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ABSTRACT

Syndromic surveillance has emerged as a novel, automated approach to
monitoring diseases using pre-diagnostic but often non-specific data sources.
However, there is little consensus about the best data sources. Using physician
billing data from community-based care settings and emergency departments in
Quebec, Canada during 1998-2003, we evaluated the lead-lag relationship between
ambulatory medical visits for influenza-like illnesses (ILI) and pneumonia and
influenza (P&I) hospitalizations by age-group, visit setting, and influenza season.
To do so, we applied ARIMA modeling methodology and computed the cross-
correlation function (CCF) using the residuals. ILI visits in community settings by
children aged 5-17 years tended to provide the greatest lead times (at least 2 but up
to 3 weeks) over P&I hospitalizations. Lead times varied each season, possibly due
to the circulation of different strains each season. These findings have important
implications for syndromic surveillance of influenza, as well as epidemic control

strategies such as vaccination and school closure policies.
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ABREGE

La surveillance syndromique a émergé comme une nouvelle approche automa-
tisée pour le controle des maladies avec des sources de données pré-diagnostic, mais
qui sont souvent non-spécifiques. Pourtant, il y a peu de consensus concernant les
meilleures sources de données. En utilisant des factures médicales émises entre 1998
et 2003, et provenant de centres communautaire et de services d'urgence au Québec,
Canada, nous avons évalué par tranche d’age, le cadre des visites, et la saison de la
grippe la relation d’avance-décalage entre les visites médicales ambulatoires pour
le syndrome d’allure grippale (SAG) et les hospitalisations pour la pneumonie et la
grippe. Pour ce faire, nous avons appliqué la méthodologie des modeles d’ARIMA
et calculé la fonction de contre-corrélation (CCF) avec les résidus. Les visites
communautaires reliée au SAG par des enfants agés de 5-17 ans ont eu tendance a
pourvoir les plus grandes avances (au moins 2 semaines, mais quelques fois jusqu’a
3 semaines) contre des hospitalisations pour la pneumonie et la grippe. Les avances
ont varié chaque année, peut-étre a cause de la circulation des souches différentes
chaque saison. Ces résultats ont des implications importantes pour la surveillance
syndromique de la grippe, ainsi que pour des stratégies de lutte contre I’'épidémie,

comme la vaccination et la fermeture d’écoles.
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CHAPTER 1
Introduction

1.1 Background
1.1.1 Traditional Disease Surveillance

Infectious disease surveillance by public health has traditionally depended on
the routine reporting of cases by physicians and laboratories, although the discovery
and reporting of unusual clusters of cases by astute clinicians has often been the
key to the detection of outbreaks® (Ashford et al., 2003; Dato et al., 2004; Morse,
2007). However, this mostly manual and passive approach to surveillance can be
insensitive, inflexible, and slow as it relies on the voluntary participation of the
reporters. Furthermore, there are inherent delays associated with obtaining labo-
ratory test results for diagnostic confirmation, and reports are still sent by mail or
facsimile in many areas (Morse, 2007). Consequently, it can be days or even weeks
before health departments become aware of an ongoing outbreak (Birkhead et al.,
1991; Jajosky and Groseclose, 2004). Sensitivity and timeliness of surveillance are

further reduced when cases are spread out over a wide area.

! In the context of this thesis, the distinction between the terms “outbreak”
and “epidemic” is not relevant and therefore these two terms have been used in-
terchangeably in this thesis.



1.1.2 Syndromic Surveillance

In recent years, emerging infectious diseases, including influenza, and bioterror-
ism have been important concerns for public health. These concerns, in conjunction
with the rapid evolution of travel behaviour and social contact patterns over the
past few decades, have raised a pressing need for an updated approach toward dis-
ease surveillance if the monitoring of illness in the population is to be effective and
efficient (Glezen, 1996; John et al., 2001; Koplan, 2001). With the major advances
in information technology, automated approaches such as syndromic surveillance
have emerged as novel ways to monitor and better understand the dynamics of
disease (Heffernan et al., 2004; Henning, 2004). In syndromic surveillance, data are
collected automatically in real-time or near real-time and continuously monitored
using advanced statistical and computational methods. It typically makes use of
non-traditional but convenient and abundant data sources. These include adminis-
trative data, especially health care encounter data such as emergency department
(ED) chief complaints and discharge diagnoses, billing data for medical services, as
well as emergency medical system (911) and health hotline calls, over-the-counter
medication sales and school/work absenteeism. These pre-diagnostic data sources
tend to be timelier than traditional data sources such as laboratory diagnostic test
results and practitioner reports, which increases the potential for disease clusters
to be identified at an earlier stage than through routine surveillance. Furthermore,
since data are collected by an automated system, it poses minimal burden on the
participating networks.

Although syndromic surveillance systems are promising, there is still much
dispute as to whether these systems are useful additions to existing methods (Hef-

fernan et al., 2004). Critics have expressed their doubt over the use of non-specific



and non-validated data, especially since these data are often not initially col-
lected for the purpose of surveillance. For example, International Classification

of Diseases, Ninth-Revision (ICD-9) diagnostic codes assigned to billing claims

are commonly used for syndromic surveillance. However, since diagnostic code
assignment is not linked to health care provider payment, they are not audited
routinely, as is often done for the code assigned for services performed, and the
studies to validate code assignment have tended to focus on chronic illnesses or
acute injuries and hospital settings (Bazarian et al., 2006; Golomb et al., 2006;
Wilchesky et al., 2004) with few assessing their use for infectious disease and in
primary care settings (Cadieux and Tamblyn, 2008; Marsden-Haug et al., 2007;
Schneeweiss et al., 2007). In addition, ICD-9 codes are usually mapped to a broad
syndrome (such as influenza-like illnesses (ILI) in the case of influenza surveillance)
to increase sensitivity among these non-validated data sources. However, this high
capture comes at the cost of a loss of specificity. Finally, these data can be collected
from a variety of settings and patient populations (among other variable factors)
and this heterogeneity may obscure patterns of disease clusters, which in turn may
obscure the utility of these types of data for disease surveillance. The accuracy and
timeliness of syndromic surveillance may be limited by the uncertainty over such
data quality issues and much work still needs to be done to evaluate the utility of

these alternative data sources and to optimize their potential.

1.2 Rationale and Objectives

While there has been some work to evaluate different data sources for syn-
dromic surveillance of influenza, most studies have been limited to the ED, where
most of the currently operating syndromic surveillance systems are based, especially

in the United States (Beitel et al., 2004; Fleischauer et al., 2004; Irvin et al., 2003;



Lemay et al., 2008; Muscatello et al., 2005; Olson et al., 2007; Suyama et al., 2003;
Zheng et al., 2007). Although the potential of automated syndromic surveillance
in primary care has previously been alluded to by a few (Lazarus et al., 2001;
Smith et al., 2007), there has been little research to evaluate its implementation in
primary care (Lazarus et al., 2002; Marsden-Haug et al., 2007; Miller et al., 2004;
Sloane et al., 2006; Smith et al., 2007; van den Wijngaard et al., 2008; Yang et al.,
2008). There is also evidence that children are the earliest indicators of an influenza
epidemic (Brownstein et al., 2005; Lemay et al., 2008; Olson et al., 2007; Sebastian
et al., 2008). However, to our knowledge, no researcher has compared subsets si-
multaneously stratified by different visit settings and specific patient age-groups.
Moreover, while a few studies have compared different visit settings, none have
compared community-based settings and hospital EDs using data derived from a
single source population, which avoids the potential confounding biases that might
arise in a comparison of two different populations.

There is also much annual variation in influenza epidemics due to the influenza
virus’s ability to constantly evolve, which results in the regular appearance of
new influenza strains. However, most studies have conducted analyses using
data aggregated across several influenza seasons with few taking a year-by-year
approach (Lemay et al., 2008; Quenel et al., 1994). It is still unclear as to whether
annual variations have implications for the potential timeliness of the data used in
the syndromic surveillance of influenza.

Finally, only a few of these studies (Brownstein et al., 2005; Lemay et al., 2008;
Yang et al., 2008) have used rigorous classical time series methodology to control
for the autocorrelation often exhibited in these data. Autocorrelation refers to the

lack of independence between different time series data points in that the value



at one time point depends on the values at previous time points. Controlling for

autocorrelation is required to make valid inferences (Box and Newbold, 1971).
In this thesis, applying time series methodology to analyze ICD-9 coded

medical billing data drawn from a single source population, the objectives were:

1) to describe the lead-lag relationships, by age-group and visit setting, between
ILI visits in ambulatory care (community-based settings and hospital EDs)
and influenza viral circulation, as represented by pneumonia and influenza
(P&I) hospitalizations, and

2) to describe the year-to-year variation in these lead-lag relationships.



CHAPTER 2
Literature Review

2.1 Brief Overview of the Evaluation of Syndromic Surveillance
Although syndromic surveillance systems have the potential to improve
the current state of disease surveillance, work still needs to be done to evaluate
their utility. Evaluation of syndromic surveillance can be conducted from several
perspectives. For example, some studies have evaluated the use of alternative
data sources, while others have evaluated the performance of different statistical
algorithms for the detection of epidemics, both naturally occurring and simulated.
When evaluating data sources, individual records can be validated, by matching
them one-to-one against a gold standard such as a laboratory diagnostic test or
medical chart to determine whether they accurately represent illness. Alternatively,
an aggregated data set can be compared as a whole against a similarly aggregated
gold standard to examine whether there is a similarity in population trends over
time. In these evaluation studies, different parameters that serve as hallmarks
of utility, ranging from sensitivity, specificity, predictive value and timeliness to

cost-effectiveness, can be assessed.

2.2 Timeliness of Ambulatory Visits for Influenza-Like Illnesses (ILI)
for the Syndromic Surveillance of Influenza

In this literature review, we include studies that evaluated the timeliness of
ambulatory visit data for the syndromic surveillance of influenza. The inclusion
criteria were: the use of medical visits for influenza-like illnesses (ILI) or other

general respiratory syndromes to measure influenza activity; the use of data from



community-based primary care settings, or hospital emergency departments (EDs);
the reporting of measures of timeliness (lead time); and the use of influenza viral
isolates, pneumonia and influenza (P&I) hospitalizations, or P&I mortality as
comparison reference data. The exclusion criteria were: studies that used simulated
outbreaks; studies that used aberration detection algorithms to assess timeliness;
and studies that used one year or less of data. Using these criteria, we identified
eleven studies (Table 2-1). This review aims to identify some of the consistent
findings among these studies to synthesize the existing knowledge regarding the use
of ambulatory visit data for syndromic surveillance of influenza. The methodology
used, especially with respect to time series methods, will also be compared in the
context of the results. Finally, this review will address some of the gaps in the

literature to identify open research questions.
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Five (Ivanov et al., 2003; Brownstein et al., 2005; Olson et al., 2007; Lemay
et al., 2008; Sebastian et al., 2008) of the eleven studies restricted their analyses
to specific age-groups. Age is an obvious factor to consider since the impact of
influenza is known to be highly age-specific. Five (Ivanov et al., 2003; Brownstein
et al., 2005; Olson et al., 2007; Zheng et al., 2007; Lemay et al., 2008) of the eleven
studies used data from the ED. Although not obvious from the selection of studies
presented in this review, the ED was actually the predominant setting for studies
evaluating syndromic surveillance for influenza in the literature but many of these
ED-based studies were excluded from this review because they were one year
pilot studies or evaluated algorithm performance. The predominance of ED-based
studies is probably due to the fact that, especially in the United States, many of
the already existing syndromic surveillance systems for influenza are based on ED
data such as chief complaints and discharge diagnoses (Fleischauer et al., 2004;
Irvin et al., 2003; Lemay et al., 2008; Muscatello et al., 2005; Olson et al., 2007),
which is not surprising considering the ease of obtaining ED data compared to
data from other settings. Furthermore, there is a belief that the ED may provide
an earlier warning of an infectious disease outbreak than in other settings because
the ED is often the place where those in need of urgent medical care will seek care
first (Lemay et al., 2008). Six studies (Lazarus et al., 2002; Miller et al., 2004;
Brownstein et al., 2005; Marsden-Haug et al., 2007; van den Wijngaard et al., 2008;
Yang et al., 2008) used data from community-based settings (including ambulatory
care and general practitioner (GP) data). One study (Sebastian et al., 2008) used
data derived from a mixture of both community-based and ED settings. However,
only two studies (Brownstein et al., 2005; Yang et al., 2008) compared different

settings, and only one of these studies (Yang et al., 2008) assessed the utility of



restricting data to specific visit settings using data from a single source population,
although none have compared community and ED settings in this manner.

There is a wide range in lead times observed, depending on the comparison
reference, age-group, visit setting, and probably methodology as well. Using a
mortality standard, lead times ranged from -1.9 weeks (reported as -13 days)
for 40 to 64 year olds in a general ED (Brownstein et al., 2005) to 7.1 weeks (50
days) for 3 to 4 year olds in a pediatric ED (Brownstein et al., 2005). Using P&I
hospitalizations as a reference, the average lead times ranged from -0.3 weeks (-1.8
days) for >65 year olds in ED and community settings combined (Sebastian et al.,
2008) to 1.1 weeks (7.4 days) for children aged <5 years in the ED (Ivanov et al.,
2003). Finally, using an influenza virological gold standard, the lead times ranged
from -1 week for >65 year olds in the ED during the 2003-2004 season (Olson
et al., 2007) to 4 weeks for children aged <5 years in the ED during the 2000-2001
season (Lemay et al., 2008) and for GP visits (Yang et al., 2008).

The most consistent finding across all settings, comparison references, and
methodologies was the importance of age as an influential factor in the timing of
influenza outbreak detection among administrative data. In particular, children
provided an earlier warning of an influenza outbreak than adults although the exact
lead times varied across different studies. However, the implication of visit setting
for syndromic surveillance of influenza is not as clear from theses studies due to
a lack of comparable studies within many of the age-group and setting specific
categories. This review will first give an overview of the different methodologies
that can be applied to assess timeliness, and then next discuss each of the studies in

greater detail in the context of three standards representing influenza circulation.
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2.2.1 Methodologies to Assess Timeliness

A range of methodologies has been used to assess the timeliness of candidate
data sources against a gold standard for viral circulation. One simple method
that is often used to define lead time measures the distance between peaks (or
another point of interest) in the time series being compared, as in the studies of
Sebastian et al. (2008) and Miller et al. (2004). However, there is a debate over
whether the peak is an ideal hallmark of an epidemic since an epidemic may have
a long and varying onset period during which many cases may occur before it
actually peaks. The larger issue in this respect is that by comparing just the two
peak points, this method does not make full use of all the data that are available,
including the points between the two peaks. Another approach involves the use
of detection algorithms to generate alerts when a certain threshold is exceeded.
Dates of detection can then be compared to assess timeliness. However, we excluded
studies using this approach for the reason that the assessment of timeliness can
be confounded by its dependence on algorithm performance. For example, the
threshold is a subjective choice and merely changing the threshold may alter
the estimation of lead time. The majority of the studies in this review (Ivanov
et al., 2003; Lazarus et al., 2002; Lemay et al., 2008; Marsden-Haug et al., 2007;
Olson et al., 2007; van den Wijngaard et al., 2008; Zheng et al., 2007) assessed
timeliness with the use of a cross-correlation function (CCF) which measures the
cross-correlation between two time series that have been lagged for various units of
time. Lead time can then be defined as the lag at which the peak correlation in the
CCF occurs. However, the key distinction separating the studies that applied this
approach is whether the temporal autocorrelation in the time series was modeled
and removed prior to cross-correlating the time series. Failure to control for

autocorrelation in time series data can result in high cross-correlation estimates by
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chance alone (Bartlett, 1935; Box and Newbold, 1971; Helfenstein, 1996). Removing
the autocorrelation from the data before analyzing the data, a process known as
“pre-whitening”, is one way of controlling for autocorrelation. Only six of the
eleven studies applied methods that control for temporal autocorrelation. Three of
these studies used methods belonging to a larger group of methodologies that are
generally more appropriate time series methods. These methods can be categorized
by the domain in which they analyze time series patterns. Perhaps the most
popular method is that used in the study of Lemay et al. (2008), the Box-Jenkins
autoregressive integrated moving average (ARIMA) modeling approach, which
analyzes patterns in the temporal domain by modeling the temporal autocorrelation
structure of the data. The residuals obtained after fitting ARIMA models represent
the time series with the autocorrelation removed, and the CCF can then be
computed using the residuals. Another study (Brownstein et al., 2005) used
cross-spectral analysis, which analyzes patterns in the frequency domain. A third
study (Yang et al., 2008) used wavelet analysis, which analyzes patterns in both

the temporal and frequency domains. A few other studies used non-time series
methods that nonetheless operate on a similar idea in that their data were used

to fit models, such as the Poisson model (Zheng et al., 2007) and the Serfling

model Olson et al. (2007). As with ARIMA modeling, residuals were checked for

autocorrelation and then the CCF was computed using the residuals.

