promotes converging to wide flat minima.

Bias, on the other hand, has a more nuanced effect on the learning trajectory. This complexity is
unsurprising given the dependence of the impact of bias on direction of the bias vector, the direction
of the gradient, and the eigenvectors of the loss Hessian. Once again, we derive the sufficiency
condition for when a parameter update step would produce a decrease in the loss function. It turns
out this condition depends on both minima flatness and amount of bias relative to the gradient norm.
Theorem 3.2. Bias prevents descent into local minima dependent on Hessian spectrum. Bias in
gradient estimates could prevent converging to a minima. Specifically, the sufficient condition for the
weight updates to produce a decrease in L when using a biased estimate of the gradient is:

b 1 2 1 1

e < — N =

VWLl = VN 1+ 9pAt+ /1 + 4pAt + ¢2A122 VN (1+ 39At)

where 1)? = Zi /\?, i.e., the Frobenius norm of the loss Hessian, and A1 > As... > Ay denote the
eigenvalues of V2, L around the minima and V2,L is a normal matrix.

®)

The condition in Theorem 3.2 indicates that a system that follows a biased gradient approximation
will descend the loss landscape until some neighbourhood around a minimum (characterized by the
minima flatness and relative bias). Inside this neighbourhood, the system may not descend the loss
landscape and therefore not converge to the minimum. The condition depends on minima flatness
due to the ¢ term (Eq. (8)): sharper (higher curvature) minima should have higher v, which makes
it less likely to satisfy the condition. The condition also depends on the amount of bias relative
to gradient norm, i.e.,, higher relative bias makes it less likely to satisfy the condition for descent,
which we also support through simulation (see Fig. 7C). Taken together, variance and bias in gradient
estimates promote gradient descent dynamics that converge to wide flat minima, which can aid
generalization. This effect is empirically demonstrated by our first example of VGG-16 networks
trained on CIFAR-10 (Fig. 1).

3.2 EMPIRICAL VERIFICATION OF THE IMPACT OF VARIANCE AND BIAS ON GENERALIZATION
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Figure 7: Empirical verification of Theorems 3.1 and 3.2 in linear ANNs. Dashed lines indicate the
theoretical limit and colours indicate the empirical probability of descent. (A) True gradient descent.
(B) Noise in gradient estimates, o = ||V, L||. (C) Bias in gradient estimates, ratio ﬁ is varied.

We follow the same experimental setting as described in Section 2.2 for verifying Theorems 3.1
and 3.2. Owing to computational bottlenecks in loss Hessian estimation for high-dimensional
nonlinear settings, we restrict our empirical validation to training linear networks for optimizing
MSE loss. In doing so, we gain full control over the loss Hessian via the input covariance statistics*—
Fig. 7A & B demonstrate that our inferences from Theorem 3.1 hold empirically. When the leading

*for MSE loss at minima, the Hessian is equal to the input covariance matrix barring a constant factor
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eigenvalue is less than the theoretical limit, a weight update step always leads to a decrease in L;
when the trailing eigenvalue is greater than the theoretical limit, a weight update step always leads to
an increase in £. Furthermore, the theoretical limit is higher for the case when there is no variance
than with variance. These observations demonstrate that following a noisy version of the gradient
helps the network avoid sharp local minima. Similarly, Fig. 7C demonstrates that our inferences
from Theorem 3.2 hold empirically. Specifically, when the ratio of bias to gradient norm is below the
theoretical threshold, a weight update step always leads to a decrease in L.

4 DISCUSSION

In both computational neuroscience and neuromorphic computing, gradient estimators are known
to have variance and bias due to both algorithmic and hardware constraints (Laborieux et al., 2021;
M. Payvand et al., 2020a; Lillicrap et al., 2020; Pozzi et al., 2018; Sacramento et al., 2018; Rubin
et al., 2021; Roelfsema & Holtmaat, 2018; Bellec et al., 2020; Neftci et al., 2019; Huh & Sejnowski,
2018; Zenke & Neftci, 2021). Using mathematical analysis and empirical verification, we found that
the impact of variance and bias on learning is determined by the network size, activation function,
gradient norm, and loss Hessian, such that the amount of variance and bias that are permissible
or even desirable depends on these properties. Though our empirical verification was done using
feedforward ANNs, our mathematical analysis was formulated to be as general as possible, and
we believe that our assumptions are reasonable for most cases that computational neuroscientists
and neuromorphic chip engineers face. Furthermore, we add a corollary to Lemma 2.1 and discuss
extensions of our analysis to multi-step optimization settings in Appendix A (see Corollary A.2).
Thus, our work can inform research in these areas by providing a guide for how much variance and
bias relative to the gradient norm is reasonable for a given network.

4.1 RELATED WORK

Our analysis was inspired in part by recent work by Raman et al. (2019) characterizing bounds on
learning performance in neural circuits. They demonstrated that in the absence of noise in the gradient
estimator, larger networks are always better at training, but with noise added, there is a size limit
beyond which training is impaired. Our work was also informed by research into generalization in
deep ANNSs, which provided the rationale for our analyses examining the potential for a learning
algorithm to descend into sharp minima or not (Foret et al., 2020; Chaudhari et al., 2019; Yao et al.,
2018; Ghorbani et al., 2019; Smith et al., 2021). As well, our work has some clear relationship to
other work examining the variance of gradient estimators (e.g. Werfel et al. (2003)), but here, we are
asking a novel question, namely, how does a given amount of variance and bias impact performance
for different network parameters?

More broadly, our work relates to the deep learning literature because modern ANNs rarely use the
true loss gradient over the entire dataset to make weight updates. Instead, it is common practice to
add noise in different forms, e.g. SGD (Bottou, 2012), dropout (Srivastava et al., 2014), dropconnect
(Wan et al., 2013) and label noise (Blanc et al., 2020; HaoChen et al., 2021; Damian et al., 2021).
But, the noise structure in these scenarios may differ from assumptions in our work. For example,
SGD does not exhibit white noise structure (Xie et al., 2021; Zhu et al., 2019). 7 Likewise, dropout
can be thought of as adding noise, but for a truly unbiased estimate of the gradient, one would have
to consider all possible configurations of dropped neurons, something quite uncommon in practice.

4.2 LIMITATIONS AND FUTURE WORK

This work focused on characterizing the impact of variance and bias in gradient estimates, but it lacks
any in-depth analysis of specific bio-plausible or neuromorphic learning algorithms. Similarly, our
work only characterizes learning performance, but does not provide a concrete proposal to mitigate
excessive noise or bias in gradient approximations. As such, our analyses can be used by other
researchers to assess their learning algorithms but they do not directly speak to any specific learning
algorithm nor provide mechanisms for improving existing algorithms. Nonetheless, we believe that
our work provides a framework to help develop such strategies, and we leave it to future work.

>Though several analytical studies have used white noise to model SGD dynamics, and concluded that the
SGD noise acts as a regularizer against converging to sharp minima (Li et al., 2021), similar to our analyses.
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REPRODUCIBILITY STATEMENT

We strongly believe that reproducibility is critical for research progress in both machine learning
and computational neuroscience. To this end, we have provided thorough experimental details in the
appendix, and in the supplementary materials, we have included the code to run all of the experiments
and generate the figures. Our code can also be accessed from the project’s github repo. We believe
that this information will allow the community to validate/replicate our results and further build on
our work.
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A PROOFS

Lemma A.1. Second order Taylor series expansion. Let us assume for a small learning rate,
Llw(t + At)] can be approximated using the Taylor series expansion about the point w(t) and
dropping the third and higher order terms. The resulting expression linking bias, b, and variance,
o2 f(N), in gradient estimates to changes in L upon one weight update step as compared to the
change in L under a true gradient descent weight update step is:

En [ALoss(b,0%)] = Ex [[Llw(t + A1)] = Lw(®)]) o2 — [Llw(t + A1) — Lw(®)] 0]
1 2 2 2
— b (VuLlw()], B) At + 5b (8.2, lw(t) 8) At
— b (Vullw®)], (VL] + V5 Lhw(0)] ) B) A

1 o?

L 1ot
2 N

where N denotes the dimensionality of w(t), f(N) indicates how the total noise in gradient estimates

changes with the number of parameters in the model, 1. denotes a random unit vector (entries drawn

Te[V3, Llw(t)]| At? ©

i.i.d.) in the N-dimensional parameter space and bﬁ denotes the bias vector, where (3 is a norm
V' N vector (i.e. a vector with 2-norm equal to v/ N ) that indicates the direction of bias in the

N-dimensional parameter space. A special case of 3 would be H = 1 when all parameters have
the same bias level. Also, Tr denotes the Trace operator of a square matrix.

