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Abstract

This thesis contains five manuscripts concerning various problems in structural graph theory

and graph searching. The problems all concern sparse graphs, either graphs with forbidden

minors, with bounded maximum degree, or trees.

First, we consider two variants of Hadwiger’s conjecture on the chromatic number. Had-

wiger’s conjecture states that the number of colours required to properly colour the vertices

of a graph (that is, adjacent vertices receive different colours) is at most the order of the

largest complete graph we can obtain by contracting edges and deleting vertices (we call the

obtained graph a minor of the original graph). Our variants are obtained by modifying the

condition that the forbidden minor is a complete graph. In the first case, we show that the

conjecture holds if we replace the forbidden complete graph by a sparse bipartite graph. In

fact, a stronger result on degeneracy is shown, which is qualitatively tight. In the second

variant, instead of forbidding a single minor, we forbid all graphs with some fixed numbers

of vertices and edges and bound the average degree of the original graph.

We then present results on a variant of Menger’s theorem in which the obtained paths are

pairwise non-adjacent, which is motivated by recent questions in coarse graph theory. Using

strong edge colourings, this variant is proved for graphs with bounded maximum degree.

Some stronger results for subcubic graphs are shown, in part in a computer-assisted proof,

as well as for graphs with a forbidden topological minor.

We also consider graph burning, a process representing the propagation of information

on networks. It is shown that the Burning Number Conjecture, the main problem on the

topic, holds asymptotically, using probabilistic techniques.

vi



Finally, the game of cops and robbers on graphs with an excluded minor is studied. New

upper bounds on the cop number for these graphs are proved, generalizing and strengthening

the previous work of Andreae.
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Abrégé

Cette thèse contient cinq articles sur divers problèmes en théorie des graphes structurelle et

en jeux de recherche sur les graphes. Les problèmes concernent tous des graphes creux, soit

des graphes avec des mineurs interdits, avec degré maximal borné ou des arbres.

Nous considérons tout d’abord deux variantes de la Conjecture de Hadwiger. Cette

conjecture stipule que le nombre de couleurs nécessaire pour colorier proprement les sommets

d’un graphe (c’est-à-dire, les sommets adjacents reçoivent des couleurs distinctes) est au

plus l’ordre du plus grand graphe complet qu’on peut obtenir en contractant des arêtes

et supprimant des sommets (on appelle le graphe obtenu un mineur du graphe original).

Nos variantes sont obtenues en modifiant la condition que le mineur interdit soit un graphe

complet. Dans le premier cas, nous montrons la conjecture tient si on remplace le graphe

complet qu’on interdit par un graphe biparti creux. En fait, un résultat plus fort sur la

dégénérescence est démontré, qui est qualitativement serré. Dans la seconde variante, au

lieu d’interdir un unique mineur, nous interdisons tous les graphes avec des nombres fixés de

sommets et d’arêtes et bornons le degré moyen du graphe original.

Nous présentons ensuite des résultats sur une variante du Théorème de Menger, motivée

par des questions récentes en théorie des graphes grossière, dans laquelle les chemins obtenus

ne sont pas adjacents. En utilisant des coloriages d’arêtes forts, nous prouvons cette variante

pour les graphes avec degré maximal borné. Des résultats plus forts pour les graphes sous-

cubiques sont prouvés, en partie dans une preuve assistée à l’ordinateur, ainsi que pour les

graphes avec un mineur topologique interdit.

Nous considérons aussi le brûlage de graphes, un processus représentant la propagation

viii



d’information sur des réseaux. Il est prouvé que la Conjecture du nombre de brûlage, le prin-

cipal problème sur le sujet, tient asymptotiquement, en utilisant des méthodes probabilistes.

Finalement, le jeu de policiers-voleur sur les graphes avec un mineur interdit est étudié.

De nouvelles bornes supérieures sur le nombre de policiers pour ces graphes sont prouvées,

généralisant et renforcissant les résultats de Andreae.

ix



Contribution
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1
Introduction

This thesis consists of five manuscripts on various problems in structural graph theory and

graph searching games. Each topic concerns graphs which are sparse in some sense, generally

graphs with a forbidden minor, but also graphs with bounded maximum degree.

Each manuscript contains an introduction specific to its precise topic. However, in this

section, we will introduce each topic more broadly and present some of the relevant similar

results, sometimes presenting simple proofs when possible.

We will use mostly standard graph-theoretic notation. Our graphs will generally be

simple, finite graphs. If G is a graph, we write V (G) and E(G) for its set of vertices

and edges, respectively. If u ∈ V (G), we write N(u) for its neighbourhood, i.e. its set of

neighbours, and N [u] := N(u) ∪ {u} for its closed neighbourhood. Then, d(u) := |N(u)| is

the degree of u. We write δ(G) and ∆(G) for the minimum and maximum degrees of G,

respectively. If S is a vertex or a set of vertices of G, we write G − S for the subgraph of
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G induced on V (G) \ S, and if M is an edge or a set of edges, G − M for the (spanning)

subgraph of G obtained by removing the edges in M . For u, v ∈ V (G), we write dist(u, v)

for the distance between u and v, that is the number of edges in the shortest path between

u and v (and ∞ if no such path exists). For s, t ∈ N, we will write Kt for the complete

graph on t vertices, and Ks,t for the complete bipartite graph with parts of size respectively

s and t. For r ∈ Z≥0, we write B(u, r) := {v ∈ V (G) : dist(u, v) ≤ r} for the ball of radius r

centered at u. We will use the convention that [n] = {1, 2, . . . , n}, and that 0 /∈ N.

1.1 Graph minors

1.1.1 Motivation and definition

Many of the manuscripts in this paper concern the structure of graphs forbidding a minor.

In this section, we will introduce this concept and discuss its motivation.

Let G be a graph, and uv ∈ E(G). We define G/uv as the graph obtained by contraction

of uv as the graph with vertex set (V (G) \ {u, v})∪{w} and edge set (E(G) \ {e : u ∈ e or v ∈ e})∪

{wx : x ∈ V (G) \ {u, v}, and ux ∈ E or vx ∈ E}. Intuitively, we are “merging” the vertices

u and v to create a new vertex w, and removing any multi-edges that are created by this

operation.

We then say that a graph H is a minor of G if a graph isomorphic to H can be obtained

from a subgraph of G by contracting edges.

One of the easiest ways of working with minors is with the concept of models. A model

of H in G is a function µ which maps vertices of H to pairwise disjoint subsets of vertices

of V (G), with the conditions that for every u ∈ V (G), the subgraph of G induced by µ(u)

is connected, and that for every uv ∈ H, there exists an edge between a vertex of µ(u) and

a vertex of µ(v). The following is standard and easy to prove.

Lemma 1.1.1. There exists a model of H in G if and only if H is a minor of G.

Intuitively, if H is a minor of G, then in the corresponding model µ of H in G, µ(u) is

3



the set of vertices which are contracted into u.

The main motivation for studying graph minors is its connection to graph topology. We

say a graph is planar if it can be drawn in the plane (vertices corresponding to distinct points,

edges corresponding to continuous curves) with distinct edges never intersecting (other than

at their endpoints). In a drawing of a planar graph G, a face is a connected region of R2 \G.

We write F (G) for the set of faces in a planar drawing of a planar graph G (the following

result will make it clear that the size of this set does not depend on the choice of the drawing).

The following is one of the best known results on planar graphs.

Theorem 1.1.2 (Euler’s formula). If G is a connected non-null planar graph, then |V (G)|−

|E(G)|+ |F (G)| = 2.

The following proof is standard.

Proof. We prove the following stronger statement. Write cc(G) for the number of connected

components of G. We claim that |V (G)| − |E(G)|+ |F (G)| = 1 + cc(G).

We fix |V (G)| and show the statement by induction on |E(G)|. For the base case, consider

the graph with no edges. Each vertex is its own connected component, and there is only one

face (the unbounded one). Then,

|V (G)| − |E(G)|+ |F (G)| = |V (G)|+ 1 = 1 + cc(G).

For the inductive step, consider the process of adding one edge. Let uv ∈ E(G). If u, v

are in distinct components of G − uv, then adding the edge uv does not create any new

faces (keeping the rest of the drawing unchanged) but does reduce the number of connected

components by one, and so

|V (G)| − |E(G)|+ |F (G)| = |V (G− uv)| − (|E(G− uv)|+ 1) + |F (G− uv)|

= (1 + cc(G− uv))− 1 = cc(G) + 1.
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Otherwise, adding uv does not create any new connected components, but does split one

face into two. Hence,

|V (G)| − |E(G)|+ |F (G)| = |V (G− uv)| − (|E(G− uv)|+ 1) + (|F (G− uv)|+ 1)

= cc(G− uv) + 1 = cc(G) + 1.

The following consequence will be useful to us. We use the formulation (and proof) seen

at [24]. We say the girth of a graph (which is not a forest) is the length of its shortest cycle.

Forests are often said to have infinite girth, however we will not use this convention in the

next result.

Corollary 1.1.3. If G is a connected planar graph of girth at least g ≥ 3, then |E(G)| ≤

(|V (G)| − 2) g
g−2

.

Proof. In any planar drawing of G, every edge is in exactly 2 faces (possibly, the same face

with multiplicity 2). On the other hand, the boundary of every face contains at least g edges.

Hence, by double counting, 2|E(G)| ≥ g|F (G)|. The result following by substituting this

inequality into Theorem 1.1.2.

It is an immediate consequence of this corollary that K5 (5 vertices, 10 edges, girth 3)

and K3,3 (6 vertices, 9 edges, girth 4) are not planar graphs.

If a graph G is planar, then G/uv is also planar. Broadly speaking, one can take a planar

drawing of G and merge u and v along the curve corresponding to uv (one must be a bit

careful as to not create any intersections with the other edges incident to u or v). Hence, if

a graph contains either K5 or K3,3 as a minor, it cannot be planar. It turns out that this is

actually a full characterization of planar graphs.

Theorem 1.1.4 (Wagner’s theorem). [103] A graph G is planar if and only if it does not

contain K5 and K3,3 as minors.
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One of the most important results in graph theory is the Robertson-Seymour graph minor

theorem [87], which was proved in a series of 20 papers. We say a family (possibly, infinite)

of graphs G is minor-closed if every minor of a graph in G is also in G (up to isomorphism).

Theorem 1.1.5 ([87]). If G is a minor-closed family of G, then there exists a a finite set

of graphs Ob(G), called the obstruction set of G, such that G ∈ G if and only if G does not

have any minor in Ob(G).

We assume the obstruction set is always chosen to be minimal (and doesn’t countain

isomorphic graphs). In this language, the obstruction set of planar graphs is {K5, K3,3} by

Wagner’s theorem. Another example is the class of outerplanar graphs. We say a graph is

outerplanar if it has a planar drawing such that all the vertices are on the outside face. It

is easily seen that this family is minor-closed. The following is well-known.

Theorem 1.1.6. A graph G is outerplanar if and only if it does not contain K4 and K2,3

as minors.

The argument here is simple (see [51] for example).

Proof. If G is outerplanar, then U(G), the graph obtained by adding a universal vertex of

G (a vertex adjacent to all other vertices), is planar, as we can place this vertex in the outer

face.

This first implies that K4, K2,3 are not outerplanar, as K5, K3,3 are subgraphs of U(K5), U(K2,3),

respectively. Hence, if G contains either K4 or K2,3 as a minor, it is not outerplanar.

On the other hand, if G is not outerplanar, then U(G) is not planar: either G is itself

not planar, or otherwise in every planar drawing of G there does not exist a face on which

all the vertices are present, so we cannot add our universal vertex. Hence, U(G) contains

either K5 or K3,3 as a minor, say H, by Wagner’s theorem. By Lemma 1.1.1, there exists a

model µ of H in G. Let v be the universal vertex of U(G). Let u be the unique vertex of H

such that v ∈ µ(u), if it exists, and otherwise let u be chosen arbitrarily. It is easily verified
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that µ, restricted to V (H−u), is a model of H−u in U(G)− v = G. To conclude the proof,

it suffices to note that K5 − u ≃ K4 and K3,3 − u ≃ K2,3.

We note that planar graphs are exactly the graphs which can be embedded on the sphere

(orientable surface of genus 0) without crossings. We consider bounding the cop number for

higher genus graphs as well. The same argument as before shows us that the class of graphs

of genus at most g is minor-closed. However, the obstructions sets for these families can be

extremely large. Notably, we say a graph is toroidal if it can be drawn without crossings on

the torus. The obstruction set for toroidal graphs is known to contain at least 17,535 graphs

[73].

One can also embed graphs on non-orientable surfaces. For example, the obstruction

set for graphs which can be drawn on the real projective plane without crossings contains

exactly 35 graphs [48, 10].

All of these are surfaces: two-dimensional manifolds. Another way of generalizing planar

graphs is thus to determine which graphs can be embedded in R3. However, it is easily

seen that any graph can be drawn in R3 without crossings: there are too many degrees of

freedom. A more interesting condition is the following. Note that in a planar drawing of

a graph, every cycle separates the plane: there are no edges between a vertex inside and

outside this cycle. In particular, two cycles cannot intertwine. Thus, we say a graph is said

to be linklessly embeddable if it can be drawn in R3 such that there are no two cycles which

form a link (imagine two rings, each of which passes through the other once). Robertson et

al. [89] have shown that the obstruction set of linklessly embeddable graphs is the Petersen

family (it contains 7 graphs and it includes, in particular, K6 and the Petersen graph), see

Figure 5.5.1.

Graphs of bounded treewidth are also minor-closed (see the definition of tree-decompositions

in Section 4.3, the treewidth of a graph is the minimum over all tree-decompositions of this

graph of the maximum size of a bag, minus one).
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1.1.2 Topological minors

We briefly mention a related topic, the concept of topological minors. We say a graph is a

subdivision of a graph H if it can be obtained by replacing some (or none) of the edges of H

by paths (i.e., by repeatedly subdividing edges). Then, we say H is a topological minor of a

graph G if G contains a subdivision of H as subgraph.

We first note that this concept is more restrictive than minors.

Lemma 1.1.7. If H is a topological minor of G, then H is a minor of G .

Proof. Let H ′ be the subdivision of H which is a subgraph of G. Given that H ′ can be

obtained from H by a sequence of edge subdivisions, by contracting these edges we can

obtain H from H ′. Hence, H is a minor of H ′, which is itself a subgraph (which thus also a

minor) of G.

In general, containing a graph as a minor and as a subdivision are not equivalent. There

are however some specific cases for which this turns out to be true. One of these is the case

of planar graphs. The following preceded Wagner’s theorem.

Theorem 1.1.8 (Kuratowski’s theorem). [58] A graph G is planar if and only if it does not

contain K5 and K3,3 as topological minors.

More generally, the following lemma is well-known.

Lemma 1.1.9. If H is a minor of G and ∆(H) ≤ 3, then H is a topological minor of G.

Proof. By Lemma 1.1.1, there exists a model µ of H in G. Let u ∈ V (H). As ∆(H) ≤ 3,

there are at most 3 edges coming out of µ(u) which are used by the model. For simplicity,

assume there are exactly 3. Let a, b, c ∈ µ(u) be the ends of these edges. As µ(u) is connected,

there exists a tree in the graph induced by µ(u) and which contains a, b, c. Let Tu be such

a tree, chosen to be minimal. By minimality, only a, b, c can be leaves of Tn so it can only

be a subdivision of a claw, the unique tree with 3 leaves (if we allow here the paths to have
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length 0). A subgraph isomorphic to a subdivision of H can then be obtained by taking the

union of Tu for every u ∈ H and the edges between the bags. In this subdivision, the vertex

corresponding to u is the “center” of every claw.

We further note in Chapter 4, we will use Theorem 4.3.1, an important structure theorem

for topological minors,in which minors plays an important part. Given its technical nature

and since it will only be used once, we postpone its statement.

1.2 Colourings

1.2.1 Vertex colourings and Hadwiger’s conjecture

A proper vertex k-colouring of a graph G is a function f : V (G) → [k] such that adjacent

vertices always receive distinct colours. We say G is k-colourable if a proper vertex k-

colouring of G exists, and we define the chromatic number χ(G) as the smallest k such that

G is k-colourable. Of course, this is well-defined, as any graph is trivially |V (G)|-colourable.

Guthrie conjectured in 1852 that any planar graph is 4-colourable. In practical terms,

this would mean that any map in which regions (say, countries) are simply connected can

be coloured using 4 colours in a way that adjacent regions receive different colours. For

example, [46] is a world map using 4 colours. Of course, this bound cannot be improved: K4

is a planar graph but cannot be properly coloured with 3 colours.

This conjecture was later proved by Appel and Haken [8, 9] (see also Robertson et al.

[86]) in a famous, computer-assisted proof.

Theorem 1.2.1 (Four colour theorem [8, 9]). If G is a planar graph, then χ(G) ≤ 4.

Although the proof of this theorem is very involved, and computer-assted, proving that,

say, χ(G) ≤ 6, is trivial. Indeed, it is a well-known consequence of Euler’s formula (see

Corollary 1.1.3) that any planar graph must contain a vertex with degree at most 5. We

proceed by induction. Let G be a planar graph and u be a vertex of degree at most 5. Then,

G−u is also planar, so it can be properly coloured with 6 colours. Given that u has at most
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5 neighbours, we can extend this 6-colouring to G: at least one of the 6 colours does not

appear in its neighbourhood.

Recall that Wagner’s theorem states that planar graphs are exactly the {K5, K3,3}-minor-

free graphs. Generalizing the Four colour conjecture (now theorem), Hadwiger [49] conjec-

tured the following.

Conjecture 1.2.2 (Hadwiger’s conjecture [49]). If t ∈ N and G is a Kt-minor-free graph,

then χ(G) ≤ t− 1.

Hadwiger [49] has shown the cases t ≤ 4. The conjecture is trivial for t = 1, 2, since

K1-minor-free graphs and K2-minor-free graphs are respectively empty and edgeless. Any

cycle can be contracted into a K3, so K3-minor-free graphs are forests. These are easily

seen to be 2-colourable: choose an arbitrary vertex u, and partition the vertices according

to whether their distance to u is even or odd. Wagner [104] showed that the case t = 5 was

equivalent to the Four colour theorem, hence it was proved by Appel and Haken [8, 9]. The

case t = 6 was proved by Robertson et al. [88]. All other cases t ≥ 7 remain open; in fact it

has not even be proved that K7-minor-free graphs are 7-colourable.

Hadwiger’s conjecture is considered to be one of the most important conjectures in graph

theory, and one of the most difficult. Given how hard this conjecture is, much of the progress

has been in approaching the conjecture in another direction: if a graph is Kt-minor-free, what

is the best upper bound on χ(G) we can get?

For many years, the best such bound was χ(G) ≤ O
(︁
t
√
log t

)︁
, as proved by Kostochka

[56, 57] and Thomason [99]. Their proofs use degeneracy: a graph G is said to be k-degenerate

if every subgraph of G has minimum degree at most k. A k-degenerate graph necessarily has

chromatic number at most k+1, by the same argument as our proof above of the Six colour

theorem (planar graphs are 5-degenerate). However, it is known that this bound cannot be

improved by degeneracy alone, due to random graph examples [99].

This bound was later improved by Norin et al. [75]. Their argument is broadly as follows.

Small graphs are coloured greedily, by repeatedly extracting independent sets and assigning
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a colour to these. Furthermore, by the result of Kostochka and Thomason mentioned above,

every graph which has high average degree contains a forbidden complete minor, so we can

assume that the graph is sparse. Otherwise, they use a density increment argument: if the

graph forbids some large complete minor, it must contain some small subgraph for which

the average degree is high (for its size). Repeatedly applying the density increment, they

extract many such small subgraphs. We will also use this tool in Chapter 2. Using that the

graph will need to be sufficiently connected (otherwise, it is easy to colour), they use some

linkage arguments (we will also use similar arguments in Chapter 2) to piece together these

small pieces to form a sufficiently large complete minor.

We note that currently, the best upper bound is O(t log log t), which was proved by

Delcourt and Postle [37].

In the work we present here, we will approach Hadwiger’s conjecture in another direction:

instead of forbidding a complete minor, we will forbid a sparser minor and attempt to obtain

the same bound on the chromatic number as Hadwiger’s conjecture predicts (which depends

on the number of vertices). This approach, named the H-Hadwiger conjecture, was suggested

by Seymour [93, 94].

