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To my parents,

for confidence to explore the reality of tmagination



(

“The edges of the real landscape became one with the edges of something I
dreamed. But what I had dreamed was only a pattern, some beautiful pattern
of light. The continuous work of the imagination, I thought, to bring what
is actual together with what is dreamed is an expression of human evolution.
The conscious desire is to achieve a state, even momentarily, that like light is
unbounded, nurturing, suffused with wisdom and creation, a state in which one
has absorbed that very darkness which before was the perpetual sign of defeat.

Whatever world that is, it lies far ahead. But its outline. its adumbration is
clear in the landscape, and upon this one can actually hope we will find our
Wa.y.”

Barry Lopez. 1986

“Eventually. all things merge into one, and a river runs through it.”

Norman Maclean. 1976
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ABSTRACT

Scoliosis is a deformity of the spine that predominately affects adolescent females.
Mild scoliotic curves are most vulnerable to progression during the adolescent growth
spurt, however, only an unpredictable 15-25% progress to large incapacitating deformities.
The present objective was to identify mechanical factors associated with the adolescent
growth spurt which are instrumental to curve progression in adolescent idiopathic scoliosis
(AIS). An initially curved and twisted, spatial beam-column model of a spine with a mild
scoliosis was developed. The spine was embedded in a three-dimensional elastic medium
to represent the ribcage. A finite element model of a ribcage was developed to establish its
three-dimensional stiffness through a series of numerical experiments. Parametric analyses
of both the ribcage and spine models were conducted to elucidate a better understanding of
this mechanical system. The geometry, material properties and applied loads of the spine
were then systematically changed to simulate both normal and aberrant growth patterns
during the adolescent vears. The three-dimensional stiffnesses of the ribcage were found
to vary significantly with rib level and orientation. and were most sensitive to changes
in the gross ribcage geometry and the material properties of the costotransverse joints.
The parametric analysis of the whole spine model indicated that the progression of a mild
scoliosis was most sensitive to the initial Cobb angle, the spine length, the body weight
and the lateral translational stiffness of the ribcage. The progression of a mild scoliotic
curve (Cobb angle < 20°) was found to be small due to mechanical changes associated
with the normal adolescent growth spurt in both males and females. For an initial Cobb
angle of 30°. significant. progression was predicted for a female during normal growth.
The mechanical changes associated with reported aberrant growth patterns could be key
factors in the progression of a mild scoliosis in a female, but not in a male. These results.
which considered both the different geometry, stiffness and loads in growing females and
males, strongly suggested a distinct difference in the progression tendencies between sexes,
consistent with clinical data. Although an aberrant growth pattern cannot fully explain
curve progression in AIS, mechanical factors associated with the adolescent growth spurt

should be considered to successfully predict the prognosis of a young scoliotic patient.
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RESUME

La scoliose est une déformation de la colonne vertébrale qui affecte essentiellement la
population féminine. Les personnes atteintes d’'une déformation scoliotique légeére sont les
plus vulnérables & une progression pathologique pendant la phase de croissance rapide.
Toutefois. cette progression méne 4 une incapacité physique chez seulement 15 & 25% de
ces personnes. L’objectif de cette étude est d'identifier les facteurs mécaniques qui sont a la
base d’une progression de la courbure spinale durant la phase de croissance rapide chez les
adolescents atteints d’une scoliose idiopathique. Une modéle incorporant une courbure et
une déformation angulaire initiale a été développé pour simuler une colonne vertébrale avec
une scoliotique légére. La cage thoracique a été représentée par des éléments élastiques dont
la rigidité spatiale a été déterminée utilisant un modéle tridimensionnel d’éléments finis.
Des analyses paramétriques des résultats des modeles de la cage thoracique ainsi que de
la colonne vertébrale ont été menées pour une meilleure compréhension de ce phénomene.
Les propriétés géométriques et matérielles ainsi que le chargement de la colonne ont été
systématiquement adaptés pour simuler aussi bien une croissance normale qu’anormale
durant 1’adolescence. L’analyse a montré que la rigidité de la cage thoracique varie d'une
maniere significative en fonction de la position et de l'orientation dans I'espace. et qu’elle
est affectée essentiellement par les changements des facteurs géométriques et mécaniques
(propriétés des matériaux) des articulations costo-transvérsaires. Les résultats de |'analyse
du modéle de la colonne vertébrale a montré que la progression de la scoliose idiopathique
légere est affectée principalement par I’angle de Cobb, par la longueur de la colonne. par le
poids ainsi que par la rigidité de déplacement latéral de la cage thoracique. Il a été montré
que la progression de la courbure scoliotique (1'angle de Cobb < 20°) due aux changements
mécaniques associées a la phase de croissance rapide des adolescents est faible chez les
deux sexes. Pour une angle de Cobb de 30°, progression de la courbure scoliotique a été
montré pour les adolescents féminin pendant la phase de croissance rapide. Cependant
les changements mécaniques associés & des croissances anormales sont probablement les
facteurs responsables de la progression de la scoliose idiopathique légére. mais seulement

