
Model-Driven Development of AI
for Digital Games

Christopher W.A. Dragert

Doctor of Philosophy

School of Computing

McGill University

Montreal,Quebec

2015-02-16

A thesis submitted to McGill University in partial fulfillment of the requirements
of the degree of Doctorate of Philosophy

c©Christopher W.A. Dragert, 2015

DEDICATION

This thesis is dedicated to my father, John Volker Dragert. He taught me

how to think, how to reason, and how to be a man of science. Life interrupted his

own Ph.D. studies, and he was never able to obtain the doctorate he so rightly

deserved. Getting this degree is for both of us. We did it, Dad.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Jessica Ip. By helping to keep me

sane when the days grew long, and gently pushing me to work when I needed it,

your love and support meant the world. You are the love of my life, and I could

not have done this without you.

Next, I would like to acknowledge the help and support of my family. Mom

and Dad, Mike, John, and Jackie: all of you did so much to grant me confidence.

Your unwavering belief in my ability was foundational to my own belief that I

could in fact complete my Ph.D. Family is the most important thing in life, and

mine is a great one.

For their mentorship and supervision, I would like to acknowledge Jörg

Kienzle and Clark Verbrugge. My Master’s supervisor Juergen Dingel once said

that a Ph. D. is a unique period of your life where you have time and freedom to

think deeply about a subject, and to truly do research. Jörg and Clark, you both

gave me the utmost freedom to explore my own interests, follow my own path, and

gave excellent supervision at every step of the journey. My studies here at McGill

were fruitful because of your guidance, and you both get my profound thanks for

all of the support you’ve given to me.

Strong friendships brought joy to my life during my degree. Tim, Ryan, Ian,

and Greg were always there when I needed them, and offered nothing but true

friendship. We, my friends, have a bond that shall endure.

iii

Lastly, I would like to thank the Natural Sciences and Engineering Research

Council of Canada, McGill University, and Lorne Trottier for the financial support.

Funding is the life-blood of research, and strong support for young researchers

enables them to do great work for the benefit of all Canadians.

Christopher William Arthur Dragert

McGill University

November, 2013

iv

ABSTRACT

When developing AI for digital games, developers typically adopt a narrow,

game-by-game focus, where new AIs are often developed from scratch for each

game. Time is spent reimplementing behaviours, despite significant similarity

between basic behavioural traits of non-player characters (NPCs). Software

engineering offers many techniques that could streamline the game AI development

process, but lack of a suitably generic AI representation that is both formalized

and flexible inhibits their effective application.

In this thesis, we demonstrate how model-driven development techniques can

be applied in the context of game AI development to effectively address these

shortcomings. We propose a new formalism, layered statechart-based AI, to specify

NPC behaviours. This representation allows designers to work at an appropriate

level of abstraction while reducing accidental complexity and enabling model-

driven development. Industrial-scale applicability of the approach is demonstrated

by modelling a large-scale AI similar to that found in modern digital games.

Building from our clearly defined AI representation, we offer three specific

improvements to the game AI development process that advance the state of the

art while demonstrating the effectiveness of a model-driven approach. First, we

present a comprehensive approach to modular reuse of game AI, made possible

by the definition of an AI-module interface. Supporting this is Scythe AI, a

tool to enable the modular reuse of statechart-based AI. Secondly, we show how

correctness of a modular AI can be verified at both a syntactic and semantic

v

level through the use of model-checking. Finally, we illustrate how to generate

a population of AIs with varying, individualized behaviours that preserve and

enhance desired properties by means of automated parameter variation, AI module

reconfiguration and model transformations.

vi

ABRÉGÉ

Lors du développement d’intelligences artificielles (IA) pour jeux vidéo,

les développeurs adoptent habituellement une approche “sur mesure” où les

nouvelles IA sont développées à partir de rien. Un temps considérable est pris

pour réimplémenter les comportements en dépit du fait qu’il existe de très grandes

similarités entre les comportements de base des personnages non-joueurs (PNJ).

L’ingéniérie logicielle permet de recourir à une multitude de techniques qui

peuvent simplifier le dévelopement d’IA dans le contexte des jeux vidéo. Toutefois,

le fait qu’il n’existe pas d’implémentation générique appropriée d’IA qui soit à la

fois formalisée et flexible rend les techniques d’ingénierie logicielle beaucoup moins

efficaces.

Dans cette thèse, nous démontrons comment les techniques de développement

orientées-modèle peuvent être appliquées dans le contexte du développement d’IA

pour jeux afin de palier aux lacunes précedemment exposées. Nous proposons

un nouveau formalisme intitulé layered statechart-based AI (IA en couches basée

sur des diagrammes d’état) afin de spécifier les comportements des PNJ. Cette

modélisation permet aux concepteurs de travailler à un niveau d’abstraction

approprié tout en réduisant la complexité accidentelle et en permettant de recourir

à des techniques de développement orientées-modèle. L’applicabilité au niveau

industriel de cette approche est démontrée par la modélisation d’une IA à large

échelle comparable à ce que l’on peut retrouver dans les jeux vidéo modernes.

vii

En construisant à partir de notre représentation d’IA énoncée précedemment,

nous offrons trois améliorations spécifiques au processus de développement d’IA

qui font avancer l’état de l’art tout en démontrant l’efficacité d’une approche

orientée-modèle. Premièrement, nous présentons une approche globale permettant

la réutilisation modulaire d’IA de jeux, rendue possible en définissant une interface

commune aux modules d’IA. cette fin, nous proposons un outil permettant

la réutilisation modulaire d’IA basées sur des diagrammes d’état: Scythe AI.

Deuxièmement, nous démontrons dans quelle mesure l’exactitude (correctness)

d’une IA modulaire peut être vérifiée aux niveaux syntaxique et sémantique en

recourant à des techniques de validation de modèle (model-checking). Finalement,

nous indiquons comment il est possible de générer une population d’IA possédant

des comportements individualisés et variés qui préservent et bonifient les propriétés

désirées en recourant à des techniques de variation automatisée de paramètres, de

reconfiguration de modules d’IA et de transformation des modèles.

viii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ABRÉGÉ . vii

LIST OF TABLES . xiv

LIST OF FIGURES . xv

1 Introduction . 1

1.1 Game AI Development . 3
1.2 Contributions . 4

1.2.1 Validation . 6
1.3 Thesis Layout . 10

2 Background Theory . 12

2.1 Artificial Intelligence in Computer Games 12
2.1.1 Agent-Based AI . 14
2.1.2 Game AI Formalisms . 18
2.1.3 Statecharts for Game AI 23

2.2 Software Engineering . 27
2.2.1 Modularity and Reuse . 29
2.2.2 Verification and Model Checking 30

3 Layered Statechart-based AI . 31

3.1 Event-Based Communication . 32
3.1.1 Game Events . 33

3.2 Synchronous Communication . 35
3.2.1 Payloads . 38

ix

3.3 The Layers . 38
3.3.1 Input Layers . 40
3.3.2 The Strategizer Layer . 43
3.3.3 Output Layers . 44

4 Implementation . 46

4.1 Building the Squirrel AI . 47
4.1.1 Requirements . 47
4.1.2 AI Modules . 49
4.1.3 Producing Behaviours . 61

4.2 Mammoth Implementation . 65
4.2.1 NPCs in Mammoth . 66
4.2.2 Adding Statecharts to Mammoth 66
4.2.3 Statechart Representation 67
4.2.4 Loading NPCs . 71

5 Statechart-based AI Design . 75

5.1 The Halo AI . 75
5.2 Designing a New Halo AI . 76

5.2.1 Input Layers . 79
5.2.2 Strategizer . 81
5.2.3 Output Layers . 84

5.3 Statechart Patterns . 86
5.3.1 Applicability . 91

5.4 Key Features . 92
5.4.1 Stimulus Behaviours . 92
5.4.2 Memory Usage . 93
5.4.3 Behaviour Masks . 96

5.5 Analysis . 97
5.5.1 Implementation . 98

6 Modular Reuse . 101

6.1 The AI Module . 102
6.1.1 AI Module Interaction . 103
6.1.2 The AI Module Interface 106

6.2 Component Integration . 108
6.2.1 Event Renaming . 108

x

6.2.2 Associated-Class Connection 110
6.2.3 Functional groups . 112

6.3 Case Study: Squirrel to Trash Collector 114
6.3.1 Trash Collector Specification 115
6.3.2 Building the NPC . 117
6.3.3 Case Study Summary . 118

7 The Scythe AI Tool . 120

7.1 Overview . 120
7.2 Importing Modules . 123
7.3 Building an AI . 127

7.3.1 Errors and Warnings . 129
7.4 Exporting an AI . 131
7.5 Future Development Plan . 131

8 Verifying Correctness . 135

8.1 Syntactic Correctness . 136
8.1.1 Reuse Considerations . 138
8.1.2 Applying Syntactic Correctness 139

8.2 Semantic Correctness . 140
8.2.1 Bounding the Problem . 141
8.2.2 Model-Checking . 142
8.2.3 Promela Representation . 144
8.2.4 Environment Model . 150
8.2.5 Event Processing . 154

8.3 Specifications . 155
8.3.1 Linear Temporal Logic . 157
8.3.2 Specifying AI Behaviour 158

8.4 Verifying Semantic Correctness 161
8.4.1 Verifying Statechart Representation and Generation 162
8.4.2 Complete Verification of the Squirrel AI 164
8.4.3 Verifying the Halo AI . 177

8.5 Conclusions . 181

9 Generating NPC Populations . 185

9.1 Content Generation . 186
9.1.1 Varying Parameter Values 187

xi

9.1.2 Varying Module Configurations 188
9.1.3 Varying Statechart Models 192
9.1.4 Generation Procedure . 198

9.2 Validation . 200
9.2.1 Experimental Setup . 200
9.2.2 Parameter Modification . 202
9.2.3 Module Modifications . 203
9.2.4 Rule-Based Transformations 204

9.3 Directed Generation . 206
9.3.1 Difficulty Classification . 207
9.3.2 Mammoth Implementation 208
9.3.3 Generation with Difficulty Targets 209

9.4 Expanding the Approach . 211

10 Related Work . 212

10.1 Layered Statechart-Based AI . 212
10.1.1 Finite State Machines . 212
10.1.2 Behaviour Trees . 214
10.1.3 Other Architectures . 214

10.2 AI Reuse . 215
10.2.1 AI Reuse Tools . 217

10.3 Verification of Game AI . 218
10.4 AI Variation . 219

11 Conclusions . 221

11.1 Future Work . 223
11.1.1 Extensions . 223
11.1.2 Further Research . 225

Appendix A: The Halo AI as Layered Statecharts 228

A.1 Sensors . 228
A.2 Analyzers . 235
A.3 Memorizers . 241
A.4 Strategizer . 243
A.5 Deciders . 244
A.6 Executors . 248
A.7 Coordinators . 256

xii

A.8 Actuators . 257

Appendix B: Promela Representation of the Squirrel AI 261

References . 291

KEY TO ABBREVIATIONS . 298

xiii

LIST OF TABLES
Table page

5–1 Input statecharts in the Halo AI . 79

5–2 Output Statecharts in the Halo AI 84

6–1 Unconnected Events in the new Trash Collector AI 117

7–1 Warnings and errors generated by Scythe AI 129

8–1 Squirrel Design Goals and Resulting Specifications 168

8–2 Squirrel Implementation and Specifications 169

8–3 Squirrel Verification: Promela Specifications 176

8–4 Squirrel Verification: Resource Usage 177

9–1 Baseline Parameter Values . 201

9–2 Parameter Modification Settings . 202

9–3 Variation Test Results . 203

xiv

LIST OF FIGURES
Figure page

2–1 The Sense-Plan-Act architecture. 14

2–2 The subsumption architecture. C’s represent coordinators. 16

2–3 An example Behaviour Tree. 20

2–4 An example Finite State Machine. 22

2–5 Statecharts Basic Transition . 24

2–6 Hierarchy in Statecharts . 25

2–7 Orthogonal Components in Statecharts 26

2–8 Layers in the Layered Statechart formalism 28

3–1 AI Event Queue for Cooperating Statecharts 34

3–2 External Event Queue for Cooperating Statecharts 36

3–3 Layers in the Layered Statechart-based AI Formalism 39

4–1 The Energy Sensor . 50

4–2 The Threat Analyzer . 52

4–3 The Key Item Memorizer . 53

4–4 The Squirrel Brain . 54

4–5 The Flee Decider . 56

4–6 The Eat Decider . 57

4–7 The Eat Executor . 58

4–8 The Wander Executor . 59

xv

4–9 The Pick-up Executor . 60

4–10 The Pick-up Actuator . 60

4–11 The Eat Actuator . 61

4–12 The Move Actuator . 61

4–13 Initial Wandering Sequence Diagram 62

4–14 Food Spotted Sequence Diagram 63

4–15 Low Energy Sequence Diagram . 64

4–16 Eating Behaviour Sequence Diagram 65

4–17 SCXML representation of a Statechart that manages wandering. . 72

4–18 External XML file showing an AI mapping. 73

4–19 Squirrel.xml, defining a squirrel NPC for use in an external role. . 74

5–1 Limited Subsumption Approach 78

5–2 The high-level Strategizer. 82

5–3 The Combat Cycle from the Halo AI. 83

5–4 The CombatDecider. 85

5–5 The HealthSensor. 88

5–6 The GrenadeProximityAnalyzer. 89

5–7 The FleeDecider. 90

5–8 The feedback MoveActuator. 91

6–1 A generic AI module interface. 107

6–2 The module interface for the Key Item Memorizer. 107

6–3 Reuse scenario with unintended connections. 109

6–4 The module interface for the Mammoth Listener. 113

xvi

6–5 The module interface for a functional group. 114

6–6 The statechart for the Collect Decider. 119

7–1 The Scythe AI Workflow. 121

7–2 The Scythe AI Main Interface. 122

7–3 Entering general description of a module. 124

7–4 Import Module Step 4: Event Specification 125

7–5 Import Module Step 7: Parameter Selection 127

7–6 Editing a Module in Scythe AI. 128

7–7 The Mammoth XML NPC generated by Scythe AI 132

8–1 Defining Promela processes . 146

8–2 The Promela Statechart for the Wander Executor 147

8–3 External Event Generation in Promela 151

8–4 Guarded Transitions in Promela 153

8–5 The message passing channels in Promela 155

8–6 The processEvents Process in Promela 156

8–7 External Events in the Squirrel AI 165

9–1 Parameter Modification Strategy 189

9–2 Stutter Executor for the Squirrel 193

9–3 Transformation rules. 195

9–4 A reset transformation. 196

9–5 Alternate Squirrel Brain . 205

9–6 Baseline difficulty for flee-homogenous populations 209

9–7 Baseline difficulty for mixed populations 210

xvii

A–1 The AttackSensor. 228

A–2 The CharacterSensor. 229

A–3 The CommandSensor. 229

A–4 The GrenadeSensor. 230

A–5 The HealthSensor. 230

A–6 The ItemSensor. 231

A–7 The ObstacleSensor. 231

A–8 The PositionSensor. 232

A–9 The ShieldSensor. 232

A–10 The VehicleSensor. 233

A–11 The WeaponSensor. 234

A–12 The EnemyAnalyzer. 235

A–13 The EnemyProximityAnalyzer. 236

A–14 The GrenadeProximityAnalyzer. 237

A–15 The LowMoraleAnalyzer. 237

A–16 The SpecialEventAnalyzer. 238

A–17 The SquadAnalyzer. 238

A–18 The ThreatAnalyzer. 238

A–19 The ThreatCompilerAnalyzer. 239

A–20 The VehicleAnalyzer. 239

A–21 The VehicleProximityAnalyzer. 240

A–22 The CharacterMemorizer. 241

A–23 The CommandMemorizer. 241

xviii

A–24 The ObstacleMemorizer. 242

A–25 The VehicleMemorizer. 242

A–26 The Brain. 243

A–27 The CombatDecider. 244

A–28 The FleeDecider. 245

A–29 The IdleDecider. 246

A–30 The SearchDecider. 247

A–31 The SelfPreservationDecider. 247

A–32 The ClearAreaExecutor. 248

A–33 The FleeAllExecutor. 249

A–34 The FleeNearbyExecutor. 250

A–35 The ItemExecutor. 251

A–36 The MeleeCombatExecutor. 251

A–37 The RangedCombatExecutor. 252

A–38 The SearchExecutor. 253

A–39 The TakeCoverExecutor. 254

A–40 The UseItemExecutor. 254

A–41 The VehicleCombatExecutor. 255

A–42 The WanderExecutor. 255

A–43 The MovementCoordinator. 256

A–44 The GrenadeActuator. 257

A–45 The ItemActuator. 257

A–46 The MeleeActuator. 258

xix

A–47 The SoundActuator. 258

A–48 The RangedCombatActuator. 259

A–49 The RunActuator. 260

A–50 The VehicleActuator. 260

xx

CHAPTER 1
Introduction

The video game industry has exploded in size as game sales now easily

eclipse Hollywood box office ticket sales. The recent hit game ‘Grand Theft

Auto 5’ (GTA5) grossed over US$800-million in just its first day of sales [18].

Unfortunately, the cost of developing a major state of the art game (a ‘AAA’

title) has grown accordingly. In 2009, M2 Research put the cost of developing

a modern multi-platform game between US$18 and $28-million [47], while the

aforementioned GTA5 had a development cost upwards of US$130 million [6].

While these high totals include art and content creation, a sizeable portion is the

cost of software development.

Over the years, many short cuts have emerged to reduce the magnitude of the

programming task. Primarily, this is through the use of game engines that provide

the core components of the game-to-be. A popular industrial choice is the Unreal

Engine [70], while the Unity 3D game engine [69] is rapidly growing in popularity.

Open source examples include jMonkey [64] for Java and OGRE [65] for C++.

Usage of these engines allows developers to skip basic development tasks such as

memory management and entity representation, and instead focus on customizing

the provided environment for their game.

A primary enabler of the success of game engines is the format of game assets,

chiefly graphics assets. Models for in-game objects are built from texture mapped

1

polygons using programs such as Maya or 3D Studio Max, then stored in one of

several standard formats. Game engines can then implement a graphics engine

that takes these assets and displays them using OpenGL or DirectX. This allows

for reuse and portability of graphics assets, reuse of graphic engines, as well as

practical approaches such as unit tests relating to the correct display of models in

standard formats.

Reuse is thus a powerful tool in limiting costs. The game publisher Electronic

Arts has built up a set of internal libraries that manage resource loading, controller

input, sound management, and so on [13]. However, AI packages are conspicuously

absent when considering reuse approaches. The lack of standardization means

that the approach to AI for a game is often custom developed specifically for

that game. Usually this results in developers designing simple AIs by reinventing

prior art. For much of the history of the gaming industry, this resulted in non-

player characters being driven by a simple reflexive agent using scripted behaviour

customized to operate within the game context.

This type of narrow game-by-game focus is a source of consternation for game

developers. At the Game Developer’s Conference in 2011 (the largest conference

of its type), Kevin Dill argued this point, saying that the lack of behavioural

modularity was stymying the development of high quality AI [62]. With no

standard, there is no generally agreed-upon representation of AI logic, and so there

is no clear path towards the packaging and reuse of AI assets. While graphics

development has a texture mapped triangle, there is no clear analogue for AI logic.

If a developer could simply reuse basic behavioural modules (such as fleeing, taking

2

cover, following, and so on), then they would be free to spend development efforts

on perfecting logic for intricate behaviours specific to their game context.

1.1 Game AI Development

We believe the fundamental cause for the absence of modularity and reuse

in game AI is the lack of a formalism suitable for the application of software

engineering techniques. A model-driven development approach would allow for

modularity through component reuse. The predominant approach of scripted AI

is too context specific for reuse, lacking a high-level model that would form the

framework for higher-level reasoning. Games that do employ a formalism tend

to use finite state machines (FSMs) or behaviour trees, both of which present

problems for reuse that will be discussed in Chapter 10.

The lack of a high-level description of game AI inhibits more than just reuse.

For instance, establishing the correctness of an AI is usually done by testing the

AI in given scenarios. This can involve considerable and repetitive manual effort

by hired testers and community beta testers. Each change to the underlying game

logic may necessitate additional rounds of feature and regression testing. While

software engineering offers many verification approaches such as model-checking,

the value of heavy-weight approaches is limited by the lack of standardization.

An appealing alternative is offered by Kienzle et al. [35], who introduced an

AI based on an abstract layering of statecharts. Here, each statechart acts as a

modular component implementing a single behavioural concern, such as sensing

the game state, memorizing data, deciding upon high-level goals, and so on. While

appealing, little work has been done to show the benefits of this approach.

3

1.2 Contributions

The central aim of this work is to use model-driven development to improve

the development process of game AI. Starting from prior work on layered state-

chart approaches, we develop and define layered statechart-based AI, a formalism

to represent game AI. In this thesis, we will demonstrate both the utility and

capability of the formalism, and show how this model-driven approach enables a

number of beneficial techniques.

As a fundamentally modular approach, layered statechart-based AI is well-

suited for modular reuse. We will define a complete approach to performing

reuse. The approach will be supported in the form of Scythe AI, a tool designed

to manage modular reuse of game AI. Since statecharts have a clear operational

semantics, we are able to develop a technique to formally verify behaviour cor-

rectness of AI logic. This makes it possible for game developers to more formally

test and verify their creations at design time. This additionally benefits reuse,

since verification can ensure that new modules are correctly placed in the new

context. Furthermore, we will explore transformations at the modelling level that

will permit procedural generation of varying AIs.

Together, this work creates a impressive toolkit for the game AI developer,

and introduces beneficial software engineering approaches to the field. Specifically,

this thesis presents the following contributions:

• A complete and detailed description of layered statechart-based AI, expand-

ing and building on the original theory. This includes a novel definition of

4

inter-statechart communication, and presents a model for communication

that respects the original statechart definition.

• A complete description of a fully implemented AI for a squirrel using

layered statechart-based AI. In addition to providing a simple test case,

it additionally provides a complete guide to implementation, making it

straightforward for others to develop their own AIs.

• A set of statechart-patterns that reflect common logic patterns for an AI.

Similar to design patterns in software engineering, each statechart pattern

represents a solution to a commonly encountered problem when designing

AIs.

• The creation of the first large scale AI using layered statechart-based AI.

This proves that the formalism can handle AIs at the scale of industrial

games, while providing a valuable test-bed for future research.

• A complete approach to modular reuse of layered statechart-based AI. This

includes definition of the reusable AI module, a thorough investigation of

how modules interact, culminating in the creation of an AI module interface.

Furthermore, we create a description of behavioural modularity through

the composition of functional groups. A detailed example is presented,

demonstrating the usefulness of the approach, and how reuse works in

practice.

• Development of the tool ‘Scythe AI’, which provides a complete workflow

for modular reuse. By supporting the creation and manipulation of AI

module interfaces, managing involved files, outputting new AIs, and ensuring

5

correctness through an error and warning system, Scythe AI makes modular

reuse practical for game developers and researchers.

• We present two approaches to verifying the correctness of a layered

statechart-based AI. First, we address syntactic correctness, showing how

a reachability analysis can be used to ensure that modules are connected

properly. More powerfully, we address behavioural correctness by presenting

an approach to model-checking behavioural specifications. Included is an

exploration of various methods to create useful specifications that accurately

represent game scenarios.

• We provide a complete demonstration of the verification approach by fully

verifying the behavioural correctness of the squirrel AI. In addition, we

investigate the verification tractability of our large scale AI.

• We develop a complete method to generate varied populations from a seed

layered statechart-based AI. This subsumes existing techniques such as

parameter modification, while formalizing compositional alterations using

the new AI module interfaces. We also employ rule-based transformations

to alter statecharts directly. Through a series of experiments, we show that

alterations of this type can in fact be employed in a directed manner for

generation of specific populations.

1.2.1 Validation

This work is validated largely through case studies. This is a fairly common

approach in the modelling and software engineering communities. Using this

approach, we present prima facie evidence that our techniques can indeed be

6

used to generate game AI. By giving a detailed explanation as we work through

the case studies, the ability of our approach to overcome specific development

challenges will be highlighted. The next subsection will detail the approaches used

in validating this work, followed by a discussion of other validation approaches

that were not employed.

In working through case studies, we will provide subjective evidence of

our claims of improvements to the development process by describing our own

experiences. Where our claims specifically require user validation, we will note

where a user-study could be effectively employed. Again, this type of approach

is common for evaluation of modelling problems. At Models 2013, the premier

conference on modelling in software engineering, fully 50% of papers verified their

work through a case study or example problem, while only 12% did so through

user studies. Indeed, of those 12%, half of those papers focused entirely on the

user-study itself.

Validation Specifics

To validate our work on the layered-statechart approach, we first seek to show

feasibility. As a first step, we will work through the creation of a small example

AI for a squirrel NPC. Such a proof of concept proves baseline feasibility, while

demonstrating what an actual AI in the layered-statechart approach looks like and

how it works. To prove scalability, we then reimplement a complex, full scale AI

deriving from the Halo series of video games. Success in modelling demonstrates

that our approach can scale up to the size of larger AIs found in industry, while

providing some insight as to the size and difficulty of creating complex AIs.

7

Importantly, we attempt to maintain the core benefits of the original Halo AI,

showing that our approach can also provide the same key features.

The work on reuse will be validated through a case study, and the creation

of the tool Scythe AI. Here, we aim to demonstrate that the developed modular

approach is well-designed with respect to enabling a reuse process to generate

a new NPC AI from existing modules, and enabling tool support. A reuse case

study clearly illustrates the process and gives a good impression of how and when

reuse can be applied. A primary concern when formulating the layered-statechart

approach was to provide enough modularity to allow for tool support; creation of

a tool shows that this goal was met. While the effectiveness of Scythe AI itself

could only truly be established through a user study, we show the design intention

behind the tool and describe how features of the software are designed with the

reuse process in mind.

The section of the thesis covering verification of layered-statechart based AI

allows for a more direct validation. Here, we apply the verification techniques

enabled by our modelling approach to exhaustively verify the correctness of

the squirrel AI with respect to the design goals. In addition, the depth of this

verification yields firm descriptions of the time and expense involved in verifying

layered statechart-based AIs. We extend this analysis by applying the strategy to

the Halo AI case study, addressing the question of scalability. Similar to Scythe

AI, the exact benefit of this with respect to the development process would require

a case study.

8

Finally, the work on generating varied AI will be validated by experimen-

tation. The goal of this work is to inject changes that cause generated NPCs

to express new behaviours, or to show significant variability in their extant be-

haviours. By generating populations of NPCs and testing them, we can directly

evaluate if we have met our goals of increasing variation and variability.

Development Process versus Process Output

While we focus on the development process itself, the application of the

process results in NPCs that meet game design goals, and provide or enhance the

enjoyableness with respect to the player. To be clear, our primary concern is not

the generation of a ’good’ NPC, but rather to create processes and a tool that,

in the hands of a talented game designer, could be employed to more quickly and

easily create NPCs (when compared to the current state of the art). Testing the

quality or enjoyability of our own generated NPCs speaks more to our talents

as game designers, but has little bearing on the effectiveness of the presented

approach.

User Studies

The ideal way in which to validate our claims of improvements to the devel-

opment process would be through user-studies. In this case, the act of evaluating

improvements would require a large amount of domain specific knowledge. Eval-

uating non-experts would conflate the question of how to make an AI with the

process of constructing an AI. Avoiding this necessitates expert users, most likely

professional AI programmers working in the video game industry. Unfortunately,

9

recruiting a pool of volunteers meeting this stringent requirement proved impos-

sible. As well, effectively comparing their current workflow including the use of

professional tools against our new workflow is complicated due their high level of

expertise with their existing tools.

1.3 Thesis Layout

This document tells the full story of layered statechart-based AI, addressing

the basic theory, and proceeding to cover the advanced topics of reuse, verifica-

tion, variation, and tool support. It begins in Chapter 2 by giving appropriate

background on the field of game development and AI in particular. This includes

descriptions of the popular formalisms used to represent AI and their supporting

background theory.

Chapters 3, 4, and 5 together give a detailed description of layered statechart-

based AI. Chapter 3 gives full background on the original description of the

approach, while updating and improving aspects of the theory. Chapter 4 shows

the approach in practice, giving a complete description of an AI for an NPC

squirrel, including an implementation in an actual large-scale game. To show that

this approach meets the needs of industry, Chapter 5 presents a implementation

of a complex AI similar in complexity to AIs in AAA games. This is a significant

study, and demonstrates the validity of the layered statechart-based formalism.

Along the way, it reveals several important features of developing a layered

statechart-based AI in practice.

Chapter 6 examines in detail what it means to reuse a module of statechart-

based AI, and how reuse can be performed. This includes definition of a module

10

interface and functional groups to make reuse a practical and straightforward

process. This pairs with Chapter 7, which introduces the Scythe AI tool. At the

time of writing, Scythe AI was developed to the point of enabling reuse, and so

this chapter discusses the nature of the tool and its functionality.

Chapter 8 addresses the important topic of correctness and validation,

detailing how layered statechart-based AI can be verified at the model level. To

determine the value of the approach, we apply the process to the squirrel NPC by

performing a complete verification with respect to design goals. The effectiveness

of our validation is further demonstrated by applying it to the complex AI

developed in Chapter 5. Chapter 9 addresses generation of variations. This topic

shows the power of manipulations at the modelling level, further justifying the

model-driven approach. The work in this chapter is directly validated through

experimentation.

Chapter 10 presents a survey of related academic work. This chapter gives

a broad summary of how these results fit into the academic field at large, and in

some places, serves to illustrate that much of this work is exploring novel ground.

Finally, Chapter 11, offers concluding thoughts and explores avenues for future

research on the topic.

11

CHAPTER 2
Background Theory

Understanding how to apply a software engineering approach to computer

gaming requires a wide range of background theory to properly describe and

illustrate the process. This chapter starts with a thorough description of the

application domain. Computer games are described along with the role of AI in

gaming, followed by descriptions of the AI formalisms appearing in this document.

Much of the work will be based on the layered statechart formalism and so special

attention is given to this topic. The remainder of the chapter will introduce

some of the software engineering approaches employed, including modular design,

reuse, and model checking. Other necessary background will appear as needed

throughout the document.

2.1 Artificial Intelligence in Computer Games

Computer games, colloquially known as video games or digital games, can be

described as interactive computer programs with the primary goal of entertaining

the user. The user, now called a player, has control over some aspect of the game,

influencing or controlling progression through the game. Challenges are presented

to the player that must be overcome through a combination of strategy, reflexes,

coordination, or timing. If the player has a specific character within the game

that they control, that character is either called an avatar or a player character

(PC). Many games include other entities within the game world that act and

12

move without player input, such as enemies, allies, and others. These are called

non-player characters (NPCs).

A game context provides the description of the game world, detailing the game

world, the rules, and how the game progresses. The game context for the classic

game Chess would be comprised of information about the board layout, starting

position and abilities of the pieces, rules regarding movement and taking pieces,

along with turn taking. Some variations would include extra information such as

the length of turns. Once a game context is established, the current state of the

game is tracked in what is called a game state. Looking at Chess once again, the

game state would be comprised of the current position of all pieces on the board,

along with whose turn it is. Thus, any computer game can be fully described using

a combination of game context and game state.

Artificial intelligence plays an important role in modern computer games.

Most frequently, it is used to control NPCs such that they exhibit behaviours

relevant to the character’s role within the game context. This type of AI is referred

to as computational behaviour. In cases where the governing AI is inspired by

natural intelligence, the term computational intelligence is sometimes used. When

considering game development, efficiency, rapid development, and testability are

paramount, strongly constraining design approaches. This distinguishes game

AI from more complex classical AI approaches such as inference engines, neural

networks, and learning.

13

Agent

Environment

Sensors Planner Actuators

Figure 2–1: The Sense-Plan-Act architecture.

2.1.1 Agent-Based AI

Theory governing the behaviour of autonomous agents is well established in

robotics literature such as in Arkin’s book [3], which summarizes behaviour-based

control of robots. In the sense-plan-act architecture, a robot senses the current

state of the world, uses that information to decide upon a goal, then converts that

goal into a command that drives the actuators. This is shown in Fig. 2–1.

One thing common to all of the aforementioned AI architectures is that

they make behavioural decisions as independent entities. This ability to self-

determine goals is the central concept of agent-based control, where each AI is

an independent entity that controls only a single entity. A robot operating in

the real world is analogous to an AI operating in a game world, since each makes

observations about its environment, chooses a goal, and executes it using the

actions and actuators available to it. Indeed, most NPCs in games use agent-based

14

AI. Simple reactive agents are common, where NPCs react identically to identical

game states. These are like sense-plan-act architectures that omit the planning

portion. Deliberative agents employ memory, allowing them to select behaviours

using past observations and decisions. Hybrid agents combine the two agent

types by using reacting deterministically to some events, but using a deliberative

approach for other inputs. For many types of games, enemies only require highly

simplistic tactics such as running at the player and attacking, and thus a reactive

agent is sufficient. Modern first-person shooters use military tactics such as squad-

based maneuvering, searching behaviours, and taking cover, necessitating the use

of deliberative or hybrid agents.

In both games and robotics, sense-plan-act architectures grow increasingly

complex as the desired behaviour becomes more sophisticated. The decision

making process becomes more challenging as it must continually choose between

an increasing variety of less differentiated behaviours. An alternative approach is

the subsumption architecture described by Brooks [5], shown in Fig. 2–2. Here,

complexity is controlled by separating behaviours into different layers. Lower

layers handle simple tasks, such as collision avoidance, while higher levels handle

more complex behaviours, such as moving towards a goal, exploring, and so on.

Each layer receives sensor data and sends data to actuators, meaning that lower

levels can act independently of higher levels. Consider a moving robot that detects

an imminent collision with an object. In a standard sense-plan-act architecture,

this information would be fed into a complex general decision process along

with all other sensory data, whereas a subsumption approach would feed sensor

15

Agent

Environment

Sensors

Layer

Actuators

Layer

Layer

Layer

C

C

C

Figure 2–2: The subsumption architecture. C’s represent coordinators.

data into a layer concerned only with collision avoidance, which in turn would

immediately issue a command to actuators that prevents the collisions. This allows

all notions of collision avoidance to be removed from higher levels, reducing the

complexity of the decision making process. However, the subsumption approach

is not without its drawbacks. Since multiple layers could issue contradictory

commands (e.g., collision avoidance says turn left while an exploration layer says

turn right), coordinators process all actuator commands to resolve any conflicts.

While the subsumption architecture was popular, the interdependence be-

tween layers made it difficult to modify any layer without being forced to modify

all layers. By surveying a number of successful architectures, Gat et al. [21]

classified robotics algorithms as falling into three layers. The exact layers repre-

sent strong commonality between independent approaches. At the control layer,

sensors are closely looped to actuators such that the robot can perform primi-

tive behaviours such as wall-following. The next layer, the sequencer, seeks to

16

stitch together primitive behaviours to accomplish larger tasks. The final layer,

the deliberator, performs long term calculations such as planning. This descrip-

tion has proved highly popular and many subsequent efforts have adopted this

classification.

While AI for robots and AI for game NPCs have large similarities, there

are some specific differences that are worth highlighting. Indeed, some of the

primary challenges in robotics (such as sensing, world modelling, and planning)

are simplified in game AI. This is because a game is essentially a simulation

that both defines and controls the complete model of the game. With respect to

sensing, the game logic itself can cause an AI to unambiguously sense whatever

it needs to sense at any given time1 . World modelling is unnecessary, since the

game is already represented in a format that is directly accessible. Planning is

simplified, since the controlled nature of a game simulation makes the expected

outcome of a plan much easier to predict, if not completely knowable in advance.

Still, an NPC must know what to do with the model and the sensed data, and

so it must have higher level abstractions that allow it to decide how to use this

information and act within the game world. In this regard, the modelling and

layering techniques developed in robotics provide excellent reference points when

considering formalisms and layering problems in game development.

1 Indeed, the difficulty in games more often lies in making NPCs worse at sens-
ing, rather than better. This is because players dislike NPCs that appear omni-
scient, especially in genres such as strategy gaming.

17

2.1.2 Game AI Formalisms

While game AI has the ultimate goal of choosing behaviours for an NPC,

the decision making structure employed by an agent can vary quite broadly.

One common approach is to employ arbitrary code expressed through a custom

scripting context [70, 53]. A scripted NPC is usually a reactive agent, reacting to

inputs by acting in accordance to the script. Relatively simple tree and graphs

structures are also used, such as decision trees. Millington’s introductory text

summarizes a variety of these approaches [52].

Goal-based planning approaches, including hierarchical task networks, are

occasionally employed, such as that in the commercial game F.E.A.R. [54], or

the academic language ABL [48]. In this approach, a library of actions with

preconditions is created, defining the capabilities of the AI. Behavioural goals

establish preconditions for a task, then a search finds and executes an action

that satisfies preconditions and accomplishes the goal. Dynamic awareness and

reactivity are compromised by this model. In practice, the planner must be

repeatedly run to ensure that the selected action is still the appropriate one. Reuse

models are based upon exporting actions and goal sets.

Behaviour Trees

Behaviour trees are quickly becoming a popular formalism in industrial

game AI. Highly successful industrial games such as Halo 2 [32] and Spore [28]

have brought this approach to the forefront. Behaviour trees (BTs) are strictly

hierarchical decision trees, where leaf nodes represent actions and non-leaf nodes

choose how the tree should be navigated. Each node has an evaluation function

18

that when called by the parent, returns true or false. Action nodes answer this

based upon the result of the action undertaken. If the action is to open a door,

the node might return true if the door was opened, and false if the door remains

closed.

Non-leaf nodes evaluate in a much different manner—by asking their children

to evaluate. This child-evaluation is what gives BTs their hierarchical nature,

and allows a designer to place behaviours in a logical manner. The two primary

non-leaf nodes are sequencers, drawn as circles containing horizontal arrows, and

selectors, drawn as circles containing question marks. A sequencer begins by asking

its first child to evaluate. If it returns true, the sequencer asks its next child to

evaluate, moving through all of its children in a sequence. If they all evaluate

successfully, then the sequencer returns true. However, if any of the children return

false, the sequence immediately halts and the sequencer returns false. Selectors

seek to successfully execute a single behaviour. A selector asks its first child to

evaluate, and if it returns true, then the selector halts and returns true. If the

first child returns false, the selector evaluates the second child, repeating this until

a child eventually returns true. If all children evaluate to false, then the selector

returns false. Since both of these nodes evaluate from the first child, the traversal

of the overall tree is depth first.

With only selectors and sequencers, it is possible to construct a working

behaviour tree. In Fig. 2–3, a behaviour tree is given that guides an NPC through

a door. Node evaluation takes us all the way down to selector 4. If the door is

unlocked, or if the NPC can unlock the door, selector 4 will return true. In that

19

?

?

Unlock
Door

Enter
Room

Door
Unlocked?

Kick
Door

Open
Door

1

2

3

4

Figure 2–3: An example Behaviour Tree.

case, sequencer 3 will proceed to open the door and return true. However, if the

door is locked and cannot be unlocked, sequencer 3 will halt and return false. If

the door has been opened, selector 2 will return true; if the door is still closed,

the AI will kick it in. Now that the door has been dealt with, sequencer 1 will

complete the last action of entering the room.

The simple structure afforded by these two nodes can be unsatisfying, and

so additional nodes are sometimes used. These can include repeaters, that repeat

behaviours, random selectors, decorators that attempt different actions based upon

a property of the NPC, and so on. However, all BTs suffer from a common issue.

Once evaluation has gone down a certain path, there is no practical manner to

react to changing game states that would alter a previous decision. Thus, typical

20

execution of a BT starts from the root on each pass, and actions must carefully

consider a variety of variables, often unrelated to the specific behaviour, before

returning true or false.

Finite-State Machines

The most prevalent formalism in game AI is that of finite-state machines

(FSMs). An FSM typically consists of a finite state automata, where states

represent the current status of the NPC. The transitions between states are

directed, and labelled with inputs from the game. An example is shown in Fig. 2–

4, where the small arrow pointing to the Waiting state indicates that as the initial

state. When the game generates the event ev enemySpotted, the FSM transitions

into the state Fighting. To issue commands to the NPC being controlled, most

FSMs include the notion of actions. An action can occur as part of a transition or

when a state is entered or exited, and usually results in a function call that effects

a behaviour. In the example, entering the Fighting state would cause the coded

fight behaviour to begin executing, with the result that the NPC would fight the

player.

While FSMs are reasonably intuitive for designers, increases in AI complexity

can result in unmanageably complex state machines. Still from the previous

example, a fighting behaviour might break down into states for moving, aiming,

firing, reloading, and taking cover. These in turn may break down into further

groups of states. Connecting these states back to Waiting and Fleeing requires a

dramatic increase in the number of transitions, and quickly makes the FSM too

large and complex to work with.

21

Fight ingFleeing

Wait ing

playerLost

lowHealth

playerSpotted

normalHealth

Figure 2–4: An example Finite State Machine.

In Harel’s work introducing statecharts [24], the complexity problem was ad-

dressed through the introduction of hierarchical states. This notion was extracted

and added to simple FSMs, creating Hierarchical Finite State Machines (HFSMs).

These allow states to contain substates, with internal transition structures be-

tween substates. A state containing other states is called an outer state, while a

contained state is called an inner states. For example, specific fighting behaviours

such as aiming and taking cover could be more easily represented using substates

within the Fighting state. Transitions may originate in inner or outer states,

meaning the transition structure from Fig. 2–4 would remain the same, with the

addition of internal states and transitions within the Fighting state. It is possible

for a state to have an inner and outer transition with the same label, introducing

non-determinism that must be resolved in any implementation.

Definitions of FSMs and HFSMs are deliberately left informal. In the game AI

field, the labels are used as a blanket term for any state machine-based approach.

22

For example, an FSM approach could include guarded transitions, random or

dynamic target states for transitions, or other variations, yet would still be called

an FSM or an HFSM if it allowed substates. The vagueness on this point is

reflective of the reality of the community.

2.1.3 Statecharts for Game AI

Statecharts were introduced by David Harel in 1987 [24] as a formalism

for visual modelling of the behaviour of reactive systems. These generalize

FSM and HFSM (which explicitly derive from Statecharts) approaches. A full

definition of the Statemate semantics of statecharts was published in 1996 [26].

Statecharts are built from states, representing states of the modelled system,

and connected with transitions between them. Events are discrete, meaning

that the transition between states is considered to be instantaneous. Later,

Harel published the Rhapsody semantics [25], which clarifies the object-oriented

behaviour of statecharts and describes the executable semantics. All statecharts in

this document will use the Rhapsody semantics.

Transitions are of the form e[g]/a, where e is the triggering event, g is a guard

condition, and a is an action executed when the transition is taken. Each of these

three parts is optional. Additionally, states can have actions that occur on entry or

on exit. When a transition triggers multiple actions, they are executed in the order

[on exit→transition→on entry]. Figure 2–5 gives a simple statechart with two

states: Start and End. The small arrow pointing to Start denotes that state as the

initial state. If the system is in state Start and it receives event while condition

23

Start Endevent[guard] / action
action on entry:
action on exit:

action on entry:
action on exit:

Figure 2–5: Statecharts Basic Transition

guard evaluates to true, the transition to state End is taken and the side-effect

action is executed.

Statecharts allow states to be nested, as shown in Fig. 2–6 where the compos-

ite state S1 has several nested states. Initially, the system is in state S11 as at the

top level, S1 is the default state and within S1, S11 is the default state. To un-

derstand the nesting, when in a state such as S11, upon arrival of an event such as

e, an outgoing transition is looked for which is triggered by event e. This lookup

is performed traversing all nested states, from the inside outwards as described in

the Rhapsody semantics [25], in this case going to S12. This keeps the semantics

deterministic despite the appearance of conflict between the inner and outer states.

When in state S12, there is no conflict and event e will take the system to state

S2. When in state S2, event f will take the system to state S1. As the latter is a

composite state, the system will transition to S11, the default state of S1.