Proof. In order to understand how the task error changes as system parameters evolve, we rely on the
second order Taylor series expansion of the task error. We denote the system parameters at time ¢ as
w(t) and the corresponding task error as L]{w(t)]. We assume the parameter update rule to be a noisy
version of the gradient descent update:

Aw(t) = Ve Llw(t)] + b8 + or/f(N)A (10)

Writing out the Taylor series expansion for a small step At in the above direction,
Llw(t + At)] = Llw(t)] + (VwLw(t)], Aw(t)) At + = <Aw( ), Vfuﬁ[w(t)]Aw(t» At? (11)
We compare the reduction in task error while following the above parameter update rule to the

reduction in task error while following the uncorrupted or true gradient descent updates. Specifically,
we observe the following quantity:

AL (bias = b,var = ) == [Llw(t + At)] — ﬁ[w(t)”(bms:b,var:az)
— [Llw(t + A)] — LIw(t)]] pias—0,var—0) (12)

For sake of brevity, we drop the ¢ from the subscript in the rest of the derivations. Plugging in
Equations 10 and 11 in Equation 12,

AL(b,0%) = [b (VuLlw(®)], B) +o\/F(N) (VuLlw(®)], )| At
+ % B <Vw£['w(t)}, V2,Llw()]B) — o/ F(N) <Vw£[w(t)], Vi Llw(t)))
— b (B, V2 Lw(t)]VuLlw(t)]) — oy/f(n) (7, V )|V Lw(t)])
+ba\/m<ﬁ,v2£w >+ba\/T< 3>
wll

+82 (B, V2, Llw <>]B‘>+02f< N) (2, V2, Llo(t )1 >} M (13)

We can further simplify the above expression by taking the expectation over different samples to
evaluate the task error and multiple weight update steps to understand the average impact of bias
and variance in parameter update estimates. Under the aforementioned expectation, dot product of a
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deterministic vector with the noise vector 7 is assumed to be 0. Therefore, the expression for AL
simplifies to:

EalAL(b, o)) = b (VuLw()], H> At + % [0 (VwLlw(t)], va,c[w@)]B)
~b(B. V2 Llw(t))Vu Ll (1)]) + 17 (B, V2, Llw(0)] B)
+0? f(N)E; [(n, V2, Llw(t)]7)]] At? (14)

Furthermore, we assume the following properties for elements of the /V-dimensional isotropic noise
vector fn:

Ex[?] = And Eg[af;]=0 V i#j€l.N

1

N

Therefore, E; [<ﬁ,Vfuﬁ[w(t)]ﬁ>] =Ea Zﬁiﬁjviﬁ[w(t)]ij

- ZEﬁ (7] Vi, Llw(t)]i + Z ZEﬂ [Rit] Vi Llw ()]
i i#j J

= % > ViLlw(t)i = %TT[vaﬁ[w(t)]} (15)

Note that Eq. (15) is similar to Hutchinson’s trace estimator. We can also leverage the following
relationship:

(Ve Llw(t)], V2L B]B) + (B, V2 Lhw(®)] Ve, E[ ))

— Vo L[w(b)] Tv2 (0] B + BTV Liw(1)] V. L[w(1)]
[Since (a,b) = aTb]
= Vo Llw(t)]TV2 Lw(t)] B + Vo Llw(®)]T V2 Lw(t)” B

[Since each term is a scalar, transpose of a term is equal t0 itself]
=V Llw()]" (V3 Llw(t)] + V2, Ll (1)) B
= (VauLlw(t)]. (V3 Lhw ()] + V2, Lhw(t)]") B) (16)

Now, incorporating Equations 15 and 16 in order to simplify Equation 14:
Eq [AL(b,0%)] = b (Ve Llw(t)], B) At
1
+ 507 (B, V2, Llw(t)] B) AP

2
— 0 (VuLlw®], (V2Lhw(0)] + Vi Lhw()]) B) AP
Lo®f(N) 2 2
oy DV L]l {an

O

Note on i.i.d. noise assumption: Our assumption of i.i.d. noise allows us to derive a closed form
for AL(b, 0?) and investigate the impact of noise in gradient estimates in detail (below). However,
it should be noted that there may be learning algorithms that do not adhere to these assumptions,
which does mean we cannot state that our analysis is completely learning rule agnostic. Nonetheless,
these assumptions (zero in expectation and iid) are sufficiently general that they apply to a number of
existing algorithms (e.g. noise perturbation, AGREL, and EQ-prop with the beta parameters selected
to have expectation of zero (Murray & Edwards, 1992; Scellier & Bengio, 2017)), and we suspect
they can apply to many more.
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Corollary A.2. Extending Taylor series expansion result to multiple sequential update steps. With
the same assumptions as Lemma A.1, let Wy, be the weights of the network after k sequential noisy
updates and wy, be the weights of the network after k steps of gradient descent, given both networks
start from the same initial weights, wy. Let us denote the bias and variance vectors at each update
step as b; and o;n;. Then,

k k
Ve Ll|Wi] = Ve Llwy] + At <vaﬁ[wk](z bi) + Vo, Llw] (> aim)> + O(A?)
=1 =1
(18)
k 1 k
Bivy .. [C[04]] = LIwg] + At (bi, Vs L[w;_1]) + FAF° > (bi, V2, Llwi_1]b;)
=1 =1
1 k
— §At2 ; <b77 (Viﬁ[’llh_ﬂ + Viﬁ[’wl_l]T) Vwﬁ[wi_lb
1,1
+ 5At2ﬁ ;U?f(N) Tr[V3, Llw;-1]]
k i—1
+ ALY (VELwi ] [ D by |, bi = 2V Liw; ] (19)
i=1 j=1

Proof. We will prove the corollary by induction. First, we will use the Taylor series expansion of the
gradient to show that Eq. (18) holds for k = 1:

Vwﬁ['lbl] = Vwﬁ[wo — Vwﬁ[wo]At + (bl + Ulﬁl)At]
= Vu,ﬁ[wl + (bl + Ol’fll)At]
= VwLlwi] + V2 Llw;](by + o107) At + O(A?) (20)

Assuming Eq. (18) holds for for the first & steps, we will now prove it holds for (k + 1)** step. Given
that any change in the loss Hessian, i.e. V2L, will only result in third order effects, we will ignore
these changes although we will use a different subscript to denote the step at which the Hessian is
computed. This approximation is akin to assuming that the step sizes are small enough such that the
loss landscape is roughly quadratic in nature. Similar to the proof for k£ = 1, we use the Taylor series
expansion:

Ve l[Wi1] = VL[ — Ve L[Wp] At + (bpi1 + 0pp1fni1) Al
= Ve L[wy + @), — wi — Ve L[] At + (bysr + Opy1fns1) Al
= VwL[wy + W — wi — Ve L[wi] At + O(AL?) + (by1 + 0y 17is1) AL
= VLW i1 + Wg — wi + (bpy1 + opp1ips1)At] + O(AL?) (1)

Now, we can simplify the expression for wj; — wy, as:

k k
wy — w, = wg + AtZ(—Vw[:[IIJl',l] + b; + Ulﬁz) — wq + Atszﬁ[wifl]
i=1 i=1
k k
= —At Z(Vwﬂ[’lzh,l] - Vwﬁ[wi,l]) + AtZ(bz + O',L’sz)
i=1 i=1
k
= AtY (b + oif;) + O(At?)  [Using Eq. (18)] (22)
i=1
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Plugging Eq. (22) in Eq. (21), we can show the desired result:

k+1
VawL[@hi1] = Ve Llwrsr + At Y (b + 0ift;) + O(AL?)] + O(At?)
=1
k+1 k+1
= VoLllw 1] + At (vi,.c[wk+1}(z bi) + Vo, Llwy] () ami)> + O(A?)
1=1 =1

(23)

Now, we know that Eq. (19) is true for £k = 1 from Lemma A.1. Assuming that it holds for the first k&
steps, we will show that it holds for the (k + 1)*" step too. Using Eq. (11), we can write:

- _ - _ 1, - o -
Liye41] = LIDr] + (Ve L[W], D1 — D) + 5 (Why1 — W, Vo LW} (Wh 41 — @)

= L[wg] + O(At?)
k
<Vw£[wk} + Viﬁ[wk] (Z (b; + Jﬂ%)) At, —Vwﬁ[’lz}k] +bi+1 + Jk+1ﬁk+1> At

im1
1 - . - N
+3 (=VwL[Wk] + brt1 + okiir1, Vi Llwi] (= Ve L[Wr] + brgr + Opp1fng1)) AL

Imposing the independence of the noise statistics and ignoring higher order terms, i.e. O(At?), we
get to our desired result:

By g.ip o [L[@k11]] = By gy [C[04]] — |V L[wr] | At

+ 5 (Vallwe], V3 Ll Ve Lfuon]) Ar°

 (besr, Vo Llwi]) At + % (bisr, V2, Ll lbeg ) AP

— 5 (B, (V3Llwn] + Vi Llwn] ) Voo Lfun]) AP
1ofn JV) o

2 2
5N (V2 Llwy]] At
k
+ ( VaLlwk] | D b | i1 — 2V Llwy] ) AP (24)
j=1

Now, using Eq. (19) for the k*" step and using the relation that £[wj, 1] = Lwy]— ||V L]wy ]| At+
3 (VwLlwg], V2, Llwi] Ve Llwy]) At?, we get the desired relation for the (k + 1) step. O

A qualitative description of the effect of bias: The impact of bias across iterative optimization can
be thought of in three key scenarios: (1) the network converges to the same loss basin as gradient
descent but the bias alters the specific steady state; (2) bias alters the network training trajectory
to the extent that it converges in a loss basin that is different from what gradient descent would
converge to; (3) the overall effect of bias hinders network training to the extent it becomes unstable
and performance collapses.

