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ABSTRACT

We consider groups acting on CAT(0) cube complexes. Typically, an ac-

tion of a group on a CAT(0) cube complex is obtained using Sageev’s dual cube

complex construction. In the setting of hyperbolic groups, if there are suffi-

ciently many quasiconvex codimension-1 subgroups one can obtain an action of

the group on a CAT(0) cube complex that is proper and cocompact. In which

case, by a theorem of Agol that builds upon a program of Wise, the quotient

will be virtually special. In general, however, the dual cube complex might

be locally infinite and possibly even infinite dimensional. The quotient may

not even be compact or virtually special. The aim of this thesis is to study a

natural family of groups that demonstrates the range of potential diversity. A

tubular group is a group that splits as a graph of groups with Z2 vertex groups

and Z edge groups. Wise formulated a necessary and sufficient criterion for a

tubular group to act freely on a CAT(0) cube complex, but speculated that

many of these cubulations would be infinite dimensional. We develop a dila-

tion criterion for the walls used to cubulate a tubular group that explicitly

determines if the dual cube complex is finite or infinite dimensional. A cubu-

lation of a tubular group will be finite dimensional if none of the walls used

to cubulate it are dilated. Otherwise it will be infinite dimensional. Building

upon the characterization of finite dimensionality, we analyse the dual cube

complex in the finite dimensional case more closely to prove that a tubular

group acts freely on a locally finite CAT(0) cube complex if and only if it is

virtually special.
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ABRÉGÉ

Nous considérons les groupes agissant sur les complexes cubiques CHAT(0)

en toute généralité. L’action d’un groupe sur un complexe cubique CHAT(0)

est typiquement obtenue par la construction du complexe cubique dual de

Sageev. Pour les groupes hyperboliques, en trouvant suffisamment de sous-

groupes quasiconvexes de codimension-1, on peut obtenir une action propre et

cocompacte du groupe sur un complexe cubique CHAT(0). De plus, d’après

un théorème d’Agol, le quotient sera virtuellement spécial. Cependant, en

général, le complexe cubique dual peut être de dimension infinie. Le but de

cette thèse est d’étudier une famille naturelle de groupes qui présente toute

l’étendue de la diversité potentielle des situations. Un groupe tubulaire est un

groupe qui se scinde en un graphe de groupes dont les groupes de sommets

sont Z2, et les groupes d’arêtes sont Z. Wise formula une condition nécessaire

et suffisante pour qu’un groupe tubulaire agisse librement sur un complexe

cubique CHAT(0), mais conjectura que beaucoup de ces cubulations seraient

de dimension infinie. Nous développons un critère de dilatation pour les murs

utilisés pour cubuler un groupe tubulaire qui détermine explicitement si le

complexe cubique dual est de dimension finie ou infinie. La cubulation d’un

groupe tubulaire sera de dimension finie si aucun de murs utilisés lors de la

cubulation ne sont dilatés. Dans le cas contraire, la cubulation sera de dimen-

sion infini. Puis, nous prouvons qu’un groupe tubulaire agit sur un complexe

cubique CHAT(0) localement fini si et seulement si celui-ci est virtuellement

spécial.
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,
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CHAPTER 1
Introduction

Geometric group theory studies finitely generated groups by considering

their actions on metric spaces, especially those with geometry resembling non-

positive curvature. Given an action of a group on a space, statements about

the geometry of the space and the quality of the action are then treated as

insightful comments about the group itself. Conversely, the algebra of a group

will either permit or prohibit certain actions, allowing conclusions about the

“geometry” of the group.

The conversation usually begins with a finitely generated group and its

Cayley graph, but quickly moves on to the action of a fundamental group on

the universal cover, general actions on trees, R-trees, buildings, and possible

boundaries of all of the above. In Gromov’s seminal 1987 essay Hyperbolic

Groups [16] two geometric notions were discussed, generalising the idea of

non-positive and negative curvature to the setting of geodesic metric spaces.

The first, the notion of a δ-hyperbolic geodesic metric space, was due to Gro-

mov himself. The second, the notion of a CAT(0) space, Gromov credited to

Cartan, Aleksandrov and Toponogov. This thesis will consider a specialized

family of CAT(0) spaces first given by Gromov as simple examples: CAT(0)

cube complexes.

A CAT(0) space is a geodesic metric space that satisfies the comparison

triangle criterion. Basic examples include trees and hyperbolic manifolds,

but Gromov provided other examples constructed by gluing together various

polyhedrons from either Euclidean or Hyperbolic space. The advantage of such

constructions is that verifying a space is CAT(0) reduces to checking a local
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non-positive curvature criterion and passing to the universal cover to ensure

the space is simply connected. In the special case where all the polygons

are Euclidean cubes with unit side lengths, the local non-positive condition

becomes a purely combinatorial criterion on the link of each 0-cube in the

complex. These spaces became known as CAT(0) cube complexes.

Since their initial introduction, it has become clear that CAT(0) cube

complexes have their own rich and unique geometry that should be studied

aside from the broader class of CAT(0) spaces. At the heart of this geome-

try is the role played by hyperplanes, the codimension-1 subspaces bisecting

the cubes contained in a CAT(0) cube complex. The fundamental develop-

ment in this direction were the results developed in the thesis of Sageev which

showed that these codimension-1 subspaces correspond to codimension-1 sub-

groups [33]. Sageev showed that a group acting essentially on a CAT(0) cube

complex contains a codimension-1 subgroup commensurable to the stabilizer

of a hyperplane in the cube complex. Conversely, Sageev gave an explicit

construction called the dual cube complex that takes as input a group and a

collection of codimension-1 subgroups, and outputs a CAT(0) cube complex

with a group action such that the codimension-1 subgroup virtually stabi-

lizes a hyperplane. This result, strengthened by Gerasimov [14], and Niblo

and Roller [26] makes it possible to say that the existence of an action on

a CAT(0) cube complex, the quality of the action, and the qualities of the

cube complex itself are in fact statements about the existence and structure

of codimension-1 subgroups.

A great deal of progress has been made in recent years cubulating groups;

that is to say, constructing actions of groups on CAT(0) cube complexes. This

progress has been particularly strong for families of Gromov hyperbolic groups.

Most of these groups have been cubulated using Sageev’s construction in one
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form or another. They include Coxeter groups [25, 21], random groups [28],

limit groups [36], small cancellation groups, some one relator groups [38], di-

agram groups [12], hyperbolic free-by-cyclic groups [18, 17], hyperbolic three

manifold groups [2], and many non-hyperbolic 3-manifold groups [30, 29, 23].

Most impressively, perhaps, is the result of Agol, confirming the conjecture of

Wise, that a compact non-positively curved cube complex with hyperbolic fun-

damental group is virtually special [1]. This result was particularly significant

as it positively resolved Thurston’s virtual Haken conjecture.

The information given about a group acting on a CAT(0) cube com-

plex is not restricted to the codimension-1 subgroups. In the broader theory

of CAT(0) spaces, the Flat Torus Theorem [6] shows that for groups acting

properly and cocompactly on CAT(0) spaces, virtually Zn subgroups stabi-

lize a convex subspace isometric to En. Among many other consequences,

this means that subgroups with distorted cyclic subgroups such as non-trivial

Baumslag-Solitar subgroups cannot act properly and cocompactly on CAT(0)

cube complexes.

The Flat Torus Theorem does not hold for actions on CAT(0) space in

general. The primary obstruction is guaranteeing that the isometries on the

space are semi-simple. When a group acts properly and cocompactly on a

CAT(0) space, then it is immediate that the group acts semisimply. In fact,

by a result of Bridson, all isometries of a finite dimensional CAT(0) cube

complex are semisimple [5]. This leaves a problem, since Sageev’s construction

in general will produce infinite dimensional cube complexes.

Motivated by this issue, Haglund considered isometries of CAT(0) cube

complexes via their combinatorial geometry [19]. Although a fixed point or

geodesic axis in the CAT(0) metric does not necessarily exist for an isometry, a

combinatorial axis exists that is isometrically embedded in the combinatorial
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metric. Typically, the combinatorial axis is not a convex subcomplex. The

existence of such an axis implies that groups that act freely on a CAT(0) cube

complex don’t have distorted cyclic subgroups. The first set of results in this

thesis, which appear in [42], generalize Haglund’s combinatorial axis to groups

of isometries that are virtually Zn. We construct an invariant subcomplex that

is isometrically embedded in the combinatorial metric and is the finite product

of CAT(0) cube complexes quasi-isometric to R. As in the case of Haglund’s

axis, this subcomplex is not convex, so it is not a Flat Torus Theorem, since

the torus is not flat.

One benefit of studying hyperbolic groups is that cocompact cubulations

can be guaranteed by producing a collection of quasiconvex codimension-1

subgroups [33]. Outside of this setting, cubulations are expected to be more

complicated. A tubular group is a group that splits as a finite graph of groups

with Z2 vertex groups, and Z edge groups. Alternatively, a tubular group can

be considered as the fundamental group of a tubular space: a graph of spaces

with tori as vertex spaces, and cylinders as edge space. Tubular groups have

already been studied by Brady and Bridson for their interesting isoperimet-

ric qualities [4], and Cashen determined when two tubular groups are quasi-

isometric [10]. Wise [40] considered which tubular groups act freely on a

CAT(0) cube complex, and provided a necessary and sufficient criterion for

such an action to exist. This criterion is the existence of equitable sets: a

finite set of elements from each vertex group that allows the construction of

immersed walls in the tubular space. Sageev’s construction can then be ap-

plied to obtain a CAT(0) cube complex. Wise showed that a very limited class

of such groups could be cocompactly cubulated, and speculated that many of

the cubulations would be infinite dimensional.
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The second collection of results in this thesis, which appear in [44], deter-

mine when the cubulations are infinite dimensional. Let X be a tubular space

and let G = π1X. Given an immersed wall Λ # X obtained from an equitable

set, we construct a homomorphism called the dilation map π1Λ → Q∗. The

dilation map is analogous to the holonomy of a leaf in a foliation. When the

dilation map has finite image we say that the immersed wall is non-dilated. If

all the immersed walls are non-dilated, then the resulting dual cube complex

is finite dimensional. Conversely, when the dilation map has infinite image,

the immersed wall is dilated. If an immersed wall is dilated then the dual cube

complex is infinite dimensional. Moreover, we prove that a dilated immersed

wall is covered by infinitely many pairwise intersecting walls in the universal

cover.

This result should be compared with the results of Rubinstein and Wang,

who showed that there exists π1-injective surfaces in graph manifolds whose

lifts to the universal cover are pairwise intersecting. Rubinstein and Wang’s

interest was in showing that the corresponding subgroups were not separable

and indeed the same conclusion can be made about the codimension-1 sub-

groups corresponding to dilated immersed walls. Yi Liu has also generalised

the work of Rubinstein and Wang to closed aspherical 3-manifolds [24].

We can then conclude that tubular groups provide a rich diversity of

cubulations: cocompact, finite dimensional, and infinite dimensional. One

might ask what possible benefit there might be to knowing that a group has

a non-cocompact, finite dimensional cubulation? For tubular groups, the ex-

istence of a finite dimensional cubulation will imply that the group has very

nice properties that are encapsulated in the notion of being virtually special.

A group is virtually special if it has a finite index subgroup that acts

on a CAT(0) cube complex, such that the quotient is a special cube complex.
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Special cube complexes were introduced by Haglund and Wise [20], and they

are characterized by the fact that they π1-injectively map into the Salvetti

complex of a right angled Artin group. Much is known about right angled

Artin groups and their subgroups (see [11]), so showing a group is virtually

special has many immediate corollaries. For example, any virtually special

group is a subgroup of SLn(Z) for some n.

The final collection of results in this thesis, which appear in [43], show

that a tubular group is virtually special if and only if it acts freely on a locally

finite CAT(0) cube complex. Moreover, we show that a tubular group acts

freely on a finite dimensional CAT(0) cube complex if and only if it acts freely

on a locally finite CAT(0) cube complex. As a consequence we deduce that

if a tubular group acts freely on a finite dimensional or locally finite CAT(0)

cube complex, then it virtually acts freely on an n-dimensional CAT(0) cube

complex for n ≥ 3.
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CHAPTER 2
CAT(0) Geometry and Groups

In this section we review basic definitions and results in the theory of

CAT(0) spaces and CAT(0) cube complexes. We refer the reader to [6] for a

full account of the theory of CAT(0) spaces, to [3, 8, 13] for further background

on geometric group theory, and [34] for an account of the elementary theory

of CAT(0) cube complexes and [39] for an overview of Wise’s program.

Let X be a geodesic metric space. Let x, y, z ∈ X, and let4 be a geodesic

triangle with corners at x, y, z. As 4 satisfies the triangle inequality, there ex-

ists, up to isometry, a comparison triangle 4′ ⊆ E2 with the same side lengths

as 4. We say that 4 satisfies the CAT(0) comparison triangle criterion if for

a, b ∈ 4, and a′, b′ the corresponding points in 4′, then dX(a, b) ≤ dE(a′, b′).

A geodesic metric space is CAT(0), if a geodesic triangle for all x, y, z ∈ X

satisfies the CAT(0) comparison triangle criterion.

Example 2.0.1. A metric tree must satisfy the CAT(0) comparison triangle

criterion since all triangle in a tree are either trivial points or lines, or a tripod.

As the product of CAT(0) spaces is CAT(0) we can deduce that the product

of trees is similarly CAT(0). In the case of manifolds, it is immediate that En

are CAT(0), and an elementary fact for Hn.

We refer to [6] for the following basic results on CAT(0) spaces.

Proposition 2.0.2. Let X be a CAT(0) space.

1. There is a unique geodesic joining any two points in X.

2. X is contractible.

A group G is a CAT(0) group if G acts metrically properly and cocom-

pactly on a CAT(0) space X.
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Example 2.0.3. Realizing the free group Fn as the fundamental group of a

wedge of n-circles, we obtain an action of Fn on the universal cover which is a

tree. Thus Fn is CAT(0). By realising a closed surface with genus > 1 as the

cocompact quotient of H2 we deduce that the fundamental group is CAT(0).

Showing that particular groups may or may not be CAT(0) became a

source of great interest in geometric group theory. Studying the isometries of

CAT(0) spaces has been particularly profitable for understanding which groups

are CAT(0). Perhaps the most famous result is the Flat Torus Theorem [6].

A subspace Y ⊆ X is convex , for all x, y ∈ Y , the geodesic joining x and y is

contained in Y .

Theorem 2.0.4. Let G be a group acting metrically properly and cocompactly

on a CAT(0) space X. Let A ⊆ G be a virtually abelian group, commensurable

to Zn. Then there is a convex subspace Y ⊆ X stabilized by A, such that

Y ∼= En. Moreover, Y realises the minimal translation length of the elements

in A.

This allows us to produce examples of non-CAT(0) groups.

Example 2.0.5. Let G be the Baumslag-Solitar group BS(1, 2) = 〈a, t |

a = ta2t−1〉. The subgroup 〈a〉 ≤ BS(1, 2) is a distorted cyclic subgroup

of G. Suppose that G were a CAT(0) group, the G would act properly and

cocompactly on a CAT(0) space X. By the Švarc-Milnor Lemma [6, I.8.19],

G is quasi-isometric to X. But, by Theorem 2.0.4 〈a〉 stabilizes a convex

subspace L ∼= E1 in X, that realises the minimal translation length of a. This

would imply that 〈a〉 is not a distorted subgroup of G.

2.1 CAT(0) Cube Complexes

An n-cube is a geodesic metric space isometric to [0, 1]n. A 0-cube is a

singleton {0}. A face of an n-cube C ∼= [0, 1]n is the subspace obtained from

restricting finitely many coordinates to 0 or 1. A cube complex is a metric
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space that is the union of subspaces C = {Cα}, where each Cα is isometric

to an n-cube, for some n, and the intersection of C1, C2 ∈ C is a face of C1

and C2, that itself belongs in C. A cube complex is essentially a combinatorial

construction; we can give X the structure of a CW-complex by letting the

n-cubes determine the n-skeleton.

The link of a 0-cube x ∈ X is a simplicial complex such that each n-cube

C containing x corresponds to an (n− 1)-simplex, and if C ′ is the face of C,

then the simplex corresponding to C ′ is contained in the simplex corresponding

to C. Equivalently, the link at x ∈ X is the simplicial complex obtained by

taking the subspace of all points distance 1/2 from x. The simplicial structure

is obtained from its intersection with X, viewed as a CW-complex. Intuitively,

we imagine that the link of a 0-cube is its combinatorial unit tangent space.

Indeed, if a cube complex is homeomorphic to an n-manifold, then the link of

each 0-cube is homeomorphic to an (n− 1)-sphere.

A simplicial complex is flag if every set of n distinct 0-simplicies that

are pairwise contained in a 1-simplex, is contained in an (n − 1)-simplex. A

cube complex X is non-positively curved if the link of every 0-cube is flag.

A CAT(0) cube complex is a simply connected, non-positively curved cube

complex such that the link of every 0-cube is a flag.

We can obtain a CAT(0) cube complex from a non-positively curved cube

complex X by taking the universal cover X̃. This provides a simple means

to construct CAT(0) cube complexes. The following example will prove to be

central in this thesis:

Example 2.1.1. The presentation complex of G = 〈a, b, t | [a, b] = 1, a =

tbt−1〉 is a non-positively curved cube complex. See Figure 2.1.1 to see the

presentation complex alongside the link.
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it is not embedded. Alternatively, a hyperplane in a CAT(0) cube complex

is the subspace of points equidistant in the CAT(0) metric from two adjacent

0-cubes.

Proposition 2.1.2. If X is a CAT(0) cube complex, then the hyperplanes in

X do not self-intersect.

As hyperplanes in non-positively curved cube complexes may self intersect, we

will refer to them as immersed hyperplanes.

There exists an alternative metric on the 0-cubes of X, that we will refer

to as the combinatorial metric d
c
X , sometimes referred to as the `1-metric. The

combinatorial distance between two 0-cubes in X is the length of the shortest

combinatorial path in X joining them. A combinatorial path γ : [a, b] → X

is a continuous map with a, b ∈ Z such that α restricted to [n, n + 1] is an

isometry with 1-cube in X. A combinatorial geodesic γ : [a, b] → X is a

combinatorial path such that if n < m are integers in the interval [a, b], then

d
c
X(γ(n), γ(m)) = m− n. The following lemma shows that the combinatorial

distance between two 0-cubes is the number of hyperplanes in X separating

them.

Lemma 2.1.3. A combinatorial path γ in X is a combinatorial geodesic if γ

intersects each hyperplane at most once.

We will always assume that a group G acting on a CAT(0) cube complex

preserves its cell structure and maps cubes isometrically to cubes. A group

G acts without inversions if the stabilizer of a hyperplane also stabilizes each

complementary component. The requirement that the action be without in-

versions is not a serious restriction as G acts without inversions on the cubical

subdivision.
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Alongside hyperplanes are their carriers and halfspaces. The carrier N(Λ)

of a hyperplane Λ is the minimal closed subcomplex of X containing Λ. Note

that a hyperplane Λ ⊆ X is itself a CAT(0) cube complex.

Lemma 2.1.4. Let X be a CAT(0) cube complex, and Λ ⊆ X a hyperplane.

The carrier N(Λ) is isometric to Λ × [0, 1]. Moreover, N(Λ) is a convex

subcomplex.

Lemma 2.1.5. There are precisely two connected components in X − Λ.

As the complement X−Λ has two components we can partition X =
←−
Λ t

−→
Λ such that

←−
Λ is the first component which we refer to as the open halfspace,

and
−→
Λ is the union of the second component with Λ, which we refer to as the

closed halfspace. Note that
←−
Λ t
−→
Λ = X. This determines what will later be

called a wall in X. Let W be the set of walls determined by the hyperplanes

in X. Let L(Λ) and R(Λ) denote the minimal subcomplexes containing
←−
Λ

and
−→
Λ respectively. Let Lw(Λ) and Rw(Λ) denote the maximal subcomplexes

contained in
←−
Λ and

−→
Λ respectively. Note that L(Λ),R(Λ),Lw(Λ),Rw are

convex subcomplexes.

