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ABSTRACT 

There has been a tremendous growth in the popularity of Massively Multiplayer 

Online Games (or MMOGs) with millions of players interacting in their virtual game 

spaee at the same time. However, the eentralized server architecture of most modern 

day MMOGs is unable to cope with this increase in the number of participating 

players. Renee, there is a need for a scalable network architecture which can support 

these large number of players without affecting the overall gaming experienee for 

each player. In this thesis we propose a scalable distributed server architecture 

which divides the virtual game space in smaller sub spaces and assigns them across 

a cluster of server nodes thereby reducing the overall load per server. It is based on 

a distributed publishjsubscribe architecture which takes care of client-server as weIl 

as server-server communication. We discuss the implementation of this architecture 

in a real MMOG and experimentally prove that it shows better scalability than the 

centralized server architecture. 
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ABRÉGÉ 

La popularité des jeux en ligne massivement multijoueurs (MMOGs) a aug­

menté de façon phénoménale et ces espaces de jeu virtuel comptent maitenant des 

milliers de joueurs qui interagissent en temp réel. Cependant, l'architecture cen­

tralisée des serveurs de la plupart des MMOGs modernes est incapable de supporter 

cette augmentation constante du nombre de joueurs. De ce fait, il y a un besoin 

pour une architecture réseau extensible qui peut supporter un nombre croissant de 

joueurs, sans toutefois affecter leur expérience de jeu individuelle. Dans ce mémoire, 

nous proposons une architecture serveur distribuée qui s'adapte pour supporter un 

nombre accru de joueurs. Notre architecture distribue la charge globale du serveur 

en subdivisant l'espace de jeu virtuel en plusieurs sous-espaces qui sont attribus à 

différent noeux de réseau. Notre approche est basée sur une architecture distribuée 

publication/souscription qui prend en charge les communications client-serveur et 

serveur-serveur. Nous présentons l'implémentation de cette architecture dans le con­

texte d'un vrai MMOG et nous démontrons expérimentalement que le serveur dis­

tribué que nous proposons s'adapte mieux à une population croissante de joueurs 

que le serveur centralisé. 
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CHAPTER 1 
Introduction 

Computer games have become a widely popular source of entertainment among 

all age groups. The advent of the World Wide Web ushered in a new genre of 

computer gaming called online multiplayer games which provides a platform for 

gamers all over the world to come together and play with each other. During the 

recent years, the popularity of online multiplayer games has reached unprecedented 

heights and approximately 100 million people are expected to be playing online games 

by 2008 [22]. 

Massively Multiplayer Online Games or MMOGs are a popular form of online 

multiplayer games where hundreds or even thousands of players interact with each 

other in a virlual game world. World of Warcraft [12], a popular MMOG, has 

over 2 million registered users with a recorded maximum of half a million players 

interacting at the same time. With the widespread availability of broadband internet 

connectivity, the number of participating players are increasing rapidly further raising 

the popularity of these games. 

The rapid growth in the number of players participating in an MMOG poses 

various technical challenges to their network architecture. The most important is 

that of scalability, i.e., the ability to support increasing number of players without 

adversely affecting performance. Traditionally, MMOGs have used a centralized 

server architecture with players connecting to a single game server which handles 

1 



the entire game world. However, due to the massive scale of these games, a single 

machine is not able to support the load generated by the hundreds or even thousands 

of participating players. Thus, there is a need for an efficient architecture which can 

support the load generated by these growing number of players without afIecting the 

gaming experience ofIered to the player. 

We propose a distributed server architecture that divides the virtual world into 

smaller sub spaces and distributes them across a number of server nodes (known as 

the hosts of these sub spaces). A client connects only to the server node which hosts 

the sub space the player currently resides in and sends aU the updates directly to 

this server node (known as home server). A server no de processes an the received 

updates and sends these to its clients which are interested in them. A client switches 

home server as its player moves over to a sub space hosted by another server. A 

client can also be interested in updates occurring at sub spaces that are not hosted 

at its home server. A distributed publishjsubscribe mechanism is implemented that 

guarantees that a client receives aU updates it is interested in. 

In contrast to many other research proposaIs in this area, which have used 

simulations to test their approaches, we have implemented the distributed server 

architecture into the Mammoth MMOC Prototype. The experimentation performed 

on our architecture is done over a real network using complete client implementations 

to gather performance results. The parameters that we measure are the CPU and 

bandwidth utilization at the server nodes and the latency experienced by the players 

during game play. In each instance, the results show that the distributed server 

architecture shows the desired scalability properties that it was designed for. 
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Finally, we introduce the distributed object model which was adopted as an 

alternative scheme for state and interest management in Mammoth during the course 

of the development of our architecture. We show how the concepts of our distributed 

server architecture can be integrated into the new version of Mammoth. 

This rest of the thesis is organized as follows. Chapter 2 introduces MMOGs, ex­

plains a typical single server architecture and the details of Mammoth's client/server 

architecture. Chapter 3 explains the problem of scalability in the single server archi­

tecture and discusses existing solutions to solve it with the help of distribution. Chap­

ter 4 introduces the new distributed server architecture and gives a brief overview 

of its components and communication mechanisms. Chapter 5 then explains each of 

these components and their implementation in Mammoth in detail and gives formaI 

algorithms for the communication protocols used. The results of the experiments 

performed on our architecture are presented and discussed in Chapter 6. Chapter 7 

discusses the distributed object model and shows how our distributed server architec­

ture can integrated in it. Chapter 8 gives the conclusion and outlines the proposed 

future work on the distributed server architecture. 
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CHAPTER 2 
Massively Multiplayer Online Games 

2.1 Introduction to Massively Multiplayer Games 

Massively Multiplayer Online Games (MMOGs) are a genre of computer games 

in which a large number (usually thousands) of players share the same game world 

at any instant of time. This sheer scale of the number of players involved in MMOGs 

distinguish them from other network based online games. 

A sub-category of MMOGs are MMORPGs or Massively Multiplayer Online 

Role Playing Games. Players in an MMORPG can take control of the characters in 

the game and perform actions such as move around in a virlual world, interact with 

other players, pick up objects and take part in missions or quests. Most MMORPGs 

also allow their characters to grow, trade currency or points with other players, have 

an inventory of items and accumulate experience points (based on their expertise 

in the game). Players can also form teams which work together and/or compete 

against each other. Everquest [13], UltimaOnline [4] and World of Warcraft [12] are 

examples of popular MMORPGs. 

Another sub-category of MMOGs are first person shooter (FPS) games which 

are characterized by an on-screen display based on the point of view of the char­

acter currently playing the game. Examples of popular FPS games are Doom [19], 

Quake [20] and Unreal [17]. 
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The game world or virlual world of a MMOG is generally made up of a large 

number of various types of objects. Objects in the game world can be broadly 

classified into the following types (according to [23]): 

1. Statie Objects : These are immutable objects, i.e., their properties do not 

change during the entire course of the game. A corn mon example of static 

objects are stationary terrain elements such as trees, lakes, buildings, walls 

and roofs. 

2. Dynamic Objects : Also known as mutable, these kind of objects have astate 

associated with them. A state of a mutable object can be any property which 

can be subject to modification during the course of a game. For example, the 

state of a bottle of wine can be the amount of wine present in it. In many 

games, items such as apples, books and ftowers can be picked up or dropped 

by players and can change location. 

3. Player Characters (PCs) : These are the characters controlled by the players. 

The state of a player is usually determined by its position in the game world. 

However, there can be other game dependent properties which can determine 

the state of a player such as experience, health and inventory items. 

4. Non Player Characters (NPCs) : These are characters which are not con­

trolled by the players but rather by automated algorithms. Most NPCs are 

similar to Player Characters in terms of role and serve as either opponents or 

alliances to the Player Characters. 
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The state of the game at any instant is decided by the state of aH the individual 

objects present in the game world at that instant. These states can be altered by 

actions performed either by or on these objects. Such actions can be categorized as : 

1. Change in Position : When a PC or NPC moves around the game world, it 

alters its position as weIl as the state of the world. 

2. Player - Player Interaction: Two PCs or NPCs interacting with each other 

(for example, talk, engage in a fight and exchange currency) can lead to the 

change in either of their states. 

3. Player - Object Interaction: Actions of players such as picking up, dropping 

or consuming objects modify the states of both the player as weIl as the object 

involved. 

2.2 Network Architecture 

The most common network architecture to support MMOGs so far has been 

the client/server architecture (used in popular MMOGs such as Quake 1 [20J and 

StarCraft [11]). 

Here, the server (commonly referred to as the game server) acts as centralized 

component which maintains the state of aIl the objects present in the game world 

(known as the game state), while a client hosts the user controIled in-game player 

object (or a PC) and manages its state updates. In order to start playing, a client 

connects to the game server to retrieve the latest game state and caches it 10caIly. 

After that, aIl actions performed at the client are converted into state updates and 

are sent to the game server in the form of messages. The server receives such up­

dates from aIl the clients connected to it, serializes them, pro cesses them to create 
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a response and multicasts this response back to aIl the clients. A client updates its 

local cache by applying the responses received from the game server and renders the 

game state using this cached information. Figure 2-1 shows the messaging scheme 

in common client/server based multiplayer games. 

Citent 

, , , , 
~------- -------~ : : 

: Server 1 . 
. _-----~-------

1 

Cien! 

Single Server Communication Paradigm 

CHent 

Player __ ~ 

Updatas 

Figure 2-1: Client/Server Communication Paradigm 

2.3 Interest Management 

In most MMOGs, a player has limited visibility of the entire game world. This is 

known as its area of interest or 'sphere of interaction' [18] within the game. Therefore, 

the game server needs to send a client the state updates that are only relevant to the 

area of interest of its player. This technique is known as interest management. Inter-

est management reduces unnecessary resource consumption (such as bandwidth con-

sumption) while still maintaining adequate interactivity in the game. Most MMOGs 
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Sub spaces 

Interest. 

Player 

Figure 2-2: Interest Management using sub spaces 

implement interest management by partitioning the game world into multiple sub 

spaces. The game server sends only those updates to a client which occur on sub 

spaces which are under its area of interest. Figure 2-2 shows an interest management 

scheme where the game world is divided into rectangular sub spaces with a player 

interested in the sub space it is currently in and its neighbors. 

2.4 Introduction to Mammoth 

We now introduce the Mammoth development framework which is used to im­

plement an MMOG based on the client/server architecture described above. The 

Mammoth project is an attempt to develop a MMOG in the java programming lan­

guage which can be used for conducting academic research by providing a framework 

in which researchers can implement and experiment with different algorithms to 

address the issues posed by MMOGs. 
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2.4.1 The Game 

Mammoth implements a role playing game based on the client/server architec­

ture where the player sees the virtual game world from above (also known as the 

god view) (see Figure 2-3). Players can walk around the game world which consists 

of static objects snch as buildings, trees and walls. They can also pick up, move 

or drop objects scattered across the world (for example food items, books or other 

items which can be designed and added to the world). Each player can accumulate 

fame or currency points and has associated with it an inventory of items that it has 

picked up. The Mammoth world is a persistent world, i.e., the world continuously 

evolves with time. 

Figure 2-3: The Mammoth Game World 
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2.4.2 Interest Management in Mammoth 

The Mammoth game world is divided into sub spaces called static zones. AI­

though the shape of these static zones can be arbitrary, they are typically planes in 

the world that have a shape of a polygon. A static zone can be a floor of a building or 

a large part of a landscape. Static zones are useful for implementing interest manage­

ment schemes and are transparent to the player. They are connected together with 

the help of two contiguous transition gates. A player can only move between two 

zones by moving through the transition gates. Interest management is implemented 

in Mammoth using a publishjsubscribe system where the client subscribes to the 

static zone its player is currently in as weIl as its neighbors (see Figure 2-2) and the 

server publishes state updates made on these zones to their appropriate subscribers. 

This way, the client only receives updates of events that occur in its own as weIl as 

neighboring static zones. As a· client moves across static zones, it subscribes to the 

new static zones which are now of its interest and unsubscribes from aIl the ones it 

is no more interested in. 

2.4.3 Software Architecture for Mammoth 

Figure 2-4 gives an overview of the Mammoth software architecture. The archi­

tecture follows a layered approach where the major functionality is divided among 

layers and different components encapsulate specific concerns or features of the sys­

tem. Layers interact with only their adjacent layers through well-defined interfaces 

and the implementation of one layer does not affect that of the other. The major 

layers in the Mammoth architecture are : 
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Mammoth Client 

Graphies Layer 

Applicallon Layer 

Communication Layer 

Client Networklng Layer 

~ TCP _ Corn_nicallon i 
ServerNe-..g Layer 

Communication Layer 

Applicallon Layer 

DIIIII_Leyer 

Figure 2-4: Mammoth Software Architecture 

1. Graphies Layer: The graphies layer in Mammoth is used to render the graph­

ical display to the end user playing the game using the Minueto G L graphies 

library [28]. 

2. Application Layer: The application layer implements an the game dependent 

logic such as game physics, session management, collision detection and path 

finding. 

3. Network Layer: The network layer implements the core primitives for com­

munication between the client and the server. Currently, the state updates 

between the clients and the server are transferred in the form of serializable 

messages using TCP (Transmission Control Protocol). 

4. Communication Layer: Acts as an intermediary between the network and the 

application layer. It receives messages from the network layer and transfers 
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them to the application layer for processing. Similarly, it receives updates 

from the application layer and converts them into messages which are then 

passed on to the networking layer to be sent over the network. 

5. Database Layer The database layer is used by the application layer to store 

or load the state of in-game objects from a persistent storage. 

2.5 The Mammoth Network Architecture 

This section gives an overview of the existing network architecture of Mammoth 

and its communication methodology. Mammoth currently follows the clientjserver 

architecture discussed in Section 2.2, where clients connect to a single server to 

transfer state updates and receive response. It is implemented in the networking 

layer as the network engine. 

The network engine is present at both the client and the server side and is 

responsible for communicating game related data between them in the form of seri­

alizable messages in an asynchronous manner. Astate update for a particular static 

zone in the game is generated by the application layer of the client, converted into 

a serializable message by the communication layer and passed on to the network en­

gine. The network engine at the client sends the message directly to the server. The 

networking layer at the server receives the messages and sends them to the upper 

layers where the game state for the corresponding static zone is updated. A response 

message is generated which is multicast by the network engine to an the clients which 

have subscribed for updates in that particular static zone. 
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2.5.1 Server Messages 

The client and the server network engine communicate with each other with the 

help of messages. The mammoth network engine supports two basic categories of 

messages from the server to the client: 

1. Multicast Messages : Messages which need to be multicast to a number of 

clients. These are generally state updates which need to be disseminated to 

interested clients. Examples of multicast messages are player position updates 

and object pickupjdrop updates. 

