
~ ..

A Distributed Server Architecture
for

Massively Multiplayer Online Games

Nadeem Khan

Master of Science

School of Computer Science

McGill University

Montreal,Quebec

2006-08-31

A thesis submitted to McGill University in partial fulfiHment of the requirements
for the degree of Master of Science.

Copyright @2006 Nadeem Khan. AH rights reserved.

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-32729-6
Our file Notre référence
ISBN: 978-0-494-32729-6

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DEDICATION

This thesis is dedicated towards the effort for spreading peace and tolerance

among aH human beings.

11

ACKNOWLEDGMENTS

1 would like to thank my supervisor, Professor Bettina Kemme, for all her guid­

ance, ideas and continuing support throughout my research without which the com­

pletion of this thesis would not have been possible. 1 am grateful to my family and

especially my parents for their complete and undying love, support and belief in my

abilities and to whom 1 owe all my academic achievements. 1 would also like to thank

the entire Mammoth group and especially Jean-Sebastien Boulanger, for his valuable

input and assistance during my research. A special thank you to Omar, Miriam and

N amir for their friendship and moral support during the good as well as the difficult

times. 1 also want to thank the staff at the School of Computer Science help desk for

providing me necessary technical support to run my elaborate experiments. Finally,

1 would like to thank Prof essor Athena Voulumanos and Professor Kris Onishi, at

the McGill Infant Research Group for providing me an opportunity to work with

them which gave me the vital financial support during my stay at McGill.

III

ABSTRACT

There has been a tremendous growth in the popularity of Massively Multiplayer

Online Games (or MMOGs) with millions of players interacting in their virtual game

spaee at the same time. However, the eentralized server architecture of most modern

day MMOGs is unable to cope with this increase in the number of participating

players. Renee, there is a need for a scalable network architecture which can support

these large number of players without affecting the overall gaming experienee for

each player. In this thesis we propose a scalable distributed server architecture

which divides the virtual game space in smaller sub spaces and assigns them across

a cluster of server nodes thereby reducing the overall load per server. It is based on

a distributed publishjsubscribe architecture which takes care of client-server as weIl

as server-server communication. We discuss the implementation of this architecture

in a real MMOG and experimentally prove that it shows better scalability than the

centralized server architecture.

IV

ABRÉGÉ

La popularité des jeux en ligne massivement multijoueurs (MMOGs) a aug­

menté de façon phénoménale et ces espaces de jeu virtuel comptent maitenant des

milliers de joueurs qui interagissent en temp réel. Cependant, l'architecture cen­

tralisée des serveurs de la plupart des MMOGs modernes est incapable de supporter

cette augmentation constante du nombre de joueurs. De ce fait, il y a un besoin

pour une architecture réseau extensible qui peut supporter un nombre croissant de

joueurs, sans toutefois affecter leur expérience de jeu individuelle. Dans ce mémoire,

nous proposons une architecture serveur distribuée qui s'adapte pour supporter un

nombre accru de joueurs. Notre architecture distribue la charge globale du serveur

en subdivisant l'espace de jeu virtuel en plusieurs sous-espaces qui sont attribus à

différent noeux de réseau. Notre approche est basée sur une architecture distribuée

publication/souscription qui prend en charge les communications client-serveur et

serveur-serveur. Nous présentons l'implémentation de cette architecture dans le con­

texte d'un vrai MMOG et nous démontrons expérimentalement que le serveur dis­

tribué que nous proposons s'adapte mieux à une population croissante de joueurs

que le serveur centralisé.

v

TABLE OF CONTENTS

DEDICATION

ACKNOWLEDGMENTS

ABSTRACT

ABRÉGÉ ..

LIST OF TABLES

LIST OF FIGURES

1

2

3

Introduction .

Massively Multiplayer Online Games .

2.1 Introduction to Massively Multiplayer Games
2.2 Network Architecture ..
2.3 Int~rest Management ...
2.4 Introduction to Mammoth

2.4.1 The Game
2.4.2 Interest Management in Mammoth.
2.4.3 Software Architecture for Mammoth .

2.5 The Mammoth Network Architecture
2.5.1 Server Messages
2.5.2 Logical Channels
2.5.3 Communication Protocols .

Scalability via Distribution.

3.1 Limitations of the Client/Server Architecture.
3.1.1 Scalability and Latency
3.1.2 Effect of Latency on Playability .
3.1.3 The Scale of Present Day Games .

VI

11

III

IV

V

x

Xl

1

4

4
6
7
8
9

10
10
12
13
13
14

18

18
18
18
19

4

5

6

3.2 Efforts to Improve Performance . .
3.2.1 Multiple Game Instances ..
3.2.2 Mirrored Server Architecture
3.2.3 The Distributed Architecture .
3.2.4 Distributed server architecture vs. Peer-to-Peer based

approach

The Distributed Server Architecture - An Overview

4.1 Architecture
4.1.1 Overview......
4.1.2 Major Components
4.1.3 Administrative Components

4.2 Communication Protocol
4.2.1 The Challenge
4.2.2 Distributed PublishjSubscribe System .

4.3 Game Communication Protocols
4.3.1 Player Entry
4.3.2 Player activity within sub space . .
4.3.3 Player migration across sub spaces .

Implementation in Mammoth . .

5.1 Architectural Components
5.1.1 Server Nodes
5.1.2 Clients
5.1.3 Cluster Management with CAS.

5.2 Communication Mechanisms
5.2.1 Distributed PublishjSubscribe System.
5.2.2 Description of the publish subscribe system
5.2.3 Game State Retrieval
5.2.4 Player Migration - A detailed explanation .
5.2.5 Consistency during player migration and startup

Experimentation and Results ..

6.1
6.2

Introduction
Experimental Setup ..
6.2.1 Physical Setup .
6.2.2 Player behavior

VIl

21
21
21
22

31

34

34
34
35
37
39
39
40
42
42
42
42

44

44
44
47
49
51
51
51
56
57
61

65

65
65
65
66

7

6.2.3 Game Setup and Experimentation Technique
6.2.4 Measurement of Parameters

6.3 Single Server Experiments
6.3.1 CPU Utilization
6.3.2 Latency....
6.3.3 Bandwidth Utilization .

6.4 Distributed Server Experiments
6.4.1 CPU Utilization
6.4.2 Latency.
6.4.3 Bandwidth and Message Statistics

6.5 Effect of Varying Cluster Size

Integration into the Distributed Object Model

67
68
69
70
71
72
72
73
74
75
80

85

7.1 Introduction.......... 85
7.2 Publish-subscribe mechanism . 86
7.3 Implementation in Mammoth 87

7.3.1 Matching and subscription 88
7.3.2 Invalidation 88

7.4 CeU based distribution . . . 88
7.4.1 CeU Match Function . 89
7.4.2 Example 90

7.5 Integration of the distributed server architecture. 92
7.5.1 Sub spaces 92
7.5.2 Match policy 92
7.5.3 CeUs and the Cell Match function 93

7.6 Communication Scenarios 93
7.6.1 Scenario 1 - No ceU match 94
7.6.2 Scenario 2 - Cell match . . 95
7.6.3 Scenario 3 - Match Policy . 96
7.6.4 Scenario 4 - Player Migration. 96
7.6.5 Player Disconnection 98

7.7 Dynamic Objects . 98
7.8 Refresh Interval 98
7.9 FormaI Algorithms 99
7.10 Applicability of the distributed server architecture 103
7.11 Performance Discussion 103
7.12 AdvantagesjDisadvantages over the Mammoth PublishjSubscribe

Scheme 104

Vlll

8 Conclusion and Future Work 106

8.1 Conclusion....... 106
8.2 Future Work 107

8.2.1 Integration of Distributed Server Architecture in the Dis-
tributed Object Model 107

8.2.2 Load Balancing and Dynamic Sub Space Management 107
8.2.3 Fault Tolerance and Backup 108
8.2.4 Extension to Peer-to-Peer architecture. . 108
8.2.5 Wide Area Network (WAN) Experiments 109

References 110

lX

LIST OF TABLES
Table

6-1 Statistics for messages received from clients.

6--2 Statistics for messages received from other server nodes.

6--3 Player Migration statistics.

x

page

77

78

78

LIST OF FIGURES
Figure page

2-1 Client/Server Communication Paradigm 7

2-2 Interest Management using sub spaces 8

2-3 The Mammoth Game World . . . 9

2-4 Mammoth Software Architecture . Il

2-5 Logical Channels in the Mammoth Network Engine 13

2-6 Game Startup Communication Protocol . 15

2-7 State Update Dissemination 16

2-8 Player transition across static zones 16

3-1 A Generic Distributed Server Architecture 23

3-2 Flocking of players to a game hot spot 24

3-3 The Matrix Architecture 25

3-4 P2P Based Architecture 28

3-5 Voronoi Partitioning .. 30

4-1 The Distributed Server Architecture. 35

4-2 Working of Rendezvous Server 38

4-3 Simplified Overview of Distributed Publish/Subscribe Mechanism 41

5-1 Distributed Network Engine for Mammoth 46

5-2 Cluster formation procedure 50

5-3 Cluster Management Layer . 50

Xl

5-4 Loss of updates leading to incorrect game state .

5-5 No loss of updates ...

6-1 Latency Measurement .

6-2 Single Server CPU Utilization and Latency .

6-3 Single Server Bandwidth Consumption

6-4 Mapping Configurations

6-5 Scalability Experiments for CPU Utilization

6-6 Direct and Indirect Latency for 4 Server Node Cluster .

6-7 Scalability Experiments for CPU Utilization

6-8 Bandwidth Comparison. . .

6-9 Sub Space - Server Mapping

6-10 Scalability Experiments for CPU Utilization

6-11 Bandwidth Comparison. . . .

6-12 Messages received from clients

6-13 Messages received from other server nodes

7-1 Single Server Duplication Mechanism

7-2 (a) Step 1 - CeU Match

7-3 (b) Step 2 - Duplication to Server Node.

7-4 (c) Step 3 - Match and Duplication to Client

7-5 Scenario 1 - No CeU Match.

7-6 Scenario 2 - CeU Match .

7-7 Scenario 3 - Match . . .

7-8 Scenario 4 - Player Migration

xii

62

63

69

71

73

73

74

75

76

77

80

81

82

83

84

86

90

91

91

94

95

96

97

CHAPTER 1
Introduction

Computer games have become a widely popular source of entertainment among

all age groups. The advent of the World Wide Web ushered in a new genre of

computer gaming called online multiplayer games which provides a platform for

gamers all over the world to come together and play with each other. During the

recent years, the popularity of online multiplayer games has reached unprecedented

heights and approximately 100 million people are expected to be playing online games

by 2008 [22].

Massively Multiplayer Online Games or MMOGs are a popular form of online

multiplayer games where hundreds or even thousands of players interact with each

other in a virlual game world. World of Warcraft [12], a popular MMOG, has

over 2 million registered users with a recorded maximum of half a million players

interacting at the same time. With the widespread availability of broadband internet

connectivity, the number of participating players are increasing rapidly further raising

the popularity of these games.

The rapid growth in the number of players participating in an MMOG poses

various technical challenges to their network architecture. The most important is

that of scalability, i.e., the ability to support increasing number of players without

adversely affecting performance. Traditionally, MMOGs have used a centralized

server architecture with players connecting to a single game server which handles

1

the entire game world. However, due to the massive scale of these games, a single

machine is not able to support the load generated by the hundreds or even thousands

of participating players. Thus, there is a need for an efficient architecture which can

support the load generated by these growing number of players without afIecting the

gaming experience ofIered to the player.

We propose a distributed server architecture that divides the virtual world into

smaller sub spaces and distributes them across a number of server nodes (known as

the hosts of these sub spaces). A client connects only to the server node which hosts

the sub space the player currently resides in and sends aU the updates directly to

this server node (known as home server). A server no de processes an the received

updates and sends these to its clients which are interested in them. A client switches

home server as its player moves over to a sub space hosted by another server. A

client can also be interested in updates occurring at sub spaces that are not hosted

at its home server. A distributed publishjsubscribe mechanism is implemented that

guarantees that a client receives aU updates it is interested in.

In contrast to many other research proposaIs in this area, which have used

simulations to test their approaches, we have implemented the distributed server

architecture into the Mammoth MMOC Prototype. The experimentation performed

on our architecture is done over a real network using complete client implementations

to gather performance results. The parameters that we measure are the CPU and

bandwidth utilization at the server nodes and the latency experienced by the players

during game play. In each instance, the results show that the distributed server

architecture shows the desired scalability properties that it was designed for.

2

Finally, we introduce the distributed object model which was adopted as an

alternative scheme for state and interest management in Mammoth during the course

of the development of our architecture. We show how the concepts of our distributed

server architecture can be integrated into the new version of Mammoth.

This rest of the thesis is organized as follows. Chapter 2 introduces MMOGs, ex­

plains a typical single server architecture and the details of Mammoth's client/server

architecture. Chapter 3 explains the problem of scalability in the single server archi­

tecture and discusses existing solutions to solve it with the help of distribution. Chap­

ter 4 introduces the new distributed server architecture and gives a brief overview

of its components and communication mechanisms. Chapter 5 then explains each of

these components and their implementation in Mammoth in detail and gives formaI

algorithms for the communication protocols used. The results of the experiments

performed on our architecture are presented and discussed in Chapter 6. Chapter 7

discusses the distributed object model and shows how our distributed server architec­

ture can integrated in it. Chapter 8 gives the conclusion and outlines the proposed

future work on the distributed server architecture.

3

CHAPTER 2
Massively Multiplayer Online Games

2.1 Introduction to Massively Multiplayer Games

Massively Multiplayer Online Games (MMOGs) are a genre of computer games

in which a large number (usually thousands) of players share the same game world

at any instant of time. This sheer scale of the number of players involved in MMOGs

distinguish them from other network based online games.

A sub-category of MMOGs are MMORPGs or Massively Multiplayer Online

Role Playing Games. Players in an MMORPG can take control of the characters in

the game and perform actions such as move around in a virlual world, interact with

other players, pick up objects and take part in missions or quests. Most MMORPGs

also allow their characters to grow, trade currency or points with other players, have

an inventory of items and accumulate experience points (based on their expertise

in the game). Players can also form teams which work together and/or compete

against each other. Everquest [13], UltimaOnline [4] and World of Warcraft [12] are

examples of popular MMORPGs.

Another sub-category of MMOGs are first person shooter (FPS) games which

are characterized by an on-screen display based on the point of view of the char­

acter currently playing the game. Examples of popular FPS games are Doom [19],

Quake [20] and Unreal [17].

4

The game world or virlual world of a MMOG is generally made up of a large

number of various types of objects. Objects in the game world can be broadly

classified into the following types (according to [23]):

1. Statie Objects : These are immutable objects, i.e., their properties do not

change during the entire course of the game. A corn mon example of static

objects are stationary terrain elements such as trees, lakes, buildings, walls

and roofs.

2. Dynamic Objects : Also known as mutable, these kind of objects have astate

associated with them. A state of a mutable object can be any property which

can be subject to modification during the course of a game. For example, the

state of a bottle of wine can be the amount of wine present in it. In many

games, items such as apples, books and ftowers can be picked up or dropped

by players and can change location.

3. Player Characters (PCs) : These are the characters controlled by the players.

The state of a player is usually determined by its position in the game world.

However, there can be other game dependent properties which can determine

the state of a player such as experience, health and inventory items.

4. Non Player Characters (NPCs) : These are characters which are not con­

trolled by the players but rather by automated algorithms. Most NPCs are

similar to Player Characters in terms of role and serve as either opponents or

alliances to the Player Characters.

5

The state of the game at any instant is decided by the state of aH the individual

objects present in the game world at that instant. These states can be altered by

actions performed either by or on these objects. Such actions can be categorized as :

1. Change in Position : When a PC or NPC moves around the game world, it

alters its position as weIl as the state of the world.

2. Player - Player Interaction: Two PCs or NPCs interacting with each other

(for example, talk, engage in a fight and exchange currency) can lead to the

change in either of their states.

3. Player - Object Interaction: Actions of players such as picking up, dropping

or consuming objects modify the states of both the player as weIl as the object

involved.

2.2 Network Architecture

The most common network architecture to support MMOGs so far has been

the client/server architecture (used in popular MMOGs such as Quake 1 [20J and

StarCraft [11]).

Here, the server (commonly referred to as the game server) acts as centralized

component which maintains the state of aIl the objects present in the game world

(known as the game state), while a client hosts the user controIled in-game player

object (or a PC) and manages its state updates. In order to start playing, a client

connects to the game server to retrieve the latest game state and caches it 10caIly.

After that, aIl actions performed at the client are converted into state updates and

are sent to the game server in the form of messages. The server receives such up­

dates from aIl the clients connected to it, serializes them, pro cesses them to create

6

a response and multicasts this response back to aIl the clients. A client updates its

local cache by applying the responses received from the game server and renders the

game state using this cached information. Figure 2-1 shows the messaging scheme

in common client/server based multiplayer games.