Let S be a non-empty subset of X. The combinatorial hull of S is

hull(S) =
⋂

S⊆L(Λ)

L(Λ)
⋂

S⊆R(Λ)

R(Λ).

Note that S ⊆ hull(S), and hull(S) is a convex subcomplex as it is the inter-

section of convex subcomplexes. If a group G acts on X, and S is G-invariant,

then so is hull(S).

2.2 Special Cube Complexes

We refer to [20] for full background on special cube complexes.
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Let Γ be a simplicial graph. The right angled Artin group G(Γ) is a group

with presentation

〈gv : v ∈ V Γ | [gv, gw] = 1 : (v, w) ∈ Γ).

Example 2.2.1. If Γ is the totally disconnected graph with n vertices, then

R(Γ) is the group with presentation containing n generators and no relations,

so R(Γ) ∼= Fn. If Γ is the complete graph Kn, then all the generators pairwise

commute so R(Γ) ∼= Zn. If Γ is the complete bipartite graph Kn,m, then

R(Γ) ∼= Fn × Fm.

There is a non-positively curved cube complex R(Γ) called the Salvetti

complex that has π1R(Γ) = G(Γ). We obtain R(Γ) by taking the presentation

complex associated to the above presentation of G(Γ) and inserting an n-cube

for every n-clique in Γ.

Let X, Y be non-positively curved cube complexes. A cubical map X → Y

is a map that restricts for each n-cube C in X to an isometry from C to an n-

cube in Y . A cubical map φ : X → Y induces a map φx : link(x)→ link(φ(x))

for each 0-cube x in X. A simplicial map has no missing edges if two adjacent

0-simplicies in the image also have adjacent preimage. A cubical map φ : X →

Y is a local isometry if φx has no missing edges for all 0-cubes x in X.

Proposition 2.2.2. Let φ : X → Y be a local isometry, then φ∗ : π1X → π1Y

is an injection.

A non-positively curved cube complex is special if it maps by a local

isometry into the Salvetti complex of a finitely generated right angled Artin

group. A non-positively curved cube complex X is virtually special if a finite

index cover of X maps by local isometry into a Salvetti complex of a finitely

generated right angled Artin group. By Proposition 2.2.2, a non-positively

curved cube complex X being virtually special implies that π1X virtually
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there is 0-cube that is either the initial vertex for two distinct edges dual

to Λ that aren’t contained in a 2-cube, or it is the terminal vertex for

two distinct edges dual to Λ that aren’t contained in a 2-cube. See the

left diagram in Figure 2–3.

3. If Λ, Λ′ are hyperplanes in X, then they inter-osculate if they intersect

in X, and there exists a 0-cube in X that is incident to a 1-cube e dual

to Λ, and a 1-cube e′ incident to Λ′ such that e and e′ aren’t contained

in the same 2-cube. See the right diagram in Figure 2–3.

Theorem 2.2.3. Let X be a non-positively curved cube complex containing

finitely many hyperplanes. Then X is special if and only if

1. Each hyperplane embeds in X.

2. Each hyperplane is 2-sided.

3. No hyperplane directly self osculates.

4. No two hyperplanes inter-osculate.

We say that a group is special if it is the fundamental group of a non-

positively curved cube complex, and is virtually special if it has a finite index

subgroup that is special.

2.3 Dual Cube Complexes

We refer to [32] and [22] for full background.

Let S be a set. A wall Λ = {
←−
Λ ,
−→
Λ } in S is a partition of S into two

disjoint, nonempty subsets. The subsets
←−
Λ ,
−→
Λ are the halfspaces of Λ. A wall

Λ separates x, y ∈ S if they belong to distinct halfspaces of Λ. Let K ⊆ S. A

wall Λ intersects K if K nontrivially intersects both
←−
Λ and

−→
Λ . Let W be a

set of walls in S, then (S,W) is a wallspace if for all x, y ∈ S, the number of

walls separating x and y is finite. If Λ intersects K, then the restriction of Λ

to K, is the wall in K determined by Λ
∣∣∣
K

= {
←−
Λ ∩K,

−→
Λ ∩K}. We will not
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permit duplicate walls in W . Let H be the set of halfspaces determined by

W .

Example 2.3.1. Let X be a CAT(0) cube complex, and let Λ ⊆ X be a

hyperplane in X. The complement X − Λ has two components, therefore

defining a wall in X such that
←−
Λ is an open halfspace not containing Λ, and

−→
Λ is a closed halfspace containing Λ. Note that

←−
Λ t
−→
Λ = X. LetW be the set

of walls determined by the hyperplanes in X. Then (X,W) is the wallspace

associated to X. Note that we are using Λ to denote both the hyperplane and

the wall corresponding to the hyperplane.

A function c :W → H is a 0-cube if c[Λ] ∈ {
←−
Λ ,
−→
Λ } and the following two

conditions are satisfied:

1. For all Λ1, Λ2 ∈ W the intersection c[Λ1] ∩ c[Λ2] is nonempty.

2. For all x ∈ S, the set {Λ ∈ W | x /∈ c[Λ]} is finite.

The dual cube complex C(S,W) is the connected CAT(0) cube complex

obtained as follows: Let the union of all 0-cubes be the 0-skeleton. Two 0-

cubes c1 6= c2 are endpoints of a 1-cube if c1[Λ] = c2[Λ] for all but precisely

one Λ ∈ W. An n-cube is then inserted wherever there is the 1-skeleton of an

n-cube. The hyperplanes in C(S,W) are identified naturally with the walls in

W . A proof of the fact that C(S,W) is in fact a CAT(0) cube complex can

be found in [32].

A point x ∈ S determines a 0-cube cx defined such that x ∈ cx[Λ] for

all Λ ∈ W . Condition (1) holds immediately since x ∈ cx[Λ] for all Λ ∈ W .

Condition (2) holds for cx, since if y ∈ S a wall Λ does not separate x and y,

we can deduce that y ∈ cx[Λ], hence all but finitely many Λ satisfy y ∈ cx[Λ].

Such 0-cubes are called the canonical 0-cubes.
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CHAPTER 3
Generalizing Haglund’s Axis Theorem

3.1 A Preliminary Discussion

A connected CAT(0) cube complex X is a quasiline if it is quasiisometric

to R. The rank of a virtually abelian group commensurable to Zn is n. The

goal of this chapter will be the following theorem:

Theorem 3.4.3. Let G be virtually Zn. Suppose G acts properly and without

inversions on a CAT(0) cube complex X. Then G stabilizes a finite dimen-

sional subcomplex Y ⊆ X that is isometrically embedded in the combinatorial

metric, and Y ∼=
∏m

i=1 Ci, where each Ci is a cubical quasiline and m ≥ n.

Moreover, StabG(Λ) is a codimension-1 subgroup for each hyperplane Λ in Y .

Note that Y might not be a convex subcomplex, nor even isometrically

embedded in the CAT(0) metric.

Corollary 3.1.1. Let A be a finitely generated virtually abelian group acting

properly on a CAT(0) cube complex X. Then A acts metrically properly on

X.

Let g be an isometry of X, and let x ∈ X. The displacement of g at x,

denoted τx(g), is the distance dX(x, gx). The translation length of g, denoted

τ(g), is inf{τx(g) | x ∈ X}. Similarly, if x is a 0-cube of X, we can define

the combinatorial displacement of g at x, denoted τ c
x(g), as d

c
X(x, gx) and the

combinatorial translation length, denoted τ c(g), is inf{τ c
x(g) | x ∈ X}. Note

that τ , and τ c are conjugacy invariant. An isometry g of a CAT(0) space

is semisimple if τx(g) = τ(g) for some x ∈ X, and G acts semisimply on a

CAT(0) space X if each g ∈ G is semisimple.
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If a virtually Zn group G acts metrically properly by semisimple isome-

tries on a CAT(0) space X, then the Flat Torus Theorem [6] provides a G-

invariant, convex, flat En ⊆ X. A virtually abelian subgroup is highest if it is

not virtually contained in a higher rank abelian subgroup. If G is a highest

virtually abelian subgroup of a group acting properly and cocompactly on a

CAT(0) cube complex X, then G cocompactly stabilizes a convex subcomplex

Y which is a product of quasilines, as above [41]. However, this theorem fails

without the highest hypothesis. Moreover, most actions do not arise in the

above fashion.

Despite the fact that the flat torus theorem will not hold under the hy-

potheses of Theorem 3.4.3, we can deduce the following:

Corollary 3.4.4. Let G be virtually Zn. Suppose G acts properly and without

inversions on a CAT(0) cube complex X. Then G cocompactly stabilizes a

subspace F ⊆ X homeomorphic to Rn such that for each hyperplane Λ ⊆ X,

the intersection Λ ∩ F is either empty or homeomorphic to Rn−1.

The initial motivation for Theorem 3.4.3 and Corollary 3.4.4 was to re-

solve the following question posed by Wise. Although we have not found

a combinatorial flat, Corollary 3.4.4 is perhaps better suited to applications

(see [43]).

Problem 3.1.2. Let Z2 act freely on a CAT(0) cube complex Y . Does there

exist a Z2-equivariant map F → Y where F is a square 2-complex homeomor-

phic to R2, and such that no two hyperplanes of F map to the same hyperplane

in Y ?

A combinatorial geodesic axis for g is a g-invariant, isometrically em-

bedded, subcomplex γ ⊆ X with γ ∼= R. Note that γ realizes the minimal

combinatorial translation length of g. Theorem 3.4.3 is a high dimensional

generalization of Haglund’s combinatorial geodesic axis theorem. Haglund’s
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proof involved an argument by contradiction, exploiting the geometry of hyper-

planes. We reprove the result in Section 3.5 by using the dual cube complex

construction of Sageev. The results are further support for Haglund’s slo-

gan “in CAT(0) cube complexes the combinatorial geometry is as nice as the

CAT(0) geometry”.

The following is an application of Theorem 3.4.3.

Corollary 3.1.3. Let H be virtually Zn, and let φ : H → H be an injection

with φ 6= φi for all i > 1. Then G = 〈H, t | t−1ht = φ(h) : h ∈ H〉 cannot act

properly on a CAT(0) cube complex.

Proof. Suppose that G acts properly on a CAT(0) cube complex X. After

subdividing X we can assume that G acts without inversions. As H is finitely

generated, there exists an a in the finite generating set such that φi(a) 6= a

for all i ∈ N, otherwise φi = φ for some i, contradicting our hypothesis. Thus,

|{φi(a)}| = ∞. By Theorem 3.4.3 there is an H-equivariant isometrically

embedded subcomplex Y ⊆ X such that Y ∼=
∏m

i=1 Ci where each Ci is a

cubical quasiline.

As Y is isometrically embedded in X in the combinatorial metric, the

combinatorial translation length τ c(φi(a)) is the same in Y as it is in X. The

set {τ c(φi(a))}i∈N must be unbounded since the action of H on Y is proper and

Y is locally finite. However, since τ c is conjugacy invariant in G, we conclude

that τ c(φi(a)) = τ c(φj(a)) for all i, j ∈ N. Thus, we arrive at the contradiction

that {τ c(φi(a))}i∈N is both contant and unbounded.

The above argument is inspired by the solvable subgroup theorem [6,

II.7.8]. However, we have the following example of a solvable group which

does act freely on a CAT(0) cube complex.

Example 3.1.4. Let H = 〈a1, a2, . . . | [ai, aj] : i 6= j〉. Note that H is the

fundamental group of the non-positively curved cube complex Y obtained from
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a 0-cube v, and 1-cubes e1, e2, e3 . . . with n-cubes inserted for every cardinality

n collection of 1-cubes to create an n-torus. One should think of Y as an

infinite cubical torus. The oriented loop ei represents the element ai.

Let φ : H → H be the monomorphism such that φ(ai) = ai+1. Let

G = H∗φ = 〈t, a1, a2, . . . | [ai, aj] : i 6= j , t−1ait = ai+1〉 be the associated

ascending HNN extension. Note that G is generated by a1 and t. There is a

graph of spaces X obtained by letting Y be the vertex space and Y × [0, 1] be

the edge space and identifying (v, 1) and (v, 0) with v, and the 1-cube ei×{1}

with ei and ei × {0} with ei+1. Note that X is nonpositively curved, and

therefore G = π1X acts freely on the CAT(0) cube complex X̃, the universal

cover of X.

3.2 Technical Results Relating to Dual Cube Complexes

Lemma 3.2.1. Let X be a CAT(0) cube complex. Let W be a set of walls

obtained from the hyperplanes in X. Let Z be a connected subcomplex of X,

and let WZ ⊆ W be the subset of walls intersecting Z. Let V be walls in WZ

restricted to Z. Then (Z,V) is a wallspace and C(Z,V) embeds in C(X,W)

isometrically in the combinatorial metric.

Proof. We first claim that the map WZ → V is an injection. Suppose that

Λ1, Λ2 ∈ WZ are distinct walls. As Λ1, Λ2 intersects Z, and since Z is con-

nected, there are 1-cubes e1, e2 in Z that are dual to the hyperplanes corre-

sponding to Λ1, Λ2. Therefore, both 0-cubes in e1 belong in a single halfspace

of Λ2

∣∣∣
Z

, so Λ1

∣∣∣
Z
6= Λ2

∣∣∣
Z

.

We construct a map φ : C(Z,V)→ C(X,W) on the 0-skeleton first. Let c

be a 0-cube in C(Z,V). We let φ(c) ∈ C(X,W) be the uniquely defined 0-cube

such that φ(c)[Λ] ⊇ c[Λ
∣∣∣
Z

] for Λ
∣∣∣
Z
∈ V, and φ(c)[Λ] ⊇ Z for Λ ∈ W −WZ . To

verify that φ(c) is a 0-cube, first observe that φ(c)[Λ1] ∩ φ(c)[Λ2] is nonempty

since Λ1

∣∣∣
Z
∩ Λ2

∣∣∣
Z
⊆ X. Secondly, if x ∈ X we need to show that x ∈ φ(c)[Λ]
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for all but finitely many Λ ∈ W . Choose z ∈ Z, then z ∈ c[Λ
∣∣∣
Z

] for all

Λ
∣∣∣
Z
∈ V − {Λ1

∣∣∣
Z

, . . . , Λk

∣∣∣
Z
}, hence z ∈ φ(c)[Λ] for all Λ ∈ WZ −{Λ1, . . . , Λk}.

Let {Λk+1, . . . , Λk+`} be the set of walls in W separating x and z. Then

x ∈ φ(c)[Λ] for all Λ ∈ W − {Λ1, . . . Λk+`}.

The 0-cubes are embedded since if c1 6= c2, there exists Λ
∣∣∣
Z
∈ V such that

c1[Λ
∣∣∣
Z

] 6= c2[Λ
∣∣∣
Z

], hence φ(c1)[Λ] 6= φ(c2)[Λ]. If c1, c2 are adjacent 0-cubes in

C(Z,V), then c1[Λ
∣∣∣
Z

] = c2[Λ
∣∣∣
Z

] for all Λ
∣∣∣
Z
∈ V, with the exception of precisely

one wall Λ̂
∣∣∣
Z

. Therefore, we can deduce that φ(c1)[Λ] = φ(c2)[Λ] for all walls

in W , with the precise exception of Λ̂. Therefore, the 1-skeleton of C(Z,V)

embeds in C(X,W), which is sufficient for φ to extend to an embedding of the

entire cube complex.

Consider C(Z,V) as a subcomplex of C(X,W). The set of hyperplanes in

C(Z,V) embeds into the set of hyperplanes in C(X,W). To see that C(Z,V)

is an isometrically embedded subcomplex, let z1, z2 be 0-cubes in Z and γ

be a geodesic combinatorial path in C(Z,V) joining them. Each hyperplane

dual to γ in C(Z,V) intersects γ precisely once, and since the hyperplanes in

C(Z,V) inject to hyperplanes in C(X,W), it is geodesic there as well.

Lemma 3.2.2. Let S be a set and let W be a set of walls of S. Let G be

a group acting on (S,W). Let V ⊆ W be a G-invariant subset. Then there

is a G-equivariant function φ : C(S,W)0 → C(S,V)0. Moreover, φ−1(z) is

nonempty for all 0-cubes z in C(S,V).

Proof. Let c be a 0-cube in C(S,W). Let φ(c)[Λ] = c[Λ] for Λ ∈ V. It is

immediate that φ is G-equivariant.

To verify φ(c)[Λ] is a 0-cube in C(S,V) first note that φ(c1)[Λ1]∩φ(c2)[Λ2] 6=

∅ for all Λ1, Λ2 ∈ V, since c1[Λ1]∩ c2[Λ2] 6= ∅ for all Λ1, Λ2 ∈ W. Secondly, for

all x ∈ S observe that x ∈ φ(c)[Λ] for all but finitely many Λ ∈ V. Indeed,

this is true for all but finitely many Λ ∈ W.
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To see that φ−1(z) is non-empty for all 0-cubes z in C(S,V) we determine

a 0-cube x in C(S,W) such that φ(x) = z. Fix s ∈ S. Let x[Λ] = z[Λ] for

Λ ∈ V. Suppose that Λ ∈ W −V. If
−→
Λ ⊇ z[Λ′] for some Λ′ ∈ V let x[Λ] =

−→
Λ .

Similarly if
←−
Λ ⊇ z[Λ′]. Otherwise, if Λ intersects z[Λ′] for all Λ′ ∈ V then let

s ∈ x[Λ].

To verify that x is a 0-cube, consider the following cases to show x[Λ1] ∩

x[Λ2] 6= ∅ for Λ1, Λ2 ∈ W. If Λ1, Λ2 ∈ V then x[Λ1]∩x[Λ2] = z[Λ1]∩z[Λ2] 6= ∅.

Suppose that Λ1 ∈ W − V and x[Λ1] ⊆ z[Λ′1] for some Λ′1 ∈ V . If Λ2 ∈ V ,

then x[Λ1] ∩ x[Λ2] ⊇ z[Λ′1] ∩ z[Λ2] 6= ∅. If Λ2 ∈ W − V and x[Λ2] ⊆ z[Λ′2] for

some Λ′2 ∈ V then x[Λ1] ∩ x[Λ2] ⊆ z[Λ′1] ∩ z[Λ′2] 6= ∅. If Λ2 intersects z[Λ] for

all Λ ∈ V, then x[Λ1] ∩ x[Λ2] ⊇ z[Λ′1] ∩ x[Λ2] 6= ∅. Finally if both s ∈ x[Λ1]

and x[Λ2], then their intersection will contain at least s.

Finally, we verify that for s′ ∈ S there are only finitely many Λ ∈ W

such that s′ /∈ x[Λ]. Suppose, by way of contradiction, that there is an infinite

subset of walls {Λ1, Λ2, . . .} ⊆ W such that s′ /∈ x[Λi] for all i ∈ N. We can

assume, by excluding at most finitely many walls, that each Λi ∈ W − V .

Similarly, by excluding finitely many walls, we can assume that Λi does not

separate s and s′. Therefore, s /∈ x[Λi] for i ∈ N. Therefore, by construction

of x, there exist Λ′i ∈ V such that z[Λ′i] ⊆ x[Λi], which implies that s′ /∈ z[Λ′i].

There are infinitely many distinct Λ′i, as otherwise there is a Λ′ ∈ V such that

z[Λ′] ⊆ x[Λi] for infinitely many i, which would imply that infinitely many Λi

separate s′ from an element in the complement of z[Λ′]. Therefore, infinitely

many distinct walls Λ′i ∈ V have s′ /∈ z[Λ′i], contradicting that z is a 0-cube in

C(S,V).