2. Direct Messages: Messages which are meant only for a specifie client. Mes­

sages containing complete states for static zone(s) are sent as direct messages 

to clients. 

A client maintain a single connection to the Mammoth server and therefore, aH 

messages from the client to the server are direct messages. 

2.5.2 Logical Channels 

•••••••••• o.o •••• o.oooooo ••• oo.1 M~ 

'-"'-r"" --_ .... -_ .. --- _ ..... -.- .... --- -_ .. --, · . · . · . 
~~.~ I~: __ L--+I . . · . · . _ ....... _.~::g UeWeg;· -_ •• - _,...0_"_' ___ ---1 

~--o 

Figure 2-5: Logical Channels in the Mammoth Network Engine 
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Figure 2-5 illustrates the logical channel architecture for Mammoth. Logica1 

channels are an abstraction above the actual physical socket channels of comm~ 

cation. In the current implementation of the mammoth network engine, each static 

zone is served by one logical channel which is usuaHy assigned the same name as 

that of the static zone. Clients subscribe to logical channels serving the zones they 

are interested in order to receive state updates. Any update occurring on a static 

zone is sent to the logical channel serving it where it is multicast (or published) to 

aH the subscribed clients. 

Logical channels are implemented as objects having a list of subscribers which 

contain the objects representing the client nodes subscribed to them. Each of these 

client node objects has a FIFO message queue associated with it and primitives to 

send the messages in the queue over the network to the node the object represents. A 

state update received at the server is processed by upper game layers and a response 

message is produced which is sent to the object representing the appropriate logical 

channel. At the channel, an iterator goes through aH the client node objects in the 

subscribers list and adds the message to their corresponding message queues. A 

multiplexing mechanism working as a separate thread in the network engine removes 

messages from the head of the message queues and sends them over the network to the 

corresponding nodes. Access to the client message queues is done in a synchronized 

manner as they are also used to send direct messages to clients. 

2.5.3 Communication Proto cols 

This section outlines the protocol of communication between the client and the 

server during three important game scenarios: 
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Figure 2-6: Game Start Communication Protocol 

Figure 2-6 shows the steps needed to be performed when a player actually 

enters the game. The client connects to the server to receive the list of logical 

channels available. It then sends subscription requests for aIl the static zones it 

will be interested in based on its player's starting position in the world. The server 

subscribes the client to the logical channels serving those static zones. The client 

then requests the current state of aIl these zones from the server to start the game. 

Player performs action 

Figure 2-7 shows the steps needed to be performed when the player performs an 

action at the client. An action performed is converted into astate update message 

which is sent to the server. The server pro cesses the message and multicasts the 

response to aIl clients subscribed to the logical channel serving the zone where the 

action was performed. 
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Figure 2-8: Player transition across static zones 

Player changes static zone 

Figure 2-8 shows the steps needed to be performed when the player moves from 

one static zone to another. During transition, the client machine subscribes to aH 

logical channels serving the zones it is now interested in and requests for their current 

16 



state. It also unsubscribes from those channels which it no more wants to receive 

updates from. 
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CHAPTER3 
Scalability via Distribution 

This chapter discusses the limitations of the client/server architecture described 

in the previous chapter and discusses various existing solutions to solve these limi-

tations. 

3.1 Limitations of the Client/Server Architecture 

Although the client/server architecture may seem straightforward and relatively 

simple to implement, it suffers from the serious lack of scalability. 

3.1.1 Scalability and Latency 

The ability to simultaneously handle an increasing number of players without 

compromising playability is referred to as the scalability of a MMOG. Playability 

(or game play) is the overall experience offered by the game to a player. The most 

crucial factor which determines the overall playability of a MMOG is latency, also 

referred to as response time or lag. 

Latency is the difference in time between the action performed by the player 

and its observation by aIl the other players in the game. The latency values should 

be kept within reasonable bounds (depending on the nature of the game) in order to 

provide the user a better gaming experience. 

3.1.2 Effect of Latency on Playability 

A qualitative study on the effect of latency on game play in [15J shows that the 

required maximum latency for good playability in first-person-shooter (FPS) games 
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should be between 100ms-200ms, and anything ab ove this limit can seriously affect 

the playability of the game due to the real time nature of its in-game interactions. 

A study [3] on Quake 3, a popular FPS game, showed 150-180ms as the preferable 

bound for latency for sound game play. 

However, studies show that MMORPGs can tolerate higher amount of latency 

than FPS games as their playability hinges more upon strategy rather than real 

time interactions. A study [16J on the effect of latency on playability of a popular 

MMORPG called Everquest2 [14] showed that role playing games can tolerate a max­

imum of 1250ms for movement based updates while 500ms to 1000ms for scenarios 

involving large scale player interactions such as combat situations. 

3.1.3 The Scale of Present Day Cames 

Early network-based games supported only a small number of players (around 

10-20), and scalability was not such a big issue since a single server could handle the 

computational and communication load generated by these players. However, with 

the internet providing strong global connectivity, MMOGs have become increasingly 

popular with thousands of players participating in a game session. 

World of Warcraft [12], a popular MMORPG has around 2 million registered 

users and over 500,000 players interacting at the same time [30]. Lineage [29], another 

MMORPG has over a million registered users and recorded up to 180,000 concurrent 

players at one time. Second Life [26], an upcoming MMOG which focuses on social 

interactions between players sharing a common virtual world recorded an increase in 

its in-game objects to thousands in a short period of two months. 
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Further, with advances in the field of artificial intelligence and computer graph­

ies, game designers try to inculcate various complex algorithms for purposes such 

as path finding and game physics, push towards newer kinds of interactions, design 

complex objects having a greater array of properties (e.g., combinability) and large 

diverse game worlds. AH done with an aim to provide the player with a more exciting 

and immersible game experience. 

However, the traditional client/server based architectures are not able to cope 

with these rapid developments due to sorne inherent performance limitations, the 

most prominent of which are described below: 

1. CPU Load - Processing a new game state based on the updates received from 

a player requires processing power at the game server which gets depleted 

as more and more players join the game. As a result, the server gets over­

loaded and more time is spent processing each state update received from the 

connected clients. This leads to an increased response time for participating 

players resulting in poor game play. 

2. Bandwidth - As the number of players joining agame increases, there is an 

increase in the number of update messages received by the game server from 

the clients. Furthermore, these updates need to be relayed to aH other clients 

connected to this server. Since the bandwidth capacity at the game server 

limits the amount of data Rowing in and out of it, it can act as a bottleneck 

for the number of updates that can reach or leave the server at any instant 

of time. This can cause increased response times at clients sendingjreceiving 

these updates affecting playability of the game. 
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Bandwidth and CPU load thus present a bottleneck in the scalability of the 

single server architecture. 

3.2 Efforts to Improve Performance 

There has been considerable efforts in academia as weIl as industry to come up 

with alternative network architectures and communication schemes for MMOGs to 

improve their scalability and performance. This section discusses such efforts. 

3.2.1 Multiple Game Instances 

A commOn tactic used by most commercial MMOGs is running more than a sin­

gle instance of a game on separate servers. When a particular server gets overloaded 

in capacity, the newly registered players are then redirected to the next available 

server running another instance of the game. Ultima Online [4] refers to these in­

stances of game worlds as shards. The drawback with this approach is that it places 

users into disparate non interacting worlds, limiting them to only interact with the 

players in their shard. Since the popularity of most games is based On the social in­

teraction with other players, less populated game worlds can lead to a poor gaming 

experience. 

3.2.2 Mirrored Server Architecture 

In the mirrored server architecture [10], the game state is mirrored over several 

game servers which are geographicaIly distributed over the internet. A client connects 

to the closest mirror server to transfer state update messages. The message latency 

is therefore reduced as an update messages from a client (and a responses from the 

server) only needs to travel a shorter distance to the closest mirror server as opposed 

to the single server architecture where the central game server can be potentially 
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distant. A mirror server multicasts incoming updates from its clients to the other 

mirror servers which compute their own copy of game state and send state updates to 

their directly connected clients. Special synchronization mechanisms are used to deal 

with keeping these multiple copies of game state consistent at aIl mirrors. However, 

due to the complex nature of these mechanisms this approach does not scale weIl as 

it becomes increasingly difficult to keep the game state at a larger number of mirror 

servers consistent. 

3.2.3 The Distributed Architecture 

There are sever al research efforts which partition the global game space into 

sub spaces and allow multiple machines (or nodes) to maintain the state of these 

sub spaces. Special communication mechanisms are used between these nodes to 

cooperatively keep the global state consistent. Since each no de only has to handle 

updates pertinent to the sub space it is maintaining, the bandwidth consumption at 

these nodes is reduced to a fraction of that in the single server architecture. CPU 

consumption also drops as each node has to process less updates. As a result, the 

architecture can handle a greater number of clients without getting overloaded. There 

are two dominant multiplayer game architectures that support such a scheme, namely 

the Distributed Server and the Peer-to-Peer architecture. This section highlights 

existing research efforts on both of these architectures. 

The Distributed Server Architecture 

This architecture involves the distribution of the partitioned sub spaces of the 

MMOG game space over multiple game servers (see Figure 3-1) each of which is 

known as the host server of a particular sub space. The host server for a particular 
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sub space maintains the state for that sub space, i.e., it collects and disseminate 

updates occurring on that sub spaee. 
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Figure 3-1: A Generic Distributed Server Architecture 

The client maintains a direct connection with the host server of the sub space its 

player is currently in (aiso known as the client's home server) to send state updates. 

The server serializes these updates and generates a response which it sends to the 

clients connected to it. A client dynamically switches connections once its player 

migrates to a sub spaee hosted by a different server. Depending on the interest 

management scheme used, a client may be interested in state updates occurring on 

a sub spaee hosted by a server other than its home sever. In such a case, the server 

hosting such a sub space might need to forward updates to the client's home server. 

Henee, server nodes are connected to each other in this architecture in order to share 

such updates. 
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Figure 3-2: Flocking of Players to a game hot spot. 

One of the main challenges of the distributed architecture is to maintain the 

computation and communication overhead at each server below a safe threshold. 

This becomes important in situations such as ftocking where players move or flock 

to a specifie area in the game space due to an in-game event (such as a party or a 

battle), thus creating a hot spot (see Figure 3-2). This leads to greater number of 

updates being sent to the host server of the sub space where the hot spot occurs, 

potentially overloading it. 

To meet this challenge, sorne games introduce game level restrictions such as to 

limit the number of players that are allowed in a certain area. This technique ensures 

that only a certain number of players are maintained in each sub space and hence 

controls the amount of load at each server. However, this technique suffers from the 

disadvantage of limiting the player's ability to explore the game world and interact 

with other players. 

One of the main problems is that hosting a large sized sub space per server 

cannot guarantee an even distribution of load on each server as players are not 
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evenly spread across the game world. [30] proposes breaking down the sub spaces 

into sm aller microcells and allow each server to host a set of these microcells. In 

the event of a hot spot, microcells can be moved from an overloaded server to a 

lightly loaded server resizing the overall region a server hosts and spreading the load 

more evenly across servers. There can be a number of techniques in which microcells 

can be allocated across servers so that the maximum load per server is reduced. The 

paper focuses on comparing the performance of each of these techniques using results 

from simulations. 
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Figure 3-3: The Matrix Architecture 

However, hot spots can also migrate across sub spaces causing the load on sub 

spaces to temporarily change. In the Matrix Architecture [5], hot spots are handled 

by dynamically adjusting the size of a sub space handled by a server. Further, 
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each player has associated with it a radius of visibility which defines its area of 

interest in the game. Based on the radius of visibility and the sub space partitioning 

information, overlapped regions are determined and aU players in a particular overlap 

region receive updates from aU the sub spaces involved in the overlap. Figure 3-3 

shows how this architecture is organized. Clients connect directly to agame server to 

transfer updates tagged with their spatial coordinates in the game world. The game 

servers pro cess these updates and forward them to their respective Matrix Servers. 

A Matrix Server keeps track of the sub spaces that its game server is in charge of 

and the load it is experiencing. It uses the overlap information to forward relevant 

updates to other interested game servers which then relay them to their connected 

clients. In the event of overload, the matrix server removes a portion of the sub space 

from its game server and transfers it to another lightly loaded game server and ail 

the concerned clients are redirected to this game server. The overlaps due to this 

new partitioning are recomputed by a special server caUed the matrix coordinator 

which then updates aU the matrix servers with this information. 

In the architecture described in [9], the sub spaces are very smaU and each server 

is responsible for more than one sub space. In the event of overload, an overloaded 

server migrates sorne of its sub spaces to another server. The load balancing algo­

rit hm takes into consideration the locality of the sub spaces and attempts to keep 

sub spaces which are adjacent to one another (in the game world) on the same server. 

This technique favors localized communication within a single server and prevents 

excessive inter-server communication which can increase overhead. Therefore, the 

algorithm sheds load off an overloaded server and at the same time fixes any locality 
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disruption caused by load shedding by aggregating adjacent sub spaces during nor­

mal load conditions. The performance of the algorithm is evaluated under flocking 

conditions using a simulator. 

A server can also be overloaded by the load incurred by message forwarding 

rather than processing. In [31], a set of lightly loaded server nodes are always main­

tained in the form of a backup queue. In the event of an increased message forwarding 

overhead at a server, the overloaded server selects one of the backup nodes to act 

as an intermediate node between its connected clients and itself. This relieves most 

of the forwarding overhead since now the responsible no de only needs to forward 

updates to the intermediate node which takes charge of further disseminated them 

to aU the interested clients. 

Peer-to-Peer Approaches 

A Peer-to-Peer (also known as P2P) approach differs from a client/server aIr 

proach as there is no central point of authority, i.e., each node in a P2P based archi­

tecture can act as both a client as weU as a server. P2P based architectures are more 

scalable than client/server ones since the computation, communication overhead and 

resources are shared by aIl participating nodes. The self organizing capabilities of 

P2P overlays can be used to create systems which can be dynamically scaled up and 

down with the number of nodes thus making them suit able candidates for the design 

of scalable MMOGs network architectures. 