In Chapter 2, we will forbid a graph H which is bipartite, has bounded maximum degree,

and is structurally sparse. In this case, we will in fact not even use colouring directly, and

simply bound the degeneracy of graphs forbidding H as a minor, given the relationship

between chromatic number and degeneracy mentioned above. We will also show that this

degeneracy result is best possible, in multiple ways.

In Chapter 3, we will slightly modify this problem by not forbidding only one graph H as

a minor, but forbid all graphs on t vertices and a given number of edges. How many edges can

we forbid in t-vertex minors and still obtain the desired chromatic number? This problem

was previously studied by Norin and Seymour [76] in the case of graphs with independence

number 2. In general, a result of Mader [64] (see Lemma 3.2.1) directly yields the result if

we forbid t-vertex minors with at most 25% of possible edges them. Here as well, we will
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not work directly with the chromatic number, but instead use average degree: if the average

degree of any graph forbidding all of these minors cannot be more than t− 1, the minimum

degree also cannot be more than t − 1, and thus degeneracy again shows that our graph is

t-colourable. We will show that we can obtain a fraction of
√
2− 1 of all possible edges, that

it is not possible to obtain more than 75% of them only using average degree, and we will

obtain some exact results for small t.

1.2.2 Strong edge colourings

There are many variants of colouring as defined in the previous subsection. The most notable

is proper edge colouring. Here, the difference is what we wish to colour every edge, such that

incident edges receive different colours. The chromatic index of a graph G, denoted χ′(G),

is the smallest number of colours with which it is possible to properly colour the edges of G.

It is clear that χ′(G) ≥ ∆(G), given that around a vertex of maximum degree every edge

must have a different colour. It is also easy to see that χ′(G) ≤ 2∆(G) − 1: any edge is

incident to at most 2(∆(G)−1) other edges, and so we can colour it greedily using the extra

colour.

One of the classic results in graph theory is Vizing’s theorem [102], which states that

χ′(G) ≤ ∆(G) + 1.

Our proof method in Chapter 4 uses a variant of proper edge colouring called strong edge

colouring. In a strong edge colouring, we require not only incident edges to be given distinct

colours, but also any pair of edges for which there exists a third edge, incident to both of

them. We denote χ′
s(G) the strong chromatic index of G, the smallest number of colours

with which it is possible to properly to strongly colour the edges of G.

Consider an edge uv. There are at most ∆(G)−1 other edges incident with u, and for each

one of these, there are further up to ∆(G)−1 edges incident with them at their other endpoint.

This also holds for v. Hence, there are at most 2((∆(G)−1)+(∆(G)−1)2) = 2∆(G)(∆(G)−1)

edges which must be given a colour different from uv. Hence, here again by the greedy
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argument, one more colour suffices to strongly colour G. Although there are stronger bounds,

for our purposes it is only important to know that χ′
s(G) ≤ O(∆(G)2).

1.3 Coarse graph theory

Coarse geometry is the study of the large-scale properties of geometric objects. It was

pioneered by, in particular, Mostow and Gromov, and had particular impact in geometric

group theory. By seeing graphs as metric spaces, it has some connections to structural graph

theory, for instance Bonamy et al. [15] have shown that the asymptotic dimension of any

minor-closed graph family is at most 2.

Motivated by these, Georgakopoulos and Papasoglu [47] have recently proposed studying

Coarse Graph Theory, i.e. the study of the large-scale geometry of graphs.

In Section 1.1.1, we defined models in order to study graph minors. In a model µ of a

graph H in a graph G, we required that if uv ∈ E(H), then there exists an edge with one

end in µ(u) and one end in µ(v). However, this requirement could be weakened to requiring

there exists a path P from µ(u) to µ(v), which is internally disjoint from
⋃︁

x∈V (H) µ(x), as

well as from other such paths between other parts of the model. Indeed, to obtain the edge

uv in the minor, we contract every edge of P except one. In Chapter 5, our definition of

models will be closer to this version.

From this version of models, it is natural to consider minors in which, for example, all of

these paths are quite long. Indeed, even if G contains H as a minor, this does not necessarily

tell us much about the global structure of G, for instance if H is already a minor of a small

subgraph of G. We may then define the following.

A fat minor of a graph H in a graph G is a generalization of a minor to large distances.

Precisely, we say H is K-fat minor of G if there exists connected sets Bv ⊆ V (G) (for

v ∈ V (H)) which are pairwise at distance at least K apart, and for each uv ∈ E(H) there

exists a Bu-Bv path Puv such that Pe and Pe′ are distance-K-apart for every e ̸= e′ ∈ E(H),

and such that Pe and Bv are distance-K-apart for every v ∈ V (H) and e ∈ E(G) not
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containing v.

As we have mentioned earlier, planar graphs are exactly the graphs not containing K5

and K3,3 as minors. What can we say about graphs which contain one of these as minors,

but do not contain them as K-fat minors? As the obstructions to being planar are local,

could we say that are these graphs are planar in some global sense? For instance, if we “zoom

out”, does the graph look planar? More generally, we will need the following definition.

We say two graphs G,H are K-quasi-isometric if there exists f : V (G) → V (H) such

that distG(u,v)
K

−K ≤ distH(f(u), f(v)) ≤ KdistG(u, v) +K for every u, v ∈ V (G).

With this definition, we can rephrase the previous question as follows. If G does not

contain K5 and K3,3 as K-fat minors, is G K ′-quasi-isometric to a planar graph?

In general, Georgakopoulos and Papasoglu [47] have conjectured the following.

Conjecture 1.3.1. For every graph H, there exists fH : N → N such that the following

holds. If G is a graph and K ∈ N, then G has no K-fat H minor if and only if G is

fH(K)-quasi-isometric to a graph with no H minor.

This conjecture is known to hold for a few graphs H, such as K3 [47], K2,3 [28], K−
4 [44],

K4 [4], and stars (K1,m) [47].

The following is a critical tools in graph theory.

Theorem 1.3.2 (Menger’s theorem). [69] If k ∈ N, G is a graph and X, Y ⊆ V (G), then

there exists either

(1) k pairwise disjoint X-Y -paths, or

(2) a set of less than k vertices which separates X and Y .

Menger’s theorem and other related connectivity tools are especially crucial in the study

of graph minors, as we will see in Chapter 2 and Chapter 3. In Chapter 2 in particular,

our general approach is based on constructing disjoint small parts of the desired minor and

finding paths between these pieces in order to construct the entire minor. In order to prove
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Conjecture 1.3.1, having a coarse version of Menger’s theorem could be useful: we would like

the paths that are found to be pairwise far-apart. Georgakopoulos and Papasoglu [47], and

independently Albrechtsen et al. [3], have conjectured the following.

Conjecture 1.3.3 (Coarse Menger’s Conjecture). For every k ∈ N, there exists c = c(k) ∈ N

satisfying the following. If d ∈ N, G is a graph and X, Y ⊆ V (G), then there exists either

(1) k disjoint X-Y -paths P1, . . . , Pk such that dist(Pi, Pj) ≥ d for all distinct i, j, or

(2) a set Z ⊆ V (G) of size less than k such that B(Z, cd) separates X and Y .

Both groups have shown this conjecture to hold for k = 2: if G does not contain two

far-apart X-Y paths, then X, Y can be separated by removing one ball of bounded diameter.

It turns out however that both Conjecture 1.3.1 and Conjecture 1.3.3 are false. Con-

jecture 1.3.3 was disproved by Nguyen et al. [74], and based on their construction Con-

jecture 1.3.1 was disproved by Davies et al. [36]. We note that this is not mentioned in

Chapter 4, as our manuscript predates these developments. We note that Davis et al. have

mentioned that their construction does not disprove Conjecture 1.3.1 for planarity, as their

counter-example family contains arbitrarily fat K5 and K3,3 minors.

In Chapter 4, inspired by Conjecture 1.3.3, we work on a similar problem in the case

d = 2: that is, we want the obtained paths to be induced. In our case, we will replace the

condition that a ball of bounded diameter separates X and Y by the condition that it is a set

of Ck vertices which separates X and Y (for some constant C depending on the maximum

degree of G). This version is also quite natural, as it is closer to the Menger’s theorem. A

version in which the graph does not have bounded degree, but forbids a topological minor, is

also deduced using a structure theorem for topological minors. We will also show improved

bounds in the subcubic case, notably using a computer-assisted proof.

We note that some of the results of Chapter 4 were obtained independently and concur-

rently by Gartland et al. [45].
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1.4 Graph searching

Graph searching is an area of research in graph theory which studies various games (or

processes), such as cops and robbers, graph burning, firefighting, and their many variants,

in which the players explore the graph in some sense.

1.4.1 Cops and robbers

As the name suggests, this is a pursuit-evasion game in which cops, controlled by the first

player, attempt to catch a robber, controlled by the second player. The game is played on

the vertices of a connected graph G, and the possible moves correspond to following an edge.

On the first turn, the first player places its cops on (not necessarily distinct) vertices of the

graph, after which the second player chooses a position for the robber. In subsequents turns,

the first player may move any number of its cops, after which the second player may move

the robber. The cops win if they capture the robber. Otherwise, the robber wins. The cop

number, denoted c(G), is the smallest number of cops for which the first player has a winning

strategy on G.

We note that in our version of the game, there is full visibility, and cops may share

vertices. We note however that there is a large number of variants of the game, in which,

for instance, the robber must move [1], the robber is invisible [38], only one cop can move

per turn [78], or the winning-condition is relaxed to being at a certain distance from the cop

[17] or surrounding the robber with the cops playing on edges [34].

This game was first introduced over 40 years ago by Nowakowski and Winkler [77] and

Quilliot [83], and they fully characterized graphs on which one cop may capture the robber.

We say a vertex u ∈ V (G) is a corner (pitfall, in [1]) if there exists a distinct vertex v ∈ V (G)

such that N [u] ⊆ N [v]. If the robber is on u and there is a cop on v, then the cops will

necessarily win at the next turn, as the robber cannot escape to a vertex which is not adjacent

to this cop. In the formulation of [1], we can characterize one-cop-win graphs G as follows.

The proof is a simple induction argument.
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Theorem 1.4.1 ([77, 83, 1]). If G is a connected graph, then c(G) = 1 if and only if there

either exists a corner u ∈ V (G) such that c(G− u) = 1, or G contains a single vertex.

Aigner and Fromme [1] introduced the version of the game with multiple cops. Their

most significant result is the following.

Theorem 1.4.2 ([1]). If G is a connected planar graph, then c(G) ≤ 3.

The proof idea is as follows. It is based on the fact that a single cop may guard a geodesic

path. On a planar graph, two cops guarding two u− v geodesic paths confine the robber to

either stay inside or outside the region delimited by these paths. The third cop may then

protect a geodesic path which goes through this region, reducing the size of the region in

which the robber is confined. One of the two original cops now no longer needs to guard its

path, and we repeat the strategy until the robber’s territory vanishes.

The geodesic path guarding strategy has become one of the most important tools in the

study of this game. As it will be crucial to our main result in Chapter 5, we reproduce its

proof here (closer to the proof of Andreae [7]). The following is a slightly stronger form of

the result of Aigner and Fromme, which is used by Andreae [7]. Note that this is exactly

Theorem 5.3.2.

Lemma 1.4.3 ([1, 7]). If G is a connected graph, u, v ∈ V (G), P is a shortest u − v path

and C is a cop currently on u, then there exists a strategy for C to keep guarding u and,

after a finite number of turns, also guard P .

Here, by C guarding a set of vertices S, we mean that if the robber were to move to a

vertex in S, it would be immediately caught by C at the next turn. The cop does not have

to stay on or be adjacent to a vertex to guard it: if the robber is far away from it, it might

also be acceptable for the cop to be far away as well.

Proof. Let ϕ : V (G) → V (P ) be defined as following. For w ∈ V (G), let ϕ(w) be the unique

vertex of V (P ) which is at distance exactly min(distG(u,w), distG(u, v)) from u.
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We will take w to be the position of the robber. We first note that at every turn, ϕ(w)

either does not change, or moves by to a vertex on P adjacent to its previous position, given

that distG(u,w) can itself only change by a value of at most 1.

We know that C is currently on u. In the first part of C’s strategy, it will at every turn

move towards ϕ(w). Given that V (P ) is finite, and ϕ(w) can only move at the same speed

as cops, the cop C will eventually “catch” ϕ(w). Afterwards, C will simply follow ϕ(w) at

every step.

First note that at every point in this strategy, C is at least as close to u as ϕ(w) is, at

least after the cops’ turn, since C attempts to catch ϕ(w), by starting at u. Hence if at any

point the robber moves to u, ϕ(w) = u and so the cop will immediately capture the robber.

Thus, at all points of the game, u is guarded.

The second phase of the strategy begins after at most dist(u, v) turns. During this phase,

all vertices of P are guarded. Indeed, after every cops’ turn, C is on ϕ(w). Hence, if the

robber enters P , given that this vertex will necessarily become ϕ(w), the cop will catch the

robber on the following turn. This completes the proof.

This type of argument is a standard tool in the study of the game of cops and robbers.

The function ϕ is an example of a retract, a special type of homomorphism for which, in

particular, the vertices in the image of ϕ map to themselves. In these arguments, if the

robber is on w, the cops will chase ϕ(w), the “robber’s shadow” on the image. Once the

shadow has been caught, this can be used to restrict the region that the robber can safely

access, which can be used in various strategies. We note that Theorem 1.4.1 can be proved

using this type of argument, by setting ϕ(w) = w except for ϕ(u) = v. See [13], in particular,

for more details on retract-based bounds.

As we mentioned earlier, planar graphs are exactly the graphs forbidding both K5 and

K3,3 as minors. This motivated Andreae [7] to study the cop number of graphs forbidding

minors, with the main result being the following.
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Theorem 1.4.4. Let H be a graph and h ∈ V (H) be a vertex such that H−h has no isolated

vertex. If G is a connected H-minor-free graph, then c(G) ≤ |E(H − h)|.

In Chapter 5, we will generalize and improve this result. As the statement is fairly

technical, we will postpone stating it exactly. However, broadly speaking, our improvements

are most significant when H is small or sparse. For instance, we will show that c(G) ≤

|E(H − h−M)|, if M is a matching such that H − h−M does not have an isolated vertex.

Andreae also showed that forbidding only one of K5 or K3,3 as a minor is sufficient to

get an upper bound of 3 on the cop number, strengthening Theorem 1.4.2.

As discussed earlier in this chapter, the connections between graph minors and graph

topology extend far beyond planar graphs. We will thus now briefly survey some of the main

results on cops and robbers and graph topology.

We have noted earlier that outerplanar graphs are exactly the graphs forbidding K2,3

and K4 as minors. It was shown by Clarke [33] that connected outerplanar graphs have cop

number at most 2. Omitting the technical details, the strategy here is to place one cop on

one end of a chord, separating the graph into two sides, say with the robber on the “left”.

The other cop then moves to block the next chord, trapping the robber further to the left.

Repeating the argument, the robber is eventually caught. This result is also implied by

some more general results of Andreae using forbidden minors [7], and by some bounds on

treewidth [53], given that outerplanar graphs have treewidth at most 2.

The situation of graphs with higher genus has also been of interest. Lehner [60] has shown

that toroidal graphs have cop number at most 3, which had previously been asked/conjec-

tured by Andreae [7] and Schroeder [91]. The proof is inspired by the proof of Theorem 1.4.2.

The main idea tool here is to write the torus as R2/Z2. Tiling the plane with this drawing

of the graph, one obtains an infinite planar graph on which we can play a parallel, modified

game, to obtain a winning strategy on the original graph.

More generally, suppose G is a connected graph which can be embedded on a surface

with orientable genus g. Quilliot [84] showed that c(G) ≤ 2g+3. Schroeder [91] proved that
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c(G) ≤
⌊︁
3g
2

⌋︁
+ 3. Bowler et al. [23] showed that c(G) ≤ 4g

3
+ 10

3
. Erde and Lehner [40] have

announced a proof that c(G) ≤
(︁
3−

√
3 + o(1)

)︁
g. Schroeder [91] has conjecture an upper

bound of g+3, which would be achieved if each cop had a strategy to protect a cycle which

is not homotopic to a point, as the removal of such a cycle would reduce the genus of the

graph (the base case being planar graphs). Mohar [22] has conjectured that c(G) ≤ g
1
2
+o(1),

based on a lower bound which comes from certain random graphs.

There are also some bounds depending on the non-orientable genus. The first such bound

is by Andreae [7], and uses Theorem 1.4.4 applied to complete minors. Clarke et al. [32] have

essentially reduced the problem to orientable genus (at least asymptotically), by showing that

the upper bound for non-orientable genus g is at most the upper bound for orientable genus

g− 1. Similarly, the upper bound for non-orientable genus g is at most the upper bound for

orientable genus 2g + 1.

One of the applications of our results in Chapter 5 will be improving the upper bound on

the cop number of linklessly embeddable graphs from 9 to 6 (the former is a direct application

of Theorem 1.4.4 to one of the graphs in the Petersen family).

We have introduced topological minors earlier in this chapter. Joret et al. [53] have noted

that it is a consequence of Andreae’s work [6, 7] that the cop number of the class of graphs

forbidding H as a topological minor is only bounded if H has maximum degree at most 3.

We have noted in Lemma 1.1.9 that for these graphs it is equivalent to forbid H as a minor

or as a topological minor.

Motivated by Andreae’s work, Joret et al. [53] have characterized the graphs H for which

the classes of H-induced-subgraph-free or H-subgraph-free graphs are bounded. Although

we will not expand on this topic here, some relevant references are [30, 52, 62, 66, 67, 79,

95, 96, 97, 100].

We close this section by reviewing Meyniel’s conjecture, which is the most famous con-

jecture in the field. Although it is not directly related to forbidding minors, we will mention

it in Section 5.5. Here, we wish to bound the cop number of general graphs: we want a
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bound which depends only on the order of the graph.

Conjecture 1.4.5 (Meyniel’s conjecture[42]). If G is a connected graph on n vertices, then

c(G) = O(
√
n).

Suppose G is a connected graph on n vertices. Frankl [42] showed that c(G) ≤ (1 +

o(1))n log logn
logn

. The idea is as follows. If the graph has high maximum degree, place a cop on

a vertex of maximum degree to guard its neighbourhood. Otherwise, by the Moore bound

the graph necessarily has large diameter, so we can apply Lemma 1.4.3 to guard a long

path. In both cases, we can reduce the number of vertices in the graph by using one cop,

and we induct. Chiniforooshan [29] improved this bound to O
(︂

n
logn

)︂
. The idea is similar,

however here the tool is a variation of Lemma 1.4.3 in which it is proved that a group of 5

cops can guard a geodesic caterpillar (i.e. guard the path, as well as all vertices adjacent to

it). Currently, the best known upper bound is n
2−(1+o(1))

√
logn , which was proved by Scott and

Sudakov [92] and Lu and Peng [63] using probabilistic arguments.

We note that this conjecture cannot be improved, as there exists graphs with cop number

Ω(
√
n), such as incidence graphs of projective planes [80] and other types of graphs based

on designs [16], and Cayley graphs [27].

Meyniel’s conjecture is known to hold for some classes of graphs, such as random graphs

[81, 82], Cayley graphs [25, 27], graphs of diameter 2 [63, 104], and of course the many classes

of graphs for which the cop number is simply bounded, such as the ones mentioned above.

The problem of upper bounding the cop number by a function of the order of the graph

can be reformulated as follows: what is the order of the smallest graph with cop number at

least k. This question was first asked by Andreae [7]. For small graphs, it has been shown

that the smallest graph with cop number 3 is the Petersen graph [7, 11], and there are no

graphs with cop number 4 on 18 vertices or fewer [101] (the Robertson graph [85], on 19

vertices, has cop number 4 [7]).
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1.4.2 Graph burning

Graph burning is a process which models the spread of information in networks. It was

defined by Bonato et al. [19, 20, 90]. However it had also independently previously appeared

in a paper of Alon [5], the question being asked at Intel by Brandenburg and Scott, in

this case relating to the transmission of information between processors. The game goes as

follows. Suppose we wish to burn every vertex of a graph G. At the start of the game, no

vertex is burning. However, once a vertex has begun burning, it will remain burning until

the end of the game. At every turn, we can choose a new vertex to burn. Furthermore,

at every turn, every vertex adjacent to a vertex which was previously burning also begins

burning.