3.3 Minimal Zn-invariant convex subcomplexes

The following Theorem is found in [14] (or less explicitly in [26]).
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Theorem 3.3.1. Let G be a finitely generated group that acts on a CAT(0)

cube complex X without a fixed point or inversions. Then there is a hyperplane

in X that is stabilized by a codimension-1 subgroup of G.

The goal of this section is to prove the following:

Lemma 3.3.2. Let G be a finitely generated group acting without fixed point

or inversions on a CAT(0) cube complex X. There exists a minimal, G-

invariant, convex subcomplex Xo ⊆ X such that Xo contains only finitely

many hyperplane orbits, and every Xo hyperplane stabilizer is a codimension-

1 subgroup of G.

Proof. Since G is finitely generated, by taking the convex hull of a G-orbit

we obtain a G-invariant convex subcomplex Xo ⊆ X containing finitely many

G-orbits of hyperplanes. Assume that Xo is a minimal such subcomplex in

terms of the number of hyperplane orbits.

Let (X,W) be the wallspace obtained from the hyperplanes in X. Suppose

that StabG(Λ) is not a codimension-1 subgroup of G for some Λ ∈ W. Let

GΛ ⊆ W be the G-orbit of Λ. By Lemma 3.2.2 there is an G-invariant

map φ : X0
o → C(Xo, GΛ)0. Since StabG(Λ) is not commensurable to a

codimension-1 subgroup, Theorem 3.3.1 implies that there is a fixed 0-cube x

in C(Xo, GΛ). Lemma 3.2.2 then implies that φ−1(x) is non-empty. Assuming

that φ−1(x) ⊆
←−
Λ , then the intersection

⋂
g∈G gL(Λ) contains a proper, convex,

G-invariant subcomplex of Xo, with one less hyperplane orbit. This contradicts

the minimality of Xo.

The following Corollary follows since all codimension-1 subgroups of a

rank n virtually abelian group are of rank (n− 1).

Corollary 3.3.3. Let G be a rank n, virtually abelian group acting without

fixed point or inversions on a CAT(0) cube complex X. Then there exists

a minimal, G-invariant, convex subcomplex Xo ⊆ X such that Xo contains

23



only finitely many hyperplane orbits, and every hyperplane stabilizer is a rank

(n− 1) subgroup of G.

3.4 Proof of Main Theorem

Definition 3.4.1. Regard R as a CAT(0) cube complex whose 0-skeleton is Z.

Let g be an isometry of X. A geodesic combinatorial axis for g is a g-invariant

subcomplex homeomorphic to R that embeds isometrically in X.

Definition 3.4.2. Let (M, d) be a metric space. The subspaces N1, N2 ⊆ M

are coarsely equivalent if each lies in an r-neighbourhood of the other for some

r > 0.

Theorem 3.4.3. Let G be virtually Zn. Suppose G acts properly and without

inversions on a CAT(0) cube complex X. Then G stabilizes a finite dimen-

sional subcomplex Y ⊆ X that is isometrically embedded in the combinatorial

metric, and Y ∼=
∏m

i=1 Ci, where each Ci is a cubical quasiline and m ≥ n.

Moreover, StabG(Λ) is a codimension-1 subgroup for each hyperplane Λ in Y .

Proof. By Corollary 3.3.3 there is a minimal, non-empty, convex subcomplex

Xo ⊆ X stabilized by G, containing finitely many hyperplane orbits, and

StabilizerG(Λ) is a rank (n− 1) subgroup of G, for each hyperplane Λ ⊆ Xo.

Let S = {g1, . . . , gr} be a generating set for G. Let x ∈ Xo be a 0-cube.

Let Υ be the Cayley graph of G with respect to S. Let φ : Υ → Xo be a

G-equivariant map that sends vertices to vertices, and edges to combinato-

rial paths or vertices in Xo. Let Q = φ(Υ). As G acts properly on X, and

cocompactly on Υ, the graph Q is quasiisometric to G. Let WQ be the set

of hyperplanes intersecting Q, and let (Q,WQ) be the associated wallspace.

By Lemma 3.2.1 we know that C(Q,WQ) is an isometrically embedded sub-

complex of Xo. Fix a proper action of G on Rn, and let q : Q → Rn be a

G-equivariant quasiisometry. Note that StabilizerG(Λ) is a quasiisometrically
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embedded subgroup of G, for all Λ ∈ WQ. Thus q(Λ ∩ Q) is coarsely equiv-

alent to a codimension-1 affine subspace H ⊆ Rn. Moreover, q(
←−
Λ ∩ Q) and

q(
−→
Λ ∩Q) are coarsely equivalent to the halfspaces of H.

Let n > 0. Since there are finitely many orbits of hyperplanes in Xo, there

are only finitely many commensurability classes of stabilizers. Therefore, we

may partition WQ as the disjoint union
⊔m

i=1Wi where each Wi contains all

walls with commensurable stabilizers. For each Λi ∈ Wi let q(Λi ∩ Q) be

coarsely equivalent to a codimension-1 affine subspace Hi ⊆ Rn, stabilized by

StabilizerG(Λi). If i 6= j then Hi and Hj are nonparallel affine subspaces, and

therefore Λi and Λj will intersect in Q. Therefore, every wall in Wi intersects

every wall in Wj if i 6= j, and thus C(Q,WQ) ∼=
∏m

i=1 C(Q,Wi).

Finally, we show that C(Q,Wi) is a quasiline for each 1 ≤ i ≤ m. As

G permutes the factors in
∏m

i=1 C(Q,Wi), there is a finite index subgroup

G′ 6 G that preserves each factor. For each i, the stabilizers StabG(Λ) are

commensurable for all Λ ∈ Wi. Therefore, there is a cyclic subgroup Zi that

is not virtually contained in any StabG(Λ) and thus acts freely on C(Q,Wi).

As the stabilizers of Λ ∈ Wi are commensurable, all q(Λ ∩ Q) will be quasi-

equivalent to parallel codimension-1 affine subspaces of Rn, which implies that

only finitely many Zi-translates of Λ can pairwise intersect. As there are

finitely many Zi-orbits of Λ in Wi, there is an upper bound on the number

of pairwise intersecting hyperplanes in Wi. Thus, there are finitely many Zi-

orbits of maximal cubes in C(Q,Wi), which implies that C(Q,Wi) is CAT(0)

cube complex quasiisometric to R.

We can now prove Corollary 3.4.4.

Corollary 3.4.4. Let G be virtually Zn. Suppose G acts properly and without

inversions on a CAT(0) cube complex X. Then G cocompactly stabilizes a
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subspace F ⊆ X homeomorphic to Rn such that for each hyperplane Λ ⊆ X,

the intersection Λ ∩ F is either empty or homeomorphic to Rn−1.

Proof. By Theorem 3.4.3 there is a G-equivariant, isometrically embedded,

subcomplex Y ⊆ X, such that Y =
∏m

i=1 Ci, where each Ci is a quasiline,

and StabG(Λ) is a codimension-1 subgroup. Considering Y with the CAT(0)

metric, note that Y is a complete CAT(0) metric space in its own right, and G

acts semisimply on Y . By the Flat Torus Theorem [6] there is an isometrically

embedded flat F ⊆ Y . Note that F ⊆ X is not isometrically embedded. As

StabG(Λ) is a codimension-1 subgroup of G for each hyperplane Λ in X, the

intersection Λ∩F = (Λ∩Y )∩F is either empty or, as F ⊆ Y is isometrically

embedded, the hyperplane intersection is an isometrically embedded copy of

Rn−1.

3.5 Haglund’s Axis

The goal of this section is to reprove the following result of Haglund as a

consequence of Corollary 3.4.4.

Theorem 3.5.1 (Haglund [19]). Let G be a group acting on a CAT(0) cube

complex without inversions. Every element g ∈ G either fixes a 0-cube of G,

or stabilizes a combinatorial geodesic axis.

Proof. As finite groups don’t contain codimension-1 subgroups, Theorem 3.3.1

implies that if g is finite order then it fixes a 0-cube. Suppose that G does not

fix a 0-cube, then 〈g〉 must act properly on X. By Corollary 3.4.4, there is a

line L ⊂ X stabilized by 〈g〉, that intersects each hyperplane at most once at

a single point in L. Let WL be the set of hyperplanes intersecting L. Note

that the intersection points of the walls in WL with L is locally finite subset.

Fix a basepoint p ∈ L that doesn’t belong to a hyperplane intersecting L,

and let x be the canonical 0-cube corresponding to p. Let Λ1, . . . , Λk be the
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set of hyperplanes separating p and gp, and assume that p ∈
←−
Λ i. Reindex the

hyperplanes such that
←−
Λ 1 ∩L ⊆

←−
Λ 2 ∩L ⊆ · · · ⊆

←−
Λ k ∩L. The ordering of the

hyperplanes separating p and gp determines a combinatorial geodesic joining

x and gx of length k, where the i-th edge is a 1-cube dual to Λi. This can be

extended 〈g〉-equivariantly, to obtain a combinatorial geodesic axis Lc, since

each hyperplanes intersects Lc at most once.
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CHAPTER 4
Tubular Groups and their Finite Dimensional Cubulations

4.1 A Preliminary Discussion

A tubular group G is a group which splits as a graph of groups with Z2

vertex groups and Z edge groups. A tubular group is the fundamental group

of a graph of spaces X with each vertex space homeomorphic to a torus and

each edge space homeomorphic to a cylinder. The graph of spaces X is a

tubular space. Note that in this chapter X will denote a tubular space, and

not a CAT(0) cube complex as in Chapter 3. Moreover, we will let X̃ denote

the universal cover.

In [40] Wise reduces the existence of cubulations to a combinatorial cri-

terion called equitable sets. Given an equitable set one can construct a finite

set of immersed walls. An immersed wall is a graph Λ immersed π1-injectively

in X, such that Λ̃ lifts to a 2-sided embedding Λ̃ → X̃. By 2-sided we mean

that the image of Λ̃ in X̃ is contained in a neighbourhood homeomorphic to

Λ̃ × [−1, 1]. The set of all such lifts gives a G-invariant set W of walls. The

pair (X̃,W) is a wallspace. In this chapter, all references to “immersed walls”

will be in reference to immersed walls obtained from an equitable set. Note

that the theorems referring to immersed walls will not apply to any

other kind of immersed walls. Section 4.6 defines the notion of a dilating

wall which can be recognized through a combinatorial criterion. As explained

in Proposition 4.6.13, a wall not being dilated means its G-translates intersect-

ing a vertex space in X̃ can be partitioned into finitely many sets of pairwise

nonintersecting walls.
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Definition 4.1.1. An infinite cube in a CAT(0) cube complex is the union of

an ascending sequence of n-cubes cn of X̃ such that cn is a subcube of cn+1

for each n.

The following is the main goal of this chapter.

Theorem 4.6.10. Let X be tubular space, and (X̃,W) the wallspace obtained

from a finite set of immersed walls in X. The following are equivalent:

1. The dual cube complex C(X̃,W) is infinite dimensional.

2. The dual cube complex C(X̃,W) contains an infinite cube.

3. One of the immersed walls is dilated.

Corollary 4.6.11 states that it is decidable if a given immersed wall is dilated.

However, in contrast to cocompactness, there is no known simple criterion to

determine whether or not a given tubular group acts on a finite dimensional

CAT(0) cube complex. See Example 4.7.1 for an example of a direct proof

that a specific tubular group does not posses an equitable set that can produce

non-dilated immersed walls.

A group G is separable if every finitely generated subgroup H 6 G is the

intersection of all finite index subgroups containing H. Burns, Karrass, and

Solitar gave the first example of a non-separable 3-manifold group [7]. Niblo

and Wise reproved this result [27]. Rubinstein and Wang produced an example

of a non-embedded immersed surface S in a graph manifold M such that

S̃ → M̃ is injective and any two π1M translates of S̃ intersect [31]. It follows

that π1S is not separable in π1M . This is an application of the geometric

interpretation for separability given by Scott [35]. Theorem 4.6.10 carries

information about the separability of the associated codimension-1 subgroups

of G, and provides a new proof of the non-subgroup separability of certain

3-manifold groups that conceptually unifies the result of Burns, Karrass, and

Solitar with the geometric proof of Rubinstein and Wang (see Example 4.4.1).
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Finally, the following Theorem is a consequence of Theorem 4.6.10 to-

gether with a study of the geometry of the walls.

Theorem 4.1.2. Let the tubular space X associated to the tubular group G

have a finite set of immersed walls. If the corresponding wallspace (X̃,W)

has quasi-isometrically embedded walls, then the dual CAT(0) cube complex

C(X̃,W) is finite dimensional.

Example 4.8.2 demonstrates that quasi-isometrically embedded walls are not

a necessary condition for finite dimensionality.

4.2 Equitable Sets and Immersed Walls

Let G be a tubular group with associated tubular space X and underlying

graph Γ. Given an edge e in a graph we will let −e and +e respectively denote

the initial and terminal vertices of e. Let Xv and Xe denote vertex and edge

spaces in this graph of spaces. Let X−e and X+
e be the boundary circles of Xe,

and denote the attaching maps by ϕ−e : X−e → X−e, and ϕ+
e : X+

e → X+e.

Note that ϕ−e and ϕ+
e respectively represent generators of Ge in G−e and G+e.

We will let X̃ denote the universal cover of X. Let X̃ṽ and X̃ẽ denote vertex

and edge spaces in the universal cover X̃, and let Γ̃ denote the Bass-Serre tree.

We will assume that each vertex space has the structure of a non-positively

curved geodesic metric space and that attaching maps ϕ−e and ϕ+
e define locally

geodesic curves in X−e and X+e.

4.2.1 Equitable Sets and Intersection Numbers

Given a pair of closed curves in a torus α, β : S1 → T , the intersection

points are the elements (p, q) ∈ S1×S1 such that α(p) = β(q). For a pair of ho-

motopy classes [α], [β] of closed curves in a torus T , their geometric intersection

number #
[
[α], [β]

]
is the minimal number of intersection points realised by a

pair of representatives from the respective classes. This number is realised by

any pair of geodesic representatives of the classes. If B = {[βi]} is a finite set of
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homotopy classes of curves in T , then #[α, B] :=
∑

i #[α, βi]. Viewing [α] and

[β] as elements of π1T = Z2, we can compute that #
[
[α], [β]

]
=

∣∣∣ det
[
[α], [β]

]∣∣∣.

Given an identification of Z2 with π1T , the elements of Z2 are identified with

homotopy classes of curves in T , so it makes sense to consider their geometric

intersection number. An equitable set for a tubular group G is a collection of

sets {Sv}v∈Γ, where Sv is a finite set of distinct geodesic curves in Xv that are

either disjoint or transverse each other and to the attaching maps of adjacent

edge spaces, such that Sv generate a finite index subgroup of π1Xv = Gv, and

#
[
ϕ−e , S−e

]
= #

[
ϕ+

e , S+e]. Note that equitable sets can also be given with Sv

a finite subset of Gv that generates a finite index subgroup of Gv and satisfies

the corresponding equality for intersection numbers. This is how Wise formu-

lates equitable sets, and its equivalence follows from exchanging elements of

Gv = π1Xv with geodesic closed curves in Xv that represent the correspond-

ing elements. An equitable set is fortified if for each edge e in Γ, there exists

α+
e ∈ S+e and α−e ∈ S−e such that #[α+

e , ϕ+
e ] = #[α−e , ϕ−e ] = 0. An equitable

set is primitive if every element α ∈ Sv represents a primitive element in Gv.

4.2.2 Immersed Walls From Equitable Sets

The main theorem proven in [40] is

Theorem 4.2.1 (Wise). A tubular group G acts freely on a CAT(0) cube

complex if and only if there is an equitable set for G.

As we repeatedly use the construction given in the proof, here is an outline of

how an equitable set provides a CAT(0) cube complex with a free G-action.

Immersed walls are constructed from circles and arcs. For each α ∈

Sv, let S1
α be the domain of α. The disjoint union

⊔
S1

α over all α ∈ Sv

and v ∈ V Γ are the circles. Since #[ϕ−e , S−e] = #[ϕ+
e , S+e], there exists a

bijection from the intersection points between curves in S−e and ϕ−e , and the

intersection points between curves in S+e and ϕ+
e . Let (p−, q−) ∈ S1

−e×X−e and
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(p+, q+) ∈ S1
+e ×X+

e be corresponding intersection points between α± ∈ S±e

and ϕ±e . Then an arc a ∼= [0, 1] has its endpoints attached to p− and p+. The

endpoints of a are mapped into X−e ∩Xe and X+e ∩Xe, so the interior of a

can be embedded in Xe. After attaching an arc for each pair of corresponding

intersection points, we obtain a set {Λ1, . . . , Λn} of connected graphs that map

into X, called immersed walls. The fundamental group of Λi has its own graph

of groups structure with infinite cyclic vertex groups and trivial edge groups.

All “immersed walls” in this Chapter and Chapter 5 are immersed

walls constructed from equitable sets as above.

A lift of Λ̃i → X̃ is a two sided embedding in X̃, separating X̃ into two

halfspaces. The images of the lifts of Λ̃i to X̃ are horizontal walls Wh. The

vertical walls Wv are obtained from the lifts of curves αe : S1 → Xe given by

the inclusion S1×{0} ↪→ S1× [−1, 1]. The set W =Wh tWv of all horizonal

and vertical walls gives a wallspace (X̃,W) where the G-action on X̃ also gives

an action on W .

A set of immersed walls is fortified if they are obtained from a fortified

equitable set. A set of immersed walls is primitive if they are obtained from a

primitive equitable set.

Remark 4.2.2. In the above construction, the resulting dual CAT(0) cube

complex depends on the choice of correspondence in each edge space, as well as

how the interior of each arc embeds in the cylinder. Example 4.7.3 shows finite

dimensionality of the cubulation is dependent on the choice of correspondence

between the intersection points at either end of the edge space. By contrast,

Theorem 4.6.10 and the definition of a dilated immersed wall imply finite

dimensionality is invariant of the subsequent choice of immersion of the interior

of the arcs in the edge spaces.
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4.3 Examples of tubular groups

Tubular groups include examples from many other classes of interesting

groups within geometric group theory. For example, there are free-by-cyclic

groups, right angled Artin groups, and the fundamental groups of graph man-

ifolds that are also tubular groups. By way of motivation we will give some

key examples that illustrate the variety available.

Example 4.3.1 (Gersten’s Group [15]). Let F3 = 〈a, b, c〉 and let φ be the

automorphism of F3 determined by mapping a 7→ a, b 7→ ba, and c 7→ ca2. Let

G be the Free-by-Cyclic group constructed from F3 and φ. G = 〈a, b, c, t | a =

tat−1, b = tbat−1, c = tca2t−1〉. Note that 〈a, t〉 is a rank 2 free abelian group.

Proposition 4.3.2 ([15]). G is not CAT(0).

Proof. Suppose that G were to act metrically properly and cocompactly on

a CAT(0) space X. Then 〈a, t〉 would stabilize a convex subspace Y ⊆ X

such that Y ∼= E2 and such that the minimal translation lengths of a and t

would be realized on Y . Rewriting the second relator as b−1tb = ta−1 we can

deduce that t is conjugate to ta−1. Similarly, by rewriting the third relator as

c−1tc = ta−2 we can deduce that t is conjugate to ta−2.

The minimal translation length in X of an element of G is invariant under

conjugation. Therefore the translation lengths of t, ta−1, and ta−2 coincide.

Therefore if y ∈ Y , then ty, ta−1y, and ta−2y are three distinct points of a circle

centered at y. This contradicts the fact that ty, ta−1y, and ta−2y must also be

colinear points in Y , since they are each 〈a〉-translates of each other.