2.2.2 A Comparison of the Effect of Age and Setting, by Gold Standard
Pneumonia and Influenza Mortality
Since the impact of influenza in terms of mortality is substantial for the

elderly (Menec et al., 2003), pneumonia and influenza (P&I) mortality is often used

as an indicator of viral circulation. P&I mortality was the comparison standard
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of choice for three of the eleven studies of this review (Table A-1 in appendix

A). The study of Brownstein et al. (2005) was the only one in this review that
assessed a variety of settings and distinct age-groups simultaneously. Visits to a
pediatric emergency department (ED), an adult ED, a general ED, a community
ED, and a large ambulatory care group practice were analyzed by age to assess
their timeliness against P&I mortality. The use of cross-spectral analysis time series
methodology adds methodological rigor to this study as it appropriately controls
for the autocorrelation in the data, and it compares fluctuations throughout the
entire time series overall, making full use of the data. They found that pediatric
age-groups generally arrived the earliest. In particular, children aged 3 to 4 years
consistently presented the earliest, across all settings except for one (general ED),
with a 34 day lead on average and up to a 50 day lead in the pediatric ED. Their
results also indicate that among adults, community-based ambulatory care visits
may provide an earlier lead than ED visits. Contrarily, among children, visits to
pediatric EDs were the earliest indicators although their visits to general EDs and
community EDs provided lead times that were comparable to those of ambulatory
care settings.

However, the data for each setting in their study came from five distinct
health-care seeking populations rather than a single source population. If the five
populations were very different in other ways (for example, by socioeconomic class),
these factors may confound the interpretation of the effect of visit setting. Unfor-
tunately, few researchers have conducted a similar comparison of the influence of
age and setting using either P&I mortality or the other two comparison references,
disallowing a synthesis of the findings for the interaction between the effects of visit

setting and age.
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Sebastian et al. (2008) also used a P&I mortality reference and examined sepa-
rate age-groups, although their data for P&I medical visits were aggregated across
a variety of general practitioner (GP) consultations, home visits and emergency
visits and therefore represent a mix of setting types in British Columbia, Canada.
They found that visits by school-aged children (5 to 19 years) were the timeliest
indicators of influenza activity (average lead time of 0.3 weeks (1.8 days) over P&I
mortality). This pediatric population is older than the pre-schoolers identified by
Brownstein et al. (2005). However, the lead times observed by Sebastian et al.
(2008) were generally much lower than those observed by others, even when com-
pared to studies that used the same comparison reference (Brownstein et al., 2005;
Miller et al., 2004). In fact, P&I medical visits in the Sebastian et al. (2008) study
lagged P&I mortality for certain age-groups (the two youngest: <6 and 6 to 23
months, and all three adult age-groups: 20 to 49, 50 to 64 and >65 years). The
use of different methodology may be a possible reason for this difference. Sebastian
et al. (2008) defined lead time as the time interval between the first peaks in each
data set for each influenza season, an approach that does not fully analyze the
patterns of these complex data, as discussed earlier. Other possible reasons include
the different countries from which the study populations were derived (populations
belonging to countries with structurally different health care systems may demon-
strate different health care seeking behaviour) and the use of a mix of settings in
the Sebastian et al. (2008) study, which may have led to the dilution or obscuring of
potentially different lead times.

Miller et al. (2004) cross-correlated patient visits for influenza-like illnesses
(ILI) to a large ambulatory care network in Minnesota against P&I mortality and
found the correlation to be 0.41 at both the 0 and 1 week lag. Although autore-

gressive models were used for another part of their analyses, it was unclear from
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the reported methods whether methodology controlling for temporal autocorre-
lation was applied in this correlation calculation, and it must be kept in mind

that correlating two time series without first pre-whitening the data to remove

the autocorrelation within each time series can lead to the impression of a signif-
icant correlation where there actually is none (Bartlett, 1935; Box and Newbold,
1971; Helfenstein, 1996). Furthermore, if timeliness is to be assessed by comparing
cross-correlations, the cross-correlation must be calculated across various lags,

thus obtaining the cross-correlation function (CCF). However, the correlation at
only lags of 0 and 1 week were reported in this study, making it difficult to assess
timeliness. Although the dates of alerts generated by a detection algorithm were
reported and compared to the dates of the first positive influenza isolates, no formal
algorithm-independent assessment of timeliness was conducted. Rather, timeliness
was inferred from a visual inspection of the time between initial signs and symp-
toms for ILI visits and an increase in P&I mortality. This was noted to be 1 to 2
weeks, which is less than the 29 day lead found by Brownstein et al. (2005) for their
ambulatory care population averaged across all ages. This approach is similar to the
difference between peaks approach of the Sebastian et al. (2008) study, and again
ignores a large proportion of the data that is available. Moreover, the study period
is relatively short, covering roughly one and a half influenza seasons and the results
may reflect the particularities of a single season.

There are limitations to the use of a P&I mortality as a reference for estimat-
ing timeliness. Since influenza is fatal mainly among the elderly and rarely among
healthy children and adults, P&I mortality misses a large proportion of influenza
cases. Furthermore, as a rather late-occurring outcome compared to P&I hospi-

talizations or influenza isolates, it can result in estimates of lead time that appear
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inflated, which likely explains why those observed by Brownstein et al. (2005) were

distinctively larger than those noted in the other studies in this review.

Pneumonia and Influenza Hospitalizations

Four studies compared the timing of visits for influenza-like illnesses (ILI)
relative to pneumonia and influenza (P&I) hospitalizations (Table A-2 in appendix
A). Three of them (Ivanov et al., 2003; Lazarus et al., 2002; van den Wijngaard
et al., 2008) assessed timeliness via a cross-correlation function (CCF), but none
report applying pre-whitening methods to remove autocorrelation first. Ivanov et al.
(2003) calculated the CCF between free-text chief complaints of respiratory illness
among children <5 years of age presenting to pediatric EDs in Salt Lake City and
hospitalizations for P&I or bronchiolitis. The peak correlation was observed to be
1.1 weeks (7.4 days) on average over three influenza seasons.

In a community-based setting, different results were obtained. Lazarus et al.
(2002), who were perhaps among the first to point out a gap in disease surveillance
that may be addressed by an automated ambulatory care record system (Lazarus
et al., 2001), correlated episodes of lower respiratory illness from an ambulatory
care practice (excluding ED visits) in Massachusetts against hospital admissions
with the same discharge diagnosis (Lazarus et al., 2002). This study took into
consideration that multiple encounters can often be associated with a single episode
of illness in ambulatory care by mandating a minimum of six weeks between
new episodes of illness. A peak correlation was found at the 2 week lag, but the
extremely high correlation observed (0.92) suggests that the autocorrelation within
the two time series may not have been controlled for before they were correlated.

The same may have occurred for van den Wijngaard et al. (2008), who

computed the CCF between a general practitioner (GP) consultation registry for
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a respiratory infectious disease syndrome and a hospitalization registry for general
respiratory symptoms and diagnoses in the Netherlands. The correlations are high
(~0.8 peak correlation), especially given that non-specific syndromes (as opposed
to pathogen-specific symptoms such as ILI) were used. Furthermore, surprisingly,
respiratory GP consultations were found to lag respiratory hospitalizations (by 1
week), contrary to the consistent tendency for medical visits to lead (or at worst,
coincide with) hospitalizations in other studies.

Both the van den Wijngaard et al. (2008) and Lazarus et al. (2002) studies
aggregated community setting visits across age. As discussed earlier, there has
been consistent evidence that children provide the earliest warning of an influenza
season. Therefore, if visits to community settings are truly no better, or even
worse, than ED settings in forewarning an influenza outbreak, one might expect
to see a relatively better lead than what was observed for the pediatric (< 5
years) ED data in the study of Ivanov et al. (2003) who found a smaller lead
than the study of Lazarus et al. (2002). However, Ivanov et al. (2003) did restrict
their study to young children and while at least one study has identified young
children (3 to 4 years) as the earliest sentinels of infection (Brownstein et al.,
2005), at least one other study has placed this role among school-aged children
(5 to 19 years) (Sebastian et al., 2008). This uncertainty regarding the earliest
signaling age-group, in addition to the use of methods that do not account for
autocorrelation and the lack of comparable studies with respect to age and setting
specific data, make it impossible to draw any interpretations about the role of
setting for syndromic surveillance of influenza from these three studies using
hospitalizations as a reference for comparison.

The fourth study using a P&I hospitalizations standard was that of Sebastian

et al. (2008). They drew data from across a variety of settings and measured lead
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time by the time difference between peaks, an approach that also has limitations as
described earlier. As with the results they obtained for a P&I mortality standard,
the timeliest age-group was school-aged children of 5 to 19 years (average 5.3 day
lead over P&I hospitalizations). The lead times found for children in the age-groups
<b years among these mixed setting data were shorter by a few days on average

than those found by Ivanov et al. (2003) for the same age-group in the ED.

Influenza Viral Isolates

The majority of the studies in this review (six of eleven) used influenza viral
isolates as a reference for comparison (Table A-3 in appendix A). Although they
can be an untimely indicator due to the delays inherent to diagnostic testing, and
although they may miss many cases of influenza as diagnostic confirmation is not
performed for every suspected case, they remain the gold standard for influenza
circulation since no other method can definitively confirm influenza infection.

In the second of two approaches used by van den Wijngaard et al. (2008)
to assess the timeliness of general practitioner (GP) consultation registry data
corresponding to a respiratory infectious disease syndrome, these data were used to
fit multiple linear regression models with lagged pathogen counts from laboratory
data as explanatory variables. Residuals were checked for autocorrelation and
timeliness was assessed by identifying the lag that resulted in an optimal fit. These
lags were determined to be 1 week for influenza A and 2 weeks for influenza B.

Marsden-Haug et al. (2007) validated individual International Classification
of Diseases, Ninth Revision (ICD-9) codes for the detection of influenza-like
illnesses (ILI) among outpatient visits to military treatment facilities within an
automated syndromic system by matching individual visits to respiratory virus

laboratory test results. Individual codes as well as aggregated groupings of these
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codes were also correlated to positive specimens. For the individual codes, lagged
correlation analysis determined that every code tended to peak at the same time
as positive specimens (i.e. no lead), although there was an indication that the
less frequently used (and probably more specific) codes may be more likely to

lag positive specimens. However, again, it is unclear from the reported methods
whether autocorrelation was taken into consideration.

In contrast to the other community-based studies of van den Wijngaard et al.
(2008) and Marsden-Haug et al. (2007), the study of Yang et al. (2008) applied
classical time series methodology. Using wavelet analysis, they assessed coherence
between ILI consultation rates to both general outpatient clinics and GP settings,
and influenza virus activity. For GPs, they found that the oscillation of the ILI
consultation rate led virus isolation by 4 weeks on average. However, it should
be noted that the study setting was in a tropical region, where influenza activity
presents differently from and is less predictable than temperate regions, which was
the authors original motivation for their study.

None of these community setting studies using a virological gold standard
looked at specific age-groups. In contrast, the emergency department (ED) studies
using a virological gold standard were generally more in depth, looking into other
factors such as age and annual variations as well. For example, Olson et al. (2007)
analyzed fever and respiratory chief complaints collected from EDs in New York
City for different age-groups. To determine the number of ED visits, hospital-
izations and deaths attributable to influenza, Serfling cyclical regression models
were fit using these data to obtain expected counts. The cross-correlation function
(CCF) between excess counts and positive viral isolates was then computed. The
greatest lead time was found among school-aged children (5 to 12, and 13 to 17
years) with a 1 week lead. Although the CCF for preschool-aged children (2 to 4
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years) also peaked at 1 week, the CCF lagged slightly behind that for school-aged
children. In contrast, the timing of ED visits for ILI by adults and the youngest of
children (< 2 years) coincided with that of viral data while the elderly lagged viral
data by 1 week. Although the evidence is weaker, this study further confirms the
potential utility of pediatric visits for syndromic surveillance of influenza. However,
it must be kept in mind that these results reflect only one influenza season, the only
one during their study period with significant excess estimates across all age-groups
and therefore the only one whose data was used for the CCF. Unfortunately, no
study has examined visits by specific pediatric age-groups to community settings
using a virological gold standard, otherwise the effect of setting among the pediatric
population would have made an informative comparison. It is interesting to note
that the magnitude of the lead times demonstrated by the children in this study,
relative to those of the adults, was smaller than in the Brownstein et al. (2005)
study, which also similarly examined different age-groups in the ED. However,
unlike the Olson et al. (2007) study, the Brownstein et al. (2005) data came from
different EDs for the adults than for the children.

Unlike the other ED studies using a virological gold standard, Lemay et al.
(2008) applied classical time series methodology to control for autocorrelation.
In their study, ARIMA models were fit to laboratory-confirmed influenza cases
for each of five influenza seasons and these models were then applied to ED
consultations with a chief complaint of ILI. The CCF was computed using the
residuals. In four seasons, the correlation for ILI chief complaints among children
<5 years peaked 2 to 4 weeks earlier than viral isolations. These lead times are
greater than those for the <5 years age-groups among the Olson et al. (2007) study,
perhaps due to the different methodological approaches or study country. Lemay

et al. (2008) did not report the lead times observed for other age-groups, although
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they did mention that ED consultations for ILI preceded viral isolates in three of
five seasons among those aged 6 to 18 years, and one of five seasons among adults.
This provides additional support for the role of children as timely indicators of
influenza epidemics.

The methodological approach of Zheng et al. (2007) was similar in some
sense to classical methods, although it is somewhat unconventional. In this study,
long-term trend and autocorrelation were first removed from daily counts of
ED visits for influenza, and laboratory-confirmed cases of influenza using cubic
smoothing splines. The residuals were then used to fit Poisson regression models.
By computing the CCF between the Poisson model residuals and viral isolates, the
lead time was determined to range from 0.4 to 2.3 weeks (reported as 3 to 18 days)

with a mean of 1.1 weeks (8 days).

2.2.3 Year-by-Year Analysis

The majority of the studies covered in this review analyzed data aggregated
across a span of several years (or analyzed by year but reported only the mean),
but two of the eleven studies did compare the results for individual influenza
seasons. Considering that each influenza season can be quite distinctive, varying
in circulating strains and the extent of morbidity and mortality, this approach
is worthy of investigation to determine if timeliness might be affected by the
individual parameters characteristic to each influenza season. When Zheng et al.
(2007) compared ED visits to virological data aggregating across all years, a 3
day lead time was found, but when individual years were used, lead times ranged
from 0.4 to 2.3 weeks (reported as 3 to 18 days). However, it seems that they were
analyzing by calendar year, as opposed to influenza seasons, but each calendar year

actually often represents segments of two different seasons. For ED consultations for
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ILI among children <5 years of age, Lemay et al. (2008) found leads of 2 to 4 weeks
over virological data for four of five influenza seasons but no significant correlation
was detected in the fifth season. Based on these results, lead times seem to be
generally consistent for most years, but there can occasionally be major deviations
in certain years, which may mean the subpopulations identified as optimal for
influenza surveillance will likely only be rough generalizations and should not be

expected to be reliable for every influenza season.

2.3 Conclusions and Future Directions

Looking across several studies, there is generally consistent evidence that am-
bulatory visits by children provide the earliest indication of an influenza epidemic.
However, the importance of visit setting for syndromic surveillance of influenza,
and whether visits by children to the ED may differ from their visits to community
settings in terms of timeliness is a little less clear. Tables A-1, A-2, and A-3 (in
appendix A) reveal the prominent gaps in the literature for such studies assessing
visits by children in community settings. Considering the community setting leads
obtained by Brownstein et al. (2005) for ambulatory care visits, and by Yang et al.
(2008) for GP and general outpatient clinic visits, this should be a priority for
future studies. The earlier lead times exhibited among community setting visits
has a plausible basis as well. Since mild initial symptoms often do not require
ED care (Heffernan et al., 2004), patients in the initial stages of illness often seek
primary care first, which may increase the potential for an earlier ILI signal in
community settings compared to the ED (Lazarus et al., 2001).