After leaving a nested state, history states denoted as a circled H allow for

a return to the previous substate. When the outer state containing the history

state is left, the current inner state is stored. A transition going to a history

state instead terminates at the stored previous state. If there is no stored state,

24

S1

g

e
S11 S12

S13

S2

f
e

f

Figure 2–6: Hierarchy in Statecharts

occurring when the nested states have never been visited, the default state will

instead be used.

In addition to hierarchy, statecharts add orthogonal components and broad-

cast communication. Fig. 2–7 shows a statechart with orthogonal components

ocA and ocB as separated by a dashed line. This denotes that the system will

simultaneously be in exactly one state in each of the orthogonal components. As

such, this is a short-hand notation for the unordered Cartesian product of state

sets. All orthogonal components react to external events. Furthermore, events such

as g, which is output when the external event f is received while ocA is in state

ocAs1, are broadcast and are in particular sensed by other orthogonal components.

The semantics of event passing between orthogonal components will discussed in

further detail in §sec:eventBasedCommunication.

Typically, FSMs used in games lack history states, inside-outwards transition

resolution found in the Rhapsody semantics of statecharts [25], and an associated

25

S1

ocAs1

ocAs2

f / g

ocA ocB

ocBs1

ocBs2

g

Figure 2–7: Orthogonal Components in Statecharts

class as in the Unified Modelling Language (UML). The lack of orthogonal states

means that FSMs typically describe the entire behaviour of an NPC in a single

state machine. Maintenance becomes increasingly complex as the addition of

each new behaviour require a composition of existing behaviours. However, the

single state nature becomes advantageous during testing; problems with an AI are

isolated to the code for the current state.

Statechart-based AI

An appealing formalism was developed by Kienzle et al. [35], who introduced

an AI based on an abstract layering of statecharts. Here, each statechart is a

module implementing a single behavioural concern, such as sensing the game

state, memorizing data, making high-level decisions, and so on. Due to the clear

demarcation of duties, the modules are ideal for reuse. Each layer can contain any

number of statecharts, or none at all.

26

Figure 2–8 gives an overview of the formalism. At the lowest layer lie sensors.

These read the game state, typically through listeners or observers that generate

events when a change is detected. Events are passed up to analyzers that interpret

and combine sensing data to form a coherent picture of the game state. The

next layer contains memorizers, which store analyzed data and complex state

information for later reference. The highest layer is the strategic decider 2 , which

interprets analyzed and memorized data to decide upon a high level goal. The

high level goal is passed down to the tactical deciders to determine how it will be

executed. Becoming less abstract, the next layer provides executors that enact

execution decisions, translating goals into actions. Depending on the current

state of the NPC, certain commands can cause conflicts or sub-optimal courses of

action. Conflicts of this type are resolved by coordinators. The final layer contains

actuators, which execute actions by modifying the game state.

This research focuses considerable effort on using this approach, and has

expanded significantly on the formalism. The following chapter will go through

Layered statechart-based AI in detail, noting new additions and modifications as

appropriate.

2.2 Software Engineering

Model-Driven Engineering (MDE) [61] is a unified conceptual framework in

which software development is seen as a process of model production, refinement

2 Typically, there is only one strategic decider, but an AI that needs to perform
orthogonal tasks could have a strategic decider for each of them.

27

Sensors

Analyzers

Memorizers

Strategic Deciders

Tactical Deciders

Executors

Coordinators

Actuators

G
eneral E

vent F
low

Figure 2–8: Layers in the Layered Statechart formalism

and integration. Models are built representing different views of a software system

using different formalisms, i.e., modelling languages. The formalism is chosen in

such a way that the model concisely expresses the properties of the system that

are important at the current level of abstraction. During development, high-level

specification models are refined or combined with other models to include more

solution details, such as the chosen architecture, data structures, algorithms,

and finally even platform and execution environment- specific properties. The

manipulation of models is achieved by means of model transformations. Model

refinement and integration continues until a model (or code) is produced that can

be executed.

A primary goal in modelling is to limit accidental complexity, which is

complexity introduced by the modelling formalism rather than the fundamentals

of the problem. In games, it is common practice for an AI to sense the game state

through events or by testing conditions. Conceptually, behavioural specifications

28

are highly related to these events as in the example “when the player is spotted,

I will attack him”. Given that statecharts are an event-driven formalism, it is

straightforward to model specifications of this nature, thus limiting accidental

complexity and making statecharts a highly appropriate formalism for modelling

game AI.

2.2.1 Modularity and Reuse

Rather than address an entire programming task as a single challenge,

complexity can be reduced by decomposing a problem into sub-problems. This is

known as a modular approach [55]. Logically separate portions of functionality can

be developed independently, then integrated. This requires well-defined interfaces,

so that modules can correctly interact with one another.

Modularity leads naturally into encapsulation [56]. When a module interacts

only through a well-defined interface, the internal structure of that module is

not relevant. This is the notion underlying information hiding, whereby design

decisions that are likely to be modified can be safely hidden behind the interface.

When a module implements a requirement and has a well-defined interface,

it becomes possible to perform modular reuse [39]. Any new artifact that requires

already developed functionality can simply reuse the existing module. Since the

module communicates only through a well-defined interface, reuse is accomplished

by importing the module and satisfying its interface. This approach has significant

potential in the area of computer game AI, as many AIs reimplement existing

behaviours and are thus prime candidates for modularization and reuse.

29

2.2.2 Verification and Model Checking

Verification of software is the act of examining or reasoning about possible

program states to ensure that requirements are being met. In large, complex

applications, especially in concurrent programs, the number of possible paths or

interleavings can grow at an exponential rate. In a problem called state-space

explosion, the number of possible system states grows to a such a size that manual

testing methods are unmanageable, and overly difficult for a human to reason

about. Model checking is an automated approach that performs an exhaustive

search of the state space, examining every possible interleaving. Common tests

include deadlock-freedom, assertion violations, and verification of temporal logic

specifications. Emerson et al. provide a good summary of the topic [9].

Depending on the model checker employed, specifications can be given in a

variety of different logic formalizations, with modal and temporal logics being the

most common. Typically, a developer will take a specification, create concurrency

controls to satisfy that specification, and then run a model checker with the

specification as input. If the check passes, then the specification has been satisfied.

If it fails, then the process repeats, with help from the check results. Often times

this help comes in the form of an error trace showing the exact interleaving that

led to the violation. However, it is also possible that the problem is intractable

due to excessive program size and thus an unmanageable state space. In that case

no answer is returned, and the user must adjust the model in hopes of making

the problem tractable. Chapter 8 will address model checking and specification in

greater detail.

30

CHAPTER 3
Layered Statechart-based AI

Statecharts allow for an intuitive representation of the decision making

structure of an AI. States represent the current thought process of the AI, while

events correspond to events in the game envi‘ronment or decisions made by the

AI. However, sophisticated AIs require a statechart that is far too complex to

be readily understood. Limiting this complexity through the use of an abstract

layering of modular statecharts was the core idea driving the development of

layered statechart-based AI [35].

Extensive use of this representation has allowed us to advance the basic model

in several significant ways, making it more adaptable and easier to employ. The

first section addresses previously unexplored details of event-based communication

and synchronous method calls. Following is a discussion of the abstract layers that

make up a layered statechart-based AI. This will follow the original treatment

[35], but will add more details regarding the nature of statecharts at each layer.

Overall, this description augments and completes the theory of layered-statechart

based AI. The following chapter will detail a fully constructed layered-statechart

based AI, including a complete description of how it was implemented in an actual

game.

31

3.1 Event-Based Communication

Layered statechart-based AI requires event-based communication between

statecharts. While the Rhapsody semantics of statecharts [25] make it clear how

to react to events within a single statechart, interaction between statecharts is not

addressed, nor is this explicitly addressed in the model-based AI [35] work. This

means that if multiple statecharts are meant to cooperate, we must first determine

the means through which statecharts will interact.

To consider this problem, we draw a parallel with orthogonal regions in a

single statechart. Orthogonal regions act concurrently and maintain their own

state. When the statechart fires an event, the current state in each orthogonal

region is checked and any matching transitions are triggered. While the transition

ordering between orthogonal regions is undefined, all orthogonal regions must

process the current event before the next event is considered.

With multiple statecharts, the situation is similar. Each statechart acts

concurrently while maintaining its own independent state. However, there is no

description of how events should be distributed and consumed. In the interest of

having a clear semantics for layered statechart-based AI, we need to develop a

cooperation semantics for interacting statecharts.

Intuitively, one would expect cooperating statecharts to adopt an event

propagation model analogous to orthogonal regions. In other words, one would

expect that when an event is generated in our layered statechart model, it should

be sent to all statecharts, with the result that any statechart with a matching

transition from its current state would fire that transition. Like orthogonal regions,

32

we should ensure that each statechart processes the current event before any

statechart processes another. Conceptually speaking, this means that cooperating

statecharts will act as though each is an orthogonal region of a larger statechart,

while maintaining modularity at the implementation level.

To accomplish this, we must synchronize event firing in cooperating state-

charts. This means that each statechart should see the same events in the same

order, as though they were indeed orthogonal regions in one single statechart. This

can be done by introducing an AI event queue for the set of statecharts, with all

new events going to this queue. Figure 3–1 shows a group of statecharts connected

by an AI event queue. When event A is fired, it is copied to the event queue for

each individual statechart. The statecharts process the event, and send new events

B and A to the AI event queue.

This type of event distribution employs a broadcast distribution model.

Events are distributed asynchronously to all statecharts, leaving the generating

statechart free to continue execution. Using broadcast as opposed to narrowcast is

not a requirement, though it creates more loosely coupled statecharts. This is an

important distinction, and will be discussed in more detail in Chap. 6.

3.1.1 Game Events

As game play proceeds, changes in the game state must be communicated to

the AI. These events are external to the AI, and thus external to the statecharts

that comprise the AI. Reacting to these events is necessary, but is not explicitly

considered in the original model-based AI work.

33

A AB
AI Event Queue

A A A

Fire Event

Statechart 1 Statechart 2 Statechart n

...

A

New Events

Figure 3–1: AI Event Queue for Cooperating Statecharts

The Rhapsody semantics describes external events as causing a step. Events

generated by the statecharts in response cause micro-steps. After a step occurs,

any resulting micro-steps are taken immediately. When there are no more micro-

steps, the system is quiescent. Only when quiescence is reached can another step

be taken.1

The statechart formalism assumes that transitions are instantaneous, but of

course any real implementation takes non-zero time to execute transitions. We

1 In rare cases, a system will not be able to reach quiescence due to infinite
event generation. This would be considered a bug in statechart construction, much
like an infinite loop is a bug in software development. In this case, the offending
statecharts should be corrected to prevent infinite event generation

34

risk having an external event added to our queue before the system has become

quiescent. This means that any implementation must distinguish between internal

events causing micro-steps and external events causing steps.

We resolve this issue by introducing a second queue, called the game event

queue. Any external events are sent to the game queue instead of the AI event

queue. External events are processed as before, and all events generated in

response are sent to the AI event queue. The AI event queue stores internal events

that cause only micro-steps. The system is not quiescent until the AI event queue

is empty. If new external events are generated while the system is not quiescent,

they are stored in the game event queue and only fired when quiescence occurs.

Figure 3–2 shows both queues for cooperating statecharts. Here, events X and

Y are generated externally and are placed in the external event queue, and initially

the AI event queue is empty. Thus, event X is distributed to all statecharts, and

the events B and A are generated in response. The AI queue is non-empty, and so

the head of the queue, B will be distributed, followed by A, followed in order by

any events resulting from B and A. Only when the AI queue is empty will event Y

be distributed.

3.2 Synchronous Communication

When an action is being executed in a statechart, it may require information

from other statecharts, without which the action cannot be completed. In this

situation, asynchronous communication is not sufficient, and so we must allow

some synchronous communication. This takes place using synchronous method

calls between associated classes, where one class offers a synchronous call, and the

35

BA
AI Event Queue

X X X

Fire Event

Statechart 1 Statechart 2 Statechart n

...

X

New Events

External Event
Queue

XY

Figure 3–2: External Event Queue for Cooperating Statecharts

other associated class calls it. Synchronous calls allow for statecharts to gather

information exactly when it is required. Unfortunately, achieving synchronicity

introduces complications regardless of how it is implemented.

By allowing synchronous method calls, the layered-statechart formalism

becomes complicated by the fact that the complete interaction profile is no longer

expressed solely in the statecharts. Statecharts can now be connected through

their associated classes, which does not appear in the statechart. Analysis and

reuse of a layered-statechart based-AI must now consider the associated classes as

well as the statecharts.

The obvious alternative is to allow statecharts to exchange data through

request and callback events. A requester could send out a request event, then

36

transition into a blocking state where the only transition out is a callback event.

The receiving statechart responds with the callback event, completing the commu-

nication. However, such an approach is problematic for two reasons. First, specific

events must be sent in a specific order, implicitly defining a protocol. Violations of

an implicit protocol are non-obvious, and introduce the potential for deadlock or

failure if statecharts are mismatched or another transition interrupts the protocol.

Secondly, passing paired events requires at least two micro-steps, and could take

more if other statecharts insert events into the queue between the message pair.

This delays calculation at the requesting statechart, and allows for the message

passing protocol to be interrupted. If the protocol uses a blocking state, then

interrupting events could be lost entirely. To eliminate these sources of error, we

advocate the use of synchronous method calls over request and callback protocols.

To simplify consideration of synchronous calls, we adopt the rule that a

synchronous method call should never change modal properties of a statechart.

This means that offered synchronous calls are primarily ‘getters’. Since modal

properties are not modified, event passing completely determines state, avoiding

the possibility for hidden or non-obvious behaviours in the statecharts. Similarly,

we adopt the rule that synchronous communication should never be done through

event passing, avoiding implicit protocol definition. This also sidesteps the need

for protocol management at the statechart level using artefacts such as protocol

state-machines.

37

3.2.1 Payloads

Events in a statechart are usually thought of as being a label and nothing

more. However, any given implementation might allow for events to include pay-

loads. This provides a convenient method to include pertinent information about

an event occurrence as it happens. Including payload allows the receiving state-

chart to process information about the event immediately. The alternative would

be for the receiving class to make a synchronous call to fetch the information.

Typically, the payload would consist of either a primitive or an object

reference. As an example, a sensor generating the event ev item spotted could

include as payload a reference to the instance of the item. Analyzers could then

directly and immediately investigate properties of the item, allowing the analyzer

to perform needed operations without any additional communication.

3.3 The Layers

Layered statechart-based AI is comprised of individual modules that cooperate

to produce the behaviour of the NPC being controlled. Each module, consisting

of a statechart and its associated class, implements a single aspect of the overall

behaviour. Modules are grouped into layers, an abstract categorization based

upon functionality and purpose. The layering provides a structure for modules

during the design process, and helps inform a designer of the intended purpose of

a module. Layers exist solely as a design artifact, having no further meaning at

run-time.

Layers typically contain one or more modules, though they can be empty. As

described in §2.1.3, there are eight layers in total. Going from input to output,

38

Coodinators

General
Event Flow

Sensors Actuators

Analyzers

Memorizers

Strategizer

Deciders

Executors

Input Layers Output Layers

High Level

Low Level

Le
ve

l o
f

A
bs

tr
ac

tio
n

Figure 3–3: Layers in the Layered Statechart-based AI Formalism

they are sensors, analysers, memorizers, strategizers, deciders, executors, coor-

dinators, and actuators. The remainder of this chapter will clarify the role and

operation of modules at each layer.

Figure 3–3 summarizes the layers and indicates general event flow. The layers

are arranged in a pyramidal fashion. This reflects level of abstraction: layers at

the bottom of the figure have a low level of abstraction with respect to behaviours,

while layers at the top have a high level of abstraction.

In general, the direction of event flow is as shown in Fig. 3–3. While direction-

ality is not strictly enforced, our experience to date has not required event flow in

the reverse direction. This means that events generated by statecharts move from

input towards the strategizer, and from the strategizer towards the output. For

instance, an event generated by a sensor would be consumed by an analyzer, and

decider events would be consumed by strategizers. In some cases, events can be

consumed at the same layer, or can skip over layers. This will be discussed in more

detail as the layers are described.

39

To simplify high-level statecharts, we allow a form of subsumption [5] whereby

input modules can send data to output modules directly, skipping over higher-level

intermediary modules. This would allow sensed data originating from a sensor

to be be received directly at an executor, for example. Allowing this type of

communication is an important optimization, and will be described in detail in

Chapter 5. Note that this process still respects the directionality of general event

flow.

3.3.1 Input Layers

Input to the AI begins with the sensor modules. The primary task at this

layer is to create events for the statecharts based upon spontaneous changes in the

game state. This means that sensors have a special role in the AI, which is to act

as the input portion of the interface to the game at large.

If the game uses events in its own internal logic, then the associated class of

a sensor can perform a simple mapping, registering to receive game events and

creating corresponding statechart events. If the game is not event based, then the

sensor’s associated class must proactively access the game state through active

polling. When a relevant change is detected, the sensor generates a new statechart

event.

Events generated by a sensor tend to be quite simple in nature, such as

ev player spotted, or ev health changed. Typically, they include as payload

a reference to the game object that caused the event. This reference can then be

used by higher level modules to further interpret the game state. While this does

enable other modules to access the game state, Sensors are unique in that they are

40

the only modules that react to spontaneous changes in game state. Other modules

that access the game state through references only query it for obtaining current

game state information (most typically to evaluate a guard).

To form a higher level view, these simple events are processed and correlated

by analyzers. A sensor might spot a new player, but an analyzer will determine if

that player poses a threat, if he is a ranged or melee opponent, and so on. This

allows the AI to build the understanding of the game state necessary to make

correct decisions.

Often, analyzers employ guarded transitions to clarify sensor data, e.g., a

transition labeled with ev player spotted[isEnemy(player)]/ev enemy spotted

would determine if a newly spotted player is an enemy. This means that the

analyzer accesses the game state through the reference provided by the sensor,

allowing it to gather additional information to complete its analysis. This provides

a convenient way to translate sensed data it into a more complete understanding of

the game state.

To build a high level view of the game, analyzers may need to correlate

results from other analyzers. While this could be done through the addition of a

‘super-analyzer’ layer, this is not practical—what if we need to further analyze

‘super-analyzed’ data? Instead, we explicitly allow analyzers to accept input from

other analyzers as well as sensors, allowing for event correlation. This means that

events can be analyzed an arbitrary number of times, such that the AI reaches the

necessary level of understanding of the game state.

41

The next layer contains memorizers. Receiving events from both sensors

and analyzers, memorizers store information about the game state. An Enemy

Memorizer module receiving an ev enemy spotted event from an analyzer would

store a reference to the spotted enemy. Unlike other modules, memorizers do

not generate events. Instead, other statecharts access memorized data through

synchronous calls to the associated class.

The memorizer layer is not unique in its ability to memorize data, and it is

common for modules to store information in their associated class during normal

operation. If, however, several modules require the same data, if memorized

data is large and requires special treatment, or if there is a complicated set of

conditions to decide how data is stored, then it is useful to create a memorizer.

This encapsulates the memorization process, makes memorized data available to

all statecharts, and allows for optimization in the associated class. To be clear, the

primary role of the memorizer is to modularize and encapsulate storage of data.

To summarize: changes in the game state are monitored by sensor statecharts.

When a relevant change is detected, an appropriate event is generated and passed

to the analyzers. These in turn examine the events generated by the sensors (and

other analyzers), possibly querying the game state through payload references in

sensor events. Anaylzers make high-level conclusions about the current game state

(e.g., there is an enemy nearby and it is in melee combat range) and pass these on

to the strategizers so that they can choose a course of action. Sensed and analyzed

events can also be received by memorizers, building a history to be used in later

decisions.

42

3.3.2 The Strategizer Layer

The strategizer 2 forms the highest level decision making structure of the AI.

Receiving input from analyzers and sensors, the strategizer uses this knowledge of

the game state to choose the most appropriate operating goal3 for the AI.

At the strategizers, goals tend to be quite abstract. Fleeing from enemies,

gathering supplies, and exploring the world would all be reasonable goals. Events

such as ev enemy spotted might cause the NPC to transition from the exploring

mode to the fleeing mode.

Usually, there is only one strategizer in an AI. This is due to the potential

for confusion caused by multiple strategizers pursuing independent goals simulta-

neously. This could cause conflicting commands being sent to the output layers,

leading to negative outcomes such as oscillation, incorrect action ordering, or more

generalized failures. Use of a single strategizer means that only a single goal is

being pursued at any time, eliminating the possibility of conflicting goals, and

improving comprehension by providing a single source for the current behaviour.

2 In the original paper [35], these were called strategic deciders, while state-
charts at the next layer were called tactical deciders. Instead of having two layers
whose name included decider, we rename ‘strategic decider’ into ‘strategizer’, al-
lowing ‘tactical decider‘ to be unambiguously shortened to ‘deciders’.

3 Goal is used in the most common sense of the word, and is unrelated to goal-
oriented architectures.

43

3.3.3 Output Layers

High-level goals sent by the strategizer must be translated into lower-level

commands understandable by the different actuators. Translation is not trivial,

since it can require complex tactical planning decisions to be made. This can

include consideration of the game history, learned by consulting the memorizers or

through subsumptive communication directly from the sensors and analyzers.

Interpretation of high level goals is done at the decider layer. In our formal-

ism, we use exactly one decider for each goal. The decider chooses how best to

execute that goal using knowledge gathered about the current game state. For

instance, if the strategizer chooses the goal of engaging in combat, the decider will

choose how to perform combat (e.g., ranged combat, melee combat, taking cover,

and so on). Decisions at this level are still highly abstract.

The next output level, the executors, map the decisions of the deciders

to events that the actuators can understand. Decisions may require different

actuations based upon game state. For example, a decision to engage in ranged

combat involves in some order loading a weapon, selecting a target, getting a clear

line of fire, shooting at the target, and so on. The executor chooses the actuators

that will accomplish this task based upon the current game state. Moving, for

instance, might only be necessary if no clear line of fire currently exists.

If an executor needs to perform a series of actions that is already implemented

by another executor, it is explicitly allowed for executors to use other executors

to complete their task. Again following the combat example, there might be a

move-to-cover executor that is used by the ranged combat executor to first move to

44

a cover point, followed by the ranged combat executing its fire on target actions.

Along the same lines, if a decider requires use of another decider, it is permissible

for a decider to call a peer decider.

In the typical case, executors communicate directly with the actuators. On

occasion, the series of events generated by executors may result in suboptimal or

inefficient actuations. In such cases, a coordinator module is used to resolve the

problem. One example occurs with relative actuations. Imagine a character wants

to face north, but the only available actuations are turning left or right. The most

efficient solution could be to turn left or to turn right depending on the direction

the NPC is currently facing. A Turn Coordinator would be tasked with selecting

the optimal turn actuation.

The final layer is comprised of actuator modules. These form the output

half of the game interface, and are responsible for sending actions to the game.

For example, if an executor decides that moving is the appropriate action, then

an ev move event will be sent to a Move Actuator. The actuator, through its

associated class, calls the method in the game that causes the NPC to move.

To summarize: each high-level goal from the strategizer has a single decider.

A decider subdivides its goal into high-level actions (e.g., ranged combat might

include the actions taking cover, firing at an enemy, etc.). Each high level action

is implemented in a single executor. Executors map high level actions into a series

of actuations that together make the high level action occur. Coordinators refine

these actuations if necessary, and then the actuators (one for each game action)

signal the game and cause their specific actuation.

45

CHAPTER 4
Implementation

Creating a fully functional prototype AI is the next step in demonstrating

the viability of layered statechart-based AI. In this chapter, we present a complete

implementation of an AI designed to control a simple squirrel NPC. The value of

this is in the creation of a proof of concept, demonstrating that implementation of

an AI for a simple character is not burdensome in either scope or complexity.

The intended usage of this AI is as a test case for later research into layered

statechart-based AI. The squirrel will be referred to extensively in later chapters,

as it was used to test reuse, verification, and variation techniques. The first half of

this chapter exhibits each statechart used in the squirrel, then illustrates how the

modular statecharts interact to realize core squirrel behaviours.

The squirrel AI was implemented in the game Mammoth [36], a massively

multiplayer online game (MMO) research framework. Written in Java, it provides

an implementation platform for academic research related to multiplayer and

MMOs in the fields of distributed systems, fault tolerance, databases, networking,

concurrency, but also artificial intelligence, content generation, and others. The

second half of this chapter provides details on Mammoth was extended to support

layered statechart-based AI, and how the squirrel AI was implemented.

46

4.1 Building the Squirrel AI

In the setting of actual video game development, the requirements for the

squirrel AI would be described at a high level by a designer. A set of loosely

defined goals such as ’make it so that the squirrels run from the player’ would be

the norm. The AI developer would then use their own judgement and expertise to

translate these goals into an implementation. The completed AI would be reviewed

by the designer, and iterated upon until the designer decides the AI satisfies the

vision for the game.

The squirrel NPC is intended to act as a background character in Mammoth.

The behavioural objective is to act observably similar to a real squirrel, such that

a player recognizes the behaviour as being squirrel-like under casual observation.

Rather than a simulation of actual squirrel behaviour, it is enough that our

squirrel NPC appears to exhibit some of the more obvious squirrel behaviours.

The subset of squirrel behaviours we will design are moving about an area,

running from humans, and gathering acorns. This requires that the AI have

appropriate knowledge of the current game state and game context, such that

these behaviours will be performed appropriately. To add a game-play challenge,

squirrel NPCs have a finite pool of energy that drains when moving and can only

be restored by eating. Thus, the squirrel has the additional task of managing and

restoring energy.

4.1.1 Requirements

Our goals for the squirrel AI stand in as goals supplied by a designer. The

overall behavioural objective is to act observably similar to a real squirrel, such

47

that a player recognizes the behaviour as being squirrel-like under casual obser-

vation. This breaks down into a set of high level objectives that describes desired

squirrel behaviour. The squirrel should:

• Interact with players by fleeing from them.

• Find and collect acorns.

• Replenish their energy by eating acorns.

• Wander the game world when not performing any other task.

Satisfaction of these goals would provide for an interesting background

character. The squirrel will perform the basic task of collecting acorns, and will

interact with the players to a basic degree. Indeed, this depth of behaviour is

greater than that found in typical non-boss enemies in the successful game ‘World

of Warcraft’. In other words, the design goals for the squirrel AI are a reasonable

approximation of the complexity of a non-major NPC for a modern computer

game.

Development Requirements

In translating design goals into implementable requirements, an AI developer

is given considerable leeway. While the final character must satisfying the overall

design goals, the AI developer typically has room to add their own creative vision

when defining specific behaviours. In making the squirrel AI, we exercised this

flexibility to develop the following implementation details:

1. Squirrels have a low and high threat radius used to determine if a player

character is dangerously close to the squirrel.

2. Squirrels will prioritize fleeing from high threats at all times.

48

3. When a squirrel is hungry, it will attempt to collect an acorn.

4. If there are only low threats, squirrels will flee from them except in the

case they are very hungry. Thematically, this means a starving squirrel will

overcome mild fear to gather food.

5. When a squirrel picks up an acorn, it will eat it if hungry

6. When a squirrel is neither hungry nor threatened, it will simply wander the

environment.

The use of the high and low threat radius provides an interesting detail in the

squirrel behaviour. While it makes the implementation more complex, it provides a

more fine-grained interaction with the player. The ordering of priorities assigns the

relative importance of the behaviours similar to that of an actual squirrel.

4.1.2 AI Modules

The squirrel AI is designed using the layered-statechart approach. The AI

logic is decomposed into a number of small AI modules that together interact to

produce squirrel behaviours. By employing small statecharts, the complexity of

each statechart is limited, and thus each statechart can be readily understood

using simple inspection.

A behavioural decomposition is reached through a consideration of how these

behaviours break down in terms of the described layers. For instance, gathering

food and fleeing from players requires seeing food and players, and thus we need a

sensor that can sense these game objects. The exact choice of modules is a design

decision and is non-deterministic in nature, but breaking down behaviours in

49

an intuitive manner will lead to a more easily understood design. The following

modules represent our choices in how to modularize the squirrel behaviours.

Sensors

The squirrel uses two sensors to read the game state. The first, called the

Energy Sensor, is given in Fig. 4–1. This statechart maps a continuous integer

value energy into three distinct levels: high energy, low energy, and very low

energy. Due to the event-less transitions, the statechart will check for changes in

guard conditions every frame. When a change in energy level triggers a transition,

the appropriate event is generated. The values that demarcate energy levels are

parameters in the associated class.

high_energy

this.createEvent("high_energy")

low_energy

this.createEvent("low_energy")

[this.isEnergyLow()]

[this.isEnergyHigh()]

very_low_energy

this.createEvent("very_low_energy")

[this.isEnergyVeryLow()]
[[this.isEnergyLow()]]

[this.isEnergyVeryLow()]

[this.isEnergyHigh()]

Figure 4–1: The Energy Sensor

50

The other sensor tracks players and items. The associated class is actually

a simple listener that maps game occurrences into AI events. The statechart

associated with this sensor is trivial, consisting of only a single state that reacts

to no events. The game delivers updates to this sensor based upon the NPC’s

area of interest in the game. As game objects move in and out of this area, the

associated class creates events i see player and i dont see player for players, as

well as i see item and i dont see item for items.

Analyzers

The lone analyzer determines if other characters in the game are threats. The

Threat Analyzer, shown in Fig. 4–2, uses the rule that any non-squirrel character

qualifies as a threat. It maintains two threat levels as parameters: high threat

range, for enemies that are very close; and low threat range, for enemies that are

somewhat close but not in high threat range. The two threat levels prevent use

of a binary analyzer. Instead, input tracking is separated from determination of

threat levels through use of parallel states.

It could be argued that the Threat Analyzer acts as a memorizer, since it

remembers and tracks current threats. However, the stored information is essential

to the analysis task, and it makes little sense to have the analyzer ask a memorizer

for status upon every update. Ultimately, storing the information in the analyzer

is a useful optimization. While this may seem to weaken the boundary between

analyzers and memorizers, it is important to note that the memorized data is not

shared through any synchronous calls, and all event generations are directly related

to the analysis task.

51

tracking

listening

i_see_player/
this.addPlayer(_eventdata)

i_dont_see_player/
this.removePlayer(_eventdata)

no_threat

this.createEvent("no_threat")

low_threat

this.createEvent("low_threat")

[!lowThreat.isEmpty() && highThreat.isEmpty()]

[lowThreat.isEmpty() && highThreat.isEmpty()]

high_threat

this.createEvent("high_threat")

[!highThreat.isEmpty()]

[highThreat.isEmpty() && !lowThreat.isEmpty()]

[lowThreat.isEmpty() && highThreat.isEmpty()]

[!highThreat.isEmpty()]

Figure 4–2: The Threat Analyzer

52

memorizing

i_see_item/this.addItem(_eventData)

i_dont_see_item/this.removeItem(_eventData)

Figure 4–3: The Key Item Memorizer

Memorizers

As items are spotted, the squirrel must keep track of what items it can see.

This is done by the Key-Item Memorizer, shown in Fig. 4–3. This memorizer,

rather than memorize all i see item events, only remembers items that match the

key item parameter. In the case of the squirrel, the key item type is acorn. As a

memorizer, the associated class offers the synchronous call getKeyItemList(),

which returns the list of key items that are currently visible.

Strategizers

In Fig. 4–4 we see the brain for the squirrel AI. This statechart is the highest-

level decision maker in the AI, as it chooses the current high-level goal from one

of wandering, getting food, or fleeing. Initially, the squirrel will always begin

wandering. During this time, the squirrel will flee from all threats. Once the

squirrel becomes hungry, the high-level goal getting food will be selected. If the

squirrel is close to starving, it will ignore low threats in its desperation for food.

53

foraging

normal

wandering

this.createEvent('start_wander', null)

this.createEvent('stop_wander', null)

hungry

this.createEvent('start_get_food', n...

this.createEvent('stop_get_food', null)

low_energy

pick_up_successful/
this.createEvent("eat")

starving

this.createEvent('start_get_food', null)

this.createEvent('stop_get_food', null)

very_low_energy

pick_up_successful/
this.createEvent("eat")

scared

this.createEvent('start_flee', null)

this.createEvent('stop_flee', null)

high_threat
low_threat

no_threat

Figure 4–4: The Squirrel Brain

54

Tactical Deciders

The Flee Decider, shown in Fig 4–5, chooses how to implement the high-level

goal to flee. It does this by tracking the current threat level. When the order is

given to start fleeing, the appropriate method is called to begin fleeing from a low

threat target or a high threat target as appropriate.

The Eat Decider, shown in Fig. 4–6, is more complicated. If food is visible,

then the squirrel will try to pick it up. However, food may not be visible, and

so the squirrel may have to further explore the game world by wandering. Addi-

tionally, pick ups may fail for a variety of game reasons (e.g., another squirrel has

taken the acorn first), and so picking up food may have to be attempted multiple

times. If during this process, all visible food is taken by other squirrels, then

a no key item visible event will be generated and the squirrel will return to

wandering.

It would be possible to improve this behaviour by having the squirrel re-

member acorns spotted in the past. This would require the squirrel to distinguish

between visible and non-visible food, and to update the lists as the squirrel moves

about.

Executors

Part of eating involves analyzing the game state to determine when eating

is appropriate. The Eat Executor shown in Fig. 4–7 listens to pick up events

to determine if the squirrel is currently carrying an acorn, and listens to energy

events as well. If the squirrel becomes very low on energy, the executor creates the

eat event.

55

no_threat low_threat
low_threat

no_threat

high_threat

high_threat

high_threat

low_threat

no_threat

fleeing

fleeing_low

this.f leeLow(); createEvent("stop_move"); createEvent("path_move", dest ination)

start_flee

move_successful move_failed

fleeing_high

this.f leeHigh(); createEvent("stop_move"); createEvent("path_move", destinat ion)

start_flee

low_threat

high_threat

move_successful
move_failed

stop_f lee

Figure 4–5: The Flee Decider

56

no_food_visible

food_visible
key_item_visible

no_key_item_visible

wandering

this.createEvent("start_wander")

this.createEvent("stop_wander")

start_get_food

stop_get_food

getting_food

this.pickTarget(); this.createEvent("pick_up_item_request", target)

start_get_food

key_item_visible

pick_up_failed[this.foodVisible()]

stop_get_food

pick_up_successful[this.foodVisible()]

pick_up_successful[!this.foodVisible()]

no_key_item_visible

Figure 4–6: The Eat Decider

57

no_food

has_food

pick_up_successful

very_low_energy/ this.createEvent("eat")

waiting_for_food

very_low_energy pick_up_successful/this.createEvent("eat")

Figure 4–7: The Eat Executor

Wandering behaviour is implemented by the Wander Executor, shown in

Fig. 4–8. When the squirrel wants to wander, this statechart selects wander

destinations and moves to them. It does so by moving to a random location,

then waiting for a brief period. The time event, generated by a timer in the

associated class, determines how long the squirrel should walk, and how long

it should pause. The wander timer and wander radius are parameters of the

module. This behaviour is quite simple, and could be improved by implementing

steering behaviours [58], exploration with the goal of discovering the entire map,

or intelligent wandering where the squirrel first wanders to likely food sources such

as the base of trees. That being said, it is sufficient for our purposes of creating a

typical minor NPC.

58

idle

wandering

resting

this.createEvent("stop_move")

moving

this.newRandomDest ination(); this.createEvent("move", destination)

t ime
time

start_wander

stop_wander/
this.createEvent("stop_move")

Figure 4–8: The Wander Executor

The final executor is the Pick Up Executor, shown in Fig. 4–9. In Mammoth,

an item can only be picked up if it is close to the player. This executor manages

that by first moving to the item, and only then picking it up.

Coordinators

No coordinators were necessary in the implementation of the Squirrel AI.

Actuators

The Pick Up Actuator, shown in Fig. 4–10, enacts pick up commands. These

can fail for a variety of reasons, the most common of which is that the item has

been picked up by another player. Because of this, the implementation is that of a

feedback actuator, and thus it senses whether or not the pickup was successful.

The Eat Actuator is very simple. The sole state in Fig. 4–11 is that of waiting

to be told to eat. Eating does not fail in the Mammoth implementation, and thus

feedback is unnecessary.

59

idle

executing

pick_up_item_request/
this.setTarget(_eventdata)

[this.isTargetReachable()]/
this.createEvent("pick_up_item", target)

moving
[! this.isTargetReachable()]/
this.prepareDest ination();
this.createEvent("stop_move");
this.createEvent("move", dest ination)

move_successful/
this.createEvent("pick_up_item",target)

Figure 4–9: The Pick-up Executor

idle

picking_up

this.pickupItem()

pick_up_item/this.setTarget(_eventdata)

pick_up_successful

pick_up_failed

Figure 4–10: The Pick-up Actuator

60

ready

eat/ this.eatAcorn()

Figure 4–11: The Eat Actuator

stationary

moving

move/this.move(_eventdata)

path_move/this.pathMove(_eventdata)

destinat ion_reached/this.createEvent("move_successful")

stop_move/this.stopMove()

dest inat ion_unreachable/ this.createEvent("move_failed")

collided/this.createEvent("move_failed")

Figure 4–12: The Move Actuator

Finally, the Move Actuator, shown in Fig. 4–12, enacts movement commands.

It can move in a straight line, or using path finding depending on the event being

sent. Like the Pick Up Actuator, it is also a feedback actuator and detects a

number of different move failures. However, the output is simplified to either say

move succeeded or move failed.

4.1.3 Producing Behaviours

Together these modules interact to produce the overall squirrel behaviour.

Using sequence diagrams, we will demonstrate how the eating behaviour is

61

generated by a squirrel in a typical environment. All event occurrences are

communicated as broadcasts, but are shown as direct communications between the

outputting and inputting statecharts.

When the squirrel begins execution, the Squirrel Brain chooses wandering

as the default goal. This leads to the chain of events shown in Fig. 4–13. Other

statecharts generate initial events not shown here (e.g., the Energy Sensor will

create a high energy event). We assume that initially the squirrel cannot see any

food. Thus, the default behaviour is to wander, resulting in the Move Actuator

executing the command at the game. Since it is a feedback actuator, the move

actuator waits for a response from the game and communicates it to the rest of the

AI.

GAME SquirrelBrain Wander Executor

start_wander

Move Actuator

move

move_successful

destination_reached()

executeSingleAction(new MoveAction(npc,destination.x, destination.y, PathType.DIRECT_LINE))

Figure 4–13: Initial Wandering Sequence Diagram

62

After wandering for a time, let us assume that the squirrel eventually spots

food, causing the chain of events seen in Fig. 4–14. Spotting the food causes

the game to call the associated class of the Mammoth Listener, resulting in the

creation of a new game event. This will be received by the Key Item Memorizer,

and passed along to the Eat Decider. The Eat Decider learning this directly from

the memorizer is characteristic of subsumption. Since the Squirrel Brain prioritizes

wandering, the squirrel brain will continue wandering until the squirrel reaches a

low energy state.

GAME Listener

i_see_new_item

Key I tem
Memorizer

i_see_new_item

Eat Decider

key_item_visible

Figure 4–14: Food Spotted Sequence Diagram

Upon reaching low energy, the squirrel will attempt to gather the food it has

spotted. Figure 4–15 shows the event sequence that will occur if the food is within

reach. If the food was too far away, the Pick-up Executor would first have to move

the NPC to reaching distance of the pickup target. One can infer the chain of

events this would generate by referring back to Fig. 4–7. Again, there is a call and

63

GAME Energy Sensor Squirrel Brain

energy_low

Eat Decider

start_get_food

Pick Up Executor

pick_up_item_request

Pick Up Actuator

pick_up_item

executeSingleAction(new PickupAction(npc, target))

pick_up_successful()

pick_up_successful

Key I tem
Memorizer

getKeyItemList()

Figure 4–15: Low Energy Sequence Diagram

response pair between a feedback actuator and the game, which is characteristic of

feedback actuators.

After the successful pickup, the squirrel now has food. Upon reaching a very

low energy state, the squirrel will eat the acorn as shown in Fig. 4–16. The first

event, pick up successful is the same event generated at the end of the pick up.

Since it is broadcast, that single event is received by both the Pick-up Executor

and the Eat Decider. The Eat Actuator is not a feedback actuator, since eating

cannot fail, and so there is no callback. Instead, the Energy Sensor will see that

energy is restored and create a corresponding event. The eating behaviour is now

complete, and the Squirrel Brain will return to wandering.

64

Game Pick Up Actuator Eat Decider

pick_up_successful

Energy Sensor

very_low_energy

Eat Actuator

eat

executeSingleAction(new EatAction(npc))

Squirrel Brain

high_energy

Figure 4–16: Eating Behaviour Sequence Diagram

4.2 Mammoth Implementation

In Mammoth, players take control of a game character called an avatar. A

game session consists of moving around in a virtual world and interacting with the

environment by executing actions. Basic building blocks of such actions include

moving the avatar, picking up or dropping items, or communicating with other

players.

In order to allow researchers to easily conduct experiments, Mammoth is

constructed as a set of collaborating components that each provide a distinct

set of services. The components interact with each other through two types of

well-defined interfaces, engines and managers. The most important component in

the context of this work is the NPC Manager, which takes care of associating AI

65

behaviour with controllable entities (the NPCs). At run-time, the NPC Manager

passes relevant game information to the AI, and provides an interface for the AI to

trigger game actions within the virtual world.

4.2.1 NPCs in Mammoth

All non-player characters in Mammoth are controlled by an NPC Manager.

On each pass of the game loop, the NPC Manager executes the internal logic

of the AI for each NPC. This will determine what action, if any, the NPC will

attempt. Common actions in Mammoth include moving, picking up or dropping

objects, and sending messages.

Each AI is represented as a role, which act as high level containers for the var-

ious behaviours of each AI. Examples of roles would be a shopkeeper, a city guard,

a knight, or a bandit. Multiple NPCs assigned the same role each maintain their

own instance of the role, with their own internal memory. Behaviour is component-

based and implemented as tasks ; examples include moving, wandering, and eating.

Each role contains a number of tasks such that the expressed behaviour meets the

requirements of the role. Thus, an AI in Mammoth is synonymous with a role, and

behaviours are synonymous with tasks.

4.2.2 Adding Statecharts to Mammoth

The architecture of AIs in Mammoth provided an excellent starting point to

add layered statechart-based AI. Each statechart realizes a behavioural module,

which corresponds to the modular format of Mammoth tasks. The goal was thus

to enable tasks to use statecharts as their decision making structure.

66

Since the role contains all tasks for an NPC, this was the logical place to

implement the event queues described in §3.1. A queue for AI events and for game

events was added to the role, along with methods used by tasks to add events

to the queues. When the role is given execution time, it delivers events from

the game queue to the statechart tasks, accumulating and prioritizing AI events

(micro-steps) from the AI queue in accordance with the Rhapsody semantics and

our approach to cooperating statecharts.

To update statechart-based tasks, an eventNotification method was added

to tasks. When the role had an event to deliver to a statechart, the role called the

event notification method and delivered the event. Previously, tasks in Mammoth

provided an update method, which received a time-slice from the role. This timing

information was of little use to most statecharts, and so tasks were subdivided

into tasks and timed tasks, with only timed tasks offering an update method.

This provided a small boost to efficiency, but left the timing system in place.

Importantly, this allowed pre-existing, non-statechart tasks to merge seamlessly

with the new statechart tasks.

4.2.3 Statechart Representation

Statecharts are defined graphically, and so incorporating statecharts into an

application requires some integration effort. Given that our long term goals include

reusability, portability, and verification, a pure representation is most appropriate.

By this, we mean a representation of statecharts that embodies a one to one

mapping between the representation and the graphical formalism. A representation

67

that lacks a one to one mapping adds a layer of translation, making it harder to

analyze and reason about the statechart in question.

A newer formalism, Statechart XML (SCXML) defines a representation of

statecharts in a human-readable XML format. Proposed as a W3C standard [4],

the working draft gives the authoritative definition of the language. It provides a

clean representation of a statechart, with no tangential information or symbolic

representations such as those found in XML Metadata Interchange (XMI).