chez les adolescents de sexe féminin. Ces résultats, qui tiennent compte des différences

ii



)

géométriques, de rigidité et de chargement, montrent une nette distinction dans les ten-
dances vers une progression scoliotique chez les adolescents des deux sexes. Malgré qu'une
croissance anormale ne peut expliquer la progression de la courbure chez les adolescents
scoliotiques, les facteurs mécaniques associées a une croissance rapide durant l’adolescence
devraient étre utilisés pour établir un pronostic satisfaisant chez les adolescents scolio-

tiques.

iii
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subjected to a force of 7.4 N for linear and geometrical nonlinear analyses.
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vector

first derivative with respect to axial direction s or 1
second derivative with respect to axial direction s or 1
third derivative with respect to axial direction s or 1

fourth derivative with respect to axial direction s or 1

unit tangent vector of a spatial curve

unit principal normal of a spatial curve

unit binormal of a spatial curve

triad of unit vectors in the fixed Cartesian system (Z — X —Y)
triad of unit vectors along the axis of the undeformed beam-column

triad of unit vectors along the axis of the deformed beam-column

coordinates of a point on the beam-column in the fixed
Cartesian system ;. respectively

coordinates of a point on the beam-column in the local system
é;. respectively

local system on a rib with origin at the costotransverse joint
local system on the sternum with origin at the xiphoid process

local system on a vertebra with origin at the vertebral center

curvature

geometric torsion

angle between the natural system ¢, 7. b and the é; system,
rotated about the tangent £ or é,

curvature vector of the initially curved and twisted beam-column
in the é; system

curvature vector of the deformed beam-column in the €} system

components of the initial torsion and curvature of the
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beam-column after deformation in the €] system. respectively

position vectors of the undeformed and deformed beam-column

axis, respectively

position vectors of any point on the beam-column before and

after deformation, respectively

displacement vectors of the undeformed and deformed beam-column
axis, respectively

displacement vector of any point of the beam-column from

undeformed to the deformed position

components of the initial displacement of the beam-column axis
in the #; system. respectively

components of the displacement of the beam-column axis after
deformation in the é; system, respectively

three Euler angles for the rotation of é; — &7

axial rotation of the beam-column axis

translations in the fixed system, i,

rotations of the ribcage in the fixed system., i,

rotation matrix of i; — é;

rotation matrix of é; — €

rotation matrix of i; — €], based on the initial and the deformed
displacement variables of the beam-column

rotation matrix of #; — €;. based on the three rotations

R;. R, and R, of the ribcage

components of the unit tangent vector, é;, of the deformed
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system expressed in the undeformed system, €;, respectively

gi: G1: §2- G3 basis vectors in the undeformed system, é;

G:: Gy, G,, G3 basis vectors in the deformed system, €]

én axial strain of the beam-column axis

e axial strain at any point of the beam-column

€12, €13 shear strain at any point of the beam-column

€11 engineering axial strain at any point of the beam-column
Y12. Y13 engineering shear strain at any point of the beam-column
K. Ke, K, generalized strains

o1 axial stress at any point of the beam-column

Ti2. T13 shear stresses at any point of the beam-column

S stress vector

F internal resultant force vector

M internal resultant moment vector

f applied force per unit length

m applied moment per unit length

fv body weight forces per unit length

nv body weight moments per unit length

fr ribcage forces per unit length

n’ ribcage moments per unit length

N. V..V, components of F' in the deformed system, &;, respectively
M, M, M, components of M in the deformed system, é:. respectively
F, F F3 components of £ in the undeformed system, é;, respectively
M. M,, M, — components of M in the undeformed system, é;, respectively
fi, fa. f3 — components of f in the undeformed system. é;, respectively
my, My, My — components of 71 in the undeformed system, é;. respectively
fr — vertical component of the body weight per unit length
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in the fixed system, i,

total weight of upper body

components of the ribcage forces in the fixed system,

i;, respectively

components of the ribcage moments in the fixed system.