Although G is not CAT(0), as a consequence of Wise’s criterion for

cubulation we can see that G does act freely on a CAT(0) cube complex.

This action will necessarily be non-semisimple. The presentation may be

rewritten as 〈x, y, s, t | [x, y] = 1, y = s−1xys, x−1y = t−1xyt〉, by sending

a 7→ x, t 7→ xy, b 7→ s, c 7→ t. Note that this presentation makes it explicit
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that G is a tubular group,decomposing with a single vertex group 〈x, y〉 ∼= Z2,

and two Z edge groups with stable letters s and t. It can then be verified that

S = {xy, xy−1} is an equitable set since #[xy, S] = 2 = #[xy−1, S] = #[y, S].

Example 4.3.3 (Non-Hopfian [37]). Let G = 〈a, b, s, t | [a, b] = 1, sas−1 =

(ab)2, tbt−1 = (ab)2〉. It is clear from the presentation that G splits as a graph

of groups with a single vertex group 〈a, b〉 ∼= Z2, and two Z edge groups with

stable letters s and t.

In [37], Wise constructed an explicit non-positively curved 2-complex with

fundamental group G. Moreover, he showed that G is non-Hopfian: there

exists a surjection from G to itself that is not injective. As a consequence this

implies that G is not residually finite.

We define a homomorphism φ : G→ G, by mapping a 7→ a2, b 7→ b2, s 7→

s, and t 7→ t. Since φ(ab) = (ab)2, we can then conjugate by either s or t to

obtain a and b in the image of φ. Therefore φ is surjective.

To see that φ is not injective we consider the element g = [s−1(ab)s, t−1(ab)t]

and verify using the normal form theorem for graphs of groups that g 6= 1.

Then we calculate that φ(g) = [s−1(ab)2s, t−1(ab)2t] = [a, b] = 1, which implies

that φ is not injective.

It can be shown that G has an equitable set, and therefore that G acts

freely on a CAT(0) cube complex. Furthermore, Thm 1.2 in [40] states that

all CAT(0) tubular groups act freely on a CAT(0) cube complex, although not

necessarily a finite dimensional CAT(0) cube complex.

4.4 The Motivating Example

The next example motivates the definitions and theorems given in this

chapter that identify which immersed walls give infinite cubulations.

Example 4.4.1. Consider the tubular group G = 〈a, b, t | [a, b] = 1, tat−1 =

b〉. This is a cyclic HNN extension of Z2 = 〈a, b〉. The associated graph of
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Proof. Let X̃ũ be a vertex space in Ỹ . If Λ̃1 ∩ X̃ũ and Λ̃2 ∩ X̃ũ are a pair of

parallel (possibly overlapping) lines in X̃ũ then Λ̃1, Λ̃2 intersect an identical

set of edge spaces adjacent to X̃ũ, and thus an identical set of vertex spaces

adjacent to X̃ũ. Therefore it can be deduced inductively, starting with X̃ṽ,

that Λ̃1 and Λ̃2 must intersect an identical set of vertex and edge spaces in

Ỹ .

Lemma 4.5.3. Let S be a finite set of walls in (X̃,W) that pairwise intersect.

There exists a vertex space X̃ṽ that intersects every wall in S.

Proof. Each wall in S maps to a connected subset of the Bass-Serre tree.

These subsets pairwise intersect, therefore by application of Helly’s Theorem

for trees, there exists some vertex in the total intersection. Therefore every

wall in S intersects the corresponding vertex space.

A set of horizontal walls in (X̃,W) that pairwise regularly intersect is crossing.

Proposition 4.5.4. If there are crossing sets of arbitrary finite cardinality in

(X̃,W), then there exists an infinite cube in C(X̃,W). Moreover, the infinite

cube contains a canonical 0-cube.

Proof of Proposition 4.5.4. Let {Ki} be a sequence of crossing sets such that

|Ki| → ∞ as i→∞. There are only finitely many wall orbits so assume that

each Ki consists exclusively of translates of a single wall Λ̃. By Lemma 4.5.3,

for every i there exists a vertex ṽi in Γ̃ such that every wall in Ki intersects

X̃ṽi
. Since G acts cocompactly on Γ̃, after passing to a subsequence of {Ki},

it can be assumed that the {ṽi} lie in a single G-orbit, Gṽ. Choose gi such

that giṽi = ṽ and replace Ki with g−1
i Ki. Therefore all walls in Ki intersect

the vertex space X̃ṽ for each i.

There are only finitely many parallelism classes of lines in X̃ṽ belonging

to walls in W , so there must exist Q0, a set of walls parallel in X̃ṽ, with the
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by Lemma 4.5.2, setting Ỹ = X̃ they all intersect Λ̃i for i 6= n + 2. Replace

Λ̃n+2 with the closest such wall to x to obtain an (n + 1)-cube cn+1.

4.6 Dilating Walls and Infinite Dimensional Cubulations

Let X̃ṽ be a vertex space covering Xv. Identify X̃ṽ with R2 so that a

Gṽ-orbit in X̃ṽ is identified with Z2 ⊂ R2. Let Λ̃ denote a wall covering the

immersed wall Λ, intersecting X̃ṽ. The intersection Λ̃ ∩ X̃ṽ is a line with

rational slope, stabilized by an infinite cyclic subgroup of Gṽ. Since the slope

is rational there is a maximal infinite cyclic subgroup H 6 Gṽ that stabilizes a

line perpendicular to Λ̃∩ X̃ṽ. The elements of H are perpendicular to Λ̃∩ X̃ṽ.

Note that there are finitely many Gṽ-orbits of walls intersecting X̃ṽ. Given

vertices ũ, ṽ in Γ̃, the carrier of ũ, ṽ, denoted Carrier(ũ, ṽ), is the union of all

vertex and edge spaces corresponding to the vertices and edges on the geodesic

in the Bass-Serre tree Γ̃ between and including ũ and ṽ.

The following is elementary:

Lemma 4.6.1. Let T be a torus and C → T an immersed geodesic circle, with

a choice of lift C̃ → T̃ . Given a, b ∈ π1T − Stab(C̃), there exists ma, mb ∈

Z− {0} such that amaC̃ = bmbC̃. Moreover

ma

mb

=
#[C, b]
#[C, a]

.

Lemma 4.6.2. Let Λ̃ be a wall intersecting the vertex spaces X̃ṽ0
and X̃ṽn

,

where ṽ1, . . . , ṽn−1 is the sequence of vertices on the geodesic between ṽ0 and

ṽn in Γ̃. Let ẽi be the edge between ṽi−1 and ṽi. Let Gẽi
= 〈gi〉 for 1 ≤ i ≤ n.

Let Stab(Λ̃) ∩ Gṽi
= 〈ρi〉. Let g0 ∈ Gṽ0

and gn+1 ∈ Gṽn
be perpendicular to

Λ̃∩ X̃ṽ0
and Λ̃∩ X̃ṽn

respectively. Then there exist ←−m, −→m ∈ Z−{0} such that

g
←−m
0 Λ̃ = g

−→m
n+1Λ̃ and

←−m
−→m

=
←−m0 · · ·

←−mn

−→m0 · · ·
−→mn
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where ←−mi = #[ρi, gi+1] and −→mi = #[ρi, gi] for 0 ≤ i ≤ n. Moreover the walls

in {g
←−mr
0 Λ̃}r∈Z do not intersect within Carrier(ṽ0, ṽn).

Proof. For each 0 ≤ i ≤ n apply Lemma 4.6.1 to gi, gi+1 ∈ Gṽi
to deduce that

g
←−mi

i Λ̃ = g
−→mi

i+1Λ̃. Let ←−m = ←−m0 · · ·
←−mn and −→m = −→m0 · · ·

−→mn. Observe that for

0 ≤ i ≤ n we have:

g
←−m
0 Λ̃ = g

←−m0
←−m1···

←−mn

0 Λ̃ = g
−→m0···

−→mi
←−mi+1···

←−mn

i Λ̃,

so there are no intersections of walls in {g
←−mr
0 Λ̃}r∈Z within either X̃ṽi

or X̃ẽi
.

Definition 4.6.3. Let Λ̃ be a wall covering Λ and let X̃ṽ intersect Λ̃. Observe

that Λ̃ also intersects X̃gṽ for any g ∈ Stab(Λ̃). If h ∈ Gṽ is perpendicular to

Λ̃ ∩ X̃ṽ, then ghg−1 is a perpendicular to Λ̃ ∩ X̃gṽ. From Lemma 4.6.2 there

exist ←−m,−→m ∈ Z − {0} such that h
←−mΛ̃ = gh

−→mg−1Λ̃ and {h
←−mrΛ̃}r∈Z contains

no pair intersecting in Carrier(ṽ, gṽ). The pair ←−m,−→m are g-shift exponents.

Note that g-shift exponents are not unique. If ←−m,−→m are g-shift exponents,

then so are ←−mn,−→mn for n ∈ Z − {0}. The dilation function of Λ̃ is the map

R : Stab(Λ̃)→ Q∗ with g 7→
←−m
−→m

, where ←−m,−→m are g-shift exponents.

Lemma 4.6.4. The map R : Stab(Λ̃) → Q∗ is a homomorphism, and does

not depend on the choice of vertex space X̃ṽ or perpendicular element h ∈

Gṽ. Moreover, if R′ is the dilation function of Λ̃′, where Λ̃′ = g′Λ̃, then

R(g′−1gg′) = R′(g) for g ∈ Stab(Λ̃′).

Proof. Fix a choice of X̃ṽ and let h ∈ Gṽ be a primitive element perpendicular

to Λ̃ ∩ X̃ṽ. To see that R is well defined take any two choices of g-shift

exponents ←−m,−→m, and ←−m ′,−→m ′. Since h
←−mΛ̃ = gh

−→mg−1Λ̃ and h
←−m′

Λ̃ = gh
−→m′

g−1Λ̃

we have gh
←−m−→m′

g−1Λ̃ = h
←−m←−m′

Λ̃ = gh
−→m←−m′

g−1Λ̃ which implies that
←−m
−→m

=
←−m ′

−→m ′
.

Now suppose that h′ ∈ Gṽ is any other choice of an element perpendicular

to Λ̃ ∩ X̃ṽ, then h′ = hn with n ∈ Z − {0}. Therefore, (h′)
←−mΛ̃ = hn←−mΛ̃ =

41



ghn−→mg−1Λ̃ = g(h′)
−→mg−1Λ̃, and

←−m
−→m

= n←−m
n−→m

, so ←−m,−→m are also g-shift exponents

with respect to h′.

To see that R is independent of the choice of X̃ṽ suppose Λ̃ also intersects

X̃w̃. Let hṽ ∈ Gṽ be perpendicular to Λ̃∩X̃ṽ, and hw̃ ∈ Gw̃ be perpendicular to

Λ̃∩X̃w̃. Then by Lemma 4.6.2 there exist p, q ∈ Z−{0} such that hp
w̃Λ̃ = hq

ṽΛ̃.

Let g ∈ Stab(Λ̃) and←−m,−→m be g-shift exponents with respect to X̃ũ and deduce

that h
←−mp
w̃ Λ̃ = h

←−mq
ṽ Λ̃ = gh

−→mq
ṽ g−1Λ̃ = gh

−→mp
w̃ g−1Λ̃. This means that ←−mp,−→mp are

g-shift exponents with respect to X̃w̃

Let Λ̃′ = g′Λ̃ with g′ ∈ G. Let g ∈ Stab(g′Λ̃). Then we know that

g′−1gg′ ∈ Stab(Λ̃) so there exist g′−1gg′-shift exponents ←−m,−→m for Λ̃ with re-

spect to X̃ṽ so that h
←−mΛ̃ = (g′−1gg′)h

−→m(g′−1gg′)−1Λ̃, where h is perpendicular

to Λ̃ in X̃ṽ. This can be rewritten as (g′hg′−1)
←−m(g′Λ̃) = g(g′hg′−1)

−→mg−1(g′Λ̃),

where g′hg′−1 is perpendicular to Λ̃′ in X̃g′ṽ. This means that←−m,−→m are g-shift

exponents for g′Λ̃ with respect to X̃g′ṽ, and R′(g) = R(g′−1gg′).

To see that R is a homomorphism, let g1, g2 ∈ Stab(Λ̃), let ←−m1,
−→m1 be

g1-shift exponents of Λ̃ with respect to X̃ṽ so h
←−m1Λ̃ = g1h

−→m1g−1
1 Λ̃, and let

←−m2,
−→m2 be g2-shift exponents of Λ̃ with respect to X̃g1ṽ so g1h

←−m2g−1
1 Λ̃ =

g2g1h
−→m2g−1

1 g−1
2 Λ̃. Then h

←−m1
←−m2Λ̃ = g2g1h

−→m1
−→m2g−1

1 g−1
2 Λ̃. Therefore R(g1g2) =

←−m1
←−m2

−→m1
−→m2

= R(g1)R(g2).

Definition 4.6.5. If the dilation function R has infinite image then Λ̃ is

dilated. Otherwise Λ̃ is non-dilated (and the image of R is either trivial or

{−1, 1}). An element g ∈ Stab Λ̃ is dilated if R(g) 6= ±1. Lemma 4.6.4

implies that if Λ̃ is [non-]dilated, then all its G-translates are [non-]dilated.

Therefore, it makes sense to say that an immersed wall Λ is [non-]dilated if its

associated walls are [non-]dilated walls.

A wall Λ̃ being dilated means there is an infinite family of walls, {hrΛ̃}r∈Z,

intersecting X̃ṽ, that become closer together while traveling from X̃ṽ to X̃gṽ.
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Considering higher powers of g, some infinite subset of these walls must in-

tersect each other. The proof of the following proposition makes this idea

precise.

Proposition 4.6.6. If (X̃,W) contains a dilated wall then there are crossing

sets of arbitrary finite cardinality.

Proof. Let Λ̃0 be a dilated wall intersecting X̃ṽ and let h ∈ Gṽ be perpendicular

to Λ̃0 ∩ X̃ṽ. Choose g ∈ Stab(Λ̃0) such that R(g) > 1. By Lemma 4.6.7 the

set of all G-translates of Λ̃0 intersecting X̃ṽ that do not regularly intersect Λ̃0

in Carrier(ṽ, gṽ) can be partitioned:

P =
{
{h
←−n rΛ̃0}r∈Z, . . . , {h

←−n rΛ̃p}r∈Z

}
,

where h
←−n Λ̃i = gh

−→n g−1Λ̃i and
←−n
−→n

= R(g).

Let s ≥ 1 and M̃ = h
←−n s

Λ̃0. We will show that Q∞s = {M̃, g−1M̃, g−2M̃, . . . , }

contains a cardinality s crossing set. All g−iM̃ are distinct because if g−pM̃ =

g−qM̃ for p 6= q then h
←−n s

Λ̃0 = gp−qh
←−
ns

Λ̃0 = gp−qh
←−
ns

gq−pΛ̃0 which would

imply R(gp−q) = 1, but R is a homomorphism so this would contradict

R(g) > 1. This implies that Q∞s = g(Q∞s − {M̃}). Note that none of the

walls M̃, . . . , g1−sM̃ regularly intersect Λ̃0 in Carrier(ṽ, gṽ), since

g−iM̃ = g−ih
←−n s

Λ̃0 = g−ih
←−n i←−n s−i

giΛ̃0 = h
−→n i←−n s−i

Λ̃0,

and the right hand side belongs to the set {h
←−n rΛ̃0}r∈Z ∈ P for 0 ≤ i ≤ s− 1.

Suppose there exists k such that g−kM̃ regularly intersects Λ̃0 in Carrier(ṽ, gṽ).

Let k be the minimal such value and note that k ≥ s. Thus, g−iM̃ does not

regularly intersect Λ̃0 in Carrier(ṽ, gṽ) for 0 ≤ i < k, which implies that g−kM̃

regularly intersects g−iM̃ for 0 ≤ i < k. Then Qk
s = {M̃, . . . , g−kM̃} is a

43



crossing set of cardinality at least s + 1, since g−kM̃ regularly intersects all

the other elements of Qk
s and g−1(Qk

s − {g
−kM̃}) = Qk

s − {M̃}.

Suppose that g−iM̃ does not regularly intersect Λ̃0 in Carrier(ṽ, gṽ) for all

i ≥ 0. Therefore each g−iM̃ belongs to some subset in the partition P . There-

fore there exists ri ∈ Z and σ(i) ∈ {0, . . . , p} such that g−iM̃ = h
←−n riΛ̃σ(i).

We will obtain a contradiction by showing that {ri} is a bounded sequence,

contradicting that Q∞s is an infinite set. From the construction of the sequence

we have

g−1h
←−n riΛ̃σ(i) = g−1(g−iM̃) = g−(i+1)M̃ = h

←−n ri+1Λ̃σ(i+1),

and from the properties of P it can be inferred that

h
←−n ri+1Λ̃σ(i+1) = g−1h

←−n riΛ̃σ(i) = h
−→n rig−1Λ̃σ(i).

Hence

h
←−n ri+1−

−→n riΛ̃σ(i+1) = g−1Λ̃σ(i),

so ai = ←−n ri+1 −
−→n ri is a bounded integer sequence because the right hand

side can only be one of a finite number of walls. Therefore ri+1 =
−→n
←−n

ri +
ai

←−n

is bounded since
1

R(g)
=
−→n
←−n

< 1.

The following Lemma is used in the proof of Proposition 4.6.6.

Lemma 4.6.7. Fix g ∈ Stab(Λ̃0), and h ∈ Gṽ perpendicular to Λ̃0∩Xṽ. Let U

be the set of G-translates of Λ̃0 that intersect X̃ṽ and do not regularly intersect

Λ̃0 in Carrier(ṽ, gṽ). Then there exist ←−n ,−→n ∈ Z− {0} such that R(g) =
←−n
−→n

,

and a subset {Λ̃1, . . . , Λ̃p} ⊂ U such that there is a partition of U ,

P =
{
{h
←−n rΛ̃0}r∈Z, . . . , {h

←−n rΛ̃p}r∈Z

}
,
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and such that h
←−n Λ̃i = gh

−→n g−1Λ̃i for each i.

Proof. Let Carrier(ṽ, gṽ) be the union of the consecutive vertex and edge

spaces X̃ṽ0
, X̃ẽ1

, . . . , X̃ẽ`
, X̃ṽ`

. For each i there exists primitive ρi ∈ Gṽi
such

that Stab(Λ̃0) ∩ Gṽi
= 〈ρki

i 〉 for some ki ∈ Z − {0}. Let Λ̃ be any wall in U .

Since Λ̃ doesn’t regularly intersect Λ̃0 in X̃ṽi
observe that Stab(Λ̃)∩Gṽi

= 〈ρji

i 〉

for some ji > 0.

Let Gẽi
= 〈gi〉 for 0 < i < ` + 1, and let g0 = h and g`+1 = ghg−1. By

Lemma 4.6.2 there exists ←−m,−→m ∈ Z− {0} such that h
←−mΛ̃ = gh

−→mg−1Λ̃ and

←−m
−→m

=
←−m0 · · ·

←−m`

−→m0 · · ·
−→m`

=
#[ρ0, g1] · · ·#[ρ`, g`+1]
#[ρ0, g0] · · ·#[ρ`, g`]

,

where the ji-s have canceled on the right hand side. Hence
←−m
−→m

= R(g) be-

cause the final ratio is independent of the values of ji. There are only finitely

many values that ji can take, so we can obtain ←−n ,−→n such that for any Λ̃, we

have h
←−n Λ̃ = gh

−→n g−1Λ̃. Since there are only finitely many Gṽ-orbits of walls

intersecting X̃ṽ the partition is obtained by taking a finite number of repre-

sentatives Λ̃1, . . . , Λ̃p, such that the sets {h
←−n rΛ̃i}r∈Z are a maximal collection

of disjoint sets.