To add SCXML support to Mammoth, we used Commons SCXML [2].

Developed through the Apache Commons project, it is an open source Java

implementation of SCXML. It provides Java libraries that create a complete

SCXML execution environment, including the ability to parse SCXML files and

execute the resulting state machine. In Mammoth, we created the SCXMLTask

class, which supplements Mammoth tasks with Commons SCXML, making it

possible for tasks to execute SCXML statecharts.

As an alternative, the SCXML representation could be compiled into native

code for the target game and executed directly. Running as native code offers a

dramatic speed advantage, while allowing for further compile-time optimizations

to improve execution speed. An industrial application would typically opt for the

higher efficiency provided by compilation. Often, statecharts compiled as native

code will simplify execution by flattening the state hierarchy and symbolically

representing event labels and state names. Creating a statechart compiler is a

sizeable research topic in of itself, and outside the scope of this research.

68

Action Resolution

Commons SCXML supports Commons Java Expression Language (JEXL)

[1], also provided through Apache Commons. Any executable content in the

statechart, such as an action in a transition, is resolved by parsing the action

as a JEXL expression. Indentifiers in the action are resolved through the use of

a context, which is a simple hash table that can be populated with references

external to the statechart. Any method calls are evaluated through the use of

reflection, and the resulting action is executed.

To provide the statechart with non-modal storage and access to the program

at large, Commons SCXML provides a unique context as part of the execution

environment for each statechart. The context is a simple hash map that maps

strings onto objects. When executing actions, JEXL uses the context as the

look-up table for identifier resolution, allowing action execution to pass outside

of the statechart to the appropriate object. This provides us with the means to

link an associated class to its statechart. We do this by loading the associated

class into the context with the key ‘this’, providing a reference to the associated

class. To call a method in the associated class, an action in the SCXML can call

this.foo(). Other fields in the associated object’s class can be accessed by the

statechart either by adding them to the context, or by using get/set methods with

a this.getFoo() call. For example, a memorizer statechart would frequently

require access to the data structure in the associated class that actually stores

memorized data. This is handled by storing a reference to the memory data

structure in the context, giving the statechart direct access.

69

SCXML Introduction

SCXML is used throughout this work, and thus a brief introduction will

serve to clarify usage in later chapters. As well, there were some small issues with

SCXML that were resolved.

In SCXML, states are defined using <state> tags. Attributes allow the

specification of name and final status, amongst others. Transitions use the

<transition> tag, with attributes defining the triggering event, condition,

and target. States can contain inner states, and those doing so must have an

<initial> block that contains a condition-less transition to the default sub-state.

Orthogonal components (called parallel states in SCXML) and history states are

also supported.

The action portion of a transition, as well as the on-entry and on-exit

blocks of a state, are represented as executable content in SCXML. Upon a

transition, these locations are checked and the context executed. All executable

content contains either the expr or cond attribute. Upon execution, contents of

these attributes are passed to the implementation-specific expression-evaluator.

While SCXML has a raise event action, it assumes that raised events should

be immediately delivered to the executing statechart. This would violate our

approach to dealing with cooperating statecharts, and thus we need to add custom

SCXML tags. Using <aiEvent/> and <gameEvent/>, we added the ability for

our statecharts to write directly to the event queues in the role, and thus respect

our structure. This was supported by the creation of GameEventAction and

70

AIEventAction classes that subclass org.apache.commons.scxml.model.Action

from Commons SCXML.

Unfortunately, SCXML lacks a tag with the sole purpose of evaluating an

expression, complicating action execution. The expr attribute only appears under

a few tags, and thus we had the option of creating another custom action or

making use of an existing tag. We opted to employ <log/>, since it includes the

expr tag. Since no logger is being used, nothing is logged, and thus the tag has

no effect other than to execute the intended action. Figure 4–17 shows a sample

statechart in SCXML format.

4.2.4 Loading NPCs

To facilitate the quick introduction of newly generated roles and behaviours

into Mammoth, a run-time loading system for Mammoth was developed. Two

distinct sets of information needed to be supplied. There needs to be a connection

between roles and NPCs in the game world, and a description of the tasks each

role contains. This led to the creation of AI-maps and role definitions. Both of

these are XML files, and are loaded at run-time.

In an AI-map, NPCs in the game world are assigned roles. An AI-map

is specific to a Mammoth level, and named mapname.aimap.xml. Figure 4–18

shows an AI-map that assigns roles to two squirrel NPCs. The first NPC uses an

externally defined role, while the second uses a pre-existing Mammoth role that is

defined internally.

71

<?xml version="1.0" encoding="ASCII"?>

<scxml xmlns="http://www.w3.org/2005/07/scxml"

xmlns:scai="http://www.scytheai.com/scxml"

version="1.0" initialstate="idle">

<datamodel>

<data id="timer" />

</datamodel>

<state id="idle" final="true">

<transition event="start_wander" target="wandering" />

</state>

<state id="wandering">

<initial>

<transition target="moving"/>

</initial>

<transition event="stop_wander" target="idle">

<scai:aiEvent name="stop_move"/>

</transition>

<transition event="time">

<assign name="timer" expr="timer + _eventdata"/>

</transition>

<state id="moving" final="true">

<onentry>

<log expr="this.newRandomDestination()" />

<assign name="timer" expr="0"/>

<scai:aiEvent name="move" payload="this.nextPos" />

</onentry>

<transition cond="timer>restTime" target="resting" />

</state>

<state id="resting" final="true">

<onentry>

<assign name="timer" expr="0"/>

<scai:aiEvent name="stop_move" />

</onentry>

<transition cond="timer>restTime" target="moving" />

</state>

</state>

</scxml>

Figure 4–17: SCXML representation of a Statechart that manages wandering.

72

<?xml version="1.0" encoding="UTF-8"?>

<ai xmlns="http://mammoth.cs.mcgill.ca">

<roleAssignments>

<assignment npcName="Squirrel1">

<role location="external"

roleName="squirrel.role.xml"/>

</assignment>

<assignment npcName="Squirrel2">

<role location="internal"

roleName="squirrel"/>

</assignment>

</roleAssignments>

</ai>

Figure 4–18: External XML file showing an AI mapping.

To handle external role definitions, a special type of role, called an external

role, was created. External roles are classes in Mammoth that contain no tasks by

default. Instead, task information is supplied by an external role.xml file listing

the tasks that should be loaded and what their parameters should be.

In Fig. 4–19, an external definition of a squirrel role is given. Each <task>

block gives the information required to instantiate a task. First, the class attribute

tells us what task class will be used. Next, the scxmlFile attribute points to the

SCXML file that is to be associated with the class. A special constructor is used to

instantiate an externally specified task. It accepts a set of parameters, populated

from the XML role, and uses reflection to set the fields in the task.

73

<?xml version="1.0" encoding="UTF-8"?>

<role xmlns="http://mammoth.cs.mcgill.ca" name="squirrel">

<tasks>

<task class="Mammoth.AI.NPC.SCXML.SCXMLWanderExecutor"

type="scxml">

<scxmlFile value="SCXMLWanderPlanner.scxml" />

<xRadius value="2.5" />

<yRadius value="2.5" />

<restTimeMin value="2000" />

<restTimeRange value="5000" />

</task>

<task class="Mammoth.AI.NPC.SCXML.SCXMLFleePlanner"

type="scxml">

<scxmlFile value="SCXMLFleePlanner.scxml" />

</task>

<task class="Mammoth.AI.NPC.SCXML.

SCXMLProximityMemorizer" type="scxml">

<scxmlFile value="SCXMLProximityMemorizer.scxml"/>

<lowThreat value="1.0" />

<highThreat value="0.5" />

</task>

[...]

</role>

Figure 4–19: Squirrel.xml, defining a squirrel NPC for use in an external role.

74

CHAPTER 5
Statechart-based AI Design

Having demonstrated how layered statechart-based AI works, both theoreti-

cally and through an actual implementation, the next step is to demonstrate that

layered statecharts are suitable for large scale AIs, such as those found in modern

AAA games. Doing so will provide substantial support to the claim that layered

statechart-based AI is a viable approach to game AI.

In this chapter, we develop an extensive statechart-based AI model for a

non-trivial and commercially relevant game AI, derived from the behaviour

tree implementation described for the Halo series of computer games [32]. As

well as providing a practical demonstration that statecharts have sufficient and

appropriate expressiveness for such a large-scale and complex AI, this effort reveals

useful and interesting design considerations. This includes the classification of

several behaviour patterns, best-practices for efficiency, and an examination of the

complexity of the resulting AI model.

5.1 The Halo AI

Halo stands as the first popular commercial game to employ behaviour trees

for their AI logic. The approach was well received and became highly discussed

in influential venues such as the Game Developer’s Conference [31, 16, 17]. Many

later games derive their AI from the Halo implementation, with the AI for the

game Spore explicitly doing so [28].

75

Halo is an FPS game (first-person shooter) game, where the player fights

groups of aliens with the help of an allied squadron. The AI controlling both team-

mate and enemy NPCs organizes behaviours under high-level functions: search,

combat, flight, self-preservation, and idle. Each of these contains subtasks; com-

bat, for instance, decides between grenade use, charging, fighting, searching, and

guarding. The tree for Halo 2 has a maximum depth of four, with the bottom layer

consisting of leaf-nodes that execute concrete behaviours and trigger corresponding

animations. Nodes can be cross-linked acyclically allowing a single behaviour to

appear under multiple nodes [32].

Behaviour trees (BTs) recast HFSMs into a strictly hierarchical decision

tree. While they clearly delineate how the system selects behaviour, the strict

hierarchy impairs reactivity and lacks modal states that would encapsulate

different behaviour groupings. Recent advances, such as event-driven and data-

driven BTs improve efficiency [7], but sidestep reactivity issues through parallel

nodes. This means that, despite their success, there is room for improvement in

regards to reactivity.

5.2 Designing a New Halo AI

The goals in developing a statechart-based version of the Halo AI were as

follows: to capture the basic behaviour of the reference AI without sacrificing key

functionality, while showing how reuse practices and modularity lead to a well-

constructed AI. The Halo AI was chosen due to its visibility as an example of good

AI design, and its success as a commercial title. By developing a similar AI, we

76

can credibly conclude that layered statecharts are capable of handling industrial

scale AIs.

A key element of our design approach was the use of subsumption. As low

level events are generated in the input layers, they are received directly by output

layers. This allows high level statecharts, such as the strategizer, to ignore these

events, and thus greatly reduces complexity of these higher level statecharts.

Typically, subsumption creates a coordination problem when low level reactions

conflict with higher level behaviours. This is usually addressed through the

addition of coordinators that resolve differences between low-level and high goals.

We instead solve this problem this by construction, never allowing lower

levels to enact behaviours without prior permission. We call this approach limited

subsumption. Here, low level sensors and actuators communicate information

about the game state to the output layers to preconfigure behaviours, as is normal

in subsumption, but these actions can never trigger a behaviour to start or stop.

An example illustrating limited subsumption is shown in Fig. 5–1, with

subsumptive communications colored red. The figure gives a scenario relating

to melee combat. Here, a sensor creates an event when the NPC equips a melee

weapon. Rather than go through the brain, this event is received directly at

a decider, which causes a transition into the appropriate start state for melee

combat, but does not cause the AI to engage in actual melee combat. This

preconfigures the statechart to execute the appropriate type of combat. When

another event signals that an enemy is in melee range, the combat behavior is

further configured, but still does not begin combat. Once the Brain decides to

77

enter combat, it will send out a start combat event, and only then will the relevant

decider start executing the preconfigured combat approach. Using this approach,

tactical details are subsumed from higher level statecharts, lower levels never

take spontaneous action, and the need for explicit coordination is obviated. This

pattern of configuration followed by later execution defines limited subsumption.

Deciders

Analyzers

Brain

ev_EnemySpotted

ev_StartCombat

ev_InMeleeRange

Sensors

ev_MeleeWeaponEquipped

ev_PlayerSpotted

Figure 5–1: Limited Subsumption Approach

The layered statechart version of the Halo AI is included in its entirety as

Appendix A. Consulting the appendix is not necessary to understand the ideas

presented in this thesis, since noteworthy statecharts are reproduced within the

main text. However, curious readers may be interested in a deeper examination of

the AI, and so it is provided in full.

78

5.2.1 Input Layers

Halo presents a complex game state with many complicating factors. Other

NPCs can be friends or enemies, vehicles can be manned or empty, and obstacles

are dynamic. In total, 25 individual statecharts were needed to capture and com-

prehend the Halo game state. Table 5–1 lists each statechart created. Descriptions

will be given as necessary in the following subsections for each layer.

Table 5–1: Input statecharts in the Halo AI

Sensors Analyzers Memorizers
Attack Enemy Character
Character EnemyProximity Command
Commands GrenadeProximity Obstacle
Grenade LowMorale Vehicle
Health Special Event
Item Squad
Obstacles Threat
Position Vehicle
Shield VehicleProximity
Vehicle ThreatCompiler
Weapon

Sensors

Each sensor tracks a specific portion of the game state, generating appropriate

events. For instance, the Self Sensor tracks the NPCs current health, Shield tracks

the NPCs, and so. Others sensors notice changes in the game state, such as the

Grenade Sensor which tracks nearby live grenades, Vehicle which tracks vehicles,

and Commands which receives player commands given to the NPC.

In the squirrel AI, sensors made extensive use of polling to obtain information

about the game state. This was done by using eventless transitions with a guard

79

that queried some value of the game state. At each execution loop, the guard

would be evaluated, despite that fact that values would only change in a small

percentage of overall frames. To improve efficiency, statechart polling was elimi-

nated in the Halo AI. Instead, the associated class for each sensor obtained game

state information by registering as a listener to the game. Upon receiving a listener

callback, the class would generate a private statechart event for the sensor such as

ev healthChanged. Transitions would use this new event name and include guards

based on the new value in the game state.

Analyzers and Memorizers

Each analyzer was responsible for learning about a portion of the game state,

listening to both sensors and other analyzers for input. For instance, the Enemy

analyzer would determine if spotted players were friends or foes. This in turn

would trigger the Enemy Proximity Analyzer to determine if the enemy was in

melee range. Together, the output of the Threat Analyzer and the three proximity

analyzers would feed into the Threat Compiler Analyzer to determine the overall

threat to the NPC. Memorizers are straightforward, memorizing and making

available the data indicated by their name.

In practice, the line between analyzers and memorizers appears fuzzy. For

many analyzers, it was necessary to utilize previously sensed information about

the game state when considering new input. Instead of storing this at a memorizer

and retrieving it with synchronous calls, some analyzers simply stored game state

information in their associated class. This provides a more streamlined system.

80

Memorizers are distinguished not by their ability to store data, but by their

ability to share data. Each memorizer provides a synchronous method call to allow

other modules to read their data, something that analyzers do not do. In other

words, memorizers provide information to the entire AI, while analyzers only store

information needed for their own internal operations.

5.2.2 Strategizer

At the highest level of abstraction, our strategizer uses states to store current

goals: changing states implies that a new goal has been selected. This is communi-

cated through the creation of an event using the on-entry block of the state. When

a state is exited, an on-exit action creates a stop event notifying downstream

statecharts that they should cease current behaviours. By conflating strategizer

states with the current goal, the result is a statechart that is highly intuitive. As

usual, we use only one strategizer.

This approach proved very practical. Since lower level statecharts are aware

of the current game state through subsumption, it is sufficient for the Strategizer

to simply give commands to lower levels, without having to deal with unnecessary

details. The statechart itself, shown in Fig. 5–2, looks nearly identical to the high-

level approximation of the combat cycle for the AI given in [32] and reproduced

here as Fig. 5–3. This means that our statechart approach yields a high level

strategy that is visually explicit, free of complication, and nicely conforms to the

original designer’s intuitive understanding of what it ought to look like.

81

fleeing

broadcastEvent(new ev_Flee());

broadcastEvent(new ev_StopFlee());

normal

self_preserving

broadcastEvent(new ev_SelfPreserve());

broadcastEvent(new ev_StopSelfPreserve());

not_under_threat

searching

broadcastEvent(new ev_Search());

broadcastEvent(new ev_StopSearch());

ev_NoEnemiesVisible

combat

broadcastEvent(new ev_Engage());

broadcastEvent(new ev_StopEngage());

ev_EnemySpot ted

ev_NoEnemiesVisible

ev_AtRisk

ev_Safe/[!CommandMemorizer.hasCommands()]

idle

broadcastEvent(" idle")

ev_EnemyNotFound

ev_EnemySpotted

executing_commands

followCommand();

[CommandMemorizer.hasCommands()]

[!CommandMemorizer.hasCommands()]

ev_Safe[CommandMemorizer.hasCommands()]

ev_HealthCrit icalev_MoraleLow

Figure 5–2: The high-level Strategizer.

82

Idle Combat
Self-

preservation

Search

Flight

Figure 5–3: The Combat Cycle from the Halo AI.

83

5.2.3 Output Layers

In the output layers the effect of our limited subsumption becomes clear.

While the Strategizer could store enough information to decide on a specific

tactical strategy, this would unnecessarily complicate its structure. Instead,

tactical deciders directly receive relevant sensor and analyzer data so that their

decisions are prepared in advance. This has the additional effect of making tactical

deciders more modular, in that their logic is self-contained. The complete list of

output statecharts is given in Table 5–2.

Table 5–2: Output Statecharts in the Halo AI

Deciders Executors Coordinators Actuators
Combat Clear Area Movement Grenade
Flee Flee All Item
Idle Flee Nearby Melee Weapon
Search Item Ranged Weapon
Self Preservation Melee Combat Run

Ranged Combat Sound Actuator
Search Vehicle
Take Cover
Use Item
Vehicle Combat
Wander

Deciders

There are five deciders, one for each of the high-level goals. When the strate-

gizer chooses to search, for instance, it sends an ev Search event, which starts

the SearchDecider. When the strategizer makes a new decision, it deactivates the

SearchDecider with a ev StopSearch event, and sends a new event to enact the

new goal.

84

deciding

vehicle

if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_VehicleCombat());}

ev_Engage

nonVehicle

unarmed

ranged

if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_RangedCombat());}

ev_RangedWeaponEquipped

melee

if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_MeleeCombat());}

ev_MeleeWeaponEquipped

ev_MeleeWeaponEquipped

ev_EnemyAdjacent

ev_RangedWeaponEquipped

ev_OutOfAmmo

ev_VehicleExited

ev_VehicleBoarded

ev_Engage

config

idle

engaging

ev_Engage

ev_StopEngage

activity_switchconfig activity_switch

Figure 5–4: The CombatDecider.

The CombatDecider is presented in Fig. 5–4, since it serves as a good example

of subsumption and usage of orthogonal regions. Events relating to equipped

weapons and ammo level come directly from the WeaponSensor, while enemy

location comes from the EnemyAnalyzer. Upon receiving an ev Engage event from

the Strategizer, the orthogonal region activity switch enters the engaging state.

This permits activity and immediately triggers an on-entry event in the main

region. As new relevant inputs are received, the CombatDecider is free to revisit

its own tactical decisions and execute new actions, so long as the activity switch

remains on. This approach is only possible due to the orthogonal region—without

it, the number of states would double as each state would have to have an active

and inactive version.

85

Executors

Each executor represents a mapping of goal to actions. For instance, if the

CombatDecider decides to engage in melee combat, it will call the MeleeCombatEx-

ecutor using a ev StartMeleeCombat event. The executor, based upon information

passed forward through limited subsumption, will in turn choose actions and send

events that start the actuators. The purpose of the executors follows from their

names with the exception of the flee executors. The FleeAllExecutor flees from all

threats by using the FleeNearbyExecutor to flee from enemies in melee range, and

the ClearAreaExecutor to flee from area threats such as live grenades.

Coordinators

Coordinators solve potential conflicts between actions and correct for changing

conditions. Since subsumption does not result in action without prior permission

from the StrategicDecider, there are no inter-layer conflicts to resolve. Instead, the

only coordinator automatically transforms move actions into vehicle movements if

the NPC is driving, or run movements otherwise, simplifying move events at higher

levels.

Actuators

At the lowest level are actuators. Like executors, their purpose is strongly

implied from their names. The RunActuator handles movement by foot, while the

VehicleActuator handles all vehicle actions including driving.

5.3 Statechart Patterns

While designing the new AI, several statecharts possessed identical or isomor-

phic structures, differing only by event and state names. This observation allowed

86

us to successfully isolate 5 different statechart patterns. Like design patterns in

software design, statechart patterns encode in their structure a solution to a re-

curring design problem, and thus are a valuable contribution to those seeking to

design their own statechart-based AI.

Sensors

In designing sensors, we found two recurring statechart patterns. The first

we called a discretizing sensor, which maps a continuous value to discrete events

using threshold values. The number of states is equal to the number of discrete

levels needed. Transitions between the states have guards constructed from

desired threshold values. The HealthSensor given in Fig. 5–5 is an instance of a

discretizing sensor with 3 states.

The second sensor pattern was a simple mapping from in-game events to AI

events, creating a bridge between the game and the AI. This was typically a state-

independent transformation, yielding a trivial statechart with a single state and no

transitions. We call these event-mapping sensors, and use these as often as possible

due to their overall efficiency. In the case where event-mapping is state-dependent,

such as having on/off states, an event-mapping sensor can be expanded to have a

second state that does not generate events, with appropriate transitions between.

Analyzers

At the level of analyzers, one pattern emerged, which we named the Binary

Analyzer. Their primary function is to keep track of a countable aspect of the

game state, and notify the AI when the count increases from zero, or decreases

to zero. An instance is shown in Fig. 5–6, where the analyzer memorizes each

87

health_normal

broadcastEvent(new ev_HealthNormal());

health_low

broadcastEvent(new ev_HealthLow());

ev_HealthChanged[health<low && health>critical]

ev_HealthChanged[health>normal]

health_critical

broadcastEvent(new ev_HealthCritical());

ev_HealthChanged[health<critical]

ev_HealthChanged[health<critical]

ev_HealthChanged[health>critical && health>normal]

ev_HealthChanged[health>normal]

Figure 5–5: The HealthSensor.

individual grenade spotted. It creates an event for each nearby grenade, but

does not give the all clear until all grenades are out of range. After each grenade

explodes, or the NPC moves, the binary analyzer enters a state with two outbound

transitions having mutually exclusive guards. This state determines if the grenade

count has returned to zero, or if it remains greater than zero. This ensures that

the analyzer only checks the count when the quantity of tracked grenades may

have changed.

88

analyzing

no_grenades_near

grenade_near

ev_GrenadeThrown[inRange(grenade)]/
broadcastEvent(new ev_GrenadeNearby(grenade));
store(grenade)

ev_GrenadeThrown[inRange(grenade)]/
broadcastEvent(new ev_GrenadeNearby(grenade));
store(grenade)

check_store

ev_GrenadeExploded[inRange(grenade)]/
remove(grenade)

[store.empty]/
broadcastEvent(new ev_NoGrenadesNear())

[!store.empty]

ev_PositionChanged/updateStore()

Figure 5–6: The GrenadeProximityAnalyzer.

Deciders

A fourth pattern was isolated at the decider level, the Priority Decider.

These are used in the situation where a tactic A is the default activity, but always

prioritizes tactic B when the triggering event is received. In Fig. 5–7, we see how

FleeAll is the default behaviour, but is superseded by FleeNearby when an enemy

is detected in melee range. Upon abatement of the threat, the decider returns to

default. Note that this pattern can easily extend to include yet higher priority

behaviours.

89

normal

attacker_nearbyev_EnemyInMeleeRange

ev_NoEnemyInMeleeRange

flee_all

broadcastEvent(new ev_FleeAll())

broadcastEvent(new ev_StopFleeAll...

ev_Flee

ev_StopFlee

flee_nearby

broadcastEvent(new ev_FleeNearby())

broadcastEvent(new ev_StopFleeNearby())

ev_Flee

ev_NoEnemyInMeleeRange

ev_StopFlee
ev_EnemyInMeleeRange

Figure 5–7: The FleeDecider.

Actuators

While most actuators trivially receive events and execute actions, one new

pattern emerged. Similar to exceptions in code, actions can fail for a variety of

reasons, e.g., trying to pick up an item that has just been picked up by another

player. When these failures are relevant to the AI, it is useful to have the actuator

itself track the results of an event and produce appropriate feedback. We call

actuators of this type Feedback Actuators. Upon creating a move action, the

feedback MoveActuator show in Fig. 5–8 can receive a callback event after

executing its pathfind(target) call and react accordingly. For instance, if a move

fails because a new obstacle has appeared, a reasonable course of action is to retry

and allow the pathfinder to calculate a new path around the new roadblock; usage

of a feedback actuator allows this. On the other hand, if the failure is due to no

path existing, higher levels may wish to change behaviours. This is signalled by

90

ready

moving

pathing

pathfind(target)

ev_PathBlocked/
broadcastEvent
(new ev_MoveFailed());

new_obstacle

ev_ObstacleSpotted ev_PathBlocked

ev_Move

[destinationReached()]/
broadcastEvent(new ev_MoveSuccessful());

[moveFailed()]/
broadcastEvent
(new ev_MoveFailed())

Figure 5–8: The feedback MoveActuator.

having the sensing portion of the feedback actuator create an ev MoveFailed event,

notifying higher levels that a new destination should be determined, or a new

behaviour chosen.

5.3.1 Applicability

The statechart patterns proved to be quite valuable. In our Halo AI, the

quantizing sensor appeared twice, binary analyzers were employed three times,

feedback actuators were used twice, event-mapping sensors were needed four times,

and priority deciders were used twice. This accounts for 13 statecharts, meaning

that 28% of the statecharts were pattern instances, varying only in state and event

names.

One could easily adopt these patterns into a variety of FSM approaches,

or generate them automatically through tool support. In this AI for instance,

this would have reduced by one quarter the time spent on generation of novel

91

statecharts. While there is a certain amount of overhead in instancing patterns, in

my experience it is much lower than the time needed for novel development.

5.4 Key Features

In the various publications and presentations regarding the Halo AI (such as

[32] and [16]), several key features were highlighted. These included a technique

enabling efficient event reaction and a method to customize behaviours for

individual NPCs. In the conversion to the layered statechart formalism, it was

important to ensure that none of this functionality was lost.

5.4.1 Stimulus Behaviours

The Halo AI attempted to enable reactive behaviours by the creation of

stimulus behaviours. The framework used a stimulus system that received events

from the game at-large, and reacted by inserting special stimulus nodes into the

behaviour tree at run-time. Upon the next execution through the tree, the new

stimulus behaviour would run as expected. The insertion point of a node was

carefully chosen, so that it respected the decision making process of the tree

without overriding higher level behaviours that may potentially supersede the

inserted behaviour. While this provided the ability to react to rare events without

repeatedly checking for a condition, it came at the price of making the behaviour

tree less understandable by obscuring behaviours.

Fitting an event-based reaction into a statechart-based approach is trivial.

This can be done by adding a statechart that reacts to the event in question and

produces an output that triggers the appropriate higher level statechart. The

example of a stimulus behaviour in Halo was for the AI to flee if their leader was

92

killed. Our statechart approach accomplishes this by adding a new analyzer to

check if the player involved in an ev PlayerKilled event was actually their leader.

If so, it reacts by sending a special ev LowMorale event to trigger fleeing behaviour

at the StrategicDecider. The AI behaviour is clear at all times since dynamic

behaviour modification is not required. As well, the new behaviour is modularized,

with all operations related to leader tracking stored in one location, making it

straightforward to comprehend.

5.4.2 Memory Usage

In game programming, especially in the case of console games, system memory

is a limited resource. One of the major achievements of the Halo AI was the strict

ceiling on memory usage. Here we compare memory usage of our new AI with that

of the original behaviour tree AI.

For agent-based NPCs it is typical for each agent to have their own instance

of the AI, customized to their state in the game-context. By this we mean that a

game using behaviour trees would have several different behaviour trees, and each

NPC would instantiate the appropriate tree and use that to drive decision making.

This becomes impractical in a memory-limited environment such as a gaming

console.

For Halo, memory constraints were quite significant and thus a new approach

was needed. The behaviour tree was implemented as a single static structure,

shared by all NPC instances. Stimulus behaviours were added dynamically for a

short time to the executing method for each NPC as they arose. The fact that

enemies and allies followed the same general behaviour made this solution feasible.

93

As an NPC executes the tree, it needs only the behaviours it is currently exploring,

which is the simple hierarchy tracing from the root to the current node. For 100

NPCs, the memory usage in this arrangement was approximately 25KB, a very

small profile.

However, many decisions are based on characteristics of the NPC, and thus

NPCs require memory aside from the actual tree. In addition to the 25KB for

the tree, there is also stored information regarding obstacles, enemy sightings,

NPC attributes, and so on. This was stored in pre-determined locations in NPC

instances so that the behaviour tree could consult NPC memory with universally

applicable calls.

Approximating this approach in the layered statechart formalism follows the

same basic formula. Instantiating every statechart for each NPC would use an

unnecessarily large amount of memory and so we seek to create a single static

structure shared by all NPCs. While a behaviour tree only explores one branch

at a time per NPC, ensuring the size of that exploration hierarchy is bounded by

the tree depth, a statechart always has a current state for each NPC, and thus the

current state must be stored for every statechart, possibly more than once for each

statechart if there are orthogonal regions.

Statechart execution requires additional information to broadcast events.

They must be supplied with a reference to the NPC from which state information

can be read. Additionally, information used by statecharts, such as counters,

memory storage, and so on, must also be stored in well-defined locations in each

94

NPC, allowing the shared static structure to correctly read and write data from

the individual NPCs.

Through the use of matching static structures, it is possible to store state

information efficiently. The list of statecharts is managed by a statechart execution

manager, responsible for storing the singular instance of each statechart. Each

NPC maintains an array of bytes (assuming each statechart has an upper limit

of 256 states), where each byte corresponds to a state ID within each statechart.

By matching the array indicies with the statechart ordering in the manager, no

extra reference needs to be stored to link a state ID with its statechart. We end

up storing 50B of state information for 50 statecharts in each NPC, plus an extra

byte for each orthogonal region. This is in addition to the cost of loading the

statecharts themselves into memory, and the AI and game event queues which

are shared by all statecharts. While there is no upper bound on the number of

statecharts being used simultaneously, in practice, each event is only received by a

few statecharts at most.

Stringent memory usage arose because of memory limitations on the Xbox360

console, which boasts a mere 512MB of RAM. On a platform with additional

memory, such as a PC, more CPU-efficient approaches can be taken, such as

creating a hash table that links events to statecharts, allowing broadcasts to be

replaced with narrowcasts to just the subset of statecharts that have transitions on

the event being processed.

Overall, memory usage is reasonable when compared to the Halo AI. Deter-

mining a final number for memory usage would require us to know the average

95

size of a compiled statechart in memory. For now, though, this knowledge is not

available. However, if we generously assume that an efficiently compiled statechart

takes 1KB of memory, there could be 60-70KB memory used for 100 NPCs. While

this exceeds the 25KB allotment achieved with behaviour trees, it is still quite

reasonable for most platforms.

5.4.3 Behaviour Masks

Halo employs a shared static structure for the behaviour tree which effectively

limits memory usage, but this comes with a downside: using a single data struc-

ture prevents each character from having their own customized AI. While this can

be tempered by clever design, for example by having characters that wield ranged

weapons travel down a different branch of the behaviour tree than those with

melee weapons, the problem remains that all AI characters use the same behaviour

tree.

Halo 2 addressed this through styles. They provide customization for char-

acters by providing a list of disallowed behaviours, effectively pruning branches

from the behaviour tree. This evolved into behaviour masks in Halo 3, which gave

designers the choice between 3 sets of disallowed behaviours, resulting in NPCs

that were normal, aggressive, or timid. An aggressive behaviour mask, for example,

disallows the branches of the behaviour tree concerned with fleeing and taking

cover.

In our layered statechart-based approach, the situation is not as simple as

trimming branches, since decision making and reaction to events is distributed

across modules. Regardless, if a module does not receive a triggering event, no

96

behaviour will occur. Two approaches exist: filter events, or entirely ignore the

generating statechart. Implementation-wise, the statechart approach can also

employ a shared static structure, with the current state of each statechart with re-

spect to an NPC stored in the NPC. By setting this to 0, it can be communicated

to the statechart executor that an NPC is not using the referenced statechart,

causing that statechart to be skipped when processing events.

Ignoring entire statecharts has the disadvantage of being relatively coarse-

grained—a statechart may produce more than one event, and so ignoring the

statechart may affect multiple downstream behaviours. Individual event filtering

gives more fine-grained control, but suffers from larger storage requirements as

well as additional computational costs in verifying individual events. Statechart

behaviours that are fully filtered may also be a source of redundant computation.

In our design we are able to exclusively make use of statechart removal to cus-

tomize individual behaviours, relying on the use of small and relatively modular

statecharts to achieve sufficient granularity.

To mimic the aggressive behaviour mask, we disabled the ThreatCompiler-

Analyzer module and the LowMoraleAnalyzer. This removed the generation of

the ev AtRisk events, which would trigger the strategizer to choose the flee goal.

Thus, the NPC would never choose to flee, which is the behavioural characteristic

expressed by the aggressive mask.

5.5 Analysis

In total, there were 50 statecharts, containing an average of 4.00 states and

6.08 transitions. All of these are listed in full in Appendix A. Only 5 statecharts

97

had 10 or more states (the largest was the ThreatAnalyzer with 13), but all of

these had orthogonal regions in the state at the top of the hierarchy. These regions

could be separated into independent statecharts, and if this was done, the averages

drop to 3.28 states with 5.18 transitions apiece. While the overall number of

statecharts is high for such a complex AI, each statechart is small enough to

be easily understood. The top level StrategicDecider is only 8 states with 12

transitions, a comprehensible size.

The value of modified subsumption in managing complexity was also clear.

The size of the resulting statecharts was small enough to be easily comprehended,

due in large part to the simplification of high level statecharts. The use of orthog-

onal states also proved to be a valuable tool in preventing combinatorial explosion

of states, noteworthy because this technique is not a part of standard hierarchi-

cal finite state machines, and allows for the specialized activity switch that we

employed.

5.5.1 Implementation

The statechart model we created is based on information made available

through various presentations on the Halo AI; we had no special access to the

source code or the actual production AI. This approach was chosen to ensure our

work could be used outside of any proprietary context, but has the disadvantage

that the public description is incomplete, and so our efforts represents our best

approximation of what we interpret the full AI to be. Moreover, our modelling

work did not involve the creating or coding of various algorithms invoked in the

AI, such as target selection, pathfinding, or determining cover, limiting our ability

98

to validate that our statechart AI is a complete and faithful reproduction of the

original behaviours.

Validation took place at two levels of abstraction. First, the model was

examined to determine the effectiveness of the approach at the design level.

Secondly, the AI was partially implemented to verify correctness of the logic in the

statecharts, as well as to observe the model functioning in a game environment.

The AI was implemented in Mammoth [36], a highly extensible research

framework for MMOs. While Mammoth lacks many features now common to AIs

in FPS games, such as cover maps and navigation meshes, this implementation

was sufficient to test core functionality of the AI, demonstrating that the various

statecharts operated correctly in both their individual and collective roles. Testing

was performed by simulating random external event generations and observing the

event chain generated in response, as well as state changes within the AI.

Our implementation also allowed for practical verification of potential

performance concerns. For example, since the design is modular, event profligacy

is a concern. Event generation was thus examined by looking at the number of

events potentially generated in response to various inputs. The maximum number

of events was 14, assuming that every guard evaluated to true and that every

statechart involved was in the appropriate state to react to an event thereby

continuing the chain reaction. While this worst case is high, the number of events

generated in practice was quite low. After several short executions of the AI,

the AI generated a mean of only 0.3 events per execution pass, while the median

99

number of events in a single pass was zero. Aside from the occasional burst of 5-10

events, event generation was quite limited and did not cause a significant overhead.

Ultimately, testing in Mammoth was able to establish correctness of basic

behaviours, such as wandering and searching, but was insufficient to effectively val-

idate the AI. In an industry setting, AIs are extensively play-tested by developers,

in-house testers, automated test kits (such as random input generators), and even

beta testers. It is simply not feasible to validate the correctness of such a large AI

without considerable investment of resources.

This experience helps justify the need for effective verification of statechart-

based AI. In Chap. 8, we will develop a more complete approach to validating such

an AI, and will apply those techniques to the layered statechart-based version of

the Halo AI.

100

CHAPTER 6
Modular Reuse

At the Game Developer’s Conference in 2011, Kevin Dill argued that the lack

of behavioural modularity was stymying the development of high quality AI [62].

The lack of a consistent formalism used in representing AI logic, and in particular

the use of non-modular custom approaches, has prevented AI reuse from becoming

commonplace. Layered statechart-based AI, however, is inherently modular and

thus forms an excellent basis for AI reuse through modularized behaviours. In this

chapter, we detail an approach to AI reuse using layered statecharts, and offer a

demonstration of reuse based on the squirrel AI developed in Chapter 4.

By performing a thorough examination of module communication in §6.1, we

derive a module interface that compiles all information relevant to reuse. Using

this as a basis, we present a complete approach to reuse that handles both AI logic

and associated code. Additionally, this leads to the creation of functional groups,

which group together connected modules as a single reusable component. The

end result gives AI developers the ability to modularize and reuse known good AI

behaviours.

We illustrate our approach by constructing a new AI for Mammoth using the

squirrel as a basis. The target AI will be an NPC responsible for collecting garbage

and placing it in receptacles. These NPCs fit different game AI contexts, and

would typically be approached as unique development tasks. However, some of the

101

core behaviours are similar in nature, and by expressing and reusing AI behaviours

at a suitable level of abstraction, our approach is able to capture many of these

commonalities: over half of the AI modules in the trash collector are reused from

the squirrel.

6.1 The AI Module

Layered statechart-based AI is built around combining individual statecharts

to produce the overall behaviour. This implies that the fundamental module is the

statechart itself. We define an AI Module as a statechart along with its associated

class, and will use this as our fundamental module of reuse. This is similar to

game graphics, wherein models built from texture mapped triangles form the basic

reusable component. Models can easily be reused in new contexts, and by clearly

defining the reusable component, we wish for AI modules to be just as reusable

when building new game AIs.

The pairing of statechart and associated class is a highly appropriate choice

for two reasons. First, statecharts act independently, and only cooperate due to

higher level coordination. This means that the statechart itself has a contained

execution environment, allowing for execution in any context. Secondly, each

statechart has a link to an individual associated class, providing an elegant

approach to inclusion of source code. This pairing is advantageous as we can now

reason at a high level about AI behaviour without neglecting the implementing

code.

102

6.1.1 AI Module Interaction

As modules are reused, they are removed from one context and placed into

another. For reuse to be successful, the new context must be able to interact

with the reused AI module. To enable reuse, there needs to be a clear description

of how modules interact. Having this will allow us to build up an interaction

profile for each module, supplying the information needed to correctly insert an AI

module into a new context.

Event-based Interaction

The statechart portion of an AI module communicates using event-based

message passing. Using the cooperative approach described in Chap. 3, statecharts

generate events that are broadcast to all other statecharts in the system.

Events generated by a statechart and consumed by other statecharts are

classified as output events from the perspective of the generating statechart. These

same events become input events when viewed by the consuming statechart. If

an event is neither generated nor consumed by a statechart, then that event is

irrelevant to that statechart and is ignored.

In some rare cases, a statechart may both generate and consume an event,

or the associated class may generate an event (such as the Health Sensor in

the Halo AI) that is intended only for the statechart in the module. These self-

communications express logic internal to a single statechart, and so these events

are classified as private.

103

Synchronous Communications

As discussed in §3.2, associated classes in AI modules communicate through

the use of synchronous method calls. When reusing a module that makes syn-

chronous method calls to other classes, any target modules must also be reused, or

the associated class edited to update the call with a valid target. Otherwise, the

associated class will fail to compile.

When compared with event-based communication, synchronous communica-

tion leads to tightly-coupled modules. This reduces the ease of reuse, since the

module cannot be reused on its own without modification. Because of this, we

recommend limiting the use of synchronous methods calls where possible.

An alternative to synchronous calls is to employ events with payloads.

Payloads can carry pertinent information to satisfy upstream data requirements.

This allows for a more loosely-coupled system overall, better suited for reuse. An

event with a payload can be given a signature stating the type of the payload,

much like a function or method signature, making it clear the information that is

contained in that payload.

As an example, a common task in the layered statechart module is for

analyzers to refine information collected by the sensors. The sensor could store

the data and make it available by synchronous method call, however, reuse of the

analyzer would be complicated if the sensor is not also reused. Instead, the event

notifying the analyzer of the data collection could include as payload a reference to

the relevant game object. Now when the analyzer is reused, no modification of the

associated class would be required, and reuse is simplified.

104

Miscellaneous AI Module Properties

Aside from event-based and synchronous communications, there are three

properties of an AI module that impact reuse. Each of these properties is related

to the associated class. The first such property is the the programming language.

While statecharts are represented in language-independent SCXML, the associated

class is a code artifact. Since it is programmed in a specific language (e.g., Java

or C++), the AI module can only be reused in games programmed in the same

implementation language.

The next property important to reuse is the set of links between the associ-

ated class and the game-at-large. Any imports in Java or includes in C++ create

dependencies in the code. While references to core libraries (such as java.*, or the

C++ STL) are always resolvable, references to custom libraries or to game-specific

classes may cause issues. Successful reuse demands that such calls be updated to

appropriate targets in the new context, or referenced classes must also be reused

such that the associated class can compile correctly. If an AI module has no game

imports, then it is game-agnostic and can be safely reused in a different game

without issue.

The final property relates to non-modal properties of the AI module. Such

properties, stored as variables in the associated class, allow for customization as

the module is reused. An example comes in the form of the KeyItemMemorizer

module, found in the definition of the squirrel AI. The associated class has a type

parameter which it uses to determine if a spotted item is in fact a key item (an

acorn, in the case of the squirrel). A game implementing several important items

105

(such as flowers, shirts, and boxes), could have a KeyItemMemorizer for each item

relevant to the AI. When a KeyItemMemorizer receives an item spotted event

from a sensor, the payload would be inspected and compared against the key item

parameter, and then memorized if it is a matching type. By exposing parameters

in the interface, it makes it possible to modify them at time of reuse, and thus

customize the module to the new context.

6.1.2 The AI Module Interface

The motivation behind an AI module interface is to collect information

relevant to reuse in a single location. This is similar to the API (Application

Programming Interface) for an application or library. Proper use of a library

requires that the API be followed; proper reuse of an AI module demands that the

module interface be followed.

The interface for an AI module collects and presents information on events,

synchronous calls, parameters, and any imports. Pertinent information can

optionally be added to the interface, such as a name for the module, an outline of

the behaviour, and the intended layer. This means that all the information relating

to the reuse of a module is found in a single location, making the usage of module

interfaces a valuable tool when performing reuse. A straightforward depiction of a

generic interface is given in Fig. 6–1.

By filling in descriptions and additional information, the interface effectively

communicates the functionality of the module. Figure 6–2 presents the AI module

interface for the Key Item Memorizer presented in the Squirrel AI, and clearly

describes how the module works, and how it communicates.

106

Statechart Name

Events

Input:
- EventIn (PayloadType)
- Event2In

Output:
- EventOut
- Event2Out(PayloadType)

Private:
- InternalEvent

Calls

Game Imports:
- import Game.Element
- import Library.Class

Available Synch. Calls:
- method(signature)

External Synch. Calls:
- Module.method(signature)

Game: Mammoth Language: Java
Description:

- Description of Statechart and its behaviour
Parameters:

- Type :: Description

Figure 6–1: A generic AI module interface.

KeyItemMemorizer

Events

Input:
- i_see_item (ItemObject)
- i_dont_see_item (ItemObject)

Output:
- key_item_visible
- no_key_item_visible

Calls

Game Imports:
- Mammoth.AI.NPC.Role,

".PhysicsEngine.PhysicsEngine,
".WorldManager.ItemObject,
".WorldManager.WorldManager

Available Synch. Calls:
- Vector<ItemObject>

getKeyItemList()

Game: Mammoth Language: Java
Description: Filters item spotted events to memorize

key items that have been spotted.
Parameters:

- ItemObject keyItem :: The item type to be memorized as the key item.