In the first case, we can suppose that either the bias is relatively small, or, generally speaking, there is
not a strong correlation in the degree of misalignment between the bias vectors and the gradient and
Hessian over K steps. In this case, the bias will have an impact that is similar to that of the isotropic
noise, and the ultimate result can be understood from a steady state perspective. Notably, at the
steady state, the bias would balance the gradient, thereby causing the expected weight change to be 0.
Assuming a second order approximation of the loss basin, the bias in the gradients would imply an
excess loss of %b?H b; as compared to the minima of the loss basin, which is where gradient descent
would have converged to. This would result in minor degradation in performance, as shown in Fig. 1
for lower bias values.

The second case is complicated and ultimately requires further learning rule specific assumptions.
Given that our goal in this paper is to remain learning rule agnostic, we can only say that this case
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would occur when the bias vectors have a semi-structured relationship to the gradient and the Hessian
that pushes the weight updates in very different trajectories compared to gradient descent.

The third case would result from either excessive bias or a very strong relationship between the K
bias vectors and their product with the gradient or the Hessian. Thus, we can say that learning rules
with very strong or highly systematic bias may not converge.

Additional assumption on loss function in Theorems A.3 - A.5: Below, we prove the relationship
between network width, depth or non-linearity and the impact of noise on learning for the mean
squared error loss. Although we do not prove the result for general loss functions, we believe that our
proofs present an outline that other researchers can leverage in future work to extend our results to
other loss functions, based on their specific application, and thereby extend our results to guide their
network design choices.

Theorem A.3. [f(N) = O(1) case] Increasing depth lowers impact of variance For linear
feedforward ANNs, the impact of variance on AL(0,0?), for a (L + 1) layer network is less than
that of a L layer network, i.e.

AE(Ov 02)(L+1)7layer S A‘C(O7 UQ)L—layer (25)

where each layer has d units and weights initialized by the Xavier initialization strategy and the total
variance in gradient estimates does not grow with the size of the network, i.e. f(N) is some constant

Proof. We will first show the theorem holds for L = 1, i.e. the impact of variance on a single layer
neural network is more than that of a two layer neural network For the sake of simplicity, we assume

L to be the standard mean squared error loss, i.e. £ = \DI Zn 1(Yn — 9n)?, where §,, denotes the

output of the neural network and D = {(z1,y1), (2, y2) ... (X, yn)} denotes the training dataset.
Note that for mean squared error, Vf}n L = 2. We assume that there is no bias term in determining

D]
the unit activations.

Let us denote the weight matrix of a single layer network as W € R such that §,, = > Wity
Thus, we can use the chain rule of differentiation to infer:

VWA»C = Z(V%E)xnk
W L= (V5 L)

Hence, Tr[V2,L Z v2, = | Z a2, (26)

Let us assume that x is 1.i.d. and normalized to have zero mean and unit variance in all dimensions, i.€.
\%I >, x2, = 1. Therefore, fora L = 1 network: Tr[VZ L] = 2d. Let us denote the weight matrices

of a two layer network as W1 € R4*? and W) € R¢ such that ,, = Z W(Q)W(l)acn] Again,
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using the chain rule:

VoL = Z (VL) Zw,gy%)
Vi £ = (V5,0 ZWéi’xmz
J
Vi £ = Z(v@nc)w,g%m

Viv;pﬁ = Dvénﬁ)(W,?’xm)?

Hence, Tr[VZ L Z A (2)[' + Z V?,Vu)ﬁ
ki

Z yn Z(Z Wlijl')xnj)z + Z(Wéz)xnl)Q
ko k.l

k
zn,k@-w,i-)xm 2 )
SR DRI ] Z i+ iy O o
n k n

= ] 2 | oW + z<w,s2>>2z<xnz>2}
n l
(
R}

(p+ Z wH)?) Tr[v2 c]l,layer [From Eq. (26)] 27)
Zn,k(zj kj an)
where, p= 5
Zn,l Tnl

Now, we assume that all weights are initialized according to the standard Xavier initialization strategy,
ie. By (W)1'] = Bw (W] = 0 and Bw [(W}))?] = Bw[(W,*)?] = §. Thus, 2, (W”))? ~
1 where the approximation is stronger for larger values of d. Similarly, Zj’ k(Wj(,i))Q =~ d. Now, we
can use the dot product inequality to simplify p:

Sk (5 Wiy w0i)? S (5, W) 5, ()2
Y oni T N D oni T
= p <D (W) = d
J,k
= p+ > (WP <d+1
k

Therefore, from Eq. (27) Tr[vi,ﬁ]Z—layer =(p+ Z(Wém)z) Tr[Vi,Ch—layer
k
< (14 d) Tr[VZ L) —tayer (28)

Also, note that by applying the above relations, we can write for a L = 2 network: Tr[VZ L] =
2d(p + 1) < 2d(d + 1). Now, the impact of variance, AL(0, o2), on a 2-layer network depends on
the term % ’IY[V?U Lo layer» Where N = d + d? is the total number of parameters in the network.

Similarly, the impact of variance on a 1-layer network depends on the term % Tr[VZ, L)1 —1ayers
where N = d. Therefore, extending inequality 28:
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1 1+d
AE(O, UZ)Q—layer = m Tr[vzuﬁb—layer < d+ d2 Tr[vi,ﬁh—layer
1
— A£(07 0-2)27laye'r S g ’I‘r[viyc]lflayer = A‘C(O; Uz)lflayer
HCHCC, A£(07 0-2)27layer S A£(07 UQ)lflayer (29)

We can extend this result to compare L layer networks to (L + 1) layer networks. Notably, a L layer
network can be thought of as a single-layer network operating on a (L — 1) layer network and a
(L +1) layer network as a two-layer network operating on an equivalent (L — 1) layer network. Using
the above result, we can therefore conclude that AL(0, 02)(L+1)_layer < AL(0,0?) p—jayer- O

Theorem A.4. [f(N) = O(N) case] Increasing width over depth lowers impact of variance For
linear feedforward ANNs, the impact of variance on AL(0,a?), for a (L + 1) layer network with d’
units in each hidden layer is more than that of a L layer network with same number of parameters, N
when f(N) grows linearly with number of parameters if d' < d?, where d is the input dimensionality.

Proof. When f(N) = O(N), the impact of variance of AL(0, o?) can be written as:
1
AL(0,0%) = 502 Tr[V3, L] At

and therefore, only depends on the trace. Similar to the proof for Theorem A.3, we will first show the
result holds for L = 2 and extend it for any L. As before, we assume that x is i.i.d. and normalized to
have zero mean and unit variance in all dimensions, i.e. I%\ Zn xfu = 1. Furthermore, we assume

that the weights in all layers are initialized to maintain this zero-mean and unit-variance property

n ni
constraints on the weight matrices as show below:

in each hidden unit, i.e. |D‘ > h () = 0 and |D| >on (h(l ) = 1. This property imposes certain

1 2 1 _ _
HZ(hSD =1= ﬁz ZWi(jl)hgj K \D| ZZWU W(l ] )hgk Y
n n J
_ Z W(Z)W(l) [ | Z h(l 1)h(lk 1)‘|
‘ D n
jk

= 1= Z (Wi(;)) [i.i.d. assumption on h(lfl)] 30)
J
2
Therefore, ), y (Wfﬁ) =>.1= d®, where d*) is the output dimensionality of layer I.

Using these relations and the results from the proof of Theorem A.3, we can write the Trace for

a 2-layer network with input dimensionality as d, hidden layer dimensionality as d and output
dimensionality 1 as:

i=1 =1

g forlltes
d (3D

Similarly, the Trace of a 3-layer network with input dimensionality as d, hidden layer dimensionality
as d’, with weights of each layer being i.i.d. with respect to other layers, and output dimensionality
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as 1 as:

TV Chrotaer = 1y 2 |32 (17) + 32 (W) (1))
n ij

K3

2

2
(S
J

%

=d +d +

7

Z (Wi(?)))?] Z <Wi(]?)>2 [“; _ xik] [i.i.d. weights]

S

=2d' + dd’ (32)

Now, number of parameters in the 2-layer network are: (d x d) + (d x 1) = d(d + 1); and number of

parameters in the 3-layer network are: (d x d') + (d' x d') + (d’ x 1) = dd’ + (d')? + d'. For equal
~ 7\ 2

number of parameters in both networks, d = d’ + %. Therefore, the trace of the 2-layer network

can be equivalently written as: Tr[VZ Llo_jqyer = d' + % + d. Solving for the condition when

the wider 2-layer network has a lower trace than the 3-layer trace, we get to the desired conditions,

i.e. d < d?. Moreover, if the networks are extremely wide, i.e. in the regime where the hidden layer
dimensionality d’ is greater than d?, then the trace of the deeper network will be lower. O

Theorem A.5. ReLU lowers impact of variance Let ¢(.) denote a threshold non-linearity function.
The impact of variance on AL for a network with such non-linearities is less than that of an equivalent
linear network, i.e.