[23] introduces an approach to scale MMOGs by distributing the state of sub 

spaces over participating player nodes which form a P2P based network. AlI the 

players in the same sub space use the self-organizing mechanisms of P2P networks 
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to form multicast groups where only state updates pertinent to that sub space are 

disseminated. A player node joins groups corresponding to sub spaces which overlap 

its area of interest. Players change their multicast group as their area of interest 

changes, i.e., as they move around in the game space. Figure 3-4 illustrates the P2P 

based architecture for an MMOG. 
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Figure 3-4: P2P Based Architecture 

For each multicast group, a player node is designated as a coordinator for that 

group. A coordinator is responsible for maintaining the states of the shared objects 

of the group. It acts as the root of the multicast tree and provides the connecting 

player nodes with the current game state when they join the group. For fault-

tolerance purposes, a replica of the coordinator is maintained so that in case of a 

failure, the backup replica takes over and the state updates are automatically for-

warded to it. Player-to-player interactions are handled by establishing connections 

between the participating player nodes for direct exchange of state information. The 

architecture uses the Pastry [27] P2P overlay which maps both participating nodes 
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and the application objects to random, uniformly distributed identifiers from a cir­

cular 128-bit name space. Objects are mapped to live nodes whose id is numerically 

closest to the object-id. A distributed hash table (DHT) is used to lookup which 

node a particular object resides in. Scribe [8], a scalable application level multicast 

infrastructure build on top of pastry is used to disseminate game state. It leverages 

the existing Pastry overlay by using its identifier scheme and routing mechanisms 

and is able to form a large number of multicast groups having arbitrary number of 

members with highly dynamic membership. 

A similar concept is employed in a P2P based architecture described in [21] 

with a few optimizations to reduce latency. The role of the distributed hash table is 

limited to that of a backup data storage of object states and the local cache at the 

coordinator is used by the connecting players to retrieve the latest game state. Since 

the access of data directly from the coordinator is faster than that from the DHT, 

the time required to receive state updates is reduced considerably. When another 

no de becomes the coordinator, it loads the state information from the DHT into its 

local cache and provides updates from it to the connecting player nodes. 

The dissemination of updates among the player nodes in most of the architec­

tures described above can be modeled as a publishjsubscribe system, where publisher 

nodes (servers or peer nodes) multicast events and player nodes only subscribe to 

events that they are interested in. The Mercury publishjsubscribe [6] system pro­

vides features which allow player nodes to express their subscriptions using a rich 

subscription language which provides greater flexibility to describe what a player is 
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interested in. It is designed to work over a distributed system such as a P2P net-

work allowing matching of subscriptions with publications to take place over multiple 

nodes. It also provides a scalable and efficient routing mechanism which routes publi­

cations to subscribers within the real time requirements of game play by distributing 

routing responsibility across several group of nodes. 

The main issue faced by nodes in most P2P systems is that of understanding the 

overall topology of the P2P network and creating connections with the right nodes 

to get relevant data. In MMOGs, this is even more crucial since each node must 

receive only relevant state updates for proper decentralized resource consumption 

and improved scalability. Another fully distributed P2P based architecture [18] uses 

the mathematical construct of the Voronoi Diagram to help player nodes discover 

neighboring nodes which they can connect to in order to receive the required state 

updates. 

Figure 3-5: (a) Voronoi Partitioning (b) Neighbor discovery using Voronoi partition­
ing and area of interest. Source: [18] 

A Voronoi diagram is constructed by partitioning the world space into n non 

overlapping sub spaces having one no de per subspace. A sub space contains aIl the 
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points closest to that sub space's no de than to any other no de (Figure 3-5a). This 

way the entire game world is divided into arbitrary sizes in a deterministic way. 

Each participating no de in a P2P network maintains a voronoi diagram of the nodes 

present in its area of interest and maintains a P2P connection with aIl such nodes 

(Figure 3-5b). As the player node moves in the virtual world, it readjusts its voronoi 

diagram to create connections with newly discovered nodes and break connections 

with the ones no longer in visible. Voronoi diagrams are also recomputed at relevant 

nodes as other player nodes join or leave the P2P architecture. 

3.2.4 Distributed server architecture vs. Peer-to-Peer based approach 

Peer-to-peer architectures are a good alternative since they provide increased 

scalability by balancing the load for managing the game state across nodes in a P2P 

network. However, in our opinion, there are a few drawbacks in using P2P based 

network architectures for MMOGs: 

1. Cheating and Fairness: Since the game state is distributed among part ici pat­

ing player nodes it becomes vulnerable to game hackers who can alter or view 

this information to gain unfair advantage in the game. 

2. No Administrative Control: There is no central authority to manage the 

whole P2P based system, which can present a problem in scenarios such as 

monitoring resource usage among player nodes for load balancing or detecting 

failure in the system. 

3. Searching and Topology Maintenance: Deciding and forming a topology in 

a P2P based network has been a challenge in P2P networks and although there 

are techniques for node discovery and connection maintenance (as mentioned 
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in [18]), there is still a considerable overhead incurred in forming connections 

among nodes which might cause problems for real-time game play. Searcbing 

in P2P based systems also induces latency due to a considerable number of 

network hops incurred while searching for or relaying game state. 

4. Fault Tolerance and A vailability: Since there is no control over the avail­

ability of the nodes in a P2P system they can fail or leave the system without 

warning, leading to the 1088 of the game state associated with them. This can 

leave the overall game state incomplete or inconsistent rendering the entire 

system fault- intolerant. 

In contrast, the distributed server architecture offers a number of advantages 

which overcome the shortcomings of the P2P based approach : 

1. Central Point of Authority: The collocation of the server nodes in a dis­

tributed architecture provides greater administrative control over them. This 

is advantageous for many reasons: 

• Since the game state is only distributed on the server nodes, its is easier 

to exercise control over their access and avoid unwarranted modification. 

• Consistency of the overall game state is easier to manage since it is now 

localized over server nodes that are members of the architecture. 

• It is easier to monitor resource usage at all server nodes making it simpler 

to deploy load balancing techniques. 

2. Faster inter server communication: The nodes in a distributed server archi­

tecture are generally inter-connected through a high speed local area network 
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(LAN) resulting in faster inter-server communication giving lower response 

times for game actions. 

3. Fault Tolerance and Availability: Nodes in a distributed server architecture 

can be centrally monitored for failure or supplement al backup nodes can be 

maintained to take over in case of failure. 

Therefore, we consider a distributed server based architecture is the best alter­

native for improving the scalability of MMOGs. 
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CHAPTER4 
The Distributed Server Architecture - An Overview 

While many sophisticated distributed architectures, including advanced features 

such as load-balancing, have been proposed (as discussed in Section 3.2.3), only few 

are implemented in real systems, and it remains unclear what are the challenges 

when transferring such ide as to a real MMOG. This thesis addresses this issue. It 

proposes a practical distribution approach and describes its concrete implementation 

and integration into the Mammoth protoype. 

The primary goal of this approach is to improve the scalability of an MMOG, 

enabling it to support a larger number of clients than the single server architecture 

without overloading. Therefore, ability to measure the increased performance of 

an implemented distributed server architecture over the single server architecture is 

important. 

4.1 Architecture 

4.1.1 Overview 

The distributed server architecture follows a cluster-based approach where a 

group of server nodes connect with each other to form a cluster where they can 

communicate with each other. As discussed in Chapter 2, most MMOGs have a 

notion of game space associated with them and the state of the entire game is the 

state of aIl objects present in this game space. In the distributed approach the game 

space is divided into sub spaces and each server in the cluster hosts a set of sub spaces. 
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Clients only maintain connection with their home server, i.e., the server hosting the 

sub space where their player is currently in, and receive aIl relevant updates through 

them. AlI the server nodes in the cluster always maintain a physical connection with 

each other in order to forward relevant state updates they receive from their clients 

through specialized distributed publishjsubscribe mechanisms discussed later in this 

chapter. 

4.1.2 Major Components 
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Figure 4-1: The Distributed Server Architecture 
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Figure 4-1 provides a broad overview of the distributed server architecture il­

lustrating its major components. This section summarizes how these components 

work: 

Server nodes 

Server nodes hast sub spaces, i.e., they maintain the game state for these sub 

spaces and they are known as their hast servers. In our current implementation, 

the sub spaces that a server is meant to host are specified at start up. However, in 

general, such sub spaces could be assigned dynamically and might change over time, 

e.g., for load-balancing purposes. A server no de can host more than one sub space. 

The main responsibilities of the server no de can be outlined as follows: 

1. To accept client connections for players entering the sub spaces they hosto 

2. Receive and process state updates corresponding to those subs paces. 

3. Multicast processed state updates to aIl interested clients. 

Each server no de maintains a physical connection with aIl the other server nodes 

within the cluster. This allows inter server node communication useful for transfer­

ring state updates it receives from its clients to the other interested server nodes 

which can relay these updates to the clients connected to them. More details on how 

this communication scheme actually works is given shortly. 

Clients 

The end user plays the game on the client node which rend ers the game state 

using a graphical display. A client maintains a direct connection with its home server 

in the cluster. Actions performed by the player at the client are converted into state 

updates and are transferred to the home server where the state is processed and the 
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updated response is multicasted to aIl other interested clients in the architecture. A 

client caches a local copy of the game state which is kept up-to-date by applying the 

state updates it receives from its home server. 

4.1.3 Administrative Components 

Apart from the server nodes and the clients, there exist two more components 

which help in administering and managing the overaIl distributed architecture. 

Cluster Administration Server 

The cluster administration server (CAS) is the central administrative entity of 

the distributed server architecture. Currently, the CAS is used during the startup 

to setup the cluster. Server nodes upon startup connect to the CAS and provide it 

with important information such as 1) their host address and 2) the sub spaces they 

are in charge of. The CAS builds a table using aIl this information and consecutive 

connecting server nodes use this table to discover other nodes in the cluster and 

establish physical network connections with them. 

Being an administrative entity, the functionality of CAS can further be extended 

to perform other important tasks such as: 

1. Monitoring load at servers nodes to make sure they are not overloaded. 

2. Act as a central entity to administer load balancing procedures in case of server 

overloads. 

3. Monitor server nodes for failure and switch to backup if necessary. 

Rendezvous Server 

The Rendezvous Server (RS) acts as an initial point of contact for a client trying 

to connect to the distributed server architecture. The RS contains information which 
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Figure 4-2: Working of Rendezvous Server 

helps the client locate its home server in the cluster. A client connects to the RS and 

supplies player information to retrieve the host address of its home server so that 

it can connect to it in order to start playing the game. Figure 4-2 illustrates the 

working of the RS. The RS also authenticates a client before it can start playing the 

game. 

The CAS and the RS are kept as separate machines mainly to logically separate 

both their functionalities. RS's main task is to authenticate and redirect clients 

to their home server which can be very intensive given the scale of participants in 

present day games and the dynamic nature of their entry and exit into the game. 

Further, since all the task of an RS are on a separate machine, it is possible to have 

several RSs places at a number of geographical locations in order to allow faster, 

localized connectivity to the cluster. Being the only point of entry to the cluster, 

the RS also becomes vulnerable to attacks from hackers, therefore it may not be 

advisable to perform critical CAS related operations on the same machine. 
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4.2 Communication Protocol 

4.2.1 The Challenge 

The single server architecture simplified communication as the state for the 

entire game was centrally located at a single node and clients only needed to connect 

to this no de to transfer updates. However, in a distributed architecture the state of 

the entire game is now distributed across the server nodes in the cluster with clients 

sending updates only to their home server. Further, each client may not only be 

interested in updates occurring on the sub space its player is currently in but also 

in other sub spaces (depending on the interest management technique). These sub 

spaces may be hosted on the client's home server or on other server nodes in the 

cluster. Therefore, it becomes a challenge as state updates must reach aIl interested 

clients in an efficient manner. 

One of the possibilities is for the client to maintain connections with aIl server 

nodes hosting the sub spaces of their interest. The client sends its own update 

requests only to its home server, but aIl server nodes that host sub spaces the client is 

interested in, send updates on these sub spaces to the client. However, this approach 

has sever al shortcomings: firstly, the client must maintain several connections with 

different servers. This adds complexity and overhead to the client which might have 

to be connected to many servers. Futhurmore, each server has now connections not 

only to the clients for which it is home server, but possibly many more clients, limiting 

the scalability. Also, our aim is to minimise the open points of vulnerability at the 

cluster. With the presented scheme, malicious clients can exploit the fact that they 
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have open connections with multiple server nodes at the same time compromising 

the security of the cluster to a larger extent. 

We also looked whether a group communication system could be used. We 

analyzed the Spread Toolkit [2J. Spread provides a mechanism to form multicast 

groups for disseminating updates either in LANs or WANs. Using Spread, the server 

nodes form multicast groups with clients and then send updates along these multi­

cast groups. Basically, a multicast group can be built for each sub space. Clients 

can join or leave these multicast groups (depending on which sub space they are 

interested in). The communication between client and server nodes in Spread is via 

User Datagram Protocol (UDP) with an additional reliable delivery mechanism im­

plemented to guarantee message delivery and ordering. However, experiments with 

Spread revealed that although it was easy to use, its communication mechanism did 

not scale weIl with a large number of clients resulting in poor latency values. This 

was mainly because of the token ring architecture of Spread which required acqui­

sition of a token by the sending entity before a message transfer could take place. 

AIso, the number of groups can become larger, which might become a problem for 

the group communication system. 

4.2.2 Distributed Publish/Subscribe System 

Based on the challenges presented ab ove and the alternatives evaluated, there 

was a need for a mechanism which could provide the communication scheme we re­

quired without making connection management at the client too complex, minimis­

ing points of vulnerabilities at the cluster and scaling weIl with increasing number 

of connecting clients. 
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Figure 4-3: Simplified Overview of Distributed PublishjSubscribe Mechanism 

We came up with a publishjsubscribe mechanism which could accomplish a11 

the above goals by distributing the subscription mechanism across the cluster. Using 

this system, the client is only connected to its home server. It can subscribe to any 

sub space it is interested in irrespective of the server which hosts this sub space. We 

take from Mammoth the concept of a logical channel. Each sub space is associated 

with a logical channel. Each logical channel has a subscription list of a11 clients 

subscribed to it. In our implementation, each server no de has now two types of 

logical channels: local and remote. The local channels serve the sub spaces hosted 

by the server and the remote channels serve sub spaces hosted by other server nodes 

in the cluster. Clients can subscribe to any channel, only indicating the sub space 

they are interested in, by sending a subscription messages to their home server S. 

If the subscription is for a local channel Le, S simply subscribes the client to Le 

and sends it updates occurring in the sub space through Le. Figure 4-3 illustrates 

in a simplified manner the working of remote subscription. If S receives a request 

for subscription to a remote channel Re, it adds the client to the subscribers list for 

Re locally but then forwards this subscription to the remote server R which actua11y 
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hosts this sub space and has a local channel serving it. The remote server R then 

adds S to its subscription list for that channel and sends updates occurring on that 

channel to S. When S receives these updates it disseminates them to aIl the clients 

who are subscribers to the corresponding remote channel Re. 

