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ABSTRACT

Syndromic surveillance has emerged as a novel, automated approach to

monitoring diseases using pre-diagnostic but often non-specific data sources.

However, there is little consensus about the best data sources. Using physician

billing data from community-based care settings and emergency departments in

Quebec, Canada during 1998-2003, we evaluated the lead-lag relationship between

ambulatory medical visits for influenza-like illnesses (ILI) and pneumonia and

influenza (P&I) hospitalizations by age-group, visit setting, and influenza season.

To do so, we applied ARIMA modeling methodology and computed the cross-

correlation function (CCF) using the residuals. ILI visits in community settings by

children aged 5-17 years tended to provide the greatest lead times (at least 2 but up

to 3 weeks) over P&I hospitalizations. Lead times varied each season, possibly due

to the circulation of different strains each season. These findings have important

implications for syndromic surveillance of influenza, as well as epidemic control

strategies such as vaccination and school closure policies.
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ABRÉGÉ

La surveillance syndromique a émergé comme une nouvelle approche automa-

tisée pour le contrôle des maladies avec des sources de données pré-diagnostic, mais

qui sont souvent non-spécifiques. Pourtant, il y a peu de consensus concernant les

meilleures sources de données. En utilisant des factures médicales émises entre 1998

et 2003, et provenant de centres communautaire et de services d’urgence au Québec,

Canada, nous avons évalué par tranche d’âge, le cadre des visites, et la saison de la

grippe la relation d’avance-décalage entre les visites médicales ambulatoires pour

le syndrome d’allure grippale (SAG) et les hospitalisations pour la pneumonie et la

grippe. Pour ce faire, nous avons appliqué la méthodologie des modèles d’ARIMA

et calculé la fonction de contre-corrélation (CCF) avec les résidus. Les visites

communautaires reliée au SAG par des enfants âgés de 5-17 ans ont eu tendance à

pourvoir les plus grandes avances (au moins 2 semaines, mais quelques fois jusqu’à

3 semaines) contre des hospitalisations pour la pneumonie et la grippe. Les avances

ont varié chaque année, peut-être à cause de la circulation des souches différentes

chaque saison. Ces résultats ont des implications importantes pour la surveillance

syndromique de la grippe, ainsi que pour des stratégies de lutte contre l’épidémie,

comme la vaccination et la fermeture d’écoles.
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CHAPTER 1
Introduction

1.1 Background

1.1.1 Traditional Disease Surveillance

Infectious disease surveillance by public health has traditionally depended on

the routine reporting of cases by physicians and laboratories, although the discovery

and reporting of unusual clusters of cases by astute clinicians has often been the

key to the detection of outbreaks1 (Ashford et al., 2003; Dato et al., 2004; Morse,

2007). However, this mostly manual and passive approach to surveillance can be

insensitive, inflexible, and slow as it relies on the voluntary participation of the

reporters. Furthermore, there are inherent delays associated with obtaining labo-

ratory test results for diagnostic confirmation, and reports are still sent by mail or

facsimile in many areas (Morse, 2007). Consequently, it can be days or even weeks

before health departments become aware of an ongoing outbreak (Birkhead et al.,

1991; Jajosky and Groseclose, 2004). Sensitivity and timeliness of surveillance are

further reduced when cases are spread out over a wide area.

1 In the context of this thesis, the distinction between the terms “outbreak”
and “epidemic” is not relevant and therefore these two terms have been used in-
terchangeably in this thesis.
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1.1.2 Syndromic Surveillance

In recent years, emerging infectious diseases, including influenza, and bioterror-

ism have been important concerns for public health. These concerns, in conjunction

with the rapid evolution of travel behaviour and social contact patterns over the

past few decades, have raised a pressing need for an updated approach toward dis-

ease surveillance if the monitoring of illness in the population is to be effective and

efficient (Glezen, 1996; John et al., 2001; Koplan, 2001). With the major advances

in information technology, automated approaches such as syndromic surveillance

have emerged as novel ways to monitor and better understand the dynamics of

disease (Heffernan et al., 2004; Henning, 2004). In syndromic surveillance, data are

collected automatically in real-time or near real-time and continuously monitored

using advanced statistical and computational methods. It typically makes use of

non-traditional but convenient and abundant data sources. These include adminis-

trative data, especially health care encounter data such as emergency department

(ED) chief complaints and discharge diagnoses, billing data for medical services, as

well as emergency medical system (911) and health hotline calls, over-the-counter

medication sales and school/work absenteeism. These pre-diagnostic data sources

tend to be timelier than traditional data sources such as laboratory diagnostic test

results and practitioner reports, which increases the potential for disease clusters

to be identified at an earlier stage than through routine surveillance. Furthermore,

since data are collected by an automated system, it poses minimal burden on the

participating networks.

Although syndromic surveillance systems are promising, there is still much

dispute as to whether these systems are useful additions to existing methods (Hef-

fernan et al., 2004). Critics have expressed their doubt over the use of non-specific

2



and non-validated data, especially since these data are often not initially col-

lected for the purpose of surveillance. For example, International Classification

of Diseases, Ninth-Revision (ICD-9) diagnostic codes assigned to billing claims

are commonly used for syndromic surveillance. However, since diagnostic code

assignment is not linked to health care provider payment, they are not audited

routinely, as is often done for the code assigned for services performed, and the

studies to validate code assignment have tended to focus on chronic illnesses or

acute injuries and hospital settings (Bazarian et al., 2006; Golomb et al., 2006;

Wilchesky et al., 2004) with few assessing their use for infectious disease and in

primary care settings (Cadieux and Tamblyn, 2008; Marsden-Haug et al., 2007;

Schneeweiss et al., 2007). In addition, ICD-9 codes are usually mapped to a broad

syndrome (such as influenza-like illnesses (ILI) in the case of influenza surveillance)

to increase sensitivity among these non-validated data sources. However, this high

capture comes at the cost of a loss of specificity. Finally, these data can be collected

from a variety of settings and patient populations (among other variable factors)

and this heterogeneity may obscure patterns of disease clusters, which in turn may

obscure the utility of these types of data for disease surveillance. The accuracy and

timeliness of syndromic surveillance may be limited by the uncertainty over such

data quality issues and much work still needs to be done to evaluate the utility of

these alternative data sources and to optimize their potential.

1.2 Rationale and Objectives

While there has been some work to evaluate different data sources for syn-

dromic surveillance of influenza, most studies have been limited to the ED, where

most of the currently operating syndromic surveillance systems are based, especially

in the United States (Beitel et al., 2004; Fleischauer et al., 2004; Irvin et al., 2003;

3



Lemay et al., 2008; Muscatello et al., 2005; Olson et al., 2007; Suyama et al., 2003;

Zheng et al., 2007). Although the potential of automated syndromic surveillance

in primary care has previously been alluded to by a few (Lazarus et al., 2001;

Smith et al., 2007), there has been little research to evaluate its implementation in

primary care (Lazarus et al., 2002; Marsden-Haug et al., 2007; Miller et al., 2004;

Sloane et al., 2006; Smith et al., 2007; van den Wijngaard et al., 2008; Yang et al.,

2008). There is also evidence that children are the earliest indicators of an influenza

epidemic (Brownstein et al., 2005; Lemay et al., 2008; Olson et al., 2007; Sebastian

et al., 2008). However, to our knowledge, no researcher has compared subsets si-

multaneously stratified by different visit settings and specific patient age-groups.

Moreover, while a few studies have compared different visit settings, none have

compared community-based settings and hospital EDs using data derived from a

single source population, which avoids the potential confounding biases that might

arise in a comparison of two different populations.

There is also much annual variation in influenza epidemics due to the influenza

virus’s ability to constantly evolve, which results in the regular appearance of

new influenza strains. However, most studies have conducted analyses using

data aggregated across several influenza seasons with few taking a year-by-year

approach (Lemay et al., 2008; Quenel et al., 1994). It is still unclear as to whether

annual variations have implications for the potential timeliness of the data used in

the syndromic surveillance of influenza.

Finally, only a few of these studies (Brownstein et al., 2005; Lemay et al., 2008;

Yang et al., 2008) have used rigorous classical time series methodology to control

for the autocorrelation often exhibited in these data. Autocorrelation refers to the

lack of independence between different time series data points in that the value

4



at one time point depends on the values at previous time points. Controlling for

autocorrelation is required to make valid inferences (Box and Newbold, 1971).

In this thesis, applying time series methodology to analyze ICD-9 coded

medical billing data drawn from a single source population, the objectives were:

1) to describe the lead-lag relationships, by age-group and visit setting, between

ILI visits in ambulatory care (community-based settings and hospital EDs)

and influenza viral circulation, as represented by pneumonia and influenza

(P&I) hospitalizations, and

2) to describe the year-to-year variation in these lead-lag relationships.
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CHAPTER 2
Literature Review

2.1 Brief Overview of the Evaluation of Syndromic Surveillance

Although syndromic surveillance systems have the potential to improve

the current state of disease surveillance, work still needs to be done to evaluate

their utility. Evaluation of syndromic surveillance can be conducted from several

perspectives. For example, some studies have evaluated the use of alternative

data sources, while others have evaluated the performance of different statistical

algorithms for the detection of epidemics, both naturally occurring and simulated.

When evaluating data sources, individual records can be validated, by matching

them one-to-one against a gold standard such as a laboratory diagnostic test or

medical chart to determine whether they accurately represent illness. Alternatively,

an aggregated data set can be compared as a whole against a similarly aggregated

gold standard to examine whether there is a similarity in population trends over

time. In these evaluation studies, different parameters that serve as hallmarks

of utility, ranging from sensitivity, specificity, predictive value and timeliness to

cost-effectiveness, can be assessed.

2.2 Timeliness of Ambulatory Visits for Influenza-Like Illnesses (ILI)
for the Syndromic Surveillance of Influenza

In this literature review, we include studies that evaluated the timeliness of

ambulatory visit data for the syndromic surveillance of influenza. The inclusion

criteria were: the use of medical visits for influenza-like illnesses (ILI) or other

general respiratory syndromes to measure influenza activity; the use of data from

6



community-based primary care settings, or hospital emergency departments (EDs);

the reporting of measures of timeliness (lead time); and the use of influenza viral

isolates, pneumonia and influenza (P&I) hospitalizations, or P&I mortality as

comparison reference data. The exclusion criteria were: studies that used simulated

outbreaks; studies that used aberration detection algorithms to assess timeliness;

and studies that used one year or less of data. Using these criteria, we identified

eleven studies (Table 2–1). This review aims to identify some of the consistent

findings among these studies to synthesize the existing knowledge regarding the use

of ambulatory visit data for syndromic surveillance of influenza. The methodology

used, especially with respect to time series methods, will also be compared in the

context of the results. Finally, this review will address some of the gaps in the

literature to identify open research questions.

7
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Five (Ivanov et al., 2003; Brownstein et al., 2005; Olson et al., 2007; Lemay

et al., 2008; Sebastian et al., 2008) of the eleven studies restricted their analyses

to specific age-groups. Age is an obvious factor to consider since the impact of

influenza is known to be highly age-specific. Five (Ivanov et al., 2003; Brownstein

et al., 2005; Olson et al., 2007; Zheng et al., 2007; Lemay et al., 2008) of the eleven

studies used data from the ED. Although not obvious from the selection of studies

presented in this review, the ED was actually the predominant setting for studies

evaluating syndromic surveillance for influenza in the literature but many of these

ED-based studies were excluded from this review because they were one year

pilot studies or evaluated algorithm performance. The predominance of ED-based

studies is probably due to the fact that, especially in the United States, many of

the already existing syndromic surveillance systems for influenza are based on ED

data such as chief complaints and discharge diagnoses (Fleischauer et al., 2004;

Irvin et al., 2003; Lemay et al., 2008; Muscatello et al., 2005; Olson et al., 2007),

which is not surprising considering the ease of obtaining ED data compared to

data from other settings. Furthermore, there is a belief that the ED may provide

an earlier warning of an infectious disease outbreak than in other settings because

the ED is often the place where those in need of urgent medical care will seek care

first (Lemay et al., 2008). Six studies (Lazarus et al., 2002; Miller et al., 2004;

Brownstein et al., 2005; Marsden-Haug et al., 2007; van den Wijngaard et al., 2008;

Yang et al., 2008) used data from community-based settings (including ambulatory

care and general practitioner (GP) data). One study (Sebastian et al., 2008) used

data derived from a mixture of both community-based and ED settings. However,

only two studies (Brownstein et al., 2005; Yang et al., 2008) compared different

settings, and only one of these studies (Yang et al., 2008) assessed the utility of

9



restricting data to specific visit settings using data from a single source population,

although none have compared community and ED settings in this manner.

There is a wide range in lead times observed, depending on the comparison

reference, age-group, visit setting, and probably methodology as well. Using a

mortality standard, lead times ranged from -1.9 weeks (reported as -13 days)

for 40 to 64 year olds in a general ED (Brownstein et al., 2005) to 7.1 weeks (50

days) for 3 to 4 year olds in a pediatric ED (Brownstein et al., 2005). Using P&I

hospitalizations as a reference, the average lead times ranged from -0.3 weeks (-1.8

days) for ≥65 year olds in ED and community settings combined (Sebastian et al.,

2008) to 1.1 weeks (7.4 days) for children aged <5 years in the ED (Ivanov et al.,

2003). Finally, using an influenza virological gold standard, the lead times ranged

from -1 week for ≥65 year olds in the ED during the 2003-2004 season (Olson

et al., 2007) to 4 weeks for children aged <5 years in the ED during the 2000-2001

season (Lemay et al., 2008) and for GP visits (Yang et al., 2008).

The most consistent finding across all settings, comparison references, and

methodologies was the importance of age as an influential factor in the timing of

influenza outbreak detection among administrative data. In particular, children

provided an earlier warning of an influenza outbreak than adults although the exact

lead times varied across different studies. However, the implication of visit setting

for syndromic surveillance of influenza is not as clear from theses studies due to

a lack of comparable studies within many of the age-group and setting specific

categories. This review will first give an overview of the different methodologies

that can be applied to assess timeliness, and then next discuss each of the studies in

greater detail in the context of three standards representing influenza circulation.
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2.2.1 Methodologies to Assess Timeliness

A range of methodologies has been used to assess the timeliness of candidate

data sources against a gold standard for viral circulation. One simple method

that is often used to define lead time measures the distance between peaks (or

another point of interest) in the time series being compared, as in the studies of

Sebastian et al. (2008) and Miller et al. (2004). However, there is a debate over

whether the peak is an ideal hallmark of an epidemic since an epidemic may have

a long and varying onset period during which many cases may occur before it

actually peaks. The larger issue in this respect is that by comparing just the two

peak points, this method does not make full use of all the data that are available,

including the points between the two peaks. Another approach involves the use

of detection algorithms to generate alerts when a certain threshold is exceeded.

Dates of detection can then be compared to assess timeliness. However, we excluded

studies using this approach for the reason that the assessment of timeliness can

be confounded by its dependence on algorithm performance. For example, the

threshold is a subjective choice and merely changing the threshold may alter

the estimation of lead time. The majority of the studies in this review (Ivanov

et al., 2003; Lazarus et al., 2002; Lemay et al., 2008; Marsden-Haug et al., 2007;

Olson et al., 2007; van den Wijngaard et al., 2008; Zheng et al., 2007) assessed

timeliness with the use of a cross-correlation function (CCF) which measures the

cross-correlation between two time series that have been lagged for various units of

time. Lead time can then be defined as the lag at which the peak correlation in the

CCF occurs. However, the key distinction separating the studies that applied this

approach is whether the temporal autocorrelation in the time series was modeled

and removed prior to cross-correlating the time series. Failure to control for

autocorrelation in time series data can result in high cross-correlation estimates by

11



chance alone (Bartlett, 1935; Box and Newbold, 1971; Helfenstein, 1996). Removing

the autocorrelation from the data before analyzing the data, a process known as

“pre-whitening”, is one way of controlling for autocorrelation. Only six of the

eleven studies applied methods that control for temporal autocorrelation. Three of

these studies used methods belonging to a larger group of methodologies that are

generally more appropriate time series methods. These methods can be categorized

by the domain in which they analyze time series patterns. Perhaps the most

popular method is that used in the study of Lemay et al. (2008), the Box-Jenkins

autoregressive integrated moving average (ARIMA) modeling approach, which

analyzes patterns in the temporal domain by modeling the temporal autocorrelation

structure of the data. The residuals obtained after fitting ARIMA models represent

the time series with the autocorrelation removed, and the CCF can then be

computed using the residuals. Another study (Brownstein et al., 2005) used

cross-spectral analysis, which analyzes patterns in the frequency domain. A third

study (Yang et al., 2008) used wavelet analysis, which analyzes patterns in both

the temporal and frequency domains. A few other studies used non-time series

methods that nonetheless operate on a similar idea in that their data were used

to fit models, such as the Poisson model (Zheng et al., 2007) and the Serfling

model Olson et al. (2007). As with ARIMA modeling, residuals were checked for

autocorrelation and then the CCF was computed using the residuals.