We would like to know how long it takes for us to burn all vertices of G, given an optimal

strategy. The burning number of G, denoted b(G), is the smallest number of turns required

to burn all vertices of G. It is easily seen that this is fundamentally a covering problem: if

the game lasts k turns, the vertices which are eventually burned by the fire we started at the

vertex v at the i-th turn is exactly B(v, k − i). Hence, b(G) can be defined as the smallest

integer k such that there exists v1, . . . , vk ∈ V (G) such that V (G) =
⋃︁k

i=1B(vi, k − i).

We begin with a few simple bounds on the burning number of specific types of graphs.

For instance, if G is the complete graph Kn on n ≥ 2 vertices, then b(G) = 2, since B(v, 1) =

V (G) for any vertex v.

At the other extreme, if G is an n-vertex graph with no edges, then b(G) = n, given

that we will have to manually burn every vertex of the graph. This last case is somewhat

uninteresting, as the graph is disconnected. For this reason, most of the literature is restricted

to the burning number of connected graphs. We note that there is some interesting work

on disconnected graph, for instance [21], although it is mostly used to derive bounds for

connected graphs, in this case spiders.

Alon [5] showed that the burning number of the d-dimensional hypercube is
⌈︁
d
2

⌉︁
+ 1. In

this case, the optimal strategy is curiously to, after burning an arbitrary vertex, burn the
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vertex opposite to it on the hypercube, and then do nothing (burning other vertices does

not help).

In their original paper, Bonato et al. [20], show the following result for paths Pn (on n

vertices).

Theorem 1.4.6 ([20]). If n ∈ Z≥0, then b(Pn) = ⌈
√
n⌉.

As the proof is simple and quite informative for our treatment of the topic, we reproduce

it here. The main idea is that on a paths, the optimal cover is to always place the balls to

be disjoint (at least on paths which for which the order is a square number), which is not

true in general.

Proof. We first show that b(Pn) ≤ ⌈
√
n⌉. We first note that we may suppose that

√
n is

an integer. Indeed, if n′ ≤ n, a cover of Pn with balls of radii 0, . . . , k − 1 can directly be

converted into a cover of Pn′ , by choosing an embedding of Pn′ into Pn (say, by identifying

an end vertex), and placing the balls at the same positions on Pn′ as they are on Pn, except

for the positions which do exist on the shorter path, in which case the corresponding balls

are placed at the end vertex.

Hence, we may now write n = k2, and show the claim by induction on k. The base case

k = 0 is trivial: it takes no balls to cover the empty graph. Now, we prove the inductive

step. Given a path of length k2, place the ball of radius k − 1 at the k-th vertex from the

end of the path. Then, the set of vertices which are not covered form a path of length

k2 − (2(k − 1) + 1) = (k − 1)2. Hence, by induction the uncovered path can be covered by

balls of radii 0, . . . , k − 2. Using these balls as well as our ball of radius k − 1 shows that

b(Pk2) ≤ k, as desired.

We now show that b(Pn) ≥ ⌈
√
n⌉. Write k = b(Pn), and let v1, . . . , vk ∈ V (G) such that

V (G) =
⋃︁k

i=1B(vi, k − i). Note that on a path, |B(v, r)| ≤ 2r + 1 for every v ∈ V (G) and

r ∈ Z≥0, as B(v, r) induces a path containing v and all vertices at distance at most r in
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either direction. Hence,

n = |V (Pn)| =

⃓⃓⃓⃓
⃓

k⋃︂
i=1

B(vi, k − i)

⃓⃓⃓⃓
⃓ ≤

k∑︂
i=1

|B(vi, k − i)| ≤
k∑︂

i=1

(2(k − i) + 1)

= 2k2 + k − 2
k∑︂

i=1

i = 2k2 + k − 2 · k(k + 1)

2
= k2,

and thus k ≥
√
n. Given that k is necessarily an integer, we obtain that k ≥ ⌈

√
n⌉, as

desired.

Bonato et al. [20] have conjectured that paths are the extremal examples for the burning

number.

Conjecture 1.4.7 (Burning Number Conjecture). [20] If G is a connected graph on n

vertices, then b(G) ≤ ⌈
√
n⌉.

This conjecture has become the most important in the area of graph burning; we will now

survey the results related to this conjecture. If T is a spanning tree of G, then b(T ) ≥ b(G)

(removing edges can only hurt us), so it suffices to show this conjecture for trees.

We first note however that paths are not the only tight examples for this conjecture.

Bonato et al. [20] note that this is also tight for cycles (the extra edge does not help us).

Indeed, they show that the burning number of a graph is the minimum burning number over

all spanning trees of G.

A spider graph is a tree which contains exactly one vertex of degree greater than two.

We now show that there exists some spiders for which we cannot do better than the Burning

Number Conjecture. The following proof has appeared in [98].

Theorem 1.4.8 ([98]). For every k ∈ N, there exists a spider Tk such that b(Tk) ≥⌈︂√︁
|V (Tk)|

⌉︂
= k.

Proof. Let k ∈ N, and let Tk be the spider defined as follows: identify an end vertex of k copies

of a path on k vertices. Tk then has k(k−1)+1 vertices. Noting that
⌈︂√︁

k(k − 1) + 1
⌉︂
= k,

we must thus show that we cannot cover Tk with balls of radii 0, . . . , k − 2.
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Tk contains k leaves, which are all mutually at distance 2k−2 of each other. However, our

largest radius is k−2, which can cover a subgraph of diameter at most 2(k−2) = 2k−4. In

particular, none of our k− 1 balls may cover more than one of the k leaves. Hence, however

we place the balls, they will never cover all leaves.

The best general upper bound on the burning number has improved multiple times in

recent years. Let G be a connected graph on n vertices. In their original paper, Bonato et

al. [20] showed that b(G) ≤ 2 ⌈
√
n⌉ + 1, by relating the burning number to the distance-

k-dominating number. Bessy et al. [14] showed that b(G) ≤
√︂

12n
7

+ 3 and that b(G) ≤√︂
32
19

· n
1−ε

+
√︂

27
19ε

for every 0 < ε < 1. Land and Lu [59] showed that
⌈︂√︂

3n
2
+ 33

16
− 3

4

⌉︂
.

Finally, Bastide et al. [12] proved that b(G) ≤
√︂

4n
3
+ 1. Although we will not prove these

results here, we will prove the following intermediary result, which gives an idea to the type

of induction used.

Theorem 1.4.9 ([14]). If G is a connected graph on n vertices, then b(G) ≤ ⌈
√
2n⌉.

Proof. We show that b(G) ≤ k, where k is the smallest integer such that 2n ≤ k(k + 1)

(in particular, k ≤ ⌈
√
2n⌉. As in the proof of Theorem 1.4.6, we may further assume that

2n = k(k + 1) for some k, otherwise add arbitrary leaf vertices to G. Burning the obtained

graph directly translates to burning G.

We prove by induction on k that b(G) ≤ k. Again, the case k = 0 is trivial.

As mentioned earlier, we may suppose G is a tree. Let u be an arbitrary vertex of G and

let v be a vertex which is as far as possible from v. Let w be the vertex at distance k − 1

from w on the unique path from u to v (choose w to be v if this path is not long enough).

Let G′ be the subtree of G obtained by taking the component of G− w which contains u.

First note that G′ (if it is not empty) contains at most n − k vertices, as it does not

contain the path from w to v. Furthermore, note that every vertex not in G′ is covered by

the ball B(w, k − 1): this is a consequence of the fact that v was chosen to be as distant

from u as possible.
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Given that 2(n − k) = k(k + 1) − 2k = k2 − k = (k − 1)((k − 1) + 1), we may apply

induction to cover G′, which with B(w, k − 1) yields a cover of G, as desired.

In this proof, with balls of radii 0, . . . , k − 1, we can burn approximately k2

2
vertices.

The approach was to take the biggest available radii r, burn a subtree of order roughly r,

and induct. Always choosing the largest radius is the most obvious approach, as it allows a

simple inductive hypothesis. However we can also do induction by maintaining a collection of

radii which are not necessarily consecutive numbers. For instance, in [59], given m available

radii (not necessarily 0, . . . ,m− 1), they prove that one can choose one of these radii, say r,

and remove a subtree of order r +
⌊︁
m−1
3

⌋︁
(this subtree must be chosen more carefully than

in the proof above). Thus, we can burn
∑︁k−1

m=0

⌊︁
m−1
3

⌋︁
≈ k2

6
more vertices than in the above

proof with the same radii 0, . . . , k− 1. If n ≈ k2

2
+ k2

6
, then n ≈

√︂
3n
2

. The proof in [12] uses

a similar idea, where with the ball of radius r they can burn r + m
2

vertices.

The following is another proof of Theorem 1.4.9, which was communicated to me by Alon.

Although it does not generalize to stronger results, it is quite elegant.

Proof. Consider the multigraph G′ obtained from G by doubling each edge. By construction,

every vertex of G′ has even degree, and so G′ is Eulerian: there is a circuit C of length 2n

which covers every edge of G′ exactly once. In particular, there exists a surjective homo-

morphism f : P2n → G′. We know by Theorem 1.4.6 that P2n can be covered with balls of

radius 0, . . . , 2n− 1. We can obtain a cover of G′ with balls of the same radii as follows: if

a ball of radius r is centered on u in P2n, center it at f(u) in G′. Given that f is surjective,

every vertex of G′ will be covered by one of the balls. To complete the proof, it suffices to

see that the same cover works for G: given that no additional adjacencies were added to

obtain G′ (only edge multiplicities are changed), the balls on G′ are the same as on G.

In Chapter 6, we will improve these results by showing that the Burning Number Con-

jecture holds asymptotically, that is b(G) ≤ (1 + o(1))
√
n.

We note that the Burning Number Conjecture is known to hold exactly for some graphs:
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spiders [35, 21], caterpillars (trees with a dominating path) [61], graphs with minimum degree

at least 23 [55], sufficiently large graphs with minimum degree at least 4 [12] and trees with

no vertices of degree 2 [72]. There are also specific bounds for other classes of graphs, such

as random graphs [70, 39] and graph products [70, 71].
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Part II

Minors and Hadwiger’s conjecture
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2
Limits of degeneracy for colouring

graphs with forbidden minors
Sergey Norin1, Jérémie Turcotte1

Motivated by Hadwiger’s conjecture, Seymour asked which graphs H have the property that

every non-null graph G with no H minor has a vertex of degree at most |V (H)|−2. We show

that for every monotone graph family F with strongly sublinear separators, all sufficiently

large bipartite graphs H ∈ F with bounded maximum degree have this property. None of the

conditions that H belongs to F , that H is bipartite and that H has bounded maximum degree
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can be omitted.

2.1 Introduction

In 1943, Hadwiger proposed the following conjecture relating the chromatic number and

complete minors.2

Conjecture 2.1.1 (Hadwiger’s conjecture [A9]). For every positive integer t every graph

with no Kt minor is (t− 1)-colourable.

Hadwiger’s conjecture is considered by many to be one of the most important open

problems in graph theory. It is a notoriously difficult problem; in particular, it generalizes

the Four Colour Theorem. Hadwiger’s conjecture is only known to be true for t ≤ 6. The

cases t ≤ 4 were proved by Hadwiger [A9]. The case t = 5 was proved by Appel and Haken as

a consequence of their famous proof of the Four Colour Theorem [A1, A2]. (The equivalence

between these two statements was established earlier by Wagner [A33].) The case t = 6 was

proved by Robertson, Seymour and Thomas [A26], also using the Four Colour Theorem.

See Seymour [A29] for a recent survey of results and open problems related to Hadwiger’s

conjecture.

In the 1980s, Kostochka [A14, A15] and Thomason [A32] proved that every graph with

no Kt minor is O(t
√
log t)-colourable, and the order of magnitude of their upper bound

remained unchanged until recently. In fact, Kostochka and Thomason established a stronger

result. They have shown that every graph G with δ(G) = Ω(t
√
log t) has a Kt minor, where

we use δ(G) to denote the minimum degree of a graph G. Equivalently, every non-null graph

with no Kt minor has a vertex of degree O(t
√
log t). A standard “degeneracy” inductive

argument implies that every graph with no Kt minor is O(t
√
log t)-colourable. Note that the

2All graphs in this paper are finite, simple and undirected. Given graph H and G, we say that H is
a minor of G and write H ⪯ G if a graph isomorphic to H can be obtained from a subgraph of G by
contracting edges. We denote the complete graph on t vertices by Kt. A k-colouring of a graph G is a
map c : V (G) → S for some set S of colours with |S| = k such that c(u) ̸= c(v) for every pair of adjacent
u, v ∈ V (G). A graph G is k-colourable if it admits a k-colouring.
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“easy” cases of Hadwiger’s conjecture (t ≤ 4) also follow via degeneracy, i.e. for t ≤ 4 every

non-null graph G with δ(G) ≥ t− 1 has a Kt minor.

The Kostochka-Thomason bound on the order minimum degree sufficient to force a Kt

minor cannot be improved [A14, A15, A8] and the possibility that colouring graphs with

no Kt minor requires Ω(t
√
log t) colours was left open, until recently, when the “degeneracy

barrier” was broken by Postle, Song and the first author [A23]. Even more recently, Delcourt

and Postle [A4] have shown that graphs with no Kt minor are O(t log log t)-colourable.

Given the apparent difficulty of Hadwiger’s conjecture, many relaxations have been con-

sidered. We are interested in the following relaxation proposed by Seymour. Let v(H) denote

the number of vertices of a graph H.

Conjecture 2.1.2 (Seymour [A29, A30]). For every graph H with v(H) = t, every graph

with no H minor is (t− 1)-colourable.

As H is a subgraph of Kt, the validity of Conjecture 2.1.2 for H is implied by Hadwiger’s

conjecture for t = v(H). Note further that Kt−1 has no H minor and is not (t−2)-colourable,

and so the number of colours in Conjecture 2.1.2 is optimal for every H. Woodall [A35] and

Seymour (in private communication) previously conjectured a more narrow weakening of

Hadwiger’s conjecture for H = Ks,t, where Ks,t is the complete bipartite graph with parts

of sizes respectively s and t.

Conjecture 2.1.2 is known to hold for some graphs H. Hendrey and Wood [A12] have

proved it when H is the Petersen graph. Lafferty and Song [A20, A19] have shown that Con-

jecture 2.1.2 holds for some graphs H on 8 and 9 vertices; see therein for further background

and references on Conjecture 2.1.2 for small H. Denote by K∗
s,t the graph obtained from

the complete bipartite graph Ks,t by making all the vertices in the part of size s pairwise

adjacent. Kostochka [A16] has shown that Conjecture 2.1.2 holds for H = K∗
s,t when t is

sufficiently large compared to s, and later proved [A13, Theorem 3] that t = Ω((s log s)3)

suffices. It follows that Conjecture 2.1.2 holds whenever H is bipartite and one of the parts

of the bipartition is sufficiently large compared to the other.
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In [A30], Seymour asked, in particular, for which graphs H does Conjecture 2.1.2 follow

from degeneracy.

Question 2.1.3 (Seymour [A30]). For which graphs H with v(H) = t does every non-null

graph with no H minor have a vertex of degree at most t− 2?

Let us say that H is a Hadwiger-amenable graph or an HA graph, for brevity, if the

answer to Question 2.1.3 is positive.

As noted in [A30], every graph G contains as a subgraph every tree of order δ(G) + 1. It

follows that trees are Hadwiger-amenable, but to the best of our knowledge no other general

classes of HA graphs were previously known. Let us note that if H is an HA graph then not

only is every graph G with no H minor (t− 1)-colourable, but is also (t− 1)-list-colourable

(and even the stronger (t−1)-DP-colourable), while many other methods establishing bounds

for colouring are harder to extend to list-colouring. Hadwiger’s conjecture, in particular, is

known to be false for list colouring [A3] (see also [A31]).

Our main result states that every sufficiently large bipartite graph with bounded maxi-

mum degree and good separation properties is an HA graph. We will also show that none

of these conditions can be entirely dismissed, hence providing a very rough characterization

of large HA graphs.

Before stating our main result more precisely, let us introduce necessary definitions and

notation, some of which has been already mentioned above. We will use the notation N =

{1, 2, . . . } and [n] = {1, . . . , n} (for n ∈ N). Let G be a graph. We write v(G) and e(G) for,

respectively, the number of vertices and edges of G. If S ⊆ V (G), then G[S] will denote the

subgraph of G induced by S and G−S will denote the subgraph of G induced by V (G) \S.

We denote by δ(G) and ∆(G) the minimum degree and maximum degree of G, respectively.

A (proper) separation of a graph G is a pair of subsets (A,B) of vertices of G such that

A ∪ B = V (G), A ⊈ B, B ⊈ A and no edge of G has one end in A − B and the other in

B − A. The order of the separation (A,B) is |A ∩ B|. A separation is said to be balanced

if |A|, |B| ≤ 2
3
v(G). A graph family F has strongly sublinear separators if F is closed under
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taking subgraphs and there exists c > 0 and 0 < β < 1 such that every graph G ∈ F has a

balanced separation of order at most cv(G)β.

We are now ready state our main result.

Theorem 2.1.4. For every graph family F with strongly sublinear separators and every

∆ ∈ N, there exists M = M2.1.4(F ,∆) satisfying the following. If H ∈ F is a bipartite graph

with ∆(H) ≤ ∆ and v(H) ≥ M then H is Hadwiger-amenable. That is, if G is a non-null

graph with δ(G) ≥ v(H)− 1, then H is a minor of G.

In Section 2.7, we show that none of the conditions of Theorem 2.1.4 can be omitted,

while the rest of the paper is occupied by the proof Theorem 2.1.4. We outline the proof

of Theorem 2.1.4 in Section 2.2, and derive it from a number of technical results, which are

proved in Sections 2.3–2.6.

2.2 Proof outline

In this section, we present the tools used in the proof of Theorem 2.1.4 and outline the proof.

2.2.1 Tools

Models

We will often certify that a graph H is a minor of a graph G by exhibiting a model of H in

G. A model µ of H in G assigns to every vertex of v ∈ V (H) a set µ(v) of vertices of G such

that

• µ(u) ∩ µ(v) = ∅ for every pair of distinct u, v ∈ V (H),

• G[µ(v)] is connected for every v ∈ V (H), and

• for every edge uv ∈ E(H) there exist u′ ∈ µ(u) and v′ ∈ µ(v) such that u′v′ ∈ E(G).

For U ⊆ V (H), let µ(U) =
⋃︁

v∈U µ(v) for brevity. Note that the last two conditions in

the above definition of a model can be replaced by the following single condition.
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• G[µ(U)] is connected for every U ⊆ V (G) such that H[U ] is connected.

The following properties of models are well-known and not difficult to verify.

Lemma 2.2.1. If H and G are graphs, then

(a) H ⪯ G if and only if there exists a model of H in G, and

(b) if F ⊆ E(H), µ is a model of H − F in G and {Pf}f∈F is a collection of paths in G

such that

• Puv has one end in µ(u), the other in µ(v), and is otherwise disjoint from µ(V (H))

for every uv ∈ F , and

• the paths {Pf}f∈F are pairwise internally vertex-disjoint,

then H ⪯ G.

Density

While Theorem 2.1.4 is concerned with the minimum degree condition necessary to guarantee

existence of given graph as a minor, the average degree conditions have been much more

thoroughly investigated and provide a starting point for our argument.

We define the density of a non-null graph G as d(G) = e(G)
v(G)

. We note that d(G) is half

the average degree of G, and so δ(G)
2

≤ d(G). The extremal function of a graph H, denoted

by c(H), as the supremum of densities of H-minor-free graphs, i.e. H ⪯ G for every non-null

graph G with d(G) > c(H).

One of our main tools is the following result obtained independently by Haslegrave, Kim

and Liu [A10]3, and by Hendrey, Norin and Wood [A11].