Citent

, , , ,
~------- -------~ : :

: Server 1 .
. _-----~-------

1

Cien!

Single Server Communication Paradigm

CHent

Player __ ~

Updatas

Figure 2-1: Client/Server Communication Paradigm

2.3 Interest Management

In most MMOGs, a player has limited visibility of the entire game world. This is

known as its area of interest or 'sphere of interaction' [18] within the game. Therefore,

the game server needs to send a client the state updates that are only relevant to the

area of interest of its player. This technique is known as interest management. Inter-

est management reduces unnecessary resource consumption (such as bandwidth con-

sumption) while still maintaining adequate interactivity in the game. Most MMOGs

7

Sub spaces

Interest.

Player

Figure 2-2: Interest Management using sub spaces

implement interest management by partitioning the game world into multiple sub

spaces. The game server sends only those updates to a client which occur on sub

spaces which are under its area of interest. Figure 2-2 shows an interest management

scheme where the game world is divided into rectangular sub spaces with a player

interested in the sub space it is currently in and its neighbors.

2.4 Introduction to Mammoth

We now introduce the Mammoth development framework which is used to im­

plement an MMOG based on the client/server architecture described above. The

Mammoth project is an attempt to develop a MMOG in the java programming lan­

guage which can be used for conducting academic research by providing a framework

in which researchers can implement and experiment with different algorithms to

address the issues posed by MMOGs.

8

2.4.1 The Game

Mammoth implements a role playing game based on the client/server architec­

ture where the player sees the virtual game world from above (also known as the

god view) (see Figure 2-3). Players can walk around the game world which consists

of static objects snch as buildings, trees and walls. They can also pick up, move

or drop objects scattered across the world (for example food items, books or other

items which can be designed and added to the world). Each player can accumulate

fame or currency points and has associated with it an inventory of items that it has

picked up. The Mammoth world is a persistent world, i.e., the world continuously

evolves with time.

Figure 2-3: The Mammoth Game World

9

2.4.2 Interest Management in Mammoth

The Mammoth game world is divided into sub spaces called static zones. AI­

though the shape of these static zones can be arbitrary, they are typically planes in

the world that have a shape of a polygon. A static zone can be a floor of a building or

a large part of a landscape. Static zones are useful for implementing interest manage­

ment schemes and are transparent to the player. They are connected together with

the help of two contiguous transition gates. A player can only move between two

zones by moving through the transition gates. Interest management is implemented

in Mammoth using a publishjsubscribe system where the client subscribes to the

static zone its player is currently in as weIl as its neighbors (see Figure 2-2) and the

server publishes state updates made on these zones to their appropriate subscribers.

This way, the client only receives updates of events that occur in its own as weIl as

neighboring static zones. As a· client moves across static zones, it subscribes to the

new static zones which are now of its interest and unsubscribes from aIl the ones it

is no more interested in.

2.4.3 Software Architecture for Mammoth

Figure 2-4 gives an overview of the Mammoth software architecture. The archi­

tecture follows a layered approach where the major functionality is divided among

layers and different components encapsulate specific concerns or features of the sys­

tem. Layers interact with only their adjacent layers through well-defined interfaces

and the implementation of one layer does not affect that of the other. The major

layers in the Mammoth architecture are :

10

Mammoth Client

Graphies Layer

Applicallon Layer

Communication Layer

Client Networklng Layer

~ TCP _ Corn_nicallon i
ServerNe-..g Layer

Communication Layer

Applicallon Layer

DIIIII_Leyer

Figure 2-4: Mammoth Software Architecture

1. Graphies Layer: The graphies layer in Mammoth is used to render the graph­

ical display to the end user playing the game using the Minueto G L graphies

library [28].

2. Application Layer: The application layer implements an the game dependent

logic such as game physics, session management, collision detection and path

finding.

3. Network Layer: The network layer implements the core primitives for com­

munication between the client and the server. Currently, the state updates

between the clients and the server are transferred in the form of serializable

messages using TCP (Transmission Control Protocol).

4. Communication Layer: Acts as an intermediary between the network and the

application layer. It receives messages from the network layer and transfers

11

them to the application layer for processing. Similarly, it receives updates

from the application layer and converts them into messages which are then

passed on to the networking layer to be sent over the network.

5. Database Layer The database layer is used by the application layer to store

or load the state of in-game objects from a persistent storage.

2.5 The Mammoth Network Architecture

This section gives an overview of the existing network architecture of Mammoth

and its communication methodology. Mammoth currently follows the clientjserver

architecture discussed in Section 2.2, where clients connect to a single server to

transfer state updates and receive response. It is implemented in the networking

layer as the network engine.

The network engine is present at both the client and the server side and is

responsible for communicating game related data between them in the form of seri­

alizable messages in an asynchronous manner. Astate update for a particular static

zone in the game is generated by the application layer of the client, converted into

a serializable message by the communication layer and passed on to the network en­

gine. The network engine at the client sends the message directly to the server. The

networking layer at the server receives the messages and sends them to the upper

layers where the game state for the corresponding static zone is updated. A response

message is generated which is multicast by the network engine to an the clients which

have subscribed for updates in that particular static zone.

12

2.5.1 Server Messages

The client and the server network engine communicate with each other with the

help of messages. The mammoth network engine supports two basic categories of

messages from the server to the client:

1. Multicast Messages : Messages which need to be multicast to a number of

clients. These are generally state updates which need to be disseminated to

interested clients. Examples of multicast messages are player position updates

and object pickupjdrop updates.

2. Direct Messages: Messages which are meant only for a specifie client. Mes­

sages containing complete states for static zone(s) are sent as direct messages

to clients.

A client maintain a single connection to the Mammoth server and therefore, aH

messages from the client to the server are direct messages.

2.5.2 Logical Channels

•••••••••• o.o •••• o.oooooo ••• oo.1 M~

'-"'-r"" --_ -_ .. --- _ -.- --- -_ .. --, · . · . · .
~~.~ I~: __ L--+I . . · . · . _ _.~::g UeWeg;· -_ •• - _,...0_"_' ___ ---1

~--o

Figure 2-5: Logical Channels in the Mammoth Network Engine

13

Figure 2-5 illustrates the logical channel architecture for Mammoth. Logica1

channels are an abstraction above the actual physical socket channels of comm~

cation. In the current implementation of the mammoth network engine, each static

zone is served by one logical channel which is usuaHy assigned the same name as

that of the static zone. Clients subscribe to logical channels serving the zones they

are interested in order to receive state updates. Any update occurring on a static

zone is sent to the logical channel serving it where it is multicast (or published) to

aH the subscribed clients.

Logical channels are implemented as objects having a list of subscribers which

contain the objects representing the client nodes subscribed to them. Each of these

client node objects has a FIFO message queue associated with it and primitives to

send the messages in the queue over the network to the node the object represents. A

state update received at the server is processed by upper game layers and a response

message is produced which is sent to the object representing the appropriate logical

channel. At the channel, an iterator goes through aH the client node objects in the

subscribers list and adds the message to their corresponding message queues. A

multiplexing mechanism working as a separate thread in the network engine removes

messages from the head of the message queues and sends them over the network to the

corresponding nodes. Access to the client message queues is done in a synchronized

manner as they are also used to send direct messages to clients.

2.5.3 Communication Proto cols

This section outlines the protocol of communication between the client and the

server during three important game scenarios:

14

Player enters game.

ChntCt Se<v",s

1) Connect and gel chMnei üt.

2) s_ (chl. ch2 ..• chK)

4) Gat current stata for

static zone (.1. s2 •..• sk)

7) Garne &tari notification

3) Perlonn subsc:ription

5) Collect stale information

Figure 2-6: Game Start Communication Protocol

Figure 2-6 shows the steps needed to be performed when a player actually

enters the game. The client connects to the server to receive the list of logical

channels available. It then sends subscription requests for aIl the static zones it

will be interested in based on its player's starting position in the world. The server

subscribes the client to the logical channels serving those static zones. The client

then requests the current state of aIl these zones from the server to start the game.

Player performs action

Figure 2-7 shows the steps needed to be performed when the player performs an

action at the client. An action performed is converted into astate update message

which is sent to the server. The server pro cesses the message and multicasts the

response to aIl clients subscribed to the logical channel serving the zone where the

action was performed.

15

Client CI ServerS

Subsclibe ChaMel ,.

... Subseribe OIonnoil.

Stale Update (Channel 1)
Process Update, Generate Aesponse AI

Multiœst AI

Figure 2-7: State Update Dissemination

Client Cl SerIerS

1) Play« moves to
new !ltatie zone -

2) &bocribe 10_ -r-
interesled channeIII(chk1. chk2 .. ,chKn) 3) P erfonn~1ion

-
4) UnoWecribe fn>m chonneIs " -
net int in mymore. 5)P

(chjl.~ .• chjn)

7)GaI_.oI __
7'

ClientC2

__ (.l.02 •..• sk) 8) CoIIecI: Ital. infonnation

....
10) Upda1. $tata

9) Receiv. etat. information.

Figure 2-8: Player transition across static zones

Player changes static zone

Figure 2-8 shows the steps needed to be performed when the player moves from

one static zone to another. During transition, the client machine subscribes to aH

logical channels serving the zones it is now interested in and requests for their current

16

state. It also unsubscribes from those channels which it no more wants to receive

updates from.

17

CHAPTER3
Scalability via Distribution

This chapter discusses the limitations of the client/server architecture described

in the previous chapter and discusses various existing solutions to solve these limi-

tations.

3.1 Limitations of the Client/Server Architecture

Although the client/server architecture may seem straightforward and relatively

simple to implement, it suffers from the serious lack of scalability.

3.1.1 Scalability and Latency

The ability to simultaneously handle an increasing number of players without

compromising playability is referred to as the scalability of a MMOG. Playability

(or game play) is the overall experience offered by the game to a player. The most

crucial factor which determines the overall playability of a MMOG is latency, also

referred to as response time or lag.

Latency is the difference in time between the action performed by the player

and its observation by aIl the other players in the game. The latency values should

be kept within reasonable bounds (depending on the nature of the game) in order to

provide the user a better gaming experience.

3.1.2 Effect of Latency on Playability

A qualitative study on the effect of latency on game play in [15J shows that the

required maximum latency for good playability in first-person-shooter (FPS) games

18

should be between 100ms-200ms, and anything ab ove this limit can seriously affect

the playability of the game due to the real time nature of its in-game interactions.

A study [3] on Quake 3, a popular FPS game, showed 150-180ms as the preferable

bound for latency for sound game play.

However, studies show that MMORPGs can tolerate higher amount of latency

than FPS games as their playability hinges more upon strategy rather than real

time interactions. A study [16J on the effect of latency on playability of a popular

MMORPG called Everquest2 [14] showed that role playing games can tolerate a max­

imum of 1250ms for movement based updates while 500ms to 1000ms for scenarios

involving large scale player interactions such as combat situations.

3.1.3 The Scale of Present Day Cames

Early network-based games supported only a small number of players (around

10-20), and scalability was not such a big issue since a single server could handle the

computational and communication load generated by these players. However, with

the internet providing strong global connectivity, MMOGs have become increasingly

popular with thousands of players participating in a game session.

World of Warcraft [12], a popular MMORPG has around 2 million registered

users and over 500,000 players interacting at the same time [30]. Lineage [29], another

MMORPG has over a million registered users and recorded up to 180,000 concurrent

players at one time. Second Life [26], an upcoming MMOG which focuses on social

interactions between players sharing a common virtual world recorded an increase in

its in-game objects to thousands in a short period of two months.

19

Further, with advances in the field of artificial intelligence and computer graph­

ies, game designers try to inculcate various complex algorithms for purposes such

as path finding and game physics, push towards newer kinds of interactions, design

complex objects having a greater array of properties (e.g., combinability) and large

diverse game worlds. AH done with an aim to provide the player with a more exciting

and immersible game experience.

However, the traditional client/server based architectures are not able to cope

with these rapid developments due to sorne inherent performance limitations, the

most prominent of which are described below:

1. CPU Load - Processing a new game state based on the updates received from

a player requires processing power at the game server which gets depleted

as more and more players join the game. As a result, the server gets over­

loaded and more time is spent processing each state update received from the

connected clients. This leads to an increased response time for participating

players resulting in poor game play.

2. Bandwidth - As the number of players joining agame increases, there is an

increase in the number of update messages received by the game server from

the clients. Furthermore, these updates need to be relayed to aH other clients

connected to this server. Since the bandwidth capacity at the game server

limits the amount of data Rowing in and out of it, it can act as a bottleneck

for the number of updates that can reach or leave the server at any instant

of time. This can cause increased response times at clients sendingjreceiving

these updates affecting playability of the game.

20

Bandwidth and CPU load thus present a bottleneck in the scalability of the

single server architecture.

3.2 Efforts to Improve Performance

There has been considerable efforts in academia as weIl as industry to come up

with alternative network architectures and communication schemes for MMOGs to

improve their scalability and performance. This section discusses such efforts.

3.2.1 Multiple Game Instances

A commOn tactic used by most commercial MMOGs is running more than a sin­

gle instance of a game on separate servers. When a particular server gets overloaded

in capacity, the newly registered players are then redirected to the next available

server running another instance of the game. Ultima Online [4] refers to these in­

stances of game worlds as shards. The drawback with this approach is that it places

users into disparate non interacting worlds, limiting them to only interact with the

players in their shard. Since the popularity of most games is based On the social in­

teraction with other players, less populated game worlds can lead to a poor gaming

experience.

3.2.2 Mirrored Server Architecture

In the mirrored server architecture [10], the game state is mirrored over several

game servers which are geographicaIly distributed over the internet. A client connects

to the closest mirror server to transfer state update messages. The message latency

is therefore reduced as an update messages from a client (and a responses from the

server) only needs to travel a shorter distance to the closest mirror server as opposed

to the single server architecture where the central game server can be potentially

21

distant. A mirror server multicasts incoming updates from its clients to the other

mirror servers which compute their own copy of game state and send state updates to

their directly connected clients. Special synchronization mechanisms are used to deal

with keeping these multiple copies of game state consistent at aIl mirrors. However,

due to the complex nature of these mechanisms this approach does not scale weIl as

it becomes increasingly difficult to keep the game state at a larger number of mirror

servers consistent.

3.2.3 The Distributed Architecture

There are sever al research efforts which partition the global game space into

sub spaces and allow multiple machines (or nodes) to maintain the state of these

sub spaces. Special communication mechanisms are used between these nodes to

cooperatively keep the global state consistent. Since each no de only has to handle

updates pertinent to the sub space it is maintaining, the bandwidth consumption at

these nodes is reduced to a fraction of that in the single server architecture. CPU

consumption also drops as each node has to process less updates. As a result, the

architecture can handle a greater number of clients without getting overloaded. There

are two dominant multiplayer game architectures that support such a scheme, namely

the Distributed Server and the Peer-to-Peer architecture. This section highlights

existing research efforts on both of these architectures.

The Distributed Server Architecture

This architecture involves the distribution of the partitioned sub spaces of the

MMOG game space over multiple game servers (see Figure 3-1) each of which is

known as the host server of a particular sub space. The host server for a particular

22

sub space maintains the state for that sub space, i.e., it collects and disseminate

updates occurring on that sub spaee.

PIoy... __ ~

Updates

:~:,..;._-_ .. _--: f~;;---_··_·_·:

• 1 1 •

: :: :
: Slb Space 1 :-= $00 Spece 2 :

• '. 1

L·····~r·····x······l·····.:
:&;;;4-- ._-_ .. -: ~~~;3-- -------:
1 • 1 1
1 t 1 1

1 :...........: &Il Space3 1 · . · . · .

Figure 3-1: A Generic Distributed Server Architecture

The client maintains a direct connection with the host server of the sub space its

player is currently in (aiso known as the client's home server) to send state updates.

The server serializes these updates and generates a response which it sends to the

clients connected to it. A client dynamically switches connections once its player

migrates to a sub spaee hosted by a different server. Depending on the interest

management scheme used, a client may be interested in state updates occurring on

a sub spaee hosted by a server other than its home sever. In such a case, the server

hosting such a sub space might need to forward updates to the client's home server.

Henee, server nodes are connected to each other in this architecture in order to share

such updates.

23

<.~~
Hot Spot

sub space 4 •
1)

Sub Space 2

•
sub space 3 ,.

•

• • Player

•

Moving
Player

Figure 3-2: Flocking of Players to a game hot spot.

One of the main challenges of the distributed architecture is to maintain the

computation and communication overhead at each server below a safe threshold.