AL(O, 02)45 < A£(07 U2)Linear (33)
where the gain of ¢(.) is less than or equal to I (e.g. ReLU).

Proof. We will show this result for a two layer neural network but the result holds for other cases too.
Let W) € R4 and W) e R? denote the weight matrices for the first and second layer respec-

tively. As above, we assume for sake of simplicity that there is no bias term in determining the network

activations. Therefore, the output of the network can be expressed as: i, = »_; ; WZ-(Q)WZ-(]-I):UM

for a linear network; and §,, = > i Wi@)gb (Z j Wi(jl)xnj> for a network with the aforementioned

threshold non-linearity. We used the chain rule to derive an expression for the trace of the hessian for
a two-layer linear network in Eq. (27). Similarly, using the chain rule we can compute the trace of
Hessian for the non-linear networks:

VoL = S Vi o) [ S Wi,

J

1
Vi L= > (V2 L) Z Wi,
n J
VL= (Vo OWD | S Wil |«
wi n k kj Tnj nl
n j

Vi€ =22(V5,0) W ( 3oWiians | aw | (Assuming ¢ () ~ 0]
n J

2 _ 2 2
k k,l
2 2

=S V20 1Yo S Wil | 3 w2 [ S W | v (34)
n k J J

k,l
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For a threshold non-linearity with gain < 1, ¢(z) < z and ¢'(z) < 1 Vz € R. Using these two
relations, we can further simplify Eq. (34):

2
V2Ll < SV2.0 (S [ Sl |+ (W)
n J k.l

2
Plugging in the expression of Trace from Eq. (27):
Te[V3, Ll < Tr[Va,LlLincar
= AL(0,0%)y < AL(0,0%) Linear 35)
The above relation can be easily extended to other network architectures to complete the proof. [
Note on commonly used non-linear activation functions: By construction, ReLU fits the definition
of ¢ and therefore, the above theorem holds. However, the conditions that ¢(z) < z and ¢'(z) < 1

are not satisfied by Sigmoid non-linearity. Due to its non-zero offset, i.e. for zero input the activation
function returns 0.5, the first condition (¢(z) < z) is not satisfied by the standard Sigmoid function.

Theorem A.6. The impact of bias on AL grows linearly with the norm of the gradient.
1
AL(D,0) = §b2QAt2 + b|| Vo L[w(t)]|| PAE (36)

where P, Q) are terms that are independent of the norm of the gradient,

YV Llw(t)]]|

Proof. Since the impact of bias and variance are decoupled, we can study each of their impacts
independently. Therefore, we look at the expression in Lemma A.1 for some bias value b and variance,
o=0.

Eq [AL(,0)] = b (VuLlw(®)], B) &t + 257 (B, V2 Llw(n)] ) A7
_ %b (Ve Llw(t)], (V2,Llw(D)] + V2, Llw(0)]7) B) AL

1
= ¥ (B, V2,Llw(t)] B) AL + b]|V. Lluw(t)]| PAL (37)
(38)
where, P = <€w\£, ﬁ> -3 <€_\w£, (VZ,Llw(t)] + Vfuﬁ[w(t)]T)H> At and V., £ denotes the
unit vector along the gradient. It is clear that P is independent of the norm of the gradient and only

depends on the direction of the bias vector, the gradient of the loss function and the eigenvectors of
the loss Hessian. O

Theorem A.7. Noise helps avoid sharp minima The sufficient condition under which noise prevents
the system from descending the loss landscape, i.e. Llw(t + At)] > Llw(t))], is

2 1
M2ZANZ o % (39)
1+

(e2z1)

where A1 > Aa... > Ay denote the eigenvalues ofVi,E around the minima.

Proof. For sake of brevity, we assume that the bias in gradient estimates is 0 and focus only on the
effect of variance. We start the proof by recalling the Taylor series expansion from Eq. (11). It is
clear that while following the true gradient:

1
[£fw(t+ A1) = L0 piasmovarm) =~ VwlIPAt + 5 (Vi £, V2LV L) A2 (40)

Using Lemma A.1 and Eq. (40), we can write the expected decrease in £ in one weight update step
(with 0 bias and o2 variance) as:

2
(ot + 80)] ~ Llw(®)] 2 = ~ IV LI?At+ (<vwc, VALVul) + % Tr[vfua]) A
1)
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We note the following inequalities from linear algebra which will be useful in proving the result:
AN VwLl|? (VWL VoLV wL) < A\ ||VwLl|?
1
Avs S IVLL <M (42)

Using the relations in ineq. 42, we can lower bound the change in £ from Eq. (41):
1
Llw(t + At)] — Llw(t)] > —||Vwl| At + 5 (AN VwL|? + o®An) At? (43)

In order to understand the conditions under which a weight update step causes an increase in £, we
focus on the conditions when L{w(t + At)] — L[w(t)] > 0. As such, if the RHS of inequality 43 is
greater than 0, then the weight update step necessarily implies L[w(t + At)] > L[w(t)]. Therefore,

1
—IVwL|?At + 5 W[V L|? + 0?Ay) At >0
2 1

AN 2 = (44)
Aty (

VLl )
Similarly, we can upper bound L[w(t + At)] — L{w(t)] and set the upper bound to be less than or

equal to O in order to study the sufficient conditions under which the weight update step leads to
decrease in the loss function.

Llw(t+ At)] — Llw(t)]

IN

1
— | VwL|?At + 3 (M| VL] + 02M) A2 <0
2 1

—_ N -
At (ro2gy)

IN

(45)
O

Theorem A.8. Bias prevents descent into local minima dependent on Hessian spectrum. Bias in
gradient estimates could prevent converging to a minima. Specifically, the sufficient condition for the
weight updates to produce a decrease in L when using a biased estimate of the gradient is:

b 1 2 1 1
— < — N —_ 46
VWLl = VN 1+ At + /T+ 4pAL+ A2 VN (1+ S9At) (46)

where ¢ = Zi )\?, i.e. the Frobenius norm of the loss Hessian, and A1 > Aa... > Ay denote the
eigenvalues of V2, L around the minima and V2,L is a normal matrix.

Proof. For sake of brevity, we assume that the noise in gradient estimates is 0 and focus only on the
effect of bias. We start the proof by combining Lemma A.1 and Eq. (40) to get the expected weight
decrease in £ in one weight update step (with bias=b and no variance):

Llw(t + At)] — Llw(®)] = — | Ve £l2At + % (VL V3LV L) A2 4 b (Vo B) At
+ %bQ (B.V%LB) AP - %b (VL. (V3L + V2LV B) A2 @47)

Furthermore, we denote the eigenvalues of the Loss Hessian, i.e. Vfuﬁ, around the minima as
A1 > A2... > Ay and the corresponding eigenvectors as vy, Vo...vy. Assuming V2 £ is normal,

we can express V., L and in the basis space of {vy,1s..un}, ie. V£ = >, a;v; and
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H = >, Biv;. Using standard results from linear algebra, we can write the following expressions:

(VL , VELLY L) = Z Nia?
(VuL, B) = Z ail;
(B.928) = Y0t
(VLo (V3L + V%L B) = <vw,c, VLAY + (VoL V5L B)
— (VL. V3LB) + Vo, LTV2LT 3
= (VL VLB + (V2L L, B)
=23 Naif; (48)
Plugging in the relations from Eq. (48) into Eq. (47), we get:

_ 2 1 2 2
Llw(t + At)] = Llw(t)] = —[|VwLl|*At + 5 Z NaZAE? + bZaiﬂiAt

1 2 2 2 2
+ 50 Zi:wim —bzi:)\ialﬂiAt

A
= —|VwL|?At + 7’5 D (Niof At 4200 8;(1 — X At) + b2 AtBY)

i
(49)
We can factorize the quadratic in the second summation term as follows:

Nie At + 2b0; Bi(1 — N At) + Nb2ALBE = af (MAL + 2v;(1 — N At) + N Aty?)

bB;
where, ~; = bi
Q;

—(1 = NAY) £ /1 —2)NAt

The roots of the quadratic are:

XAt
Assuming small Ir, i.e. \;At << 1 and using the relation: (1 + )" ~ 14+ nx when|z| <<1

—(1 = XA £ (1 — $2),A8)

The roots are:

