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Abstract

Let M be a k-dimensional manifold in R™. Using a new idea, we extend the known
result of Y. Domar on the weak spectral synthesis property of M when & =n - 1 by
teducing the smoothness assumption upon M. For the case £ < n — 2, the only known
result s the curve in 2 We discuss the situation when M is 2-dimensional quadratic
manttold in ') and the same result as in the (n — 1)-dimensional case 1s proved.

The interesting point of our method 1s its application to solving the uniqueness
problem for some partial differential equations. Combining the Beurling-Pollard tech
nigue with onr method, we can slightly improve Hormander’s result for a class of elhiptic

c'(llhll.i\)ns.




Résumé

Soit M une variété k-dimensionelle dans B*  Utihsant une nouvelle wdee uons
étendons le résultat connu de Y. Domar sur la propriete tuble de synthese spectiale de
M quand & = n—1 en réduisant les conditions de Linsave de M Pourlecan b« o 2 e
seul résultat connu est la courbe dans 1%, Nous disc utons du cas ol Moot une vanete
quadratique 2-dimensionelle dans R' et le méme résultat que dans e cas d e vanete
(n — 1)-dimensionelle est prouvé.

Le point d’intéret de notre méthode est, son application & la solution du problisne
d’unicité de certaines équations aux dérivés partielles. En combinant fo techngue de
Beurling-Pollard avec notre méthode, nous pouvons amdliorer quelgue pea b péanltat

d'Hérmander pour une classe d’équations elliptiques
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Chapter 1

Introduction

Let S(R") be the space of Schwartz class functions and S'(E™) be the Jdual S e
of S(R"). Given T € S§'(R"), denote its Fourier transformt by 1" We know that

LP(R") € S'(R") for 1 < p < oo . Also as usual we denote the support of I the

distributional sense by supp(T).

Let FLP(RY) = {f:f e LP(R™). | fllree = |fllin}. |-

1) AN
It is well known that ['L' is a Banach algebra and 1715 the dual paceof 47

for ’l’—{— i = 1,1 < p < oo. For a closed subset M iu B™, we denote

I(M)={feFL'(R"), f(M) - 1)
JM)={feCF(I™), f(M) = 0}

K(M)={f€C (R supp( £y M B

We know that I(M) is a closed ideal in /L' and it 15 obvious to - ee that

KM CJM)C HM) in F LY o,

We state the following two properties.

(A) - If K(M)=1(M), wesay that M is of spectial svnthews




(B): 1f J:M)=1I(M), we say that M is of weak spectral synthesis.

For M = B", the closed unit ball in R", (A) holds(see [6]).

For SV in B* n > 3, L. Schwartz [20] showed that (A) does not hold.

C. Herz [12] proved that for S* in R?, (A) holds Herz’s idea is based on the fact
that the umit cirele is the orbit of the rotation group in R%. Also the Beurling-Pollard
argiment (see chapter 3)used in [12] reveals that for a 1-dimensional manifold in R,
the properties (\) and (B) are equivalent.

Adopting a method similar to Herz [12], Varopoulos [25] proved that for S*!,n > 3,
(13) holds,

For M a general hypersurface, Y. Domar([3]. [4]) obtained the following results:

() ITM s a compact € curve 1n B? with non-vanishing curvature, then (A) holds

(b) If M s a compact (" (n-1)-dimensional manifold in B*(n > 3) with non-
vanishine Gaussian curvature, then () holds.

Werefer the reader to Domar's survey paper [6] for more information on the spectral
syithesis property,

By a pautinion of umty and from the curvature assumption. we can reduce the
discussion o the case where Mis of the form E = {(r.w(z)).2 € U},U a small open
ballin K" 1. Here vir) is a real-valued function defined on I such that ¢ (z) € CH(U),
h annteger (> 2) to be tixed later, and such that the inverse of the Hessian determinant

e

[ ( Ve ) ) | exists and is bounded in U7, Domar starts his proof by convolving T with
drodr,




a nice function ¢y along E to obtain a nice measure I on F(discussed wm chapter ™)
Using a little functional analysis(see chapter 5), we can dernve the property (1)
from the following statement.

Given T € FL>(R") vanishing on J(E) and 7 mentioned as above, we have

-

(@) [Thlleo < CUT

sy Cindependent of h
(i2) (Tw.f) — (T, fyash — 0 forall fe S(RY).
In chapter 5, we will see that it is easy to check
(Th. f) = (T.fyash = 0for [ € S(R™).

So (B) will be proved if we can show ||Thle < C

sy (independent of |

In the case n=2, £ = {(z,¥(r)),z € U},U a small open terval i 10 ap(1) ¢
C*(R?*). Let (z.z) € R x R. Beutling-Pollard technique nnplies that if 7' ¢ 121, K
is supported in E. then (T, f) = 0 for f € CZ(R?), vanishing on E More precioely
for g(z) € C3(U) and f(z,z) = (e — e*#)g(r), Beutling Pollard tecdhmqgue yield
(T, f) = 0. This fact is crucial in Domar’s proof of (a). For the case - 3. the simnila
result does not hold even for S*~!(see [12]), for otherwise the arpument (1] wonld
imply that (A) holds for S*! which contradicts the Schwartz's counter eoample

So for the case n > 3, the natural approach([4], [273]) is to assune antable Beuine
Pollard type conditions and obtain properties weaher than the spectial Lynthese, prop
erty. Let (z,z) € B! x R. [f Eis a ¢ (n-1)-dimensional smamfold e 1% then
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() € C°(U) and hence for g(z) € C3(U), the function f(z,z) = (e —-e™*(*))g(z) can
be viewed as a function belonging to C3°(R™) which vanishes on E. For T € F L>(R")
supported on I, assuming the Beurling-Pollard type condition on E is amounts to hav
g (I, f) = 0 for the above {(x.z) Thus for a general compact C* (n-1)-dimensional
mantfold M, the Benrling-Pollaid type condition on M should be that we only consider
those T € 'L (R™) supported on M such that (T, f) = 0 for f € Cg*(R™) vanishing
on M By duality this consideration derives Domar’s result (b).

It £ = {(r,w(z)),r € U} U a small open ball in R*! | is a C™ hypersurface.
that is, i(r) € ("™(17), then the function f(z,z) = (e'* — e¥®))g(z) for g € CT(U)
s a CF(I") function. So the Beurling-Pollard type condition on a general C™ (n-1)-
dimmensional mamfold M is that we only consider those T' € FL*(R™) supported on M
such that (1, f) = 0 for [ € C*(1"), vanishing on M,

We et

JT(M) = {f € CFURM), [(M) = 0)

and state the following property.

(C):  IEJm(M) = [(M)in FL' norm. we say that M is of m-spectral synthesis
\v was pointed out by Domar([4], p.25, line 1), the method in [4] can also get the
re~ult tor the manifold with the ditferentiability up to a certain order. Indeed, his
method vields forn > 3 and & > 2n 4 1 that If M is a compact C* (n-1)-dimensinal

manitold i /" with non-vanishing Gaussian curvature, then (C) holds with m=k.



The C?**! smoothness assumption in the above result is too strong if we compare
it with the case n=2. The reason is that when n=2, Domat is able to prove (1) In
using Carleson’s inequality, Van der Corput’s lemma while when n > 3 Domar bases
his proof of (i) on the modified Littman’s estimate([1], lemma 1), which forces i to
assume ¥ € C* (V).

The main resuit in this thesis is the following theorem.

Theorem 1 Let k be a positive integer such that & > n +2 and let B, v he as
above. Let T' ¢ FL>(R") supported on E and T}, as mentioned above. Assume 1(1) «

C*U) and T vanishes on J¥(M). Let (1,€) € R x 1 I we set My, (1, &)
1

sup ———— T(u 2du)?, then we have
r>g m(Br(n)) /f;r(n)| ( ’6)' ) ’

1 Tu(n,€)] < CMyu(T)(1,6),

where C is independent of 7, ¢, and h.

Remark 1: The curvature condition in theorem 1 can not be removed completely
An example is given in chapter 5.

As a corollary of theorem 1, we can extend Domar’s result mentioned above.

Theorem 2  Let £ > n+2. If M is a compact C* (n-1)-dimensional manifold in
R"™ with non-vanishing Gaussian curvature, then (C) holds with m- k.

Remark 2:  As in {4], the manifold M in theoremn 2 can be replaced by a comnpact

subset E of M if E has the so called restriction cone property. The detals can be fonned

(o]




in [4].