This becomes important in situations such as ftocking where players move or flock

to a specifie area in the game space due to an in-game event (such as a party or a

battle), thus creating a hot spot (see Figure 3-2). This leads to greater number of

updates being sent to the host server of the sub space where the hot spot occurs,

potentially overloading it.

To meet this challenge, sorne games introduce game level restrictions such as to

limit the number of players that are allowed in a certain area. This technique ensures

that only a certain number of players are maintained in each sub space and hence

controls the amount of load at each server. However, this technique suffers from the

disadvantage of limiting the player's ability to explore the game world and interact

with other players.

One of the main problems is that hosting a large sized sub space per server

cannot guarantee an even distribution of load on each server as players are not

24

evenly spread across the game world. [30] proposes breaking down the sub spaces

into sm aller microcells and allow each server to host a set of these microcells. In

the event of a hot spot, microcells can be moved from an overloaded server to a

lightly loaded server resizing the overall region a server hosts and spreading the load

more evenly across servers. There can be a number of techniques in which microcells

can be allocated across servers so that the maximum load per server is reduced. The

paper focuses on comparing the performance of each of these techniques using results

from simulations.

Matrix Coordnator

Player __ ~

Updo'"

Matrix Servers

i----- -------: .
GameServer Garn. Servel' i Clame Server ~

'. ;...... :(........ ~ ~ :
1 , ,

6 cB ~"8
Figure 3-3: The Matrix Architecture

However, hot spots can also migrate across sub spaces causing the load on sub

spaces to temporarily change. In the Matrix Architecture [5], hot spots are handled

by dynamically adjusting the size of a sub space handled by a server. Further,

25

each player has associated with it a radius of visibility which defines its area of

interest in the game. Based on the radius of visibility and the sub space partitioning

information, overlapped regions are determined and aU players in a particular overlap

region receive updates from aU the sub spaces involved in the overlap. Figure 3-3

shows how this architecture is organized. Clients connect directly to agame server to

transfer updates tagged with their spatial coordinates in the game world. The game

servers pro cess these updates and forward them to their respective Matrix Servers.

A Matrix Server keeps track of the sub spaces that its game server is in charge of

and the load it is experiencing. It uses the overlap information to forward relevant

updates to other interested game servers which then relay them to their connected

clients. In the event of overload, the matrix server removes a portion of the sub space

from its game server and transfers it to another lightly loaded game server and ail

the concerned clients are redirected to this game server. The overlaps due to this

new partitioning are recomputed by a special server caUed the matrix coordinator

which then updates aU the matrix servers with this information.

In the architecture described in [9], the sub spaces are very smaU and each server

is responsible for more than one sub space. In the event of overload, an overloaded

server migrates sorne of its sub spaces to another server. The load balancing algo­

rit hm takes into consideration the locality of the sub spaces and attempts to keep

sub spaces which are adjacent to one another (in the game world) on the same server.

This technique favors localized communication within a single server and prevents

excessive inter-server communication which can increase overhead. Therefore, the

algorithm sheds load off an overloaded server and at the same time fixes any locality

26

disruption caused by load shedding by aggregating adjacent sub spaces during nor­

mal load conditions. The performance of the algorithm is evaluated under flocking

conditions using a simulator.

A server can also be overloaded by the load incurred by message forwarding

rather than processing. In [31], a set of lightly loaded server nodes are always main­

tained in the form of a backup queue. In the event of an increased message forwarding

overhead at a server, the overloaded server selects one of the backup nodes to act

as an intermediate node between its connected clients and itself. This relieves most

of the forwarding overhead since now the responsible no de only needs to forward

updates to the intermediate node which takes charge of further disseminated them

to aU the interested clients.

Peer-to-Peer Approaches

A Peer-to-Peer (also known as P2P) approach differs from a client/server aIr

proach as there is no central point of authority, i.e., each node in a P2P based archi­

tecture can act as both a client as weU as a server. P2P based architectures are more

scalable than client/server ones since the computation, communication overhead and

resources are shared by aIl participating nodes. The self organizing capabilities of

P2P overlays can be used to create systems which can be dynamically scaled up and

down with the number of nodes thus making them suit able candidates for the design

of scalable MMOGs network architectures.

[23] introduces an approach to scale MMOGs by distributing the state of sub

spaces over participating player nodes which form a P2P based network. AlI the

players in the same sub space use the self-organizing mechanisms of P2P networks

27

to form multicast groups where only state updates pertinent to that sub space are

disseminated. A player node joins groups corresponding to sub spaces which overlap

its area of interest. Players change their multicast group as their area of interest

changes, i.e., as they move around in the game space. Figure 3-4 illustrates the P2P

based architecture for an MMOG.

~l
L'EfzJ
[2}

re:l
~

Figure 3-4: P2P Based Architecture

For each multicast group, a player node is designated as a coordinator for that

group. A coordinator is responsible for maintaining the states of the shared objects

of the group. It acts as the root of the multicast tree and provides the connecting

player nodes with the current game state when they join the group. For fault-

tolerance purposes, a replica of the coordinator is maintained so that in case of a

failure, the backup replica takes over and the state updates are automatically for-

warded to it. Player-to-player interactions are handled by establishing connections

between the participating player nodes for direct exchange of state information. The

architecture uses the Pastry [27] P2P overlay which maps both participating nodes

28

and the application objects to random, uniformly distributed identifiers from a cir­

cular 128-bit name space. Objects are mapped to live nodes whose id is numerically

closest to the object-id. A distributed hash table (DHT) is used to lookup which

node a particular object resides in. Scribe [8], a scalable application level multicast

infrastructure build on top of pastry is used to disseminate game state. It leverages

the existing Pastry overlay by using its identifier scheme and routing mechanisms

and is able to form a large number of multicast groups having arbitrary number of

members with highly dynamic membership.

A similar concept is employed in a P2P based architecture described in [21]

with a few optimizations to reduce latency. The role of the distributed hash table is

limited to that of a backup data storage of object states and the local cache at the

coordinator is used by the connecting players to retrieve the latest game state. Since

the access of data directly from the coordinator is faster than that from the DHT,

the time required to receive state updates is reduced considerably. When another

no de becomes the coordinator, it loads the state information from the DHT into its

local cache and provides updates from it to the connecting player nodes.

The dissemination of updates among the player nodes in most of the architec­

tures described above can be modeled as a publishjsubscribe system, where publisher

nodes (servers or peer nodes) multicast events and player nodes only subscribe to

events that they are interested in. The Mercury publishjsubscribe [6] system pro­

vides features which allow player nodes to express their subscriptions using a rich

subscription language which provides greater flexibility to describe what a player is

29

interested in. It is designed to work over a distributed system such as a P2P net-

work allowing matching of subscriptions with publications to take place over multiple

nodes. It also provides a scalable and efficient routing mechanism which routes publi­

cations to subscribers within the real time requirements of game play by distributing

routing responsibility across several group of nodes.

The main issue faced by nodes in most P2P systems is that of understanding the

overall topology of the P2P network and creating connections with the right nodes

to get relevant data. In MMOGs, this is even more crucial since each node must

receive only relevant state updates for proper decentralized resource consumption

and improved scalability. Another fully distributed P2P based architecture [18] uses

the mathematical construct of the Voronoi Diagram to help player nodes discover

neighboring nodes which they can connect to in order to receive the required state

updates.

Figure 3-5: (a) Voronoi Partitioning (b) Neighbor discovery using Voronoi partition­
ing and area of interest. Source: [18]

A Voronoi diagram is constructed by partitioning the world space into n non

overlapping sub spaces having one no de per subspace. A sub space contains aIl the

30

points closest to that sub space's no de than to any other no de (Figure 3-5a). This

way the entire game world is divided into arbitrary sizes in a deterministic way.

Each participating no de in a P2P network maintains a voronoi diagram of the nodes

present in its area of interest and maintains a P2P connection with aIl such nodes

(Figure 3-5b). As the player node moves in the virtual world, it readjusts its voronoi

diagram to create connections with newly discovered nodes and break connections

with the ones no longer in visible. Voronoi diagrams are also recomputed at relevant

nodes as other player nodes join or leave the P2P architecture.

3.2.4 Distributed server architecture vs. Peer-to-Peer based approach

Peer-to-peer architectures are a good alternative since they provide increased

scalability by balancing the load for managing the game state across nodes in a P2P

network. However, in our opinion, there are a few drawbacks in using P2P based

network architectures for MMOGs:

1. Cheating and Fairness: Since the game state is distributed among part ici pat­

ing player nodes it becomes vulnerable to game hackers who can alter or view

this information to gain unfair advantage in the game.

2. No Administrative Control: There is no central authority to manage the

whole P2P based system, which can present a problem in scenarios such as

monitoring resource usage among player nodes for load balancing or detecting

failure in the system.

3. Searching and Topology Maintenance: Deciding and forming a topology in

a P2P based network has been a challenge in P2P networks and although there

are techniques for node discovery and connection maintenance (as mentioned

31

in [18]), there is still a considerable overhead incurred in forming connections

among nodes which might cause problems for real-time game play. Searcbing

in P2P based systems also induces latency due to a considerable number of

network hops incurred while searching for or relaying game state.

4. Fault Tolerance and A vailability: Since there is no control over the avail­

ability of the nodes in a P2P system they can fail or leave the system without

warning, leading to the 1088 of the game state associated with them. This can

leave the overall game state incomplete or inconsistent rendering the entire

system fault- intolerant.

In contrast, the distributed server architecture offers a number of advantages

which overcome the shortcomings of the P2P based approach :

1. Central Point of Authority: The collocation of the server nodes in a dis­

tributed architecture provides greater administrative control over them. This

is advantageous for many reasons:

• Since the game state is only distributed on the server nodes, its is easier

to exercise control over their access and avoid unwarranted modification.

• Consistency of the overall game state is easier to manage since it is now

localized over server nodes that are members of the architecture.

• It is easier to monitor resource usage at all server nodes making it simpler

to deploy load balancing techniques.

2. Faster inter server communication: The nodes in a distributed server archi­

tecture are generally inter-connected through a high speed local area network

32

(LAN) resulting in faster inter-server communication giving lower response

times for game actions.

3. Fault Tolerance and Availability: Nodes in a distributed server architecture

can be centrally monitored for failure or supplement al backup nodes can be

maintained to take over in case of failure.

Therefore, we consider a distributed server based architecture is the best alter­

native for improving the scalability of MMOGs.

33

CHAPTER4
The Distributed Server Architecture - An Overview

While many sophisticated distributed architectures, including advanced features

such as load-balancing, have been proposed (as discussed in Section 3.2.3), only few

are implemented in real systems, and it remains unclear what are the challenges

when transferring such ide as to a real MMOG. This thesis addresses this issue. It

proposes a practical distribution approach and describes its concrete implementation

and integration into the Mammoth protoype.

The primary goal of this approach is to improve the scalability of an MMOG,

enabling it to support a larger number of clients than the single server architecture

without overloading. Therefore, ability to measure the increased performance of

an implemented distributed server architecture over the single server architecture is

important.

4.1 Architecture

4.1.1 Overview

The distributed server architecture follows a cluster-based approach where a

group of server nodes connect with each other to form a cluster where they can

communicate with each other. As discussed in Chapter 2, most MMOGs have a

notion of game space associated with them and the state of the entire game is the

state of aIl objects present in this game space. In the distributed approach the game

space is divided into sub spaces and each server in the cluster hosts a set of sub spaces.

34

r--

Clients only maintain connection with their home server, i.e., the server hosting the

sub space where their player is currently in, and receive aIl relevant updates through

them. AlI the server nodes in the cluster always maintain a physical connection with

each other in order to forward relevant state updates they receive from their clients

through specialized distributed publishjsubscribe mechanisms discussed later in this

chapter.

4.1.2 Major Components

clients ServerNode

clients clients

[....) [....)

\/ \/

ServerNode Server Node

.---------~

Client· Serve<
Communication

y ,[....)
ServerNode clients

Figure 4-1: The Distributed Server Architecture

35

Figure 4-1 provides a broad overview of the distributed server architecture il­

lustrating its major components. This section summarizes how these components

work:

Server nodes

Server nodes hast sub spaces, i.e., they maintain the game state for these sub

spaces and they are known as their hast servers. In our current implementation,

the sub spaces that a server is meant to host are specified at start up. However, in

general, such sub spaces could be assigned dynamically and might change over time,

e.g., for load-balancing purposes. A server no de can host more than one sub space.

The main responsibilities of the server no de can be outlined as follows:

1. To accept client connections for players entering the sub spaces they hosto

2. Receive and process state updates corresponding to those subs paces.

3. Multicast processed state updates to aIl interested clients.

Each server no de maintains a physical connection with aIl the other server nodes

within the cluster. This allows inter server node communication useful for transfer­

ring state updates it receives from its clients to the other interested server nodes

which can relay these updates to the clients connected to them. More details on how

this communication scheme actually works is given shortly.

Clients

The end user plays the game on the client node which rend ers the game state

using a graphical display. A client maintains a direct connection with its home server

in the cluster. Actions performed by the player at the client are converted into state

updates and are transferred to the home server where the state is processed and the

36

updated response is multicasted to aIl other interested clients in the architecture. A

client caches a local copy of the game state which is kept up-to-date by applying the

state updates it receives from its home server.

4.1.3 Administrative Components

Apart from the server nodes and the clients, there exist two more components

which help in administering and managing the overaIl distributed architecture.

Cluster Administration Server

The cluster administration server (CAS) is the central administrative entity of

the distributed server architecture. Currently, the CAS is used during the startup

to setup the cluster. Server nodes upon startup connect to the CAS and provide it

with important information such as 1) their host address and 2) the sub spaces they

are in charge of. The CAS builds a table using aIl this information and consecutive

connecting server nodes use this table to discover other nodes in the cluster and

establish physical network connections with them.

Being an administrative entity, the functionality of CAS can further be extended

to perform other important tasks such as:

1. Monitoring load at servers nodes to make sure they are not overloaded.

2. Act as a central entity to administer load balancing procedures in case of server

overloads.

3. Monitor server nodes for failure and switch to backup if necessary.

Rendezvous Server

The Rendezvous Server (RS) acts as an initial point of contact for a client trying

to connect to the distributed server architecture. The RS contains information which

37

1. Relrieve Address of Server Node

to connecllo

• • ...

1. Establish Direct Connection wilh
Server Node.

Rendezvous
Server

Server Clusler

Figure 4-2: Working of Rendezvous Server

helps the client locate its home server in the cluster. A client connects to the RS and

supplies player information to retrieve the host address of its home server so that

it can connect to it in order to start playing the game. Figure 4-2 illustrates the

working of the RS. The RS also authenticates a client before it can start playing the

game.

The CAS and the RS are kept as separate machines mainly to logically separate

both their functionalities. RS's main task is to authenticate and redirect clients

to their home server which can be very intensive given the scale of participants in

present day games and the dynamic nature of their entry and exit into the game.

Further, since all the task of an RS are on a separate machine, it is possible to have

several RSs places at a number of geographical locations in order to allow faster,

localized connectivity to the cluster. Being the only point of entry to the cluster,

the RS also becomes vulnerable to attacks from hackers, therefore it may not be

advisable to perform critical CAS related operations on the same machine.

38

4.2 Communication Protocol

4.2.1 The Challenge

The single server architecture simplified communication as the state for the

entire game was centrally located at a single node and clients only needed to connect

to this no de to transfer updates. However, in a distributed architecture the state of

the entire game is now distributed across the server nodes in the cluster with clients

sending updates only to their home server. Further, each client may not only be

interested in updates occurring on the sub space its player is currently in but also

in other sub spaces (depending on the interest management technique). These sub

spaces may be hosted on the client's home server or on other server nodes in the

cluster. Therefore, it becomes a challenge as state updates must reach aIl interested

clients in an efficient manner.

One of the possibilities is for the client to maintain connections with aIl server

nodes hosting the sub spaces of their interest. The client sends its own update

requests only to its home server, but aIl server nodes that host sub spaces the client is

interested in, send updates on these sub spaces to the client. However, this approach

has sever al shortcomings: firstly, the client must maintain several connections with

different servers. This adds complexity and overhead to the client which might have

to be connected to many servers. Futhurmore, each server has now connections not

only to the clients for which it is home server, but possibly many more clients, limiting

the scalability. Also, our aim is to minimise the open points of vulnerability at the

cluster. With the presented scheme, malicious clients can exploit the fact that they

39

have open connections with multiple server nodes at the same time compromising

the security of the cluster to a larger extent.

We also looked whether a group communication system could be used. We

analyzed the Spread Toolkit [2J. Spread provides a mechanism to form multicast

groups for disseminating updates either in LANs or WANs. Using Spread, the server

nodes form multicast groups with clients and then send updates along these multi­

cast groups. Basically, a multicast group can be built for each sub space. Clients

can join or leave these multicast groups (depending on which sub space they are

interested in). The communication between client and server nodes in Spread is via

User Datagram Protocol (UDP) with an additional reliable delivery mechanism im­

plemented to guarantee message delivery and ordering. However, experiments with

Spread revealed that although it was easy to use, its communication mechanism did

not scale weIl with a large number of clients resulting in poor latency values. This

was mainly because of the token ring architecture of Spread which required acqui­

sition of a token by the sending entity before a message transfer could take place.