Another general observation gleaned from this literature review is that there
may be a slight tendency for studies that used time series methods (Brownstein

et al., 2005; Lemay et al., 2008; Yang et al., 2008) to measure greater lead times
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than those that used simpler methods, although again, more studies are required
to make the appropriate comparisons within each setting and age-group restricted
category. Finally, an approach that analyzes these data by individual influenza
seasons may be a beneficial supplement to an aggregated analysis considering that
some studies have found exceptional influenza seasons.

A limitation that was common to all studies in this review was the inability to
account for the contribution of respiratory syncytial virus (RSV), another major
viral respiratory pathogen in the community, especially among children (Jansen
et al., 2008) but among the elderly as well (Falsey et al., 2005; Fleming and Cross,
1993). In fact, RSV is one of the most important causes of lower respiratory illness
among young children, its impact exceeding that of influenza (Lee et al., 2005;
Schanzer et al., 2006). Since RSV often co-circulates with influenza, and since
their clinical symptoms are similar, they can be difficult to distinguish without
laboratory confirmation (Mathur et al., 1980; Zambon et al., 2001). As a result, it
would be expected that a respiratory syndrome such as ILI would capture many
cases of RSV as well, and the impact of this problem on the evaluation of these
data sources for syndromic surveillance of influenza is not known.

In conclusion, there have been some informative results from these studies
demonstrating the ability of automated records of medical visits to lead indica-
tors of influenza circulation, which suggests their potential utility for syndromic
surveillance of ILI. However, some questions still remain unanswered, pointing to
interesting routes of investigation for future research, particularly with respect to
children and community settings. With a better understanding of these patterns,
improvements can be made to surveillance systems for the timelier detection of

influenza outbreaks.
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CHAPTER 3
Methods

3.1 Overview
The objectives of this thesis were:

1) to describe the lead-lag relationships, by age-group and visit setting, between
visits for influenza-like illnesses (ILI) in ambulatory care (community-based
settings and hospital emergency departments (EDs)) and the circulation
of the influenza virus, as represented by pneumonia and influenza (P&I)
hospitalizations, and

2) to describe the year-to-year! variation in these lead-lag relationships.

For a study period that ran from the first week of 1998 (starting January 4,
1998) to the last week of 2003 (ending December 27, 2003) inclusive, these analyses
were split into two stages:

1) an overall analysis using data for all weeks across the entire study period, and
2) an annual analysis for each individual influenza season during our study

period, using only epidemic weeks, as defined by viral data.

For both stages of the analysis, we (1) defined a study population of all

patients seen by a cohort of physicians in Quebec, Canada during our study period,

! In this thesis, the use of the term “year” or “annual” refers to each influenza
season and not each calendar year unless otherwise noted. The use of the term
“season” has been limited to avoid confusion with the seasons referring to winter,
spring, summer, or fall.
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(2) measured medical visits for ILI made by these patients to community-based care
settings and hospital EDs that were billed on a fee-for-service basis as counts by
age group per week, (3) measured Quebec-wide hospitalizations for pneumonia and
influenza (P&I) as counts of admissions per week, and (4) used time series methods

to compare ILI visits by setting and age to population-wide P&I hospitalizations.

3.2 Context

The Régie de I’Assurance Maladie du Québec (RAMQ) is the agency responsi-
ble for the health insurance program in the province of Quebec, covering the cost of
hospital and physician services for all residents. In Quebec, 99% of all residents are
covered by RAMQ and between 1993 and 2003, 85-95% of physicians billed RAMQ

for services conducted on a fee-for-service basis (RAMQ, 1995).

3.3 Data Sources
3.3.1 Fee-for-Service Billing Data

For our study population of patients seen by a cohort of Quebec physicians
(as will be described below), we obtained from the RAMQ all fee-for-service billing
claims for medical visits they made between 1993 and 2003, including those to
physicians outside the original cohort of physicians. Therefore, we had complete
ascertainment of healthcare delivered on a fee-for-service basis for our patient study
population. Each billing claim contains information such as anonymized unique
identifiers for the physician and patient, an International Classification of Diseases,
Ninth Revision (ICD-9) diagnostic code, a code for the setting type, and the date of

visit. Demographic data on the patients (e.g. age) were also available separately.
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3.3.2 Hospitalization Data
Our Quebec-wide hospitalization data were based on records from the Que-
bec hospitalization database (MED-ECHO). These records included the date of

admission, date of discharge, and the discharge diagnosis.

3.3.3 Viral Isolates Data

Viral testing data were obtained from the Laboratoire de Santé Publique du
Québec (Quebec Public Health Laboratory). These data included weekly counts
of positive specimens and the total number of specimens tested for three types
of influenza diagnostic tests (culture, antigen-detection, and polymerase chain
reaction). For the first two tests, positive counts for each of influenza A and B were
available, while for the latter test, only the combined (influenza A and B) positive

count was available.

3.4 Study Population

In a previous study (Tamblyn et al., 2007), a cohort of 3424 new physicians
who took the Medical Council of Canada clinical skills examination between
1993 and 1996 and who were licensed to practice in either Ontario or Quebec
was assembled. From this cohort, we then identified those who were in practice
in Quebec by 1998 as indicated by the presence of at least one claim with their
identifier before January 1, 1998 in the fee-for-service billing database.

The study population included all patients seen on a fee-for-service basis
between 1998 and 2003 by this cohort of “in-practice” study physicians. Our study
population in each year of our study period represented approximately 35%-36%
of the total source population of all RAMQ beneficiaries that had received at least

one medical service in the same year (RAMQ), 2008). Our patient cohort was similar
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to the total provincial population by age and sex distributions except for a slight

overrepresentation of the elderly and females in our study population.

3.5 Outcome Measures
3.5.1 Medical Visits for Influenza-Like Illnesses (ILI)

We generated multiple weekly time series of ILI visits by counting the number
of fee-for-service billing claims with an ICD-9 coded diagnosis for ILI per week
(starting Sunday, ending Saturday) for each age-group and for each of two types
of outpatient settings: (1) community-based care setting (including private offices,
private clinics, and local community health and social services centres), and (2)
hospital ED. For the ICD-9 code set used for ILI, see Table 4-4 in Appendix
A of the first manuscript or Table 5-4 of the second manuscript. The ILI code
set is based on ILI groupings validated by Marsden-Haug et al. (2007) against
respiratory virus laboratory test results. The RAMQ establishment codes by which
we classified settings as community-based or hospital ED are defined in Table A—4
in Appendix A of the thesis. We excluded hospital-based outpatient clinics from our
study. Since we expected the data to exhibit a strong weekly pattern, aggregating
by week eliminated day of the week effects. Due to the fact that there were often
multiple claims submitted per unique visit for multiple services rendered during a
visit, each unique patient was counted no more than once per day for each subset to
reduce overcounting of episodes of illness. The resulting time series of weekly counts
summing daily prevalence reflects a combination of both the incidence of ILI and

disease intensity.

3.5.2 Pneumonia and Influenza (P&I) Hospitalizations
We also generated a weekly time series of the total number of short-term

hospitalizations in all of Quebec with a primary discharge diagnosis of P&I (ICD-9
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codes 480-487) per week to serve as a common reference against which the time
series of ILI visits will be compared. P&I hospitalizations data are commonly used
for influenza surveillance and for measuring the impact of influenza because they
provide a sensitive and representative measure of the burden of influenza morbidity

within a population Perrotta et al. (1985); Upshur et al. (1999).

3.5.3 Epidemic Period Definition

Since viral culture does remain the gold standard for identifying periods of
influenza circulation, it is viral isolates data that were used to define the start and
end of the epidemic periods. We pooled the results of the three diagnostic tests
together and defined the start of each influenza season as four weeks before the first
two consecutive weeks during which the total number of positive specimens (for
either influenza A or B) was greater than or equal to five. We shifted the start week
back to accommodate both our expectation that an increase in positive viral tests
will be preceded by an increase in ILI visits, as well as the fact that we would later
be shifting the time series in the cross-correlation function (CCF) computation.
The end week was defined as the week before two consecutive weeks during which
the total count was under five. These epidemic periods are described in Table 5-1

in the second manuscript.

3.6 Data Analysis
3.6.1 Overview

In the application of time series methodology to assess timeliness, the goal is
to determine whether changes in one time series precede changes in another time
series spanning the same period of time. One approach to assessing this lead-lag
relationship is to shift one time series backward or forward by a certain unit of

time (for example 1 week) so that one lags the other and then computing their
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correlation at this lag. This is repeated for various lags of time to obtain the cross-
correlation function (CCF). The lag at which the peak correlation occurs is an
indication of the duration of time by which one time series leads (or lags) the other,
which we refer to as the lead time.

However, before computing the CCF between two time series, it is important
to determine whether the two time series are each autocorrelated within them-
selves. Autocorrelation refers to the relationship in a time series that consists of
observations that are not independent of each other, meaning the value of one
variable depends on previous value(s) Diggle (1990). If such autocorrelation exists,
the application of the usual regression approaches which require independence of
observations would result in both invalid and inefficient inferences (Box and Jenk-
ins, 1970; Zeger et al., 2006). Correlating two autocorrelated time series can lead
to high correlations by chance alone, and one may come to the conclusion that an
association exists where there may be none (Bartlett, 1935; Box and Newbold, 1971;
Helfenstein, 1996). Furthermore, the correlation estimates at different lags may also
be correlated. However, this problem can be resolved by first removing the autocor-
relation in each time series before computing their cross-correlation. An excellent
illustrative example is given by Bowie and Prothero (1981) who demonstrated that
without controlling for autcorrelation, one would come to the conclusion that the
number of deaths due to ischemic heart disease each month is related to the ton-
nage of imported oranges each month which logically would be difficult to believe.
However, they showed that if the trend and seasonal components were first removed
from each time series before being correlated, the correlation coefficients would no

longer be significant.

29



3.6.2 Removal of Autocorrelation with ARIMA Modeling

Perhaps the most influential method for removing autocorrelation from a time
series (referred to as “pre-whitening” the data) has been that of statisticians George
Box and Gwilym Jenkins (Box and Jenkins, 1970). The Box-Jenkins approach fits
the time series to an autoregressive integrated moving average (ARIMA) model
to model the dependence between consecutive observations (Box and Jenkins,
1970; Helfenstein, 1996). Mathematically, the autoregressive moving average model
ARMA(p, q) is defined by:

ze=¢o + ¢1(2-1) + .+ Op(2ip) Fag — O1(as1) — ... — Og(ar—q)

where {... 21, 21, 2¢11,. ..} is a series of observations at equally spaced time
intervals, {...a;_1,as, azy1,. ..} is a white noise series of independent and identically
distributed random variables whose distribution is approximately normal with mean
zero and variance o2, p and ¢ are the order of the autoregressive (AR) and moving
average (MA) components respectively, and ¢y, ..., ¢, and 64,..., 6, are the AR
and MA parameters respectively.

The Box-Jenkins modeling procedure consists of a preliminary data preparation
step, and then three main steps that are repeated as many times as necessary
until an adequate model has been found. This methodology has been elaborated
extensively elsewhere (Box and Jenkins, 1970; Brockwell and Davis, 2002; Diggle,

1990; Helfenstein, 1996) but a brief overview will be given here:

1. Data preparation
ARIMA modeling can only be applied to a stationary time series, which is
characterized by a constant mean and variance over time. A graph of the
autocorrelation function (ACF) can be checked to assess stationarity. The

ACF is similar to the CCF except that it represents a single time series
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cross-correlated against itself. If the series is not stationary, stationarity

can be achieved by “differencing” the data by subtracting the value at each
time point by the value at the previous time point to detrend the series,
and/or transforming the data (e.g. logarithm, square root) to stabilize the
variance. If differencing is required, then the model becomes an autoregressive
integrated moving average ARIMA (p, d, ¢) model, where d represents the

order of differencing.

An example with a non-stationary time series is illustrated in Figure 4-3 of
Appendix B of the first manuscript. In the ACF plot of the raw data shown in
panel C, it can be seen that the autocorrelation is still very high out to large
lags. However, in the ACF plot after first order differencing shown in panel D,
the autocorrelation decays rapidly (it is within the 95% confidence interval of

the correlation about 0 by a lag of 2).

. Model identification

In this step, graphs of the ACF and the partial autocorrelation function
(PACF) of the stationary time series are assessed to attempt to identify a
provisional order of AR and MA terms. The PACF is similar to the ACF

in that it measures the autocorrelation at a particular lag for multiple lags
except that it removes the effects of the intervening observations at the
intermediate lags (Shumway and Stoffer, 2006). The details of this process of
choosing the order of AR and MA terms are lengthy and therefore will not
be elaborated upon here but one should be able to find an explanation in any
time series methodology reference (Box and Jenkins, 1970; Helfenstein, 1996;

Brockwell and Davis, 2002; Diggle, 1990).
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If the time series exhibits a seasonal pattern (determined by visual inspec-
tion), differencing can be applied at the seasonal level if necessary as well, and
an additional set of AR and MA terms representing the seasonal component
should also be added to the model. An ARIMA(p,d, q)x (P, D, Q) model rep-
resents a model with seasonal terms, where P, D, and () are the seasonal level
equivalents of p,d, and ¢. If there are other external independent variables
believed to have an important effect on the time series observations, they may

also be added to the model.

. Parameter estimation
Values of the AR and MA coefficients which provide the best fit to the data
are determined using computational algorithms (for example, maximum

likelihood estimation) via standard statistical software.

. Model checking
The adequacy of a model can be checked through various diagnostic tests.
If an adequate model is chosen, the residuals should be independent of each
other and resemble a white noise process (with constant mean of 0 and
variance o2 over time). If the model is inadequate, steps 2 to 4 are repeated

to identify another potential model.

For our data, the ACF plots of our time series of visits for influenza-like

illnesses (ILI) and its subsets by visit setting and age group indicated that they

were not stationary. Therefore, before applying ARIMA modeling, we made each

ILI visits time series stationary with first a log transformation and then first order

differencing at the non-seasonal level. We then proceeded to identify appropriate

ARIMA models for the time series of the overall data set and for each subset
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using 312 weeks worth of data available for each time series to fit each model. For
parsimony, we limited models to no more than one seasonal term (looking at the
observation 52 weeks ago), and no higher than eighth order non-seasonal terms.
We also included two indicator variables to account for winter holiday effects (for
any week containing Christmas Day, Boxing Day or New Year’s Day), and other
holiday effects (for any week containing any other statutory holiday). See either
Table 4-5 in Appendix A of the first manuscript or Table 5-5 in the Appendix of
the second manuscript for a list of all statutory holidays included. Two separate
holiday variables were used since the winter holidays tended to have a much more
pronounced effect on the weekly count of ambulatory medical visits than did other
holidays throughout the year (see Figure 4-1 in the first manuscript). Models
were fit using conditional-sum-of-squares to find initial parameter values, and then
using maximum likelihood estimation to refine to a more precise estimate of the
parameter values. We examined the ACF, PACF, and the Ljung-Box plot of the
residuals to assess the presence of autocorrelation in the residuals. A histogram of
the residuals and a normal quantile plot was used to assess the normality of the
residuals. The Akaike information criterion (AIC) was used to assess the goodness

of fit of each model

3.6.3 Analysis of Timeliness and Correlation through the Cross-
Correlation Function (CCF)

The cross-correlation function (CCF) describes the correlation between two
time series shifted by various lags of time. In this way, the timeliness of one series
with respect to the other can be evaluated by identifying the lag at which their
correlation is the highest. However, as mentioned earlier, two autocorrelated time
series must first be pre-whitened to remove their autocorrelation before their

CCF can be computed to avoid high correlation estimates due to chance alone.
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In accordance with Box-Jenkins methodology, an ARIMA model is first fit to the
explanatory (or “input”) time series (Box and Jenkins, 1970; Helfenstein, 1996).
The same model must then be applied to the target (or “output”) series. The
residuals that result for each time series represent what remains of each time series
after removing the autocorrelation. The CCF can then be computed between these
residuals to obtain valid estimates of the correlation between the two time series.