Figure 6–2: The module interface for the Key Item Memorizer.

107

6.2 Component Integration

Integrating modules correctly and easily is fundamental to effective AI reuse.

Each reused module must be connected to the other modules in the new AI,

either through event-based or synchronous communication. Here we describe how

modules can be reused and correctly connected in a new context.

6.2.1 Event Renaming

For event-based connections, modules communicate by pairing an input and

output event. Under a broadcast model, event renaming allows connections to be

formed by renaming the output event so that it matches the input event (or vice

versa). Mechanically, this means modifying the source of the statechart to use the

new event names.

To prevent interference with existing connections, pre-existing names must

not be unintentionally duplicated in the a new module. Thus, if a new module

uses event names that are already present in the target system but no connection

is intended, then events in the new module should be given a new, unique name

thereby preventing the formation of unintended connections.

As a rule, private events are not appropriate for use in forming connections.

By definition, a private event is used internally by a statechart, and encapsulation

implies that the event should be invisible to the rest of the system. Generation

of the event may depend on the internal logic of the statechart in a non-obvious

fashion, meaning that generation of the private event by another statechart may

break that internal logic.

108

Technically speaking, consumption of a private event by another statechart

cannot break the internal logic. Since this breaks notions of encapsulation, such

a connection would complicate future reuse and modification. However, it could

be the case that an event intended as output merely happens to be consumed by

an orthogonal region in the same statechart. Here, the designer should classify

that event as output so that it is clear that the event can indeed be used as a

connection point.

In the special case where multiple statecharts are connected using the same

event, renaming may create unintended connections. Consider Fig. 6–3, where a

statechart A outputs event α that is received by statechart B. New statecharts C

and D are added to AI with a pre-existing communication that also uses α. Since

broadcast communication is name based, A will connect to D and C will connect

to B on the event α. If these new connections are not intended, then renaming

could be applied, by modifying C and D to communicate on β instead of α, for

instance.

Statechart A B

DC

α

α

α?

Figure 6–3: Reuse scenario with unintended connections.

109

Renaming can break existing connections, and can fail entirely in certain

corner cases. Continuing our example in Fig. 6–3, imagine only one of the two

cross connections is desired. For example, A should connect to D on α but C

should not connect to B. If C outputs β, breaking the connection to B, then D

will also lose connection. Renaming the input in D would break the intended

connection to A. There is no broadcasting renaming solution in this scenario. In

general, if a group of statecharts each want to connect to a different subset of

receivers all using the same event, renaming will fail. Such situations should be

avoided.

As an alternative to broadcasting with event renaming, narrowcasting can be

employed. This means that each event generation specifies target statecharts, and

only the targets receive the event. While this would resolve the event-renaming

corner cases, it adds additional complexity at the design level by forcing developers

to specify targets for each transition. Reuse of a module would force the re-

specification of all event targets to match the modules in the new AI. In my

experience, corner cases are quite rare and easily avoided during design, and

thus do not justify the extra effort required to model event targets. Broadcast

communication is more appropriate in the context of AI module reuse.

6.2.2 Associated-Class Connection

Integration relating to the associated class is less forgiving, as an unsatisfied

import or synchronous method call will prevent compilation or cause run-time

errors. In the case of unsatisfied method calls, either the target AI module must

110

also be included, or the associated class must be modified to point to a new

implementing module.

In general, synchronous calls are more restrictive than event-passing, and

limiting the number of synchronous calls simplifies integration. Event passing

occurs at the modelling level and is easily addressed there using renaming. The

following guideline helps clarify when each approach should be used: when a

module receives an event and takes action immediately, that event should include

relevant information as payload. When a module needs complex and dynamic

state information at some undetermined point in the future, then a synchronous

becomes necessary.

Module reuse across different games is constrained by imports and imple-

mentation language. The simplest case is when an AI module is purely behaviour

driven and has no imports (aside from core libraries supplied with the language).

Such modules are game-agnostic and may be freely moved between games. If a

module has non-core imports, then reuse in a new game will require updating all

imports, copying libraries, converting engine calls, or other more drastic rewrites.

This may not always be trivial or possible, and thus designing for reuse implies

that modules be made game agnostic whenever possible. The process is much more

complicated if the target game is coded in a different programming language. In

that case, only the statechart could be reused, while the associated class would

require a total rewrite.

111

6.2.3 Functional groups

Reuse of AI modules allows for behavioural aspects of an AI to be exported,

but the typical module is too fine-grained to fully capture a higher-level behaviour.

For example, a fleeing behaviour would encompass spotting enemies with a sensor,

analyzing threat, deciding on a fleeing tactic, and moving using an actuator.

These modules are connected, and through their cooperative actions, realize a

behavioural goal.

To allow reuse of module connections, and provide a way to modularize high-

level behaviours, we introduce functional groups. A functional group is comprised

of at least two AI modules that are connected either by an input-output event

pairing or through synchronous calls.

A functional group interface can be built from the AI module interfaces of the

contained modules. Input events that pair with output events can be reclassified

as private to protect logic internal to the group. Unpaired events are copied to the

new interface without change, and act as the connection points when the group

is reused. Synchronous calls, parameters and game calls can all be added to the

group interface. The end result is that member interfaces are subsumed, giving a

single interface for the functional group.

Importantly, the resulting interface is identical in form to the interface for

individual modules, and thus can be used interchangeably. Thus, a functional

group interface is simply a special case of an AI module interface, and wherever an

AI module can be reused, a functional group could instead be employed.

112

Mammoth Listener

Events

Input: none

Output:
- i_see_item (ItemObject)
- i_dont_see_item (ItemObject)
- i_see_player (Player)
- i_dont_see_player(Player)

Private:none

Calls

Game Imports:
- Mammoth.AI.NPC.NPCEvent;
- ".AI.NPC.Role;
- ".AI.NPC.TaskImpl;
- ".WorldManager.ItemObject;
- ".WorldManager.Player;
- ".WorldManager.PointOfView.

PointOfViewListener;
- ".WorldManager.PointOfView.

PointOfViewManager;
Available Synch. Calls: none
External Synch. Calls: none

Game: Mammoth Language: Java
Description:

- A listener that maps area of interest game events into
statechart events.
Parameters: none

Figure 6–4: The module interface for the Mammoth Listener.

As an example, we create a functional group for identifying key items, called

the Key Item Tracker. This will use the Key Item Memorizer, responsible for

memorizing item locations and filtering key items, along with the Mammoth

listener for the squirrel with interface shown in Fig. 6–4.

Group-Private events

Combining the Listener and Key Item Memorizer gives the interface shown

in Fig. 6–5. Note how the i see item and i dont see item events have been

reclassified as group-private events. This indicates they are now part of the

internal logic of the functional group, and being classified as private prevents

interference from other statecharts.

Reclassification is optional, however, and decided upon by the designer

creating the group. In some cases, it would be reasonable for other statecharts

113

Key Item Identifier Functional Group

Events

Input: none

Output:
- key_item_visible
- no_key_item_visible
- i_see_player (Player)
- i_dont_see_player(Player)

Private:
- i_see_item (ItemObject)
- i_dont_see_item (ItemObject)

Calls

Game Imports:
- Mammoth.AI.NPC.Role,
- ".AI.NPC.NPCEvent,
- ".AI.NPC.TaskImpl,
- ".PhysicsEngine.PhysicsEngine,
- ".WorldManager.ItemObject,
- ".WorldManager.Player,
- ".WorldManager.PointOfView.

PointOfViewListener,
- ".WorldManager.PointOfView.

PointOfViewManager,
- ".WorldManager.WorldManager

Available Synch. Calls:
- Vector<ItemObject> getKeyItemList()

Game: Mammoth Language: Java
Description: Spots items and players. If they are key items, they are
memorized and a notification is created.
Modules: KeyItemMemorizer, MammothListener
Parameters:

- ItemObject keyItem :: The item type to be memorized as the key item.

Figure 6–5: The module interface for a functional group.

to generate a group-private event. Continuing our example, we assume that our

Listener works on line of sight. If another statechart was added that worked on

sense of smell, then it too could create i see item events to easily include smell

data in the AI decision making process.

6.3 Case Study: Squirrel to Trash Collector

To demonstrate the validity and usefulness of the presented approach, this

section gives a concrete example of AI reuse. Here, we take the AI developed for

the squirrel and reuse components of it to create a new AI for a trash collector.

Using the described reuse techniques coupled with good modular design practices,

114

we find that many elements of the squirrel can easily be repurposed, greatly

simplifying the development of the new AI.

This process is greatly streamlined by the fact that the source and target

game are the same. Thus, the associated classes can be reused without modifica-

tion, as the implementation language is the same and all imports are valid.

6.3.1 Trash Collector Specification

The purpose of the trash collector NPC is to clean up the Mammoth game

world. This is done by collecting pieces of rubbish left by other players, then

depositing the trash into garbage bins. The requirements for the NPC are for it to

explore the game world, spot garbage bins and pieces of trash, pick up pieces of

trash, and drop trash into receptacles.

The high level behaviour of the trash collector differs from that of the squirrel.

While the squirrel has four high level goals (wandering, gathering food, eating, and

fleeing), the trash collector has three: searching, picking up trash, and depositing

trash. Searching and wandering seem similar, and gathering food and picking up

trash are also similar, and we start our reuse from there.

Exploring

In the squirrel, wandering is performed by means of a start wander event

that is received by the Wander Executor. In turn, the Wander Executor uses the

Move Actuator to effect movement plans. These already perform a wandering

behaviour, and thus can be directly reused in the trash collector.

To preserve the existing connection, we create a new functional group called

Wander Move, comprised of the Move Actuator and the Wander Executor. This

115

new group is connected through the move, move successful, and move failed

events. However, other parts of the squirrel AI connect to the Move Actuator, and

so in creating the group, we will not reclassify these events as being group-private.

Collecting Trash

To collect acorns, the squirrel performs two separate functions. First is finding

them, and then next is collecting them. Finding requires object identification,

handled by the Key Item Tracker group introduced in §6.2.3. This group can be

reused by updating the key item parameter to use a ‘Trash’ item object instead of

‘Acorn’. This allows the trash collector to spot and identify trash objects.

Once the squirrel brain has decided to collect food, the Eat Decider translates

the goal into actions, including picking up food. Only the picking up portion

of this behaviour is useful for the trash collector, and so we build a Pick Up

functional group for reuse. Included are the Pick Up Executor and the Pick Up

Actuator, connected via the pick up item event. The Pick Up Executor can also

move to targets, and connects with the Move Actuator to accomplish this. Since

the Move Actuator has already been added to the new AI through the inclusion of

the Wander Move group, this connection does not need modification. The Pick Up

Executor makes a synchronous call to the Key Item Memorizer, but this module is

in place and so the call is satisfied.

Using Trash Receptacles

The new behaviour in trash collector is to use trash receptacles. Since the

reused Mammoth Listener, a Sensor module, creates a game event for every

spotted item, the AI is already aware of garbage cans. We can add a new instance

116

of the Key Item Memorizer, called a Trash Can Memorizer to receive these

previously unused notifications and track garbage cans. However, this creates a

unintended connection on the key item visible event. Event renaming resolves

this, and so we have the Trash Can Memorizer generate trash can visible and

no trash can visible events instead of key item events.

Once trash has been collected, the NPC must move to the garbage can and

drop the trash in the can. Fundamentally, this is the same logic as the Pick Up

Executor, which handles moving to and picking up an object. We create a Drop

Executor by renaming all events with pick up into drop, e.g., pick up item becomes

drop item, and by changing the target of the synchronous call to the Trash Can

Memorizer. The drop item is currently unconnected, and will form the connection

to a yet-to-be introduced drop actuator.

6.3.2 Building the NPC

With most behaviours now in place, the only design task left is to fill in miss-

ing behaviours with new modules, and connect them all with a new strategizer.

Working from the module interfaces, we can determine the exact events that are as

yet unconnected. These are summarized in Table 6–1.

Table 6–1: Unconnected Events in the new Trash Collector AI

Unconnected Inputs Module/Func. Group Unconnected Outputs
start wander
stop wander

Wander Move FG —

— Key Item Tracker FG key item visible
no key item visible

pick up item request Pick Up FG pick up successful
pick up failed

— Trash Can Memorizer trash can visible
no trash can visible

drop item request Drop Executor drop item

117

The Trash Collector Brain will be somewhat different than the Squirrel Brain.

The behaviour desired is to pick up a single piece of garbage and throw it in the

trash, repeating indefinitely. The brain is thus a simple two state statechart,

alternating between the two goals based upon if the NPC currently has a piece of

trash.

A new decider was created to implement the high level collect goal. The

Collect Decider, shown in Fig. 6–6, realizes the collect goal by searching for a piece

of trash, then picking up a piece of visible trash. When the collection is successful,

the Brain will stop collection, and start the Discard Decider. It is identical in

form to the Collect Decider, searching for a garbage can, then throwing the trash

in the can, with the events renamed to match the connections in Table 6–1. The

astute reader will notice these are instances of the priority decider pattern from

the previous chapter. In addition, a new Drop Actuator was created to receive the

drop item event and have the NPC actually drop the carried trash into the can.

6.3.3 Case Study Summary

In total, the new AI is comprised of 12 modules, 8 of which have been reused.

This means that only one third of the modules in the new AI were newly designed.

Of these four, two were statechart patterns, one had only two states, and the

other had only a single state. By avoiding redevelopment of existing AI logic, the

workload to develop the new AI was dramatically reduced.

The reuse process itself does take some effort. However, by representing

module connections in a clearly defined fashion, and through the use of functional

groups, the act of module integration was greatly simplified. Based upon this case

118

idle

visible

key_item_visible

no_key_item_visible

searching

this.createEvent('start_wander',null)

this.createEvent('stop_wander',null)

start_collect

stop_collect

getting

this.createEvent('pick_up_item_request', null)

start_collect

stop_collect

no_key_item_visible

key_item_visible

pick_up_failed

pick_up_successful/
this.createEvent('collection_successful', null)

Figure 6–6: The statechart for the Collect Decider.

study, we can conclude that our reuse techniques are a valuable approach for AI

designers. In the next chapter, we dramatically improve the process by providing

tool support for the reuse process through the tool Scythe AI.

119

CHAPTER 7
The Scythe AI Tool

Modular reuse is greatly simplified through the use of the AI module interface.

The next step is to make reuse practical by providing a work flow complete with

tool support. Designed to be used by AI developers, our tool Scythe AI is the key

piece of the reuse work flow.

In practice, performing reuse involves numerous small tasks, such as managing

files and interfaces, checking that event names correspond, tracking synchronous

calls, and so on. Small mistakes become possible as the number of modules grow.

The intent of Scythe AI is to automate these tasks where possible and provide

guidance as needed, thereby simplifying the reuse process and reducing the

possibility of error.

This chapter describes how Scythe AI operates, and details the logic behind

interesting design decisions. The discussion is divided by workflow, covering

module importing, building new AIs through reuse, and exporting completed AIs.

It will conclude with a discussion of avenues for future development.

7.1 Overview

One of the main factors enabling Scythe AI is the well-defined module

interfaces in layered statechart-based AI. Reuse requires modules with defined

module interfaces, and the tool is built around manipulating these interfaces.

Scythe AI provides users with the ability to build a library of AI modules each

120

+
Statechart Associated

Class

Module Library

Imports

Project

Composes, renames, verifies

+
Statechart Associated

Class

+
Statechart Associated

Class

+
Statechart Associated

Class

+
Statechart Associated

Class

Scythe AI

Exports

Game Ready AI

Figure 7–1: The Scythe AI Workflow.

with properly defined module interfaces. The overall Scythe AI workflow is

illustrated in Fig. 7–1. After importing modules to the library, the developer can

build a new AI by piecing together modules. Like a standard IDE, warnings and

errors are generated to guide users through this process of connecting modules.

This ensures proper interaction between modules and reduces the possibility for

error. When an AI is completed, it can be exported directly from Scythe AI into

to a target game. In doing so, Scythe AI executes the changes to the modules,

then packages up the files for the target game.

The main interface for Scythe AI is shown in Fig. 7–2. Displayed prominently

on the left is the Module Library, which lists all AI modules that have been

imported into Scythe AI. Users will interact with this heavily when building

121

Figure 7–2: The Scythe AI Main Interface.

AIs. Any AIs under construction show up in the tabbed portion. This area

lists modules in the project, and allows users to view the constituent files of a

module. Making the source code and SCXML easy to view allows users to examine

modules and learn how they operate. This allows users to make better informed

decisions about how to integrate modules. The bottom of the screen lists problems

generated by the currently selected project. The user will need to examine this

regularly to ensure the modules are being integrated correctly.

122

File management is handled through the concept of a workspace. When

Scythe AI is launched, the user selects a workspace folder. Inside, the program

creates a ‘projects’ folder to hold all files related to user projects, and a ‘library’

folder to hold all files comprising modules that have been added to the Scythe AI

library.

7.2 Importing Modules

The task of importing an AI module into Scythe AI is fundamentally the

act of defining the module interface. Accordingly, a main feature of Scythe AI is

the module import wizard, which guides the user through the process of correctly

building the interface. This ensures that the module interface is both complete and

correct, making imported modules ready for reuse.

The first step in the module import wizard allows the user to select the files

that comprise the module. This includes both the Statechart in .scxml format and

the associated class coded in Java. Scythe AI internally handles these files through

extensible interfaces, allowing for future extensions supporting other formats and

languages.

The next two wizard steps, shown in Fig. 7–3(a) and Fig. 7–3(b), prompt the

user to provide meta-information about the new module. This allows the user to

customize the module name, source game, and description. Additionally, it allows

modules to be tagged with their purpose. This information will assist future users

in ascertaining if a given module fits their needs.

Having completed the input of meta-information, the next step is to build

the portion of the interface relating to event-based communication. This derives

123

(a) Import Module Step 2. (b) Import Module Step 3.

Figure 7–3: Entering general description of a module.

directly from the Statechart. Rather than have the user manually enter events,

Scythe AI parses the .scxml file and provides a list of events to the user. This is

done using the Commons SCXML parser [2]. Scythe AI searches for all event gen-

erations in the XML namespace xmlns:scai="http://www.scytheai.com/scxml"

using the tag <scai:aiEvent name="ev" payload="payload"/>.

Having completed parsing, Scythe AI can show step 4 of the import wizard,

where the user specifies the direction of event interactions. This is shown in

Fig. 7–4. Scythe AI supports users in this by offering a guess about how events are

used. If an event is generated within the Statechart, it is assumed to be an output

event. Each event used by a transition is assumed to be an input. These must be

modifiable, since any of these events could be private. Additionally, events have a

source which is either the AI or the game itself. While this is not formally part of

the module interface, specifying the event origin is useful in finding warnings and

errors as we will see later.

124

Figure 7–4: Import Module Step 4: Event Specification

Next, the user must build the portion of the interface deriving from the

associated class. Once again, Scythe AI supports the user by parsing the provided

.java file. This allows the user to define the remainder of the interface by working

through a few customized menus, greatly simplifying the process for the user.

In step 5 of the wizard, the user is given a simple list showing all imports in

the associated class. Any game specific imports should be should be checked off,

and the rest unchecked. These are then added to the interface.

Step 6 gives the user a listing of all public methods defined in the class. Those

that are to be made available to other modules as synchronous method calls should

be checked, and the rest should be unchecked. Since we only parse the raw Java

source for a single class, inheritance presents a problem. Lacking the source for any

125

super classes, no inherited methods will appear. In practice this has not caused

any issues, but it is a limitation of the current approach.

Automatic detection of outgoing synchronous calls is not supported at this

time. This is due to the inherent limitations of static analysis with respect to

determining the runtime type of an object. Java supports polymorphism, and so

examination of a specific method call cannot definitely indicate the destination of

the call. For example, a synchronous call to another module may be programmed

using a call to the superclass of the module. This would not be meaningful without

understanding the class hierarchy of the module. Since we do not know the module

hierarchy, this presents a roadblock. As a workaround, any outgoing calls must be

entered manually. Future versions of Scythe AI could alleviate this by introducing

a more complete code analysis tool, such as Soot [42].

In step 7, shown in Fig. 7–5, a list of all non-final parameters is given to the

user. The user checks off the parameters that should be included in the module

interface; the rest are ignored. Again, because only the single class file is provided,

parameters originating in a super class cannot be detected.

With completion of step 7, the AI module interface is now completely

specified. Upon closing the wizard, Scythe AI adds the new module into the

workspace. In the library folder in the workspace, a new folder is created and

populated with copies of the Statechart and class files. Next, Scythe AI writes

an XML representation of the interface for the newly defined module. Thus the

module is stored and later users of Scythe AI can access it. In the main interface,

the new module is added to the library module list, and is available for reuse.

126

Figure 7–5: Import Module Step 7: Parameter Selection

7.3 Building an AI

In Scythe AI, building an new AI is done by composing AI modules that have

been added to the library. A new project is created to store the AI, then modules

are added to the new project. After adding the desired modules, the user must

customize modules as needed such that the modules communicate as intended.

Scythe AI creates a new folder in the workspace for each new project. When

a user adds a module to the project, the tool copies the Statechart, associated

class, and module XML file into the project folder. This allows the module to

be customized for the current project without affecting the original copies in the

library, or other projects reusing the same module.

Modules are customized by selecting either a library or project module and

pressing the edit button. This brings up the edit module dialog shown in Fig. 7–6.

127

Figure 7–6: Editing a Module in Scythe AI.

The primary task for the user is to ensure that events sent by a Statechart are

correctly received by target Statecharts, while not being incidentally received by

non-target Statecharts. This is done by event renaming as described in Chapter

6. Scythe AI supports this by allowing users to rename events in the edit module

dialog.

When a module is added to a project, the user must specify values for any

parameters in the module. For example, the Key Item Memorizer found in the

Squirrel AI takes an item name as input that determines the key item to be

memorized. For the squirrel, it is an Acorn, but in a reuse scenario, the user will

128

want to customize the key item parameter as needed by the new AI. This is also

done in the edit module dialog, under the Associated Class tab.

7.3.1 Errors and Warnings

A number of problems can arise while constructing a new AI. By identi-

fying problems and notifying the user, Scythe AI provides excellent support to

developers performing reuse.

A problem is classified as an error if it will prevent the AI from running (e.g.,

a synchronous call is not satisfied), and must be corrected before exporting the

AI. If the problem would not prevent the AI from running, it is instead classified

as a warning. Each problem is listed in the main interface so that the user has a

continual description of potential issues. As the user makes changes to the AI, the

list is continually updated. Table 7–1 gives the listing of errors and warnings that

can be generated by Scythe AI.

Table 7–1: Warnings and errors generated by Scythe AI

Severity Problem Description
Error Event Interference Event e is private in module x, but is used by module y.
Warning No Input Module x has input event e, which is not generated by any

module.
Warning No Receiver Module x outputs event e, which is not received by any module.
Warning Game Conflict Module x has input event e sourced by the game, but e is gener-

ated by another module y
Error Game Mismatch Module x has game imports for g when target game is j.
Error Unsatisfied Call Module x calls m in class, which does not exist.
Warning Unused Call Module x provides method m which is never called.
Warning Null Parameter Parameter p in module x is null.
Warning No Actuators Project has no actuators. Resulting AI cannot act.

The warnings and errors follow from the module interface. Looking at the

event-based communication portion of the interface, it should be expected that

input events are generated by some other module, outputs are received by another

129

module, and so on. If these conditions are not met, it could indicate a problem

with how the module is being used.

As an example, the ’No Input’ warning means that a module expects an

input event that no module generates. This might be due to a name mismatch,

accidental omission of another module, or may be intentional. By presenting this

as a warning, the user is notified of the potential issue and can address it as they

see fit. Other problems can be clearly identified as errors. An event classified as

private implies that no other module should interact with that event. If another

module does interact with that event, this violates the module interface of the first

module, and must be corrected by the user. Errors and warnings relating to the

associated class are similar in nature: outgoing calls must be satisfied while unused

offered calls present a warning.

Worth noting is that events originating at the game cannot trigger a ‘No

Input’ warning. Since they are generated by the game, it is correct for there to

be no module that generates them. Indeed, if another module does generate a

game-sourced event, then a ‘Game Conflict’ warning will be generated.

One additional error, ‘No Actuators’, does not follow from the interface. It

refers to the layered Statechart approach wherein only actuators can modify the

game state. This is a type of meta-error, in that all module interfaces can be

properly satisfied, yet the constructed AI is likely to be incorrect. Future iterations

of Scythe AI could potentially include additional warnings of this type.

130

7.4 Exporting an AI

Once the AI is complete, the final step is to export it to the target game.

Doing so is a three part process. First, any changes made in the AI construction

phase must be applied, necessary information from the module interfaces must be

included, and the AI must be packaged up appropriately.

The changes made in the building phase are primarily a result of event

renaming. Applying this change means editing the SCXML source such that

event names are updated. Since the source is being modified directly, care has to

be taken to ensure that changes are applied correctly. An event name x is only

matched and replaced when it occurs inside the tags <scai:aiEvent name="x">,

<scai:gameEvent name="x"> and <transition event="x">.

Currently, Scythe AI can output to the game Mammoth. Importantly,

Mammoth allows NPCs to be defined externally in an XML file. Scythe AI knows

how to write this XML file, and thus can output the AI in a format ready for

use in Mammoth. The basic Squirrel AI, detailed in Appendix A, yields the

output shown in Fig. 7–7 when exported from Scythe AI. As you can see, the

output specifies the class and SCXML files that make up the module, and provides

values for each parameter. Along with generating this XML definition, the export

operation also copies all SCXML and class files to the output folder.

7.5 Future Development Plan

In its current state, Scythe AI is an effective tool to manage reuse of

Statechart-based AI. We have modelled the AI for several NPCs within Scythe

AI, and found it to be an excellent environment for the rapid composition and

131

<?xml version="1.0" encoding="UTF-8"?><role xmlns="http://mammoth.cs.mcgill.ca" name="Squirrel2">

<tasks>

<task class="SCXMLEatActuator.java" type="scxml">

<scxmlFile value="SCXMLEatActuator.scxml"/>

</task>

<task class="SCXMLEatDecider.java" type="scxml">

<scxmlFile value="SCXMLEatDecider.scxml"/>

<reference value="Mammoth.AI.NPC.SCXML.SCXMLItemMemorizer"/>

</task>

<task class="SCXMLEatAnalyzer.java" type="scxml">

<scxmlFile value="SCXMLEatAnalyzer.scxml"/>

</task>

<task class="SCXMLEnergySensor.java" type="scxml">

<scxmlFile value="SCXMLEnergySensor.scxml"/>

<lowThreshold value="15000"/>

<veryLowThreshold value="7000"/>

</task>

<task class="SCXMLFleePlanner.java" type="scxml">

<scxmlFile value="SCXMLFleePlanner.scxml"/>

</task>

<task class="SCXMLItemMemorizer.java" type="scxml">

<scxmlFile value="SCXMLItemMemorizer.scxml"/>

<keyItem value="Acorn"/>

</task>

<...>

<task class="SCXMLProximityMemorizer.java" type="scxml">

<scxmlFile value="SCXMLProximityMemorizer.scxml"/>

<lowThreat value="2.0"/>

<highThreat value="1.0"/>

</task>

<task class="SCXMLWanderPlanner.java" type="scxml">

<scxmlFile value="SCXMLWanderPlanner.scxml"/>

<xRadius value="2"/>

<yRadius value="2"/>

<restTimeMin value="5"/>

<restTimeRange value="5"/>

</task>

<task class="Mammoth.AI.NPC.Tasks.ListenerTask" type="internal"/>

</tasks>

</role>

Figure 7–7: The Mammoth XML NPC generated by Scythe AI

132

deployment of game AI. That being said, there are several specific improvements

that could be made that would greatly add to the capabilities of Scythe AI.

Verification of the correctness of the AI is a major concern. With the error

and warning system, Scythe AI can tell the user that module interfaces are

satisfied, but it cannot verify that the behaviour of the assembled AI will exhibit

the desired behaviour. Thus, it would be extremely valuable to have Scythe AI

perform some of the verification techniques discussed in Chapter 8. At the time

of writing, Scythe AI can generate Promela representations of the Statecharts

in a project, but cannot include specifications in that code. Scythe AI could be

expanded to allow users to make behavioural specifications for an AI, and then

include them in the Promela output for verification.

Along the same lines, Scythe AI should support generation of varied AIs, as

detailed in Chapter 9. To do this, it would have to be possible to specify ranges or

choices for parameters, add Statechart composition tags (i.e., addition, removal,

and replacement candidates), as well as specification and application of rule-based

transformations.

Improving the user experience would also be of great value. One useful

improvement would be adding support for functional groups as defined in Chapter

6. Other wish-list features include making modules searchable and sortable by

tag, adding visualization of module connections, and making it easier to alter and

view SCXML and class files. Additionally, Scythe AI uses interfaces to internally

represent Statechart and associated class files. This was done so that it would

be possible to extend the program to allow C++ classes, C# classes and .xmi

133

Statecharts as input. Doing so would allow Scythe AI to work with a larger

number of games.

One last feature that would be highly useful would be the addition of output

profiles. This would allow users to define in a domain-specific language how to out-

put to a specific game. Users would then be empowered to use Scythe AI for their

own games. As part of this, it would useful if Scythe AI could export Statecharts

as C++, C#, or Java code, removing the need for an SCXML execution engine in

the target game. This would allow users to output from Scythe AI into a general

target, such as Unity or the Unreal engine.

134

CHAPTER 8
Verifying Correctness

A major issue in game AI is verifying that NPCs behave as expected when

performing their role in the game context. Testing is the typical verification

approach, where developers perform informal tests during initial design, followed

by dedicated game testers that manually interact with the AI. In some instances,

this is followed by beta testers during a closed beta or external testers in an open

beta, who return feedback through forum posts. The process is time consuming,

inefficient, and leaves gaps in test coverage. When the final product is released to

thousands or in some cases millions of players, these bugs will begin to appear,

negatively impacting the game play experience. With the rise of social media, even

a rare bug might be seen by a large number of current or potential customers [8].

Layered statechart-based AI, as a model-based approach, allows for a new

approach to testing game AI. Since the model is built on a clearly defined for-

malism, it is possible to establish the correctness of the model itself. This allows

designers to verify behavioural correctness at the same level of abstraction as the

design goals, giving them a potent new tool with which to validate the correctness

of their AI. Especially in the case of modular reuse, this verification is essential to

the development process.

135

In this chapter, we develop an approach to the verification of layered

statechart-based AI. Our treatment divides the problem into two types of veri-

fication. The first is syntactic correctness, where we establish that modules are

correctly connected and capable of communication. Next, we explore semantic cor-

rectness whereby we verify that the AI logic meets behavioural specifications. This

includes a discussion of how to express behavioural requirements as specifications,

and outlines a method to generate game scenarios for automated testing purposes.

8.1 Syntactic Correctness

Layered statechart-based AI is fundamentally modular, with each module

communicating by generating and receiving events through broadcast communi-

cation. While this loose coupling simplifies the modular reuse process, it creates

the potential for error through mismatched event names. Thus, it is essential to

the design process for developers to quickly and easily verify that statechart events

are correctly named and thus statecharts can communicate. We call this syntactic

correctness.

At its core, this idea is quite straightforward. Each event generation and re-

ception was intentionally created by the statechart designer, and so our verification

starts with the assumption that every event must be able to effect a change within

the system. This means that every generated event should be consumable, even

if specific instances are not consumed. Similarly, it should be the case that every

event that can be consumed is indeed generated at some point. Finally, we need

136

to make sure that private events are respected, and neither consumed nor gener-

ated by other statecharts. We summarize these requirements as a list of syntactic

verification goals:

• All events intended to be used by the AI are indeed generated.

• All events intended to be generated by the AI are indeed usable.

• No private event is used in any connection between modules.

With this, we can guarantee that the events in the AI are correctly utilized,

and that statecharts are correctly connected. This gives reasonable assurance

to the developer that the AI is correctly assembled, an important first step in

verifying the overall correctness of the AI.

Putting this in the context of AI module interfaces, we treat the problem

in terms of input and output events. Given a modular AI, let O be the set of

all output events from all statecharts, and let I be the set of all input events. In

principle, we wish to verify that O = I, as this implies that all events are both

generated and consumed. In other words, we wish to verify that:

∀o ∈ O, {∃i ∈ I | o = i}

∀i ∈ I, {∃o ∈ O | i = o}

This will catch any errors related to simple misnaming (e.g., pickup, pick up,

pickUp, and ev pickup). It will also catch errors due to missed statecharts. For

example, a move event that is generated but not received might indicate to the

designer that a Move Actuator was accidentally omitted during reuse.

137

With the correct set of input and output events, we can now verify that

private events are used correctly. Letting P be the set of all private events from all

statecharts, then it should be the case that:

∀p ∈ P, {p 6∈ I ∧ p 6∈ O}

This tells us that no statechart accepts as input or generates as output any event

marked as private.

8.1.1 Reuse Considerations

Practically speaking, it might be the case that some events are deliberately

not employed. In a reuse scenario, a module producing multiple outputs might

only be reused to produce one specific output, while the rest are not relevant to

the new context. Similarly, a designer might be leaving extra events as hooks for

future modifications or future reuse. Regardless of the reason, the designer should

actively build ignore sets Go, Go ⊂ O for output ignores, and Gi, Gi ⊂ I for

input ignores by adding events that are to be ignored during verification. Thus, we

instead verify that:

∀o ∈ (O −Go), {∃i ∈ I | o = i}

∀i ∈ (I −Gi), {∃o ∈ O | i = o}

Ignore lists used in this regard tell us that the designer does not care if the

ignored output has a matching input, or vice versa. It is not an exclusion list, and

thus it would be acceptable for a non-ignored event to connect to an ignored event.

138

8.1.2 Applying Syntactic Correctness

This approach to syntactic correctness is fully implemented in Scythe AI.

Through the error and warning system described in §7.3.1, any violation of

syntactic correctness is displayed to the user so that they can correct the error.

Being able to create a tool that automatically checks for these violations is one of

the primary benefits of the model-driven approach.

Verifying the Halo AI

To demonstrate utility, the Halo AI developed in Chap. 5 was loaded into

Scythe AI and analyzed for syntactic correctness. The full complement of 50

statecharts was used, which in total had 309 events defined in their interfaces. This

lead to a total of 116 unique input events, 118 unique output events, and 9 private

events. In total, 67 violations of syntactic correctness were present, indicating the

ease with which syntactic errors can appear in a large AI. Behaviours relating to

vehicle use and command handling were added to the ignore list, since these are in

fact hooks for unimplemented behaviours. Even so, this left 49 syntactic errors.

A number of errors were due to typos. In a broadcast environment, there is no

indication that these errors are present, making them difficult to isolate. Checking

syntactic correctness is a valuable tool to spot these subtle mistakes. For example,

the Enemy Proximity Analyzer outputted the event ev NoEnemiesInMelee,

while two other modules instead had ev NoEnemyInMeleeRange as input, which

generated 3 errors in total. Another module had ev PlayedSpotted versus the

correct ev PlayerSpotted, for another 2 errors. Once apparent, fixing these errors

was trivial. These types of errors also reveal that this kind of syntactic checking

139

leads to an artificially high error count, as a single error in an event name can

result in a number of unsatisfied input or outputs, and thus a number of syntactic

correctness violations.

Aside from minor errors, syntactic correctness verification can also identify

more major oversights. For example, several modules needed to track the NPC’s

current position, and had as input ev PositionChanged. However, no sensor

existed to track NPC position. Seeing these errors pointed out an important over-

sight in the design process. The final version of the Halo AI shown in Appendix

A adds in a position tracking sensor to generate this event. Similarly, it was often

necessary to cancel movement using ev StopMove event. Yet, neither the Move-

ment Coordinator nor the Run Actuator had this functionality included, an error

resulting in 8 violations. Again, seeing these errors isolated the problem, allowing

the bug to be caught before testing. Fixing these errors involved modifying the

Movement Coordinator to support the ev StopMove event, and adding a sensor for

player position.

In total, exactly 20 fixes were applied, ranging from simple typos, up to the

addition of a new module and major modifications of the move coordinator. Along

with the addition of 12 events relating to vehicles and commands to the ignore list,

this resolved all 67 reported violations of syntactic correctness.

8.2 Semantic Correctness

Behaviours in the layered statechart model are selected based upon inter-

actions between all statecharts, meaning the overall behaviour of the NPC is an

emergent property of statechart interaction. The chain of events leading to a single

140

actuation can sometimes reach across all 8 layers of statecharts, each acting in

accordance with their current state as established by earlier chains of events. This

complexity demands an effective form of verification for developers and testers to

be able to adequately establish that the AI meets its specifications.

What is needed is proof of semantic correctness. We define a semantically

correct AI as one where the behaviours expressed in the AI logic when controlling

an NPC in the game context matches the intended behaviour as specified by the

designer. In other words, we want to verify that the logic encoded in the state-

charts expresses what the designer meant for them for express. This represents an

ambitious mark as it relies on generating a clear specification of what is correct AI

behaviour, a task which is challenging.

In this section, we will develop and validate a strategy to verify the semantic

correctness of a layered statechart-based AI. Such an approach is intended to

be usable by designers during the creation of an AI, and as a ‘unit testing’-like

approach during reuse. As well, special attention will be paid on creating workable

specifications to verify important elements of AI behaviour.

8.2.1 Bounding the Problem

Statecharts have well-defined semantics, and clearly defined methods of

interaction. This allows us to deterministically analyze how statechart execution

will proceed, given a sequence of input events. Thus, verification of semantic

correctness can be performed by simulating statechart behaviour to determine

if behaviours are being expressed correctly. For instance, a likely requirement

would be that if the NPC is in a dangerous position, then the AI should make

141

the decision to flee. This would eventually be translated into a function call at

an actuator. In this case, we can say the flee behaviour is semantically correct

if, given a game state where the designer would like the AI to flee, the AI logic

produces the decision to flee, and effects the appropriate actuation strategy.

Of course, semantic correctness does not guarantee the NPC will function

correctly. If, for instance, there is a bug in pathfinding, then moves may fail, the

NPC may become stuck, and so on. These types of problems, however, arise based

on errors in the game code, rather than in the AI logic. In this case, the correct

decision is made, but the underlying structure executing that decision is flawed.

Classifying AI bugs as either failures in logic, or failures in the code used to

realize behaviours creates a clear demarcation point. If the AI logic makes correct

decisions based on the specified behaviour, then we will consider it semantically

correct, regardless if those decisions are correctly executed by the underlying game

implementation. While there do exist many approaches to verify code correctness

(such as static analysis [11] or automated theorem provers [46]), we will focus on

verifying AI logic exclusively.

8.2.2 Model-Checking

To verify that a behaviour correctly meets requirements, we must explore

how the AI reacts to any given event occurrence from any and all potential AI

states. However, the number of potential AI states is extremely large, as it is equal

to the number of states in the Cartesian product of all statecharts in the AI. A

useful approximation of this is nm, where n is the number of states in an average

142

statechart in the AI, and m is the number of statecharts. Calculating this precisely

for the Halo AI, this works out to 2.41× 1022 states.

The vast majority of these states are spurious. Executors act in mutual

exclusion to each other, and have an almost hierarchical relation with states in the

deciders. Similarly, deciders act in mutual exclusion and are essentially hierarchical

substates of states in the strategizer. For example, the size of the Cartesian

product of states of deciders in the Halo AI is exactly 3000. This was determined

by counting the number of states in each one and multiplying. However, manual

inspection determined that only 84 combinations are actually viable, given our

strategy of using start and stop events to ensure that deciders operate in mutual

exclusion. While this effect reduces the size of the state-space by several orders

of magnitude, the fact remains that the number of viable combinations precludes

manual testing as an effective approach.

What is needed is a verification approach that will effectively explore the

non-spurious state-space of the AI, a problem that is directly addressed by

model-checking. One of the primary advantages of model-checking is its ability

to effectively and exhaustively explore large state spaces. A model checker will

examine every possible ordering of events such that it can establish correctness

of a given specification. By transforming an AI into a verifiable model, and by

expressing design requirements as formal specifications, it becomes possible to use

a model checker to verify layered statechart-based AI.

143

The Spin Model Checker

One of the most venerable model checkers is Spin [30], designed with the

principle goal of efficient verification of multi-threaded software. Spin is highly

appropriate for verification of statechart behaviour, and there exist several detailed

approaches to using it for this task [51, 44, 60]. For these reasons, we used Spin to

verify the semantic correctness of layered statechart-based AI.

Through the use of on-the-fly state-space generation, support for multi-core

systems, and use of partial-order reduction [57], Spin can efficiently model-check

large software systems. Both safety and liveness specifications given in Linear

Temporal Logic (LTL) can be verified. A full guide to Spin usage can be found in

the Spin Primer [29].

The process meta language Promela is used by Spin to represent the process

behaviour of the system to be verified. A typical approach to verification is to

first transform the system to be verified into Promela code, add specifications

describing correct behaviour, and then model check that representation for

specification violations. Relevant details regarding Promela will be given as

necessary; readers interested in a complete description are referred once again to

the Spin Primer [29].

8.2.3 Promela Representation

To represent statecharts in Promela, we will largely follow the treatment given

by Latella et. al. [51]. There, statecharts were first transformed into extended hier-

archical automata, due to difficulties in the resolution of inter-level transitions (an

inter-level transition is one that connects two states that do not share the same

144

parent state). Rather than perform this complex treatment of state hierarchy, we

instead flatten the state hierarchy using the inside-out Rhapsody semantics as was

done by Schafer et. al. [60]. The size of the resulting transformation is larger using

this method, but it is equally valid while being easier to implement.

The overall transformation procedure must address three core requirements.

The first is the representation of each statechart. This must correctly capture the

state structure, including complex arrangements such as orthogonal regions and

history states. As well, it must correctly include on-exit, transition, and on-entry

actions. Secondly, the transformation must correctly implement the game and AI

queues, and must provide a mechanism to distribute events in accordance with our

semantics for cooperating statecharts. Finally, the transformation must provide an

abstraction of the game context to simulate the operation of the game as it relates

to the AI logic. This subsection addresses each of these three requirements in turn.

Statechart Representation

Each statechart is represented in Promela as a single process. Statecharts

with orthogonal regions maintain independent state for each region, and so are

represented instead with a process for each region. Each process in Promela is

independent and asynchronous, reinforcing the need for a mechanism to distribute

events correctly. Figure 8–1 shows the basic structure, where each statechart is

defined as a separate process. The Combat Decider has orthogonal regions, and so

multiple processes are generated, denoted as R0 for region 0 and R1 for region 1.

Once started, these statechart processes will run indefinitely.

145

proctype Brain() {
do

/* statechart contents */

od

}

proctype Move_Actuator() {
do

/* statechart contents */

od

}
proctype Combat_Decider_R0() {...}
proctype Combat_Decider_R1() {...}

Figure 8–1: Defining Promela processes

It is important that the process for a statechart remains active for the

duration of verification, as this allows Spin to correctly identify repeated states.

We achieve this by means of a global do-od loop in each process, as shown in

Fig. 8–1.

The statechart structure itself is represented using a series of if-statements

as shown in Fig. 8–2, which shows the Wander Executor from the Squirrel AI.

The current state is matched in the outer if-statement, while the incoming event is

matched in the inner if-statement. When a new event is generated, it is added to

the tail of the AIEventQueue.