The following argument will show that for any positive integer m the property (B)
15 equivalent to the property (A) for some compact C™ (n-1)-dimensional manifold in
B,

For a small ball U in B~ Choose (z) such that at any point in U, ¢ is only
differentiable up to a finite order (> m). Let E = {(z,(z)),z € U} and fix a point
so = (ro,¥(r)) € E. Using an affine transformation, we may assume Ve(zo) =
(0,...,0). For f € C§°(R") vanishing on E. that is, flz,9(z)) =0for z € U, we let
H{x) = f(r,p(r)). Then H is identically zero in U and hence by the chain rule we

have for 1 <i<n—1

0=H (0) = f;(20,9(z0))+ f(xo,(20) - ¥'z,(20)

= f2(20,%(z0)).

So [}, vanishesat sy for i = 1,....n=1. If f!(zo,¥(zo)) # 0, then the implicit function
theotem umplies that © is ™ smooth at x4 since f is C* smooth. This contradicts
our smoothness assumption of v+ at z¢ and hence all the first derivatjves of f at sy are
zero. Simce sy € F ds arbitrary, we see that all the first derivatives of f vaunish on E.
By @ standard inductive areument we can conclude that for f € CP(R™), f vanishes
on Famplies all the derivatives of f vanish on E. From the remark 3.4 in chapter 3, we
will see that for this manifold F the property (B) is equivalent to (A).

The above consideration verifies that there is no hope to prove the property (B) for
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a compact C™ (n-1)-dimensional manifold in R*(n > 3) for any finite m.

In the following L(p.q) will stands for the so called Lotentz spaces which will be
discussed in chapter 3.

Let u be a solution of any partial differential equation with constant coetlients
Assume that the support of & is contained in a subset M of /2" with meastie seto
If ue LP,1 < p < 2, then from Hausdorff-Young's theorem(see chapter 2), 11 a
measurable function in R" and hence is zero since M has measure zeto Thus v 0 in
this case.

If we consider the problem in Lorentz spaces, then by a routine mterpolation arm
ment(see chapter 3), we obtain that if the support of & is contamned in M with measur e
zeroand if u € L(p,q), 1 <p< 2,1 <qg<oc.then it =0 and hene n 0

Using the Beurling-Pollard technique, we can prove the following reanlt.,

[heorem 3 Let 7' € S’(R™) and M be a k-dimensional mamfold w 2% with area
If supp(T) C M and T € Lip.g)for 2<p <2 | <Ty< ~ then ' 0

Combining theorem 3 with theorem 1. we have the following result which slightly
improeves one of the Hormander's results in [11] for the case M has non vamshing Gan,
sian curvature. The interested reader should compare the two diflerent approache.

eorem 4 Let Mbea C™*2 (n-1)-dimensional mamfold in & with non vani hing

Gaussian curvature and 7' € S’(R™) with supp(T)y < M. If T ¢ Lip,g) for 2 < p ~

;2:%,1SQSOO;OYP=1"— 1 < g < o0, then T=0.

n—1?




Note that in theorem 4, M need not be compact. Also from Littman’s estimate

in [18](see chapter 3), it is easy to see that given n%“; < p<Lool €4q9< 00 o
p= -2 g =00, wecan find T € S'(R™) with supp(T) C M such that T € L(p, q) and
T -£ 0. Thus the result in theorem 4 is optimal.

Remark 3+ Hormander’s method in [14] cannot cover the case p = 2.2 < g < oo
since he assumes T € Li,.(R™) and uses the Plancherel’s theorem. Also the approach
in the proof of theorem 4 can be used to give more information about the solutions of
some partial differential equations The interested reader is refered to [11] for details.

Applying theorem 4 to partial differential equations, we have the following simple
example.

Fixarple 1.1: Let u be a solution in the distributional sense of Helmholtz equation

Aw-tu=10in B 1fw€ L(p,q) for p,q in the range as mentioned in theorem 4. then

- .

The orgamzation of this thesis is as follows.

In chapter 2 we recall some material which are standard in harmonic analysis,
functional analysis and differential geometry.

o chapter 3, we introduce the Lorentz spaces and the interpolation theorems.
Then we put the Beurling-Pollard technique on the frame of Lorentz spaces to prove

theotem 4 One of the interpolation result stated in this chapter will play a role 1n the

proof of theorem L.




We will prove theorem 1, ? , and 4 altogether in chapter { and 5 Chapter Esuppies
some basic estimates used in chapter 5 for the proof of the theorems emma {1 1
variation of the well known estimate of the Hardy-Littlewood miasimal fune tron while
lemma 4.2 gives an estimate for the convolution operator via the masimnal fine o
defined in lemma 4.1 . Lemma 4.3 is the modification of Hormander's vesnlt [1:4].
theorem 1) which can be viewed as the substitution for the Littian's estinnite oed
by Domar [4].

In chapter 6, we will come back to the spectral synthesis problem Phere s uo
general result for M to be a k-dimensional manifold in B* with 1 - L 2 Dona
[5] proved that (A) holds for the compact €% curves in B* with non vani<ling tor 1on
It is a little surprising to the author that the case of 2 dimensional quadiatu - ifuce
in R* is not as difficult as expected. Using only sore elementary linear aloehia aned
the same argument as in the proof of onr theorem 2, we can show that (13) holds lo;
almost all 2-dimensional quadratic surfaces 1n /7Y,

In the last chapter, we will discuss some interesting problems which ariee lopicdly
from our results and which cannot be solved with the same method developed m e,
thesis. The author hopes that he can find the way to attack thewe problems i the

future.




Chapter 2

Preliminary

In this chapter, we want to quote some basic material in functional analysis, har
monic analysis and diffiential geometry. They are standard and can be found, for
example, i [26], [22]. [9] and {16]. At the end, we introduce a nice construction of
a famnly of yood measures from a given distribution. This construction is due to Do
mar{see [3}, or [4]) and is the starting point of our discussion.

Let f{r) be a complex-valued function on R™. The support of f is defined by
supp( f) -- {:fﬂ(}-)w;—l)‘? Note that supp(f) is always a closed set in R™.

Let ("(R™) be the set of functions on R such that all the partial derivatives of
Slr) of all orders exist and are continuous. Denote C{R™) as the set of all functions
J ™ such that supp(f) 1s compact.

The Schwartz class of functions, S(R™), is the class of all those '™ functions /
stich that

sup |2*(D°f(1))] < oo,
reR"

for all n-tuples o = (ay,...,a,) and 3 = (B1s -+ ., Pn) of non-negative integers. Here

3 N L it A
D f(-l) : 5;?\3;3;'f7;§;f(fhrca---w‘ﬂn)
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e

For f € L}(R"), we define the Fourier transform of f by

“

f© = [ f@)e e 0

It is obvious to see that

1 e < 1F1 ()

Also the Fourier transform operator is well-defined on L2(R") and the Plan hered

theorem says

1fll2 = Cllfll.. (4

Here C is a constant only depending on the dimension n.
The corollary of the estimates (2) and (3) gives the following Hausdortl Youny
theorem by using the well-known interpolation argument bhetween LP spoces

Hausdorff-Young Theorem If f € LP(R"),1 < p <2, then

3 v 11
1file S CNSllpy for =+ = =1, (1)
P4

The Fourier transform is invertible in the following sense.

The Inversion Theorem If f € L2 and f € L}, then

f(z) % (Qr.)—"/H 7 & F(E)dE

n

The very simple but useful property of the Fouricr transform is

(M2 D7 fe) = [t e pia))d (5)

11




From the property (5), it is easy to verify that the Fourier transform operator maps

S(H*) into S(I™). We can introduce a simple topology on S(R") (see [26],0or [722})
to make it a local convex topological vector space. Denote its dual space by S'(R™).
The elements of S'(R") are called tempered distributions. In the following f(z) means

f(=z).

For any T' € S'(R™), the Fourier transform of T is a distribution defined by

a

(T, f) = (T, f), for all f € S(R™). (6)
We aie also going to use the following generalized Parseval’s identity.
(T, 1) =T, f). (M

Let g € LP(R"),1 < p < oc. and if we define T by

(150) = [ o) (2)dz, for [ € S(RM,

then, T, € S'(1M).