AIso, the number of groups can become larger, which might become a problem for

the group communication system.

4.2.2 Distributed Publish/Subscribe System

Based on the challenges presented ab ove and the alternatives evaluated, there

was a need for a mechanism which could provide the communication scheme we re­

quired without making connection management at the client too complex, minimis­

ing points of vulnerabilities at the cluster and scaling weIl with increasing number

of connecting clients.

40

1) Subecrlbea ta
___ CH2

Server 1 tR-- CMnneI : CH2)

O
:::;-.... "

2) Subscrlbes to loCIII

t
_CH2on
a 1. beMtf.

o
Client 1

Server 2 (loctll ChcwJneI : CH2)

~ O:=-~".,

t~~: ... ·
o

Client 2

(a) Remote Subscriptions

SeNer 1 (Remotec : CH2) Server 2 jL.---,_

0=-.... 4-.... -''''''-·_-- 0=:'"
2) ~ Mntto for CH2. -, ~ 3l __ 1 ci=-"

toaient1 +
o o

Client 1 Client 2

(b) U pdate Dissemination

Figure 4-3: Simplified Overview of Distributed PublishjSubscribe Mechanism

We came up with a publishjsubscribe mechanism which could accomplish a11

the above goals by distributing the subscription mechanism across the cluster. Using

this system, the client is only connected to its home server. It can subscribe to any

sub space it is interested in irrespective of the server which hosts this sub space. We

take from Mammoth the concept of a logical channel. Each sub space is associated

with a logical channel. Each logical channel has a subscription list of a11 clients

subscribed to it. In our implementation, each server no de has now two types of

logical channels: local and remote. The local channels serve the sub spaces hosted

by the server and the remote channels serve sub spaces hosted by other server nodes

in the cluster. Clients can subscribe to any channel, only indicating the sub space

they are interested in, by sending a subscription messages to their home server S.

If the subscription is for a local channel Le, S simply subscribes the client to Le

and sends it updates occurring in the sub space through Le. Figure 4-3 illustrates

in a simplified manner the working of remote subscription. If S receives a request

for subscription to a remote channel Re, it adds the client to the subscribers list for

Re locally but then forwards this subscription to the remote server R which actua11y

41

hosts this sub space and has a local channel serving it. The remote server R then

adds S to its subscription list for that channel and sends updates occurring on that

channel to S. When S receives these updates it disseminates them to aIl the clients

who are subscribers to the corresponding remote channel Re.

4.3 Game Communication Protocols

This section gives a high level overview of the communication proto cols used in

the distributed server architecture during three common game scenarios:

4.3.1 Player Entry

When a player enters the game, the client machine first connects to the Ren­

dezvous Server to retrieve the address of its home server. U pon receipt of this

information, the client directly connects to this server node and subscribes to aIl the

sub spaces it is interested in (based on the interest management scheme). The server

node uses the distributed publishjsubscribe mechanism to subscribe itself to the sub

spaces the client is interested in (if it is not yet subscribed due to another client). It

also retrieves the current game state of these sub spaces for the client to cache.

4.3.2 Player activity within sub space

As the player moves or interacts with other playersjobjects within a sub space,

it transfers its state updates to its home server. The server serializes and processes

these updates and multicasts responses to clients subscribed to the corresponding

sub space as weIl as to the other servers which have connected clients also interested

in these updates.

4.3.3 Player migration across sub spaces

When a player moves across sub spaces, one of two scenarios can happen.

42

1. Player migrates to sub space managed by existing server: In this caser

the client maintains connection to its home server but subscribes to newly

interested sub spaces and unsubscribes from uninterested ones.

2. Player migrates to sub space managed by another server: In this case, the

client disconnects from the server no de it is currently connected and establishes

connection with the server in charge of the sub space it is migrating to, i.e., the

client changes its home server. Before disconnection, the player unsubscribes

to an sub spaces it was subscribed to earlier and makes fresh subscriptions

when it connects to the next server. This is needed since it now has to receive

an updates through its new home server.

43

CHAPTER 5
Implementation in Mammoth

The previous chapter introduced the Distributed Server Architecture for game

scalability and gave an overview of its components and communication mechanisms.

This chapter gives a more detailed explanation of each of those components and pro-

vides a deeper insight into the communication mechanisms involved. It also discusses

the implementation of crucial components in Mammoth.

5.1 Architectural Components

Chapter 4 provided an overview of aIl the major components in the distributed

server architecture. This section explains them in greater detail describing their

internaIs and working.

5.1.1 Server N odes

The functionality of server nodes in the distributed server architecture is similar

to that in the single server, except that in the distributed case, each server node hosts

a subset of aIl sub spaces (i.e., a part of the game state) and maintains connections

with other server nodes in the cluster to send/receive state updates to cooperatively

manage the entire game state . .
Upon startup, a server nodes is assigned the sub spaces it is supposed to host and

local channels are created to serve each of these sub spaces. A server no de connects

to other server nodes in the cluster to form inter-server connections. During this

process, server nodes inform each other about the local channels they hosto Once

44

aIl server nodes know about the local channels hosted by every other server node in

the cluster, they build a hash table (referred to as remoteChannelMap) which maps

channel names to the server nodes that host them. They use this table to forward

updates received from their connected clients to other servers. More details about

how this process actually takes place are given shortly. A client only sends updates

occurring in the sub spaces hosted by its home server. A server no de receives and

pro cesses these updates, generates a response and sends them to aIl clients and server

nodes that subscribe to the channels serving these sub spaces.

Although a server node hosts sub spaces, it loads the entire game state at start

up. In our current implementation, a server node does not process the messages

its receives for a sub space that it does not hosto Rather it sim ply relays it to its

connected clients that subscribe to the remote channel serving that sub space. Not

processing these messages locally (i.e., not updating the local game state for these sub

spaces) saves considerable processing costs, and hence, can achieve better scalability.

However, keeping the entire game state at the server node could be beneficial for

fault-tolerance purposes. For example, a server no de SI can be designated as a

backup node for server node S2' i.e., SI receives state updates for sub spaces hosted

by S2 and applies them to its local state. In the event of the failure of S2, S} can

take over and accommodate S2 's clients since it has the up-to-date state of the sub

spaces that S2 hosted.

Implementation in Mammoth

According to Section 2.5.2, which describes the logical channel architecture of

the single server mammoth network engine, each logical channel is maintained as

45

,'---

UpperGeme
Layers

-­Rotoy

Other Server Nodes

• • · · · ·

Local Channel

Cluster
Multiplex

,

r:IillITIJ--+---1
~

Romota Chennel r··························. · . · . · . · · ·

aient
Multiptex

Figure 5-1: Distributed Network Engine for Mammoth

Physlcel
Communication

o
CIionta

an object having a subscribers list containing the objects representing an the clients

subscribed to it. Each of these client no de objects has a FIFO message queue as-

sociated with it and primitives to send the messages in the queue over the network

to the no de it represents. An iterator goes through an the client no de objects in

the subscribers list and adds the message to their corresponding message queues. A

multiplexing mechanism removes messages from the head of the message queues and

sends them over the network to the corresponding nodes.

46

ln the distributed server implementation of Mammoth, the network architecture

has been extended to support aU the additional communication capabilities and

subscription mechanisms of server nodes. Figure 5-1 shows the internaIs of the

server no de in the Mammoth implementation. The local channel objects have a

subscribers list which consists of both server node and client objects representing

the subscribers of that channel. The remote channel object have a subscribers list

which consists of only the client objects which subscribe to that channel. Another

multiplexing unit is added to send/receive messages to/from other server nodes in the

cluster. Incoming messages from the other server nodes in the cluster are received by

a separate message handler. Messages consisting of state updates are not processed

but are relayed to the remote channels where they are added to the message queues

in order to be dispatched to client nodes that have subscribed for those updates.

Messages requesting subscription or requesting state for a sub space hosted by the

server no de are processed by the remote subscription handler and remote content

handler respectively. Similar to client message queues, the server no de message

queues are also used to send direct messages to other server nodes in the cluster.

5.1. 2 Clients

A client in the distributed server architecture only maintains connection with

its home server. When its player migrates to a new sub space, the client switches

connections to the server hosting this sub space, subscribes to aU the sub spaces it

is now interested in and unsubscribes that are no more of its interest. Although,

during migration of a player across servers, it unsubscribes from aU and resubscribes

again.

47

The primitives for aIl communication remains unchanged for the client in the

distributed server architecture, since complex processing such as subscription man-

agement and game state management is handled among the server nodes. The client

remains oblivious to the distributed publishjsubscribe system and uses the existing

primitives to send/receive updates and subscriptions. However keeping in mind the

faet that the client might change home servers, its implementation in the distributed

architecture has been extended with certain capabilities:

1. Rendezvous When entering the game, the client connects to the rendezvous

server instead of any particular server on the cluster. The rendezvous server

supplies the client with the remoteChannelMapl which it uses to locate and

connect to its home server.

2. Connection Management A connection manager is implemented at the client
•

which manages dynamic connection switching as the player migrates to a sub

pace hosted by another server. During the migration process, the connection

manager disconnects the client from the current server, looks up its new home

server using the remoteChannelMap and connects to it.

State Management

Clients upon startup only load the static objects in the game (for e.g., map

information). Upon connection to their home server, they retrieve dynamic state of

all the sub spaces they are interested in, this procedure is known as world manage­

ment in the Mammoth implementation. Clients also (re)load state information of

1 A hash table which maps a channel to the server no de which hosts it.

48

sub spaces the sub spaces they are interested in after they migrate across servers. De­

tailed protocol for world management in the distributed server architecture is given

in later sections.

5.1.3 Cluster Management with CAS

The duster administration server (CAS) is in charge of forming the server dus­

ter. Server nodes which intend to join the duster first connect to the CAS where they

are provided with aIl the information required to establish connections with other

existing server nodes in the duster. The CAS also builds up the remoteChannelMap

using the information it receives from the connecting server nodes. Once aIl the

nodes have joined the cluster, the rendezvous server connects to CAS to receive the

complete remoteChannelMap to help redirecting connecting player nodes in the ap­

propriate server nodes in the cluster. Figure 5-2 illustrates the cluster formation

procedure.

Cluster Management in Mammoth

The implementation of the cluster formation and management in server nodes

is separated from the existing distributed network engine in the clusier management

layer. Figure 5-3 illustrates the cluster management layer. This layer sits on top

of the networking layer and performs aIl the cluster management procedures such

as connecting to the CAS, retrieving connection information and connecting to the

other server nodes.

Discussion

As explained in the previous sections, each server nodes maintains a physical

network connection with every other server node in the cluster. Although it may seem

49

A) Flrst Server Connec:ts B) Second Server Connecta

CAS 1) Server nodes connects

....-------, pl'OYkling channel it s~rts
CAS

Sl (chl, ch2)
..... T

2) Er<ry made S1-ch1,d\2

C) Alter ail servers connect

~Chl,ch2}

o
~

3) No existing server on
cluster, nothing ralumed

CAS

2}Entry made
51-c:h1,ch2

52-c:h3,cM

51 (chl, ch2) 53 (ch5, ch6)

St -c:h1,ch2

S2-cft3, cM

S3-c:h5,ch8

S4·ch7,0h8

0·······0
l " ,'. ." .. ,
• " # •

: " .. , ,! : CIust., Fonned .
1 " 1 . .. \, .

0
:,/ ".:
. ·······0

52 (ch3, ch4) 54 (ch7, ch8)

o
1) 52 oonnects :
similarty •
~ • 4)Ccnnect""wfth

\ ~:SI_"""L

~0S2(~'_)
3) Inlo of Sl ralwned .

Figure 5-2: Cluster formation procedure

l
Creating connectio,.

with other server nodes.

Cluster Management Layer

Distributed Network Engine

!

Figure 5-3: Cluster Management Layer

unnecessary to maintain such a number of connections, this scheme actually turns

out to be more efficient. For example, consider a cluster consisting of 4 nodes with

the game space equally distributed among them. During an active game scenario

with a considerable number of players, there will be a need for constant inter-server

communication as players move across sub spaces or subscribe to sub spaces hosted

50

.,,---

by servers other than their home server. If a physical connection is maintained only

on need basis, there will be a considerable overhead in establishing and tearing down

these connections repeatedly, increasing the time taken for astate to be transmitted

across servers. However, if a permanent physical network connection is maintained

with proper interest management, then this overhead can be avoided.

5.2 Communication Mechanisms

This section discusses in detail the communication mechanisms and the protocols

used in the distributed server architecture.

5.2.1 Distributed PublishjSubscribe System

The distributed publishjsubscribe system provides a means for state updates

to be disseminated across the distributed architecture to aIl interested client nodes.

The detailed explanation of the protocol is described in the following section

5.2.2 Description of the publish subscribe system

The logical channels at the server node can be classified as that of two types -

local channels and remote channels.

1. Local Channels correspond to the sub spaces that the server node is actually

in charge of and are specified in the localChannels linked list.

2. Remote Channels correspond to sub spaces that reside on other nodes on the

server cluster. The remoteChannelMap hash table maps these channels to the

servers which host them.

As explained earlier, each logical channel has client and server nodes associated

with them. Local channels have both clients and server nodes associate with them

51

while remote channels have only client nodes associated with them. Using the in­

formation of these two types of channels, we will now explain how the distributed

publish subscribe system works in two different scenarios with the help of examples.

Assume agame world divided into four sub spaces - subI, sub2, sub3, sub4 each

hosted by server nodes Sb S2, S3 and S4 respectively, which form a cluster.

Example 1 - Local Subscription

Two clients Cl and C2 are both connected to SI with their players in SUbI.

N aturally both of them will be interested in state updates that occur in SUbI. Hence,

both send subscription messages to SI requesting subscription to the local channel

ChI serving SUbI. Upon receipt of these subscription messages, SI adds both Cl and

C2 to the subscribers list of local channel ChI (referred to as subscribers(S1, ChI)).

Now, when Cl sends astate update for SUbI, it is received and processed at SI

and a response is generated and sent to the local channel ChI in the network engine.

Since there are Cl and C2 in subscribers(SI, ChI)), the response is sent to both of

them. This way, C2 gets to see the update performed by Cl while Cl simply ignores

the message since it was the on which actually performed the update.

Example 2 - Remote Subscription

Now, assume there is another client C3 connected to S3 who wishes to listen

for updates that occur in SUbI. It sends a subscription message to S3 request­

ing for subscription to the logical channel ChI which serves SUbI. S3 now realizes

that ChI is a remote channel and adds C3 to subscribers(S3, ChI). Now, it uses the

remoteChannelMap to discover that SI is the server hosts logical channel ChI. It then

52

.--

creates a message and sends it to SI requesting a subscription to chI which is local

to it. SI upon receiving this message adds S3 to subscribers(SI, chI).

Now, when astate update for SUbI is processed at SI and a response is gen­

erated, it is sent to the logical channel ChI in the network engine. Since S3 is in

subscribers(Sl, ChI), the response is forwarded to S3 as weIl. S3 receives this update

and sends it to all the nodes present in subscribers(S3, ChI) (the subscriber list for

the remote channel ChI). As C3 is present in subscribers(S3, ChI), it receives the

response as weIl. This way C3 can see the updates performed at SUbI hosted by SI.

Handling multiple subscriptions

Now consider a large number of clients connected to S3 who want to subscribe

to ChI present at SI' If S3 keeps sending subscription requests to SI each time

a client wants to subscribe to ChI, it will result in multiple subscriptions of SI at

S3, and each time a message is sent over ChI it will be sent multiple times to SI

causing unnecessary bandwidth usage. Plus, there is no way for SI to know when to

unsubscribe S3 from ChI, since it has no means of keeping track of how many clients

are subscribed to ChI through S3. Therefore, even after all clients at S3 unsubscribe

to ChI, SI can still end up sending updates to S3.

A solution to this problem is to let S3 to keep track of the number of subscribers

to its remote channel ChI. The first time S3 receives a subscription request for

ChI from its connected clients, it adds the client to subscribers(S3, ChI) and sends a

subscription request to SI for its local channel ChI. SI adds S3 to subscribers(Sl, chI)

effectively subscribing it to an updates occurring at SUbI' When another client

53

wants to subscribe to remote channel ChI at 83 , 83 will simply add this client to

subscribers(83 , chd without sending another subscription message to 8 1 .

