

Debug Instrumentations and Fault-Tolerant

Techniques for On-Chip Networks

Mohammadhossein Neishabouri

(B.Sc. 2005, M.Sc. 2007)

Department of Electrical and Computer Engineering

McGill University, Montréal

August 2013

A thesis submitted to the faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Doctorate of Philosophy

© 2013 Mohammadhossein Neishabouri

 ii

I dedicate this thesis to my parent, Khalil Neishabouri

and Farah Bostanifard, for their endless love and

limitless support. With all their encouragements, I

always feel invincible in my life.

“Imagination is more important than knowledge. Knowledge is

limited. Imagination encircles the world.” Albert Einstein

Abstract

 iii

 Abstract

The continuing advances in processing technology result in significant

decreases in the feature size of integrated circuits. This aggressive transistor

scaling enables integration of a large set of functionality inside a single Integrated

Circuit (IC). As processing technology scales down, permanent and transient

faults have become more frequent in new ICs. Consequently, along with

opportunities to integrate a large number of processing elements, fault-tolerant

architecture and enhanced debug infrastructure must be incorporated in new

products. Network on Chips (NoCs) are poised to address the demands for high

communication bandwidth among cores. A comprehensive study on fault-tolerant

NoC routers and on-chip debug infrastructure are carried out in this thesis. This

thesis presents fault-tolerant NoC router microarchitectures which can be can be

incorporated in future hierarchical topology inside a chip. Armed with a new flow

control mechanism, as well as an enhanced Virtual Channel (VC) regulator, the

proposed router can mitigate the effect of both transient and permanent errors.

The proposed router is the first study enabling inter-channel buffer sharing.

In the realm of on-chip design instrumentation (post-silicon debugging), a tool

that builds a synthesizable hierarchical trigger unit is presented. The proposed

approach enables silicon debugging in a time-multiplexed fashion by producing

several hierarchical trigger modules. These modules can be incorporated inside

the limited silicon area. Compared to previous mechanisms, the detection of

overlapped failure patterns can be carried out by 60-65 % reduction in hardware

overhead. This thesis also proposes a new assertion-checker clustering algorithm

along with several mechanisms to incorporate them into the on-chip debug

infrastructure. The proposed debug infrastructure leads to better results in terms

of the energy consumption and design coverage compared to previous work.

Abstract

 iv

 Résumé

Les progrès continus de la technologie de traitement ont permis de diminuer de façon

significative la taille des circuits intégrés. Cette réduction d’échelle rigoureuse des

transistors permet l'intégration d'un grand nombre de fonctionnalités dans un seul circuit

intégré. Au fur et à mesure que la technologie de traitement réduit la taille des

composants, des défaillance permanentes et transitoires sont de plus en plus fréquentes

dans les nouveaux circuits intégrés. Par conséquent, en plus des possibilités d'intégrer un

grand nombre d'éléments de traitement, l'architecture à tolérance de défaillance et

l'infrastructure de débogage améliorée doivent être incorporées dans de nouveaux

produits. Les réseaux sur puce (Network on Chips ou NoC) sont prêts à répondre aux

demandes de bande passante de communication élevée au sein du noyau. Une étude

exhaustive sur les routeurs NoC à tolérance de défaillance et les infrastructures de

débogage sur puce est menée dans cette thèse. En effet, la présente thèse porte sur les

microarchitectures des routeurs NoC à tolérance de défaillance qui peuvent être

incorporées dans la topologie hiérarchique future à l'intérieur d'une puce. Muni d'un

nouveau mécanisme de contrôle de flux, ainsi que d'un régulateur de canal virtuel

amélioré (VC), le routeur proposé peut atténuer l'effet des erreurs transitoires et

permanentes. Le routeur proposé est la première étude permettant le partage de la

mémoire tampon intercanal.

Dans le domaine de l'instrumentation de la conception sur puce (post-fabrication

débogage), un outil qui construit une unité de déclenchement hiérarchique synthétisable

est présenté. L'approche proposée permet le débogage de silicium d’une façon

multiplexée dans le temps en produisant plusieurs modules de déclenchement

hiérarchiques. Ces modules peuvent être incorporés dans la surface limitée de silicium.

Comparativement aux dispositifs antérieurs, la détection de défaillances récurrentes se

chevauchant peut être effectuée par la réduction de 60 à 65 % de la surcharge système

du matériel. Cette thèse propose également un nouvel algorithme de groupement pour la

vérification de l’assertion, ainsi que plusieurs mécanismes pour les intégrer dans

l'infrastructure de débogage sur puce. L'infrastructure de débogage proposée mène à de

meilleurs résultats en termes de consommation d'énergie et de couverture de la

conception par rapport aux travaux antérieurs.

Acknowledgements

 v

 Acknowledgements

This research is conducted in the Electrical and Computer Engineering

department at McGill University.

I would like to express my deepest gratitude and respect towards my

supervisor, Professor Zeljko Zilic. His excellent guidance, timely engorgement

and endless patient enable me to finish this work.

Special thanks must go to thesis committee, Dr. Dennis Giannacopoulos and

Warren J. Gross for their direction and invaluable comments.

I deeply thank my parents, Khalil and Farah, for their unconditional trust and all

their supports. It was their love that raised me up again when I got weary.

I would like to thanks Mr. Geroge Gal for helping in translating the abstract in

French.

Table of Contents

 vi

 Table of Contents

1. Chapter 1: Introduction .. 20

1.1. Related Work ... 23

1.1.1. Flow control .. 23

1.1.1. Hierarchical Network on Chip ... 25

1.1.2. On-chip instrumentation .. 27

1.2. Thesis organization .. 29

1.3. Self-citation and claim of originaility ... 30

2. Chapter 2: Reliability Aware NoC Router Architecture Using Input Channel

BufferSharing ... 32

2.1. Introduction .. 32

2.2. Preliminaries .. 33

2.2.1. Background and Related Work ... 33

2.1.1. Head of Line Blocking (HOL) .. 35

2.1.2. Generic Virtual Channel NoC Router .. 35

2.1.3. Defenitions ... 37

2.1.4. Proposed buffer scharing scheme .. 38

2.2. Proposed RAVC Router Architecture ... 39

2.2.1. Input Channel ... 39

2.2.2. RAVC’s VC Allocation .. 44

2.2.3. RAVC’s Switching Unit ... 45

2.3. Experimental Results ... 46

2.3.1. Hardware Overhead ... 51

2.3.2. RAVC versus other Related Work .. 51

3. Chapter 3: A Deadlock-free NoC Router in Hierarchical Architectures 54

Table of Contents

 vii

3.1. Introduction .. 54

3.1.1. Contribution .. 55

3.1.2. Chapter organization .. 56

3.1. Background .. 56

3.1.1. Conventional NoC Router Augmented with a CRC Unit 56

3.1.2. System Level Fault Model ... 57

3.1.2.1. Inter-router Errors .. 57

3.1.2.2. Intra-router Errors .. 57

3.1.3. Hierarchical Topologies .. 58

3.2. Deadlock-free Routing in Hierarchical Topology 59

3.2.1. Fault-tolerant Deadlock-free Routing .. 62

3.2.2. Fault-tolerant Hierarchical Deadlock-free Routing 63

3.2.3. Crossing Subnet Boundary Nodes.. 67

3.2.4. Proposed Deadlock Avoidance Scheme ... 69

3.2.5. No Deadlock with the Proposed Scheme Proof .. 70

3.2.6. Proposed Router Architecture .. 73

3.2.7. VC Status Table ... 74

3.2.8. History-Aware Free slot Tracker (HAFT)... 75

3.2.9. Packet-Fragmentor Unit ... 76

3.2.10. Flow-Control Unit .. 77

3.3. Experimental Results.. 79

3.3.1. Synthetic Traffic .. 81

3.3.2. Application Specific Traffic ... 90

3.3.3. Hardware Overhead ... 92

3.3.4. Comparisons with Related work ... 93

3.4. Conclusion and Future work ... 94

4. An Infrastructure for Debug Using Clusters of Assertion-Checkers96

Table of Contents

 viii

4.1. Introduction .. 96

4.1.1. Contributions .. 99

4.1.2. Chapter Organizations ... 99

4.2. Background and Preliminaries .. 99

4.2.1. Assertions .. 102

4.2.2. Checker Generator ... 104

4.2.3. Netlist Graph .. 105

4.2.4. Definitions .. 105

4.3. Proposed Assertion-Checker Clustering Algorithm 108

4.4. On Obtaining Clusters Coverage and Using Clustering Algorithm 115

4.5. Assertion-checkers Integration in a CUD .. 117

4.5.1. Cluster Integration of in a Scan-based Infrastructure............................... 118

4.5.2. Clusters Integration in a Real-time Trace-based Debug 119

4.5.3. Weighted Round Robin (WRR) Arbitration Mechanism 121

4.5.4. Clusters Integration in a Shared Debug Unit (SDU) 122

4.6. Experimental Results ... 124

4.6.1. Case Studies .. 124

4.6.2. AMBA 3 AXI bus Protocol Checkers: .. 125

4.6.3. PCI bus Protocol Checkers ... 126

4.6.4. SDRAM Controller .. 126

4.6.5. Clusters Integration Cost Analysis .. 128

4.7. Comparisions with the Related work .. 137

4.8. Conclusions ... 140

5. Hierarchical Trigger Generation for Post-silicon Debugging............................... 141

5.1. Introduction .. 141

5.1.1. Contributions .. 142

5.1.2. Chapter organization .. 143

Table of Contents

 ix

5.2. Preliminaries and Background .. 143

5.2.1. Definitions .. 143

5.3. Implementation of Parallel and Hierarchical Graph Schemes 145

5.4. Parallel Hierarchical Finite State Machine (PHFSM) 147

5.5. Generating a Trigger Unit from a Set of Checkers 151

5.5.1. Post-Silicon Trigger Generator ... 151

5.5.2. Overlapped Failure Patterns Detection ... 153

5.5.3. A Complete Example .. 154

5.6. Using Stack Overflow for Bug Diagnosis .. 157

5.6.1. Incorporation of Trigger Unit in ELA .. 157

5.6.2. ELA Integration in SoCs ... 159

5.7. Experimental Results.. 160

5.7.1. PCI bus Protocol Checkers... 160

5.7.2. SDRAM Controller Checkers .. 162

5.7.3. AMBA 3 AXI bus protocol checkers .. 163

5.8. Conclusions .. 167

6. Conclusion and future work ..168

5.6. Future work .. 169

7. Biography ..172

List of Figures

 x

 List of Figures

Figure ‎2-1: Conventional VC Router __________________________________37

Figure ‎2-2: Dynamic Input Ports Buffer Sharing _________________________39

Figure ‎2-3: Input Channel Structure __________________________________41

Figure ‎2-4: RAVC Input Channel Data-Path ____________________________41

Figure ‎2-5: RAVC Router Stages ____________________________________43

Figure ‎2-6: Proposed VC Allocator ___________________________________45

Figure ‎2-7: RAVC Modified Switch Allocation Unit _______________________46

Figure ‎2-8: Simulation Results ______________________________________49

Figure ‎2-9: Packet Completion Probability in the Presence of Router Failures _49

Figure ‎2-10: RAVC vs. Conventional Router Average Latency Considering router

failures under Uniform Traffic Patterns ________________________________50

Figure ‎2-11: RAVC vs. Conventional Router Average Latency Considering router

failures with Transpose Traffic Patterns _______________________________50

Figure ‎2-12: Throughput: RAVC versus Conventional (generic) Router _______51

Figure ‎3-1: A generic NoC Router Architecture Augmented with a CRC unit ___56

Figure ‎3-2: A Hierarchical NoC Topology ______________________________58

Figure ‎3-3: a) Hierarchical Topology, b) Subnet1 Topology _______________61

Figure ‎3-4: a) Subnet1 Topology Graph (TG), b) Channel Dependency Graph

(CDG) Obtained from Aubnet1 Assuming no VCs _______________________61

Figure ‎3-5: a) Channel Dependency Graph for Odd-even Routing Algorithm, b)

Fault Tolerant Property in Odd-even _________________________________63

Figure ‎3-6: Hierarchical Routing (Combination of Local and Global Routing) __64

Figure ‎3-7: (a) Safe node Detection in Odd-even Routing using a Termination

Edge, (b) a Hierarchical NoCs with three Subnets, (c) the CDG of (b) ________66

Figure ‎3-8: Safe Boundary Nodes Detection Algorithm ___________________67

Figure ‎3-9: Changes Boundary Nodes status due to an Incorporation of a Fault-

tolerant Routing Algorithm ___68

Figure ‎3-10: Network Reconfiguration after Failures _____________________70

Figure ‎3-11: The Proposed Input Channel _____________________________74

List of Figures

 xi

Figure ‎3-12: History-Aware Free slot Tracker (HAFT) and VC status table ____ 76

Figure ‎3-13: State diagram of the Fragmentation Flow Control Unit _________ 77

Figure ‎3-14: a) Fault-tolerant Flow Control in the case of a Failure in Router e, b)

Sequence diagram of the proposed fault tolerant flow control ______________ 79

Figure ‎3-15: a) NIRGAM Simulation Results, b) Experimental Topology______ 81

Figure ‎3-16: Evaluation of NISHA under Uniform Intra Subnet Traffic ________ 82

Figure ‎3-17: Evaluation of NISHA under Transpose Intra Subnet Traffic _____ 82

Figure ‎3-18: Evaluation of NISHA under Uniform Intra subnet and Extra Subnet

Traffic___ 84

Figure ‎3-19: Evaluation of NISHA under Transpose intra subnet traffic and the

presence of Extra Subnet load (FIR =0.2) _____________________________ 84

Figure ‎3-20: Average Latency in the Presence of Router Failures __________ 85

Figure ‎3-21: Effects of Link Failures on Average Latency: up*/down* versus

LBDR Routing __ 86

Figure ‎3-22: Packet-drop in NISHA: up*/down* versus LBDR Routing _______ 86

Figure ‎3-23: Packet Completion Probability: NISHA adopted up*/down* versus

LBDR routing ___ 87

Figure ‎3-24: Energy Consumption Non-Faulty Condition _________________ 88

Figure ‎3-25: Energy Consumption in Generic Router in case of Failures _____ 88

Figure ‎3-26: Energy Consumption in NISHA in case of failures ____________ 89

Figure ‎3-27: (A) Experimental Platform, (B) Proposed Fault-tolerant Flow control

 ___ 89

Figure ‎3-28: Comparison Results using Image Comparer Software _________ 91

Figure ‎3-29: JPEG Encoder Application in the a Fault-prune Environment ____ 92

Figure ‎4-1: Incorporation of the Proposed Infrastructure inside ARM

CoreSight ‎[120] __ 100

Figure ‎4-2: a) generated automat from the SVA assertion A1 in failure mode, b)

generated automat from the SVA assertion A1 in acceptance mode, c) generated

automat from the SVA assertion A2 in failure mode, d) part of the hardware

module associated to A2 obtained by the checker generator _____________ 103

List of Figures

 xii

Figure ‎4-3: Creating a graph from a given circuit under debug; a) gate-level

netlist, b) generated graph, c) adjacency list __________________________105

Figure ‎4-4: a) Fan-in cone graphs of primary outputs, b) Weighted fan-in cone

graph of primary outputs __106

Figure ‎4-5: Assertion-checkers clustering ____________________________109

Figure ‎4-6: Weighted Fan-in cone graph of primary outputs ______________110

Figure ‎4-7: Fan-in cone set of assertion-checkers and their maximum coverage

 ___111

Figure ‎4-8: Cluster Generator Algorithms _____________________________112

Figure ‎4-9: Merge_Update Algorithms _______________________________112

Figure ‎4-10: Cluster Generation on the Sample CM (Checker Map) graph ___113

Figure ‎4-11: Cluster Generation on the Sample CM _____________________114

Figure ‎4-12: Typical SoC Floor-plan Containing Reconfigurable Fabrics _____116

Figure ‎4-13: “Cluster_Coverage” Algorithm: Compute the maximum Coverage of

a Cluster __117

Figure ‎4-14: Integration of the assertion-checker clusters inside a scan-based

debug infrastructure ___119

Figure ‎4-15: a) Integration of the assertion-checker clusters into a real-time trace-

based debug infrastructure, b) Weighted Round Robin (WRR) Arbiter ______122

Figure ‎4-16: Shared Debug Unit (SDU): a debug environment suited for SoCs 123

Figure ‎4-17: Integration of SDU into a SoC based platform _______________124

Figure ‎4-18: a) Memory Controller, b) SDRAM structure _________________127

Figure ‎4-19: Different arrangements for assertion-checkers related to AXI bus

protocol checkers ___129

Figure ‎4-20: Different arrangements for assertion-checkers related to SDRAM

Controller ___129

Figure ‎4-21: Maximum Design Coverage of a Device complaint with AXI bus

protocol checkers in Different Configurations __________________________131

Figure ‎4-22: Maximum Design Coverage of a SDRAM Controller in Different

Configurations ___133

List of Figures

 xiii

Figure ‎4-23: Energy consumption of clustering scheme versus non-clustering

mechanism: AXI bus protocol checkers ______________________________ 134

Figure ‎4-24: Energy consumption of clustering scheme versus non-clustering

mechanism: SDRAM controller ____________________________________ 134

Figure ‎4-25: Area overhead of clustering scheme versus non-clustering

mechanism in in AXI bus protocol checkers, __________________________ 135

Figure ‎4-26: Area overhead of clustering scheme versus non-clustering

mechanism in SDRAM Controller __________________________________ 135

Figure ‎4-27: Energy consumption of clustering scheme versus non-clustering

mechanism: PCI bus protocol checkers______________________________ 136

Figure ‎4-28: Area overhead of clustering scheme versus non-clustering

mechanism: PCI bus protocol checkers______________________________ 137

Figure ‎5-1: Parallel and Hierarchical Graph notations ___________________ 144

Figure ‎5-2: Generating HGS from the FA that represent an assertion in an

acceptance and failure mode ______________________________________ 146

Figure ‎5-3: a) Automaton for the assertion (A1), b) Automaton for the assertion

(A2), c) HGS corresponding to (A1), d) HGS corresponding to (A2) ________ 147

Figure ‎5-4: Parallel Hierarchical Finite State Machine (PHFSM) ___________ 148

Figure ‎5-5: a) Parallel and Recursive calls (reactivation of the precondition), b)

the PHGS related to Z0 HGS related to “A1” explained in Section ‎4.2.1 _____ 150

Figure ‎5-6: Trigger generation steps ________________________________ 151

Figure ‎5-7: Assertion threading mechanism __________________________ 153

Figure ‎5-8: Generating a central PHFSM from a set of HGS representing

checkers ___ 154

Figure ‎5-9: Pinpointing overlapped failure patterns _____________________ 156

Figure ‎5-10: Proposed root cause analysis ___________________________ 156

Figure ‎5-11: Failure diagnosis using the stack overflow signal ____________ 157

Figure ‎5-12: Proposed embedded logic analyzer (ELA) _________________ 158

Figure ‎5-13: Post-silicon debug: transferring generated trace-signals off-chip for

analysis in k debug sessions ______________________________________ 159

List of Figures

 xiv

Figure ‎5-14: Hardware overhead of monitoring circuit consisting of checkers, a)

PCI bus, __162

Figure ‎5-15: Hardware overhead of monitoring circuit consisting of checkers

SDRAM___163

Figure ‎5-16: Frequency of the monitoring circuit with different number of threads

 ___165

Figure ‎5-17: Hardware overhead of monitoring circuit consisting of checkers for

AXI master interface ___165

List of Figures

 xv

 List of Table

Table ‎2-1. Features Provided by RAVC versus Other Related Work 53

Table ‎3.1: Average Energy Consumption Considering Router Failures 92

Table ‎3.2. Proposed Router (NISHA) versus Other Related work 95

Table ‎4.1. AXI Configuration Settings ... 126

Table ‎4.2: Implementation Results: Clustering versus Non-clustering 131

Table ‎4.3: Proposed Method versus other Related Work 139

Table ‎5.1: Comparison of the Proposed Method with MBAC and ‎[66] 161

Table ‎5.2: Trigger Unit Area Overhead ... 166

List of Acronyms

 xvi

 List of Acronyms

ABV Assertion-Based Verification

AHB Advanced High-Performance Bus

AMBA Advanced Microcontroller Bus Architecture

AXI Advanced eXtensible Interface

BA Bank Address

CDG Channel Dependency Graph

CA Column Address

CM Checker Map

CMP Chip Multiprocessors

CRC Cyclic Redundancy Check

CST Cluster Status Register

CTI Cross Trigger Interface

CTM Cross Trigger Matrix

D-F Data Flit

DfD Design-for-Debug

DSP Digital Signal Processor

ELA Embedded Logic Analyzer

ERAVC Enhanced Reliability-Aware Virtual Channel

ESUB External Subnet

ETM Embedded Trace Microcell

FF Flip Flop

HAFT History-Aware Free-slot Tracker

HFSM Hierarchical Finite State Machine

H-F Header Flit

GE Gate Equivalent

HOL Head of Line blocking

IC Integrated Chip

IP Intellectual Property

List of Acronyms

 xvii

JTAG Joint Test Action Group

LBDR Logic-Based Distributed Routing

LUT Lookup Table

MPSOC Multi-processor System-on-Chips

NI Network-Interface

NISHA No-deadlock Interconnection of Subnets in Hierarchical Architectures

NoC Network-on-Chip

OVC Output Virtual-Channel

PHFSM Parallel Hierarchical Finite State Machine

PCI Peripheral Component Interconnect

PE Processing Element

PSL Property Specification Language

RAVC Reliability-Aware Virtual Channel

RA Row Address

ERAVC Enhanced Reliability-Aware Virtual Channel

SoC System-on-Chip

SVA Systemverilog Assertion

TAP Test Access Port

T-F Tail Flit

UBS Unified Buffer Structure

VC Virtual-Channel

VCT Virtual-Cut-Through

VC-ID Virtual-Channel Identifier

VLSI Very Large Scale Integration

WWR Weighted-Round-Robin

ZiMH Author’s name

List of Publication

 xviii

List of Publications

The work presented in this thesis is based on the following publications:

Journal Publications:

[1] M. H. Neishaburi and Z. Zilic, "On a New Mechanism of Trigger Generation

for Post-silicon Debugging", IEEE Transactions on Computers, to appear,

2013.

[2] M. H. Neishaburi and Z. Zilic, "NISHA: A Fault-tolerant NoC Router Enabling

Deadlock-free Interconnection of Subsets in Hierarchical Architecture",

Journal of Systems Architecture (JSA), 2013.

[3] M. H. Neishaburi and Z. Zilic, "An Infrastructure for Debug Using Clusters of

Assertion Checkers", Microelectronics Reliability,” Elsevier, Vol. 52, Issue

11, pp. 2781-2798, November 2012.

[4] M. H. Neishaburi and Z. Zilic, "A Fault Tolerant Hierarchical Network on Chip

Router Architecture", Journal of Electronic Testing and Testing Applications,

2013, pp. 1-13. DOI 10.1007/s10836-013-5398-4.

[5] M. H. Neishaburi and Z. Zilic, “System on Chip Failure Rate Assessment

Using a System Executable Model,” Journal of Computing Springer, to

appear 2013.

Submitted Journals Publications:

[6] M. H. Neishaburi and Z. Zilic, "An Enhanced debug-aware Network

Interface”, Journal of Systems Architecture (JSA), second revision.

 Conference Publications:

[1] M. H Neishaburi and Z. Zilic, “Reliability aware NoC router architecture using

input channel buffer sharing,” in Proceedings of Great Lake Symposium on VLSI

(GLSVLSI), pp. 511-516, 2009.

[2] M. H. Neishaburi and Z. Zilic, “Enabling efficient post-silicon debug by

clustering of hardware-assertions,” in Proceedings of IEEE Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 985- 988, 2010.

http://www.iml.ece.mcgill.ca/people/professors/zilic/documents/mh_zz_JETTA.pdf
http://www.iml.ece.mcgill.ca/people/professors/zilic/documents/mh_zz_JETTA.pdf

List of Publication

 xix

[3] M. H. Neishaburi and Z. Zilic, "ERAVC: Enhanced Reliability Aware NoC

Router," in Proceedings of International Symposium on Quality Electronic Design

(ISQED), pp.591-596, 2011.

[4] M. H. Neishaburi and Z. Zilic, “A Fault Tolerant Hierarchical Network on Chip

Router Architecture,” in Proceedings of International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 445-453,

2011.

[5] M. H. Neishaburi and Z. Zilic, "Hierarchical Embedded Logic Analyzer for

Accurate Root-Cause Analysis," in Proceedings of International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),

pp.120-128, 2011.

[6] M. H. Neishaburi and Z. Zilic, “debug-aware AXI-based Network Interface,” in

Proceedings of International Symposium on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFT), 2011.

[7] M. H. Neishaburi and Z. Zilic, "On Failure Rate Assessment Using an

Executable Model of the System," in Proceedings of Digital System Design

(DSD), pp. 29-36, 2011.

[8] M. H. Neishaburi and Z. Zilic, “Hierarchical trigger generation for post-silicon

debugging,” in Proceedings of IEEE VLSI Design, Automation and Test (VLSI-

DAT), pp. 1 – 4, 2011.

[9] M. H. Neishaburi and Z. Zilic, “A distributed AXI-based platform for post-

silicon validation,” in Proceedings of IEEE VLSI Test Symposium (VTS), pp. 8 –

13, 2011.

[10] M. H. Neishaburi, and Z. Zilic, "An enhanced debug-aware network interface

for Network-on-Chip," in Proceedings of IEEE International Symposium on

Quality Electronic Design (ISQED), pp. 709 - 716, 2012.

1 Introduction

20

1. Chapter 1: Introduction

Moore’s law will continue to hold for another fifteen years, where billions of

gates can be integrated inside a chip [1], [11]. This aggressive transistor scaling

and ongoing advances in semiconductor process technology allow the on-chip

integration of a large number of cores such as processors, Digital Signal

Processors (DSP), high-speed serial interfaces, memory blocks and other

processing elements.

Driven by relentless consumer demands for more functionality, new System-on-

Chips (SoCs) require harnessing the computation power of embedded cores. The

maximum utilization of these resources and cores are achievable by means of an

environment that enables rapid and scalable interexchange of a large volume of

data [1], [3].

Embedded cores rely on the bandwidth and performance offered by an on-chip

interconnection to fulfill their computational needs [1], [3]. Traditional bus and

crossbar architectures no longer maintain the scalability demands and ever

growing bandwidth requirements in Chip Multiprocessors (CMPs) and SoCs within

a reasonable area and power-envelope [1], [16]. Therefore, Networks on chips

(NoCs) architectures have emerged as a scalable approach to address such

growing challenges in deep submicron technology [1], [3].

 By sustaining a better modularity, higher bandwidth and scalability, NoCs have

become a practical alternative over traditional on-chip interconnects [1]. However,

on-chip networks are subject to failures due to the reliability issues arising from

manufacturing and testing in deep submicron regions [2], [13], [32]. It turns out

that future SoCs will involve hundreds of billions of transistors, with upwards of

10% of them being defective due to process variations and wear out [4].

1 Introduction

21

In fact, as processing technology scales, so does the prominence of permanent

faults resulting from electro-migration and manufacturing issues, accentuating the

necessity for fault-tolerant architectures inside SoCs [2], [3], [4].

Not only permanent failures threaten SoCs reliability but transient faults,

including those caused by crosstalk, charge sharing, substrate and power supply

noises also pose a significant challenge in ensuring signal integrity in deep

submicron technology [3], [4], [25], [39]. Several factors, including high operating

frequency, low voltage levels, small noise margins and reduced logic depths

contribute to ever-increasing susceptibility of on-chip networks to transient faults

[39]. Hence, reliable and fault-tolerant design techniques handling both design

complexities and process uncertainties are needed in SoCs designs [39].

In particular, since an interconnection network connects all components of a

system together, it has become a single point of failure. Therefore, increasing the

reliability of on-chip networks and incorporating fault-tolerant architectures inside

NoCs have become crucially important and gained a lot of attention in

semiconductor industry [13], [31], [32].

Two new NoC router architectures will be presented in the first section of this

thesis. These routers enable inter and intra channel buffer sharing. They provide a

significant performance improvement in case of on-chip failures and guarantee the

deadlock freeness in hierarchical topologies.

In the next section of this thesis, we target post-silicon debugging, mechanisms

through which first hardware prototypes (test-chip) are tested. Pre-silicon

verification and post-silicon validation have become other important issues in

SoCs and NoCs [2], [4], [60].

Although SoCs must go through various verification steps to be ensured that

embedded cores are compatible and the whole system is error-free, bugs still slip

to the first silicon in a significant percentage. Design errors and bugs have caused

a significant increase in the time-to-market. This in turn may cause a significant

loss of market share, or even complete loss of revenue [2]. Hence, ensuring that a

1 Introduction

22

new product meets strict time-to-market deadlines has become necessary.

Therefore an efficient method of discovering defects and bugs in a timely and

cost-effective has become necessary [2], [87].

In general, once the first-silicon (test-chip) is placed in its intended target

environment, and the actual workloads, consisting of application program or

operating system are exercised, errors arise in the hardware prototype [11], [12],

[88]. While exercising corner cases of a design, proper debug instrumentation

must be incorporated into SoCs in order to manifest and root-cause errors.

Failures in the first hardware prototype mostly emanate from Design errors and

“Electrical errors” [2], [4], [39]. Design errors are associated with designers’

mistake in interpreting or implementing high level specifications and the expected

behaviors of a design. Electrical errors, however, are partially related to transient

errors inside storage elements of a system. Several factors, including crosstalk,

low voltage levels, high frequency and small noise margins contribute to the

increases in “electrical” bugs, which are hard to detect during pre-silicon

verification [2], [89], [90].

Post-silicon validation promises to complete the design verification task. Once a

SoC design passes all checks within pre-silicon verification, post-silicon validation

begins its mission on the fabricated prototype of systems. Because the post-

silicon validation is carried out on the actual hardware, a larger number of

functional tests can be applied at real-time. Moreover, realistic corner cases are

more likely to be exercised as opposed to software-based simulations, and thus

there will be a better opportunity to catch hard-to-detect bugs. Post-silicon

validation in general involves four steps: failure detection, failure localization, root

cause analysis and, finally, correcting (or bypassing) the problem by patching [80],

[89], [90], [103].

Directed or randomly generated test vectors are applied to a hardware

prototype during the failure detection phase. For instance, during up-bringing of a

prototype, verification engineers usually boot up an Operating System (OS) and

exercise various OS features [89], [92].

1 Introduction

23

However, once a failure is observed, the process of localizing it to a small

region, followed by identifying its root-causes is time-consuming – it can easily

accounts for 35% of the Integrated Circuit (IC) development cycle [2]. Although

post-silicon validation techniques offer a raw performance in terms of the

execution speed of test vectors, it is still necessary to improve the real-time

observability. Various Design-for-Debug (DfD) techniques have emerged to

enhance the observability and controllability of complex systems, facilitating failure

detection and root cause analysis [2], [60], [64], [66], [80]. In this thesis DfD and

on-chip debug instrumentation techniques are used interchangeably. In chapter 4

and 5 the new mechanisms for on-chip instrumentations are introduced.

1.1. Related Work

Studies relevant to this thesis are summarized in three sections: flow control,

hierarchical NoCs, and on-chip debug instrumentations.

1.1.1. Flow control

While a packet progresses along a route toward its destination, resources in

network are regulated by means of a flow control mechanism. Flow control

policies play a decisive role in the buffer management and sizing [13], [17].

It is known that increases in the buffer size lead to higher network performance.

However, buffers (reading and writing) consume around 46% of power inside on-

chip routers [6] ; therefore, higher power density and temperature result from

increases in buffer counts, accelerating device degradation and reducing reliability

and the circuit lifetime. Hence, the effective buffer management in NoC routers is

such an important issue that a proper flow-control selection has a crucial impact

on the performance and reliability of interconnection networks [6], [13].

The wormhole flow control relaxes constraints on routers buffer sizes by

controlling at the flit granularity, instead of a packet. Packets are divided to the

smaller chunks called flits. In particular, this flow control enables an efficient use of

buffer space compared to the store-and-forward and Virtual-Cut-Through (VCT)

flow control [3], [13], [15].

1 Introduction

24

Although buffers are allocated at the flit level in wormhole routing, physical

paths are still allocated at the packet level; hence, a blocked packet can impede

the progress of other packets. Due to the distribution of a single packet across

several routers, packet blocking causes a substantial decrease in the NoC

performance [3], [13], [15].

The application of VC flow control is instrumental in alleviating the blocking

problem in the wormhole flow control. The VC flow control assigns multiple virtual

paths to the same physical channel [15]. Each virtual path consists of its own

buffer queues. VC routers can increase throughput by up to 40% over wormhole

routers without VCs, and VCs also help with the deadlock avoidance. However,

the performance of VC flow control worsens due to the fixed VC structures [19],

[21], [22].

A statically-allocated VC implementation lowers buffer utilization. In [19] the

authors explain the aforementioned facts and show that the optimal number of

VCs depend on the traffic pattern. At low data rate, increasing VC depths results

in better performance. For high rates, the optimal structure depends on the

distributing patterns. It is advisable to increase VCs under uniform data patterns,

but to decrease VC depth under hotspot patterns, e.g., in matrix transpose.

Hereafter, the dynamic buffer sizing becomes an instrumental in NoC routers.

A unified and dynamically allocated buffer structure, called Dynamically

Allocated Multi-Queue (DAMQ) buffer is proposed in [17]; however, utilizing a

fixed number of queues and hence VCs per input port is one limitation of this

architecture. Another disadvantage of this approach specifically in domain of NoC

is the complex control logic of the DAMQ buffer. Particularly, every read and write

operation needs three cycles to complete, which is not acceptable in an on-chip

router.