4.3 Game Communication Protocols 

This section gives a high level overview of the communication proto cols used in 

the distributed server architecture during three common game scenarios: 

4.3.1 Player Entry 

When a player enters the game, the client machine first connects to the Ren­

dezvous Server to retrieve the address of its home server. U pon receipt of this 

information, the client directly connects to this server node and subscribes to aIl the 

sub spaces it is interested in (based on the interest management scheme). The server 

node uses the distributed publishjsubscribe mechanism to subscribe itself to the sub 

spaces the client is interested in (if it is not yet subscribed due to another client). It 

also retrieves the current game state of these sub spaces for the client to cache. 

4.3.2 Player activity within sub space 

As the player moves or interacts with other playersjobjects within a sub space, 

it transfers its state updates to its home server. The server serializes and processes 

these updates and multicasts responses to clients subscribed to the corresponding 

sub space as weIl as to the other servers which have connected clients also interested 

in these updates. 

4.3.3 Player migration across sub spaces 

When a player moves across sub spaces, one of two scenarios can happen. 
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1. Player migrates to sub space managed by existing server: In this caser 

the client maintains connection to its home server but subscribes to newly 

interested sub spaces and unsubscribes from uninterested ones. 

2. Player migrates to sub space managed by another server: In this case, the 

client disconnects from the server no de it is currently connected and establishes 

connection with the server in charge of the sub space it is migrating to, i.e., the 

client changes its home server. Before disconnection, the player unsubscribes 

to an sub spaces it was subscribed to earlier and makes fresh subscriptions 

when it connects to the next server. This is needed since it now has to receive 

an updates through its new home server. 
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CHAPTER 5 
Implementation in Mammoth 

The previous chapter introduced the Distributed Server Architecture for game 

scalability and gave an overview of its components and communication mechanisms. 

This chapter gives a more detailed explanation of each of those components and pro-

vides a deeper insight into the communication mechanisms involved. It also discusses 

the implementation of crucial components in Mammoth. 

5.1 Architectural Components 

Chapter 4 provided an overview of aIl the major components in the distributed 

server architecture. This section explains them in greater detail describing their 

internaIs and working. 

5.1.1 Server N odes 

The functionality of server nodes in the distributed server architecture is similar 

to that in the single server, except that in the distributed case, each server node hosts 

a subset of aIl sub spaces (i.e., a part of the game state) and maintains connections 

with other server nodes in the cluster to send/receive state updates to cooperatively 

manage the entire game state . . 
Upon startup, a server nodes is assigned the sub spaces it is supposed to host and 

local channels are created to serve each of these sub spaces. A server no de connects 

to other server nodes in the cluster to form inter-server connections. During this 

process, server nodes inform each other about the local channels they hosto Once 
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aIl server nodes know about the local channels hosted by every other server node in 

the cluster, they build a hash table (referred to as remoteChannelMap) which maps 

channel names to the server nodes that host them. They use this table to forward 

updates received from their connected clients to other servers. More details about 

how this process actually takes place are given shortly. A client only sends updates 

occurring in the sub spaces hosted by its home server. A server no de receives and 

pro cesses these updates, generates a response and sends them to aIl clients and server 

nodes that subscribe to the channels serving these sub spaces. 

Although a server node hosts sub spaces, it loads the entire game state at start 

up. In our current implementation, a server node does not process the messages 

its receives for a sub space that it does not hosto Rather it sim ply relays it to its 

connected clients that subscribe to the remote channel serving that sub space. Not 

processing these messages locally (i.e., not updating the local game state for these sub 

spaces) saves considerable processing costs, and hence, can achieve better scalability. 

However, keeping the entire game state at the server node could be beneficial for 

fault-tolerance purposes. For example, a server no de SI can be designated as a 

backup node for server node S2' i.e., SI receives state updates for sub spaces hosted 

by S2 and applies them to its local state. In the event of the failure of S2, S} can 

take over and accommodate S2 's clients since it has the up-to-date state of the sub 

spaces that S2 hosted. 

Implementation in Mammoth 

According to Section 2.5.2, which describes the logical channel architecture of 

the single server mammoth network engine, each logical channel is maintained as 
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an object having a subscribers list containing the objects representing an the clients 

subscribed to it. Each of these client no de objects has a FIFO message queue as-

sociated with it and primitives to send the messages in the queue over the network 

to the no de it represents. An iterator goes through an the client no de objects in 

the subscribers list and adds the message to their corresponding message queues. A 

multiplexing mechanism removes messages from the head of the message queues and 

sends them over the network to the corresponding nodes. 
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ln the distributed server implementation of Mammoth, the network architecture 

has been extended to support aU the additional communication capabilities and 

subscription mechanisms of server nodes. Figure 5-1 shows the internaIs of the 

server no de in the Mammoth implementation. The local channel objects have a 

subscribers list which consists of both server node and client objects representing 

the subscribers of that channel. The remote channel object have a subscribers list 

which consists of only the client objects which subscribe to that channel. Another 

multiplexing unit is added to send/receive messages to/from other server nodes in the 

cluster. Incoming messages from the other server nodes in the cluster are received by 

a separate message handler. Messages consisting of state updates are not processed 

but are relayed to the remote channels where they are added to the message queues 

in order to be dispatched to client nodes that have subscribed for those updates. 

Messages requesting subscription or requesting state for a sub space hosted by the 

server no de are processed by the remote subscription handler and remote content 

handler respectively. Similar to client message queues, the server no de message 

queues are also used to send direct messages to other server nodes in the cluster. 

5.1. 2 Clients 

A client in the distributed server architecture only maintains connection with 

its home server. When its player migrates to a new sub space, the client switches 

connections to the server hosting this sub space, subscribes to aU the sub spaces it 

is now interested in and unsubscribes that are no more of its interest. Although, 

during migration of a player across servers, it unsubscribes from aU and resubscribes 

again. 
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The primitives for aIl communication remains unchanged for the client in the 

distributed server architecture, since complex processing such as subscription man-

agement and game state management is handled among the server nodes. The client 

remains oblivious to the distributed publishjsubscribe system and uses the existing 

primitives to send/receive updates and subscriptions. However keeping in mind the 

faet that the client might change home servers, its implementation in the distributed 

architecture has been extended with certain capabilities: 

1. Rendezvous When entering the game, the client connects to the rendezvous 

server instead of any particular server on the cluster. The rendezvous server 

supplies the client with the remoteChannelMapl which it uses to locate and 

connect to its home server. 

2. Connection Management A connection manager is implemented at the client 
• 

which manages dynamic connection switching as the player migrates to a sub 

pace hosted by another server. During the migration process, the connection 

manager disconnects the client from the current server, looks up its new home 

server using the remoteChannelMap and connects to it. 

State Management 

Clients upon startup only load the static objects in the game (for e.g., map 

information). Upon connection to their home server, they retrieve dynamic state of 

all the sub spaces they are interested in, this procedure is known as world manage­

ment in the Mammoth implementation. Clients also (re)load state information of 

1 A hash table which maps a channel to the server no de which hosts it. 
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sub spaces the sub spaces they are interested in after they migrate across servers. De­

tailed protocol for world management in the distributed server architecture is given 

in later sections. 

5.1.3 Cluster Management with CAS 

The duster administration server (CAS) is in charge of forming the server dus­

ter. Server nodes which intend to join the duster first connect to the CAS where they 

are provided with aIl the information required to establish connections with other 

existing server nodes in the duster. The CAS also builds up the remoteChannelMap 

using the information it receives from the connecting server nodes. Once aIl the 

nodes have joined the cluster, the rendezvous server connects to CAS to receive the 

complete remoteChannelMap to help redirecting connecting player nodes in the ap­

propriate server nodes in the cluster. Figure 5-2 illustrates the cluster formation 

procedure. 

Cluster Management in Mammoth 

The implementation of the cluster formation and management in server nodes 

is separated from the existing distributed network engine in the clusier management 

layer. Figure 5-3 illustrates the cluster management layer. This layer sits on top 

of the networking layer and performs aIl the cluster management procedures such 

as connecting to the CAS, retrieving connection information and connecting to the 

other server nodes. 

Discussion 

As explained in the previous sections, each server nodes maintains a physical 

network connection with every other server node in the cluster. Although it may seem 
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unnecessary to maintain such a number of connections, this scheme actually turns 

out to be more efficient. For example, consider a cluster consisting of 4 nodes with 

the game space equally distributed among them. During an active game scenario 

with a considerable number of players, there will be a need for constant inter-server 

communication as players move across sub spaces or subscribe to sub spaces hosted 
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by servers other than their home server. If a physical connection is maintained only 

on need basis, there will be a considerable overhead in establishing and tearing down 

these connections repeatedly, increasing the time taken for astate to be transmitted 

across servers. However, if a permanent physical network connection is maintained 

with proper interest management, then this overhead can be avoided. 

5.2 Communication Mechanisms 

This section discusses in detail the communication mechanisms and the protocols 

used in the distributed server architecture. 

5.2.1 Distributed PublishjSubscribe System 

The distributed publishjsubscribe system provides a means for state updates 

to be disseminated across the distributed architecture to aIl interested client nodes. 

The detailed explanation of the protocol is described in the following section 

5.2.2 Description of the publish subscribe system 

The logical channels at the server node can be classified as that of two types -

local channels and remote channels. 

1. Local Channels correspond to the sub spaces that the server node is actually 

in charge of and are specified in the localChannels linked list. 

2. Remote Channels correspond to sub spaces that reside on other nodes on the 

server cluster. The remoteChannelMap hash table maps these channels to the 

servers which host them. 

As explained earlier, each logical channel has client and server nodes associated 

with them. Local channels have both clients and server nodes associate with them 
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while remote channels have only client nodes associated with them. Using the in­

formation of these two types of channels, we will now explain how the distributed 

publish subscribe system works in two different scenarios with the help of examples. 

Assume agame world divided into four sub spaces - subI, sub2, sub3, sub4 each 

hosted by server nodes Sb S2, S3 and S4 respectively, which form a cluster. 

Example 1 - Local Subscription 

Two clients Cl and C2 are both connected to SI with their players in SUbI. 

N aturally both of them will be interested in state updates that occur in SUbI. Hence, 

both send subscription messages to SI requesting subscription to the local channel 

ChI serving SUbI. Upon receipt of these subscription messages, SI adds both Cl and 

C2 to the subscribers list of local channel ChI (referred to as subscribers(S1, ChI)). 

Now, when Cl sends astate update for SUbI, it is received and processed at SI 

and a response is generated and sent to the local channel ChI in the network engine. 

Since there are Cl and C2 in subscribers(SI, ChI)), the response is sent to both of 

them. This way, C2 gets to see the update performed by Cl while Cl simply ignores 

the message since it was the on which actually performed the update. 

Example 2 - Remote Subscription 

Now, assume there is another client C3 connected to S3 who wishes to listen 

for updates that occur in SUbI. It sends a subscription message to S3 request­

ing for subscription to the logical channel ChI which serves SUbI. S3 now realizes 

that ChI is a remote channel and adds C3 to subscribers(S3, ChI). Now, it uses the 

remoteChannelMap to discover that SI is the server hosts logical channel ChI. It then 
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creates a message and sends it to SI requesting a subscription to chI which is local 

to it. SI upon receiving this message adds S3 to subscribers(SI, chI). 

Now, when astate update for SUbI is processed at SI and a response is gen­

erated, it is sent to the logical channel ChI in the network engine. Since S3 is in 

subscribers(Sl, ChI), the response is forwarded to S3 as weIl. S3 receives this update 

and sends it to all the nodes present in subscribers(S3, ChI) (the subscriber list for 

the remote channel ChI). As C3 is present in subscribers(S3, ChI), it receives the 

response as weIl. This way C3 can see the updates performed at SUbI hosted by SI. 

Handling multiple subscriptions 

Now consider a large number of clients connected to S3 who want to subscribe 

to ChI present at SI' If S3 keeps sending subscription requests to SI each time 

a client wants to subscribe to ChI, it will result in multiple subscriptions of SI at 

S3, and each time a message is sent over ChI it will be sent multiple times to SI 

causing unnecessary bandwidth usage. Plus, there is no way for SI to know when to 

unsubscribe S3 from ChI, since it has no means of keeping track of how many clients 

are subscribed to ChI through S3. Therefore, even after all clients at S3 unsubscribe 

to ChI, SI can still end up sending updates to S3. 

A solution to this problem is to let S3 to keep track of the number of subscribers 

to its remote channel ChI. The first time S3 receives a subscription request for 

ChI from its connected clients, it adds the client to subscribers(S3, ChI) and sends a 

subscription request to SI for its local channel ChI. SI adds S3 to subscribers(Sl, chI) 

effectively subscribing it to an updates occurring at SUbI' When another client 
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wants to subscribe to remote channel ChI at 83 , 83 will simply add this client to 

subscribers(83 , chd without sending another subscription message to 8 1 . 

When aU clients unsubscribe from ChI, subscribers(83 1 chI) becomes empty. 83 

detects this and sends an unsubscription message to 8 1 which removes 83 from 

subscribers(811 ChI) effectively unsubscribing it from aU updates occurring at SUbI. 

This approach solves the two issues faced earlier in the foUowing manner: 

1. There is only one message sent from 83 to 8 1 when an update occurs at ChI 

irrespective of the number of clients subscribing to that on 53 therefore saving 

inter server bandwidth. 

2. When there are no more clients subscribed to ChI at 83 , then 8 1 will not send 

any messages to 83 , again conserving inter server bandwidth. 

Algorithm 1 gives the formaI algorithm for the distributed publishjsubscribe 

mechanism. Algorithm 2 expresses the dissemination of updates across the dis­

tributed server architecture in a formaI manner. 
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Algorithm 1 Distributed PublishjSubscribe algorithm 
1: At Server node Si : 

2: Data Structures: 
3: remoteChannelMap : Hashtable 
4: localchannels : List 
5: subscribers(Sil chk) : List 

6: Upon receipt of message SUBSCRIBE(Cm, Chk) from client Cm : 
7: if chk in localChannels then 
8: Add Cm to subscribers(Sil chk) 
9: else 

10: Sj f- remoteChannelMap.get(chk ) 

11: if subscribers(Sil chk) == EMPTY then 
12: Add Cm to subscribers(Sil chk) 
13: Send SUBSCRIBE(Si, Chk) to Sj 
14: else 
15: Add Cm to subscribers(Sil chk) 
16: end if 
17: end if 

18: Upon receipt of message SUBSCRIBE(Sj, Chk) from server Sj: 
19: Add Sj to subscribers(Sil chk) 

20: Upon receipt of message UNSUBSCRIBE(Cm, chk) from client Cm : 
21: if Chk in localChannels then 
22: Remove Cm from subscribers(Sil Chk) 
23: else 
24: Remove Cm from subscribers(Sil chk) 
25: if subscribers(Sil chk) == EMPTY then 
26: Send UNSUBSCRIBE(Si, chk) to Sj 
27: end if 
28: end if 

29: Upon receipt of message UNSUBSCRIBE(Sj, chk) from server Sj: 
30: if Sj in subscribers(Sil chk) then 
31: Remove Sj from subscribers(Sil chk) 
32: else 
33: print 'ERROR : No earlier subscription' 
34: end if 
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Aigorithm 2 Message Transfer Algorithm 
1: At Server node Si : 
2: subscribers(Si, chk ) : List 

3: Upon receipt of state update MSCt from client Cm : 
4: Process M SCt 
5: Generate repsonse RESPt to be sent over chk 

6: for an ServersjClients SCi in subscribers(Si, chk ) do 
7: send RESPt to SCi 

8: end for 

9: Upon receipt of state update M SCt from server Sj : 
10: for all Client Ci in subscribers(Si, chk ) do 
11: send MSCt to Ci 
12: end for 

5.2.3 Game State Retrieval 

As discussed in Chapter 2, clients retrieve and store complete up-to-date state 

of the sub spaces they are interested in from the servers which host them. This 

process of requesting for and retrieving relevant state information is referred to as 

world management in Mammoth. In the single server architecture, the protocol for 

retrieving state information by the clients was relatively simple since aIl sub spaces 

resided on one node. The client simply sends astate retrieval message for the sub 

space whose state is required. The server collects the state for that sub space and 

returns the information to the client which updates its local cache. 