Figure 4-4 in Appendix B of the first manuscript illustrates an example of a
CCF between a reference time series (labeled A) and two other time series (labeled
B and C) and the determination of the lead time. For simplicity and clarity, the
time series being correlated are essentially lagged versions of each other. Moreover,
to maintain simple looking graphs, ARIMA modeling was not first applied in order
that it can be obvious from looking at the time series plots shown in panel A that
time series A lags time series B by 1 time unit, and time series C by 3 time units.
This lead time is more formally assessed with a CCF plot, which shows that the
maximum cross-correlation between time series A and B occurs when they are
lagged by 1 time unit (panel B) and for time series A and C, by 3 time units (panel
C).

In our analyses, the overall ILI visits time series or its various subsets consti-
tuted our input series, while the P&I hospitalizations time series constituted our
reference output series. The CCF was computed between the residuals obtained
after applying the pre-whitening procedure to the input and output series as de-
scribed above. For the overall analysis, the CCF was computed using the residuals
for all weeks of the data. However, for the yearly analysis, the CCF was computed
using the residuals restricted to the weeks that fell within the epidemic period only,
repeating for each individual influenza season from 1998-1999 through 2002-2003.

Examining the CCF, we assessed lead time in two ways: we identified (1) the lags
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at which the peak correlation occurred, as well as (2) the lags at which other signifi-
cant correlations occurred. In this way, we aimed to understand the overall pattern
of correlation across various lags. Significance was assessed with respect to whether
the correlation fell outside the 95% confidence interval about a correlation of 0
(calculated using Fisher’s transformation). To better highlight these patterns, we
created “heat-maps” of the CCF's, where the degree of correlation was represented
on a colour gradient. For the heat-maps, the correlations were first standardized
(with respect to each subset) by centering and then scaling by dividing by their
root-mean-square.

Data extraction and processing were carried out using Oracle Database 10g
(Release 10.2.0.1.0; Oracle Corp., Redwood City, CA) and all statistical analyses
were carried out using the R statistical software (version 2.6.2; R Foundation for
Statistical Computing, Vienna, Austria). This study was approved by the Faculty
of Medicine Institutional Review Board at McGill University (certificate provided in

appendix B).
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CHAPTER 4
Preface to Manuscript #1

Many studies have implicated children as the primary vectors in influenza
transmission in the community and in fact, their role as the earliest indicators of
an influenza epidemic among syndromic data for influenza-like illnesses (ILI) has
already clearly been established. However, the implication of visit setting in these
data has not yet been widely investigated, especially for community-based settings.
Furthermore, to our knowledge, no researcher has assessed the impact of age and
visit setting factors simultaneously in a direct comparison using data drawn from a
single source population. The use of appropriate time series methodology to control
for autocorrelation when analyzing such seasonal data has also been inconsistent
among the studies evaluating syndromic data in the literature.

In this manuscript, using International Classification of Diseases, Ninth
Revision (ICD-9) coded medical billing data derived from a single sample of
the ambulatory care seeking population in Quebec, Canada between 1998 and
2003, we assessed the timeliness of subsets of ILI visits restricted by specific age-
groups and visit settings (community-based and hospital emergency department
(ED)). We did so by first applying ARIMA modeling to the data to control for
autocorrelation, and then computing the cross-correlation (CCF) of the residuals
against a pneumonia and influenza (P&I) hospitalizations standard across various
lags. We intend to submit this manuscript to Emerging Infectious Diseases and this

manuscript has been formatted to that journal’s specifications.
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4.1 Abstract

Although syndromic surveillance has emerged as a promising, automated
approach to monitoring disease occurrence, there is little consensus about the best
data sources to use. To address this problem, using physician billing data from
Quebec, Canada, we assessed the timeliness of medical visits for influenza-like
illnesses (ILI) by age-group at two types of outpatient healthcare settings. We com-
puted the cross-correlation function (CCF) between time series of multiple subsets
of ILI visits, and a common reference time series of hospitalizations for pneumonia
and influenza (P&I). ILI visits by children aged 5-17 years to community-based
care settings were more strongly correlated with P&I hospitalizations at greater
lags than adult or hospital emergency department ILI visits and therefore may be
the earliest and strongest indicators of an influenza season. These findings have
important implications as they identify potential targets for public health strategies
for controlling influenza epidemics including surveillance, vaccination and school

closure.
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4.2 Introduction

Influenza is an infectious respiratory disease with an annual epidemic cycle as-
sociated with high mortality among the elderly (1, 2), hospitalizations among both
the elderly and the very young (1-4), and substantial economic consequences (5).
Concerns of an impending influenza pandemic and potential epidemics of other
emerging diseases such as SARS have fueled efforts to improve disease surveillance
systems to better detect and limit the spread of infectious disease outbreaks.

Syndromic surveillance has emerged as a promising approach to monitoring
disease occurrence by using advanced statistical and computational methods
to continuously monitor large streams of data that are automatically collected
from clinical and other non-traditional settings in real-time or near real-time (6).
Since pre-diagnostic data are used, syndromic surveillance can provide an earlier
indication of an outbreak than traditional laboratory or sentinel physician based
surveillance. However, there is little consensus about the best data sources for this
type of surveillance.

Although analyses of administrative data suggest that children are early
sentinels of influenza infection in the population (2, 7-9), there is debate about
which specific age-groups provide the earliest signal. It is also not clear which
setting provides the earliest signal as the majority of these studies have used
emergency department (ED) data (7-11) and few researchers have compared the
timing of signals from visits to EDs to signals from visits to other settings such as
community settings including private offices and community clinics.

To our knowledge, only one study has compared data from EDs to data from
community-based settings (12), but the ED data came from one health population

while the community-based data came from a different population. It must be
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kept in mind that a comparison of two different populations may potentially be
confounded by differences between the two populations.

In this study, we sought to clarify the timing of visits for influenza-like illnesses
(ILI) by age-group and setting using physician billing data for a single cohort of
patients in Quebec, Canada. To determine the age-groups and outpatient visit
settings presenting the earliest signals, we cross-correlated time series of ILI visits
to community settings and to EDs against a common reference time series of
hospitalizations for pneumonia and influenza (P&I) across various lags of time.
Identifying specific leading age-groups and settings is important for improving
the timeliness of detecting an influenza epidemic by syndromic surveillance and

ensuring limited resources that may be allocated for surveillance are used efficiently.

40



4.3 Methods
4.3.1 Overview and Study Design

We obtained data on 1) all fee-for-service medical billing claims for patients
seen by a cohort of physicians in Quebec, Canada, and 2) admissions for P&I at
all hospitals in Quebec during our study period running from January 4, 1998 to
December 27, 2003 (inclusive). To assess the extent by which changes in outpatient
visits for ILI preceded the changes in hospitalizations for P&I, we cross-correlated
multiple time series of weekly counts of ILI visits to community-based care settings
and to hospital EDs by different age-groups against a common reference time series
of weekly counts of P&I hospitalizations after shifting the time series apart by

various lags of time.

4.3.2 Context

The Régie de 1’Assurance Maladie du Québec (RAMQ) is the agency responsi-
ble for the health insurance program in the province of Quebec, covering the cost of
hospital and physician services for all residents. In Quebec, 99% of all residents are
covered by RAMQ and between 1993 and 2003, 85-95% of physicians billed RAMQ

for services conducted on a fee-for-service basis (13).
4.3.3 Data Sources

Fee-for-Service Billing Data

In a previous study, we assembled a cohort of 3424 new physicians who
were licensed to practice in Ontario and/or Quebec and then requested RAMQ
to identify all patients seen by these physicians between 1993 and 2003 and
provide us all fee-for-service billing claims submitted for these patients by any

physician in Quebec (inside or outside the cohort of study physicians) during this
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period (14). Therefore, we had complete ascertainment of healthcare delivered

on a fee-for-service basis for this cohort of patients. Each billing claim contains
information such as anonymized unique identifiers for the physician and patient, an
International Classification of Diseases, Ninth Revision (ICD-9) diagnostic code, a

code for the setting type, and the date of visit.

Hospitalization Data
Our Quebec-wide hospitalization data were based on records from the Que-
bec hospitalization database (MED-ECHO). These records included the date of

admission, date of discharge, and the discharge diagnosis.

4.3.4 Study Population

We identified all physicians as “in practice” in the fee-for-service system by
January 1, 1998 if they had at least one billing claim among our fee-for-service data
by this date. The study population included all patients seen by these physicians
between 1998 and 2003. Our study population in each year of our study period
represented approximately 35%-36% of the total source population of all RAMQ
beneficiaries that had received at least one medical service in the same year (15).
Our patient cohort was similar to the total provincial population by age and sex
distributions except for a slight overrepresentation of the elderly and females in our

study population.

4.3.5 Outcome Measures

Medical Visits for Influenza-Like Illnesses (ILI)

We generated multiple weekly time series of ILI visits by counting the number
of fee-for-service billing claims with an ICD-9 coded diagnosis for ILI (code set

provided in Table 44 in Appendix A) per week for each age-group and for each of
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two types of outpatient settings: 1) community-based care setting (including private
offices, private clinics, and local community health and social services centres), and
2) hospital ED. We excluded hospital-based outpatient clinics from our study. Since
there were often multiple claims submitted for multiple services rendered during

a single visit, each unique patient was counted no more than once per day in each

time series.

Pneumonia and Influenza (P&I) Hospitalizations

We also generated a weekly time series of the total number of short-term
hospitalizations in all of Quebec with a primary discharge diagnosis of P&I (ICD-9
codes 480-487) per week to serve as a common reference against which the time
series of ILI visits would be compared. P&I hospitalizations data are commonly
used for influenza surveillance and for measuring the impact of influenza because
they provide a sensitive and representative measure of the burden of influenza

morbidity within a population (16, 17).

4.3.6 Data Analysis

Removal of Autocorrelation with ARIMA Modeling

We first used Box and Jenkins seasonal autoregressive integrated moving
average (ARIMA) models (18, 19) to model and control for the autocorrelation
structure within each age-group and setting specific subset of the ILI visits time
series. All models included two indicator variables to account for the effects of
the winter and non-winter holidays (listed in Table 4-5 in Appendix A). For each
subset of ILI visits, we developed several potential models and chose a final model
after a comparison based on several diagnostic tests to assess the presence of any
remaining autocorrelation and model fit (19). The residuals from each fitted series

constituted the “pre-whitened” time series, meaning the autocorrelation has been
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removed in these time series. A theoretical overview of ARIMA modeling and more
technical details of how we found appropriate ARIMA models for our data are

provided in Appendix B.

Analysis of Timeliness and Correlation through the Cross-Correlation
Function (CCF)

A cross-correlation function (CCF) was computed to assess the timeliness of
ILI visits relative to P&I hospitalizations. See Appendix B for technical details
of the CCF. After finding ARIMA models for each subset of the ILI visits time
series as described above, we applied the same model to the P&I hospitalizations
reference time series. We then computed the CCF (up to a lag of 4 weeks) between
the residuals for each subset of the ILI visits time series and the residuals for the
P& hospitalizations time series, which served as a common reference. To assess
timeliness, we noted the lags at which the peak correlation and other significant
correlations occurred in the CCF to determine lead time. Significance was assessed
by constructing the 95% confidence interval about a correlation of 0 (calculated
using Fisher’s transformation). We also created “heat-maps” of these CCFs, in
which the degree of correlation was represented by a colour gradient after being
standardized (to each subset) by centering and then scaling by dividing by their
root-mean-square.

Data extraction and processing were carried out using Oracle Database 10g
(Release 10.2.0.1.0; Oracle Corp., Redwood City, CA) and all statistical analyses
were carried out using the R statistical software (version 2.6.2; R Foundation for
Statistical Computing, Vienna, Austria). This study was approved by the Faculty

of Medicine Institutional Review Board at McGill University.
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4.4 Results
4.4.1 Descriptive Statistics

Between 1998 and 2003, out of a total of 2,541,926 unique study patients with
at least one billing claim from a community-based healthcare setting or a hospital
ED in Quebec, there were cumulatively 1,551,173 (61%) unique patients diagnosed
with ILI (including non-specific diagnoses such as fever and cough) at least once
over the six year time period. The annual prevalence of ILI patients out of all study
patients ranged from 21% (2003) to 28% (1998, 1999). The ILI patient population
had higher proportions of females and young children, and lower proportions of the
middle-aged and elderly as compared to the total patient population (Table 4-1).

Collectively, the entire study population (including those who never made an
ILI visit) made a total of 73,091,025 visits, of which 5,085,226 (7%) visits were
given an ILI diagnosis during the study period. During the same period, there was
a total of 104,571 short-term hospitalizations with a primary diagnosis of P&I. The
proportion of ILI visits out of all visits was approximately the same (7%) among
both community-based care settings and hospital EDs. The majority of ILI visits
were to community settings (83%) as opposed to the ED (17%). However, while
working-aged adults made up a larger proportion of community-based ILI visits
than they did for ED ILI visits, the converse was true among the youngest children
and the elderly (Table 4-2).

Weekly counts of both ILI visits and P&I hospitalizations exhibited a highly
seasonal pattern, and a general downward trend across the study period, although

the trend was more pronounced for the peaks than for the troughs (Figure 4-1).
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4.4.2 Timeliness and Correlation

For each cross-correlation function (CCF) between each subset of ILI visits and
P&I hospitalizations, Table 4-3 shows the lag at which the peak correlation was
found, as well as the greatest lag at which a significant correlation was found (see
Table 4-6 in appendix A for the full table of correlations at all lags and for the final
ARIMA models chosen for each subset). While visits by adults and visits to EDs
tended to be more strongly correlated with P&I hospitalizations, pediatric visits
and visits to community settings tended to be correlated with P&I hospitalizations
at earlier lags. All peak correlations were significantly different from 0 based on a
type I error of 5%.

The CCF results indicate that each ILI visits subset either led or was concur-
rent with P&I hospitalizations. If lead time is defined by the lag at which the peak
correlation occurs, ILI visits, when not restricted by age or setting, provided no lead
over P&I hospitalizations. However, when restricted by setting, the community-
based setting subsets of ILI visits provided lead times that were equivalent to or
greater than the lead times provided by the ED subsets for every age-group (Table
4-3). Considering age as well as setting, ILI visits by children aged 2 to 17 years old
to community settings were most strongly correlated with P&I hospitalizations at
the greatest lags. The greatest lag at which peak correlations occurred was 2 weeks,
although significant correlations occurred at a lag of 3 weeks as well. For example,
the peak correlation between the 13 to 17 year olds community-based setting subset
of ILI visits and P&I hospitalizations was 0.24 and this occurred when the two
time series were lagged by 2 weeks, but their cross-correlation of 0.17 at a lag of 3
weeks was also significant. In the heat-map of the CCFs (Figure 4-2), community
setting ILI visits by 5 to 12 year olds and 13 to 17 year olds are the most prominent

leading subsets. The subset of visits by 5 to 12 year olds to community settings is
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most noticeable (in red) in the heat-map at the 2 week lag, but there is another
significant (though not peak) and prominent correlation at the greater lag of 3

weeks for the subset of ILI visits by 13 to 17 year olds to community settings.
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4.5 Discussion

We found that among physician billing claims from outpatient care, ILI visits
to community-based setting tended to provide an earlier indication of the influenza
season than ILI visits to EDs. Confirming previous findings, we also found that
ILI visits by children provide an earlier indication than ILI visits by adults or the
elderly. When considering both visit setting and age, we found that community
setting visits for ILI by children aged 2 to 17 years tended to provide the greatest
lead times over P&I hospitalizations, with community setting visits by children aged
5 to 12 years standing out in particular due to the high peak correlation with P&I
hospitalizations. However, community setting visits by children aged 13 to 17 years
were also significantly correlated (though not peak correlation) at an even greater
lag and at a greater magnitude than for the other subsets at the same lag.

A potential reason for the earlier timing of ILI visits to community settings
compared to ILI visits to the ED may be that community-based primary care is
often sought first among those who seek care early because mild symptoms in the
early stages of illness generally do not require ED care (20). Most studies that have
evaluated the potential utility of different data sources for syndromic surveillance
of influenza have focused on the ED (7-11). Few have looked at community-based
settings (21-25). To our knowledge, only one study has compared these two setting
types (7) but that study did not use a single cohort of patients as we did to avoid
potential confounders due to the possible variation in, for example, socioeconomic
status or healthcare utilization behaviour, between different populations. Our
findings have important implications for syndromic surveillance of ILI because they
identify specific subgroups that may be sentinels of an influenza season.