Theorem 2.2.2 ([A10, Theorem 2.2], [A11, Theorem 1.1]). For every graph family F with

strongly sublinear separators and every ε > 0, there exists M = M2.2.2(F , ε) such that

c(H) ≤ (1 + ε)
v(H)

2
3Haslegrave, Kim and Liu [A10] state their theorem for proper minor-closed families, but their proof holds

for families with strongly sublinear separators.
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for every bipartite graph H ∈ F and v(H) ≥ M .

Theorem 2.2.2 implies that a slight weakening of Theorem 2.1.4 holds with the condition

δ(G) ≥ v(H)− 1 replaced by δ(G) ≥ (1 + ε)v(H). At several points in the proof, we will be

able to replace G or a subgraph of G by a denser minor and apply Theorem 2.2.2.

Using strongly sublinear separators

For s ∈ N, let Fs be the class of all graphs with component size (that is, the number of

vertices in the component) at most s. Then, it is clear that Fs is a family with strongly

sublinear separators. We will use this to apply Theorem 2.2.2 to graphs with bounded

component size.

In addition to Theorem 2.2.2 we use several other technical results from [A11]. The

following result states that graphs in families with strongly sublinear separators are in fact

always close to graphs with bounded component size. It is essentially [A11, Lemma 7.3], but

as the statement is slightly different we include its proof in Section 2.A for completeness.

Lemma 2.2.3. For every graph family F with strongly sublinear separators and every δ > 0

there exists s = s2.2.3(F , δ) such that for any graph H ∈ F there exists a graph H ′ and

F ⊆ E(H ′) such that

• H ⪯ H ′,

• v(H) ≤ v(H ′) ≤ (1 + δ)v(H),

• ∆(H ′) ≤ ∆(H) + 2,

• |F | ≤ δv(H),

• for every component J of H ′ − F we have v(J) ≤ s and J is isomorphic to a subgraph

of H, and

• no edge of F has both ends in the same component of H ′ − F .
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Note that in Lemma 2.2.3, H ′ is not necessarily bipartite even if H is bipartite. However,

H ′ − F is bipartite if H is bipartite. By Lemma 2.2.3, in the proof of Theorem 2.1.4 it

suffices to show that H ′ ⪯ G for H ′ satisfying the conditions of the lemma. We do so by

building a model of H ′ − F and then, given some appropriate collection of paths, extending

it to all of H ′ using Lemma 2.2.1(b).

Connectivity

To extend a given model we need the graph H to satisfy certain connectivity assumptions.

The actual assumptions that are both usable and attainable are somewhat technical. Let us

now introduce them.

Let d, k ≥ 0, let G be a graph and let X ⊊ V (G). We say that a pair (G,X) is (d, k)-dense

if

• degG(v) ≥ d for every v ∈ V (G)−X,

• for every separation (A,B) of G of order at most k we have A \B ⊆ X or B \A ⊆ X.

For brevity, if d = 0 we can omit the first condition, that is we write that (G,X) is a k-dense

pair.

Lemma 2.2.4. If k > 0 and G is a non-null graph, then there exists a subgraph G′ of G and

X ⊊ V (G′) such that |X| ≤ 2k and (G′, X) is (δ(G), k)-dense.

Proof. If G admits no separation of order less than 2k then (G, ∅) is (δ(G), k)-dense. Thus

we assume that there exists a separation (A,B) of G of order less than 2k and choose such

a separation with A minimal.

We claim that (G[A], A ∩ B) is (δ(G), k)-dense. Clearly degG[A](v) = degG(v) ≥ δ(G)

for every v ∈ V (G[A]) \ (A ∩ B), and so we assume for a contradiction that there exists a

separation (A′, B′) of G[A] with |A′ ∩ B′| ≤ k such that neither of (A′ \ B′) \ (A ∩ B) =

A′ \ (B ∪B′) and (B′ \ A′) \ (A ∩B) = B′ \ (A′ ∪B) is empty. As

|B ∩ (A′ \B′)|+ |B ∩ (B′ \ A′)| ≤ |A ∩B| < 2k,
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we assume without loss of generality that |B ∩ (A′ \ B′)| < k. Then, (A′, B ∪ B′) is a

separation of G of order

|A′ ∩ (B ∪B′)| = |A′ ∩B′|+ |B ∩ (A′ \B′)| < 2k.

Furthermore, A′ ⊊ A given that (A′, B′) is a separation of G[A]. Thus (A′, B ∪ B′)

contradicts the choice of (A,B). This contradiction implies the claim and thus the lemma.

By Lemma 2.2.4, we can replace the graph G in Theorem 2.1.4 by a (v(H)− 1, εv(H))-

dense pair (G′, X) with |X| ≤ 2εv(H) for any ε > 0.

In one of the cases of the proof of our main result, the collections of paths needed to

extend models as discussed in the previous subsection will be found by using the following

lemma, which is a slight modification of [A11, Lemma 6.5] that involves our non-standard

connectivity condition. The proof of [A11, Lemma 6.5] translates to the setting we need

with trivial changes4.

Lemma 2.2.5 ([A11, Lemma 6.5]). For every ε > 0, there exists δ = δ2.2.5(ε) > 0 satisfying

the following. If (G,X) is an εv(G)-dense pair, then there exists Z ⊆ V (G) with |Z| ≤ εv(G)

such that for all p1, q1, . . . pt, qt ∈ V (G) \ (X ∪ Z) with t ≤ δ v(G), there exist a collection of

pairwise internally vertex disjoint paths P1, . . . , Pt in G such that Pi has ends pi and qi and

V (Pi) \ {pi, qi} ⊆ Z for every 1 ≤ i ≤ t.

In another case of the proof, we will instead use the following result allowing us to build

a minor from pieces, the proof of which also uses this idea of obtaining the model by finding

appropriate paths between models of subgraphs. We will prove this theorem in Section 2.6.
4In the proof of [A11, Lemma 6.5], one uses Menger’s theorem [A22] and the fact that the connectivity

of the graph is at least εv(G) to find at least εv(G) paths between a pair of non-adjacent vertices u, v. Here,
instead of using connectivity, for such u, v /∈ X we use the εv(G)-density to obtain that there is no vertex-cut
separating u and v with order at most εv(G), and again apply Menger’s theorem. The rest of the proof is
identical.
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Theorem 2.2.6. There exists C = C2.2.6 ∈ N satisfying the following. Let H be a graph, let

F ⊆ E(H) be such that H − F is a disjoint union of graphs H1, . . . , Hk and such that no

edge of F has both ends in the same component of H − F . If G is a graph and G1, . . . , Gk

are pairwise vertex-disjoint subgraphs of G such that

• d(Gi) ≥ C(c(Hi) + |F |) for every i ∈ [k], and

•
(︂
G, V (G) \

⋃︁k
i=1 V (Gi)

)︂
is 2|F |-dense,

then H ⪯ G.

2.2.2 Proof outline

We will prove the following more technical version of Theorem 2.1.4.

Theorem 2.2.7. For every ∆ ∈ N, there exists α = α2.2.7(∆) > 0 such that for every graph

family F with strongly sublinear separators and every ε > 0 there exists M = M2.2.7(F ,∆, ε)

such that the following holds. If H ∈ F is a bipartite graph with ∆(H) ≤ ∆ and v(H) ≥ M

and (G,X) is a (v(H)− 1, εv(H))-dense pair such that |X| ≤ αv(H), then H ⪯ G.

Theorem 2.1.4 follows directly from Theorem 2.2.7 by setting M2.1.4(F ,∆) = M2.2.7

(︂
F ,∆, α2.2.7(F ,∆)

2

)︂
and applying Lemma 2.2.4 to G with k = α2.2.7(F ,∆)

2
v(H) to obtain (G′, X) as noted above.

The proof of Theorem 2.2.7 is separated into three cases. When v(G) is only slightly

larger then v(H) we use the following lemma, which we prove in Section 2.3, to find H as a

subgraph of G.

Lemma 2.2.8. Let ∆ ∈ N, H be a bipartite graph with ∆(H) ≤ ∆, G be a graph and

X ⊊ V (G) be such that degG(v) ≥ v(H)− 1 for every v ∈ V (G) \X. If

v(G) ≤
(︃
1 +

1

4∆(∆ + 1)

)︃
v(H)− 1

and

|X| ≤ v(H)

(∆ + 1)(∆2 + 1)
,
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then H is isomorphic to a subgraph of G.

When v(G) is somewhat larger but still within a constant factor of v(H) we use the

following result, which we prove in Section 2.4, in combination with Lemmas 2.2.3 and 2.2.5.

Theorem 2.2.9. For every ∆ ∈ N, ν > 0, there exists µ = µ2.2.9(∆, ν) > 0 such that

for every s ∈ N there exists M = M2.2.9(∆, ν, s) such that if H is a bipartite graph with

∆(H) ≤ ∆, maximum component size s and v(H) ≥ M , and G is a graph such that δ(G) ≥

(1− µ)v(H) and v(G) ≥ (1 + ν)v(H), then H is a minor of G.

Finally, when v(G) is much larger that v(H), we use the following density increment

lemma in combination with Lemma 2.2.3 and Theorem 2.2.6.

Theorem 2.2.10. There exists ε = ε2.2.10 > 0 such that for every K ∈ N there exist

ε′ = ε′2.2.10(K) and C = C2.2.10(K) ≥ 1 such that for every D ≥ C and every G such that

δ(G) ≥ D and v(G) ≥ CD, then either

1. G contains vertex-disjoint subgraphs J1, . . . , JK such that v(Ji) ≤ D
ε

and d(Ji) ≥ εD

for every i ∈ [K], or

2. G contains a minor H such that d(H) ≥ (1 + ε′)D
2
.

We are now ready to derive Theorem 2.2.7 from the above-mentioned results.

Proof of Theorem 2.2.7. We begin by introducing the necessary parameters. Let β = ε2.2.10
4C2.2.6

and K = ⌈2/β⌉.

Given ∆, let ν = 1
8(∆+1)(∆2+1)

and α = min
(︂

ν
3
, µ2.2.9(∆+2,ν)

3
,

ε′2.2.10(K)

3(1+ε′2.2.10(K))

)︂
. Let γ =

(1+ε′2.2.10(K))(1−2α)−1

2
; note that γ > 0 by choice of α.

Given F , ε, let ε′ = min
(︂

ε
C2.2.10(K)

, α
C2.2.10(K)

)︂
, δ = min

(︂
ν

3(1+ν)
, α
2(1−3α)

, δ2.2.5(ε
′), ε

2
, β
)︂
,

s = s2.2.3(F , δ) and finally

M = max

(︄
1

1
4∆(∆+1)

− 1
4(∆+1)(∆2+1)

,
2

α
,M2.2.9(∆ + 2, ν, s),

Ks

Kβ − 1− δ
,
C2.2.10(K)

1− 2α
,M2.2.2(F , γ), K(M2.2.2(Fs, 1) + s)

)︄
.
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Given H and (G,X) as in the statement, we show that H ⪯ G. As mentioned earlier,

we divide the proof into three cases depending on the ratio between v(G) and v(H).

Case 1: v(G) ≤ (1 + 2ν)v(H).

Given that

v(G) ≤ (1 + 2ν)v(H) =

(︃
1 +

1

4(∆ + 1)(∆2 + 1)

)︃
v(H) ≤

(︃
1 +

1

4∆(∆ + 1)

)︃
v(H)− 1,

where the last inequality follows by choice of M , and

|X| ≤ αv(H) ≤ νv(H) ≤ v(H)

(∆ + 1)(∆2 + 1)
,

the conditions of Lemma 2.2.8 are satisfied. Hence, H is isomorphic to a subgraph of G, and

so H ⪯ G.

For the remaining two cases, apply Lemma 2.2.3 with the above choice of δ to H to obtain

H ′ and F ⊆ E(H ′) such that H ⪯ H ′, v(H) ≤ v(H ′) ≤ (1 + δ)v(H), ∆(H ′) ≤ ∆(H) + 2 ≤

∆+2, |F | ≤ δv(H), for every component J of H ′ −F we have v(J) ≤ s and J is isomorphic

to a subgraph of H (in particular, H ′ − F is bipartite), and no edge of F has both ends in

the same component of H ′ − F .

Case 2: (1 + 2ν)v(H) ≤ v(G) ≤ C2.2.10(K)v(H).

Given that (G,X) is εv(H)-dense and ε′v(G) ≤ ε′C2.2.10(K)v(H) ≤ εv(H), it is also

ε′v(G)-dense. Apply Lemma 2.2.5 with ε′ instead of ε to (G,X) to obtain Z satisfying the

conditions of the lemma. In particular,

|Z| ≤ ε′v(G) ≤ ε′C2.2.10(K)v(H) ≤ αv(H).
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Let G′ = G− (X ∪ Z). Then |X ∪ Z| ≤ |X|+ |Z| ≤ 2αv(H) ≤ 2
3
νv(H) and so

v(G′) = v(G)− |X ∪ Z| ≥
(︃
1 +

4

3
ν

)︃
v(H) ≥ (1 + ν)(1 + δ)v(H) ≥ (1 + ν)v(H ′),

and

δ(G′) ≥ δ(G)− |X ∪ Z| ≥ (1− 2α) v(H)− 1 ≥
(︃
1− 5

2
α

)︃
v(H) ≥ (1− 3α)(1 + δ)v(H)

≥ (1− µ2.2.9(∆ + 2, ν))v(H ′),

where the fourth inequality follows by choice of M . Furthermore, v(H ′−F ) ≥ v(H) ≥ M ≥

M2.2.9(∆ + 2, ν, s).

Thus by Theorem 2.2.9 applied to the graph H ′ −F in place of H, and G′ in place of G,

there exists a model µ of H ′ − F in G′. As |F | ≤ δv(H) ≤ δ2.2.5(ε
′)v(G) and Z was chosen

to satisfy the conditions of Lemma 2.2.5, there exist pairwise internally vertex disjoint paths

{Puv}uv∈F in G, such that for every edge uv ∈ F the path Puv has one end in µ(u) the other

in µ(v) and is otherwise disjoint from V (G′) and so from µ(V (H)). Thus by Lemma 2.2.1(b)

there exists a model of H ′ in G, and so H ⪯ H ′ ⪯ G, as desired.

Case 3: C2.2.10(K)v(H) ≤ v(G).

Let H1, . . . , HK be disjoint subgraphs of H ′−F such that for every i ∈ [K], Hi is a union

of connected components of H ′−F and v(Hi) ≤ βv(H), and then subject to these conditions∑︁K
i=1 v(Hi) is maximal, and subject to this condition maxi,j∈[K] |v(Hi)− v(Hj)| is minimal.

We first claim that v(H ′) =
∑︁K

i=1 v(Hi). Suppose otherwise for a contradiction that this

is not the case, that is at least one component J of H ′ − F is not in any of the H1, . . . , HK .

Given that v(J) ≥ s, we know that for every i ∈ [K], v(Hi) > βv(H)− s (otherwise J could

be added to Hi). This implies that (1+δ)v(H) ≥ v(H ′) >
∑︁K

i=1 v(Hi) > K(βv(H)−s), from

which it follows that v(H) < Ks
Kβ−1−δ

since Kβ − 1− δ ≥ 1− δ > 0. This is a contradiction

to the choice of M . This finishes the proof of the claim.
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Let G′ = G−X and D = (1− 2α)v(H). Note that D ≥ C2.2.10(K) by choice of M . We

have that

v(G′) = v(G)− |X| ≥ C2.2.10(K)v(H)− αv(H) ≥ C2.2.10(K)(1− 2α)v(H) = C2.2.10(K)D

and

δ(G′) ≥ δ(G)− |X| ≥ v(H)− 1− αv(H) ≥ (1− 2α)v(H) = D,

where the last inequality follows by choice of M .

Hence by Theorem 2.2.10 applied to G′ either

1. G′ contains vertex-disjoint subgraphs G1, . . . , GK such that d(Gi) ≥ ε2.2.10(1−2α)v(H)

for every i ∈ [K], or

2. G′ contains a minor G′′ such that d(G′′) ≥ (1 + ε′2.2.10(K))(1− 2α) v(H)
2

> (1 + γ) v(H)
2

.

Given that v(H) ≥ M ≥ M2.2.2(F , γ), Theorem 2.2.2 yields that c(H) ≤ (1 + γ) v(H)
2

.

Thus if (2) holds we have H ⪯ G′′ ⪯ G′ ⪯ G.

Suppose on the other hand note that (1) holds. By the last condition in the choice of the

subgraphs, for every i, j ∈ [K] we have |v(Hi)−v(Hj)| ≤ s, since every component of H ′−F

has order at most s (if this is not the case for some pair, transfer a component from the

largest of the two subgraphs to the smallest). As the average order of the Hi is v(H′)
K

≥ v(H)
K

,

this implies that v(Hi) ≥ v(H)
K

− s ≥ M
K

− s ≥ M2.2.2(Fs, 1) for every i ∈ [K]. Given that

H ′ − F has bounded component size s, H1, . . . , HK ∈ Fs. Hence, Theorem 2.2.2 yields that

c(Hi) ≤ (1 + 1) v(Hi)
2

= v(Hi) for every i ∈ [K]. Then

d(Gi) ≥ ε2.2.10(1− 2α)v(H) ≥ 2C2.2.6βv(H) ≥ C2.2.6(v(Hi) + δv(H)) ≥ C2.2.6(c(Hi) + |F |)

for every i ∈ [K]. Furthermore, (G,X) is εv(H)-dense and so
(︂
G, V (G) \

⋃︁K
i=1 V (Gi)

)︂
is |F |-dense given that 2|F | ≤ 2δv(H) ≤ εv(H) and X ⊆ V (G) \

⋃︁K
i=1 V (Gi). Thus by

42



Theorem 2.2.6 (applied to H ′ instead of H), H ⪯ H ′ ⪯ G, finishing the proof in this

case.

Let us highlight why, using our methods, we must split the proof in three cases. The

obstacles are broadly as follows.

• Lemma 2.2.8 is only applicable when v(G) is very close to v(H).

• Theorem 2.2.9 is not applicable when v(G) is too close to v(H).

• Lemma 2.2.5 requires an ε′v(G)-dense pair, however under our hypothesis we only have

an εv(H)-dense pair, so we cannot use this lemma if v(G) is arbitrarily large compared

to than v(H).

• Our use of Theorem 2.2.6 requires us to find a large number K of pieces with good

density, which we obtain using Theorem 2.2.10. The latter requires that G be much

larger than D; in the proof, D is only slightly larger than v(H).

2.3 Small case

In this section, we prove Lemma 2.2.8, which we restate for convenience.

Lemma 2.2.8. Let ∆ ∈ N, H be a bipartite graph with ∆(H) ≤ ∆, G be a graph and

X ⊊ V (G) be such that degG(v) ≥ v(H)− 1 for every v ∈ V (G) \X. If

v(G) ≤
(︃
1 +

1

4∆(∆ + 1)

)︃
v(H)− 1

and

|X| ≤ v(H)

(∆ + 1)(∆2 + 1)
,

then H is isomorphic to a subgraph of G.
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Proof. If follows from the fact that at least one vertex of G has degree at least v(H)−1 that

v(G) ≥ v(H) ≥ (∆ + 1)(∆2 + 1)|X| > (∆ + 1)|X|.

Let Y = V (G) \X, and if possible let X0 ⊆ X be chosen maximal such that |NG(X0) ∩

Y | < ∆|X0|. In particular,

|NG(X0) ∩ Y | < ∆|X0| ≤ ∆|X| < v(G)− |X| = |Y |.

Otherwise, let X0 = ∅. In both cases, this implies there exists v ∈ Y with no neighbours in

X0. and so degG(v) ≤ v(G−X0)− 1. It then follows from the lower bound on degG(v) from

the statement that

v(G−X0) ≥ v(H).

Then, let X ′ = X \X0.

We construct an injective homomorphism ϕ : V (H) → V (G \ X0), that is an injection

such that ϕ(u)ϕ(v) ∈ E(G) for every uv ∈ E(H). The existence of such an injection implies

the lemma.

We first choose (A,B) a bipartition of H such that |A| ≤ |B| and subject to this |B| is

minimum. We claim that |A| ≥ v(H)
∆+1

. If not, then |B| ≥ v(H)− |A| >
(︁
1− 1

∆+1

)︁
v(H) > |A|

and in particular B contains no isolated vertices by our choice of the bipartition. Thus

∆|A| ≥ e(H) ≥ |B| = v(H)− |A|, implying the desired inequality.