Thus 17(R") C S'(R™) for 1 < p £ oc. From Hausdorfl-Young's theorem. we see
that lot f ¢ LP(R*),1 < p < 2. f is a function almost everywhere defined on R*. If
o P2 o p <o however, f is . in general. a distribution rather than a function.
Also b iv easy to see from the generalized Parseval's 1dentity that FLP(R™) C S'(R™)
for b~ pooc I a distribution T € FLP(R*).1 < p € e, then T is a continuous

limear functional on LR for :—) ql =1. So (T, f) can be extended from f € S(R")

12
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to f € FLI(R™). Actually in this case we have

() = [ T f-ue. )

For T € S'(R"), we say that T vanishes on U if (', f) = 0 for all f ¢ S(R™) with
supp(f) C U. It is easy to show(see [26], chapter 6) that thete is a largest open ot U on
which T vanishes. The support of T is the closed set in A" detined by supp( 1) \!

For example, if u is a solution in the distiibutional sense of Helmholts equiation

Au +u =0 in R", then taking the Fourier transfoirm m /™. we have

IE1P0(€) — a(€) =0, or (J€)* - )a(&) o

From the last identity, it is easy to check supp(it) © 8™ ' Here 8" Vs the uml
sphere in R".

Given f,g € S(R"), define the convolution of f and g by

frgle)= | Sle=u)gly)dy.

We can verify that f+g € S(R™) and supp( f = ¢) C supp{ f) + supplq) Here suppl ) 4
supp(g) is the set {z+y:z € supp(f),y € supp(q)} . The properiic . ol the convolution

we will use later are

Fxg(é) = f(e)i(e), (1)
Fa(e) = f ¢ (10

13




Given T'€ S'(R™) and ¢ € S(R"), we define T x ¢ € S'(R™) by

(T*¢,f) =(T, 6+ f).

~

The identity (9) can be generalized to
Tv¢="T-9. (11)

It is well known(see [26]) that T x ¢ is always a function on R™ and belongs to C*(R™).
Asinthe caseof fxgfor fg € S(I"), we also have supp(T * ¢) C supp(T') + supp(&).
So, if supp( 1) is compact and ¢ € Cg°(R"), then T * ¢ is a function and belongs to
ot (1) such that supp(T * ¢) C supp(T) + supp(o).

Let o — (21,02, .., rn1) € R 2 € Randlet U beopen in B! with I compact.

Let o) be a real-valued C™*2 function defined on U and set
E={(z.w(z)),z€U}.

Needless to say, B is a ("*? (n-1)-dimensional manifold in R™.
Given /7€ FI™(R") with supp(T) C E. following Domar, we now construct a
family of good measures {Ty} on E for a set of real h as follows.
Let
o Y s BT given by (z.z) — =,
J:U — " given by r — (z,¥(z)).
For /e S(R"), we let fy(x) = fo 3(x) = f(z,¢(z)) for z € U. Suppose supp( f)
is compact m 7y then fi can be viewed as a C3P?(R™1) function with support 1n

14




U. Since f € S(R") and % € C™** we can use the identity (5) m this chapter and

Plancherel’s theorem to show that

/R"_l(l + |w

It follows that fz € FLY(R™!') for n > 2 since we have

P £ (w) P < co.

- 1 Mn s
/R"—l | foldw < ( ( (1 4 Jw])* ')|/,;|“cluv){‘

’Z(n—l)i , L /
Re-1 1 |w|) ‘ ll_)2 (

Rn-1

< o0,
The fact that fz(z) € L'(R™"') is obvious since supp(fs) is compact  So | f] s

bounded and hence fs belongs to FLP(R* 1) for | < p < ~u.

We first define a distribution ¥ € S'(R"~!) hy
(E,g) = (T,go 7r), for g€ S(R™ l)'

This makes sense since supp(T) is compact. From the construction of ., it 1s obvious to
see that supp(Z) C U. Let B*' be theopen umit ball of £ Vand let ey ¢ (o(p* Y
such that supp(4) C B™! and [pas O(z)de = 1. Denote oy(r) - )] ()

Now we define Ty, € S(R") for 0 < h < jdrst(Ol7, supp(Y))) by
(Tws f) = (S # . [0 ), for f e S(H")

Knowing that ¥ * ¢ has compact support, we may assume suppl( f 6 4] 1 ¢ ompart,
g p Pt b i J
and hence fo B e FLY(R" Y. Thus Tj 1s well defined since 3, o, ¢ Cohet 1y and

hence € FL>™(R*1).




PP

It 15 easy to check that supp(Ty) C E. In fact, if supp(f)NE = 0, then flz,¥(z)) =

0, for z € U. "This implies fof(z) =0 forall z € U. So (Th, f) = (S x ¢y, fo B) = 0

since M % 4y is a nice measure on .

Furthetinore Ty is a measure on E, absolutely continuous with respect to the area

measure on I, To see this, we notify that £ = ¢ is a C§°(U) function, so

(S dnfo i) = [(Sx6)(a)f(z, ¥(2))de

. 1 /
S NP Ey e p— S LI
14

(1+l_l2+...+]——3:"”1|2)% dzy

Jt1 -

r Iarnw-l

BEEE:

Since the map (z,9(z)) — z, from E to U, is obviously continuous, the function

Ve . . .
T L—'Jm---—l— 15 continuous on E with compact support.
(l+l.’,’.'."_l.‘+_ +'...___._“""' - |2)2
iy or, 7y
D2 e g o
Bnt(l+|nr1| + +Idx"_1| )2dz =ds , so

(T f) = (e dnfof) = [ an(s)f(s)ds.

a
E

where ap(s) € Co(E). This verifies our claim about 73.

The above construction of Ty is the starting point in the proof of our theorem 1 ,

Before ending this chapter, we recall(see [16],0r [9]) that E has non-vanishing Gaus-

')2 2 2
stan curvature if and only if I(E);(,()jj)l # 0 for each z € L. Here (-g—;

Hesstan matrix of o detined by the following matrix,

8%y () F w(r)
drydi, e 8710 n -1

8%y(x) 32 y(x)

31‘,;...131‘1 the 8-1'"—181?7)—1

16
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Chapter 3

Lorentz Spaces And Beurling-Pollard Technique

Let f(z) be a measurable complex-valued function on B™ and m be the Lebespne
measure on R™. Fory > 0, > 0, denote Ay (y) = m{z:|f(z)| > u}, f(1) inl{y, \j ()
t}. As(y) is called the distribution function of f(r) while f7(f) is called the non
increasing rearrangement of f(z).

The Lorentz spaces L(p, q) are the collection of all f such that |||, ~, where

b
(BB OPE) 1<p<o Loy~
[ fllp.e =

sup ¢7 f*(t) l<pix,q ~
£>0
L(p, o) is called weak LP spaces. Note that L(p.q) is not well defined for p
00,1 €¢q < cx.
Similar to L? spaces, L(p, g) spaces have the following propertics
(1) L(1,1) and L(p,q) are Banach spacesfor 1 < p < ~. 1 ¢ ~ and L(1.q)
for 1 < ¢ < oc are Frechet spaces
@) W fllp = 11y = e 172 Pd2)E 50 Lip.p) = L) S Ve o
(3)  The dual space of Lip.q)is L(p'.¢') ; ;‘; T R R
0,1 < g < cc.
(4) The dual space of L(p, 1) 1s L(p', x). ,'-) + =1L p e

(5) “f“p.oo < ”f”pm < ”f“p.qx < ”f“p.lv Lo S 7 =,

17




(6) Nfgllze < Bl llpras 191lp 025 % = ,',lf + p'l,'1 i‘ = % + ql—,'
(7) S(R™) is dense in L(p,q).

Example 3.1  If f(z) = (1 + |:r:|)‘"—§l in R*(n > 2), then f(z) € L(p,q) for and

2n
n—-1

only for <p<oo,l<gLoo;orp= 2 g=o0c0. In fact, \f(y) =0 for y > 1

and for y < 1 we have

Ar(y) = m{z;|f(z)] >y}
= m{z;(1+ )" >y}
= m{z;l +z| < y*F}
= m{zlel <y~ -1}
= Cly™™ — 1)~

So,

f1(t) = inf{y;As(y) < ¢}

where (' is a positive constant. The rest of the checking is trivial.
Example 32 I we let fu(x) = f(he) for h > 0, then | fullyg = h 3|l

Proof. From the definition of L(p,q) spaces, it suffices to show that () = fr(A™t).

An(y) = m{z;|fu(z)| >y}

18




ELR ]

i

m{z;|f(hr)| > y}
= m{%;lf(w')l >y}
= h7"M(y),

i) = inflyi g (y) < 1)

= inf{y;h™"\;(y) <t}
= infly; A (y) < A"}
= fT(h™).

This finishes the proof.

Example 3.3 Let h(z) = f(~z) and g(z) = (f(x))% Then (i) A*(t) -- [*(£) and
(i) g*() = (f*(1))*.