A AL
1—NAE
Therefore, th ts are: 22—
erefore, the roots are: 0, VAL
9 9 9 9 1— NAt
So, )\iai At + 2balﬂi(1 — )\iAt) + \;b Atﬁl = MDAty | v + ZW
= bﬂz(bﬁfL)\zAt + 20[2‘(1 — )\zAt))
(50)
We can further impose the dot product inequality to bound the summation term in Eq. (49):
D O Nief At + 260 Bi(1 — NAL) + MbPALEE =D (b (bBNAL + 20,(1 — AiAL)))
< \/Z b%}\/Z(bﬁiAiAt +20,(1 — \AD))?
Using the norm relation: HBH2 => B =N
D XA AL+ 2b0iBi(1 — NAL) + NbPALET < bVN[[DALG + 26 — 24t (51)
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where ¢; = [MB1 AfBa .. ANfi ] G o= [ ay .. a; )" and (5 =

[Mar Aoz ... Ao, ]T ‘We can bound the norms of each of these vectors to further bound
the RHS of inequality 51:

Gl = \/Z B < \/Z Af\/ZBE _ VN

lell =\ [ a? = IVwLl

1G] = \/Z Na? < \/z A%\/Z 02 = || VL] (52)

where ¢ = />, A? = || V2 L| p, i.e. ¥ is the Frobenius norm of the loss Hessian. Applying the
triangle inequality and ineq. 52, we can upper bound the expression in inequality 51:

[bALG + 2¢2 — 2AtGs || < DAL G| + 2/ G| + 2A¢| G5l
< DAYV N + 2|V £ + 2At0|| Vo L]
D (Ao At + 2ba;Bi(1 — MAL) + N A7) < bV N(WWALYN + 2| Vo L] + 20 At Vo £]))

i

D (Ao At + 2baiBi(1 — NAL) + N2 ALY < BYALN + 20V N[ Vo L[| (1 + ¥AL)  (53)
Plugging inequality 53 into Eq. (49), we can upper bound the change in L.
At
Llw(t + At)] — Llw(t)] < —|| VW L|PAt + 7(b%pAtN + 20V N ||V £]| (1 + Y AL))

2 2
o Clw(t+ AY) = Lw(t)] < — [V L|2AL + [V LoV N AL + wAL) + LA

(54)

To derive the conditions when £ will necessarily decrease upon one step of weight update, we can
set the above upper limit to be < 0, implying that L[w(t + At] < L]w(t)]. Therefore,

2Ny At?
Ve LlPAL + |V £|[bVNAL(L + pAL) + + <0
2Ny At?
— QUIVWL]) = [VullPAl — [Vu Ll NALL +pa) — 02 50 (s5)

It can be clearly seen that Q(0) < 0 and @ is an upward facing parabola. Therefore, one of the roots
are negative and the other positive. Since ||V, £|| cannot be negative, the above condition can only
be satisfied iff:

bW NAL(L + PAL) + /ENAL(1 + pAt)? + 202N At3
2At

1 At 1+ 49 At 2At2
IVul| > b/ N LT YAV : vAt+Y

Again, using the relation: (14 2)" =~ 1+ nz when |z| << 1

IVw L] =

V14 WAL+ 2A82 ~ 1 + %(4¢At +2A8%) ~ 1+ 20AL

Therefore, ||VL|| > bV N(1 + ;/;At)
b 1 1
= o S =3~ (56)
VLl = VN (14 59At)
O

Tightness of Bound: One of the key inequalities used for proving Theorem A.8 is the dot product
inequality. It is well known that the dot product inequality is weaker for high dimensions, specifically
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because two random vectors in high-dimensional space are more likely to be orthogonal, i.e. their
dot product is ~ 0. This is also reflected in Fig. 8 where as the number of dimensions increases, the
bound in Theorem A.8 becomes a weaker. Therefore, even though we have a sufficient condition
that produces a decrease in £, it may not accurately reflect the conditions under which £ can
decrease almost always. To derive these conditions and derive a more stronger bound, we turn to
the probably approximately correct framework and concentration inequalities. The concentration
inequality for dot product in high dimensions states that for unit vectors X , Y in N-dimensional

space, <X , Y> concentrates around \/iﬁ Therefore, we can assume that with very high probability,

<X ,Y> < 4—\/@ = 41N. Incorporating this into inequality 51:

D O NaFAL+ 260 Bi(1 = NAL) + NDPALET = (bBi(bBNAL + 205(1 — N AL)))

= \}N\/Z b25?\/zi:(bmim + 20;(1 — \;At))2

(57)
Following the rest of the proof as above, we can add a correction factor of v/ N in the final inequality.
Therefore,
VN
IVwL| > bV N (1 + (1 + 2) 1/)At> (58)
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Figure 8: Empiricial verification of Theorem A.8 for increasing dimensionality of parameter space.
Black dashed line indicates the bound in Theorem A.8 and Gray dashed dotted line indicates the
probably approximately correct bound that offers a stronger condition for higher dimensions. (A) 1
dimensional parameter space; (B) 5-dimensional parameter space where the probably approximate
bound satisfies the loss decrease condition with &~ 95% probability; (C) 25 dimensional parameter
space where the black line is a weak bound; (D) 100 dimensional parameter space where the gray
line is a stronger bound for decrease in L.
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B EXPERIMENTAL DETAILS

All experiments were implemented using PyTorch 1.10.2 (license: https://github.com/
pytorch/pytorch/blob/master/LICENSE). For all experiments, the direction of bias was

chosen to be along the direction of vector T) for simplicity. However, this choice is not a necessity
for our experimental results and merely a design choice. Note that our theoretical results are generic
enough for any bias direction. Furthermore, for Figures 3-7, torch DoubleTensor was used, which
allowed for float64 level of precision (resolution ~ 2.22e-16). Implementation details pertaining to
each figure are presented below

B.1 FIGURE 1

A VGG-16 (initialized with ImageNet-pretrained weights) was trained to perform object recognition
on the CIFAR-10 dataset using the Negative Log Likelihood loss function. Each update entailed
computing the gradient over the entire dataset, instead of using the more commonly used stochastic
gradient descent. This procedure is more commonly known as the full-batch gradient descent. Some
amount of bias and variance was added artificially to the computed gradient before making updates.
The amount of variance and bias were chosen to be a function of the gradient norm, such that at
each step the ratio of the net variance and/or bias to the gradient norm was constant. We plot the
performance degradation/improvement corresponding to this fixed variance and bias ratio in the
colorplot. Note that we performed a sweep over different variance and bias ratios in order to generate
the 2d colorplot. The standard SGD optimizer from PyTorch was used and the optimizer step was
called at the end of each epoch to use the full-batch gradient for updates. Hyperparameter values
for training are as follows: epochs = 50, learning rate = 0.02, weight decay = 0.0, momentum =
0.9, batch size = 5000. Each bias and variance configuration was run for 3 seeds and accuracy
values were averaged over these 3 seeds for plotting. The training was run on an RTX8000 gpu
and accelerated using the ffcv library (Github repo: https://github.com/libffcv/ffcv,
License: https://github.com/libffcv/ffcv/blob/main/LICENSE) and each run (1
seed) took approximately 10 minutes.
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Figure 9: Figure 1 from main text plotted in Spectral colormap. Train and test accuracy of a VGG-16
network trained for 50 epochs (to convergence) on CIFAR-10 using full-batch gradient descent (with
no learning rate schedule) with varying amount of variance and bias (as a fraction of the gradient
norm) added to the gradient estimates. These results (avg of 20 seeds) indicate that excessive noise
and bias harms learning, but a small amount can aid it.

B.2 FIGURE 3

We ran multiple repeats to sample different noise vectors, typically 20. However, to ensure that the
mean of the sampled noise vectors was 0, we artificially sampled an additional noise vector such that
the sum of all sampled vectors was 0. This procedure ensured that the bias in gradient estimates was
0 and we could observe the impact of variance, independent of the bias. We observed that this is a
feature of finite sampling and if we increase the number of noise vector samples, the sample mean
reduces. However, in line with time and compute budget we added this artificial sampling technique.

(A) The teacher network was set to be a single linear layer mapping the input to output. For the
student networks with varying width in the hidden layer, the first layer projecting the input to the
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latent space is kept fixed and initialized such that the variance of the input is preserved. The weights
from the hidden units to output are learned using gradient descent. Decreasing the width below the
input dimension also proportionally reduces the variance and therefore trace of the hessian reduces.
This results in no change in the AL when width is less than the teacher width.

(B,C) The teacher network was set to have 4 hidden layers with ReLU non-linearity. The student
networks were allowed to have varying depth and width in each layer. The width of all layers was set
to the same value. For each configuration, a linear and a ReL.U student network was run.

All these experiments were ran on CPU and took a couple of hours. For each configuration, 20
different teacher initializations and 20 different student initializations were used, thereby indicating
results averaged over different datasets and ANN initialzations.

B.3 FIGURE 4

Similar to Figure 3A, these experiments were ran on a linear teacher and student network to validate
the relationship between AL and bias. For each experiment some bias value was set and the bias
vector was artificially added to the gradient vector. Each experiment entailed setting the teacher
weights to a random configuration and using different such configurations, typically 20. For each
teacher configuration, we ran multiple seeds, typically 20, to simulate multiple student network
initializations. For each seed, we trained a control network for 10 epochs in order to efficiently
sample parameter configurations exhibiting wide range of gradient norm. All these experiments were
ran on CPU and took around an hour.