Our findings highlight the role of children as sentinels of influenza infection.

This role is not surprising given that children have immature immune systems
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that render them susceptible to infection. They have the second highest rate of
excess hospitalizations for P&I, after the elderly, and the highest rates of excess
physician visits and ED visits for P&I (1). A compounding factor is the health-care
seeking behaviour of this subgroup, as concerned parents may tend to bring their
ill children to a doctor at earlier stages of an illness than adults would seek care

for themselves (7). The incidence of influenza-related medical visits is greatest for
infants and toddlers (6 to 23 months), followed by preschool-aged children (2 to 4
years), and to a lesser extent, older school children (2). Among young children, the
rate of influenza-associated clinic visits is estimated to be 3 to 8 times greater than
for the ED (26). Therefore, it is ambulatory care rather than hospital care that
bears the brunt of an influenza epidemic among children (1), which may explain the
earlier timing of their ILI visits to community settings compared to the ED in our
results.

Despite the fact that influenza has the highest impact on the youngest of
children, our results point to school-aged children (5 to 17 years) as the earliest
and strongest indicators of an influenza season among ILI medical visits data. This
discrepancy may be explained by the role of school-aged children as the primary
vectors of influenza transmission (27-30). In one simulation study, it was found
that immunizing a single individual in the 13 to 19 year old age-group results in a
larger decrease in new infections than any other age-group (31). The efficiency of
school-aged children as spreaders and mixers of influenza may be the result of an
interplay between both their innate ability to shed the virus earlier and for a longer
time (even after their clinical symptoms subside) compared to adults (32, 33), as
well as their extensive social contact patterns, especially among children their own
age at school, sports activities, and other social activities (31, 34). School closure

can lead to a significant reduction in influenza transmission (35). In contrast, the
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youngest children (<2 years) not yet attending school have much more limited
social contact networks. In Quebec, our study location, most public daycares do not
accept children <2 years old, although there are some private or family day cares
that do. In light of such evidence for the role of school-aged children in influenza
transmission, the Advisory Committee on Immunization Practices (ACIP) of the
Centers for Disease Control and Prevention (CDC) in the United States recently
updated their recommended target groups for annual vaccine vaccination to include
all children aged 5 to 18 years, starting with the 2008-2009 season (36). In previous
seasons, the ACIP targeted only children 6 months to 4 years among children who
are healthy. Canada has not yet adopted this expanded vaccination policy (37).

Our findings for pediatric age-groups as sentinels of infection within adminis-
trative data are consistent with other studies (2, 7-9). Both one study analyzing
fever and respiratory ED chief complaints in New York City (8), and another
analyzing influenza medical visits in British Columbia, Canada (2) pointed to
school-aged children as sentinels, as we did. A slightly younger age-group (3 to 4
years) was identified by a study analyzing visits to several EDs and one ambulatory
care setting for respiratory illness (7), while another study identified children <5
years of age to be most frequently correlated with laboratory-confirmed influenza
cases among ED chief complaints of ILI (9).

There are some limitations to our study. Respiratory syncytial virus (RSV) is
another major viral respiratory pathogen whose impact exceeds that of influenza
among young children (38) and the elderly (39). We could not distinguish RSV
from influenza since RSV is clinically similar to and often co-circulates with
influenza (40). Therefore, the patterns in our time series of ILI visits may reflect
a combination of the patterns of both influenza and RSV, which could diminish

the correlation between the ILI visits time series and the P&I hospitalizations time
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series. However, RSV mainly affects the very young, and we did use an ILI code set
that has been validated against influenza viral isolates (21). We also acknowledge
that our ILI visit counts overestimated the actual number of episodes of infection,
although we did attempt to reduce overcounting by limiting each patient to one

¢

visit per day in each subset we analyzed. We had tried other “windows” to define
episodes of infection, such as a 7-day window (i.e. each patient counted no more
than once during a 7 day interval), but we found that other artificial (weekly)
patterns were introduced. Daily time series would have provided more precise
estimates of lead time, but we used weekly counts to eliminate day-of-the-week
effects and to smooth out some of the random variation. Finally, we acknowledge
there are potential biases resulting from multiple testing. Potential future directions
include analyzing each influenza season separately to see if annual variations in the
patterns that we observed (for e.g. due to circulating strains) may be important
considerations for surveillance.

In conclusion, we found that ILI visits by school-aged children to community-
based care settings provided the earliest and strongest indication of influenza
circulation in ambulatory care physician billing data. We recommend the implemen-
tation of syndromic surveillance in community-based primary care, with a specific
focus on school-aged children, as a valuable complement to existing surveillance

systems.
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4.9 Tables and Figures

Table 4-1: A sex and age-group distribution comparison between the population
of study patients* who made at least one visit with an influenza-like illness (ILI)
diagnosis, and the total population of all study patients* (all visits) during the first
and last year of the study period (1998 and 2003).

Proportion of Patients

Influenza-Like Illness All
Study Patients Study Patients
1998 2003 1998 2003
(N =576,123) (N =427,292) (N = 2,082,141) (N = 2,042,214)

Characteristic
Sex
Female 0.59 0.58 0.56 0.56
Male 0.41 0.42 0.44 0.44
Total 1.00 1.00 1.00 1.00
Age Group
<2 years 0.08 0.08 0.04 0.04
2-4 years 0.09 0.09 0.04 0.04
5-12 years 0.12 0.11 0.08 0.08
13-17 years 0.05 0.05 0.06 0.05
18-39 years 0.26 0.27 0.31 0.31
40-64 years 0.24 0.26 0.30 0.31
> 65 years 0.14 0.15 0.17 0.17
Total 1.00 1.00 1.00 1.00

* Each of these study patients had at least 1 billing claim from a community-based
care setting (i.e. private offices, private clinics and local community health and so-
cial services centres) or a hospital emergency department in Quebec between 1998
and 2003. People with missing demographic data (<0.2%) were omitted.
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Table 4-2: The proportion of influenza-like illness (ILI) visits made between 1998
and 2003 by each age-group at community-based care settings (i.e. private offices,
private clinics and local community health and social services centres) and at hospi-
tal emergency departments (ED).

Proportion of ILI Visits
By Each Age Group

Visits to Visits to
Community-Based Hospital Emergency
Care Settings Department
Age-Group (N = 4,233,782) (N = 868,072)
<2 years 0.01 0.14
2-4 years 0.12 0.12
5-12 years 0.13 0.11
13-17 years 0.04 0.04
18-39 years 0.23 0.21
40-64 years 0.25 0.20
> 65 years 0.14 0.19
Total 1.00 1.00
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Table 4-3: A cross-correlation function (CCF) was computed between subsets of
influenza-like illness (ILI) visits (by age-group and by setting type) to community-
based care settings and hospital emergency departments (ED), and pneumonia
and influenza (P&I) hospitalizations occurring between 1998 and 2003. This table
provides a summary of the key features (peak correlation and earliest occurring
significant correlation) of each of these CCFs.

Earliest Significant

Subset Peak Correlation Correlation
Setting Age-Group Lag Correlation* Lag Correlation*
(weeks) (weeks)
QOverall
Both setting types All ages 0 0.29 3 0.12

By Visit Setting

Community-based All ages 1 0.25 3 0.13
settings

Emergency All ages 0 0.45 2 0.26
departments

By Visit Setting x Patient Age

Community-based <2 years 1 0.25 2 0.21
settings 2-4 years 2 0.25 3 0.13
5-12 years 2 0.32 2 0.32
13-17 years 2 0.24 3 0.17
18-39 years 1 0.34 2 0.16
40-64 years 0 0.31 2 0.12
>65 years 0 0.31 1 0.17
Emergency <2 years 0 0.29 1 0.18
departments 2-4 years 0 0.29 2 0.22
5-12 years 2 0.19 3 0.12
13-17 years 2 0.19 2 0.19
18-39 years 0 0.34 2 0.18
40-64 years 0 0.48 1 0.27
>65 years 0 0.57 2 0.14

* All correlations shown here were significant (o = 0.05)
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Figure 4-1: Time series plots of the weekly total counts of all influenza-like illness
(ILI) visits to community-based care settings and hospital emergency departments
(ED), and pneumonia and influenza (P&I) hospitalizations. Shaded regions indicate
sustained periods of positive viral cultures (influenza A or B).
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Figure 4-2: A heat-map representation of the cross-correlation functions (CCFs)
between various age-group subsets of influenza-like illness (ILI) visits to community-
based care settings and to hospital emergency departments (ED), and pneumonia
and influenza (P&I) hospitalizations from 1998 to 2003. Correlations are repre-
sented on a colour gradient after having been standardized to each subset (row).
Dots indicate correlations that were significant (v = 0.05).
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4.10 Appendix A

Table 4-4: The set of International Classification of Diseases, Ninth Revision (ICD-
9) codes used in our influenza-like illness (ILI) syndrome categorization, based on
ILI groupings validated by Marsden-Haug et al. (21).

ICD-9 Code Description

079.9 Unspecified viral and chlamydial infections

382.9 Unspecified otitis media

460 Acute nasopharyngitis [common cold]

461.9 Acute sinusitis, unspecified

465.8 Acute upper respiratory infections of other multiple sites
465.9 Acute upper respiratory infections of an unspecified site
466.0 Acute bronchitis

486 Pneumonia, organism unspecified

487.0 Influenza with pneumonia

487.1 Influenza with other respiratory manifestations

487.8 Influenza with other manifestations

490 Bronchitis, not specified as acute or chronic

780.6 Fever

786.2 Cough
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Table 4-5: Holiday weeks (during which statutory holidays fell* ) were represented
by one of two holiday indicator variables in our autoregressive integrated moving

average (ARIMA) models.

Statutory Holiday Date Indicator Variable
New Year’s Day January 1 Winter holiday
Good Friday Friday before Easter Sunday (varies) Other holiday
Easter Monday Monday after Easter Sunday (varies) Other holiday
Victoria Day Monday preceding May 25 Other holiday
St-Jean-Baptiste Day June 24 Other holiday
Canada Day July 1 Other holiday
Labour Day First Monday of September Other holiday
Thanksgiving Day Second Monday in October Other holiday
Christmas Day December 25 Winter holiday
Boxing Day December 26 Winter holiday

* If the holiday fell on a Saturday, both that week and the following week were

treated as holiday weeks.
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Table 4-6: The correlation between age-group and setting specific subsets of
influenza-like illness (ILI) visits to community-based care settings and hospital
emergency departments (EDs), and pneumonia and influenza (P&I) hospitaliza-
tions that occurred between 1998 and 2003, as represented by the cross-correlation
function (CCF) across various lags.

Correlation ARIMA

Subset Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Setting Age-Group weeks  week  weeks weeks weeks (p,d,q)f
Overall
Both setting types All ages 0.29*  0.26* 0.24* 0.12*  0.05 (2,1,2)
By Visit Setting
Community-based  All ages 0.25*  0.25*  0.21*  0.13*  0.07 (2,1,2)
settings
Emergency All ages 0.45*  0.23*  0.26* 0.01 0.00 (4,1,4)
departments

By Age-Group

Both setting types < 2 years 0.15*  0.26* 0.23* 0.09 —0.03 ( )
2-4 years 0.29*  0.16*  0.29*  0.13*  0.02 ( )
5-12 years 0.12* 0.09 0.31* 0.11 0.01 ( )
13-17 years  0.12*  0.17*  0.26*  0.16* —0.06 (5,1,5)
18-39 years  0.25% 0.33* 0.18* 0.08 0.05 ( )
40-64 years  0.31* 030 0.0 —0.01 000  (4,1,5)
> 65 years  0.41*  0.17° 012 0.02 —0.03  (2,1,2)

By Visit Setting x Age-Group

Community-based < 2 years 0.12*  0.25*  0.21*  0.08 0.00 ( )
settings 2-4 years 0.25*  0.17* 0.25* 0.13* 0.04 ( )
512 years  0.13*  0.09  0.32* 009 -0.01  (2,1,2)
13-17 years  0.07  0.16*  0.24*  0.17° —0.05  (2,1,3)
18-39 years  0.28°  0.34*  0.16* 008 004  (2,1,5)
40-64 years 0.31* 0.27* 0.12* 0.06 0.04 ( )
> 65 years  0.31* 0.17* 0.08 0.03 —0.03 ( )

Emergency < 2 years 0.29*  0.18° 0.11 0.04 —0.06 ( )
departments 2-4 years 0.29*  0.18 0.22* 0.10 —0.01 ( )
5-12 years  0.19*  0.18%  0.19*  0.12* —0.02 ( )
13-17 years  0.19* 0.13* 0.19* 0.04 —-0.05 (3,1,3)
18-39 years  0.34*  0.25*  0.18%  0.04 0.05 ( )
40-64 years  0.48°  0.27 0.11 —0.02 0.01 ( )
> 65 years  0.57°  0.12*  0.14* —0.03 —0.02  (1,1,0)

* Significant (o = 0.05)
f All ARIMA models also included a first-order seasonal autoregressive term (looking
back 52 weeks ago) and two holiday variables.
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4.11 Appendix B
4.11.1 Awutocorrelation of Time Dependent Data

A time series refers to a collection of multiple observations of the same variable
over time. Time series data points are often not independent of each other in that
the value at one time point can depend on the values at previous time points. This
is known as autocorrelation and its consequence is that the application of the usual
regression approaches which require independence of observations would result
in both invalid and inefficient inferences (1, 2). For example, failure to control
for temporal autocorrelation before correlating two time series can result in high

correlations by chance alone (3-5).

4.11.2 Controlling Autocorrelation with ARIMA Modeling

Perhaps the most influential method for removing autocorrelation from a
time series (referred to as “pre-whitening” the data) has been that of statisticians
George Box and Gwilym Jenkins (1). In the Box-Jenkins approach, time series
data are fit to an autoregressive integrated moving average (ARIMA) model to
model the dependence between consecutive observations (1, 5). Mathematically, the
autoregressive moving average model ARMA(p, ¢) is defined by:

2t =00+ O1(ze-1) + .o+ Opze—p) +ar — O01(ar—1) — ... — Oy(as—y)

where {...21, 2, 2441, . .} 1s a series of observations at equally spaced time
intervals, {...a;_1,as, azy1, ...} is a white noise series of independent and identically
distributed random variables whose distribution is approximately normal with mean
zero and variance o2, p and ¢ are the order of the autoregressive (AR) and moving
average (MA) components respectively, and ¢y, ..., ¢, and 64, .., 6, are the AR

and MA parameters respectively.
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The Box-Jenkins modeling procedure consists of a preliminary data preparation
step, and then three main steps that are repeated as many times as necessary
until an adequate model has been found. This methodology has been elaborated

extensively elsewhere (1, 5-7) but a brief overview will be given here:

1. Data preparation
ARIMA modeling can only be applied to a stationary time series, which is
characterized by a constant mean and variance over time. The autocorrelation
function (ACF) represents the cross-correlation of a time series correlated
against itself lagged by multiple units of time, and the ACF plot can be
checked to assess the stationarity of a time series. If a time series is not
stationary, its ACF plot would show that the autocorrelation is still positive
and large out to a great time lag. On the other hand, the ACF plot of a
stationary time series decays to zero or a negative autocorrelation fairly
quickly (the general rule of thumb is that if the autocorrelation at a lag of
1 is close to 0 or negative, the time series is stationary). If a time series is
not stationary, stationarity can be achieved by “differencing” the data by
subtracting the value at each time point by the value at the previous time
point to detrend a series with a non-constant mean, and/or transforming
the data (e.g. logarithm, square root) to stabilize non-constant variance.
Differencing can be repeated as many time as necessary (the number of
times this is done is referred to as the order of differencing) to achieve
stationarity although most ARIMA models generally do not exceed first
order differencing. If differencing is required, then the model becomes an
autoregressive integrated moving average ARIMA (p, d, q) model, where d

represents the order of differencing.
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An example with a non-stationary time series is illustrated in Figure 4-3.

In the ACF plot of the raw data shown in panel C, it can be seen that the
autocorrelation is still very high out to large lags. However, in the ACF plot
after first order differencing shown in panel D, the autocorrelation decays
rapidly (it is within the 95% confidence interval of the correlation about 0 by

a lag of 2).