We now consider the non-dilated walls.

Lemma 4.6.8. Let Λ̃ be a non-dilated wall. For any X̃ṽ intersected by Λ̃,

there exists h ∈ Gṽ perpendicular to X̃ṽ ∩ Λ̃ such that if g ∈ Stab(Λ̃) then

ghg−1Λ̃ = hΛ̃, and the walls in {hrΛ̃}r∈Z are pairwise disjoint.

Proof. Choose a generating set {f1, . . . , fn} for Stab(Λ̃), and fix h0 ∈ Gṽ

perpendicular to X̃ṽ ∩ Λ̃. By Lemma 4.6.2 and the assumption that Λ̃ is

nondilated, each fi has an si such that hsi
0 Λ̃ = fih

±si
0 f−1

i Λ̃ and the walls

{hsir
0 Λ̃} pairwise do not intersect in Carrier(ṽ, fiṽ). Let s = lcm si and let h =

hs
0, then hΛ̃ = gh±1g−1Λ̃ and {hrΛ̃} pairwise do not intersect in Carrier(ṽ, gṽ),
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for all g ∈ Stab(Λ̃), as any g can be expressed as the product of the generating

set.

For any other X̃w̃ intersected by Λ̃, there is a geodesic γ : I → Λ̃ with

initial point ã ∈ Λ̃∩X̃ṽ and endpoint in Λ̃∩X̃w̃. Extend γ to a geodesic γ′ such

that the endpoint of γ′ is gã for some g ∈ Stab(Λ̃). Therefore hΛ̃ = gh±1g−1Λ̃

and hrΛ̃∩ Λ̃∩ X̃w̃ = ∅ for all r, as X̃w̃ lies in Carrier(ṽ, gṽ). This implies that

the walls in {hrΛ̃}r∈Z are pairwise disjoint.

Proposition 4.6.9. Let (X̃,W) be the wallspace obtained from a finite set of

non-dilated immersed walls, then C(X̃,W) is finite dimensional.

Proof. Let {Ki} be a sequence of finite sets of pairwise intersecting walls such

that lim |Ki| = ∞. By Lemma 4.5.3 there exist vertex spaces X̃ṽi
such that

each wall in Ki intersects X̃ṽi
. Since there are finitely many G-orbits of vertices

in the Bass-Serre tree, choose a subsequence of {Ki} and find a sequence

{gi} ⊂ G such that all {giKi} intersect a fixed X̃ṽ. Since there are finitely

many Gṽ-orbits of walls intersecting X̃ṽ, we may restrict to subsets, still of

unbounded cardinality, such that all the walls lie in the same Gṽ-orbit.

Fix some Λ̃ in g1K1. By Lemma 4.6.8 there exists h ∈ Gṽ such that

{hrΛ̃}r∈Z consists of pairwise non-intersecting walls. There are only finitely

many Gṽ-orbits of {hrΛ̃}r∈Z, so by the pigeonhole principle there must be some

giKi that has more than one wall in one of these orbits. This contradicts that

the walls in giKi pairwise intersect.

Theorem 4.6.10. Let X be tubular space, and (X̃,W) the wallspace obtained

from a finite set of immersed walls in X. The following are equivalent:

1. C(X̃,W) is infinite dimensional.

2. C(X̃,W) contains an infinite cube.

3. Some immersed wall is dilated.
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Proof. (3) ⇒ (2) follows from Proposition 4.6.6 and Proposition 4.5.4.

(2) ⇒ (1) is immediate from the definition of an infinite cube.

(1) ⇒ (3) is the contrapositive of 4.6.9.

Corollary 4.6.11. Let X be tubular space, and (X̃,W) the wallspace obtained

from a set of immersed walls in X. It is decidable whether or not C(X̃,W) is

finite dimensional.

Proof. For each immersed wall Λ, the corresponding dilation function can be

computed by using Lemmas 4.6.1 and 4.6.2 to find their values on a finite

generating set of π1Λ.

The following is the result of combining Theorem 4.6.10, Proposition 4.6.6,

and Proposition 4.5.4.

Proposition 4.6.12. Let X be tubular space, and (X̃,W) the wallspace ob-

tained from a finite set of immersed walls in X. If C(X̃,W) is infinite di-

mensional, then W contains an set of pairwise regularly intersecting walls of

infinite cardinality, that correspond to the hyperplanes in an infinite cube in

C(X̃,W). Moreover, the infinite cube contains a canonical 0-cube.

The following characterization of non-dilated immersed walls will be used in

Chapter 5.

Proposition 4.6.13. Let X be tubular space, and (X̃,W) the wallspace ob-

tained from a finite set of non-dilated immersed walls in X. The horizontal

walls in W can be partitioned into a collection A of subsets such that:

1. The partition is preserved by G,

2. The walls in A are pairwise non-intersecting for each A ∈ A,

3. Let Λ̃ ∈ A ∈ A be a wall intersecting X̃ṽ. There exists h ∈ Gṽ perpen-

dicular to Λ̃ ∩ X̃ṽ such that A = {hrΛ̃}r∈Z.
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Proof. Let Λ̃ be a horizontal wall in W . There are finitely many Stab(Λ̃)-

orbits of lines of the form Λ̃ ∩ X̃w̃. Let {`i}
n
i=1 be a set of representatives

for these orbits and let {ṽi}
n
i=1 be vertices in Γ̃ such that `i = Λ̃ ∩ X̃ṽi

. By

Proposition 4.6.8, for each i there exist hi ∈ Gṽi
perpendicular to `i such that

hiΛ̃ = ghig
−1Λ̃ for all g ∈ Stab(Λ̃), and each Ai = {hr

i Λ̃}r∈Z is a collection of

pairwise disjoint walls. Let Ai = {gAi | g ∈ G}. If Ai ∩ gAi 6= ∅ then there

exist r, s such that hs
i Λ̃ = ghr

i Λ̃ which implies h−s
i ghr

i ∈ Stab(Λ̃). Therefore,

for all t ∈ Z

h−s
i ght+r

i Λ̃ = (h−s
i ghr

i )h
t
i(h
−s
i ghr

i )
−1Λ̃ = h±t

i Λ̃,

so ght+r
i Λ̃ = h±t+s

i Λ̃, and so gAi = Ai. Therefore each Ai is a partition of the

G-orbit of Λ̃ satisfying (1) and (2).

By Lemma 4.6.2, there exists pi, qi such that hpi

1 Λ̃ = hqi

i Λ̃. Let p =

p1 · · · pn, and q̂i = p1 · · · pi−1qipi+1 · · · pn. Let h = hp
1. Let A = {hrΛ̃}r∈Z and

A = {gA | g ∈ G}. Note that A is a common refinement of the partitions Ai,

still satisfying (1) and (2) since {hr
i Λ̃}r∈Z ⊇ {h

q̂ir
i Λ̃}r∈Z = {hrΛ̃}r∈Z. Condition

(3) holds since if Λ̃ intersects X̃w̃ then there exists i and f ∈ Stab(Λ̃) such

that w̃ = fṽi so A = {fhq̂ir
i f−1Λ̃}.

Any partition of the horizontal walls in W satisfying conditions (1)-(3) in

Proposition 4.6.13 will be called a stable partition.

Lemma 4.6.14. Let X be a tubular space and (X̃,W) be the wallspace ob-

tained from a finite set of immersed walls in X. Let P be a stable partition

of the horizontal walls in W. Then for each ṽ ∈ Γ̃, only finitely many A ∈ P

contain walls intersecting X̃ṽ.

Proof. Suppose that Λ̃ is a wall intersecting X̃ṽ, then, by condition (3) of a

stable partition, there exists some h ∈ Gṽ that is perpendicular to Λ̃ ∩ X̃ṽ

such that {hrΛ̃}r∈Z ∈ P . By G-invariance we can deduce that each of the
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Gṽ-translates of {hrΛ̃}r∈Z is also in P . There are only finitely many such

translates, therefore each Gṽ-orbit of a wall in X̃ṽ is contained in finitely

many elements of P . The claim then follows from the fact that there are only

finitely many Gṽ-orbits of walls intersecting X̃ṽ.

4.7 Computing the Dilation Function

In this section the results of Section 4.6 are applied to concrete examples

to determine whether or not they are finite dimensional. In this section we

assume that all immersed walls are non-trivial, in the sense that they do not

consist of a single immersed circle. This allows us to identify Stab(Λ̃) with π1Λ.

The main focus will be on computing the dilation function R : π1Λ→ Q∗ of an

immersed wall. Let q : Λ → Ω be the quotient map obtained by quotienting

each circle in the equitable set to a vertex. This simplifies the computation

since R factors through q∗ : π1Λ→ π1Ω.

Regard Ω as a directed graph by fixing orientations of its edges E(Ω),

choosing the orientation of each edge σ to be consistent with all other edges

mapping into the same edge space of X. Recall that ϕ−e and ϕ+
e denote the

attaching maps of the edge space Xe in X. Define a weighting ω : E(Ω)→ Q∗

as follows: for each directed edge σ ∈ E(Ω) let ω(σ) = #[Cι:ϕ−
e ]

#[Cτ :ϕ+
e ]

, where Xe is

the edge space σ maps into, and Cι, Cτ are the elements in the equitable set

attached to the initial and terminal ends of σ. Let γ be a combinatorial path in

Λ representing an element [γ] ∈ π1Λ, and let γ be the combinatorial path in Ω

obtained by quotienting the circle-edges of γ to vertices, then q◦γ is homotopic

to γ. If γ = σε1

1 · · ·σ
εn
n with ε ∈ {±1}, then R([γ]) = ω(σ1)ε1 · · ·ω(σn)εn . Note

that this does not depend on the choice of representative γ. See Figure 4–6

for examples of this quotient and edge weighting.

Example 4.7.1. Let G = 〈a, b, s, t | [a, b], s−1abs = a2, t−1abt = b2〉. Let X be

the tubular space such that π1X = G. Note that there is a single vertex group
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Gv = π1Xv. The group G is a free-by-cyclic tubular group that acts freely on

a CAT(0) cube complex, but cannot act on a finite dimensional CAT(0) cube

complex obtained from an equitable set. The proof uses the dilation function.

The equitable set Sv = {a, b} demonstrates that G acts freely on a CAT(0)

cube complex, but will only produce dilated walls so the dual cube complex

will be infinite dimensional. It is possible to construct non-dilated immersed

walls in X, by taking any collection of disjoint curves in the vertex space Xv

that represent powers of ab−1. However, such a collection is not sufficient for an

equitable set because such elements will not generate a finite index subgroup

of Gv. We therefore claim that any immersed wall containing a circle that

doesn’t represent a power of ab−1 is dilated since any equitable set for G will

produce such an immersed wall.

Suppose there is an immersed wall Λ obtained from a subset of curves

S = {v1, . . . , vn} contained in a equitable set, where vi = axibyi where we

assume v1 6= anb−n. The equitable set S must satisfy the equations

2
n∑

i=1

|xi| = 2
n∑

i=1

|yi| =
n∑

i=1

|xi − yi|. (∗)

The claim follows by finding a closed path γ in Ω such that R([γ]) 6= ±1.

Direct the edges of Ω such that edges exiting the vertex space via the attaching

maps ab are the initial ends. Therefore the number of edges leaving the vertex

corresponding to vi is 2|xi − yi|, while the number of vertices arriving at

that vertex is 2|xi| + 2|yi|. If some |xi| + |yi| > |xi − yi|, then since each

|xi|+ |yi| ≥ |xi − yi| we have

n∑

i=1

|xi|+ |yi| >
n∑

i=1

|xi − yi|,
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which would contradict (∗). Therefore the number of edges entering and ex-

iting each vertex in Ω are equal, so there exists a directed Eulerian trail γ,

which is a cycle traversing each edge in Ω precisely once. Therefore

|R([γ])| =
n∏

i=1

|xi − yi|
2|xi−yi|

(2|xi|)2|xi|(2|yi|)2|yi|
,

and the claim will be proven by showing that |R([γ])| < 1. Considering each

factor in the product separately we want to show that

|x− y|2|x−y|

(2|x|)2|x|(2|y|)2|y|
≤ 1

with equality only when x = −y. Since v1 6= anb−n, the first term in the

product is strictly less than one, so |R([γ])| < 1.

This is immediate in the trivial case when |x− y| = 0, |x| = 0, or |y| = 0.

After taking the square root and applying the logarithm, the non-trivial case

is equivalent to showing that

|x− y| log |x− y| ≤ |x| log(2|x|) + |y| log(2|y|), (∗∗)

with equality only when x = −y. As z log(z) is strictly convex for z > 0, the

following inequality holds with equality when p = q;

|p + q|

2
log

(
|p + q|

2

)
≤
|p|

2
log |p|+

|q|

2
log |q|.

Thus (∗∗) holds by letting p = 2x and q = −2y.

Example 4.7.2. The Right Angled Artin Group A = 〈a, b, c, d | [a, b] =

[b, c] = [c, d] = 1〉 is not subgroup separable (see [27]). From the alterna-

tive presentation A = 〈ai, bi | [ai, bi], a1 = a2, b2 = b3; 1 ≤ i ≤ 3〉 it is

clear that A is fundamental group of a tubular group given by three tori

and two cylinders. Consider an immersed wall with the following equitable

set: {a1b
2
1, b1}, {a2b

−1
2 , a2b

2
2} and {a2

3}, and the arcs given in Figure 4–5. The
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Lemma 4.7.4. Let X be a tubular space, and let G = π1X. Let Λ1, . . . Λk be

a set of immersed walls in X obtained from an equitable set {Sv}v∈Γ. Then

there exists a set of primitive immersed walls Λ′1, . . . , Λ′` in X obtained from

an equitable set {S ′v}v∈Γ. Moreover:

1. If Λ1, . . . , Λk are non-dilated, then so are Λ′1, . . . Λ′`.

2. If Λ1, . . . Λk, are fortified, then so are Λ′1, . . . Λ′`.

Proof. Each Λi decomposes as the union of disjoint circles ,which are the

domain of locally geodesic closed paths in the equitable set, and arcs. Suppose

that αn ∈ Sv, where [α] ∈ π1Xv = Gv is primitive. Let Λi be the immersed

wall containing the circle S1
αn corresponding to αn.

A new equitable set is obtained by replacing αn in Sv with n locally

geodesic curves {αi : S1
i → Xv}

n
i=1 with disjoint images in Xv that are iso-

topic to α in X̃v. This remains an equitable set since #[αn, γ] = n#[α, γ] =
∑n

i=1 #[αi, γ] for any locally geodesic curve γ in Xv. New immersed walls are

obtained from Λi by replacing S1
αn with S1

1 , . . . S1
n and reattaching the arcs

that were attached to the intersection points in S1
αn to the corresponding in-

tersection points on S1
1 , . . . S1

n. Let Λi1, . . . , Λi` be the new set of immersed

walls obtained in this way. Note that each arc in Λi1, . . . , Λi`, corresponds to

a unique arc in Λi.

Assume that Λi is non-dilated. We claim that the new immersed walls

Λi1, . . . , Λi` are also non-dilated. Let qi : Λi → Ωi and qij : Λij → Ωij be

the quotient maps obtained by crushing the circles to vertices. Let u be the

vertex in Ωi corresponding to S1
αn . Let Ri : π1Λi → Q∗ and Rij : π1Λij → Q∗

be the dilation functions. Let R̂i : π1Ωi → Q∗ and R̂ij : π1Ωij → Q∗ be the

unique maps such that Ri = R̂i ◦ qi and Rij = R̂ij ◦ qij. Let ωi and ωij be

the respective weighting of the arcs in Ωi and Ωij. By assumption, Ri and R̂i

have finite image. As the arcs in Λij correspond to arcs in Λi, there is a map
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ρi : Ωij → Ωi. We show Λij is non-dilated by showing that if [γ] ∈ π1Ωij then

R̂ij([γ]) = R̂i([ρi ◦ γ]).

Let σ be an oriented arc in Ωij. The edge q−1
ij (σ) embeds in an edge space

Xe. If the vertices of σε are disjoint from ρ−1(u), then ωij(σε) = ωi(ρij ◦ σε).

If the endpoints of σε are contained in ρ−1
ij (v), and correspond to the circles

S1
ι and S1

τ then

ωij(σ±1) =
#[ϕ∓e , αι]
#[ϕ±e , ατ ]

=
n#[ϕ∓e , αι]
n#[ϕ±e , ατ ]

=
#[ϕ∓e , αn]
#[ϕ±e , αn]

= ω(ρij ◦ σ±1).

Suppose that exactly one endpoint of σε is contained in ρ−1
ij (u). If σε

terminates a vertex in ρ−1
ij (u) corresponding to S1

τ , and the initial vertex cor-

responds to a circle which is the domain of a locally geodesic curve β then

ωij(σ±1) =
#[ϕ∓e , β]
#[ϕ±e , ατ ]

=
n#[ϕ∓e , β]
n#[ϕ±e , ατ ]

=
n#[ϕ∓e , β]
#[ϕ±e , αn]

= nω(ρij ◦ σ±1).

If σε starts at a vertex in ρ−1
ij (u) corresponding to S1

ι , and the terminal vertex

correspond to a circle that is the domain of a locally geodesic curve β then

ωij(σ±1) =
#[ϕ∓e , αι]
#[ϕ±e , β]

=
n#[ϕ∓e , αι]
n#[ϕ±e , β]

=
#[ϕ∓e , αn]
n#[ϕ±e , β]

=
1
n

ω(ρij ◦ σ±1).

Therefore, given an edge path γ in Ωij, since the number of edges exiting

vertices in ρ−1
ij (v) is the same as the number of vertices entering, R̂ij(γ) =

R̂i(ρi ◦ γ).

This procedure produces immersed walls with one fewer non-primitive

element in the equitable set. Repeating this procedure for each non-primitive

element in the equitable set produces a primitive set of non-dilated immersed

walls. It is also clear, that if Λ1, . . . , Λk are fortified, then so are the new

immersed walls.

4.8 Dilated Walls are not Quasi-Isometrically Embedded

Using Theorem 4.6.10, Theorem 4.1.2 can be restated in the following form.
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terminal point of y` is the initial point of x0. The subpath xi is diagonal if

X+
ei

and X−ei+1
are not parallel in Xui

, and the subpath yi · xi · · ·xi+r · yi+r+1

is straight if xi, xi+1, . . . , xi+r are not diagonal. The subscripts are considered

modulo ` so that subpaths of γ containing the initial point are considered.

Thus, after cyclically parameterizing, γ decomposes as

γ = a0 · b1 · a1 · b2 · · · an−1 · bn

where each ai is diagonal and each bi is straight. For notational purposes later

these subscripts are considered modulo n.

Claim 1. There is at least one diagonal subpath in γ.

Proof. Let Λ̃ be a wall in X̃ stabilized by π1Λ, and X̃ũ0
be a vertex space

intersected by Λ̃. Let ũ1, . . . , ũ`−1 be the vertices in Γ̃ on the geodesic between

ũ0 and ũ` = zũ0. Let ẽi be the edge between ũi−1 and ũi. Let 〈gi〉 = Gẽi
for

1 ≤ i ≤ `, let g0 ∈ Gũi
be perpendicular to Λ̃ ∩ X̃ũ0

and g`+1 = zg0z
−1. Let

〈ρi〉 = Stab(Λ̃)∩Gũi
for 0 ≤ i ≤ `. Suppose that the claim is false. This would

imply that exists a primitive hi ∈ Gũi
and pi, qi ∈ Z− {0} such that gi = hpi

i

and gi+1 = hqi

i for 1 ≤ i ≤ `− 1 and g` = zhp`

0 z−1 and g1 = hq`

0 . Since G acts

freely on a CAT(0) cube complex it cannot contain a subgroup isomorphic to

〈r, t | t−1rntrm〉 where n 6= ±m [19]. Therefore p1···p`

q1···q`
= ±1, so Lemma 4.6.2

says

R(z) =
∏̀

i=0

#[ρi, gi+1]
#[ρi, gi]

=
#[ρ0, hq`

0 ]
#[ρ0, g0]

#[ρ`, zg0z
−1]

#[ρ`, zhp`

0 z−1]

`−1∏

i=1

#[ρi, hqi

i ]
#[ρi, hpi

i ]
=

q1 · · · q`

p1 · · · p`

= ±1,

since #[ρ0, h0] = #[ρ`, zh0z
−1] and #[ρ0, g0] = #[ρ`, zg0z

−1]. This contradicts

our choice of γ.