Proof; This can be seen from the above calculation.

We refer the reader to [15] for further information about L(p,q) spaces
An operator T which maps functions on a measure space into functions on another
measure space is called sublinearif whenever T'f and Ty are defined and ¢ is a constant

then T(f + g) and T(cf) are defined with

IT(f + ) STl +

T(cf)l = le - |T'f].

rITg!

In the following, A L B means that T is a bounded sublincar operator from A Lo
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Proposition 3.1 (real interpolation, see [15])

If L(p,1) I, L(g1, o0) and L(p,, 1) N L(gy, 00) with ¢y < qq, py # o,

then
L(p,r) -Ls L(g, ),

- 1zt ot
- +P2’

- e
il

L=t 8
ralia g 0<t<l,1 <£r<co.

Corollary 3.1 If fe L(p,q)for1 <p<2, 1< ¢q< oc,then we have

”f“p‘.s < C”f”p.q’ + =1, ¢<s.

1
P

=

Here € is a constant depending on p .

Proof: Using the two estimates || fll.o < ||f|l; and IIfll2 < Clif]l2» we see that the
conclusion of the corollary follows directly form the proposition 3.1 since L(2,1) is

contained 1 L(2.2)=1"~,

Proposition 3.2 (complex interpolation.cf[15])

” L(pla(h) "—L L(rlasl) and L(Pz,‘h) '_I;" L(r%s?)y

then
T
L(p,q) ~— L(r,s).
po Lo—dztg ot L 1=t ot 1 1=t ¢ 1 1=ty t
Here rooom +P:“ q N }qu’ r ry +r2’ s 5 +32’ 0<t<1

Remark 3.1  The virtue of the real interpolation is to get the LP-estimate from
the information of weak LP estimates. This is essential in the control of the Hilbert
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i transform, the Hardy-Littlewood maximal function operator and the singular mtegral
operators(see [2]]).

Remark 3.2 The complex interpolation result can be easily generalized to the
multilinear operators([1],p.18.exercise 13). But the generalization of the real mterpola
tion result to the multilinear case is not trivial and the following proposition s a nsefnl
result in this direction.

Proposition 3.3 ([2], cf.[7])

Let ¥ be a (n-1) simplex in [0,1]*, and C be the complex nuniber space. Assiume

that for all (ﬁ, 513‘ ..+y==) € set of the vertices of . we have
¥n

L(p1,1) x L(ps, 1) x -+ x L{pa, 1) = C.

Then for (pl,»;l;a--- , ;1;) € IntY | we have

L(p1,q1) X L{payg2) X +++ X L(pn,qn) z, C.

I~

B T ST >
where ateT : > 1.

-~

n

Remark 3.3 As a corollary of proposition 3.3 , we can give a <imple proof of the
convolution theoremn ([10]).

C. Herz {12] adopted the Beurling-Pollard technique(ef. [19]) in <oivine the spectral

synthesis problem for S§' in R* and then Varopoulos extended it to S™ P in I*([15])
Domar([5], [6]) was able to prove the spectral synthesis property for a rather general
curve in f2? with the help of the Bewling-Pollard technique as we mentioned 1 the

21
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inttoduction chapter.

Let M be a k-dimensional manifold in R™ with area. Assume T € S’(R™) supported
on M. IfT¢€ L(p.q)for1 < p<2and | < q< oc, then the corollary 3.1 yields that T
is a measwable function on R™ and hence T = 0 since it is supported on M which has
meastre zero n [,

In the rest of this thesis, the same constant C will stand for different uniform
constants,

Now we use the Beurling Poilard argument to prove the following theorem.

Theorem 3 Let M and T be as above. Then T=0if T € L(p,q) for 2 < p<
:[', L g .

Prooft From the property (5) of L(p,q), we may assume g = oo. Choose a(r) €
Co(0) such that suppla) € {z - |2] <1} and fgaa(z)dr = 1. Given h > 0 .denote
ap(r) = h‘,;u(i). By the detfinition of the Fourier transform . we have a(0) = 1 and
an(§)  athg). Also it 1s easy to see that for each £ limy_g a(hé) = a(0) =1 and for
all h and &, Ja(h&)] is uniformly bounded.

Denote Moy = {ridist(r. M) < 2R}, Let X, ()= {5 2632, fa(z) = Np,, - f(2)
and g, - [ = fi. then suppigy « ay) N supp(T) = 9.

Fo show T=0. 1t amounts to showing that (T f) = 0 for all f ¢ S(R").

(I°f)  =A(T,f = f*an) +(T.f*ap)
= (T, f~ f*an) + (T, faxan) + (T, g * az)
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= (T, f = fxan) +(T. fu * as)

Now (T, f= fxap)] € fra |T(=E)F (VL =a(hE)|dE — Vas h »0 by the Tebenpue
dominated convergent theorem since f(f) € S(R™) and I"(f) < T{pog) whnch unphies

T(-€)f(€) € LY(R™) from the properties (3) and (1) of L(p.q)

Thus, to show (T, f) = 0, it is enough to show

T fh*gh / T Ja(hEYLE -~ 0 as h -» 0.

We first consider the case p = 2

To begin with, we choose 2 < r < s < cosuch that ! = L.

1
$

. Ar o LU
and(n kY"1

Now

/ P& fuleritne)lie
< PO Il Ot h)].

< ClEN =llathé)ls

Here we used the properties (1) and (b) of L{p,q). From the example 3 2, we have

|a(h€)]s1 = h™¥[|@(€)]l1 and the property (5) of L(p.q) together with the Hauedoril

Young theorem gives llfh\lrx < ||fh||r < ,]fh“_-_

But

1

[fall = = /M |f(2) X, ()77 dz)F < C - [rn(Ma)])’ 5 < Chle R
2h




| [ T(-&)fa(€)a(he)de]|

R»

=1

< CRU-RT-% L 0as h — 0.

Next we consider the case 2 < p < 22, This time we are able to use the Plancherel

theorem.

(T Srvandl < [ (=€) fu()an(he)lde

r 2 1 ¢ 2 1e\1/2
< [ OPAe [ fathe (- ¢)de)
= ¢ [ U(@Pd) ([ faihe)T(~¢)Pde) >

Since fyn |fale)de < C fy, dr < Ch™*, to show (T, f) = 0, it suffices to show
that 1, = (A"~*)3( (Jpm la(h ( f)['“’df)% —+ 0 as h — 0.
We first estimate [y |a(hE)T(—€)[2dE.

Using the assumption p > 2, the properties (4) and (6) of L(p,q), we have for

ar

LI

(BT (=€)1*d€ < [{fa (k) gl (= )l £
3(Ah)|2q,00 @A) | 2q.1

< Ch"%'“fl“'zq,co 'h—ﬁ”&H%l
ht ]

<Ch s,
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So,

I, <CR™T h~% = OB 4
To make 1‘—;—'—"— — 3; > 0, it amonts to having
n 2 2n
n—k > —=(1-")n=n =-,
q p p
2n
-k > ——,
p
2n
k< —,
p
2n
< —.
P %

This is the end of the proof of theorem 3.
We will need the following lemma for the proof of theorem
lemma 3.1 Let M be a (n-1)-dimensional mamfold o B with area Lot

T € S'(R") with supp(T) C M. If T € L(p.¢). then T vanishes on SR provaded

(1) 2<p<Lc,1<g<c.,. whenn 2
(11) 2<p<oc,1<g<ac, whenn 3
2n
(1i1) 2<p< A< g <~ whenn - L,
n-—-3

Proof: From the result of theorem 3. we may assumne p .

2 Alw without o,

of generality, we may assume ¢ = oc. We fix flor) e (/") Given apomnt 4, ¢ M

and any point z € My, we have from the mean value theorem in cale nhis tha

f(z) = g fle) (z = 1),
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where ¢ = (¢;,¢5,...,¢,) is a point on the line segment between z = (z1,Z2y...,Z5)

and ry = (Zoy, Zoy, . . -, Ton). It follows that | fu(z)] < Ch for all z € My, Since M has

arca, we have
/. |fu(z)dz < C -R*-h = Ch.
Rn

Following the argument in the proof of theorem 3, we see that to prove (T, f) =

b

it is enough to show

b = [ T(-OfEa(hE)E — 0 as h - 0.