When aU clients unsubscribe from ChI, subscribers(83 1 chI) becomes empty. 83

detects this and sends an unsubscription message to 8 1 which removes 83 from

subscribers(811 ChI) effectively unsubscribing it from aU updates occurring at SUbI.

This approach solves the two issues faced earlier in the foUowing manner:

1. There is only one message sent from 83 to 8 1 when an update occurs at ChI

irrespective of the number of clients subscribing to that on 53 therefore saving

inter server bandwidth.

2. When there are no more clients subscribed to ChI at 83 , then 8 1 will not send

any messages to 83 , again conserving inter server bandwidth.

Algorithm 1 gives the formaI algorithm for the distributed publishjsubscribe

mechanism. Algorithm 2 expresses the dissemination of updates across the dis­

tributed server architecture in a formaI manner.

54

Algorithm 1 Distributed PublishjSubscribe algorithm
1: At Server node Si :

2: Data Structures:
3: remoteChannelMap : Hashtable
4: localchannels : List
5: subscribers(Sil chk) : List

6: Upon receipt of message SUBSCRIBE(Cm, Chk) from client Cm :
7: if chk in localChannels then
8: Add Cm to subscribers(Sil chk)
9: else

10: Sj f- remoteChannelMap.get(chk)

11: if subscribers(Sil chk) == EMPTY then
12: Add Cm to subscribers(Sil chk)
13: Send SUBSCRIBE(Si, Chk) to Sj
14: else
15: Add Cm to subscribers(Sil chk)
16: end if
17: end if

18: Upon receipt of message SUBSCRIBE(Sj, Chk) from server Sj:
19: Add Sj to subscribers(Sil chk)

20: Upon receipt of message UNSUBSCRIBE(Cm, chk) from client Cm :
21: if Chk in localChannels then
22: Remove Cm from subscribers(Sil Chk)
23: else
24: Remove Cm from subscribers(Sil chk)
25: if subscribers(Sil chk) == EMPTY then
26: Send UNSUBSCRIBE(Si, chk) to Sj
27: end if
28: end if

29: Upon receipt of message UNSUBSCRIBE(Sj, chk) from server Sj:
30: if Sj in subscribers(Sil chk) then
31: Remove Sj from subscribers(Sil chk)
32: else
33: print 'ERROR : No earlier subscription'
34: end if

55

Aigorithm 2 Message Transfer Algorithm
1: At Server node Si :
2: subscribers(Si, chk) : List

3: Upon receipt of state update MSCt from client Cm :
4: Process M SCt
5: Generate repsonse RESPt to be sent over chk

6: for an ServersjClients SCi in subscribers(Si, chk) do
7: send RESPt to SCi

8: end for

9: Upon receipt of state update M SCt from server Sj :
10: for all Client Ci in subscribers(Si, chk) do
11: send MSCt to Ci
12: end for

5.2.3 Game State Retrieval

As discussed in Chapter 2, clients retrieve and store complete up-to-date state

of the sub spaces they are interested in from the servers which host them. This

process of requesting for and retrieving relevant state information is referred to as

world management in Mammoth. In the single server architecture, the protocol for

retrieving state information by the clients was relatively simple since aIl sub spaces

resided on one node. The client simply sends astate retrieval message for the sub

space whose state is required. The server collects the state for that sub space and

returns the information to the client which updates its local cache.

However, in the distributed server architecture, this becomes a challenge since

the sub spaces are distributed over a number of servers. Therefore there is need for

a more detailed protocol which can manage retrieval of state for the client over this

56

architecture. This section describes this protocol using the same example used in

the previous section and gives a formaI algorithm for it.

Protocol Overview

Assume client Cl is connected to its home server 81 and is interested in events

occurring on sub space sub2 hosted by 82 . Apart from subscribing to the remote

channel ch2 at 81, it also needs to retrieve the current state of sub2 • It therefore

sends astate retrieval request message for sub2 to 8 1 attaching its client identifier

with the message. Client identifiers help server identify the clients connected to

them. When 81 receives the requests, it realizes that it does not host su~, therefore

it looks up the server hosting su~ using remoteChannelMap hash table (since sub

space sub2 corresponds to logical channel ch2) and finds out that it is 82 . 81 then

forwards the state retrieval request to 8 2 • When 8 2 receives this request, it collects

the state for su~ and sends it in the form of a state information message to 8 1

attaching the client identifier for Cl that was present in the state retrieval request.

When this message is received by 8 1, it sim ply relays it to Cl. Cl upon receipt of

the state information message, uses this information to update the state for su~.

Algorithm 3 formalizes the game state retrieval protocol.

5.2.4 Player Migration - A detailed explanation

Player migration is referred to as the movement of players across sub spaces

within the game world. Since a server can host more than one sub spaces, player

migration can be of two types, local and remote migration. The following sections

discusses both of them in greater detail.

57

~-

Algorithm 3 Algorithm for Retrieving Game State
1: At Client node Ci :

2: Received request of state for sub space k from upper layers. :
3: Create GET_STATE(Ci, chk) message.
4: Send GET_STATE(q, chk) to Home Server Si

5: Upon receipt of message STATE_INFO(statek) from Home Server Si :
6: Send state to upper layers for processing.

7: At Server node Si :

8: Received GET_STATE(Ci , chk) from client Ci :
9: if chk in localChannels then

10: Collect state information statek for sub space k
11: Send message to STATE_INFO(statek) to Ci.
12: else
13: Sj f- remoteChannelMap.get(chk)

14: Send GET_STATE(Ci , chk) to Sj
15: end if

16: Received GET_STATE(Ci, chk) from Server Si :
17: Collect state information statek for sub space k
18: Send STATE_INFO_RESP(Ci, statek) to Si)

19: Received STATE_INFO_RESP(Ci, statek) from Server Si :
20: Send STATE_INFO(statek) to Ci)

58

Local Migration

When a player migrates across sub spaces hosted by the same server, it is known

as local migration. As a result, the client maintains connections with its current

home server. However, as it has moved over to a different sub space, the interest

management algorithm will require it to subscribe to newly interested sub spaces and

unsubscribe from sub spaces that it is no longer interested in. It also requires the

client to retrieve the current state of new sub spaces it is now interested in. Sinee

these sub spaces can either be local or remote to the client's home server, the client

uses the distributed publishjsubscribe system and the game state retrieval protocol

described earlier to manage the subscriptions and to retrieve the game state. Sinee

the client does not change home servers, the session of the client remains the same

on its home server.

Remote Migration

A player undergoes remote migration when it moves across sub spaces which

reside on different server nodes. This section outlines the various steps that occur

as a player remotely migrates across sub spaces using the continuing example of the

distributed architecture.

Assume, player Pl represented by client Cl migrates from subI (hosted by SI)

to sub2 hosted by 82 . As it moves across the sub space boundary, it performs the

following steps:

1. When Cl detects transition across sub spaces, it looks up which server is re­

sponsible for the destination sub space (i.e., sub2), It realizes that it is not the

home server (using localchannels list it receives From SI upon connection).

59

2. It looks up the server which is responsible for sub space sub2 (i.e., 82) using

remoteChannelMap hash table it had received from the rendezvous server when

it entered the cluster.

3. It unsubscribes from aIl the sub spaces it has currently subscribed to.

4. It disconnects from 81 .

5. It establishes a Tep connection to 8 2 and exchanges control information (such

as retrieving 8 2 's localChannel list and a client identifier).

6. It subscribes to the sub spaces that the player is now interested in (dictated by

the interested management scheme) and retrieves game state of aIl these sub

spaces (using the same procedure as that used in local migration). The order in

which these two operations occur is essential in order to avoid inconsistencies.

More details about this is discussed later in this chapter.

7. Send a stan message containing the identifier of the player migrating. When

8 2 receives this message, it establishes a game session for this player associating

it with this client.

8. At this point, player migration is complete and Cl can start sending state

updates to 8 2 .

State Management during Player Migration

As explained in Section 5.1.2, clients do not have any dynamic state information

at startup. They get the state of the sub spaces they are interested in from server

nodes that host these sub spaces. Using this state information, clients create local

copies of dynamic objects present in that sub space. They then subscribe to the

sub space and receive updates which they can apply to these objects to keep them

60

,~--

up-to-date. If a player enters a sub space now and performs sorne updates, the clients

receiving these update would not be able to apply them as they don't have the local

copy of this newly entered player's dynamic object.

Therefore, before Pl migrates onto sub2 , aU the clients which are already sub­

scribed to this sub spaee will not have a local object for Pl and therefore will not

be able to apply the state updates that they reeeive for this player. Renee, 82 must

send a copy of the Pl object to aU the clients subscribed to su~ so that they can

create a local copy of Pl. The foUowing steps illustrate how this actuaUy takes place.

These steps occur when 8 1 detects that Pl is about to migrate (i.e., along with Step

1 of the Remote Migration Protocol).

1. Before Pl is about to migrate, 8 1 creates a PLAYER~IGRATION message

containing PI's object and sends it to 8 2 .

2. 82 upon receiving the object for Pl, multicasts it across the logical channel ch2

effectively sending it to aU client nodes subscribed to this channel.

3. Upon reeeiving the object for Pl, aU clients add it to their local state for su~

and are now able to see the player and process its updates.

In case of local migration, as the player moves across the sub space boundary,

the server multicasts the player object across the logical channel of the sub space to

which the player migrates to. Clients add the received player object to their local

game state in order to see the player.

5.2.5 Consistency during player migration and startup

Whenever a client st arts up or its player migrates across sub spaees, it subscribes

to the newly interested sub spaces and gets the state information. However the order

61

/~-

in which these two operations occur proves to be very essential to the correctness of

the state received at the client.

Scenario 1 - State Retrieval before Subscriptions

Client CI ServeT SI CiientC2

GET_STATE(Ct, CH(k»

~
ST A TE_INFO(state(k»

SUBSCRIBE(Ct, CH(k) ~ STATE_UPDATE(CH(k), MOVE]LA YERt)

~ ST A TE_INCONSISTENT

Figure 5-4: L088 of updates leading to incorrect game state

This case is described in Figure 5-4. In this case, the client Cl tries to retrieve

the state information for sub space subk before it subscribes to its corresponding

logical channel (chk). As visible from the scenario described in the figure, there could

be crucial state updates that may change the state of the sub space before the client

subscribes to the logical channel and after the game state has been computed and

sent. Therefore, Cl completely misses these updates hence resulting in an incorrect

view of the world. For example, if the missed updates correspond to picking up of

sorne important objects by C2 , then the player at Cl will still see them as present in

the game world, which is wrong.

62

Scenario 2 - Subscriptions before State Retrieval

Client CI Server SI ClientC2

Subscription Made

, ~'

State Updated \~)
~

Figure 5-5: No 10ss of updates

This case is described in Figure 5-5. In this case, the client Cl subscribes to the

10gical channel chk before it tries to retrieve the state information for the sub space

subk . Lets examine this scenario at a greater level of detail. Cl sends a subscription

message (say SUB) to 8 1 soon followed by astate retrieval message (say SR). Since,

the connection between Cl and SI is Tep, SUB is guaranteed to reach SI before

SR. Now, if 8 1 receives crucial state updates for subk (say UI and U2) in between,

they will be queued between SUB and SR in the incoming message queue. Hence,

SUB will be processed first followed by UI, U2 and then SR. Therefore the state

information collected after processing SR will include the state updates UI and U2.

Since UI and U2 are processed before SR, their responses will be queued ahead of the

state information message (say SI) in the message queue for Cl as the same message

queue for Cl is used for sending direct as weIl as multicast messages. Therefore, Cl

63

receives UI and U2 before SI. Since SI already contains the state updates specified by

UI and U2, applying them to Cl 's local cache will be idempotent, hence Cl discards

these updates and applied state information in SI to its local cache without losing

updates.

64

6.1 Introduction

CHAPTER 6
Experimentation and Results

Now that we have described our distributed server architecture for MMOGs in

detail, we present results of the experiments performed on the implementation of

the architecture in the Mammoth prototype with an aim to measure its scalability.

The parameters measured were bandwidth consumption and CPU utilization at the

server nodes as weIl as the overall latency experienced during game play. We give

our initial results which we obtain by experimenting with the existing single server

implementation of the Mammoth network engine explained in Chapter 3. We then

present the results obtained from the distributed server architecture implementation

in comparison with the single server, proving clearly in each instance our hypothesis

that the system shows the scalability properties that it was designed for.

6.2 Experimental Setup

6.2.1 Physical Setup

In order to get results which reflect true performance, we ran our experiments

using the complete distributed implementation using actual game messages on a

real network rather than simulations. Each server no de was configured to run on

a different machine. The machines were connected via local area network of high

bandwidth capacity. The experiments were performed on machines equipped with

3.40 Ghz Pentuim 4 processors hosting the server nodes. The machines ran the Linux

65

2.6.14 kernel with Sun JDK 1.5.0.04. A maximum of 16 server nodes were used to

test the scalability of the architecture. The cluster administration server and the

rendezvous server were also configured to run on the same local area network as the

server nodes.

The clients were running on 38 difIerent machines in difIerent subnets of the

department local area network. In our future work we propose to run the experiments

with clients on difIerent networks (preferably at a greater geographical proximity) to

get more realistic network delay. However, we believe the results obtained from our

local area network experiments are indicative of the scalability of our system when

compared with the existing architecture.

For the purpose of our experiments we implemented a special viewless client

without a graphical display. This allows us to run more clients per machine without

the heavy graphies overloading it. Each viewless client was implemented as a thread

and ten such threads were started from each machine, efIectively representing 10

clients. Accommodating more clients per machine would have allowed us to have

more players in the game, but that would have overloaded the machine where they

were run, afIecting the behavior of each client. Therefore, the number of clients we

could experiment was limited by the number of machines available to us, allowing

us to experiment with up to 380 clients. However, this number was large enough to

provide a comparison of the scalability of our architecture under varying conditions.

6.2.2 Player behavior

The players at each client had an automated behavior described by a random

algorithm. For the purpose of simplicity, we only allowed movement actions for

66

experimental purposes. Therefore, each player made a movement of a specifie dis­

placement at specifie time intervals in a randomly selected direction. The seed for

the random number was computed from the player identifier. This way the same set

of random numbers were selected for each experiment (with same number of clients).

Thus, we had the same traces of random movements making the scenarios identical.

In our experiments, we used an interval of one second between generation of every

movement update. We decided on this interval after observing traces obtained from

actual gaming scenarios. Since we were using actual client implementations rather

than just dummy message senders, the responses received back from the server nodes

were processed at the clients and helped in deciding their next action, providing us

with a more realistic behavior.

6.2.3 Game Setup and Experimentation Technique

For the purpose of testing our system performance, we created a special map

consisting of 16 sub spaces (or static zones) of equal size and shape in the form of

a 4x4 rectangular grid. The density of players was even across aH sub spaces in the

map so that no part of the entire game could be unevenly concentrated with players.

The cluster administration server was started initiaHy and aH server nodes con­

nected to it to form the cluster. The rendezvous server was then started which ob­

tained the cluster information. A remote script simultaneously started aH 10 clients

at each machine each connecting to the cluster through the rendezvous server to

start sending state updates corresponding to their in-game movements. The player

identifiers decided the starting position of a player in the game map were randomly

67

selected and assigned by the rendezvous server in order to have a more even distri­

bution of players starting off in different areas of the map. However, the same set of

random numbers were used for each experiment, so that the experiments remained

identical.

6.2.4 Measurement of Parameters

The CPU consumption at each server node was measured at an interval of 250

ms during each experiment mn and an average was computed. Both incoming and

outgoing bandwidth was measured at the server nodes at a regular interval in order

to measure the communication overhead and the average value was recorded. A

latency monitoring utility was developed for estimating latency. This utility had a

sending and receiving component. The sending component connects to a server node

in the cluster and sends probe messages for a particular channel recording the time

at which it was sent. The server node relays this message to aIl subscribers of that

channel. The receiving component also connects to a server node and subscribes to

the same channel to receive these probe messages. The latency is estimated as the

difference between the time of receipt recorded by the receiving component and the

sending time recorded by the sending component.

There were two ways in which we estimated latency:

1. Direct Latency This is an estimate of the amount of latency experienced by the

clients for state updates occurring at sub spaces hosted by their home server.

Figure 6-1 (left) shows how direct latency is measured. The sending component

connects to a server no de and sends probe messages for a local channel. The

68

receiving component connects to the same server, subscribes to a local channel

to receive these probe messages and calculates direct latency.

Latency Monitor

Direct

Latency

ServerNode

Response Message

Latency Monitor

Indirect

Latency

Server Node 1 Server Node 2

Figure 6-1: Latency Measurement, Left: Direct Latency, Right: Indirect Latency

2. Indirect Latency ln a distributed architecture, it is imperative to measure the

latency experienced by clients for state updates occurring at sub spaces hosted

by servers other than their home server. This is estimated by indirect latency.