The dynamic VC regulator router (ViChaR) which dynamically allocates VCs

and buffer slots is presented in [17]. Dynamic VCs Allocations in this scheme is

based on the network traffic.

1 Introduction

25

To the best of our knowledge the first study addressing reliability issues by

resorting to reconfigurable structures is our proposed method Reliability Aware

Virtual Channel (RAVC) NoC router [37]. This router mitigates the effect of failures

in an on-chip network. To provide higher throughput in the presence of permanent

failures, this router first isolates a faulty router, then recaptures and assigns

routers buffer surrounding the faulty router to other input ports.

A flow-control method not only must allocate buffers and other resources in an

efficient manner, but it should be also aware of the presence of faults in a network

and be ready to take a proper measure against failures and sustain packet

transmissions with no drops [13], [19], [37].

On-chip flow control schemes address reliable on-chip transmissions by an

end-to-end or a link-level fault recovery [32]. In [31] authors show that a link-level

recovery provides a better solution as there is no requirement for large

retransmission buffers because of a large timeout period. Particularly, traffic

congestions or failures inside the network result in the higher timeout latency, and,

subsequently, larger retransmission buffer demands.

Authors in [56] present a fault-tolerant flow control mechanism by using a

dedicated header buffer for each VC, leading to large energy consumption. This

study provides no effective means to handle transient faults.

In chapter 3 a new fault-tolerant flow-control technique, called fragmentation, is

introduced. This flow control methodology is instrumental in reducing the

retransmission buffer size and handling both transient and permanent failures.

1.1.2. Hierarchical Network on Chip

Network topologies are the configurations of routers, processing elements and

the Network Interfaces (NIs) connecting router processing elements. In the

domain of router architectures, the comprehensive research has been carried out

to enhance the performance, power, and fault-tolerant mechanisms. Exploiting

hierarchical topologies to improve scalability and performance of both on-chip

1 Introduction

26

and off-chip interconnections is investigated in a large body of research [35], [36],

[37], [38], [44].

The authors in [35] have proposed a hybrid ring/mesh interconnect topology to

remove the limitations of long diameters in a large mesh based topology network.

They reduce the average number of hops by partitioning a two-dimensional mesh

into several sub-meshes and then connecting them using a global interconnect.

Compared to the traditional 2D-mesh, they have shown that hybrid ring/mesh

architectures indeed have a positive effect on the average hop count.

Efficient routing of messages within on-chip networks is of primary importance

for leveraging the computational power of processing elements and resources.

Various fault tolerant routing schemes alleviating effects of permanent faults in

NoCs have been suggested in [47], [49]. In general, such algorithms have been

categorized to stochastic and adaptive routings. A stochastic fault tolerant routing

algorithm transferring redundant packets through different paths is proposed in

[45]. In this work authors suggest the gossip routing that enables forwarding

packets to any of its neighbors with some preordained probability [45].

A direct flooding in [46] improves gossip-flooding algorithm by giving priority to

routers that bring packets closer to the destination. In fact, what makes an

adaptive routing algorithm different from stochastic routings is that an adaptive

fault-tolerant routing sustains network connectivity by leveraging the structural

redundancy of NoCs and without consuming network bandwidth through data

redundancy. However, such routing algorithms are subject to deadlocks and

livelocks. DyAD [47] and Odd-even [49] are two adaptive routing algorithms that

are deadlock- and livelock-free. Although an adaptive routing algorithm can tackle

permanent faults in an on-chip network, it still suffers from transient faults. In fact,

the inability of fault-tolerant routing algorithms to detect and avoid transient faults

results from the fact that transient errors disappear faster than routing decisions.

One of the primary issues in every routing algorithm is the absence of

deadlocks. Once deadlock happens in a network, some messages are blocked

1 Introduction

27

forever and cannot precede toward their destinations [13], [51], [52]. Authors in

[28] have proposed a general theory to develop adaptive deadlock-free routing

algorithms for communication networks using the wormhole switching. This

method is based on generating a Channel Dependency Graph (CDG), and putting

some restrictions on available turns to avoid cycles in CDG [28]. The CDG and its

application for making deadlock-free routing will be discussed formally in Section

3.3.

In [36], a deadlock-free routing algorithm for hierarchical NoCs is proposed,

providing better performance than using any single routing algorithm. This study

also shows that the hierarchical routing algorithms lead to smoother flow of

network traffic. However, the deadlock-free routing algorithm proposed in [36]

ignored the possibility of failures inside subnets. In particular, as we will show in

chapter 3, if the fault-tolerant routing algorithm inside subnets performs a dynamic

reconfiguration upon failures and routing tables become updated, deadlocks might

happen.

1.1.3. On-chip instrumentation

It has become indispensable to locate circuit defects and find the root-cause of

errors as soon as a system prototype (first-silicon) becomes ready. Design for

Debug (DfD) techniques aim to improve the observability of signals and speed up

the root-cause analysis of errors.

Post-silicon validation starts upon receiving the first-silicon prototypes of a

system (test-chip). Throughout the validation process, the prototypes are

connected to a specialized validation platform which facilitates running post-silicon

tests, often a mix of directed and constrained-random workloads. Upon

completion of each test, the output of the prototype is checked against an

architectural simulator, or in some cases, self-checked [2], [64], [89]. When a

check fails, indicating the existence of design errors, the post-silicon validation

commences, seeking to localize the cause of failures.

Pre-silicon verification techniques, which broadly belong to functional (dynamic)

or formal (static) methods, have been around for decades; however, such

1 Introduction

28

techniques nowadays cannot ensure that the fabricated first silicon works

flawlessly. Although a wide range of pre-silicon verification methods are applied to

a hardware model prior to the silicon fabrication, the first prototype of a system,

before a mass production, are mostly expected to be nonfunctional [89], [90].

Achieving real-time observability of internal signals during post-silicon validation

is a daunting task. DfD techniques have been employed to address this problem.

One of the traditional DfD techniques is the scan-based debug [80]. The primary

goal of this technique is to reuse resources that already exist for the

manufacturing test. In general, once a trigger or a hardware checker fires, the

internal states are captured in parallel and offloaded using available scan chains.

Afterwards, the captured data are offloaded serially using scan-out operation.

Finally, post-processing algorithms analyze the data. The consecutive stops and

resumptions during the scan dump is slow and there is a need for better debug

approaches [94].

A variety of on-chip instrumentation techniques have been introduced to

observe efficiently and non-intrusively the intermediate signals of different

components in a complex system [1], [96], [89], [80], [81].

The incorporation of ELAs into designs is one of the modern DfD methods [65],

[66], [70], [87]. An ELA unit contains trigger units and on-chip trace buffers for

real-time debug.

The storage and bandwidth for data acquisition in the debug is often a limiting

factor. As a result, a wide range of solutions are proposed to either increase the

bandwidth or reduce on-chip buffers utilization by means of trace-date

compression [96], or well tuning and automating the task of trace signal selection

[88], [89], [83], [98].

Another way to deal with limited trace buffers is to enhance control over the

time and frequency at which trace signals are captured. An ELA with a

programmable trigger unit is proposed in [70], [87]. However, the proposed

1 Introduction

29

approach cannot detect complex sequences and is unable to provide accurate

details to root-cause overlapped sequences.

The emulation [76] by FPGAs and hardware-accelerated simulation is another

area that can benefit from enhanced visibility. These techniques are faster than

pure software simulations, but provide no readily available access to the internal

signals and no means to track the root cause of a failure. Hence, the techniques

considered here can be of interest in emulation, and in general span the pre- and

post-silicon verification phases.

A Time-Multiplexed Assertion Checking (TMAC) as a new methodology for

post-silicon debugging is proposed in [64], [65]. In this method, post-silicon

debugging is carried out by means of checkers instantiated in an on-chip

reconfigurable block in a time-multiplexed fashion. However, authors in [64], [65]

neither track activity of checkers incorporated inside a unit, nor they consider the

root-cause analysis of errors. We note that the proposed trigger generation can be

directly useful for time-multiplexed debugging.

Incorporation of assertion checkers as a trigger unit is appealing in scan-based

run-stop debug as well as the ELA-based infrastructure [94], [70]. In chapter 4, we

will investigate a method for clustering assertion checkers inside the design.

An ELA contains a trigger unit that controls conditions for which trace signals

should be captured in a buffer for post-processing. In chapter 5, we propose a tool

to generate hierarchical triggers, providing compact trace information for root-

cause analysis.

1.2. Thesis organization

 Chapter 2 introduces Reliability Aware Virtual channel (RAVC) NoC router

Microarchitecture. This router enables both dynamic VC allocations and

the inter-channel and intra-channel buffer sharing.

1 Introduction

30

 The design of Network on Chip Router Suited for Hierarchical Network

Architecture (NISHA) is presented in Chapter 3. The definition of VC

classes per each subnet, the deadlock freeness in hierarchical topology

and the fragmentation-based flow control are among the features

presented in this chapter.

 Infrastructures for on-chip instrumentation and debug using assertion-

checkers are presented in chapter 4. First, a new algorithm that generates

clusters of assertion-checkers is presented. The presented algorithm

resorts to a graph partitioning algorithm as a means to find a set of

assertion-checkers which can be incorporated inside a cluster. The

proposed method generates the clusters of assertion-checkers by means

of exploring assertion-checkers’ logic-cones. This chapter also introduces

several mechanisms through which assertion-checkers clusters can be

incorporate inside a design. It turns out that contrary to a non-clustering

approach the proposed method leads to better results in terms of the

energy consumption, silicon area and wiring overhead.

 A new mechanism for hierarchical trigger unit generation is proposed in

the last chapter. The proposed mechanism, called ZiMH, builds

synthesizable hierarchical units from a set of checkers. Root-cause

analysis is possible by obtaining hierarchical trace information from

hierarchical modules. In addition, ZiMH, supports multiple-round

debugging in a limited silicon area using a time-multiplexed fashion. It

turns out that overlapped failure patterns can be located using a

mechanism that results in a 60-65 % reduction in hardware overhead.

Moreover, the generated trigger unit facilitates failure localization and root-

cause analysis by keeping the trace of interactions that lead to a failure.

1.3. Self-citation and claim of originaility

Parts of the work described in this thesis were published in some well-

distinguished journals and conferences.

1 Introduction

31

 The content of Chapter 2 is published in the proceedings of Great Lake

Symposium (GLSVLIS) [37]. As the pioneer of inter-channel buffer sharing

in NoC routers, this paper has been cited by more than 30 authors in this

field.

 The flow control mechanism presented in Chapter 3, known as

fragmentation based flow control, is published in the Proceedings of

International Symposium on Quality Electronic Design (ISQED) [38].

 The microarchitecture of the router presented in Chapter 3 is presented

and published in the proceedings of International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) [42].

 The content of chapter 3 is published in the special issue on on-chip

networks in Journal of Systems Architecture (JSA) [67].

 Design Automation and Test in Europe (DATE) conference, which is one

of the flagship conferences in this field has published the assertion-

clustering algorithm presented in chapter 4. This publication has been

cited by more than 10 authors so far [61].

 The content of chapter 4 has been published in journal of Microelectronics

Reliability [68].

 The idea and related challenges of adopting Hierarchical Finite State

Machines (HFSM) as a means of synthesizing assertion-checkers is

presented in the proceedings of International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT) [40].

 The content of chapter 5 has been published in the IEEE Transaction on

Computer [66]. The reviewers of this journal have considered it as a solid

technical contribution to the area of in-system debugging.

 Finally, ideas which are proposed in the future work section of the last

chapter is presented and published in the proceedings of International

Symposium on Quality (ISQED) and VLSI Test Symposium (VTS) [72],

[73].

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

32

2. Chapter 2: Reliability Aware NoC Router Architecture Using
Input Channel Buffer Sharing

ABSTRACT- In this chapter, we introduce Reliability Aware Virtual channel

(RAVC) NoC router Microarchitecture which enables both dynamic virtual

channels allocations and inter-channels buffer sharing. One of the key features of

this router is the resource reuse. Particularly, in case of failures the VC of routers

surrounding a faulty router can be totally recaptured and reassigned to other input

ports. Moreover, RAVC isolates faulty routers from occupying network bandwidth.

Experimental results show that proposed Microarchitecture provides 7.1% and 3.1

% average latency decrease under uniform and transpose traffic pattern.

Considering the existence of on-chip routers failures, RAVC provides 28% and

16% decrease in the average packet latency under the uniform and transpose

traffic pattern, respectively.

2.1. Introduction

Driven by unquenchable demand for having high bandwidth, throughput and in

particular scalable platforms, System-on-Chip (SoC) designers find on-chip

interconnections as a limiting factor in terms of the performance and energy

consumption [1]. As explained in Chapter 1, NoCs were outlined as an advance

future interconnection for SoCs [1], [3], [5] .

Buffers are the instrumental elements in router input and output channels. They

were shown to consume about 64% of the total router leakage power [7] and 46%

of total power inside on-chip routers making them largest leakage energy

consumers in NoCs [17], [23]. It was shown in [9] that far more energy consumption

is expected in storing packets in buffers than transmitting them.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

33

It is also discovered in [10] that when the packet injection rate is low, buffers are

significantly underutilized (less than 1%). When the network saturates buffer

utilization increases, but not all input buffers are fully utilized or even occupied.

 On balance, the effective and resourceful management of buffers and hence

input and output channels in NoC routers has a crucial effect on the performance

and efficiency of interconnection networks. In this chapter, we propose a new NoC

router architecture that enables dynamic reconfiguration of input channels. Our

proposed architecture alleviates the effect of faulty routers and congestion. The

crux of our design is effective usage of available buffers and inter-channel buffer

sharing, particularly when switches fail.

The proposed NoC router Microarchitecture in this chapter enables both buffer

sharing among the input channels’ VCs and inter-channel buffer sharing. It can

dynamically change a pre-assigned number of VCs to an input port. In the case of

a router failure, the buffers inside the routers surrounding a faulty router can be

totally recaptured and reassigned to other input ports. Isolating faulty routers from

sending and receiving packets and eliminating related power dissipation are among

other features of our proposed reliability-aware router.

To the best of our knowledge, the presented microarchitecture in this chapter

published in [37] is the first study that enables inter-channel buffer sharing among

different input channels.

2.2. Preliminaries

2.2.1. Background and Related Work

Buffer management is crucially affected by the choice of Flow control [17]. VC

flow control is introduced to alleviate the problem of blocking in wormhole flow

control[15] . Assigning multiple virtual paths to the same physical channel is the

essence of VC flow control. Each virtual path has its own associated buffer queue

[15] - not only that VC routers can increase throughput by up to 40% over

wormhole routers without VCs, but VCs also help with deadlock avoidance [15].

However, the VC flow control performance worsens due to the fixed VC

structures. Practically speaking, low throughput is expected at high data rates due

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

34

to lack of VCs, assuming routers are configured with few deep VCs. For low data

rates, on the other hand, if many shallow VCs are arranged, packets are distributed

over a large number of routers. Therefore, contentions and the increase in the

latency arise as a consequence of extra interrupts in continual packet transfers

[19].

In [28] an analytical approach for assigning buffer sizes at design time is

investigated. However, their proposed technique revolves around assignment of

the size and the number of VCs at the design time. They assume a particular

application and specific hardware mapping, and apply their method to find the

optimal buffer sizes per each application. On the other hand, within the realm of

NoCs dealing with different workloads and spontaneous traffic, in other words, the

runtime management and reconfiguration of buffer organization are more

interesting. In fact, regardless of the traffic type in the NoC, dynamic scheme can

be exploited to maximize buffer utilization.

The VC Regulator (ViChaR) which dynamically allocates VCs and buffer slots in

real-time is presented in [21]. Dynamic VCs allocation in this scheme is based on

the traffic condition of the interconnection network. However, this dynamic VCs

allocation scheme lacked an efficient structure with little hardware overhead to

support various packet sizes or traffic patterns. Additionally, the idea of inter-

channel buffers sharing, our innovation in this chapter, has not been addressed in

ViChar [21].

 A novel dynamic VC architecture to escape the HOL blockings is introduced in

[22]. In their scheme, a low overhead link list structure is used to manage arriving

and departing flits. This structure makes an effective use of link status and switches

arbitration results. It creates a variable number of VCs at run-time to maximize the

throughput. However, their proposed architecture is not able to perfectly utilize

unused buffers of their neighboring input channels (inter-channel buffer sharing).

To the best of our knowledge, existing dynamic VC allocation schemes never

addressed the issue of utilizing and sharing available buffers in the input channels

of router.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

35

2.1.1. Head of Line Blocking (HOL)

Head-of-Line blocking (HOL) occurs when a blocked packet impedes the

progress of other packets. On-chip network congestion probability increases in high

data rate, leading to the increase in the number of blocked packets. As shown in

Figure 2-1, if a packet at the head of a VC stalls, other packets behind it are also

blocked. These packets are able to bypass the blocked packet by means of a new

VC [4].

 As shown in Figure 2-1, the stalled flits (H1, H2) at the head of VC2 and VC3

impede the progress of H3 and H5. As can be seen in this figure, by assigning a

new VC to those header flits located behind the stalled flits, they can progress,

increasing network throughput.

2.1.2. Generic Virtual Channel NoC Router

The architecture of a generic NoC router is illustrated in Figure 2-1. The generic

router makes uses of the VC flow control and wormhole switching [11], [13]. It

consists of five basic elements: Routing Unit, VC allocator, Switch allocator, Input

Channels and Crossbar.

Please note that in this thesis generic and conventional router are used

interchangeably. A detail specification of the generic router is provided in [6].

This router contains four inputs corresponding to the four cardinal directions

(North, East, South and West), and one from the Network Interface (NI); the NI

converts messages from the local Processing Element (PE) to an acceptable

format inside on-chip networks. Packets are typically divided into three kinds of flits:

a Header-Flit (H-F) holding destination or maybe source addresses, Data-Flits (D-

F) carrying data parts of a packet and Tail-Flit (T-F) representing the end of a

packet [13].

A routing algorithm maintains a path between a particular source and

destination, and it can be either deterministic or adaptive. A deterministic routing

algorithm always supplies the same path between any given source/destination

pair, whereas an adaptive routing algorithm employs global network characteristics

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

36

such as global traffic details and congested areas information as a means to path

selection [13], [28], [42].

A flow control mechanism monitors packet propagation across on-chip network

by means of a resource (buffer) allocation and release. Since flits are transferred

through a physical channel in a single step, the flow control unit typically allocates

resources at the flit granularity.

Input ports inside a NoC router contain a finite number of VCs. Upon a header flit

arrival, its VC Identifier (VC-ID), defined by the upstream router, is decoded. This

flit is then stored into an appropriate buffer slot corresponding to with the decoded

VC-ID. Meanwhile, the VC status is changed to the routing. As the generic router

utilizes a simple dimension-based (XY) routing, implemented by combinational

circuits, bandwidth allocation and Routing Computation (RC) are carried out at the

same cycle.

A header flit goes through VC Allocation (VA), Switch Allocation (SA) and Link

Traversal (LT) stages. The VC allocator arbitrates among all packets requesting

access to the same output VCs (VCs related to downstream routers).

The VC status Table, shown Figure 2-1, contains a row associated to each VC.

As per each row, the Output Port (OP) column indicates the selected output port for

the packet stored in the VC. After VC allocation is completed, Output Virtual

Channel (OVC) holds the selected VC at the downstream router. As per each VC,

the read and write pointers, located in Pointers column, are used to store its

associated flits. The status of each VC can be either idle (I), routing (r), waiting for

an output VC (V), active (A), or busy (B) waiting for credits [3].

Every header-flit activates a specific request line of the Global VC-allocator that

is directly matched to the result of the routing unit. By inspecting both the priority of

input VC and the status of the requested OVC, the global-VC-allocator gives output

VC to requested flit; consequently, the input VC status is changed to active (A).

The Switch Allocator unit arbitrates among all active VCs requesting access to

the particular crossbar port and grants permission to the winning flits. Switching

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

37

step is the next state of an input VC. During this state, each input VC whose status

is active enters its request to access an output port through the crossbar.

Permanent and transient (soft) errors inside NoC router fall into two broad

categories: 1) Inter-router errors (link errors) and 2) Intra-router errors (errors inside

routers modules). An inter-router error results from crosstalk, charge sharing or

noise on physical links. An intra-router error occurs due to an upset in the datapath

or the control units of different modules inside an on-chip router [38].

Crossbar

5 x 5

VC ID

VC ID

VC ID

VC ID

VC ID

Routing

Unit

VC Allocator

(VA)

H_F

T_F

North

Switch

Allocator (SA)

West

East

South

Local_NI

H_F

N
o

rth

W
e

s
t

E
a

s
t

S
o

u
th

L
o

c
a

l_
N

INI: Network Interface

H_F: Header Flit

D_F: Data Flit

T_F: Tail Flit

D_F

VC Status Table

Status Pointers OP OVC

v

Credit_from_north

Credit_from_south
Credit

NActive 2 3

Output VC Status Table

Status VC

v

Credit

idle 4

Active 3

full 0

H1H3

H2

H4

D

H5

Head-of-Line (HoL) Blocking:

Stalled flits at the head of the VC block

other packets behind them

Stalled flits

VC0

VC1

VC2

VC3

Figure 2-1: Conventional VC Router

2.1.3. Defenitions

Definition 2.1: The hospitality of an input channel is defined as an input channel

ability to host arriving flits of other channels.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

38

 [] (

 []
)

 { }

 ∑
 [][]

 []

 []

In Eq. 2.1, [][] represents the number of flits in the VC at

the specific port. The hospitality metric exists per each physical input channel

(port). Because the stored flit counts inside each VC is reserved in the input VC

status, hospitality of each input port can be determined using available data in an

NoC router; moreover since the input channel capacity usually is power of two, a

simple shifter and adder is used to calculate the hospitality in RAVC.

Definition 2.2: The probability of VC expansion to accommodate an incoming

header-flit can be determined using (Eq. 2.2). When the credit-value of an output

VC becomes less than a , the associated VC in the destination router no longer

can accept new flits due to the congestion or lack of sufficient buffer spaces.

 []
∑ [][]

 []

 []

 [][] [][]
 [][]

2.1.4. Proposed buffer sharing scheme

Example of our buffer sharing scheme is shown in Figure 2-2. When R[2,1]

sends a packet to the R[4,4] in an ordinary and non-faulty conditions the flits of this

packet will pass through R[2,2], R[2,3], R[2,4], R[3,4] and finally R[4,4], based on

the XY routing algorithm.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

39

Figure 2-2: Dynamic Input Ports Buffer Sharing

If R[2,3], however, becomes faulty, by resorting to a fault tolerant routing

algorithm such as XY-YX [20], R[2,2] forwards all its incoming flits from R[2,1] to

R[3,2] or R[1,2]. As shown in Figure 2-2, having extra buffers in neighboring routers

of R[2,3] will be instrumental in managing the extra traffic. This extra traffic is

predictable as a consequence of having faulty routers. In the depicted scenario in

Figure 2-2, compared to the non-faulty condition, R[3,3] and R[1,3] will receive

more packets.

2.2. Proposed RAVC Router Architecture

2.2.1. Input Channel

To enable dynamic allocation of storage between different VCs, a link-list based

data structure is adopted. More efficient use of memory is expected using linked-

list based memory structure [22]. As explained in Section 1.1.1, static VC allocation

leads to an unbalanced traffic load across VCs. Thus, it is advantageous to allocate

more memory to busy channels and less to idle channels. Figure 2-3 shows our

proposed input channel architecture. Our proposed router has changed the routing

stage of conventional VC router to effectively utilize available buffers.

R[1,1] R[1,2]

x

y

R[2,1] R[2,2] R[2,3]

R[3,1]

R[4,1]

R[3,2]

R[4,2] R[4,3]

R[3,3]

R[1,3] R[1,4]

R[2,4]

R[3,4]

R[4,4]

Faulty

Router

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

40

Four global registers indicating neighbor conditions are used. By accessing

these registers, the input channel will be notified about the adjacent routers status.

 Arriving header-flits, after passing modified RAVC router stage, shown in Figure

2-5, are stored into a free memory location Figure 2-4 (1); consequently, the VC-

Allocator will specify the particular VC Identifier (VC-ID); hereafter, a row labeled

with this identifier in VC status table, shown in Figure 2-3, keeps that incoming

packet, Figure 2-4 (2), (3).

 As shown in Figure 2-4, Head-Pointer (H-P) of each VC points to the location of

this flit at the input channel shared memory.

 Based on the obtained VC-ID from the VC-Allocator, a header-flit will be either

stored into a new VC or at the end of an available VC. However, the data-flits and

tail-flit of a packet inherits their header-flit VC-ID and there is no need to call the

VC-Allocator.

The switch allocator arbitrates among all the active VCs to find the winner VC-

ID. After departure of a flit pointed with the head-pointer of winner VC, the header-

pointer of that VC will be updated by the next-pointer of departed flit.

Upon a flit arrival, it is inspected whether it comes from a safe or faulty router;

thereby, this flit will be discarded if it is emanated from faulty routers. Figure 2-4

illustrates the RAVC input channel data-path. By using Tail-Pointer, Head-Pointer

and Next-Pointer register files, RAVC makes one cycle read and write operation

possible.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

41

null N_P

null N_P

VC0

VC1

VC H_PT_P

Shared Memory
North Input Channel

Flit Arrival

VC0
VC1

VCN

T_P: Tail Pointer
H_P: Head Pointer

N_P

null

VCn
Other input channels

North Input Channel

Flit Arrival

Input Virtual Channels Status

Flit Departure

DIR

DIR: Output Direction

S
W

NUM

3
2

1

state

Neighboring

Routers Status

S

W
Safe

Safe

N Safe

E Safe

VC2

N_P N_P

VC2

null

E 2

Figure 2-3: Input Channel Structure

1

Tail_Pointers

(T_P)

Free Buffer

Tracker

Available Slot

W_addr

R_addr

4

Head_Pointers

(H_P)

Shared

Memory
5

1

2

3

2

Register-File

Winner-Incoming Flits

From

RAVC Routing Stage

Available Slot

O_vcid
new_vcid

cur_vcid

4
new_vcid

Outgoing_Flit

winnder_vcid

winnder_vcid

address

address

data

data

data

data

Register-File

Next_Pointers

(N_P)

address

33

Register-File

 Switch Arbitrator

Figure 2-4: RAVC Input Channel Data-Path

As per Figure 2-5 (A1), a particular group of operations must be executed on the

RAVC input channel. By executing these operations, winner-incoming flits will be

stored into an available slot indicated by the Free-Buffer-Tracker. Thereafter, the

Tail pointer of concerning VC is updated to point to the address of an incoming flit

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

42

in the shared-buffer. In addition, the previous Tail_Pointer of this VC must be

stored as a Next_Poniter of the new incoming flit Figure 2-5 (B1), (B2), (B3).

When a flit departs, three other operations shown in Figure 2-5 (C1)(C2) are

executed on RAVC datapath: (1) reads a flit from the winner VC, (2) revises the

head pointer of the VC to point to the next flit, and (3) updates the slot map.

 As Figure 2-4 and Figure 2-5 depict, keeping the status of neighboring routers

as well as the hospitality measure of other input channel, incoming flits may be

either stored in the current input channel or transferred to other input channels.

 If the current input channel buffers are all occupied, in other words, there is not

sufficient buffer space for hosting new incoming flits, the RAVC input channel

redirects the incoming traffic to other input channels.

As Figure 2-5 shows, to avoid the increase in energy consumption, RAVC has

adopted a tri-state buffer to switch between the incoming flits of a local port or other

input ports. The winner-incoming flit follows the bandwidth allocation and the

routing phase in the case of being a header-flit.

The free-buffer-tracker specifies the location of the winner-incoming flits, and the

routing-unit indicates the appropriate output port during the bandwidth allocation

and routing phase, respectively. The routing decision and hospitality measurement

are carried out in parallel in that there is no operational dependency among them.

The RAVC router supports the dynamic VC allocation. During the VC allocation,

the VC-Availability-Tracker and the VC-Dispenser are in charge of the VC

assignment to new header-flits. A header flit first requests access to the particular

output port through our modified routing unit; after obtaining a required grant, the

header-flit sends its request to the VC-Availability-Tracker and the VC-Dispenser

units. Taking into account the number of available VCs as well as HOL (Head of

Line blocking) condition, these units will decide whether to dispense a new VC or

select an available VC. As shown in Figure 2-5(B1), the data-flits and the tail-flits

VC-ID is specified previously by their header-flit. Therefore, the next and tail-pointer

register file of regarding VC-ID are updated to the location of these flits in the

shared buffer which is previously specified.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

43

Figure 2-5: RAVC Router Stages

Local Port

Incoming Flits

1BW Allocation

 / Routing

Free-Buffer

Tracker
Other Input Ports

Hospitality

Neighbor

Status

Write Index
Host

Request For New VC

Through VC Allocation Unit

Credit out

Flits[Available_Slot()] = Winner-Incomming-Flits

VC[O_vcid].T_P = Available_Slot()

Next_Pointer[VC[O_vcid].T_P] = Available_Slot()

VC availability

Tracker

CurVCNUMber

VC Dispenser

Is there deadlock with Current VCs?

CurVCnumber<Vcmax?

Possibilitiy of HOL by not dispensing new VC?

Expansion Probability of Particular Output

Direction

4:1

Arbiter

Other Input Ports

Incoming flits

Winner

Incoming Flits

1

2

3

FreeBufferTracker[VC[winner_vcid].H_P] = null

1

2

3

Routing

State

VC

Allocation

Available_Slot()

Header-Flit?NoO_vcid Yes

2

3

Next_Pointer[VC[new_vcid].T_P] = Available_Slot()
VC[new_vcid].T_P = Available_Slot()

New VC dispensed

1

2

3 VC[cur_vcid].T_P = Available_Slot()

New VC is not dispensed

Next_Pointer[VC[cur_vcid].T_P] = Available_Slot()

4 VC[new_vcid].H_P = Available_Slot()

Switching Stage
Switching

1 Outgoing_Flit = Flits[VC[winnder_vcid].H_P]

winnder_vcid<>previous_winnder_vcid

VC[winner_vcid].H_P <= N_P[winner_vcid]

VC[new_vcid].H_P::== Head_Pointerr[new_vcid]

FreeBufferTracker[VC[winner_vcid].N_P] = null

2

1 Outgoing_Flit = Flits[VC[winnder_vcid].N_P]

VC[winner_vcid].N_P <= N_P[winner_vcid]

B1

A1

B2

B3

winnder_vcid=previous_winnder_vcid

C1
C2

Credit out

new_vcid

2

3

1

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

44

2.2.2. RAVC’s VC Allocation

When a new header-flit arrives into the specific input channel, The VC-Allocator

specifies whether a new VC is required for this flit or it should be placed at the tail

of already existing VCs.

VC manager should consider three conditions; first, if there is a deadlock in the

current network this header flit should be placed in a new VC; secondly, if placing

the new header at the end of existing VCs leads to a HOL blocking, a new VC is

expected to be dispensed by VC manager to accommodate new incoming flits.

Eventually, resorting to VC expansion probability on particular direction, VC

dispenser performs its decision.

The task of particular output VC allocation to the header-flit of an incoming

packet is given to the VC dispenser. Data-flits of a packet follow the allocated

output VC of their header-flit.

As shown in Figure 2-6 by providing dynamic VC allocation our modified VA

reduces VC requests counts to a particular output port to one request in the first

arbitration stage.

 As a consequence of having a dynamic range of VCs (per

input port, our proposed scheme needs larger arbiters in comparison to

compared to the conventional router. However, the proposed VC allocator uses

smaller arbiters in the second stage. As shown in Figure 2-6, as opposed to the

conventional routers which accept requests for each output channel, the second

arbitration stage in RAVC is responsible for choosing a winner for each output port

among all the competing input ports.

In fact, instead of having () arbiters, where each of which has to accept

() request, VC allocator at the second stage in RAVC router contains

 arbiters.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

45

Figure 2-6: Proposed VC Allocator

 As per Figure 2-5 (B2), in the case of new VC assignment, the Next, Head and

Tail pointer register file of newly assigned VC are updated; however, as illustrated

in Figure 2-5 (B3), if one of the current available VC identifiers specified to host this

header-flit, the tail-pointer register file and next-pointer register file of this VC will be

updated accordingly. In both cases, this router has to inform the downstream router

about the adopted VC-ID; thereby, the downstream router updates its output VC

status.

2.2.3. RAVC’s Switching Unit

During the switching phase, the crossbar output port will be selected among the

requesting input ports. The Switch Allocation unit (SA) arbitrates amongst all VCs

requesting access to the crossbar output port and grants permission to the winning

flits. The winners are then able to traverse the crossbar through an appropriate

output link.

Our modified Switch Allocation (SA) is similar to the conventional SA unit and

carries out its operation in two stages, 1) the first stage selects a winner request

among⋃

, 2) the second stage arbitrates among each input channel VC

winners requesting the same output port. As shown in Figure 2-7, the conventional

router SA unit is modified to be consistent with our dynamic VC allocation

approach. To adopt the worst-case scenario, where an input channel dispenses all

possible VCs , RAVC router employs a arbiter per each input

channel at the first stage. The second arbitration stage in RAVC router is similar to

that of conventional router.