2.2.2 A Comparison of the Effect of Age and Setting, by Gold Standard

Pneumonia and Influenza Mortality

Since the impact of influenza in terms of mortality is substantial for the

elderly (Menec et al., 2003), pneumonia and influenza (P&I) mortality is often used

as an indicator of viral circulation. P&I mortality was the comparison standard
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of choice for three of the eleven studies of this review (Table A–1 in appendix

A). The study of Brownstein et al. (2005) was the only one in this review that

assessed a variety of settings and distinct age-groups simultaneously. Visits to a

pediatric emergency department (ED), an adult ED, a general ED, a community

ED, and a large ambulatory care group practice were analyzed by age to assess

their timeliness against P&I mortality. The use of cross-spectral analysis time series

methodology adds methodological rigor to this study as it appropriately controls

for the autocorrelation in the data, and it compares fluctuations throughout the

entire time series overall, making full use of the data. They found that pediatric

age-groups generally arrived the earliest. In particular, children aged 3 to 4 years

consistently presented the earliest, across all settings except for one (general ED),

with a 34 day lead on average and up to a 50 day lead in the pediatric ED. Their

results also indicate that among adults, community-based ambulatory care visits

may provide an earlier lead than ED visits. Contrarily, among children, visits to

pediatric EDs were the earliest indicators although their visits to general EDs and

community EDs provided lead times that were comparable to those of ambulatory

care settings.

However, the data for each setting in their study came from five distinct

health-care seeking populations rather than a single source population. If the five

populations were very different in other ways (for example, by socioeconomic class),

these factors may confound the interpretation of the effect of visit setting. Unfor-

tunately, few researchers have conducted a similar comparison of the influence of

age and setting using either P&I mortality or the other two comparison references,

disallowing a synthesis of the findings for the interaction between the effects of visit

setting and age.
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Sebastian et al. (2008) also used a P&I mortality reference and examined sepa-

rate age-groups, although their data for P&I medical visits were aggregated across

a variety of general practitioner (GP) consultations, home visits and emergency

visits and therefore represent a mix of setting types in British Columbia, Canada.

They found that visits by school-aged children (5 to 19 years) were the timeliest

indicators of influenza activity (average lead time of 0.3 weeks (1.8 days) over P&I

mortality). This pediatric population is older than the pre-schoolers identified by

Brownstein et al. (2005). However, the lead times observed by Sebastian et al.

(2008) were generally much lower than those observed by others, even when com-

pared to studies that used the same comparison reference (Brownstein et al., 2005;

Miller et al., 2004). In fact, P&I medical visits in the Sebastian et al. (2008) study

lagged P&I mortality for certain age-groups (the two youngest: <6 and 6 to 23

months, and all three adult age-groups: 20 to 49, 50 to 64 and ≥65 years). The

use of different methodology may be a possible reason for this difference. Sebastian

et al. (2008) defined lead time as the time interval between the first peaks in each

data set for each influenza season, an approach that does not fully analyze the

patterns of these complex data, as discussed earlier. Other possible reasons include

the different countries from which the study populations were derived (populations

belonging to countries with structurally different health care systems may demon-

strate different health care seeking behaviour) and the use of a mix of settings in

the Sebastian et al. (2008) study, which may have led to the dilution or obscuring of

potentially different lead times.

Miller et al. (2004) cross-correlated patient visits for influenza-like illnesses

(ILI) to a large ambulatory care network in Minnesota against P&I mortality and

found the correlation to be 0.41 at both the 0 and 1 week lag. Although autore-

gressive models were used for another part of their analyses, it was unclear from
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the reported methods whether methodology controlling for temporal autocorre-

lation was applied in this correlation calculation, and it must be kept in mind

that correlating two time series without first pre-whitening the data to remove

the autocorrelation within each time series can lead to the impression of a signif-

icant correlation where there actually is none (Bartlett, 1935; Box and Newbold,

1971; Helfenstein, 1996). Furthermore, if timeliness is to be assessed by comparing

cross-correlations, the cross-correlation must be calculated across various lags,

thus obtaining the cross-correlation function (CCF). However, the correlation at

only lags of 0 and 1 week were reported in this study, making it difficult to assess

timeliness. Although the dates of alerts generated by a detection algorithm were

reported and compared to the dates of the first positive influenza isolates, no formal

algorithm-independent assessment of timeliness was conducted. Rather, timeliness

was inferred from a visual inspection of the time between initial signs and symp-

toms for ILI visits and an increase in P&I mortality. This was noted to be 1 to 2

weeks, which is less than the 29 day lead found by Brownstein et al. (2005) for their

ambulatory care population averaged across all ages. This approach is similar to the

difference between peaks approach of the Sebastian et al. (2008) study, and again

ignores a large proportion of the data that is available. Moreover, the study period

is relatively short, covering roughly one and a half influenza seasons and the results

may reflect the particularities of a single season.

There are limitations to the use of a P&I mortality as a reference for estimat-

ing timeliness. Since influenza is fatal mainly among the elderly and rarely among

healthy children and adults, P&I mortality misses a large proportion of influenza

cases. Furthermore, as a rather late-occurring outcome compared to P&I hospi-

talizations or influenza isolates, it can result in estimates of lead time that appear
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inflated, which likely explains why those observed by Brownstein et al. (2005) were

distinctively larger than those noted in the other studies in this review.

Pneumonia and Influenza Hospitalizations

Four studies compared the timing of visits for influenza-like illnesses (ILI)

relative to pneumonia and influenza (P&I) hospitalizations (Table A–2 in appendix

A). Three of them (Ivanov et al., 2003; Lazarus et al., 2002; van den Wijngaard

et al., 2008) assessed timeliness via a cross-correlation function (CCF), but none

report applying pre-whitening methods to remove autocorrelation first. Ivanov et al.

(2003) calculated the CCF between free-text chief complaints of respiratory illness

among children <5 years of age presenting to pediatric EDs in Salt Lake City and

hospitalizations for P&I or bronchiolitis. The peak correlation was observed to be

1.1 weeks (7.4 days) on average over three influenza seasons.

In a community-based setting, different results were obtained. Lazarus et al.

(2002), who were perhaps among the first to point out a gap in disease surveillance

that may be addressed by an automated ambulatory care record system (Lazarus

et al., 2001), correlated episodes of lower respiratory illness from an ambulatory

care practice (excluding ED visits) in Massachusetts against hospital admissions

with the same discharge diagnosis (Lazarus et al., 2002). This study took into

consideration that multiple encounters can often be associated with a single episode

of illness in ambulatory care by mandating a minimum of six weeks between

new episodes of illness. A peak correlation was found at the 2 week lag, but the

extremely high correlation observed (0.92) suggests that the autocorrelation within

the two time series may not have been controlled for before they were correlated.

The same may have occurred for van den Wijngaard et al. (2008), who

computed the CCF between a general practitioner (GP) consultation registry for
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a respiratory infectious disease syndrome and a hospitalization registry for general

respiratory symptoms and diagnoses in the Netherlands. The correlations are high

(∼0.8 peak correlation), especially given that non-specific syndromes (as opposed

to pathogen-specific symptoms such as ILI) were used. Furthermore, surprisingly,

respiratory GP consultations were found to lag respiratory hospitalizations (by 1

week), contrary to the consistent tendency for medical visits to lead (or at worst,

coincide with) hospitalizations in other studies.

Both the van den Wijngaard et al. (2008) and Lazarus et al. (2002) studies

aggregated community setting visits across age. As discussed earlier, there has

been consistent evidence that children provide the earliest warning of an influenza

season. Therefore, if visits to community settings are truly no better, or even

worse, than ED settings in forewarning an influenza outbreak, one might expect

to see a relatively better lead than what was observed for the pediatric (< 5

years) ED data in the study of Ivanov et al. (2003) who found a smaller lead

than the study of Lazarus et al. (2002). However, Ivanov et al. (2003) did restrict

their study to young children and while at least one study has identified young

children (3 to 4 years) as the earliest sentinels of infection (Brownstein et al.,

2005), at least one other study has placed this role among school-aged children

(5 to 19 years) (Sebastian et al., 2008). This uncertainty regarding the earliest

signaling age-group, in addition to the use of methods that do not account for

autocorrelation and the lack of comparable studies with respect to age and setting

specific data, make it impossible to draw any interpretations about the role of

setting for syndromic surveillance of influenza from these three studies using

hospitalizations as a reference for comparison.

The fourth study using a P&I hospitalizations standard was that of Sebastian

et al. (2008). They drew data from across a variety of settings and measured lead
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time by the time difference between peaks, an approach that also has limitations as

described earlier. As with the results they obtained for a P&I mortality standard,

the timeliest age-group was school-aged children of 5 to 19 years (average 5.3 day

lead over P&I hospitalizations). The lead times found for children in the age-groups

<5 years among these mixed setting data were shorter by a few days on average

than those found by Ivanov et al. (2003) for the same age-group in the ED.

Influenza Viral Isolates

The majority of the studies in this review (six of eleven) used influenza viral

isolates as a reference for comparison (Table A–3 in appendix A). Although they

can be an untimely indicator due to the delays inherent to diagnostic testing, and

although they may miss many cases of influenza as diagnostic confirmation is not

performed for every suspected case, they remain the gold standard for influenza

circulation since no other method can definitively confirm influenza infection.

In the second of two approaches used by van den Wijngaard et al. (2008)

to assess the timeliness of general practitioner (GP) consultation registry data

corresponding to a respiratory infectious disease syndrome, these data were used to

fit multiple linear regression models with lagged pathogen counts from laboratory

data as explanatory variables. Residuals were checked for autocorrelation and

timeliness was assessed by identifying the lag that resulted in an optimal fit. These

lags were determined to be 1 week for influenza A and 2 weeks for influenza B.

Marsden-Haug et al. (2007) validated individual International Classification

of Diseases, Ninth Revision (ICD-9) codes for the detection of influenza-like

illnesses (ILI) among outpatient visits to military treatment facilities within an

automated syndromic system by matching individual visits to respiratory virus

laboratory test results. Individual codes as well as aggregated groupings of these
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codes were also correlated to positive specimens. For the individual codes, lagged

correlation analysis determined that every code tended to peak at the same time

as positive specimens (i.e. no lead), although there was an indication that the

less frequently used (and probably more specific) codes may be more likely to

lag positive specimens. However, again, it is unclear from the reported methods

whether autocorrelation was taken into consideration.

In contrast to the other community-based studies of van den Wijngaard et al.

(2008) and Marsden-Haug et al. (2007), the study of Yang et al. (2008) applied

classical time series methodology. Using wavelet analysis, they assessed coherence

between ILI consultation rates to both general outpatient clinics and GP settings,

and influenza virus activity. For GPs, they found that the oscillation of the ILI

consultation rate led virus isolation by 4 weeks on average. However, it should

be noted that the study setting was in a tropical region, where influenza activity

presents differently from and is less predictable than temperate regions, which was

the authors original motivation for their study.

None of these community setting studies using a virological gold standard

looked at specific age-groups. In contrast, the emergency department (ED) studies

using a virological gold standard were generally more in depth, looking into other

factors such as age and annual variations as well. For example, Olson et al. (2007)

analyzed fever and respiratory chief complaints collected from EDs in New York

City for different age-groups. To determine the number of ED visits, hospital-

izations and deaths attributable to influenza, Serfling cyclical regression models

were fit using these data to obtain expected counts. The cross-correlation function

(CCF) between excess counts and positive viral isolates was then computed. The

greatest lead time was found among school-aged children (5 to 12, and 13 to 17

years) with a 1 week lead. Although the CCF for preschool-aged children (2 to 4

19



years) also peaked at 1 week, the CCF lagged slightly behind that for school-aged

children. In contrast, the timing of ED visits for ILI by adults and the youngest of

children (< 2 years) coincided with that of viral data while the elderly lagged viral

data by 1 week. Although the evidence is weaker, this study further confirms the

potential utility of pediatric visits for syndromic surveillance of influenza. However,

it must be kept in mind that these results reflect only one influenza season, the only

one during their study period with significant excess estimates across all age-groups

and therefore the only one whose data was used for the CCF. Unfortunately, no

study has examined visits by specific pediatric age-groups to community settings

using a virological gold standard, otherwise the effect of setting among the pediatric

population would have made an informative comparison. It is interesting to note

that the magnitude of the lead times demonstrated by the children in this study,

relative to those of the adults, was smaller than in the Brownstein et al. (2005)

study, which also similarly examined different age-groups in the ED. However,

unlike the Olson et al. (2007) study, the Brownstein et al. (2005) data came from

different EDs for the adults than for the children.

Unlike the other ED studies using a virological gold standard, Lemay et al.

(2008) applied classical time series methodology to control for autocorrelation.

In their study, ARIMA models were fit to laboratory-confirmed influenza cases

for each of five influenza seasons and these models were then applied to ED

consultations with a chief complaint of ILI. The CCF was computed using the

residuals. In four seasons, the correlation for ILI chief complaints among children

<5 years peaked 2 to 4 weeks earlier than viral isolations. These lead times are

greater than those for the <5 years age-groups among the Olson et al. (2007) study,

perhaps due to the different methodological approaches or study country. Lemay

et al. (2008) did not report the lead times observed for other age-groups, although
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they did mention that ED consultations for ILI preceded viral isolates in three of

five seasons among those aged 6 to 18 years, and one of five seasons among adults.

This provides additional support for the role of children as timely indicators of

influenza epidemics.

The methodological approach of Zheng et al. (2007) was similar in some

sense to classical methods, although it is somewhat unconventional. In this study,

long-term trend and autocorrelation were first removed from daily counts of

ED visits for influenza, and laboratory-confirmed cases of influenza using cubic

smoothing splines. The residuals were then used to fit Poisson regression models.

By computing the CCF between the Poisson model residuals and viral isolates, the

lead time was determined to range from 0.4 to 2.3 weeks (reported as 3 to 18 days)

with a mean of 1.1 weeks (8 days).

2.2.3 Year-by-Year Analysis

The majority of the studies covered in this review analyzed data aggregated

across a span of several years (or analyzed by year but reported only the mean),

but two of the eleven studies did compare the results for individual influenza

seasons. Considering that each influenza season can be quite distinctive, varying

in circulating strains and the extent of morbidity and mortality, this approach

is worthy of investigation to determine if timeliness might be affected by the

individual parameters characteristic to each influenza season. When Zheng et al.

(2007) compared ED visits to virological data aggregating across all years, a 3

day lead time was found, but when individual years were used, lead times ranged

from 0.4 to 2.3 weeks (reported as 3 to 18 days). However, it seems that they were

analyzing by calendar year, as opposed to influenza seasons, but each calendar year

actually often represents segments of two different seasons. For ED consultations for
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ILI among children <5 years of age, Lemay et al. (2008) found leads of 2 to 4 weeks

over virological data for four of five influenza seasons but no significant correlation

was detected in the fifth season. Based on these results, lead times seem to be

generally consistent for most years, but there can occasionally be major deviations

in certain years, which may mean the subpopulations identified as optimal for

influenza surveillance will likely only be rough generalizations and should not be

expected to be reliable for every influenza season.

2.3 Conclusions and Future Directions

Looking across several studies, there is generally consistent evidence that am-

bulatory visits by children provide the earliest indication of an influenza epidemic.

However, the importance of visit setting for syndromic surveillance of influenza,

and whether visits by children to the ED may differ from their visits to community

settings in terms of timeliness is a little less clear. Tables A–1, A–2, and A–3 (in

appendix A) reveal the prominent gaps in the literature for such studies assessing

visits by children in community settings. Considering the community setting leads

obtained by Brownstein et al. (2005) for ambulatory care visits, and by Yang et al.

(2008) for GP and general outpatient clinic visits, this should be a priority for

future studies. The earlier lead times exhibited among community setting visits

has a plausible basis as well. Since mild initial symptoms often do not require

ED care (Heffernan et al., 2004), patients in the initial stages of illness often seek

primary care first, which may increase the potential for an earlier ILI signal in

community settings compared to the ED (Lazarus et al., 2001).

Another general observation gleaned from this literature review is that there

may be a slight tendency for studies that used time series methods (Brownstein

et al., 2005; Lemay et al., 2008; Yang et al., 2008) to measure greater lead times
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than those that used simpler methods, although again, more studies are required

to make the appropriate comparisons within each setting and age-group restricted

category. Finally, an approach that analyzes these data by individual influenza

seasons may be a beneficial supplement to an aggregated analysis considering that

some studies have found exceptional influenza seasons.