Figure 6-1(right) shows how indirect latency is measured. The sending comper

nent connects to a server no de and sends a probe message on a local channel.

The receiving component connects to another server no de and subscribes to

the same channel (which is remote at this server) to receive this probe message

and calculates the indirect latency.

6.3 Single Server Experiments

This section presents results for experiments performed on the existing single

server network architecture of the Mammoth prototype. Since the aim of our exp er-

iment was to evaluate the scalability of the system, we naturally took our measure­

ments of CPU, bandwidth and latency with increasing number of clients. In order to

69

get the most accurate results, the measurement of parameters was commenced only

after the required number of players were connected to the single server and had

started sending updates. We stopped taking measurements before the first player

stopped sending updates and disconnected.

6.3.1 CPU Utilization

This experiment was conducted with the aim to measure the CPU utilization at

the single server with increasing number of clients. The experiment was repeated with

increasing number of clients and the measurement of CPU utilization was taken when

aIl clients were connected and were transferring state updates. Figure 6-2 shows the

result of the experiments. As visible from the graph, the CPU consumption increased

almost linearly with increasing number of players in the game. This is due to the

increasing number of messages that needed to be processed from the rising number

of players. AIso, another major overhead was the serialization and deserialization of

messages sent and received by the network engine. With more messages being sent

and received, this overhead increased leading to an increase in CPU consumption.

We could only take measurements for up to 220 simultaneously connected clients as

the latency at this point became intolerable for proper playability (see next section).

70

CPU Utilization • Single Server Leteney • Single Server
80 800

70 700

l 60 600

c -Il o 50 ! 500 .,
• .!! 40 ~ 400

ii c • :::1 30 ~ 300
:::1 ..J
D.. 20 200 U

10 100

Number of Ph.yers Number of PllIYers

(a) CPU Utilization (b) Latency

Figure 6-2: Single Server CPU Utilization and Latency

6.3.2 Latency

The latency of the single server architecture was measured under varying loads

by experimenting with increasing number of clients. Since the experiment was on the

single server architecture, we measured the direct latency. A certain number of probe

messages were sent during the experiment and the time taken for them to reach the

server and relayed back to measured. As we can see from Figure 6-2, the measured

latency is between 3ms - 50ms for up to a 150 players in the game. However, there is

a sharp increase in latency values when more than 160 players join the system. The

main reason for this behavior is that the multiplexing unit at the network engine

cannot process the large number of messages in the different message queues for aIl

the logical channels fast enough leading to clogging of messages in these message

queues. Therefore, it takes longer time for response messages to reach the clients.

At 220 clients, latency values reached 745 ms which we deemed as intolerable for

good playability.

71

6.3.3 Bandwidth Utilization

Both incoming and outgoing bandwidth utilization was measured at the server

to determine the communication overhead. The incoming bandwidth refers to the

messages being received by the server while the outgoing bandwidth was represen­

tative of aH the multicastsjdirect messages sent to the clients. Figure 6-3(a) shows

the outgoing bandwidth consumption while Figure 6-3(b) shows that for incoming

bandwidth. As visible in both cases, the bandwidth consumption increases with in­

creasing number of clients as both the number of incoming and outgoing messages

increases. Outgoing bandwidth consumption is much higher than incoming since

for every message received for a channel k with n subscribers, there are n outgoing

messages. From Figure 6-3(a), it is visible that the curve st arts to fiatten when it

reaches the peak number of players that the server can handle. This is mainly be­

cause the server cannot pro cess the large amount of incoming messages fast enough,

hence these messages start queuing up in the message queues in the network engine

and only a constant amount of messages are processed and sent out over the network.

6.4 Distributed Server Experiments

This section now presents the results obtained by experiments performed using

our distributed server architecture. For preliminary results, we used 4 server nodes

in our cluster each in charge of 4 of a total of 16 sub spaces. Figure 6-4(a) and

(b) illustrates configuration 1 and 2 respectively of mapping sub spaces onto server

nodes. We used configuration 2 for comparing CPU and bandwidth utilization results

with those obtained from the experiments on the single server implementation. We

also analyze and compare the message statistics for both the configurations.

72

Outgoing B.ndwidth - single Server Incoming Bandwidth - SiIIgIe Server
100000 4000

....
ii Il

Do
80000 Do

JI JI
:!! :!! 3000
.&: .&:
" 60000 " 'i 'i
" 1! 2000 C • • Il 40000 Il
III III C c
'Ë E 1000
0 20000 0 u u
!: !:

0 0

Humber of Players Humber of PI.yers

(a) Outgoing Bandwidth (b) Incoming Bandwidth

Figure 6-3: Single Server Bandwidth Consumption

ame'iPa~e

8:3 83 84 84
, , 84 84' 8.4 84 ~SubSpaces

",' ",' ,"II

S3 ' "3 Setvet " ' 83 S' .83 AII~c~ed ,ta, '$3 53 84 '$4

82 82 82 82 81 S1- S2 82

St 81: 52 $2 , '
81 81'$1 81 .. '

(a) Mapping Configuration 1 (b) Mapping Configuration 2

Figure 6-4: Mapping Configurations

6.4.1 CPU Utilization

Figure 6-5 shows the CPU utilization at all four server nodes in the distributed

server architecture (using mapping configuration 2) with increasing number of play­

ers in the game, From the results obtained we can see that the CPU utilization at aIl

server nodes in the distributed architecture is much less than that for the single server

scenario. Sinee each server node hosts only part of the game state, it reeeives and

73

processes a fraction of the total messages received by the single server. Further, the

messages received from the other server nodes are not processed but relayed to the

connected clients and do not contribute much to increase the processing overhead.

Therefore, the CPU utilization at each server node in the distributed architecture is

much lower than that for the single server. As a result, our distributed server archi-

tecture is able to scale up to 380 clients without incurring excessive CPU overhead

at each server node.

CPu Utilization - single Server vs. 4 Node Cluster

BD l,?I~:li!!ii~!BIi-
~Server1

10 __ Server2

~ 60 -~ 50
li • !! 40

i .. 30
:::1
IL
U 20

10

o

-.-Server3
~Server4

Figure 6-5: Scalability Experiments for CPU Utilization

6.4.2 Latency

Figure 6-6 shows the measurement of both direct and indirect (or across) la-

tency values in the distributed server scenario. As we can see the latency increases

steadily with increasing number of players. This is again due to longer time taken by

messages to get through the message queues at the server nodes. As observed from

74

..... ...
!

200

150

t' 100
C • 11
-'

5D

o

Latency - Direct ys. Across

Number of PI.yers

Figure 6-6: Direct and Indirect Latency for 4 Server Node Cluster

the graph, the indirect latency increases exponentially at 320 players, this is because

of the large amount of time spent by the probe message in the message queues at

the server node and the relay of the message between the servers. However, when

compared to the latency measurements in the single server scenario (see Figure 6-7),

the latency measured in the distributed server architecture was much lower for a

larger number of players. The peak latency measure in the single server was 745 ms

at a peak load of 220 players while the distributed architecture scales better with

only 188 ms (indirect) latency with a load of 380 players.

6.4.3 Bandwidth and Message Statistics

Figure 6-8(a) compares the incoming bandwidth in the single server scenario

with the average of the incoming bandwidth measured at each server node in the

distributed server cluster (using mapping configuration 2). The incoming bandwidth

at the single server decreases at overload as clients are unable to connect to the

75

Latency - Single Server vs. 4 Node Cluster

BOO]J •• _ii=~
700

600 -III 500 E -~ 400
C • 'al 300
..J

200

100

o

Number of Players

Figure 6-7: Scalability Experiments for CPU Utilization

already overloaded server and those which already are eonnected are not able to

transfer messages as the server is too overloaded to process any more messages. In

the distributed scenario however, the ineoming bandwidth at the server nodes is

mueh less than that eompared to that in the single server scenario. Since eaeh server

node host sub spaces, they receive fewer updates compared to the single server. Also,

due to interest management the updates received from other server nodes is just for

a subset of sub spaces that its client is interested in. This leads to overall reduction

of ineoming bandwidth on average on eaeh server node.

Figure 6-8(b) provides a similar comparison except now with the outgoing band-

width eonsumption. Again, the architecture is shown to seale well as the maximum

bandwidth eonsumption in the cluster at 380 players is mueh less than that for single

server scenario where the server peaks out at 220 players. Since each server node

receives fewer state updates and disseminates the response to a much less number

76

Out90lng 8andwidth - Single Serve, vs. 4 Serve, Node Cluste, Incoming 8andwidth . Single Serve' Ys. 4 Node Cluste,

100000

'ii
Do 80000
.0
~
fi
'U 60000
'j
'U c • Il 40000
II'
C
"0
II'
'!l 20000
0

Numbe, of Players

(a) Incoming Bandwidth

4000

'ii
Do
~ 3000

i
i -g 2000

• Il

~
! 1000

" =

Number of PI~rs

(b) Outgoing Bandwidth

Figure 6-8: Bandwidth Comparison

clientsfserver nodes, the outgoing bandwidth on average for a server no de is much

less than that for the single server scenario.

Messages from Clients
Server Movement U pdates State Retrieval Subscriptions

Config 1 Config 2 Config 1 Config 2 Config 1 Config 2
1 3345 3722 743 943 743 943
2 4121 4873 1313 1357 1313 1357
3 3106 4332 1065 1122 1061 1122
4 3818 3035 633 842 633 842

Table 6-1: StatIstIcs for messages recelved from chents.

We now look at the statistics of the messages received at server nodes in an

experiment involving 120 players connecting to the cluster at the same time each

making a total of 150 movements in a random direction. The statistics are compiled

and compared for mapping configurations 1 and 2. Table 6-1 shows the statistics for

messages received at server nodes from their connected clients. From the table, it is

visible that aIl movement updates sent by the clients are roughly evenly distributed

77

Messages from other Server nodes
Server Movement U pdates State Retrieval State Info Subscription

Config 1 Config 2 Config 1 Config 2 Config 1 Config 2 Config 1
1 3764 3752 291 290 211 250 4
2 6021 2583 447 210 582 349 9
3 6943 3015 473 273 573 300 8
4 2767 4244 237 359 182 233 4

Table 6-2: Statistics for messages received from other server nodes.

Type of Player Migration
Server Local Migration Remote Migration

Config 1 Config 2 Config 1 Config 2
1 114 167 97 61
2 159 288 191 76
3 133 268 140 75
4 118 147 72 73

Table 6-3: Player MIgratIOn statIstIcs.

across aIl server nodes in the cluster. State retrieval and subscription messages

constitute approximately 12 to 15 percent of the total messages received from the

clients while movement updates are 60 to 65 percent. In aIl instances, the number

of subscription messages received from clients are equal to state retrieval messages,

which is in concordance with our algorithm.

Table 6-2 shows the statistics for messages received at each server no de from

other server nodes in the cluster for both mapping configurations. Movement update

messages refer to state updates sent to other server nodes which have subscribed to

them on behalf of their clients, state retrieval messages are requests for state of sub

spaces received from other servers, state information messages are sent in response

to state retrieval requests and contain the requested state information. Subscription

78

Config 2
4
5
4
4

requests are messages received from other server nodes requesting subscription to

local channels. From the table, we can see that the total messages exchanged between

server nodes is much less for configuration 2 than for configuration 1 (approximately

30 percent reduction in overall inter server messages). In configuration 1, server 2

and 3 receive greater number of messages than server 1 and 4 since the sub spaces

they host have greater number of neighboring sub spaces hosted on other nodes than

server 1 and server 4. The results also show server 2 and 3 receive a larger number

of subscriptions than server 1 and 4 due to the same reason. For configuration

2, variation in updates received is not as large as that for configuration 1 as total

neighboring sub spaces at other servers remain same for all server nodes. Similarly,

subscription requests from other server nodes is roughly the same for aH server nodes.

Table 6-3 shows statistics for player migrations across sub spaces categorized by

both local migration (across sub spaces hosted the same server) or remote migration

(across sub spaces hosted on separate servers). As shown in the results, there were

fewer remote migrations in case of configuration 2 than for configuration 4 due to the

way the suh spaces were arranged. Since remote migrations are more complicated

and involve a considerable overhead in switching server connections, we prefer a

mapping configuration which avoids frequent remote migrations of players. Even

though configuration 2 had more players migrations in total, most of them were

local and the number of remote migrations are lower than that for configuration 1

(which had more remote than local migrations).

Therefore, from the above results, it is clear that the scheme in which sub spaces

are mapped on ta server nodes affects inter server communication. We infer from

79

our results that configuration 2 is a better mapping scheme of sub spaces over the

server cluster as it results in lower inter server communication.

6.5 Effect of Varying Cluster Size

G' . Si" .ame' ~Pa~e G s' . ame' ~Pa~e ame"~Pa~e

82 82 82 82 87 87 88 88 8l~ ; ,l,':" 814
, "

~1E
,,'

816

$2 82 ,82 S2 85 85 SB S6 89 810 8:f 812

81 81 81 81 83 83 84 84 85 SB 87 88

Sl 81 81 81 81 81 82 82 81 82 83 84
, , , . , " , , , .

(a) 2 Server (b) 8 Server (b) 16 Server

Figure 6-9: Sub Space - Server Mapping

Based on the results presented in the previous section, we confirm that the 4

server no de distributed architecture shows better scalability than the single server

architecture. In this section, we go a step further by observing how the scalability of

the system is affected as we increase the cluster size. We repeat our experiments for

CPU and bandwidth utilization over clusters having 2/4/8 and 16 nodes and present

our results comparing them with those for the single server architecture. For each

cluster size, Figure 6-9 shows how the sub spaces are mapped on to the server nodes.

We use configuration 2 (see Figure 6-4(b» as the mapping scheme for the 4 no de

server cluster.

Figure 6-10 shows the average CPU utilization at server nodes for increasing

cluster sizes. From the figure we can see that the worst performer is the single server

architecture which can only support up to 220 clients, The increase in server nodes

80

Scalability - CPU utilization Comparison
BO

70

~ 60

C So .g
• 40 .!!
~ 30
:::1
A.
\,1 20

10

li

Number of PI.yers

Figure 6-10: Scalability Experiments for CPU Utilization

in a cluster, decreases the number of sub spaces hosted per server node. Therefore,

the number of state updates each server no de is responsible to handle decreases. As

a result, fewer state update messages are received and processed per server node

reducing their average CPU utilization. Since messages from other server nodes are

just relayed to connected clients rather than processed, they do not contribute to a

considerable increase in CPU utilization.

Figure 6-11 (a) and 6-11 (b) show the average incoming and outgoing bandwidth

utilization at the server nodes respectively. From the results we can see that the

incoming bandwidth utilization per node on average decreases as the cluster size

increases. This is again because, with increasing cluster size, each server nodes

receives fewer state updates as it hosts fewer sub spaces. Although messages received

from the other server nodes contribute to the incoming bandwidth as well, this

contribution does not compensate for the sharp decrease in messages received directly

81

scelebility - Incoming Bendwidtb utilintlon Comperison

5000~~~!ii
.... ..
:- 4000

~
g
-; 3000

.!!

i
'5 2000
'D

i
'! 1000
Il ..

Humber of y.,.

(a) Incoming Bandwidth

sulebility - Outgoing aendwidtb utilintion CORI'

100000 lj~~~~

'ôi
:- 80000
~
c o
-; 60000

t
! c
Il ..

40000

20000

Humb.r of '''Y.''

(b) Outgoing Bandwidth

Figure 6-11: Bandwidth Comparison

from the client. With each server node hosting fewer sub spaces, the clients connected

to them also decrease. AIso, a server no de only needs to send one copy of state

update to other subscribed server nodes. Hence, there is a decrease in average

outgoing bandwidth with increase in cluster size. We next examine the bandwidth

consumption in detail with the help of message statistics collected for each scenario.

We conducted experiments with 120 players connecting to the server cluster and

performing 150 movements in random directions. The experiments were performed

using increasing cluster sizes and the message statistics were obtained. Figure 6-12

shows the messages received on average at each server no de in the cluster from its

connected client. We observed that the average messages received per server node is

halved as the cluster size is doubled. This explains the reduction in CPU consumption

and incoming bandwidth utilization. The figure also shows that the majority of

messages received at the server nodes are movement updates. Subscription and

82

.. .,
al • • ::E ...
0 .. • .II
E
::1
Z

Average number of messages trom clients for varying eluster size.

20000

15000

10000

5000

o

Number of Clients - 120

Movement Updates StBte Remeval

Message 'tYpe

Subscription

Figure 6-12: Messages received from clients.

state retrieval messages are equal in number and are comparatively much less than

movement updates.