146

byte Wander_ExecutorState = 0;

bool Wander_ExecutorStart = false;

bool Wander_ExecutorCallback = false;

proctype Wander_Executor() {
mtype currentEvent;

do

:: Wander_ExecutorStart -> atomic {
AIEventQueue?<currentEvent>;

if

:: (Wander_ExecutorState == 0) ->

if

:: (currentEvent == start_wander) ->

Wander_ExecutorState = 2; AIEventQueue!move;

:: !(currentEvent == start_wander) -> skip;

fi;

:: (Wander_ExecutorState == 1) ->

if

:: (currentEvent == stop_wander) ->

Wander_ExecutorState=0; AIEventQueue!stop_move;

:: !(currentEvent == stop_wander) -> skip;

fi;

:: (Wander_ExecutorState == 2) ->

if

:: (currentEvent == time) ->

Wander_ExecutorState = 3; AIEventQueue!stop_move;

:: (currentEvent == stop_wander) ->

Wander_ExecutorState = 0; AIEventQueue!stop_move;

:: !(currentEvent==time || currentEvent==stop_wander)

-> skip;

fi;

:: (Wander_ExecutorState == 3) ->

/* state 3 omitted for brevity */

fi;

Wander_ExecutorStart = false; Wander_ExecutorCallback = true;

} /* end atomic */

od;

}

Figure 8–2: The Promela Statechart for the Wander Executor

147

The initial state is set outside the process declaration, ensuring that execution

begins in the correct default state. Since the process is always running, it requires

a flag to control execution, in this case the Wander ExecutorStart. In Promela,

executing a flag set to false causes the process to wait. When the flag is set to

true, the process wakes up and is free to resume execution. This flag will be

controlled by the event processor, which will only signal when there are events for

the statechart to process.

Promela if-statements are resolved non-deterministically by Spin. If more

than one branch (designated by ::) has a guard evaluating to true, Spin will choose

one at random and continue execution. Over a full model-checking pass, Spin

will eventually backtrack such that all paths are eventually explored. In the case

of events that cannot cause a transition in the current state, a guarded skip is

provided, allowing execution to proceed. When model-checking, Spin will explore

all active branches, meaning that the entire state-space is eventually explored.

Normally, Spin will explore all possible interleavings between each Promela

statement. This is undesirable; statechart semantics assume transitions are instan-

taneous, and thus interleaving the steps that comprise a transition in a statechart

would violate the Rhapsody semantics. We prevent this by wrapping an atomic

block around statechart execution, preventing interleaving during statechart ac-

tivity. This has the additional benefit of limiting interleaving possibilities, making

model-checking more efficient.

148

Transitions and Actions

Executing a transition has two primary effects: actions must be executed,

and the state must be updated. It is at this level that the effects of flattening the

state structure become apparent. Examples of transitions represented in Promela

can be found in Fig. 8–2. In our Promela abstraction, only actions that generate

events are relevant. Actions that do not generate events are important to the

functionality of the NPC, but have no direct effect on the logic encoded in the

statecharts and are thus out of scope of the verification.

Transition actions must be fired in a specified order. To start, the transition

executes any on-exit actions from the source state, which must also include those

defined at parent states. Actions defined on the transition are executed next,

and then finally any on-entry actions in the target state and its parent states are

executed. Care must be taken here to correctly determine what states are being

entered and exited (e.g., a transition between states sharing a parent should not

fire on-entry and on-exit events from the parent).

The target state must also be determined. If the target state has substates

and a default transition, then the actual transition target should be the default

transition target. This may trigger additional on-entry actions.

History states are a special case. Like flattening substates, we again abstract

away the history state and replace it with a number of transitions. When a state

has a sibling history state, it is a potential target of a later transition to that

history state. A tracking variable is introduced to remember the current history

target. At each state with a transition to that history state, multiple transitions

149

are added that point to each potential history target. These are guarded by the

value of the current history tracker. Thus, all potential transitions for the history

structure are explicitly represented.

8.2.4 Environment Model

The behaviour of the AI is in large part a reaction to the observed game state.

As the game state evolves, sensors in the AI create the events that cause the AI to

change states, eventually resulting in the execution of behaviours.

As an example, the decision to flee in the Halo AI is based upon the

NPC being in danger. This state is recognizable through the series of events:

{ev PlayerSpotted, ev EnemySpotted, ev AttackDetected, ev Under-

FireThreat, ev AtRisk}. The events generated at the sensors in response to

changes in the game state are ev PlayerSpotted and ev AttackDetected.

In addition, events may be guarded based upon the current game state. For

instance, ev EnemySpotted is only generated in response to ev PlayerSpotted

when the guard condition payload.isEnemy() is true. This represents another

path through which the AI takes input from the game.

In this subsection, we will describe how our Promela representation can

generate game events, along with a method to model guarded events.

External Event Generation

The random, non-deterministic resolution of the if-statement in Promela

provides the means to simulate external event generation. By placing each

possible external event as an if-branch, Spin will generate random external events,

simulating game activity. The external event generator process, shown in Fig. 8–3,

150

proctype externalGenerator() {
do

:: atomic {
quiescent = false;

if

:: (exGuard_out_of_energy > 0) ->

ExternalEventQueue!out_of_energy;

:: (exGuard_time > 0) ->

ExternalEventQueue!time;

:: (exGuard_destination_reached > 0) ->

ExternalEventQueue!destination_reached;

:: (exGuard_destination_unreachable > 0) ->

ExternalEventQueue!destination_unreachable;

:: (exGuard_collided > 0) ->

ExternalEventQueue!collided;

fi;

externalEventFire = true;

}
quiescent;

od;

}

Figure 8–3: External Event Generation in Promela

implements this approach. It lists all events generated by the game as indicated in

the AI module interface.

By only generating an event when it can be received, the branching factor

inherent to external event generation can be minimized. Each external event is

guarded with a flag StatechartName exGuard EventName. The guard is enabled

when the statechart using that event is in an appropriate state to receive it. When

a statechart enters such a state, the guard is set to true, allowing the game event

to be generated.

151

The external event generator is trapped in a do-od loop, meaning it will

continue to generate external events indefinitely. This allows model-checking

to explore all event generation paths, looking for specification violations. After

generating an event, the externalEventFire guard is set to true, which will

trigger the event processor to begin. The generator will wait until the system

becomes quiescent, at which time the process will repeat.

Guarded Transitions

In statecharts, a guarded transition is only available for execution when the

guard evaluates to true. This typically depends on some aspect of the underlying

model, in this case the game state. For example, the ev PlayerSpotted event

might result in a threat event, but only when the spotted player is close to the AI.

Our Promela simulation must simulate this behaviour correctly.

Ultimately, the effect of a guard is to allow the transition to fire, or to it

prevent it from firing. We model this in Promela by providing a non-deterministic

choice in the event matching statement. One branch matches on the event name,

simulating the situation where the transition guard is true. The other branch

matches on the same event name, but no further action is taken, simulating a

false transition guard. This makes it possible to simulate both cases, and allows

model-checking to simulate the behaviour of the guard at the statechart level.

This behaviour is shown in Fig. 8–4. This solution avoids the need to model the

underlying game. Doing so would require some form of static analysis and game

state modelling, both of which are outside the scope of this verification approach.

152

if

/* guard is true */

:: (currentEvent == stop_wander) ->

Wander_ExecutorState = 0; AIEventQueue!stop_move;

/* guard is false */

:: (currentEvent == stop_wander) -> skip;

fi;

Figure 8–4: Guarded Transitions in Promela

Unfortunately, not all configurations of guards can be dealt with in this

manner. The Binary Analyzer presented in Chap. 5 uses mutually exclusive guards

on eventless transitions from a single state. In practice, this means that one

transition is always enabled. When such a state is reached, it is always exited in

the next micro step. In this case, adding a ‘guard is false’ state would assume that

both guards are false, which is never the case. Without a semantic understanding

of the guard conditions, this situation cannot be identified when creating our

Promela representation, and so the simulated behaviour is spurious in this corner

case.

As a deliberate design decision, we avoid polling caused by eventless tran-

sitions that have non-exclusive guards (see §5.2.1). This allows us to indirectly

identify the correct case by assuming that any state with only eventless, guarded

transitions must have mutually exclusive guards. In this case, we suppress the

addition of the skip transition, thus forcing a branch to be followed. While this

approach is not universally applicable, it is a suitable workaround that matches

our design approach. Again we note that a complete solution requires a semantic

understanding of guard conditions.

153

8.2.5 Event Processing

The definition of layered statechart-based AI includes two queues: one for AI

events and one for external, game-sourced events. Promela provides FIFO (first in,

first out) message channels for sharing data between channels, shown in Fig. 8–5.

We create a queue for external events, with a size of one since only one external

event is created at a time.

The second queue for AI events has a size of 255. This deliberately allows for

buffer overflow. An overflow failure most likely indicates the presence of an infinite

loop that generates events on each iteration. The other possibility is that the AI

allows for the generation of unusually long chains of events. Given that efficiency

is of primary importance in games, chain lengths should be designed to be as short

as possible, and an overflow with such a large buffer indicates a failure at the

design stage. In either case, a buffer overflow indicates that the AI logic should be

corrected or redesigned.

Events themselves are typed as Promela mtype. These act as symbolic

identifiers for a simple integer mapping, but show up as the identifier string

instead of the numeric value during verification and simulation. This is vital in the

comprehension and interpretation of execution traces.

Event distribution is handled by the processEvents process. It is within this

process that steps and micro steps are correctly ordered. This is done by ensuring

that all state charts reach quiescence before a new step occurs. Only at that

point are the statecharts activated and a new step is taken. By representing this

logic as a separate process, it separates the game simulation (the external event

154

mtype = collided, no_threat, start_get_food, stop_flee,

start_flee, path_move, pick_up_successful, stop_wander,

destination_unreachable, time, stop_get_food, execute_stand,

very_low_energy, high_threat, low_energy, low_threat, eat,

move_failed, move_successful, move, start_wander,

destination_reached, stop_move, out_of_energy, INITIAL;

chan AIEventQueue = [255] of mtype;

chan ExternalEventQueue = [1] of mtype;

Figure 8–5: The message passing channels in Promela

generation) from the implementation of layered statechart-based AI, modularizing

the representation and simplifying any future modifications to game simulation.

The Promela representation of processEvents is shown in Fig. 8–6. When a

new external event is received, it is placed in the AI event queue for distribution to

the statecharts. Next, the execution flag for each statechart is set to true allowing

statecharts to process the head of the AI event queue. New events are placed at

the tail of the queue. This is repeated until the AI event queue is empty, meaning

the system has reached quiescence. The event handler then goes to sleep, and

waits for a new external event to be delivered.

8.3 Specifications

Verifying semantic correctness requires a specification, which is a precise

statement of the expected behaviour of the AI. This is done in the form of formal

logic, where the exact requirement is clearly defined as a logical statement. The

model-checker can then explore the state-space of the AI and determine if the

specification holds true. If not, it produces a counter example demonstrating how

the specification can be violated.

155

proctype processEvents() {
mtype newEvent;

mtype processedEvent;

do

:: externalEventFire;

/* get the external events and distribute them */

ExternalEventQueue?newEvent;

AIEventQueue!newEvent;

do

:: nempty(AIEventQueue) -> atomic {
/* activate statecharts */

Squirrel_BrainCallback=false;Squirrel_BrainStart=true;

Squirrel_BrainCallback;

Wander_ExecutorCallback=false;Wander_ExecutorStart=true;

Wander_ExecutorCallback;

Move_ActuatorCallback=false;Move_ActuatorStart=true;

Move_ActuatorCallback;

}
/* clear processed event*/

AIEventQueue?processedEvent;

:: empty(AIEventQueue) -> break;

od;

externalEventFire = false;

quiescent = true;

od;

}

Figure 8–6: The processEvents Process in Promela

156

In this section, we will introduce linear temporal logic, the formalism used

by Spin to express specifications. This is followed by the creation of several

specifications useful in verifying semantic correctness of an AI.

8.3.1 Linear Temporal Logic

Specifications in Spin are given in linear temporal logic (LTL), which allows

for propositions to be given temporal modalities. This allows the specification

of future occurrences, allowing for the definition of both safety and liveness

specifications. In addition to the basic logic operators (not: ¬, and: ∧, or: ∨,

equals: =, and implies: →), LTL uses the following temporal modifiers on LTL

formulae Ψ and Φ:

• XΨ: Ψ is true in the next state.

• ΦUΨ : Φ holds true until Ψ becomes true. Ψ must eventually become true.

• GΨ: Ψ is true globally, also written as �Ψ.

• FΨ: In the future, Ψ is true. Also written as ♦Ψ

• ΦRΨ: Ψ is true up and including when Φ becomes true. Φ releases Ψ.

Some definitions also define a ‘weakly until’ operator for convenience, but

it is not essential to using LTL and will not be used here. The semantics of LTL

are straightforward when compared with other logic languages and will not be

described here. Interested readers are instead referred to one of the many available

references on LTL, such as the chapter on Temporal and Modal Logic in Emerson’s

Handbook of Computer Science [19].

157

8.3.2 Specifying AI Behaviour

The current behaviour of the AI is represented by the superposition of

states. In other words, accurately specifying the behaviour requires a correct

representation of the states that make up the specification. Consider a flee

behaviour, where being at risk should cause the NPC to flee. In terms of states,

this could be detected when an analyzer determines the NPC is at risk, and as an

eventual response the move actuator should enter the moving state. In LTL this

would be:

�(ThreatAnalyzer.state == high threat→ F (MoveActuator.state == moving))

This is interpreted to mean that in any state where the Threat Analyzer state is

high threat, all subsequent paths will at some point in the future set the Move

Actuator state to move. Essentially, the statement before the implication describes

the states we are interested in, and the statement after describes the expected

behaviour of the AI logic.

The simple flee specification is not sufficient to work as intended. First, there

is no guarantee that a subsequent move is due to fleeing. The brain could chose

to ignore the threat, instead deciding to initiate a wander behaviour. This would

cause the squirrel to move and thus satisfy the specification. The flee behaviour

itself did not cause the move and so this would be a false positive. Instead, we

need to specify that once the brain decides to flee, the move actuator begins

moving while the brain wants to flee. In other words, the specification must reflect

both the action and the intent by matching states in multiple statecharts. We

158

could then refine the specification as:

�(((ThreatAnalyzer.state == high threat) ∧ (Brain.state == fleeing))→

((Brain.state == fleeing)U(MoveActuator.state == moving)))

This more accurately captures the intent. When the threat analyzer is at risk

and the brain wants to flee, then we know the AI has established the intent to flee.

Our intended specification is that the AI does indeed begin moving as a result of

this flee decision. Thus, we know that until such time as the Move Actuator enters

the moving state (which must happen to satisfy the until modality), the brain

state should remain fleeing. If the brain state changes without the actuator having

entered the moving state, then the squirrel has not moved in response to wanting

to flee, and the specification is violated. Since the specification is global, every

arrangement where the brain state is fleeing will be checked. If this specification

is verified as true, then we know that moving happened in response to the brain

deciding to flee.

However, this specification is still overly broad. If the Brain decides to

flee, and the Move Actuator starts to move, it is possible that it completes the

move while the Brain is still in the flee state. Since the Brain wants to flee, the

specification indicates that it should stay there until a move occurs, regardless of

if it has already occurred! Thus, we need to be a little more specific, and indicate

that we only care about moving when the Brain first decides to flee. This is

159

accomplished using the next operator:

�(((ThreatAnalyzer.state == high threat) ∧ ¬(Brain.state == fleeing)∧

(XBrain.state == fleeing))→

((Brain.state == fleeing)U(MoveActuator.state == moving)))

Finally, this specification is precise enough to verify the exact requirement. In

general creating accurate specifications is a complex task. As requirements grow

more intricate, creating specifications becomes more challenging. Publications exist

on creating good specifications [43], and again the Spin Primer is a useful resource

[29].

Reachability

Reachability is a common specification. The idea is that any state in the AI

should be reachable, and if it is not there is a bug in the logic. This seems to be a

straightforward specification. For a given statechart, a state s is reachable if there

exists a series of events such that the statechart state becomes s. Since LTL does

not allow explicit definition of path existence, we must declare this in terms of

future occurrences.

It is tempting to say directly that a state s is reachable if:

F (Statechart.state == s)

However, the future operator declares that the condition must become true. If

there exists even a single cycle where s is never reached, then verification will fail

even if there exist other paths that reach s. A common trick in model-checking is

160

to instead search for the absence of the opposite condition. For reachability, we

instead search that the state is never reached, which forces Spin to explore the full

state-space. To wit:

�!(Statechart.state == s)

When Spin attempts to verify a global specification, it must examine or reason

about every state to complete the verification. This prevents the verification

from failing if it encounters a cycle. Thus, if there exists any path that leads

to a violation, Spin will find it and return it as an error trace. A violation of

‘unreachability’ proves that the state is in fact reachable.

8.4 Verifying Semantic Correctness

In this section, we demonstrate the effectiveness of our approach to verifying

semantic correctness. Validation proceeds in three steps. First, the correctness

of the implementation of our testing approach must be established. In other

words, we need to test that code is being generated correctly, that external event

generation is working as expected, and so on. This is done by testing the squirrel

AI against behaviours that are not implemented in the squirrel AI. If the testing

implementation is correct, it will detect and report the expected failures. This

is essentially a sanity check to prove that the implementation is working. Next,

we perform an exhaustive (with respect to the design goals) verification of the

statechart logic of the squirrel AI. A successful verification further reinforces the

correctness of the testing implementation, and more importantly, validates that

the squirrel is correctly implemented. Additionally, this thorough testing will

allow us to gather statistics on the time and memory usage of the verification

161

approach. Finally, we apply the verification approach to the Halo AI. This effort

is exploratory in nature, rather than exhaustive, primarily focussing on the

question of scalability while demonstrating that the system can successfully detect

previously unknown errors.

Generation of Promela code was done through Scythe AI. The Squirrel AI

Promela code is given in its entirety as Appendix B. By having push-button

generation of code, it was straightforward to iterate on the Promela representation

until it could generate correct code. Promela code was built from a parse of each

statechart to get the transition and event structure, augmented with information

from the module interface to determine external events. The generated code was

faithful to the representation presented in this chapter. Code generation itself was

very fast, taking only a second or two to complete.

All tests were done using iSpin version 1.1.0, backed by Spin 6.2.2. The

testing machine was a quad-core Intel i5 CPU running at 2.67GHz with 4.0GB

of RAM, running Windows 7. All running times are as reported by Spin. The

running times do not include compilation of the Spin libraries, which adds a few

seconds to the length of each verification pass.

8.4.1 Verifying Statechart Representation and Generation

Before verifying the correctness of an AI, we need to establish the correctness

of the testing framework and debug as necessary. This means we must first ensure

that the code generation process correctly transforms SCXML to Promela, and

that the Promela statechart representation (e.g., event generation, passing events)

is correct. We did this using the Squirrel AI as our initial test-bed. It is an

162

important first step to verify a known working model, as it allowed verification of

properties of which the result was already known. Doing these detected several

bugs in features that were known to be working properly, thus informing us of

several bugs in the generation of the Promela model.

An example of such an error in Promela code generation was in the flattening

of history states. When attempting to verify flee behaviour, error traces indicated

that on-exit actions from a state transitioning to a history state were not being

correctly added to the triggering transition. Similarly, transitions from a single

state with duplicate names but mutually exclusive guards were being incorrectly

filtered as non-deterministic duplicate events. Both of these bugs were corrected.

After several testing and debug passes, the Promela model was free of

unexpected results. While this does not guarantee that the representation is fully

correct, it provides confidence as we move on to the complete validation of squirrel

behaviours. Since the squirrel AI is a known good AI, and since it uses all features

of the statechart formalism (including history states, intra-level transitions, and

orthogonal regions), a successful complete verification will help to further reinforce

the correctness of the generation process and statechart representation.

Optimizing Event Delivery

During the initial testing phase, an important optimization was found.

Initially, a single start flag was used by the event delivery process to activate all

statecharts, rather than the earlier described approach of having a start flag for

each statechart. Using a single start flag causes Spin to examine each different

ordering of event delivery to all statecharts. Since the number of orderings grows

163

exponentially with the number of statecharts, this alone would prevent meaningful

verification of a large AI.

We overcome this by enforcing an ordering on event delivery. The first

statechart processes an event, with the next statechart only beginning after the

first statechart has completed. By enforcing this ordering, the same reachability

verification on the complete squirrel AI went from taking 52.9s to 0.017s, an

improvement of four orders of magnitude. Certainly, this optimization is necessary

for larger AIs such as the Halo AI.

Theoretically speaking, this optimization is acceptable. Neither the Rhapsody

semantics nor our description of cooperating statecharts place any requirements on

the order in which a single event is distributed to orthogonal regions or separate

statecharts. Enforcing an arbitrary ordering is thus valid, though it constrains

implementation, as the ordering of event delivery in the implementation must

match the verified ordering for the verification results to be applicable.

8.4.2 Complete Verification of the Squirrel AI

With a reasonable assurance that the verification framework is working

correctly, the next step is to verify it on a known-good AI. This accomplishes three

major things. First, a successful verification with no unexpected results greatly

increases confidence that the verification framework is correctly implemented.

Secondly, it allows us to establish baselines for time and memory usage of various

model-checking steps. Finally, it proves that the extensively tested and debugged

squirrel AI is in fact correct with respect to the design goals in all cases, and that

no undiscovered corner cases exist.

164

Move_Actuator_destination_reached

Move_Actuator_destination_unreachable

Move_Actuator_collided

Pickup_Actuator_pick_up_successful

Pickup_Actuator_pick_up_failed

Threat_Analyzer_i_see_player

Threat_Analyzer_i_dont_see_player

Threat_Analyzer_threat_changed

Wander_Executor_time

Eat_Decider_key_item_visible

Eat_Decider_no_key_item_visible

Energy_Sensor_energy_changed

Item_Memorizer_i_see_item

Item_Memorizer_i_dont_see_item

Figure 8–7: External Events in the Squirrel AI

The environment for the squirrel is normally the Mammoth game world.

However, the view of the environment for the squirrel consists mostly of sensed

events. In addition, some statecharts will generate events from their associated

classes based upon game state. A list of these events is given in Fig. 8–7. Most are

prefixed by the name of the statechart that receives the event.

Reachability

The first property verified on the squirrel AI was reachability, which consisted

of verifying that every state in every state chart was reachable. Specifications were

given as global negatives (as described under Reachability in §8.3.2) so that cycles

were avoided. The possible events were those listed above in Fig. 8–7.

The entire AI has only 38 states total. Twelve of these are initial states,

leaving 26 states to be verified as reachable. All states were found to be reachable,

with the exception of parent states that possessed default transitions. Due to the

165

flattening of the state hierarchy, no transitions should target such states, making

this result the expected one.

On average, the time needed to verify the reachability of a single state was

only 10−2s. This tells us that an automated process could verify reachability

for the entire AI in much less than a second. This is fast enough that it could

be easily automated, allowing for use within Scythe AI as a background check,

with results being reported in the errors and warnings bar. Certainly, a formal

verification step in such an application could very reasonably include a reachability

pre-pass at very little cost.

Such a straightforward verification is useful, as it allows us to guarantee that

all behaviours in the squirrel AI can be fully expressed. This type of guarantee

is especially valuable for complex modular AIs, where different combinations of

modules may never present the correct chain of events that would allow a given

module to enter every state.

Squirrel Specifications

Verifying behaviour means answering the following question: given an AI

and a set of external events, does the behaviour of the AI satisfy the design

goals? A proper verification will discover any violations of the design goals. This

does not provide any universal guarantee of correctness - indeed, errors in the

associated classes, incorrect mappings between game states and generated events,

or even poor design goals could easily result in a non-functional AI. However, a

behavioural verification will tell us that the AI logic correctly implements the

design goals.

166

At this point, we revisit the design goals of the squirrel AI, first introduced

in §4.1.1. Each of these goals breaks down into a small number of specifications,

as shown in Table 8–1. The purpose of this step is to have specifications that can

easily be translated into LTL. Some ambiguity at this stage is permissible, so long

as the design goal and the specification together are clear.

This first set of specifications tells us that the decision making of the squirrel

is correct. A complete verification requires that we also test for correct execution

of squirrel decisions. That is, when the squirrel chooses a high level goal, the

expected actuation will occur. These tests are given in Table 8–2.

Verifying Brain-to-Actuation functionality implicitly tests the functionality of

intermediary statecharts. If, for example, we verify that moving will occur when

the brain chooses to wander, this confirms that the brain to wander executor

connection is working correctly and that the executor to actuator functionality is

also correct. Similar functionality arguments apply to the other brain goals. Using

the same argument, testing correctness in the sensing apparatus is included when

doing verifications of specifications going from event to actuator (e.g., when the

squirrel is hungry, a specific action occurs).

The full set of specifications from Tables 8–1 and 8–2 will be formalized in

LTL, then validated. Together, these specifications are sufficient to validate that

the squirrel AI correctly implements the design goals. We reason this as follows:

specifications (i) to (x) tell us that when a condition is met that matches a design

goal, the AI makes the correct decision, while specifications (xi) to (xiv) tell that

when a decision is made, the correct output results. We make no claims as to the

167

Table 8–1: Squirrel Design Goals and Resulting Specifications

Design Goal Specifications
Squirrels have a low and high threat
radius used to determine if a player
character is dangerously close to the
squirrel.

{Implementation detail, nothing to
verify}

Squirrels will prioritize fleeing from
high threats at all times.

(i) Globally, high threat event causes
fleeing.

If there are only low threats, squirrels
will flee from them except in the case
where they are very hungry.

(ii) If there are only low threats and
the squirrel is not very hungry the
squirrel will flee.
(iii) If there is a low threat while and
the squirrel is very hungry, the squirrel
will continue collecting food.
(iv) When a very hungry squirrel col-
lects food under low threat, it will eat
immediately.

Under no threat, when a squirrel is
hungry it will gather one of the visible
acorns.

(v) ..., and if the squirrel does not see
an acorn, it will wander until it sees an
acorn.

[These specifications are prefixed with
“When a squirrel is hungry and under
no theat”]

(vi) ..., and the squirrel first sees an
acorn, and it is not carrying one, it
will move to the acorn.
(vii) ..., and it moves to an acorn, it
will try to pick it up.

Whenever a squirrel is very hungry, it
will eat the acorn it is carrying.

(viii) When very hungry and has an
acorn, the squirrel will eat.

When a squirrel is neither very hungry
nor threatened, it will wander.

(ix) When no threat and not hungry,
the squirrel will wander.
(x) When a squirrel picks up an acorn,
it will resume wandering until threat
or very hungry.

168

Table 8–2: Squirrel Implementation and Specifications

Implementation Functionality Specifications
Brain to Actuator Functionality (Goal
Verification)

(xi) When a squirrel decides to wan-
der, it will move before leaving the
wander state.
(xii) When a squirrel decides to flee it
will move before leaving the flee state.
(xiii) When a squirrel decides to eat it
will eat before leaving the eat state.

Pickup Functionality (xiv) When a squirrel decides to pick
up an item, it will either move to the
item, or pick it up. [we cannot guar-
antee a successful pickup - another
squirrel may grab the item]

correctness of the squirrel in unspecified scenarios, though this set of design goals

does attempt to fully specify the squirrel behaviour. That there is no way in which

to empirically validate the completeness of a set of specification is a shortcoming of

any specification approach.

Formalising and Testing Specifications

Each of the specifications from Tables 8–1 and 8–2 must now be formalised

and verified. Here, we will document the validation of two representative specifica-

tions. This illustrates the process in sufficient depth as to clearly communicate the

process and allow for results to be reproduced. The remainder of the specifications

have their results summarized at the end of this subsection.

Verifying Flee Functionality: Here, we will verify specification (ii):

“When a squirrel decides to flee it will move before leaving the flee state.” The

formal specification used was the one developed in §8.3.2.

169

Initial attempts at verification failed due to spurious error. In any state, the

external generator is able to create an i see item event. Investigation revealed

that the event is only consumed by the Key Item Memorizer, and that consuming

this event does not change state or create a new event. By generating this event

repeatedly, the AI will live-lock and Spin is unable to validate the claim. The

events for spotting and losing key items are modelled as external events and so

we can entirely remove the Key Item Memorizer from the model for verification

purposes. This prevents the occurrence of this live-lock, without any loss in

capability of the Promela abstraction

With that change made, the verification was able to complete. The elapsed

time was 7.91 seconds, while the search reached a depth of 1121574 states. No

errors were discovered, thus proving that whenever the Brain makes the decision to

flee, movement will always result.

External Events and Cycles

External events, such as the i see item that was just discussed, present

special issues when evaluating temporal claims. Specifically, claims using operators

such as Eventually Ψ or Until Ψ must hold true on all future paths from that

state. If there is a path where the temporal condition has not yet occurred, and

that path is a cycle, then that path is a counter-example and will halt verification.

The condition will never occur, since the path will prevent progress indefinitely.

External events can easily lead to such cycles.

As an example, imagine a specification stating that when the squirrel tries

to flee, the external event move succeeded or move failed will eventually be

170

generated while the squirrel brain is still in the flee state. To satisfy this, external

event generation must eventually generate one of those two events. The problem

arises when the external event generator can infinitely generate another series of

events. For instance, a high threat event can be generated at any point. This

will change the state of the Threat Analyzer, but will not affect the brain since the

squirrel is already fleeing. Next, the external generator could create a low threat

event. By repeating these events, a path is found whereby the eventually claim is

never satisfied and so verification fails.

Of course, such a cycle is spurious. Under no normal game condition would an

NPC be infinitely alternated between low and high threat on every frame. How-

ever, the simplicity of the external event generator lacks the precision to describe

such scenarios. Instead, we must work around this through clever specification.

A similar but related type of failure with respect to the model is the lack

of logical connection between events. For example, an eat event always succeeds

in Mammoth, and causes the squirrel to return to full energy. This would be

sensed by the Energy Sensor, transitioning it into the high energy state. Thus,

it seem reasonable to specify that when the squirrel eats, it is returned to full

energy. However, since there is no representation of the connection between eating

and energy levels, attempting to verify this would fail. Furthermore, this type of

specification is unacceptable for another reason: it describes how the game should

react to an event, rather than how the AI logic should react. Thus, it is out of

scope. We point this out to clarify how scoping impacts specification.

Three main tactics were employed to handle these types of error:

171

• Single External Event Specifications: An interesting external event causes a

state change in the AI (e.g., the Threat Analyzer moves from no threat to

low threat), which in turn may generate additional events. Any future claims

in the specification should describe a state that must be reached by the time

the AI event queue has cleared, and not extend to how it will respond to

future external events. This avoids spurious external cycles.

• External Tagging: The Eat Actuator is a single state - how can we tell

that it has transitioned? Noting that an eat event has been generated is

insufficient, since it may not trigger a transition in the actuator. Instead,

we add a custom flag eatFlag, that is set to true when the transition

occurs, and returned to false when the AI event queue is clear. This allows

us to specify conditions that involve the act of eating (as in specifications

iv, viii, xiii).

• Capturing State changes: To ensure single external event specifications,

the LTL Next operator was heavily employed. This was used to capture

the exact event that caused an interesting transition, and limited the

specification to just that external event. For example, capturing the change

in not getting food to getting food can be done with (EatDecider.state! =

getting food) ∧ (XEatDecider.state == getting food). Using this as the left

hand side in an implication correctly limits the scope to the exact moment

the squirrel decides to get food.

Verifying Acorn Collection: Each behaviour is intertwined with all

other behaviours that form the complete NPC logic. Specifying and validating

172

each one is a process of discovering the requirements that are higher priority and

eliminating them, such that the exact specification can be tested. We demonstrate

this active specification process by validating specification (vii): when a hungry

squirrel moves to an acorn, it will try to pick it up.

We began verification by creating a specification where the squirrel should

always pick up an acorn when hungry. This forms a starting point that will be

iterated upon. We specify that food collection begins with the Brain entering

either food collection state. This was specified as:

�(((Brain.state == searching) ∨ (Brain.state == starving)→

(�(PickupActuator.state == picking up)))

This specification found an acceptable failure. If there are no acorns present,

the intention is for the squirrel to simply wander until an acorn is spotted.

Verification failed due to this, as it found live-lock failures where the Eat Decider

was stuck in the wander state and no key item spotted events were generated. This

is a shortcoming of the specification, and so it was modified to the following:

�(((Brain.state == searching) ∨ (Brain.state == starving)→

((�((EatDecider.state! = getting food) ∧ (XEatDecider.state == getting food)))

→ �(PickupActuator.state == picking up))))

Model checking this specification also produced a failure due to another cycle.

In the Pickup Executor, we see that if an item is out of pick up range, a move

command will be issued that moves the squirrel into range. Since moving into

range is not guaranteed, verification finds another cycle at this point. We avoid

173

this by limiting the verification to states where the item is in range by specifying

this in the Pickup Executor instead of the Eat Decider:

�(((Brain.state == searching) ∨ (Brain.state == starving))∧

((PickupExecutor.state == idle) ∧ (XPickupExecutor.state == executing)→

� (PickupActuator.state == picking up))))

By including the next operator, no external cycles are allowed when the

PickUp Executor begins. However, once the executing state is reached, an event-

less transition is encountered, which requires an external event and thus allows for

cycles. To proceed, we must eliminate the cycle by collapsing the Pickup Executor

into two states with no eventless transitions:

�(((Brain.state == searching) ∨ (Brain.state == starving))∧

((PickupExecutor.state == executing) ∧ (XPickupExecutor.state == idle)→

� ((PickupActuator.state == picking up) ∨ (moveFailedF lag))))

This specification was successful. The move failed flag is a necessary inclusion,

since the collapsed PickUp Executor makes that same transition from executing to

idle on a failed move. This specification thus captures the scenario where a hungry

squirrel moves to an acorn, it will try to pick it up, or it could not reach it. Since

verifying this also includes verification of every path where the move succeeds,

success here means that vii holds.

Squirrel Verification Results

The entire set of formal Promela specifications is given in Table 8–3. It

follows standard programming language notation, where ‘and’, ‘or’, and ‘not’ are

174

represented as &&, ||, and !. The LTL terms are [] for global, <> for eventually, U

for until, and X is the unary operator for next. Other operators were not used. The

states referenced refer to the Promela encoding of the statecharts. The complete

listing of the Promela statecharts is given in full in Appendix B, and can be used

as a cross-reference for the state numbering.

The most notable flag that was added was the quiescent flag. At the start of

an external event generation the quiescent flag was set to false. It was only set

to true when the AI queue became empty. It was used in several specifications,

usually in the form (!quiescent U state). This means that quiescence cannot be

reached without state having become true.

The resources used in verifying each specification are given in Table 8–4.

All specifications required the same search depth of 1121574 states. This is

logical, since all specifications are global and thus demand a full exploration of

the statespace. The varying time and memory usage results from the different

amount of backtracking and path exploration required to evaluate the variety of

temporal conditions. Repeated verification of a single specifications used identical

amounts of memory, while the time only changed by at most 0.01s. Because of

that stability, the numbers listed are the exact values in the output from Spin for a

single representative run of each specification.

175

Table 8–3: Squirrel Verification: Promela Specifications

(i) []((Threat AnalyzerState==3) -> (<>(Squirrel BrainState==5)))

(ii) []((((Squirrel BrainState!=4) && (Squirrel BrainState!=5)) &&

(X(Squirrel BrainState==5))) -> ((X(Squirrel BrainState==5)) U

(Move ActuatorState==1)))

(iii) []((((Squirrel BrainState==4) && (Threat AnalyzerState==1)) &&

(X(Threat AnalyzerState==2))) -> ((Squirrel BrainState==4) U

(quiescent)))

(iv) [](((Squirrel BrainState==4) && (Eat AnalyzerState==2) &&

(!pickUpFlag) && (X(pickUpFlag))) -> (<>(eatFlag)))

(v) [](((Squirrel BrainState==2) && (Eat DeciderState==0) &&

(Energy SensorState==0) && (X(Energy SensorState==1))) ->

(<>(Eat DeciderState==2)))

(vi) [](((Energy SensorState!=0) && (Eat DeciderState==2)

&& (!foodSpottedFlag) && (X(foodSpottedFlag))) ->

((!(X(quiescent)))U((Pickup ActuatorState==1) ||

(Pickup ExecutorState==1))))

(vii) []((((Squirrel BrainState==3) || (Squirrel BrainState==4)) &&

((Pickup ExecutorState==1) && (X(Pickup ExecutorState==0)))) ->

(<>((Pickup ActuatorState==1) || moveFailedFlag)))

(viii) [](((Energy SensorState!=2) && (X(Energy SensorState==2)) &&

(Eat AnalyzerState==1)) -> (<>(eatFlag)))

(ix) [](((Energy SensorState==0) && (Threat AnalyzerState==1)) ->

((!quiescent) U (Wander ExecutorState!=1)))

(x) []((pickUpFlag && (Threat AnalyzerState==1) &&

(Energy SensorState==1)) ->(<>(Wander ExecutorState!=1)))

(xi) [](((Wander ExecutorState==0) && (X(Wander ExecutorState!=0)))

-> ((!quiescent && (X(Wander ExecutorState!=0))) U

(Move ActuatorState!=0)))

(xii) [](((Flee DeciderState<4) && (X(Flee DeciderState>=4))) ->

((!quiescent && (X(Flee DeciderState>=4))) U (Move ActuatorState!=

0)))

(xiii) []((((Eat AnalyzerState==1) || (Eat AnalyzerState==2)) &&

(X(Eat AnalyzerState==0))) -> ((!quiescent)U(eatFlag)))

(xiv) [](((Pickup ExecutorState==0) && (Eat DeciderState!=3) &&

(X(Eat DeciderState==3))) -> (<>((Move ActuatorState==1) ||

(Pickup ActuatorState==1))))

176

Table 8–4: Squirrel Verification: Resource Usage

Specification Time (s) Memory (MB)
(i) 5.67 820.067
(ii) 7.91 1115.087
(iii) 6.05 914.305
(iv) 5.80 889.696
(v) 5.27 824.559
(vi) 5.56 851.219
(vii) 5.60 865.087
(viii) 6.32 951.317
(ix) 5.11 793.504
(x) 5.10 793.504
(xi) 16.60 1274.462
(xii) 12.20 1416.258
(xiii) 8.31 1215.965
(xiv) 6.06 919.383

8.4.3 Verifying the Halo AI

In this subsection we address verification of the more complex Halo AI. While

the investigation follows the same pattern as the squirrel AI, the correctness

of the Halo AI is not known a priori, and thus verification takes on a more

exploratory nature. Since the Halo AI is a large AI, similar in size to an industrial

AI, verification tractability is of particular relevance.

Reachability

The first query tested was that the AI could move, specified as:

�!(Run Actuator.state == moving)

The verification took 0.1s, an order of magnitude greater than the squirrel, but

still fast enough to be practical. This behaviour is in fact the initial behaviour,

177

meaning that this behaviour is reached solely through the on-entry events of

default states. Since this occurs before a single external event is generated, the

search depth is limited.

To perform a more extensive test, the reachability of the reposition state

in the Ranged Combat Executor was verified. This state was chosen due to the

fact that reaching it requires the generation of several different external events

in a specific order. This forces Spin to perform many external event generations,

necessitating a much deeper search. The verification took 48.9s and required 7476

MB of memory. Spin found no violations (i.e., the state was not reached), but

came up against the maximum search depth.

Technically speaking, this result is inconclusive. Hitting the maximum search

depth means that there exist deeper paths that Spin could not evaluate due to

memory constraints, and thus the state space was only partially explored. It is

possible that a violation could occur in the unexplored region. Spin can compress

state data; doing so here increased the search depth and reduced memory usage

to 1616 MB, but increased search time by an order of magnitude. While that

verification also found no violations, Spin again hit the search depth bound of

1× 107 states. Attempts to further increase the search depth failed due to the lack

of additional physical memory even with compression active.

There are two possibilities at this point: either the state is in fact unreachable

and there is an error in the statechart logic, or any paths that reach the state

are below the depth limit. A simple examination of the statecharts tells us that

the state should be reachable with transitions numbering in the tens, rather than

178

hundreds or thousands. It is reasonable to expect that with a search depth of

1×107 states, the state should have been reached if the AI logic was correct. Thus,

we continue based on the assumption that the state is unreachable due to an error

in the statecharts.

Our next step was to backtrack to earlier states in the Ranged Combat

Executor. These states also produced inconclusive results. The Combat Decider

should have been triggering transitions that would move the Ranged Combat

Executor to the reposition state. Working through ranged combat states in the

Combat Decider yielded similar inconclusive results. Backtracking again, we

examined the Weapon Sensor. It turned out that our assumption was correct,

and an error was preventing the occurrence of ranged combat behaviours. While

this statechart produces the ev RangedWeaponEquipped event as an output

(thus satisfying syntactic correctness), an omitted transition prevented it from

actually being generated. Since no ranged weapons were known to be equipped, all

ranged combat behaviours were prevented. The transition was added, allowing for

generation of the event.

With the error corrected, reachability verification was resumed. The Combat

Executor was now able to reached the ranged combat state, which was verified in

just 0.004s. Next, the reposition state in the Ranged Combat executor was verified

as reachable. However, due to the fact that it requires a very specific chain of

external events to enact the behaviour, Spin took 36.5s to establish the violation of

our negative specification with a search depth of 6247272 states.

179

Based on memory requirements, finding this violation was near the limit of

what is achievable on the test computer. In such resource-limited environments,

this test case is an interesting exploration of how even inconclusive results can be

used to infer the presence of errors. It also demonstrates the limits: states that

are only reached when the Ranged Combat Executor is repositioning would not be

verifiable as reachable due to memory limits.

Behavioural Verifications

Similar to the Squirrel AI, we wish to demonstrate how behavioural verifi-

cations might be performed on the Halo AI. One such verification would be that

when the Brain decides to engage with an enemy, it always results in a melee or

ranged attack. This was expressed as:

�((¬(Brain.state = combat) ∧ (XBrain.state = combat))→

((Brain.state = combat)U(�(MeleeActuator.state = swinging)

∨ �(RangedCombatExecutor.R0.state = firing))))

In general, verifying liveness specifications is a more resource intensive

process. Attempts to validate this specification failed due to the search depth

limit being reached. Spin offers memory compression; activating this allowed us

to increase the search depth to 1.5 × 107, but dramatically increased the already

expensive computation time. Spin was able to verify the specification up to the

depth limit, using only 2GB of RAM due to the compression. Unfortunately,

this process took a full 3620s (just over 1 hour). Because the depth limit was

reached, we can conclude that any violations of the claim must be deeper than

180

the depth limit, and that no shallow violations are possible. However, the overall

specification is intractable given the resource limitations.

Establishing the overall behavioural correctness of the Halo AI might require

dozens or hundreds of such verifications, which would demand large amounts

of time and effort. This suggests that it would be more worthwhile to focus on

critical behaviours. For example, if a computer with a large amount of memory

(e.g., 16 or 32GB of RAM) could fully evaluate claims within an hour, then it

would be possible to validate several critical behaviours as an overnight process.

Unfortunately, it is impossible to predict what the search depth is for a given AI,

and therefore the memory requirements are also unknown. Spin must actively

evaluate them and explore them in order to build the search space, and so the

memory required can only be discovered in an environment that already has

sufficient memory.

8.5 Conclusions

Syntactic correctness is a simple and vital form of verification for layered

statechart-based AI. The simplicity of the approach, coupled with the speed and

usefulness of the results, make it easy to incorporate into a tool. Indeed, it has

already been added to Scythe AI. It yielded immediate results, and helped in

the creation of both the squirrel and the Halo AIs. We speculate that as reuse

increases, syntactic correctness validation will increase in value. A larger scale

evaluation of modular reuse methodology would provide an opportunity to verify

this claim.

181

Establishing semantic correctness is a vital and valuable part of the devel-

opment process for layered statechart-based AI. Here, we present the beginnings

of an approach to systematic evaluation of semantic correctness using model-

checking. By providing an automated tool to export a Promela representation of

an AI built in Scythe AI, we demonstrate a practical workflow for verification.

Unfortunately, establishing semantic correctness is a complicated proposition.

Developing correct specifications is a difficult task, and the results of any valida-

tion are only as useful as the correctness of the provided specification. Indeed,

making a good specification requires an intimate knowledge of the AI being tested,

as well as the formalism itself. Raw error traces from Spin can be thousands of

lines long, and since the search is depth first, frequently include irrelevant opera-

tions that have no bearing on the violation discovered. Identifying the source of a

violation is thus a challenge in itself.