A limitation that was common to all studies in this review was the inability to

account for the contribution of respiratory syncytial virus (RSV), another major

viral respiratory pathogen in the community, especially among children (Jansen

et al., 2008) but among the elderly as well (Falsey et al., 2005; Fleming and Cross,

1993). In fact, RSV is one of the most important causes of lower respiratory illness

among young children, its impact exceeding that of influenza (Lee et al., 2005;

Schanzer et al., 2006). Since RSV often co-circulates with influenza, and since

their clinical symptoms are similar, they can be difficult to distinguish without

laboratory confirmation (Mathur et al., 1980; Zambon et al., 2001). As a result, it

would be expected that a respiratory syndrome such as ILI would capture many

cases of RSV as well, and the impact of this problem on the evaluation of these

data sources for syndromic surveillance of influenza is not known.

In conclusion, there have been some informative results from these studies

demonstrating the ability of automated records of medical visits to lead indica-

tors of influenza circulation, which suggests their potential utility for syndromic

surveillance of ILI. However, some questions still remain unanswered, pointing to

interesting routes of investigation for future research, particularly with respect to

children and community settings. With a better understanding of these patterns,

improvements can be made to surveillance systems for the timelier detection of

influenza outbreaks.
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CHAPTER 3
Methods

3.1 Overview

The objectives of this thesis were:

1) to describe the lead-lag relationships, by age-group and visit setting, between

visits for influenza-like illnesses (ILI) in ambulatory care (community-based

settings and hospital emergency departments (EDs)) and the circulation

of the influenza virus, as represented by pneumonia and influenza (P&I)

hospitalizations, and

2) to describe the year-to-year1 variation in these lead-lag relationships.

For a study period that ran from the first week of 1998 (starting January 4,

1998) to the last week of 2003 (ending December 27, 2003) inclusive, these analyses

were split into two stages:

1) an overall analysis using data for all weeks across the entire study period, and

2) an annual analysis for each individual influenza season during our study

period, using only epidemic weeks, as defined by viral data.

For both stages of the analysis, we (1) defined a study population of all

patients seen by a cohort of physicians in Quebec, Canada during our study period,

1 In this thesis, the use of the term “year” or “annual” refers to each influenza
season and not each calendar year unless otherwise noted. The use of the term
“season” has been limited to avoid confusion with the seasons referring to winter,
spring, summer, or fall.
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(2) measured medical visits for ILI made by these patients to community-based care

settings and hospital EDs that were billed on a fee-for-service basis as counts by

age group per week, (3) measured Quebec-wide hospitalizations for pneumonia and

influenza (P&I) as counts of admissions per week, and (4) used time series methods

to compare ILI visits by setting and age to population-wide P&I hospitalizations.

3.2 Context

The Régie de l’Assurance Maladie du Québec (RAMQ) is the agency responsi-

ble for the health insurance program in the province of Quebec, covering the cost of

hospital and physician services for all residents. In Quebec, 99% of all residents are

covered by RAMQ and between 1993 and 2003, 85-95% of physicians billed RAMQ

for services conducted on a fee-for-service basis (RAMQ, 1995).

3.3 Data Sources

3.3.1 Fee-for-Service Billing Data

For our study population of patients seen by a cohort of Quebec physicians

(as will be described below), we obtained from the RAMQ all fee-for-service billing

claims for medical visits they made between 1993 and 2003, including those to

physicians outside the original cohort of physicians. Therefore, we had complete

ascertainment of healthcare delivered on a fee-for-service basis for our patient study

population. Each billing claim contains information such as anonymized unique

identifiers for the physician and patient, an International Classification of Diseases,

Ninth Revision (ICD-9) diagnostic code, a code for the setting type, and the date of

visit. Demographic data on the patients (e.g. age) were also available separately.
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3.3.2 Hospitalization Data

Our Quebec-wide hospitalization data were based on records from the Que-

bec hospitalization database (MED-ECHO). These records included the date of

admission, date of discharge, and the discharge diagnosis.

3.3.3 Viral Isolates Data

Viral testing data were obtained from the Laboratoire de Santé Publique du

Québec (Quebec Public Health Laboratory). These data included weekly counts

of positive specimens and the total number of specimens tested for three types

of influenza diagnostic tests (culture, antigen-detection, and polymerase chain

reaction). For the first two tests, positive counts for each of influenza A and B were

available, while for the latter test, only the combined (influenza A and B) positive

count was available.

3.4 Study Population

In a previous study (Tamblyn et al., 2007), a cohort of 3424 new physicians

who took the Medical Council of Canada clinical skills examination between

1993 and 1996 and who were licensed to practice in either Ontario or Quebec

was assembled. From this cohort, we then identified those who were in practice

in Quebec by 1998 as indicated by the presence of at least one claim with their

identifier before January 1, 1998 in the fee-for-service billing database.

The study population included all patients seen on a fee-for-service basis

between 1998 and 2003 by this cohort of “in-practice” study physicians. Our study

population in each year of our study period represented approximately 35%-36%

of the total source population of all RAMQ beneficiaries that had received at least

one medical service in the same year (RAMQ, 2008). Our patient cohort was similar
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to the total provincial population by age and sex distributions except for a slight

overrepresentation of the elderly and females in our study population.

3.5 Outcome Measures

3.5.1 Medical Visits for Influenza-Like Illnesses (ILI)

We generated multiple weekly time series of ILI visits by counting the number

of fee-for-service billing claims with an ICD-9 coded diagnosis for ILI per week

(starting Sunday, ending Saturday) for each age-group and for each of two types

of outpatient settings: (1) community-based care setting (including private offices,

private clinics, and local community health and social services centres), and (2)

hospital ED. For the ICD-9 code set used for ILI, see Table 4-4 in Appendix

A of the first manuscript or Table 5-4 of the second manuscript. The ILI code

set is based on ILI groupings validated by Marsden-Haug et al. (2007) against

respiratory virus laboratory test results. The RAMQ establishment codes by which

we classified settings as community-based or hospital ED are defined in Table A–4

in Appendix A of the thesis. We excluded hospital-based outpatient clinics from our

study. Since we expected the data to exhibit a strong weekly pattern, aggregating

by week eliminated day of the week effects. Due to the fact that there were often

multiple claims submitted per unique visit for multiple services rendered during a

visit, each unique patient was counted no more than once per day for each subset to

reduce overcounting of episodes of illness. The resulting time series of weekly counts

summing daily prevalence reflects a combination of both the incidence of ILI and

disease intensity.

3.5.2 Pneumonia and Influenza (P&I) Hospitalizations

We also generated a weekly time series of the total number of short-term

hospitalizations in all of Quebec with a primary discharge diagnosis of P&I (ICD-9
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codes 480-487) per week to serve as a common reference against which the time

series of ILI visits will be compared. P&I hospitalizations data are commonly used

for influenza surveillance and for measuring the impact of influenza because they

provide a sensitive and representative measure of the burden of influenza morbidity

within a population Perrotta et al. (1985); Upshur et al. (1999).

3.5.3 Epidemic Period Definition

Since viral culture does remain the gold standard for identifying periods of

influenza circulation, it is viral isolates data that were used to define the start and

end of the epidemic periods. We pooled the results of the three diagnostic tests

together and defined the start of each influenza season as four weeks before the first

two consecutive weeks during which the total number of positive specimens (for

either influenza A or B) was greater than or equal to five. We shifted the start week

back to accommodate both our expectation that an increase in positive viral tests

will be preceded by an increase in ILI visits, as well as the fact that we would later

be shifting the time series in the cross-correlation function (CCF) computation.

The end week was defined as the week before two consecutive weeks during which

the total count was under five. These epidemic periods are described in Table 5–1

in the second manuscript.

3.6 Data Analysis

3.6.1 Overview

In the application of time series methodology to assess timeliness, the goal is

to determine whether changes in one time series precede changes in another time

series spanning the same period of time. One approach to assessing this lead-lag

relationship is to shift one time series backward or forward by a certain unit of

time (for example 1 week) so that one lags the other and then computing their
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correlation at this lag. This is repeated for various lags of time to obtain the cross-

correlation function (CCF). The lag at which the peak correlation occurs is an

indication of the duration of time by which one time series leads (or lags) the other,

which we refer to as the lead time.

However, before computing the CCF between two time series, it is important

to determine whether the two time series are each autocorrelated within them-

selves. Autocorrelation refers to the relationship in a time series that consists of

observations that are not independent of each other, meaning the value of one

variable depends on previous value(s) Diggle (1990). If such autocorrelation exists,

the application of the usual regression approaches which require independence of

observations would result in both invalid and inefficient inferences (Box and Jenk-

ins, 1970; Zeger et al., 2006). Correlating two autocorrelated time series can lead

to high correlations by chance alone, and one may come to the conclusion that an

association exists where there may be none (Bartlett, 1935; Box and Newbold, 1971;

Helfenstein, 1996). Furthermore, the correlation estimates at different lags may also

be correlated. However, this problem can be resolved by first removing the autocor-

relation in each time series before computing their cross-correlation. An excellent

illustrative example is given by Bowie and Prothero (1981) who demonstrated that

without controlling for autcorrelation, one would come to the conclusion that the

number of deaths due to ischemic heart disease each month is related to the ton-

nage of imported oranges each month which logically would be difficult to believe.

However, they showed that if the trend and seasonal components were first removed

from each time series before being correlated, the correlation coefficients would no

longer be significant.
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3.6.2 Removal of Autocorrelation with ARIMA Modeling

Perhaps the most influential method for removing autocorrelation from a time

series (referred to as “pre-whitening” the data) has been that of statisticians George

Box and Gwilym Jenkins (Box and Jenkins, 1970). The Box-Jenkins approach fits

the time series to an autoregressive integrated moving average (ARIMA) model

to model the dependence between consecutive observations (Box and Jenkins,

1970; Helfenstein, 1996). Mathematically, the autoregressive moving average model

ARMA(p, q) is defined by:

zt = φ0 + φ1(zt−1) + . . . + φp(zt−p) + at − θ1(at−1) − . . . − θq(at−q)

where {. . . zt−1, zt, zt+1, . . .} is a series of observations at equally spaced time

intervals, {. . . at−1, at, at+1, . . .} is a white noise series of independent and identically

distributed random variables whose distribution is approximately normal with mean

zero and variance σ2, p and q are the order of the autoregressive (AR) and moving

average (MA) components respectively, and φ1, . . . , φp and θ1, . . . , θq are the AR

and MA parameters respectively.

The Box-Jenkins modeling procedure consists of a preliminary data preparation

step, and then three main steps that are repeated as many times as necessary

until an adequate model has been found. This methodology has been elaborated

extensively elsewhere (Box and Jenkins, 1970; Brockwell and Davis, 2002; Diggle,

1990; Helfenstein, 1996) but a brief overview will be given here:

1. Data preparation

ARIMA modeling can only be applied to a stationary time series, which is

characterized by a constant mean and variance over time. A graph of the

autocorrelation function (ACF) can be checked to assess stationarity. The

ACF is similar to the CCF except that it represents a single time series
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cross-correlated against itself. If the series is not stationary, stationarity

can be achieved by “differencing” the data by subtracting the value at each

time point by the value at the previous time point to detrend the series,

and/or transforming the data (e.g. logarithm, square root) to stabilize the

variance. If differencing is required, then the model becomes an autoregressive

integrated moving average ARIMA(p, d, q) model, where d represents the

order of differencing.

An example with a non-stationary time series is illustrated in Figure 4–3 of

Appendix B of the first manuscript. In the ACF plot of the raw data shown in

panel C, it can be seen that the autocorrelation is still very high out to large

lags. However, in the ACF plot after first order differencing shown in panel D,

the autocorrelation decays rapidly (it is within the 95% confidence interval of

the correlation about 0 by a lag of 2).

2. Model identification

In this step, graphs of the ACF and the partial autocorrelation function

(PACF) of the stationary time series are assessed to attempt to identify a

provisional order of AR and MA terms. The PACF is similar to the ACF

in that it measures the autocorrelation at a particular lag for multiple lags

except that it removes the effects of the intervening observations at the

intermediate lags (Shumway and Stoffer, 2006). The details of this process of

choosing the order of AR and MA terms are lengthy and therefore will not

be elaborated upon here but one should be able to find an explanation in any

time series methodology reference (Box and Jenkins, 1970; Helfenstein, 1996;

Brockwell and Davis, 2002; Diggle, 1990).
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If the time series exhibits a seasonal pattern (determined by visual inspec-

tion), differencing can be applied at the seasonal level if necessary as well, and

an additional set of AR and MA terms representing the seasonal component

should also be added to the model. An ARIMA(p, d, q)×(P, D,Q) model rep-

resents a model with seasonal terms, where P,D, and Q are the seasonal level

equivalents of p, d, and q. If there are other external independent variables

believed to have an important effect on the time series observations, they may

also be added to the model.

3. Parameter estimation

Values of the AR and MA coefficients which provide the best fit to the data

are determined using computational algorithms (for example, maximum

likelihood estimation) via standard statistical software.

4. Model checking

The adequacy of a model can be checked through various diagnostic tests.

If an adequate model is chosen, the residuals should be independent of each

other and resemble a white noise process (with constant mean of 0 and

variance σ2 over time). If the model is inadequate, steps 2 to 4 are repeated

to identify another potential model.

For our data, the ACF plots of our time series of visits for influenza-like

illnesses (ILI) and its subsets by visit setting and age group indicated that they

were not stationary. Therefore, before applying ARIMA modeling, we made each

ILI visits time series stationary with first a log transformation and then first order

differencing at the non-seasonal level. We then proceeded to identify appropriate

ARIMA models for the time series of the overall data set and for each subset
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using 312 weeks worth of data available for each time series to fit each model. For

parsimony, we limited models to no more than one seasonal term (looking at the

observation 52 weeks ago), and no higher than eighth order non-seasonal terms.

We also included two indicator variables to account for winter holiday effects (for

any week containing Christmas Day, Boxing Day or New Year’s Day), and other

holiday effects (for any week containing any other statutory holiday). See either

Table 4-5 in Appendix A of the first manuscript or Table 5-5 in the Appendix of

the second manuscript for a list of all statutory holidays included. Two separate

holiday variables were used since the winter holidays tended to have a much more

pronounced effect on the weekly count of ambulatory medical visits than did other

holidays throughout the year (see Figure 4–1 in the first manuscript). Models

were fit using conditional-sum-of-squares to find initial parameter values, and then

using maximum likelihood estimation to refine to a more precise estimate of the

parameter values. We examined the ACF, PACF, and the Ljung-Box plot of the

residuals to assess the presence of autocorrelation in the residuals. A histogram of

the residuals and a normal quantile plot was used to assess the normality of the

residuals. The Akaike information criterion (AIC) was used to assess the goodness

of fit of each model

3.6.3 Analysis of Timeliness and Correlation through the Cross-
Correlation Function (CCF)

The cross-correlation function (CCF) describes the correlation between two

time series shifted by various lags of time. In this way, the timeliness of one series

with respect to the other can be evaluated by identifying the lag at which their

correlation is the highest. However, as mentioned earlier, two autocorrelated time

series must first be pre-whitened to remove their autocorrelation before their

CCF can be computed to avoid high correlation estimates due to chance alone.
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In accordance with Box-Jenkins methodology, an ARIMA model is first fit to the

explanatory (or “input”) time series (Box and Jenkins, 1970; Helfenstein, 1996).

The same model must then be applied to the target (or “output”) series. The

residuals that result for each time series represent what remains of each time series

after removing the autocorrelation. The CCF can then be computed between these

residuals to obtain valid estimates of the correlation between the two time series.

Figure 4–4 in Appendix B of the first manuscript illustrates an example of a

CCF between a reference time series (labeled A) and two other time series (labeled

B and C) and the determination of the lead time. For simplicity and clarity, the

time series being correlated are essentially lagged versions of each other. Moreover,

to maintain simple looking graphs, ARIMA modeling was not first applied in order

that it can be obvious from looking at the time series plots shown in panel A that

time series A lags time series B by 1 time unit, and time series C by 3 time units.

This lead time is more formally assessed with a CCF plot, which shows that the

maximum cross-correlation between time series A and B occurs when they are

lagged by 1 time unit (panel B) and for time series A and C, by 3 time units (panel

C).

In our analyses, the overall ILI visits time series or its various subsets consti-

tuted our input series, while the P&I hospitalizations time series constituted our

reference output series. The CCF was computed between the residuals obtained

after applying the pre-whitening procedure to the input and output series as de-

scribed above. For the overall analysis, the CCF was computed using the residuals

for all weeks of the data. However, for the yearly analysis, the CCF was computed

using the residuals restricted to the weeks that fell within the epidemic period only,

repeating for each individual influenza season from 1998-1999 through 2002-2003.

Examining the CCF, we assessed lead time in two ways: we identified (1) the lags
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at which the peak correlation occurred, as well as (2) the lags at which other signifi-

cant correlations occurred. In this way, we aimed to understand the overall pattern

of correlation across various lags. Significance was assessed with respect to whether

the correlation fell outside the 95% confidence interval about a correlation of 0

(calculated using Fisher’s transformation). To better highlight these patterns, we

created “heat-maps” of the CCFs, where the degree of correlation was represented

on a colour gradient. For the heat-maps, the correlations were first standardized

(with respect to each subset) by centering and then scaling by dividing by their

root-mean-square.