We then choose a set of vertices in A to be mapped to X ′ as follows. Let A0 ⊆ A be

chosen so that |A0| = |X ′| and no two vertices of A0 have a common neighbour. Such a

choice is possible. Indeed, otherwise then there exists A0 ⊆ A such that |A0| < |X ′| ≤ |X|

and every vertex in A − A0 shares a neighbour with a vertex in A0. As at most ∆2|A0|
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vertices of A \ A0 share neighbours with vertices in A0, we have

v(H)

∆ + 1
− |X| ≤ |A| − |X| ≤ |A \ A0| ≤ ∆2|A0| < ∆2|X|,

implying |X| > v(H)
(∆+1)(∆2+1)

, a contradiction. Define ϕ|A0 to be an arbitrary bijection A0 →

X ′.

By the choice of X0 we have |NG(S) ∩ Y | ≥ ∆|S| for every S ⊆ X ′, and so by Hall’s

theorem (applied ∆ times) there exist pairwise disjoint sets (Yv)v∈X′ such that Yv ⊆ NG(v)∩

Y and |Yv| = ∆ for every v ∈ X ′. Hence, we can extend the injection ϕ to B so that

ϕ(NG(v) ∩B) ⊆ Yv ⊆ NG(v) ∩ Y for every v ∈ A0.

Let A′ = A \ A0. It remains to define ϕ on A′. Let Y ′ = Y \ ϕ(B). For every v ∈ A′ let

Yv =
⋂︂

w∈NH(v)∩B

NG(ϕ(w)) ∩ Y ′.

In other words, Yv is the set of possible choices for extending ϕ to v in Y ′ for ϕ to still be a

homomorphism. In order for ϕ to also be an injection, our goal is then find a set of distinct

representatives of the set system (Yv)v∈A′ .

By Hall’s theorem such a system of representatives exists as long as

⃓⃓⃓⃓
⃓⋃︂
v∈S

Yv

⃓⃓⃓⃓
⃓ ≥ |S| (2.1)

for every S ⊆ A′.

We thus finish the proof by verifying that Hall’s condition holds. First note that

|Y ′| = |Y | − |ϕ(B)| = (v(G−X0)− |X ′|)− |B| ≥ v(H)− |B| − |X ′| = |A| − |X ′|.

First suppose |S| ≤ |A|
2

. We can rewrite Yv = Y ′ \
(︂⋃︁

w∈NG(v)∩B(Y
′ \NG(ϕ(w)))

)︂
for
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every u ∈ A′. Thus

|Yv| ≥ |Y ′| −
∑︂

w∈NH(v)∩B

|Y ′ \NG(ϕ(w))| ≥ |A| − |X ′| −
∑︂

w∈NH(v)∩B

|V (G) \NG(ϕ(w))|

≥ |A| − |X| −
∑︂

w∈NH(v)∩B

(v(G)− degG(ϕ(w))) ≥ |A| − v(H)

4(∆ + 1)
−∆(v(G)− v(H) + 1)

≥ |A| − v(H)

2(∆ + 1)
≥ |A|

2

≥ |S|,

as desired.

We now suppose that |S| > |A|
2

. We claim that
⋃︁

v∈S Yv = Y ′ and so that
⃓⃓⋃︁

v∈S Yv

⃓⃓
=

|Y ′| ≥ |A| − |X| = |A| − |A0| = |A′| ≥ |S|, as desired. It thus only remains to establish this

claim.

Suppose for a contradiction it does not hold, that is there exists S ⊆ A′ (with |S| > |A|/2)

such that u ∈ Y ′ but for which u ̸∈ Yv for every v ∈ S. Let B′ ⊆ B be the set of w ∈ B such

that ϕ(w) ∈ Y \NG(u). Then |B′| ≤ |Y \NG(u)| ≤ v(G)− deg(u) ≤ v(G)− v(H) + 1.

Note that every v ∈ S has a neighbour in B′ by the choice of S and u. It follows that

|S| ≤ |NH(B
′) ∩ A| ≤ ∆|B′| ≤ ∆(v(G)− v(H) + 1) ≤ v(H)

4(∆ + 1)
≤ |A|

4
,

a contradiction. This finishes the proof of the claim and thus of the lemma.

2.4 Minors with bounded component size

In this section, we prove Theorem 2.2.9, which allows us to construct large bipartite minors

with bounded component size.

Given a graph H, we say a graph G is H-free if G does not contain a copy of H, that

is a subgraph isomorphic to H. We now cite a density increment result of Krivelevich and

Sudakov [A17] for Ks,s-free graphs; note that a slightly weaker result of Kühn and Osthus
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[A18, Theorem 11] would be sufficient for our purposes.

Theorem 2.4.1 ([A17, Theorem 4.5]). For every s ∈ N≥2, there exists C = C2.4.1(s) > 0 such

that if a graph G is Ks,s-free, then it contains a minor J such that d(J) ≥ C · (d(G))1+
1

2(s−1) .

We are now ready to prove Theorem 2.2.9, which we restate for convenience.

Theorem 2.2.9. For every ∆ ∈ N, ν > 0, there exists µ = µ2.2.9(∆, ν) > 0 such that

for every s ∈ N there exists M = M2.2.9(∆, ν, s) such that if H is a bipartite graph with

∆(H) ≤ ∆, maximum component size s and v(H) ≥ M , and G is a graph such that δ(G) ≥

(1− µ)v(H) and v(G) ≥ (1 + ν)v(H), then H is a minor of G.

Proof. We begin by introducing the necessary parameters. We are given ∆, ν. Let ε > 0

small enough such that

(E1) ε < min
(︁

1
10
, ν
)︁

(E2) 1−ε2−4ε
1−2ε2

≥ 1− 1
3∆

,

(E3) 1− 6ε− 12ε
ν

≥ 3
4
,

(E4) (1− 2ε)(1 + ν)− (1− ε) > 0,

(E5) ν
1+ ν

2
> 8ε,

(E6)
(︂
1− 2ε(2+ν)

1−2ε2

)︂
≥ 3

4
,

(E7) (1+ν+2ε2)
1+ ν

2
> (1 + 2ε).

It is easy to verify that this is possible. Choose µ = ε2.

We are given s; we assume s ≥ 2 without loss of generality. Let M1 = M2.2.2(Fs,ε2)
2ε2

, M2

large enough that C2.4.1(s)
2

(︂
ε2M2

2

)︂ 1
2(s−1)

> (1+ε2), M3 =
2s
ε2

and finally M = max(M1,M2,M3).

Since v(H) ≥ M1 > M2.2.2(Fs, ε
2), by Corollary 2.2.2 we have that either G contains H

as a minor or d(G) ≤ c(H) ≤ (1 + ε2) v(H)
2

. We may assume the latter case since in the first

case the lemma holds. On the other hand, we have that d(G) ≥ δ(G)
2

≥ (1− ε2) v(H)
2

.

Let G0 be an induced subgraph of G with v(G0) maximum such that

(S1) v(G0) ≤ (1− 2ε2)v(H),

(S2) G0 contains a spanning subgraph isomorphic to H0, where H0 is a union of connected

components of H,
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and, subject to the above,

1. if v(G) ≥ (2 + ν)v(H), select G0 minimizing
∑︁

v∈V (G0)
degG(v), and

2. if (1 + ν)v(H) ≤ v(G) < (2 + ν)v(H), select G0 maximizing
∑︁

v∈V (G0)
degG0

(v).

This is always possible, given that the empty graph respects (S1) and (S2).

Denote G′ = G − V (G0). Our goal is to show that G′ contains H ′ = H − V (H0) as a

minor. If follows from (S2) that v(G0) = v(H0). Condition (S1) then implies that

v(H ′) = v(H)− v(H0) ≥ 2ε2v(H).

Since v(G0) = v(H0), every vertex in G′ has at most v(H0) neighbours outside of G′,

hence

δ(G′) ≥ (1− ε2)v(H)− v(H0) = (1− ε2)v(H)− (v(H)− v(H ′)) = v(H ′)− ε2v(H)

and d(G′) ≥ v(H′)−ε2v(H)
2

.

First, consider the case (1− 2ε2)v(H)− s ≥ v(G0). Then, G′ does not contain subgraphs

isomorphic to any of the components of H ′, as otherwise we could add the corresponding

induced subgraph of G′ to G0 without violating either (S2) or (S1), and so contradicting the

choice of G0. Since H is bipartite and has component size at most s, its components are

subgraphs of Ks,s. Therefore G′ has no subgraph isomorphic to Ks,s. By Theorem 2.4.1, G′

48



contains a minor J such that

d(J) ≥ C2.4.1(s) · (d(G′))1+
1

2(s−1)

≥ C2.4.1(s)

(︃
v(H ′)− ε2v(H)

2

)︃1+ 1
2(s−1)

≥ C2.4.1(s)

(︃
(2ε2 − ε2)v(H)

2

)︃ 1
2(s−1)

⎛⎝
(︂
1− ε2

2ε2

)︂
v(H ′)

2

⎞⎠
> (1 + ε2)

v(H ′)

2

by choice of M2. Since v(H ′) ≥ 2ε2v(H) ≥ 2ε2M1 = M2.2.2(Fs, ε
2), by Theorem 2.2.2 we

have that J contains H ′ as a minor. Hence, G′ contains H ′ as a minor, as desired.

It remains to consider the case (1 − 2ε2)v(H) − s ≤ v(G0) ≤ (1 − 2ε2)v(H). Note that

this implies that 2ε2v(H) ≤ v(H ′) ≤ 2ε2v(H) + s and that

v(G0) ≥ (1− 2ε2)v(H)− s ≥ (1− 2ε2)M3 − s = (1− 2ε2)
2s

ε2
− s ≥ s.

If d(G′) > (1 + ε2) v(H′)
2

, then as in the previous paragraph G′ contains H ′ as a minor by

Theorem 2.2.2. Hence we assume d(G′) ≤ (1+ε2) v(H′)
2

; we show this leads to a contradiction.

Denote by A the set of vertices of G with degree smaller than (1 + 2ε)v(H). We claim

that |A| ≥ (1− ε)v(G). Indeed, as δ(G) ≥ (1− ε2)v(H), otherwise we would have

d(G) ≥ |A|(1− ε2)v(H) + (v(G)− |A|) · (1 + 2ε)v(H)

2v(G)
≥ (1 + ε2 + ε3)

v(H)

2
> (1 + ε2)

v(H)

2
,

contradicting our earlier assumption.

Denote by B the set of vertices of v ∈ V (G′) such that degG′(v) < 4εv(H). Similarly to

the above, we show that |B| ≥ (1− ε)v(G′). Indeed, otherwise we would have

d(G′) ≥ (v(G′)− |B|) · 4εv(H)

2v(G′)
≥ 2ε2v(H) ≥ v(H ′)−s ≥

(︃
1− s

2ε2v(H)

)︃
v(H ′) > (1+ε2)

v(H ′)

2
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which is again a contradiction (the last inequality uses our choice of M3). Note that each

vertex v ∈ B has at least

degG(u)−degG′(u) ≥ (1−ε2−4ε) ≥ (1−5ε)v(H) ≥ (1− 5ε)v(H)

(1− 2ε2)v(H)
v(G0) ≥

(︃
1− 1

3∆

)︃
v(G0)

neighbours in G0, using (E2).

Another consequence is that there are at least (1 − 5ε)v(H) · (1 − ε)v(G′) ≥ (1 −

6ε)v(H)v(G′) edges between the vertices of G′ (specifically, the vertices in B) and the vertices

of G0. Let C the set of vertices of G0 with at least v(G′)
1+ ν

2
neighbours in G′. Then the number

of edges between vertices of G′ and G0 is upper bounded by |C| · v(G′)+ (v(G0)−|C|) · v(G′)
1+ ν

2
,

implying

|C|+ v(G0)− |C|
1 + ν

2

≥ (1− 6ε)v(G0),

and therefore

|C| ≥
(︃
1− 6ε− 12ε

ν

)︃
v(G0) ≥

3

4
v(G0)

where the last inequality uses (E3).

Let A′ = A ∩ V (G0) if (1 + ν)v(H) ≤ v(G) < (2 + ν)v(H) and A′ = V (G0) otherwise.

We claim that |C ∩ A′| > 1
2
v(G0).

If A′ = V (G0), clearly |C∩A′| = |C| ≥ 3
4
v(G0) >

1
2
v(G0). Otherwise, v(G) < (2+ν)v(H),

and

|A′| ≥ |A| − v(G′) ≥ (1− ε)v(G)− v(G′) = v(G0)− εv(G) > v(G0)− ε(2 + ν)v(H)

≥ v(G0)− ε(2 + ν)
v(G0) + s

1− 2ε2
≥
(︃
1− 2ε(2 + ν)

1− 2ε2

)︃
v(G0)

≥ 3

4
v(G0)

50



using (E6) and the bound v(G0) ≥ s. We then have

|C ∩ A′| = |C|+ |A′| − |C ∪ A′| > 3

4
v(G0) +

3

4
v(G0)− v(G0) =

1

2
v(G0),

and the claim also holds in this case.

As |A| ≥ (1− ε)v(G) and |B| ≥ (1− ε)v(G′), we have

|A ∩B| = |(A \ V (G0)) ∩B| ≥ (|A| − v(G0))− (v(G′)− |B|)

≥ (1− ε)v(G)− v(G0)− εv(G′) = (1− 2ε)v(G)− (1− ε)v(G0)

≥ (1− 2ε)(1 + ν)v(H)− (1− ε)v(G0) ≥ ((1− 2ε)(1 + ν)− (1− ε))v(G0)

> 0

by (E4). Choose x ∈ A ∩B.

Our goal is to show that there exists y ∈ C ∩A′ such that NH0(y) ⊆ NG(x) (considering

H0 as a subgraph of G with some fixed embedding by (S2)).

Suppose this is not the case. Then, for each y ∈ C∩A′, y is adjacent (in H) to at least one

vertex of V (G0) \NG(x). Hence, the total degree (in H) over vertices of V (G0) \NG(x) is at

least |C ∩A′| > 1
2
v(G0). By the Pigeonhole principle, at least one vertex z ∈ V (G0) \NG(x)

has degree at least
1
2
v(G0)

|V (G0)\NG(x)| in H. Being in B, x is adjacent to a proportion of at

least 1 − 1
3∆

of the vertices of G0, which means that degH0
(z) ≥

1
2
v(G0)

1
3∆

v(G0)
> ∆. This is a

contradiction to the maximum degree of H. Hence, such a y exists.

Removing y of G0 and instead adding x still yields H0 as a subgraph of G: keep the same

embedding of H0 in G0 but replace y by x, which is possible since NH0(y) ⊆ NG(x).

Consider the case v(G) ≥ (2 + ν)v(H). In this case, we claim that x has smaller degree

in G than y, which is the contradiction we are looking for. Indeed, being in A, the degree of
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x is at most (1 + 2ε)v(H). On the other hand, since y ∈ C, its degree is at least

v(G′)

1 + ν
2

=
v(G)− v(G0)

1 + ν
2

≥ (2 + ν)v(H)− (1− 2ε2)v(H)

1 + ν
2

=
(1 + ν + 2ε2)

1 + ν
2

v(H) > (1 + 2ε)v(H),

the last inequality holding by (E7). This contradicts our initial choice of G0.

Now, consider the case (1 + ν)v(H) ≤ v(G) < (2 + ν)v(H). In this case, we claim x

has greater degree in G0 than y, which will contradict the choice of G0. Since y ∈ A′ ⊆ A,

degG(y) ≤ (1 + 2ε)v(H), and since y ∈ C, it is adjacent to at least 1
1+ ν

2
v(G′) vertices of G′.

Hence, y is adjacent to at most (1 + 2ε)v(H)− 1
1+ ν

2
v(G′) vertices of G0. On the other hand,

being in B, x is adjacent to at least (1 − 5ε)v(H) − 1 vertices of G0 excluding y. It then

suffices to show that

(1− 5ε)v(H)− 1 > (1 + 2ε)v(H)− 1

1 + ν
2

v(G′).

Using that v(G′) = v(G)− v(G0), we can rewrite the desired inequality as

1

1 + ν
2

v(G) > 1 + 7εv(H) +
1

1 + ν
2

v(G0).

Using that v(G0) ≤ (1− 2ε2)v(H) < v(H), v(G) ≥ (1 + ν)v(H) and v(H) ≥ M3 ≥ 2s
ε2

≥ 1
ε
, it

suffices to show that
1 + ν

1 + ν
2

> 8ε+
1

1 + ν
2

.

This is a direct consequence of (E5). This is the contradiction we are looking for, since

replacing y by x would give more edges inside G0.

In all cases, the union of the H ′ minor in G′ and the H0 subgraph of G0 gives us an H

minor in G.

We note that for our purposes, it would be sufficient to prove this result for graphs G

such that v(G) ≤ C0v(H), for some large C0. In fact, the previous proof could be modified
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so that the cutoff point between the two cases is C0v(H) instead of (2 + ν)v(H), and so

only one case would be required in the proof. However, we believe the more general result

is interesting in its own right.

2.5 Density increment

In this section, we prove Theorem 2.2.10, which states that that under certain conditions

we can either increase the density of our graph or find a large number of small subgraphs

of constant density. We begin with a technical lemma, which, given a graph with average

degree close to the minimum degree, allows us to extract a subgraph with maximum degree

close to the average degree, while only losing a small amount of density.

Lemma 2.5.1. For every γ, α, β > 0 with β < 1, there exists ε = ε2.5.1(γ, α, β) > 0 such

that for any D ∈ N, if G is a graph with δ(G) ≥ D and d(G) ≤ (1 + ε)D
2
, then G contains a

subgraph G′ such that d(G′) ≥ (1− γ)D
2
, ∆(G′) ≤ (1 + α)D and v(G′) ≥ (1− β)v(G).

Proof. Choose ε = min

(︃
γ

2(1+ 1
α)
, αβ

)︃
. Let D,G be as in the statement.

Let X be the set of vertices of G of degree greater than (1 + α)D, and set G′ = G−X.

Clearly ∆(G′) ≤ (1+α)D. We wish to prove that d(G′) ≥ (1−γ)D
2

and v(G′) ≥ (1−β)v(G).

We have that
e(G)

v(G)
= d(G) ≤ (1 + ε)

D

2
.

Hence, we have that

(1 + ε)Dv(G) ≥ 2e(G) =
∑︂
u∈X

deg(u) +
∑︂

u∈V (G)\X

deg(v) ≥
∑︂
u∈X

deg(u) +D(v(G)− |X|)

or again that ∑︂
u∈X

deg(u) ≤ D(εv(G) + |X|).

By definition of X, we then have that (1 + α)D|X| ≤ D(εv(G) + |X|), hence |X| ≤ ε
α
v(G).

This implies that v(G′) = v(G)− |X| ≥
(︁
1− ε

α

)︁
v(G) ≥ (1− β)v(G).
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We also get that ∑︂
u∈X

deg(u) ≤
(︃
1 +

1

α

)︃
Dεv(G)

and so

d(G′) =
e(G′)

v(G′)
≥

D
2
v(G)−

(︁
1 + 1

α

)︁
Dεv(G)

v(G)
=

(︃
1− 2ε

(︃
1 +

1

α

)︃)︃
D

2
≥ (1− γ)

D

2
.

The next follows directly from the density increment result of Norin and Song [A25,

Theorem 4.1] by taking K = 1
8ε

.

Lemma 2.5.2 ([A25]). If 0 < ε < 1
100

and G is a graph with d(G) ≥ 2
ε
, then G contains

either

1. a subgraph J such that v(J) ≤ d(G)
2ε

and d(J) ≥ εd(G), or

2. a minor H of G such that d(H) ≥ (1 + ε)d(G).

Recursively applying this lemma, we may now deduce the desired result, which we restate

for convenience.