Now

B s T (hE)de
nlf'hml?ds)‘“(/R la(hE)T(~£)2de )/
/ | a2 )t/ (/ G(he)T(~€)fdg) /2
<O [ lathe)T(—g)Pds)

We follow the argument in the proof of theorem i for the case 2 < p< 273 to obtain

(el < Chz . k7%

= Chf_%
fo make 1 = 2> 0. it is equivalent to
3> 2 = (l—g)nzn—?ﬂ
q D p
or n—-3 < ?;n (%)




From (*), we have

(
p<o whenn=2
1 p<oc  whenn=23
Y
p<:% whenn?>{.
{ .

This completes the proof of lemma 3.1.

Remark 3.4: Let M be as in theorem 3. and f € S(A™) If £ and its all partial
derivatives of order < m vanish on M, then for f; defined m the proof of theorem
3 we have [go [fu(2)|*dr < CRP™FD b = CR™ 0 Let I'C FL(R™) ~upported

on M. Checking the proof of theorem 3(or lemma 3 1), we wee that (I f) 0t

9
“

2m +3—n > 0,0or m > 22, This fact implics that for a general compact € (n 1)
dimensional manifold in B"(n > 3), the property (A) 15 equivalent to the properts (B3)
Thus the counter-example of Schwartz convinees us that there 1s no hope to prove the

property (B) for this manifold.
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Chapter 4

Some Basic Lemmas

In this chapter we prove some basic estimates which are essential in the proof of
onr main theotems. We begin with a known result.

Lemimna 4.1 If we set

1 1
Maf(u) = (§t>lg m(B.(2) /B,(u) |f(y)IPdy)?,

then we have My fllaa < | fll2.

Proof From the property (ii) of the example 3.3, we have ([Myf]2)*(¢) = (Mo f*(2))?
which implies [ Mafllan < (MafPlhie) 2. It is well-known( |21]. chapter 1, theorem
1)that

(M2 f)* 1.0 < CILF e

S0,

Il

13 :le £ UBEAFIL) < CULPINE = C([ If@)Pda)t = 1

2

Lhe proof is complete,

Lenuma 4,2 Suppose we have constant A such that

{/Rm Ig(y)!'*dy}{/nm l9(@)Ply*mdy} < A,

then we have

g* f(u)] £ CM, f(u), C independent of f.
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‘ Proof: We may assume A > 1. Also we may assumie fjp [0(y)[*dy # U, for otherw ise

the conclusion is obvious. Let B = (fgm [g(z)|*ly|*™dy) m, then B~ 0 and we have

/Rm lg(v)lPdy < é—‘t‘ and /Rm o) Iyl dy < AB™

We first observe that

o+ Sl = | [ stu-u/dyl

IA

[ s 9t = ) F0)dy + e

|u—y|>H

Then we control the two terms on the right hand side seperatelv.

/lu-—y|53 lg(u - y)f(y)Idy

< (= pPai[ ify)y)!
i u—y|<B ju—yl<hB
A ., 1
< (—)F d
< (g Py
i l b 1
< 2 2dy)z
< A(gn /lu_y'SBlf(y)l y)
< CM.f(u),
u— ()ld
/lu_ylwlg( y)f(y)ldy
= / |g(u"3l)“‘1_y‘m—l*ﬂ‘w—|'—dy
lu-y|>B lu - ym
9, - . (' )}'J .
< Ry — 12k A7l
< (/lu_ylwlg(u )Flu = y*dy) (/Wyw - i Iy)
kad 2
< (AB™)i Sl
< (AB™RHY /BMH_UISWH P
x l )
< (AB™MMY o () [dy)
< (A )Z(Z (£32n)2m /I‘u—ylgy'z"’rl | fCy) | idy)

n=0
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Py = 1 1 / 2 1
= dy)2
A2 Bz (n.;) Bm9({n—1)m (82n+1)m lu-y|< Ban+i If(y)l y)
] 1

C(Y s (Maf (u))?)E

n=0 <~

< CMyf(u).

IA

So, |g * f(u)| £ CM,f(u), Cis independent of B. The proof of Lemma 4.2 is finished.
Lemma $.3 Let U be open in R?™. Let ¢ be a real number, k a positive integer,
2< kZm+ 1, by,0) € CHI(U) and real-valued. a(y, o) € CEU). Set go(y) =

Jum €9 a(y, o)do. T |B? | # 0 in supp(a), then we have

1
/Rm lg:(y)°dy < C|t|k_1 . for |¢| > 1.

Here |b7,] denotes the determinant of the matrix

A2 . A2h
dyrdoy 3y19am
52K . 25
dymdoy Symdom

by

and (" depends on max{  sup |-————3'£r—)|.0 < |3 £k +1} and q, but is indepen-
(v.7)Esupp(a) dy

dent of  sup [0(y. o).
{y, 0V suppi )
Proof* We will follow Hérmander's argument([13], theorem 1). Since |b},| # 0 in
supp(a), we see that for cach (yo, 00) in supp(a), b5 (Yo, 00) is invertible as an operator

from A™ to K™ with I* norm and the norm of the inverse operator is bounded uniformly

for (4o, 04) € suppla). Using the mean value theorem for each component of the vector
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P a—1

function %(b(y, o) — by, s)), we have

0
Iz;;(b(y,a) = by, ) = by, (1, 8) - (0 =) + O(lo 5]

Using a smooth partition of unity if necessary. we may assume the suppla) 1 oso

small that for (y. o) and (y, s) € supp(a), we have
16, (y.0)) - (o = 3)[ + O(lo — s}*) > Clor -],

where C' > 0 is uniformly on supp(a).

Thus , we have

d
|b_y'(b(yva) - b(yl ';))I > ("U - Sla

with C > 0 uniformly on supp(a).

Choose f(o) € C3°(R*™) such that

9:(y) = /m e vq(y, o) f(o)do.

This is possible since a € C§(L7).
Consider a,(c.5) = [gm e‘”b(’f'“)"b(y"))a(y,rf)t_l—(—;;.*.*s«)vly. To estimate (o ), we
troduce the coordinates ¥ in R™! such that y = (y,.5). Denote by oy by oy a b

a(y.o)aly.s) as a and denote 2 as b, L2 = (b ) s b and <o on.

Wy, 2wy dyp Tttt M

aio,s) = /Rme'tbady

/ e:tba Z;r;l(b; )2
TP

dy
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. e"ba( 712
= Z/m VZP)

/

= z/m e it - tlvblzdyjdy
. ith
= Z-/R"‘lﬂvbl de'*dy

d bla
- wh_7 ~
- z/v" ‘/ E ztlvblz) Ydd

(bja)/at| ¥ b2 — 2it(TF, by - by Ybla
— ith J =1
5 fo fre0 W o)

Jdy;dy.

Note that [if - 6| < [ 7 b]* and | 7 8] > Clo ~ s|, it follows that for t|o — s| > 1

1

|a¢(a,s)| < Ctla‘ — Sl'

But when tlo — s| <1, we obviously have |a,(0,s)| < C, so

1

<C——
a(o,s)] < Cl + tlo — s|

Adopting the smoothness assumotion of the lemma, we can repeat the above process

k times to obtain

1

la(e, s)] < C"(l + tio — s|)F’

. 0%b
If we check the above proof, we will see that (' depends only on max{ sup (Ur; )',
(vo)esupp(a) O

O fif<k+1}anda noton  sup  [b(y. o)l
(v,c)Esupp(a)

S 1 nee

/Rm lge(n)Pdy = _/ _ / ai(a, $)f (o) F(3)dods
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IA

/m/nm lado, 9)f(o)dar | f(s)]ds
/mfm1+qa o da| f()]ds.

IA

it is enough to show

|f(o) 1
0 <C—r
RMU+HU—ﬂ) Tk

for |t] > 1,

with C independent of t and s.

For k =m + 1, we have

/ do = _du o 1
rm (1 +tlg —s|)m+1 R (14 [ul)m+t 7 e
So

|/ (a)] Iflle !
d ! = ,‘ s s AR
pm (Lt tlo— sy1 0 = O g "Cuw Crpie M=

For 2 <k < m+ 1, we can find p > 1 such that pk = m { 1. 'This implices
p(k —1)<m,or 2 2k-1

By Holder's inequality,

|f(o)]
Aw(1+na-qyd“

do
= (/R’" (1 -+ tla — 3|)kp /i'" lf(O’ | ‘1’7

do 1
Rmajﬁmgjﬁwm

, 1 .
CHI——CW"’” [t] = 1

‘:C"‘

= |t|75 (

Thus we have proved [pm |9:(y)|*dy < ka ry for |t| = 1, and the constant, C has

the desired properties. This is the end of the proof.
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Chapter 5

The Proof of Main Theorems

We are now in a position to prove the main theorems. For convenience, we restate
the theorems concerned. Also we may assume k = n + 2 without loss of generality.
Theoren: | Let E, T, 4,9,y be as in the introduction chapter and assume
(e} € (") and T vanishes on J**?(E). Let (n,é) € B™' x R. If we set
. 1
1”.!.1](7 )('/75) - (bllp 7

r>0 11L{B,(n))

fBr(n)m |T(777 f)lszn)% , then we have

1Ta(n,€)] < CMa(T)(m, &),

where O is independent of 7, £, and h.