Data extraction and processing were carried out using Oracle Database 10g

(Release 10.2.0.1.0; Oracle Corp., Redwood City, CA) and all statistical analyses

were carried out using the R statistical software (version 2.6.2; R Foundation for

Statistical Computing, Vienna, Austria). This study was approved by the Faculty

of Medicine Institutional Review Board at McGill University (certificate provided in

appendix B).
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CHAPTER 4
Preface to Manuscript #1

Many studies have implicated children as the primary vectors in influenza

transmission in the community and in fact, their role as the earliest indicators of

an influenza epidemic among syndromic data for influenza-like illnesses (ILI) has

already clearly been established. However, the implication of visit setting in these

data has not yet been widely investigated, especially for community-based settings.

Furthermore, to our knowledge, no researcher has assessed the impact of age and

visit setting factors simultaneously in a direct comparison using data drawn from a

single source population. The use of appropriate time series methodology to control

for autocorrelation when analyzing such seasonal data has also been inconsistent

among the studies evaluating syndromic data in the literature.

In this manuscript, using International Classification of Diseases, Ninth

Revision (ICD-9) coded medical billing data derived from a single sample of

the ambulatory care seeking population in Quebec, Canada between 1998 and

2003, we assessed the timeliness of subsets of ILI visits restricted by specific age-

groups and visit settings (community-based and hospital emergency department

(ED)). We did so by first applying ARIMA modeling to the data to control for

autocorrelation, and then computing the cross-correlation (CCF) of the residuals

against a pneumonia and influenza (P&I) hospitalizations standard across various

lags. We intend to submit this manuscript to Emerging Infectious Diseases and this

manuscript has been formatted to that journal’s specifications.
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4.1 Abstract

Although syndromic surveillance has emerged as a promising, automated

approach to monitoring disease occurrence, there is little consensus about the best

data sources to use. To address this problem, using physician billing data from

Quebec, Canada, we assessed the timeliness of medical visits for influenza-like

illnesses (ILI) by age-group at two types of outpatient healthcare settings. We com-

puted the cross-correlation function (CCF) between time series of multiple subsets

of ILI visits, and a common reference time series of hospitalizations for pneumonia

and influenza (P&I). ILI visits by children aged 5-17 years to community-based

care settings were more strongly correlated with P&I hospitalizations at greater

lags than adult or hospital emergency department ILI visits and therefore may be

the earliest and strongest indicators of an influenza season. These findings have

important implications as they identify potential targets for public health strategies

for controlling influenza epidemics including surveillance, vaccination and school

closure.

38



4.2 Introduction

Influenza is an infectious respiratory disease with an annual epidemic cycle as-

sociated with high mortality among the elderly (1, 2), hospitalizations among both

the elderly and the very young (1–4), and substantial economic consequences (5).

Concerns of an impending influenza pandemic and potential epidemics of other

emerging diseases such as SARS have fueled efforts to improve disease surveillance

systems to better detect and limit the spread of infectious disease outbreaks.

Syndromic surveillance has emerged as a promising approach to monitoring

disease occurrence by using advanced statistical and computational methods

to continuously monitor large streams of data that are automatically collected

from clinical and other non-traditional settings in real-time or near real-time (6).

Since pre-diagnostic data are used, syndromic surveillance can provide an earlier

indication of an outbreak than traditional laboratory or sentinel physician based

surveillance. However, there is little consensus about the best data sources for this

type of surveillance.

Although analyses of administrative data suggest that children are early

sentinels of influenza infection in the population (2, 7–9), there is debate about

which specific age-groups provide the earliest signal. It is also not clear which

setting provides the earliest signal as the majority of these studies have used

emergency department (ED) data (7–11) and few researchers have compared the

timing of signals from visits to EDs to signals from visits to other settings such as

community settings including private offices and community clinics.

To our knowledge, only one study has compared data from EDs to data from

community-based settings (12), but the ED data came from one health population

while the community-based data came from a different population. It must be
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kept in mind that a comparison of two different populations may potentially be

confounded by differences between the two populations.

In this study, we sought to clarify the timing of visits for influenza-like illnesses

(ILI) by age-group and setting using physician billing data for a single cohort of

patients in Quebec, Canada. To determine the age-groups and outpatient visit

settings presenting the earliest signals, we cross-correlated time series of ILI visits

to community settings and to EDs against a common reference time series of

hospitalizations for pneumonia and influenza (P&I) across various lags of time.

Identifying specific leading age-groups and settings is important for improving

the timeliness of detecting an influenza epidemic by syndromic surveillance and

ensuring limited resources that may be allocated for surveillance are used efficiently.
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4.3 Methods

4.3.1 Overview and Study Design

We obtained data on 1) all fee-for-service medical billing claims for patients

seen by a cohort of physicians in Quebec, Canada, and 2) admissions for P&I at

all hospitals in Quebec during our study period running from January 4, 1998 to

December 27, 2003 (inclusive). To assess the extent by which changes in outpatient

visits for ILI preceded the changes in hospitalizations for P&I, we cross-correlated

multiple time series of weekly counts of ILI visits to community-based care settings

and to hospital EDs by different age-groups against a common reference time series

of weekly counts of P&I hospitalizations after shifting the time series apart by

various lags of time.

4.3.2 Context

The Régie de l’Assurance Maladie du Québec (RAMQ) is the agency responsi-

ble for the health insurance program in the province of Quebec, covering the cost of

hospital and physician services for all residents. In Quebec, 99% of all residents are

covered by RAMQ and between 1993 and 2003, 85-95% of physicians billed RAMQ

for services conducted on a fee-for-service basis (13).

4.3.3 Data Sources

Fee-for-Service Billing Data

In a previous study, we assembled a cohort of 3424 new physicians who

were licensed to practice in Ontario and/or Quebec and then requested RAMQ

to identify all patients seen by these physicians between 1993 and 2003 and

provide us all fee-for-service billing claims submitted for these patients by any

physician in Quebec (inside or outside the cohort of study physicians) during this
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period (14). Therefore, we had complete ascertainment of healthcare delivered

on a fee-for-service basis for this cohort of patients. Each billing claim contains

information such as anonymized unique identifiers for the physician and patient, an

International Classification of Diseases, Ninth Revision (ICD-9) diagnostic code, a

code for the setting type, and the date of visit.

Hospitalization Data

Our Quebec-wide hospitalization data were based on records from the Que-

bec hospitalization database (MED-ECHO). These records included the date of

admission, date of discharge, and the discharge diagnosis.

4.3.4 Study Population

We identified all physicians as “in practice” in the fee-for-service system by

January 1, 1998 if they had at least one billing claim among our fee-for-service data

by this date. The study population included all patients seen by these physicians

between 1998 and 2003. Our study population in each year of our study period

represented approximately 35%-36% of the total source population of all RAMQ

beneficiaries that had received at least one medical service in the same year (15).

Our patient cohort was similar to the total provincial population by age and sex

distributions except for a slight overrepresentation of the elderly and females in our

study population.

4.3.5 Outcome Measures

Medical Visits for Influenza-Like Illnesses (ILI)

We generated multiple weekly time series of ILI visits by counting the number

of fee-for-service billing claims with an ICD-9 coded diagnosis for ILI (code set

provided in Table 4–4 in Appendix A) per week for each age-group and for each of
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two types of outpatient settings: 1) community-based care setting (including private

offices, private clinics, and local community health and social services centres), and

2) hospital ED. We excluded hospital-based outpatient clinics from our study. Since

there were often multiple claims submitted for multiple services rendered during

a single visit, each unique patient was counted no more than once per day in each

time series.

Pneumonia and Influenza (P&I) Hospitalizations

We also generated a weekly time series of the total number of short-term

hospitalizations in all of Quebec with a primary discharge diagnosis of P&I (ICD-9

codes 480-487) per week to serve as a common reference against which the time

series of ILI visits would be compared. P&I hospitalizations data are commonly

used for influenza surveillance and for measuring the impact of influenza because

they provide a sensitive and representative measure of the burden of influenza

morbidity within a population (16, 17).

4.3.6 Data Analysis

Removal of Autocorrelation with ARIMA Modeling

We first used Box and Jenkins seasonal autoregressive integrated moving

average (ARIMA) models (18, 19) to model and control for the autocorrelation

structure within each age-group and setting specific subset of the ILI visits time

series. All models included two indicator variables to account for the effects of

the winter and non-winter holidays (listed in Table 4–5 in Appendix A). For each

subset of ILI visits, we developed several potential models and chose a final model

after a comparison based on several diagnostic tests to assess the presence of any

remaining autocorrelation and model fit (19). The residuals from each fitted series

constituted the “pre-whitened” time series, meaning the autocorrelation has been
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removed in these time series. A theoretical overview of ARIMA modeling and more

technical details of how we found appropriate ARIMA models for our data are

provided in Appendix B.

Analysis of Timeliness and Correlation through the Cross-Correlation
Function (CCF)

A cross-correlation function (CCF) was computed to assess the timeliness of

ILI visits relative to P&I hospitalizations. See Appendix B for technical details

of the CCF. After finding ARIMA models for each subset of the ILI visits time

series as described above, we applied the same model to the P&I hospitalizations

reference time series. We then computed the CCF (up to a lag of 4 weeks) between

the residuals for each subset of the ILI visits time series and the residuals for the

P&I hospitalizations time series, which served as a common reference. To assess

timeliness, we noted the lags at which the peak correlation and other significant

correlations occurred in the CCF to determine lead time. Significance was assessed

by constructing the 95% confidence interval about a correlation of 0 (calculated

using Fisher’s transformation). We also created “heat-maps” of these CCFs, in

which the degree of correlation was represented by a colour gradient after being

standardized (to each subset) by centering and then scaling by dividing by their

root-mean-square.

Data extraction and processing were carried out using Oracle Database 10g

(Release 10.2.0.1.0; Oracle Corp., Redwood City, CA) and all statistical analyses

were carried out using the R statistical software (version 2.6.2; R Foundation for

Statistical Computing, Vienna, Austria). This study was approved by the Faculty

of Medicine Institutional Review Board at McGill University.
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4.4 Results

4.4.1 Descriptive Statistics

Between 1998 and 2003, out of a total of 2,541,926 unique study patients with

at least one billing claim from a community-based healthcare setting or a hospital

ED in Quebec, there were cumulatively 1,551,173 (61%) unique patients diagnosed

with ILI (including non-specific diagnoses such as fever and cough) at least once

over the six year time period. The annual prevalence of ILI patients out of all study

patients ranged from 21% (2003) to 28% (1998, 1999). The ILI patient population

had higher proportions of females and young children, and lower proportions of the

middle-aged and elderly as compared to the total patient population (Table 4–1).

Collectively, the entire study population (including those who never made an

ILI visit) made a total of 73,091,025 visits, of which 5,085,226 (7%) visits were

given an ILI diagnosis during the study period. During the same period, there was

a total of 104,571 short-term hospitalizations with a primary diagnosis of P&I. The

proportion of ILI visits out of all visits was approximately the same (7%) among

both community-based care settings and hospital EDs. The majority of ILI visits

were to community settings (83%) as opposed to the ED (17%). However, while

working-aged adults made up a larger proportion of community-based ILI visits

than they did for ED ILI visits, the converse was true among the youngest children

and the elderly (Table 4–2).

Weekly counts of both ILI visits and P&I hospitalizations exhibited a highly

seasonal pattern, and a general downward trend across the study period, although

the trend was more pronounced for the peaks than for the troughs (Figure 4–1).
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4.4.2 Timeliness and Correlation

For each cross-correlation function (CCF) between each subset of ILI visits and

P&I hospitalizations, Table 4–3 shows the lag at which the peak correlation was

found, as well as the greatest lag at which a significant correlation was found (see

Table 4–6 in appendix A for the full table of correlations at all lags and for the final

ARIMA models chosen for each subset). While visits by adults and visits to EDs

tended to be more strongly correlated with P&I hospitalizations, pediatric visits

and visits to community settings tended to be correlated with P&I hospitalizations

at earlier lags. All peak correlations were significantly different from 0 based on a

type I error of 5%.

The CCF results indicate that each ILI visits subset either led or was concur-

rent with P&I hospitalizations. If lead time is defined by the lag at which the peak

correlation occurs, ILI visits, when not restricted by age or setting, provided no lead

over P&I hospitalizations. However, when restricted by setting, the community-

based setting subsets of ILI visits provided lead times that were equivalent to or

greater than the lead times provided by the ED subsets for every age-group (Table

4–3). Considering age as well as setting, ILI visits by children aged 2 to 17 years old

to community settings were most strongly correlated with P&I hospitalizations at

the greatest lags. The greatest lag at which peak correlations occurred was 2 weeks,

although significant correlations occurred at a lag of 3 weeks as well. For example,

the peak correlation between the 13 to 17 year olds community-based setting subset

of ILI visits and P&I hospitalizations was 0.24 and this occurred when the two

time series were lagged by 2 weeks, but their cross-correlation of 0.17 at a lag of 3

weeks was also significant. In the heat-map of the CCFs (Figure 4–2), community

setting ILI visits by 5 to 12 year olds and 13 to 17 year olds are the most prominent

leading subsets. The subset of visits by 5 to 12 year olds to community settings is
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most noticeable (in red) in the heat-map at the 2 week lag, but there is another

significant (though not peak) and prominent correlation at the greater lag of 3

weeks for the subset of ILI visits by 13 to 17 year olds to community settings.
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4.5 Discussion

We found that among physician billing claims from outpatient care, ILI visits

to community-based setting tended to provide an earlier indication of the influenza

season than ILI visits to EDs. Confirming previous findings, we also found that

ILI visits by children provide an earlier indication than ILI visits by adults or the

elderly. When considering both visit setting and age, we found that community

setting visits for ILI by children aged 2 to 17 years tended to provide the greatest

lead times over P&I hospitalizations, with community setting visits by children aged

5 to 12 years standing out in particular due to the high peak correlation with P&I

hospitalizations. However, community setting visits by children aged 13 to 17 years

were also significantly correlated (though not peak correlation) at an even greater

lag and at a greater magnitude than for the other subsets at the same lag.

A potential reason for the earlier timing of ILI visits to community settings

compared to ILI visits to the ED may be that community-based primary care is

often sought first among those who seek care early because mild symptoms in the

early stages of illness generally do not require ED care (20). Most studies that have

evaluated the potential utility of different data sources for syndromic surveillance

of influenza have focused on the ED (7–11). Few have looked at community-based

settings (21–25). To our knowledge, only one study has compared these two setting

types (7) but that study did not use a single cohort of patients as we did to avoid

potential confounders due to the possible variation in, for example, socioeconomic

status or healthcare utilization behaviour, between different populations. Our

findings have important implications for syndromic surveillance of ILI because they

identify specific subgroups that may be sentinels of an influenza season.

Our findings highlight the role of children as sentinels of influenza infection.

This role is not surprising given that children have immature immune systems
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that render them susceptible to infection. They have the second highest rate of

excess hospitalizations for P&I, after the elderly, and the highest rates of excess

physician visits and ED visits for P&I (1). A compounding factor is the health-care

seeking behaviour of this subgroup, as concerned parents may tend to bring their

ill children to a doctor at earlier stages of an illness than adults would seek care

for themselves (7). The incidence of influenza-related medical visits is greatest for

infants and toddlers (6 to 23 months), followed by preschool-aged children (2 to 4

years), and to a lesser extent, older school children (2). Among young children, the

rate of influenza-associated clinic visits is estimated to be 3 to 8 times greater than

for the ED (26). Therefore, it is ambulatory care rather than hospital care that

bears the brunt of an influenza epidemic among children (1), which may explain the

earlier timing of their ILI visits to community settings compared to the ED in our

results.

Despite the fact that influenza has the highest impact on the youngest of

children, our results point to school-aged children (5 to 17 years) as the earliest

and strongest indicators of an influenza season among ILI medical visits data. This

discrepancy may be explained by the role of school-aged children as the primary

vectors of influenza transmission (27–30). In one simulation study, it was found

that immunizing a single individual in the 13 to 19 year old age-group results in a

larger decrease in new infections than any other age-group (31). The efficiency of

school-aged children as spreaders and mixers of influenza may be the result of an

interplay between both their innate ability to shed the virus earlier and for a longer

time (even after their clinical symptoms subside) compared to adults (32, 33), as

well as their extensive social contact patterns, especially among children their own

age at school, sports activities, and other social activities (31, 34). School closure

can lead to a significant reduction in influenza transmission (35). In contrast, the

49



youngest children (<2 years) not yet attending school have much more limited

social contact networks. In Quebec, our study location, most public daycares do not

accept children <2 years old, although there are some private or family day cares

that do. In light of such evidence for the role of school-aged children in influenza

transmission, the Advisory Committee on Immunization Practices (ACIP) of the

Centers for Disease Control and Prevention (CDC) in the United States recently

updated their recommended target groups for annual vaccine vaccination to include

all children aged 5 to 18 years, starting with the 2008-2009 season (36). In previous

seasons, the ACIP targeted only children 6 months to 4 years among children who

are healthy. Canada has not yet adopted this expanded vaccination policy (37).