To evaluate the verification process, the squirrel AI was fully verified against

the design requirements of the NPC. Here, all states in the statechart-based AI

were found to be reachable, and all specifications were verified to hold. Reach-

ability took essentially no time to verify, while the specifications for semantic

correctness took a mean of 7.3s and required 974.6 MB of memory. This shows

that for small AIs, verification tractability is manageable. Verification attempts on

the Halo AI, however, make it clear that combinatorial explosion is a concern for

larger AIs.

182

While the research here has a tantalizing promise, much more work is required

to fully explore the process. As next steps in this area of research, we propose the

following:

• Tractability: This issue is of primary importance. Further research could find

exactly where the cutoff occurs between intractable and tractable, given the

system resources. This would help in both the design and development stage

(e.g., if an AI exceeds that size, it will no longer be verifiable.)

• Specification Coverage: In the case of the squirrel AI, we manually created

the specifications. Of course, a process such as this allows for the introduc-

tion of errors due to overlooked subtleties, inadvertent duplication, and so

forth. Further research could explore how exactly one might systematically

generate a complete set of specifications.

• Complexity Management: A fully workable process should provide techniques

to work with large AIs. One possibility that could be explored would be

creating functional groups and treating them as black boxes. This could

dramatically reduce the state space. The functional group itself could then

be easily verified for internal correctness, so long as it was not much larger

than the squirrel AI.

Even considering the difficulties of the verification process, we still believe

that model-checking is an appropriate solution for this problem. We have demon-

strated here that it can be used to verify the correctness of AI for simple NPCs.

To make it practical for game developers, there needs to be an automated way

to generate and verify basic query types, such as reachability and intent-action

183

behaviours demonstrated here. Error traces need to be heavily processed such that

only relevant information is presented.

Looking forward, we believe that specifications such as these can be used as

unit tests for AI logic. The workflow could be streamlined by encoding only the

most important specifications in Promela, and then running these on a regular

basis over the development process as unit tests. This provides a method to

ensure that working behaviours are not accidentally broken, without having to

extensively test the AI manually. A cost/benefit analysis of this technique could be

performed by the quality assurance team of a game development studio, where it

could be extensively evaluated versus their prior knowledge of the effort involved in

validating AI logic.

184

CHAPTER 9
Generating NPC Populations

Crafting well-designed AI for NPCs in a digital game can take significant

development effort. Because of this, games requiring large numbers of NPCs put

AI developers in a difficult position. Having a large number of interesting and

varied characters increases realism and thus immersion [50], yet producing such

a population is cost-prohibitive. For this reason, game developers often reuse the

same AI with small changes in timings or probabilities to provide some variation

without incurring high development costs.

We seek to provide developers with a third option, by giving them the ability

to create a variety of high quality game AI without significant development over-

head. To this end, we have developed a procedural content generation approach

that creates highly individualized NPCs. Working from our layered-Statechart rep-

resentation of an AI agent, our approach varies AI at three different levels. Simple

modifications are done with parameter-based variation, compositional modification

adds and remove behaviours, and more complex structure-based approaches alter

behaviours using rule-based model transformations. These techniques take advan-

tage of the formalism’s inherent modularity, allowing for easy perturbation of AI

designs at different levels of abstraction. With a concrete set of transformations,

generation is quick, allowing for rapid prototyping and deployment.

185

In this chapter, we explain how a layered statechart-based AI can be varied

at the parameter level, the module composition level, and the statechart structure

level. The three variation techniques are then combined to form an overall content

generation strategy. We apply this to the squirrel AI and statistically validate the

generated variations.

The chapter concludes with an investigation into the generation of populations

that satisfy certain design metrics. Specifically, we look at game difficulty. Early

attempts to increase difficulty through NPC variation were limited to simple

parameter modification: a faster NPC is harder to shoot, and an NPC with

more hit points is harder to kill. Modern games improve on this by giving new

actions or abilities to harder versions, yet the decision making process of the AI is

relatively unchanged. By allowing changes at all levels of behaviour, our approach

allows for changes that are simple or complex, allowing developers to create a mix

of NPCs that meets the requirements of their game.

9.1 Content Generation

The content generation process requires a seed AI to act as the basis for

generation. As in previous chapters, we will use the Squirrel AI described in

Appendix A. In Mammoth, the squirrel is a background character, giving us

considerable freedom to modify how behaviours are expressed. Additionally, the

squirrel employs a number of separate behaviours with modifiable parameters,

providing an excellent test case for our variation techniques.

186

9.1.1 Varying Parameter Values

Non-player characters have many properties that are set at instantiation, such

as maximum health, movement speed, and so on. As a part of a larger content

generation system, parameter modification is a simple yet valuable tool, since it

can create differentiated instances of an NPC. While the approach is conceptually

straightforward, modification of parameters of a finely tuned AI can lead to

incorrect behaviour, and thus several guidelines need to be followed to ensure

correctness of the resulting NPCs.

Assigning a new value to numeric parameters requires a range of acceptable

values appropriate to the game context. This range derives from the expected

capabilities of the NPC. For instance the movement speed of a squirrel must

always be positive and should be faster than the average movement speed of a

human. Selecting a value from within the chosen range can be done randomly

through the use of a distribution function such as a Gaussian.

Parameters can be interdependent, meaning that a logical relationship exists

between parameters. An example would be run and walk speed, where the run

speed logically should be greater than the walk speed. A subset of these are

critical dependencies, which are logical dependencies between parameters where

violation of the logical dependency will result in behavioural errors. In the squirrel

AI, there are separate values for the radius of low and high threat zones, with high

threat taking precedence over low threat. If the high threat radius is greater than

the low threat, behaviours resulting from low threats would effectively be removed.

To prevent violations of critical dependencies, we employ dynamic ranges, where

187

the range of one parameter is based upon the value chosen for another parameter.

Applied to our threat radii, if the range for the high threat radius is [1, 5], the

range for low threat could be [1 + highThreshold, 10]. By definition, non-critical

dependencies can be ignored, though respecting such a relationship could give

better results.

Dynamic ranges introduce an ordering problem in parameter selection. The

generation of a value with a dynamic range must be preceded by the generation

of the values upon which it relies. In the case of a cyclical dependency, genera-

tion should fail with a warning. Additionally, there exists the possibility of an

impossible range, where [x, y] is a dynamic range, and x > y. This too should

cause generation to fail. The entire process is given in our parameter modification

strategy, presented in Fig. 9–1.

9.1.2 Varying Module Configurations

The layered Statechart formalism is inherently modular, allowing AI modifica-

tion by adding, removing, or swapping modules. Respectively, these changes allow

the process to introduce new behaviours, excise unwanted behaviours, and replace

existing behaviours.

To automate the process, modules part of the base AI can be tagged as

removable or swappable, while available modules not part of the base AI can

be tagged as addable. These tags are defined by the user when a variation is

configured.

188

I. For each parameter, determine if it has any dependencies.

if no dependencies:

i. Define a range for the parameter.

ii. Decide on the probability distribution best suited

for that parameter.

II. For parameter found to have a dependency:

i. Determine if the dependency is critical.

ii. If critical, assign dynamic ranges to resolve

problem.

iii. If non-critical, resolve if desired, perhaps using

dynamic ranges.

III. Generate values.

i. If error due to cyclical dependency or invalid range,

fail with a warning. User should resolve the problem

manually and restart.

ii. (Optional) Regenerate values for statistical

outliers.

Figure 9–1: Parameter Modification Strategy

Removing Modules

Removing behaviours is a straightforward approach to generating a variation

of an NPCs. This approach has been effectively employed in notable industrial

titles, such as behaviour masks in the game Halo 3 [16], where “brave” enemies

were made by removing the ability to flee.

Removal in the layered statechart approach consists of removing a subset

of AI modules that are tagged as removable. In general, candidates for removal

should be selected from analyzers, coordinators, planners, and executors. Without

a given analyzer, the AI is not able to correlate sensor events, i.e., it is only

capable of reacting to “raw” sensor data. Without a given coordinator, the AI’s

actions might become less efficient. As a result, the AI behaviour appears clumsy

189

or jittery. Removing deciders would take away the ability for an AI to perform

one of its high-level goals. For example, removing the FleeDecider from a squirrel

would generate a “brave” squirrel with no fear of humans. Removing an executor

results in an AI that has difficulty in carrying out a tactical plan, though it may

be possible to partially complete a task. Removing sensors or actuators limits

how the NPC can sense and interact with the game, and could create interesting

variations, such as a solipsistic AI with no sensors.

The strategizers are the most essential components and should never be

removed. Most AIs have only one Brain component, the removal of which would

sever the connection between the input and the output of the AI and yield an

NPC that performs no actions whatsoever.

Replacing Modules

An effective way to generate new configurations from an existing AI is to

replace components by other equivalent components. A new module is considered

a match to an existing module so long as their AI module interface uses the same

events and synchronous calls. A typical use-case would be to create an alternate

version of a key component, such as a BrainAlternate module that uses a different

high-level strategy. If the original Brain is tagged as swappable, then generation

would then select between the original and alternate when producing a member

of the population. This result is similar to branch replacement in behaviour trees

[45].

Often there is a semantic equivalence between components, but not a syn-

tactical one, i.e., the event that the first component produces is not the one

190

that the reacting component expects. The meaning of the event, however, is the

same. For example, the squirrel Brain generates a startWander event, but the

ExplorationPlanner expects a startExploration event. To solve this problem, our

approach allows a developer to specify that specific events of specific components

are renamed, which makes it possible to integrate the ExplorationPlanner into the

squirrel AI as a replacement for the WanderPlanner.

Adding Modules

New AI behaviours can be added by introducing new components to an

existing configuration. Adding a new sensor would augment the ways the AI

can perceive the game state. For example, Ears could allow a squirrel to detect

approaching game entities even in the dark. By examining the interfaces of higher

level Statecharts, the new sensor can create appropriately named events that would

be received. New analyzers can help the AI in detecting high-level events based

upon correlated occurrences of low-level events.

Modules belonging to any category between the strategic deciders and

the actuators are more difficult to add. Adding a new actuator component,

for example, is pointless without also adding or swapping for an executor that

generates input events for the new actuator.

The ultimate power of varying configurations is achieved when event renaming

is combined with component addition. This makes it possible for a component to

intercept events generated by another component and to transform them or delay

them. This allows event flow to be diverted to another statechart, which then

executes and returns the originally expected event, making the addition invisible

191

to the originally connected statecharts. The StutterExecutor component shown in

Fig. 9–2 is an example of an executor component that, when asked to stutterMove

to a given position, moves towards the destination for a moment, waits some time,

then continues moving, then waits again, and so on. In normal situations, squirrels

tend to move in this stuttering pattern. When under threat or when picking up

food, however, squirrels run directly to their destination position without stopping

on the way. In our current squirrel model there are three modules that produce

moveTo events: the WanderExecutor, the PickupExecutor and the FleeDecider.

Event interception makes it possible to transform the moveTo events generated

by the WanderExecutor to stutterMove events. As a result, our squirrel moves

intermittently while exploring, but does not stutter when picking up an acorn or

when fleeing from a threat.

9.1.3 Varying Statechart Models

The most extreme variations come from arbitrary structural modifications

to the statecharts forming the AI. This has the effect of modifying the AI logic

itself, since the statechart structure implements behavioural logic. We explicitly

model these modifications in the form of transformation rules, as these allow one

to represent changes in the same modelling notation as the transformed models

themselves.

In rule-based model transformation [41], the transformation unit is a rule,

which uses model patterns as pre- and post-conditions. The pre-condition pattern

determines the applicability of a rule, here described with a Left-Hand Side (LHS)

and optional Negative Application Conditions (NACs). The LHS defines the

192

no_destination has_destination

moving

this.nextStep(); this.createEvent("move", nextStep);move_failed

pausing

this.startTimer()

move_successfult imer_up

stut ter_move/
this.newDestination(_eventdata)

f inal_destinat ion_reached

destinat ion_unreachable

stop_move

Figure 9–2: Stutter Executor for the Squirrel

pattern that must be found in the input model to apply the rule while the NAC

defines a pattern that shall not be present. The Right-Hand Side (RHS) imposes

the post-condition pattern to be found after the rule was applied, i.e., the effect.

A key advantage of using rule-based transformation is that it allows us to

specify the transformation as a set of operational rewriting rules instead of using

imperative programming languages. Model transformation can thus be specified

at a higher level of abstraction (hiding the implementation of the matching

algorithms), closer to the domain of the models it is applied on.

Orthogonal Behaviours

Safe variations are ensured by introducing only orthogonal behaviours.

This type of behaviour is one that has no effect on the core functionality of the

193

NPC, and thus, orthogonality is a highly game-dependent property. Playing an

animation may be an orthogonal property in one game, while another may use

animation-aware collision detection. Having the NPC make a noise could possibly

attract enemies, or in another game sound could have no game play impact.

Wearing a hat may be orthogonal in one game context, while another game may

have magic helmets that affect the game state. Necessarily, defining a behaviour

as orthogonal is highly game specific and requires detailed knowledge of the game

context.

Figures 9–3(a) and 9–3(b) illustrate how rule-based model transformations can

be used to add orthogonal behaviours to existing state charts. The rule in Fig. 9–

3(a) causes an event-triggered action to be added to an arbitrary state. For any

event e generated by any Statechart in the AI, a self-loop e/a can be added. The

NAC prevents application of the rule to states with on-entry or on-exit actions,

thereby ensuring that no pre-existing actions are repeated when the new transition

is taken. Since the underlying behaviour is not altered, this transformation can be

used to add an orthogonal behaviour in a safe manner.

Another example is found in Fig. 9–3(b), which shows how an action a can be

added to a Statechart. The LHS presents an arbitrary transition while the RHS

gives that same transition with the action added. The NAC prevents choosing

an event that already has an action. This transform is also safe in the sense that

the original behaviour encoded in the Statechart structure is unaffected, and thus

pre-existing behaviour is preserved modulo the new action affecting it directly.

194

NAC LHS RHS

1

2

event/action

Enter:<<any>>

Exit:<<any>>

1

2

event/action

1

(a) The selfloop adding rule.

NAC LHS RHS
1

2

3

1

2

3

1

2

3

event/ event/actionevent/action

(b) The action adding rule.

Figure 9–3: Transformation rules.

With the goal of creating variations, rule application can be done randomly.

One approach is to chose an orthogonal transformation, examine statecharts

until one meeting the conditions is found, and then apply the rule. The process

can be repeated an arbitrary number of times. The greater the number of rule

applications, the more the statechart will be transformed. If only orthogonal

transformations are used, the existing behaviour of the AI will be preserved.

Interesting, the self-loop adding rule can be applied multiple times (once for each

event) to a single state, the NAC in the action adding rule could only be at most

once for each transition.

195

Non-orthogonal Transformations

A non-orthogonal transformation is one that deliberately alters the existing

behaviour. An example “re-setting a component” rule is shown in Figure 9–4. The

effect is to wrap a statechart in a single super-state with a self-loop transition.

This transition is triggered by a “reset” event that returns the statechart back to

its original state. The LHS identifies a statechart region, labelled “1”, allowing

one to track that entity in other parts of the rule. The NAC specifies that this

region may not be a sub-state, restricting this rule to operate only on the top-level

region of a statechart. The RHS subsequently wraps the top-level region inside a

new state with a new transition with trigger “reset” looping on it. The result is

a module that forgets state, restarting the behaviour from default. An executor

would forget that it has been triggered, while an analyzer may lose its line of

analysis. However, if the input event for a ‘forgetful’ statechart is infrequently

generated, any behaviours relying on that statechart may be dormant for excessive

periods of time. This suggests that such a transformation is best applied to

statecharts that receive frequent triggers, preventing long periods of idleness.

NAC LHS RHS

1 1 1
3

4reset

Region Region Region

State
State

<<inside>>

<<inside>>

Figure 9–4: A reset transformation.

196

In the case of a one-time event, a reset transformation would cause the

statechart to forget the one-time occurrence, thereby losing any behaviours

associated with that event. This necessitates a form of verification to ensure that

the generated population still meets behavioural requirements. We propose two

primary methods to apply non-orthogonal transformations:

Limited Application: The transformation should be applied in a limited

fashion, once or twice at most. This makes it possible to verify the resulting AIs

directly, by means similar to the verification of the seed AI. Typically this would

consist of testing (such as unit or play testing) to ensure that the AIs still function

correctly. With a limited number of variations due to these transformations, the

scope of testing is reasonably restricted. If that specific variation passes testing,

then it is an acceptable variation and can be applied. Usage of this approach

allows for the generation of variations that the designer may not have considered,

and thus acts as an aide to the creative design process.

Generation and Culling: As with non-orthogonal transformations, one

may apply the rule an arbitrary number of times. This may dramatically affect

the population and render some population members unable to fulfil their game

role. Like genetic algorithms, we can evaluate each population member with a

fitness function and determine if they can meet their role. By creating a large

enough population each time, the desired number of correct AIs will eventually be

produced. The success of this approach would be based on the ability to effectively

distinguish between correct and incorrect NPCs, a task which may be difficult for

rare or subtle behaviours.

197

9.1.4 Generation Procedure

With parameter modification, compositional changes, and rule-based transfor-

mations, we are now ready to assemble the overall content generation procedure.

Although we described them in the order of parameter modification, module

composition changes, and Statechart transformation, our procedure applies these

approaches in the reverse order. To create a population, the generation procedure

is repeated once for each member of the population. As input, we take the set of

modules from the seed AI given in the layered-Statechart format (with the inter-

face defined), a set of rules-based transformations to employ, and any additional

modules that are available for adding or swapping. At several points, the user will

have to enter additional settings; these are noted in the description of the process.

Once this is complete, the process generates populations nearly instantly, making

it highly practical for rapid prototyping, iteration, and general testing.

First, the Statecharts from the seed AI and the additional modules are

matched against the provided transformations, with each application of a rule

outputting a new Statechart. The user defines how many times each rule should

be matched. Typically, this number should be small (e.g., 1 or 2). In the case of

orthogonal transformation, we found that one or two matches was sufficient to

introduce the orthogonal behaviour. For non-orthogonal rules, a small number

is prudent, as a greater number of matches increases the chance of breaking the

underlying behaviour.

Rather than treat the transformation outputs as special cases, we instead

treat them as candidates for swapping. The fact that an existing module was

198

used in its creation is irrelevant—what matters is that the module interface of

the transformed module closely matches an existing module within the system.

Insertion into a new AI is then done at the module composition stage of generation

by swapping the newly transformed Statechart for the source Statechart.

From the set of modules in the source AI, any that can be removed are

manually flagged as such, and new modules that can be added are also flagged.

In addition, any modules that can be swapped are flagged with their potential

alternates (including transformation outputs) - this step could be automated since

it relies on matching interfaces. The user can influence the final result by assigning

a percentage chance for the occurrence of each available composition modification,

including the swaps resulting from rules-based transformations.

Any module that has the potential to be used must be finalized by assigning

ranges to their parameters, as per Fig. 9–1. Assigning numeric values and distri-

butions is another step in the process that the user must perform. In this case, the

designer can use their judgment to select appropriate values.

With composition flags set and parameter ranges finalized, individual popu-

lation members can now be generated. Initially, the new AI contains all modules

from the base AI. From this, the percentage chance for each composition modi-

fication is tested and possibly applied. When the final set of modules has been

selected, parameters are assigned values from their defined ranges. This completes

the generation process for a single population member. A complete population is

generated by repeating this entire process for each member.

199

9.2 Validation

To prove the validity of this content generation approach, we will demonstrate

and experimentally test a number of concrete variations from each of the three

levels of abstraction. The squirrel AI, presented in Chap. 4, will act as the gen-

eration seed, and the resulting populations will be tested in the Mammoth game

world. Increased variance in the behaviour across a population will demonstrate

statistically that content generation was able to create a varied population.

9.2.1 Experimental Setup

Testing took place on a map designed to elicit the complete range of core

squirrel behaviours, which we define as exploration, gathering and eating food,

along with fleeing from potential threats. As squirrels move, a limited pool of

energy is drained. Only eating can recharge it. Acorns were placed throughout

the map in quantities such that the amount of food available for the squirrels was

essentially unlimited.

For each squirrel, we measured the total distance moved, acorns eaten, and

energy gained. We expect that as variations in the squirrel population increase,

these measurements will vary in two primary ways. Variations that increase

randomness should increase the standard deviation, while variations that add

or suppress behaviours should shift the mean. Based on the modification we are

making, a shift in the variance or mean would indicate that our technique has

successfully increased the variability of squirrel behaviour.

Using the squirrel AI as the base, populations of squirrels were generated. The

actual generated artifact is a role.xml file for Mammoth. In the case of rule-based

200

Table 9–1: Baseline Parameter Values

Parameters
Name Value
Wander x-Range 1.5m
Wander y-Range 3.5m
Wander RestTimeMin 1000ms
Wander RestTimeRange 3300ms
Low Threat Range 1.0m
High Threat Range 0.5m
Low Energy 16000units
Critical Energy 5000units

transformations, new SCXML files were created from existing ones, and added

to the folder with the already existing SCXML files. Each test used 48 generated

squirrel AIs operating on the same map for a period of 4 minutes, with the tests

being repeated 3 times for each population. Repeating the test multiple times

helps to average out the effects of statistical outliers.

Squirrels make random choices when searching for food, and non-squirrel

NPCs wander the map to elicit fleeing behaviours in the squirrels. This is a

typical source of randomness for an NPC as it simulates the interactive nature of

many digital games. To account for this base variance, the seed AI was applied

to all squirrel NPCs on the map. Since the only variation is as a result of game

randomness, this test gives us a baseline for variance in the game. The values used

for the baseline are given in Table 9–1.

Results of the baseline tests are listed as “Identical Squirrels (Control)”

scenario in Table 9–3. Here, the ’±’ results are of central importance. The

indicated value is one standard deviation, giving us a direct measure of the

201

Table 9–2: Parameter Modification Settings

Parameters
Name Min Max
Wander x-Range 1.5m 3.5m
Wander y-Range 1.5m 3.5m
Wander RestTimeMin 1000ms 2000ms
Wander RestTimeRange 1000ms 5000ms
Low Threat Range High + 0.5m High + 1.0m
High Threat Range 0.5m 1.0m
Low Energy Critical + 500units Critical + 10000 units
Critical Energy 2500units 7500units

variance. If later populations are more varied, we expect to see that reflected by an

increase in the standard deviation. Changes in the mean indicate that introduced

variations are shifting behaviours predominantly in one direction.

9.2.2 Parameter Modification

Modifiable parameters in the squirrel AI were related to wandering, energy

levels in the Energy Sensor, and threat radius in the Threat Analyzer. There was

a dependency between the low and high threat radius and a critical dependency

between the low and critical energy levels. Dynamic ranges were used in both

cases. The actual ranges used are listed in Table 9–2.

Since the statechart composition is not being modified, the behaviour of the

squirrel remains the same (e.g., the squirrel will still flee from players, collect

acorns, etc.). However, variability in the expression of those behaviours should

increase as squirrels wandered different distances, ate at different energy levels,

and fled from more distant threats. The “Parameter Modified” results in Table 9–

3 confirms this, demonstrating that parameter modification is successful in

202

Table 9–3: Variation Test Results

Test Scenario
Acorns
Eaten

Distance
Moved

Energy
Gained

Identical Squirrels (Control) 5.6± 2.0 37.8± 10.8 29.7± 10.8
Parameter Modified 5.6± 4.5 59.0± 22.9 47.6± 23.3
Parameter Modified w. Stuttering 3.7± 2.7 35.7± 9.9 36.5± 9.8
Parameter Modified w. Alternate 4.4± 1.8 72.8± 26.1 60.2± 25.8

increasing variation of simple quantifiable aspects of NPC behaviour. Qualitatively,

the increase in distance moved appeared to be due to more frequent and longer

range fleeing, as the ranges for fleeing were mostly greater than the baseline. More

movement meant more energy drained, increasing the value of eaten acorns and

increase the mean energy gained. While varying a basic parameter such as move

distance may not visibly impact the game for a player, variations in properties

such as damage dealt, health, or speed will be extremely noticeable as these are

fundamental to player survival in many games.

9.2.3 Module Modifications

There are three fundamental modifications available at this level of abstrac-

tion: adding modules, removing modules, and swapping modules. Since we are now

changing behaviour, generation will produce variations that are more observable to

players.

Our first compositional change was to add a Stutter Executor to 50% of

squirrels. This caused affected squirrels to move in several small segments with

a short pause between each. In generating this group, we again employed the

parameter ranges found in Table 9–2.

203

One would expect squirrels to move less distance overall when they stutter

move, due to the frequent pauses. The data reflects this, appearing as “Parameter

Modified w. Stuttering” in Table 9–3. Movement returned to baseline mean with

a similar variance. However the number of acorns eaten was much lower, largely

because those that stutter use much less energy overall and so require less food.

A second modification came in the form of a 50% chance of swapping out

the Squirrel Brain for a new Squirrel Brain Alternate, shown in Fig. 9–5. The

default brain prioritizes wandering over gathering food, while the alternate brain

prioritizes gathering food, and only wanders when the squirrel is carrying an

acorn. As a base, we again used the parameter ranges from Table 9–2 along with

50% wander incidence. Results are listed in Table 9–3 as “Parameter Modified w.

Alternate”. Interestingly, the number of acorns eaten by this group is quite low

while the distance travelled and energy gained is quite high. The greater efficiency

of the second group allows for more active squirrels in general, creating a livelier

environment.

9.2.4 Rule-Based Transformations

Since rule-based transforms have the ability to wildly alter behaviour,

validation focused on demonstrating that our orthogonal transforms are in fact safe

and can alter behaviour in a clear and consistent manner.

Mammoth has a chat system that is available to NPCs, but the basic squirrel

lacks the ability to communicate. Through random application of the rule in

Fig. 9–3(b), an action was added that created an event triggering a chitter (a call

made by actual squirrels). Three Statecharts meeting the LHS of the rule were

204

safe

getting_food

this.createEvent('start_get_food', null)

this.createEvent('stop_get_food', null)

has_food

this.createEvent('start_wander', null)

this.createEvent('stop_wander', null)

pick_up_successful

scared

this.createEvent('start_fl...

this.createEvent('stop_fl...

high_threat

low_threat

no_threat

dead

out_of_energy

out_of_energy

Figure 9–5: Alternate Squirrel Brain

selected at random, then transformed to add the chitter action. Testing was then

augmented to record the number of chitters made by squirrels. Depending on the

frequency of the event attached to the chosen transition, chittering would occur

quite frequently, or quite rarely. One third of the squirrels chittered only once

or twice during the test, while the rest would chitter anywhere between 4 and

30 times. The mean was 4.9 chitters with a relatively large standard deviation

of σ = 6.1. This creates interesting variability in the occurrence of our new

orthogonal behaviour.

205

Finally, the rule-based transformation in Fig. 9–3(a) was applied to introduce

standing behaviour, causing a squirrel NPC to occasionally rear up on its hind

legs. Since standing is non-orthogonal with respect to moving, this transformation

necessitated the addition of a Stand Coordinator that only permits standing

when the AI is not moving. In essence, this altered standing to become a safe

orthogonal action, since standing at an unacceptable time would be ignored by the

coordinator. This demonstrates how complex behaviours can be added through

the modification of the AI at multiple levels. Testing was augmented to record the

number of stands executed by the squirrel. The results show several clear groups,

with 42% of the squirrels standing 1-5 times, and 40% standing more than 15

times. The mean for the entire standing population is 19.3 stands with σ = 28.1.

Depending once again on the frequency of the event trigger and the frequency with

which the modified state is entered, the resulting behaviour possesses considerable

variation.

9.3 Directed Generation

While creating a varied population may be appropriate in some cases, the

designer may want to instead generate populations of AI that vary along a specific

design metric. Repeated generations may increase along this metric, such as waves

of enemies that present an increasing challenge. Instead of choosing variations

randomly, directed generation would apply them such that the population exhibits

certain traits more frequently, or suppresses other traits. This results in a popula-

tion that varies along a specific metric, generating populations to satisfy the design

goal.

206

This section describes how our base variation approach was modified to

instead vary along a specific design metric. This is implemented and tested in

Mammoth by creating a squirrel catching mini-game with squirrels that vary in

their ability to successfully evade the player.

9.3.1 Difficulty Classification

To be able to generate a population that varies along a metric, we must

be able to accurately predict the effect an individual variation will have. Game

difficulty specifically is a widely researched topic, and many techniques exist to

predict difficulty. For instance, Zook et. al. [73] present a tensor factorization that

analyzes game play metrics to predict player success when encountering new situ-

ations. Jaffe et. al. [33] explore competitive balance assessment through restricted

game play, determining the impact of certain abilities. We see our generation

approach as being complementary to these approaches; they tell us what changes

should be made, our process enacts these changes in a varied manner. With this

in mind, we seek to show that our process generates populations that vary along

a desired metric, and do not intend to introduce any novel technique to assess or

predict difficulty.

Basic changes using parameter modification can increase difficulty quite easily.

A squirrel that runs faster is obviously more difficult to catch. These types of

changes are quite trivial and can be performed using simpler approaches, however,

our approach offers more interesting variation strategies. We seek to change NPCs

at the behavioural level by exploring different flee techniques, namely, running

207

away in a straight line, fleeing in an arc, and fleeing by climbing trees and disap-

pearing for a short period. When coupled with basic parameter modification, our

technique provides a rich means for generating new and interesting combinations,

thereby improving immersiveness [50] of the experience while meeting design goals.

9.3.2 Mammoth Implementation

A mini-game was added to Mammoth wherein the goal was for a player to

catch as many squirrels as possible in 5 minutes. The player could only catch

a squirrel by getting very close to it, while the squirrels would actively evade

the players and flee. Using our generation technique, we created populations of

squirrels that varied in their evasion effectiveness, allowing for the management of

game-play difficulty through AI generation.

The difficulty of a population was evaluated using an AI-controlled NPC

squirrel catcher. The catcher’s behaviour was to run in a straight line at the

nearest squirrel, automatically catching it when the catcher was close to the

squirrel. The game lasted five minutes, and the number of successfully caught

squirrels was tracked. For each of the three flee strategies, a population of 48

squirrels was generated that used only a single strategy. Parameter modifications

were used, and some were given the alternate brain, but flee proximity and move

speed were not varied. Each group was generated and tested three times. The

results are summarized in fig. 9–6, showing that fleeing in a straight line presents

the least challenge, circular fleeing offers a moderate challenge, and the tree fleeing

strategy is the most challenging. The results are distinct with no overlapping error

bars, giving us three base difficulty levels.

208

25

30

0

5

10

15

20

25

Straight Circle Tree

Squirrels Caught
in

5 Minutes

Figure 9–6: Baseline difficulty for flee-homogenous populations

9.3.3 Generation with Difficulty Targets

The next step is to show that non-homogenous populations will allow us to

create populations of different difficulty. We do this by generating half-and-half

split populations from our three flee types, with the expectation that mixed

populations will create an averaging of the two difficulties. Results are shown in

fig. 9–7 as the normal proximity group. All three combinations give results that

fall between the values for the flee-homogenous groups, but the error is much

higher. This is explained by variability in squirrels encountered by the NPC in a

given trial run. The averaging effect here is not a simple mean. The Circle+Tree

combination has a complex interaction: when a squirrel flees in a circular pattern,

the catcher follows in a circle, remaining in one small area. Coincidentally, this is

a very good strategy to catch any nearby squirrels that have climbed a tree. If the

209

25

30

0

5

10

15

20

25

Straight+Circle Straight+Tree Circle+Tree

Squirrels Caught
in

5 Minutes

Normal Proximity Large Proximity

Figure 9–7: Baseline difficulty for mixed populations

catcher forces a squirrel up a tree, but remains in the area due to following of a

circle-fleeing squirrel, the catcher will immediately snare the treed squirrel when

it descends. Because of this, the catcher performs better than expected for this

combination.

To better illustrate the power of our approach, we performed a final set of

tests that combines the mixed population with targeted parameter modification.

For this set, the range proximity at which a squirrel would flee was increased

by 50%, meaning the squirrel exhibits flee behaviour much farther from the

Catcher. The results are shown in fig. 9–7, which clearly shows the scaling

effect this modification has on all squirrel populations. The scaling factor is

not consistent across strategies, which again demonstrates the complexity of

behavioural interactions.

210

What we have demonstrated is that our content generation approach is suit-

able for creating populations that vary along a defined metric. Our squirrel catcher

caught fewer squirrels when given a more difficult population. By performing a

proper difficulty analysis (such as those by Zook et. al. [73] or Jaffe et. al. [33]),

this approach can effectively perform directed content generation of NPC AI.

9.4 Expanding the Approach

Our approach to procedurally generated NPC AI provides a novel tool for

game development. Generating new behaviours for AI opens up exciting new

possibilities, as designers now have a new design space to explore.

Directed generation provides a method to meet design goals through variation

within the AI population. Combining our generation approach with a sophisticated

methodology for gathering game metrics will allow for generation of highly

specialized populations of NPCs that meet a specific goal within the design

context. We look forward to seeing how such approaches can be applied, and how

procedurally generated NPCs can become a vital ingredient in future games.

In the future, we plan to extend our work on rule-based transformations. We

explored only a few, simple rule designs; an extensive library of transformation

schemas would further increase high level variability, and could be easily incorpo-

rated into our design. Furthermore, whereas our current exploration of AI variants

is limited to pre-defined variations, a fully automatic exploration becomes feasible

when transformation rules are applied in random order. As this may lead to AI

models which exhibit non-realistic behaviour, automatic “performance analysis”

based on simulated behaviour traces is needed to cull undesired variants.

211

CHAPTER 10
Related Work

This work touches upon many different aspects of digital games research

and software engineering. As such, there is a large body of research that inspires,

impacts, or competes with these results. To aid in evaluation of the impact of this

research, we will describe and compare existing related work.

Discussion of related work will be divided into four separate conversations

relating to the four principle components of this work. First, we will discuss works

relating to the layered statechart approach itself. Next, we will discuss reuse of AI,

along with works relating to Scythe AI. The next area will focus of validation of

game AI, while the final section will cover AI variation and generation.

10.1 Layered Statechart-Based AI

We advocate the use of layered statechart-based AI, as it is a principled,

model-driven approach with clear benefits from a software engineering perspective.

In this section, we will weigh the benefits and drawbacks of this approach with

respect to commonly employed formalisms, including behaviour trees, goal-based

approaches, and simple FSMs and HFSMs.

10.1.1 Finite State Machines

Finite state machines are the oldest formalism used in modelling game AI, and

are still commonly employed. Here, states represent behaviours and transitions are

triggered to change the behaviour exhibited [20, 23]. Hierarchical FSMs (HFSMs)

212

incorporate aspects of statecharts [25] by allowing states to contain substates with

internal transitions.

Because of the lack of clear formalisms describing either FSMs or HFSMs as

used in the field of Game AI, they act as a poor basis for a model-driven approach.

For example, one implementation may allow guarded transitions, while another

may not, or one may allow entry and exit actions, while another does not. These

differences mean that any model describing only one approach has a high chance

of failure when combined with another. Since statecharts generalize FSM and

HFSM approaches, they offer a clear advantage: a model-driven approach for

statechart-based AI can be used for FSM, HFSMs, and statecharts.

The primary drawback of typical state-based approaches is the explosion

in complexity as the number of states and transitions increase. However, work

by Heckel et. al. has shown that when combined, hierarchical subsumption

architectures have low representational complexity when compared against

behaviour trees, FSMs and HFSMs, or pure subsumption architectures [27].

As the layered statechart approach employs both hierarchy and subsumption,

Heckel’s work suggests that the layered statechart-based AI presented in this thesis

possesses a low representational complexity when compared with other common

AI approaches. Further research could verify the degree to which our formalism

corresponds with Heckel’s conclusions. That being said, the small size of the

statecharts in our Halo AI implementation in Chap. 5 does appear to be in line

with Heckel’s theoretical result.

213

10.1.2 Behaviour Trees

Behaviour trees are an emerging formalism in game AI. Highly successful

industrial games such as Halo 2 [32] and Spore [28] have brought this approach

to the forefront. In 2012, the industry focused Vienna Game/AI Conference 2012

featured an entire workshop devoted to behaviour tree implementation.

As introduced in §2.1.2, behaviour trees use leaf nodes to read and write to

the game state. Non-leaf nodes control the ordering in which leaves are accessed.

However, it is unclear how trees should be structured when behaviours should

be repeated or skipped, and also unclear how behaviours should be stopped or

terminated when the AI must react to new information. This highlights the

primary failing of behaviour trees, which is a lack of ability to react to events. As

a result, implementers of behaviour trees end up adding parallelism to attempt to

provide reactivity, with mutual exclusion enforced only by construction. Recent

advances, such as event-driven and data-driven BTs improve efficiency [7], but

sidestep reactivity issues.

10.1.3 Other Architectures

Goal-based planning approaches, including hierarchical task networks,

have been successfully employed in industrial games such as F.E.A.R. [54], or

the academic language ABL [48]. In this approach, a library of actions with

preconditions is created, defining the capabilities of the AI. Behavioural goals

establish preconditions for a task, then a search finds and executes an action

that satisfies preconditions and accomplishes the goal. Dynamic awareness and

reactivity are compromised by this model. In practice, the planner must be

214

repeatedly run to ensure that the selected action is still the appropriate one, which

is both inefficient, and can lead to jittering in edge cases.

Learning approaches are typically avoided in game AI. One notable attempt

was Lionhead Studio’s Black and White in 2001, where a player controlled a

creature based on the Belief-Desire-Intention model [22], with a perceptron for

reinforcement learning. While the novelty and high quality of the game made it

a commercial success, the nature of learning combined with the variation in play

styles resulted in a game that was very easy for some players, and impossible for

others. In general, learning adds unnecessary complexity to controlling the level of

difficulty posed to the player, and complicates testing since the behaviour of the AI

is an emergent property of the learning process. Few if any AAA titles since have

employed a learning approach.

10.2 AI Reuse

Reuse of AI is a highly important technique that is growing in importance,

and has been applied in the context of most of the formalisms introduced here.

Kevin Dill, a major proponent of modular AI, proposed a pattern based approach

to modular AI [14]. This introduced the concept of abstracting partial logic

making up the AI into patterns that could then be matched when building new

AIs. Later, he furthered the concept by showing specific types of patterns that

could be used, and how they could be expressed in C++ and XML code [15].

While this work lacks the advantages of a model-driven approach, it offers a highly

practical and industrially relevant approach to AI reuse.

215

In the context of reuse, superstates in HFSMs can be treated as modules and

exported to new AIs [37]. This approach is valuable, but omits important details

such as code portability, and has no provision for interaction with internal states.

The strict hierarchical nature of HFSMs can be limiting as it places restrictions

on how transitions between states can be modelled. Since HFSMs form a proper

subset of statecharts, our reuse model generalizes this approach.

Behaviour trees offer a reuse model based on pruning and reusing branches

[45]. In a practical sense, however, the extent of reuse is limited as individual tree

nodes are often highly game or AI-specific—code actions and abstract, high-level

behaviour are intimately entwined in behaviour tree models. Although behaviour

trees delineate clearly how the system chooses behaviours, they suffer from a lack

of modal states encapsulating different behavioural groupings. Reuse in practice

has been demonstrated primarily in terms of modifying an existing AI [16] with

incremental improvements rather than porting AI logic to a fundamentally new

context.

Goal-based approaches offer a reuse model based upon the addition of new

goals, or new actions that can be used to change the AI state. In theory this is a

quite straightforward path to reuse. In practice, actions and goals must be highly

specific, and basic knowledge about the game world must be encoded into the

process of action selection. Thus, adding new behaviours requires substantial effort

in rebalancing existing behaviours such that all behaviours are expressed correctly.

216

10.2.1 AI Reuse Tools

In the niche of AI Reuse, Scythe AI may indeed be the only tool for that

specific purpose. However, there are many tools and game middlewares for

producing game AI in general.

The Unreal Engine 3 [70] includes UnrealKismet, a visual scripting system,

which provides artists and level designers the freedom to design stories and

action sequences for non player characters within a game without the need for

programming. One key feature of UnrealKismet is the support for hierarchy

of components, which makes it possible to structure complicated behaviour

descriptions nicely. There is no explicit support for reuse in the Kismet tool.

Among scripting tools, a noteworthy tool is ScriptEase [53], which is a textual

tool for scripting sequences of game events and reactions of non player characters.

Although it does not use a visual formalism, ScriptEase introduces a pattern

template system – a library of frequently used sequences of events – that allows

designers to put together complex sequences with little programming. Instead of

modelling a decision making structure, scripted AI provides simple rules that cause

AI actions, such as “when the player enters the room, this NPC should attack”.

The paid version of the game engine Unity provides basic support for basic

AI through A* pathfinding modules. Authoring modules for behaviour trees and

FSMs are available through the Unity Asset Store. These allow a user to build

a behaviour tree, or draw an FSM, but do not provide higher level functionality.

Scythe AI, in comparison, does not provide authoring tools, but does address reuse

and verification of existing AI modules.

217

10.3 Verification of Game AI

Verification of game AI, like the rest of game development, is highly focused

on testing. While this can include formalized elements such as unit or regression

testing, the process is largely manual. Games are typically tested by designers

during development and eventually by dedicated testers. During this process the

entire game is tested, and typically the AI itself receives no specialized testing.

As such, improvements to AI verification tend to focus on improvements to the

testing process itself, such as increasing code-coverage [49]. Even the well-regarded

text by Millington and Funge [52] has nothing to say on the subject of testing.

Our approach is radically different, both because it is a formalized approach, and

because it provides a strong guarantee of correctness with respect to the verified

specifications.

There do exist several formal approaches that have been employed to verify

statecharts. Primarily this has been accomplished through the use of model-

checking to exhaustively explore the state-space. Methods include transforming the

statechart into a Promela representation and then using the Spin model-checker to

verify LTL conditions [51, 44, 60], and by using intermediate Kripke structures to

verify CTL conditions. [72]. Fundamentally, these two approaches yield the same

result, expressibility differences between CTL and LTL notwithstanding.

Our approach is differentiated by the use of cooperating statecharts. This

necessitates the explicit modelling of event distribution, ensuring that all state-

charts advance one event at a time in accordance with the Rhapsody semantics of

statecharts [25]. This in turn required modelling the external event queue, passing

218

external events as steps, and modelling micro steps arising from statechart tran-

sitions as micro steps using the AI event queue. As well, we explicitly represent

the environment with our external event generator, and help control state-space

explosion by using guards to disable events.

10.4 AI Variation

Research into software product lines [10] suggests a starting point for model-

based generation, giving a process that builds upon inter-product commonalities to

efficiently produce similar outputs. Krueger phrases variation as modifying not the

product line, but the production line itself [38]. However, the complex temporal

interactions that exist in variation management do not arise in our work. Our goal

of variation within a game AI does not give a strong set of requirements on the

output, and it is enough that the output is different than the source, giving our

work a different focus than typical product line research.

Smith and Mateas [63] formally describe the design space of a generation

technique, then use answer-set programming to create generators covering that

design space, but do not discuss specifically how this could impact NPC design.

Mateas et. al. have done considerable research into generating NPC responses

in their game Facade[66], in which an NPC generates a narrative discourse that

corresponds with player intentions, but the behavioural capabilities of the NPC are

not altered.

Non agent-based AI is sometimes used to model group behaviour in crowd

simulations [67, 40]. It avoids the need to manage a large number of individual

agents by placing behavioural triggers in the environment that act upon members

219

of the crowd. Thus, individual NPCs no longer need a unique agent to power

them, yielding a large gain in computational efficiency. However, this is counter to

the goal that NPCs possess behavioural uniqueness. This can be somewhat miti-

gated by individualizing NPCs to the current game context [12], or by increasing

diversity [68].