However, in the distributed server architecture, this becomes a challenge since 

the sub spaces are distributed over a number of servers. Therefore there is need for 

a more detailed protocol which can manage retrieval of state for the client over this 
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architecture. This section describes this protocol using the same example used in 

the previous section and gives a formaI algorithm for it. 

Protocol Overview 

Assume client Cl is connected to its home server 81 and is interested in events 

occurring on sub space sub2 hosted by 82 . Apart from subscribing to the remote 

channel ch2 at 81, it also needs to retrieve the current state of sub2 • It therefore 

sends astate retrieval request message for sub2 to 8 1 attaching its client identifier 

with the message. Client identifiers help server identify the clients connected to 

them. When 81 receives the requests, it realizes that it does not host su~, therefore 

it looks up the server hosting su~ using remoteChannelMap hash table (since sub 

space sub2 corresponds to logical channel ch2 ) and finds out that it is 82 . 81 then 

forwards the state retrieval request to 8 2 • When 8 2 receives this request, it collects 

the state for su~ and sends it in the form of a state information message to 8 1 

attaching the client identifier for Cl that was present in the state retrieval request. 

When this message is received by 8 1, it sim ply relays it to Cl. Cl upon receipt of 

the state information message, uses this information to update the state for su~. 

Algorithm 3 formalizes the game state retrieval protocol. 

5.2.4 Player Migration - A detailed explanation 

Player migration is referred to as the movement of players across sub spaces 

within the game world. Since a server can host more than one sub spaces, player 

migration can be of two types, local and remote migration. The following sections 

discusses both of them in greater detail. 
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Algorithm 3 Algorithm for Retrieving Game State 
1: At Client node Ci : 

2: Received request of state for sub space k from upper layers. : 
3: Create GET_STATE(Ci, chk) message. 
4: Send GET_STATE(q, chk) to Home Server Si 

5: Upon receipt of message STATE_INFO(statek) from Home Server Si : 
6: Send state to upper layers for processing. 

7: At Server node Si : 

8: Received GET_STATE(Ci , chk) from client Ci : 
9: if chk in localChannels then 

10: Collect state information statek for sub space k 
11: Send message to STATE_INFO(statek) to Ci. 
12: else 
13: Sj f- remoteChannelMap.get(chk ) 

14: Send GET_STATE(Ci , chk) to Sj 
15: end if 

16: Received GET_STATE(Ci, chk) from Server Si : 
17: Collect state information statek for sub space k 
18: Send STATE_INFO_RESP(Ci, statek) to Si) 

19: Received STATE_INFO_RESP(Ci, statek) from Server Si : 
20: Send STATE_INFO(statek) to Ci) 
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Local Migration 

When a player migrates across sub spaces hosted by the same server, it is known 

as local migration. As a result, the client maintains connections with its current 

home server. However, as it has moved over to a different sub space, the interest 

management algorithm will require it to subscribe to newly interested sub spaces and 

unsubscribe from sub spaces that it is no longer interested in. It also requires the 

client to retrieve the current state of new sub spaces it is now interested in. Sinee 

these sub spaces can either be local or remote to the client's home server, the client 

uses the distributed publishjsubscribe system and the game state retrieval protocol 

described earlier to manage the subscriptions and to retrieve the game state. Sinee 

the client does not change home servers, the session of the client remains the same 

on its home server. 

Remote Migration 

A player undergoes remote migration when it moves across sub spaces which 

reside on different server nodes. This section outlines the various steps that occur 

as a player remotely migrates across sub spaces using the continuing example of the 

distributed architecture. 

Assume, player Pl represented by client Cl migrates from subI (hosted by SI) 

to sub2 hosted by 82 . As it moves across the sub space boundary, it performs the 

following steps: 

1. When Cl detects transition across sub spaces, it looks up which server is re­

sponsible for the destination sub space (i.e., sub2 ), It realizes that it is not the 

home server (using localchannels list it receives From SI upon connection). 
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2. It looks up the server which is responsible for sub space sub2 (i.e., 82) using 

remoteChannelMap hash table it had received from the rendezvous server when 

it entered the cluster. 

3. It unsubscribes from aIl the sub spaces it has currently subscribed to. 

4. It disconnects from 81 . 

5. It establishes a Tep connection to 8 2 and exchanges control information (such 

as retrieving 8 2 's localChannel list and a client identifier). 

6. It subscribes to the sub spaces that the player is now interested in (dictated by 

the interested management scheme) and retrieves game state of aIl these sub 

spaces (using the same procedure as that used in local migration). The order in 

which these two operations occur is essential in order to avoid inconsistencies. 

More details about this is discussed later in this chapter. 

7. Send a stan message containing the identifier of the player migrating. When 

8 2 receives this message, it establishes a game session for this player associating 

it with this client. 

8. At this point, player migration is complete and Cl can start sending state 

updates to 8 2 . 

State Management during Player Migration 

As explained in Section 5.1.2, clients do not have any dynamic state information 

at startup. They get the state of the sub spaces they are interested in from server 

nodes that host these sub spaces. Using this state information, clients create local 

copies of dynamic objects present in that sub space. They then subscribe to the 

sub space and receive updates which they can apply to these objects to keep them 
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up-to-date. If a player enters a sub space now and performs sorne updates, the clients 

receiving these update would not be able to apply them as they don't have the local 

copy of this newly entered player's dynamic object. 

Therefore, before Pl migrates onto sub2 , aU the clients which are already sub­

scribed to this sub spaee will not have a local object for Pl and therefore will not 

be able to apply the state updates that they reeeive for this player. Renee, 82 must 

send a copy of the Pl object to aU the clients subscribed to su~ so that they can 

create a local copy of Pl. The foUowing steps illustrate how this actuaUy takes place. 

These steps occur when 8 1 detects that Pl is about to migrate (i.e., along with Step 

1 of the Remote Migration Protocol). 

1. Before Pl is about to migrate, 8 1 creates a PLAYER~IGRATION message 

containing PI's object and sends it to 8 2 . 

2. 82 upon receiving the object for Pl, multicasts it across the logical channel ch2 

effectively sending it to aU client nodes subscribed to this channel. 

3. Upon reeeiving the object for Pl, aU clients add it to their local state for su~ 

and are now able to see the player and process its updates. 

In case of local migration, as the player moves across the sub space boundary, 

the server multicasts the player object across the logical channel of the sub space to 

which the player migrates to. Clients add the received player object to their local 

game state in order to see the player. 

5.2.5 Consistency during player migration and startup 

Whenever a client st arts up or its player migrates across sub spaees, it subscribes 

to the newly interested sub spaces and gets the state information. However the order 
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in which these two operations occur proves to be very essential to the correctness of 

the state received at the client. 

Scenario 1 - State Retrieval before Subscriptions 

Client CI ServeT SI CiientC2 

GET_STATE(Ct, CH(k» 

~ 
ST A TE_INFO(state(k» 

SUBSCRIBE(Ct, CH(k) ~ STATE_UPDATE(CH(k), MOVE]LA YERt) 

~ ST A TE_INCONSISTENT 

Figure 5-4: L088 of updates leading to incorrect game state 

This case is described in Figure 5-4. In this case, the client Cl tries to retrieve 

the state information for sub space subk before it subscribes to its corresponding 

logical channel (chk ). As visible from the scenario described in the figure, there could 

be crucial state updates that may change the state of the sub space before the client 

subscribes to the logical channel and after the game state has been computed and 

sent. Therefore, Cl completely misses these updates hence resulting in an incorrect 

view of the world. For example, if the missed updates correspond to picking up of 

sorne important objects by C2 , then the player at Cl will still see them as present in 

the game world, which is wrong. 
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Scenario 2 - Subscriptions before State Retrieval 

Client CI Server SI ClientC2 

Subscription Made 

, ~' 

State Updated \~) 
~ 

Figure 5-5: No 10ss of updates 

This case is described in Figure 5-5. In this case, the client Cl subscribes to the 

10gical channel chk before it tries to retrieve the state information for the sub space 

subk . Lets examine this scenario at a greater level of detail. Cl sends a subscription 

message (say SUB) to 8 1 soon followed by astate retrieval message (say SR). Since, 

the connection between Cl and SI is Tep, SUB is guaranteed to reach SI before 

SR. Now, if 8 1 receives crucial state updates for subk (say UI and U2) in between, 

they will be queued between SUB and SR in the incoming message queue. Hence, 

SUB will be processed first followed by UI, U2 and then SR. Therefore the state 

information collected after processing SR will include the state updates UI and U2. 

Since UI and U2 are processed before SR, their responses will be queued ahead of the 

state information message (say SI) in the message queue for Cl as the same message 

queue for Cl is used for sending direct as weIl as multicast messages. Therefore, Cl 
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receives UI and U2 before SI. Since SI already contains the state updates specified by 

UI and U2, applying them to Cl 's local cache will be idempotent, hence Cl discards 

these updates and applied state information in SI to its local cache without losing 

updates. 
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6.1 Introduction 

CHAPTER 6 
Experimentation and Results 

Now that we have described our distributed server architecture for MMOGs in 

detail, we present results of the experiments performed on the implementation of 

the architecture in the Mammoth prototype with an aim to measure its scalability. 

The parameters measured were bandwidth consumption and CPU utilization at the 

server nodes as weIl as the overall latency experienced during game play. We give 

our initial results which we obtain by experimenting with the existing single server 

implementation of the Mammoth network engine explained in Chapter 3. We then 

present the results obtained from the distributed server architecture implementation 

in comparison with the single server, proving clearly in each instance our hypothesis 

that the system shows the scalability properties that it was designed for. 

6.2 Experimental Setup 

6.2.1 Physical Setup 

In order to get results which reflect true performance, we ran our experiments 

using the complete distributed implementation using actual game messages on a 

real network rather than simulations. Each server no de was configured to run on 

a different machine. The machines were connected via local area network of high 

bandwidth capacity. The experiments were performed on machines equipped with 

3.40 Ghz Pentuim 4 processors hosting the server nodes. The machines ran the Linux 
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2.6.14 kernel with Sun JDK 1.5.0.04. A maximum of 16 server nodes were used to 

test the scalability of the architecture. The cluster administration server and the 

rendezvous server were also configured to run on the same local area network as the 

server nodes. 

The clients were running on 38 difIerent machines in difIerent subnets of the 

department local area network. In our future work we propose to run the experiments 

with clients on difIerent networks (preferably at a greater geographical proximity) to 

get more realistic network delay. However, we believe the results obtained from our 

local area network experiments are indicative of the scalability of our system when 

compared with the existing architecture. 

For the purpose of our experiments we implemented a special viewless client 

without a graphical display. This allows us to run more clients per machine without 

the heavy graphies overloading it. Each viewless client was implemented as a thread 

and ten such threads were started from each machine, efIectively representing 10 

clients. Accommodating more clients per machine would have allowed us to have 

more players in the game, but that would have overloaded the machine where they 

were run, afIecting the behavior of each client. Therefore, the number of clients we 

could experiment was limited by the number of machines available to us, allowing 

us to experiment with up to 380 clients. However, this number was large enough to 

provide a comparison of the scalability of our architecture under varying conditions. 

6.2.2 Player behavior 

The players at each client had an automated behavior described by a random 

algorithm. For the purpose of simplicity, we only allowed movement actions for 
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experimental purposes. Therefore, each player made a movement of a specifie dis­

placement at specifie time intervals in a randomly selected direction. The seed for 

the random number was computed from the player identifier. This way the same set 

of random numbers were selected for each experiment (with same number of clients). 

Thus, we had the same traces of random movements making the scenarios identical. 

In our experiments, we used an interval of one second between generation of every 

movement update. We decided on this interval after observing traces obtained from 

actual gaming scenarios. Since we were using actual client implementations rather 

than just dummy message senders, the responses received back from the server nodes 

were processed at the clients and helped in deciding their next action, providing us 

with a more realistic behavior. 

6.2.3 Game Setup and Experimentation Technique 

For the purpose of testing our system performance, we created a special map 

consisting of 16 sub spaces (or static zones) of equal size and shape in the form of 

a 4x4 rectangular grid. The density of players was even across aH sub spaces in the 

map so that no part of the entire game could be unevenly concentrated with players. 

The cluster administration server was started initiaHy and aH server nodes con­

nected to it to form the cluster. The rendezvous server was then started which ob­

tained the cluster information. A remote script simultaneously started aH 10 clients 

at each machine each connecting to the cluster through the rendezvous server to 

start sending state updates corresponding to their in-game movements. The player 

identifiers decided the starting position of a player in the game map were randomly 
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selected and assigned by the rendezvous server in order to have a more even distri­

bution of players starting off in different areas of the map. However, the same set of 

random numbers were used for each experiment, so that the experiments remained 

identical. 

6.2.4 Measurement of Parameters 

The CPU consumption at each server node was measured at an interval of 250 

ms during each experiment mn and an average was computed. Both incoming and 

outgoing bandwidth was measured at the server nodes at a regular interval in order 

to measure the communication overhead and the average value was recorded. A 

latency monitoring utility was developed for estimating latency. This utility had a 

sending and receiving component. The sending component connects to a server node 

in the cluster and sends probe messages for a particular channel recording the time 

at which it was sent. The server node relays this message to aIl subscribers of that 

channel. The receiving component also connects to a server node and subscribes to 

the same channel to receive these probe messages. The latency is estimated as the 

difference between the time of receipt recorded by the receiving component and the 

sending time recorded by the sending component. 