B.4 FIGURE 5

The teacher network was a VGG-19 configuration trained on the CIFAR-10 dataset to achieve 92.6%
accuracy.

(A) For each student network configuration, ImageNet-pretrained and random initialization weights
were used. The last layer was re-initialized to have 10 output units as opposed to the typical 1000
units. Each experiment entailed training the student network to match the teacher outputs for 10
different seeds, i.e. student initializations. For each seed, the student was trained for 5 epochs to
sample a wide range of gradient norm. For each update step, 20 random vectors were sampled to add
noise to gradient. The norm of the vectors was chosen such that the variance in gradient estimates is
20. Similar to Figure 3, the artificial sampling correction was used to ensure an unbiased gradient
estimate.

(B) Downsampling indicates reducing the width of network by the downsampling factor. The number
of channels in the convolutional layers was reduced by the downsampling factor and the number
of units in the linear layers (except the final output layer) were reduced by the downsampling
factor. Since these are alterations to the VGG configurations, no ImageNet pretrained weights were
available. Hence, only random initializations were used. Same procedure as above was used for each
experiment.

Each experiment was run on an RTX8000 GPU and required 10 GB RAM. One experiment took
around an hour and multiple experiments were run in parallel on the institute cluster. Note that there
was no observed relationship in AL and gradient norm in any of the experiments.

B.5 FIGURE 6

Same procedure as above but did not require random sampling of noise vectors. Instead, a constant

vector along 1 was added to the gradient such that the amount of bias in gradient estimates is
b =0.02.

B.6 FIGURE 7
All experiments were run on a linear network setting. For each experiment, the Hessian of the

(MSE) loss function was changed by altering the covariance matrix of the input. To compute the
empirical likelihood of descent, we sampled different student network initializations (here 100) and a
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weight update step was performed with respective variance or bias values. For each such update, we
counted the number of updates that led to a decrease in the loss and finally divided this number by
the total number of updates performed in the experiment, thereby yielding the empirical likelihood of
descending the loss landscape. We also ran this process over multiple teacher network initializations
(here 10). It is worth noting that for the case of noisy gradients, we followed similar suit as described
in experimental procedure for Fig. 3 to ensure that the amount of noise added was zero-mean and the
mean decrease in loss was measured.

(A,B) Similar noise vector sampling procedure was employed and the amount of noise to gradient
norm ratio was fixed for all experiments. These experiments followed similar suit as Figure 3.

(C) Similar procedure as Figure 4. Although, here the bias to gradient norm ratio was fixed for all
experiments.

These experiments were performed on CPU and took less than an hour.

C DETAILED DISCUSSION ON RELATED WORKS

C.1 RELATION TO METHODS AND FINDINGS FROM RAMAN et al.

Our study is significantly motivated and influenced by the setup used by Raman et al. (2019). Despite
these strong links, there are certain distinctions in our approach that we elaborate on in this section.
In their setup, Raman ef al. assume the weight update step can be decomposed into a term aligned
with the gradient, a term orthogonal to the gradient, and synapse-intrinsic noise. They proceed to
derive the optimal network size, specifically width, beyond which learning on the training set is
impeded. Instead, in our work, we analyze the role of different architectural choices, like depth,
width, and nonlinearity, in mitigating the impact of variance and bias in gradient approximations on
both training and generalization performance. Notably, our setting can be used to understand both the
impact of intrinsic noise (see extensions to Theorem 2.2) as well as gradient approximation noise on
the network performance.

C.2 RELATIONSHIP TO STOCHASTIC GRADIENT DESCENT AND DROPOUT

Deep learning pipelines rarely use the true gradient of the loss function over the entire dataset to
make weight updates. Instead, it is common practice to add noise in different forms, e.g. mini-batch
stochasticity (Bottou, 2012), dropout (Srivastava et al., 2014), dropconnect (Wan et al., 2013) and label
noise (Blanc et al., 2020; HaoChen et al., 2021; Damian et al., 2021). Although the noise structure
may differ from assumptions in our work, our analytical results can be extended to incorporate the
specifics in each case and understanding its impact on learning dynamics.

For stochastic gradient descent (SGD), the noise in gradient (under small learning rate) is unbiased.
Although SGD does not exhibit white noise structure, several analytical and empirical studies have
used white noise structure to model SGD dynamics, and concluded that the SGD noise acts as a
regularizer against converging to sharp minima (Foret et al., 2020; Chaudhari et al., 2019; Yao et al.,
2018; Ghorbani et al., 2019; Smith et al., 2021). Furthermore, it has been shown that anti-correlated
noise injection improves generalization (Orvieto et al., 2022). Moreover, some studies have leveraged
Langevin dynamics to understand the learning trajectory under noisy weight updates (Murray &
Edwards, 1992; Rognvaldsson, 1994). Taken together, these results are in agreement with our analysis
of variance in gradient estimates and therefore indicate that our work has far reaching consequences
in understanding gradient-based learning. Similarly, dropout can be thought of as adding noise to
the credit assignment pathway. However, dropout involves turning off a random subset of units
in the network and each such configuration yields an approximation to the gradient, characterized
by some variance and bias with respect to the true gradient. For a truly unbiased estimate of the
gradient, one must compute an estimate of the gradient across all configurations, something quite
uncommon. Empirical results in the deep neural networks have demonstrated that dropout leads to
better generalization, albeit at the cost of slightly worse training performance. This result indicates
that our analysis of bias in gradient estimates is also relevant to understanding how different training
strategies affect gradient-based learning dynamics.
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C.3 A NOTE ON PRACTICAL APPLICATIONS

We believe that our work is an initial step towards understanding the impact of gradient approxima-
tions on learning and generalization and the role of network architecture choice in mitigating such
impacts. Notably, we believe that our work could provide guidelines for neuromorphic chip design by
suggesting possible network architecture choices as well as choice of nonlinearity when the properties
of approximation, i.e. variance and bias in gradient estimates, are characterized. Furthermore,
we believe that our work scopes out the knowledge landscape in computational neuroscience for
biologically-plausible learning rules and future work could aim to characterize popular learning rules
using this framework. Similar characterizations could be carried out in biological agents while they
learn to perform a task and therefore understand what regime of variance and bias exists in biological
circuits. In doing so, we believe we can better formulate learning rules as well as make testable
predictions about learning in the brain.
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Part V

Discussion and Conclusions
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Discussion

In the previous chapters, we have explored specific examples of how neuro-
science and Al can mutually inform each other. In Part II, we compared
representations in brains and ANNs, and found that both biological and ar-
tificial systems have scale-free representations. Inspired by this observation,
we used a neuroscience-inspired metric, a-ReQ, to quantify the represen-
tation geometry of ANNs, and demonstrated that this metric is indicative
of downstream performance for ANNs trained using self-supervised learning
(SSL). Next, in Part ITI, within such SSL models, we investigated the learn-
ing dynamics of feature learning. Using tools from deep learning theory, we
provided a normative understanding of how certain biological mechanisms of
learning affect the feature learning dynamics; the mechanisms we examined
include orthogonality constraints on neural activities (thought to be imple-
mented by inhibitory neurons [Giridhar et al., 2011, Duong et al., 2023]) and
multiple views for exploring novel objects [Antunes and Biala, 2012]. We
leveraged this understanding to improve the compute and sample-efficiency
of SSL pipelines. Finally, in Part IV we compared learning mechanisms in the
brain and ANNs, and analytically and empirically characterized how approx-
imating the gradient could affect learning and generalization in connectionist
systems. Moreover, we studied the impact of architectural design choices like
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size of the network and the activation sparsification non-linearity on mitigat-
ing the negative impacts of gradient approximation while still preserving
the benefits of noisy optimization, thereby providing a potential normative
explanation of certain architectural motifs in the brain.

Taken together, these examples demonstrate that experimental observa-
tions in neuroscience can guide the design of Al systems, while ANNs can
serve as a controlled experimental platform for gaining a normative under-
standing of mechanisms underlying biological intelligence. In this chapter, I
will present a broader perspective on the NeuroAl framework (Figure 1.1),
discussing some important caveats and challenges that act as roadblocks in
applying this framework. Finally, I will explore the broader implications of
the findings presented in this thesis and outline potential directions for future
research.

9.1 Is the framework sufficient?

Returning to the NeuroAl framework discussed in the introduction of this
thesis, the work I have presented thus far touched upon the learned repre-
sentations and learning rule axes of this framework. The same philosophy
can be extended to understand synergies between brains and ANNs for the
other framework pillars. Therefore, at this point, a reader might wonder: is
this synergy universal? As such, can we apply this philosophy readily and
uncover multiple aspects of intelligence? Can we leverage these insights to
uncover shared motifs of intelligence and improve Al systems in the process?