Parameterise the circle in Λ containing ai as an immersed path ci with

ci(0) = ci(1) = ai(1) and such that if ai(0) 6= ai(1) there is an immersed path
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We choose âmn+i ∈ {ai, a′i} inductively by first setting â1 = a1. Assuming

that âmn+i−1 has been chosen we specify that s(mn+i−1) ∈ Z−{0} is positive

or negative so that âmn+i−1 ·c
s(mn+i−1)
i is a locally geodesic path in Xvi

. Choose

âmn+i ∈ {ai, a′i} such that the terminal point of âmn+i−1 · c
s(mn+i−1)
i meets Y −i

with an acute angle on the same side as the initial point of âmn+i · c
s(mn+i)
i

leaves Y +
i . This ensures that γm spirals in a consistent direction.

Inside the torus Xvi
the paths f+

i , f−i+1 and ci determine a triangle with

angles θi between the f+
i and ci sides, ξi between the f−i+1 and ci sides and ζi

between the f+
i and f−i+1 sides. The rule of sines states

Zi

sin ζi

=
Ξi

sin ξi

=
Θi

sin θi

where the value of the numerator is the length of the side opposite the angle

in the denominator (see Figure 4–9). Let Zmn+i = |âmn+i · c
s(mn+i)
i |. The

subscripts of ζi, ξi, and θi are considered modulo n, while the subscripts of

Zi, Ξi, and Θi are not. Note that we chose âmn+i and the sign of s(mn + i) so

that 0 < ξi, θi < π/2.

Let ri = 1
|f−

i
|

sin ξi

sin ζi
, and ti = 1

|f+

i
|

sin θi

sin ζi
with ri+n = ri and ti+n = ti. Define

s(mn + i) ∈ Z − {0} inductively by setting s(0) = 1, and assuming that

s(mn + i− 1) is defined choose |s(mn + i)| to be large enough that

1 ≤ riZmn+i − ti−1Zmn+i−1 (†)

= ri (|âmn+i · c
s(mn+i)
i |)− ti−1(|âmn+i−1 · c

s(mn+i−1)
i−1 |)

and small enough that

ri (|âmn+i · c
s(mn+i)
i |)− ti−1(|âmn+i−1 · c

s(mn+i−1)
i−1 |) ≤ 1 + ri|c

1+ki

i |. (‡)
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Combining (†) and (‡), replacing |âmn+i · c
s(mn+i)
i | with Zmn+i, and applying

the rule of sines produces the following inequality:

1 ≤
Ξmn+i

|f−i |
−

Θmn+i−1

|f+
i |

≤ 1 + ri|c
1+ki

i |. (?)

Geometrically, this means that s(mn+i) is defined so that consecutive triangles

in the sequence have adjacent sides increasing at a bounded rate (see Figure 4–

9). The |f−i | and |f+
i | accounts for the different lengths of the attaching maps

of Yi. To estimate a lower bound on the length of γm, first rewrite (†) as

Zmn+i ≥ r−1
i

[
1 + ti−1Zmn+i−1

]
.

Without loss of generality
∏n−1

i=0 r−1
i ti =

∏n−1
i=0

sin θi

sin ξi

|f−

i
|

|f+

i
|
≥ 1, otherwise replace

γ with γ−1, which switches θi for ξi and f−i for f+
i . Applying this formula

recursively produces

Zmn+i ≥ r−1
i

[
1 + ti−1r

−1
i−1

[
1 + ti−2r

−1
i−2

[
· · ·


1 + ti−nZmn+i−n


 · · ·

]]]
,

hence

Zmn+i ≥




n−1∏

i=0

r−1
i ti


Zm(n−1)+i + · · · ≥ Zm(n−1)+i + D,

where D > 0 is a lower bound on the lower order terms, which are independent

of any value of Zmn+i, and the value of i. Therefore there is a lower bound on

the length of γm:

|γm| ≥
m(n+1)−1∑

j=0

Zj ≥
m∑

j=0

jD ≥
D

2
m(m + 1).

Hence the length of γm grows at least quadratically.

Stage 3: Define ρm := γm ·a0 ·c0 ·a
−1
0 ·γ

−1
m , an immersed path with length

growing quadratically with m. See Figure 4–10.
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CHAPTER 5
Virtually Special Tubular Groups

The goal of this chapter is the following theorem:

Theorem 5.0.3. A tubular group G acts freely on a locally finite CAT(0) cube

complex if and only if G is virtually special.

In Section 5.1 we analyse C(X̃,W) in the finite dimensional case to es-

tablish a set of conditions that imply that G\C(X̃,W) is virtually special.

We decompose C(X̃,W) as a tree of spaces, with the same underlying tree as

X̃ and then, under the assumption that the walls are primitive, we show that

C(X̃,W) maps G-equivariantly into Rd × Γ̃, where R is the standard cubu-

lation of R, and Γ̃ is the underlying graph of X̃. We will show that when the

immersed walls are fortified and non-dilated C(X̃,W) is locally finite. Com-

bining these results allow us to give criterion for G\C(X̃,W) to be virtually

special.

In Section 5.2 we consider a tubular group acting freely on a CAT(0) cube

complex Ỹ . We show that we can obtain from such an action immersed walls

that preserve the important properties of Ỹ . More precisely, we prove the

following:

Proposition 5.2.8. Let G be a tubular group acting freely on a CAT(0) cube

complex Ỹ . Then there is a tubular space X and a finite set of immersed walls

in X. Moreover, if (X̃,W) is the associated wallspace, then

1. G acts freely on C(X̃,W).

2. C(X̃,W) is finite dimensional if Ỹ is finite dimensional.

3. C(X̃,W) is finite dimensional and locally finite if Ỹ is locally finite.

This Proposition is sufficient to allow us to prove Theorem 5.2.9.
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In Section 5.3 we further exploit the results obtained in Section 5.1 to

prove the following converse to (3) Proposition 5.2.8.

Corllary 5.3.3. Let X be a tubular space. If the tubular group G = π1X

acts freely on a finite dimensional CAT(0) cube complex, then G acts on a

locally finite, finite dimensional CAT(0) cube complex

5.1 Finite Dimensional Dual Cube Complexes

Let X be a tubular space and let G = π1X. Let (X̃,W) be the wallspace

obtained from a set of non-dilated immersed walls Λ1, . . . Λk constructed from

an equitable set, and a vertical immersed wall in each edge space. We em-

phasize that in this section all immersed walls are assumed to be

non-dilated, even when it is not explicitly stated. Let Z̃ = C(X̃,W)

and let Z = G\Z̃. By Theorem 4.6.10, the immersed walls being non-dilated

is equivalent to Z̃ being finite dimensional. For each edge ẽ in Γ̃ let Λ̃ẽ denote

the vertical wall in X̃ẽ.

Proposition 5.1.1. There is a G-equivariant map f : Z̃ → Γ̃. Therefore

Z̃ decomposes as a tree of spaces with Z̃ṽ = f−1(ṽ), and Z̃ẽ = f−1(ẽ) is the

carrier of the hyperplane corresponding to Λ̃ẽ ∈ Wv
.

By f−1(e) we mean the union of all cubes c in Z̃ such that f(c) = e.

Proof. As there is a vertical wall in each edge space, and since the vertical

walls are all disjoint we can identify C(X̃,Wv) with the Bass-Serre tree Γ̃ of

X̃. We define a map f : Z̃ → Γ̃: let z be a 0-cube in Z, then define f(z) by

letting f(z)[Λ̃e] = z[Λ̃e]. If z1, z2 are adjacent 0-cubes, then z1[Λ̃] 6= z2[Λ̃] for

precisely one wall Λ̃ ∈ W . If Λ̃ is a horizontal wall then f(z1) = f(z2) and

the 1-cube joining them is also mapped to the same vertex. If Λ̃ = Λ̃e ∈ Wv

then f(z1) and f(z2) are adjacent in Γ̃, so the 1-cube joining z1 and z2 maps

to the edge joining f(z1) and f(z2). As f is defined on the 1-skeleton, the
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map extends uniquely to the entire cube complex Z̃. Then Z̃ṽ = f−1(ṽ) and

Z̃ẽ = f−1(ẽ) is the carrier of the hyperplane corresponding to Λ̃e.

Proposition 5.1.1 implies that Z decomposes as a graph of spaces with vertex

spaces Zv, edge spaces Ze, and underlying graph Γ = G\Γ̃.

The immersed walls Λ1, . . . , Λk are non-dilated, and therefore Z̃ is finite

dimensional, so by Proposition 4.6.13 there exists a stable partition P of the

horizontal walls inW . Let Pṽ be the subpartition containing walls intersecting

X̃ṽ. Let Pẽ be the subpartition of walls intersecting X̃ẽ. By Lemma 4.6.14,

both Pṽ and Pẽ are finite subpartitions. If ẽ is incident to the vertex ṽ, then

Pẽ ⊆ Pṽ. Let Pṽ = {A1, . . . , Adṽ
}. By criterion (3) of a stable partition

Ai = {hr
i Λ̃i}r∈Z such that hi ∈ Gṽ stabilizes an axis in X̃ṽ perpendicular to

Λ̃i ∩ X̃ṽ. The action of Gṽ preserves both the partition Pṽ and the ordering of

the walls in each Ai.

Let R denote the cubulation of R with a vertex for each integer and an

edge joining consecutive integers. Therefore, each 0-cube in Rd is an element of

Zd. We construct a free action of Gṽ on Rdṽ . Let g ∈ Gṽ and let (α1, . . . , αdṽ
)

be a 0-cube in Rdṽ . Define the map g · (α1, . . . , αdṽ
) = (β1, . . . , βdṽ

) such that

g ·hαi

i Λ̃i = h
βj

j Λ̃j. As g permutes the walls in Pṽ, the map g is a bijection on the

0-cubes in Rdṽ . If g · hαi

i Λ̃i = h
βj

j Λ̃j, then necessarily g · hαi+1
i Λ̃i = h

βj±1
j Λ̃j, so

adjacent 0-cubes are mapped to adjacent 0-cubes and the map extends to an

isomorphism of Rdṽ . If g · (α1, . . . , αdṽ
) = (α1, . . . , αdṽ

) then g would stabilize

all the walls in Pṽ, which would imply that it fixed every 0-cube in Z̃ṽ. Since

Gṽ acts freely on Z̃ṽ this would imply that g = 1G, and hence Gṽ acts freely

on Rdṽ .

We also define an embedding φṽ : Z̃ṽ → Rdṽ . If z is a 0-cube in Z̃ṽ then

every wall Λ̃ that is either vertical or not in contained in the subpartition Pṽ

has X̃ṽ ⊆ z[Λ̃]. Therefore z is entirely determined by z[Λ̃] for Λ̃ in Pṽ. For
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1 ≤ i ≤ dṽ the set {hr
i Λ̃i ∩ X̃ṽ}r∈Z is an infinite collection of disjoint parallel

lines in X̃ṽ. As all the walls in Ai are disjoint in X̃, for each 0-cube z in

Z̃ṽ there exists a unique αi ∈ Z such that hαi

i Λ̃i and hαi+1
i Λ̃i face each other

in z. Let φṽ(z) = (α1, . . . , αdṽ
). Note that the map is injective and sends

adjacent 0-cubes to adjacent 0-cubes, so the map on the 0-cubes extends to

an embedding of the entire cube complex.

Lemma 5.1.2. The embedding φṽ : Z̃ṽ → Rdṽ is Gṽ-equivariant.

Proof. Let g ∈ Gṽ. If φṽ(z) = (α1, . . . , αdṽ
) and g · φṽ(z) = (β1, . . . , βdṽ

), then

(gz)[hαi

i Λ̃i] = z[ghαi

i Λ̃i] = z[hβj

j Λ̃j], which implies that φṽ(gz) = (β1, . . . , βdṽ
) =

gφṽ(z).

Let ẽ be an edge adjacent to ṽ. Then either +ẽ = ṽ or −ẽ = ṽ. We define

a free action of Gẽ on Rdẽ×[−1, 1]. After reindexing, let Pẽ = {A1, . . . , Adẽ
} ⊆

Pṽ where dẽ ≤ dṽ. Let (α1, . . . , αdẽ
,±1) be a 0-cube in Rd × [−1, 1] and let

g ∈ Gẽ. Then g · (α1, . . . , αdẽ
,±1) = (β1, . . . , βdẽ

,±1) such that g · hαi

i Λ̃i =

h
βj

j Λ̃j. As in the case of vertex spaces, this map extends to an isomorphism

of Rdẽ × [−1, 1].

As with the vertex spaces, there is a Gẽ-equivariant embedding φẽ : Z̃ẽ →

Rdẽ × [−1, 1]. Let z be a 0-cube in Z̃ẽ. Then for each 1 ≤ i ≤ dẽ there

exists a unique αi such that hαi

i Λ̃i faces hαi+1
i Λ̃i in z, and X̃±ẽ ⊆ z[Λ̃ẽ]. Define

φẽ(z) = (α1, . . . , αdẽ
,±1).

Let ṽ = ±ẽ. The free action of Gṽ on Rdṽ restricts to a free action of

Gẽ. We claim that we can embed Rdẽ × {±1} into Rdṽ in a Gẽ-equivariant

way. Let Hẽ ⊆ Z̃ be the hyperplane corresponding to Λ̃e. As Z̃ẽ is the carrier

of Hẽ, we can identify Z̃ẽ with Hẽ × [−1, 1]. Note that Hẽ × {±1} embeds as

a subspace in Z̃ṽ, and φẽ restricts to an embedding φ±ẽ : Hẽ × {±1} → Rdẽ ,

where ṽ = ±ẽ.
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We construct an embedding Ψ±ẽ : Rdẽ → Rdṽ . Recall that Pẽ = {A1, . . . , Adẽ
} ⊆

Pṽ = {A1, . . . , Adṽ
}. For dẽ < j ≤ dṽ if hr

jΛ̃j ∈ Aj, then X̃ẽ ⊆ z[hr
jΛ̃j] for all

0-cubes z in Z̃ẽ. Therefore, there is a unique αẽ
j ∈ Z such that h

αẽ
j

j Λ̃j faces

h
αẽ

j
+1

j Λ̃j for every 0-cube z in Z̃ẽ and dẽ < j ≤ dṽ. Thus we define

Ψ±ẽ (α1, . . . , αdẽ
) = (α1, . . . , αdẽ

, αẽ
dẽ+1, . . . , αẽ

dṽ
).

The Gẽ-equivariance of Ψ±ẽ will require a further assumption:

Lemma 5.1.3. The following commutative square is Gẽ-equivariant provided

the immersed walls are primitive.

Hẽ × {±1} �
� φ±

ẽ
//

� _

��

Rdẽ

Ψ±

ẽ
��

Z̃ṽ
� � φṽ

// Rdṽ

Moreover, Ψ±ẽ is a Gẽ-equivariant inclusion that is equivalent to extending the

Gẽ-action on Rdẽ by a trivial action on Rdṽ−dẽ.

Proof. Let z be a 0-cube in Hẽ × {±1}. Then by construction

Ψ±ẽ ◦ φ±ẽ (z) = (α1, . . . , αdẽ
, αẽ

dẽ+1, . . . , αẽ
dṽ

) = φṽ(z).

To verify that Ψẽ is Gẽ-equivariant, let g ∈ Gẽ. For 1 ≤ i ≤ dẽ there

exists 1 ≤ j ≤ dẽ and βj be such that g · hαi

i Λ̃i = h
βj

j Λ̃j. For dẽ < i ≤ dṽ the

intersection Λ̃i ∩ X̃ṽ is a geodesic line parallel to X̃ẽ ∩ X̃ṽ. Thus, Gẽ stabilizes

Λ̃i∩ X̃ṽ. As the immersed walls are primitive we can deduce that Gẽ stabilizes
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Λ̃i. For dẽ < i ≤ dṽ we deduce that g · hα
i Λ̃i = hα

i Λ̃i for α ∈ Z, and conclude:

g ·Ψẽ(α1, . . . , αẽ) = g · (α1, . . . , αdẽ
, αẽ

dẽ+1, . . . , αẽ
dṽ

)

= (β1, . . . , βdẽ
, αẽ

dẽ+1, . . . , αẽ
dṽ

)

= Ψẽ(β1, . . . , βẽ)

= Ψẽ(g · (α1, . . . , αẽ)).

Observe that Gẽ acts trivially on the last dṽ − dẽ coordinates.

Let d = max{|Pṽ| | ṽ ∈ V Γ̃}, which is finite, since there are only finitely many

vertex orbits.

Proposition 5.1.4. If the immersed walls Λ1, . . . , Λk are primitive, then G

acts freely on Rd × Γ̃ such that the action on the Γ̃ factor is the action of G

on the Bass-Serre tree. Moreover, there is a G-equivariant embedding φ : Z̃ →

Rd × Γ̃.

Proof. The Gṽ and Gẽ-actions on Rdṽ and Rdẽ can be equivariantly extended

to actions on Rd = Rdṽ × Rd−dṽ = Rdẽ × Rd−dẽ such that Gṽ and Gẽ act

trivially on the additional factors. Therefore, the Gẽ-commutative square in

Lemma 5.1.3 can be extended:

Hẽ × {±1} �
� φ±

ẽ
//

� _

��

Rdẽ

Ψ±

ẽ
��

// Rd

��

Z̃ṽ
� � φṽ

// Rdṽ // Rd

The right square commutes and is Gẽ-equivariant since by Lemma 5.1.3, the

Gẽ-equivariant inclusion Ψ±ẽ is equivalent to extending Rdẽ by the trivial action

on Rdṽ−dẽ .

The decomposition of Z̃ into a tree of spaces with underlying tree Γ̃ gives

a decomposition of Z as a graph of spaces with underlying graph Γ. By taking

the quotient by Gẽ of the top row of the above diagram, the bottom row by
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Gṽ, and forgetting the middle column we obtain the following diagram:

Gẽ\Hẽ × {±1} //

��

Gẽ\Rd

��

Gṽ\Zṽ
// Gṽ\Rd

The vertical maps on the left give the attaching maps of the edge spaces in Z.

The vertical maps on the right can be used as attaching maps of edge spaces

for a new graph of spaces Z with underlying graph Γ and π1Z = G. The

universal cover of Z will be Z̃ = Rd × Γ̃, and there is a π1-isomorphic map

Z → Z, determined by the horizontal maps on the vertex and edge spaces

in the above diagram, that lifts to a G-equivariant inclusion of the universal

covers Z̃ → Z̃ = Rd × Γ̃.

Therefore, we obtain a G-action on Rd×Γ̃ and a G-equivariant embedding

of the tree of spaces Z̃ → Rd × Γ̃.

Proposition 5.1.5. Z̃ is locally finite if and only if Λ1, . . . , Λk are fortified.

Proof. If Λ1, . . . , Λk is not fortified, then there exists a vertex space X̃ṽ and

an adjacent edge space X̃ẽ such that every horizontal wall Λ̃ in Pṽ intersects

X̃ṽ as a line Λ̃ ∩ X̃ṽ that intersects X̃ṽ ∩ X̃ẽ. Therefore, every horizontal wall

intersecting X̃ṽ intersects X̃ẽ, so Pẽ = Pṽ. Let ẽ1, . . . , ẽi, . . . be an enumeration

of the Gṽ-orbit of ẽ. Then Pẽi
= Pṽ and Λ̃ẽi

intersects all the horizontal walls

in Pṽ.