. Model identification

In this step, plots of the ACF and the partial autocorrelation function
(PACF) of the stationary time series are assessed to attempt to identify a
provisional order of AR and MA terms. The PACF is similar to the ACF

in that it measures the autocorrelation at a particular lag for multiple lags
except that it removes the effects of the intervening observations at the
intermediate lags (8). The details of this process of choosing the order of AR
and MA terms are lengthy and therefore will not be elaborated upon here
but one should be able to find an explanation in any time series methodology

reference (1, 5-7).

If the time series exhibits a seasonal pattern (determined by visual inspec-
tion), differencing can be applied at the seasonal level if necessary as well, and
an additional set of AR and MA terms representing the seasonal component
should also be added to the model. An ARIMA(p,d, q)x (P, D, Q) model rep-
resents a model with seasonal terms, where P, D, and () are the seasonal level
equivalents of p,d, and ¢. If there are other external independent variables be-
lieved to have a significant effect on the values of the time series observations,

they may also be added to the model.
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In our study, the ACF plots of our time series of visits for influenza-like
illnesses (ILI) and its subsets by visit setting and age group indicated that
they were not stationary. Therefore, before applying ARIMA modeling, we
first made each ILI visits time series stationary with first a log transformation
and then first order differencing at the non-seasonal level. We then proceeded
to identify ARIMA models for each subset of the ILI visits time series. For
parsimony, we limited models to no more than one seasonal term (looking

at the observation 52 weeks ago), and no higher than eighth order non-
seasonal terms. We also included two indicator variables to account for winter
holiday effects (for any week containing Christmas Day, Boxing Day or New
Year’s Day), and other holiday effects (for any week containing any other
statutory holiday). Two separate holiday variables were used since the winter
holidays tended to have a much more pronounced effect on the weekly count

of ambulatory medical visits than did other holidays throughout the year

. Parameter estimation

Values of the AR and MA coefficients which provide the best fit to the data
are determined using computational algorithms via standard statistical
software. In this study, models were fit using conditional-sum-of-squares to
find initial parameter values, and then maximum likelihood estimation to find

more precise values.

. Model checking

The adequacy of a model can be checked through various diagnostic tests.
For example, we assessed the presence of autocorrelation in the residuals
with the ACF, PACF, and the Ljung-Box plot of the residuals, while we

determined the normality of the residuals with a histogram and a normal
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quantile plot of the residuals. If an adequate model is chosen, the residuals
should be independent of each other and resemble a white noise process (with
constant mean of 0 and variance over time). We assessed the goodness of fit
of the model with the Akaike information criterion (AIC). If the model is

inadequate, steps 2 to 4 are repeated to identify another potential model.

4.11.3 The Cross-Correlation Function (CCF)

The cross-correlation function (CCF) describes the correlation between two
time series (one often being a standard reference time series) that have been
shifted apart by different lags of time. However, as mentioned earlier, simply cross-
correlating two time series which are themselves autocorrelated can result in high
correlation estimates by chance alone (3-5). Therefore two autocorrelated time
series must first be pre-whitened to remove their autocorrelation before their CCF
can be computed. ARIMA modeling, as explained above, is one approach used
for pre-whitening data. In accordance with Box-Jenkins methodology, an ARIMA
model is first fit to the explanatory (or “input”) time series (1, 5). The same model
must then be applied to the target (or “output”) series. The residuals that result
for each time series represent what remains of each time series after removing the
autocorrelation. The CCF can then be computed between these residuals to obtain
valid estimates of the correlation between the two time series. The CCF can then
be used to assess timeliness. The amount of time by which one time series leads
the other (i.e. lead time) can be determined by identifying the lag at which their
cross-correlation is the highest. Figure 4-4 illustrates an example of a CCF between
a reference time series (labeled A) and two other time series (labeled B and C)
and the determination of the lead time. For simplicity and clarity, the time series

being correlated are essentially lagged versions of each other. Moreover, to maintain
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simple looking graphs, ARIMA modeling was not first applied in order that it can
be obvious from looking at the time series plots shown in panel A that time series
A lags time series B by 1 time unit, and time series C by 3 time units. This lead
time is more formally assessed with a CCF plot, which shows that the maximum
cross-correlation between time series A and B occurs when they are lagged by 1

time unit (panel B) and for time series A and C, by 3 time units (panel C).
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4.11.5 Appendix B Figures
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Figure 4-3: Time series plot and autocorrelation function (ACF) plot of an example
non-stationary time series (panels A and C) and the same plots after first order dif-
ferencing (panels B and D). Dotted lines in the ACF plots mark the 95% confidence
interval about a correlation of 0.
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Figure 4-4: Time series plots of three example time series (panel A) that are lagged
versions of each other. The cross-correlation function (CCF) can be used to iden-
tify the lag at which the maximum correlation between two time series occurs. The
CCF between time series A and B (panel B) demonstrates that time series A lags
time series B by 1 time unit while the CCF between time series A and C (panel C)
demonstrates that time series A lags time series C by 3 time units.
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CHAPTER 5
Preface to Manuscript #2

In the previous manuscript, we found that using ambulatory care physician
billing data, visits for influenza-like illnesses (ILI) by school-aged children of 5 to
17 years to community settings tended to be more strongly correlated with P&I
hospitalizations at earlier lags than other age-group and setting combinations. In
that study, we computed cross-correlation functions (CCFs) using data spanning
six years (covering five full influenza seasons), even though each influenza season on
its own can be quite distinctive. Only a few studies have conducted a year-by-year
analysis and none have examined age-group and setting year by year.

In this manuscript, we determined whether the timeliness of these same subsets
varied annually. Such differences would imply that annual variations in influenza
epidemics (for example, in circulating influenza strains) are influential factors
in the timing of these subsets. In this study, using the same data, we computed
separate CCFs for each annual influenza season from 1998-1999 to 2002-2003. Each
season was restricted to epidemic weeks only, as defined by viral isolate data. We
intend to submit this manuscript to Emerging Infectious Diseases and therefore this

manuscript is formatted to that journal’s specifications.
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5.1 Abstract

Certain subsets of patients and medical visits have been shown to be useful
sentinels for syndromic surveillance of influenza. However, there has been little
work done to determine if the utility of different subsets varies each year. Using
outpatient physician billing data from community-based care settings and emer-
gency departments in Quebec, Canada, we determined whether the timing of
subsets of outpatient visits for influenza-like illnesses (ILI) by age-group and by
type of visit setting varied from one influenza season to the next. We computed
the cross-correlation function between multiple subsets of ILI visits and a common
reference time series of pneumonia and influenza hospitalizations for each influenza
season spanning 1998-2003. Both the earliest indicators and their lead time over
P&I hospitalizations were not consistent across influenza seasons. This year-to-year
variability suggests that syndromic surveillance of influenza should not focus on just

a single subgroup but a combination of early-presenting subgroups.
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5.2 Introduction

In recent years, the potential threats of bioterrorism and emerging infectious
diseases have heightened the need for effective and efficient surveillance systems
to monitor disease activity in the population (1, 2). Syndromic surveillance has
emerged as a novel, automated approach to monitor as well as better understand
the dynamics of disease in real-time or near real-time (1). Amidst the current
climate of concern for pandemic influenza, the syndrome of influenza-like illnesses
(ILI) has been one prominent target for syndromic surveillance (2-4).

In earlier work (5), we examined patterns in the timing of the presentation of
patients to community-based care settings and hospital emergency departments
(EDs) for ILI by age-group and by the type of visit setting. We did so using data
that were aggregated across several influenza seasons and we found that ILI visits
to community-based settings by 5 to 17 year olds tended to predict hospitalizations
for pneumonia and influenza (P&I) earlier than ILI visits to hospital EDs or ILI
visits by adults. P&I hospitalizations are a commonly used measure for tracking
and measuring the impact of influenza (6, 7).

However, each influenza season can be quite different due to the constant
evolution of the influenza virus, resulting in different circulating strains each year.
The introduction of a new antigenic strain often leads to increased morbidity and
healthcare utilization, as was the case with the B/Hong Kong/330/01 strain that
spread to North America during the 2001-2002 season after a decade-long absence
of the B/Victoria lineage on that continent (8) and the A/USSR/90/77 strain
that arose during the 1977-1978 season after a 20 year global absence of A/HIN1
strains (9). We suspected that annual differences in the healthcare utilization in
a population may modify the ability of surveillance systems to pick up signals of

the onset of an influenza season each year. Therefore, in this study, we examined
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whether patterns in the timing of the presentation of patients by age-group and
by type of visit setting also varied by year. Understanding these patterns is
important for forecasting applications and for implementing syndromic surveillance

of influenza.
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5.3 Methods
5.3.1 Overview and Study Design

In this study, we obtained data on 1) all fee-for-service medical billing claims
for patients seen by a cohort of physicians in Quebec, Canada, and 2) admissions
for P&I at all hospitals in Quebec during our study period running from January
4, 1998 to December 27, 2003 (inclusive). Additionally, viral data were used to
define epidemic periods. Our objective in this study was to determine whether the
timing of outpatient visits for ILI by age-group and by type of visit setting varied
annually. The cross-correlation function (CCF) allows one to determine whether the
changes in one time series precede the changes in another time series by shifting the
two time series by various lags of time and comparing their correlation at each lag.
For each of the five full influenza seasons during our study period, we computed
the CCF between multiple time series of weekly counts of ILI visits to community-
based care settings and to hospital EDs by different age-groups against a common
reference time series of weekly counts of P&I hospitalizations to examine annual

variations in the timeliness of ILI visits by each subgroup.

5.3.2 Context

The Régie de I’Assurance Maladie du Québec (RAMQ) is the agency responsi-
ble for the health insurance program in the province of Quebec, covering the cost of
hospital and physician services for all residents. In Quebec, 99% of all residents are
covered by RAMQ and between 1993 and 2003, 85-95% of physicians billed RAMQ

for services conducted on a fee-for-service basis (10).
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5.3.3 Data Sources

Viral Isolates Data

Viral testing data were obtained from the Laboratoire de Santé Publique du
Québec (Quebec Public Health Laboratory). These data included weekly counts
of the results of three types of diagnostic tests for influenza (culture, antigen-

detection, and polymerase chain reaction).

Fee-for-Service Billing Data

In a previous study, we assembled a cohort of 3424 new physicians who
were licensed to practice in Ontario and/or Quebec, and then requested RAMQ
to identify all patients seen by these physicians between 1993 and 2003 and
provide us all fee-for-service billing claims submitted for these patients by any
physician in Quebec (inside or outside the cohort of study physicians) during this
period (11). Therefore, we had complete ascertainment of healthcare delivered
on a fee-for-service basis for this cohort of patients. Each billing claim contains
information such as anonymized unique identifiers for the physician and patient, an
International Classification of Diseases, Ninth Revision (ICD-9) diagnostic code, a

code for the setting type, and the date of visit.

Hospitalization Data

Our Quebec-wide hospitalization data were based on records from the Que-
bec hospitalization database (MED-ECHO). These records included the date of

admission, date of discharge, and the discharge diagnosis.

5.3.4 Study Population
We identified all physicians as “in practice” in the fee-for-service system by

January 1, 1998 if they had at least one billing claim among our fee-for-service
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data by this date. The study population comprised of all patients seen by these
physicians between 1998 and 2003. Our study population in each year of our study
period represented approximately 35%-36% of the total source population of all
RAMQ beneficiaries that had received at least one medical service in the same
year (12). Our patient cohort was similar to the total provincial population by

age and sex distributions except for a slight overrepresentation of the elderly and

females in our study population.

5.3.5 Outcome Measures

Epidemic Period Definition

Epidemic periods (Table 5-1) were identified using viral isolates data, the gold
standard for viral circulation. We pooled the results of the three diagnostic tests
together and defined the start of each epidemic period as four weeks before the first
two consecutive weeks during which the total number of positive specimens (for
either influenza A or B) was greater than or equal to five. We shifted the start week
back to accommodate both our expectation that an increase in positive viral tests
will be preceded by an increase in ILI visits, as well as the fact that we would later
be shifting the time series in the cross-correlation function (CCF) computation.
The end week was defined as the week before two consecutive weeks during which

the total count was under five.

Medical Visits for Influenza-Like Illnesses (ILI)

We generated multiple weekly time series of ILI visits by summing the number
of fee-for-service billing claims with an ICD-9 coded diagnosis for ILI (code set
provided in Table 5-4 in the appendix) for each week of the study period (312
weeks total) for each age-group and for each of two types of outpatient settings: 1)

community-based care setting (including private offices, private clinics, and local
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community health and social services centres), and 2) hospital ED. We excluded
hospital-based outpatient clinics from our study. Since there were often multiple
claims submitted for multiple services rendered during a single visit, each unique

patient was counted no more than once per day in each time series.

Pneumonia and Influenza Hospitalizations

We generated a weekly time series of the total number of short-term hospital-
izations in all of Quebec with a primary discharge diagnosis of P&I (ICD-9 codes
480-487) for each week of the study period (312 weeks total) to serve as a common

reference against which the time series of ILI visits would be compared.

5.3.6 Data Analysis

Removal of Autocorrelation with ARIMA Modeling

To control for temporal autocorrelation, we used Box and Jenkins autore-
gressive integrated moving average (ARIMA) models (13, 14) to first model the
autocorrelation structure in the data, which we then removed by extracting and
retaining just the residuals. Since we wanted to apply consistent ARIMA models
from year to year, we decided to fit models using the entire data set of 312 weeks (6
years) worth of data for each subset of the ILI visits time series rather than obtain-
ing different models for each year, although we extracted the residuals for epidemic
weeks only and it is with these residuals that we later performed our subsequent
analysis for each influenza season. Before fitting ARIMA models, we first made each
time series stationary with a log transformation and non-seasonal differencing. In
each model, we included a first order seasonal autoregressive term (defining a season
as a b2 week period, first order looks back to the observation 52 weeks ago, second
order 104 weeks ago, etc.) and two indicator variables representing winter and

non-winter holidays (holidays are listed in Table 5-5 in the appendix). Models were
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fit using conditional-sum-of-squares to find initial parameter values, and then using
maximum likelihood estimation to refine to more precise estimates. Diagnostic tests
used for model checking (14, 15) included the autocorrelation function (ACF), the
partial ACF (PACF), the Ljung-Box plot, histogram and normal quantile plot of
the residuals, and the Akaike information criterion (AIC). The final models chosen

are listed in Table 5-6 in the appendix.

Analysis of Timeliness and Correlation through the Cross-Correlation
Function (CCF)

After identifying appropriate ARIMA models for each subset of the ILI
visits time series as described above, we applied the same models to the P&I
hospitalizations time series (16), which will serve as the reference time series in
the cross-correlation function (CCF). Again, the residuals for epidemic weeks
were extracted. Using the epidemic week residuals from both the ILI visits time
series and the P&I hospitalizations time series, we computed their CCF at lags of
up to four weeks. We assessed lead time (the interval of time by which one time
series leads or lags the other) by noting the lags at which the peak correlation and
other statistically significant correlations occurred. Significance was assessed with
respect to whether the correlation fell outside the 95% confidence interval about a
correlation of 0 (calculated using Fisher’s transformation). In order to understand
the overall pattern of correlations across various lags, we also created “heat-maps”
of the CCF's, where the degree of correlation was represented on a colour gradient.
For the heat-maps, the correlations were first standardized (with respect to each
subset) by centering and then scaling by dividing by their root-mean-square.

Data extraction and processing were carried out using Oracle Database 10g
(Release 10.2.0.1.0; Oracle Corp., Redwood City, CA) and all statistical analyses

were carried out using the R statistical software (version 2.6.2; R Foundation for
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Statistical Computing, Vienna, Austria). This study was approved by the Faculty

of Medicine Institutional Review Board at McGill University.
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5.4 Results
5.4.1 Descriptive Statistics

Between 1998-2003, among the population of patients with ILI diagnoses,
there was a slight decline across time in the proportion of young children <2 years,
working adults aged 18-39 years but an increase for those 5-12 years (Table 5-2).
Among the total patient population (any individual with at least one billing claim),
there was a slight decline across time in the proportion of young children <2 years,
but a slight increase for those 40 to 64 years (Table 5-2). There was also a general
decline in the number of ILI visits and P&I hospitalizations over the study period

(Figure 5-1).

5.4.2 Correlation and Timeliness

The CCFs between ILI visits and P&I hospitalizations demonstrated that
although ILI visits generally led or coincided with P&I hospitalizations, the
correlation at different lags varied widely from year to year (Table 5-6 in the
appendix). Table 5-3 shows selected subsets that demonstrated the greatest peak
correlation and other significant correlations at the earliest lags.