Proof*  Let X(y, ¢) = =m0 we have

Ta(m,§) = (T X) = (Tx X o 3)
= L“/ oh(a)e"’(("'y“")*'f‘f'(y‘”))dg),
Rn~t
Since we can choose U, open with supp(S) € U, C U, € U, we can find T(y) €

CO(U) such that 7(y) =1 fory € U,

I'hus we can write

) = (S) [, dlo)erworrestoagy)

= (S,T(y)e“'((w)ﬁv(y)) e.‘((”'”)"f('”(y'”))""(y))m(a)da)
Rn~1
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= (S,T(y)e“(("vv)+i¢(y)) - e'((n.hv)—{w(v—h«'))—u'(u))‘f;,((,)d”)

I

(T, e-'((n,y)HC)ng‘h(y)) )

Here gpen(y) = 7(y) Jgn-s e'“""“’)"{“"(y"h"))"“'(y”<p(cr)d0. Note that i the Last wlen
tity we used the assumption that T vanishes on J***(F) since ¢ % e () oy
E and supp(T) is compact from which we may assume the function e 000 oown g
compact support.

Hence

Tu(n, &) = (T, e+ (mu+e0)

I

Gnenly))

1
1(w,y) , )
(27()71~l _/“,'_l ¢ .’]v;,e,,h(” )‘l”>

___':T(T’ An-l (—l((”_'L"y>+t.(:)"‘/y,>¢"h(”')‘/”')

(T, e~ H(my)+€¢)

Ty = 10,)gn g0l 0)ddir).

Here we used the inverse theorem of the Fourier transform  Since ' ¢ fof " (™)
supp(T) is compact and gyen € LYR™1) for cach 5.8 b the last identity can be
verified by using a standard limit argument.

To prove the theorem. it is enough to show that

| fons T(n — w.&)imenlw)dw] < C My, ()5 €).

with C independent of n,£, and small h .
To this end, by lemma 4.2 | Plancherel’s theorem and the mnequality {1 -
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n—-1

CY~ |, M"Y, we need only to show for each ¢ # 0 we can find a constant B depending
1=1

on h€ and a constant A independent of 7,¢ and h such that forj =1,2,---,n - 1 we

have

A
[loner@lPy < 50,

/ la" gnihy)|2d <ABn 1 |
n= 6y1 |

Let a(y,o) = 7(y)o(o), by, a) = %(n,a) - Y—LL’“?:—@ then we have

Gnenly) = _/R" 1 e a(y, 0)do.

.. 2y
Since |1zl | =

"! T

n-— . 8%h(y, .
~1) lldyjdnk y — ho)|, we see that I”'a'y%aﬂl # 0 in supp(a) for

all small h.
Ao, b e ORI real-valued, @ € C(R*™1) and  sup [—-—-——:3_~
(vo)€supp(a) ay
mdependent of ., and hfor 0 < |3 <n+1.

So lemma 1.3 yields:

/Rn gnen(w)*dy <Clh§' JhE) >
with € independent of 9, £, A.
fo coutrol
/ TMI 2y
JRn-t 0 ;l, 1 y
dn 1 heb )
./Rn 1| Rn-1 dJ’n 1[6‘ ¢ (w)a(y‘ 0)]dal'd!/

n—1 ()m hebl ) an—-l—m )
Wm e y.a
-/RH 1 /‘m_ Z n— 10 m ]ay;r-l—m (a‘(y’ U))dO’l dy?
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i 1t suffices to show

/ / am [e*heblyo)) — gr-t-m (aly,o))dal*dy ~ ClRE" Y, [hE]
n—1 nei dy dy“ 1—m ¥, U < R
form=0,1,2,...,n — 1, C independent of n.£, k.

For m=0, we ocbviously have

an—l .
SV e o aly, o) dody < € < Clhel lhg] 1,
Rn n yJ
since a € CZ(RX»-11),
Forl < m <n—1, denote f(u) = e*,u = théb(y, o), such that u¥ “’Lk: [ehebiy, m)]

z‘hi%{b(y, o).

We have the formula due to Faa di Bruno

am
Fom S(u(y.9)))
A y-)
‘ m! ft o
- T (e s (B ke
1§k_<_mk1!l\72!...k{!(u [t )2 (et

! {
with Zk, =k.k > 1 and Zs'/c. S

s=| g1
So ,
o
e a0
. d o i

=C e'h‘:b(y‘”)(ihf = (bly. oM =y o)t bty oyt

1<§m kl'k’ k! ) [().'/_7 ))] [’).'/; ' ’ l4)'//;
Denote ®(y,0) = [ S (b(y.a)) ]"'[m~ hly.7))) ‘[';:j(/’{-'/~’7“:;"“',‘.,':' Lty oy

i

, 57 [ theby)] HRTIom
thene T (e )]

;'-y—,,:;_—,;(a(y. a)) hasthe form I Chggh e " mdy gy
“

C a uniform constant.
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‘ Since
E = Zk ﬂZk + ki
s=1

< ZS'}C,*{-’C[
a=]

= m-lb+k=m-(~-1)k

IN

~(-1)<n—-Ifor 1<m<n-1,
and d(y,0) & CPHH(R2-1) lemma 4.3 yields
ol [ BdolPdy < Clhe™~ < Clag|=, Jhe] > 1,

C independent of 5, € h.

So, we have

Y / l(}n lJnfh(J
=1

]d S ClhEPY, RE 21,5 =1,2,...,n~1,
Ay}~

J

Cindependent of né&h.

For {h&) -2 1.1t s easy to see that

S lonesty) Py <.

07’1 gne, h(J)
e <C.
/m-l ‘ Gy |*dy < C

Hence we have the desired constants A and B such that

; A
/R"_1 lgmen)dy < 5,
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e

/ T e Wpyy o qpper,
Rn-1 dy;

This is the end of the proof of theorem 1.

Theorem 2: If M is a compact C'"** (n-1)-dimentional mamfold wn " with
non-vanishing Gaussian curvature, then (') holds withm n 2

Proof: = The compactness of M implies that we can tind {#,,) I, mi o\l
such that M = .1 E, and each E, has the form as i theorem 1 Choone Sy TR

such that supp(o,) N M C E, and =7, ¢, = 1 in M.

)=
Given T € FL*(R") vanishing on J™*(M) (which imphes supp( 1) ¢ M) we
have
m m m
= (20T =3 6,7 =3 1"
=1 =1 =1
Here T? = ,T. 1t is easy to see that supp(17) C I, and Ty - r,":j VL) e
5] € LY(R™). Thus T? € FL>=(R") and hence [rom theorem | we can constint {1

for small h such that {Ti(n. &) < CMy, (5)(y, &) and hence
Tl < C T e ) = 12000

with C, independent of h.

By the construction of T} at the end of chapter 2. we have for [ ¢ S0/,
I AN AN SN
(Th'f/ - ('\-’J * (')hvf 0 "> - (*‘ s N * f
Using the Lebesgue dominated convergent theoreni, we see that

”¢h * foﬁ -_ f (o} fg”[;Ll(Rn_l) = ”((z&(ll') e l)f/(:,/j( )”I,’(“"' 1) 4 “ as II + “
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i So (I}, f) — (X2, [ o 3) since £7 € FL=(R*Y).
From the construction of ¥ and the assumption T(J™**(M)) = 0. we have (57, f
B) = (17, f). This yrelds (T}, f) — (12, f) as h — 0.

Now if we let Ty = ZI,;’ then for f € S(R™),

1=1

(Ti, f) — (T, f) ash—0.

Recall that S(R") is dense in FL'(R") and FL* is the dual space of FL}R").

| Now for f € FLY(IR™), it is easy to see from the estimate HThllﬁ0 < C]|T||fx that
(Tn, f) —(T.f) ash—0.

To prove the property (C), by Hahn-Banach theorem. it is enough to show that
eiven e FL(R™) vanishing on J*( M), we have (T.f) = 0 for f € FINR™)
vanislune on M.