A key consideration of widely adopting the NeuroAl framework lies in
the open-endedness and subjectivity of this framework. A researcher adopt-
ing this framework has the flexibility to decide the abstraction level at which
they want to operate at, select the scope of the synergy they are interested in
exploring, and subsequently investigate the potential benefits that a particu-
lar observation might offer to support computations underlying intelligence.
Let us try to understand the challenges that come with every step of this
process.

First, let us consider the choice of the abstraction level. Brains are com-
plex systems, performing computations at various scales, ranging from whole-
brain to individual brain regions and neuronal populations to individual neu-
rons to subcellular compartments within neurons. While using connectionist
models like ANNs to model neural computations, the researcher is faced with
choosing the appropriate level of abstraction of neural computations they in-
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tend to model or draw parallels with. For instance, the term “neural represen-
tations” could correspond to very different physical substrates at each level of
abstraction. For studying whole brain activity, using methods like functional
brain imaging, representations correspond to average population activity of
a large number of neurons [Schrimpf et al., 2018]. For neuronal ensemble or
single cell activity, studied with electrophysiology or optical imaging, repre-
sentations could correspond to average activity of a few proximal neurons or
single neurons, depending on the recording technique [Azabou et al., 2023].
For cellular or subcellular activity, representations could correspond to mem-
brane potentials at different dendritic compartments within a single neuron
[Guerguiev et al., 2017]. It is hard to imagine a property that would be
preserved across representations at all these scales, and therefore could be
leveraged to improve Al systems or even build ANN models to study the
utility of such properties.

Understanding computations at each abstraction level requires deciding
on modeling choice followed by significant engineering efforts to build reason-
able models that can replicate the computations of interest. Consequently,
the uncovered shared principles of intelligence across biological and artificial
intelligence systems will be a function of the abstraction level being modeled.
As an example, consider the three chapters in this thesis. Part II leverages
property of representations at the level of single neurons in the mouse visual
cortex, while Part III also leverages observations about organism-level be-
havior. Despite its more theoretical flavor, Part IV discusses a problem with
credit assignment in the brain, and can potentially pave the way for future
studies aimed at understanding the role of dendritic compartments within a
single neuron in solving the credit assignment problem. While each chapter
lies at the intersection of neuroscience and Al in its own right, their implica-
tions are relevant for slightly different audiences. As a result, communicating
shared principles of intelligence require sufficient context that clearly indicate
the level of abstraction those principles are valid for, as well as explanations of
limitations. Unifying these principles across computational levels will require
ongoing efforts and represents a long-term goal of the NeuroAl framework.

A greater challenge is in selecting the scope of the synergy to be ex-
plored. Nervous systems in organisms are products of genetic, epigenetic
and cultural evolution [Jablonka and Lamb, 2006] — optimization processes
that take place across generations. Therefore, it is often unclear whether cer-
tain properties of neural systems exist to support computations underlying
learning during the organism’s lifetime (development), are products of evo-
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lutionary adaptation to some archaic constraints (evolution), or are simply
idiosyncrasies of the system (unrelated to function). Consider the example of
linguistic communication abilities, often used as a proxy for reasoning abil-
ities. It is unclear whether there are genetic predispositions or transfer of
epigenetic information that enable humans to specifically learn a language,
or whether it is learned by leveraging mechanisms useful for lifetime learning.
Moreover, it is unclear how mechanisms underlying language understanding
descended from previous non-linguistic communication systems that existed
in other species of the homo genus [Donald, 2019]. Of course, there is also cul-
tural transmission of linguistic information, especially during early childhood
where language learning ability in humans peaks [Gémez and Gerken, 2000].
As a result, studies aiming to draw motivation from how humans process
language to build better language understanding in Al systems face a signif-
icant challenge of identifying neural mechanisms that are actually useful for
language learning, per se.

A final challenge that is shared across many interdisciplinary fields is to
convince researchers working in the base fields of the utility of an intermin-
gling exercise. Traditionally, neuroscientists sought mechanistic models of
understanding computations in the brain — building up explanations of be-
havior by combining components at molecular, cellular, and systems level
of understanding. This is in contradiction to the promise of the NeuroAl
framework, which can offer normative explanations and needs to work at a
certain level of abstraction, often ignoring specific biological details at other
levels [Saxe et al., 2021]. On the other hand, Al researchers sought scalable
solutions that can be used to solve existing problems, which are often of a
targeted and specific nature. Unfortunately, biological inspiration might not
present the path for designing the most scalable solutions, whereas large-
scale engineering efforts have resulted in solutions [Gershman, 2024]. As
a result, the burden of proof of the utility to combine the two fields rests
on those seeking to explore this avenue. While doing so to understand the
shared principles of intelligence is a noble goal in itself, science is done by
people and people are embedded in society. Hence, it is imperative to care-
fully think of the potential offerings that this framework offers to existing
scientific disciplines and industry endeavors [Luppi et al., 2024].

While the challenges outlined here might paint a gloomy picture for widely
adopting the NeuroAl framework, it is worth emphasizing that the emergence
of connectionist models as the forefront models of intelligence is fairly recent
[Doerig et al., 2023]. As a result, the NeuroAl research program is still in
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its nascent stages. Like every other nascent field, it will mature with time
and carve out its own niche. With this optimistic perspective, I will discuss
potential broader implications of the findings presented in this thesis, and
how they might shape the trajectory of the field in the near future.

9.2 Representations in brains and ANNs

Our findings in Part II highlight that learned representations in ANNs, es-
pecially those trained using SSL, are scale-free, i.e., they have heavy-tailed
eigenspectra that follow a powerlaw. In Part III, we studied the learning
dynamics of SSL and showed that features learned in an SSL pipeline are
those that best match the data similarity kernel, that is in turn explicitly
defined by the data augmentations. Intuitively, the network learns a feature
space that matches the structure of the world, i.e. distance between two data
points in the feature space roughly matches how semantically different those
data points are [Zhai et al., 2024]. Consequently, a powerlaw in the eigen-
spectrum of learned features reflects the heavy-tailed nature of the stimulus
space. Moreover, our results show that the tail of the eigenspectrum gets
“heavier” (i.e. representations become more high rank) as learning proceeds.
A natural question that arises at this point is: what is being learned in the
tail?

Let us start by taking a closer look at our findings regarding the behavior
of the tail and the body of the eigenspectrum (here we use “body” to refer
to the top few eigendirections). Our findings from Part II indicate that this
information is indeed task-specific: the slope of the eigenspectrum decay is
indicative of the downstream task performance. On the other hand, our find-
ings from Part III indicate that the features corresponding to larger singular
values of the data similarity kernel are learned earlier during training, while
smaller singular values are learned later. Given that the body of the eigen-
spectrum, i.e. eigenvectors corresponding to the strongest singular values of
the data similarity kernel, is learned very early during training, the infor-
mation being learned by the body would be the coarse semantic structure
of the stimulus space indicating coarse-level distinctions in the world. Ex-
amples of such distinctions may include distinguishing between animate and
inanimate objects, or differentiating between outdoor and indoor background
scenes. In contrast, fine-grained semantic information, potentially indicative
of object identities or configurations (such as information necessary for in-
teracting with objects), would correspond to smaller singular values in the
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data similarity kernel, and therefore, are learned later during training. If
this fine-grained semantic information about the stimulus space is encoded
in the tail of the eigenspectrum of the feature covariance matrix, then net-
works that fail to learn the correct information geometry in the tail would
correspond to worse performance on downstream tasks. Indeed, our results
in Part III demonstrate that representations learned later in training that
have a “heavier” tail correspond to good performance on the object recog-
nition task. Therefore, for high-dimensional, scale-free representations, the
tail of the eigenspectrum, i.e. directions in the representation space that cor-
respond to lower variance, encode information that is useful for downstream
tasks.

While this finding may seem paradoxical to the reader at first glance,
there are certain benefits to using such a scale-free representation encoding
strategy. Firstly, a scale-free representation, characterized by a powerlaw
decay in the eigenspectrum, allows the network to learn different features
at varying scale. As a result, two inputs with slight differences will end up
being represented similarly, given that the difference between the inputs is in
a feature that is encoded in the tail. For instance, let us consider two images
of dogs, with slight differences in their fur colors in the image. The network
might represent both the images similarly, attributing the slight differences
in fur color to differences in lighting conditions. This property allows the
network to learn representations that are robust to certain noise statistics
in the inputs. Conversely, if such a difference is significant, the two inputs
will be sufficiently distinctly represented and potentially lead to different
downstream behavior. In our previous example, assume that the dog’s fur
color in one of the images is beige, and in the other, it is white. In this
case, the network might represent the two images differently, either indicat-
ing two different dogs or difference in the state of the same dog (clean vs
dirty), resulting in downstream effects of this difference in the representation
space. Therefore, a scale-free representation enables the agent to navigate the
fundamental tradeoff between efficiency and robustness, wherein the agent
needs to capture relevant information about the stimulus space without being
overly sensitive to observation noise (see [Stringer et al., 2019] for a detailed
discussion on the relationship between the slope of the power law and the
efficiency-robustness tradeoff).