The heat-maps (Figure 5-2) also show that the overall utility of the ED in
terms of timeliness of significant correlations is comparable to that of community
settings in three seasons, better in one season (1998-1999) but worse in another
(2001-2002). The most frequently appearing subsets in Table 3 were community set-
ting visits by 13 to 17 year olds and ED visits by 5 to 12 year olds (appeared three
times each), but the most frequently bolded subset (indicating it demonstrated the
highest correlations among the subsets listed) was community setting visits by 13 to

17 year olds (appeared twice).

86



The 1998-1999 season was peculiar in that ED visits by 2 to 4, and 5 to 12
year olds provided leads of 2 and 3 weeks respectively, while, uncharacteristically,
no community setting subset demonstrated a lead. There were closely matching
lead times and correlations among community and ED subsets in a few other
seasons as well. During the 2002-2003 season, visits by school-aged children 5
to 17 years to EDs and to community settings provided comparable lead times
although community setting subsets maintained the higher correlations. During the
2001-2002 season, at community settings, visits by 18 to 39 year olds and pediatric
age-groups demonstrated close peak correlations at the same lag except it was not
statistically significant (o = 0.05) for the adults. During the 1999-2000 season,
although community setting visits by children 13 to 17 years demonstrated the
earliest peak correlation (2 weeks), ED visits by adults aged 18 to 39 years were
more strongly correlated at the same lag of 2 weeks, but its peak correlation was at
the 1 week lag.

With subsets demonstrating at best a 2 week lead time in most seasons, the
2001-2002 season was particularly distinctive for the 3 week lead time demonstrated
among community setting visits by those aged <2, 2 to 4, and 13 to 17 years. The
peak correlations for those aged 5 to 12, and 18 to 39 years occurred at the same
lag but they fell just below statistical significance (o« = 0.05). Even adults aged 40

to 64 years, unlike any other season, had a peak correlation at the 1 week lag.
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5.5 Discussion

We found a degree of year-to-year variation in the timing of ILI visits to
outpatient care settings by age-group and by type of visit setting relative to P&I
hospitalizations, a reference standard representing influenza circulation. The lack of
both consistently optimal subsets and consistent lags at which the two time series
were most highly correlated has important implications for setting and age-group
focused influenza surveillance. It may also make it difficult to construct accurate
statistical forecasting models because such models require stable indicators of the
onset or peak of an outbreak, as argued by one study (17). This study modeled
influenza incidence and found that the parameters of models changed substantially
between different years in order to maintain optimal fit of the models.

The year-to-year variation in the timing of age-group and setting specific
subsets of ILI visits reflects the distinctiveness of each influenza season, primarily
driven by the ability of the influenza virus to constantly evolve, resulting in the
regular emergence of new strains. If the mutation rate is fast, fewer individuals
will have had the opportunity to gain immunity to circulating strains through
exposure, with the consequence of lower levels of herd immunity and thus more
severe epidemics. For example, A/H3N2 viruses are believed to have faster rates of
antigenic mutation (antigenic drift) than A/HIN1 and B viruses (18). It is likely for
this reason that years predominated by A/H3N2 strains have long been associated
with more severe epidemics, especially for young children and the elderly (19-21).
Rates of excess P&I hospitalizations have been estimated to be twice as high during
A/H3N2 years than in A/HIN1 or B years (21). During the 1998-1999 season, an
A /H3N2 strain was the predominant strain in circulation, and we found that ILI
visits to the ED were significantly correlated with P&I hospitalizations at lags of

1 week or more for all age-groups except those <2 years. On the other hand, no

88



community setting subset provided any lead during this season. In contrast, for the
2000-2001 season, during which no laboratory-confirmed cases of subtype A/H3N2
were reported in Quebec (22), no ED subset provided any lead. It is interesting to
note that since the ED typically sees more severe cases than community settings,
the contrast in lead times perhaps reflect heavier ED utilization during the more
severe A /H3N2 seasons.

A relationship between age and influenza subtype has been established as well.
Fox found that young school children (5 to 9 years) had the highest infection rates
and were the main introducers of influenza during A/H3N2 seasons, but implicated
teenagers (10 to 19 years) during A/HIN1 and B seasons (23, 23). Another study
pointed to younger age-groups: those aged 1 to 4 years during type A outbreaks
and those aged 5 to 9 years during mixed or type B outbreaks (24). Our results
found an older pediatric population as the earliest indicators of an influenza
epidemic. Community visits by 13 to 17 year olds provided the earliest leads in
two of the three A/H3N2 predominant seasons (1999-2000, 2001-2002). In contrast,
community visits by 5 to 12 year olds provided the best lead during the single
A/HIN1 and B predominant season (2000-2001) during our study period. However,
especially in light of the variation in the findings across these different studies,
definitive conclusions about the dependence of timeliness on age and influenza
subtype cannot be made since the study periods of all of these studies were too
short (5 to 6 years) to generate enough data for each subtype.

Mismatches between vaccine strains and circulating strains often lead to
reduced vaccine effectiveness, which is sometimes paralleled by a severe outbreak.
For example, the 2001-2002 season marked the first time in a decade that a
B/Victoria-lineage virus was circulating in North America (25). Since the B

component of the 2001-2002 influenza vaccine was of the B/Yamagata lineage and
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therefore a mismatch, the impact of influenza during this season was considerable,
notably among school-aged children, and on ED visits (8). Reflecting the link
between age and immunity, when a strain re-emerges after a long absence, children
will often be particularly vulnerable to infection, in contrast to adults who often
already have immunity if the strain last circulated within their life time.

Our results for the 2001-2002 season provide compelling evidence for the
impact of a re-emerged strain on the timing of ILI visits by children to community
settings as well. For our study location (Quebec), until the 2001-2002 season,
the B/Victoria lineage had not been identified since the 1988-1989 season (26).
Therefore it would be expected that most of the younger children (<13 years) had
no or limited immunity. Among community setting subsets, we found a remarkable
3 week lead for most of the pediatric age-groups during this season. However, no
lead was observed for the two oldest age-groups (40 to 64 and 65 years), which is
consistent with their presumed immunity gained from prior exposure to this lineage.

The new A/HIN2 subtype, seemingly the product of the genetic reassortment
between the circulating A/HIN1 and A/H3N2 viruses, emerged during the 2002-
2003 season. Since the hemagglutinin and neuraminidase proteins of the A/HIN2
strain resembled those of the A/HIN1 and A/H3N2 strains in the 2002-2003 vaccine
respectively, it was expected that the vaccine would still have had good cross-
reactivity against the new subtype (27). The 2002-2003 influenza season was indeed
a mild one in Quebec (28) and the lead times were obtained were average.

Although a year-by-year analysis may not always be helpful in deciding which
subgroup may be most likely to provide the strongest and earliest signals for
influenza surveillance each year, this approach may nonetheless be a beneficial and
perhaps crucial complement to an overall analysis, as the yearly variation observed

in this study and other studies suggests (29-31). Analyzing yearly variations may
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prevent the mistake of making inappropriate generalizations or reveal patterns
underlying different years demonstrating common traits.

Only a few other studies have taken a year-by-year approach to comparing the
timing of different age and setting specific subsets of ILI visits. Although none of
these studies compared specific age-groups and visit settings simultaneously as we
did, they also found a variation in lead time across different years (29-31), but only
a few analyzed community setting data (30) or used methodology that controls for
autocorrelation (29, 31).

Limitations of this study include the inability to distinguish the impact
of respiratory syncytial virus (RSV), another major viral respiratory pathogen
clinically similar to influenza and with a particularly high incidence among young
children (32) and the elderly (33); and the use of counts of ILI visits rather than
episodes of care (which are difficult to define). We also acknowledge that our
epidemic period definition is unverified, but there has been no consistent definition
and a variety of approaches have been used (29, 30, 34). We also tried other slight
variations in defining the epidemic period with little impact on the results. Finally,
with only five influenza seasons’ worth of data, it is difficult to make generalizations
for specific influenza subtypes.

In conclusion, our year-by-year analysis of ILI visits has emphasized that
annual variation in lead times, possibly caused by the frequent changes in the
subtypes and strains of influenza viruses circulating each year, makes it difficult
to pinpoint particular subsets that would always be the earliest indicators of an
influenza epidemic every year. It suggests that ILI syndromic surveillance should
not focus on any single subgroup but a combination of several optimally-performing
subgroups. With a data set covering more influenza seasons, future research

could further explore the effect of different influenza subtypes on the timeliness
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of ILI visits for influenza surveillance. Future research could also examine the
contribution of RSV, and other factors that are known to vary from year to year,
including environmental factors. A better understanding of these relationships

in the context of annual variation would help improve the accuracy of infectious
disease surveillance and forecasting systems as well as the planning of public health

interventions.
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Table 5-2: A sex and age-group distribution comparison between the population of
study patients® who made at least one visit with an influenza-like illness (ILI) diag-
nosis, and the total population of all study patients* (all visits) for each influenza
season (epidemic weeks only) during 1998-2003.

Proportion of Patients
Influenza Season
1998- 1999- 2000- 2001- 2002-
1999 2000 2001 2002 2003
Influenza-Like Illness Study Patients
Number of patients 348921 432540 305706 334756 297200

Sex

Female 0.58 0.58 0.58 0.58 0.58
Male 0.42 0.42 0.42 0.42 0.42
Total 1.00 1.00 1.00 1.00 1.00
Age-Group

<2yr 0.08 0.08 0.06 0.07 0.06
2-4 yr 0.10 0.10 0.11 0.11 0.11
5-12 yr 0.11 0.11 0.14 0.14 0.16
13-17 yr 0.05 0.04 0.05 0.04 0.05
18-39 yr 0.25 0.26 0.26 0.24 0.24
40-64 yr 0.25 0.26 0.25 0.25 0.25
>65 yr 0.15 0.14 0.14 0.14 0.14
Total 1.00 1.00 1.00 1.00 1.00

All Study Patients
Number of patients 1617413 1874619 1567539 1742367 1723604

Sex

Female 0.57 0.57 0.57 0.57 0.57
Male 0.43 0.43 0.43 0.43 0.43
Total 1.00 1.00 1.00 1.00 1.00
Age-Group

<2 yr 0.04 0.04 0.03 0.03 0.02
2-4 yr 0.04 0.04 0.05 0.04 0.04
5-12 yr 0.07 0.08 0.08 0.08 0.08
13-17 yr 0.05 0.05 0.04 0.04 0.04
18-39 yr 0.30 0.30 0.29 0.29 0.29
40-64 yr 0.31 0.31 0.33 0.33 0.34
>65 yr 0.19 0.18 0.19 0.18 0.18
Total 1.00 1.00 1.00 1.00 1.00

* Each of these study patients had at least 1 billing claim from a community-based care setting
(i.e. private offices, private clinics and local community health and social services centres) or a

hospital emergency department in Quebec between 1998 and 2003. People with missing demo-

graphic data (<0.2%) were omitted.
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Table 5-3: The cross-correlation function (CCF) was computed between various
age-group and setting-specific subsets of influenza-like illness (ILI) visits, and a
common reference time series of pneumonia and influenza (P&I) hospitalizations.
This table shows the subsets that demonstrated the greatest “lead times” based on
(1) the peak correlation and (2) the earliest significant correlation (not necessarily
peak) for each influenza season during 1998-2003. Among these subsets, the one
that demonstrated the greatest correlation for each column and season is bolded.

Subset Peak Correlation Earliest Significant Correlation
Setting Age-Group Lag Correlation®* Lag Correlation*
(weeks) (weeks)

1998-1999

ED 2-4 years 2 0.63 3 0.57
ED 5-12 years 3 0.47 3 0.47
1999-2000

Community < 2 years 1 0.65 2 0.43
Community 13-17 years 2 0.38 2 0.38
ED 18-39 years 0 0.54 2 0.45
2000-2001

Community 2-4 years 2 0.59 2 0.59
Community 5-12 years 2 0.75 2 0.75
ED 2-4 years 0 0.66 2 0.58
ED 5-12 years 0 0.58 2 0.55
2001-2002

Community <2 years 3 0.50 3 0.50
Community 2-4 years 2,3f 0.50 3 0.50
Community 13-17 years 3 0.40 3 0.40
2002-2003

Community 5-12 years 2 0.41 2 0.41
Community 13-17 years 2 0.72 2 0.72
ED 5-12 years 2 0.45 2 0.45
ED 13-17 years 2 0.57 2 0.57

ED = emergency department; Community = community-based care setting
* All correlations shown were significant (o = 0.05)
T Correlation at a lags of 2 and 3 weeks were the same.
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5.10 Appendix

Table 5-4: The set of ICD-9 codes used in our ILI syndrome categorization, based
on ILI groupings validated by Marsden-Haug et al. (39).

ICD-9 Code Description

079.9 Unspecified viral and chlamydial infections

382.9 Unspecified otitis media

460 Acute nasopharyngitis [common cold]

461.9 Acute sinusitis, unspecified

465.8 Acute upper respiratory infections of other multiple sites
465.9 Acute upper respiratory infections of an unspecified site
466.0 Acute bronchitis

486 Pneumonia, organism unspecified

487.0 Influenza with pneumonia

487.1 Influenza with other respiratory manifestations

487.8 Influenza with other manifestations

490 Bronchitis, not specified as acute or chronic

780.6 Fever

786.2 Cough
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Table 5-5: Holiday weeks (during which statutory holidays fell* ) were represented
by one of two holiday indicator variables in our autoregressive integrated moving

average (ARIMA) models.

Statutory Holiday Date Indicator Variable
New Year’s Day January 1 Winter holiday
Good Friday Friday before Easter Sunday (varies) Other holiday
Easter Monday Monday after Easter Sunday (varies) Other holiday
Victoria Day Monday preceding May 25 Other holiday
St-Jean-Baptiste Day June 24 Other holiday
Canada Day July 1 Other holiday
Labour Day First Monday of September Other holiday
Thanksgiving Day Second Monday in October Other holiday
Christmas Day December 25 Winter holiday
Boxing Day December 26 Winter holiday

* If the holiday fell on a Saturday, both that week and the following week were

treated as holiday weeks.
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Table 5-6: The cross-correlation function (CCF) between various subsets of

influenza-like illness (ILI) visits to community-based care settings and hospital

emergency departments (ED), and a common reference time series of pneumonia
and influenza (P&I) hospitalizations for each influenza season during 1998-2003.
Both the peak correlation and the earliest significant correlation (not necessarily

peak) for each subset are bolded.