Vmax:1

Arbiterpo

Vmax:1

Arbiter
p1 pout

Input Port1

F
ir

st
 S

ta
g
e

Vmax:1

Arbiterpo

Vmax:1

Arbiter
p1 pout

Input Port Pi

F
ir
st

 S
ta

g
e

pi

Pi:1

Arbiter
p1

Pi:1

Arbiter
poutpout

S
e

co
n

d
 S

ta
g

e

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

46

Decode

Control

VCmax:1

Arbiter

Input Port N

P:1

Arbiter

P:1

Arbiter

In
p

u
t-

v
c
-m

u
x

-s
e

l

Which output port?

P 1

C
ro

s
s
b

a
r C

o
n

tro
l S

ig
n

a
ls

Success

Decode

Control

VCmax

First Stage Second Stage

Modified with respect

to Conventional router

Routing function returns VCs of a

single Physical Channel

Routing (R->P)

Figure 2-7: RAVC Modified Switch Allocation Unit

2.3. Experimental Results

To evaluate the effectiveness of our approach, we created Register Transfer

Level (RTL) description of RAVC and the conventional VC router using the verilog

language.

 Average latency is defined as an average delay experienced by a packet from

a source to destination, computed based on the clock cycle counts. Network

throughput is defined as the number of flits delivered per cycle in the entire

network.

First, we find the average latency of packets transferring under different injection

rates. In the second phase of the performance evaluation, we adopted XY-YX fault

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

47

tolerant routing algorithm as an alternative routing decision [20]. We assume

uniform and transpose traffic patterns.

All simulations were performed in 36 nodes (6 MESH network. In our

experiment, the conventional VC router contains 4 VCs, each of which consisting of

16 flits. However, the RAVC routers contains 64 flits buffer with minimum 4 yet

extendable to 16 VCs (=16).

To find the average latency under different traffic patterns, test-benches

connected to each router a local Processing Element (PE) generates packets

somewhere between 10,000 and 100,000 and completes the destination of each

packet according to the traffic pattern.

Under uniform traffic pattern, average packet latency of conventional VC router

and RAVC router in different packet injection rates are illustrated in Figure 2-8

(A)(B), considering the packet size of 8, 16 flits, respectively.

Under uniform traffic pattern, compared to the conventional VC router with the

same buffer size, the proposed router provides 7.1% (+/- 0.1%) improvements on

average packet latency.

Figure 2-8 (C) (D) Illustrates RAVC average packet latency versus that of the

conventional router under transpose traffic pattern, considering packet size equals

to 8, 16 flits, improvement on the average packet latency becomes 13.5%. Such

decreases on the average packet latency results from the facts that the proposed

router supports the dynamic VC assignment, where it dispenses more VCs under

the high packet injection rate, leading to the decline in the probability of HOL

occurrence compare to the conventional router static VC allocation scheme.

In the second round of our simulation, we analyzed the MESH network

performance under failures. We assume that some routers or links become faulty

during their operation.

Figure 2-10 and Figure 2-11 illustrate the average packet latency of the RAVC

versus that of conventional router assuming specific number of router failures. On

the basis of extracted values from our Verilog based simulation environment, in a

fault prone environment, RAVC provides up to 28% and 16% decrease on the

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

48

average packet latency under the uniform and the transpose traffic pattern,

respectively.

We have adopted a Packet Completion probability metric introduced in [20] as

another means to compare RAVC versus generic router (Eq. 2.3). This is defined

as the number of received packets divided by total number of injected packets into

the on-chip network.

 (2.3)

As shown in Figure 2-9, compared to the generic router, RAVC provides

approximately 48% improvements on packet completion probability. As per Figure

2-12, RAVC provides 5% improvements on network throughput as network

saturate. The accuracy of average latency result is 0.1%.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

49

E)

F)

0

50

100

150

200

250

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CONV-UNI-8

RAVC-UNI-8

Injection Rate (flits/node/cycle)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Uniform Traffic Pattern (Packet Size= 8 Flits)

A)

0

50

100

150

200

250

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CONV-UNI-16

RAVC-UNI-16

B)

Uniform Traffic Pattern (Packet Size= 16 Flits)

0

50

100

150

200

250

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

CONV-TRN-8

RAVC-TRN-8

Transpose Traffic Pattern (Packet Size= 8 Flits)

Injection Rate (flits/node/cycle)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

0

50

100

150

200

250

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

CONV-TRN-16

RAVC-TRN-16

Transpose Traffic Pattern (Packet Size= 16 Flits)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Injection Rate (flits/node/cycle)

C)

D)Injection Rate (flits/node/cycle)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Figure 2-8: Simulation Results (+/- 0.1%)

Figure 2-9: Packet Completion Probability in the Presence of Router Failures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

C
o

m
p

le
ti

o
n

 P
ro

b
ab

ili
ty

of Faults

RAVC

BaseLine

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

50

Figure 2-10: RAVC vs. Conventional Router Average Latency Considering router

failures under Uniform Traffic Patterns

Figure 2-11: RAVC vs. Conventional Router Average Latency Considering router

failures with Transpose Traffic Patterns

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

100

200

300

400

500

Injection Rate (Flit/Node/Cycle)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

CONV-UNI-8-Falure#:0

RAVC-UNI-8-Falure#:0

CONV-UNI-8-Falure#:1

RAVC-UNI-8-Falure#:1

RAVC-UNI-8-Falure#:2

CONV-UNI-8-Falure#:3

RAVC-UNI-8-Falure#:3

CONV-UNI-8-Falure#:2

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
0

100

200

300

400

500

Injection Rate (Flit/Node/Cycle)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

CONV-TRN-8-Falure#:0

RAVC-TRN-8-Falure#:0

CONV-TRN-8-Falure#:1

RAVC-TRN-8-Falure#:1

RAVC-TRN-8-Falure#:2

CONV-TRN-8-Falure#:3

RAVC-TRN-8-Falure#:3

CONV-TRN-8-Falure#:2

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

51

Figure 2-12: Throughput: RAVC versus Conventional (generic) Router

2.3.1. Hardware Overhead

The design is implemented in Verilog and synthesized using Synopsys design

Compiler tool and the TSMC 65 nm technology library. We have considered a

supply voltage of 1.00 V and an operating frequency of 500 MHz. The area of the

proposed router is 99,208.97 µm2 which has 1.41 % overhead with respect to the

generic router. This hardware overhead results from the fact that the VC allocation

unit should support variable number of VCs (= (4,16). However, as

per generic router, a fixed number of VCs is considered.

2.3.2. RAVC versus other Related Work

Table 2-1 compares a summary of the features provided by our router against

some of related work [6], [21], [22], [29]. As listed in this table, the intra-channel

buffer sharing is supported in [21] and [22] as a means of reducing HOL blocking

and reducing the average delay. However, neither [21] and [22] make use of intra-

channel buffer sharing to handle failures in on-chip networks. We have adopted a

link-list based buffer structure similar to [22].

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

15

20

25

30

Injection Rate (Flit/Node/Cycle)

T
h

ro
u

g
h

p
u

t
(f

li
ts

/c
y
c
le

)

RAVC

CONV

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

52

As shown in this table RAVC is the first study providing both intra and inter

channel buffer sharing and handling permanent failures by means of

reconfiguration. As mentioned before, this study has been cited by more than 30

authors in this field.

As opposed to the runtime reconfiguration and buffer allocation provided by

RAVC, the authors in [29] suggested an analytical approach for buffer sizing.

It is important to note that as packet size increases the probability of head of

line blocking increases too. Since the proposed router decrease the head of line

blocking in network higher performance by increasing the packet size.

2 Reliability Aware NoC Router Architecture Using Input Channel Buffer Sharing

53

Table 2-1. Features Provided by RAVC versus Other Related Work

 VC Allocation Intra-Channel Buffer
Sharing

Inter-Channel
Buffer Sharing

Fault Mitigation

Permanent Transient

RAVC Dynamic Yes
(Adopting linked list

buffer structure)

Yes Yes
reconfiguration

No

ViChar [21]

Dynamic Yes
(Adopting unified buffer

structure)

No No No

Generic NoC
Router [6]

Static No No No No

[22] Dynamic Yes
(Adopting linked list

buffer structure)

No No No

Design time
buffer allocation

[29]

Static NO No No No

3. Chapter 3: A Deadlock-free NoC Router in Hierarchical
Architectures

Abstract—this chapter proposes a fault-tolerant NoC router NISHA, which

stands for No-deadlock Interconnection of Subnets in Hierarchical

Architectures. Armed with a new flow control mechanism, as well as an

enhanced Virtual Channel (VC) regulator, the proposed router can mitigate

the effects of both transient and permanent errors. A Dynamic/Static VC

allocation with respect to the local and global traffic is supported in NISHA;

thereby, it maintains a deadlock-free state in the presence of routers or link

failures in hierarchical topologies. Experimental results show an enhanced

operation of NoC applications as well as the decrease in the average

latency and energy consumption.

3.1. Introduction

As explained in chapter 1 and 2, NoCs are subject to performance degradation

due to arising reliability issues [13], [25], [32], [37], [38]. A flow control scheme

coordinates resource allocations as a packet progresses along a path. The key

resources in most interconnection networks are channels and buffers. Hence, a

flow-control method not only has to allocate buffers and other resources in an

efficient manner, but it also has to be aware of the presence of faults in the

network, and be ready to take proper measures against failures and sustain

packets transmissions with no drops.

Another important consideration in the NoC design is scalability. With a

significant increase in the number of processing elements and the existence of

heterogeneous networks, many aspects of on-chip networks, such as routing,

topology, and flow-control should be revised from the scalability perspective [34],

[38], [41].

3 A Deadlock-free NoC Router in Hierarchical Architecture

55

One of the underlying concepts that can potentially enhance the on-chip

network scalability is resorting to the hierarchal topologies [34], [38], [42].

By resorting to hierarchical topologies, at the lower level of hierarchy, a large

number of processing elements inside an on-chip network can be partitioned into

subnets (nodes), while at the higher hierarchy level a network can be seen as an

interconnection of subnets. As a result, various subnets may differ in terms of

topology, routing, flow control or even clock rates. Performance metrics such as

average latency, energy consumption, test automations and NoC managements

with a large number of cores can potentially benefit from a hierarchical

microarchitecture [35], [42], [44].

In this chapter, we propose NISHA, a high performance reliability-aware and

topology agnostic NoC router. Major features of the proposed fault tolerant

hierarchical router are: 1) it improves the reliability and provides better

performance in the case of failures in the network, 2) it offers a new fault-tolerant

flow control that facilitates packet resubmission without the need for a large

retransmission buffers, 3) it sustains deadlock-free network in the case of failures.

3.1.1. Contribution

The unique contributions of this chapter are the followings:

 Introduction of the fault-tolerant flow control scheme that mitigates the effect

of both transient and permanent faults with no extra need for retransmission

buffer.

 Integration of a Dynamic/Static VC allocation method with respect to the

local and global traffic, maintaining a deadlock-free state in the presence of

both router and link failure in hierarchical topologies.

 Introduction of VC classes related to each subnet.

3 A Deadlock-free NoC Router in Hierarchical Architecture

56

3.1.2. Chapter organization

The remainder of this chapter is structured as follows: Section 3.1 presents

background details, consisting of some terminologies and preliminaries related to

this research. The proposed routing algorithm suited for hierarchical topology is

explained in Section 3.2. The architecture of the proposed router is detailed in

Section 3.2.6. Finally, Section 3.3 and Section 3.4 provide the experimental

results and conclude this chapter.

3.1. Background

3.1.1. Conventional NoC Router Augmented with a CRC Unit

The architecture of the generic NoC router augmented with the CRC unit is

shown in Figure 3-1. In the previous chapter conventional NoC router architecture

is explained.

Crossbar

5 x 5

VC ID

VC ID

VC ID

VC ID

VC ID

VC Allocator

(VA)

H_F

Switch

Allocator (SA)

X
+

X
-

Y
+

Y
-

N
I

C
R

C

D_F

T_F

C
R

C

Routing

Unit

H_F

D

X+

X-

Y+

Y-

NI

VC ID

VC ID

H_F
C

R
C

C
R

C

Routing

Unit

X+

Linkerr

Datapatherr

Neighboring Router

BW
CRC

LT
RC

VA SA

CRC

Pipeline stages

RC

0.24 ns

VA

0.94 ns

LT

0.34 ns

SA

0.90 ns

CRC

0.81 ns

32 bits

CRC

flit

1

3

4

4

4

3

time

2

Figure 3-1: A generic NoC Router Architecture Augmented with a CRC unit

3 A Deadlock-free NoC Router in Hierarchical Architecture

57

The CRC unit can discover Link errors and Data path failures. The CRC check

occurs in parallel with BW stage; therefore, it has no impacts on the critical path of

the router. Link errors and Data path upsets in an upstream router can be

discovered at this stage. Thereafter, a CRC calculation takes place during the link

traversal LT stage, because the destined output ports are determined at this

stage. While a flit is being transferred, it is augmented with an appropriate CRC.

 Given the fact that CRC calculation must be carried out in one pipeline stage,

A simple yet effective CRC polynomial: is used. This CRC unit can detect

odd number of bit-errors; moreover, a single burst error up to eight bits is

diagnosable. The parallel implementation of this CRC generator using TSMC 65

nm results in the 0.81ns worst-case delay.

In the proposed router, the flit size is 32 bits and every packet contains 6 flits.

There is an 8-bits slice in every flit dedicated to the CRC data. As shown in Figure

3-1, the CRC unit has no impacts on the clock rate of the proposed router.

3.1.2. System Level Fault Model

We categorize permanent and transient (soft) errors inside NoC into two broad

categories: 1) Inter-router errors (link and Datapath errors), shown as group (4) in

Figure 3-1, 2) Intra-router errors (errors inside components of a router), illustrated

as group (1), (2) and (3) in Figure 3-1.

3.1.2.1. Inter-router Errors

As shown in Figure 3-1 (group 4), faults occurring in Crossbar, Switch-allocator

unit, Multiplexers and Links among routers are considered as inter-router errors.

These errors may either cause data-corruptions, detectable by means of CRC

units, or misrouting. As long as the destination address of a packet is error-free,

misrouting can be treated, but in some cases as we well see later on it might

cause a deadlock in the network.

3.1.2.2. Intra-router Errors

An Intra-router error occurs due to an upset in the routing units (group 1), VC

allocator units (group 2), and Buffers (group 3) in Figure 3-1. An upset in routing

unit may cause either misrouting which in some cases may lead to deadlock,

3 A Deadlock-free NoC Router in Hierarchical Architecture

58

whereas error in VC allocator unit may cause underutilization of available

resources (buffers), energy consumptions and a significant drop in performance.

As explained in Chapter, buffers are mostly underutilized (less than 1%) even

when the network is saturated. Therefore, on-chip routers can hugely benefit from

effective utilization of existing buffers as a means to mitigate the effects of both

transient and permanent faults in buffers, shown as (group 3) in Figure 3-1.

3.1.3. Hierarchical Topologies

A network topology determines how different routers are interconnected. An

on-chip topology can be regular such as mesh, irregular or combination of both

(hierarchical). In [35], [36] authors have studied different aspects of hierarchical

on-chip networks, and they have noticed that hybrid interconnections result in

higher scalability and smoother flow of network traffic. However, they have not

explored hierarchical interconnections from the fault-tolerance perspective.

Subnet 3

Subnet 1

Subnet 2

Boundary

node

Subnet 4

Figure 3-2: A Hierarchical NoC Topology

3 A Deadlock-free NoC Router in Hierarchical Architecture

59

Figure 3-2 illustrates a hierarchical network topology. The routers in Subnet 3

are connected according to a regular mesh topology, whereas Subnet 2 has an

irregular topology. The routers that connect different subnets are called “Boundary

Nodes”. It is important to note that link or router failures might lead to changes in

an on-chip network topology. Example of that is shown Figure 3-2, once a failure

occurs in one of the routers or links placed in subnet 3, the topology of this subnet

is no longer a regular 2D-MESH.

As explained in Chapter 1, fault tolerance and reliability are two significant

challenges for IC designers. The fault tolerance must be provided at a reasonable

cost as IC design is extremely cost-sensitive [28], [13], [31]. The routing unit

incorporated inside an on-chip router is in charge of forwarding an incoming

packet to an appropriate output port; it performs its task by processing of the

destination address inside an H-F as well as a routing algorithm. One of the

challenging issues that must be considered in a routing unit, in particular in an

environment subject to failures, is the deadlock. The proposed routing mechanism

that maintains a deadlock-free packet transmission in hierarchical topologies is

explained in Section 3.2.

As explained in the previous chapter, a NoC flow control mechanism regulates

packet propagation across an on-chip network by monitoring resource (buffer)

allocations and releases. Buffers are power hungry and consume around 46% of

power [17], [23] inside on-chip routers; as a result, buffer management has

become one of the most important challenges for NoC designers. The on-chip

network performance and reliability are crucially effected by employed input and

output channel buffer managements techniques [3], [6], [18], [19], [22].

3.2. Deadlock-free Routing in Hierarchical Topology

To explain the proposed mechanism for fault-tolerant deadlock-free routing

suited for hierarchical network topology, some basic definitions must be

established first. The general hierarchical routing algorithm proposed in [36] is

3 A Deadlock-free NoC Router in Hierarchical Architecture

60

also discussed through these definitions. A deadlock is a situation in on-chip

network that packets are not progressing. In other words, routers are waiting to

obtain access to the physical paths which are assigned to other routers.

Definition 3.1: Let be a network Topology Graph. This graph is

weighted and directed; each vertex represents a router, whereas an edge,

denoted by , shows a physical link from the router to the router .

The weight of the edge , marked by , represents the number of VCs

associated to the physical link from the router and . The n’th VC positioned

between the routers to is denoted by . Figure 3-3(a) illustrates the

topology graph of subnet1. The set of incoming channels to and outgoing

channels from is denoted by , respectively. For example,

the set includes the following channels:{

 } whereas the set is { }.

Definition 3.2: Let be a path starting from , which is connected to the

router , and ending at , the router connected to . Then, can be listed

as the following sequence of distinctive channels: [, ,…],

where denotes the length of this path,) and .

An example of a path starting from and ends at , denoted by , is shown in

Figure 3-3 (a). This path involves the following channels: { }.

A path starting from and after passing through returning back to

generates a cycle, and it can be shown by [] where (.

This path might happen because of the selected routing algorithm.

3 A Deadlock-free NoC Router in Hierarchical Architecture

61

R1 R2 R3

R4R5R6 Subnet 3

Subnet 1

Subnet 2

Boundary

node

R1

C4,3,0
C4,3,1

C4,3,5

Ch3,4,0

Ch3,4,1

Ch3,4,5

R2 R3

R6 R5 R4

Ch2,3,0

Ch3,2,0
Ch3,2,1

Ch3,2,2

Ch,1,0

Ch1,2,0
C

h
6
,1

,0

C
h
1

,6
,0

Ch2,1,1

Ch1,2,1

Ch5,6,0

Ch6,5,0

Ch5,6,1

Ch6,5,1

Ch5,4,0

Ch5,4,0

P5,2

C
h

1
,6

,1

C
h

5
,2

,0

C
h

2
,5

,0

C
h

5
,2

,1
R1 R2 R3

R6 R5 R4

R8 R7

Subnet 1

R9 b)a)

P5,2

Figure 3-3: a) Hierarchical Topology, b) Subnet1 Topology

R1

Loop! Loop!

loop

loop

R2 R3

R4R5R6

c2,1,0

c1,2,0 c2,3,0

c3,2,0

c
4
,3

,0

c4,3,0

c5,4,0

c4,5,0

c6,5,0

c5,6,0

c
1
,6

,0

c
6
,1

,0

R1 R2 R3

R6 R5 R4

a)

loop

b)

c2,5,0 c5,2,0

restriction

restriction

restriction

Bidirectional link

Figure 3-4: a) Subnet1 Topology Graph (TG), b) Channel Dependency Graph
(CDG) Obtained from Aubnet1 Assuming no VCs

Definition 3.3: The Channel Dependency Graph, , which can be

generated from TG (definition 3.2), is a directed graph. Let be a vertex in

this graph, this vertex corresponds to a particular physical link or VCs in TG,

denoted by . Let represents an edge between and .

This link shows the possibility of an immediate turn from the links associated with

3 A Deadlock-free NoC Router in Hierarchical Architecture

62

 to the link corresponding to . Moreover, the edge represents a

channel dependency between and .

As shown in [28], any cycle of channel dependency may lead to the deadlock.

One can avoid an unwanted cycle creation by means of putting restrictions on

possible turns. An example of the CDG obtained from the topology graph of

subnet1 is shown in Figure 3-4 (b). As shown in Figure 3-4 (a), to generate this

CDG, two assumptions were made: first, there is no VC assigned to physical links,

second, all available paths between any two given routers can be selected by a

routing algorithm.

Definition 3.4: A routing unit, incorporated inside a router , is in charge of

switching a packet/flit from one of its incoming channels, denoted by to one of

its outgoing channels, marked by , where

 . Switching a packet from to by is called a turn, and it

generates a link in the CDG. Consequently, by means of putting restrictions on

available turns inside the router , the creation of an unwanted cycle in the CDG

can be avoided. For instance, as shown in Figure 3-4 (b), by means of applying

those restrictions on the routing algorithm, the creation of cycles in the CDG graph

can be avoided.

It is important to note that in order to remove cycles in a CDG, it is possible to

confine some turns or employ VCs. A VC can be considered as a new resource,

through which the cycle of resource dependencies can be broken. It is shown in

[27] that an empty buffer slot combined with a dynamic VC allocation scheme

ensures deadlock recovery. In the next section, this fact is employed to sustain

deadlock-freeness in hierarchical topologies that are vulnerable to faults.

3.2.1. Fault-tolerant Deadlock-free Routing

As explained in Section 2.4.3, routing algorithms are classified to a

deterministic and an adaptive routing. A deterministic routing determines a unique

path to a particular destination by means of destination’s address. However,

compared to deterministic routings, an adaptive routing employs multiple paths

3 A Deadlock-free NoC Router in Hierarchical Architecture

63

from a source to a destination, providing better opportunities to avoid hot spots or

bypass faulty regions.

One of the common partial-adaptive routing algorithms is the odd-even turn

model [13]. The odd-even turn model forbids turns based upon the node locations

and provides the deadlock-freeness. More precisely, a packet is forbidden to

make east-to-north or east-to-south turns at nodes located in even columns,

and north-to-west or south-to-west turns at nodes located in odd columns [13].

The odd-even routing algorithm CDG is shown in Figure 3-5 (a). The fault-tolerant

property of the odd-even routing algorithm is shown in Figure 3-5 (b). If the path1

becomes unusable due to link or router failures, the destination and source node

can still communicate through an alternative path, denoted by path2.

(0
,1

)

(1
,1

)

(2
,1

)

R
R

R
R

R
R

RR

RRR

RS

D

1

Fau
lty

2

a) b)

Alternative path

Figure 3-5: a) Channel Dependency Graph for Odd-even Routing Algorithm, b)
Fault Tolerant Property in Odd-even

3.2.2. Fault-tolerant Hierarchical Deadlock-free Routing

In this section, the notations related to hierarchical routing algorithm and

topologies are explained.

Definition 3.4: let be a Hierarchical Topology Graph of a network.

This graph is partitioned into a set of disjoint subnets, denoted by , where

 { } . The set of

routers and channels placed inside the are denoted by and ,

3 A Deadlock-free NoC Router in Hierarchical Architecture

64

respectively. Various subnets are connected by means of a set of channels called

External Channels, denoted by “ ”.

 ⋃

 { }

 { }

 (⋃

 { }

) (⋃

 { }

)

 { }

R2 R3

R4R5

Subnet 3

Subnet 1

Subnet 2

Boundary

node

R1 R2 R3

R6 R5 R4

R1 R2 R3

R6 R5 R4

R8 R7

Subnet 1

R9Subnet 4

R2 R3

Subnet 4

R
2

local

global

Local

Routing

Local

messages

Global

messages

Figure 3-6: Hierarchical Routing (Combination of Local and Global Routing)

As explained in Definition 3.4, a routing unit incorporated into the router

transfers a packet/flit from its incoming channels to its outgoing channels. This

movement is called a turn, and it creates a dependency link in the CDG, from the

vertex associated with the incoming channel to that of outgoing channel. If both

outgoing and incoming channels belong to the same subnet, message switching

3 A Deadlock-free NoC Router in Hierarchical Architecture

65

carries out based upon a local routing algorithm otherwise a global routing defines

a valid turn.

Definition 3.5. Let be the Local Routing algorithm in the subnet , and

be the Global Routing among different subnets. All messages with the source and

destination placed inside the subnet are transferred by means of . In other

words, during packet transfers, if both and are internal channels; i.e.

they belong to the same subnet, switching is carried out based on the Local

Routing (, otherwise, the Global Routing is used as a means to transfer

packets. Boundary nodes should be equipped with both local routing and global

routing because they contain both internal and external channels.

For example, as illustrated in Figure 3-6, the router R4 in subnet1 uses the

local routing to transfer packets generated and destined in subnet1 whereas

packets leavening the current subnet are transferred through the global routing .

The authors in [36] have proved that a hierarchical routing is deadlock-free if

the following conditions are maintained: 1) local routing algorithms, employed in

different subnets (, be deadlock-free, 2) the global routing algorithm () be

deadlock-free, 3) boundary nodes/routers connecting different subnets should be

in a safe mode. The boundary nodes/routers’ safeness is defined according to the

CDG graph of the whole network. A boundary node is considered safe if there is

no path of link dependencies from an output link to an input link in the CDG graph

[36]. One of the key elements for having a deadlock-free routing in hierarchical

NoCs is the detection of safe boundary nodes, as shown in Figure 3-7 (a).

The concept of termination-edge, which is used to detect safe-nodes in

hierarchical topology, is introduced in [36]. The existence of a path of link

dependency from the channels leaving a subnet at a particular node to the

channels entering the subnet into that node is illustrated by termination-edges.

This edge is used to find safe-nodes, which can be used as boundary nodes.

Figure 3-8 shows the algorithm that must be run on a subnet’s CDG to discover all

3 A Deadlock-free NoC Router in Hierarchical Architecture

66

the safe-nodes. If this algorithm fails to find a safe node the subnet’s CDG

requires modifications to enable its usage in a hierarchical topology.

Figure 3-7: (a) Safe node Detection in Odd-even Routing using a Termination

Edge, (b) a Hierarchical NoCs with three Subnets, (c) the CDG of (b)

3 A Deadlock-free NoC Router in Hierarchical Architecture

67

Figure 3-8: Safe Boundary Nodes Detection Algorithm

3.2.3. Crossing Subnet Boundary Nodes

For many interconnection networks, operation in the presence of one or more

faults is an important attribute [13], [33]. Additionally, it is desirable for these

networks to degrade gracefully in the presence of faults. The main limitation of

HIRA is the possibilities of the deadlock occurrence in the presence of faults [36].

That is because a fault-tolerant routing algorithm employed inside a subnet might

enable some previously prohibited turns; hence, the CDG of that subnet is subject

to modification by the fault-tolerant routing algorithm incorporated inside the

routers.

Although such modifications in the CDG are guaranteed to sustain the

deadlock freeness in a subnet, the boundary nodes/routers might become unsafe,

leading to the deadlock in the whole network. In other words, in the presence of

failures, a fault tolerant routing in an attempt to reconfigure the network to

maintain higher connectivity might enable some previously disabled turns. As a

result, some turns, confined before, might become permitted. Although the local

routing algorithm in different subnets and the global routing algorithm might be

/* Inputs: Channel Dependency Graph (CDG) of the current subnet(i)
// Output a Boolean variable indicating the existence of a safe node
Boolean Find-Safe-Node (CDG(V,E))
{

1. Node_Count = | |;
2. Boolean Safe-Node-Exist= false;

//| | is the number of vertices in CDG graph

3. While (Node_Count 0) {
 3.1. Add a termination edge to the
 3.2. if there is no cycle in the new CDG(E) Termination_Edge() {

 3.2.1. V(Node_count).safe = true;
3.2.2. Safe-Node-Exist = true;

 }
 3.3. Node_Count --;

}
4. Return Safe-Node-Exist;

}

3 A Deadlock-free NoC Router in Hierarchical Architecture

68

deadlock-free, the whole network is still vulnerable to deadlock. This issue was

our main motivation to propose a mechanism through which deadlock freeness is

guaranteed regardless of the ways that subnets handle failures.

Table-based routing is usually adopted in irregular topologies. The table size

depends on the network size. One of the most frequently used routing algorithms

in irregular topologies is . In this routing, each link will be tagged by a

direction, called either or “ ”. To ensure that deadlock never occurs in

the network, all paths following “ ” link after “ ” link should be excluded from

the permitted set of paths [25].

Therefore, the reconfiguration phase of a network consists of assigning a new

direction to links. Therefore, once the reconfiguration phase

completes, due to potential changes in the routing tables, the boundary

nodes/routers might become unsafe. This may cause the deadlock in the whole

network.

Subnet 3

Subnet 2

R1 R2 R3

R6 R5 R4

R8 R7

R9

Previous CDG of boundary node

New CDG

 topology discovering and

routing update

Its not safe anymore

1

2

Figure 3-9: Changes Boundary Nodes status due to an Incorporation of a Fault-
tolerant Routing Algorithm

3 A Deadlock-free NoC Router in Hierarchical Architecture

69

As shown in Figure 3-9, since the routing algorithm in Subnet 3 is the

 [25], which supports the online topology discovering followed by routing-

update phases. The safe boundary node becomes unsafe node.

3.2.4. Proposed Deadlock Avoidance Scheme

Based on the number of subnets, we define the concept of a “VC class”. The

packets, being transferred from the subnet to the Subnet , using the external

links, will be transferred through a particular VC of class . The numbers of VC

classes considered for a particular subnet depends on the number of subnets

connected to that subnet. For instance, routers inside the Subnet , shown in

Figure 3-6, must consider three different VC classes associated to the packets

coming from subnet 2, 3 and 4. In other words, routers in the subnet are not

allowed to use the VCs of class , and to transfer their local traffic. Each

header flit must also contain a field that shows the destination subnet.

In our evaluation, we have adopted Logic-based Distributed Routing (LBDR)

[34] and routing algorithm (introduced in Autonet) [25], [26].

Compared to the routing supporting topology diagnosis and update in

routing tables, the LBDR routing resorts to static approaches of reconfiguration.

 According to the LBDR to this routing algorithm, each cardinal port only needs

three bits (two bits for routing restriction bits and one connection bit). The values

of such bits are determined by topology and routing restriction sets. Routing

restriction bit (referred to as) indicates whether packets routed through some

ports could make a turn at next hop. The connection bit at each

output port indicates whether a node is connected through this direction. As stated

in [34], this routing algorithm provides a deadlock-free routing in the case of

failures inside a regular network topology.

The static characteristics of LBDR routing algorithm limits its usage in

hierarchical topologies [33]. The topology diagnosis and update in routing table

provided by is more scalable, in particular in a fault prone

environment [25].

3 A Deadlock-free NoC Router in Hierarchical Architecture

70

Every packet along with a destination address should contain a field indicating

weather this packet is local or global. Local packets stay in the current subnet,

meaning that the source and destination are placed inside the same subnet.

However, a global packet leaves the current subnet. Router addresses can be

specified using two fields in a hierarchical topology. The first field determines a

subnet to which a destination node belongs, and the second field specifies the

position of the node within the subnet.

3.2.5. No Deadlock with the Proposed Scheme Proof

Deadlock results from a channel dependency cycle in CDG. One can avoid

unwanted cycle by restricting available turns. In the proposed method, explained

in Section 3.5, the incorporated routing algorithm inside subnets (

{ } as well as inter subnets are fault-tolerant.

As mentioned in Section 3.5 and Section 3.4, the CDG of a subnet is subject to

modifications due to failures and updates in routing tables.

Subnet j

Subnet 1

Subnet i

Subnet k

Ri

Rj

Termination

neighbors

Figure 3-10: Network Reconfiguration after Failures

3 A Deadlock-free NoC Router in Hierarchical Architecture

71

As per Figure 3-10, let a failure-set be a list of subnets, which contain faulty

links or routers. If there exist subnets with failures, then the

 { { ()} let the associated

of each subnet in the failure-set generates another set, which contains k element:

{ } | |

 After applying reconfigurations and routing updates in the case of failures,

{ .. } is changed to {
 ..

 }. We have to prove that the proposed

method is deadlock-free.

Assume now that there is the possibility of a deadlock after failures, meaning

that at least one of the following conditions occurs [36] :

1) Deadlock happens in the local routings of a subnets in failure-set.

2) Deadlock happens in the global routing algorithm ()

3) The boundary nodes/routers in { { ()}

become unsafe.

Since the reconfigurations carried out in local routings are agnostic to the

arrangement of other subnets and perhaps the whole hierarchical network

topology, the first condition never happens.

One may argue that it is impossible to handle all the failures in a subnet and after

exceeding a certain number of failures deadlock may occur. As mentioned before,

a huge body of research has been conducted to avoid deadlocks in case of

failures in a local network and going through all those techniques is beyond this

scope [6], [13], [28]. We assume that the incorporated routing algorithm inside a

subnet is fault-tolerant and avoids deadlock creation. Therefore, there are no

channel dependency cycles in this set {

 }

As the incorporated global routing observes each subnet through its boundary

node, the same argument is applied to the global routing. In other words, the

global routing among subnets is just a matter of packet transfers among boundary

nodes. Once a destined packet to a particular node in is delivered to the

3 A Deadlock-free NoC Router in Hierarchical Architecture

72

subnet’s boundary node, the incorporated local routing inside performs

the rest of packet transferring operations. Therefore, there is no channel

dependency cycles in
 , which is the channel dependency graph of existing

network among boundary nodes.

Now, we must prove that boundary nodes in

 { { ()} remain in the safe state (condition 3).