But £, 15 a measure on M absolutely continuous with respect to the area measure

of Mowe have ai(s) € C(M) such that
(I, f) ::/ ap(s)f(s)ds =0, for f € FLY(R™) vanishing on M .
\f

Phes for each f € FLY(R") vanishing on M. we have (T, fi= 11_1:1\1)('151‘) = 0.

Fhe proof of theorem 2 is complete.

Lheotem o Tet M bea ("2 (n-1)-dimensional manifold in B” with non-vanishing
Gausstan cunsature. Let T e 87(R*) with supp(T) < M. If T € L(p,q) for 2<p <
Sl s g s ot p = 241 < ¢ < oo, then T=0 .

10




To prove theorem 1, we need the following lemma.

Lemma 5.1 Given T, T}, E as in theorem 1, we have

“Thnp.q < CP.QHTHP.Q

for

[

<p< 1<qg< oo, whenn >3,

2<p<oe, 1<qg<oc, whenn-:=273

Proof: From the lemma 3.1. we see that T vanishes on J* (V) pand  are m

the range contained in the condition of this lemma So theotem | yields

Ta(n, ) < C My (T &)

. A ]. o ) 1
Here again M, (T)(n, &) = (sup — / T'{u S du):
g '7( )(n 6) (:)Op m(B,(f])) H,.(n) | [“’ ‘s)l “)

It is easy to see

. 1 ) N )
D) R < N < P — ' ..‘ E [ , ry ¢
Myn(T)(n.€) < C‘(sft)ug B ] /H,m.;) [Py dy ) ML) 0.8,

so we have |Th(n, &) < CMAT)(9.£) and hence [Tl = CRMY, , Tor all (poy)
such that L(p. q) is well-defined.

It is easy to check that the operator M, is sublinear and for any g ¢ L2 (F"). we
have || Ma(g9)!|w < {lgilx. Thus the conclusion of this lemia follows directly Trom U
lemma 4.1 and the proposition 3.1

Now we can prove theorem 4 easily. The case 2 < p N B VI DR FFTS oY
from the result in theorem 3 proved in chapter 3. so we need only conader the o e

P=£T,1SQ<°C
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For any open set Uin R™ with £ = U N M open in M, any é(z) € Ce(U), we let
Ty = ¢-1T'. Then we have supp(T,) C E and Ty = ¢ » T'. Since b€ LYR™) N L®(R™),

we can use the proposition 3 1 for the convolution operator with the kernel ¢ to obtain

that ’IA’l e« [,(r—}_’il,:/) sance T € L(22 q) .

n-~1"

Taking U smaller if necessary. we can choose a coordinate system in R™ such that
B == (rop(r)). v satisfies the properties needed for us to adopt theorem 1 since M is a
C™** mamfold with non-vanishing Gaussian curvature.

So for a small b, from theorem 1 we can find a good measure T}, with supp(Th) C E

such that the corresponding deusity function ax(s) € C*+(E) and

Tl

20 < CllTl 2,

[Fai(s) is not identically zero on K, Littman's asymptotic estimate in [18] yields
_azt n
Th(&) = C(1+[¢))” 77 for large £ € R™.

But the function (1 + [f])"hl ¢ L(Z

n
n-1

.q) for 1 £ ¢ < 2. so we must have a,(s) =0
identically on Fothat s I = 0 for all siall h. By Titchmarsh's convolution theorem/cf.
P p 151 and the detinttion of Ty, this implies T; = 0 and hence T=0 since U ard o

ate orhitrary - This s the end of the proof of theorem 4.

a
%

Stce the function (1 ¢ ]5[\‘2‘? €L{p.g)forp= 2 g=cciorp> ;2_'—11.1 <g<

.
N bhown the above Littman's estimiate, we see that the result in theorem 4 is optimal.

Now wegive an example to show that the curvature assumption in theorem 1 cannot
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be removed completely.

Example 3.1 Let z = (2,,2;) € R? and 2y € R* with |ry| - 3. Tet [
{zile] <1}, Ur = {z5|e —zof < 1}, U = {xila] < L} and U5 = {o]e ol - '
Let U = {z:|z| < 5} and choose a(r) € C3(I’) such that o(r) Fon P UL and
a(z) =0 on U\l ULR). Define (z) € ("*(L7) by letting 1(r) (2 |J"“‘){‘n(‘z') fon
z € Uy, ¥(z) = rje(r) for £ € U, $(z) =0 for r ¢ {\(I",Ul"))

let £ = {(z.v(z)),z € U}, then E contains asphere-piece 'y {(r (1 e}) )0
Ui} and a cylinder-piece Ey = {(ry,r223),r € U} Choose w nice measure ‘T on |
with the smooth density function contained in the picce of the sphere. then lon
Littman's estimate we have 7' € LP(R%) for p >3 Let p= 1 then letma 31 yield.
that T vanishes on J*(E). So if theorem 1 is true fo~ .. then we have lom lemimae o |
that

1Tulls < CRE

We can make T}, for a suitable h to be a measure on I, sueh that the €Y denas,
function ax(s) is not identically zero on the picce of the cvlinder  Choose s ¢
C5°(R°) such that oT} is contained in the piece of the evihnder and non sero. Then we

have since o € FLY(R®)
loTulla = 115+ 7als

C'

A

,1'\‘/1,”4'

But from Littman’s estimate for the case n = 2,itis casy tosee that ¢1), ¢ 1'L7(It*)
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if and only if p > 4, for E; is a cylinder and the curve (zy, z3) has non-vanishing

curvature. Hence for the manifold E constructed above, theorem 1 cannot hold.
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Chapter 6

The Quadratic Case

Let U be open in R? such that the closure of U is compact. The goal of this haptes

is to consider the preperty (B) for the 2-dimensional quadratic manifold with the torm

M = {(z1, z2; ¥na(xy, r2), walay, w2 (g, 0y) € ),

4 9 . N
where ©,(z,23) = a,2} + bz12; +c2?, i = 1,2
As usual, we denote the non-singular linear transformation group of /" as (11,
Let F be the subgroup of GL, generated by the non-singular hnear translormation. of

(z1,22) and the non-singular linear transformations of (r+, ry).

In the following M is called F-equivalent to M, if M, is i the orbit of M onnder the

group F.
Let 1.’:’51,5:(1'1.1'2) = flu"l(z:l,rg) + f)_?,'p_(l‘].l‘g), then the Hessan determimant of
Vg g denoted by Huyg e, is only the function of (£,.6)  Actually 110 | R

quadratic form of (£;.&,).

-

Definition 6.1 Given M = {(zy,z0:vy(rog) vnlryora))(ryor « (R EETIAN
is not a 2-surface in any 3-dimensional sub<pace of 7% and e, s desenerate
quadratic form of (£, &), then M is called singular,

It is an easy exercise in linear algebra to check that the above definition s imvariant

under the subgroup F of GL,. In the proof of the following theorem we will e it
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ELd

there are very few singular cases. Also we observe that the property (B) is invariant
under the group (7L,
Theorem 5 If M is non- singular, then (B) holds.

Proof: We divide the proof into several cases.

Case 11 One of %, 2 = 1,2( say ) is positive definite (or equivalently negative
definite).

In this case, we can find a non-singular linear transformation of (z1, zq) such that
with the new coordinates, ¥(z1,12) = 12} + toz2, and wa(xy,z3) =1} + 23 So Mis
F-equivalent to (ry. eyt 2f + 803, 23 + 22) If ¢; = to, using the non-singular linear
transformations of (r4,r4), we see that M is F- equivalent to a Q-S'urface in R with the
form (ry, 0y 27 + r3.0), which has non-vanishing Gaussian curvature. So, (B) holds
from theotem 2 by replacing J™2( M) by J(M) since M is a C* manifold here.

7

It £y # ¢, by non-angular hoear transformations of (z3,14), we see that M is F
ad

equinalent to My = (zy. ry 27, 13). For My, we can follow the argument in the proof of

theorem 1 to obtain for (7,8) = (71,92, &.6) € RY,

Ta(n. &) = (T. e Wmarleg o\ (u)g e alyn)).

Here

- - 2_,2 s
nenlin) = 1) /RC'U"'W‘ Gl =ho1=410 5, (0, )doy,

Y

it - 2,2}y ,
Insen(e) = T'.‘(!/?.)/Re'(h"”’ £2{(y2~hay) y’))tpg(dg)da‘z.
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Note that for 7(y)and é(o) in theorem 1, here we have chosen r(y) =

¢(0) = ¢1(01)da(a2).