1998-1999
Subset Correlation ARIMA
Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks  weeks  weeks  weeks  weeks  (p,d,q)f
Community-based All ages 0.63* 0.26 0.10 0.17 0.11 (2,1,2)
setting <2 years 0.22 0.42 0.17 0.07  —0.16 (2,1,4)
2-4 years 0.37 0.17 0.40 0.28 —0.04 (0,1,2)
512 years  0.35 003 031  0.39 —00l  (2,1,2)
13-17 years  0.46*  0.29 0.17 0.25 0.07 (2,1,3)
18-39 years  0.64* 0.35 —0.01 —0.02 0.0l  (2,1,5)
40-64 years  0.73*  0.29 —0.04  0.02 006  (3,1,2)
>65 years 0.67* —-0.02 -0.12 —-0.03 —0.09 (2,1,2)
Emergency All ages 0.66* 0.58* 0.23 0.18 —0.01 (4,1,4)
department <2 years 0.69* 0.35 0.10 0.14 —-0.30 (3,1,3)
2-4 years 0.42 0.30 0.63* 0.57* 0.03 (0,1,4)
512 years  0.44* 038  0.44* 047 —0.01  (3,1,4)
13-17 years  0.37 0.50* 0.14 0.30 —0.05 (3,1,3)
18-39 years 0.69*  0.45* 0.15 0.25 0.06 (2,1,3)
40-64 years 0.67* 0.60*  0.17 0.00 —0.01 (7,1,0)
>65 years 0.87* 0.56* 0.04 —0.01 0.02 (1,1,0)

* Significant (o = 0.05)
T All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
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1999-2000

Subset Correlation ARIMA
Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks  weeks  weeks  weeks  (p,d,q)f
Community-based All ages 0.39* 0.63* 0.24 0.14 0.18 (2,1,2
setting <2 years 0.26 0.65* 0.43* 0.29 0.15 2,14

(
2-4 years 0.37%  0.42* 0.02 0.16 0.04 (
5-12 years  0.12 0.18 0.18 —0.12 0.19 (
13-17 years 020 0.30  0.38* 022 009 (21,3
18-39 years  0.40* 0.73* 0.25 0.07 0.06 (
40-64 years  0.48* 0.68* 0.27 0.01 0.15 (
>65 years  0.54*  0.59* 0.12 0.00 —0.05 (

Emergency All ages 0.62* 041* 0.38* —0.15 0.06 ( )
department <2 years 0.14 0.10 0.27 0.03 0.11 ( )
24 years  0.32f 017 012 —022 009  (0,14)
5-12 years —0.05 0.20 0.01 0.02 0.04 ( )
13-17 years 0.24 —0.25 0.35 —-0.19 0.03 (3,1,3)
18-39 years 0.54*  0.43* 0.45* —0.01 0.03 ( )
40-64 years 0.78° 0.38° 035 —0.09 —0.10 ( )
>65 years  0.78° 0.42* 027 —-0.09 —0.05 ( )

* Significant (o = 0.05)

f All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables

¥ A significant peak correlation was actually found at a lag of -1 week.
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2000-2001

Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks  weeks weeks weeks weeks (p,d,q)f

Community-based All ages 0.46*  0.27 0.54* 0.17 0.43 (2,1,2)
setting <2 years 0.05 0.10 0.35 0.17 0.24 (2,1,4)
2-4 years 0.26 0.43 0.59* 0.28 0.25 (0,1,2)

5-12 years 0.24 0.37 0.75* 0.15 0.15 (2,1,2)

13-17 years  0.27 0.08 0.36 0.15 0.22 (2,1,3)

18-39 years 0.46* 0.24 0.26 —0.07 0.26 (2,1,5)

40-64 years 0.50* 0.12  0.17 000 019  (3,1,2)

>65 years  0.51% —0.08 0.18 —0.02 0.20 (2,1,2)

Emergency All ages 0.70*  0.17 0.47* —-0.25 —0.15 (4,1,4)
department <2 years 0.34 0.21 0.18 —0.26 —0.16 (3,1,3)
9.4 years  0.66* 035 058 —0.14 —0.06  (0,1,4)

9-12 years 0.58* 0.32 0.55* —0.00 —0.38 (3,1,4)

13-17 years  0.58* —0.10 0.32 —-0.13 -0.18 (3,1,3)

18-39 years 0.59* 0.16 0.31 —-0.30 -0.14 (2,1,3)

40-64 years 0.68*  0.30 0.10 -0.24 —-0.31 (7,1,0)

>65 years  0.39 0.4 0.5 —0.18 —0.08  (1,1,0)

* Significant (o = 0.05)
f All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables

107



2001-2002

Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks  weeks weeks weeks weeks (p,d,q)f

Community-based All ages 0.25 0.01 0.18 0.38 0.27 (2,1,2)
setting <2 years 0.15 0.04 0.12 0.50* 0.04 (2,1,4)
2-4 years 0.01 —0.01 0.50* 050 0.14 (0,1,2)

512 years —0.04 002 025 031 015  (2,1,2)

13-17 years —0.04 0.19 0.11 0.40* —0.01 (2,1,3)

18-39 years  0.32 0.23 0.15 0.36 0.22 (2,1,5)

40-64 years 0.47* 0.11  0.06 019 023  (3,1,2)

>65 years  0.52* —0.09 0.02 0.11 0.15 (2,1,2)

Emergency All ages 0.36 0.50* 0.39* 0.05 0.01 (4,1,4)
department <2 years 0.42* 0.33 0.22 0.12 —-0.19 (3,1,3)
2-4 years 0.38 0.49*  0.27 0.32 0.17 (0,1,4)

9-12 years 0.14 0.11 0.54* 0.14 —0.01 (3,1,4)

13-17 years —0.08 0.46* 0.21 0.14 —-0.21 (3,1,3)

18-39 years 0.54*  0.53* —0.00 0.13 0.21 (2,1,3)

40-64 years 0.32 0.46* 0.32 —0.19 0.03 (7,1,0)

>65 years 0.65* 0.19 0.15 —0.06 —0.06 (1,1,0)

* Significant (o = 0.05)
f All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
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2002-2003

Subset Correlation ARIMA

Type of Setting Age- Lag: 0 Lag: 1 Lag: 2 Lag: 3 Lag: 4 Model
Group weeks weeks weeks weeks weeks (p,d,q)f

Community-based All ages 0.11 0.22 —-0.04 0.22 0.13 (2,1,2)
setting <2 years —0.18 0.25 0.35 —0.07 —0.22 (2,1,4)
2-4 years 0.21 0.39* 0.20 —-0.03 0.01 (0,1,2)

512 years  0.06  0.32  0.41* 002 -001  (2,1,2)

13-17 years —0.36 0.12 0.72* 0.01 -0.29 (2,1,3)

18-39 years  0.23 0.14 —0.27 0.26 —0.09 (2,1,5)

40-64 years 0.18% —0.05 —0.39 0.27 0.24 (3,1,2)

>65 years —0.06f —0.12 —0.10 0.10 0.03 (2,1,2)

Emergency All ages 0.58* 0.01 0.27 —0.41 0.34 (4,1,4)
department <2 years 0.19 0.39* 0.17 -0.35 —0.00 (3,1,3)
2-4 years  —0.03 0.20 0.37 0.01 0.18 (0,1,4)

5-12 years 0.10 0.29 0.45* 0.01 0.08 (3,1,4)

13-17 years —0.10 0.33 0.57* —0.05 —0.15 (3,1,3)

18-39 years 0.56* —0.01 —-0.30 —0.13 0.23 (2,1,3)

40-64 years 0.71* —0.23 —-0.20 -—0.24 0.39* (7,1,0)

>65 years 0.56* —0.33 0.02 0.27 0.47*  (1,1,0)

* Significant (o = 0.05)
f All ARIMA models also included a first-order seasonal autoregressive term and
two holiday variables
I Peak correlation was actually found at a lag of -1 week; it was significant for the
40-64 year old subsets but insignificant for the >65 year old subsets.
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CHAPTER 6
Summary and Conclusion

We found that among physician billing data for ILI diagnoses, although there
is some degree of year-to-year variation in optimal subsets and lead times each
year, community setting visits by school-aged children of 5 to 12 and 13 to 17 years
tended to be the most strongly correlated with P&I hospitalizations at the earliest
lags (often at least a 2 week lead time) and therefore, they may be the earliest
sentinels of influenza infection.

Our findings targeting pediatric age-groups are consistent with previous
research. Like Sebastian et al. (2008) and Olson et al. (2007), our results point
toward school-aged children, although others have found pre-school aged children
to be the earliest indicators of an influenza epidemic (Brownstein et al., 2005;
Lemay et al., 2008). These findings are compatible with the well established role
of school-aged children as the primary vectors in the transmission of influenza in
the community. This role likely reflects an interplay between their innate ability to
shed the virus earlier and for a longer time compared to adults (Carrat et al., 2008;
Frank et al., 1981; Hall et al., 1979), their extensive social contact patterns (Glass
and Glass, 2008; Mikolajczyk et al., 2008; Mossong et al., 2008; Wallinga et al.,
2006), as well as the behavioural patterns of concerned parents who tend to bring
their ill children to a doctor earlier than adults would seek care themselves (Brown-
stein et al., 2005). Several studies, including one randomized controlled study,
have found that when day care or school children are vaccinated, the incidence

of ILI among their contacts, and in the general population is reduced (Hurwitz

110



et al., 2000; King et al., 2006; Piedra et al., 2005; Reichert et al., 2001). In fact,

the evidence that has accumulated for the role of school-aged children in influenza
epidemics has led the Advisory Committee on Immunization Practices (ACIP) of
the Centers for Disease Control and Prevention (CDC) in the United States to
recently add all children aged 5 to 18 years to their recommended target groups

for annual influenza vaccination (Fiore et al., 2008). In previous seasons, the ACIP
targeted only children 6 months to 4 years among children who are healthy. Canada
has not yet adopted this expanded vaccination policy 200 (2008).

We additionally demonstrated that community health care settings have the
potential to generate an earlier signal than the ED. A potential explanation for this
finding may be that mild initial symptoms often do not require ED care (Heffernan
et al., 2004) and therefore patients in the initial stages of illness may tend to seek
primary care at community-based settings first (Lazarus et al., 2001). Although
the potential of automated syndromic surveillance in primary care has previously
been alluded to by a few (Lazarus et al., 2001; Smith et al., 2007), there has been
little research evaluating its implementation in primary care (Lazarus et al., 2002;
Marsden-Haug et al., 2007; Miller et al., 2004; Sloane et al., 2006; Smith et al.,
2007; van den Wijngaard et al., 2008; Yang et al., 2008), and even fewer studies
doing so using rigorous time series methodology (Yang et al., 2008). Rather, the
ED setting (or no setting stratification) has predominated most studies evaluating
automated syndromic surveillance (Lemay et al., 2008; Lober et al., 2003; Olson
et al., 2007; Sebastian et al., 2008; Zheng et al., 2007). Our visit setting findings
are novel since to our knowledge, no researcher has ever compared the timeliness of
community-based and ED setting data for the syndromic surveillance of ILI using
data drawn from a single source population to avoid potential confounders, while

also simultaneously assessing the effect of patient age.
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Only a few studies have conducted a year-by-year analysis for assessing the
timeliness of syndromic data (Lemay et al., 2008; Quenel et al., 1994; Zheng et al.,
2007), although none have compared different age and setting specific subsets
simultaneously. Like in these other studies, our year-by-year analysis demonstrated
annual variation, in both the optimal subsets by age and setting and in the lead
times, which may be a consequence of the circulation of different strains each
season. The timing of different subsets may depend on an interaction between age
and influenza subtype factors. In particular, we have highlighted the impact of a
re-emerged strain on the earlier presenting behaviour of children to community
settings for ILI visits.

Methodologically, this study adds to a growing body of literature that has
demonstrated the utility of time series methods to control for autocorrelation in
the study of infectious disease. Ignoring autocorrelation while correlating two time
series can lead to artificially inflated estimates of the correlation coefficient (Box
and Newbold, 1971; Bowie and Prothero, 1981; Helfenstein, 1996). However, only
a few studies (Brownstein et al., 2005; Lemay et al., 2008; Olson et al., 2007; Yang
et al., 2008; Zheng et al., 2007) have similarly applied time series methods for the
purpose of evaluating the timeliness of data sources for syndromic surveillance as we
have and to our knowledge, none have used such methods to compare timeliness of
subsets simultaneously restricted by age-group and visit setting.

In using heat maps to represent the cross-correlation function (CCF), it
became clear to us that there are often other significant correlations surrounding
the peak correlation. We believe the heat-maps facilitate a broader understanding
of the patterns in the often complex relationship between two time series being

correlated, and underscore the benefit of an overall examination rather than
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focusing on just the single peak correlation in the CCF as has typically been done
in the past.

With a data set covering more influenza seasons, future directions could
include a further examination of the effect of different influenza subtypes on the
timeliness of ILI visits for influenza surveillance, an examination of the contribution
of respiratory syncytial virus (RSV, another major respiratory viral pathogen,
especially among children), and other factors that are known to vary from year to
year such as environmental effects.

In conclusion, our results provide compelling support for the implementation
of syndromic surveillance in primary care, with a specific focus on school-aged
children, as a beneficial complement to existing surveillance systems. However,
annual variations in lead-lag relationships may also make it difficult to pinpoint
one subset that would consistently be the earliest indicator of an influenza season
each year. Along this note, the implication may be that surveillance for influenza
probably should not focus on any single particular group but a combination
of several potentially early indicators across different data sources. A better
understanding of the lead-lag relationships between potential syndromic data
sources and viral circulation in the context of annual variation would help improve
the accuracy of infectious disease surveillance and forecasting systems as well as
the planning of public health interventions such as vaccination and school closure

policies.
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Table A—1: Lead times obtained by studies comparing data from the ED, commu-
nity setting, and mixed ambulatory settings to a P&I mortality standard.

Ages Author and Year Lead Time (weeks)  Specific Setting, Age-Group
ED
all ages ~ Brownstein et al., 2005* 1.5 general ED
adults Brownstein et al., 2005* 1.7 general ED, 18-39 yr
—1.9 general ED, 40-64 yr
0.1 general ED, > 64 yr
1.7 adult ED, all adults
1.0 adult ED, 18-39 yr
0.6 adult ED, 40-64 yr
1.6 adult ED, > 64 yr
0.4 community ED, 18-39 yr
3.0 community ED, 40-64 yr
1.9 community ED, > 64 yr
children ~ Brownstein et al., 2005* 2.7 general ED, <3 yr
3.3 general ED, 3-4 yr
2.1 general ED, 5-10 yr
4.6 general ED, 11-17 yr
5.4 pediatric ED, all children
5.0 pediatric ED, <3 yr
7.1 pediatric ED, 3-4 yr
5.7 pediatric ED, 5-10 yr
4.0 pediatric ED, 11-17 yr
3.0 community ED, <3 yr
3.7 community ED, 3-4 yr
1.7 community ED, 5-10 yr
3.6 community ED, 11-17 yr
Community Settings
all ages ~ Brownstein et al., 2005* 2.0 community ED
4.1 ambulatory care
Miller et al., 2004 1-2 ambulatory care
adults Brownstein et al., 2005* 5.1 ambulatory care, 18-39 yr
4.3 ambulatory care, 40-64 yr
4.7 ambulatory care, > 64 yr
children  Brownstein et al., 2005* 5 ambulatory care, <3 yr
5.3 ambulatory care, 3-4 yr
3.6 ambulatory care, 5-10 yr
3.6 ambulatory care, 11-17 yr
Mixed Ambulatory Care Settings
all ages
adults Sebastian et al., 2008* —0.3 20-49 yr
-0.3 50-64 yr
—0.8 >65 yr
children  Sebastian et al., 2005* —0.5 <6 mo
-0.3 6-23 mo
0 2-4 yr
0.3 5-9 yr
0.3 10-19 yr

*

Original unit of measurement in the study was days
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Table A—2: Lead times obtained by studies comparing data from the ED, commu-
nity setting, and mixed ambulatory settings to a P&I hospitalizations standard.

Ages Author and Year Lead Time (weeks)  Specific Setting, Age-Group

ED

all ages

adults

children ~ Ivanov et al., 2003* 1.1 <5 yr

Community Settings

all ages  Lazarus et al., 2002 2

van den Wijngaard et al., 2008 -1

adults

children

Mixed Ambulatory Care Settings

all ages

adults Sebastian et al., 2008* 0.3 20-49 yr
0.3 50-64 yr

—0.3 >65 yr

children  Sebastian et al., 2008* 0 <6 mo
0.3 6-23 mo
0.5 2-4 yr
0.8 5-9 yr
0.8 10-19 yr

* Original unit of measurement in the study was days

Table A-3: Lead times obtained by studies comparing data from the ED, com-
munity setting, and mixed ambulatory settings to an influenza virological gold
standard.

Ages Author and Year Lead Time (weeks)  Specific Setting, Age-Group
ED
all ages Zheng et al., 2007* 0.4-2.6
(mean 1.1)
adults Olson et al., 2007 0 18-39 yr
0 40-64 yr
-1 > 65 yr
children ~ Olson et al., 2007 0 <2yr
1 2-4 yr
1 5-12 yr
1 13-17 yr
Lemay et al., 2008 2-4 <5 yr
(mean 2.8)

Community Settings
all ages  van den Wijngaard et al., 2008

influenza A

influenza B

variety of ICD-9 codes for ILI
GPs

GOPCs

Marsden-Haug et al., 2007
Yang et al., 2008

N O N

adults

children

Mixed Ambulatory Care Settings

all ages

adults

children

* Original unit of measurement in the study was days
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Table A—4: Set of Régie de I'assurance maladie du Québec (RAMQ) establishment

codes used in our ambulatory care categorization.

Code Setting

Setting Type

000  private office without municipality number

6XX private office with municipality number

512 private medical and/or dental clinic
(with anaesthesia privilege)

54X private medical clinic considered a general
practice establishment in the context of
particular medical activities

8X5  C.L.S.C.* : service point

9X2 C.L.S.C*

0X7  emergency department

community
community
community

community

community

community
hospital ED

* Local community service centres providing health and social services in Quebec,

Canada
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