Assume that there is at least one subnet in the , whose boundary node

is no longer safe. In other words, a link-dependency cycle in the new CDG of that

subnet along with a termination_edge exists.

 Let be any path in the
 , which starts from an input channel

of
 and ends at one of ,

which is a local node and a neighbor of , shown in Figure 3-10.

This path can be denoted by the following channel sequence: [,

,…], where n can be any number (other than the VC

classes associated to other subnets. A termination_edge represents the channel

dependency with respect to packets that leave and enter the current subnet. Let’s

assume that is added by the termination edge, generating a cycle with

 then:

 [, ,…]

 However, as explained in Section 3.3, the packets entering a subnet from other

subnets are being transferred through a particular VC classe not being used

locally, meaning that always .

 A cycle never generates upon changes in the subnet’s CDG.

3 A Deadlock-free NoC Router in Hierarchical Architecture

73

Therefore, the proposed method guarantees deadlock-freeness even if the

incorporated fault-tolerant routing algorithm is equipped with a dynamic topology

discovery along with a routing update phases.

3.2.6. Proposed Router Architecture

Next, we explore the microarchitecture of the proposed NoC router. Different

subnets may be either aware or unaware that they will be used in a hierarchical

network. Here, we assume that subnets are topology-agnostic. However, there is

a negligible difference between the operations of boundary nodes and regular

nodes in terms of VCs allocation and release.

Our proposed input channel is shown in Figure 3-11. As seen in this figure, the

input port of each input channel can be connected to other input ports by means

of tri-state buffers. This feature will be leveraged during the reconfiguration to

increase buffer utilization. A reconfiguration is invoked as a result of either routers

or link failures,

The port-manager unit connects a particular port to an input channel.

Unbalanced network load across VCs and HOL blocking, which result from the

static VC allocation, hampering on-chip networks performance [38], [23].

As Figure 3-11 illustrates, to enable dynamic VC allocation, we have adopted

Unified Buffer Structure (UBS). Inside UBS, flits can be stored in nonconsecutive

slots; in other words, the requirements of storing all flits of a packet in a

consecutive space are removed. However, this enhancement comes with the

price of having extra columns inside the VC Status Table.

3 A Deadlock-free NoC Router in Hierarchical Architecture

74

c

VCs status

Table

Write

Pointer

Read

Pointer

CRC
Flit 1

Flit r

C
R

C

Packt. Fragmenter

North

South

East

West

M
U

X

D
M

U
X

Credit

Nack

VCs Manager

Nack

Credit

VC-ID

Flow

Control

Unit

[0..Vmax]

Nack

isolate
isolate

fragment

VC OP OVC Status RP WP HP Credit (Flits*)

Vmax

HAFT

Inter channel

sharing controller

Failure East

Failure North

Neighboring Router

Failure Status Reg

C
R

C

Slot

A
v

a
il
.

1

2

3
4

0

1

0
1

0

0

0

1

Available Slot

Tracker

VC Header

Tracker

4

1

HAFT

ESUB

Vcs

5

New Header-flit

Global/Local

G=1

L=0

Input channel4

Input Link status

Vcs =VC from the current subnet class

isolate

Global

flit

Assign VC of

class current

subnet

(VCs)/ Static

1 0

Regular

dynamic VC

allocation

Figure 3-11: The Proposed Input Channel

3.2.7. VC Status Table

VC status Table contains the VC number ranging from 0 to , Output Port

(OP), Output Virtual Channel (OVC), Read Point (RP), Write Pointer (WP),

Header Pointer (HP), Credit and ESUB.

As explained in Section 3.4, there is a particular VC class related to each

subnet. Packets departing the subnet and arriving to the subnet are

transferred through the VCs of class . As per each subnets the numbers of VC

classes depends upon the on the number of connected subnets.

 The value assigned to depends on the applications expected to map

and a subnet’s topology; for instance, the value of assigned to boundary

3 A Deadlock-free NoC Router in Hierarchical Architecture

75

nodes is typically higher than that of other nodes in order to keep them in the safe

condition. The ESUB is a new column added to the VC status table. This column

defines whether the output port of that particular VC is leaving the local subnet.

3.2.8. History-Aware Free slot Tracker (HAFT)

The available slot inside the Unified Buffer Structure (UBS) is being tracked by

the tracker unit, shown in Figure 3-12. Once a new incoming header-flit passes

the CRC check stage, it will be stored in one of the UBS slots. Flits are no longer

able to find an appropriate buffer slots by means of their VC-ID because the VC

allocation is dynamic. However, the VC-manager along with the HAFT, which

stores status of the available slot, carries out the allocation of VC to the new

header-flit.

The VC-Manager either dispenses a new VC or places an incoming flit at the

end of existing VCs. The following three situations: 1) if a header-flit comes from

other subnet, it will be stored inside the VC class associated to the subnet, 2) if a

header-flit belongs to the current subnet and the number of allocated VCs does

not exceed the , the VC-Manager dispenses a new VC, 3) One of the

available VCs is selected by the VC-manager to host the new incoming flit if the

number of allocated VCs is more than .

To maintain the fault-tolerant flow control, it is required to keep track of all the

header-flits. As a result, HAFT needs to update its VC-Header tracker table. For

example, if the header of the VC1 is placed at an address and a new

incoming header-flit is placed inside the same VC at an address . The VC-

Header tracker contains the value adr1 at the address .

Available slots in UBS are tracked by HAFT. If HAFT reaches its capacity limits,

it activates the congestion-manager. On the other hand, once a buffer slot

releases, HAFT deactivates its trigger signal. When there is a need for buffers in

other input channels, HAFT informs the congestion manager of the input channel

that is already disconnected from a faulty router or the input channel that contains

3 A Deadlock-free NoC Router in Hierarchical Architecture

76

more free buffer slots to store new incoming packets. When flits other than header

flits leave the input channel, HAFT releases the corresponding buffer slot. As per

each buffer slot, HAFT requires 2 bits, shown in Figure 3-12. These bits will be

used by a fault flow control unit.

3.2.9. Packet-Fragmentor Unit

The VC status Table stores the header-address along with the ESUB

information. Packet fragmentation is carried out by means of stored data inside

HAFT. As Figure 3-12 illustrates, the packet fragmentation happens in the

following three steps:

1) A VC’s read-pointer is replaced by its header-address.

2) The VC status is changed to the VC allocation, forcing it going through

routing stepa again.

3) Finally, the VC-Header Tracker should replace its Header-pointer field with

the address of the previously stored header flit, kept in the HAFT unit.

VC OP OVC

Vmax

Status RP WP

C
R

C
Slot

A
v

a
il
.

1

2

3
4

0

1

0
1

HP Credit

0

0

0

1

Available Slot

Tracker

1E ST 2 6 4 3

VC Header

Tracker

4 5

Packt. Fragmenter
Failure

East

VCs status

Table

ESUB

0

1

3

VC Allocation

2

Packet

Fragmentation

HAFT

Figure 3-12: History-Aware Free slot Tracker (HAFT) and VC status table

3 A Deadlock-free NoC Router in Hierarchical Architecture

77

Nack

Counter = Thr.

Counter++.

N
a
ck

&& Nack

Credit

Pckt.

Fragmentation

Credit

Counter=0

re
p

a
ir
e

d

isolate isolate

Stop/Run

Diagnosis

1

2

3

4

Isolate

Figure 3-13: State diagram of the Fragmentation Flow Control Unit

3.2.10. Flow-Control Unit

Figure 3-13 shows the state diagram of the proposed flow control unit. As per

each output a counter is used in the flow control unit. Counters are initialized with

zeros. During a flit transmission, if either the downstream router or the link

between an upstream and a downstream is faulty, the upstream router will receive

the “NACK” signal. Once the flow control unit receives the “NACK” signal, it will

change its state to state 2 as shown in Figure 3-13. As long as the Flow Control

unit is in this state, it resubmits the same flit over and over again; this mechanism

is used to address transient errors (soft-errors). Meanwhile, by receiving “NACK”,

the value of that counter is increased by one. Once that counter reaches its

threshold value and again “NACK” is received from the downstream router, the

flow control unit changes its state to state 3; at this moment, it first sends an

“isolate” signal to the downstream router and invokes the packet fragmentation

operation.

The downstream router using the same flow control unit, upon receiving the

“isolate” signal should first stop transmitting flits; second, if it contains a dedicated

module for error diagnosis, it should activate that unit. Such an invocation may

lead to the propagation of fragment signals from the current router to the other

neighboring routers.

3 A Deadlock-free NoC Router in Hierarchical Architecture

78

For instance, assume that router (a) in Figure 3-14 (a) is transmitting a packet

(P1) that contains five flits. At the first step, router (a) sends a Header-flit (H-F) to

the router (b); afterward the H-F is moved to router (C) and the Data-Flit (D1-F) is

moved from router (a) to router (b). However, the router (C) is unsuccessful to

process D1-F after trying several times. Therefore, a fragment signal will be

propagated from router c, b and a respectively where these routers still have part

of the packet.

Figure 3-14 (b) illustrates the sequence diagram of the proposed flow control.

As mentioned in Section 3.2.7, a credit value is associated with each VC. This

value indicates the maximum number of flits inside an output VC.

The proposed flow control makes use of the credit-based flow control and

augmented that with NACK, ‘isolate’ and ‘fragment’ signals. These controlling

signals are transferred by means of two bits. Once a router forwards a flit, it sends

a credit to the downstream router based on the credit-based flow control. The

proposed fault-tolerant flow control technique considering the previously explained

scenario is shown in Figure 3-14 (a) and Figure 3-14 (b). Eventually, the packet

(P1) that is already distributed among three routers should become fragmented.

The fragmented packets can be transferred to the destination through different

paths.

3 A Deadlock-free NoC Router in Hierarchical Architecture

79

credit H-F

credit

credit

H-F

credit D1-F

credit
D1-F

NACK

H-F

NACK

credit D2-F

D2-F

credit

D3-F

H-F
D1-F

D2-F

H-F
D3-F

D4-F

credit

D4-F

H-F
T-F

Frag.

Faulty
Router

Time

a b c e

H-F

isolateFrag.

credit

isolate
Frag.
NACK

signals

11
10
01

00

Subnet 3

c e f

d

g

isolate failure

b

a

fragment

a) b)

Figure 3-14: a) Fault-tolerant Flow Control in the case of a Failure in Router e, b)
Sequence diagram of the proposed fault tolerant flow control

3.3. Experimental Results

In this section, we evaluate NISHA using both synthetic and application specific

traffic and determine its effectiveness in both fault-free and fault-prune

environments. In our evaluation, the following performance metrics are

considered: Throughput, Average latency, Packet-drop and Power.

Average latency, computed based on the clock cycle counts, is defined as an

average delay experienced by a packet transferring from a source to a

destination. Network throughput is defined as the rate of packets delivered per

cycle in the entire network. The total numbers of packets that never reach to their

destinations over the number of injected packers define the packet–dropt rate.

In our evaluation, two different fault-tolerant routing algorithms are considered

up*/down* (introduced in Autonet) [25], [26] and LBDR [34]. The latter one uses a

static approach as a means of reconfiguration through which it guarantees

deadlock free-routing in the presence of link or router failure, whereas the former

3 A Deadlock-free NoC Router in Hierarchical Architecture

80

one, up*/down* routing, resorts to dynamic reconfiguration phases involving

topology diagnosis and update in the routing table [25], [26].

To evaluate the proposed router with respect to all the performance metrics we

used NIRGAM [62], a cycle accurate NoC simulator implemented in SystemC.

Routers are modeled based upon a 4-stage pipeline, where the parameters such

as routing algorithms, network topology, failure distributions, and the traffic

patterns are configurable.

The performance metrics of NoC are measured per-channel basis using

NIRGAM [62]. In our experiments, the generic router contains 4 VCs with 16 flits

capacity. Our proposed router and RAVC explained in chapter 2 contains 64 flits

buffer, while the number of VCs ranges from the minimum of 4 VCs with 16 flits to

the maximum of 16 VC with 4 flits capacity (Dynamic VC allocation). It is important

to note that the total available buffers in routers’ input channels are the same:

(4*16) flits.

Figure 3-15 (a) shows how NIRGAM plots performance-metrics. The placement

of tiles/routers is shown by R0 – R4. Red bar between R0 and R1 represents

metric for east channel from R0 to R1. The Blue bar between R0 and R1

represents a performance metric for west channel from R1 to R0. Green bar

between R0 and R4 represents metric for northward channel from R0 to R2.

Orange bar between R0 and R4 represents metric for southward channel from R2

to R0 [62]. To compare our proposed router with the generic [11] and RAVC [37]

router, these routers have been configured to see a “flat network”.

3 A Deadlock-free NoC Router in Hierarchical Architecture

81

R0 R1

R2 R3

Southward channel

Northward Channel

Westward Channel

Eastward Channel

a)

Subnet 1 Subnet 2

Subnet 3

Subnet 4

b)

Figure 3-15: a) NIRGAM Simulation Results, b) Experimental Topology

3.3.1. Synthetic Traffic

To evaluate the proposed router performance in a fault-prone environment

using synthetic traffic in hierarchical NoC, we consider the odd-even routing

algorithm for the global routing. All simulations were performed on 75 nodes

(hierarchical network, shown in Figure 3-15

(b).

Two types of traffic are considered: 1) Intra subnets, where sources and

destinations are inside a subnet, 2) Inter subnets, where the source and

destination routers are in different subnets and the current subnet is an

intermediate subnet.

We consider Subnet 4, shown in Figure 3-15 (b), to carry out the first round of

experiments. Figure 3-16 and Figure 3-17 depict the evaluation of NISHA with the

presence of intra subnet traffic (i.e. extra traffic=0). The generic VC router and

NISHA’s average packet latency under uniform traffic pattern are plotted in Figure

3-16.

3 A Deadlock-free NoC Router in Hierarchical Architecture

82

Figure 3-16: Evaluation of NISHA under Uniform Intra Subnet Traffic

Figure 3-17: Evaluation of NISHA under Transpose Intra Subnet Traffic

0.05 0.10 0.15 0.2 0.25 0.30 0.35 0.40 0.45 0.5
0

50

100

150

200

250

300

350

400

Injection Rate (Flit/Node/Cycle)

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

Generic VC-UNI

NISHA-UNI

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

50

100

150

200

250

300

350

400

450

500

550

600

Injection Rate (Flit/Node/Cycle)

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

Generic VC-TRN

NISHA-TRN

3 A Deadlock-free NoC Router in Hierarchical Architecture

83

In our experiments, the generic router contains 4 VCs each of which consists of

16 flits capacity. RAVC and our proposed router have 64 flits buffer with minimum

4 VCs and extendable to 16 ().

It is important to note that since in the first round of our evaluation, we consider

a fault-free environment the choice of a routing algorithm is not of a critical

importance. Here, we consider a deterministic routing X-Y routing algorithm. An

important observation here is that with the same size input buffers, on average

NISHA provides 12% improvement on the average latency compared to the

generic VC router. One can associate such an improvement on the average

latency to the dynamic VC allocation scheme employed inside NISHA. This results

in dynamic VC dispensations, perhaps, when the packet injection rate increases.

As Figure 3-17 illustrates, the improvement on the average packet latency under

transpose traffic pattern is equivalent to 6.5%.

Figure 3-18 and Figure 3-19 plot the average packet latency of NISHA versus

generic VC router under uniform and transpose traffic pattern with the presence of

traffic from other subnets (Enter subnet) traffic.

 As shown in these figures without a global traffic there is a huge difference on

the average latency between uniform and transpose traffic. However, such

differences reduce in the presence of global traffic. This effect can be explained by

observing that as soon as global traffic load increases, the local traffic deviates

from pure Transpose to a mix of transpose and random traffic.

Simply stated, because NISHA supports dynamic VC assignment as well as

inert and intra-channel buffer sharing, it dispenses more VCs under the high

packet injection rate. This leads to the decline in the probability of HOL occurrence

compared to static VC scheme of the generic router

3 A Deadlock-free NoC Router in Hierarchical Architecture

84

Figure 3-18: Evaluation of NISHA under Uniform Intra subnet and Extra Subnet
Traffic

Figure 3-19: Evaluation of NISHA under Transpose intra subnet traffic and the

presence of Extra Subnet load (FIR =0.2)

0.05 0.10 0.15 0.2 0.25 0.30 0.35 0.40
0

50

100

150

200

250

300

350

400

Injection Rate (Flit/Node/Cycle)

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

Generic VC-UNI

NISHA-UNI

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

50

100

150

200

250

300

350

400

450

500

550

600

Injection Rate (Flit/Node/Cycle)

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

C
y
c
le

s
)

Generic VC-TRN

NISHA-TRN

3 A Deadlock-free NoC Router in Hierarchical Architecture

85

Under uniform traffic pattern inside subnets, the average packet latency of the

conventional router, RAVC and our proposed router assuming router failures in

different packet injection rates are illustrated in Figure 3-20. Here, we assume

packets size equals to 8 flits.

On the basis of extracted simulation environment, in a fault prone environment,

NISHA provides 10 % and 38 % decreases on the average packet latency over

RAVC and the generic router, respectively. Note that we assume the uniform

traffic pattern between boundary nodes.

Figure 3-20: Average Latency in the Presence of Router Failures

0

50

100

150

200

250

300

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
v
e

ra
g

e
 d

e
la

y
 (

c
y
c
le

s
)

Iinjection rate (Flit/Cycle/Node)

CONV-UNI-Failure #0

CONV-UNI-Failure #2

RAVC-UNI-Failure #0

RAVC-UNI-Failure #2

NISHA-UNI-Falure#:0

NISHA-UNI-Falure#:2

3 A Deadlock-free NoC Router in Hierarchical Architecture

86

Figure 3-21: Effects of Link Failures on Average Latency: up*/down* versus

LBDR Routing

Figure 3-22: Packet-drop in NISHA: up*/down* versus LBDR Routing

We armed NISHA with both and LBDR fault-tolerant routing. As

opposed to LBDR routing, the routing supports topology diagnosis

and update in routing tables.

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Number of link failures (injection rate = 0.2, uniform)

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

C
y
c
le

)

LBDR

up*/down*

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of link failures (injection rate = 0.2, uniform)

P
a
c
k
e
t

d
ro

p

NISHA (LBDR)

NISHA (up*/down*)

3 A Deadlock-free NoC Router in Hierarchical Architecture

87

In the presence of a fixed flit injection rate, we introduce link failures to compare

these two routings. Figure 3-21 and Figure 3-22 outline the effects of link failures

on the average packet latency and packet drops. As can be seen in these figures,

once the number of link failures increases NISHA armed with routing

provides better characteristics in terms of both average latency and packet drops.

In particular once the number of faulty links goes beyond 7, packet drops

significantly increase in LBDR routing. Therefore, routing is a better

choice with respect to LBDR routing in hierarchical topologies. However, as

mentioned in Section 3.2.3, the adoption of routing in hierarchical

topologies might lead to a deadlock.

 By adopting the proposed deadlock avoidance scheme in Section 3.2.4 and

introducing link failures randomly, we obtain the Packet Completion probability of

NISHA armed with routing algorithm versus LBDR routing. Figure

3-23 plots the results. As shown in this figure, once the number of faulty links

increases the NISHA equipped with routing outperforms the other

configuration. The important observation is that deadlock never occurs as we

increase the number of faulty links.

Figure 3-23: Packet Completion Probability: NISHA adopted up*/down* versus
LBDR routing

0

0.2

0.4

0.6

0.8

1

1.2

C
o

m
p

le
ti

o
n

 P
ro

b
a
b

il
it

y

of Faulty Links

3 A Deadlock-free NoC Router in Hierarchical Architecture

88

As per each router, Figure 3-24, Figure 3-25 and Figure 3-26, plot the energy

consumption. Figure 3-25 shows non-faulty conditions, whereas Figure 3-25 and

Figure 3-26, plot power consumption in case of a router failure in the generic and

NISHA, respectively. As it can be seen, the proposed router handles failures

better than generic router and avoids the creation of hotspots

Figure 3-24: Power Consumption Non-Faulty Condition

Figure 3-25: Power Consumption in Generic Router in case of Failures

3 A Deadlock-free NoC Router in Hierarchical Architecture

89

Figure 3-26: Power Consumption in NISHA in case of failures

B
locking

NACK

credit H-F

credit

credit
H-F

credit D1-F

credit D1-F

NACK

H-F

NACK

credit D2-F

D2-F

credit

D3-F

H-F

D1-F
D2-F

Err

R
e

c
o

n
fig

.

H-F
D3-F

D4-F

credit

D4-F

R
e

c
o

n
fig

.

H-F
T-F

Err

R
e

c
o

n
fig

.

Faulty

Router

Time

B)

R[1,1] R[1,2]

R[2,1] R[2,2]

R[3,1] R[3,2] R[3,3]

B
locking

Permanent Fault

RGB image

Bitmap

YCBCR

NACK

NACK
NACK

R[2,3]RGB image

Bitmap

YCBCR

NACK

R[1,2]

R[2,2]

R[3,2] R[3,3]

R[1,3]

Permanent Fault

NACK

NACKNACK
R[2,3]

FD
C
TNACK

YC
B
C
R

B
locking

D
ow

n
Sam

pler

FDCT

Q
uantizer

ZigZag

H
uffm

an

D
ow

n
Sam

pler

D
ow

n
Sam

pler

FD
C
T

Safe node

Safe node

R[2,1]

R[3,1]

R[1,1]

R[1,2]

R[2,2]

R[3,2] R[3,3]

R[1,3]

R[2,3]

R[3,1]

R[1,1]

R[3,3]

R[2,1]

Q
uantizer

Q
uantizer

H
uffm

an

H
uffm

an

Zigzag

Zigzag

JPEG

JPEG

Spare Core

Core

JPEG Compression

Safe node

Safe node

A)

Figure 3-27: (A) Experimental Platform, (B) Proposed Fault-tolerant Flow control

3 A Deadlock-free NoC Router in Hierarchical Architecture

90

3.3.2. Application Specific Traffic

To evaluate reliability and the performance metrics of the proposed router in a

fault prone environment i.e. assuming both permanent and transient fault, we

consider a (3×3)×3 hierarchical topology. Figure 3-27 (A) illustrates our

experimental framework. The routers that connect subnet together are called safe

nodes (boundary nodes).

As illustrated in Figure 3-27, we mapped a standard JPEG encoder SystemC

model to the hierarchical interconnection. Our JPEG model consists of seven

modules: YCBCR, Blocker, Down-Sampling, Digital Cosine Transform (DCT),

Quantizer, ZigZag, and Huffman Coder.

In our framework, we assumed two instances for every module (spare and

original). In the case of permanent failures in a router, first, the router will be

isolated to transmit and receive more packets; second, its neighboring routers will

be notified and reconfigured to allocate more buffers to their input channels; then,

a spare core takes over the job of the core connected to a faulty router.

For instance, as Figure 3-27 illustrates once the proposed fault-tolerant flow

control detects failures inside R[2,2], first, its neighboring routers R[1,2], R[2,1],

R[3,2] and R[2,3] will be reconfigured.

Thereafter, fault tolerant routing algorithm will change the previous path (green

line) to the new one (orange line), activating the spare “Blocking” unit. As per our

experiment, we consider a 64*64 bitmap image; this image is located inside the

memory of YCBCR; eventually, final results will be ready by the Huffman module.

The fault injection module, written in SystemC injects both permanents and

transient fault inside the routers and links. During the process of fault injection, as

long as the simulation is running, fault can be injected; however, no more than six

permanent faults are allowed. In addition, it is not allowed to inject permanent fault

to two routers that are connected to the same module, or else simulation platform

no longer can generate the final JPEG image.

3 A Deadlock-free NoC Router in Hierarchical Architecture

91

Figure 3-28: Comparison Results using Image Comparer Software

To accurately compare the reliability of the proposed router with the generic [6]

and RAVC router [38], these routers are exercised with the same failures. As our

first experiment, we measure the fidelity of image reproduction, as a means to

estimate the reliability of an on-Chip network. We compute fidelity, Eq. 3.5, by

summing up the similarities of all generated output images between images with

faults against the correct image. Similarities were obtained by Image Comparer

3.7 [63], and the total was averaged by dividing it over the number of experiments.

This software gives a number that represents the percentage of similarities

between two images. For example, the similarity (difference) between two images

illustrated in is 88% (12%) based on this software.

We did our experiment over 1200 cases. The experiment shows that the

proposed router provides 15% and 34% more fidelity than RAVC and the generic

router, respectively.

∑

We evaluate the average latency of the network plugged with our proposed

router, generic (generic) router, and the RAVC router. Experimental results in

Figure 3-29 show on average the proposed router offers 22% and 45%

improvement on average latency with respect to RAVC and the generic router in

the case of failures in network.

3 A Deadlock-free NoC Router in Hierarchical Architecture

92

Figure 3-29: JPEG Encoder Application in the a Fault-prune Environment

Table 3.1: Average Energy Consumption Considering Router Failures

#Perm.
Failures

Power (W)

Generic RAVC NISHA

0 1.75 1.82 1.80

1 1.91 1.85 1.81

2 2.20 2.01 1.90

3 3.11 3.01 2.15

4 4.11 3.95 2.50

5 5.15 4.78 3.14

Table 3.1 displays the average energy consumption of the generic router,

RAVC, and NISHA when there are failures in system. It turns out that when there

are no failures in on-chip network, the generic router consumes less energy;

however, as the number of permanent failures increase, NISHA provides better

results in terms of energy consumption.

3.3.3. Hardware Overhead

The design is implemented in Verilog and synthesized using Synopsys design

Compiler tool and the TSMC 65 nm technology library at supply voltage 1 V and

an operating frequency of 500 MHz. The area of the proposed router is

101,544.49 µm2 which has 2.3 % overhead with respect to RAVC router,

introduced in the previous chapter.

1 2 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Number of Faulty Routers

D
e
la

y
 (

s
)

4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Faulty Routers

D
e
la

y
 (

s
)

Generic

RAVC

NISHA

3 A Deadlock-free NoC Router in Hierarchical Architecture

93

3.3.4. Comparisons with Related work

A summary of the features provided by our proposed method against some of

the closest related work in [8], [35], [36], [37], [38] is listed in Table 3.2. These

features are in particular related to the employed flow control mechanism, VC

allocation scheme and the support for hierarchical topology.

As listed in this table, NISHA, the proposed router in this chapter, makes an

effective use of the packet fragmentation algorithm, explained in Section 3.2.9, as

a means to mitigate the effect of transient and permanent errors, while the

proposed routers in [25], [35], [36], [37], [38] overlook the effect of transient

errors and provide no solution to alleviate the destructive effects of such errors.

The support for scalability in on-chip network resorting to the hierarchical

topology is provided in NISHA, and HiRA [36], whereas other studies provide no

particular means to incorporated routers in hierarchical topologies.

As opposed to NISHA supporting topology agnostic reconfiguration consisting

of topology discovery and a routing update phase, HiRA [36] assumes that a static

fault-tolerant routing algorithm on a particular topology is given in advanced.

Once a failure occur inside a subnet either link or router failures, the subnet

topology modifies, making HiRA [36], as shown in Section 3.2.5 vulnerable to a

deadlock.

 It is important to note that NISHA handles the deadlock-free interconnection of

subnets by using a mixed scheme of Static/Dynamic VC allocation, in a sense that

flits leaving the current subnet (), are placed and transferred inside a

dedicated VC of class in other subnets.

 Neither the study in [25] nor [37] considers the deadlock-free routing by means

of different VC classes, while we formally defined the Dynamic/Static VC

assignment technique that makes use of different VC classes. We also investigate

the effect of transient fault by means of an actual JPEC encoder application

mapped to a hierarchical topology.

3 A Deadlock-free NoC Router in Hierarchical Architecture

94

We also leverage the fact that if there is a permanent error inside a particular

link or router, the neighboring routers can benefit from the inter-channel buffer

sharing. Because buffers expected to host the traffic from that faulty link or router

can be reuses in favor of handling extra traffic. However, the proposed routers in

[8], [21], [36] overlook the possibility of any performance gain using the inter-

channel buffer sharing.

3.4. Conclusion and Future work

In this chapter, we proposed “NISHA”, a NoC router that enables deadlock free

Interconnections of Subnets in Hierarchical topology Architecture. The proposed

router provides a Dynamic/Static VC allocation with respect to the local and global

traffic. With no need for extra retransmission buffer, NISHA mitigates the effects of

both transient and permanent errors by employing a high-performance fault

tolerant control flow. The routing unit incorporated in NISHA maintains deadlock-

free routing in the presence of routers failures in various subnets, connected using

a hierarchical topology. Experimental results show that the proposed router

provides better reliability in a fault-prone environment. Moreover, NISHA better

performance along with decreases in the average latency and energy

consumption when there is possibility of faults in an on-chip network.

The techniques described in chapters 2 and 3 decreases latency and increases

packet completion probability. Although we performed our experiments on 2D

mesh network, our proposed methodology are agnostic to the selected topology.

Our idea revolves around resource reuse as a consequence of faults on network,

which are common across different topologies.

It is important to note that as packet size increases the probability of head of

line blocking increases too. Since the proposed router decrease the head of line

blocking in network higher performance by increasing the packet size.

Although some critical applications cannot tolerate a system with packet

completion probability less than 1 there are other applications such as multi-media

Voice-over-IP that are able to tolerate some failures to obtain higher speed.

3 A Deadlock-free NoC Router in Hierarchical Architecture

95

Table 3.2. Proposed Router (NISHA) versus Other Related work

 VC Allocation Flow Control Topology Agnostic
Reconfiguration

Fault Mitigation Hierarchical
topology Permanent Transient

Our proposal in
this chapter

(NISHA)

Dynamic/Static
VC

Fragmentation/ Wormhole Yes Yes Yes Yes

ERAVC [38]

Dynamic Fragmentation/ Wormhole No Yes Yes No

[37] Dynamic Wormhole No Yes No No

HiRA [36] No VC N/A No No No Yes

[25] Static N/A Yes Yes No No

[37] Dynamic Fragmentation/ Wormhole No Yes Yes Yes

[35] No VC Wormhole No No No Mesh/Ring

96

4. An Infrastructure for Debug Using Clusters of Assertion-
Checkers

Abstract- It has become indispensable to locate circuit defects and find the

root-cause of errors as soon as the prototype of a system (first-silicon) gets

ready. Various Design-for-Debug (DfD) solutions have been introduced as a

means to increase the observability and controllability of internal signals,

resulting to a speed-up in debugging process and a decrease in the time-to-

market of new products. Assertion Based Verification (ABV) is one of the

instrumental pre-silicon verification techniques. Once assertions are converted

to hardware modules and incorporated into a debug infrastructure, the post-

silicon debug can benefit from the additional observability provided by such

assertion.

In this chapter, we first propose a new algorithm that generates clusters of

assertion-checkers; in our proposed clustering algorithm, we resort to a graph

partitioning algorithm to find the assertion-checkers that can be placed inside a

cluster. We introduce several mechanisms through which the clusters of

assertion-checkers can be incorporated into the DfD infrastructures. In our

experiments, several case studies such as AXI bus, PCI bus protocol and a

memory controller are considered; thereafter, the proposed debug

infrastructure containing clusters of assertion-checkers is embedded into such

case studies. As opposed to a non-clustering approach of placing assertion-

checkers into a design, the clustering algorithm along with the proposed

method for incorporating assertion-checker clusters into a debug infrastructure

lead to better results in terms of the energy consumption and design coverage.

4.1. Introduction

With the rapid development of semiconductor technology, increasingly

complex systems are being integrated into a single chip. Driven by high

demands for a large set of new features, the design errors and bugs have

become prevalent and difficult to track. The increase in the time-to-market of

new products as a consequence of unpredictable bugs may cause a significant

loss of market share, or even complete loss of revenue [1]. Hence, to ensure

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

97

that new products can meet the strict time-to-market deadline, finding these

defects and bugs in a timely and cost-effective manner is a must

Due to the rapid growth in the design complexity of modern Microprocessors

and SoCs, the demands for faster, cheaper and more reliable devices cannot

be fulfilled using existing pre-silicon verification techniques.

Almost two-thirds of newly manufactured SoC products suffer from the

undetected defects and bugs in the first-silicon [1]. Factors such as the

incorrect interpretation of specifications, human mistakes, design

misinterpretations and errors in CAD tools can be designated as potential

reasons for the failure in verification and possible defects in silicon. Plus, the

issues such as the lack of accurate models for a complex design, the

“electrical” bugs caused by crosstalk or power drops, and design marginalities

make a through design validation and debugging much more difficult in the pre-

silicon than in the post-silicon phase. For instance, due to the complexity of full-

chip simulation, bugs may escape from simulation-based verification as many

corner cases could be missed. Therefore, once the first-silicon becomes

available, it is required to identify any bug resulting from either design errors,

electrical faults or the issues related to Process-Voltage-Temperature (PVT)

corners. It has been observed that close to 50% of the total development

cycles for a new product is spent on validating the system behaviors after the

availability of the first silicon [97].

The post-silicon validation as a means to identify and localize design errors

and bugs has gained a lot of attention in industry. Post-silicon validation is the

process of applying input stimulus to the design, and it can be performed at the

system operational speed. The so-called “deep states” and corner cases would

more likely be exercised and thus there will be a better chance to catch hard-

to-detect bugs. Although post-silicon validation mechanisms can offer a raw

performance in terms of the execution speed of test cases, they need to be

improved in order to increase the real-time observability of the signals.

Therefore, there is a huge demand for new methods that enable faster and

more accurate debugging.