Figure 6-13 presents the number of messages received at each server node from

other server nodes. The number of subscription requests from other server nodes

are too few to be shown in the graph and are therefore omitted. As observed, the

number of movement updates received from other server nodes does not reduce as

dramatically as in the case of the updates received from the clients. Although,

the sub spaces hosted by each server no de decrease with increasing cluster size, it

becomes increasingly dependent on other server nodes to receive updates occurring

in other sub spaces. The statistics for cluster sizes 2 and 4 are similar, as in both

cases, each server no de subscribes to at most 4 sub spaces hosted on other server

nodes. For cluster of size 8, each server no de subscribes to either 3 or 5 sub spaces

83

• • DI • • • • :l ...
0 .. • .A
E
= Z

Aver.ge number of mess.ges from server nodes for v.rying cluster size.

4000

3000

2000

1000

o
M"",ement Updates

Number of Clients· 120

5tate Retrieval Roquests

Mess.ge~pe

5tate Information

Figure 6-13: Messages received from other server nodes.

hosted by other server nodes, so the average inter server messages cornes out to be

slightly lower than that for clusters for size 2 and 4. Similarly for cluster of size

16, each server node subscribes to between 2 to 4 sub spaces hosted by other server

nodes and hence the average movement update messages received by each node is

lower.

84

CHAPTER 7
Integration into the Distributed Object Model

During the course of the development of the distributed server architecture,

there was a change in the interest management and game state management model

of Mammoth. In this chapter, we discuss these changes and describe how our dis­

tributed server can be adjusted to work with this new distributed object model.

7.1 Introduction

The distributed object model is a paradigm created and forwarded by Quazal

Inc. [1] and is implemented in the Mammoth prototype to improve its scalability.

According to the description of the model given in [25], the entire game can be

described as a collection of objects with each object having a certain state associated

with it. These objects are distributed over all the machines taking part in the game.

In multiplayer games, the change in state of an object on a machine should be made

visible to other machines. Therefore, these objects need to be duplicated over the

network to other player machines so that they can see these changes. An object

can either be a master or a duplica. Master of an object is its controlling instance,

i.e., where changes to its state are made. Duplicas are copies of the master object

which are sent to other machines and are kept up-t~date so that their state is

consistent with that of the master. In a client/server based MMOG, clients control

their players and therefore they host the master copy of their player object and are

85

called its duplication master. The server contains the duplicas of aIl player and other

dynamic objects in the game.

7.2 Publish-subscribe mechanism

For a client to see other players in the game, it needs to have a duplica of their

object. However, duplicating aH game objects over every station can lead to heavy

bandwidth consumption and resource usage. Duplication Spaces, a concept developed

by Quazal, provides greater control over which objects need to be duplicated over

which machine, therefore providing a control over the number of duplicas for a master

object. A duplication space is a space which contains aH duplicated objects which

are matched with each other using a matching policy. Each object in a duplication

space can either be a publisher, subscriber or both. Publisher objects are those which

publish the state updates that occur on them. Subscribers, as the name suggests,

discover these publisher objects and subscribe to them for these updates. When a

subscriber discovers a publisher in the duplication space, a duplica of the publisher

object is created and sent to the duplication master of the subscriber.

Step 1
Server

SendDu~~
Client 1 /

r---..;.... ,,-- ... , ...
P2

Step2
Server

DuPlicate1
Client 1

-;.....-..... Client 2\
,-- ... , ~~

~ P2j
' _-,

(a) Player duplicas at server matched (b) Player 2 object duplicated at client 1.

Figure 7-1: Single Server Duplication Mechanism

86

In the client/server based system, the duplication space at the server contains

duplicas of all player and other dynamic objects. A player is both a publisher and

a subscriber while all other dynamic objects (such as food items, books) are just

publishers. A user implemented boolean match function iterates over every publisher­

subscriber pair in the duplication space at regular intervals to determine if a certain

subscriber should discover a certain publisher. If this function returns true, a duplica

of the publisher is discovered at the duplication master of the subscriber. This way,

a client is able to see other objects in the game. The criteria used by the matching

function to match a subscriber to a publisher is implementation specific and can be

based on things such as the location of objects, the distance between them or the

sub spaces in which they reside. Figure 7-1 illustrates the entire process, client Cl

and C2 contain the master copy of player objects Pl and g respectively. In Step 1,

these objects are duplicated at the duplication space of the server as Pl' and P2 '.

The matching function at server 1 returns true for the pair PI '-P2'. Hence, P2' is

discovered by Pl' and duplicates its copy at its duplication master, i.e., client 1. (as

show in Step 2).

7.3 Implementation in Mammoth

This section discusses the single server architecture of Mammoth which is based

on this model [7]. A client is the duplication master for its player's object whose

duplica is created at the server when the client connects to it. Astate update made

on the master object at the client is sent to the server where it is applied to its

duplica. The server contains a duplication space object which maintains separate

lists for publishers and subscribers. The server adds the duplica of player object to

87

both these lists while duplicas for other dynamic objects are added to the publisher

list only.

7.3.1 Matching and subscription

The implementation of the matching function at the server can be user defined.

At a regular refresh rate, the mat ching function is executed for every publisher­

subscriber pair obtained from the lists in the duplication space. When the matching

function for a particular publisher-subscriber pair retums true for the first time, the

server creates a message containing the duplica copy of the publisher object and

sends it to the client which is the duplication master of the subscriber object. There

is a logical channel associated with each publisher object. The server subscribes

this client to the logical channel of the publisher object. AH state updates made to a

publisher object are disseminated to aH clients subscribed to its logical channel. This

way, clients can see relevant players and in-game objects and receive their updates.

7.3.2 Invalidation

If the match function retums false for a previously matched publisher-subscriber

pair, the server sends an invalidation message to the duplication master of the sub­

scriber and removes its subscription from the publisher's logical channel. The dupli­

cation master, upon receiving the invalidation message removes the duplica of the

publisher object from its duplication space. This way, a client can no more see the

objects which are irrelevant to it and does not receive any updates for it.

7.4 Cell based distribution

In the single server scenario with one duplication space, aH publisher-subscriber

matching computations are done at one machine, i.e., the server. However, game

88

sessions with a large number of players and in-game objects will require a large

amount of computations to match aIl possible publishers and subscribers leading to

increased resource consumption and poor scalability. Therefore, in order to reduce

the resource consumption at the server, we need a scheme to distribute the matching

task over many server nodes. Quazal's duplicated object model provides a solution to

accomplish this by dividing the duplication space into smaller ceUs each containing

a subset of the publishers and subscribers. These cells can be hosted by different

server nodes. Matching computations can be performed between publishers and sub­

scribers in each cell, thereby distributing the computation load among the different

server nodes. A cell is a partition of the duplication space which can group similar

publishers and subscribers on a separate machine.

7.4.1 Cell Match F\mction

In order to determine whether a publisher or a subscriber belongs to a ceIl,

we need to define a boolean CellMatch function for each cell in our system. The

CellMatch for a given cell takes as an argument a publisher or a subscriber object and

returns true if that object belongs to that particular cell. The CellMatch function

and other pertinent cell information is encapsulated in a ceU object. The server

hosting a cell is known as the duplication master for the corresponding cell object.

A duplica of each cell object is distributed at every server node in the system. The

CellMatch function of each cell is executed for aIl publisher and subscriber objects

on a server node at a regular refresh rate. If the function returns true, the publisher

or the subscriber object is duplicated at the server no de which is the duplication

master of the cell object. Once CellMatch for aIl cells has been performed at every

89

server node, the match fun ct ion is executed for all possible publish-subscribe pairs

at the duplication master of each cell. The definition of the CellMatch function is

also left user defined depending on the definition of a cell, i.e., the criteria by which

publishers and subscribers are grouped into a cell on a server node.

7.4.2 Example

Figure 7-2 illustrates a system consisting of two cells cell 1 and ceIl 2 hosted by

server nodes 1 and 2 respectively. Clients 1 and 3 connect to these server nodes and

duplicate their player objects Pl and P3 on them. The duplica of the ceIl object for

celll is present on server 2 (denoted by CeIll') and contains the CellMatch function

for cell 1. For this example, we consider the invocation of the CellMatch function

for cell 1 on aIl publisher and subscriber objects on server 2. As seen in from the

figure, the CellMatch returns true for the duplica P3 '.

Server 1

Client 1 1 r---,:;"",.,

pf

Server2

Client3 \

Figure 7-2: (a) Step 1 - Cell Match

Upon a cell match, the player object P3 ' is duplicated on the duplication master

of ceIl 1, i.e., server 1. This way, P3 ' is discovered by server 1. Figure 7-3 illustrates

this process.

90

Server 1 Server2

Ce1l2 ... -... Celll' , '"
1 \

1 P3' 1
\c cl

'" .-'_ ...

Client 1 1
r---"';"'-'

P3 duplicated on Server 1 \

Client 3
r---';;""'-' ,-- , ..

~ P1
......... -- ;"~

Figure 7-3: (b) Step 2 - Duplication to Server Node

Server 1

Celll ... -- ... , ..
, P1' ,
, P3'~
'.. P2' c 1

' _-*"

Client 1 1
r---"";""--' ,---, '"
"P1 P3:

' _-,

Server 2

l+-

Clien13 \

Figure 7-4: Step 3 - Match and Duplication to Client

Once P3' has been duplicated on server 1, the match function is executed at

cell 1 on this server as shown in Figure 7-4. The match function is executed for

each publisher-subscriber pair in celll which now also includes P3 '. As shown in the

figure, we assume that the match function returns true for Pl' and P3'. Hence, a

copy of P3 ' is duplicated at client 1. This way, player 1 can see player objects which

previously resided on other server nodes.

91

7.5 Integration of the distributed server architecture.

Using the concept of cell based distribution of publishers and subscribers pro­

vided by Quazal, we can subdivide the resource intensive task of matching over

several workstations allowing us to support more players in a gaming session. In

this section we propose how we can integrate the cell based distribution scheme us­

ing the distributed server architecture that we have developed. We show how the

server nodes in our architecture can host cells and use its existing primitives to define

protocols of communication which can implement the cell based distribution scheme.

We explain our implementation using concrete definitions of the three abstrac­

tions described previously, i.e., the match policy, cells and the cell match function.

However, the implementation is not specific to these definitions and can be used with

alternate definitions as weIl.

7.5.1 Sub spaces

The game world in our MMOG is subdivided into a collection of small rectan­

gular sub spaces of equal size. These sub spaces are much smaller in comparison to

the sub spaces described in previous chapters and are larger in number for more fine

grained interest management. We use the term tiles instead of sub spaces for them.

Although there can be other shapes in which the game world can divided such as

triangles [7] or hexagonal (honey comb) grids [24], we use rectangular tiles for sake

of simplifying our discussion.

7.5.2 Match policy

Our match policy matches a subscriber to a publisher if the publisher is located

on a tile which shares an edge with the tile in which the subscriber is present (i.e.,

92

adjacent tile). The match function is executed periodically for all publisher and

subscriber pairs present on each server node. As stated earlier, there can be many

other approaches which define the match policy. For example, a distance based

approach matches two objects if they are within a specifie distance from each other.

7.5.3 Cells and the Cell Match function

We define our cell as a named collection of tiles. AlI the player or in-game

objects present on these tiles are said to belong to that particular cell. A cell has a

hard and a soft boundary. The edges of the outermost tiles that form a cell form its

hard boundary. When a player leaves or enters a cell when it moves across its hard

boundary. A player inside the tiles of a cell can be interested in updates occurring

on tiles present in other cells. Given our match policy, this is usually the case for

outermost tiles in a cell which share an edge with tiles in other cells. These tiles (of

other cells) are included in the soft boundary of our cell. A client's host server is the

one which hosts the cell its player is currently in (considering the hard boundary).

For a given cell and an object, the CellMatch function for that cell returns true

if the object is located in either the soft or the hard boundary of the cell. Hard and

soft boundaries for all cells can be precomputed before the game st arts and hence

the definition of the CellMatch function is known at all server nodes before the game

starts. The CellMatch function for each cell is present on all server nodes in the

cluster. This function executes periodically for all objects present on the server node.

7.6 Communication Scenarios

We use an example to explain the main scenarios which can occur. Consider

two cells, CeZlt and Ce1l2 hosted hy server nodes SI and S2 respectively. Clients Cl

93

and O2 are connected to server nodes 81 and 82 respectively as their players Pl and

P2 are on the cens hosted by those nodes.

A DUPLICATION_MESSAGE contains the copy of an object and is sent to·

a machine where a duplica of the object needs to be created. Upon connection, a

client sends a DUPLICATION_MESSAGE containing their player object to their

home server. Dynamic objects are created inside the cells they are located in. The

servers that host these cens are the duplication masters for these dynamic objects.

Soft Boundary for Cell 1

GameSpace /
Cell III (ell2

D~

Po 0

~
1

Tite \
Hard Boundary for Cell 1

Figure 7-5: Scenario 1 - No Cell Match

7.6.1 Scenario 1 - No cell match

Figure 7-5 shows a scenario when players Pl and P2 are moving around in their

respective cells. The match function at each server returns false as there is no match

among the players present on each server. The CellMatch function for each cell on

an nodes also returns false.

94

Game Space

Cell ell2

P?

P~O 0

CellMatch(Cell l, P2} = true !

Figure 7-6: Scenario 2 - Cell Match

7.6.2 Scenario 2 - Cell match

Figure 7-6 shows player P2 moving into the soft boundary of Cellt. Now,

when the CellMatch function for this cell executes on 82 with P2 as an argu­

ment, it will return true. At this point, 82 determines that 81 hosts Cellt (using

remoteChannelMap). It then sends a DUPLICATION_MESSAGE containing the

object for P2 to 81 and adds 8 1 to the subscribers list for P2 . 8 1, upon receipt of

this message, creates a duplica of P2 and adds it to the subscribers and publishers

list. It also creates a logical remote channel for P2 and adds it to its list of available

channels.

If there is astate update made to P2 at 82 , it will be forwarded to all the nodes

subscribed to P2 (including 81). When 81 receives this state update, it applies it to

P2 's duplica and at the same time disseminates it to all nodes subscribed to P2 • This

way, P2 is discovered at 81. The same procedure occurs in the opposite direction for

8 1 to discover Pl . If P2 moves out of the soft boundary of Cellt, the CellMatch

95

function at 82 will return false and an invalidation message will be sent to 8 1 , 8 1

will also be removed as one of the subscribers of the local channel for P2 at 82 .

Game Space

Cell ~e1l2

P2

04" ru
IVI, 'llll"

Figure 7-7: Scenario 3 - Match

7.6.3 Scenario 3 - Match Policy

Now that P2 is duplicated at 8 1 , it will be included in the matching operations

when the match function is next executed for aIl publisher-subscriber pairs at 8 1.

From Figure 7-7, we can see that there is a match between Pl and P2 on 81, since

they are in adjacent tiles. The match function returns true and a duplica of P2 is

send to the Cl (the duplication master of Pl) and Cl is also added to the subscribers

list of P2 's logical channel. AIl updates that 81 receives from 82 for P2 are sent to

Cl as it is subscribed to P2. The same occurs to C2 whose player P2 matches with

Plon server 8 2 and hence, is subscribed to P2 .

7.6.4 Scenario 4 - Player Migration

Figure 7-8 shows the case where P2 actually moves across the hard boundary

into CeIl l . At this point, g needs to change its home server to 81 . 82 detects this

96

Game Space

Cell (ell2

p

0 ..
Matcn b

P2

Figure 7-8: Scenario 4 - Player Migration

transition and sends a redirection request to P2 containing the address of 81 and

disconnects it. The migration process from now on can be divided into two phases.

Phase 1 - Invalidation

82 then sends an invalidation notification to aH nodes subscribed to P2 . This

basically notifies aH subscribers that P2 is no longer available at 82 . 82 then closes

the logical channel for P2 and removes its duplica.

Clients upon receiving the invalidation notification remove the duplica of P2.

When SI receives the invalidation notification from 82 , it forwards it to aH nodes

subscribed to P2 at 81 . It also removes the duplica of P2 and closes its logical channel.

Phase 2 - Transition

Upon receipt of the redirection request, C2 connects to 81 and duplicates P2 on

it (by sending a DUPLICATE_MESSAGE to 81). 81 adds P2 to its publisher and

subscriber lists and creates a locallogical channel for it. AH the required subscriptions

are made when the match policy and the CellMatch function execute the next time.

In our case, the next time the match policy executes, it matches Pl with P2 • A

97

duplica of P2 is created at Cl and it receives aIl state updates on P2 directly from

St. Furthermore, S2 becomes a subscriber of P2 because the tile it resides in belongs

to the soft boundary of the ceIl maintained by S2'

7.6.5 Player Disconnection

A player at any point may decide to leave the game. In this case, the client sends

an invalidation message for its player object to its home server and disconnects. The

server removes this object from its list of publishers and forwards the invalidation

message to aIl the subscribers of this object. It then removes the local channel for

this object.