There were two ways in which we estimated latency: 

1. Direct Latency This is an estimate of the amount of latency experienced by the 

clients for state updates occurring at sub spaces hosted by their home server. 

Figure 6-1 (left) shows how direct latency is measured. The sending component 

connects to a server no de and sends probe messages for a local channel. The 
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receiving component connects to the same server, subscribes to a local channel 

to receive these probe messages and calculates direct latency. 

Latency Monitor 

Direct 

Latency 

ServerNode 

Response Message 

Latency Monitor 

Indirect 

Latency 

Server Node 1 Server Node 2 

Figure 6-1: Latency Measurement, Left: Direct Latency, Right: Indirect Latency 

2. Indirect Latency ln a distributed architecture, it is imperative to measure the 

latency experienced by clients for state updates occurring at sub spaces hosted 

by servers other than their home server. This is estimated by indirect latency. 

Figure 6-1(right) shows how indirect latency is measured. The sending comper 

nent connects to a server no de and sends a probe message on a local channel. 

The receiving component connects to another server no de and subscribes to 

the same channel (which is remote at this server) to receive this probe message 

and calculates the indirect latency. 

6.3 Single Server Experiments 

This section presents results for experiments performed on the existing single 

server network architecture of the Mammoth prototype. Since the aim of our exp er-

iment was to evaluate the scalability of the system, we naturally took our measure­

ments of CPU, bandwidth and latency with increasing number of clients. In order to 
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get the most accurate results, the measurement of parameters was commenced only 

after the required number of players were connected to the single server and had 

started sending updates. We stopped taking measurements before the first player 

stopped sending updates and disconnected. 

6.3.1 CPU Utilization 

This experiment was conducted with the aim to measure the CPU utilization at 

the single server with increasing number of clients. The experiment was repeated with 

increasing number of clients and the measurement of CPU utilization was taken when 

aIl clients were connected and were transferring state updates. Figure 6-2 shows the 

result of the experiments. As visible from the graph, the CPU consumption increased 

almost linearly with increasing number of players in the game. This is due to the 

increasing number of messages that needed to be processed from the rising number 

of players. AIso, another major overhead was the serialization and deserialization of 

messages sent and received by the network engine. With more messages being sent 

and received, this overhead increased leading to an increase in CPU consumption. 

We could only take measurements for up to 220 simultaneously connected clients as 

the latency at this point became intolerable for proper playability (see next section). 
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Figure 6-2: Single Server CPU Utilization and Latency 

6.3.2 Latency 

The latency of the single server architecture was measured under varying loads 

by experimenting with increasing number of clients. Since the experiment was on the 

single server architecture, we measured the direct latency. A certain number of probe 

messages were sent during the experiment and the time taken for them to reach the 

server and relayed back to measured. As we can see from Figure 6-2, the measured 

latency is between 3ms - 50ms for up to a 150 players in the game. However, there is 

a sharp increase in latency values when more than 160 players join the system. The 

main reason for this behavior is that the multiplexing unit at the network engine 

cannot process the large number of messages in the different message queues for aIl 

the logical channels fast enough leading to clogging of messages in these message 

queues. Therefore, it takes longer time for response messages to reach the clients. 

At 220 clients, latency values reached 745 ms which we deemed as intolerable for 

good playability. 
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6.3.3 Bandwidth Utilization 

Both incoming and outgoing bandwidth utilization was measured at the server 

to determine the communication overhead. The incoming bandwidth refers to the 

messages being received by the server while the outgoing bandwidth was represen­

tative of aH the multicastsjdirect messages sent to the clients. Figure 6-3(a) shows 

the outgoing bandwidth consumption while Figure 6-3(b) shows that for incoming 

bandwidth. As visible in both cases, the bandwidth consumption increases with in­

creasing number of clients as both the number of incoming and outgoing messages 

increases. Outgoing bandwidth consumption is much higher than incoming since 

for every message received for a channel k with n subscribers, there are n outgoing 

messages. From Figure 6-3(a), it is visible that the curve st arts to fiatten when it 

reaches the peak number of players that the server can handle. This is mainly be­

cause the server cannot pro cess the large amount of incoming messages fast enough, 

hence these messages start queuing up in the message queues in the network engine 

and only a constant amount of messages are processed and sent out over the network. 

6.4 Distributed Server Experiments 

This section now presents the results obtained by experiments performed using 

our distributed server architecture. For preliminary results, we used 4 server nodes 

in our cluster each in charge of 4 of a total of 16 sub spaces. Figure 6-4(a) and 

(b) illustrates configuration 1 and 2 respectively of mapping sub spaces onto server 

nodes. We used configuration 2 for comparing CPU and bandwidth utilization results 

with those obtained from the experiments on the single server implementation. We 

also analyze and compare the message statistics for both the configurations. 
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Figure 6-4: Mapping Configurations 

6.4.1 CPU Utilization 

Figure 6-5 shows the CPU utilization at all four server nodes in the distributed 

server architecture (using mapping configuration 2) with increasing number of play­

ers in the game, From the results obtained we can see that the CPU utilization at aIl 

server nodes in the distributed architecture is much less than that for the single server 

scenario. Sinee each server node hosts only part of the game state, it reeeives and 
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processes a fraction of the total messages received by the single server. Further, the 

messages received from the other server nodes are not processed but relayed to the 

connected clients and do not contribute much to increase the processing overhead. 

Therefore, the CPU utilization at each server node in the distributed architecture is 

much lower than that for the single server. As a result, our distributed server archi-

tecture is able to scale up to 380 clients without incurring excessive CPU overhead 

at each server node. 

CPu Utilization - single Server vs. 4 Node Cluster 
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Figure 6-5: Scalability Experiments for CPU Utilization 

6.4.2 Latency 

Figure 6-6 shows the measurement of both direct and indirect (or across) la-

tency values in the distributed server scenario. As we can see the latency increases 

steadily with increasing number of players. This is again due to longer time taken by 

messages to get through the message queues at the server nodes. As observed from 
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Figure 6-6: Direct and Indirect Latency for 4 Server Node Cluster 

the graph, the indirect latency increases exponentially at 320 players, this is because 

of the large amount of time spent by the probe message in the message queues at 

the server node and the relay of the message between the servers. However, when 

compared to the latency measurements in the single server scenario (see Figure 6-7), 

the latency measured in the distributed server architecture was much lower for a 

larger number of players. The peak latency measure in the single server was 745 ms 

at a peak load of 220 players while the distributed architecture scales better with 

only 188 ms (indirect) latency with a load of 380 players. 

6.4.3 Bandwidth and Message Statistics 

Figure 6-8(a) compares the incoming bandwidth in the single server scenario 

with the average of the incoming bandwidth measured at each server node in the 

distributed server cluster (using mapping configuration 2). The incoming bandwidth 

at the single server decreases at overload as clients are unable to connect to the 
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Figure 6-7: Scalability Experiments for CPU Utilization 

already overloaded server and those which already are eonnected are not able to 

transfer messages as the server is too overloaded to process any more messages. In 

the distributed scenario however, the ineoming bandwidth at the server nodes is 

mueh less than that eompared to that in the single server scenario. Since eaeh server 

node host sub spaces, they receive fewer updates compared to the single server. Also, 

due to interest management the updates received from other server nodes is just for 

a subset of sub spaces that its client is interested in. This leads to overall reduction 

of ineoming bandwidth on average on eaeh server node. 

Figure 6-8(b) provides a similar comparison except now with the outgoing band-

width eonsumption. Again, the architecture is shown to seale well as the maximum 

bandwidth eonsumption in the cluster at 380 players is mueh less than that for single 

server scenario where the server peaks out at 220 players. Since each server node 

receives fewer state updates and disseminates the response to a much less number 
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Figure 6-8: Bandwidth Comparison 

clientsfserver nodes, the outgoing bandwidth on average for a server no de is much 

less than that for the single server scenario. 

Messages from Clients 
Server Movement U pdates State Retrieval Subscriptions 

Config 1 Config 2 Config 1 Config 2 Config 1 Config 2 
1 3345 3722 743 943 743 943 
2 4121 4873 1313 1357 1313 1357 
3 3106 4332 1065 1122 1061 1122 
4 3818 3035 633 842 633 842 

Table 6-1: StatIstIcs for messages recelved from chents. 

We now look at the statistics of the messages received at server nodes in an 

experiment involving 120 players connecting to the cluster at the same time each 

making a total of 150 movements in a random direction. The statistics are compiled 

and compared for mapping configurations 1 and 2. Table 6-1 shows the statistics for 

messages received at server nodes from their connected clients. From the table, it is 

visible that aIl movement updates sent by the clients are roughly evenly distributed 
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Messages from other Server nodes 
Server Movement U pdates State Retrieval State Info Subscription 

Config 1 Config 2 Config 1 Config 2 Config 1 Config 2 Config 1 
1 3764 3752 291 290 211 250 4 
2 6021 2583 447 210 582 349 9 
3 6943 3015 473 273 573 300 8 
4 2767 4244 237 359 182 233 4 

Table 6-2: Statistics for messages received from other server nodes. 

Type of Player Migration 
Server Local Migration Remote Migration 

Config 1 Config 2 Config 1 Config 2 
1 114 167 97 61 
2 159 288 191 76 
3 133 268 140 75 
4 118 147 72 73 

Table 6-3: Player MIgratIOn statIstIcs. 

across aIl server nodes in the cluster. State retrieval and subscription messages 

constitute approximately 12 to 15 percent of the total messages received from the 

clients while movement updates are 60 to 65 percent. In aIl instances, the number 

of subscription messages received from clients are equal to state retrieval messages, 

which is in concordance with our algorithm. 

Table 6-2 shows the statistics for messages received at each server no de from 

other server nodes in the cluster for both mapping configurations. Movement update 

messages refer to state updates sent to other server nodes which have subscribed to 

them on behalf of their clients, state retrieval messages are requests for state of sub 

spaces received from other servers, state information messages are sent in response 

to state retrieval requests and contain the requested state information. Subscription 
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requests are messages received from other server nodes requesting subscription to 

local channels. From the table, we can see that the total messages exchanged between 

server nodes is much less for configuration 2 than for configuration 1 (approximately 

30 percent reduction in overall inter server messages). In configuration 1, server 2 

and 3 receive greater number of messages than server 1 and 4 since the sub spaces 

they host have greater number of neighboring sub spaces hosted on other nodes than 

server 1 and server 4. The results also show server 2 and 3 receive a larger number 

of subscriptions than server 1 and 4 due to the same reason. For configuration 

2, variation in updates received is not as large as that for configuration 1 as total 

neighboring sub spaces at other servers remain same for all server nodes. Similarly, 

subscription requests from other server nodes is roughly the same for aH server nodes. 

Table 6-3 shows statistics for player migrations across sub spaces categorized by 

both local migration (across sub spaces hosted the same server) or remote migration 

(across sub spaces hosted on separate servers). As shown in the results, there were 

fewer remote migrations in case of configuration 2 than for configuration 4 due to the 

way the suh spaces were arranged. Since remote migrations are more complicated 

and involve a considerable overhead in switching server connections, we prefer a 

mapping configuration which avoids frequent remote migrations of players. Even 

though configuration 2 had more players migrations in total, most of them were 

local and the number of remote migrations are lower than that for configuration 1 

(which had more remote than local migrations). 

Therefore, from the above results, it is clear that the scheme in which sub spaces 

are mapped on ta server nodes affects inter server communication. We infer from 
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our results that configuration 2 is a better mapping scheme of sub spaces over the 

server cluster as it results in lower inter server communication. 

6.5 Effect of Varying Cluster Size 
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Figure 6-9: Sub Space - Server Mapping 

Based on the results presented in the previous section, we confirm that the 4 

server no de distributed architecture shows better scalability than the single server 

architecture. In this section, we go a step further by observing how the scalability of 

the system is affected as we increase the cluster size. We repeat our experiments for 

CPU and bandwidth utilization over clusters having 2/4/8 and 16 nodes and present 

our results comparing them with those for the single server architecture. For each 

cluster size, Figure 6-9 shows how the sub spaces are mapped on to the server nodes. 

We use configuration 2 (see Figure 6-4(b» as the mapping scheme for the 4 no de 

server cluster. 

Figure 6-10 shows the average CPU utilization at server nodes for increasing 

cluster sizes. From the figure we can see that the worst performer is the single server 

architecture which can only support up to 220 clients, The increase in server nodes 
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Figure 6-10: Scalability Experiments for CPU Utilization 

in a cluster, decreases the number of sub spaces hosted per server node. Therefore, 

the number of state updates each server no de is responsible to handle decreases. As 

a result, fewer state update messages are received and processed per server node 

reducing their average CPU utilization. Since messages from other server nodes are 

just relayed to connected clients rather than processed, they do not contribute to a 

considerable increase in CPU utilization. 

Figure 6-11 (a) and 6-11 (b) show the average incoming and outgoing bandwidth 

utilization at the server nodes respectively. From the results we can see that the 

incoming bandwidth utilization per node on average decreases as the cluster size 

increases. This is again because, with increasing cluster size, each server nodes 

receives fewer state updates as it hosts fewer sub spaces. Although messages received 

from the other server nodes contribute to the incoming bandwidth as well, this 

contribution does not compensate for the sharp decrease in messages received directly 
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Figure 6-11: Bandwidth Comparison 

from the client. With each server node hosting fewer sub spaces, the clients connected 

to them also decrease. AIso, a server no de only needs to send one copy of state 

update to other subscribed server nodes. Hence, there is a decrease in average 

outgoing bandwidth with increase in cluster size. We next examine the bandwidth 

consumption in detail with the help of message statistics collected for each scenario. 

We conducted experiments with 120 players connecting to the server cluster and 

performing 150 movements in random directions. The experiments were performed 

using increasing cluster sizes and the message statistics were obtained. Figure 6-12 

shows the messages received on average at each server no de in the cluster from its 

connected client. We observed that the average messages received per server node is 

halved as the cluster size is doubled. This explains the reduction in CPU consumption 

and incoming bandwidth utilization. The figure also shows that the majority of 

messages received at the server nodes are movement updates. Subscription and 
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Figure 6-12: Messages received from clients. 

state retrieval messages are equal in number and are comparatively much less than 

movement updates. 