Assertion-Based Verification (ABV) is one of the instrumental pre-silicon

verification techniques. Armed with temporal logic and extended regular

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

98

expressions, PSL (Property Specification Language, IEEE 1850 standard)

[114] and SVA (System Verilog Assertions) [115] are the modern verification

languages to describe the expected behaviors of a design. Any deviations

from the expected behaviors are captured by means of placing sufficient

assertion inside a CUD (Circuit under Debug); thus increasing the visibility

within the CUD and enabling accurate debugging.

To expand the functionality of assertions beyond pre-silicon verification, a

checker generator tool must be employed to convert assertions to hardware

modules. Consequently, such modules must be incorporated efficiently in a

debug infrastructure.

In the context of post-silicon debugging, assertions must be synthesized

before one can integrate them inside a design. An individual assertion once

converted into a circuitry is referred to as an “assertion-checker” or a

checker. In the remaining of this chapter, we use the term “assertion-

checker” to refer to hardware-based assertions. Here, we have used the

MBAC checker generator which can produce assertion-checkers from either

PSL or SVA assertions [74] .

Post-silicon validation involves three major activities: 1) detecting errors

through embedded DfD (Design-for-Debug) infrastructures by means of

applying a proper stimulus, 2) localizing and identifying the root cause of

problems, 3) correcting or bypassing errors. The post-silicon bug localization

step involves identifying the location-time pair of bugs and is the most time-

consuming step.

 For incorporating assertion-checkers and capturing their violation signals, a

debug module inside a CUD must be equipped with a suitable debug

infrastructure [97], [85]. As system complexity increases, more assertions are

needed to ensure that corner cases of a design can be covered. In general, the

more assertion checkers embedded inside a CUD, the higher the hardware

overhead and energy consumption related to the debug infrastructure [74].

In this chapter, we have discovered that by grouping assertion-checkers and

placing them inside clusters, integration of assertions inside a circuit becomes

easier. Furthermore, having clusters of assertion-checkers and controlling

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

99

each cluster selectively during the debug and normal operational mode causes

lower energy consumption. Moreover, the time-consuming process of

identifying the root-causes of failures will be significantly reduced by selectively

offloading the related information of the clusters that contain fired assertions. In

this chapter, we extend the concepts and definitions explored in [70] and

provide implementation detail and comprehensive comparison with the

previous work.

4.1.1. Contributions

The unique contributions of this chapter are following:

 Introduction of a general assertion-checker clustering algorithm;

 Integration of the assertion-checker cluster into different debug

infrastructures;

 Introduction of Shared Debug Unit (SDU) as a new debug infrastructure

suited for SoCs debugging;

4.1.2. Chapter Organizations

The prior work on post-silicon debugging that centers around the use of

assertion-checkers is described in Section 4.2. Section 4.3 provides the

definitions and concepts required throughout the chapter. The proposed

assertion-checkers clustering algorithm will be discussed in Section 4.4. A

discussion on the generalities of the proposed clustering algorithm and how to

employ it is presented in Section 4.5. The integration mechanism of assertion-

checker clusters into different debug infrastructures is provided in section 4.6.

Section 4.7 presents the experimental results, and Section 4.8 concludes this

chapter.

4.2. Background and Preliminaries

Post-silicon debugging can be performed using two major schemes: 1) real-

time trace-based methods, 2) run-stop scan-based techniques. Previous

studies have considered a wide range of different implementations for such

infrastructures [76], [79], [96].

The primary goal in a scan-based debug approach is to reuse the internal

scan chains that were used during the manufacturing test. Whenever a specific

programmable trigger or breakpoint module fires, all the internal states and

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

100

signals are captured by means of available scan chains; thereafter, the

captured data are offloaded using the ‘scan-out’ operation. Finally, to find out

the exact cause of failures, a post-processing algorithm is applied to the

offloaded data [104]. Due to the consecutive stops and resumptions, the scan-

based debug technique cannot provide the required debug information in a

real-time fashion [96]. Plus, this debugging scheme is slow and intrusive [96],

[120].

A trace buffer serves as a temporary space to keep the snapshot of a

system under debug including its signals and states whenever a particular

event occurs. Trace buffers have been widely used in legacy debug and logic

analysis systems. For instance, as a multiple core debug solution for an AMBA

based SoC, ARM presented CoreSight [120]. CoreSight uses Embedded Trace

Microcell (ETM) as a debug core supporting modules and probe AMBA bus

directly. As shown in Figure 4-1, the Cross Trigger Interface (CTI) broadcasts

the trigger requests among embedded cores by means of the Cross Trigger

Matrix (CTM). The registers inside the CTI and CTM blocks which specifying

the trigger conditions and trigger mapping are programmed through IEEE

1149.1 (JTAG).

Figure 4-1: Incorporation of the Proposed Infrastructure inside ARM
CoreSight [120]

AXI/AHB

APB

J
T

A
G

ETM

CORE

C
ro

s
s

-T
ri

g
g

e
r

In
te

rf
a

c
e

 (
C

T
I)

Cross-trigger Matrix

ETM

CORE

C
ro

s
s

-T
ri

g
g

e
r

In
te

rf
a

c
e

 (
C

T
I)

ATB

D
e

b
u

g
 A

c
c

e
s

s
 P

o
rt

 (
D

A
P

)

Data Selector

Cluster 1

A0A1...Am-1

Cluster 2

AmAm+1..A2m-1

00...0

m bits

00...1

Wired or

EN EN

To Coss-trigger Matrix

Cluster ID
Fired Cluster

S
ta

tu
s

ID

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

101

The proposed debug infrastructure in this work is orthogonal to the ARM

CoreSight debug scheme. Triggers and breakpoint module inside an

embedded core need to transfer their signals to the CTI unit. Once an

assertion-checker detects an illegal sequence of events, it also raises an

output signal. Therefore, an assertion-checker can be treated as a trigger unit.

The only difference between assertion-checkers and regular hardware triggers

and breakpoints is that hardware based triggers are programmable by means

of a debugger tool, whereas assertion-checkers are usually hardcoded. During

validation of a complex system including multiple-cores, we need to trace the

status of assertion-checkers placed inside cores. Therefore, a debug

infrastructure must be equipped with an enhanced debugging module that

makes the output of assertion-checkers transparent to debugger tool. As

illustrated in Figure 4-1, the proposed infrastructure can be incorporated inside

a core to be interfaced with the CTI and ETM.

A so-called assertion processor, along with synthesized assertions, is

incorporated on a chip in [79], [107]. These studies neither provide coverage

metrics nor an automated method for integrating assertion-checkers inside a

design. The authors in [105] exploit the fact that it is not necessary to observe

the error-free state. Instead, they have introduced the “suspect window” and

presented a method for determining its boundaries.

 The integration of assertion-checkers in a scan-based run-stop debug

infrastructure and in a debug trace infrastructure has been investigated in [97].

One conclusion of that work is that grouping assertion-checkers together and

controlling each group through a single debug register results in a decreased

hardware overhead of debugging infrastructure involved in transferring the

violation signals of assertion-checkers to the trace-buffer. This study, however,

provides no applicable solution for the clustering of related assertion-checkers.

The work in [64] applies the time-multiplexing to a set of assertion-checkers in

the debug infrastructure, which is related to the clustering in the sense that the

checkers are grouped together in each time instance, but the clustering

approach is not the focus of that work.

In this chapter, we present a mechanism to group assertion-checkers and

place them inside clusters. The assertion-checkers can be efficiently integrated

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

102

into a debug circuitry by means of our proposed mechanisms. Plus, the

proposed debug environment in this chapter addresses the reusability needs of

SoC debugging.

4.2.1. Assertions

An assertion is a statement that indicates how a given circuit should behave

under different circumstances. Assertion-Based Verification (ABV) has become

one of the most important and efficient RTL verification techniques, and has

gained a lot of attention in the industry for pre-silicon verification [108].

Assertion is a statement that indicates how a given circuit should behave

under different circumstances. Assertion-Based Verification (ABV) has become

one of the most important and efficient RTL verification techniques, and has

gained a lot of attention for pre-silicon verification [76], [79].

In this section we explain several common terms dealing with assertions,

checkers and techniques to generate checkers from a set of assertions.

Assertions expressed in modern languages can represent complex types of

behaviors.

 System designers are able to define both expected and prohibited

behaviors of a design using a wide range of Boolean expressions combined

with extended regular expressions and a large set of temporal operators.

Verification languages such as PSL (Property Specification Language, IEEE

1850 standard) [112] and SVA (System Verilog Assertions) are standardized

for ABV [115].

To demonstrate how an assertion works, consider an example of two

assertions written in SVA:

 A1 = assert always ({$rose(req)} |=>{req[*0:2] ; req & grant}), (4.1)

A2 = assert always ({$rose(req)} |=>{req [*0:3] ; req & grant ##1 valid }),

(4. 2)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

103

assert always ({$rose(req)} |=>{req[*0:3] ; req&grant; ##1valid}); (2)

S1

S2
true

req

!Req &!grant

S3 S4
!Req &!grant

req&!grant req&!grant

S7

S5

!Req &!grant

req&!grant

!grant

grant S6

!v
al

id

assert always ({$rose(req)} |=>{req[*0:2] ; req&grant}); (1)

S1

S2
true

req

!Req &!grant

S3 S4
!Req &!grant

!grant

req&!grant req&!grant

S5

S1

req

S2

req

Req & grant

S5

Req & grant

S3

req S4 R
eq

 &
 g

ran
tAcceptance

modeFailure

 mode

Q

Q
SET

CLR

D

~valid

Q

Q
SET

CLR

D
~grant

S5

S6

~req&~grant

~req&~grant

~req&~grant

a) b)

c) d)

Figure 4-2: a) generated automat from the SVA assertion A1 in failure mode,
b) generated automat from the SVA assertion A1 in acceptance mode, c)
generated automat from the SVA assertion A2 in failure mode, d) part of the
hardware module associated to A2 obtained by the checker generator

These assertions monitor an arbiter, where the assertion A1 states that the

arbiter will grant the bus after signal ‘ ’ becomes active within three clock

cycles. The client must also keep its request signal active until it receives the

 signal. This signal indicates that access to the bus is given to the client.

This assertion will trigger if either the client or the arbiter cannot satisfy one of

the previously mentioned conditions.

The second assertion indicates that the client whose request signal is

active must be able to receive the within four clock cycles. Upon

receiving the signal, the client must also activate the signal after

one clock cycle, indicated with the “##1” operator in SVA.

 These assertions will trigger if either the client or the arbiter cannot satisfy

the stated conditions. The operator ‘|=>’ is a temporal implication, with pre- and

post-conditions appearing as the antecedent and consequent, respectively.

The function becomes true in the case of changes on the rising

edge of signal . In these examples, the post-condition contains two

sequences concatenated by a temporal concatenation “;”. The first sequence is

a repetition range, whereas the second sequence is a Boolean expression.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

104

4.2.2. Checker Generator

Checker generator is a tool for producing checkers from assertions.

Checkers are circuits performing on-line silicon monitoring, self-test, and

diagnosis assistance during the lifespan of the IC [1], [70], [80], [81]. Here, we

use the tool MBAC for checker generation [74]. The tool represents each

assertion with its automaton, either by a direct optimized production or by

applying a set of rewrites rules; thereby, various automata for properties and

sequences are generated. A generated automaton is represented by a directed

graph in which vertices are the states and edges among states express

conditions for transitions among the states.

Figure 4-2: shows the generated automata from the assertions in Eq. 4.1

and Eq. 4.2.

Transitions are labeled with Boolean expressions built upon the signals

involved in the property. It has been shown in [79] how every property in PSL

and SVA can be converted to an equivalent finite automaton in a recursive

manner. Assertion violation is signaled whenever an automaton representing

an assertion reaches its final state. For instance, our sample assertions trigger

once their automata in Figure 4-2 (a), (c) reach the final state ‘S5’ or ‘S7’,

respectively.

In the pre-silicon verification, employing a large number of assertions is not

a big issue. But, when it comes to the post-silicon verification, the situation is

utterly changed. Given the fact that assertions are synthesized to hardware

units during the post-silicon verification, the related hardware overhead and

energy consumption should be acceptable. Here, we use the tool MBAC for

checker generation [74]. The MBAC checker generator matches each

assertion statement with its related automaton, either by a direct optimized

production, or by applying a set of rewrite rules [75]. Thereby, various

automata for properties and sequences are generated.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

105

D

I

H

E

G

A
H

B

C

E

G

D

FA

B

C

I

F

D

E

F

G

I

D E

D E

G I

F G

H I

H

G I

F H

G

I

H

D

E

A

B

C

b) c)

A

C

B

a)

Sink node

Figure 4-3: Creating a graph from a given circuit under debug; a) gate-level

netlist, b) generated graph, c) adjacency list

4.2.3. Netlist Graph

Due to an abundant use of memory elements such as flip-flops in industrial

circuits, an error will be recorded in some flip-flops once a bug becomes active

[105]. Therefore, to capture a bug, it is instrumental to monitor flip-flop outputs

during the debug. Figure 4-3 shows a sample circuit and its corresponding

netlist graph. Let be a directed graph associated with the given

circuit netlist. Every vertex in this graph is related to a flip-flop in the

circuit netlist. The combinational parts of a circuit among storage units are

represented by edges. For instance, there is an edge among the vertices D, G

and F in Figure 4-3 (a). The vertices associated to primary outputs {H, I} are

marked as “sink node”.

4.2.4. Definitions

DEFINITION 4.1: Let be the “Fan-in Cone Graph” of a primary

output. This graph is directed and each vertex represents a storage

element (Flip-flop) inside a given circuit. Let be a directed edge from the

vertex to in this graph, any changes to the storage element that

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

106

corresponds to can modify the storage element related to in the next

cycle. In this graph, the node that associates with the primary output is called

the “sink” node. To extract the “Fan-in Cone Graph” of a particular output, the

given netlist graph is traversed, starting from its “sink” node using “Depth-First-

Search” (DFS) algorithm.

DEFINITION 4.2: let

 = (V,E) be a “Weighted Fan-in Cone Graph” of a

primary output oi. This graph is a weighted directed graph generated from the

“Fan-in Cone Graph” of the primary output oi. The weight of denoted by

w(vi) shows the number of paths from vi to the “sink” which is the vertex

associated with the oi .

The set of vertices adjacent to the is denoted by adjacent-set ().

The number of edges that leaves the given vertex is denoted by

 . As shown in Eq. (4.3) the weight of the sink node is equal to

“1”; the weight of other vertices is computed by means of Eq. (4.3).

 (∑ ()

)

Figure 4-4: a) Fan-in cone graphs of primary outputs, b) Weighted fan-in cone
graph of primary outputs

I

E

G

D

A B

C

1

Sink Nodes

H

F G

D E

A B

C

I

E

G

D

A B

C

1

2

2

1

33

H

F G

D E

A B

C

1

1

1

12

3
3

a) b)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

107

DEFINITION 4.3: We define the concept of “Fan-in cone coverage of a

primary output with respect to a vertex” denoted by
 , where

 is a vertex in the “Weighted Fan-in Cone Graph” of the primary output

 . As Eq. (4.4) shows, this term denotes the number of paths covered by

monitoring the particular vertex over all available paths to the sink node ().

 |

∑

 DEFINITION 4.4: A Finite Automaton FA associated with an assertion-

checker is a tuple , where ‘Q’ is a nonempty finite set of

states, is a set of symbols that represents Booleans expressions and

signals such as primary inputs, outputs and the intermediate signals. In this

FA, is a transition function consisting of a subset of triples

from { | } As explained in Section 4.2.2, the

MBAC checker generator synthesizes assertions by assigning an FA to them

[74].

The fan-in cone graph of each primary outputs should be explored prior to

extracting the “fan-in cone set of each assertion-checker”. As explained in

Definition 4.1, given the fact that be the “Fan-in Cone Graph” of a

primary output, each represents a directed edge from the vertex to .

This directed edge denotes the existence of a combinational unit among the

storage elements associated with and . It is shown in Definition 4.1 that

transitions from different states inside an assertion-checker take place due to a

change in the signals that are elements of the set . Such a set consists of the

signals and Boolean expressions.

DEFINITION 4.5: let |
 be the fan-in cone set of assertion-checkeri with

respect to the primary output oj, where |

 The set of vertices

inside the weighted fan-in cone of the primary output oi is denoted by

 .

The vertices in this set that may cause changes in the state of the FA

associated with the particular assertion-checkeri are placed inside its fan-in

cone set with respect to the primary output oj. As shown in shown in Eq. (4.5),

the union of |
 over all primary outputs is the “Fan-in cone set of the

assertion-checkeri
” denoted by .

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

108

 ⋃ |

DEFINITION 4.6: The Maximum Coverage of the assertion-checkeri whose

“Fan-in cone set” is is denoted by . To compute the “Maximum

Coverage of the assertion-checkeri
”, we resort to the “Fan-in cone coverage

of a primary output with respect to a vertex” explained in Definition 4.3 and

denoted by
 . The Cov(CHi) can be computed using Eq. (4.6). We

can also use Eq. (5.6) to find the “Maximum coverage of an assertion checker

with respect to a particular primary output”.

 ∑ [

 |

]

 (|
) ∑

 | |

Definition 4.7: The is the “Checker Map Graph”. This graph is

undirected and weighted. There is a vertex associated with each

assertion-checker. The existence of common elements in the “fan-in cone set”

of any pair of assertion-checkers is denoted by an edge between the

corresponding vertices; the weight of this edge indicates the number of

common elements in the “Fan-in cone set” of those two assertion-checkers.

4.3. Proposed Assertion-Checker Clustering Algorithm

The proposed assertion-checkers clustering method, as shown in Figure

4-5, consists of four steps. At the first step, a directed graph from the circuit

net-list is created.

As explained in section 4.2.3, each vertex in this graph represents a storage

element (Flip-Flop) inside the CUD. A directed edge between two vertices

indicates that there exists a combinational logic or wire between the storage

elements. The Weighted Fan-in Cone Graph for each primary output, Definition

4.2, is extracted in the second step in Figure 4-5. The Weighted Fan-in Cone

Graph is generated from the “Fan-in Cone Graph” of each primary output. The

weight of a vertex indicates the number of paths from that vertex to a primary

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

109

output. The weighted fan-in cone graph of the primary outputs in the sample

circuit in Figure 4-3 is shown in Figure 4-6.

 As Figure 4-6 demonstrates, if a bug happens in the vertex related to the

storage element “A”, its effects propagate to the output through three different

paths. Likewise, the output “H” can be affected by two different paths if a bug

occurs inside the storage element related to the vertex “D”. Assume, for

example, that the right graph in Figure 4-6 corresponds to an arbiter expected

to provide a ‘grant’ signal. This ‘grant’ signal is connected to the combinational

circuit among the vertices “A” and “B”. In the right graph in Figure 4-6, there are

two different paths, P1 and P2, in which a bug can reach the output.

Figure 4-5: Assertion-checkers clustering

Directed Graph extraction

from gate-level netlist of the

given circuit

Extracting the Weighted Fan-

in cone graph for each

primary output

Finding the Fan-in cone set of

assertion-checkers and their

intersection

Clustering assertion-checkers

and incorporating them inside

debug infrastructures

1

2

3

4

A H

B

C
E

G

D

I

F

1 I

E
G

D

A B

C

1

2

2

1

33

H

F G

D E

A B

C

1
1

1
12

3 3

1 I

E
G

D

A B

C

1

2

2

1

3

H

F G

D E

A B

C

1
1

1
12

3 3
Ch1 Ch1

Ch2

Cluster 1
A0A1...Am-1 Cluster S

Ams..Ams-1
 Wired Or

EN
Slave port

D
A

P

EN
Cluster S

Ams..Ams-1

Internal Trace Buffer

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

110

Figure 4-6: Weighted Fan-in cone graph of primary outputs

The next step in the clustering finds the Fan-in cone set of assertion-

checkers. Having produced the Weighted Fan-in cone graph of primary

outputs, we can obtain the Fan-in cone set. Figure 4-7 illustrates the fan-in

cone graphs of primary outputs and assertion-checkers inside the example

CUD. The dashed area in this figure represents an assertion-checker. Dashed

lines bound the storage elements that may impact assertion-checkers output.

As per Definition 4.4, the vertices in the “Fan-in cone graph” of primary outputs

that lead to a transition to a state corresponding to an assertion-checker are

placed in its Fan-in cone set.

An assertion-checker can be influenced from the vertices placed in different

“Fan-in cone graphs”. For that, we make use of the “Fan-in cone set of an

assertion-checker with respect to a primary output”. For instance, the

assertion-checker 1 “Ch1” in Figure 4-7 can trigger due to the changes in the

storage elements associated with vertices {A, B, D} and {A, B, D, F} located in

the “Weighted fan-in cone graphs” of the primary output “I” and “H”,

respectively. Hence, the Fan-in cone set of this assertion-checker with respect

to “I” / “H” denoted by Ch1|I / Ch1|H is {A, B, D} , {A, B, D, F}, respectively. As

per Figure 4-7, the Fan-in cone of the assertion-checker 1 denoted by Ch1 is

the union of Ch1|I and Ch1|H, i.e., {A, B, D, F}.

1 I

E

G

D

A B

1

2

1

33

H

F G

D E

B

C

1
1

1

12

3 3

C
2

Bug

Bug

P1
P2

P3

P1

P2

A
Arbiter

grnt

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

111

Figure 4-7: Fan-in cone set of assertion-checkers and their maximum
coverage

The maximum coverage Cov(Ch1) is computed using Eq. 4.5. Likewise, the

Cov(Ch2) is obtained as Max[Cov(G1|’F’), Cov(G2|’F’)]]= Max[0, 1/13] = 1/13.

Having specified the “Fan-in cone” set of assertion-checkers, in the next

step, we place such assertion-checkers into clusters using a graph partitioning

algorithm. Here, we make use of the CM (Checker Map) graph presented in

Definition 4.7. As explained in section 4.4, this graph is a weighted graph. In

this graph, the weight of the edge connecting the vertices and

indicates the number of common elements in the “Fan-in cone set” of the

assertion-checkers corresponding to the and , respectively.

For instance, the CM graph for the circuit in Figure 4-7 has two nodes {a1,

a2} that are connected using an edge with the weight “1”.

Figure 4-8 and Figure 4-9 outline our proposed algorithms to create clusters

of assertion-checkers based upon a CM graph. The Cluster-Generator needs

to continuously update the given CM graph. The update procedure is shown in

Figure 4-9.

1 I

E

G

D

A B

C

1

2

2

1

33

H

F G

D E

A B

C

1

1

1

12

3
3

1

Ch1|I: contains {A, B, D } Ch1

Ch1

Ch1|H: contains {A, B, D, F}

Cov(Ch1) = Max[Cov(G1|(A)), Cov(G2|(A))]+

Max[Cov(G1|(B)), Cov(G2|(B))]+

Max[Cov(G1|(D)), Cov(G2|(D))]+

Max[Cov(G1|(F)), Cov(G2|(F))]

Ch1 = Ch1|H U Ch1|I= {A, B, D, F}

Ch2Cov(Ch1) = Max[3/13, 3/13]+ Max[3/13, 3/13]+

Max[1/13), 2/13]+ Max[0, 1/13] =9/13

G1 = G*I , G2 = G*
H

G1 G2

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

112

Figure 4-8: Cluster Generator Algorithms

Figure 4-9: Merge_Update Algorithms

/* Inputs: Maximum number of clusters “Max_Cluster”, maximum number of
checkers inside each cluster “Max_Checker”, and the checker map graph “CM”
created in the previous step */
//The maximum number of checkers inside each cluster
// CM (V, E) = CheckerMap (V,E)
//CheckerMap is a weighted graph

Cluster-Generator (Max_Cluster, Max_Checker, CM)
 //Proposed Cluster Generator algorithm
// CM is the Checker Map Graph

1. Cl_Count := | |;
//| | is the number of vertices in CM graph

2. While (Cl_Count Max_Cluster) {
 2.1. Find the heaviest ei CM(E), where (ei.visited = false)
 // that edge must have not been visited yet
 2.2. if ((ei.vL..cur_checkers+ ei.vR. cur_checkers) Max_Checker) {
 /*Check whether by merging the vertices connected to ei the number of checkers
exceeds the maximum number of permissible assertion-checkers in a cluster*/

 2.2.1. Merge_Update(ei.vL., ei.vR, CM(V,E));
//merge the vertices connected to ei

 2.2.2. Cl_Count--;
 }
 2.3. ei.visited = true;
 }//2
}





/* Inputs: A modified Checker map graph “CM”
Output:Updated CM graph */
//CheckerMap is a weighted graph
Merge_Update(vL, vR, CM(V,E)) {
1. CM (V, E) = Modified CheckerMap (V,E)
2. Add vnew to CM(V)
// Add a new Node to the CM graph
3. For all edgei CM(E) {
4. If vL or vR is connected to edgei {

 4.1. Disconnect edgei from vL or vR
 4.2. Connect edgei to vnew
 } // 4.
5. If more than one edge connect two vertices {
 5.1. find the maximum weight among these edges
 5.2. replace them with one edge
 5.3. assign the maximum weight to the new edge
 } // 5.
6. Remove vL, vR from CM(V)
 }



4 On-Chip Instrumentation Using Clusters of Assertion Checkers

113

Figure 4-10: Cluster Generation on the Sample CM (Checker Map) graph
This algorithm takes as inputs the CM graph, the maximum number of

clusters allowed to be placed inside a debug infrastructure denoted by

“Max_Cluster”, and the maximum number of assertion-checkers that can be

placed inside a cluster, marked by “Max_Checker”. In other words, the number

of clusters that this algorithm can produce cannot exceed the “Max_Cluster”.

This algorithm should also consider “Max_Checker” as the number of

assertion-checkers allowed to be placed inside each cluster.

As shown in Figure 4-10, the edge with the heaviest weight will be selected

at each step. The salient property of this scheme is that the larger the weight of

an edge, the higher the probability of the violation in the related assertion-

checkers and the chance of extracting the required debugging details to

spatially isolate the candidate error sites.

Once an edge with the heaviest weight is found, two nodes connected by

this edge are chosen as a candidate to merge. Thereafter, the partitioning

procedure checks whether by merging related nodes the maximum number of

assertion-checkers exceeds. For example, since the weight of the edge

between a1 and a2 is larger than that of the others in Figure 4-10 (B), these

two nodes will be merged together. To combine these nodes, we have to

ensure that the number of elements in the new cluster {a1, a2} is smaller than

a1
a2

a3

a4a5

a6

15

10

12

40

a7

8

5

17

9

1020

a1 a2

a3

a4a5

a6

15

10

12

40

a7

8

5

17

9

1020

a1,a2

a3

a4a5

a6

15

10

12

a7

8

5

17

9

1020

a1,a2

a5

a6

15

10

12

a7

8

5,17

9,10

a4,a3
6

A) B)

C) D)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

114

the maximum number of allowable elements in each cluster. After merging

these nodes, the algorithm should update the CM graph. To update the CM

graph, any edge connected to the vertices “a1” or “a2”, should go to the new

composite node or cluster {a1, a2}. Having updated the CM graph, the

iterative partitioning algorithm continues by merging the node “a3” and “a4” as

in Figure 4-10 (C).

In the next iteration, Figure 4-10 (D), the edge with the largest weight is

selected again. However, since after merging two concerning clusters {a1, a2},

{a3, a4} the number of elements in the new cluster exceeds the maximum

number of allowable elements, the “Cluster-Generator” algorithm refuses to

merge these two clusters. Consequently, the next largest edge is selected as

shown in Figure 4-11 (A). The partitioning algorithm based on the merge and

update procedure continues until it creates the demanded number of clusters.

The final clusters obtained by applying the iterative partitioning algorithm is

shown in Figure 4-11 (D), where there clusters of assertions-checkers are

created. After obtaining clusters of assertion-checkers, we have to incorporate

them into the debug infrastructure inside a CUD.

Figure 4-11: Cluster Generation on the Sample CM

a1,a2

a5

a6

15

10

12

a7

5,17

9,10

a4,a3
6

a1,a2,a6

a5

10, 12

a7

8

5,17

9,10

a4,a3
6

a1,a2,a6

a5

10, 12

5,17

a4,a3,a76

a1,a2,a6

a5

10, 12

a7

8

5,17

9,10

a4,a3
6

A)
B)

D)C)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

115

4.4. On Obtaining Clusters Coverage and Using Clustering Algorithm

 To allow corrections of silicon bugs or to bypass faulty modules,

reconfigurable elements or programmable-logic fabric are increasingly being

placed into ASICs [1], [93]. Such reconfigurable units can be used to

implement debugging circuitry. Example of an SoC containing reconfigurable

elements is shown in Figure 4-12. As this figure demonstrates connections to

the reconfigurable fabric are not shared uniformly among cores. In other words,

in a typical SoC design, various Intellectual Property (IP) cores have different

trust levels. For instance, IP cores provided by third vendors with the prior

successful tape-outs are considered more trustable than a newly developed IP

core [77]. Therefore, reconfigurable resources as a means to correct and

bypass errors are dedicated in a non-uniform fashion among cores.

For example, Core3 and Core4, shown in Figure 4-12, might have been

used previously or taken from a third vendor; thus, a limited number of

monitoring points are shared with the reconfigurable fabric, whereas a larger

number of monitoring points are assigned to Core1 and Core2 which are new

developed IPs. A debug circuitry built into a reconfigurable fabric can

communicate with a CUD by means of monitoring points.

Although the main purpose of embedding programmable logic cores on

SoCs is to provide post-fabrication flexibility for the design, such programmable

cores are the best candidates to host assertion-checkers. However, when it

comes to incorporating assertion-checkers into programmable modules, we

have to be aware of the silicon area constraints. It is important to note that the

“Cluster-Generator” algorithm shown in Figure 4-8 can be easily modified to

consider the area constraints. In particular, the area constraints should replace

the “Max_Checker” in the “Cluster_Generator” algorithm shown in Figure 4-8.

A wide range of assertion-checkers in IP cores are typically utilized to

monitor the local properties. Such assertion-checkers, as shown in Figure

4-12, are typically laid inside the cores. Global assertion-checkers of an SoC

which monitor interaction among cores are built into the reconfigurable fabrics.

It is important to consider that to cluster local assertion-checkers using the

proposed “Cluster_Generator” algorithm in Section 4.4, the input and outputs

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

116

of that particular module should be considered as primary input and outputs.

For example, to cluster the local assertion-checkers inside the “Arithmetic”

module in Core 1 shown in Figure 4-12, the netlist graph among the inputs and

outputs of this module should be generated.

The fan-in cone set and the maximum coverage of each assertion-checker

are explained in Definition 4.5 and 4.6, respectively. Once assertion-checkers

are placed inside different clusters and a list of available monitoring points is

specified, we can find the maximum coverage of each cluster.

 A monitoring point is an observable design location to a debug circuitry

through a monitoring port. The maximum coverage of each cluster based on

the coverage of assertion-checkers integrated into that cluster and the

maximum number of monitoring points can be computed using the algorithm

presented in Figure 4-13.

Memory

Data

Feeder Datapath

(Arithmetic Module)

Controller

Core1

Core2

Processor

Core3

Core4

Local checkers

Local checkers

Global checkers
Monitoring

Ports

Reconfigurable Fabric

inputs

outputs

inputs

outputs

Figure 4-12: Typical SoC Floor-plan Containing Reconfigurable Fabrics

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

117

Figure 4-13: “Cluster_Coverage” Algorithm: Compute the maximum
Coverage of a Cluster

4.5. Assertion-checkers Integration in a CUD

To integrate clusters of assertion-checkers into a debug infrastructure, two

key issues should be resolved. First, the way that clusters can be accessed

needs to be defined; secondly, a mechanism through which the violation

signals of these clusters can be transferred to a debug tool must be

established. Existing on-chip debug solutions, such as a scan-based run-stop

debug and a debug trace infrastructure must be equipped with clusters of

assertion-checkers. By incorporating clusters of assertion-checkers in existing

// this algorithm returns the coverage of a given cluster

// The inputs to this algorithm

//inputs: Clusterk, the Maximum number of monitoring points: Max_MointorPoints

Cluster_Coverage (Clusterk, Max_MointorPoints) {

1. Avail_MonitorPoints = Max_MointorPoints;

2. Current_Coneset = ;

3. ClusterCoverage = 0;

4. While Avail_MonitorPoints >0 {

4.1. Select a checker chi with the Maximum Coverage among all the checkers in
Clusterk

4.2. Remove Chi from Clusterk

4.3. Current_Coneset = Current_Coneset

4.4. If | | {

 4.4.1. Avail_MonitorPoints = Avail_MonitorPoint – | |

 4.4.2. ClusterCoverage = ClusterCoverage+Cov()

 4.4.3. For all checkers Chk Clusterk

 4.4.3.1 If {

 4.4.3.1.1. ClusterCoverage = ClusterCoverage+Cove(Chk)

 4.4.3.1.2. Remove Chk from Cluster

}//4.4.3.1

 }// 4.4

}// 4

Return ClusterCoverage

}

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

118

debug infrastructures, we can ensure compatibility and reduce the impacts on

the debug tool support. In this section, we will show how assertions-checkers

clusters can be incorporated in a scan-based run-stop and a trace-based

debug infrastructure.

4.5.1. Cluster Integration of in a Scan-based Infrastructure

Having partitioned assertion-checkers based on their fan-in cone sets, they

have to be incorporate inside a debug infrastructure. Figure 4-14 illustrates

how such clusters can be integrated into a scan-based debug infrastructure.

The TAP controller is compliant with JTAG (Joint Test Action Group) IEEE

Specification 1149.1. It manages the debug environment via instructions and

data transfers to and from an external debugger.