Let z be a 0-cube in Z̃ṽ. There is a 0-cube zi such that zi[Λ̃] = z[Λ̃] for

Λ̃ 6= Λ̃ẽi
, and zi[Λ̃ẽi

] 6= z[Λ̃ẽi
]. To verify zi is a 0-cube note that every wall in Pṽ

intersects Λ̃ẽ, and every other wall Λ̃ that is not Λ̃e has X̃ẽ ⊆ zi[Λ̃]. Therefore

zi[Λ̃ẽ] ∩ zi[Λ̃] 6= ∅ for all Λ̃ ∈ W − {Λ̃ẽ}. For any walls Λ̃1, Λ̃2 ∈ W − {Λ̃ẽ} the

intersection zi[Λ̃1]∩zi[Λ̃2] = z[Λ̃1]∩z[Λ̃2] 6= ∅. Finally, if x ∈ X̃, then x ∈ zi[Λ̃]

for all but finitely many Λ̃ ∈ W, because it is true for z, which differs from
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zi on precisely one wall. Each zi is adjacent to z since they differ on precisely

one wall, so z1, . . . , zi, . . . is an infinite collection of distinct 0-cubes adjacent

to z, and Z̃ is not locally finite.

To show the converse, we first observe that the embedding φṽ : Z̃ṽ → Rdṽ

proves that Z̃ṽ is always locally finite, irrespective of whether the immersed

walls are fortified. Let z be a 0-cube in Z̃ṽ, and let ũ be adjacent to ṽ in Γ̃

via an edge ẽ. Then z can be adjacent to at most one 0-cube zẽ in Z̃ũ such

that z[Λ̃] = zẽ[Λ̃] for all Λ̃ ∈ W except Λ̃e. This zẽ may not always define a

0-cube however. Let ẽ be an edge adjacent to ṽ. As the immersed walls are

fortified there exists {hrΛ̃}r∈Z ∈ Pṽ such that {hrΛ̃ ∩ X̃ṽ}r∈Z is an infinite set

of lines parallel to X̃ẽ ∩ X̃ṽ. As {hrΛ̃} is a set of disjoint walls, there exists r

such that hrΛ̃ and hr+1Λ̃ are facing in z. There are only finitely many edges

g1ẽ, . . . , gmẽ ∈ Gṽẽ such that X̃giẽ ⊆ z[hrΛ̃] ∩ z[hr+1Λ̃]. If gẽ is an edge such

that X̃giẽ is not contained in z[hrΛ̃]∩z[hr+1Λ̃], then either zgẽ[hrΛ̃]∩zgẽ[Λ̃e] = ∅

or zgẽ[hr+1Λ̃] ∩ zgẽ[Λ̃e] = ∅ so zgẽ is not a 0-cube. As there are only finitely

many Gṽ-orbits of edges incident to ṽ we conclude that z̃ẽ is a 0-cube for

finitely many edges ẽ incident to ṽ.

Proposition 5.1.6. If Λ1, . . . , Λk are primitive, fortified, non-dilated immersed

walls, then G is virtually special.

Proof. By Proposition 5.1.4, there is a free action of G on Rd × Γ̃, so G is a

subgroup of Isom(Rd × Γ̃) ∼=
(
Zd o Aut([−1, 1])d

)
×Aut(Γ̃). Therefore, there

is a projection ρ : G → Zd o Aut([−1, 1]d). Each vertex group Gṽ embeds in

Zd, and the mapping is invariant under conjugation. As there are only finitely

orbits of vertices in Γ̃, there exists a finite index subgroup (DZ)d 6 Zd such

that if ẽ is incident to ṽ then Gẽ ∩ (DZ)d is generated by a primitive element

in Gṽ ∩ (DZ)d. Let G′ = ρ−1
(
(DZ)d

)
. Then G′ 6 G is a finite index subgroup

that embeds in (DZ)d×Aut(Γ̃) such that each edge group is generated by an
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element that is primitive in the adjacent vertex groups. By Proposition 5.1.4

there is a G-equivariant embedding φ : Z̃ → Rd × Γ̃. As G′ does not permute

the factors of Rd we can deduce that the hyperplanes in
(
Rd × Γ̃

)
/G do not

self-intersect, so neither do the hyperplanes in Z̃/G′. Indeed, they are also

2-sided and cannot inter-osculate.

Let G′′ be a finite index subgroup such that the underlying graph Γ′′ has

girth at least 2. Let Z̃+
ẽ and Z̃−ẽ denote the subcomplexes Hẽ × {−1} and

Hẽ×{+1} respectively. Let ẽ be an edge such that +ẽ = ṽ. As Λ1, . . . , Λk are

fortified, we conclude that dṽ > dẽ and Z̃+
ẽ is a proper subcomplex of Z̃ṽ. As

G′′ẽ is primitive, if g ∈ G′′ṽ −G′′ẽ then ghr
dṽ

Λ̃dṽ
6= hr

dṽ
Λ̃dṽ

as g acts by translation

on X̃ṽ in a direction non-parallel to Λ̃dṽ
∩ X̃ṽ. Thus, Z̃±ẽ is not stabilized by

g, so we can deduce that StabG′′
ṽ
(Z̃+

ẽ ) = G′′ẽ . Therefore, G′′ẽ\Z̃
+
ẽ embeds in

G′′ṽ\Z̃ṽ.

Let Z ′′ = G′′\Z̃. Let z be a 0-cube in Z ′′v . Let He be the vertical hyper-

plane contained in Z ′′e , and dual to an edge incident to v. As the attaching

maps of Z ′′e are embeddings, and Γ′′ has girth at least 2, we deduce that z can

only be incident to one end of a single 1-cube intersected by He. Therefore He

does not self-osculate.

Let σ be a 1-cube in Rd × Γ̃ that projects to a 1-cube in Rd. The G′′-

orbit of σ is a set of 1-cubes, that all project to the same factor of Rd, since

G′′ does not permute the factors of Rd. As G′′ does not invert hyperplanes,

after subdividing Rd we can assume that the G′′-orbit of σ is a disjoint set of

1-cubes. Therefore, after the corresponding subdivision, we conclude that the

horizontal hyperplanes in Z ′′ don’t self-osculate.

We note that the requirement in Proposition 5.1.6 that the immersed

walls are fortified is necessary, as the following example demonstrates.
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Example 5.1.7. Let G = 〈a, b, t | [a, b] = 1, tat−1 = a〉. We can decompose G

as the cyclic HNN extension of the vertex group Gv = 〈a, b〉 with stable letter

t. Thus, G is a tubular group. Note that G ∼= F2 × Z which is a right angled

Artin group, and therefore special. Let X be the corresponding tubular space

with a single vertex space Xv and edge space Xe. There is an equitable set

{α1, α2} where α1 is a geodesic curve in Xv representing ab ∈ Gv, and α2 is a

geodesic curve in Xv representing ab−1 ∈ Gv. Note that each attaching map ϕ+
e

and ϕ−e intersects each curve in the equitable set precisely once. Therefore, we

obtain a pair of embedded immersed horizontal walls Λ1 and Λ2, by connecting

respective intersection points with ϕ+
e and ϕ−e by an arc. A vertical wall Λe is

also embedded in Xe.

In the wallspace (X̃,W) we can decompose W into three sets of disjoint

walls: the walls W1 that cover Λ1, the walls W2 that cover Λ2, and the walls

We that cover Λe. These walls are disjoint since the immersed walls are em-

bedded. Furthermore, the walls in different sets pairwise intersect. Therefore

we conclude that C(X̃,W) = R2× Γ̃. As this is not locally finite, G\C(X̃,W)

cannot be virtually special, although G itself is special.

5.2 Revisiting Equitable Sets

Although Wise proved in [40] that acting freely on a CAT(0) cube complex

Ỹ implied the existence of an equitable set, and thus a system of immersed

walls as in Section 4.2, no relationship was established between Ỹ and the

resulting dual C(X̃,W). Proposition 5.2.8 gives the relationship required to

reduce Theorem 5.2.9 to considering cubulations obtained from equitable sets.

This section will apply the main result from Chapter 3.

Lemma 5.2.1. Let G be a tubular group acting freely on a CAT(0) cube

complex Ỹ . Let Gv be a vertex group in G, then there exists a Gv-invariant

subspace X̃ṽ ⊆ Ỹ homeomorphic to R2. Moreover, X̃ṽ has a metric such that
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the intersection of a hyperplane in Ỹ with X̃ṽ is either empty, or a geodesic

line.

Proof. By Theorem 3.4.3, there exists a Gv-equivariant subcomplex Ỹv ⊆ Ỹ

that isometrically embeds in the combinatorial metric, and such that Ỹv
∼=

∏m
i=1 Ci where each Ci is a cubical quasiline. By the flat torus theorem [6], Gv

stabilizes a flat X̃v ⊆ Ỹv, that is a convex subset in the CAT(0) metric of Ỹv.

As the stabilizers of hyperplanes in Ỹv are codimension-1 subgroups of Gv, the

intersection of a hyperplane in Ỹ with X̃v is either empty or a geodesic line in

the CAT(0) metric inherited from Ỹv.

Definition 5.2.2. Let X be a tubular space and let Y be a non-positively

curved cube complex. A map f : X → Y is an amicable immersion if:

1. f∗ : π1X → π1Y is an isomorphism.

2. The G-equivariant map f̃ : X̃ → Ỹ embeds each vertex space X̃ṽ in Ỹ .

3. Each X̃ṽ has a Euclidean metric such that if H ⊆ Ỹ is a hyperplane,

then the intersection H ∩ X̃ṽ is either the empty set, or a single geodesic

line in X̃ṽ.

4. Each edge space X̃ẽ is embedded transverse to the hyperplanes.

5. Each X̃ẽ is contained in hull

( ⋃
ṽ∈V Γ̃

X̃ṽ

)
.

Note that the Euclidean metric on each X̃ṽ is not the subspace metric induced

from Ỹ .

Lemma 5.2.3. Let X be a tubular space and let Y be a non-positively curved

cube complex. Let F : π1X → π1Y be an isomorphism. Then there is an

amicable immersion f : X → Y such that f∗ = F .

Proof. Use F to identify G = π1X with π1Y . The claim is proven by construct-

ing a G-equivariant map between the tree of spaces X̃ → Ỹ . By Lemma 5.2.1

for each ṽ ∈ V Γ̃, we can Gṽ-equivariantly embed a Euclidean flat X̃ṽ in Ỹ such
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that if H ⊆ Ỹ is a hyperplane, then the intersection H∩X̃ṽ is either the empty

set, or a single geodesic line in X̃ṽ. Moreover, we can ensure that
⋃

ṽ∈V Γ̃
X̃ṽ

is G-equivariant. The edges spaces X̃ẽ can then be inserted transverse to the

hyperplanes in Ỹ so that X̃ẽ is contained inside hull

( ⋃
ṽ∈V Γ̃

X̃ṽ

)
.

Lemma 5.2.4. Let X → Y be an amicable immersion, where Y is finite

dimensional. If ṽ is a vertex in Γ̃, then hull(X̃ṽ) embeds as a subcomplex of

Rd for some d.

Proof. Let G = π1X. Let y be a 0-cube in hull(X̃ṽ). If H is a hyperplane in Ỹ ,

let y[H] denote the halfspace of H containing y. Each 0-cube is determined

by the halfspace containing it for each hyperplane. If H is a hyperplane that

doesn’t intersect X̃ṽ, then y[H] is the halfspace containing X̃ṽ, and therefore

y[H] is fixed for all 0-cubes y in hull(X̃ṽ).

Let Hṽ denote the hyperplanes intersecting X̃ṽ. Let H ∈ Hṽ. The in-

tersection X̃ṽ ∩ H is a geodesic line in X̃ṽ. Let g ∈ Gṽ be an isometry that

stabilizes an axis in X̃ṽ that is not parallel to X̃ṽ ∩ H. Then {grH}r∈Z is

an infinite family of hyperplanes such that {grH ∩ X̃ṽ}r∈Z is a set of disjoint

parallel lines in X̃ṽ. As Ỹ is finite dimensional, there exists an N such that

H and gNH do not intersect. Otherwise {grH}r∈Z would be an infinite set of

pairwise intersecting hyperplanes, which would imply that there are cubes of

arbitrary dimension in Ỹ .

Therefore, as there are only finitely many Gṽ-orbits of hyperplanes in-

tersecting X̃ṽ, there exists a finite set of hyperplanes H1, . . . , Hd ∈ Hṽ and

g1, . . . , gd ∈ G such that Hṽ = {gr
1H1, . . . , gr

dHd}r∈Z, and each {gr
i Hi}r∈Z is a

disjoint set of hyperplanes in Ỹ . Therefore {gr
i Hi ∩ ẽ}r∈Z is a set of disjoint

geodesic lines in X̃ṽ. Thus, given a 0-cube y, there exists a unique yi ∈ Z

such that y[gyi

i Hi] and y[gyi+1
i Hi] properly intersect each other. Therefore,

construct φ : hull(X̃ṽ) → Rd by letting φ(y) = (y1, . . . , yd) for each 0-cube
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y. The map φ extends to the 1-skeleton of hull(X̃ṽ) since adjacent 0-cubes lie

on the opposite sides of precisely one hyperplane. Therefore φ extends to the

higher dimensional cubes, and thus hull(X̃ṽ).

Let X̃ → Ỹ be the lift to the universal cover of an amicable immersion

X → Y . Let X̃ẽ be an edge space adjacent to a vertex space X̃ṽ. A hyperplane

H in Ỹ intersects X̃ṽ parallel to X̃ẽ if H ∩ X̃ṽ is a geodesic line parallel to

X̃ẽ∩X̃ṽ. Otherwise, if H∩X̃ṽ is a geodesic line that is not parallel to X̃ẽ∩X̃ṽ,

then we say H intersects X̃ṽ non-parallel to X̃ẽ.

Lemma 5.2.5. Let X → Y be an amicable immersion. Let ẽ be an edge in

Γ̃. Suppose that H ⊆ Ỹ is a hyperplane intersecting X̃−ẽ non-parallel to X̃ẽ,

then H intersects X̃+ẽ non-parallel to X̃ẽ. Moreover, there is an arc in H∩X̃ẽ

joining H ∩ X̃−ẽ to H ∩ X̃+ẽ.

Proof. Let G = π1X. The geodesic lines H ∩ X̃−ẽ and X̃ẽ ∩ X̃−ẽ are non

parallel in X̃−ẽ, and therefore intersect in a single point p ∈ X̃ẽ ∩ X̃−ẽ. As

H is two sided in Ỹ and X the vertex and edge spaces are transverse to H,

the intersection of H with X is also locally two sided in X̃. Therefore, p is

contained inside a curve in H ∩ X̃ẽ. As X̃ẽ is Gẽ-invariant and only finitely

many hyperplanes separate any two points in X̃, we can deduce that p is an

endpoint of a compact curve in H ∩ X̃ẽ with its other endpoint contained in

X̃+ẽ ∩ X̃ẽ. Thus, H must also intersect X̃+ẽ non-parallel to X̃ẽ.

Lemma 5.2.6. Let X → Y be an amicable immersion, where Y is a finite

dimensional, locally finite, non-positively curved cube complex. If π1X ∼= Z2∗Z

Z2, then for every vertex space X̃ṽ and adjacent edge space X̃ẽ there is a

hyperplane H in Ỹ that intersects X̃ṽ parallel to X̃ẽ.
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Proof. Let G = π1X. There are precisely two vertex orbits and one edge orbit

in Γ̃. Assume that Ỹ = hull(X̃). Let H denote the set of all hyperplanes in Ỹ

intersecting X̃. Let Hṽ denote the set of all hyperplanes intersecting X̃ṽ.

For each vertex ṽ, there is precisely one Gṽ-orbit of adjacent edges ẽ.

Therefore, if H ∈ Hṽ is non-parallel to an adjacent edge space to X̃ṽ, it is

non-parallel to all adjacent edge spaces, and by Lemma 5.2.5 it must intersect

all adjacent vertex spaces non-parallel to all adjacent edge spaces. Therefore,

we deduce that any hyperplane that doesn’t intersect every vertex space in X̃

will either intersect a vertex space parallel to its adjacent edge spaces, or its

intersection will be a line contained in an edge space.

Suppose that there exists a vertex space X̃ṽ1
such that no hyperplane in

Hṽ1
intersects X̃ṽ1

parallel to the adjacent edge spaces. Let Ĥ = H − Hṽ1
.

Every hyperplane in H − Hṽ1
must intersect each wall in Hṽ1

so we deduce

that Ỹ = hull(X̃ṽ1
)×C(Ỹ , Ĥ) (see [9, Lem 2.5]). Furthermore, Hgṽ1

= Hṽ1
for

all g ∈ G. By Lemma 5.2.4, hull(X̃ṽ) embeds in Rd. Since X̃ṽ1
is contained

inside some subcomplex hull(X̃ṽ1
)×C ⊆ Ỹ , where C is the 0-cube determined

by orienting all hyperplanes towards X̃ṽ1
, we can conclude that only finitely

many hyperplanes in Ĥ intersect the r-neighborhood of X̃ṽ1
.

Let X̃ũ be a vertex space adjacent to X̃ṽ1
, and let X̃ẽ1

be the edge space

connecting them. Let X̃ṽ2
be another vertex space adjacent to X̃ũ and let X̃ẽ2

be the edge space connecting them. Note that X̃ṽ1
and X̃ṽ2

are in the same

Gũ-orbit. The geodesic lines X̃ũ ∩ X̃ẽ1
and X̃ũ ∩ X̃ẽ2

are parallel in X̃ũ. Let

D ⊆ X̃ũ be the subspace isometric to R× [a, b] bounded by these parallel lines.

Let U = D ∪ X̃ẽ1
∪ X̃ẽ2

. Finitely many hyperplanes in Ĥ intersect D.

Let g1 be an isometry in Gṽ1
that stabilizes an axis in X̃ṽ1

that is non-

parallel to the geodesic X̃ṽ1
∩ X̃ẽ1

. Similarly, let g2 be an isometry in Gṽ2
that

stabilizes an axis in X̃ṽ2
that is non-parallel to the geodesic X̃ṽ2

∩X̃ẽ2
. Note that
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F = 〈g1, g2〉 is a free group on two generators. Let r be such that U is contained

in the r-neighbourhood of X̃ṽ1
. As there are only finitely many hyperplanes

in Ĥ intersecting Nr(X̃ṽ1
), there must exist an n such that gn

1 stabilizes those

walls. Similarly, since X̃ṽ2
is a translate of X̃ṽ1

, we can deduce that there

are only finitely many hyperplanes in Ĥ intersecting Nr(X̃ṽ2
), and there must

exist an m such that gm
2 stabilizes those walls. Let F ′ = 〈gn

1 , gm
2 〉. As U lies

in both Nr(X̃ṽ1
) and Nr(X̃ṽ2

) we can deduce that the hyperplanes in Ĥ that

intersect the F ′-translates of U are precisely the hyperplanes intersecting U .

Let Z̃ = F ′X̃ṽ1
∪ F ′X̃ṽ2

∪ F ′U . Then hull(Z̃) = hull(X̃ṽ1
) × K ⊆ Ỹ , where

K is a compact cube complex. Then F acts freely on hull(Z̃), which is a

contradiction since number of 0-cubes intersecting the r-neighborhood of a 0-

cube in hull(X̃ṽ1
)×K grows polynomially with r, and therefore cannot permit

a free F -action.