At this point, an astute reader (potentially Ipcha Mistabra?) might ques-
tion the universality of such scale-free representations. As such, do all repre-
sentations need to be scale-free? The answer to that is not necessarily! Note
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that, in the previous paragraph, we were considering a system that learns fea-
tures that reflect the semantic structure of the stimulus space. Such systems
are committed to learning representations that are generic enough to support
a large variety of downstream behavior. However, this requirement might not
necessarily hold for functionally specialized systems that care about support-
ing only a few related behaviors [DiCarlo et al., 2012, Sorscher et al., 2022].
For instance, the face recognition area (fusiform face area) does not need to
learn features to discriminate the color of dog fur. Although such systems
still need to navigate the efficiency-robustness tradeoff to some extent, they
might not need scale-free representations to do so and may instead rely on
other strategies.

Another question that might arise from the Ipcha Mistabra is whether
this distinction between the body and tail is even necessary. Specifically, one
might argue that the distinction between the body and tail of eigenspectrum
is artificial, and we do not need tools to characterize them separately. There
are two key points to argue in favor of this distinction. First, the result
that the tail of the eigenspectrum contains information task-relevant infor-
mation, more so than the body, is key to explaining why low-dimensional
projections of high-dimensional representations are not useful to understand
a system’s behavior. It is important to note that low-dimensional projec-
tions, as done currently in most neuroscience and Al studies, preserve the
information in the body of the eigenspectrum (directions with highest vari-
ance) while losing the information in the tail of the eigenspectrum (directions
with low variance). While previous systems neuroscience studies have shown
this apparently-paradoxical nature of high-dimensional representations in the
brain [Gao et al., 2017], recent evidence from large language model studies
suggest the same for large-scale ANN systems [Friedman et al., 2023].

Second, the distinction between body and tail has significant consequences
on the topic of comparing representations across different intelligent sys-
tems. Specifically, common methods comparing representations across dif-
ferent intelligent systems compare differences in the kernel space of the net-
work (i.e. how are different stimuli represented in each representation space)
[Kornblith et al., 2019], and because these methods rely on the eigenspec-
trum body of the representation space, they are more sensitive to coarse
differences [Cloos et al., 2024]. Consequently, such metrics of representa-
tion space similarity will not be indicative of differences in the downstream
task behavior, compared to metrics that consider the entire eigenspectrum
(instead of just the body of the eigenspectrum). This point is empirically
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Figure 9.1: Metrics of representation similarity that capture the tail of the
eigenspectrum better reflect model behavior, compared to those that cap-
ture only the body of the eigenspectrum. (A) Image classification accuracy
of a ResNet-18 model pretrained using the BarlowTwins loss function on the
Imagenet-100 dataset, averaged over 5 seeds. (B) Spectral decay coefficient,
«a, of the learned representations across training, averaged over 5 seeds. (C)
Pairwise difference in representations, measured using correlation between
respective Representation Dissimilarity Matrices (RDM), and performance
across models trained using the BarlowTwins loss function (Pearson Corre-
lation coefficient, p = —0.474). Each point indicates the difference in rep-
resentation and downstream task performance between two models chosen
from the set of all ResNet-18 models trained for at least 40 epochs. (D)
Same as C, but using difference in « as a proxy to measure the difference
in the eigenspectrum tail of the representations (Pearson Correlation coeffi-
cient, p = 0.797). Error bars indicate standard deviation.

demonstrated in Figure 9.1, wherein we compare the representation space
of a ResNet-18 network trained using a SSL loss function, specifically Bar-
lowTwins [Zbontar et al., 2021], on the Imagenet dataset for 100 epochs with
another network trained for fewer epochs. While the representation similar-
ity metric (here, the RSA score), is very similar for networks trained for 50
epochs or more, the downstream object recognition performance is indeed
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different. Extending this to recent studies claiming a convergence of repre-
sentation spaces [Huh et al., 2024], it’s worth noting that since these studies
use common representation similarity metrics, they may be simply capturing
similarities in the eigenspectrum body and not necessarily the tail. Further
investigation is needed to understand whether this convergence is limited
only to the coarse structure of the learned semantic stimulus space or applies
to the entire representation space. Taken together, the distinction between
the body and tail of eigenspectrum is an important consideration in the field
of NeuroAl when comparing scale-free representation spaces, e.g. ANNs and
the brain.

9.3 Credit assignment in brains and ANNs

While ANNs traditionally rely on gradient descent to optimize their parame-
ters, Part IV demonstrated that effective learning and generalization is pos-
sible even with approximate gradients. This finding is particularly intriguing
when considering the biological brain, which lacks the computational ma-
chinery to compute exact gradients [Lillicrap et al., 2020]. It is important
to keep in mind that the brain’s credit assignment problem, i.e. the chal-
lenge of determining which neurons or synapses contributed to a particular
outcome, has been solved through a co-evolutionary process. Specifically,
the architecture and the credit assignment algorithms it employs have most
likely evolved together, with advancements in one enabling improvements in
the other. Therefore, understanding the neural circuitry, including the neu-
ronal morphology and connectivity structure among neurons, is thought to
be crucial for understanding the mechanisms of biological credit assignment.

Current proposals for credit assignment algorithms often overlook the spe-
cific architectural properties of the brain. However, recent advances in con-
nectomics, such as the detailed mapping of the fly brain [Schlegel et al., 2024],
offer valuable insights into the architecture of the neural circuitry of a sys-
tem. These insights about the architecture design space can in turn help us
characterize the nature of gradient approximations that would enable learn-
ing and generalization in an equivalent computational model. Researchers
in the field of NeuroAl are aptly situated to leverage these advances in sys-
tems neuroscience to develop credit assignment algorithms that are tailored
to the specific architectural properties of different neural systems. It is,
however, important to recognize that the co-evolution of algorithms and
hardware may lead to diverse credit assignment strategies across different
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species. Organisms with few levels of hierarchical processing, for example,
might employ distinct algorithms from those that have multiple levels of
hierarchical information processing. For instance, simpler organisms with
fewer hierarchical layers may rely on more local learning rules with access
to some global credit signals in order to optimize a behavior-related objec-
tive function [Bellec et al., 2020]. On the contrary, complex organisms with
deep hierarchies may leverage local learning rules to optimize different objec-
tive functions at different hierarchical stages, leading to distinct functional
specialization properties [Illing et al., 2021, Payeur et al., 2021].

From an AI perspective, the computational and memory cost of train-
ing large-scale ANNs using end-to-end gradient descent can be prohibitive
[Raffel et al., 2020, Ding et al., 2022]. Layer-wise local learning rules, which
lead to some approximation of the true gradient, offer a potential alternative
to end-to-end backpropagation with the promise of alleviating the computa-
tional burden. Recent advances in parameter and memory-efficient training,
such as LoRA [Hu et al., 2022] and GaLore [Zhao et al., 2024], have shown
promising results in fine-tuning large models without computing the exact
gradient for the entire model. By drawing inspiration from the brain, it
might be possible to discover novel credit assignment algorithms that are
both efficient and effective. Rather than focusing solely on better gradient
approximation algorithms, it may be promising to explore architecture-aware
algorithms that leverage the specific properties of a given neural network and
connect them to the structure of the loss landscape and its true gradients.
Such advances in understanding the loss landscape could lead to better gra-
dient approximation algorithms for the specific network architecture. This
shift in perspective could lead to significant advances in training large-scale
Al systems.

Taken together, the interplay between credit assignment algorithms and
neural architecture is a fundamental aspect of both brains and Al systems.
By understanding the principles underlying biological credit assignment and
applying such architecture-aware credit assignment algorithms to Al, we can
potentially develop more efficient and cheaper learning systems.
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Conclusion

In this dissertation, I aimed to present evidence in favor of the continu-
ing synergy between neuroscience and Al. Insights from neuroscience about
learning in the brain can help improve the design of Al systems. At the same
time, ANNs can be used as in-silico models of the brain, thereby acting as
a testbed to develop normative explanations for the computational advan-
tages of experimental observations in neuroscience. I also outlined a NeuroAl
framework for discovering these synergies at various levels of analysis, along
with specific examples of how such synergies can be explored under the pillars
of learned representations and learning rule. Finally, I presented limitations
and challenges regarding the universal adoption of this framework, yet pre-
sented a positive outlook regarding how the present thesis may impact the
future research directions in the field of NeuroAl.

While I do not hope to convince a reader to become a strong proponent of
NeuroAl at this juncture, I hope that the reader shares my optimism about
this synergistic relationship between neuroscience and Al to some degree.
A general skepticism about the extent to which this synergistic relationship
can shape the fields of neuroscience and Al is understandable, and indeed
necessary. I believe such skepticism is an essential component of the scien-
tific process, and such discourse will only help the field of NeuroAl progress
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towards its goal of strengthening the exchange of ideas across its two base
disciplines and accelerating advances in each of them. As Al becomes an
integral technology in science and society, I believe that it is likely that the
synergistic relationship between the fields of neuroscience and Al will also
continue to evolve, leading to groundbreaking discoveries over the next cen-
tury of science.
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