Figure 6-13 presents the number of messages received at each server node from 

other server nodes. The number of subscription requests from other server nodes 

are too few to be shown in the graph and are therefore omitted. As observed, the 

number of movement updates received from other server nodes does not reduce as 

dramatically as in the case of the updates received from the clients. Although, 

the sub spaces hosted by each server no de decrease with increasing cluster size, it 

becomes increasingly dependent on other server nodes to receive updates occurring 

in other sub spaces. The statistics for cluster sizes 2 and 4 are similar, as in both 

cases, each server no de subscribes to at most 4 sub spaces hosted on other server 

nodes. For cluster of size 8, each server no de subscribes to either 3 or 5 sub spaces 
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Figure 6-13: Messages received from other server nodes. 

hosted by other server nodes, so the average inter server messages cornes out to be 

slightly lower than that for clusters for size 2 and 4. Similarly for cluster of size 

16, each server node subscribes to between 2 to 4 sub spaces hosted by other server 

nodes and hence the average movement update messages received by each node is 

lower. 
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CHAPTER 7 
Integration into the Distributed Object Model 

During the course of the development of the distributed server architecture, 

there was a change in the interest management and game state management model 

of Mammoth. In this chapter, we discuss these changes and describe how our dis­

tributed server can be adjusted to work with this new distributed object model. 

7.1 Introduction 

The distributed object model is a paradigm created and forwarded by Quazal 

Inc. [1] and is implemented in the Mammoth prototype to improve its scalability. 

According to the description of the model given in [25], the entire game can be 

described as a collection of objects with each object having a certain state associated 

with it. These objects are distributed over all the machines taking part in the game. 

In multiplayer games, the change in state of an object on a machine should be made 

visible to other machines. Therefore, these objects need to be duplicated over the 

network to other player machines so that they can see these changes. An object 

can either be a master or a duplica. Master of an object is its controlling instance, 

i.e., where changes to its state are made. Duplicas are copies of the master object 

which are sent to other machines and are kept up-t~date so that their state is 

consistent with that of the master. In a client/server based MMOG, clients control 

their players and therefore they host the master copy of their player object and are 
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called its duplication master. The server contains the duplicas of aIl player and other 

dynamic objects in the game. 

7.2 Publish-subscribe mechanism 

For a client to see other players in the game, it needs to have a duplica of their 

object. However, duplicating aH game objects over every station can lead to heavy 

bandwidth consumption and resource usage. Duplication Spaces, a concept developed 

by Quazal, provides greater control over which objects need to be duplicated over 

which machine, therefore providing a control over the number of duplicas for a master 

object. A duplication space is a space which contains aH duplicated objects which 

are matched with each other using a matching policy. Each object in a duplication 

space can either be a publisher, subscriber or both. Publisher objects are those which 

publish the state updates that occur on them. Subscribers, as the name suggests, 

discover these publisher objects and subscribe to them for these updates. When a 

subscriber discovers a publisher in the duplication space, a duplica of the publisher 

object is created and sent to the duplication master of the subscriber. 

Step 1 
Server 

SendDu~~ 
Client 1 / 

r---..;.... ....... ,,-- ... , ... 
P2 

Step2 
Server 

DuPlicate1 
Client 1 

-;.....-..... Client 2\ 
,-- ... , ~~ 

~ P2j 
' .... _-, 

(a) Player duplicas at server matched (b) Player 2 object duplicated at client 1. 

Figure 7-1: Single Server Duplication Mechanism 
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In the client/server based system, the duplication space at the server contains 

duplicas of all player and other dynamic objects. A player is both a publisher and 

a subscriber while all other dynamic objects (such as food items, books) are just 

publishers. A user implemented boolean match function iterates over every publisher­

subscriber pair in the duplication space at regular intervals to determine if a certain 

subscriber should discover a certain publisher. If this function returns true, a duplica 

of the publisher is discovered at the duplication master of the subscriber. This way, 

a client is able to see other objects in the game. The criteria used by the matching 

function to match a subscriber to a publisher is implementation specific and can be 

based on things such as the location of objects, the distance between them or the 

sub spaces in which they reside. Figure 7-1 illustrates the entire process, client Cl 

and C2 contain the master copy of player objects Pl and g respectively. In Step 1, 

these objects are duplicated at the duplication space of the server as Pl' and P2 '. 

The matching function at server 1 returns true for the pair PI '-P2'. Hence, P2' is 

discovered by Pl' and duplicates its copy at its duplication master, i.e., client 1. (as 

show in Step 2). 

7.3 Implementation in Mammoth 

This section discusses the single server architecture of Mammoth which is based 

on this model [7]. A client is the duplication master for its player's object whose 

duplica is created at the server when the client connects to it. Astate update made 

on the master object at the client is sent to the server where it is applied to its 

duplica. The server contains a duplication space object which maintains separate 

lists for publishers and subscribers. The server adds the duplica of player object to 
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both these lists while duplicas for other dynamic objects are added to the publisher 

list only. 

7.3.1 Matching and subscription 

The implementation of the matching function at the server can be user defined. 

At a regular refresh rate, the mat ching function is executed for every publisher­

subscriber pair obtained from the lists in the duplication space. When the matching 

function for a particular publisher-subscriber pair retums true for the first time, the 

server creates a message containing the duplica copy of the publisher object and 

sends it to the client which is the duplication master of the subscriber object. There 

is a logical channel associated with each publisher object. The server subscribes 

this client to the logical channel of the publisher object. AH state updates made to a 

publisher object are disseminated to aH clients subscribed to its logical channel. This 

way, clients can see relevant players and in-game objects and receive their updates. 

7.3.2 Invalidation 

If the match function retums false for a previously matched publisher-subscriber 

pair, the server sends an invalidation message to the duplication master of the sub­

scriber and removes its subscription from the publisher's logical channel. The dupli­

cation master, upon receiving the invalidation message removes the duplica of the 

publisher object from its duplication space. This way, a client can no more see the 

objects which are irrelevant to it and does not receive any updates for it. 

7.4 Cell based distribution 

In the single server scenario with one duplication space, aH publisher-subscriber 

matching computations are done at one machine, i.e., the server. However, game 
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sessions with a large number of players and in-game objects will require a large 

amount of computations to match aIl possible publishers and subscribers leading to 

increased resource consumption and poor scalability. Therefore, in order to reduce 

the resource consumption at the server, we need a scheme to distribute the matching 

task over many server nodes. Quazal's duplicated object model provides a solution to 

accomplish this by dividing the duplication space into smaller ceUs each containing 

a subset of the publishers and subscribers. These cells can be hosted by different 

server nodes. Matching computations can be performed between publishers and sub­

scribers in each cell, thereby distributing the computation load among the different 

server nodes. A cell is a partition of the duplication space which can group similar 

publishers and subscribers on a separate machine. 

7.4.1 Cell Match F\mction 

In order to determine whether a publisher or a subscriber belongs to a ceIl, 

we need to define a boolean CellMatch function for each cell in our system. The 

CellMatch for a given cell takes as an argument a publisher or a subscriber object and 

returns true if that object belongs to that particular cell. The CellMatch function 

and other pertinent cell information is encapsulated in a ceU object. The server 

hosting a cell is known as the duplication master for the corresponding cell object. 

A duplica of each cell object is distributed at every server node in the system. The 

CellMatch function of each cell is executed for aIl publisher and subscriber objects 

on a server node at a regular refresh rate. If the function returns true, the publisher 

or the subscriber object is duplicated at the server no de which is the duplication 

master of the cell object. Once CellMatch for aIl cells has been performed at every 
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server node, the match fun ct ion is executed for all possible publish-subscribe pairs 

at the duplication master of each cell. The definition of the CellMatch function is 

also left user defined depending on the definition of a cell, i.e., the criteria by which 

publishers and subscribers are grouped into a cell on a server node. 

7.4.2 Example 

Figure 7-2 illustrates a system consisting of two cells cell 1 and ceIl 2 hosted by 

server nodes 1 and 2 respectively. Clients 1 and 3 connect to these server nodes and 

duplicate their player objects Pl and P3 on them. The duplica of the ceIl object for 

celll is present on server 2 (denoted by CeIll') and contains the CellMatch function 

for cell 1. For this example, we consider the invocation of the CellMatch function 

for cell 1 on aIl publisher and subscriber objects on server 2. As seen in from the 

figure, the CellMatch returns true for the duplica P3 '. 

Server 1 

Client 1 1 r---,:;"",., 

pf 

Server2 

Client3 \ 

Figure 7-2: (a) Step 1 - Cell Match 

Upon a cell match, the player object P3 ' is duplicated on the duplication master 

of ceIl 1, i.e., server 1. This way, P3 ' is discovered by server 1. Figure 7-3 illustrates 

this process. 
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Figure 7-3: (b) Step 2 - Duplication to Server Node 
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Server 2 
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Figure 7-4: Step 3 - Match and Duplication to Client 

Once P3' has been duplicated on server 1, the match function is executed at 

cell 1 on this server as shown in Figure 7-4. The match function is executed for 

each publisher-subscriber pair in celll which now also includes P3 '. As shown in the 

figure, we assume that the match function returns true for Pl' and P3'. Hence, a 

copy of P3 ' is duplicated at client 1. This way, player 1 can see player objects which 

previously resided on other server nodes. 

91 



7.5 Integration of the distributed server architecture. 

Using the concept of cell based distribution of publishers and subscribers pro­

vided by Quazal, we can subdivide the resource intensive task of matching over 

several workstations allowing us to support more players in a gaming session. In 

this section we propose how we can integrate the cell based distribution scheme us­

ing the distributed server architecture that we have developed. We show how the 

server nodes in our architecture can host cells and use its existing primitives to define 

protocols of communication which can implement the cell based distribution scheme. 

We explain our implementation using concrete definitions of the three abstrac­

tions described previously, i.e., the match policy, cells and the cell match function. 

However, the implementation is not specific to these definitions and can be used with 

alternate definitions as weIl. 

7.5.1 Sub spaces 

The game world in our MMOG is subdivided into a collection of small rectan­

gular sub spaces of equal size. These sub spaces are much smaller in comparison to 

the sub spaces described in previous chapters and are larger in number for more fine 

grained interest management. We use the term tiles instead of sub spaces for them. 

Although there can be other shapes in which the game world can divided such as 

triangles [7] or hexagonal (honey comb) grids [24], we use rectangular tiles for sake 

of simplifying our discussion. 

7.5.2 Match policy 

Our match policy matches a subscriber to a publisher if the publisher is located 

on a tile which shares an edge with the tile in which the subscriber is present (i.e., 
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adjacent tile). The match function is executed periodically for all publisher and 

subscriber pairs present on each server node. As stated earlier, there can be many 

other approaches which define the match policy. For example, a distance based 

approach matches two objects if they are within a specifie distance from each other. 

7.5.3 Cells and the Cell Match function 

We define our cell as a named collection of tiles. AlI the player or in-game 

objects present on these tiles are said to belong to that particular cell. A cell has a 

hard and a soft boundary. The edges of the outermost tiles that form a cell form its 

hard boundary. When a player leaves or enters a cell when it moves across its hard 

boundary. A player inside the tiles of a cell can be interested in updates occurring 

on tiles present in other cells. Given our match policy, this is usually the case for 

outermost tiles in a cell which share an edge with tiles in other cells. These tiles (of 

other cells) are included in the soft boundary of our cell. A client's host server is the 

one which hosts the cell its player is currently in (considering the hard boundary). 

For a given cell and an object, the CellMatch function for that cell returns true 

if the object is located in either the soft or the hard boundary of the cell. Hard and 

soft boundaries for all cells can be precomputed before the game st arts and hence 

the definition of the CellMatch function is known at all server nodes before the game 

starts. The CellMatch function for each cell is present on all server nodes in the 

cluster. This function executes periodically for all objects present on the server node. 

7.6 Communication Scenarios 

We use an example to explain the main scenarios which can occur. Consider 

two cells, CeZlt and Ce1l2 hosted hy server nodes SI and S2 respectively. Clients Cl 
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and O2 are connected to server nodes 81 and 82 respectively as their players Pl and 

P2 are on the cens hosted by those nodes. 

A DUPLICATION_MESSAGE contains the copy of an object and is sent to· 

a machine where a duplica of the object needs to be created. Upon connection, a 

client sends a DUPLICATION_MESSAGE containing their player object to their 

home server. Dynamic objects are created inside the cells they are located in. The 

servers that host these cens are the duplication masters for these dynamic objects. 

Soft Boundary for Cell 1 

GameSpace / 
Cell III ( ell2 

D~ 

Po 0 

~ 
1 

Tite \ 
Hard Boundary for Cell 1 

Figure 7-5: Scenario 1 - No Cell Match 

7.6.1 Scenario 1 - No cell match 

Figure 7-5 shows a scenario when players Pl and P2 are moving around in their 

respective cells. The match function at each server returns false as there is no match 

among the players present on each server. The CellMatch function for each cell on 

an nodes also returns false. 

94 



Game Space 

Cell ell2 

P? 

P~O 0 

CellMatch(Cell l, P2} = true ! 

Figure 7-6: Scenario 2 - Cell Match 

7.6.2 Scenario 2 - Cell match 

Figure 7-6 shows player P2 moving into the soft boundary of Cellt. Now, 

when the CellMatch function for this cell executes on 82 with P2 as an argu­

ment, it will return true. At this point, 82 determines that 81 hosts Cellt (using 

remoteChannelMap). It then sends a DUPLICATION_MESSAGE containing the 

object for P2 to 81 and adds 8 1 to the subscribers list for P2 . 8 1, upon receipt of 

this message, creates a duplica of P2 and adds it to the subscribers and publishers 

list. It also creates a logical remote channel for P2 and adds it to its list of available 

channels. 

If there is astate update made to P2 at 82 , it will be forwarded to all the nodes 

subscribed to P2 (including 81). When 81 receives this state update, it applies it to 

P2 's duplica and at the same time disseminates it to all nodes subscribed to P2 • This 

way, P2 is discovered at 81. The same procedure occurs in the opposite direction for 

8 1 to discover Pl . If P2 moves out of the soft boundary of Cellt, the CellMatch 
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function at 82 will return false and an invalidation message will be sent to 8 1 , 8 1 

will also be removed as one of the subscribers of the local channel for P2 at 82 . 

Game Space 

Cell ~e1l2 

P2 

04" ru 
IVI, 'llll" 

Figure 7-7: Scenario 3 - Match 

7.6.3 Scenario 3 - Match Policy 

Now that P2 is duplicated at 8 1 , it will be included in the matching operations 

when the match function is next executed for aIl publisher-subscriber pairs at 8 1. 

From Figure 7-7, we can see that there is a match between Pl and P2 on 81, since 

they are in adjacent tiles. The match function returns true and a duplica of P2 is 

send to the Cl (the duplication master of Pl) and Cl is also added to the subscribers 

list of P2 's logical channel. AIl updates that 81 receives from 82 for P2 are sent to 

Cl as it is subscribed to P2. The same occurs to C2 whose player P2 matches with 

Plon server 8 2 and hence, is subscribed to P2 . 

7.6.4 Scenario 4 - Player Migration 

Figure 7-8 shows the case where P2 actually moves across the hard boundary 

into CeIl l . At this point, g needs to change its home server to 81 . 82 detects this 
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Figure 7-8: Scenario 4 - Player Migration 

transition and sends a redirection request to P2 containing the address of 81 and 

disconnects it. The migration process from now on can be divided into two phases. 