Our findings for pediatric age-groups as sentinels of infection within adminis-

trative data are consistent with other studies (2, 7–9). Both one study analyzing

fever and respiratory ED chief complaints in New York City (8), and another

analyzing influenza medical visits in British Columbia, Canada (2) pointed to

school-aged children as sentinels, as we did. A slightly younger age-group (3 to 4

years) was identified by a study analyzing visits to several EDs and one ambulatory

care setting for respiratory illness (7), while another study identified children <5

years of age to be most frequently correlated with laboratory-confirmed influenza

cases among ED chief complaints of ILI (9).

There are some limitations to our study. Respiratory syncytial virus (RSV) is

another major viral respiratory pathogen whose impact exceeds that of influenza

among young children (38) and the elderly (39). We could not distinguish RSV

from influenza since RSV is clinically similar to and often co-circulates with

influenza (40). Therefore, the patterns in our time series of ILI visits may reflect

a combination of the patterns of both influenza and RSV, which could diminish

the correlation between the ILI visits time series and the P&I hospitalizations time
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series. However, RSV mainly affects the very young, and we did use an ILI code set

that has been validated against influenza viral isolates (21). We also acknowledge

that our ILI visit counts overestimated the actual number of episodes of infection,

although we did attempt to reduce overcounting by limiting each patient to one

visit per day in each subset we analyzed. We had tried other “windows” to define

episodes of infection, such as a 7-day window (i.e. each patient counted no more

than once during a 7 day interval), but we found that other artificial (weekly)

patterns were introduced. Daily time series would have provided more precise

estimates of lead time, but we used weekly counts to eliminate day-of-the-week

effects and to smooth out some of the random variation. Finally, we acknowledge

there are potential biases resulting from multiple testing. Potential future directions

include analyzing each influenza season separately to see if annual variations in the

patterns that we observed (for e.g. due to circulating strains) may be important

considerations for surveillance.

In conclusion, we found that ILI visits by school-aged children to community-

based care settings provided the earliest and strongest indication of influenza

circulation in ambulatory care physician billing data. We recommend the implemen-

tation of syndromic surveillance in community-based primary care, with a specific

focus on school-aged children, as a valuable complement to existing surveillance

systems.
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Santé Publique du Québec for the viral isolates data, and members of the PPWC

meetings at our research group for their comments on the manuscripts. This

research was supported by a scholarship from the McGill Centre for Bioinformatics.

4.7 Biographical Sketch

Emily Chan is currently a graduate research assistant at the Surveillance Lab

led by David Buckeridge of the McGill Clinical and Health Informatics Research

Group, and recently submitted her MSc thesis in the Department of Epidemiology

at McGill University, Montreal, Canada. Her research interests include infectious

disease, syndromic surveillance, and healthcare data analysis.

52



4.8 References

[1] Menec VH, Black C, MacWilliam L, Aoki FY. The impact of influenza-

associated respiratory illnesses on hospitalizations, physician visits, emergency

room visits, and mortality. Can J Public Health. 2003;94(1):59–63.

[2] Sebastian R, Skowronski DM, Chong M, Dhaliwal J, Brownstein JS. Age-

related trends in the timeliness and prediction of medical visits, hospitaliza-

tions and deaths due to pneumonia and influenza, British Columbia, Canada,

1998-2004. Vaccine. 2008 Mar 4;26(10):1397–403.

[3] Neuzil KM, Mellen BG, Wright PF, Mitchel J E F, Griffin MR. The effect of

influenza on hospitalizations, outpatient visits, and courses of antibiotics in

children. N Engl J Med. 2000 Jan 27;342(4):225–31.

[4] Simonsen L, Fukuda K, Schonberger LB, Cox NJ. The impact of influenza

epidemics on hospitalizations. J Infect Dis. 2000 Mar;181(3):831–7.

[5] Molinari NA, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley

PM, Weintraub E, et al. The annual impact of seasonal influenza in the US:

measuring disease burden and costs. Vaccine. 2007 Jun 28;25(27):5086–96.

[6] Henning KJ. What is syndromic surveillance? MMWR Morb Mortal Wkly

Rep. 2004 Sep 24;53 Suppl:5–11.

[7] Brownstein JS, Kleinman KP, Mandl KD. Identifying pediatric age groups

for influenza vaccination using a real-time regional surveillance system. Am J

Epidemiol. 2005 Oct 1;162(7):686–93.

[8] Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F.

Monitoring the impact of influenza by age: emergency department fever and

53



respiratory complaint surveillance in New York City. PLoS Med. 2007 Aug

7;4(8):e247.

[9] Lemay R, Mawudeku A, Shi Y, Ruben M, Achonu C. Syndromic surveillance

for influenzalike illness. Biosecur Bioterror. 2008 Jun;6(2):161–170.

[10] Zheng W, Aitken R, Muscatello DJ, Churches T. Potential for early warning

of viral influenza activity in the community by monitoring clinical diagnoses of

influenza in hospital emergency departments. BMC Public Health. 2007;7:250.

[11] Reis BY, Pagano M, Mandl KD. Using temporal context to improve biosurveil-

lance. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1961–5.

[12] Brownstein JS, Mandl KD. Pediatric Population Size Is Associated With Local

Timing and Rate of Influenza and Other Acute Respiratory Infections Among

Adults. Ann Emerg Med. 2008 Mar 26;.
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4.9 Tables and Figures

Table 4–1: A sex and age-group distribution comparison between the population
of study patients∗ who made at least one visit with an influenza-like illness (ILI)
diagnosis, and the total population of all study patients∗ (all visits) during the first
and last year of the study period (1998 and 2003).

Proportion of Patients
Influenza-Like Illness All

Study Patients Study Patients
1998 2003 1998 2003

(N = 576,123) (N = 427,292) (N = 2,082,141) (N = 2,042,214)
Characteristic
Sex
Female 0.59 0.58 0.56 0.56
Male 0.41 0.42 0.44 0.44
Total 1.00 1.00 1.00 1.00

Age Group
<2 years 0.08 0.08 0.04 0.04
2-4 years 0.09 0.09 0.04 0.04
5-12 years 0.12 0.11 0.08 0.08
13-17 years 0.05 0.05 0.06 0.05
18-39 years 0.26 0.27 0.31 0.31
40-64 years 0.24 0.26 0.30 0.31
≥ 65 years 0.14 0.15 0.17 0.17
Total 1.00 1.00 1.00 1.00

∗ Each of these study patients had at least 1 billing claim from a community-based
care setting (i.e. private offices, private clinics and local community health and so-
cial services centres) or a hospital emergency department in Quebec between 1998
and 2003. People with missing demographic data (<0.2%) were omitted.
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Table 4–2: The proportion of influenza-like illness (ILI) visits made between 1998
and 2003 by each age-group at community-based care settings (i.e. private offices,
private clinics and local community health and social services centres) and at hospi-
tal emergency departments (ED).

Proportion of ILI Visits
By Each Age Group

Visits to Visits to
Community-Based Hospital Emergency

Care Settings Department
Age-Group (N = 4,233,782) (N = 868,072)
<2 years 0.01 0.14
2-4 years 0.12 0.12
5-12 years 0.13 0.11
13-17 years 0.04 0.04
18-39 years 0.23 0.21
40-64 years 0.25 0.20
≥ 65 years 0.14 0.19
Total 1.00 1.00
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Table 4–3: A cross-correlation function (CCF) was computed between subsets of
influenza-like illness (ILI) visits (by age-group and by setting type) to community-
based care settings and hospital emergency departments (ED), and pneumonia
and influenza (P&I) hospitalizations occurring between 1998 and 2003. This table
provides a summary of the key features (peak correlation and earliest occurring
significant correlation) of each of these CCFs.

Earliest Significant
Subset Peak Correlation Correlation

Setting Age-Group Lag Correlation∗ Lag Correlation∗

(weeks) (weeks)
Overall
Both setting types All ages 0 0.29 3 0.12

By Visit Setting
Community-based All ages 1 0.25 3 0.13
settings
Emergency All ages 0 0.45 2 0.26
departments

By Visit Setting × Patient Age
Community-based <2 years 1 0.25 2 0.21
settings 2-4 years 2 0.25 3 0.13

5-12 years 2 0.32 2 0.32
13-17 years 2 0.24 3 0.17
18-39 years 1 0.34 2 0.16
40-64 years 0 0.31 2 0.12
≥65 years 0 0.31 1 0.17

Emergency <2 years 0 0.29 1 0.18
departments 2-4 years 0 0.29 2 0.22

5-12 years 2 0.19 3 0.12
13-17 years 2 0.19 2 0.19
18-39 years 0 0.34 2 0.18
40-64 years 0 0.48 1 0.27
≥65 years 0 0.57 2 0.14

∗ All correlations shown here were significant (α = 0.05)
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Figure 4–1: Time series plots of the weekly total counts of all influenza-like illness
(ILI) visits to community-based care settings and hospital emergency departments
(ED), and pneumonia and influenza (P&I) hospitalizations. Shaded regions indicate
sustained periods of positive viral cultures (influenza A or B).
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Figure 4–2: A heat-map representation of the cross-correlation functions (CCFs)
between various age-group subsets of influenza-like illness (ILI) visits to community-
based care settings and to hospital emergency departments (ED), and pneumonia
and influenza (P&I) hospitalizations from 1998 to 2003. Correlations are repre-
sented on a colour gradient after having been standardized to each subset (row).
Dots indicate correlations that were significant (α = 0.05).
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4.10 Appendix A

Table 4–4: The set of International Classification of Diseases, Ninth Revision (ICD-
9) codes used in our influenza-like illness (ILI) syndrome categorization, based on
ILI groupings validated by Marsden-Haug et al. (21).

ICD-9 Code Description
079.9 Unspecified viral and chlamydial infections
382.9 Unspecified otitis media
460 Acute nasopharyngitis [common cold]
461.9 Acute sinusitis, unspecified
465.8 Acute upper respiratory infections of other multiple sites
465.9 Acute upper respiratory infections of an unspecified site
466.0 Acute bronchitis
486 Pneumonia, organism unspecified
487.0 Influenza with pneumonia
487.1 Influenza with other respiratory manifestations
487.8 Influenza with other manifestations
490 Bronchitis, not specified as acute or chronic
780.6 Fever
786.2 Cough
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Table 4–5: Holiday weeks (during which statutory holidays fell∗ ) were represented
by one of two holiday indicator variables in our autoregressive integrated moving
average (ARIMA) models.

Statutory Holiday Date Indicator Variable
New Year’s Day January 1 Winter holiday
Good Friday Friday before Easter Sunday (varies) Other holiday
Easter Monday Monday after Easter Sunday (varies) Other holiday
Victoria Day Monday preceding May 25 Other holiday
St-Jean-Baptiste Day June 24 Other holiday
Canada Day July 1 Other holiday
Labour Day First Monday of September Other holiday
Thanksgiving Day Second Monday in October Other holiday
Christmas Day December 25 Winter holiday
Boxing Day December 26 Winter holiday

∗ If the holiday fell on a Saturday, both that week and the following week were
treated as holiday weeks.
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Table 4–6: The correlation between age-group and setting specific subsets of
influenza-like illness (ILI) visits to community-based care settings and hospital
emergency departments (EDs), and pneumonia and influenza (P&I) hospitaliza-
tions that occurred between 1998 and 2003, as represented by the cross-correlation
function (CCF) across various lags.

Correlation ARIMA
Subset Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model

Setting Age-Group weeks week weeks weeks weeks (p,d,q)†

Overall
Both setting types All ages 0.29∗ 0.26∗ 0.24∗ 0.12∗ 0.05 (2,1,2)

By Visit Setting
Community-based All ages 0.25∗ 0.25∗ 0.21∗ 0.13∗ 0.07 (2,1,2)
settings
Emergency All ages 0.45∗ 0.23∗ 0.26∗ 0.01 0.00 (4,1,4)
departments

By Age-Group
Both setting types < 2 years 0.15∗ 0.26∗ 0.23∗ 0.09 −0.03 (0,1,2)

2-4 years 0.29∗ 0.16∗ 0.29∗ 0.13∗ 0.02 (2,1,1)
5-12 years 0.12∗ 0.09 0.31∗ 0.11 0.01 (2,1,2)
13-17 years 0.12∗ 0.17∗ 0.26∗ 0.16∗ −0.06 (5,1,5)
18-39 years 0.25∗ 0.33∗ 0.18∗ 0.08 0.05 (3,1,4)
40-64 years 0.31∗ 0.30∗ 0.10 −0.01 0.00 (4,1,5)
≥ 65 years 0.41∗ 0.17∗ 0.12∗ 0.02 −0.03 (2,1,2)

By Visit Setting × Age-Group
Community-based < 2 years 0.12∗ 0.25∗ 0.21∗ 0.08 0.00 (2,1,4)
settings 2-4 years 0.25∗ 0.17∗ 0.25∗ 0.13∗ 0.04 (0,1,2)

5-12 years 0.13∗ 0.09 0.32∗ 0.09 −0.01 (2,1,2)
13-17 years 0.07 0.16∗ 0.24∗ 0.17∗ −0.05 (2,1,3)
18-39 years 0.28∗ 0.34∗ 0.16∗ 0.08 0.04 (2,1,5)
40-64 years 0.31∗ 0.27∗ 0.12∗ 0.06 0.04 (3,1,2)
≥ 65 years 0.31∗ 0.17∗ 0.08 0.03 −0.03 (2,1,2)

Emergency < 2 years 0.29∗ 0.18∗ 0.11 0.04 −0.06 (3,1,3)
departments 2-4 years 0.29∗ 0.18∗ 0.22∗ 0.10 −0.01 (0,1,4)

5-12 years 0.19∗ 0.18∗ 0.19∗ 0.12∗ −0.02 (3,1,4)
13-17 years 0.19∗ 0.13∗ 0.19∗ 0.04 −0.05 (3,1,3)
18-39 years 0.34∗ 0.25∗ 0.18∗ 0.04 0.05 (2,1,3)
40-64 years 0.48∗ 0.27∗ 0.11 −0.02 0.01 (7,1,0)
≥ 65 years 0.57∗ 0.12∗ 0.14∗ −0.03 −0.02 (1,1,0)

∗ Significant (α = 0.05)
† All ARIMA models also included a first-order seasonal autoregressive term (looking
back 52 weeks ago) and two holiday variables.
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4.11 Appendix B

4.11.1 Autocorrelation of Time Dependent Data

A time series refers to a collection of multiple observations of the same variable

over time. Time series data points are often not independent of each other in that

the value at one time point can depend on the values at previous time points. This

is known as autocorrelation and its consequence is that the application of the usual

regression approaches which require independence of observations would result

in both invalid and inefficient inferences (1, 2). For example, failure to control

for temporal autocorrelation before correlating two time series can result in high

correlations by chance alone (3-5).

4.11.2 Controlling Autocorrelation with ARIMA Modeling

Perhaps the most influential method for removing autocorrelation from a

time series (referred to as “pre-whitening” the data) has been that of statisticians

George Box and Gwilym Jenkins (1). In the Box-Jenkins approach, time series

data are fit to an autoregressive integrated moving average (ARIMA) model to

model the dependence between consecutive observations (1, 5). Mathematically, the

autoregressive moving average model ARMA(p, q) is defined by:

zt = φ0 + φ1(zt−1) + . . . + φp(zt−p) + at − θ1(at−1) − . . . − θq(at−q)

where {. . . zt−1, zt, zt+1, . . .} is a series of observations at equally spaced time

intervals, {. . . at−1, at, at+1, . . .} is a white noise series of independent and identically

distributed random variables whose distribution is approximately normal with mean

zero and variance σ2, p and q are the order of the autoregressive (AR) and moving

average (MA) components respectively, and φ1, . . . , φp and θ1, . . . , θq are the AR

and MA parameters respectively.
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The Box-Jenkins modeling procedure consists of a preliminary data preparation

step, and then three main steps that are repeated as many times as necessary

until an adequate model has been found. This methodology has been elaborated

extensively elsewhere (1, 5-7) but a brief overview will be given here:

1. Data preparation

ARIMA modeling can only be applied to a stationary time series, which is

characterized by a constant mean and variance over time. The autocorrelation

function (ACF) represents the cross-correlation of a time series correlated

against itself lagged by multiple units of time, and the ACF plot can be

checked to assess the stationarity of a time series. If a time series is not

stationary, its ACF plot would show that the autocorrelation is still positive

and large out to a great time lag. On the other hand, the ACF plot of a

stationary time series decays to zero or a negative autocorrelation fairly

quickly (the general rule of thumb is that if the autocorrelation at a lag of

1 is close to 0 or negative, the time series is stationary). If a time series is

not stationary, stationarity can be achieved by “differencing” the data by

subtracting the value at each time point by the value at the previous time

point to detrend a series with a non-constant mean, and/or transforming

the data (e.g. logarithm, square root) to stabilize non-constant variance.