 In our method, once an assertion-checker inside a cluster activates, the

cluster informs the TAP controller by raising an interrupt signal. The CUD stops

working and switches to the debug mode; consequently, an external debugger

connected to the system via the TAP port can scan-out the chain of debug

status registers and check the state of the corresponding clusters. A Cluster

Status Register (CST) is associated with each cluster. This register is in charge

of holding the status of the assertion-checkers. As shown in Figure 4-14, the

size of this register is equal to the number of assertion-checkers inside a

cluster. The violation signals of the assertion-checkers placed in a cluster must

stay active to make sure that an external debug tool can access them.

As a means to control clusters, we equipped them with an enable register.

The TAP controller in Figure 4-14 activates each cluster through the chain of

EN registers. It provides the required flexibility to enable or disable a particular

assertion-checker cluster. In addition, clusters are able to transform their

violation signals by means of CST registers which are daisy-chained together.

The first disadvantage of incorporating assertion-checkers cluster into a

scan-based run-stop debug infrastructure is a slow scanning out operation.

JTAG is not a fast serial interface (the upper limit of transfers is typically less

than 100 MHz) and is not designed for real-time data transfers.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

119

Figure 4-14: Integration of the assertion-checker clusters inside a scan-based
debug infrastructure

Since a debug session may take up to thousands of clock cycles, the cluster

containing assertion-checkers related to other parts of a design stay idle for a

large period of time. Plus, an assertion-checker must keep its violation signal

active till it gets captured, leading to an inability to detect multiple failures in the

same assertion-checkers.

4.5.2. Clusters Integration in a Real-time Trace-based Debug

In a real-time trace-based debugging scheme currently being used in

commercially available ICs such as ARM family [120], embedded memories

are used as a means to record and trace signals. This leads to higher

observability in designs and allows SoC software to execute at-speed while

transparently logging debug events.

As mentioned before one limitation of incorporating assertion-checkers

cluster into a scan-based run-stop debug infrastructure is that the assertion-

checker placed inside a cluster should hold its violation signal active until it

gets processed by an external debugger; hence, multiple violations of the

same assertion-checkers are not detectable. Overlapped sequences of events

lead to consecutive violations in an assertion-checker. Hence, it is impossible

to detect such failures by means of the chain of assertion-checkers clusters.

C
lu

s
te

r 1
A

0 A
1 ...A

m
-1

E
N

bitsm)(

E
N

C
lu

s
te

r
1

E
N

A
m

A
m

+
1 ..A

2
m

-1

TAP Controller

TAP Port

A
m

s
..
A

m
s

-1

Fire signal

Cluster Status Register

(CSR)

C
lu

s
te

r 2

A
m

A
m

+
1 ..A

2
m

-1

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

120

Debug trace infrastructure can be used to log accurately assertion-checker

clusters status. In other words, embedding violating assertions into the trace

data makes it possible to trace the status of assertion-checkers per clock cycle.

Therefore, such a debugging scheme allows logging multiple violations of the

same assertion-checkers. However, due to the limited width of the debug trace

channel, we have to provide a mechanism to effectively store clusters

information. Figure 4-15 (a) shows our method to integrate clusters into a real-

time debug trace infrastructure. The “Cluster-Generator” algorithm from Section

4.3 determines which assertion-checker belongs to which cluster. It is

important to note that the value of ‘S‘ is the maximum number of affordable

clusters, and ‘M’ is the maximum number of assertion-checkers that can be

placed in a cluster.

 A unique cluster identifier is assigned to each cluster. Once an assertion-

checker inside a cluster fires, the debug infrastructure should transfer related

detail to a trace buffer. As Figure 4-15 shows, the “wired-or” signal of a cluster

triggers as soon as one of the incorporated assertion-checker(s) fires. Then,

the status of all assertion-checkers inside that particular cluster will be copied

to the trace register. The data that needs to be transferred to the trace buffer is

the cluster’s identifier and the Cluster Status Register (CSR), which contains

violation signals of the assertion-checkers. The former requires bandwidth of

 bits, while the latter needs ⌈ ⌉ bits.

For example, in Figure 4-15 (a) one of the assertion-checkers in the cluster

2 has fired; consequently, the related cluster identifier along with the violation

information of that cluster is placed inside the trace-register to be stored into

the embedded trace memory. When a trace buffer width is larger than the

number of clusters, multiple CSRs can be stored at the same cycle on the

debug trace. In the inequality given in Eq. (4.8), N is the total number of

assertion-checkers and M is the maximum number of assertion-checkers that

can be placed inside one cluster and C is a number of trace registers that can

be placed at the same cycle into the debug trace data.

 ⌈ (

)⌉

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

121

When more than one cluster wants to place its information inside the trace

register, the Weighted-Round-Robin (WRR) data selector assigns the trace

registers to clusters based upon a fixed priority. Because of the Round-Robin

data selection scheme, the cluster priority decreases once it reports its

information and unique cluster ID.

This data selection scheme reduces the delay between the time that an

assertion-checker fires and the time that the cluster information is reported.

Thereby, it becomes easier to distinguish the root cause of an error during the

offline processing of trace data. As Figure 4-15 (a) shows, the TAP controller

can be effectively used to control each cluster through enable registers

chained together.

4.5.3. Weighted Round Robin (WRR) Arbitration Mechanism

While a part of a design is under debug, the assertion-checkers responsible

for monitoring that particular module are expected to be exercised more. In

addition, the larger the number of assertion-checkers inside a cluster, the more

grants signals the cluster requires. Therefore, an arbitration mechanism among

clusters should be performed unfairly. Figure 4-15 (b) shows a weighted round-

robin arbiter used to carry out arbitration among clusters. A weight is

assigned to each cluster . The maximum fraction () of grants that cluster

receives is defined according to

, where ∑

 .

The higher the number of assertion-checkers inside a cluster the larger is its

weight and the fraction of grants. As shown in Figure 4-15 (b), each time a

cluster receives a grant, the counter is decremented. As soon as the counter

associated to a particular cluster reaches “zero”, that cluster becomes unable

to issue a new request. The load line will be activated periodically in every

cycle. The counter associated to each cluster is loaded with the previously

assigned weight when the load line is asserted.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

122

Cluster 1

A0A1...Am-1

Cluster 2

AmAm+1 ..A2m-1

Cluster 2 Cluster S

Ams..Ams-1

Cluster Identifier

00...0

bits
m bits

m bits

00...1

Wired or

EN EN EN

T
A

P
 C

o
n

tr
o
ll

e
r

T
A

P
 P

o
r
t

 )(log2 s

Weighted Round Robin Data Selector

Trace buffer width

trace register

Fired cluster

Fired clusterd

To External Trace Memory

 )(log2 s

 )(log2 s

m bits

11...1

To Internal Trace Memory
M = Maximum # assertion- checkers in each cluster

S = Maximum # clusters

Weight1

Weights

Request1

R
o

u
n

d
 R

o
b

in
 A

rb
it
e

r

Counter

(count==0)
Cluster 1

Counter

(count==0)Cluster S

Requests

Load

p

d

p

d

grant1

grants

a) b)

Figure 4-15: a) Integration of the assertion-checker clusters into a real-time
trace-based debug infrastructure, b) Weighted Round Robin (WRR) Arbiter

4.5.4. Clusters Integration in a Shared Debug Unit (SDU)

Modern SoCs include many IP blocks and the interconnection networks

have become one of the important components inside SoCs. As SoCs are

getting more complicated, it has become more critical to monitor the interaction

between multiple master and slave devices. However, conventional debug

methods and tools tend to focus on the computational parts of a system, e. g.

the processor and its interaction with the main memory. As different master

and slave modules inside modern SoCs are connected by complex protocols,

every module should be compliant with a list of rules specific to that protocol.

A wide range of assertion-checkers are needed to monitor the global

properties of an SoC, such as hand-shaking protocols between master and

slave cores, timing constraints for memory access, fair arbitration mechanisms

among cores and others. A similar set of rules applies to devices that support a

specific interface. Therefore, one of the primary concerns for the verification

environment in charge of testing these standard protocols is reusability. Figure

4-16 shows our proposed Shared Debug Unit (SDU) which is suited for

compliance checking of standard protocols. The clusters inside SDU involve

assertion-checkers related to different devices. For example, Cluster k-1 and

Cluster k in Figure 4-16 are dedicated to a master core which is now being

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

123

tested; alternatively, Cluster 1 and Cluster 2 involve the assertion-checkers of a

device that is not under debug.

The SDU infrastructure should be equipped to selectively control each

cluster of assertion-checkers, and it should be supplied by a mechanism to

capture the violation signals of each cluster. The SDU can be configured by

means of the slave port. In other words, the masters or slave devices sitting on

the bus can reconfigure the SDU. Actions such as activating or deactivating

particular assertion-checker clusters, changing the trace buffer parameters can

be performed on SDU. The SDU can benefit from the available observability on

the main system bus for protocol checking and complaint testing. For example,

to overcome the limited on-chip memory capacity, the SDU can be configured

to serve as a new master and send its debug information to an external trace

memory through a master port. As shown in Figure 4-16, the SDU can be

controlled either by a TAP controller or by one of the Master devices. By

disabling the clusters containing the assertion-checkers of the devices that are

not being tested, we can make an efficient use of the limited trace buffer

bandwidth.

Figure 4-16: Shared Debug Unit (SDU): a debug environment suited for SoCs

Cluster 1

A0A1...Am-1

Cluster 2

AmAm+1..A2m-1

Cluster k

Ams..Ams-1

Cluster Identifier

00...0

m bits

m bits

00...1

Wired or

EN EN EN

T
A

P
 C

o
n

tr
o

ll
e

r

T
A

P
 P

o
rt

Data Selector

Trace buffer width

trace registers

Shared Debug Unit (SDU)

Slave port

Master port

 )(log2 s

 )(log2 s

m bits

11...1

Cluster k-1

Ams..Ams-1

EN

11...0

Master Cores Assertion-checkers

Clusters
Disabled clusters

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

124

Figure 4-17: Integration of SDU into a SoC based platform

Example of SDU’s reusability is shown in Figure 4-17; in Scenario 1, the

SDU is configured by Master1 to start debugging Slave2. The clusters

responsible to monitor the transactions related to Slave 2 will be enabled while

other clusters are disabled. Thereafter, Master1 can start generating the

transactions destined to Slave2, which is currently the device under debug.

In the second scenario, the Slave2 coordinates the SDU and configures it

for debugging Master2.

4.6. Experimental Results

To verify the effectiveness of the proposed clustering algorithm, we have

considered three case studies. We applied our proposed algorithm to cluster

the assertion-checkers inside the case studies. In the following those case

studies and their features will be discussed. Thereafter, we show how resorting

to the clustering technique and the proposed method for incorporating clusters

inside debug infrastructures can be beneficial in terms of energy consumptions

and the design coverage.

4.6.1. Case Studies

One of the major challenges in SoC designs has become compliance

testing. It is very common for designs to support certain standard protocols.

Therefore, we have considered the following standards to present the

application of our method. We consider the following designs as our test cases:

AHB

PCI

P
ro

c
e

s
s

o
r

SRAMDMA

B
rid

g
e

APB

B
rid

g
e

B
rid

g
e

B
rid

g
e

B
u

ffe
r

S
D

U

E
N

E
T

E
N

E
T

B
u

ffe
r

S
la

v
e

 2

M
a

s
te

r 2

S
D

U

J
T

A
G

T
A

P

C
o

n
tro

lle
r

SDU

M
a

s
te

r1

1
2

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

125

1- AMBA 3 AXI bus protocol checkers adopted from ARM [121]

2- The PCI bus protocol checkers adopted from [122]

3- Memory Controller

4.6.2. AMBA 3 AXI bus Protocol Checkers:

The AXI bus protocol is an enhancement of the existing Advanced High-

performance Bus (AHB) that is being used in high-performance systems [121].

AXI protocol has five independent unidirectional channels that carry the

address/control and data. Each channel uses a two-way valid and ready

handshake mechanism. The five independent channels are the Address-Read

(AR) channel, Address-Write (AW) channel, Read-Data (RD) channel, Write-

Data (WD) channel, and Write Response channel. The AW and AR channels

convey the address and control for read and write transactions. Control signals

describe the nature of transactions.

A transaction can be a burst of different lengths, or it can be atomic. A burst

is composed of a number of data transfers, whose length is defined before.

Masters and slaves communicate through the WD and RD channels. A slave

signals the completion of a write/read transaction or an error through a Write

Response Channel (B) [121].

A support for a burst transaction with only an issued start address and split

transactions supporting out-of-order transaction completions are among other

features of AXI [121].

Each transaction contains an ID; transaction with the same ID must be

completed in order. However, the order is irrelevant for transactions with no ID.

The out-of-order transaction completion improves on system performance. A

data item of an earlier access might be available from an internal buffer sooner

than that of a later access (temporal locality). In our experiments, we

considered 154 assertion-checkers adopted from AXI bus protocol [121]. The

configurable AXI settings include different data-bus widths and support for a

varying number of outstanding transactions. In our experiments, we make use

of the particular settings listed in Table 4.1.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

126

Table 4.1. AXI Configuration Settings

Parameter Value Specification

DATA_WIDTH 64 Data bus width

ID_WIDTH 4 The required number ID bits

MAXBURST 16 Size of Content Accessible Memory (CAM) for storing
outstanding read burst transactions

MAXWBURST 16 Size of Content Accessible Memory (CAM) for storing
outstanding write burst transactions

MAXWAITS 16 Maximum number of cycles between VALID->READY before a
warning is generated

4.6.3. PCI bus Protocol Checkers

The Peripheral Component Interconnect (PCI) bus is being used as an

interconnection among high-performance peripherals such as network cards,

sound cards, modems, extra ports such as USB or serial and other add-in

boards. Although developed by Intel, it is not tied to any particular family of

microprocessors [119]. The PCI local bus is a 32-bit or 64-bit bus with

multiplexed address and data lines [119]; itt run at clock speeds of 33 or 66

MHz. For instance, the PCI bus can yield throughput rate of 264 MBps at 64

bits and 33 MHz. Although PCI bus is being replaced by PCI Express, most

motherboards are still made with one or more PCI slots, which are sufficient for

many uses. In our experiments, we have considered 40 assertion-checkers

from [122] that monitor the properties of the PCI bus protocol and perform

compliance testing for the devices connected to the bus.

4.6.4. SDRAM Controller

There are a lot of timing parameters for SDRAM devices and assertion

based verification can be used effectively to verify these timing requirements.

Figure 4-18(a) shows a memory controller through which the processor

communicates with SDRAM, SRAM and Flash memory. SDRAM, as one of the

common complex slaves, provides high bandwidth by executing memory

requests in parallel. As shown in Figure 4-18(b), SDRAM contains a 3-D

structure that involves banks, rows, and columns. Having multiple independent

banks in a 3-D structure, enables memory scheduler to service serial requests

in parallel; moreover, commands to different banks can be pipelined. The

Address bus is divided into three parts: Bank Address (BA), Row Address (RA)

and Column Address (CA). The BA specifies one of the banks inside an

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

127

SDRAM, while the RA and CA point to a particular row and column on that

bank. A SDRAM controller accepts commands such as Activate (ACT),

Read/Write (R/W) and Pre-charge (PRE).

Taking the RA and BA, the ACT command activates and transfers a

particular row (RA) inside the bank (BA) to the row buffer after tRCD. The row

buffer serves as a cache to reduce subsequent accesses latency. The PRE

command receives a BA address. It copies the row buffer contents to its

corresponding row in the bank, and then makes the bank idle.

 The R/W command is executed only after a bank is activated and the row

buffer is updated. After either the column access strobe latency (CL) or write

latency (WL), the transfer to or from SDRAM must be completed.

We consider a memory controller module adopted from Gaisler IP-Cores [7]

and 38 assertion-checkers adopted from [121]. The 512Mb SDRAM under

verification is a quad bank SDRAM with a synchronous interface. Each bank is

organized as 8192 rows * 1024 columns * 16 bits. A read and write access to

the SDRAM is burst oriented.

Figure 4-18: a) Memory Controller, b) SDRAM structure

CPU Memory

Controller

SDRAM

SRAM

FLASH

Row Address (RA)

ACT(RA, BA)

Command

Address

Data

Bank Address (BA)

PRE(RA, BA)

Column Address (CA)
D
at

a

w
id

th

 BA

RA

CA

Bank 4

 (Row Buffer)

Bank 0

 (Row Buffer)

Row Address

RA

CA

a)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

128

4.6.5. Clusters Integration Cost Analysis

We have used Synopsys Design Compiler to synthesize our test cases and

generate the gate level netlist. This tool first is employed to extract the netlist

graph of our test cases. Then, the MBAC [74], [78] was used to create

synthesizable Verilog RTL modules from SVA assertions; consequently, such

modules have been synthesized using Synopsys Design Compiler. In the next

step, the CM graph is created by considering the assertion-checkers and

designs’ netlist graphs. The proposed clustering algorithm is invoked with the

obtained CM graph, the maximum number of clusters allowed to be built into a

debug infrastructure, denoted by “Max_Cluster”, and the maximum number of

assertion-checkers which can be placed inside a cluster, marked by

“Max_Checker”.

Using the inequalities given in Eq. (4.10) and Eq. (4.11) as well as

considering the width of trace buffer, it is possible to obtain a range of valid

configurations. In the inequality of Eq. (4.10), is the number of trace-

registers that can be embedded into trace data.

 ⌈ ⌉ (4.10)

A valid configuration is denoted by . In our

experiments, a 16-bits trace buffer is assumed. Assertion-checkers inside the

AXI bus protocol checkers can be configured based upon the following

arrangements:

{ (14,11,1), (15,11,1), (16,10..11,1), (17,9..11,1), (18,9..11,1), (19,8..11,1),

(20,8..11,1), (21,8..11,1), (22,7..11,1), (23,7..11,1), (24,7..11,1), (25,7..11,1),

(26,7..11,1), (27,6..11,1), (28,6..11,1), (29,6..11,1), (30,6..11,1), (31,5..11,1),

(32,5..11,1)}.

Figure 4-19 and Figure 4-20 plot these configurations for AXI bus and

SDRAM controller protocol checkers. The x-axis in these figures represents a

configuration number.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

129

Figure 4-19: Different arrangements for assertion-checkers related to AXI bus
protocol checkers

Figure 4-20: Different arrangements for assertion-checkers related to SDRAM
Controller

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Configurations

C

Max Checker

Max Cluster

0 10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

Configurations

C

Max Checker

Max Cluster

(C
,

M
ax

_
C

h
ec

k
er

,
M

ax
_

C
lu

st
er

)

(C
,

M
ax

_
C

h
ec

k
er

,
M

ax
_

C
lu

st
er

)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

130

To compare the proposed clustering algorithm with the non-clustering

scheme proposed in [97], we synthesized a large set of the assertion-checkers

using Synopsys Design Compiler and the TSMC 65 nm technology library at

supply voltage 1.00 V.

 Table 4.2 lists the resulting silicon area, number of ports and energy

consumptions. The area usage is also reported in terms of Gate Equivalents

(GEs), which is the number of 2-input NAND gates.

As shown in Table 4.2, the module that involves AXI protocol checkers

contains 1290 ports; An output port is associated to each assertion-checker,

and the number of assertion-checkers in this module is 154; therefore, the

required number of monitoring ports is (1290-154) = 1136. Such a large

number of monitoring ports result in a huge wiring overhead as well as

increases in energy consumptions. As Table 4.2 presents, the debug module

containing AXI bus protocol checkers consumes more energy than another two

modules. The debug modules in the SDRAM controller and PCI Bus protocol

contain 9 and 35 monitoring ports, respectively.

 As explained in Section 4.5, the maximum coverage of a design can be

obtained once the number of available monitoring ports is specified. By

assuming a predefined set of monitoring ports, we performed the design

coverage analysis on the case studies. In our experiments, we consider 32

available monitoring ports to the debug circuitry.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

131

Figure 4-21: Maximum Design Coverage of a Device complaint with AXI bus protocol checkers in Different Configurations

Table 4.2: Implementation Results: Clustering versus Non-clustering

Test Cases Number of
Assertions

Gate Equivalent Number of
ports

Design Area
(µm2)

Number of Cells
used from

TSMC 65 nm library

Total
 Power (mW)

AXI Bus
protocol checker

154 7431 1290 10699.22 2763 2.46

SDRAM Controller
Assertions

38 2705 47 3895.08 645 0.68

PCI Bus
Assertions

40 6780 75 9762.16 1805 1.287

20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Configurations

C

Max Checker

Max Cluster

Coverage

65 66 67

Configurations #:

(C
,

M
ax

_
C

h
ec

k
er

,
M

ax
_

C
lu

st
er

)

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

132

Figure 4-21 plots the maximum design coverage achievable by the debug

unit containing clusters of assertion-checkers for the AXI bus protocol. The

maximum achievable design coverage of the SDRAM controller is also plotted

in Figure 4-22.

The analysis of these plots shows that by increasing the number of clusters

the design coverage increases. Another important fact is that by increasing the

limit on the maximum number of assertion-checkers placed inside a cluster, the

design coverage enhances.

Another important observation which can be extracted from these plots is

that after reaching a certain cluster counts, the design coverage saturates and

no longer increases. For example, for the AXI protocol checker the maximum

design coverage is obtained using this configuration (29,11,1) ; such

configurations for the PCI protocol checkers and the SDRAM controller are

(14,12,1) and (8,11,1), respectively.

The important consideration here is that by assuming that a limited set of

monitoring port exists, the clustering approach leads to a significant increase in

the design coverage compared to the non-clustering mechanism. Although the

design coverage using non-clustering method is not reported in [97], assuming

the limited number of monitoring points and using our mechanism presented in

section 4.5, we computed the design coverage. It turned out that when the

required number of monitoring ports is far beyond the available ports, the

obtained design coverage using the non-clustering approach is significantly

low. For instance, assuming that the available monitoring ports is 32, the

maximum design coverage for AXI bus protocol checker achievable by the

non-clustering scheme is 45%, which is less than that of clustering approach.

On average the clustering scheme of placing assertion-checkers inside a

debug circuitry results in 38% improvements in the design coverage of AXI

protocol checkers. Such improvements for the PCI bus protocol and SDRAM

controller are 15% and 6%, respectively. Therefore, if a debug circuitry

consisting of assertion-checkers is connected through a large set of wires

(monitoring ports) to a design under debug, it is highly beneficial to resort to the

clustering mechanism to place assertion-checkers into the debug module.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

133

Figure 4-22: Maximum Design Coverage of a SDRAM Controller in Different
Configurations

Figure 4-23 plots the energy consumption of the debug module containing

the assertion-checkers associated with the AXI bus protocol. The energy

consumptions of the debug module containing SDRAM controller assertion-

checkers with respect to different configurations is shown in Figure 4-24. As

seen in these figures, the increases in the number of clusters result in higher

energy consumptions.

The important consideration here is that the clustering scheme in general

results in a drop in energy consumption in comparison to a non-clustering

approach. One can simply associate such a decrease in the energy

consumptions to the reduction on required number of request lines in data

selector module, shown in Figure 4-15 (b).

0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

Configurations

C

Max Checker

Max Cluster

Coverage

configuration. #

[27,28,29]

D
es

ig
n
 C

o
v
er

ag
e

%

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

134

Figure 4-23: Energy consumption of clustering scheme versus non-
clustering mechanism: AXI bus protocol checkers

Figure 4-24: Energy consumption of clustering scheme versus non-clustering

mechanism: SDRAM controller

0 10 20 30 40 50 60 70 80 85
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

 Configuration (a)

P
o
w

e
r

(m
W

)

Clustering

Non-Clustering [3]

0 20 40 60 80 100 120
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 Configuration (b)

P
o
w

e
r

(m
W

)

 Clustering [3]

non-clustering

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

135

Figure 4-25: Area overhead of clustering scheme versus non-clustering
mechanism in AXI bus protocol checkers,

Figure 4-26: Area overhead of clustering scheme versus non-clustering
mechanism in SDRAM Controller

0 10 20 30 40 50 60 70 80
7320

7340

7360

7380

7400

7420

7440

7460

 Configurations (a)

G
a
te

 E
q
u
iv

a
le

n
t

(G
E

)

clustering method

non-clustering [3]

0 20 40 60 80 100 120
2500

2550

2600

2650

2700

2750

2800

 Configuration (b)

G
a
te

 E
q
u
iv

a
le

n
t

(G
E

)

 Clustering

non-clustering [3]

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

136

Figure 4-25 and Figure 4-26 represent hardware overhead of the debug

module containing the assertion-checkers associated with the AXI bus protocol

and SDRAM controller, respectively. Plus, the area usage is also reported in

terms of Gate Equivalents (GEs), which is the number of 2-input NAND gates.

Increases in the number of clusters lead to a larger area overhead. This results

from the increases in the required number of request lines in data selector

module shown in Figure 4-15 (b). However, the area overhead for the

configurations that provide a better design coverage is less than that of non-

clustering method. Figure 4-27 and Figure 4-28 show energy consumption and

hardware overhead of the debug module associated with the PCI bus protocol,

respectively. Figure 4-27 represents a drop in energy consumption compared

to a non-clustering approach.

Figure 4-27: Energy consumption of clustering scheme versus non-clustering
mechanism: PCI bus protocol checkers

0 10 20 30 40 50 60 70 80 90
6720

6740

6760

6780

6800

6820

6840

6860

Configuration (b)

G
a
te

 E
q
u
iv

a
le

n
ts

 (
G

E
)

Non-Clustering [3]

Clustering

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

137

Figure 4-28: Area overhead of clustering scheme versus non-clustering
mechanism: PCI bus protocol checkers

4.7. Comparisions with the Related work

A summary of the features provided by our proposed method against related

work in [97], [77] is listed in Table 4.3. These features in particular are related

to the assertion-checkers integration in debug infrastructures. As listed in this

table, the proposed method makes use of a graph partitioning to select

assertion-checkers and place them inside a cluster, while the study in [77] uses

a customized “Subset-Sum” algorithm constrained by the available silicon area

as a means to partition assertion-checkers.

It is important to note that the “Cluster-Generator” algorithm shown in Figure

4-8 can be easily parameterized to consider the area constraints. The

proposed method in [97] although advocates the clustering effectiveness

provides no means for partitioning assertion-checkers. Neither the study in [97]

nor [77] considers coverage metrics, while we formally defined coverage

metrics for assertion-checkers and clusters.

The assertion-checkers incorporation inside a scan-based debug

infrastructure and a trace-memory based debug infrastructure has been

0 10 20 30 40 50 60 70 80 90 100

0.7

0.8

0.9

1

1.1

1.2

1.3

 Configuration (a)

P
o
w

e
r

(m
W

)

Clustering

non-Clustering [3]

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

138

addressed in this chapter. We also investigate the integration of a set of

assertion-checkers inside a shared debug unit (SDU) that can be treated as an

independent salve module in bus based SoCs.

As shown in Table 4.3, the method proposed in [77] has not addressed

incorporation of assertion-checkers inside any debug infrastructure. Although

authors in [97] support incorporation of assertion-checkers inside a trace-

memory based debug infrastructure, their scheme is bias toward the use of

internal trace memory and cannot be generalized to support external trace

memory. Neither the study in [97] nor [77] considered the power consumption

issues, while assertion-checkers are active and monitor the properties of the

system.

 We exploit the fact that if there is a bug in a particular part of a system, the

assertion-checkers monitoring the properties related to that part of the system

are more likely subject to failures. Therefore, by means of incorporating the

related assertion-checkers into one cluster, we increase the chance of the root-

cause extraction of errors. Furthermore, when an external debug tool

generates test cases with a primary focus to exercise a precise part of the

system, clusters involved in the validation of that particular module can be

enabled selectively. It is noteworthy that decreasing energy consumption

during debug is important. It has been reported a lot of ICs are failed during the

tests.

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

139

Table 4.3: Proposed Method versus other Related Work

 Partitioning Coverage Power Incorporation in debugging
Infrastructures

Port Count

Our proposal in this chapter Graph partitioning based
on assertion-checkers fan-

in cone set

Formally
defined

Decreases in power
consumptions

Support for Scan-based run-
stop and trace-based

debugging

Reported

Enable interfacing with both
Internal and External Memory
Offer reusability through SDU

The proposed method in
[77]

Subset Sum algorithm
constrained with the
available silicon area

N/A N/A N/A N/A

The proposed method in
[97]

N/A N/A N/A Scan-based run-stop and
Trace-based debugging

Enable interfacing with Internal
Memory

N/A

4 On-Chip Instrumentation Using Clusters of Assertion Checkers

140

4.8. Conclusions

In this chapter, we proposed a new algorithm to cluster assertion-checkers.

Moreover, a mechanism to find the coverage of each cluster is also introduced.

We also presented several mechanisms to incorporate assertion-checkers

clusters into DfD infrastructures. The efficiency of the proposed methods is

investigated using AXI bus, PCI bus protocol checkers, and SDRAM memory

controller checkers. As explained in Section 4.6, the clustering algorithm, along

with the proposed infrastructure leads to better results in terms of the energy

consumption and design coverage compared to a non-clustering approach.

141

5. Hierarchical Trigger Generation for Post-silicon
Debugging

Abstract-

The main goal of post-silicon debugging is to locate errors undetected

during the pre-silicon verification. Although high speed of hardware

prototype can be leveraged to expedite running a large number of

realistic test vectors, the low level of observability and controllability of

signals inside a prototype is a big concern. Design for Debug (DfD)

techniques aim to improve the observability of signals and speed up the

root-cause analysis of errors. Incorporation of an Embedded Logic

Analyzer (ELA) is introduced as one of the practical DfD techniques. An

ELA contains a trigger unit that controls conditions for which trace

signals should be captured in a buffer for post-processing. In this

chapter, we propose a tool to generate hierarchical triggers, providing

compact trace information for root-cause analysis. Major advantages of

our technique as a means to generate trigger units are: 1) failure

localization and root-cause analysis is expedited by keeping the

hierarchical trace of interactions leading to failures, 2) overlapped failure

patterns can be found by mechanism which results in a 60-65 %

reduction in hardware overhead compared to the previously proposed

method, 3) it can be parameterized to generate several units, making it

possible to incorporate checkers into scarce silicon area and enabling

on-chip debugging by means of time-multiplexing scheme.

5.1. Introduction

As mentioned in the previous chapter, post-silicon validation promises to

complement the design verification task. Once a SoC design passes all checks

within pre-silicon verification, post-silicon validation begins its mission on the

fabricated prototype of systems. Because post-silicon validation is carried out

5 Hierarchical Trigger Generation for Post-silicon Debugging

142

on the actual hardware, a larger number of functional tests can be applied at

real-time. Moreover, realistic corner cases are more likely to be exercised than

in simulations, and thus there will be a better opportunity to catch hard-to-

detect bugs. Post-silicon validation in general involves four steps: failure

detection, failure localization, root cause analysis and, finally, correcting (or

bypassing) the problem by patching [80], [103].

 Ensuring a new product meets the strict time-to-market deadline has

become necessary, making the process of discovering defects and bugs in a

timely and cost-effective manner a must.

Various Design-for-Debug (DfD) techniques have emerged [1], [66], to

improve observability and controllability of complex systems, facilitate failure

detection and root cause analysis. An Embedded Logic Analyzer (ELA) that

adopts a trigger unit and trace buffers to capture the debug data in real-time

are considered in [70], [87]. However, the proposed ELAs have the following

limitations: first, the amount of data that can be acquired in a debug experiment

is limited; second, the incorporated trigger units are unable to provide sufficient

details facilitating root-cause analysis, and cannot be tuned well.

In this chapter, we propose a trigger generator tool, called ZiMH, which

solves the issues related to integration of assertion-checkers inside trigger

units and builds an RTL model of the trigger unit. The generated circuit

provides trace information suitable for root-cause analysis and error

localization. Furthermore, it has a fine control over the conditions required to

capture trace signals.

5.1.1. Contributions

The unique contributions of this chapter towards the incorporation of

assertions into the trigger unit for post-silicon debug are in the following:

 Discovering the fact that by tracing the hierarchical properties of a

system and its interaction with trace signals monitored by trigger unit,

failure localization and root-cause analysis can be expedited.

 Introducing the means to separate trigger units into several modules,

making it possible to incorporate into a limited silicon area and enableing

on-chip debugging using a time-multiplexed fashion.

5 Hierarchical Trigger Generation for Post-silicon Debugging

143

5.1.2. Chapter organization

The remainder of this chapter is organized as follows:. The terminology and

the background will be introduced in Section 5.2. Parallel Hierarchical Graph

Schemes (PHGS) and their implementations using Parallel Hierarchical Finite

State Machine (PHFSM) are introduced in Section 5.35.3. Section 5.5 explains

our proposed method for hierarchical trigger generation. The experimental

results will be shown in Section 5.7.

5.2. Preliminaries and Background

5.2.1. Definitions

This section provides some definitions related to the finite automata

implementations of checkers. As customary, finite Automaton (FA) is a tuple

 , where is a nonempty finite set of states, is a set of

symbols that represent Booleans expressions and signals inside a Circuit

Under Debug (CUD). In this FA, is a transition relation

consisting of a subset of triples from { | }, is a

non-empty set of initial states, and is a not empty set of final (or

accepting) states.

The checker generator converts assertions to FA. The assigned FA can be

either in Completion (Acceptance) Mode or in Failure Mode. The sequences of

signals, satisfying a particular assertion, lead to the accepting state in a

Completion Mode automaton, whereas failure mode FA conversely detects

sequences of signals leading to assertion failures. For the purpose of this

chapter, once an assertion converts to a FA in either mode, it is referred to as a

checker.

To coordinate the execution of checkers inside our trigger unit, we use the

notion of macro-operations and instructions.

DEFINITION 5.1: A macro-operation corresponds to a particular checker.