Lemma 5.2.6 is a special case of the following more general statement:

Corollary 5.2.7. Let X → Y be an amicable immersion, where Y is a finite

dimensional, locally finite, non-positively curved cube complex. Then for every

vertex space X̃ṽ and adjacent edge space X̃ẽ there is a hyperplane H in Ỹ that

intersects X̃ṽ parallel to X̃ẽ.

Proof. For every edge ẽ in Γ̃ there is a subgroup G′ = 〈G−ẽ, G+ẽ〉 ≤ G such

that G′ ∼= Z2 ∗Z Z2. Let Y ′ = G′\Ỹ . Then there is an amicable immersion

X ′ → Y ′ such that X̃ ′ẽ = X̃ and X̃ ′±ẽ = X̃±ẽ. Therefore, by Lemma 5.2.6, there

is a hyperplane intersecting X̃−ẽ parallel to X̃ẽ, and similarly for X̃+ẽ.

The following proposition is a strengthening of one direction of Theorem 1.1

in [40]. Let f1 : A → C and f2 : B → C be maps between topological spaces

A, B, C. The fiber product A ⊗C B = {(a, b) ∈ A × B | f1(a) = f2(b)}. Note

that there are natural projections p1 : A⊗C B → A and p2 : A⊗C B → B.
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Proposition 5.2.8. Let G be a tubular group acting freely on a CAT(0) cube

complex Ỹ . Then there is a tubular space X with a finite set of immersed walls

such that the associated wallspace (X̃,W) has the following properties:

1. G acts freely on C(X̃,W).

2. C(X̃,W) is finite dimensional if Ỹ is finite dimensional.

3. C(X̃,W) is finite dimensional and locally finite if Ỹ is locally finite.

Proof. Let y be a 0-cube in Ỹ . By possibly replacing Ỹ with hull(Gy) we can

assume that Ỹ has finitely many G-orbits of hyperplanes. Assume that Ỹ is

minimal in the sense that we cannot replace Ỹ with a convex G-subcomplex

with less hyperplane orbits. Let Y = G\Ỹ . Let h1, . . . , hm be the immersed

hyperplanes in Y . By Lemma 5.2.3 we can find an amicable immersion X → Y .

Every hyperplane in Ỹ must intersect X̃. Otherwise, if h is a hyperplane in Ỹ

that doesn’t intersect X̃, there is a 0-cube y in Ỹ in the same halfspace of h as

X̃, and hull(Gy) is a convex G-subcomplex that doesn’t contain the G-orbit

of h, contradicting the minimality of Ỹ .

Let hi → Y be an immersed hyperplane in Y . We obtain horizontal

immersed walls in X by considering the components of the fiber product X⊗Y

hi of X → Y and hi → Y . Each component Λ has a natural map into X. The

components of X ⊗Y hi that have image in X contained in an edge space are

ignored. Let Λp be a component of X ⊗Y hi whose image in X intersects a

vertex space Xv ⊆ X. We will show that after a minor adjustment to Λp, we

obtain a horizontal immersed wall and by considering all such components we

obtain a set of horizontal walls in X obtained from an equitable set.

Using the map Λp → X we can decompose Λp into the components of

the preimages of vertex space and edge spaces. As the intersection of each

hyperplane H ⊆ Ỹ with each vertex space X̃ṽ is either empty or a geodesic

line, the intersection of each hi with Xv is a set of geodesic curves, so Λp
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restricted to the preimage of Xv is a set of geodesic curves. By Lemma 5.2.5

each hyperplane H ⊆ Ỹ that intersects a vertex space Xṽ non-parallel to an

adjacent edge space X̃ẽ will intersect X̃ẽ as an arc with endpoints in X̃−ẽ and

X̃+ẽ. Thus the components of the intersection Xe ∩ hi that intersect X−e or

X+e, are arcs with endpoints in both X−e and X+e. Therefore, Λp decomposes

into circles that map as local geodesics into vertex spaces, and arcs that map

into edges spaces Xe with an endpoint in each X−e and X+e.

Let {Λp
1, . . . , Λp

k} be the set of all such components of X⊗Y hi that intersect

vertex spaces. Let Sp
v be the set curves that map the circles in {Λp

i }
k
i=1 to the

vertex space Xv. The elements of Sp
v and the attaching maps ϕ±e of the edge

spaces in X are locally geodesic curves, and #[ϕ+
e , Se+ ] = #[ϕ−e , Se− ] since

both sides are equal to the number of arcs in the walls {Λp
i }

k
i=1 that map into

Xe. As G acts freely on Ỹ , there must be hyperplanes intersecting each vertex

space X̃ẽ as geodesics in at least two parallelism classes. This implies that Sp
v

contains curves generating at least two non-commensurable cyclic subgroups

of Gv, and therefore Sp
v generates a finite index subgroup of Gv.

Sp
v is almost an equitable set: the images of the curves in Sp

v may not

have images in Xv that coincide with each other or the image of an attaching

map into Xv. Suppose that α1, . . . αm ∈ Sv be a maximal set of curves that

have identical image in Xv. Let Nε(Q) denote the ε-neighborhood of a subset

Q of either Y or Ỹ with respect to the CAT(0) metric. Let ε ∈ (0, 1
3
) be such

that the neighbourhood Nε(α1) ⊆ Y only contains the images of α1, . . . , αm

and the arcs connected to them. There is a homotopy of
⊔k

i=1 Λp
i → X that is

the identity outside of
⊔k

i=1 Λp
i ∩ Nε(α1) such that α1, . . . , αm are homotoped

to a disjoint set of geodesic curves in Xv ∩Nε(α1) transverse or disjoint from

all the other curves in Sp
v and the attaching maps into Xv. By choosing ε

small enough we can perform such a homotopy Φ :
⊔k

i=1 Λp
i × [0, 1] → X
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such that all sets of overlapping curves in {Sp
v}v∈V Γ become disjoint and such

that Φ is the identity map outside of the ε-neighborhood of the overlapping

curves. The restriction of Φ to Λp
i × {1} → X is an immersed wall which we

will denote by Λi. Thus, the immersed walls {Λi}
k
i=1 are obtained from an

equitable set {Sv}v∈V Γ. We refer to {Λp
i }

k
i=1 as the immersed proto-walls and

the lifts Λ̃p
i → X̃ as the proto-walls. Note that proto-walls have regular and

non-regular intersections in the same way that walls do.

Let (X̃,W) be the wallspace obtained from the immersed walls {Λi}
k
i=1

and adding a single vertical wall for each edge space. Each wall Λ̃→ X̃ covers

an immersed wall Λ → X. There exists a homotopy of Λ → X to the corre-

sponding immersed proto-wall Λp → X. This homotopy lifts to a homotopy

from the immersed wall Λ̃ → X̃ to a unique proto-wall Λ̃p → X̃. Note that

each wall is contained in the ε-neighborhood of its corresponding proto-wall.

Each proto-wall corresponds to the intersection of a unique hyperplane in Ỹ

with the image of X̃ in Ỹ . Therefore, each wall in W corresponds to a unique

hyperplane in Ỹ .

Let Λ̃ be a wall in W , and let Λ̃p be the corresponding proto-wall. Note

that Λ̃ ∩ X̃ṽ and Λ̃p ∩ X̃ṽ are either parallel geodesic lines, or both empty

intersections. Therefore, if Λ̃1, Λ̃2 ∈ W are a pair of regularly intersecting

walls, then they correspond to a pair of regularly intersecting proto-walls,

which correspond to a pair of intersecting hyperplanes in Ỹ .

If a pair of proto-walls Λ̃p
1 and Λ̃p

2 are disjoint, then the corresponding

walls in Λ̃1 and Λ̃2 in W are also disjoint. Moreover, since Λ̃ is contained in

the ε-neighborhood of Λ̃p, a halfspace of Λ̃ determines a halfspace of Λ̃p and

therefore a halfspace of the hyperplane H corresponding to Λ̃p.

Note that (1) follows from the the fact that C(X̃,W) was obtained from

an equitable set for G, and thus by Theorem 4.2.1 G acts freely on C(X̃,W).
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To prove (2), suppose that C(X̃,W) were infinite dimensional, then by

Proposition 4.6.12, there would exists an infinite set of pairwise regularly in-

tersecting walls in W , which implies there is an infinite set of pairwise reg-

ularly intersecting proto-walls. Therefore, there is an infinite set of pairwise

intersecting hyperplanes in Ỹ . This would imply that Ỹ is an infinite dimen-

sional CAT(0) cube complex. Therefore, if Ỹ is finite dimensional, then so is

C(X̃,W).

To prove (3) we first prove the following:

Claim 2. If Ỹ is locally finite, then C(X̃,W) is finite dimensional.

Proof. Suppose that Ỹ is locally finite. If C(X̃,W) is infinite dimensional,

then by Proposition 4.6.12 it contains an infinite cube containing a canonical

0-cube z. Let Λ̃1, . . . , Λ̃n, . . . be the set of infinite pairwise crossing walls cor-

responding to the infinite cube. Let Λ̃p
1, . . . , Λ̃p

n, . . . be the corresponding set

of infinite pairwise crossing proto-walls, and let H1, . . . , Hn, . . . be the corre-

sponding infinite family of pairwise crossing hyperplanes.

Suppose that Q is a subcomplex in Ỹ . Let U(Q) denote the cubical

neighborhood of Q, which is the union of all cubes in U(Q) that intersect Q.

As Ỹ is locally finite, if Q is compact, then U(Q) is also compact. By [20,

Lem 13.15], if Q is convex, then so is U(Q). Let Un(Q) denote the cubical

neighborhood of Un−1(Q).

Let x ∈ X̃ be a point determining the canonical 0-cube z in C(X̃,W).

Let x be contained in a cube C in Ỹ . As C is compact and convex, Un(C)

is also compact and convex, and therefore can only be intersected by finitely

many Hi. Moreover, as
⋃

n Un(C) = Ỹ , every hyperplane intersects Un(C)

for n sufficiently large. Thus, there exists N, i > 1 such that Hi intersects

UN+2(C), but not UN+1(C). As UN(C) and the carrier of Hi are disjoint

convex subcomplexes, there exists a hyperplane H that separates Hi from
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UN(C). Note that d
Ỹ

(x, H) ≥ N and d
Ỹ

(H, Hi) ≥ 1. Let Λ̃p be the proto-

wall corresponding to H and Λ̃ be the corresponding wall. As Λ̃p separates

x from Λ̃p
i , we can conclude Λ̃ separates x from Λ̃i since the Λ̃ and Λ̃i are

respectively contained in the ε-neighborhoods of Λ̃p and Λ̃p
i . This contradicts

the fact that z is incident to a 1-cube dual to hyperplane corresponding to

Λ̃i.

As C(X̃,W) is finite dimensional, we can apply Corollary 5.2.7 to each

edge group in G to deduce that {Λi}
k
i=1 are fortified. Therefore, by Proposi-

tion 5.1.5 we deduce that C(X̃,W) is locally finite.

We can now prove the main theorem of this thesis.

Theorem 5.2.9. A tubular group G acts freely on a locally finite CAT(0) cube

complex if and only if G is virtually special.

Proof. Suppose that G is virtually special. Then G embeds as the subgroup of

a finitely generated right angled Artin group R. The universal cover Ỹ of the

Salvetti complex corresponding to R is a locally finite CAT(0) cube complex.

Therefore, as R acts freely on Ỹ , so does G.

Conversely, suppose that G acts freely on a locally finite CAT(0) cube

complex. Let X be a tubular space such that G = π1X. By Proposition 5.2.8

there exists a finite set of immersed walls such that the dual of the associated

wallspace C(X̃,W) is finite dimensional and locally finite. By Theorem 4.6.10

and Proposition 5.1.5 this is equivalent to saying that the immersed walls are

non-dilated and fortified. By Lemma 4.7.4 we can assume that the immersed

walls are also primitive. Therefore, by Proposition 5.1.6, G is virtually special.
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5.3 Virtual Cubical Dimension

Let G be a tubular group. The first homology of G can be written as a

direct sum of two factors: H1(G) = H
v

1(G) × H
s

1(G). The first factor H
v

1(G)

is generated by the image of the vertex groups of G, and the second factor

H
s

1(G) is generated by the stable letters in the presentation corresponding to

the graph of groups decomposition.

Proposition 5.3.1. Let X be a tubular space and G = π1X. Suppose that the

natural maps H1(Gv) → H1(G) are injections as summands for all v ∈ V Γ.

Given a primitive element av in a vertex group Gv, we can find non-dilated,

primitive, embedded, pairwise disjoint immersed walls {Λa
i } such that there is

precisely one circle in each vertex space, and the circle in Xv represents av in

π1Xv.

Moreover, given primitive, incommensurable elements a1v, . . . , anv ∈ Gv,

the immersed walls {Λa1

1i , . . . , Λan

ni } produce an (n + 1)-dimensional CAT(0)

cube complex with a free G-action.

Proof. By our hypothesis, there are inclusion maps ιv : Gv → H
v

1(G), and

projection maps pv : H
v

1(G) → Gv for every vertex v ∈ V Γ. Let ge generate

the edge group Ge and recall that ϕ±e : X±e → X±e denotes the attaching maps,

so (ϕ−e )∗ and (ϕ+
e )∗ denote the inclusions of Ge into G−e and G+e respectively.

Let av be a primitive element in Gv, and let a = ιv(av) ∈ H
v

1(G).

Suppose that H
v

1(G) ∼= Z2, then ιv and pv are isomorphisms for all v ∈ V Γ.

Let Su = {au = ιu(a)}. Note that {Su}u∈V Γ is not an equitable set for G

as Su contains a single element, but we will show that #[S−e, (ϕ−e )∗(ge)] =

#[S+e, (ϕ+
e )∗(ge)] for all e ∈ EΓ so {Su}u∈V Γ can be used to construct an

immersed walls in X.

There is an isomorphism Ae = p+e◦ι−e : G−e → G+e that maps (ϕ−e )∗(ge) 7→

(ϕ+
e )∗(ge), and a−e 7→ a+e. By identifying G−e and G+e with Z2 we can say
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that A ∈ SL2(Z). As the elements of SL2(Z) preserve the determinant, #[·, ·]

is preserved by A. Therefore,

#[a−e, (ϕ−e )∗(ge)] = #[A(a−e), A(ϕ−e )∗(ge)] = #[a+e, (ϕ+
e )∗(ge)],

As Sv contains precisely one element for each v ∈ V Γ, after adding non-

intersecting arcs we obtain embedded immersed walls {Λa
i } that are pairwise

non-intersecting and have exactly one circle in each vertex space. As they

are embedded, each Λav

i is non-dilated. By construction, the circle in Xv

represents av ∈ π1Xv. Since av is primitive in Gv, we deduce that a = ιv(av)

is also primitive in H
v

1(G) as ιv is an isomorphism, and thus au = pu(a) is also

primitive since pu is an isomorphism.

If H
v

1(G) ∼= Zd with d > 2, there exist vertex groups Gu and Gv that

embed into H
v

1(G) as distinct summands. Let Gu = 〈gu, g′u〉 and Gv = 〈gv, g′v〉.

We can assume, since they are distinct summands, that gu is disjoint from

the image of Gv in H
v

1(G), and that gv is disjoint from the image of Gu in

H
v

1(G). By attaching an edge space to X connecting Xu and Xv, that has

attaching maps representing gu and gv respectively we obtain a new graph of

spaces X ′. The resulting tubular group G′ = π1X̂
′ has H

v

1(G
′) ∼= Zd−1. By

repeating this process we can obtain a tubular group Ĝ that is the fundamental

group of a tubular space X̂ such that X ⊆ X̂ is a sub-graph of spaces. For

av ∈ Ĝv = Gv we can find a set of non-dilated, primitive embedded immersed

walls {Λ̂av

i } that are pairwise disjoint, and such that each vertex space X̂v

contains precisely one circle in the collection of immersed walls, and the circle

mapping into X̂v = Xv represents av. By restricting these immersed walls to

X we prove the first part of the claim.

Let a1v, . . . , anv ∈ Gv be incommensurate primitive elements with d ≥ 2,

then 〈a1v, . . . , anv〉 is a finite index subgroup of Gv. Similarly, 〈a1u = pu ◦
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ιv(a1v), . . . , anu = pu ◦ ιu(anv)〉 is a finite index subgroup of Gu. Therefore,

{Su = {pu ◦ ιv(a1v), . . . , pu ◦ ιu(anv)}}u∈V Γ is an equitable set. The set {Λaj

i }

contains pairwise disjoint embedded, non-dilated immersed walls. After in-

cluding the vertical immersed walls we conclude that any set of pairwise inter-

secting walls in the associated wallspace (X̃,W) can contain at most (n + 1)

walls: a vertical wall, and a single wall covering an immersed wall in each

{Λaj

i }. Therefore C(X̃,W) is of dimension at most (n + 1), and since it was

obtained from an equitable set, G acts freely on C(X̃,W).

Lemma 5.3.2. Let X be a tubular space and G = π1X. Suppose there exists

an equitable set that produces primitive, non-dilated immersed walls in X.

Then there exists a finite index subgroup G′ 6 G such that the natural map

H1(G′v) → H1(G′) is an injection as a summand for each vertex group G′v of

the induced splitting of G′.

Proof. Let Γ̃ be the Bass-Serre tree. By Proposition 5.1.4, since there are

immersed walls that are primitive and non-dilated, G acts freely on Rd×Γ̃ such

that Gṽ fixes the vertex ṽ in Γ̃. Therefore G is a subgroup of Aut(Rd × Γ̃) ∼=

ZdoAut([−1, 1]d)×Aut(Γ̃). Let K be the kernel of G ↪→ ZdoAut([−1, 1]d)×

Aut(Γ̃) → Aut([−1, 1]d). Note that K 6 G is a finite index subgroup that

embeds in Zd × Aut(Γ̃). Let p : K → Zd be the projection onto the first

factor. Each vertex group in K survives in the image of p, and therefore we

have embedding H1(Kv) ↪→ H
v

1(G
′′) ↪→ Zd.

For each vertex group Kv in the graph of groups decomposition of K,

there is a finite index subgroup Av 6 Zd such that p(Kv) ∩ Av is a summand

of Av. Let A = ∩vAv and G′ = p−1(A). Note that G′ 6 K 6 G are finite

index subgroups. Each vertex group in G′ will be a factor in A. As A is free

abelian, the map G′ → A will factor through the H
v

1(G
′), so we can deduce
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that each vertex group survives as a retract in H1(G′). Therefore, each vertex

group in G′ survives as a summand in the first homology.

Corollary 5.3.3. Let X be a tubular space. If the tubular group G = π1X

acts freely on a finite dimensional CAT(0) cube complex, then G acts on a

locally finite, finite dimensional CAT(0) cube complex

Proof. If G acts freely on a finite dimensional CAT(0) cube complex, then by

Proposition 5.2.8, Theorem 4.6.10 and Proposition 4.7.4 there is an equitable

set that produces primitive, non-dilated immersed walls. By Lemma 5.3.2

there exists G′ 6 G such that the natural map H1(G′v) → H1(G′) is an injec-

tion as a summand for each vertex group G′v of the induced splitting of G′.

Therefore, by Proposition 5.3.1, for each edge group Ge = 〈ge〉 there is a pair

of primitive, non-dilated, immersed walls Λ+
e and Λ−e such that Λ±e contains

a circle that maps into X±e, representing (φ±e )∗(ge). If the circles in the im-

mersed walls {Λ±e }e∈EΓ don’t constitute an equitable set, use Proposition 5.3.1,

to find more primitive, non-dilated walls, so that the circles do constitute an

equitable set. By construction the set of immersed walls is fortified.

By Theorem 4.6.10, Proposition 5.1.6, and Theorem 5.2.9 the correspond-

ing dual cube complex C(X̃,W) is finite dimensional, locally finite, and admits

a free G′ action. There is an induced free action of G on C(X̃,W)[G:G′], which

is also a locally finite, finite dimensional CAT(0) cube complex.
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