Differencing can be repeated as many time as necessary (the number of

times this is done is referred to as the order of differencing) to achieve

stationarity although most ARIMA models generally do not exceed first

order differencing. If differencing is required, then the model becomes an

autoregressive integrated moving average ARIMA(p, d, q) model, where d

represents the order of differencing.
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An example with a non-stationary time series is illustrated in Figure 4–3.

In the ACF plot of the raw data shown in panel C, it can be seen that the

autocorrelation is still very high out to large lags. However, in the ACF plot

after first order differencing shown in panel D, the autocorrelation decays

rapidly (it is within the 95% confidence interval of the correlation about 0 by

a lag of 2).

2. Model identification

In this step, plots of the ACF and the partial autocorrelation function

(PACF) of the stationary time series are assessed to attempt to identify a

provisional order of AR and MA terms. The PACF is similar to the ACF

in that it measures the autocorrelation at a particular lag for multiple lags

except that it removes the effects of the intervening observations at the

intermediate lags (8). The details of this process of choosing the order of AR

and MA terms are lengthy and therefore will not be elaborated upon here

but one should be able to find an explanation in any time series methodology

reference (1, 5-7).

If the time series exhibits a seasonal pattern (determined by visual inspec-

tion), differencing can be applied at the seasonal level if necessary as well, and

an additional set of AR and MA terms representing the seasonal component

should also be added to the model. An ARIMA(p, d, q)×(P, D,Q) model rep-

resents a model with seasonal terms, where P,D, and Q are the seasonal level

equivalents of p, d, and q. If there are other external independent variables be-

lieved to have a significant effect on the values of the time series observations,

they may also be added to the model.
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In our study, the ACF plots of our time series of visits for influenza-like

illnesses (ILI) and its subsets by visit setting and age group indicated that

they were not stationary. Therefore, before applying ARIMA modeling, we

first made each ILI visits time series stationary with first a log transformation

and then first order differencing at the non-seasonal level. We then proceeded

to identify ARIMA models for each subset of the ILI visits time series. For

parsimony, we limited models to no more than one seasonal term (looking

at the observation 52 weeks ago), and no higher than eighth order non-

seasonal terms. We also included two indicator variables to account for winter

holiday effects (for any week containing Christmas Day, Boxing Day or New

Year’s Day), and other holiday effects (for any week containing any other

statutory holiday). Two separate holiday variables were used since the winter

holidays tended to have a much more pronounced effect on the weekly count

of ambulatory medical visits than did other holidays throughout the year

3. Parameter estimation

Values of the AR and MA coefficients which provide the best fit to the data

are determined using computational algorithms via standard statistical

software. In this study, models were fit using conditional-sum-of-squares to

find initial parameter values, and then maximum likelihood estimation to find

more precise values.

4. Model checking

The adequacy of a model can be checked through various diagnostic tests.

For example, we assessed the presence of autocorrelation in the residuals

with the ACF, PACF, and the Ljung-Box plot of the residuals, while we

determined the normality of the residuals with a histogram and a normal
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quantile plot of the residuals. If an adequate model is chosen, the residuals

should be independent of each other and resemble a white noise process (with

constant mean of 0 and variance over time). We assessed the goodness of fit

of the model with the Akaike information criterion (AIC). If the model is

inadequate, steps 2 to 4 are repeated to identify another potential model.

4.11.3 The Cross-Correlation Function (CCF)

The cross-correlation function (CCF) describes the correlation between two

time series (one often being a standard reference time series) that have been

shifted apart by different lags of time. However, as mentioned earlier, simply cross-

correlating two time series which are themselves autocorrelated can result in high

correlation estimates by chance alone (3-5). Therefore two autocorrelated time

series must first be pre-whitened to remove their autocorrelation before their CCF

can be computed. ARIMA modeling, as explained above, is one approach used

for pre-whitening data. In accordance with Box-Jenkins methodology, an ARIMA

model is first fit to the explanatory (or “input”) time series (1, 5). The same model

must then be applied to the target (or “output”) series. The residuals that result

for each time series represent what remains of each time series after removing the

autocorrelation. The CCF can then be computed between these residuals to obtain

valid estimates of the correlation between the two time series. The CCF can then

be used to assess timeliness. The amount of time by which one time series leads

the other (i.e. lead time) can be determined by identifying the lag at which their

cross-correlation is the highest. Figure 4–4 illustrates an example of a CCF between

a reference time series (labeled A) and two other time series (labeled B and C)

and the determination of the lead time. For simplicity and clarity, the time series

being correlated are essentially lagged versions of each other. Moreover, to maintain
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simple looking graphs, ARIMA modeling was not first applied in order that it can

be obvious from looking at the time series plots shown in panel A that time series

A lags time series B by 1 time unit, and time series C by 3 time units. This lead

time is more formally assessed with a CCF plot, which shows that the maximum

cross-correlation between time series A and B occurs when they are lagged by 1

time unit (panel B) and for time series A and C, by 3 time units (panel C).
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4.11.5 Appendix B Figures

Figure 4–3: Time series plot and autocorrelation function (ACF) plot of an example
non-stationary time series (panels A and C) and the same plots after first order dif-
ferencing (panels B and D). Dotted lines in the ACF plots mark the 95% confidence
interval about a correlation of 0.
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Figure 4–4: Time series plots of three example time series (panel A) that are lagged
versions of each other. The cross-correlation function (CCF) can be used to iden-
tify the lag at which the maximum correlation between two time series occurs. The
CCF between time series A and B (panel B) demonstrates that time series A lags
time series B by 1 time unit while the CCF between time series A and C (panel C)
demonstrates that time series A lags time series C by 3 time units.

74



CHAPTER 5
Preface to Manuscript #2

In the previous manuscript, we found that using ambulatory care physician

billing data, visits for influenza-like illnesses (ILI) by school-aged children of 5 to

17 years to community settings tended to be more strongly correlated with P&I

hospitalizations at earlier lags than other age-group and setting combinations. In

that study, we computed cross-correlation functions (CCFs) using data spanning

six years (covering five full influenza seasons), even though each influenza season on

its own can be quite distinctive. Only a few studies have conducted a year-by-year

analysis and none have examined age-group and setting year by year.

In this manuscript, we determined whether the timeliness of these same subsets

varied annually. Such differences would imply that annual variations in influenza

epidemics (for example, in circulating influenza strains) are influential factors

in the timing of these subsets. In this study, using the same data, we computed

separate CCFs for each annual influenza season from 1998-1999 to 2002-2003. Each

season was restricted to epidemic weeks only, as defined by viral isolate data. We

intend to submit this manuscript to Emerging Infectious Diseases and therefore this

manuscript is formatted to that journal’s specifications.
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5.1 Abstract

Certain subsets of patients and medical visits have been shown to be useful

sentinels for syndromic surveillance of influenza. However, there has been little

work done to determine if the utility of different subsets varies each year. Using

outpatient physician billing data from community-based care settings and emer-

gency departments in Quebec, Canada, we determined whether the timing of

subsets of outpatient visits for influenza-like illnesses (ILI) by age-group and by

type of visit setting varied from one influenza season to the next. We computed

the cross-correlation function between multiple subsets of ILI visits and a common

reference time series of pneumonia and influenza hospitalizations for each influenza

season spanning 1998-2003. Both the earliest indicators and their lead time over

P&I hospitalizations were not consistent across influenza seasons. This year-to-year

variability suggests that syndromic surveillance of influenza should not focus on just

a single subgroup but a combination of early-presenting subgroups.
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5.2 Introduction

In recent years, the potential threats of bioterrorism and emerging infectious

diseases have heightened the need for effective and efficient surveillance systems

to monitor disease activity in the population (1, 2). Syndromic surveillance has

emerged as a novel, automated approach to monitor as well as better understand

the dynamics of disease in real-time or near real-time (1). Amidst the current

climate of concern for pandemic influenza, the syndrome of influenza-like illnesses

(ILI) has been one prominent target for syndromic surveillance (2–4).

In earlier work (5), we examined patterns in the timing of the presentation of

patients to community-based care settings and hospital emergency departments

(EDs) for ILI by age-group and by the type of visit setting. We did so using data

that were aggregated across several influenza seasons and we found that ILI visits

to community-based settings by 5 to 17 year olds tended to predict hospitalizations

for pneumonia and influenza (P&I) earlier than ILI visits to hospital EDs or ILI

visits by adults. P&I hospitalizations are a commonly used measure for tracking

and measuring the impact of influenza (6, 7).

However, each influenza season can be quite different due to the constant

evolution of the influenza virus, resulting in different circulating strains each year.

The introduction of a new antigenic strain often leads to increased morbidity and

healthcare utilization, as was the case with the B/Hong Kong/330/01 strain that

spread to North America during the 2001-2002 season after a decade-long absence

of the B/Victoria lineage on that continent (8) and the A/USSR/90/77 strain

that arose during the 1977-1978 season after a 20 year global absence of A/H1N1

strains (9). We suspected that annual differences in the healthcare utilization in

a population may modify the ability of surveillance systems to pick up signals of

the onset of an influenza season each year. Therefore, in this study, we examined
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whether patterns in the timing of the presentation of patients by age-group and

by type of visit setting also varied by year. Understanding these patterns is

important for forecasting applications and for implementing syndromic surveillance

of influenza.
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5.3 Methods

5.3.1 Overview and Study Design

In this study, we obtained data on 1) all fee-for-service medical billing claims

for patients seen by a cohort of physicians in Quebec, Canada, and 2) admissions

for P&I at all hospitals in Quebec during our study period running from January

4, 1998 to December 27, 2003 (inclusive). Additionally, viral data were used to

define epidemic periods. Our objective in this study was to determine whether the

timing of outpatient visits for ILI by age-group and by type of visit setting varied

annually. The cross-correlation function (CCF) allows one to determine whether the

changes in one time series precede the changes in another time series by shifting the

two time series by various lags of time and comparing their correlation at each lag.

For each of the five full influenza seasons during our study period, we computed

the CCF between multiple time series of weekly counts of ILI visits to community-

based care settings and to hospital EDs by different age-groups against a common

reference time series of weekly counts of P&I hospitalizations to examine annual

variations in the timeliness of ILI visits by each subgroup.

5.3.2 Context

The Régie de l’Assurance Maladie du Québec (RAMQ) is the agency responsi-

ble for the health insurance program in the province of Quebec, covering the cost of

hospital and physician services for all residents. In Quebec, 99% of all residents are

covered by RAMQ and between 1993 and 2003, 85-95% of physicians billed RAMQ

for services conducted on a fee-for-service basis (10).
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5.3.3 Data Sources

Viral Isolates Data

Viral testing data were obtained from the Laboratoire de Santé Publique du

Québec (Quebec Public Health Laboratory). These data included weekly counts

of the results of three types of diagnostic tests for influenza (culture, antigen-

detection, and polymerase chain reaction).

Fee-for-Service Billing Data

In a previous study, we assembled a cohort of 3424 new physicians who

were licensed to practice in Ontario and/or Quebec, and then requested RAMQ

to identify all patients seen by these physicians between 1993 and 2003 and

provide us all fee-for-service billing claims submitted for these patients by any

physician in Quebec (inside or outside the cohort of study physicians) during this

period (11). Therefore, we had complete ascertainment of healthcare delivered

on a fee-for-service basis for this cohort of patients. Each billing claim contains

information such as anonymized unique identifiers for the physician and patient, an

International Classification of Diseases, Ninth Revision (ICD-9) diagnostic code, a

code for the setting type, and the date of visit.

Hospitalization Data

Our Quebec-wide hospitalization data were based on records from the Que-

bec hospitalization database (MED-ECHO). These records included the date of

admission, date of discharge, and the discharge diagnosis.

5.3.4 Study Population

We identified all physicians as “in practice” in the fee-for-service system by

January 1, 1998 if they had at least one billing claim among our fee-for-service
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data by this date. The study population comprised of all patients seen by these

physicians between 1998 and 2003. Our study population in each year of our study

period represented approximately 35%-36% of the total source population of all

RAMQ beneficiaries that had received at least one medical service in the same

year (12). Our patient cohort was similar to the total provincial population by

age and sex distributions except for a slight overrepresentation of the elderly and

females in our study population.

5.3.5 Outcome Measures

Epidemic Period Definition

Epidemic periods (Table 5–1) were identified using viral isolates data, the gold

standard for viral circulation. We pooled the results of the three diagnostic tests

together and defined the start of each epidemic period as four weeks before the first

two consecutive weeks during which the total number of positive specimens (for

either influenza A or B) was greater than or equal to five. We shifted the start week

back to accommodate both our expectation that an increase in positive viral tests

will be preceded by an increase in ILI visits, as well as the fact that we would later

be shifting the time series in the cross-correlation function (CCF) computation.

The end week was defined as the week before two consecutive weeks during which

the total count was under five.

Medical Visits for Influenza-Like Illnesses (ILI)

We generated multiple weekly time series of ILI visits by summing the number

of fee-for-service billing claims with an ICD-9 coded diagnosis for ILI (code set

provided in Table 5–4 in the appendix) for each week of the study period (312

weeks total) for each age-group and for each of two types of outpatient settings: 1)

community-based care setting (including private offices, private clinics, and local
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community health and social services centres), and 2) hospital ED. We excluded

hospital-based outpatient clinics from our study. Since there were often multiple

claims submitted for multiple services rendered during a single visit, each unique

patient was counted no more than once per day in each time series.

Pneumonia and Influenza Hospitalizations

We generated a weekly time series of the total number of short-term hospital-

izations in all of Quebec with a primary discharge diagnosis of P&I (ICD-9 codes

480-487) for each week of the study period (312 weeks total) to serve as a common

reference against which the time series of ILI visits would be compared.

5.3.6 Data Analysis

Removal of Autocorrelation with ARIMA Modeling

To control for temporal autocorrelation, we used Box and Jenkins autore-

gressive integrated moving average (ARIMA) models (13, 14) to first model the

autocorrelation structure in the data, which we then removed by extracting and

retaining just the residuals. Since we wanted to apply consistent ARIMA models

from year to year, we decided to fit models using the entire data set of 312 weeks (6

years) worth of data for each subset of the ILI visits time series rather than obtain-

ing different models for each year, although we extracted the residuals for epidemic

weeks only and it is with these residuals that we later performed our subsequent

analysis for each influenza season. Before fitting ARIMA models, we first made each

time series stationary with a log transformation and non-seasonal differencing. In

each model, we included a first order seasonal autoregressive term (defining a season

as a 52 week period, first order looks back to the observation 52 weeks ago, second

order 104 weeks ago, etc.) and two indicator variables representing winter and

non-winter holidays (holidays are listed in Table 5–5 in the appendix). Models were
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fit using conditional-sum-of-squares to find initial parameter values, and then using

maximum likelihood estimation to refine to more precise estimates. Diagnostic tests

used for model checking (14, 15) included the autocorrelation function (ACF), the

partial ACF (PACF), the Ljung-Box plot, histogram and normal quantile plot of

the residuals, and the Akaike information criterion (AIC). The final models chosen

are listed in Table 5–6 in the appendix.

Analysis of Timeliness and Correlation through the Cross-Correlation
Function (CCF)

After identifying appropriate ARIMA models for each subset of the ILI

visits time series as described above, we applied the same models to the P&I

hospitalizations time series (16), which will serve as the reference time series in

the cross-correlation function (CCF). Again, the residuals for epidemic weeks

were extracted. Using the epidemic week residuals from both the ILI visits time

series and the P&I hospitalizations time series, we computed their CCF at lags of

up to four weeks. We assessed lead time (the interval of time by which one time

series leads or lags the other) by noting the lags at which the peak correlation and

other statistically significant correlations occurred. Significance was assessed with

respect to whether the correlation fell outside the 95% confidence interval about a

correlation of 0 (calculated using Fisher’s transformation). In order to understand

the overall pattern of correlations across various lags, we also created “heat-maps”

of the CCFs, where the degree of correlation was represented on a colour gradient.

For the heat-maps, the correlations were first standardized (with respect to each

subset) by centering and then scaling by dividing by their root-mean-square.

Data extraction and processing were carried out using Oracle Database 10g

(Release 10.2.0.1.0; Oracle Corp., Redwood City, CA) and all statistical analyses

were carried out using the R statistical software (version 2.6.2; R Foundation for
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Statistical Computing, Vienna, Austria). This study was approved by the Faculty

of Medicine Institutional Review Board at McGill University.
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5.4 Results

5.4.1 Descriptive Statistics

Between 1998-2003, among the population of patients with ILI diagnoses,

there was a slight decline across time in the proportion of young children <2 years,

working adults aged 18-39 years but an increase for those 5-12 years (Table 5–2).