Modern gaming platforms are powerful enough to manage agent-based

AI crowds, as demonstrated in the game ‘Hitman: Absolution’ [34], which has

crowds consisting of dozens up to hundreds of NPCs. This is convincing support

for the applicability of our approach, as it shows that agent based approaches

can successfully scale to a crowd of NPCs. That being said, our work differs by

focussing on creating identifiable individuals, rather than large crowd simulation.

220

CHAPTER 11
Conclusions

Academic research into computer game development fills a curious niche.

As a largely industry-driven field, much of the progress comes from developers

themselves, searching for solutions to the daily problems they face. However, in

the rush to meet deadlines and ship products, good software engineering practice

often becomes the first casualty. Academia, unconstrained by the rush to market,

is in a unique position to deeply explore this often neglected aspect of game

development. As the game industry has matured, and genres stabilized, the value

of good software engineering practice has become increasingly important.

In this work, we have presented a comprehensive approach to developing

computer game AI through the use of model-driven design techniques. By treating

it as a software engineering problem, and applying the principles found in software

engineering, we were able to successfully describe a new approach to developing

game AI using layered statechart-based AI. As demonstrated by the work on

our Halo AI in Chapter 5, this approach is capable of representing modern AIs

used in AAA gaming titles. The true advance, and that which is most useful to

industry and academia, is the demonstration that developing game AI using a

principled approach based on a well-defined formalism yields clear benefits. These

include reusable AI, verification of desired AI behaviour, and content generation.

Industrial developers will benefit from having access to these approaches, and since

221

there is a clear formalism, academia can continue to explore this research topic and

further clarify the approaches contained herein.

What this work both envisions and enables is for AI developers to build AIs

from standard reusable components, sharing and distributing various AI modules

to build new AIs. This uncouples generalized AI logic from a specific game or a

series, and allows AI to become an asset much like the 3D models used in graphics

development. Combined with the verification techniques described in Chapter 8,

developers can focus on perfecting novel behaviours, rather than reimplementing

basic tasks for each new game.

From a theoretical point of view, this work has delivered a complete and

thorough exploration of layered statechart-based AI, and shown how this for-

malism can be used to represent both simple and complex AI logic for NPCs.

We described how reuse is enabled by the fundamentally modular approach, and

presented a tool designed for the modular reuse of layered statechart-based AI.

Verification of modular AIs was addressed, and we demonstrated a method to

ensure syntactic correctness. As well, we made significant progress towards ver-

ification of behavioural correctness at the level of AI logic, an approach which

is novel in the field of AI development for games. Already, it has shown itself

to be capable of verifying smaller AIs, and with additional work on optimizing

verification of larger AIs, it has the potential to become a beneficial tool for game

developers.

This work also has broader implications for the field of computer science. By

creating modular AI, we make it possible for researchers in other fields to more

222

easily package and share their work. This includes some of the more powerful

techniques in the AI field, such as neural networks or generalized learning. If

a module could be designed such that it can accept input and provide output

in the form of events, then the mechanism within (be it a statechart, a neural

network, or other decision maker) would pose little barrier to integration with a

statechart-based AI. This creates the potential for new and exciting combinations

and applications of AI techniques between AI practitioners.

11.1 Future Work

The diverse nature of this work provides ample opportunity for future work.

Some of this involves minor improvements to the application of the approaches

described herein, while others are more theoretical questions suitable for academic

exploration. We divide our discussion of future work into two broad categories:

extensions, and further research.

11.1.1 Extensions

In all research, there are obvious extensions to the principle work. While these

are often tangential to the main thrust of the research, they represent interesting

and potentially useful avenues to explore.

When creating statechart modules, we noted the existence of several state-

chart patterns, such as the quantizing sensor. While we have presented several

archetypes, it is highly likely that many more patterns exist. A thorough survey

should be undertaken to get better coverage over what could be a large pattern

space, making a pattern-based approach more useful.

223

Modular reuse shows promise as a highly practical improvement to the

software development process, but amount of benefit has not been measured in any

meaningful way. The logical next step in the research is to begin a round of user

studies to validate the claim that it improves the development process. Crafting

such a study is challenging in its own right, and would represent a significant

addition to the research.

Verification, especially that of semantic correctness, offers a powerful tool to

AI developers, yet the utility is constrained by the difficulty in creating correct and

meaningful specifications. It would be tremendously helpful to augment Scythe AI

such that it creates specifications automatically, including reachability, and some

basic behavioural requirements. Similarly, it would be valuable to automatically

filter Spin output to simplify error trace analysis. The usability of the process

must be improved for it to become practical, and these extensions are excellent

first steps.

Our variation process allows developers to create new AIs from a base AI. One

of the most powerful techniques available comes from rule-based variation of the

statecharts. Adding more transformations would result in more dramatic varia-

tions, increasing the power and usefulness of the approach, but faces challenges in

ensuring correctness, either by design or through verification.

Finally, the Scythe AI tool can be extended to support more of the work in

this thesis. In its current state, it is capable of facilitating modular reuse. The

experience could be improved by adding support for functional groups, and push

button creation of statechart pattern modules. As well, support for additional

224

features such as variation and verification could be added. This would round out

the tool and make it usable by industry and academia alike.

11.1.2 Further Research

Our entire model is based upon the usage of statecharts. As noted in the

background section, this is just one approach that is currently used in industry.

Interoperability could be enhanced greatly by investigating how other formalisms,

especially behaviour trees could be integrated. What type of interface would a

reusable behaviour tree have, and how could it be linked to a statechart to build

hybrid solutions?

While SCXML was used to implement statecharts, running an SCXML

interpreter at run time is inefficient and would not be considered in an industrial

situation. The missing piece is to develop a SCXML compiler that outputs an

executable statechart in efficient C++ or Java code, or even C# for Unity 3D.

Creating a compiler that is correct, performs optimizations, and output highly

efficient code forms the basis of an excellent research challenge. Work by Wasowski

[71] and Samek [59] provides an excellent starting point for such an effort.

The largest problem in verification is also the most fundamental. As the AI

grows in size, model-checking becomes intractable due to state-space explosion.

However, squirrel AI behaviours took very little time to verify, and error traces

where generated quickly for the much larger Halo AI. Because of this, we hy-

pothesize that further optimizations may be enough to allow a more complete

verification of larger AIs. The processes themselves could be optimized, for exam-

ple, by abstracting away the contents of functional groups. Views could be created,

225

where only a subset of statecharts are represented. The view could be analyzed

independently, with the actions of excluded statecharts being modelled as external

events. If views can be generated that are similar in size to the squirrel AI, then

rapid verification becomes possible. In the Promela representation, any optimiza-

tion in the amount or usage of guards would reduce the number of states seen by

Spin, and would further improve the verification process. Successful optimizations

might move the needle enough that intractable specifications become tractable,

and slow verifications become fast.

Our work on variation is an interesting diversion from the main thrust of this

work, and bore interesting results. While our method of AI variation generates

correct AIs, there also exists a number of fundamentally different approaches that

would be interesting to explore. Non-orthogonal rule-based transformations can

create wildly variant output, many of which will not be able to perform the role of

the NPC correctly. By using a genetic approach, whereby we cull bad variations,

and create new variations using the good ones as seeds, it would be possible to

create wildly divergent, yet still correct variations. With an appropriate fitness

function, these offspring could be optimized allowing for directed generation.

Exploring the feasibility of such a method, and comparing the results with ours

would make for an interesting research topic.

Through the conceptualization of the AI as a model, we were able to achieve

interesting results. But with a well defined-model, it follows that there is a higher

level definition for the model itself – a meta-model. A meta-model could be used

as a basis to explore variations in the formalism, or to more accurately express

226

concepts within the formalism. For instance, patterns can be represented with a

defined syntax, avoiding the need to express the entire statechart for each pattern.

Common transition patterns could also be represented using syntactic sugar. Work

of this nature is the precursor to a domain specific model, or domain specific

language, either of which would be a valuable shorthand for future practitioners.

227

Appendix A: The Halo AI as Layered Statecharts

Given in this appendix is the full Halo AI recreated as a layered statechart-

based AI. The full description of the AI, module listing and description, and key

features are outlined in Chap. 5. Verification and corrections from Chap. 8 have

been performed and are shown here.

A.1 Sensors

safe

under_attack

safeTimer=0;

ev_UnderAttack/broadcastEvent(new ev_UnderAttack());

[safeTimer>threshold]/broadcastEvent(new ev_AttackAbated());

ev_AttackDetected

Attack events are quantized into a
safe/under_attack state. This prevents
unnecessary attack events being generated
for each individual bullet strike, for
instance.
Continued attacks reset the safeTimer but
do not generate events

Internal listener creates
event ev_AttackDetected()

Figure A–1: The AttackSensor.

228

A stateless Statechart. The listener
broadcasts new ev_PlayerSpotted(player),
ev_PlayerOutOfView(player), and
ev_PlayerKilled(player) events.

active

Figure A–2: The CharacterSensor.

listening

ev_NewCommand/broadcastEvent(new ev_CommandReceived(Command))

ignoring

ev_IgnoreCommands

ev_ListenForCommands

Internal listener creates
ev_NewCommand events.

Figure A–3: The CommandSensor.

229

A Stateless Statechart. The listener generates the
following events:

ev_GrenadeThrown(Grenade)
ev_GrenadeExploded(Grenade)
ev_HasGrenades
ev_NoGrenades

active

Figure A–4: The GrenadeSensor.

health_normal

broadcastEvent(new ev_HealthNormal());

health_low

broadcastEvent(new ev_HealthLow());

ev_HealthChanged[health<low && health>critical]

ev_HealthChanged[health>normal]

health_critical

broadcastEvent(new ev_HealthCritical());

ev_HealthChanged[health<critical]

ev_HealthChanged[health<critical]

ev_HealthChanged[health>critical && health>normal]

ev_HealthChanged[health>normal]

Figure A–5: The HealthSensor.

230

A stateless Statechart. The listener broadcasts
the following events:

ev_ItemSpotted(item)
ev_ItemOutOfView(item)
ev_ItemRemoved(item)
ev_ItemAcquired(item)

active

Figure A–6: The ItemSensor.

A stateless Statechart. The listener will create
and broadcast the following events:

ev_ObstacleSpotted(Obstacle)
ev_ObstacleRemoved(Obstacle)

active

Figure A–7: The ObstacleSensor.

231

tracking

cooldown

broadcastEvent(new ev_PositionChanged())

ev_PositionCooldownUp

ev_PositionUpdate/
startPositionCooldownTimer();

ev_PositionUpdate and the cooldown
event are generated internally. The
cooldown prevents new event
generation on every frame.

Figure A–8: The PositionSensor.

init

no_shield

broadcastEvent(new ev_NoShield())

[!npcHasShield]

has_shield

broadcastEvent(new ev_HasShield())

shield_full

broadcastEvent(new ev_ShieldFull())

shield_down

broadcastEvent(new ev_ShieldDown())

ev_ShieldChange[!npc.shieldsUp]

ev_ShieldChange[npc.shieldsUp]

[npcHasShield]

Internal listerner generates
ev_ShieldChange events

Figure A–9: The ShieldSensor.

232

sensing

not_boarded

boarded

[vehicleBoarded()]/
broadcastEvent(new ev_VehicleBoarded(vehicle));

[vehicleExited()]/
broadcastEvent(new ev_VehicleExited(vehicle));

[vehicleSpotted()]/broadcastEvent(new ev_VehicleSpotted(vehicle));

[vehicleLost()]/broadcastEvent(new ev_VehicleOutOfView(vehicle));

[vehicleDestroyed()]/
broadcastEvent(new ev_VehicleDestroyed(vehicle));
broadcastEvent(new ev_VehicleOutOfView(vehicle));

[vehicleBurning()]/broadcastEvent(new ev_VehicleBurning(vehicle));

Figure A–10: The VehicleSensor.

233

init

ranged_equipped

broadcastEvent(new ev_RangedWeaponEquipped())

ammo_normal

broadcastEvent(new ev_AmmoNormal())

outOfAmmo

broadcastEvent(new ev_OutOfAmmo())

***NPCs don't run out of ammo in
Halo, so tracking it is not
necessary***

needs_reload
ev_ClipEmpty

ev_ReloadComplete

[rangedWeaponEquipped()]

melee_equipped

broadcastEvent(new ev_MeleeWeaponEquipped())

[[meleeWeaponEquipped()]]

ev_WeaponChange[rangedWeaponEquipped()]

ev_WeaponChange[meleeWeaponEquipped()]

The Associated Class generates the
following events:
ev_ClipEmpty
ev_ReloadComplete
ev_WeaponChange

Figure A–11: The WeaponSensor.

234

A.2 Analyzers

analysing

idle

enemyInSight

ev_PlayerSpotted[isEnemy()]/
visibleEnemies++;
broadcastEvent(new ev_EnemySpotted(player));

ev_PlayerSpotted[isEnemy()]/visibleEnemies++;
broadcastEvent(new ev_EnemySpotted());

deciding

ev_PlayerOutOfView[isEnemy()]/visibleEnemies--;
broadcastEvent(new ev_EnemyOutOfView(player))

[visibleEnemies==0]/broadcastEvent(new ev_NoEnemiesVisible())

[visibleEnemies>0]

ev_PlayerKilled[isEnemy()]/visibleEnemies--;
broadcastEvent(new
ev_EnemyNeutralized(player);

Figure A–12: The EnemyAnalyzer.

235

analyzing

no_enemies_near

enemies_near

ev_EnemySpotted[inMeleeRange(player)]/
broadcastEvent(new ev_EnemyInMeleeRange(player));
store(player)

ev_EnemySpotted[inMeleeRange(player)]/
broadcastEvent(new ev_EnemyInMeleeRange(player));
store(player)

check_store

ev_EnemyOutOfView[inMeleeRange(player)]/
remove(player)

[store.empty]/
broadcastEvent(new ev_NoEnemyInMeleeRange())

[!store.empty]
ev_PositionChanged/updateStore()

Figure A–13: The EnemyProximityAnalyzer.

236

analyzing

no_grenades_near

grenade_near

ev_GrenadeThrown[inRange(grenade)]/
broadcastEvent(new ev_GrenadeNearby(grenade));
store(grenade)

ev_GrenadeThrown[inRange(grenade)]/
broadcastEvent(new ev_GrenadeNearby(grenade));
store(grenade)

check_store

ev_GrenadeExploded[inRange(grenade)]/
remove(grenade)

[store.empty]/
broadcastEvent(new ev_NoGrenadesNearby())

[!store.empty]

ev_PositionChanged/updateStore()

Figure A–14: The GrenadeProximityAnalyzer.

leader_alive

leaders_dead

broadcastEvent(new ev_MoraleLow());

deciding

leaderCount--;

ev_PlayerKilled[isLeader(player)]

[leaderCount==0]

[leaderCount>0]

Figure A–15: The LowMoraleAnalyzer.

237

analyzing

ev_GrenadeThrown[stuckOnSelf(grenade)]/
broadcastEvent(new ev_GrenadeStuckOnSelf())

ev_VehicleBurning[isMyVehicle(vehicle)]/
broadcastEvent(new ev_OwnVehicleBurning())

Figure A–16: The SpecialEventAnalyzer.

analysing

ev_PlayerSpotted[isAlly(player)]/
broadcastEvent(new ev_AllySpotted(player))

ev_PlayerOutOfView[isAlly(player)]/
broadcastEvent(new ev_AllyOutOfView(player))

Figure A–17: The SquadAnalyzer.

threat_analysis

normalMode

highHealth

takingFire

broadcastEvent(new ev_UnderFireThreat())
clear

ev_UnderAttack

ev_AttackAbated/
broadcastEvent(new ev_UnderFireThreatA bated())

lowHealth

broadcastEvent(new ev_LowHealthThreat())

broadcastEvent(new ev_LowHealthThreatAbated())

ev_HealthLow
ev_HealthNormal

init

shields_up

ev_HasShield

shields_down

broadcastEvent(new ev_ShieldThreat())

ev_ShieldDown

ev_ShieldFull/
broadcastEvent(new ShieldThreatAbated())

grenade_threat

no_area_threat

ev_GrenadeNearby/
broadcastEvent(new ev_A reaThreat());

ev_NoGrenadesNearby/
broadcastEvent(new
ev_A reaThreatAbated())

vehicle_threat

ev_BurningVehicleNearby/
broadcastEvent(new ev_AreaThreat())

ev_NoBurningVehiclesNearby/
broadcastEvent(new ev_AreaThreatA bated())

grenade_and_vehicle_threat

ev_GrenadeNearby

ev_NoBurningVehicleNearby

ev_NoGrenadesNearby

ev_BurningVehicleNearby

Figure A–18: The ThreatAnalyzer.

238

overall_threat

safe

area_risk

ev_AreaThreat

ev_AreaThreatAbated

safe

shield_risk

ev_ShieldThreat

ev_ShieldThreatAbated

safe

health_risk

ev_LowHealthThreat

ev_UnderFireThreat

ev_UnderFireThreatAbated

ev_LowHealthThreatAbated

safe

broadcastEvent(new ev_Safe())

at_risk

broadcastEvent(new ev_AtRisk())

ev_LowHealthThreat
ev_UnderFireThreat
ev_ShieldThreat
ev_AreaThreat

[in(2.safe)&& in(3.safe) && in(4.safe)]

Figure A–19: The ThreatCompilerAnalyzer.

analysing

empty_vehicle_visible

ev_VehicleSpotted[isVehicleEmpty()]/
broadcastEvent(new ev_EmptyVehicleSpotted(Vehicle));

no_empty_vehicle

ev_VehicleSpotted[isVehicleEmpty()]/
broadcastEvent(new ev_EmptyVehicleSpotted(Vehicle))

deciding

ev_VehicleOutOfView[isVehicleEmpty()]/
broadcastEvent(new ev_EmptyVehicleOutOfView(vehicle))

[VehicleMemorizer.visibleEmpty.size==0]/
broadcastEvent(new ev_NoEmptyVehiclesVisible())

[VehicleMemorizer.visibleEmpty.size>0]

enemy_vehicle_visible

ev_VehicleSpotted[isEnemyControlled()]/
broadcastEvent(new ev_EnemyVehicleSpotted(vehicle))

no_enemy_vehicle

ev_VehicleSpotted[isEnemyControlled()]/
broadcastEvent(new ev_EnemyVehicleSpotted(vehicle))

deciding

[VehicleMemorizer.visibleEnemy.size==0]/
broadcastEvent(new ev_NoEnemyVehiclesNearby())

ev_VehicleOutOfView[isEnemyControlled()]/
broadcastEvent(new ev_EnemyVehicleOutOfView());

[VehicleMemorizer.visibleEnemy.size>0]

no_friendly_vehicle

friendly_vehicle_visible

if (!vehicle.isFull()){broadcastEvent(new ev_VehicleSpotAvailable(Vehicle...

ev_VehicleSpotted[isFriendly()]/
broadcastEvent(new ev_AllyVehicleSpotted(Vehicle))

ev_VehicleSpotted[isFriendly()]/
broadcastEvent(new ev_AllyVehicleSpotted(Vehicle))

deciding

ev_VehicleOutOfView[isFriendly()]/
broadcastEvent(new ev_AllyVehicleOutOfView())

[VehicleMemorizer.visibleFriendly.size==0]/
broadcastEvent(new ev_NoAllyVehiclesVisible())

[VehicleMemorizer.visibleFriendly.size>0]

Figure A–20: The VehicleAnalyzer.

239

storing

grenade_near

ev_VehicleBurning[inRange(vehicle)]/
broadcastEvent(new ev_BurningVehicleNearby(vehicle));
store(vehicle)

check_store

ev_VehicleDestroyed[inRange(vehicle)]/
remove(vehicle)

[!store.empty]

ev_PositionChanged/updateStore()

no_burning_vehicles_near

ev_VehicleBurning[inRange(vehicle)]/
broadcastEvent(new ev_BurningVehicleNearby(vehicle));
store(vehicle)

[store.empty]/
broadcastEvent(new ev_NoBurningVehiclesNearby())

Figure A–21: The VehicleProximityAnalyzer.

240

A.3 Memorizers

memorizing

ev_AllySpotted/
visibleAllies.add(player);
alliesOutOfView.remove(player);

ev_AllyOutOfView/
visibleAllies.remove(player);
alliesOutOfView.add(player);

ev_PlayerKilled/removeAll(player)

ev_EnemySpotted/
visibleEnemies.add(player);
enemiesOutOfView.remove(player);

ev_EnemyOutOfView/
visibleEnemies.remove(player);
enemiesOutOfView.add(player);

Contains 4 data structures:
- visible allies
- allies out of view
- visible enemies
- enemies out of view

Figure A–22: The CharacterMemorizer.

memorizing

ev_CommandReceived/commands.store(command)

Commands are stored in a fifo queue, and
are removed when a command is read.

Figure A–23: The CommandMemorizer.

241

waiting

ev_ObstacleRemoved/obstacles.remove(obstacle);

storing

ev_ObstacleSpotted

[!obstacles.contains(obstacle)]/
broadcastEvent(new ev_NewObstacleSpotted(obstacle));
obstacles.store(obstacle);

[obstacles.contains(obstacle)]

Figure A–24: The ObstacleMemorizer.

memorizing

ev_AllyVehicleSpotted/
visibleAllies.add(vehicle);
alliesOutOfView.remove(vehicle);

ev_AllyVehicleOutOfView/
visibleAllies.remove(vehicle);
alliesOutOfView.add(vehicle);

ev VehicleDestroyed/removeAll(vehicle);

ev_EnemyVehicleSpotted/
visibleEnemies.add(vehicle);
enemiesOutOfView.remove(vehicle)
;

ev_EnemyVehicleOutOfView/
visibleEnemies.remove(vehicle);
enemiesOutOfView.add(vehicle);

ev_EmptyVehicleSpotted/
visibleEmpty.add(vehicle);
emptyOutOfView.remove(vehicle);

ev_EmptyVehicleOutOfView/
visibleEmpty.remove(vehicle);
emptyOutOfView.add(vehicle);

Figure A–25: The VehicleMemorizer.

242

A.4 Strategizer

fleeing

broadcastEvent(new ev_Flee());

broadcastEvent(new ev_StopFlee(...

normal

self_preserving

broadcastEvent(new ev_SelfPreserve());

broadcastEvent(new ev_StopSelfPreserve());

not_under_threat

searching

broadcastEvent(new ev_Search());

broadcastEvent(new ev_StopSearch());

ev_NoEnemiesVisible

combat

broadcastEvent(new ev_Engage());

broadcastEvent(new ev_StopEngage());

ev_EnemySpotte
d

ev_NoEnemiesVisible

ev_AtRisk

ev_Safe[!CommandMemorizer.hasCommands()]

idle

broadcastEvent(new ev_Idle())

broadcastEvent(new ev_StopIdle())

ev_EnemyNotFound

ev_EnemySpotted

executing_commands

followCommand();

[CommandMemorizer.hasCommands()]

[!CommandMemorizer.hasCommands()]

ev_Safe[CommandMemorizer.hasCommands()]

ev_HealthCritical

ev_MoraleLow

Figure A–26: The Brain.

243

A.5 Deciders

deciding

vehicle

if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_VehicleCombat());}

broadcastEvent(new ev_StopCombat();

ev_Engage

nonVehicle

unarmed

ranged

if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_RangedCombat());}

broadcastEvent(new ev_StopCombat();

ev_RangedWeaponEquipped

melee

if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_MeleeCombat());}

broadcastEvent(new ev_StopCombat();

ev_MeleeWeaponEquipped

ev_MeleeWeaponEquipped

ev_EnemyInMeleeRange ev_RangedWeaponEquipped
ev_OutOfAmmo

ev_NoEnemyInMeleeRange[npc.current
Weapon.isType("ranged")]

ev_VehicleExited

ev_VehicleBoarded

ev_Engage

config

idle

broadcastEvent(new ev_StopCombat())

engaging

ev_Engage
ev_StopEngage

activity_switchconfig activity_switch

Figure A–27: The CombatDecider.

244

normal

attacker_nearbyev_EnemyInMeleeRange

ev_NoEnemyInMeleeRange

flee_all

broadcastEvent(new ev_FleeAll())

broadcastEvent(new ev_StopFleeAll...

ev_Flee

ev_StopFlee

flee_nearby

broadcastEvent(new ev_FleeNearby())

broadcastEvent(new ev_StopFleeNearby())

ev_Flee

ev_NoEnemyInMeleeRange

ev_StopFlee
ev_EnemyInMeleeRange

Figure A–28: The FleeDecider.

245

not_idling

idling

waiting

startIdleTimer()

take_action

rollRandom()ev_IdleTimerUp

[random==1]/
if (npc.canWander()) {
broadcastEvent(new ev_Wander());
}

[random==2]/
if (npc.canTalk()) {
broadcastEvent(new ev_PlaySound(Sounds.IDLE));
}

ev_Idleev_StopIdle

Figure A–29: The IdleDecider.

246

not_searching

searching

startSearchTimer();

check_previous

characterMemorizer.getEnemiesOutOfVie...

wandering

[enemiesOutOfView.size==0
&& npc.canWander()]/
broadcastEvent(new ev_StartWander())

searching

broadcastEvent(new ev_StartExecuteSearch())

broadcastEvent(new ev_StopExecuteSearch())

[enemiesOutOfView.size>0]

ev_Search

ev_StopSearch

ev_SearchTimerUp/broadcastEvent(new ev_EnemyNotFound())

Figure A–30: The SearchDecider.

normal

attacker_nearbyev_AreaThreat

ev_AreaThreatAbated

flee_all

broadcastEvent(new ev_TakeCover())

broadcastEvent(new ev_StopTakeCover())

ev_SelfPreserve

ev_StopSelfPreserve

flee_nearby

broadcastEvent(new ev_EvacuateArea())

broadcastEvent(new ev_StopEvacuateArea())

ev_SelfPreserve

ev_AreaThreatAbated

ev_StopSelfPreserve

ev_AreaThreat

Figure A–31: The SelfPreservationDecider.

247

A.6 Executors

threat_tracking

evacuating

broadcastEvent(new ev_Move(findClosestSafeSpot());

not_fleeing

ev_EvacuateArea

ev_StopEvacuateArea

ev_GrenadeNearby/
storeThreatLocation(grenade)

ev_BurningVehicleNearby/
storeThreatLocation(vehicle)ev_GrenadeExploded/

removeThreatLocation(grenade);

ev_VehicleDestroyed/
removeThreatLocation(vehicle);

findClosestSafeSpot looks at the stored list of
area threat locations (e.g. grenades, burning
vehicles), and finds the closest safe spot.

Figure A–32: The ClearAreaExecutor.

248

tracking

fleeing

broadcastEvent(new ev_Move(determineFleePoint());

ev_FleeAll

ev_MoveComplete/
broadcastEvent(new ev_PlaySound(FLEE.random));

ev_StopFleeAll/
broadcastEvent(new ev_StopMove())

determineFleePoint will get
characterMemorizer.VisibleEnemies and
characterMemorizer.EnemiesOutOfSight, then
use them to determine progressively more
distant safe spots to flee to.

Figure A–33: The FleeAllExecutor.

249

not_fleeing

active

fleeing

characterMemorizer.getNearbyEnemies()

ev_FleeNearby

moving

[nearbyEnemies.size>0]/
broadcastEvent(new ev_Move(determineFleeTarget())

ev_MoveComplete

ev_MoveFailed

ev_StopFleeNearby/
broadcastEvent(new ev_StopMove())

determineFleeTarget takes in a list of nearby enemies and returns a
position that is the chosen spot to which to flee.

Figure A–34: The FleeNearbyExecutor.

250

no_item

has_item

ev_ItemAcquired

ev_ItemUsed

ev_ItemUseFailed[npc.hasItem()]/
broadcastEvent(new ev_UseItem())

ev_RangedCombat/
broadcastEvent(new ev_UseItem())

Figure A–35: The ItemExecutor.

not_fighting

fighting

targetting

selectMeleeTarget(characterMemorizer.getEnemiesInMelee...

moving

broadcastEvent(new ev_Move(target))

[!targetInStrikingRange()]

attacking

broadcastEvent(new ev_AttackMelee(target))

[targetInStrikingRange]

[targetInStrikingRange]

[!targetNotInStrikingRange]

ev_MeleeAttackComplete

ev_MeleeCombat

ev_StopCombat/
broadcastEvent(new ev_StopMove())

ev_EnemyNeutralized[enemy==target]

ev_EnemyInMeleeRange

Being "in melee range" means the enemy is close but not
necessarily in striking distance.

Figure A–36: The MeleeCombatExecutor.

251

fighting

not_fighting

fighting

targetting

selectRangedTarget(characterMemorizer.getVisibleEnemies())

firing

broadcastEvent(new ev_FireRangedWeapon())

[lineOfFireUnobstructed()]

needs_reload

broadcastEvent(new ev_ReloadWeapon())

ev_ClipEmpty

ev_AmmoNormal

relocating

broadcastEvent(new ev_Move(repositionLocation(target)))

[!lineOfFireUnobstructed()]

[lineOfFireUnobstructed()]

ev_MoveFailed
ev_MoveComplete

[!lineOfFireUnobstructed()]

ev_RangedCombat

ev_StopCombat/
broadcastEvent(new ev_StopMove())

ev_EnemyOutOfView[enemy==target]

ev_EnemyNeutralized[enemy==target]

ev_EnemySpotted

no_grenades

has_grenades

ev_HasGrenades

fighting

throwing

grenade_cooldown

startGrenadeTimer();

[inGrenadeRange(target)]/
broadcastEvent
(new ev_ThrowGrenade());

ev_GrenadeTimerUp

ev_RangedCombat

ev_StopCombat

ev_NoGrenades

ev_GrenadeTimerUp is generated by the
Start grenade timer method

Figure A–37: The RangedCombatExecutor.

252

inactive

searching

getting_list

characterMemorizer.getEnemiesOutOfSig...

looking

[enemiesOutOfSight.size>0]/
broadcastEvent(new ev_Move(searchTarget())

ev_MoveComplete

ev_MoveFailed

wandering

broadcastEvent(new ev_StopWander())

[enemiesOutOfSight.size==0]/
broadcastEvent(new ev_Wander());

ev_StartExecuteSearch

ev_StopExecuteSearch/
broadcastEvent(new ev_StopMove())

Figure A–38: The SearchExecutor.

253

waiting

taking_cover

broadcastEvent(new ev_Move(determineCoverPoint());

broadcastEvent(new ev_StopMove());

ev_TakeCover

ev_StopTakeCover

ev_MoveComplete

covered

ev_AttackAbated

ev_StopTakeCover

ev_UnderAttack

Figure A–39: The TakeCoverExecutor.

no_item has_itemev_ItemAcquired

using_item

broadcastEvent(new ev_ActuateUseItem())

ev_UseItem

ev_ItemUsed

ev_ItemUseFailed

Figure A–40: The UseItemExecutor.

254

not_fighting

fighting

choosing_target

selectTarget(characterMemorizer.getVisibleEnemies())

attack_run

broadcastEvent(new ev_Move(calculateAttackRunTarget())

[isTargetInFront()]/
broadcastEvent(new ev_VehicleOpenFire())

[isTargetMoving()]

ev_EnemyNeutralized[enemy==target]/
broadcastEvent(new ev_VehicleCeaseFire())

[!isTargetInFront()]/
broadcastEvent(new ev_VehicleCeaseFire())

positioning

broadcastEvent(new ev_Move(attackRunStartSpot())

[!isTargetInFront()]

ev_MoveComplete[isTargetInFront()]/
broadcastEvent(new ev_VehicleOpenFire())

ev_MoveFailed
ev_MoveComplete[!isTargetInFront()]

ev_VehicleCombat

ev_StopCombat/
broadcastEvent(new ev_VehicleCeaseFire());
broadcastEvent(new ev_StopMove())

This Statechart uses 4 methods to effect vehicle combat. First, the
selectTarget(Players[]) selects the most appropriate attack target. Then, the
isTargetInFront method quickly determines if the target is in a cone in front of the
NPC. If not, the attackRunStartSpot method will select an appropriate spot from
which to attack. Finally, the calculateAttackRunTarget will choose a spot behind the
target, in an attempt to run down the target.

Figure A–41: The VehicleCombatExecutor.

not_wandering
wandering

broadcastEvent(new ev_Move(wanderTarget())); resetTimer()

ev_Wander

ev_StopWander/
broadcastEvent(new ev_StopMove())

ev_WanderTimer
ev_WanderTimer is generated
internally
when the wander timer goes off.

Figure A–42: The WanderExecutor.

255

A.7 Coordinators

oscillation_lockout

startLockoutTimer()

movement

on_foot

ev_Move/
broadcastEvent(new ev_Run(target))

ev_VehicleExited

ev_RunComplete/
broadcastEvent(new ev_MoveComplete())

ev_RunFailed/
broadcastEvent(new ev_MoveFailed())

driving

ev_VehicleBoarded[vehicle.isDriving()]

ev_Move/
broadcastEvent(new ev_Drive(target))

ev_VehicleExited

ev_VehicleBoarded[!vehicleIsDriving()]

ev_DriveComplete/
broadcastEvent(new ev_MoveComplete())

ev_DriveFailed/
broadcastEvent(new ev_MoveFailed())

passenger

ev_VehicleBoarded[!vehicle.isDriving()]

ev_VehicleExited

ev_VehicleBoarded[vehicle.isDriving()]

ev_TimerUp

Figure A–43: The MovementCoordinator.

256

A.8 Actuators

ready
ev_ThrowGrenade/
npc.throwGrenade(target)

Figure A–44: The GrenadeActuator.

waiting

using

ev_UseItem/
npc.useItem();

[useComplete()]/broadcastEvent(new ev_ItemUsed())

[useComplete()]/broadcastEvent(new ev_ItemUseFailed())

Figure A–45: The ItemActuator.

257

init

melee_equipped
ev_MeleeWeaponEquipped

ranged_equipped

ev_RangedWeaponEquipped

ev_MeleeWeaponEquipped

ev_RangedWeaponEquipped

lockout
ev_AttackMelee/npc.fireWeapon()

[npc.fireComplete()]/
broadcastEvent(new ev_MeleeAttackComplete())

lockout2ev_AttackMelee/npc.meleeAttack();

[npc.fireComplete()]/
broadcastEvent(new ev_MeleeAttackComplete())

Figure A–46: The MeleeActuator.

not_playing lockout

startTimer(sound)

ev_PlaySound/
npc.playSound(sound);

ev_SoundTimerUp

Figure A–47: The SoundActuator.

258

ranged_combat

ready

ev_FireRangedWeapon/
npc.fireWeapon(target)

full_ammo

reloading

ev_ReloadWeapon/npc.reload();

ev_AmmoNormal

Figure A–48: The RangedCombatActuator.

259

idle

moving

ObstacleMemorizer.getObstacles(); pathfind();

ev_Run

[moveComplete()&&atTarget()]/broadcastEvent(new ev_RunComplete())

[moveComplete()&&!atTarget()]/broadcastEvent(new ev_RunFailed())

ev_NewObstacleSpotted

ev_ObstacleRemoved

Figure A–49: The RunActuator.

vehicle

idle

pathfinding

obstacleMemorizer.getObstacles(); vehiclePathfind();
ev_Drive

[!pathExists()]/
broadcastEvent(new ev_DriveFailed())

driving

activateSteeringBehaviour(target)

[pathExists()]

ev_NewObstacleSpotted

ev_ObstacleRemoved

[destinationReached()]/
broadcastEvent(new ev_DriveComplete())

not_boarded

boarding

ev_BoardVehicle/
npc.boardVehicle(vehicle)

[!boardSuccessful()]

on_vehicle

[boardSuccessful()]

disembarking

ev_Disembark

[disembarkSuccessful()]

[disembarkSuccessful()]

not_firing

firing

ev_VehicleOpenFire/
vehicle.fire()

ev_VehicleCeaseFire/
vehicle.ceaseFire();

Figure A–50: The VehicleActuator.

260

Appendix B: Promela Representation of the Squirrel AI

The following code is the Promela representation of the Squirrel AI presented

in Chap. 4. It was automatically generated by Scythe AI and has not been

modified in any way. This was used as the starting point for verification of

semantic correctness of the squirrel AI; changes made during verification are not

reflected here.

Listing B.1: ”SquirrelAI.pml”

1 mtype = {pick up item , high energy , n o k e y i t e m v i s i b l e , s t a r t g e t f o o d

, s t a r t f l e e , p i c k u p s u c c e s s f u l , energy changed ,

de s t i na t i on unreachab l e , time , i s e e p l a y e r , i s e e i t e m ,

s t op ge t f ood , execute stand , h igh threa t , l ow threat ,

i d o n t s e e i t e m , threat changed , move succes s fu l ,

p i ck up i t em reque s t , move , stop move , p i c k u p f a i l e d , c o l l i d e d ,

no threat , s t o p f l e e , k e y i t e m v i s i b l e , path move , i d o n t s e e p l a y e r

, stop wander , very low energy , low energy , eat , move fa i l ed ,

start wander , d e s t i na t i on r eached , nu l l , INITIAL } ;

2

3 chan AIEventQueue = [2 5 5] o f {mtype } ;

4 chan ExternalEventQueue = [1] o f {mtype } ;

5

6 bool exte rna lEventF i r e=f a l s e ;

7 bool qu i e s c en t=f a l s e ;

8

9 /∗ External event guards ∗/

261

10 bool exGuard Move Actuator dest inat ion reached = f a l s e ;

11 bool exGuard Move Actuator dest inat ion unreachable = f a l s e ;

12 bool exGuard Move Actuator co l l ided = f a l s e ;

13 bool exGuard Pickup Actuator p i ck up succe s s fu l = f a l s e ;

14 bool exGuard Pickup Actuator p i ck up fa i l ed = f a l s e ;

15 bool exGuard Threa t Ana lyze r i s e e p laye r = f a l s e ;

16 bool exGuard Threa t Ana lyze r i dont s ee p laye r = f a l s e ;

17 bool exGuard Threat Analyzer threat changed = true ;

18 bool exGuard Wander Executor time = f a l s e ;

19 bool exGuard Eat Dec ide r key i t em v i s ib l e = true ;

20 bool exGuard Eat Dec ide r no key i t em v i s ib l e = f a l s e ;

21 bool exGuard Energy Sensor energy changed = true ;

22 bool exGuard Item Memor izer i see i tem = true ;

23 bool exGuard Item Memor izer i dont see i tem = true ;

24 bool exGuard nul l = true ;

25

26 i n i t {

27 /∗ Launch the Sta techar t p r o c e s s e s ∗/

28 run Move Actuator () ;

29 run Eat Actuator () ;

30 run Pickup Actuator () ;

31 run Pickup Executor () ;

32 run Threat Analyzer () ;

33 run S q u i r r e l B r a i n () ;

34 run Wander Executor () ;

35 run Eat Decider () ;

36 run F lee Dec ide r () ;

37 run Eat Analyzer () ;

262

38 run Energy Sensor () ;

39 run Item Memorizer () ;

40

41 run processEvents () ;

42

43 /∗ load up i n i t i a l Events with any on−entry events from d e f a u l t

s t a t e s ∗/

44 AIEventQueue ! no threa t ;

45 AIEventQueue ! s tar t wander ;

46 AIEventQueue ! h igh energy ;

47 /∗ f ake an e x t e r n a l event to get AIEventQueue p r o c e s s i n g ∗/

48 ExternalEventQueue ! INITIAL ;

49 exte rna lEventF i r e=true ;

50 qu i e s c en t ;

51

52 /∗ now we are in the proper d e f a u l t s t a t e . ∗/

53 run exte rna lGenerator () ;

54 }

55

56

57 proctype exte rna lGenerator () {

58 do

59 : : atomic {

60 qu i e s c en t = f a l s e ;

61 i f

62 : : (exGuard Move Actuator dest inat ion reached) −>

ExternalEventQueue ! d e s t i n a t i o n r e a c h e d ;

263

63 : : (exGuard Move Actuator dest inat ion unreachable) −>

ExternalEventQueue ! d e s t i n a t i o n u n r e a c h a b l e ;

64 : : (exGuard Move Actuator co l l ided) −> ExternalEventQueue !

c o l l i d e d ;

65 : : (exGuard Pickup Actuator p i ck up succe s s fu l) −>

ExternalEventQueue ! p i c k u p s u c c e s s f u l ;

66 : : (exGuard Pickup Actuator p i ck up fa i l ed) −>

ExternalEventQueue ! p i c k u p f a i l e d ;

67 : : (exGuard Threa t Ana lyze r i s e e p laye r) −> ExternalEventQueue

! i s e e p l a y e r ;

68 : : (exGuard Threa t Ana lyze r i dont s ee p laye r) −>

ExternalEventQueue ! i d o n t s e e p l a y e r ;

69 : : (exGuard Threat Analyzer threat changed) −>

ExternalEventQueue ! threat changed ;

70 : : (exGuard Wander Executor time) −> ExternalEventQueue ! time ;

71 : : (exGuard Eat Dec ide r key i t em v i s ib l e) −> ExternalEventQueue

! k e y i t e m v i s i b l e ;

72 : : (exGuard Eat Dec ide r no key i t em v i s ib l e) −>

ExternalEventQueue ! n o k e y i t e m v i s i b l e ;

73 : : (exGuard Energy Sensor energy changed) −> ExternalEventQueue

! energy changed ;

74 : : (exGuard Item Memor izer i see i tem) −> ExternalEventQueue !

i s e e i t e m ;

75 : : (exGuard Item Memor izer i dont see i tem) −>

ExternalEventQueue ! i d o n t s e e i t e m ;

76 : : (exGuard nul l) −> ExternalEventQueue ! n u l l ;

77 f i ;

78 exte rna lEventF i r e = true ;

264

79 }

80 qu i e s c en t ;

81 od ;

82 }

83

84 /∗∗∗∗∗∗ Statechar t p r o c e s s e s ∗∗∗∗∗∗/

85

86 byte Move ActuatorState = 0 ;

87 bool Move ActuatorStart = f a l s e ;

88 bool Move ActuatorCallback = f a l s e ;

89 proctype Move Actuator () {

90 mtype currentEvent ;

91 do

92 : : Move ActuatorStart −> atomic {

93 AIEventQueue?<currentEvent >;

94 i f

95 : : (Move ActuatorState == 0) −>

96 i f

97 : : (currentEvent == move) −> Move ActuatorState = 1 ;

exGuard Move Actuator dest inat ion reached = true ;

exGuard Move Actuator dest inat ion unreachable = true ;

exGuard Move Actuator co l l ided = true ;

98 : : (currentEvent == path move) −> Move ActuatorState = 1 ;

exGuard Move Actuator dest inat ion reached = true ;

exGuard Move Actuator dest inat ion unreachable = true ;

exGuard Move Actuator co l l ided = true ;

99 : : (currentEvent == execute s tand) −> Move ActuatorState

= 0 ;

265

100 : : ! (currentEvent == move | | currentEvent == path move

| | currentEvent == execute s tand) −> sk ip ;

101 f i ;

102 : : (Move ActuatorState == 1) −>

103 i f

104 : : (currentEvent == d e s t i n a t i o n r e a c h e d) −>

Move ActuatorState = 0 ; exGuard Move Actuator dest inat ion reached =

f a l s e ; exGuard Move Actuator dest inat ion unreachable = f a l s e ;

exGuard Move Actuator co l l ided = f a l s e ;

105 : : (currentEvent == stop move) −> Move ActuatorState = 0 ;

exGuard Move Actuator dest inat ion reached = f a l s e ;

exGuard Move Actuator dest inat ion unreachable = f a l s e ;

exGuard Move Actuator co l l ided = f a l s e ;

106 : : (currentEvent == d e s t i n a t i o n u n r e a c h a b l e) −>

Move ActuatorState = 0 ; exGuard Move Actuator dest inat ion reached =

f a l s e ; exGuard Move Actuator dest inat ion unreachable = f a l s e ;

exGuard Move Actuator co l l ided = f a l s e ;

107 : : (currentEvent == c o l l i d e d) −> Move ActuatorState = 0 ;

exGuard Move Actuator dest inat ion reached = f a l s e ;

exGuard Move Actuator dest inat ion unreachable = f a l s e ;

exGuard Move Actuator co l l ided = f a l s e ;