A subset of macro-operations from the set { } denoted by is

called a macro-instruction. If a macro-instruction includes more than one

macro-operation, e.g.,{ }, then the checkers associated with these macro-

operations should be executed in parallel.

5 Hierarchical Trigger Generation for Post-silicon Debugging

144

The internal operations of the proposed trigger unit are controlled by a set of

controlling signals, which are called micro operations and instructions.

 DEFINITION 5.2: A micro-operation is a controlling signal that shows

operations expected to be carried out under certain conditions. A subset of

micro-operations from the set { }, denoted by is called a micro-

instruction.

DEFINITION 5.3: The directed graph called the Hierarchical

Graph Scheme has vertices which can be of two types, rectangular and

rhomboidal. Rectangular nodes either contain combinations of micro and

macro-instructions, or represent current status of a HGS. Rhomboidal nodes

contain subsets of elements from the set { }, where { } is the

set of trace signals, and is the set of logic conditions built over trace signals.

For instance, as an entry/exit point, a HGS has rectangular nodes called

‘Begin’/ ‘End’, Figure 5-1. A particular exit point, called ‘Fail’ node, indicates

that the corresponding checker is failed. Rhomboidal nodes perform output

edge branching depending on logic conditions.

DEFINITION 5.4: A rectangular node with a macro-instruction consisting

of more than one element is called a merging point. A Parallel Hierarchical

Graph Scheme (PHGS) is a HGS that can contain merging points as its

vertices.

Begina)

End

c) Fail

b)

z1, z2

y1, y2

d)

Micro instructions : {y1, y2, ..yn}

Macro instructions : {z1, z2, ...zn}

e)

f)

Merging point

x1, x2

Figure 5-1: Parallel and Hierarchical Graph notations

5 Hierarchical Trigger Generation for Post-silicon Debugging

145

5.3. Implementation of Parallel and Hierarchical Graph Schemes

The HGS and PHGS are used to describe the behavior of complex digital

systems [12], [101]. We adopt HGS and PHGS in our trigger generation

mechanism to enhance the process of root-cause analysis and represent

existing parallelisms and dependencies among checkers.

A procedure to generate a HGS from FA representing an assertion is

outlined in Figure 5-2. Here, both failure mode and acceptance mode FA of a

checker are used to generate a corresponding HGS. The proposed trigger

generator maps the automaton of each assertion checker to a macro-operation

().

It is important to note that the graph obtained using this procedure exhibits

no parallelism, i.e. there is no merging point in the resulting graph.

5 Hierarchical Trigger Generation for Post-silicon Debugging

146

Figure 5-2: Generating HGS from the FA that represent an assertion in an
acceptance and failure mode

Examples of the HGS obtained from the assertions in Section 4.2.1 are

shown in Figure 5-3 (c), (d). In this figure, the automata of the assertions A1

and A2 are mapped to the HGS associated with macro-operation and ,

respectively.

// This algorithm generates an HGS from the FA representing a //checker in

acceptance and failure mode

//inputs: FA = (Q, Σ, δ, I, F) (in both failure and acceptance mode)

//where ‘Q’ is a nonempty finite set of states, ‘Σ’ is a set of symbols

//representing Booleans expressions and signals

HGS_Generator (,) {

1. Generate an empty graph;

2. ->Maximum_Hierarchy =0;

3. ->generate(begin-node, fail-node);

4. Precondition = ∏

5. 5. RhNode0 ->add (precondition, begin_node);

6. 6. For each {

6.1. RecNodei= -> generate(Rectangular-node);

6.2. RhNodei = -> generate(Rhomboidal-node);

6.3. RhNodei-> add_ micro-instruction (

∏

6.4. RhNodei->mark_outgoing_states(); // Rhomboidal nodes are

//connected to an appropriate state

6.5. ->Maximum_Hierarchy++;

7. For each RhNodei {

7.1 . Update RhNodei connection to RecNodei

7.2. -> generate(end-node);

 } // 7

8. For each RhNodei based on

8.1. Update RhNodei connection to the end-node

9. Return

}

5 Hierarchical Trigger Generation for Post-silicon Debugging

147

assert always ({$rose(req)} |=>{req[*0:2] ; req&grant});

S1 S2

true

req

!Req &!grant

S3 S4!Req &!grant

!grant

req&!grant

S5

Begin

y1

a0:

a1:

req,grant

z1

a2:

req, grant

Fail

z1 y2

a3:

req

z1

!r
e
q

0

1

req, grant

y3z1

assert always ({$rose(req)} |=>{req[*0:3] ; (req&grant) ##1 valid});

S1

S2

true re
q

!Req &!grant

S3 S4!Req &!grant

req&!grant req&!grant

S7

S5
!Req &!grant

req&!grant

!g
ran

t

Rrecursive call
On (req==1)

(1)

grant S6

!v
al

id

End

a) b)

c)

precondition

1

2

3

Req

precondition

Req

y2, y7 y2, y6

 y1-> push to stack/first_activation

 y2..y5-> push to stack

 y6-> signal completion

 y7-> pop from stack and signals error

0

4 5

Begin

y1

req,grant

z2

req, grant

z2 y2

req

z2

0

1

req, grant

y3z2

1

2

3

y2, y7

y2, y6

0

6

7

z2 y4

y5z2

4

5

Fail req, grant

valid

Rrecursive call
On (req==1)

End

1

0

!Req

a0:

a1:

a2:

a3:

a4:

a5:

req&!grant

re
q
&

g
ra

n
t

re
q
&

g
ra

n
t

req&grant

re
q
&

g
ra

n
t

re
q
&

g
ra

n
t

req&grant

!r
e
q

!r
e
q

!r
e
q

!req

Figure 5-3: a) Automaton for the assertion (A1), b) Automaton for the
assertion (A2), c) HGS corresponding to (A1), d) HGS corresponding to (A2)

5.4. Parallel Hierarchical Finite State Machine (PHFSM)

Schemes defined by HGS and PHGS will be synthesized using a Parallel

Hierarchical FSM (PHFSM) controller that we introduce next.

 A PHFSM is the six-tuple , where { }

is a finite set of states, is an initial state, { } is a finite

set of input vectors, where { }, { }, { } is a

finite set of output vectors, { } , { } , the transition

function ‘ ‘, which is defined as , maps to an element of A.

5 Hierarchical Trigger Generation for Post-silicon Debugging

148

Based on this function, the next state depends on the current

state and the input vector : . The

function “ ” defines output vector from the set { }. As

Figure 5-4: shows, the level of parallelisms in PHFSM is defined by and

PHFSM contains a Module-Stack and a separate FSM-Stack for each level.

Module-Stack keeps track of active modules (checkers), whereas FSM-Stacks

store the current state of modules. An item from Module-stack and FSM-stack

is a subset of and where { } , and { }.

The maximum number of parallel modules is denoted by p, and h indicates

the state counts of each module. Regarding state transitions, we have:

 . However, as per Figure 5-4,

are the functions of , meaning that is

equivalent to

As shown in Figure 5-4, separate and signals are connected

to each . Two other “ ” and signals are common among

stacks.

x1 xL

Flat Combinational

Circuit (CC)

{y1...yn}

Module

Stack

New

module

input

output

Current

module

push1

pop1
Register File

Y(t):

{x1...xL}X(t):

ϴ1(t+1)ƞ1(t+1)

p

push1

pop1

pushp

p

SYNCHRONIZATION

ƞ1(t)

ƞp(t+1)

ƞp(t1)

ϴp(t+1)

FSM

Stack

Register

File

a(t)

a(t+1)

...

...

... ...

...
ϴp(t)

...

...

pushp

Figure 5-4: Parallel Hierarchical Finite State Machine (PHFSM)

5 Hierarchical Trigger Generation for Post-silicon Debugging

149

There are two ways of implementing PHFSM [98], [101]:

1) Flat combinational circuit, such as Figure 5-4, where all modules are

implemented inside one combinational block.

2) Bounded combinational circuit, where synthesis for each module (HFSM)

corresponding to the HGS of a checker is performed independently; thus, the

combinational unit will be divided into autonomous segments in such a way

that each segment implements only one checker.

Although the first approach is easier to implement, it is subject to losing the

modularity during the implementation. We resort to the second approach to

synthesize PHFSM because hierarchy and modularity are preserved,

enhancing the root-cause analysis accuracy and speed. Inherent

characteristic of PHFSM that we exploit are: 1) Trace backing: to trace the

history of events and transitions occurring in a system, one can investigate the

current state of PHFSM as well as its level FSM-Stack and Module-Stack, 2)

Recursive calls: PHFSM and its subset HFSM allow recursive calls. This

feature is used to unfold the root-causes of overlapped sequences.

By our method, checkers are associated with HFSM, for example modules Z1

and Z2 in Figure 5-5 (b), and the trigger unit consisting of a group of checkers is

controlled by means of a PHFSM. Example of a PHFSM based controller is Z0

in Figure 5-5 (b).

A module identifier is assigned to each HFSM module, which uniquely

specifies individual checkers. The maximum hierarchy associated to

a is denoted by The indicates the number of clock cycles over

which the can span and is obtained using the algorithm outlined

earlier in Figure 5-2.

The maximum number of HFSM units that can be executed in parallel is .

The core of the proposed trigger unit is a PHFSM-based controller.

Hierarchical invocations inside a trigger fall into two distinctive groups: 1)

Recursive calls, where the module related to the current sequence reactivates,

2) Parallel calls, where the modules related to the other checkers are invoked.

As per Figure 5-5 (a), at time t0, t2 the module related to Z0 and Z1 are invoked,

5 Hierarchical Trigger Generation for Post-silicon Debugging

150

respectively. Consequently, the Module-Stack and FSM-Stack associated with

Z0 (PHFSM) are updated.

The activation of the signals in the antecedent of a checker causes a

recursive call to the corresponding checker. As shown in Figure 5-5 (a),

reactivation of the precondition signal at time (t0, t1, t2), causes the state of the

current module be pushed to the Z1 FSM stack.

Once the HFSM of a checker Z1, Figure 5-5 (b), reaches its final state,

indicating either the completion or failure of the current checker, its FSM stack

is popped. The micro-instructions { } placed on the rectangular nodes

specify the proper operations that are expected to be carried out.

z0

M
o

d
u

le

S
ta

c
k
 2 FSM Stack

Z0
a0, a1, a2

0, 1, 0z1

1

req

push

t0

t2

Begin

y1

a0:

a1: z1

a2:

Fail

z1 y1

a3:

Req1

!R
e
q

1

1

req1, grant1

y1z1

End

!R
e
q
1

1

2

3

Current State

0, 1, 0

a0, a1, a2

Pop &complete

Pop & error

cur_state

Push

z0

M
o

d
u

le

S
ta

c
k
 2 FSM Stack

Z1

0, 1, 0z1

2

req

push

Current State

0, 1, 0

a0, a1, a2 0, 1, 0z1,z2

a)

0

4 5
y3 y2

req1, grant1

req1, grant1

t2

Clock

req1

t3t0 t1

req2
precondition

Req2==1

precondition

Req1==1

Begin

z0

y1, z1, z2

End

a0:

a1:

a2:

y3, y2

req1,req2

R
e
q
1
&

g
ra

n
t1

R
e
q
1
&

g
ra

n
t1

z1

a0, a1, a2

b)

Parallel invocation

z0

z1

z2

FSM Stack

Z1

z1

1,0,0,0,0

1 req1 2 req1 FSM Stack

Z1

z1

push

push

a0,..a5 a0,..a5

1,0,0,0,0

1,1,0,0,0

Recursive Invocation

t0

t1

z1

2 req1 FSM Stack

Z1

z1

push

a0,..a5

1,0,0,0,0

1,1,0,0,0

t2

1,1,1,0,0

PHFSM

HFSM

Figure 5-5: a) Parallel and Recursive calls (reactivation of the precondition),
b) the PHGS related to Z0 HGS related to “A1” explained in Section 4.2.1

5 Hierarchical Trigger Generation for Post-silicon Debugging

151

ZiMH

Trigger Generation

rose(req) |=>{req[*0:3] ; req&grant }

SVA/PSL

Assertion

Incorporating ELA with

The proposed Trigger unit

Post-silicon
PHGS

Trigger

1

2

3

ELA4

Acceptance Mode

Failure Mode

MBAC S1

req

S2

req

Req & grant

S5

Req & grant

S3

req S4 R
e

q
 &

 g
ra

n
t

S1

S2

true

req

!Req &!grant

S3 S4
!Req &!grant

!grant

req&!grant req&!grant

S5Failure

mode

Acceptance

mode

1 Checker => HGS

Multiple HGS =>

PHGS => PHFSM

Multiple PHFSM=>

Trigger =>

P: Maximum Parallelism

Tcount: Thread Counts

Hi: Maximum Hierarchy

Figure 5-6: Trigger generation steps

5.5. Generating a Trigger Unit from a Set of Checkers

The steps required for building the hierarchical trigger unit are shown in

Figure 5-6. First, a set of synthesizable finite automata is associated to the

checkers by MBAC checker generator tool. To be incorporated into a specific

location of a design, FA are then provided to our tool, ZiMH. After undergoing

the trigger generator steps, Figure 5-6, this tool produces a set of individual

units based on the synthesizable PHFMS core corresponding to the automata

obtained from the MBAC tool.

5.5.1. Post-Silicon Trigger Generator

The first task of ZiMH is to associate HGS to the checkers represented by

FA. The procedure that generates a HGS using both failure and acceptance

mode FA is outlined in Figure 5-2. During the process of HGS extraction, the

maximal hierarchy for each checker, depicted by , is obtained. This

parameter indicates the maximum number of clock cycles a can be

active.

A suitable set of micro-instructions are placed on the rectangular nodes of

HGS. For instance, any recursive call, occurring once the precondition signals

of a checker activate, is handled by means of a , whereas,

transitions to final or failure states are handled by a combined

with other Microinstructions, signaling the completion or failure.

5 Hierarchical Trigger Generation for Post-silicon Debugging

152

In the next step, our tool generates a PHGS from a set of HGS produced in

the previous step. The parameter that is considered during the PHGS

generation is the maximum allowable parallelism, depicted by . This variable

shows the number of HGS that can be incorporated inside a PHGS. It is

important to note that due to the overhead in interfacing the trace signals to the

central trigger unit, it is not always feasible to place all PHGS inside one trigger

unit.

Architectural limitations of the final PHFSM controller dictate higher limits on

the number of HFSM modules that can be incorporated inside a trigger unit. As

shown in Figure 5-4, represents the numbers of FSM-Stacks inside PHFSM,

whereas indicates the cumulative size of stacks. For example, by using a

register file of size for FSM/Module-Stack, the trigger unit can support

levels of hierarchy; however, this stack is divided among parallel modules

(∑

). Due to the limitation in the total number of available memory, a

HGS may not be able to acquire its demanding memory.

 For instance, if a checker spans over 100 clock cycles, its corresponding

HGS requires the same size Stacks. Our tool makes use of a new parameter

called thread counts (), indicated in Figure 5-6. This parameter restricts

the size of available stack for each HGS to . If a particular HGSi needs

the stack of size and then the hardware associated to the HGSi

will have a stack of size , otherwise, the produced unit is forced to use the

stack of size . However, the stack-pointer of each HGSi always ranges

from 0 to

In the last step before generating PHFSM and its trigger unit, PHGS is

annotated with failure information. In other words, each micro-operation from

 { } is assigned with a specific action. During the post-processing

and error root-cause analysis, we use this information to find the root causes of

errors immediately. Also, trace buffer controller can be programmed to capture

data once it detects a specific vector of , leading to finer controls over the

time to capture internal signals.

The algorithm that generates HFSM and PHFSM is outlined in Figure 5-8.

Having considered , total available storage and maximum hierarchy of

5 Hierarchical Trigger Generation for Post-silicon Debugging

153

each HGS, our tool generates the related HFSM. Afterwards, our tool

generates a central PHFSM-based controller as a means to control the

activation of each HFSM.

5.5.2. Overlapped Failure Patterns Detection

As noticed in [80], the main burden in synthesizing checkers for precise

debug purposes is the detection and root-cause analysis of overlapped

patterns. Assertion threading is proposed as a technique to deal with this issue

in [81]. Figure 5-7 illustrates how assertion-threading works on the assertion

from Section 4.2.1 by creating multiple checker instances.

To locate the root cause of overlapping failure patterns, the related

automaton to is separated to two parts: 1) precondition automaton, 2)

sequence automata [74], [80]. As shown in Figure 5-7, since the precondition

automaton has a self-loop with a true condition in the initial state, it

continuously triggers once it sees the “ ” signal. The activated token []

from the precondition signal should be redirected to a sequence detector. The

dispatcher redirects this token to multiple sequences in a round robin manner

[74]. Overlapped failure patterns can be root-caused with the assertion-

threading method [74], [80]. However, this technique imposes a huge hardware

overhead because it needs replicated circuits for each sequence automaton

and a dispatcher unit.

S0

S2

req

!Req &!grant

S3

S4

!Req &!grant

!grant

req&!grant
req&!grant

S5

S2
!Req &!grant

S3

S4

!Req &!grant

!grant

req&!grant req&!grant

S5

S2

!Req &!grant

S3

S4

!Req &!grant

!grant

req&!grant
req&!grant

S5

R
o

u
n

d
 R

o
b

in
 D

is
p

a
tc

h
e

r

S1

token

always ({$rose(req)}

|=>{req[*0:2] ; req&grant}

fire

T[1]

T[3]

T[2]

Figure 5-7: Assertion threading mechanism

5 Hierarchical Trigger Generation for Post-silicon Debugging

154

Figure 5-8: Generating a central PHFSM from a set of HGS representing

checkers

5.5.3. A Complete Example

An example of the failure root-cause analysis inside the generated trigger

unit is illustrated in Figure 5-11. There are two modules inside the PHGS (z0

// The algorithm generates a PHFSM from a set of HGS

PHFSM_Generator (HGS G[], P, Threading_Counts) {

1. While(i < P)

1.1. If (G[i]->Maximum_hierachy> Threading_Counts)

Generate_HFSM(G[i], Threading_Counts)

1.2. else

Generate_ HFSM(G[i], G[i]->Maximum_hierachy)

}

// The algorithm generates a HFSM from a HGS

Generate_HFSM (HGS G, Hierarchy) {

1. Geneate_FSM_STACK (Hierarchy)

2. Generate an Empty (NFA)

//Non deterministic Finite State automata

3. For each

3.1. NFA->Add()// add a new state to the NFA

3.2. For each Microinstructioni in

3.3. Connect (NFA-> , Microinstructioni)

// for instance, push or pop to stacks.

4. For each {

4.1. NFA->Add()// add a new state to the NFA

4.2. For each Microinstructioni in

4.3. Add (NFA-> , Microinstructioni)

5. For each Rhomboidal-node)

5.1. = -> entry-node()

5.2. = -> exit-node()

5.3. NFA->connect(,)

}

}

5 Hierarchical Trigger Generation for Post-silicon Debugging

155

and z1). The module z1 is generated from the property in Section 4.2.1. The

maximum hierarchy associated to z1 based on the algorithm presented in

Figure 5-2 is 5; in other words, there is a possibility of 5 overlapped failures in

z1 and the circuitry generated to monitor z1 must be able to detect and root-

cause such overlapped failures. Module z0 is the central PHFSM based

controller inside this trigger unit. As shown in Figure 5-10, both Module and

FSM stacks are set aside for z0. Two overlapped failure patterns that activate

failure status in z1 are shown in this figure.

When z1 is active, the activation of the request signal, resulting in a call to

z1, (time t0 and t1), causes recursive activation of the same module using

previously allocated FSM stacks (Figure 5-10 (b)). As a result, the related

micro instruction (push to FSM-STACK) is executed and the current status of

z1 is placed into that stack. Therefore, the stack-pointer increases and directs

to the new entry in the stack.

 Once there is a transition to a terminal state in z1 (either the failure or

accepted state), the related microinstruction is executed, activating the “pop”

signal of the FSM stack and the module stack. As shown in Figure 5-10, due to

a transition to the final state at time t2, the FSM stack is popped; on the other

hand, once there is a transition to a failure state, assertion violation is triggered

and the root cause analysis is started using the debug traces, already stored

inside the Module and FSM stacks. To pinpoint the root causes of failures, one

needs to compare the current state of HFSM associated to a checker with the

previously stored states on the stack. Figure 5-10 outlines the steps required to

pinpoint the causes of failures.

In our example, at time t3, due to the activation of just one microinstruction

() related to a transfer to a failure state, first the stack-pointer is decremented

to point to the second entry in the stacks. Then, the stack top is compared to

the current state of HFSM and a root cause analysis is performed. Because the

number of stored states in stack pointer is one, it can be deduced that only one

previously active request has not yet received its grant signal. Moreover, the

differences between the current state of HFSM and the stored state in the

stack indicate the state at which the failure occurs.

5 Hierarchical Trigger Generation for Post-silicon Debugging

156

.

Figure 5-9: Pinpointing overlapped failure patterns

As mentioned in Section 5.3, as long as an assertion is active, the stacks have

an entry that shows the module identifier associated to that particular assertion

and the first active state in this module.

Begin

z0

y1

y1, z1, z2

y3 , y1

End

a1:

y4 , z4, z5

Parallel

req

F
S

M

S
ta

c
k
 1

z0

Begin

y1

req, grant

z1,

req, grant

Fail

z1, y1

Req

z1

!R
eq

&
!g

ra
n

t

0

1

req, grant

y1z1,

End

!R
eq

&
!g

ra
n

t

1

2

3

R
eq

&
g

ra
n

t

0

F
S

M

S
ta

c
k
 0

M
o

d
u

le

S
ta

c
k
 0

Z0

h

1,0..,0

Z1,2 0,0,1,..0

1,0,0..,0

1,1,0..,0

R
eq

&
g

ra
n

t

z1

a0,..a5

4 5

1,0,1,0,0,1Current state:

a0,..a5

1,0,1,0,1,0

F
S

M

S
ta

c
k
 1

1,0,0..,0

1,1,0..,0

z1

Stack-Pointer

a0,..a5
a0,..a5 a0,..a5

y3:pop &

complete

t2

Clock

req

(pop)

grant

(pop)t3t0 t1

y2 y3

 y1-> push to stack

 y2-> pop from stack and signal

error

 y3-> pop from stack and signal

completion

 y4-> Trigger Unit reconfiguration

a0:

a2:

a3:

a4:

a5:

a0:

a1:

a2:

a3:

a4: a5: Time= t2

Micro Inst.

Time= t3

y2:pop& error

1,0,1,0,1,0

1,1,1,0,0,0

Susceptible Edges

1,1,1...,0

e1

Susceptible edge: e1

Current state:

Top Stack

(x1,x2)

Figure 5-10: Proposed root cause analysis

// The detection of the causes of failures for overlapped sequences

FailurePinpointing (Micro-Instr.[] y, P, Threading_Counts) {

1. Failure_counts = #Active Micro Instr.(y)

2. While (i < Failure_counts)

2.1. Susceptible_edges= Difference(Current_State, Top_Stack)

2.2. STACK_Pointer = STACK_Pointer - 1

}

5 Hierarchical Trigger Generation for Post-silicon Debugging

157

FSM Stack

Z1

z1

1,0,0,0,0

1 req 2 req FSM Stack

Z1

z1

3 req FSM Stack

Z1

z1

push

push

4 req

precondition

Req==1

timet1 t2 t3 t4

Stack Overflow

Req[-h] has not been granted

clock

req

precondition

Req==1

h=5

a0,..a5 a0,..a5 a0,..a5

1,0,0,0,0

1,1,0,0,0 1,1,0,0,0

1,0,0,0,0

1,1,1,0,0

push

FSM Stack

Z1

z1

a0,..a5

1,1,0,0,0

1,0,0,0,0

1,1,1,0,0
1,1,1,1,0

push

5 req FSM Stack

Z1
a0,..a5

1,1,0,0,0

1,0,0,0,0

1,1,1,0,0
1,1,1,1,0

1,1,1,1,1
push

6 req FSM Stack

Z1
a0,..a5

1,1,0,0,0

1,0,0,0,0

1,1,1,0,0

1,1,1,1,0
1,1,1,1,1

push

z1 z1

t5 t6

Figure 5-11: Failure diagnosis using the stack overflow signal

5.6. Using Stack Overflow for Bug Diagnosis

Figure 5-11 shows how the proposed method makes use of Stack overflow

for the failure diagnosis. In other words, not only the generated trigger unit

indicates the failure once it reaches the failing states, but it also uses a stack

overflow signal to root-cause the failure related to sequences that are unable to

reach final states. This figure shows the FSM-Stack for the assertion A1 in

Section 4.2.1. The Boolean expression is the precondition. At time

t1, the current state of z1 (a0, a1,.., a5) is pushed to the FSM-STACK of HFSM

associated to z1 due to activation of the precondition signal. Likewise, as the

precondition signal is active from t2 to t5, the current states of z1 are being

pushed to the FSM-Stacks. However, at time t6, as shown in Figure 5-11 since

the precondition signal is still active while there is no grant for previously issued

request signals another push to the FSM-STACK results in the stack overflow.

5.6.1. Incorporation of Trigger Unit in ELA

In an ELA, trigger signals need to be monitored and the debug traces should

be captured under the control of a trigger unit. Our generated trigger unit

embedded inside an ELA is shown in Figure 5-12. During the post-silicon

debug, it is not always necessary to transfer the trace data stored inside trace

buffer. The current status of ELA, including Module and FSM-Stacks, along

with the trace buffer data, are serialized and sent out. The ELA controller

selects between the serialized data from the trace buffer and the trigger status

unit. The generator tool can be programmed to generate more than one

controller. In this case, as shown in Figure 5-12, the scan-out line is chained. It

5 Hierarchical Trigger Generation for Post-silicon Debugging

158

is also possible to compress the debug data to reduce the bandwidth

requirements [96]. Eq. 5.1 shows the required bandwidth of the trigger unit. In

this equation, represents the maximum hierarchy of placed

in . The trigger unit is divided into separate units.

 = {
∑

∑

 (5.1) ,

 , and

 { }

The inability to transfer vast amounts of trace data off-chip without a

significant slow-down impedes the debugging. As Figure 5-13 illustrates, it is

not always mandatory to transfer big chunks of data stored inside the trace

buffer. Since the data stored in the trace buffer is often significantly larger in

size than the internal status of a trigger unit, the generated trigger unit reduces

the amount of data transferred during the failure root cause analysis. Another

benefit of our approach is that the post-processing software can benefit from

PHGS information to improve the failure root-cause analysis.

Stack Info

Trace Buffer Info

Trigger Signals

T
ri
g

g
e

r
U

n
it

Trigger CTRL

Trace Buffer CTRL

Serializer

Serializer

J
T

A
G

Recorded

Trace

Information

PHFMS1

PHFMS2

Trace Buffer

Figure 5-12: Proposed embedded logic analyzer (ELA)

5 Hierarchical Trigger Generation for Post-silicon Debugging

159

T
ri
g

g
e

r
R

e
c
o

n
fi
g

u
ra

ti
o

n

Checkpoint

Trace Buffer Info

Stack Info

Trace_size

Trace_size

Debug Session #k

Stack Info

Figure 5-13: Post-silicon debug: transferring generated trace-signals off-chip

for analysis in k debug sessions

5.6.2. ELA Integration in SoCs

To allow corrections of silicon bugs or to bypass faulty modules,

reconfigurable elements or programmable-logic fabric are being increasingly

placed into ASICs [65], [93]. Such reconfigurable units can be used to

implement the debugging circuitry. Connections to the reconfigurable fabric are

not shared uniformly among cores. In other words, in a typical SoC design,

various Intellectual Property (IP) cores have different levels of trust. For

instance, IP cores provided by third vendors with the prior successful tape-outs

are considered more trusted than newly developed IP cores [76]. Therefore,

reconfigurable resources to correct or bypass errors are dedicated in a non-

uniform fashion among cores. A debug circuitry built into a reconfigurable fabric

can communicate with a CUD via monitoring points. Our proposed trigger units

can be incorporated inside SoCs’ reconfigurable block. Although the main

purpose of embedding programmable logic cores on SoCs is to provide post-

fabrication flexibility for the design, such programmable cores are good

candidates to host ELAs. Our tool ZiMH is able to generate trigger units based

on two parameters, Threading counts () and maximum allowable

parallelism (). When the number of checkers to be incorporated inside a

trigger unit is larger than the maximum allowable parallelism (), the proposed

tool generates several PHFSM-based units , shown in Table 5.2. These

modules can be placed inside the reconfigurable blocks and one can achieve

the required fault coverage in several rounds.

5 Hierarchical Trigger Generation for Post-silicon Debugging

160

5.7. Experimental Results

This section validates the effectiveness of the proposed method by applying

it to benchmarks suited for the compliance testing. We synthesized benchmark

circuits consisting of assertion-checkers using Synopsys Design Compiler and

the TSMC 65 nm technology library at supply voltage 1.00 V. The following

circuits are considered in order to evaluate our method. These benchmarks are

explained in Section 4.6.1.

1- The PCI bus protocol

2- l checkers adopted from [122]

3- AMBA 3 AXI bus protocol checkers from ARM [112]

4- Synchronous DRAM Memory Controller [7]

5.7.1. PCI bus Protocol Checkers

Our experiments use 40 checkers from [122] that monitor the properties of

the PCI bus protocol and perform compliance testing for the devices connected

to the bus. The resulted silicon area is shown in terms of Gate Equivalents

(GEs) which is the number of 2-input NAND gates. Column II, III and V in Table

5.1 list the obtained GE using the proposed method, MBAC and [66],

respectively.

As listed in the last row of Table 5.1, when increases the proposed

method results in 63.06 % and 2% improvements in hardware overhead with

respect to MBAC and [66], respectively. Please note that [66], which is our

previous publication, contains an initial idea and implementation of the

proposed method.

The related energy consumption of the proposed method, MBAC and [66]

are shown in Column VII, VIII and IX, respectively. As listed in this table, as

 increases, with respect to MBAC and [66], the proposed method results

in 45.05 % and 7.12 % improvement in energy consumptions.

5 Hierarchical Trigger Generation for Post-silicon Debugging

161

Table 5.1: Comparison of the Proposed Method with MBAC and [66]

PCI Bus Gate Equivalent (GE) Power (mW) Frequency (MHz)

Proposed

MBAC

Improvement

%

[66]

[65]

Improvement

% [65]

Proposed

Improvement

%

MBAC

%

[66]

Proposed MBAC [66]

1 10,050 9,486 -5.94 % 10,284 1.5 1.287 4.21 2.33 650 700 650

2 11,970 19,296 37.96% 12,204 1.61 1.34 21.12 4.11 650 580 650

5 14,274 47,754 70.10% 14,508 1.8 1.51 51.54 6.12 620 460 620

8 15,810 76,212 78.24% 16,812 2.11 1.58 75.41 10.13 600 400 580

Average

[1..11]

 63.06% 2 45.05% 7.12%

162

5.7.2. SDRAM Controller Checkers

We consider a memory controller module adopted from Gaisler IP-Cores [7],

which is the 512Mb, quad bank SDRAM with a synchronous interface. Read

and write access to the SDRAM is burst oriented. Figure 5-14 and Figure 5-15

show the area overhead of generated trigger units for SDRAM controller and

PCI bus.

The important observation here is that as the number of threading increases

compared to MBAC our proposed method on average leads 63% lower

hardware overhead. Moreover, as number of threading (increases, the

proposed method provides a 34% improvement in energy consumptions with

respect to MBAC.

Figure 5-14: Hardware overhead of monitoring circuit consisting of checkers,
a) PCI bus,

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10 T=11
0

2

4

6

8

10

12
x 10

4

Thread Counts

G
a

te
 E

q
u

v
a

le
n

t
(G

E
)

MBAC

Proposed Method

163

Figure 5-15: Hardware overhead of monitoring circuit consisting of checkers

SDRAM

5.7.3. AMBA 3 AXI bus protocol checkers

The AMBA3 AXI bus protocol is introduced in Section 4.6.1. Here, we

considered 154 checkers for AXI bus protocol taken from [117]. The

configurable AXI settings include different data bus widths and support for a

varying number of outstanding transactions. In our experiments, we make use

of the particular settings listed in Table 4.1. We run MBAC in a generator and

failure mode and provide ZiMH with FA of the individual checkers

corresponding to AXI-Master-Interface and AXI-Slave-Interface, respectively.

Thereby, ZiMH generates separate trigger units for each interface.

In Table 5.2, presents the maximum allowable parallelisms, whereas,

 specifies the number of available stack for each checker modeled by

HFSM. The results of running ZiMH based on four different parameters for

 are outlined in Table 5.2. In this table, the fourth column #J shows

the numbers of PHFSM generated by ZiMH. For example, forcing ZiMH to

have parallelism leads to two separates PHFSM based modules for

AXI Master and Slave Interfaces.

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10 T=11
0

1

2

3

4

5

6

7

8

9
x 10

4

Thread Counts

G
a
te

 E
q
u
iv

a
le

n
ts

 (
G

E
)

MBAC

Proposed Method

164

 The hardware overhead in terms of the number of Flip Flops (FF) and

Lookup Table (LUT), and the frequency of the unit consisting of checkers for

AXI master is shown in Table 5.2. The important observation here is that the

proposed technique in this chapter provides better results in terms of both

frequency and hardware overhead. When we limit the area dedicated for

instrumentation by ELAs, one of the primary concerns is a support for

debugging in multiple sessions, where at the end of each session a new trigger

unit is reconfigured with a new set of checkers.

The numbers of separated PHFSM, depicted by #J in the fourth column in

Table 5.2, show the number of debugging sessions. At the end of each debug

session, a new trigger unit is programmed into the reconfigurable hardware.