Among the total patient population (any individual with at least one billing claim),

there was a slight decline across time in the proportion of young children <2 years,

but a slight increase for those 40 to 64 years (Table 5–2). There was also a general

decline in the number of ILI visits and P&I hospitalizations over the study period

(Figure 5–1).

5.4.2 Correlation and Timeliness

The CCFs between ILI visits and P&I hospitalizations demonstrated that

although ILI visits generally led or coincided with P&I hospitalizations, the

correlation at different lags varied widely from year to year (Table 5–6 in the

appendix). Table 5–3 shows selected subsets that demonstrated the greatest peak

correlation and other significant correlations at the earliest lags.

The heat-maps (Figure 5–2) also show that the overall utility of the ED in

terms of timeliness of significant correlations is comparable to that of community

settings in three seasons, better in one season (1998-1999) but worse in another

(2001-2002). The most frequently appearing subsets in Table 3 were community set-

ting visits by 13 to 17 year olds and ED visits by 5 to 12 year olds (appeared three

times each), but the most frequently bolded subset (indicating it demonstrated the

highest correlations among the subsets listed) was community setting visits by 13 to

17 year olds (appeared twice).
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The 1998-1999 season was peculiar in that ED visits by 2 to 4, and 5 to 12

year olds provided leads of 2 and 3 weeks respectively, while, uncharacteristically,

no community setting subset demonstrated a lead. There were closely matching

lead times and correlations among community and ED subsets in a few other

seasons as well. During the 2002-2003 season, visits by school-aged children 5

to 17 years to EDs and to community settings provided comparable lead times

although community setting subsets maintained the higher correlations. During the

2001-2002 season, at community settings, visits by 18 to 39 year olds and pediatric

age-groups demonstrated close peak correlations at the same lag except it was not

statistically significant (α = 0.05) for the adults. During the 1999-2000 season,

although community setting visits by children 13 to 17 years demonstrated the

earliest peak correlation (2 weeks), ED visits by adults aged 18 to 39 years were

more strongly correlated at the same lag of 2 weeks, but its peak correlation was at

the 1 week lag.

With subsets demonstrating at best a 2 week lead time in most seasons, the

2001-2002 season was particularly distinctive for the 3 week lead time demonstrated

among community setting visits by those aged <2, 2 to 4, and 13 to 17 years. The

peak correlations for those aged 5 to 12, and 18 to 39 years occurred at the same

lag but they fell just below statistical significance (α = 0.05). Even adults aged 40

to 64 years, unlike any other season, had a peak correlation at the 1 week lag.
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5.5 Discussion

We found a degree of year-to-year variation in the timing of ILI visits to

outpatient care settings by age-group and by type of visit setting relative to P&I

hospitalizations, a reference standard representing influenza circulation. The lack of

both consistently optimal subsets and consistent lags at which the two time series

were most highly correlated has important implications for setting and age-group

focused influenza surveillance. It may also make it difficult to construct accurate

statistical forecasting models because such models require stable indicators of the

onset or peak of an outbreak, as argued by one study (17). This study modeled

influenza incidence and found that the parameters of models changed substantially

between different years in order to maintain optimal fit of the models.

The year-to-year variation in the timing of age-group and setting specific

subsets of ILI visits reflects the distinctiveness of each influenza season, primarily

driven by the ability of the influenza virus to constantly evolve, resulting in the

regular emergence of new strains. If the mutation rate is fast, fewer individuals

will have had the opportunity to gain immunity to circulating strains through

exposure, with the consequence of lower levels of herd immunity and thus more

severe epidemics. For example, A/H3N2 viruses are believed to have faster rates of

antigenic mutation (antigenic drift) than A/H1N1 and B viruses (18). It is likely for

this reason that years predominated by A/H3N2 strains have long been associated

with more severe epidemics, especially for young children and the elderly (19–21).

Rates of excess P&I hospitalizations have been estimated to be twice as high during

A/H3N2 years than in A/H1N1 or B years (21). During the 1998-1999 season, an

A/H3N2 strain was the predominant strain in circulation, and we found that ILI

visits to the ED were significantly correlated with P&I hospitalizations at lags of

1 week or more for all age-groups except those <2 years. On the other hand, no
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community setting subset provided any lead during this season. In contrast, for the

2000-2001 season, during which no laboratory-confirmed cases of subtype A/H3N2

were reported in Quebec (22), no ED subset provided any lead. It is interesting to

note that since the ED typically sees more severe cases than community settings,

the contrast in lead times perhaps reflect heavier ED utilization during the more

severe A/H3N2 seasons.

A relationship between age and influenza subtype has been established as well.

Fox found that young school children (5 to 9 years) had the highest infection rates

and were the main introducers of influenza during A/H3N2 seasons, but implicated

teenagers (10 to 19 years) during A/H1N1 and B seasons (23, 23). Another study

pointed to younger age-groups: those aged 1 to 4 years during type A outbreaks

and those aged 5 to 9 years during mixed or type B outbreaks (24). Our results

found an older pediatric population as the earliest indicators of an influenza

epidemic. Community visits by 13 to 17 year olds provided the earliest leads in

two of the three A/H3N2 predominant seasons (1999-2000, 2001-2002). In contrast,

community visits by 5 to 12 year olds provided the best lead during the single

A/H1N1 and B predominant season (2000-2001) during our study period. However,

especially in light of the variation in the findings across these different studies,

definitive conclusions about the dependence of timeliness on age and influenza

subtype cannot be made since the study periods of all of these studies were too

short (5 to 6 years) to generate enough data for each subtype.

Mismatches between vaccine strains and circulating strains often lead to

reduced vaccine effectiveness, which is sometimes paralleled by a severe outbreak.

For example, the 2001-2002 season marked the first time in a decade that a

B/Victoria-lineage virus was circulating in North America (25). Since the B

component of the 2001-2002 influenza vaccine was of the B/Yamagata lineage and
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therefore a mismatch, the impact of influenza during this season was considerable,

notably among school-aged children, and on ED visits (8). Reflecting the link

between age and immunity, when a strain re-emerges after a long absence, children

will often be particularly vulnerable to infection, in contrast to adults who often

already have immunity if the strain last circulated within their life time.

Our results for the 2001-2002 season provide compelling evidence for the

impact of a re-emerged strain on the timing of ILI visits by children to community

settings as well. For our study location (Quebec), until the 2001-2002 season,

the B/Victoria lineage had not been identified since the 1988-1989 season (26).

Therefore it would be expected that most of the younger children (<13 years) had

no or limited immunity. Among community setting subsets, we found a remarkable

3 week lead for most of the pediatric age-groups during this season. However, no

lead was observed for the two oldest age-groups (40 to 64 and 65 years), which is

consistent with their presumed immunity gained from prior exposure to this lineage.

The new A/H1N2 subtype, seemingly the product of the genetic reassortment

between the circulating A/H1N1 and A/H3N2 viruses, emerged during the 2002-

2003 season. Since the hemagglutinin and neuraminidase proteins of the A/H1N2

strain resembled those of the A/H1N1 and A/H3N2 strains in the 2002-2003 vaccine

respectively, it was expected that the vaccine would still have had good cross-

reactivity against the new subtype (27). The 2002-2003 influenza season was indeed

a mild one in Quebec (28) and the lead times were obtained were average.

Although a year-by-year analysis may not always be helpful in deciding which

subgroup may be most likely to provide the strongest and earliest signals for

influenza surveillance each year, this approach may nonetheless be a beneficial and

perhaps crucial complement to an overall analysis, as the yearly variation observed

in this study and other studies suggests (29–31). Analyzing yearly variations may
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prevent the mistake of making inappropriate generalizations or reveal patterns

underlying different years demonstrating common traits.

Only a few other studies have taken a year-by-year approach to comparing the

timing of different age and setting specific subsets of ILI visits. Although none of

these studies compared specific age-groups and visit settings simultaneously as we

did, they also found a variation in lead time across different years (29–31), but only

a few analyzed community setting data (30) or used methodology that controls for

autocorrelation (29, 31).

Limitations of this study include the inability to distinguish the impact

of respiratory syncytial virus (RSV), another major viral respiratory pathogen

clinically similar to influenza and with a particularly high incidence among young

children (32) and the elderly (33); and the use of counts of ILI visits rather than

episodes of care (which are difficult to define). We also acknowledge that our

epidemic period definition is unverified, but there has been no consistent definition

and a variety of approaches have been used (29, 30, 34). We also tried other slight

variations in defining the epidemic period with little impact on the results. Finally,

with only five influenza seasons’ worth of data, it is difficult to make generalizations

for specific influenza subtypes.

In conclusion, our year-by-year analysis of ILI visits has emphasized that

annual variation in lead times, possibly caused by the frequent changes in the

subtypes and strains of influenza viruses circulating each year, makes it difficult

to pinpoint particular subsets that would always be the earliest indicators of an

influenza epidemic every year. It suggests that ILI syndromic surveillance should

not focus on any single subgroup but a combination of several optimally-performing

subgroups. With a data set covering more influenza seasons, future research

could further explore the effect of different influenza subtypes on the timeliness
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of ILI visits for influenza surveillance. Future research could also examine the

contribution of RSV, and other factors that are known to vary from year to year,

including environmental factors. A better understanding of these relationships

in the context of annual variation would help improve the accuracy of infectious

disease surveillance and forecasting systems as well as the planning of public health

interventions.
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Table 5–2: A sex and age-group distribution comparison between the population of
study patients∗ who made at least one visit with an influenza-like illness (ILI) diag-
nosis, and the total population of all study patients∗ (all visits) for each influenza
season (epidemic weeks only) during 1998-2003.

Proportion of Patients
Influenza Season

1998- 1999- 2000- 2001- 2002-
1999 2000 2001 2002 2003

Influenza-Like Illness Study Patients
Number of patients 348921 432540 305706 334756 297200

Sex
Female 0.58 0.58 0.58 0.58 0.58
Male 0.42 0.42 0.42 0.42 0.42
Total 1.00 1.00 1.00 1.00 1.00

Age-Group
<2 yr 0.08 0.08 0.06 0.07 0.06
2-4 yr 0.10 0.10 0.11 0.11 0.11
5-12 yr 0.11 0.11 0.14 0.14 0.16
13-17 yr 0.05 0.04 0.05 0.04 0.05
18-39 yr 0.25 0.26 0.26 0.24 0.24
40-64 yr 0.25 0.26 0.25 0.25 0.25
≥65 yr 0.15 0.14 0.14 0.14 0.14
Total 1.00 1.00 1.00 1.00 1.00

All Study Patients
Number of patients 1617413 1874619 1567539 1742367 1723604

Sex
Female 0.57 0.57 0.57 0.57 0.57
Male 0.43 0.43 0.43 0.43 0.43
Total 1.00 1.00 1.00 1.00 1.00

Age-Group
<2 yr 0.04 0.04 0.03 0.03 0.02
2-4 yr 0.04 0.04 0.05 0.04 0.04
5-12 yr 0.07 0.08 0.08 0.08 0.08
13-17 yr 0.05 0.05 0.04 0.04 0.04
18-39 yr 0.30 0.30 0.29 0.29 0.29
40-64 yr 0.31 0.31 0.33 0.33 0.34
≥65 yr 0.19 0.18 0.19 0.18 0.18
Total 1.00 1.00 1.00 1.00 1.00

∗ Each of these study patients had at least 1 billing claim from a community-based care setting
(i.e. private offices, private clinics and local community health and social services centres) or a
hospital emergency department in Quebec between 1998 and 2003. People with missing demo-
graphic data (<0.2%) were omitted.
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Table 5–3: The cross-correlation function (CCF) was computed between various
age-group and setting-specific subsets of influenza-like illness (ILI) visits, and a
common reference time series of pneumonia and influenza (P&I) hospitalizations.
This table shows the subsets that demonstrated the greatest “lead times” based on
(1) the peak correlation and (2) the earliest significant correlation (not necessarily
peak) for each influenza season during 1998-2003. Among these subsets, the one
that demonstrated the greatest correlation for each column and season is bolded.

Subset Peak Correlation Earliest Significant Correlation
Setting Age-Group Lag Correlation∗ Lag Correlation∗

(weeks) (weeks)
1998-1999
ED 2-4 years 2 0.63 3 0.57
ED 5-12 years 3 0.47 3 0.47

1999-2000
Community < 2 years 1 0.65 2 0.43
Community 13-17 years 2 0.38 2 0.38
ED 18-39 years 0 0.54 2 0.45

2000-2001
Community 2-4 years 2 0.59 2 0.59
Community 5-12 years 2 0.75 2 0.75
ED 2-4 years 0 0.66 2 0.58
ED 5-12 years 0 0.58 2 0.55

2001-2002
Community <2 years 3 0.50 3 0.50
Community 2-4 years 2,3† 0.50 3 0.50
Community 13-17 years 3 0.40 3 0.40

2002-2003
Community 5-12 years 2 0.41 2 0.41
Community 13-17 years 2 0.72 2 0.72
ED 5-12 years 2 0.45 2 0.45
ED 13-17 years 2 0.57 2 0.57

ED = emergency department; Community = community-based care setting
∗ All correlations shown were significant (α = 0.05)
† Correlation at a lags of 2 and 3 weeks were the same.
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5.10 Appendix

Table 5–4: The set of ICD-9 codes used in our ILI syndrome categorization, based
on ILI groupings validated by Marsden-Haug et al. (39).

ICD-9 Code Description
079.9 Unspecified viral and chlamydial infections
382.9 Unspecified otitis media
460 Acute nasopharyngitis [common cold]
461.9 Acute sinusitis, unspecified
465.8 Acute upper respiratory infections of other multiple sites
465.9 Acute upper respiratory infections of an unspecified site
466.0 Acute bronchitis
486 Pneumonia, organism unspecified
487.0 Influenza with pneumonia
487.1 Influenza with other respiratory manifestations
487.8 Influenza with other manifestations
490 Bronchitis, not specified as acute or chronic
780.6 Fever
786.2 Cough

103



Table 5–5: Holiday weeks (during which statutory holidays fell∗ ) were represented
by one of two holiday indicator variables in our autoregressive integrated moving
average (ARIMA) models.

Statutory Holiday Date Indicator Variable
New Year’s Day January 1 Winter holiday
Good Friday Friday before Easter Sunday (varies) Other holiday
Easter Monday Monday after Easter Sunday (varies) Other holiday
Victoria Day Monday preceding May 25 Other holiday
St-Jean-Baptiste Day June 24 Other holiday
Canada Day July 1 Other holiday
Labour Day First Monday of September Other holiday
Thanksgiving Day Second Monday in October Other holiday
Christmas Day December 25 Winter holiday
Boxing Day December 26 Winter holiday

∗ If the holiday fell on a Saturday, both that week and the following week were
treated as holiday weeks.
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Table 5–6: The cross-correlation function (CCF) between various subsets of
influenza-like illness (ILI) visits to community-based care settings and hospital
emergency departments (ED), and a common reference time series of pneumonia
and influenza (P&I) hospitalizations for each influenza season during 1998-2003.
Both the peak correlation and the earliest significant correlation (not necessarily
peak) for each subset are bolded.