Theorem 2.2.10. There exists ε = ε2.2.10 > 0 such that for every K ∈ N there exist

ε′ = ε′2.2.10(K) and C = C2.2.10(K) ≥ 1 such that for every D ≥ C and every G such that

δ(G) ≥ D and v(G) ≥ CD, then either

1. G contains vertex-disjoint subgraphs J1, . . . , JK such that v(Ji) ≤ D
ε

and d(Ji) ≥ εD

for every i ∈ [K], or

2. G contains a minor H such that d(H) ≥ (1 + ε′)D
2
.

Proof. Take ε < 1
300

. Let K be given. Set 0 < γ < 1− 1

(1+3ε)
1

K+1
(note that this implies (1−

γ)K+1 ≥ 2
3
). We may now choose C =

K+1+ 1
3γ

ε
and ε′ = min

(︁
ε2.5.1(γ, 1,

1
εC
), (1 + 3ε)(1− γ)K − 1

)︁
.

Let D,G be as in the statement.
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We will show that either we can construct a minor H of G such that d(H) ≥ (1 + ε′)D
2

or that we can recursively construct a sequence of subgraphs G0, . . . , GK and J1, . . . , JK of

G such that

(a) G0 is a subgraph of G, and Gi, Ji are disjoint subgraphs of Gi−1 for i ∈ [K];

(b) v(Ji) ≤ D
ε

and d(Ji) ≥ εD for i ∈ [K]; and

(c) v(Gi) ≥
(︁
C − i+1

ε

)︁
D, d(Gi) ≥ (1− γ)i+1D

2
for i ∈ {0} ∪ [K].

We first consider the base case of this construction. Either d(G) > (1 + ε′)D
2
, in which

case taking H = G yields the result, or applying Lemma 2.5.1 yields a subgraph G0 of G such

that d(G0) ≥ (1− γ)D
2
, ∆(G0) ≤ (1 + 1)D = 2D and v(G0) ≥

(︁
1− 1

εC

)︁
v(G) ≥

(︁
C − 1

ε

)︁
D.

Let i ∈ [K]. Suppose we have already constructed G0, . . . , Gi−1, J1, . . . , Ji−1. We have

that d(Gi−1) ≥ (1− γ)i D
2
≥ C

3
> 2

3ε
. Hence, we can apply Lemma 2.5.2 (to Gi−1 with 3ε) to

get that Gi−1 contains either

1. a subgraph Ji such that v(Ji) ≤ d(Gi−1)
6ε

and d(Ji) ≥ 3εd(Gi−1), or

2. a minor H such that d(H) ≥ (1 + 3ε)d(Gi−1).

If we are in case (2), then we are done since

d(H) ≥ (1 + 3ε)d(Gi−1) ≥ (1 + 3ε)(1− γ)i
D

2
≥ (1 + ε′)

D

2
.

Otherwise we are in case (1). Set Gi = Gi−1 − V (Ji). Condition (a) is direct. Condition

(b) is due to the fact that

v(Ji) ≤
d(Gi−1)

6ε
≤ ∆(G0)

12ε
≤ D

6ε
<

D

ε

and that

d(Ji) ≥ 3εd(Gi−1) ≥ 3ε(1− γ)i
D

2
≥ εD.
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For condition (c), we have that

v(Gi) = v(Gi−1)− v(Ji) ≥
(︃
C − i

ε

)︃
D − D

ε
=

(︃
C − i+ 1

ε

)︃
D

and

d(Gi) =
e(Gi)

v(Gi)
≥ e(Gi−1)−∆(G0) · v(Ji)

v(Gi)
≥

v(Gi−1)d(Gi−1)− 2D · d(Gi−1)
6ε

v(Gi)

≥
v(Gi)− D

3ε

v(Gi)
d(Gi−1) ≥

(︄
1−

D
3ε(︁

C − i+1
ε

)︁
D

)︄
d(Gi−1)

≥ (1− γ)d(Gi−1)

from which it follows that d(Gi) ≥ (1− γ)i+1D
2
.

If the construction was not interrupted (yielding a satisfactory minor H), we now have

the desired sequence of subgraphs J1, . . . , JK .

2.6 Building a minor from pieces

In this section, we prove Theorem 2.2.6, which allows us to build a minor from pieces of

sufficient density, using some ideas from the proof of [A23, Theorem 2.6]. We first need the

following definitions.

Given an injection ϕ : V (H) → V (G) we say that a model µ of H in G is ϕ-rooted if

ϕ(v) ∈ µ(v) for every v ∈ V (H). Finally, we say that G is H-linked if v(G) ≥ v(H) and for

every injection ϕ : V (H) → V (G) there exists a ϕ-rooted model of H in G. Note that every

H-linked graph has an H minor, but the converse does not hold.

A simple edge extension of a graph H is a graph H ′ obtained from H by adding a new

vertex joined by an edge to at most one vertex of H, or two new vertices joined by an edge.

In particular, we have H ⊂ H ′ and e(H ′) ≤ e(H) + 1. A k-edge extension of H is obtained

from H by a sequence of at most k simple edge extensions. If a graph G is H ′-linked for

every k-edge extension H ′ of H then we write that G is (H + k)-linked for brevity, and we
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say that a graph is k-linked if it is (O + k)-linked, where O is the null graph.

We will use the following version of Menger’s theorem [A22].

Theorem 2.6.1 ([A22]). If k ∈ N, G is a graph and U,W ⊆ V (G), then either there exists

A,B ⊆ V (G) such that |A ∩ B| ≤ ℓ − 1, U ⊆ A and W ⊆ V , or there exists ℓ pairwise

vertex-disjoint paths each with one end in A and one end in B.

The following lemma is a key element in our proof of Theorem 2.2.6.

Lemma 2.6.2. Let H be a graph let F ⊆ E(H) be such that H − F is a disjoint union

of graphs H1, . . . , Hk and such that no edge of F has both ends in the same component of

H −F . If G is a graph and G1, . . . , Gk are pairwise vertex-disjoint subgraphs of G such that

• Gi is (Hi + |F |)-linked for every i ∈ [k], and.

•
(︂
G, V (G) \

⋃︁k
i=1 V (Gi)

)︂
is 2|F |-dense,

then H ⪯ G.

Roughly speaking, we will find find paths between the Gi which correspond to the edges

of F by applying Menger’s theorem using the second condition of the lemma, after which the

first condition will allow us to construct a rooted model of Hi in each Gi while simultaneously

rerouting the paths found previously in order to avoid these models, which together yield a

model of H.

Proof. For brevity, let Z =
⋃︁k

i=1 V (Gi).

For every i ∈ [k], Gi is |F |-linked, and so contains at least 2|F | vertices. Hence, we can

choose U a set of 2|F | vertices of G1. Furthermore, it is possible to choose for each uv ∈ F

two vertices ruv and suv such that ruv ∈ V (Gi) if u ∈ V (Hi) and suv ∈ V (Gi) if v ∈ V (Hi)

(and such that all these vertices are distinct). Let W be the set of these 2|F | vertices. Note

that U and W might intersect.

Apply Theorem 2.6.1 to G,U,W with ℓ = 2|F | instead. There first possibility is there

exists A,B ⊆ V (G) such that |A ∩ B| ≤ k − 1, U ⊆ A and W ⊆ V . Since |A ∩ B| ≤
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2|F | − 1 < |U |, we have that U \ B = U \ (A ∩ B) ̸= ∅, and analogously W \ B ̸= ∅. In

particular, A \ B,B \ A ̸= ∅, and so (A,B) is a separation. Given that (G, V (G) \ Z) is

2|F |-dense, A \B ⊆ V (G) \Z. In particular, (U \B)∩ V (G1) ⊆ (A \B)∩ V (G1) = ∅. This

is a contradiction since U ⊆ V (G1) and U \B ̸= ∅.

Hence, for each ruv ∈ W (resp. suv ∈ W ), there a path Ruv (resp. S ′
uv) with one end in

U , say r′uv (resp. s′uv), and the other end is ruv (resp. suv), and all these paths are pairwise

vertex-disjoint. By choosing these paths to be as short as possible, we may assume that no

internal vertices of the paths are in G1.

As G1 is |F |-linked, there exists in G1 pairwise vertex-disjoint paths Tuv, indexed by

uv ∈ F , such that Ruv has r′uv and s′uv as ends. For each uv ∈ F , set Puv as the path

obtained by concatenating Ruv, Tuv and Suv. These are pairwise vertex-disjoint paths in G

such that if u ∈ V (Hi) and v ∈ V (Hj) then Puv has ends ruv ∈ V (Gi) and suv ∈ V (Gj). We

may also assume that Puv paths is shortest possible, and in particular that it has no internal

vertices in Gi ∪Gj .

We will need to modify the paths {Puv}uv∈F after we find appropriate rooted models in

the graphs G1, . . . , Gs, and we prepare for this as follows.

Fix uv ∈ F . We construct an auxiliary graph Juv with vertex set [k] such that indices i′, i′′

are adjacent if there exists a subpath of Puv with ends in V (Gi′) and V (Gi′′) and otherwise

disjoint from Z. Denote such a subpath by P i′i′′
uv . Suppose u ∈ V (Hi) and v ∈ V (Hj). Clearly,

i and j belong to the same component of Juv, and so there exist a sequence Iuv = (i1, i2 . . . , iℓ)

of distinct indices such that i1 = i and iℓ = j, and it and it+1 are adjacent in our auxiliary

graph for each 1 ≤ t ≤ ℓ. For each 1 ≤ t ≤ ℓ, we define situv and rituv to be the ends of P it−1it
uv

and P itit+1
uv , respectively, in V (Git) (except for si1uv, r

iℓ
uv which are not defined). It is possible

that rituv = situv. Note that ri1uv = ruv and siℓuv = suv.

For each i ∈ [k], let H ′
i be the |F |-extension of Hi defined as follows. For each edge

uv ∈ F such that u, v /∈ V (Hi), if riuv and siuv are both defined and distinct, we add piuv

and qiuv to Hi joined by an edge, and if riuv = siuv is defined, we add an isolated vertex
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piuv = qiuv. Furthermore, if u ∈ V (Hi), add a vertex piuv to Hi and an edge from u to piuv,

and if v ∈ V (Hi), add a vertex qiuv to Hi and an edge from v to qiuv.

Let an injection ϕi : V (H ′
i) → V (Gi) be defined as follows. For uv ∈ F , let ϕi(p

i
uv) = riuv

and ϕi(q
i
uv) = siuv whenever riuv and siuv, respectively, are defined. For w ∈ V (Hi), we choose

ϕi(w) arbitrarily subject to ϕi being injective (this is possible given than Gi is (Hi + |F |)-

linked and so contains at least v(Hi) + 2|F | vertices).

As Gi is (Hi + |F |)-linked there exists a ϕi-rooted model µi of H ′
i in Gi. Let µ′ be a

model of H − F in G obtained by defining µ′(v) = µi(v) when v ∈ V (Hi).

To extend µ′ to a model µ of H it suffices to find a set of pairwise internally vertex-disjoint

paths Q = {Quv}uv∈F such that for each uv ∈ F the path Quv has one end in µ′(u) and the

other in µ′(v), and otherwise disjoint from µ′(V (H)). To do this, we consider the subgraph

Guv of G induced by the set

Wuv = (V (Puv) \ Z) ∪ µ′(pi1uv) ∪ µ′(qiℓuv) ∪
⋃︂

i∈Iuv :u,v ̸∈V (Hi)

(︁
µ′(piuv) ∪ µ′(qiuv)

)︁
,

Note that the elements of {Wuv}uv∈F are pairwise vertex-disjoint and so it suffices to show

that for each uv ∈ F there exists a path Quv with one end in µ′(u), the other in µ′(v) and

all internal vertices in Wuv. As Wuv contains vertices xuv ∈ µ′(pi1uv) with a neighbour in µ′(u)

and yuv ∈ µ′(qiℓuv) with a neighbour in µ′(v), it suffices to show that xuv and yuv belong to the

same component of Guv. This follows from our construction. Indeed, if Iuv = (i1, i2 . . . , iℓ),

then Guv contains

• a path from xuv to ruv = r1uv in µ′(pi1uv),

• a path P i1i2
uv from ri1uv to si2uv,

• a path from si2uv to ri2uv in µ′(qi2uv) ∪ µ′(pi2uv),

• similarly paths from rit−1
uv to situv and from situv to rituv for t = 3, . . . , ℓ,

• a path from sℓuv = suv to yuv in µ′(qiℓuv).
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This completes the proof of the lemma.

In order to prove Theorem 2.2.6 using Lemma 2.6.2, we need to find well-linked pieces of

G using dense pieces of G.

We define the connectivity of G, denoted by κ(G), as the minimum order of a separation

of G, except when G is complete in which case κ(G) = v(G) − 1. It is easy to see that

the connectivity of a graph gives a lower bound on the degrees of the vertices of the graph,

that is d(G) ≥ κ(G)
2

. The following result of Mader [A21] allows us to find a subgraph of

connectivity on the same order as the average degree.

Theorem 2.6.3 ([A21]). Every graph G contains a subgraph G′ such that κ(G′) ≥ d(G)
2

.

We need the following result of Wollan [A34].

Theorem 2.6.4 ([A34, Theorem 1.1]). If H and G are graphs such that κ(G) ≥ v(H) and

d(H) ≥ 9c(H) + 26833v(H), then G is H-linked.

The following form will be easier to use.

Corollary 2.6.5. There exists C = C2.6.5 ∈ N such that if H and G are graphs such that

κ(G) ≥ Cc(H), then G is H-linked.

Proof. Set C = 6 · 28633. Let H,G be as in the statement. If v(H) ≤ 2, the statement is

trivial. Hence we may suppose that v(H) ≥ 3.

First note that c(H) > v(H)
2

− 1 for every graph H. Indeed, the complete graph Kv(H)−1

on v(H)− 1 vertices does not contain v(H) as a minor, but d(Kv(H)−1) =
(v(H)−1

2 )
v(H)−1

= v(H)
2

− 1.

In particular, Cc(H) > C
(︂

v(H)
2

− 1
)︂
≥ 2 · 26833v(H), using that v(H) ≥ 3.

Then,

κ(G) ≥ Cc(H) ≥ v(H)

and

d(G) ≥ δ(G)

2
≥ κ(G)

2
≥ Cc(H)

2
≥ 9c(H) + 26833v(H).
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We may therefore apply Theorem 2.6.4 to obtain that G is H-linked, which completes the

proof.

We may now upper bound the extremal function for graphs with edge extensions.

Lemma 2.6.6. If J is a k-edge extension of a graph H, then c(J) ≤ 2C2.6.5c(H) + 4k.

Proof. Suppose G is such that d(G) > 2C2.6.5c(H)+4k. We wish to prove that H is a minor

of G.

By Theorem 2.6.3, G contains a subgraph G′ such that κ(G′) ≥ d(G)
2

≥ C2.6.5c(H) + 2k.

As J is a k-edge extension of H, we may consider H as an induced subgraph of J .

Let A be the the vertices added by simple edge extensions. In particular, |A| ≤ 2k and

V (J) = V (H) ∪ A. Let B be the vertices of V (H) to which incident edges have been

added by (the first type of) simple edge extensions. Note that by definition of simple edge

extensions, J ′ = J [A ∪B]− E(J [B]) is necessarily a forest.

Given that δ(G′) ≥ κ(G′) ≥ 2k, we may greedily construct an embedding of J ′ in G′ :

consecutively for each component (which is a tree) of J ′, select an arbitrary unused vertex of

G′ and repeatedly use the minimum degree to find new vertices in order construct the tree.

Let ϕ : V (J ′) → V (G′) be the (injective) mapping of vertices in this embedding.

Given that κ(G′ − ϕ(A)) ≥ κ(G′) − 2k ≥ C2.6.5c(H), there exists by Corollary 2.6.5 a

ϕ|B-rooted model µ of H in G′ − ϕ(A). We can then expand µ to a model of J in G′ by

setting µ(a) = {ϕ(a)} for every a ∈ A. Hence, J ⪯ G′ ⪯ G as desired, which completes the

proof.

Finally, we prove Theorem 2.2.6, which we restate for convenience.

Theorem 2.2.6. There exists C = C2.2.6 ∈ N satisfying the following. Let H be a graph, let

F ⊆ E(H) be such that H − F is a disjoint union of graphs H1, . . . , Hk and such that no

edge of F has both ends in the same component of H − F . If G is a graph and G1, . . . , Gk

are pairwise vertex-disjoint subgraphs of G such that
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• d(Gi) ≥ C(c(Hi) + |F |) for every i ∈ [k], and

•
(︂
G, V (G) \

⋃︁k
i=1 V (Gi)

)︂
is 2|F |-dense,

then H ⪯ G.

Proof. We show that the statement holds for C = 8C2
2.6.5.

By Theorem 2.6.3, for each i ∈ [k] there exists a subgraph G′
i of Gi such that κ(G′

i) ≥
d(Gi)

2
.

We first claim that G′
i is (Hi + |F |)-linked for every i ∈ [k]. We thus need to show that

if J is an |F |-edge extension of Hi, then G′
i is J-linked. By Lemma 2.6.6, we have that

κ(G′
i) ≥

d(Gi)

2
≥ 4C2

2.6.5(c(Hi) + |F |) ≥ C2.6.5(2C2.6.5c(Hi) + 4|F |) ≥ C2.6.5c(J).

By Corollary 2.6.5, G′
i is J-linked, which completes the proof of the claim.

Since V (G) \
⋃︁k

i=1 V (Gi) ⊆ V (G) \
⋃︁k

i=1 V (G′
i), we have that

(︂
G, V (G) \

⋃︁k
i=1 V (G′

i)
)︂

is

also 2|F |-dense.

Applying Lemma 2.6.2 with G′
i instead of Gi, we have that H ⪯ G as desired.

2.7 Tightness

In this section, we show the necessity of the conditions imposed in Theorem 2.1.4. Indeed, for

each condition we provide examples showing that the theorem does not hold when removing

this condition but maintaining all others.

In fact, in all of these examples, we will even impose a lower bound on the minimum (or

average, in the last case) degree of G which is larger than v(H)− 1 as in Theorem 2.1.4.

Removing the maximum degree bound on H.

Lemma 2.7.1. For s, t ∈ N such that s ≪ t, there exists a graph G with δ(G) ≥ 2s + t −

2
√
2s− 2 and no Ks,t minor.

62



Proof. Let d = ⌈
√
2s⌉ and let G′ be a d-regular graph of girth (length of shortest cycle)

greater than (d+ 1)s with

v(G′) = 2

(︄
s+

⌊︄
t−

√
2s

2

⌋︄)︄
.

Note that it is well known that n vertex d-regular graphs of girth at least g exist for all

even n large enough compared to d and g. In particular, by a result of Sauer [A27, A28]

(see [A7, Theorem 7]) they exist for even n ≥ 2(d− 1)g−2 for d, g ≥ 3. Thus the graph G′ as

above exists for t ≫ s.

We show that the complement G of G′ satisfies the lemma. Let k = v(G′)− s− t. As

δ(G) = v(G)− d− 1 = 2

(︄
s+

⌊︄
t−

√
2s

2

⌋︄)︄
− ⌈

√
2s⌉ − 1 ≥ 2s+ t− 2

√
2s− 2,

it remains to show G has no Ks,t minor.

Suppose for a contradiction that there exists a model µ of Ks,t in G. Let A and B denote

the parts of the bipartition of Ks,t of sizes s and t, respectively. Let A′ denote the set of

vertices v in A such that |µ(v)| = 1 and let A′′ =
⋃︁

v∈A′ µ(v). Symmetrically, let B′ denote

the set of vertices v in B such that |µ(v)| = 1 and let B′′ =
⋃︁

v∈B′ µ(v). Then

v(G) ≥
∑︂

v∈A∪B

|µ(v)| ≥ 2(s+ t)− |A′′| − |B′′|.