108 : : ! (currentEvent == d e s t i n a t i o n r e a c h e d | | currentEvent

== stop move | | currentEvent == d e s t i n a t i o n u n r e a c h a b l e | |

currentEvent == c o l l i d e d) −> sk ip ;

109 f i ;

110 f i ;

111 Move ActuatorStart = f a l s e ;

112 Move ActuatorCallback = true ;

266

113 } /∗ end atomic ∗/

114 od ;

115 }

116

117 byte Eat ActuatorState = 0 ;

118 bool Eat ActuatorStart = f a l s e ;

119 bool Eat ActuatorCal lback = f a l s e ;

120 proctype Eat Actuator () {

121 mtype currentEvent ;

122 do

123 : : Eat ActuatorStart −> atomic {

124 AIEventQueue?<currentEvent >;

125 i f

126 : : (Eat ActuatorState == 0) −>

127 i f

128 : : (currentEvent == eat) −> Eat ActuatorState = 0 ;

129 : : ! (currentEvent == eat) −> sk ip ;

130 f i ;

131 f i ;

132 Eat ActuatorStart = f a l s e ;

133 Eat ActuatorCal lback = true ;

134 } /∗ end atomic ∗/

135 od ;

136 }

137

138 byte Pickup ActuatorState = 0 ;

139 bool Pickup ActuatorStart = f a l s e ;

140 bool Pickup ActuatorCal lback = f a l s e ;

267

141 proctype Pickup Actuator () {

142 mtype currentEvent ;

143 do

144 : : P ickup ActuatorStart −> atomic {

145 AIEventQueue?<currentEvent >;

146 i f

147 : : (Pickup ActuatorState == 0) −>

148 i f

149 : : (currentEvent == pick up i tem) −> Pickup ActuatorState

= 1 ; exGuard Pickup Actuator p i ck up succe s s fu l = true ;

exGuard Pickup Actuator p i ck up fa i l ed = true ;

150 : : ! (currentEvent == pick up i tem) −> sk ip ;

151 f i ;

152 : : (Pickup ActuatorState == 1) −>

153 i f

154 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

Pickup ActuatorState = 0 ; exGuard Pickup Actuator p i ck up succe s s fu l

= f a l s e ; exGuard Pickup Actuator p i ck up fa i l ed = f a l s e ;

155 : : (currentEvent == p i c k u p f a i l e d) −>

Pickup ActuatorState = 0 ; exGuard Pickup Actuator p i ck up succe s s fu l

= f a l s e ; exGuard Pickup Actuator p i ck up fa i l ed = f a l s e ;

156 : : ! (currentEvent == p i c k u p s u c c e s s f u l | | currentEvent

== p i c k u p f a i l e d) −> sk ip ;

157 f i ;

158 f i ;

159 Pickup ActuatorStart = f a l s e ;

160 Pickup ActuatorCal lback = true ;

161 } /∗ end atomic ∗/

268

162 od ;

163 }

164

165 byte Pickup ExecutorState = 0 ;

166 bool Pickup ExecutorStart = f a l s e ;

167 bool Pickup ExecutorCal lback = f a l s e ;

168 proctype Pickup Executor () {

169 mtype currentEvent ;

170 do

171 : : P ickup ExecutorStart −> atomic {

172 AIEventQueue?<currentEvent >;

173 i f

174 : : (Pickup ExecutorState == 0) −>

175 i f

176 : : (currentEvent == p i ck u p i t e m r eq u e s t) −>

Pickup ExecutorState = 1 ;

177 : : ! (currentEvent == p i ck u p i t e m r eq u e s t) −> sk ip ;

178 f i ;

179 : : (Pickup ExecutorState == 1) −>

180 i f

181 : : t rue −> Pickup ExecutorState = 0 ; AIEventQueue !

p i ck up i tem ;

182 : : t rue −> Pickup ExecutorState = 2 ; AIEventQueue !

stop move ; AIEventQueue ! move ;

183 f i ;

184 : : (Pickup ExecutorState == 2) −>

185 i f

269

186 : : (currentEvent == move succe s s fu l) −>

Pickup ExecutorState = 0 ; AIEventQueue ! p i ck up i tem ;

187 : : (currentEvent == move fa i l ed) −> Pickup ExecutorState

= 0 ; AIEventQueue ! p i c k u p f a i l e d ;

188 : : ! (currentEvent == move succe s s fu l | | currentEvent ==

move fa i l ed) −> sk ip ;

189 f i ;

190 f i ;

191 Pickup ExecutorStart = f a l s e ;

192 Pickup ExecutorCal lback = true ;

193 } /∗ end atomic ∗/

194 od ;

195 }

196

197 byte Threat AnalyzerState = 1 ;

198 bool Threat AnalyzerStart = f a l s e ;

199 bool Threat AnalyzerCal lback = f a l s e ;

200 proctype Threat Analyzer () {

201 mtype currentEvent ;

202 do

203 : : Threat AnalyzerStart −> atomic {

204 AIEventQueue?<currentEvent >;

205 i f

206 : : (Threat AnalyzerState == 1) −>

207 i f

270

208 : : (currentEvent == threat changed) −>

Threat AnalyzerState = 2 ; AIEventQueue ! l ow threa t ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = true ;

exGuard Threat Analyzer threat changed = true ;

209 : : (currentEvent == threat changed) −> sk ip ;

210 : : (currentEvent == threat changed) −>

Threat AnalyzerState = 3 ; AIEventQueue ! h i g h t h r e a t ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = true ;

exGuard Threat Analyzer threat changed = true ;

211 : : (currentEvent == threat changed) −> sk ip ;

212 : : ! (currentEvent == threat changed | | currentEvent ==

threat changed) −> sk ip ;

213 f i ;

214 : : (Threat AnalyzerState == 2) −>

215 i f

216 : : (currentEvent == threat changed) −>

Threat AnalyzerState = 1 ; AIEventQueue ! no threa t ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = true ;

exGuard Threat Analyzer threat changed = true ;

217 : : (currentEvent == threat changed) −> sk ip ;

271

218 : : (currentEvent == threat changed) −>

Threat AnalyzerState = 3 ; AIEventQueue ! h i g h t h r e a t ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = true ;

exGuard Threat Analyzer threat changed = true ;

219 : : (currentEvent == threat changed) −> sk ip ;

220 : : ! (currentEvent == threat changed | | currentEvent ==

threat changed) −> sk ip ;

221 f i ;

222 : : (Threat AnalyzerState == 3) −>

223 i f

224 : : (currentEvent == threat changed) −>

Threat AnalyzerState = 1 ; AIEventQueue ! no threa t ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = true ;

exGuard Threat Analyzer threat changed = true ;

225 : : (currentEvent == threat changed) −> sk ip ;

226 : : (currentEvent == threat changed) −>

Threat AnalyzerState = 2 ; AIEventQueue ! l ow threa t ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = f a l s e ;

exGuard Threat Analyzer threat changed = true ;

exGuard Threat Analyzer threat changed = true ;

227 : : (currentEvent == threat changed) −> sk ip ;

228 : : ! (currentEvent == threat changed | | currentEvent ==

threat changed) −> sk ip ;

272

229 f i ;

230 f i ;

231 Threat AnalyzerStart = f a l s e ;

232 Threat AnalyzerCal lback = true ;

233 } /∗ end atomic ∗/

234 od ;

235 }

236

237 byte S q u i r r e l B r a i n S t a t e = 2 ;

238 bool S q u i r r e l B r a i n S t a r t = f a l s e ;

239 bool Squ i r r e l Bra inCa l l ba c k = f a l s e ;

240 i n t S q u i r r e l B r a i n H i s t o r y = 0 ;

241 proctype S q u i r r e l B r a i n () {

242 mtype currentEvent ;

243 do

244 : : S q u i r r e l B r a i n S t a r t −> atomic {

245 AIEventQueue?<currentEvent >;

246 i f

247 : : (S q u i r r e l B r a i n S t a t e == 0) −>

248 i f

249 : : (currentEvent == h i g h t h r e a t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ;

250 : : ! (currentEvent == h i g h t h r e a t) −> sk ip ;

251 f i ;

252 : : (S q u i r r e l B r a i n S t a t e == 1) −>

253 i f

254 : : (currentEvent == very low energy) −>

S q u i r r e l B r a i n S t a t e = 4 ; AIEventQueue ! s t a r t g e t f o o d ;

273

255 : : (currentEvent == low threa t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ;

256 : : (currentEvent == h i g h t h r e a t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ;

257 : : ! (currentEvent == very low energy | | currentEvent ==

low threa t | | currentEvent == h i g h t h r e a t) −> sk ip ;

258 f i ;

259 : : (S q u i r r e l B r a i n S t a t e == 2) −>

260 i f

261 : : (currentEvent == low energy) −> S q u i r r e l B r a i n S t a t e =

3 ; AIEventQueue ! stop wander ; AIEventQueue ! s t a r t g e t f o o d ;

S q u i r r e l B r a i n H i s t o r y = 2 ;

262 : : (currentEvent == very low energy) −>

S q u i r r e l B r a i n S t a t e = 4 ; AIEventQueue ! s t a r t g e t f o o d ; AIEventQueue !

stop wander ; S q u i r r e l B r a i n H i s t o r y = 2 ;

263 : : (currentEvent == low threa t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ; AIEventQueue ! stop wander ;

S q u i r r e l B r a i n H i s t o r y = 2 ;

264 : : (currentEvent == h i g h t h r e a t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ; AIEventQueue ! stop wander ;

S q u i r r e l B r a i n H i s t o r y = 2 ;

265 : : ! (currentEvent == low energy | | currentEvent ==

very low energy | | currentEvent == low threa t | | currentEvent ==

h i g h t h r e a t) −> sk ip ;

266 f i ;

267 : : (S q u i r r e l B r a i n S t a t e == 3) −>

268 i f

274

269 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

S q u i r r e l B r a i n S t a t e = 2 ; AIEventQueue ! s t o p g e t f o o d ; AIEventQueue !

s tar t wander ; AIEventQueue ! eat ; S q u i r r e l B r a i n H i s t o r y = 3 ;

270 : : (currentEvent == very low energy) −>

S q u i r r e l B r a i n S t a t e = 4 ; AIEventQueue ! s t a r t g e t f o o d ; AIEventQueue !

s t o p g e t f o o d ; S q u i r r e l B r a i n H i s t o r y = 3 ;

271 : : (currentEvent == low threa t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ; AIEventQueue ! s t o p g e t f o o d ;

S q u i r r e l B r a i n H i s t o r y = 3 ;

272 : : (currentEvent == h i g h t h r e a t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ; AIEventQueue ! s t o p g e t f o o d ;

S q u i r r e l B r a i n H i s t o r y = 3 ;

273 : : ! (currentEvent == p i c k u p s u c c e s s f u l | | currentEvent

== very low energy | | currentEvent == low threa t | | currentEvent ==

h i g h t h r e a t) −> sk ip ;

274 f i ;

275 : : (S q u i r r e l B r a i n S t a t e == 4) −>

276 i f

277 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

S q u i r r e l B r a i n S t a t e = 2 ; AIEventQueue ! s t o p g e t f o o d ; AIEventQueue !

s tar t wander ; AIEventQueue ! eat ; S q u i r r e l B r a i n H i s t o r y = 4 ;

278 : : (currentEvent == h i g h t h r e a t) −> S q u i r r e l B r a i n S t a t e =

5 ; AIEventQueue ! s t a r t f l e e ; AIEventQueue ! s t o p g e t f o o d ;

S q u i r r e l B r a i n H i s t o r y = 4 ;

279 : : ! (currentEvent == p i c k u p s u c c e s s f u l | | currentEvent

== h i g h t h r e a t) −> sk ip ;

280 f i ;

281 : : (S q u i r r e l B r a i n S t a t e == 5) −>

275

282 i f

283 : : (currentEvent == no threa t &&S q u i r r e l B r a i n H i s t o r y ==

2) −> S q u i r r e l B r a i n S t a t e = 2 ; AIEventQueue ! s t o p f l e e ; AIEventQueue !

s tar t wander ;

284 : : (currentEvent == no threa t &&S q u i r r e l B r a i n H i s t o r y ==

3) −> S q u i r r e l B r a i n S t a t e = 3 ; AIEventQueue ! s t o p f l e e ; AIEventQueue !

s t a r t g e t f o o d ;

285 : : (currentEvent == no threa t &&S q u i r r e l B r a i n H i s t o r y ==

4) −> S q u i r r e l B r a i n S t a t e = 4 ; AIEventQueue ! s t o p f l e e ; AIEventQueue !

s t a r t g e t f o o d ;

286 : : ! (currentEvent == no threa t | | currentEvent ==

no threa t | | currentEvent == no threa t) −> sk ip ;

287 f i ;

288 f i ;

289 S q u i r r e l B r a i n S t a r t = f a l s e ;

290 Squ i r r e l Bra inCa l l ba c k = true ;

291 } /∗ end atomic ∗/

292 od ;

293 }

294

295 byte Wander ExecutorState = 0 ;

296 bool Wander ExecutorStart = f a l s e ;

297 bool Wander ExecutorCallback = f a l s e ;

298 proctype Wander Executor () {

299 mtype currentEvent ;

300 do

301 : : Wander ExecutorStart −> atomic {

302 AIEventQueue?<currentEvent >;

276

303 i f

304 : : (Wander ExecutorState == 0) −>

305 i f

306 : : (currentEvent == star t wander) −> Wander ExecutorState

= 2 ; AIEventQueue ! move ;

307 : : ! (currentEvent == star t wander) −> sk ip ;

308 f i ;

309 : : (Wander ExecutorState == 1) −>

310 i f

311 : : (currentEvent == stop wander) −> Wander ExecutorState

= 0 ; AIEventQueue ! stop move ;

312 : : ! (currentEvent == stop wander) −> sk ip ;

313 f i ;

314 : : (Wander ExecutorState == 2) −>

315 i f

316 : : (currentEvent == n u l l) −> Wander ExecutorState = 3 ;

AIEventQueue ! stop move ;

317 : : (currentEvent == n u l l) −> sk ip ;

318 : : (currentEvent == stop wander) −> Wander ExecutorState

= 0 ; AIEventQueue ! stop move ;

319 : : ! (currentEvent == stop wander) −> sk ip ;

320 f i ;

321 : : (Wander ExecutorState == 3) −>

322 i f

323 : : (currentEvent == n u l l) −> Wander ExecutorState = 2 ;

AIEventQueue ! move ;

324 : : (currentEvent == n u l l) −> sk ip ;

277

325 : : (currentEvent == stop wander) −> Wander ExecutorState

= 0 ; AIEventQueue ! stop move ;

326 : : ! (currentEvent == stop wander) −> sk ip ;

327 f i ;

328 f i ;

329 Wander ExecutorStart = f a l s e ;

330 Wander ExecutorCallback = true ;

331 } /∗ end atomic ∗/

332 od ;

333 }

334

335 byte Eat Dec iderState = 0 ;

336 bool Eat Dec iderStar t = f a l s e ;

337 bool Eat Dec iderCal lback = f a l s e ;

338 proctype Eat Decider () {

339 mtype currentEvent ;

340 do

341 : : Eat Dec iderStar t −> atomic {

342 AIEventQueue?<currentEvent >;

343 i f

344 : : (Eat Dec iderState == 0) −>

345 i f

346 : : (currentEvent == k e y i t e m v i s i b l e) −> Eat Dec iderState

= 1 ; exGuard Eat Dec ide r key i t em v i s ib l e = f a l s e ;

exGuard Eat Dec ide r no key i t em v i s ib l e = true ;

347 : : (currentEvent == s t a r t g e t f o o d) −> Eat Dec iderState =

2 ; AIEventQueue ! s tar t wander ; exGuard Eat Dec ide r key i t em v i s ib l e

= f a l s e ; exGuard Eat Dec ide r key i t em v i s ib l e = true ;

278

348 : : ! (currentEvent == k e y i t e m v i s i b l e | | currentEvent ==

s t a r t g e t f o o d) −> sk ip ;

349 f i ;

350 : : (Eat Dec iderState == 1) −>

351 i f

352 : : (currentEvent == n o k e y i t e m v i s i b l e) −>

Eat Dec iderState = 0 ; exGuard Eat Dec ide r no key i t em v i s ib l e =

f a l s e ; exGuard Eat Dec ide r key i t em v i s ib l e = true ;

353 : : (currentEvent == s t a r t g e t f o o d) −> Eat Dec iderState =

3 ; AIEventQueue ! p i ck u p i t e m r eq u e s t ;

exGuard Eat Dec ide r no key i t em v i s ib l e = f a l s e ;

exGuard Eat Dec ide r no key i t em v i s ib l e = true ;

354 : : ! (currentEvent == n o k e y i t e m v i s i b l e | | currentEvent

== s t a r t g e t f o o d) −> sk ip ;

355 f i ;

356 : : (Eat Dec iderState == 2) −>

357 i f

358 : : (currentEvent == k e y i t e m v i s i b l e) −> Eat Dec iderState

= 3 ; AIEventQueue ! stop wander ; AIEventQueue ! p i c k u p i t e m r eq u e s t ;

exGuard Eat Dec ide r key i t em v i s ib l e = f a l s e ;

exGuard Eat Dec ide r no key i t em v i s ib l e = true ;

359 : : (currentEvent == s t o p g e t f o o d) −> Eat Dec iderState =

0 ; AIEventQueue ! stop wander ; exGuard Eat Dec ide r key i t em v i s ib l e =

f a l s e ; exGuard Eat Dec ide r key i t em v i s ib l e = true ;

360 : : ! (currentEvent == k e y i t e m v i s i b l e | | currentEvent ==

s t o p g e t f o o d) −> sk ip ;

361 f i ;

362 : : (Eat Dec iderState == 3) −>

279

363 i f

364 : : (currentEvent == p i c k u p f a i l e d) −> Eat Dec iderState =

3 ; AIEventQueue ! p i ck u p i t e m r eq u e s t ;

exGuard Eat Dec ide r no key i t em v i s ib l e = f a l s e ;

exGuard Eat Dec ide r no key i t em v i s ib l e = true ;

365 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

Eat Dec iderState = 1 ; exGuard Eat Dec ide r no key i t em v i s ib l e =

f a l s e ; exGuard Eat Dec ide r no key i t em v i s ib l e = true ;

366 : : (currentEvent == p i c k u p s u c c e s s f u l) −> sk ip ;

367 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

Eat Dec iderState = 0 ; exGuard Eat Dec ide r no key i t em v i s ib l e =

f a l s e ; exGuard Eat Dec ide r key i t em v i s ib l e = true ;

368 : : (currentEvent == p i c k u p s u c c e s s f u l) −> sk ip ;

369 : : (currentEvent == n o k e y i t e m v i s i b l e) −>

Eat Dec iderState = 2 ; AIEventQueue ! s tar t wander ;

exGuard Eat Dec ide r no key i t em v i s ib l e = f a l s e ;

exGuard Eat Dec ide r key i t em v i s ib l e = true ;

370 : : (currentEvent == s t o p g e t f o o d) −> Eat Dec iderState =

1 ; exGuard Eat Dec ide r no key i t em v i s ib l e = f a l s e ;

exGuard Eat Dec ide r no key i t em v i s ib l e = true ;

371 : : ! (currentEvent == p i c k u p f a i l e d | | currentEvent ==

p i c k u p s u c c e s s f u l | | currentEvent == p i c k u p s u c c e s s f u l | |

currentEvent == n o k e y i t e m v i s i b l e | | currentEvent == s t o p g e t f o o d

) −> sk ip ;

372 f i ;

373 f i ;

374 Eat Dec iderStar t = f a l s e ;

375 Eat Dec iderCal lback = true ;

280

376 } /∗ end atomic ∗/

377 od ;

378 }

379

380 byte F l e e Dec ide rS ta t e = 0 ;

381 bool F l e e Dec id e rS ta r t = f a l s e ;

382 bool F l ee Dec ide rCa l lback = f a l s e ;

383 proctype F l ee Dec ide r () {

384 mtype currentEvent ;

385 do

386 : : F l e e Dec id e rS ta r t −> atomic {

387 AIEventQueue?<currentEvent >;

388 i f

389 : : (F l e e Dec ide rS ta t e == 0) −>

390 i f

391 : : (currentEvent == low threa t) −> Flee Dec ide rS ta t e = 1 ;

392 : : (currentEvent == h i g h t h r e a t) −> Flee Dec ide rS ta t e =

2 ;

393 : : ! (currentEvent == low threa t | | currentEvent ==

h i g h t h r e a t) −> sk ip ;

394 f i ;

395 : : (F l e e Dec ide rS ta t e == 1) −>

396 i f

397 : : (currentEvent == no threa t) −> Flee Dec ide rS ta t e = 0 ;

398 : : (currentEvent == h i g h t h r e a t) −> Flee Dec ide rS ta t e =

2 ;

399 : : (currentEvent == s t a r t f l e e) −> Flee Dec ide rS ta t e = 4 ;

AIEventQueue ! stop move ; AIEventQueue ! path move ;

281

400 : : ! (currentEvent == no threa t | | currentEvent ==

h i g h t h r e a t | | currentEvent == s t a r t f l e e) −> sk ip ;

401 f i ;

402 : : (F l e e Dec ide rS ta t e == 2) −>

403 i f

404 : : (currentEvent == no threa t) −> Flee Dec ide rS ta t e = 0 ;

405 : : (currentEvent == low threa t) −> Flee Dec ide rS ta t e = 1 ;

406 : : (currentEvent == s t a r t f l e e) −> Flee Dec ide rS ta t e = 5 ;

AIEventQueue ! stop move ; AIEventQueue ! path move ;

407 : : ! (currentEvent == no threa t | | currentEvent ==

low threa t | | currentEvent == s t a r t f l e e) −> sk ip ;

408 f i ;

409 : : (F l e e Dec ide rS ta t e == 3) −>

410 i f

411 : : (currentEvent == s t o p f l e e) −> Flee Dec ide rS ta t e = 0 ;

AIEventQueue ! stop move ;

412 : : ! (currentEvent == s t o p f l e e) −> sk ip ;

413 f i ;

414 : : (F l e e Dec ide rS ta t e == 4) −>

415 i f

416 : : (currentEvent == h i g h t h r e a t) −> Flee Dec ide rS ta t e =

5 ; AIEventQueue ! stop move ; AIEventQueue ! path move ;

417 : : (currentEvent == move succe s s fu l) −> Flee Dec ide rS ta t e

= 4 ; AIEventQueue ! stop move ; AIEventQueue ! path move ;

418 : : (currentEvent == move fa i l ed) −> Flee Dec ide rS ta t e =

4 ; AIEventQueue ! stop move ; AIEventQueue ! path move ;

419 : : (currentEvent == s t o p f l e e) −> Flee Dec ide rS ta t e = 0 ;

282

420 : : ! (currentEvent == h i g h t h r e a t | | currentEvent ==

move succe s s fu l | | currentEvent == move fa i l ed | | currentEvent ==

s t o p f l e e) −> sk ip ;

421 f i ;

422 : : (F l e e Dec ide rS ta t e == 5) −>

423 i f

424 : : (currentEvent == low threa t) −> Flee Dec ide rS ta t e = 4 ;

AIEventQueue ! stop move ; AIEventQueue ! path move ;

425 : : (currentEvent == move succe s s fu l) −> Flee Dec ide rS ta t e

= 5 ; AIEventQueue ! stop move ; AIEventQueue ! path move ;

426 : : (currentEvent == move fa i l ed) −> Flee Dec ide rS ta t e =

5 ; AIEventQueue ! stop move ; AIEventQueue ! path move ;

427 : : (currentEvent == s t o p f l e e) −> Flee Dec ide rS ta t e = 0 ;

AIEventQueue ! stop move ;

428 : : ! (currentEvent == low threa t | | currentEvent ==

move succe s s fu l | | currentEvent == move fa i l ed | | currentEvent ==

s t o p f l e e) −> sk ip ;

429 f i ;

430 f i ;

431 Fl e e Dec id e rS ta r t = f a l s e ;

432 Flee Dec ide rCa l lback = true ;

433 } /∗ end atomic ∗/

434 od ;

435 }

436

437 byte Eat AnalyzerState = 0 ;

438 bool Eat AnalyzerStart = f a l s e ;

439 bool Eat AnalyzerCal lback = f a l s e ;

283

440 proctype Eat Analyzer () {

441 mtype currentEvent ;

442 do

443 : : Eat AnalyzerStart −> atomic {

444 AIEventQueue?<currentEvent >;

445 i f

446 : : (Eat AnalyzerState == 0) −>

447 i f

448 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

Eat AnalyzerState = 1 ;

449 : : (currentEvent == very low energy) −> Eat AnalyzerState

= 2 ;

450 : : ! (currentEvent == p i c k u p s u c c e s s f u l | | currentEvent

== very low energy) −> sk ip ;

451 f i ;

452 : : (Eat AnalyzerState == 1) −>

453 i f

454 : : (currentEvent == very low energy) −> Eat AnalyzerState

= 0 ; AIEventQueue ! eat ;

455 : : ! (currentEvent == very low energy) −> sk ip ;

456 f i ;

457 : : (Eat AnalyzerState == 2) −>

458 i f

459 : : (currentEvent == p i c k u p s u c c e s s f u l) −>

Eat AnalyzerState = 0 ; AIEventQueue ! eat ;

460 : : ! (currentEvent == p i c k u p s u c c e s s f u l) −> sk ip ;

461 f i ;

462 f i ;

284

463 Eat AnalyzerStart = f a l s e ;

464 Eat AnalyzerCal lback = true ;

465 } /∗ end atomic ∗/

466 od ;

467 }

468

469 byte Energy SensorState = 0 ;

470 bool Energy SensorStart = f a l s e ;

471 bool Energy SensorCal lback = f a l s e ;

472 proctype Energy Sensor () {

473 mtype currentEvent ;

474 do

475 : : Energy SensorStart −> atomic {

476 AIEventQueue?<currentEvent >;

477 i f

478 : : (Energy SensorState == 0) −>

479 i f

480 : : (currentEvent == energy changed) −> Energy SensorState

= 1 ; AIEventQueue ! low energy ; exGuard Energy Sensor energy changed

= f a l s e ; exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = true ;

exGuard Energy Sensor energy changed = true ;

481 : : (currentEvent == energy changed) −> sk ip ;

285

482 : : (currentEvent == energy changed) −> Energy SensorState

= 2 ; AIEventQueue ! very low energy ;

exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = true ;

exGuard Energy Sensor energy changed = true ;

483 : : (currentEvent == energy changed) −> sk ip ;

484 : : ! (currentEvent == energy changed | | currentEvent ==

energy changed) −> sk ip ;

485 f i ;

486 : : (Energy SensorState == 1) −>

487 i f

488 : : (currentEvent == energy changed) −> Energy SensorState

= 0 ; AIEventQueue ! h igh energy ; exGuard Energy Sensor energy changed

= f a l s e ; exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = true ;

exGuard Energy Sensor energy changed = true ;

489 : : (currentEvent == energy changed) −> sk ip ;

490 : : (currentEvent == energy changed) −> Energy SensorState

= 2 ; AIEventQueue ! very low energy ;

exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = true ;

exGuard Energy Sensor energy changed = true ;

491 : : (currentEvent == energy changed) −> sk ip ;

492 : : ! (currentEvent == energy changed | | currentEvent ==

energy changed) −> sk ip ;

493 f i ;

286

494 : : (Energy SensorState == 2) −>

495 i f

496 : : (currentEvent == energy changed) −> Energy SensorState

= 0 ; AIEventQueue ! h igh energy ; exGuard Energy Sensor energy changed

= f a l s e ; exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = true ;

exGuard Energy Sensor energy changed = true ;

497 : : (currentEvent == energy changed) −> sk ip ;

498 : : (currentEvent == energy changed) −> Energy SensorState

= 1 ; AIEventQueue ! low energy ; exGuard Energy Sensor energy changed

= f a l s e ; exGuard Energy Sensor energy changed = f a l s e ;

exGuard Energy Sensor energy changed = true ;

exGuard Energy Sensor energy changed = true ;

499 : : (currentEvent == energy changed) −> sk ip ;

500 : : ! (currentEvent == energy changed | | currentEvent ==

energy changed) −> sk ip ;

501 f i ;

502 f i ;

503 Energy SensorStart = f a l s e ;

504 Energy SensorCal lback = true ;

505 } /∗ end atomic ∗/

506 od ;

507 }

508

509 byte Item MemorizerState = 0 ;

510 bool Item MemorizerStart = f a l s e ;

511 bool Item MemorizerCal lback = f a l s e ;

512 proctype Item Memorizer () {

287

513 mtype currentEvent ;

514 do

515 : : I tem MemorizerStart −> atomic {

516 AIEventQueue?<currentEvent >;

517 i f

518 : : (Item MemorizerState == 0) −>

519 i f

520 : : (currentEvent == i s e e i t e m) −> Item MemorizerState =

0 ; exGuard Item Memor izer i see i tem = f a l s e ;

exGuard Item Memor izer i dont see i tem = f a l s e ;

exGuard Item Memor izer i see i tem = true ;

exGuard Item Memor izer i dont see i tem = true ;

521 : : (currentEvent == i d o n t s e e i t e m) −>

Item MemorizerState = 0 ; exGuard Item Memor izer i see i tem = f a l s e ;

exGuard Item Memor izer i dont see i tem = f a l s e ;

exGuard Item Memor izer i see i tem = true ;

exGuard Item Memor izer i dont see i tem = true ;

522 : : ! (currentEvent == i s e e i t e m | | currentEvent ==

i d o n t s e e i t e m) −> sk ip ;

523 f i ;

524 f i ;

525 Item MemorizerStart = f a l s e ;

526 Item MemorizerCal lback = true ;

527 } /∗ end atomic ∗/

528 od ;

529 }

530

531 /∗ Event Proces sor ∗/

288

532 proctype processEvents () {

533 mtype newEvent ;

534 mtype processedEvent ;

535 do

536 : : ex te rna lEventF i r e ;

537 /∗ get the e x t e r n a l events and d i s t r i b u t e them ∗/

538 ExternalEventQueue ?newEvent ;

539 AIEventQueue ! newEvent ;

540 do

541 : : nempty (AIEventQueue) −>

542 /∗ a c t i v a t e s t a t e c h a r t s in order ∗/

543 Move ActuatorCallback = f a l s e ; Move ActuatorStart = true ;

Move ActuatorCallback ;

544 Eat ActuatorCal lback = f a l s e ; Eat ActuatorStart = true ;

Eat ActuatorCal lback ;

545 Pickup ActuatorCal lback = f a l s e ; Pickup ActuatorStart =

true ; Pickup ActuatorCal lback ;

546 Pickup ExecutorCal lback = f a l s e ; Pickup ExecutorStart =

true ; Pickup ExecutorCal lback ;

547 Threat AnalyzerCal lback = f a l s e ; Threat AnalyzerStart =

true ; Threat AnalyzerCal lback ;

548 Squ i r r e l Bra inCa l l ba c k = f a l s e ; S q u i r r e l B r a i n S t a r t = true ;

Squ i r r e l Bra inCa l l ba c k ;

549 Wander ExecutorCallback = f a l s e ; Wander ExecutorStart =

true ; Wander ExecutorCallback ;

550 Eat Dec iderCal lback = f a l s e ; Eat Dec iderStar t = true ;

Eat Dec iderCal lback ;

289

551 Flee Dec ide rCa l lback = f a l s e ; F l e e Dec id e rS ta r t = true ;

F l ee Dec ide rCa l lback ;

552 Eat AnalyzerCal lback = f a l s e ; Eat AnalyzerStart = true ;

Eat AnalyzerCal lback ;

553 Energy SensorCal lback = f a l s e ; Energy SensorStart = true ;

Energy SensorCal lback ;

554 Item MemorizerCal lback = f a l s e ; Item MemorizerStart = true ;

Item MemorizerCal lback ;

555

556 /∗ c l e a r proce s s ed event ∗/

557 AIEventQueue? processedEvent ;

558 : : empty (AIEventQueue) −> break ;

559 od ;

560 exte rna lEventF i r e = f a l s e ;

561 qu i e s c en t = true ;

562 od ;

563 }

290

References

[1] Apache Commons. Commons JEXL. http://commons.apache.org/jexl/,
November 2010.

[2] Apache Commons. Commons SCXML. http://commons.apache.org/scxml/,
November 2010.

[3] Ronald C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

[4] Jim Barnett, Rahul Akolkar, RJ Auburn, Michael Bodell, Daniel C. Burnett,
Jerry Carter, Scott McGlashan, Torbjörn Lager, Mark Helbing, Rafah Hosn,
T.V. Raman, Klaus Reifenrath, and No’am Rosenthal. State chart XML
(SCXML): State machine notation for control abstraction. W3C working
draft, W3C, May 2010.

[5] R. Brooks. A robust layered control system for a mobile robot. Robotics and
Automation, IEEE Journal of, 2(1):14 – 23, March 1986.

[6] Joshua Brustein. Grand Theft Auto V is the most expensive
game ever—and its almost obsolete. BloombergBusinessweek,
2013. http://www.businessweek.com/articles/2013-09-18/

grand-theft-auto-v-is-the-most-expensive-game-ever-and-it-s-almost-obsolete.

[7] Alex Champanard. Understanding the second-generation of behavior trees.
http://aigamedev.com/insider/tutorial/second-generation-bt/, 2012.

[8] Alex Champandard. 18 embarrassing game AI bugs caught on tape and fixed!,
2009. http://aigamedev.com/open/article/bugs-caught-on-tape/.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[10] Paul Clements and Linda Northrop. Software product lines. Addison-Wesley,
2002.

[11] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of

291

292

fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238–252. ACM, 1977.

[12] Christian J. Darken. Individualized NPC attitudes with social networks.
In Steve Rabin, editor, AI Game Programming Wisdom 4, pages 571–578.
Charles River Media, 2008.

[13] Dean Grandquist, Technical Director, Visceral Games. Keynote address at the
1st games and software engineering workshop, 2011.

[14] Kevin Dill. A pattern-based approach to modular AI for games. In Adam
Lake, editor, Game Programming Gems 8, pages 232–243. Cengage Learning,
2010.

[15] Kevin Dill, Eugene Ray Pursel, Pat Garrity, and Gino Fragomeni. Achieving
modular AI through conceptual abstractions. In The Interservice/Industry
Training, Simulation & Education Conference (I/ITSEC). NTSA, 2012.

[16] Max Dyckhoff. Evolving Halo’s behaviour tree AI. Presentation at
GDC, 2007. http://www.bungie.net/images/Inside/publications/

presentations/publicationsdes/engineering/gdc07.pdf.

[17] Max Dyckhoff. Decision making and knowledge representation in Halo 3.
Presentation at the Game Developers Conference, 2008.

[18] Cliff Edwards. GTA5 sets opening-day record with US$ 800-million in sales.
Financial Post, 2013. http://business.financialpost.com/2013/09/19/

grand-theft-auto-5-sets-opening-day-record-with-us800-million-in-sales/.

[19] E. A. Emerson. Handbook of Theoretical Computer Science, chapter Temporal
and Modal Logic. North-Holland Publishing Company, 1995.

[20] Daniel Fu and Ryan T. Houlette. Putting AI in entertainment: An AI
authoring tool for simulation and games. IEEE Intelligent Systems, 17(4):81–
84, 2002.

[21] Erann Gat et al. On three-layer architectures, 1998.

[22] Michael P. Georgeff, Barney Pell, Martha E. Pollack, Milind Tambe, and
Michael Wooldridge. The belief-desire-intention model of agency. In Pro-
ceedings of the 5th International Workshop on Intelligent Agents V, Agent

293

Theories, Architectures, and Languages, ATAL ’98, pages 1–10, London, UK,
1999. Springer-Verlag.

[23] Sunbir Gill. Visual Finite State Machine AI Systems. Gamasutra: http:
//www.gamasutra.com/features/20041118/gill-01.shtml, November 2004.

[24] David Harel. Statecharts: A visual formalism for complex systems. Sci. of
Comp. Programming, 8:231–274, 1987.

[25] David Harel and Hillel Kugler. The Rhapsody semantics of Statecharts (or, on
the executable core of the UML). LNCS, 3147:325 – 354, 2004.

[26] David Harel and Amnon Naamad. The STATEMATE semantics of Stat-
echarts. ACM Transactions on Software Engineering and Methodology,
5(4):293–333, October 1996.

[27] Frederick W. P. Heckel, G. Michael Youngblood, and Nikhil S. Ketkar.
Representational complexity of reactive agents. In 2010 IEEE Symposium on
Computational Intelligence and Games (CIG), pages 257–264, 2010.

[28] Chris Hecker. My liner notes for Spore/Spore behavior tree docs. http://

chrishecker.com/My_liner_notes_for_spore/Spore_Behavior_Tree_Docs,
2009.

[29] G Holzmann and SPIN Model Checker. The Primer and Reference Manual.
Addison Wesley Professional, 2004.

[30] Gerard J Holzmann. The model checker SPIN. Software Engineering, IEEE
Transactions on, 23(5):279–295, 1997.

[31] Damian Isla. Handling complexity in the Halo 2 AI. Presentation at the
Game Developers Conference, 2005.

[32] Damian Isla. Managing complexity in the Halo 2 AI system. In Proceedings of
the Game Developers Conference, 2005.

[33] A. Jaffe, A. Miller, E. Andersen, Y.E. Liu, A. Karlin, and Z. Popovic.
Evaluating competitive game balance with restricted play. In Proc. of AIIDE,
2012.

[34] IO Interactive Kasper Fauerby. Scaling crowds in Hitman: Absolution. In
Vienna Game/AI Conference ’12, 2012.

294

[35] Jörg Kienzle, Alexandre Denault, and Hans Vangheluwe. Model-based design
of computer-controlled game character behavior. In MODELS, volume 4735 of
LNCS, pages 650–665. Springer, 2007.

[36] Jörg Kienzle, Clark Verbrugge, Bettina Kemme, Alexandre Denault, and
Michael Hawker. Mammoth: A Massively Multiplayer Game Research
Framework. In 4th International Conference on the Foundations of Digital
Games (ICFDG), pages 308 – 315, New York, NY, USA, April 2009. ACM.

[37] John Krajewski. Creating all humans: A data-driven AI framework for open
game worlds. http://www.gamasutra.com/view/feature/1862/creating_

all_humans_a_datadriven_.php, 2 2009.

[38] Charles Krueger. Variation management for software production lines.
Software Product Lines, pages 107–108, 2002.

[39] Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),
24(2):131–183, 1992.

[40] Paul Kruszewski. Real-time crowd simulation using AI.implant. In Steve
Rabin, editor, AI Game Programming Wisdom 3, pages 233–248. Charles
River Media, 2006.

[41] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Systematic Transformation Development. Electronic
Communications of the EASST, 21, 2010.

[42] McGill Sable Lab. Soot, 2013. http://www.sable.mcgill.ca/soot/.

[43] Leslie Lamport. A simple approach to specifying concurrent systems.
Communications of the ACM, 32(1):32–45, 1989.

[44] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic verification
of a behavioural subset of UML statechart diagrams using the SPIN model-
checker. Formal Aspects of Computing, 11(6):637–664, 1999.

[45] Chong-U Lim, Robin Baumgarten, and Simon Colton. Evolving behaviour
trees for the commercial game DEFCON. In Applications of Evolutionary
Computation, volume 6024 of LNCS, pages 100–110. Springer, 2010.

[46] Donald W Loveland. Automated theorem proving: A logical basis (Fundamen-
tal studies in computer science). Elsevier, 1978.

295

[47] M2 Research. THE BRIEF - 2009 Ups and Downs. http://www.m2research.

com/the-brief-2009-ups-and-downs.htm, 2007.

[48] Michael Mateas and Andrew Stern. A behavior language: Joint action and
behavioral idioms. In Life-like Characters: Tools, Affective Functions and
Applications. Springer, 2004.

[49] Matthew Jack. Code coverage for QA: A practical approach to testing AI in
games, 2010. http://aigamedev.com/premium/article/code-coverage/.

[50] Alison McMahan. Immersion, engagement and presence. The video game
theory reader, pages 67–86, 2003.

[51] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J Holzmann.
Implementing statecharts in PROMELA/SPIN. In Industrial Strength Formal
Specification Techniques, 1998. Proceedings. 2nd IEEE Workshop on, pages
90–101. IEEE, 1998.

[52] Ian Millington. Artificial Intelligence for Games. Morgan Kaufmann, 2006.

[53] C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy,
K. Waugh, M. Carbonaro, and J. Siegel. A pattern catalog for computer role
playing games. In Game-On-NA 2005, pages 33 – 38. Eurosis, August 2005.

[54] J. Orkin. Three states and a plan: The AI of F.E.A.R. In Proceedings of the
Game Developer’s Conference (GDC), 2006.

[55] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[56] D. L. Parnas. A technique for software module specification with examples.
Communications of the Association of Computing Machinery, 15(5):330–336,
May 1972.

[57] Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In Computer aided verification, pages 377–390. Springer, 1994.

[58] Craig W Reynolds. Steering behaviors for autonomous characters. In Game
developers conference, volume 1999, pages 763–782, 1999.

[59] Miro M. Samek. Practical UML Statecharts in C/C++, Second Edition:
Event-Driven Programming for Embedded Systems. Newnes, 2008.

296

[60] Timm Schäfer, Alexander Knapp, and Stephan Merz. Model checking UML
state machines and collaborations. Electronic Notes in Theoretical Computer
Science, 55(3):357–369, 2001.

[61] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39:41–47,
2006.

[62] Schwab, Brian and Mark, Dave and Dill, Kevin, and Lewis, Mike and Evans,
Richard. GDC: Turing tantrums: AI developers rant. http://www.gdcvault.

com/play/1014586/Turing-Tantrums-AI-Developers-Rant, 2011.

[63] A.M. Smith and M. Mateas. Answer set programming for procedural content
generation: A design space approach. TCIAIG, 3(3):187–200, 2011.

[64] Open Source Software. JMonkeyEngine, 2013. http://jmonkeyengine.org.

[65] Open Source Software. OGRE, 2013. http://www.ogre3d.org/.

[66] C.R. Strong and M. Mateas. Talking with NPCs: Towards dynamic genera-
tion of discourse structures. In Proc. of AIIDE, 2008.

[67] Mankyu Sung, Michael Gleicher, and Stephen Chenney. Scalable behaviors for
crowd simulation. Computer Graphics Forum, 23(3):519–528, 2004.

[68] I. Szita, M. Ponsen, and P. Spronck. Effective and diverse adaptive game
AI. IEEE Transactions on Computational Intelligence and AI in Games,
1(1):16–27, March 2009.

[69] Unity Technologies. Unity, 2013. http://unity3d.com/.

[70] Unreal Technology. The Unreal Engine 3. http://www.unrealtechnology.

com/html/technology/ue30.shtml, 2007.

[71] Andrzej Wasowski. On efficient program synthesis from statecharts. In
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, LCTES ’03, pages 163–170, New York, NY,
USA, 2003. ACM.

[72] Qianchuan Zhao and Bruce H Krogh. Formal verification of statecharts using
finite-state model checkers. Control Systems Technology, IEEE Transactions
on, 14(5):943–950, 2006.

297

[73] A. Zook and M. Riedl. A temporal data-driven player model for dynamic
difficulty adjustment. In Proc. of AIIDE, 2012.

KEY TO ABBREVIATIONS

AI: Artificial Intelligence

API: Application Programming Interface

CTL: Computational Tree Logic

FPS: First-Person Shooter

FSM: Finite State Machine

HFSM: Hierarchical Finite State Machine

IDE: Integrated Development Environment

LTL: Linear Temporal Logic

MDE: Model-Driven Engineering

MMO: Massively Multiplayer Online Game

NPC: Non-Player Character

PC: Player Character

SCXML: Statechart Extensible Markup Language

XMI: XML Metadata Interchange

XML: Extensible Markup Language

298