T )i,

Therefore as in the proof of theorem 1, we have

Th(naf) = C(T,C_'(("'y)+(£'(;))/R thylg éh(wl)(lwl '/;‘ "qun’t y(aes )‘i”,)
= C(T, /1;2 —Hn—wad 4, (‘))g (W) dw G, ¢ (w0))drwe)y)

= C/ E)anuen (W) dnane n (w2)dwydaey,

) - . \
Note that the plane curve (z;,2}) has non-vanishing curvature, as in the prool of

theorem 1, we can show with the help of lemma 1.3 that

‘{_/;2 |§'m.£,h(w1)12dw1}{/R l‘&m'&h(?l)])l!lu’]I2d?l’1} <A

So lemma 4.2 yields

o .
I_/R T — w1, 72 = w2, §)gny ¢ n(wi)dun ] < Mo, (T) (1, m2 103, £).

Since we have the same control for §,, ¢4 as for gy, ¢, We see that if we sl

) 1 X , 4
M TYn.&) = ( su / / TOey. s, ) dwdir,)
-"71|7)2( ( 5) (r’>0'18>0 47‘1"2 |u;2—anSr2 lyul —-nlISr, I } A‘\)I i -) ’

then we have

|ff'h(17, £)| < C'Nfg,,,h,n(T)(q,.f), C independent, of 7, ¢, L.
Now the property (B) follows from the proof of theorem 2.
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ase 2: None of p, is positive definite but at least one of ¥, 1s non-degenerate.

We may assume {2y, 15) = 22 — 22, The general form of ¥, is wz} + bz 1y + ezl

(i) a=—c#0. 1tis ready to see that via the two non-singular linear trans
formations of (r;, z4): 2} = ir,, I, = rzand 5 = I3, ¥}, = 2, — r3, M becomes

My = (ey,ry0) — 73 a1r120). The case a; = 0 is reduced to a 2-surface in R® with
. . \ . . . o 2 9 . .
non-vani<hing Ganssian curvature since the Hessian matrix of 2? ~ 2 is non-singular.

S0 we may assume aq # 0.

Lev (rgony) == &(2f — 22) + a1éaxr1 29, then

2 ol
" J 22 2
Hy = = —4¢ — i€ = ~ (46 + a¥¢d).
gy -2

We follow the proof of theorem | up to the following identity

Tu(n.&) = (T. e &g ().

whore Gosnly) = Ty) le et(h{n.a)+3s ({41 =khay )“"':,1:))"62((1/2—h6252"315))0(0)0'0-
UURRAY .

Now lemma L3 vives Tge g, ) 2dy < C(487 +aféhHm: < C(&] + €3)~%, with €

mdependent of g & A, Tt follows that for 1= 1.2

1%} \ \
—=gnenli"dy < C(E2 + £33,
/R2 !(W'gn{. (i ay < (51 +‘£.)

where Cis independent of 7. & and A.

Thus the condition of lemma 4.2 is satisfied by using the Plancherel theorem So




L

o -

we obtain as in the proof of theorem | that

|Tain. )| < CM,(D)n.€), ¢ mdependent of 5, &, h

The property (B) holds again from the proot of theorem 2.

(ii) a## —cand a or e say a) s not zero. We may assume ¢, b by
with 1 4 by # 0. In this case. M 1» F-equnalent to M, (1.1 N A S R P PR
ayryr){viethemap ri = rj, 1y = ry—ury) and azain I equnalent o VL
23,27+ -1—“—‘;;1'11'3). For simplicity we denote 735 as a,

-+ +5y ~

If Jaof < 1. then Myas Frequialent to My = (o000}

{

Ehar e and

—_

(29 29

again F-equivalent to My = (ry. 0y 2f - 2.0 + aaryey 1 a3),

Since

1 > 0. =1 a3 -0,

we see that the quadratic form éy(zy. 1)) = ri42a s, +25 s positive definte, wheh

is contained in the case 1.

Ifjazt > Lo we consider My = (20528 — rd 0}~ wyr ey

‘ 9c¢
[o=-\1 ax. , , "
Hu =] =106, = &) - aifl g G4 ai
Ic
l aéy 205~ &)

It is easy to check as above that the quadiatic form 168 - 46,6, + a2 i poative
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~

definite and hence > C(€} + £7) with C > 0. The rest of the proof for property (B) is
the same as in (1) of the case we are discussing now.

If {uy] = 1, then M, and hence M is F-equivalent to M; = {ry, x5 28 - 22,27 +
ey} o= {oyory g - x4+ ) ol + z;)} and hence F-equivalent to [, =
{zi, 2,0z, %{J', + r3)r,}, using the map Ty = Iy - Iz Iy = Ir; + 7y Now it is
obvious Lo see that M, is F-equivalent to M- = {z),z4; ry1r2,z5}. Our method fails for
Mz, butatis easy to check the singnlarity of M.

(in) oy = o] ~ri.op = .1,

Again we let wlryory) = &(rf — 23) + &(x172) and have

Hiw = = =48] — & = —(4£2 4+ £2).

Ic
=51

&$o—
From this, , the property (B) fullows as above.
Case 3 oy and o, are both degenerate,
Fhe peneral form of M in this case is {z}, ra: (ar; + b12)2. (czy + dr,)?}
(DM bequialent to My = {zy. rp2d 23} if ac— bd # 0.

Fhis case s contained in the case 1.

() Mis Fequinalent to My = {z;. 25 13,0} if ac~ bd = 0 but at least one of a. b,

o d sonot cero,

This time Mo asa eyhinder in 13, Since (4. 22) is a curve in R? with non vanishing
A 1.4 o)

cunvature, we can follow the proof of theorem 1 closely to see that the conclusion of
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theorem 1 is valid for M, here and the property (B) follows

(ii1) M is F-equivalent to Mz = (ry, x1:0,0).
The proof for this case 1s trivial.

This is the end of the proof of theorem 3.
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Chapter 7

Some Open Problems

We have already finished the proof of our results in the previous chapters. As we
pointed ont, the interesting point of the approach adopted in this thesis is its applica-
tion to the nniqueness property of some partial differential equations Hoérmander [14]
proved for a eeneral smooth manifold M that If T € S'(R™) with supp(T) C M and if
Te Lk 1< p s 2% then T' = 0. This result is known to be optimal in L? sense
only for the ca-e when M has non-vanishing Gaussian curvature. Our theorem 4 can
be viewed as the moditication of Hormander's result in the Lorentz spaces.

We may ash how abour the vanishing curvature ca=~’ In this situation the 2-
dimmensional cone s KL (4 S0(85 + f_?)f). 1s good since the corresponding Hessian
matoy has contant rank <o our eounter-example for theorem 1 doesn't work in this

case't - As the wint sphere comes from the Helmholitz equation in R® via the Fourier

t . )
transform, the above cone comes from the wave equation 1n R

. 2 Al
U= Juo otu

__._,.._..—__..,._.-._'—

) { 3 *
t- dry o ors

We cannot expect the method in [11 to give the answer since the geometric properts
of the manifold plays no role there. If we think about the method developed in this

thesisowe will see that the featute of 1t is to transfer the information from a general




Wt ol

distribution supported on M to a nice measure on M. I'he wdea bebind the discussion
is that we believe that If T\ € S'(R™) with supp(T)) M and I'y ¢ S/(B") senetated
by a smooth measure on M(which imphes suppi Is) O MDY, then the 77 beliay o ol

17 is at most as good as the L? behaviour of T,

This idea is verified when M has non-vamshing Gaussian cunvature We congec tune

that the same result as 1n our theorem 1 would hold also for the cone, namely, we conld

prove for (7,£) € R* x R!
ITu(n, )] < CManlT)n. 0.
Assuming this . we may have Telr 1 < p < A(rather than 3 inphes 170 Dogeee nod

by the result in [253].

L8 bt

For the case when M has co-dimension > 2. the simplest case in tmnd

M={tE P e (-1.D).
which is a €™ curve in R° with non-vanishing torsion
Let
Thl\f} = / E_'é 9(1;“ ‘}1[.‘5‘ (1A « (',JU( \I}
v

Using the Van der Corput’s lemma carefulls, It s nor difloonir o faned 700,

Th(E)] = Ol = ig )t

This is far from exact since we know in [5] that £, ¢ LP0RY) for poo T and ot i, b
true that T € L? if and only 1f p > 7 provided o, (<) 1 not sdentical zera on A
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Thus theorem 1 again suggests the conjecture that if 7' € S'(R®) supported on M
and if T € LP(K?) for 1 < p < 7.then T = 0. The obstacle to proving theorem i 1o

this case 1s that we cannot prove a result similar to lemma 4.3,
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