As k = v(G)− s− t and |B′′| ≤ t, it follows that

|A′′|+ |B′′| ≥ s+ t− k and |A′′| ≥ s− k. (2.2)

Let F = G′[A′′ ∪NG′(A′′)]. As every vertex in A′′ is adjacent in G to every vertex of B′′ we

have NG′(A′′) ∩B′′ = ∅. Thus

v(F ) ≤ v(G)− |B′′|. (2.3)

63



Moreover, v(F ) ≤ (d+ 1)|A′′| ≤ (d+ 1)s and so F is a forest (since any cycle in G′ contains

more than (d + 1)s vertices). As E(F ) contains all edges of G′ incident to vertices of A′′,

and at most |A′′| − 1 edges have both ends in A′′, we have

v(F )− 1 ≥ e(F ) ≥ d|A′′| − (|A′′| − 1) . (2.4)

Combining (2.3) and (2.4) we have v(G) ≥ (d − 1)|A′′| + |B′′| + 2, which by (2.2) implies

s+ t+ k = v(G) ≥ s+ t− k + (d− 2)(s− k) + 2 and so k ≥ (d−2)s+2
d

. It follows that

v(G′) = s+ t+k ≥ s+ t+
(d− 2)s+ 2

d
> 2s+ t− 2s

d
≥ 2s+ t−

√
2s > 2

(︄
s+

⌊︄
t−

√
2s

2

⌋︄)︄
,

which contradicts the choice of v(G′).

Removing the condition that H is bipartite.

Lemma 2.7.2. For every s ∈ N, there exists a graph G with δ(G) ≥ 22
3
s − 2 and no sK7

minor.

Proof. Let t =
⌊︁
11s−1

3

⌋︁
and let G be a complete 3-partite graph with each part of size t. Then

δ(G) = 2t ≥ 22
3
s−2 and so it only remains to show that G has no sK7 minor. We show that

for any model µ of K7 in G we have
∑︁

v∈V (K7)
|µ(v)| ≥ 11. This would prove the statement,

since this would imply that any model of sK7 in G would require at least 11s > 3t = v(G)

vertices.

Suppose that µ is a model of K7 in G with
∑︁

v∈V (K7)
|µ(v)| ≤ 10 and let A = {v ∈

V (K7) : |µ(v)| = 1}. Then |A| ≥ 4, and by the pigeonhole principle there exist v, v′ ∈ A

such that the unique elements of µ(v) and µ(v′) belong to the same part of the tripartition of

G. This is a contradiction, as v, v′ ∈ E(K7) but there is no edge in G between the elements

of µ(v) and µ(v′).
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Removing the condition that H has good separation properties.

We first need the following theorem, which is a direct consequence of a result of Norin,

Reed, Thomason and Wood [A24, Theorem 4].

Theorem 2.7.3 ([A24]). There exists d0 ∈ N such that for every integer d ≥ d0 and every

integer n ≥ 2d+1, there exist a graph H with v(H) = n and e(H) = dn and a graph G with

d(G) ≥ 1
4
n
√
ln d such that H is not a minor of G.

We wish to use Theorem 2.7.3 to construct an example showing that Theorem 2.1.4 does

not hold if we remove that H is in a family with strongly sublinear separators. We will need

the following lemma in order for H to be bipartite and have bounded maximum degree.

Lemma 2.7.4. For every ∆ ∈ N≥3 and every graph H, there exists a bipartite graph H ′

with ∆(H ′) ≤ ∆ and v(H ′) ≤ 4e(H)
∆−2

+ 2v(H) such that H is a minor of H ′.

Proof. For each v ∈ V (H), let k(v) =
⌊︂
degH(v)
∆−2

+ 1
⌋︂
, and let A(v) and B(v) be sets with

|A(v)| = |B(v)| = k(v) and all the sets in {A(v), B(v)}v∈V (H) are pairwise disjoint.

Let A =
⋃︁

v∈V (H) A(v), B =
⋃︁

v∈V (H) B(v). We construct H ′ so that (A,B) is a bipartition

of it; in particular, V (H ′) = A ∪B. Note that

v(H ′) = 2
∑︂

v∈V (H)

k(v) ≤ 2
∑︂

v∈V (H)

(︃
degH(v)

∆− 2
+ 1

)︃
=

4e(H)

∆− 2
+ 2v(H),

as desired.

We now define the edge set of H ′. For each v ∈ V (H), let H ′[A(v) ∪ B(v)] be a path

(chosen arbitrarily) respecting the bipartition (A,B), which we denote by P (v). For every

edge uv ∈ E(H), add an edge to H ′ with one end in A(u) and another in B(v). Note that

by the choice of k(v) it is possible to add such edges so that ∆(H ′) ≤ ∆. Contracting each

path P (v) to a single vertex we obtain H as a minor of H ′.
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Corollary 2.7.5. There exist ∆0 ∈ N such that for every integer ∆ ≥ ∆0 and every integer

n ≥ 2∆, there exist a bipartite graph H ′ with v(H ′) ≤ 6n and ∆(H ′) ≤ ∆ and a graph G′

with δ(G′) ≥ 1
5
n
√
ln∆ such that H ′ is not a minor of G′.

Proof. Let d0 be as in Theorem 2.7.3. We show that ∆0 = max{5, d0 + 2} satisfies the

corollary. For ∆ ≥ ∆0 and n ≥ 2∆, let d = ∆ − 2. Then d ≥ d0 and n ≥ 2d + 1 so by

Theorem 2.7.3 there exists a graph H with v(H) = n and e(H) = dn and a graph G with

d(G) ≥ 1
4
n
√
ln d such that H is not a minor of G.

Let G′ be a subgraph of G with δ(G′) ≥ d(G) (it is a standard result that this is always

possible by repeatedly removing vertices of smaller degree, see for instance [A5, Proposition

1.2.2]). Then

δ(G′) ≥ 1

4
n
√︁
ln(∆− 2) ≥ 1

5
n
√︁

ln(∆),

as
√︁

ln(∆− 2) ≥ 4
5

√︁
ln(∆) for ∆ ≥ 5. By Lemma 2.7.4 there exists bipartite graph H ′ with

∆(H ′) ≤ ∆ and v(H ′) ≤ 4e(H)
∆−2

+ 2v(H) = 6v(H) such that H is a minor of H ′.

As H is a minor of H ′, G′ is a minor of G and H is not a minor of G, it follows that H ′

is not a minor of G′, and so H ′ and G′ are as desired.

Corollary 2.7.5 provides interesting examples for our purposes when ∆ ≥ e900.

Replacing the minimum degree of G with average degree.

Lemma 2.7.6. For all s, t ∈ N and ε > 0, there exists a graph G with d(G) ≥ st−1+ t−1
2
−ε

and no sKt,t minor.

Proof. Let k be a positive integer, and let G = G(s, t, k) be constructed as follows. Let

X1, . . . , Xk, Y be disjoint sets such that |Xi| = t for i = [k] and |Y | = st − 1. Let V (G) =

X1 ∪ . . . ∪ Xk ∪ Y and let distinct u, v ∈ V (G) be adjacent unless u ∈ Xi and v ∈ Xj for

some i ̸= j. In other words, Xi is a clique of order t for every i ∈ [k] and Y is a set of st− 1
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universal vertices. First, we have that v(G) = kt+ st− 1. Then

e(G) =

(︃
st− 1

2

)︃
+ (st− 1) · kt+ k

(︃
t

2

)︃
.

One easily computes that when k → ∞, we have

(︁
st−1
2

)︁
kt+ st− 1

→ 0,
(st− 1) · kt
kt+ st− 1

→ st− 1 and
(︁
t
2

)︁
kt+ st− 1

→ t− 1

2
.

Hence, d(G) ≥ st− 1 + t−1
2

− ε for sufficiently large k.

We will show that for every model µ of Kt,t in G we have |Y ∩ (
⋃︁

v∈V (Kt,t)
µ(v))| ≥ t.

Given that |Y | has size st− 1, this will imply that sKt,t is not a minor of G and thus prove

the lemma.

Suppose for a contradiction that µ is a model of Kt,t in G and
⃓⃓⃓
Y ∩

(︂⋃︁
v∈V (Kt,t)

µ(v)
)︂⃓⃓⃓

≤

t−1. Let U = {v ∈ V (Kt,t) : µ(v)∩Y = ∅}. Then |U | ≥ t+1 and so Kt,t[U ] is connected. It

follows that G
[︁⋃︁

v∈U µ(v)
]︁

is connected, but
⋃︁

v∈U µ(v) ⊆ V (G)− Y and so
⋃︁

v∈U µ(v) ⊆ Xi

for some 1 ≤ i ≤ k. Hence, t ≥
⃓⃓⋃︁

v∈U µ(v)
⃓⃓
≥ |U | ≥ t+ 1, a contradiction.
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2.A Proof of Lemma 2.2.3

A decomposition of a graph H is a set B ⊆ P (V (H)) such that for every edge uv ∈ E(H),

there exists B ∈ B such that u, v ∈ B. For C ∈ N, we say B is C-bounded if |B| ≤ C for all

B ∈ B. The excess of B is the quantity
∑︁

B∈B |B| − v(G).

We need the following well-known lemma [A6], using the formulation by Hendrey, Norin

and Wood [A11].

Lemma 2.A.1 ([A11, Lemma 7.1]). For every graph family F with strongly sublinear sepa-

rators and every ε > 0 there exists C = C2.A.1(F , ε) such that every graph H ∈ F admits a

C-bounded decomposition with excess at most εv(G).

We can then derive Lemma 2.2.3, which we restate for convenience. We recall that this

is essentially [A11, Lemma 7.3].

Lemma 2.2.3. For every graph family F with strongly sublinear separators and every δ > 0

there exists s = s2.2.3(F , δ) such that for any graph H ∈ F there exists a graph H ′ and

F ⊆ E(H ′) such that
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• H ⪯ H ′,

• v(H) ≤ v(H ′) ≤ (1 + δ)v(H),

• ∆(H ′) ≤ ∆(H) + 2,

• |F | ≤ δv(H),

• for every component J of H ′ − F we have v(J) ≤ s and J is isomorphic to a subgraph

of H, and

• no edge of F has both ends in the same component of H ′ − F .

Proof. Take s = C2.A.1(F , δ) and let B be a s-bounded decomposition of H such that∑︁
B∈B |B| ≤ (1 + δ) v(H), which exists by Lemma 2.A.1.

We first prove the statement when H does not contain any isolated vertices.

Say |B| = k. Then, write H1, . . . , Hk as the subgraphs of H induced respectively by

the vertex sets in B. From now on, we consider the vertex sets of H1, . . . , Hk to all be

mutually disjoint. For each x ∈ v(H), let Vx = {y1, . . . , yix} (for some ix ∈ N) be the set of

vertices respectively in H1, . . . , Hk which are copies of x. Then, let Fx = {y1y2, . . . , yix−1yix},

F =
⋃︁

x∈V (H) Fx and finally H ′ = H1 ∪ · · · ∪Hk + F .

Contracting the edges in F shows that H is a minor of H ′, which is possible since the

copies of x ∈ V (H) form a path in H ′ and all other edges of H are contained in at least

one of H1, . . . , Hk by the definition of a decomposition. Furthermore, v(H ′) =
∑︁k

i=1 v(Hi) =∑︁
B∈B |B| ≤ (1 + δ)v(H). Since every vertex of H ′ gains at most 2 edges in H ′ compared to

the original vertex in H (the possible extra edges being those in F ), ∆(H ′) ≤ ∆(H)+ 2. By

our construction, when a vertex x ∈ V (H) has multiplicity ix in B, ix − 1 edges are added

to F . Since the total multiplicity of all vertices is v(H ′), then |F | = v(H ′)− v(H) ≤ δv(H).

By construction the components of H ′ − F are H1, . . . , Hk, which are induced subgraphs of

H and have order at most s. Finally, given that edges of F are between copies of a vertex

in different H1, . . . , Hk, no edge of F has both ends in the same component of H ′ − F .
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To prove the general statement, let H0 be the graph H with all isolated vertices removed.

Let H ′
0 be the graph resulting from applying the statement to H0 (which is possible given

that F is closed under taking subgraphs), and let H ′ be the disjoint union of H ′
0 and of

v(H) − v(H0) isolated vertices. It is easy to verify that H ′ respects the conditions of the

statement.
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Bridging text 1

The previous chapter concerned the H-Hadwiger conjecture of Seymour [93, 94], which is a

weakening of Hadwiger’s conjecture obtained by replacing the condition that G be Kt-minor-

free by the condition that G be H-minor-free, where H is a graph on t vertices. We showed

that this conjecture holds if H is bipartite, has bounded maximum degree, is chosen in a

graph family with strongly sublinear separators, and is sufficiently large. Although these

conditions might be stringent, this remains one of the only classes of graphs for which the

conjecture is known to hold: as we mentioned, it is known to hold for sufficiently imbalanced

bipartite graphs, trees and some small graphs. Notably, our proof does not use colouring

directly, and instead shows that these graphs are (t− 2)-degenerate.

In the next chapter, we consider the same problem but replace the condition that we

only forbid one graph H by forbidding all H with some given number of edges. Of course,

this remains a weakening of Hadwiger’s conjecture: if we choose the maximum possible
(︁
t
2

)︁
edges, we only forbid the complete graph Kt and thus obtain Hadwiger’s conjecture.

Similarly to the previous chapter, we will also only use degeneracy to colour the graph in

the next chapter. However, we will work with a weaker condition: instead of showing that

that the minimum degree in the class is upper bounded by t − 2, our arguments will only

make use of the average degree (or equivalently, of the number of edges), proving that the

average degree is strictly less that t− 1.

Our method is based on a lemma of Mader [64], which shows that we can assume that

every neighbourhood has minimum degree at least half of the average degree of the graph.

We then, broadly speaking, randomly sample subgraphs on t vertices in these denser neigh-
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bourhoods (or unions of these neighbourhoods), as an attempt to construct minors with

many edges. With a lower bound on the average degree, this method will be successful in

constructing a minor with t vertices and
(︁√

2− 1− o(1)
)︁ (︁

t
2

)︁
edges.

In the previous chapter, we showed that our result was best possible in many ways. Here,

in a similar attempt to show the limits of our approach, we will present examples showing

that we cannot do better than
(︁
3
4
+ o(1)

)︁ (︁
t
2

)︁
edges, if we are only working with the average

degree.

Using specific arguments using extremal functions, we will show the exact maximum

number of edges in t-vertex minors we can be sure to obtain when forbidding a minor with

t vertices and maximum degree is less than t− 1 for small t.
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3
Finding dense minors using average

degree
Kevin Hendrey1, Sergey Norin2, Raphael Steiner3, Jérémie Tur-
cotte2

Motivated by Hadwiger’s conjecture, we study the problem of finding the densest possible

t-vertex minor in graphs of average degree at least t − 1. We show that if G has average

degree at least t− 1, it contains a minor on t vertices with at least (
√
2− 1− o(1))

(︁
t
2

)︁
edges.
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We show that this cannot be improved beyond
(︁
3
4
+ o(1)

)︁ (︁
t
2

)︁
. Finally, for t ≤ 6 we exactly

determine the number of edges we are guaranteed to find in the densest t-vertex minor in

graphs of average degree at least t− 1.

3.1 Introduction

In this paper all graphs are simple and finite. We say a graph H is a minor of a graph G if

a graph isomorphic to H can be obtained from a subgraph of G by contracting edges (and

removing any loops and parallel edges). A k-colouring of a graph G is an assignment of

colours from {1, . . . , k} to the vertices of G such that adjacent vertices are assigned distinct

colours. The chromatic number χ(G) is the smallest integer k such that G admits a k-

colouring.

Hadwiger [B3] conjectured that if χ(G) ≥ t, then G contains Kt, the complete graph on

t vertices, as a minor. Hadwiger’s conjecture is one of the most famous open problems in

graph theory. The study of Hadwiger’s conjecture has spawned a large number of variants,

strengthenings and relaxations; see [B13] for a survey of this area.

For instance, there has been much progress in recent years in attempting to find the

smallest function f(t) for which χ(G) ≥ f(t) implies that G contains a Kt minor. The

current best bound f(t) = Ω(t log log t) is due to Delcourt and Postle [B1].

Another strategy is to approach Hadwiger’s conjecture by relaxing the condition that the

minor be complete. Seymour [B13, B14] asks for which graphs H on t vertices does χ(G) ≥ t

guarantee H as a minor. Kostochka [B4, B5] as well as the second and fourth authors of this

paper [B10] have proved that this holds for large classes of bipartite graphs.

The second author and Seymour [B9] study the related question of maximizing the edge

density of t-vertex minors of G if χ(G) ≥ t, that is finding a minor of G on t vertices with

as many edges as possible. Unlike in the previous relaxation we allow the minor to change

depending on G. It is shown in [B9] that if G has n vertices and independence number 2 (and

so χ(G) ≥
⌈︁
n
2

⌉︁
), then G contains a minor on

⌈︁
n
2

⌉︁
vertices and at least (0.98688− o(1))

(︁⌈n
2 ⌉
2

)︁
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edges.

Letting both the number of vertices and edges of the minor vary, Nguyen [B8] showed

that there exists C > 0 such that if ε ∈ (0, 1
256

) and χ(G) ≥ Ct log log
(︁
1
ε

)︁
, then G contains

a minor on t vertices with at least (1 − ε)
(︁
t
2

)︁
edges. Setting ε = 1

t2
recovers the result of

Delcourt and Postle mentioned above.

In this paper, we study the following strengthening of the question considered by the

second author and Seymour: What is the densest t-vertex minor of G if the average degree

is at least t − 1 ? This is motivated by the well-known fact that χ(G) ≥ t implies that G

contains a subgraph G′ with minimum degree at least t− 1.

It is a direct consequence of a result of Mader [B6, 65] (see Lemma 3.2.1 below) that

every graph of average degree at least t− 1 contains a minor on t vertices with at least 1
4

(︁
t
2

)︁
edges.

Our main result is the following improvement, which we prove in Section 3.2. Let d(G)

denote the average degree of a graph G.

Theorem 3.1.1. If t ∈ N and G is a graph with average degree d(G) ≥ t, then G contains

a minor on t vertices with at least
(︁√

2− 1− 24
t

)︁ (︁
t
2

)︁
edges.

Note that in Theorem 3.1.1 we assume for convenience that d(G) ≥ t and not d(G) ≥ t−1

as in the problem above. However, this only affects the lower order terms.

In Section 3.3, we show that the constant in the previous result cannot be improved past

3
4
.

Theorem 3.1.2. For t ∈ N, there exists a graph G with average degree d(G) ≥ t such that

G does not contain a minor on t vertices with more than
(︁
3
4
+ o(1)

)︁ (︁
t
2

)︁
edges.

In fact, we will describe a large class of graphs which satisfy the condition of Theo-

rem 3.1.2.

Finally, in Theorem 3.1.3, proved in Section 3.4 we determine for small values of t the

exact number of edges we are guaranteed to find in the densest t-vertex minor.
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Theorem 3.1.3. If 2 ≤ t ≤ 6 is an integer and G is a graph with average degree d(G) ≥ t−1,

then G contains a minor on t vertices with at least

• 1 edge if t = 2,

• 3 edges if t = 3,

• 5 edges if t = 4,

• 8 edges if t = 5, and

• 11 edges it t = 6.

Furthermore, none of these values can be improved.

3.1.1 Notation

Let G be a graph. We denote by V (G) the set of vertices of G and E(G) ⊆
(︁
V (G)
2

)︁
the set of

edges of G. We will write v(G) = |V (G)| for the number of vertices of G and e(G) = |E(G)|

for the number of edges of G. If u ∈ V (G), we write NG(u) for the (open) neighbourhood

of u, NG[u] = NG(u) ∪ {u} for the closed neighbourhood of u, and degG(u) = |NG(u)| for

the degree of u in G. For S ⊆ V (G) we denote by NG[S] the set
⋃︁
{NG[s] : s ∈ S}. We

omit subscripts when the graph is clear from context. We denote the minimum degree of

G by δ(G) = minu∈V (G) degG(u) and the average degree of G by d(G) =
∑︁

u∈V (G) degG(u)

v(G)
. If

X ⊆ V (G), we write G[X] for the subgraph of G induced by X, and G−X = G[V (G) \X]

for the subgraph obtained by removing the vertices in X; if X = {u} we will write G − u

for G−X. If e ∈ E(G), we write G− e for the graph obtained by removing e, and G/e for

the graph obtained from G by contracting the edge e (and removing any resulting loops or

duplicate edges); in particular G/e is a minor of G. If Z is a real-valued random variable,

we write E[Z] for the expected value of Z.
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3.2 Lower bound

In this section, we prove Theorem 3.1.1.