Phase 1 - Invalidation 

82 then sends an invalidation notification to aH nodes subscribed to P2 . This 

basically notifies aH subscribers that P2 is no longer available at 82 . 82 then closes 

the logical channel for P2 and removes its duplica. 

Clients upon receiving the invalidation notification remove the duplica of P2. 

When SI receives the invalidation notification from 82 , it forwards it to aH nodes 

subscribed to P2 at 81 . It also removes the duplica of P2 and closes its logical channel. 

Phase 2 - Transition 

Upon receipt of the redirection request, C2 connects to 81 and duplicates P2 on 

it (by sending a DUPLICATE_MESSAGE to 81). 81 adds P2 to its publisher and 

subscriber lists and creates a locallogical channel for it. AH the required subscriptions 

are made when the match policy and the CellMatch function execute the next time. 

In our case, the next time the match policy executes, it matches Pl with P2 • A 
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duplica of P2 is created at Cl and it receives aIl state updates on P2 directly from 

St. Furthermore, S2 becomes a subscriber of P2 because the tile it resides in belongs 

to the soft boundary of the ceIl maintained by S2' 

7.6.5 Player Disconnection 

A player at any point may decide to leave the game. In this case, the client sends 

an invalidation message for its player object to its home server and disconnects. The 

server removes this object from its list of publishers and forwards the invalidation 

message to aIl the subscribers of this object. It then removes the local channel for 

this object. 

7.7 Dynamic Objects 

Dynamic objects (such as food items, flowers) can also be picked up by players 

and migrated across servers. When an object is picked up, it is removed from the 

server no de and is associated with the player object (e.g., added to the player's 

inventory). Upon removal, this server no de sends an invalidation message to aIl 

nodes subscribed to that object. This way, the object is no more visible to any other 

player in the game. When the player drops this object on a ceIl, a new instance 

of it is created at the server responsible for this cell. This server becomes the new 

duplication master of this object. 

7.8 Refresh Interval 

The refresh interval for the execution of the match policy function and the 

CellMatch function at server nodes decides how fast a player discovers objects within 

the game. It is imperative that this refresh interval is set to an optimum value. A 
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large refresh interval can lead to late discovery of objects while a very small refresh 

interval can lead to unnecessary resource consumption at the server nodes. 

7.9 FormaI Aigorithms 

This section gives the formaI algorithms for the communication protocols and the 

functions discussed above. Aigorithm 4 introduces the data structures and presents 

the steps involved when the CellMatch fun ct ion is executed at a server node. AIg(}­

rithm 5 presents the behavior at aIl server nodes upon receipt of the different types 

of messages. Aigorithm 6 presents the sequence of operations performed at the client 

and the server during player migration. 
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Algorithm 4 Cell Match refresh algorithm 
1: Data Structures: 
2: duplicated : Hash table maps objects to the machine they are replicated t~. 
3: HostMap : Hash table maps cells to their host machines. 
4: sub: Linked List of subscriber objects on a server node. 
5: pub: Linked List of publisher objects on a server node. 
6: channelList : Hash table which maps object to its channel. 
7: cellTotal : List of all cells in the game. 
8: subscribers(Si, Chk) : List of subscribers for Chk on Si 

9: function boolean CellMatch(Cellk, obj) 
10: j jchecks if object obj is in weak boundary of Cellk 
Il: end function 

12: function refreshCell 
13: for aIl obj in pub and sub do 
14: for all Cellk in cellTotal do 
15: if (obj, Sj) r:J. duplicated then 
16: if CellMatch(Cellk, obj) then 
17: Sj = HostMap.get(Cellk) 
18: Send DUPLICATION~ESSAGE(obj) to Sj 
19: chobj = channelList.get( obj) 
20: Sj to subscribers(Si, chobj )) 
21: Create entry (obj, Sj) in duplicated 
22: end if 
23: else 
24: if !CellMatch(Cellk, obj) then 
25: invalidate(obj, Cellk, St) 
26: end if 
27: end if 
28: end for 
29: end for 
30: end function 

31: procedure invalidate(obj, Cellk, St) 
32: Send INVALIDATE_MESSAGE(obj) to St 
33: chobj = channelList.get( obj) 
34: Remove St from subscribers(Si, Chobj); 
35: Remove entry (obj, St) from duplicated 
36: end procedure 

100 



Algorithm 5 Message processing at Server no de 
1: Additional Data Structures: 
2: session: Hash table maps objects identifiers to object instances. 
3: At Server node Si : 

4: Upon receiving DUPLICATE~ESSAGE from Sj for obj 
5: Create obj on Sj. 
6: Add obj to pub and sub. 
7: Create channel chobj for obj and add to channelList. 
8: Add (objID, obj) to session 

9: Upon receiving STATE_UPDATE(objID, updateInfo) from Sj or Ct 
10: Retrieve obj for objID from session. 
11: Apply updatelnfo on obj. 
12: chobj = channelList.get( obj) 
13: for aH ServersjClients SCi in subscribers(Si,chobj ) do 
14: Forward STATE_UPDATE(objID, updatelnfo) to SCi. 
15: end for 

16: Upon receiving INVALIDATE~ESSAGE(objID) from Sj 
17: Retrieve obj for objID from session. 
18: Remove obj from pub and sub. 
19: chobj = channelList.get(obj). 
20: for aH ServersjClients SCi in subscribers(Si, chobj ) do 
21: Send INVALIDATE~ESSAGE(objID) to SCi. 
22: end for 
23: Remove chobj from channelList. 
24: Remove (objID, obj) from session. 

25: Upon receiving INVALIDATE~ESSAGE(objID) from Cl for obj 
26: Retrieve obj for objID from session. 
27: Remove obj from pub 
28: chobj = channelList.get( obj) 
29: for aH ServersjClients SCi in subscribers(Si, chobj ) do 
30: Send INVALIDATE~ESSAGE(objID) to SCi 
31: end for 
32: Remove channel chobj from channelList 
33: Remove aIl entries for obj in duplicated 
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Algorithm 6 Player Migration 
1: Migration of player Pk of client Gk 

2: At Server node Si : 

3: When Pk from GeUi hosted by Si moves to GeUj hosted by Sj 
4: Send REDIRECTION(Sj) to Gk 

5: Disconnect Gk 
6: Remove Pk from pub 
7: chPk = channelList.get(Pk ) 

8: for aH ServersjClients SGi in subscribers(Si, chpk ) do 
9: Send INVALIDATE_MESSAGE(objID) to SGi 

10: end for 
11: Remove channel chPk from channelList 
12: Remove aH entries for obj in duplicated 

13: At Client node Gk : 

14: Upon receipt of REDIRECTION(Sj) from Si 
15: Connect to Sj 
16: Send DUPLICATION_MESSAGE(Pk ) to Sj 
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7.10 Applicability of the distributed server architecture 

We propose that our distributed server architecture (described in Chapter 4) 

can easily integrate with this scheme due to the availability of primitives and a 

distributed infrastructure to support this form of communication. Our architecture 

provides a cluster of server nodes with complete inter server communication. The 

Rendezvous server can be reused to redirect a client to its home server based on 

which cell its player is currently located in. We already have the concept of logical 

channels and associated subscription lists which can be reused here. Except, while 

the previous implementation mapped a sub space to a logical channel, we map a 

publisher object to a logical channel. Multicast and direct message capability can 

also be reused here to send state updates or duplication/invalidation messages. 

7.11 Performance Discussion 

Since aIl the game objects are distributed across a group of server nodes, the 

computation overhead due to the execution of the match function at each server 

node will decrease. Each server node can therefore accommodate greater number of 

players without overloading, thereby increasing the overall scalability of the system. 

The CellMatch function executes in linear time since it sim ply iterates through aIl the 

dynamic objects on a server. Therefore, it should not induce too much overhead at 

a server node. The latency experienced by clients during game play is not expected 

to be high for updates which occur on server other than their home server (also 

known as indirect latency) as the server nodes are located on a Local Area Network 

with sufficiently large bandwidth. AIso, in the previous chapter, we had seen that 

indirect latency remained low even for a large of number of participating players. 
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Finally, with the fine grained interest management techniques used in this approach, 

there will be lesser number of messages transferred between servers, reducing the 

inter-server communication. 

7.12 Comparison with the previous Mammoth Architecture 

Comparing the distributed object model with the previous interest management 

scheme for mammoth, we come across its various advantages and a few shortcomings 

which are discussed as below : 

1. In the distributed object model, subscriptions are made directly to a publisher 

(player or dynamic object) unlike the previous scheme where subscriptions 

were made to sub spaces. Combined with effective matching algorithms, this 

scheme provides a finer grained interest management which substantially limits 

the number of updates received at the clients to the most pertinent ones. As a 

result, fewer messages are transferred among server nodes and between server 

and client nodes leading to reduced bandwidth consumption. 

2. In our previous scheme, the responsibility for subscribingjunsubscribing to 

logical channels was implemented at the client machines inducing on them an 

additional overhead. It also exposed the subscription mechanism to players 

in the game causing a security concern. In the distributed object model, the 

server nodes are responsible for subscribingjunsubscribing their clients to the 

appropriate logical channels. Therefore, the clients are able to operate without 

the knowledge of the underlying subscription mechanism and at the same time 

receive only the pertinent state updates from the server nodes. 
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3. In the earlier scheme, the clients had to retrieve the collective state of all the 

objects in the sub space they were interested in leading to an exchange of large­

sized state update messages causing an increased bandwidth consumption. In 

the distributed object model, state updates are made at playerjdynamic ob­

ject level. This leads to smaller and fewer state updates thereby lowering the 

bandwidth consumption. 

4. Managing subscriptions at the playerjdynamic object level in an MMOG with 

thousands of participating players and in-game objects can lead to a large 

number of logical channels increasing the complexity of the task for the servers 

to manage these subscriptions. Furt hur , a game scenario where there are a 

large number of players moving rapidly around the game space can lead to 

hefty subscribing and unsubscribing causing an increased overhead at the server 

nodes. 

105 



8.1 Conclusion 

CHAPTER8 
Conclusion and Future Work 

We introduce a distributed server architecture to improve the scalability of Mas-

sively Multiplayer Online Games. In this architecture, a group of machines called 

server nodes form a cluster. The game space is divided into sm aller sub spaces and 

each server node hosts one or more of these sub spaces. These nodes are responsible 

to maintain the state of these sub spaces. Clients connect to their home server, ie., 

the server no de which hosts the sub space where their player currently resides and 

transfer state updates directly to it. Clients also switch home servers when their 

player moves across sub spaces in the game. A distributed publishjsubscribe system 

allows clients to receive updates from sub spaces hosted at servers other than iis 

home server. 

The scalability of the architecture is evaluated using its implementation in the 

network engine of the Mammoth Prototype under real network conditions. The CPU 

utilization, incomingj outgoing bandwidth at each server node along with latency 

experienced during game play is measured with increasing number of players. The 

performance is compared against the existing Mammoth network engine which is 

based on the single server architecture. The results we obtain confirm that the 

distributed server architecture is able to scale to a greater number of players than the 

single server architecture without CPU or bandwidth overload at the server nodes 
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with acceptable latency. We also observer that the scalability of the architecture 

improves by increasing the number of server nodes in the cluster. 

8.2 Future Work 

This section outlines the work we propose to perform in the future on the dis-

tributed server architecture 

8.2.1 Integration of Distributed Server Architecture in the Distributed 
Object Model 

In this previous chapter, we introduced the distributed object model and out-

lined an scheme to integrate it with our distributed server architecture to improve 

its scalability. However, due to time limitations, we were not able to implement 

our approach in the Mammoth MMOG. Therefore, we propose to adapt our existing 

implementation of Mammoth so that it can be easily integrated with our distributed 

server architecture and also implement the cell based distribution scheme described 

in Section 7.4. We also intend to evaluate the scalability of this system and compare 

it with the existing single server implementation using different definitions of the 

CellMatch function and the matching policy. 

8.2.2 Load Balancing and Dynamic Sub Space Management 

Currently, the system supports only static partitioning of sub spaces over the 

server nodes. However, this scheme cannot handle hot spot situations where players 

Rock to a specifie sub space due to an in-game activity overloading the server hosting 

this sub space. Therefore, we propose a dynamic sub space migration mechanism 

which can re-partition sub spaces into sm aller sub spaces during overload and migrate 

them to other lightly loaded server nodes. The sub space migration protocol takes 

care of the migration of sub spaces to another server no de and the redirection of the 
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clients to this new node. The cluster administration server (CAS), being a central 

administrative entity can monitor the load at each server node during game play and 

trigger the sub space migration protocol when the load at a particular node exceeds 

a given threshold. 

Load balancing algorithms determine the efficient way to reallocate sub spaces 

over the server nodes during migration. This should be done in such a way that sub 

spaces that are close to each other remain on the same server leading to lower inter­

server communication. AIso, the maximalload per server node should be minimised. 

We intend to experiment with different load balancing algorithms using our sub 

space migration protocol and determine which one perform best, i.e., provide the 

least maximum server load during game play. 

8.2.3 Fault Tolerance and Backup 

We propose to make our system fault-tolerant by replicating the game state at 

server nodes to backup nodes. These backup nodes can either be other server nodes 

in the cluster or additional nodes kept specifically for this purpose. The server nodes 

can actively forward the state updates they receive to these replicas to keep them 

consistent with the actual game state. The cluster administration server (CAS) can 

keep track of the availability of the server nodes and the location of their replicas. 

During the event of failure, the CAS delegate the responsibility of the failed server 

no de to its replica and redirect an the clients to it. 

8.2.4 Extension to Peer-to-Peer architecture 

The distributed server architecture can be extended to a peer-to-peer architec­

ture by removing the concept of server nodes and distributing sub spaces over special 
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client nodes called coordinators. Coordinators of a particular group of sub spaces can 

form self organizing multicast groups with other clients interested in those sub spaces 

to disseminate updates. Our distributed publishjsubscribe system can be extended 

to allow clients in a multicast group to subscribe to updates that occur in another 

multicast group. 

8.2.5 Wide Area Network (WAN) Experiments 

In order to obtain realistic network delays and bandwidth consumption, we 

intend to redo the experiments mentioned in Chapter 6 in a WAN setting. In this 

scenario, the server nodes will form a cluster via Local Area network with clients 

connecting from geographically distant locations. Although, the Local Area Network 

(LAN) settings used in the current experimental methodology serves the purpose of 

comparing the scalability of our system against the single server architecture, having 

our clients distributed over a WAN can give us a better measure of true latency 

experienced during game play which can help us optimize our system architecture 

for better performance. 
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