7.7 Dynamic Objects

Dynamic objects (such as food items, flowers) can also be picked up by players

and migrated across servers. When an object is picked up, it is removed from the

server no de and is associated with the player object (e.g., added to the player's

inventory). Upon removal, this server no de sends an invalidation message to aIl

nodes subscribed to that object. This way, the object is no more visible to any other

player in the game. When the player drops this object on a ceIl, a new instance

of it is created at the server responsible for this cell. This server becomes the new

duplication master of this object.

7.8 Refresh Interval

The refresh interval for the execution of the match policy function and the

CellMatch function at server nodes decides how fast a player discovers objects within

the game. It is imperative that this refresh interval is set to an optimum value. A

98

large refresh interval can lead to late discovery of objects while a very small refresh

interval can lead to unnecessary resource consumption at the server nodes.

7.9 FormaI Aigorithms

This section gives the formaI algorithms for the communication protocols and the

functions discussed above. Aigorithm 4 introduces the data structures and presents

the steps involved when the CellMatch fun ct ion is executed at a server node. AIg(}­

rithm 5 presents the behavior at aIl server nodes upon receipt of the different types

of messages. Aigorithm 6 presents the sequence of operations performed at the client

and the server during player migration.

99

Algorithm 4 Cell Match refresh algorithm
1: Data Structures:
2: duplicated : Hash table maps objects to the machine they are replicated t~.
3: HostMap : Hash table maps cells to their host machines.
4: sub: Linked List of subscriber objects on a server node.
5: pub: Linked List of publisher objects on a server node.
6: channelList : Hash table which maps object to its channel.
7: cellTotal : List of all cells in the game.
8: subscribers(Si, Chk) : List of subscribers for Chk on Si

9: function boolean CellMatch(Cellk, obj)
10: j jchecks if object obj is in weak boundary of Cellk
Il: end function

12: function refreshCell
13: for aIl obj in pub and sub do
14: for all Cellk in cellTotal do
15: if (obj, Sj) r:J. duplicated then
16: if CellMatch(Cellk, obj) then
17: Sj = HostMap.get(Cellk)
18: Send DUPLICATION~ESSAGE(obj) to Sj
19: chobj = channelList.get(obj)
20: Sj to subscribers(Si, chobj))
21: Create entry (obj, Sj) in duplicated
22: end if
23: else
24: if !CellMatch(Cellk, obj) then
25: invalidate(obj, Cellk, St)
26: end if
27: end if
28: end for
29: end for
30: end function

31: procedure invalidate(obj, Cellk, St)
32: Send INVALIDATE_MESSAGE(obj) to St
33: chobj = channelList.get(obj)
34: Remove St from subscribers(Si, Chobj);
35: Remove entry (obj, St) from duplicated
36: end procedure

100

Algorithm 5 Message processing at Server no de
1: Additional Data Structures:
2: session: Hash table maps objects identifiers to object instances.
3: At Server node Si :

4: Upon receiving DUPLICATE~ESSAGE from Sj for obj
5: Create obj on Sj.
6: Add obj to pub and sub.
7: Create channel chobj for obj and add to channelList.
8: Add (objID, obj) to session

9: Upon receiving STATE_UPDATE(objID, updateInfo) from Sj or Ct
10: Retrieve obj for objID from session.
11: Apply updatelnfo on obj.
12: chobj = channelList.get(obj)
13: for aH ServersjClients SCi in subscribers(Si,chobj) do
14: Forward STATE_UPDATE(objID, updatelnfo) to SCi.
15: end for

16: Upon receiving INVALIDATE~ESSAGE(objID) from Sj
17: Retrieve obj for objID from session.
18: Remove obj from pub and sub.
19: chobj = channelList.get(obj).
20: for aH ServersjClients SCi in subscribers(Si, chobj) do
21: Send INVALIDATE~ESSAGE(objID) to SCi.
22: end for
23: Remove chobj from channelList.
24: Remove (objID, obj) from session.

25: Upon receiving INVALIDATE~ESSAGE(objID) from Cl for obj
26: Retrieve obj for objID from session.
27: Remove obj from pub
28: chobj = channelList.get(obj)
29: for aH ServersjClients SCi in subscribers(Si, chobj) do
30: Send INVALIDATE~ESSAGE(objID) to SCi
31: end for
32: Remove channel chobj from channelList
33: Remove aIl entries for obj in duplicated

101

Algorithm 6 Player Migration
1: Migration of player Pk of client Gk

2: At Server node Si :

3: When Pk from GeUi hosted by Si moves to GeUj hosted by Sj
4: Send REDIRECTION(Sj) to Gk

5: Disconnect Gk
6: Remove Pk from pub
7: chPk = channelList.get(Pk)

8: for aH ServersjClients SGi in subscribers(Si, chpk) do
9: Send INVALIDATE_MESSAGE(objID) to SGi

10: end for
11: Remove channel chPk from channelList
12: Remove aH entries for obj in duplicated

13: At Client node Gk :

14: Upon receipt of REDIRECTION(Sj) from Si
15: Connect to Sj
16: Send DUPLICATION_MESSAGE(Pk) to Sj

102

7.10 Applicability of the distributed server architecture

We propose that our distributed server architecture (described in Chapter 4)

can easily integrate with this scheme due to the availability of primitives and a

distributed infrastructure to support this form of communication. Our architecture

provides a cluster of server nodes with complete inter server communication. The

Rendezvous server can be reused to redirect a client to its home server based on

which cell its player is currently located in. We already have the concept of logical

channels and associated subscription lists which can be reused here. Except, while

the previous implementation mapped a sub space to a logical channel, we map a

publisher object to a logical channel. Multicast and direct message capability can

also be reused here to send state updates or duplication/invalidation messages.

7.11 Performance Discussion

Since aIl the game objects are distributed across a group of server nodes, the

computation overhead due to the execution of the match function at each server

node will decrease. Each server node can therefore accommodate greater number of

players without overloading, thereby increasing the overall scalability of the system.

The CellMatch function executes in linear time since it sim ply iterates through aIl the

dynamic objects on a server. Therefore, it should not induce too much overhead at

a server node. The latency experienced by clients during game play is not expected

to be high for updates which occur on server other than their home server (also

known as indirect latency) as the server nodes are located on a Local Area Network

with sufficiently large bandwidth. AIso, in the previous chapter, we had seen that

indirect latency remained low even for a large of number of participating players.

103

Finally, with the fine grained interest management techniques used in this approach,

there will be lesser number of messages transferred between servers, reducing the

inter-server communication.

7.12 Comparison with the previous Mammoth Architecture

Comparing the distributed object model with the previous interest management

scheme for mammoth, we come across its various advantages and a few shortcomings

which are discussed as below :

1. In the distributed object model, subscriptions are made directly to a publisher

(player or dynamic object) unlike the previous scheme where subscriptions

were made to sub spaces. Combined with effective matching algorithms, this

scheme provides a finer grained interest management which substantially limits

the number of updates received at the clients to the most pertinent ones. As a

result, fewer messages are transferred among server nodes and between server

and client nodes leading to reduced bandwidth consumption.

2. In our previous scheme, the responsibility for subscribingjunsubscribing to

logical channels was implemented at the client machines inducing on them an

additional overhead. It also exposed the subscription mechanism to players

in the game causing a security concern. In the distributed object model, the

server nodes are responsible for subscribingjunsubscribing their clients to the

appropriate logical channels. Therefore, the clients are able to operate without

the knowledge of the underlying subscription mechanism and at the same time

receive only the pertinent state updates from the server nodes.

104

3. In the earlier scheme, the clients had to retrieve the collective state of all the

objects in the sub space they were interested in leading to an exchange of large­

sized state update messages causing an increased bandwidth consumption. In

the distributed object model, state updates are made at playerjdynamic ob­

ject level. This leads to smaller and fewer state updates thereby lowering the

bandwidth consumption.

4. Managing subscriptions at the playerjdynamic object level in an MMOG with

thousands of participating players and in-game objects can lead to a large

number of logical channels increasing the complexity of the task for the servers

to manage these subscriptions. Furt hur , a game scenario where there are a

large number of players moving rapidly around the game space can lead to

hefty subscribing and unsubscribing causing an increased overhead at the server

nodes.

105

8.1 Conclusion

CHAPTER8
Conclusion and Future Work

We introduce a distributed server architecture to improve the scalability of Mas-

sively Multiplayer Online Games. In this architecture, a group of machines called

server nodes form a cluster. The game space is divided into sm aller sub spaces and

each server node hosts one or more of these sub spaces. These nodes are responsible

to maintain the state of these sub spaces. Clients connect to their home server, ie.,

the server no de which hosts the sub space where their player currently resides and

transfer state updates directly to it. Clients also switch home servers when their

player moves across sub spaces in the game. A distributed publishjsubscribe system

allows clients to receive updates from sub spaces hosted at servers other than iis

home server.

The scalability of the architecture is evaluated using its implementation in the

network engine of the Mammoth Prototype under real network conditions. The CPU

utilization, incomingj outgoing bandwidth at each server node along with latency

experienced during game play is measured with increasing number of players. The

performance is compared against the existing Mammoth network engine which is

based on the single server architecture. The results we obtain confirm that the

distributed server architecture is able to scale to a greater number of players than the

single server architecture without CPU or bandwidth overload at the server nodes

106

with acceptable latency. We also observer that the scalability of the architecture

improves by increasing the number of server nodes in the cluster.

8.2 Future Work

This section outlines the work we propose to perform in the future on the dis-

tributed server architecture

8.2.1 Integration of Distributed Server Architecture in the Distributed
Object Model

In this previous chapter, we introduced the distributed object model and out-

lined an scheme to integrate it with our distributed server architecture to improve

its scalability. However, due to time limitations, we were not able to implement

our approach in the Mammoth MMOG. Therefore, we propose to adapt our existing

implementation of Mammoth so that it can be easily integrated with our distributed

server architecture and also implement the cell based distribution scheme described

in Section 7.4. We also intend to evaluate the scalability of this system and compare

it with the existing single server implementation using different definitions of the

CellMatch function and the matching policy.

8.2.2 Load Balancing and Dynamic Sub Space Management

Currently, the system supports only static partitioning of sub spaces over the

server nodes. However, this scheme cannot handle hot spot situations where players

Rock to a specifie sub space due to an in-game activity overloading the server hosting

this sub space. Therefore, we propose a dynamic sub space migration mechanism

which can re-partition sub spaces into sm aller sub spaces during overload and migrate

them to other lightly loaded server nodes. The sub space migration protocol takes

care of the migration of sub spaces to another server no de and the redirection of the

107

clients to this new node. The cluster administration server (CAS), being a central

administrative entity can monitor the load at each server node during game play and

trigger the sub space migration protocol when the load at a particular node exceeds

a given threshold.

Load balancing algorithms determine the efficient way to reallocate sub spaces

over the server nodes during migration. This should be done in such a way that sub

spaces that are close to each other remain on the same server leading to lower inter­

server communication. AIso, the maximalload per server node should be minimised.

We intend to experiment with different load balancing algorithms using our sub

space migration protocol and determine which one perform best, i.e., provide the

least maximum server load during game play.

8.2.3 Fault Tolerance and Backup

We propose to make our system fault-tolerant by replicating the game state at

server nodes to backup nodes. These backup nodes can either be other server nodes

in the cluster or additional nodes kept specifically for this purpose. The server nodes

can actively forward the state updates they receive to these replicas to keep them

consistent with the actual game state. The cluster administration server (CAS) can

keep track of the availability of the server nodes and the location of their replicas.

During the event of failure, the CAS delegate the responsibility of the failed server

no de to its replica and redirect an the clients to it.

8.2.4 Extension to Peer-to-Peer architecture

The distributed server architecture can be extended to a peer-to-peer architec­

ture by removing the concept of server nodes and distributing sub spaces over special

108

client nodes called coordinators. Coordinators of a particular group of sub spaces can

form self organizing multicast groups with other clients interested in those sub spaces

to disseminate updates. Our distributed publishjsubscribe system can be extended

to allow clients in a multicast group to subscribe to updates that occur in another

multicast group.

8.2.5 Wide Area Network (WAN) Experiments

In order to obtain realistic network delays and bandwidth consumption, we

intend to redo the experiments mentioned in Chapter 6 in a WAN setting. In this

scenario, the server nodes will form a cluster via Local Area network with clients

connecting from geographically distant locations. Although, the Local Area Network

(LAN) settings used in the current experimental methodology serves the purpose of

comparing the scalability of our system against the single server architecture, having

our clients distributed over a WAN can give us a better measure of true latency

experienced during game play which can help us optimize our system architecture

for better performance.

109

References

[1] Quazal inc. http://www.quazal.comj.

[2] y. Amir and J. Stanton. The Spread Wide Area Group Communication System.
Technical Report CNDS 98-4, The John Hopkins University, 1998.

[3] G. Armitage. An experimental estimation of latency sensitivity in multiplayer
Quake 3. l1th IEEE International Conference on Networks, pages 137-141,
September 2003.

[4] Electronic Arts. Ultima online. http://www.uo.com/.

[5] R.K. Balan, M. Ebling, P. Castro, and A. Misra. Matrix: Adaptive Middleware
for Distributed Multiplayer Games. 6th International Middleware Conference,
pages 39~00, November-December 2005.

[6] A.R. Bharambe, S. Rao, and S. Seshan. Mercury: A scalable publish-subscribe
system for internet games. NetGames, April 2002.

[7] Jean-Sebastien Boulanger. Interest Management for Massively Multiplayer
Games. Master's thesis, McGill University, August 2006. To be submitted.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on
Selected Areas in communications (JSAC), 2002.

[9] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza. Localityaware
dynamic load management for Massively Multiplayer Games. Principles and
Pmctice of Pamllel Progmmming, June 2005.

[10] E. Cronin, B. Filstrup, and A. Kurc. A distributed multiplayer game server sys­
tem. Technical report, University of Michigan, Ann Arbor, 2001. UM EECS589
Course Project Report.

[11] Blizzard Entertainment. Starcraft. http://www.blizzard.com/starcraftj.

110

111

[12] Blizzard Entertainment. World of wareraft aehieves a new
milestone with two million paying subscribers worldwide.
http:j jwww.blizzard.co.ukjpressj050614.shtml, June 2005.

[13] Sony Entertainment. Everquest. http:j jeqplayers.station.sony.eomjindex.vm.

[14] Sony Entertainment. Everquest 2. http:j jeverquest2.station.sony.eomj.

[15] J. Faerber. Traffie modelling for fast action network games. Multimedia Tools
Appl., 23(1):31-46, 2004.

[16] T. Fritsch, H. Ritter, and J. Schiller. The effect of latency and network limita­
tions on MMORPGs (A field study of EverQuest2). NetGames, October 2005.

[17] Epic Games. Unreal. http:j jwww.unrealtournament.comj.

[18] S. Hu and G. Liao. Sealable Peer-to-peer Networked Virtual Environment.
SIGCOMM, August-September 2004.

[19] id Software. Doom. http:j jwww.idsoftware.comjgamesjdoomjdoom3j.

[20] id Software. Quake 1. http:j jwww.idsoftware.comjgamesjquakejquakej.

[21] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned Federation of Game
Servers: a Peer-to-peer Approach to Scalable Multiplayer Online Games. SIG­
COMM, August-September 2004.

[22] DFC Intelligence. Challenges and opportunities in the online game market
- executive summary. http:j jwww.dfeint.eomjgame_articlefjune03article.html,
June 2003.

[23] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for Massively
Multiplayer Games. IEEE Infocomm, March 2004.

[24] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Donald P. Brutzman,
and Paul T. Barham. Exploiting reality with multieast groups. IEEE Comput.
Graph. Appl., 15(5):38-45, 1995.

[25] Quazal. Duplication Spa ces ™ Quazal Multiplayer Connectivity White Paper,
January 2002. http:j jwww.quazal.eom.

[26] P. Rosedale
created online

and
worlds

C. Ondrejka. Enabling player-
with grid computing and streaming.

www.gamasutra.comjresource_guidej20030916jrosedale_01.shtml,
ber 2003.

112

Septem-

[27] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object loca­
tion, and routing for large-scale Peer-to-peer systems. Proceedings of the 18th
IFIP / A CM International Conference on Distributed Systems Platforms (Mid­
dleware), November 200l.

[28] McGill University School of Computer Science. The Minueto framework.
http:j j minueto.cs.mcgill.caj, 2005.

[29] NC Soft. lineage. http://www.lineage.comj.

[30] B.D. Vleeschauwer, B.V.D. Bossche, T. Verdickt, F.D. Turck, B. Dhoedt, and
P. Demeester. Dynamic microcell assignment for Massively Multiplayer Online
Gaming. NetGames, October 2005.

[31] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito. A distributed event delivery
method with load balancing for MMORPGs.' NetGames, October 2005.