i,. respectively

components of the ribcage forces per unit length in the

fixed system, i;. respectively

components of the ribcage moments per unit length in the
fixed system., i;, respectively

components of the body weight forces per unit length in the
undeformed system, é€;, respectively

comporents of the body weight moments per unit length in the
undeformed system, €;, respectively

components of the ribcage forces per unit length in the
undeformed system. é€;. respectively

components of the ribcage moments per unit length in the undeformed

system, €é;, respectively

vertical height of the spine

distance between vertebral centres at each level of the spine
(n=1—17)

average height of a vertebra (n =1 — 17)

average width (coronal plane) of a vertebra (n =1 — 17)
average depth (sagittal plane) of a vertebra (n =1 — 17)
representative cross-sectional width of the spine in

the coronal plane

representative cross-sectional depth of the spine in

the mid-sagittal plane
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location of the tension centre in the cross-section of the beam-column

at position, s, along the axis in the é; system
point of application of the body weight in the fixed system. ;

location of centre of mass anterior to vertebral centre

rib radius in the neck region

rib radius in the shaft region

chord length of a rib from tip to costotransverse joint

lateral and anterior-posterior coordinates. respectively. of the
centre of curvature of the rib shaft

anterior-posterior coordinate of the rib angle

arc angle of a rib

pump handle angle of a rib

bucket handle angle of a rib

major outside and inside diameter of a rib, respectively
minor outside and inside diameter of a rib, respectively
cortical wall thickness of a rib

ratio of outside to inside diameter of a rib. major or minor
thoracic index: ratio of width to depth of the ribcage

at mid-sternum

thoracic ratio: ratio of width at each vertebral level to the length

71-T12

cross-sectional area of the spine

effective cross-sectional area of a rib

principal moments of inertia of the spine

principal moments of inertia of the spine, offset by < &. 1o >
principal moments of inertia of a rib

St-Venant’s torsion constant of the spine
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Elggy. Ely,
ElL,. FEI,
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{t}

[My], [Ma]. [Ms),

(M. [Mo]

St-Venant’s torsion constant of a rib

representative Young’s Modulus of the spine
Young's Modulus of cancellous bone
Young’'s Modulus of cortical bone
representative Shear Modulus of the spine
Shear Modulus of cancellous bone

Shear Modulus of cortical bone

Young’'s Modulus of the intercoastals
Young's Modulus of the costal cartilages
Young's Modulus of the costovertebral joints

Young’'s Modulus of the costotransverse joints

axial stiffness of the spine

principal bending stiffnesses of the spine
principal bending stiffnesses of a rib
torsional rigidity of the spine

torsional rigidity of a rib

initial lateral offset of the spine at the curve apex

critical buckling load

Euler constant. dependent on the boundary conditions

components of the 3-D ribcage stiffness

components of the 3-D ribcage stiffness per unit length

components of the 3-D ribcage flexibility

vector of the four unknowns NV, u, v and 8
matrices containing the components of the

internal reactions of the governing equations
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[AM,], [AM;], — matrices and vector containing the components of the

[AMy], {AM.} applied forces and moments of the governing equations

[R]. [D], {T} — matrices and vector containing the components of the

ribcage forces and moments

{w} — vector containing the components of the applied body

weight forces and moments

Up, UNE, — linear and nonlinear components of the lateral

V. VNL, ‘U, sagittal “V” and axial rotation

T, TNE: “T” equations related to the stiffnesses and

n=1-12 the initial curvatures and twist

UN,. UNNE, —  linear and nonlinear components of the lateral

VN, VNNE ‘U, sagittal “V" and axial rotation“7™

TN, TNNL: equations associated with the coupling terms, respectively,
n=1-12 of the axial load “N™ equation related to the initial

curvatures and twist. and the shear centre

UNF UNFNL  —  linear and nonlinear components of the lateral

VNFE, YNFPNL ‘U7 and sagittal “V” equations associated with the

UNEFP UNEFPNL, N, and N,; coupling terms, respectively,

VNFP, yPPNL of the axial load “N™ equation related to the initial curvatures
n=1-12 and twist, and the shear centre

{ALU},: — vector containing components of the lateral “U”

n=1-9 load equation

{ALV},: — vector containing components of the sagittal

n=1-9 “V* load equation

{ALT }.: — vector containing components of the axial rotation
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“T” load equation

unknown axial load N; = NV and its first derivative

N, = N, for solution in a 1% order system of equations
unknown lateral displacement u; = u and its derivatives
Ug = U . U3z = U]y, Ug = U1y for solution in a 1%

order system of equations

unknown sagittal displacement v, = v and its derivatives
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