1998-1999
Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks weeks weeks weeks (p,d,q)†

Community-based All ages 0.63∗ 0.26 0.10 0.17 0.11 (2,1,2)
setting <2 years 0.22 0.42 0.17 0.07 −0.16 (2,1,4)

2-4 years 0.37 0.17 0.40 0.28 −0.04 (0,1,2)
5-12 years 0.35 0.03 0.31 0.39 −0.01 (2,1,2)
13-17 years 0.46∗ 0.29 0.17 0.25 0.07 (2,1,3)
18-39 years 0.64∗ 0.35 −0.01 −0.02 0.01 (2,1,5)
40-64 years 0.73∗ 0.29 −0.04 0.02 0.06 (3,1,2)
≥65 years 0.67∗ −0.02 −0.12 −0.03 −0.09 (2,1,2)

Emergency All ages 0.66∗ 0.58∗ 0.23 0.18 −0.01 (4,1,4)
department <2 years 0.69∗ 0.35 0.10 0.14 −0.30 (3,1,3)

2-4 years 0.42 0.30 0.63∗ 0.57∗ 0.03 (0,1,4)
5-12 years 0.44∗ 0.38 0.44∗ 0.47∗ −0.01 (3,1,4)
13-17 years 0.37 0.50∗ 0.14 0.30 −0.05 (3,1,3)
18-39 years 0.69∗ 0.45∗ 0.15 0.25 0.06 (2,1,3)
40-64 years 0.67∗ 0.60∗ 0.17 0.00 −0.01 (7,1,0)
≥65 years 0.87∗ 0.56∗ 0.04 −0.01 0.02 (1,1,0)

∗ Significant (α = 0.05)
† All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
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1999-2000
Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks weeks weeks weeks (p,d,q)†

Community-based All ages 0.39∗ 0.63∗ 0.24 0.14 0.18 (2,1,2)
setting <2 years 0.26 0.65∗ 0.43∗ 0.29 0.15 (2,1,4)

2-4 years 0.37∗ 0.42∗ 0.02 0.16 0.04 (0,1,2)
5-12 years 0.12 0.18 0.18 −0.12 0.19 (2,1,2)
13-17 years 0.20 0.30 0.38∗ 0.22 0.09 (2,1,3)
18-39 years 0.40∗ 0.73∗ 0.25 0.07 0.06 (2,1,5)
40-64 years 0.48∗ 0.68∗ 0.27 0.01 0.15 (3,1,2)
≥65 years 0.54∗ 0.59∗ 0.12 0.00 −0.05 (2,1,2)

Emergency All ages 0.62∗ 0.41∗ 0.38∗ −0.15 0.06 (4,1,4)
department <2 years 0.14 0.10 0.27 0.03 0.11 (3,1,3)

2-4 years 0.32‡ 0.17 0.12 −0.22 0.09 (0,1,4)
5-12 years −0.05 0.20 0.01 0.02 0.04 (3,1,4)
13-17 years 0.24 −0.25 0.35 −0.19 0.03 (3,1,3)
18-39 years 0.54∗ 0.43∗ 0.45∗ −0.01 0.03 (2,1,3)
40-64 years 0.78∗ 0.38∗ 0.35 −0.09 −0.10 (7,1,0)
≥65 years 0.78∗ 0.42∗ 0.27 −0.09 −0.05 (1,1,0)

∗ Significant (α = 0.05)
† All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
‡ A significant peak correlation was actually found at a lag of -1 week.
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2000-2001
Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks weeks weeks weeks (p,d,q)†

Community-based All ages 0.46∗ 0.27 0.54∗ 0.17 0.43 (2,1,2)
setting <2 years 0.05 0.10 0.35 0.17 0.24 (2,1,4)

2-4 years 0.26 0.43 0.59∗ 0.28 0.25 (0,1,2)
5-12 years 0.24 0.37 0.75∗ 0.15 0.15 (2,1,2)
13-17 years 0.27 0.08 0.36 0.15 0.22 (2,1,3)
18-39 years 0.46∗ 0.24 0.26 −0.07 0.26 (2,1,5)
40-64 years 0.50∗ 0.12 0.17 0.00 0.19 (3,1,2)
≥65 years 0.51∗ −0.08 0.18 −0.02 0.20 (2,1,2)

Emergency All ages 0.70∗ 0.17 0.47∗ −0.25 −0.15 (4,1,4)
department <2 years 0.34 0.21 0.18 −0.26 −0.16 (3,1,3)

2-4 years 0.66∗ 0.35 0.58∗ −0.14 −0.06 (0,1,4)
5-12 years 0.58∗ 0.32 0.55∗ −0.00 −0.38 (3,1,4)
13-17 years 0.58∗ −0.10 0.32 −0.13 −0.18 (3,1,3)
18-39 years 0.59∗ 0.16 0.31 −0.30 −0.14 (2,1,3)
40-64 years 0.68∗ 0.30 0.10 −0.24 −0.31 (7,1,0)
≥65 years 0.39 0.14 0.15 −0.18 −0.08 (1,1,0)

∗ Significant (α = 0.05)
† All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
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2001-2002
Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks weeks weeks weeks (p,d,q)†

Community-based All ages 0.25 0.01 0.18 0.38 0.27 (2,1,2)
setting <2 years 0.15 0.04 0.12 0.50∗ 0.04 (2,1,4)

2-4 years 0.01 −0.01 0.50∗ 0.50∗ 0.14 (0,1,2)
5-12 years −0.04 0.02 0.25 0.31 0.15 (2,1,2)
13-17 years −0.04 0.19 0.11 0.40∗ −0.01 (2,1,3)
18-39 years 0.32 0.23 0.15 0.36 0.22 (2,1,5)
40-64 years 0.47∗ 0.11 0.06 0.19 0.23 (3,1,2)
≥65 years 0.52∗ −0.09 0.02 0.11 0.15 (2,1,2)

Emergency All ages 0.36 0.50∗ 0.39∗ 0.05 0.01 (4,1,4)
department <2 years 0.42∗ 0.33 0.22 0.12 −0.19 (3,1,3)

2-4 years 0.38 0.49∗ 0.27 0.32 0.17 (0,1,4)
5-12 years 0.14 0.11 0.54∗ 0.14 −0.01 (3,1,4)
13-17 years −0.08 0.46∗ 0.21 0.14 −0.21 (3,1,3)
18-39 years 0.54∗ 0.53∗ −0.00 0.13 0.21 (2,1,3)
40-64 years 0.32 0.46∗ 0.32 −0.19 0.03 (7,1,0)
≥65 years 0.65∗ 0.19 0.15 −0.06 −0.06 (1,1,0)

∗ Significant (α = 0.05)
† All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
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2002-2003
Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks weeks weeks weeks (p,d,q)†

Community-based All ages 0.11 0.22 −0.04 0.22 0.13 (2,1,2)
setting <2 years −0.18 0.25 0.35 −0.07 −0.22 (2,1,4)

2-4 years 0.21 0.39∗ 0.20 −0.03 0.01 (0,1,2)
5-12 years 0.06 0.32 0.41∗ 0.02 −0.01 (2,1,2)
13-17 years −0.36 0.12 0.72∗ 0.01 −0.29 (2,1,3)
18-39 years 0.23 0.14 −0.27 0.26 −0.09 (2,1,5)
40-64 years 0.18‡ −0.05 −0.39 0.27 0.24 (3,1,2)
≥65 years −0.06‡ −0.12 −0.10 0.10 0.03 (2,1,2)

Emergency All ages 0.58∗ 0.01 0.27 −0.41 0.34 (4,1,4)
department <2 years 0.19 0.39∗ 0.17 −0.35 −0.00 (3,1,3)

2-4 years −0.03 0.20 0.37 0.01 0.18 (0,1,4)
5-12 years 0.10 0.29 0.45∗ 0.01 0.08 (3,1,4)
13-17 years −0.10 0.33 0.57∗ −0.05 −0.15 (3,1,3)
18-39 years 0.56∗ −0.01 −0.30 −0.13 0.23 (2,1,3)
40-64 years 0.71∗ −0.23 −0.20 −0.24 0.39∗ (7,1,0)
≥65 years 0.56∗ −0.33 0.02 0.27 0.47∗ (1,1,0)

∗ Significant (α = 0.05)
† All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
‡ Peak correlation was actually found at a lag of -1 week; it was significant for the
40-64 year old subsets but insignificant for the ≥65 year old subsets.
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CHAPTER 6
Summary and Conclusion

We found that among physician billing data for ILI diagnoses, although there

is some degree of year-to-year variation in optimal subsets and lead times each

year, community setting visits by school-aged children of 5 to 12 and 13 to 17 years

tended to be the most strongly correlated with P&I hospitalizations at the earliest

lags (often at least a 2 week lead time) and therefore, they may be the earliest

sentinels of influenza infection.

Our findings targeting pediatric age-groups are consistent with previous

research. Like Sebastian et al. (2008) and Olson et al. (2007), our results point

toward school-aged children, although others have found pre-school aged children

to be the earliest indicators of an influenza epidemic (Brownstein et al., 2005;

Lemay et al., 2008). These findings are compatible with the well established role

of school-aged children as the primary vectors in the transmission of influenza in

the community. This role likely reflects an interplay between their innate ability to

shed the virus earlier and for a longer time compared to adults (Carrat et al., 2008;

Frank et al., 1981; Hall et al., 1979), their extensive social contact patterns (Glass

and Glass, 2008; Mikolajczyk et al., 2008; Mossong et al., 2008; Wallinga et al.,

2006), as well as the behavioural patterns of concerned parents who tend to bring

their ill children to a doctor earlier than adults would seek care themselves (Brown-

stein et al., 2005). Several studies, including one randomized controlled study,

have found that when day care or school children are vaccinated, the incidence

of ILI among their contacts, and in the general population is reduced (Hurwitz
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et al., 2000; King et al., 2006; Piedra et al., 2005; Reichert et al., 2001). In fact,

the evidence that has accumulated for the role of school-aged children in influenza

epidemics has led the Advisory Committee on Immunization Practices (ACIP) of

the Centers for Disease Control and Prevention (CDC) in the United States to

recently add all children aged 5 to 18 years to their recommended target groups

for annual influenza vaccination (Fiore et al., 2008). In previous seasons, the ACIP

targeted only children 6 months to 4 years among children who are healthy. Canada

has not yet adopted this expanded vaccination policy 200 (2008).

We additionally demonstrated that community health care settings have the

potential to generate an earlier signal than the ED. A potential explanation for this

finding may be that mild initial symptoms often do not require ED care (Heffernan

et al., 2004) and therefore patients in the initial stages of illness may tend to seek

primary care at community-based settings first (Lazarus et al., 2001). Although

the potential of automated syndromic surveillance in primary care has previously

been alluded to by a few (Lazarus et al., 2001; Smith et al., 2007), there has been

little research evaluating its implementation in primary care (Lazarus et al., 2002;

Marsden-Haug et al., 2007; Miller et al., 2004; Sloane et al., 2006; Smith et al.,

2007; van den Wijngaard et al., 2008; Yang et al., 2008), and even fewer studies

doing so using rigorous time series methodology (Yang et al., 2008). Rather, the

ED setting (or no setting stratification) has predominated most studies evaluating

automated syndromic surveillance (Lemay et al., 2008; Lober et al., 2003; Olson

et al., 2007; Sebastian et al., 2008; Zheng et al., 2007). Our visit setting findings

are novel since to our knowledge, no researcher has ever compared the timeliness of

community-based and ED setting data for the syndromic surveillance of ILI using

data drawn from a single source population to avoid potential confounders, while

also simultaneously assessing the effect of patient age.
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Only a few studies have conducted a year-by-year analysis for assessing the

timeliness of syndromic data (Lemay et al., 2008; Quenel et al., 1994; Zheng et al.,

2007), although none have compared different age and setting specific subsets

simultaneously. Like in these other studies, our year-by-year analysis demonstrated

annual variation, in both the optimal subsets by age and setting and in the lead

times, which may be a consequence of the circulation of different strains each

season. The timing of different subsets may depend on an interaction between age

and influenza subtype factors. In particular, we have highlighted the impact of a

re-emerged strain on the earlier presenting behaviour of children to community

settings for ILI visits.

Methodologically, this study adds to a growing body of literature that has

demonstrated the utility of time series methods to control for autocorrelation in

the study of infectious disease. Ignoring autocorrelation while correlating two time

series can lead to artificially inflated estimates of the correlation coefficient (Box

and Newbold, 1971; Bowie and Prothero, 1981; Helfenstein, 1996). However, only

a few studies (Brownstein et al., 2005; Lemay et al., 2008; Olson et al., 2007; Yang

et al., 2008; Zheng et al., 2007) have similarly applied time series methods for the

purpose of evaluating the timeliness of data sources for syndromic surveillance as we

have and to our knowledge, none have used such methods to compare timeliness of

subsets simultaneously restricted by age-group and visit setting.

In using heat maps to represent the cross-correlation function (CCF), it

became clear to us that there are often other significant correlations surrounding

the peak correlation. We believe the heat-maps facilitate a broader understanding

of the patterns in the often complex relationship between two time series being

correlated, and underscore the benefit of an overall examination rather than
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focusing on just the single peak correlation in the CCF as has typically been done

in the past.

With a data set covering more influenza seasons, future directions could

include a further examination of the effect of different influenza subtypes on the

timeliness of ILI visits for influenza surveillance, an examination of the contribution

of respiratory syncytial virus (RSV, another major respiratory viral pathogen,

especially among children), and other factors that are known to vary from year to

year such as environmental effects.

In conclusion, our results provide compelling support for the implementation

of syndromic surveillance in primary care, with a specific focus on school-aged

children, as a beneficial complement to existing surveillance systems. However,

annual variations in lead-lag relationships may also make it difficult to pinpoint

one subset that would consistently be the earliest indicator of an influenza season

each year. Along this note, the implication may be that surveillance for influenza

probably should not focus on any single particular group but a combination

of several potentially early indicators across different data sources. A better

understanding of the lead-lag relationships between potential syndromic data

sources and viral circulation in the context of annual variation would help improve

the accuracy of infectious disease surveillance and forecasting systems as well as

the planning of public health interventions such as vaccination and school closure

policies.
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Table A–1: Lead times obtained by studies comparing data from the ED, commu-
nity setting, and mixed ambulatory settings to a P&I mortality standard.

Ages Author and Year Lead Time (weeks) Specific Setting, Age-Group
ED
all ages Brownstein et al., 2005∗ 1.5 general ED
adults Brownstein et al., 2005∗ 1.7 general ED, 18-39 yr

−1.9 general ED, 40-64 yr
0.1 general ED, > 64 yr
1.7 adult ED, all adults
1.0 adult ED, 18-39 yr
0.6 adult ED, 40-64 yr
1.6 adult ED, > 64 yr
0.4 community ED, 18-39 yr
3.0 community ED, 40-64 yr
1.9 community ED, > 64 yr

children Brownstein et al., 2005∗ 2.7 general ED, <3 yr
3.3 general ED, 3-4 yr
2.1 general ED, 5-10 yr
4.6 general ED, 11-17 yr
5.4 pediatric ED, all children
5.0 pediatric ED, <3 yr
7.1 pediatric ED, 3-4 yr
5.7 pediatric ED, 5-10 yr
4.0 pediatric ED, 11-17 yr
3.0 community ED, <3 yr
3.7 community ED, 3-4 yr
1.7 community ED, 5-10 yr
3.6 community ED, 11-17 yr

Community Settings
all ages Brownstein et al., 2005∗ 2.0 community ED

4.1 ambulatory care
Miller et al., 2004 1-2 ambulatory care

adults Brownstein et al., 2005∗ 5.1 ambulatory care, 18-39 yr
4.3 ambulatory care, 40-64 yr
4.7 ambulatory care, > 64 yr

children Brownstein et al., 2005∗ 5 ambulatory care, <3 yr
5.3 ambulatory care, 3-4 yr
3.6 ambulatory care, 5-10 yr
3.6 ambulatory care, 11-17 yr

Mixed Ambulatory Care Settings
all ages
adults Sebastian et al., 2008∗ −0.3 20-49 yr

−0.3 50-64 yr
−0.8 ≥65 yr

children Sebastian et al., 2005∗ −0.5 <6 mo
−0.3 6-23 mo

0 2-4 yr
0.3 5-9 yr
0.3 10-19 yr

∗ Original unit of measurement in the study was days
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Table A–2: Lead times obtained by studies comparing data from the ED, commu-
nity setting, and mixed ambulatory settings to a P&I hospitalizations standard.

Ages Author and Year Lead Time (weeks) Specific Setting, Age-Group
ED
all ages
adults
children Ivanov et al., 2003∗ 1.1 <5 yr
Community Settings
all ages Lazarus et al., 2002 2

van den Wijngaard et al., 2008 −1
adults
children
Mixed Ambulatory Care Settings
all ages
adults Sebastian et al., 2008∗ 0.3 20-49 yr

0.3 50-64 yr
−0.3 ≥65 yr

children Sebastian et al., 2008∗ 0 <6 mo
0.3 6-23 mo
0.5 2-4 yr
0.8 5-9 yr
0.8 10-19 yr

∗ Original unit of measurement in the study was days

Table A–3: Lead times obtained by studies comparing data from the ED, com-
munity setting, and mixed ambulatory settings to an influenza virological gold
standard.

Ages Author and Year Lead Time (weeks) Specific Setting, Age-Group
ED
all ages Zheng et al., 2007∗ 0.4-2.6

(mean 1.1)
adults Olson et al., 2007 0 18-39 yr

0 40-64 yr
-1 ≥ 65 yr

children Olson et al., 2007 0 <2 yr
1 2-4 yr
1 5-12 yr
1 13-17 yr

Lemay et al., 2008 2-4 <5 yr
(mean 2.8)

Community Settings
all ages van den Wijngaard et al., 2008 1 influenza A

2 influenza B
Marsden-Haug et al., 2007 0 variety of ICD-9 codes for ILI
Yang et al., 2008 4 GPs

2 GOPCs
adults
children
Mixed Ambulatory Care Settings
all ages
adults
children
∗ Original unit of measurement in the study was days
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Table A–4: Set of Régie de l’assurance maladie du Québec (RAMQ) establishment
codes used in our ambulatory care categorization.

Code Setting Setting Type
000 private office without municipality number community
6XX private office with municipality number community
512 private medical and/or dental clinic community

(with anaesthesia privilege)
54X private medical clinic considered a general community

practice establishment in the context of
particular medical activities

8X5 C.L.S.C.∗ : service point community
9X2 C.L.S.C.∗ community
0X7 emergency department hospital ED

∗ Local community service centres providing health and social services in Quebec,
Canada
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