At the same time, the traces of data stored inside the trigger unit are

transferred outside the IC. As explained before, debugging in multiple sessions

which is supported by our tool can be directly useful for time-multiplexed

debugging. The fifth column in Table 5.2 represents the trace size of each

trigger unit. As shown in this table, the larger the number of separated PHFSM

based trigger unit inside a trigger unit, the lower the size of trace data.

The frequency of the monitoring circuit with different number of threads is

shown in Figure 5-16. As can be observed the generated trigger unit using the

proposed mechanism can perform faster as thread counts increase.

165

Figure 5-16: Frequency of the monitoring circuit with different number of
threads

Figure 5-17: Hardware overhead of monitoring circuit consisting of checkers
for AXI master interface

1 2 3 4 5 6 7 8 9 10 11 12 13 14
50

100

150

200

250

300

350

400

450

Thread counts

F
re

q
u
e
n
c
y
 (

M
H

z
)

ZiMH

MBAC

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Threading counts (b)

H
a

rd
w

a
re

 o
v
e

rh
e

a
d

MBAC #FF

ZiMH #FF

MBAC #LUT

ZiMH #LUT

166

Table 5.2: Trigger Unit Area Overhead

ZiMH

(

(50,4) (60, 4) (60, 6) (60, 8)

FF LUT #J
Trace

Size
FF LUT #J

Trace

Size
FF LUT #J FF

LU

T
#J

Trace

Size

AXI-Master

 #Checker

= 94

197 285 2 855 220 320 2 920 302 344 1 342 310 2 1010

AXI-Slave

#Checker

=60

190 202 2 870 240 295 1 1200 322 301 1 302 312 1 1242

167

5.8. Conclusions

In this chapter, ZiMH, a trigger generator tool which builds a synthesizable

hierarchical trigger unit, is presented. The generated trigger unit provides

resourceful and efficient trace information for the root cause analysis.

Moreover, the proposed tool can be tuned to produce several separate trigger

units to be placed inside the limited area, enabling multiple-round debugging in

a time-multiplexed fashion. The overlapped failure patterns can be located

precisely using a mechanism that results in a 60-65 % reduction in hardware

overhead with respect to the previously proposed method. Moreover, by

keeping the trace of interactions that lead to the failure, the trigger unit

facilitates failure localization and root-cause analysis.

168

6. Conclusion and future work

This chapter presents a consistent and overall picture of the achievements in

this thesis. The intention of this chapter is to summarize and integrate all

chapters concluding remakes. A few remaining open problems and some

interesting future research ideas are also detailed here.

In the first section of this thesis two new NoC routers architectures are

presented. The first one, called RAVC, enables inter-channel buffer sharing

and provides a significant performance improvement in case of on-chip

failures. The second router, NISHA, is suited for hierarchical on-chip topology.

Chapter 2 introduced RAVC architecture. RAVC enables dynamic VC

allocation and reliability-aware sharing among input channels. The average

latency is decreased across various traffic patterns. Plus, considering the

probability of on-chip failures, RAVC significantly performs better in terms of

average packet latency and performance with respect to conventional VC

router specially. Avoiding faulty routers from packet injections, reducing the

occurrence of HOL by means of dynamic VC allocation and runtime resource

reuse are among the RAVC’s features.

Chapter 3 proposed “NISHA”. This router enables deadlock free

interconnections of subnets in hierarchical topology. A dynamic/Static VC

allocation with respect to the local and global traffic is supported by NISHA.

This router mitigates the effects of both transient and permanent errors by

employing a high-performance fault tolerant control flow, called

“Fragmentation” flow control. By defining various VC classed per each subnet

NISHA maintains a deadlock-free routing in the presence of on-chip routers

failures in hierarchical topologies.

In the next section of this thesis, we target post-silicon debugging,

mechanisms through which first hardware prototypes (test-chip) are tested. As

a widely used pre-silicon verification techniques, assertions are adopted.

Assertions are written using assertion languages at higher abstraction level;

thereafter, a checker generated tool is adopted to convert assertions to

synthesizable automata (checkers).

169

A new algorithm for checker clustering is proposed in chapter 4. The

proposed method generates clusters of assertion-checkers by means of

exploring the logic-cones set of each assertion-checkers. The coverage metric

per each cluster is also introduced in this chapter. Moreover, this chapter

presents several mechanisms to incorporate clusters of assertion-checkers into

the DfD infrastructure. The proposed methods are experimented across a

benchmark consisting of AXI bus, PCI bus, and SDRAM memory controller

checkers. Compared to non-clustering approach of integrating assertion-

checkers the clustering method combined with the proposed infrastructures

leads to a significant improvement in energy consumption and design

coverage.

A new mechanism for hierarchical trigger unit generation is proposed in the

last chapter. The proposed mechanism, called ZiMH, builds synthesizable

hierarchical units from a set of checkers. Root-cause analysis is possible by

obtaining hierarchical trace information from hierarchical modules. In addition,

ZiMH, supports multiple-round debugging in a limited silicon area using a time-

multiplexed fashion.

It turns out that overlapped failure patterns can be located using a

mechanism that results in a 60-65 % reduction in hardware overhead.

Moreover, the generated trigger unit facilitates failure localization and root-

cause analysis by keeping the trace of interactions that lead to a failure.

6.1. Future work

As new SoCs tend to have many cores, the interactions among cores

through functional interconnects such as bus or Network on Chips (NoCs) are

becoming so complex. Therefore, debug techniques should address not only

validation of the computational part of a design but such techniques have to

monitor and validate the communication and synchronization among cores

inside SoCs. In our future work, a new Network Interface (NI) compatible with

AXI standard that can monitor the transactions issued by processing elements

170

and extracts the global order of transactions from the local partial order of them

will be explored [72], [73].

Moreover, the proposed interface must be equipped with a cross-trigger

debugging mechanism. The modules in charge of cross-trigger debugging

monitor the transactions issued by connected IP blocks and invoke appropriate

debug operations at the right time.

 Trace data and trigger events will be extracted and routed to another

processing element or Shared Direct Memory Access Unit (SDMAU). Debug

traces from different NIs are combined using the SDMAU. The major benefits

of the proposed mechanism over traditional techniques are as follows:1) the

proposed debug aware NI can observe non-intrusively the global states of a

system in the absence of single global clock and enables validation of global

properties, 2) It can detect, mark and bypass severe faulty conditions such as

deadlocks resulting from design errors or electrical faults in real time, 3)

SDMAU maintains an efficient transfer of trace data to an external memory and

there is no longer a need for a large internal trace memory.

 As mentioned in Chapter 1, SoC products implemented in modern deep

submicron technologies are getting more and more sensitive to transient errors

such as soft-errors. Error protection mechanisms, such as architectural

redundancy or radiation-hardened circuits lead to a significant penalty in

performance, power, and area. Hence, conservative and heavyweight

protection approaches may make the resulting products uncompetitive in the

market [39]. On the other hand, a system with inadequate protection with

respect to soft-errors may soon deem inoperable and display unexpected

behaviors due to the lack of safety and protection. Therefore, designers must

evaluate the system failure rate at early stages of the design process to decide

on the appropriate amount of protections necessary for the target system.

Although the thorough and comprehensive understanding of services that an

SoCs provides is an important step for meeting stringent system requirements,

designers no longer can ignore emerging safety and reliability issues in

nanoscale devices. In fact, proper actions should be taken at various stages of

system design to mitigate the effect of such errors and enhance the safety of

SoCs. Therefore, SoC designs can benefit from knowing the Soft-Error Rate

171

(SER) of different cores as well as the whole System Failure Rate (SFR) at a

very early stage of SoC development. Such data enables companies and

designers to make the right decision at the right time concerning the intensity of

error protection mechanisms across different modules.

In our future work, we investigate a new quantitative method to estimate the

SER of different modules inside an SoC by means of an executable system

model. The executable model of a system is based on the Unified Modeling

Language Real-Time (UML-RT) standard and is exercised by the actual

workload. Parts of this work is published in [39].

172

7. Biography

[1] L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE

Computer, pp. 70-78, January 2002.

[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D.

Miller, ”A reconfigurable design-for-debug infrastructure for SoC,” in Proceedings

of Design Automation Conference (DAC), pp. 7-12, 2006.

[3] W. J. Dally and B. Towles, “Route packets not wires: On-chip interconnection

networks,” in Proceedings of Design Automation Conference (DAC), pp. 684-689,

2001.

[4] S. Borkar. S. Borkar, “Microarchitecture and design challenges for gigascale

integration,” in Proceedings of the IEEE/ACM International Symposium on

Microarchitecture (MICRO) keynote address, 2004.

[5] S. Li, L. S. Peh, and N. K. Jha, "Dynamic voltage scaling with links for power

optimization of interconnection networks," in Proceedings of the International

Symposium on High-Performance Computer Architecture (HPCA), pp. 91-102,

2003.

[6] L. S. Peh and W. J. Dally, "A delay model and speculative architecture for

pipelined routers," in Proceedings of the 7th International Symposium on High

Performance Computer Architecture (HPCA), pp. 255-266, 2001.

[7] W. Hangsheng, L. S. Peh, and S. Malik, "Power-driven design of router

microarchitectures in on-chip networks," in Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 105-116,

2003.

[8] H. Wang, et. Al, “A detailed Architectural-Level Power Model for Router

Buffers, Crossbars and Arbiters,” Technical report, Princeton University, 2004

[9] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of power consumption on

switch fabrics in network routers," in Proceedings of the 39th Design Automation

Conference (DAC), pp. 524-529, 2002.

173

[10] K. Gwangsun, J. Kim, and Y. Sungjoo, "FlexiBuffer: Reducing leakage power

in on-chip network routers," in Design Automation Conference (DAC), pp. 936-

941, 2011.

[11] http://www.synopsys.com/COMPANY/PUBLICATIONS/SYNOPSYSINSIGHT

/Pages/Art2-finfet-challenges-ip-IssQ3-12.aspx

[12] B. Bentley, “Validating the Intel® Pentium® 4 microprocessor,” in

Proceedings of Design Automation Conference (DAC), pp. 224-228, 2001.

[13] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004.

[14] Y. M. Boura and C. R. Das, "Performance analysis of buffering schemes in

wormhole routers," IEEE Transactions on Computers, vol. 46, pp. 687-694, 1997

[15] W. J. Dally, "Virtual-channel flow control," in Proceedings of International

Symposium on Computer Architecture (ISCA), pp. 60-68, 1990.

[16] A. Kumar, P. Kundu, A. P. Singh, L.Peh and N. Jha, "4.6Tbits/s 3.6GHz

Single-cycle NoC Router with a Novel Switch Allocator in 65nm CMOS," in

Proceedings of International Conference on Computer Design (ICCD), pp. 63-70,

2007.

[17] G. L. Frazier and Y. Tamir, "The design and implementation of a multi-queue

buffer for VLSI communication switches," in Proceedings of the IEEE

International Conference on Computer Design (ICCD), pp. 466-471, 1989.

[18] J. G. Delgado-Frais and R. Diaz, “A VLSI Self-Compacting Buffer for DAMQ

Communication Switches,” in Proceedings of Great Lakes Symposiums on VLSI

(GLSVSI), 128-133, 1998.

[19] M. Rezazad and H. Sarbazi-azad, "The effect of virtual-channel organization

on the performance of interconnection networks, in Proceedings of the IEEE

International Parallel and Distributed Processing Symposium (IPDPS),pp. 264-

269, 2005.

[20] J. Kim, C. Nicopoulos, D. Park, N. Vijaykrishnan, M. S. Yousif, and C. R.

Das, "A Gracefully Degrading and Energy-Efficient Modular Router Architecture

for On-Chip Networks," in Proceedings of International Symposium on Computer

Architecture (ISCA), 2006.

174

[21] A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, S. Yousif, and R. Das,

“ViChaR: A Dynamic Virtual Channel Regulator for Network-on-chip Router, “in

Proceedings of the IEEE/ACM Symposium on Microarchiture (MICRO), pp. 333-

346, 2006.

[22] M. Lai, Z. Wang, L. Gao, H. Lu, K. Dai, "A Dynamically-Allocated Virtual

Channel Architecture with Congestion Awareness for On-Chip Routers," in

Proceedings of Design Automation Conference (DAC), pp. 630-633, 2008.

[23] A. Karanth-Kodi, A. Sarathy, and A. Louri, "iDEAL: Inter-Router Dual-function

Energy and Area-efficient Links for Network-on-Chip (NoC) Architectures," in

Proceedings of International Symposium on Computer Architecture (ISCA), pp.

241-250, 2008.

[24] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi, “Modeling

the Effect of Technology Trends on the Soft Error Rate of Combinational Logic,”

in Proceedings of International Conference on Dependable Systems and

Networks (DSN), pp. 389-398, 2002.

[25] K. Aisopos, A. DeOrio, Li-S. Peh, V. Bertacco, “ARIADNE: Agnostic

reconfiguration in a disconnected network environment,” in Proceedings of

international conference on Parallel Architectures and Compilation Techniques

(PACT), pp. 298-309, 2011.

[26] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer,

E. Satterthwaite, and C. Thacker, “Autonet: a high-speed, self-configuring local

area network using point-to-point links,” IEEE Journal on Selected Areas in

Comm., 9(8), 1991.

[27] C. Nicopoulous, S. Srinvassa, A. Yanamandra, D. Park, V. Narayanan, C. R.

Das, M. Irwin, “On the Effects of Process Variation in Network-on-Chip

Architectures,” IEEE Transaction on Dependable and Secure Computing, Vol. 7,

No. 3, pp. 240-254, 2010.

[28] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An

Engineering Approach. Morgan Kaufmann, 2003.

[29] H. Jingcao and R. Marculescu, "Application-specific buffer space allocation

for networks-on-chip router design," in Proceedings of the IEEE/ACM

175

International Conference on Computer Aided Design (ICCAD), pp. 354-361,

2004.

[30] G. L. Frazier and Y. Tamir, "The design and implementation of a multi-queue

buffer for VLSI communication switches," in Proceedings of the IEEE

International Conference on Computer Design (ICCD), pp. 466-471, 1989.

[31] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini, and G.

De Micheli, “Analysis of error recovery schemes for networks on chips,” IEEE

Design Test Computer, vol. 22, no. 5, pp. 434–442, 2005.

[32] A. Pullini, F. Angiolini, D. Bertozzi, Luca Benini, “Fault Tolerance Overhead

in Network-on-Chip Flow Control Schemes,” in Proceedings of Symposium on

Integrated Circuits and Systems Design, pp. 224-229, 2005

[33] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, C. T. Das, “Exploring Fault-

Tolerant Network-on-Chip Architectures,” in Proceedings of International

Conference on Dependable Systems and Networks (DNS), pp. 93-104, 2006.

[34] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F.

Silla, J, Dauto, “Cost-Efficient On-Chip Routing Implementations for CMP and

MPSoC Systems,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 30, pp. 534 – 547, 2011.

[35] S. Bourduas and Z. Zilic, “A Hybrid Ring/Mesh Interconnect for Network-on-

Chip Using Hierarchical Rings for Global Routing,” in Proceedings of Network on

Chip Symposium (NOCS), pp.195-204, 2007.

[36] R. Holsmark, S. Kumar, M. Palesi, A. Mejia, “HiRA: A Methodology for

Deadlock Free Routing in Hierarchical Networks on Chip,” in Proceedings of

Network on Chip Symposium (NOCS), pp. 2-11, 2009.

[37] M. H Neishaburi and Z. Zilic, “Reliability aware NoC router architecture using

input channel buffer sharing,” in Proceedings of Great Lake Symposium on VLSI

(GLSVLSI), pp. 511-516, 2009.

[38] M. H. Neishaburi and Z. Zilic, "ERAVC: Enhanced Reliability Aware NoC

Router," in Proceedings of International Symposium on Quality Electronic Design

(ISQED), pp.591-596, 2011.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4208981
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066987
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066987
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4208981

176

[39] M. H. Neishaburi and Z. Zilic, "On Failure Rate Assessment Using an

Executable Model of the System," in Proceedings of Digital System Design

(DSD), pp. 29-36, 2011.

[40] M. H. Neishaburi and Z. Zilic, "Hierarchical Embedded Logic Analyzer for

Accurate Root-Cause Analysis," in Proceedings of International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp.120-

128, 2011.

[41] M. H. Neishaburi, M. R. Kakoee, M. Daneshtalab and S. Safari, "HW/SW

architecture for soft-error cancellation in real-time operating system," IEICE

Electron. Express, Vol. 4, No. 23, pp.755-761, 2007.

[42] M. H. Neishaburi and Z. Zilic, “A Fault Tolerant Hierarchical Network on Chip

Router Architecture,” in Proceedings of International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 445-453, 2011.

[43] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, C. R. Das, “Design and

Evaluation of a Hierarchical On-Chip Interconnect for Next-Generation CMPs,” in

Proceedings of International Symposium on High Performance Computer

Architecture (HPCA), pp.175-186, 2009.

[44] A. Guree, N. Ventroux, R. David, A. Merigot, “Hierarchical Network-on-Chip

for Embedded Many-Core Architectures,” in Proceedings of Network on Chip

Symposium (NOCS), pp. 189-196, 2010.

[45] T. Dumitras and R. Marculescu, “On-chip stochastic communication,” in

Proceedings of Design Automation and Test in Europe (DATE), pp. 790–795,

2003.

[46] M. Pirretti, G. Link, R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. Irwin,

“Fault tolerant algorithms for network-on-chip interconnect,” in Proceedings of

International Symposium Very Large Scale Integral (ISVLSI), pp. 46–51, 2004.

[47] J. hu and R. Marculescu, “Dyad: Smart routing for network-on-chip,” in

Proceedings of Design Automation Conference (DAC), pp. 260-263, 2004.

[48] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour, “MD: Minimal

path-based Fault-Tolerant Routing in On-Chip Networks,” in Proceedings of Asia

and South Pacific Design Automation Conference (ASP-DAC), pp. 35-40, 2013.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4208981
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4208981

177

[49] G. M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Tran. On

Parallel and Distributed Systems, 11(7):729.738, July 2000.

[50] A. Kohler, G. Schley, and M. Radetzki, “Fault Tolerant Network on Chip

Switching with Graceful Performance Degradation,” IEEE Transaction on

computer-aided design (TCAD), VOL. 29, NO. 6, JUNE 2010

[51] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen,

“Memory-Efficient On-Chip Network with Adaptive Interfaces,” IEEE Transaction

on Computer-Aided Design of Integrated Circuits and Systems (IEEE-TCAD),

Vol. 31, No. 1, pp. 146-159, Jan 2012.

[52] M. Daneshtalab, M. Kamali, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha,

and J. Plosila, “Adaptive Input-output Selection Based On-Chip Router

Architecture,” Journal of Low Power Electronics (JOLPE), Vol. 8, No. 1, pp. 11-

29, 2012.

[53] Y. H. Kang, T. Kwon, and J. Draper, “Dynamic Packet Fragmentation for

Increased Virtual Channel Utilization in On-Chip Routers,” in Proceedings of

International Symposium on Networks-on-Chip (NOCS), pp. 250-255, 2009.

[54] S. Jovanovic, C. Tanougast, S. Weber, C.Bobda, “A new deadlock-free fault-

tolerant routing algorithm for NoC interconnections,” in Proceedings of Field

Programmable Logic and Applications (FPL), pp. 326-331, 2009.

[55] Y. H. Kang, Taek-Jun Kwon, and J. Draper, “Fault-Tolerant Flow Control in

On-Chip Networks,” in Proceedings of ACM/IEEE Network on Chip Symposium

(NOCS), pp. 79-86, 2010.

[56] Y. H. Kang, T. Kwon, and J. Draper, “Dynamic Packet Fragmentation for

Increased Virtual Channel Utilization in On-Chip Routers”, in Proceedings of

International Symposium on Networks-on-Chip (NOCS), pp. 250-255, 2009.

[57] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K.

Moore, M. Hill, and D. Wood, “Multifacet’s general execution-driven

multiprocessor simulator (GEMS) toolset,” ACM SIGARCH Computer

Architecture News, 33(4), 2005.

[58] N. Agarwal, T. Krishna, Li-S. Peh, N.K. Jha, “GARNET: A detailed on-chip

network model inside a full-system simulator,” in Proceedings of International

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Jovanovic,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Bobda,%20C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4208981
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4208981

178

Symposium on Performance Analysis of Systems and Software (ISPASS), pp.

33-42, 2009.

[59] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite:

Characterization and architectural implications,” in Proceedings of international

conference on Parallel Architectures and Compilation Techniques (PACT), pp.

72-81, 2008.

[60] M. H. Neishaburi and Z. Zilic, "An Infrastructure for Debug Using Clusters of

Assertion Checkers,” Microelectronics Reliability, , Vol. 52, No. 11, pp. 2781-

2798, November 2012.

[61] M. H. Neishaburi and Z. Zilic, "Enabling Efficient Post-silicon Debug by

Clustering of Hardware Assertions,” in Proceedings of ACM/IEEE Design

Automation and Test in Europe (DATE), Mar. 2010.

[62] NIRGAM, http://www.nirgam.ecs.soton.ac.uk

[63] http://www.bolidesoft.com

[64] M. Gao, K.-T. Cheng, “A case study of Time-Multiplexed Assertion

Checking for post-silicon debugging,” in Proceedings of High Level Design

Validation and Test Workshop (HLDVT), pp. 90-96, 2010.

[65] M. Gao, H. Chang, P. Lisherness, K.-T. Cheng, “Time-Multiplexed Online

Checking,” IEEE Transactions on Computer, Vol. 60, NO. 9, September 2011.

[66] M. H. Neishaburi and Z. Zilic, "On a New Mechanism of Trigger Generation

for Post-silicon Debugging", IEEE Transactions on Computers, to appear, 2013.

[67] M. H. Neishaburi and Z. Zilic, "NISHA: A Fault-tolerant NoC Router

Enabling Deadlock-free Interconnection of Subsets in Hierarchical Architecture",

Journal of Systems Architecture (JSA), 2013.

[68] M. H. Neishaburi and Z. Zilic, "An Infrastructure for Debug Using Clusters of

Assertion Checkers", Microelectronics Reliability,” Vol. 52, Issue 11, pp. 2781-

2798, November 2012.

[69] M. H Neishaburi and Z. Zilic, ”Hierarchical Embedded Logic Analyzer for

Accurate Root-Cause Analysis,” in Proceedings of IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp.

120-128, 2011.

http://www.iml.ece.mcgill.ca/people/professors/zilic/documents/notthere.pdf
http://www.iml.ece.mcgill.ca/people/professors/zilic/documents/notthere.pdf
http://www.iml.ece.mcgill.ca/people/professors/zilic/documents/mhdate10.pdf
http://www.iml.ece.mcgill.ca/people/professors/zilic/documents/mhdate10.pdf
http://www.nirgam.ecs.soton.ac.uk/
http://www.bolidesoft.com/

179

[70] M. H. Neishaburi and Z. Zilic, “Enabling efficient post-silicon debug by

clustering of hardware-assertions,” in Proceedings of IEEE Design, Automation &

Test in Europe Conference & Exhibition (DATE), pp. 985- 988, 2010.

[71] M. H. Neishaburi and Z. Zilic, “Hierarchical trigger generation for post-silicon

debugging,” in Proceedings of IEEE VLSI Design, Automation and Test (VLSI-

DAT), pp. 1 – 4, 2011.

[72] M. H. Neishaburi and Z. Zilic, “A distributed AXI-based platform for post-

silicon validation,” in Proceedings of IEEE VLSI Test Symposium (VTS), pp. 8 –

13, 2011.

[73] M. H. Neishaburi, and Z. Zilic, "An enhanced debug-aware network interface

for Network-on-Chip," in Proceedings of IEEE International Symposium on

Quality Electronic Design (ISQED), pp. 709 - 716, 2012.

[74] M. Boule and Z. Zilic, “Generating Hardware Assertion Checkers: for

Hardware Verification, Emulation, Post-Fabrication Debugging and On-Line

Monitoring,” Springer Publishing Company 2008.

[75] K Morin-Allory, M Boulé, D Borrione, and Z Zilic, “Validating Assertion

Language Rewrite Rules and Semantics with Automated Theorem Provers”,

IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 29, No. 9.,

Sep. 2010, pp. 1436-1448.

[76] M. Boule and Z. Zilic, “Incorporating efficient assertion checkers into

hardware emulation,” in Proceedings of International Conference on Computer

Design (ICCD), pp. 221–228, October 2005.

[77] M. Boule, J-S. Chenard, and Z. Zilic, "Assertion Checkers in Verification,

Silicon Debug and In-Field Diagnosis," in Proceedings of International

Symposium on Quality Electronic Design (ISQED), pp. 613-629, 2007.

[78] M. Boule and Z. Zilic. “Efficient automata-based assertion checker synthesis

of psl properties,” in Proceedings of IEEE High-Level Design Validation and Test

Workshop (HLDVT), pp. 69–76, Nov. 2006.

[79] M. Boule and Z. Zilic. “Automata-based assertion checker synthesis of PSL

properties,” ACM Transactions on Design Automation of Electronic Systems

(TODAES), Vol. 13, No. 1, 20 pages, Jan. 2008.

180

[80] M. Boulé, J-S. Chenard and Z. Zilic, "Adding Debug Enhancements to

Assertion Checkers for Hardware Emulation and Silicon Debug", in Proceedings

of IEEE International Conference on Computer Design (ICCD), pp. 294-299,

2006.

[81] M. Boulé, J-S. Chenard, and Z. Zilic, “Debugging Enhancements in

Assertion-Checker Generation”, IET Computers and Digital Techniques, Vol. 1,

No. 6, pp. 669-677, Nov. 2007.

[82] M. R Kakoee, M. H Neishaburi, M. Daneshtalab, S. Safari, and Z. Navabi,

“On-Chip Verification of NoCs Using Assertion Processors,” in Proceedings of

IEEE Digital System Design (DSD), pp. 535 – 538, 2007.

[83] H. F. Ko and N. Nicolici, “Automated trace signals identification and state

restoration for improving observability in post-silicon validation,” in Proceedings of

Design Automation and Test in Europe (DATE), 2008, pp. 1298–1303.

[84] E. Anis and N. Nicolici, “On Using Lossless Compression of Debug Data in

Embedded Logic Analysis,” in Proceedings of IEEE International Test

Conference (ITC), pp. 18.3, 2007.

[85] H. F. Ko, A. B. Kinsman and N. Nicolici, "Distributed Embedded Logic

Analysis for Post-Silicon Validation of SoC," in Proceedings of IEEE International

Test Conference (ITC), pp. 1-10, 2008.

[86] H. F. Ko and N. Nicolici, “Resource-Efficient Programmable Trigger Units for

Post-Silicon Validation,” in Proceedings of European Test Symposium (ETS), pp.

17-22, 2009.

[87] H. F. Ko and N. Nicolici, “Resource-Efficient Programmable Trigger Units for

Post-Silicon Validation,” IEEE Transactions on Computer, Vol. 60, NO. 9,

November 2012.

[88] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based signal

selection for state restoration in silicon debug,” in Proceedings of IEEE

International Conference on Computer Aided Design (ICCAD), 2011.

[89] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for

modern microprocessor,” in Proceedings of IEEE International Conference on

Computer Design (ICCD), pp. 307-314, Oct. 2008.

181

[90] A. Deorio, D. Khudia, and V. Bertacco, "Post-silicon bug diagnosis with

inconsistent executions," in Proceedings of IEEE International Conference on

Computer-Aided Design (ICCAD), pp. 775-761, 2011.

[91] D. Chatterjee, A. Koyfman, R. Morad, A. Ziv, and V.Bertacco,“ Checking

architectural outputs instruction-by-instruction on acceleration platforms,” in

Proceedings of Design Automation Conference (DAC), pp. 955-961, 2012.

[92] V. Bertacco, “Post-silicon debugging for multi-core designs,” in Proceedings

of Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 255-

258, 2010.

[93] B.R. Quinton and S.J.E, Wilton, “Concentrator access networks for

programmable logic cores on SoCs,” in Proceedings of IEEE Symposium on

Circuits and Systems (ISCAS), pp. 45-48, 2005.

[94] G. J. Van Rootselaar, and B. Vermeulen, "Silicon debug: scan chains alone

are not enough," in Proceedings of IEEE International Test Conference (ITC), pp.

892-902, 1999.

[95] B. Vermeulen, T. Waayers, and S. K. Goel, “Core-based scan architecture

for silicon debug,” in Proceedings of IEEE International Test Conference (ITC),

pp. 638-647, 2002.

[96] B. Vermeulen and S. K. Goel, "Design for debug: catching design errors in

digital chips," IEEE Design & Test of Computers, vol. 19, pp. 35-43, 2002.

[97] J. Geuzebroek and B. Vermeulen, "Integration of Hardware Assertions in

Systems-on-Chip," in Proceedings of IEEE International Test Conference (ITC),

pp. 1-10, 2008.

[98] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in post-

silicon validation,” in Proceedings of Design Automation and Test in Europe

(DATE), 2009, pp. 1338–1343.

[99] S. Prabhakar and M. Hsiao, “Using non-trivial logic implications for trace

buffer-based silicon debug,” in Proceedings of Asian Test Symposium (ATS),

2009, pp. 131–136.

[100] V. Sklyarov “Hierarchical Finite State Machines and Their Use for Digital

Control,” IEEE Transactions on VLSI, Vol. 7, No 2, June, 1999, pp. 222-228

http://www.informatik.uni-trier.de/~ley/pers/hd/c/Chatterjee:Debapriya.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Koyfman:Anatoly.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Morad:Ronny.html
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Ziv:Avi.html
http://www.informatik.uni-trier.de/~ley/db/conf/dac/dac2012.html#ChatterjeeKMZB12
http://www.informatik.uni-trier.de/~ley/db/conf/aspdac/aspdac2010.html#Bertacco10

182

[101] V. Sklyarov and I. Skliarova, "Design and implementation of parallel

hierarchical finite state machines," in Proceedings of International Conference on

Communications and Electronics (ICCE) pp. 33-38, 2008.

[102] V. Sklyarov, I. Skliarova, D. Mihhailov, and A. Sudnitson, "Synthesis and

Implementation of Hierarchical Finite State Machines with Implicit Modules," in

Proceedings of IEEE International Conference on Reconfigurable Computing and

FPGAs (ReConFig), pp. 436 - 441, 2010

[103] Park, S., T. Hong and S. Mitra, “Post-Silicon Bug Localization in Processors

using Instruction Footprint Recording and Analysis (IFRA),” IEEE Trans. CAD,

Vol. 28, No. 10, pp. 1545-1558, 2009.

[104] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon debug

based on failure propagation tracing,” in Proceedings of IEEE International Test

Conference (ITC) , pp. 755-763, 2005.

[105] J. Gao, Y. Han, and X. Li, “A new post-silicon debug based on suspect

window,” in Proceedings IEEE VLSI Test Symposium (VTS), pp. 85-90, 2009.

[106] J.-S. Yang and N.A. Touba, "Enhancing Silicon Debug via Periodic

Monitoring," in Proceedings of IEEE Symposium on Defect and Fault Tolerance

(DFT), pp. 125-133, 2008

[107] F.C. Sica, Jr. Coelho, C.N., J.A.M. Nacif, H. Foster, and A. O. Fernandes,

“Exception handling in microprocessors using assertion libraries,” in Proceedings

of IEEE Integrated Circuits and Systems Design (SBCCI), pp. 55–59, 2004.

[108] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design 2nd ed.

Kluwer Academic Publishers, 2004.

[109] http://techresearch.intel.com/articles/Tera-Scale/1421.htm.

[110] http://techresearch.intel.com/articles/Tera-Scale/1449.htm.

[111] http://www.tilera.com/products/processors.php.

[112] ARM AMBA 3 specification and assertions.

http://www.arm.com/products/solutions/axi_spec.html

[113] B. Cohen, S. Venkataramanan, and A. Kumari. Using PSL/ Sugar for

Formal and Dynamic Verification. VhdlCohen Publishing, Los Angeles, California,

2004.

http://techresearch.intel.com/articles/Tera-Scale/1421.htm
http://techresearch.intel.com/articles/Tera-Scale/1449.htm
http://www.arm.com/products/solutions/axi_spec.html

183

[114] Accellera, http://www.eda.org/vfv/docs/PSL-v1.1.pdf. PSL Language

Reference Manual, version 1.1.

[115] SystemVerilog Assertions.

http://www.synopsys.com/products/simulation/assert_sverilog_wp.pdf.

[116] ARM Limited. Coresight on-chip debug and trace technology.

http://www.arm.com/products/solutiona/coresight.html

[117] ARM AMBA 3 specification and assertions.

[118] http://www.arm.com/products/solutions/axi_spec.html.

[119] http://www.webopedia.com/TERM/P/PCI.html

[120] ARM Limited. Coresight on-chip debug and trace technology.

http://www.arm.com/products/solutiona/coresight.html

[121] http://www.arm.com/products/solutions/axi_spec.html.

[122] S. Vijayaraghavan and M. Ramanathan. A Practical Guide for

SystemVerilog Assertions. Springer, 2005.

[123] http://www.webopedia.com/TERM/P/PCI.html

[7] Gaisler IP Cores, http://www.gaisler.com/products/grlib/, 2009.

http://www.arm.com/products/solutiona/coresight.html
http://www.arm.com/products/solutions/axi_spec.html
http://www.webopedia.com/TERM/P/PCI.html
http://www.arm.com/products/solutiona/coresight.html
http://www.arm.com/products/solutions/axi_spec.html
http://www.webopedia.com/TERM/P/PCI.html