The following result of Mader [64, pages 265–266] will allow us to get a lower bound on

the minimum degree in the neighbourhood of each vertex, by taking a minor of our graph.

We include a short proof for the sake of completeness, since the paper [B6] is only available

in German.

Lemma 3.2.1. If G is a graph, then G contains a minor H such that d(H) ≥ d(G) and

δ (H[N [u]]) > d(G)
2

for every u ∈ V (H).

Proof. Let H be a minor of G such that d(H) ≥ d(G) which minimizes v(H). Suppose for a

contradiction that H does not respect the statement, i.e. there is some u ∈ V (H) such that

δ (H[N [u]]) ≤ d(G)
2

.

If degH(u) = 0, then it is direct that d(H −u) ≥ d(H), which contradicts the minimality

of H. Hence, we may suppose that u has at least one neighbour.

Given that the degree of u in H[N [u]] is as least as large as the degree in H[N [u]] of

every other vertex in N [u], there exists v ∈ N(u) such that degH[N [u]](v) ≤
d(G)
2

≤ d(H)
2

. In

other words, |N [u] ∩N(v)| ≤ d(H)
2

. Then,

d(H/uv) =
2e(H/uv)

v(H/uv)
=

2(e(H)− |N [u] ∩N(v)|)
v(H)− 1

≥ 2e(H)− d(H)

v(H)− 1
=

v(H) · d(H)− d(H)

v(H)− 1
= d(H)

which is a contradiction to the minimality of H.

The next easy lemma tells us when removing vertices does not decrease average degree.

Lemma 3.2.2. If G is a graph and X ⊊ V (G) is such that exactly M edges of G have at

least one end in X and M ≤ d(G)·|X|
2

, then d(G−X) ≥ d(G).

Proof. We may compute directly that

d(G−X) =
2e(G−X)

v(G−X)
=

2 (e(G)−M)

v(G)− |X|
≥ 2e(G)− d(G) · |X|

v(G)− |X|
=

v(G) · d(G)− d(G) · |X|
v(G)− |X|

= d(G).
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The next lemma allows us to extract a dense subgraph on t vertices; this is a standard

application of the first moment method.

Lemma 3.2.3. If t ∈ N and G is a graph with v(G) ≥ t, then G contains a subgraph on t

vertices with at least d(G)
v(G)

(︁
t
2

)︁
edges.

Proof. The statement is trivial when t = 1, so we may assume that t ≥ 2. Let Z be a

uniformly random subset of V (G) of size t. Given uv ∈ E(G), the probability that uv is an

edge of G[Z] is (v(G)−2
t−2 )
(v(G)

t )
= t(t−1)

v(G)(v(G)−1)
. As e(G) = v(G)·d(G)

2
, we have

E[e(G[Z])] =
v(G) · d(G)

2
· t(t− 1)

v(G)(v(G)− 1)
=

d(G)

v(G)− 1

(︃
t

2

)︃
≥ d(G)

v(G)

(︃
t

2

)︃
.

Hence, there exists at least one choice of Z such that e(G[Z]) ≥ d(G)
v(G)

(︁
t
2

)︁
. Hence the statement

holds for G[Z].

In the next lemma, we find a dense subgraph on t vertices by extending an already dense,

but not large enough, set of vertices X to a set of size t by sampling the remaining vertices

in another set Y . We will apply this lemma when X is a union of closed neighbourhoods

and Y a closed neighbourhood (or vice versa), the conditions on the minimum degrees of the

induced subgraphs on these sets will come from Lemma 3.2.1.

Lemma 3.2.4. If t ∈ N, G is a graph and X, Y ⊆ V (G) are such that |X| ≤ t, |X ∪

Y | ≥ t and δ(G[X]), δ(G[Y ]) ≥ t
2
, then there is a subgraph of G on t vertices with at least(︂

1
2

(︂
x+ (1−x)2

y

)︂
− 1

t

)︂ (︁
t
2

)︁
edges, where x = |X|

t
and y = |Y |

t
.

Proof. If |X| = t, the statement follows directly by considering the t-vertex subgraph G[X],

which contains at least 1
2
· |X| · δ(G[X]) ≥ 1

2
· t · t

2
≥ 1

2

(︁
t
2

)︁
edges. Hence, we may suppose that

|X| ≤ t− 1, and as a consequence that |Y \X| ≥ 1.

Let Y ′ be a uniformly random subset of Y \X of size t− |X| and set Z = X ∪ Y ′, which

is possible given that |X ∪ Y | ≥ t implies t− |X| ≤ |Y \X|.
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The number of edges with both ends in X is at least 1
2
· |X| · δ(G[X]) ≥ t|X|

4
. The number

of edges with both ends in Y \ X is 1
2

∑︁
v∈Y \X |N(v) ∩ (Y \ X)| and the number of edges

between X and Y \X is
∑︁

v∈Y \X |N(v)∩X|, so the number of edges with both ends in X∪Y

and at least one end in Y \X is

1

2

∑︂
v∈Y \X

|N(v) ∩ (Y \X)|+
∑︂

v∈Y \X

|N(v) ∩X| ≥ 1

2

∑︂
v∈Y \X

|N(v) ∩ (X ∪ Y )|

≥ 1

2
|Y \X| · δ(G[X ∪ Y ]) ≥ t|Y \X|

4
.

Suppose uv is an edge of G[X∪Y ] with at least one end in Y \X, say u ∈ Y \X. Then, uv

is an edge in G[Z] if and only if {u, v} ⊆ Z. If v ∈ Y \X, then the probability that uv is an

edge is the probability that {u, v} ⊆ Y ′, which is (|Y \X|−2
t−|X|−2)
(|Y \X|
t−|X|)

= (t−|X|)(t−|X|−1)
|Y \X|(|Y \X|−1)

≥ (t−|X|)(t−|X|−1)
|Y \X|2 .

If v ∈ X, then the probability that uv is an edge is the probability that u ∈ Y ′, which is
t−|X|
|Y \X| ≥

(t−|X|)(t−|X|−1)
|Y \X|2 . Here we use the fact that t− |X| ≤ |Y \X|. Hence, we have

E[e(G[Z])] ≥ t|X|
4

+
t|Y \X|

4
· (t− |X|)(t− |X| − 1)

|Y \X|2

≥ t|X|
4

+
t

4
· (t− |X|)(t− |X| − 1)

|Y |

≥ (t− 1) · tx
4

+
t− 1

4
· (t− tx)(t− tx− 1)

ty

=
1

2

(︃
x+

(1− x)(1− x− 1
t
)

y

)︃(︃
t

2

)︃
≥
(︃
1

2

(︃
x+

(1− x)2

y

)︃
− 1

t

)︃(︃
t

2

)︃
,

where in the last step we used that 1 − x ≤ y. Hence, there is at least one choice of Y ′

such that G[Z] = G[X ∪ Y ′] has t vertices and at least
(︂

1
2

(︂
x+ (1−x)2

y

)︂
− 1

t

)︂ (︁
t
2

)︁
edges, as

desired.

The next lemma finds a dense subgraph on t vertices given a dense set X if the vertices

outside of X all have sufficiently large degree. Contrary to the previous lemma, here the set
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X is not extended to a set of size t, instead its properties will allow us to show that G is

itself not too large, and so a good candidate to apply Lemma 3.2.3.

Lemma 3.2.5. Let t, c ∈ N, λ > 1 + 3
t

and let G be a graph with d(G) ≥ t and such

that d(H) < t for all non-null proper subgraphs H of G. If ∅ ̸= X ⊊ V (G) is such that

δ(G[X]) ≥ t
2

and degG(u) > λt − 1 for all u ∈ V (G) \X, then G contains a subgraph on t

vertices with at least (λ−1− 3
t
)t

(λ− 3
4
)|X|

(︁
t
2

)︁
edges.

Proof. First note that d(G −X) < t ≤ d(G). Let M be the number of edges with at least

one end in X. Lemma 3.2.2 implies that M > d(G)·|X|
2

≥ t|X|
2

. In particular, we then have

that the sum of degrees of vertices in X is

∑︂
v∈X

degG(v) =
∑︂
v∈X

|N(v) ∩X|+
∑︂
v∈X

|N(v) \X|

=

(︄
1

2

∑︂
v∈X

|N(v) ∩X|+
∑︂
v∈X

|N(v) \X|

)︄
+

1

2

∑︂
v∈X

|N(v) ∩X|

= M +
1

2

∑︂
v∈X

|N(v) ∩X|

>
t|X|
2

+
|X|δ(G[X])

2

≥ 3t|X|
4

.

Furthermore, we have

∑︂
v∈V (G)\X

degG(v) ≥ (v(G)− |X|)(λt− 1).

Let u be any vertex of G. As d(G− u) < t,

d(G) =
2e(G)

v(G)
=

2(e(G− u) + degG(u))

v(G)
=

v(G− u)d(G− u) + 2 degG(u)

v(G)
< d(G−u)+2 ≤ t+2.
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Hence,

v(G)(t+ 2) > v(G) · d(G) =
∑︂

v∈V (G)

degG(v) ≥
3t|X|
4

+ (v(G)− |X|)(λt− 1).

Rearranging yields that

v(G) <
(λ− 3

4
− 1

t
)|X|

λ− 1− 3
t

<
(λ− 3

4
)|X|

λ− 1− 3
t

.

Since d(G) ≥ t, we in particular have that v(G) ≥ t. Finally, to get the desired subgraph

we apply Lemma 3.2.3 to G to get a subgraph on t vertices with at least

d(G)

v(G)

(︃
t

2

)︃
≥

(λ− 1− 3
t
)t

(λ− 3
4
)|X|

(︃
t

2

)︃

edges.

The next lemma is a core element of our proof, which we summarize here. We want

to find a set X of vertices such that G[X] has minimum degree at least t
2

which has order

as close as possible to t. We will be taking X to be a union of closed neighbourhoods in

our graph (as, by Lemma 3.2.1, we will be able to assume that closed neighbourhoods have

this minimum degree); we can construct this set by sequentially adding neighbourhoods of

vertices. The closer |X| is to t, the denser a subgraph of G of order t we will be able to

find; when |X| > t we can use Lemma 3.2.3 to sample a dense subset of size exactly t and

when |X| < t we can use either Lemma 3.2.4 or Lemma 3.2.5 (depending on the degrees of

vertices outside of X). In practice, we will introduce some tolerance and attempt to find X

such that αt ≤ |X| ≤ βt (this is Case (1) in the following lemma). The first way of failing is

when constructing X, at some point the size is smaller than αt, but the size jumps over βt

when adding any other neighbourhood of size smaller than αt; this is Case (3), to which we

will apply Lemma 3.2.4. The other way of failing is to run out of vertices of small degree,

in which case we are in Case (2). In this case, the fact that all remaining vertices have
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large degree will allow us to apply Lemma 3.2.5. The parameters α, β will later be chosen

to optimize the trade-offs between these cases.

Lemma 3.2.6. If t ∈ N, G is a graph such that δ(G[N [u]]) ≥ t
2

for every u ∈ V (G), and

1
2
≤ α < β ∈ R, then either

(1) there exists X ⊆ V (G) such that αt ≤ |X| ≤ βt and δ(G[X]) ≥ t
2
,

(2) there exists S ⊆ V (G) (possibly empty) such that |N [S]| < αt and degG(u) > βt − 1

for every u ∈ V (G) \N [S], or

(3) there exist X, Y ⊆ V (G) such that |X|, |Y | < αt, |X∪Y | > βt and δ(G[X]), δ(G[Y ]) ≥
t
2
.

Proof. If there exists u ∈ V (G) such that αt− 1 ≤ degG(u) ≤ βt− 1, then setting X = N [u]

we are in Case (1). Hence, we may assume that for every u ∈ V (G), degG(u) < αt − 1 or

degG(u) > βt− 1.

Let S = {u ∈ V (G) : deg(u) < αt − 1}. If S is such that |N [S]| < αt, then we are in

Case (2), since S ⊆ N [S] and every vertex not in S has degree at least αt − 1, and hence

greater than βt− 1 by the assumption above.

Otherwise, we can find B =
⋃︁k

i=1N [xi], for x1, . . . , xk ∈ V (G) all of degree smaller than

αt−1, such that |B| ≥ αt. Pick such a set which minimizes k. Again, note that δ(G[B]) ≥ t
2
.

If |B| ≤ βt, we are in Case (1) with X = B. Hence suppose that |B| > βt.

Note that necessarily k ≥ 2, as if B = N [x1], we have |B| = degG(x1) + 1 < αt.

By minimality of k, |
⋃︁k−1

i=1 N [xi]| < αt. Hence, Case (3) holds for X =
⋃︁k−1

i=1 N [xi] and

Y = N [xk].

Finally, we are ready to derive Theorem 3.1.1, which we restate for convenience, from

the above lemmas.

Theorem 3.1.1. If t ∈ N and G is a graph with average degree d(G) ≥ t, then G contains

a minor on t vertices with at least
(︁√

2− 1− 24
t

)︁ (︁
t
2

)︁
edges.
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Proof. The statement is trivial for t ≤ 24, so assume t ≥ 25. We may suppose that G has

no proper minor H such that d(H) ≥ t. By Lemma 3.2.1, G has a minor G′ such that

d(G′) ≥ d(G) ≥ t and δ(G′[N [u]]) ≥ t
2

for every u ∈ V (G). By assumption, G′ is not a

proper minor of G, so G′ = G.

Let α = 4
5
, β = ν = 6

5
and let γ =

√
2 − 1 − 24

t
. We wish to prove that G contains a

subgraph on t vertices with at least γ
(︁
t
2

)︁
edges. As 1/2 < α < β we can apply Lemma 3.2.6

to G and consider three cases depending on the outcome of Lemma 3.2.6 which holds.

First suppose we are in Case (1), i.e. there exists X ⊆ V (G) such that αt ≤ |X| ≤ βt

and δ(G[X]) ≥ t
2
. There are two subcases here. The first is t ≤ |X| ≤ βt. Lemma 3.2.3

applied to G[X] then ensures that G contains a subgraph on t vertices with at least

d(G[X])

v(G[X])

(︃
t

2

)︃
≥

t
2

βt

(︃
t

2

)︃
=

1

2β

(︃
t

2

)︃
=

5

12

(︃
t

2

)︃
> γ

(︃
t

2

)︃

edges.

The other subcase is αt ≤ |X| ≤ t. In the following, we assume without loss of gener-

ality that X is chosen of maximum size subject to satisfying the conditions of Case (1) in

Lemma 3.2.6 as well as |X| ≤ t. In particular, this implies that for every vertex u ∈ V (G)\X,

we have |X ∪N [u]| > t, for otherwise we could replace X with X ∪N [u], contradicting the

maximality assumption.

Let us consider two possibilities. The first is that there exists u ∈ V (G) \ X such that

degG(u) ≤ νt − 1. Let Y = N [u] and write |X| = xt and |Y | = yt. By Lemma 3.2.4 there

exists a subgraph of G on t vertices with at least

(︃
1

2

(︃
x+

(1− x)2

y

)︃
− 1

t

)︃(︃
t

2

)︃
≥
(︃
1

2

(︃
x+

(1− x)2

ν

)︃
− 1

t

)︃(︃
t

2

)︃

edges. Hence, the theorem holds in this case as

γ ≤ min
α≤x≤1

1

2

(︃
x+

(1− x)2

ν

)︃
− 1

t
=

1

2

(︃
α +

(1− α)2

ν

)︃
− 1

t
=

5

12
− 1

t
.
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Otherwise, degG(u) > νt − 1 for every u ∈ V (G) \ X. By Lemma 3.2.5 G contains a

subgraph on t vertices with at least

(ν − 1− 3
t
)t

(ν − 3
4
)|X|

(︃
t

2

)︃
≥

(ν − 1− 3
t
)t

(ν − 3
4
)t

(︃
t

2

)︃
>

(︃
ν − 1

ν − 3
4

− 12

t

)︃(︃
t

2

)︃
=

(︃
4

9
− 12

t

)︃(︃
t

2

)︃
> γ

(︃
t

2

)︃

edges, where the second inequality holds as ν > 1. This finishes the proof in the case that

outcome (1) of Lemma 3.2.6 holds.

Now suppose that outcome (2) of Lemma 3.2.6 holds, i.e. there exists S ⊆ V (G) such

that |N [S]| < αt and degG(u) > βt − 1 for every u ∈ V (G) \ N [S]. Note that S ̸= ∅, since

otherwise deleting an arbitrary edge of G results in a proper minor H satisfying d(H) ≥

δ(H) ≥ βt − 2 ≥ t + t
5
− 2 ≥ t + 3, a contradiction. Additionally δ(G[N [S]]) ≥ t

2
since

δ(G[N [s]]) ≥ t
2

for each s ∈ S. By Lemma 3.2.5 with X = N [S], G contains a subgraph on

t vertices with at least

(β − 1− 3
t
)t

(β − 3
4
)|X|

(︃
t

2

)︃
>

(β − 1− 3
t
)t

(β − 3
4
)t

(︃
t

2

)︃
>

(︃
β − 1

(β − 3
4
)
− 24

t

)︃(︃
t

2

)︃
=

(︃
4

9
− 24

t

)︃(︃
t

2

)︃
> γ

(︃
t

2

)︃

edges, where the second inequality uses β > 1.

Finally, suppose that outcome (3) of Lemma 3.2.6 holds, i.e. there exist X, Y ⊆ V (G)

such that |X|, |Y | < αt, |X ∪ Y | > βt and δ(G[X]), δ(G[Y ]) ≥ t
2
. Without loss of generality

suppose |X| ≥ |Y | and let |X| = xt and |Y | = yt. By Lemma 3.2.4 there exists a subgraph

of G on t vertices with at least

(︃
1

2

(︃
x+

(1− x)2

y

)︃
− 1

t

)︃(︃
t

2

)︃
≥
(︃
1

2

(︃
x+

(1− x)2

x

)︃
− 1

t

)︃(︃
t

2

)︃

edges. Hence, it suffices to show that

1

2

(︃
x+

(1− x)2

x

)︃
≥

√
2− 1.
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This last inequality simplifies to
(︁√

2x− 1
)︁2 ≥ 0 for x > 0 and hence holds for all such x,

as desired.

3.3 Upper bound

In this section, we prove Theorem 3.1.2. We first need the following definitions.

For k ∈ N, k-trees are the graph family defined in a recursive manner as follows:

• The complete graph Kk+1 is a k-tree.

• If G is a k-tree and C ⊆ V (G) is a clique in G with |C| = k, then the graph obtained

from G by adding a new vertex with neighbourhood C is also a k-tree.

It follows readily from this definition that for any k-tree G, e(G) =
(︁
k
2

)︁
+ k(v(G) − k).

Furthermore, every minor of a k-tree with at least k+1 vertices is also a spanning subgraph

of a k-tree. Indeed, the treewidth tw(G) of a graph G with at least k + 1 vertices is at most

k if and only if G is a spanning subgraph of a k-tree [B12, B16], and it is well known that

treewidth is minor-monotone (that is, tw(G′) ≤ tw(G) for every minor G′ of a graph G).

Sufficiently large k-trees, with appropriately chosen parameter k, will be our first candidates

for Theorem 3.1.2.

Let Sr = K1,r be the star graph with r leaves. We define the graph Sk,r,s as the graph

obtained from Sr by replacing every leaf by cliques A1, . . . , Ar on s vertices and replacing

the central vertex by a clique C on k vertices. In particular, every vertex of C is adjacent

to every other vertex in the graph. Such vertices are said to be universal.

These graphs, with appropriately chosen parameters, will also be candidates for Theo-

rem 3.1.2. First note that

d(Sk,r,s) =
2
(︁(︁

k
2

)︁
+ r
(︁
s
2

)︁
+ krs

)︁
k + rs

.

Given graphs G and H, we say the collection (Bu)u∈V (H) of pairwise disjoint non-empty

subsets of V (G) is a model of H in G if G[Bu] is connected for every u ∈ V (H) and G
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contains at least one edge between Bu and Bv if uv ∈ E(H). It is easy to see that there

exists a model of H in G if and only if H is a minor of G. It is also direct that if |Bu| = 1

for every u ∈ V (H), then G contains a subgraph isomorphic to H (precisely, on vertex set⋃︁
u∈V (H) Bu).

We now show that with these graphs, we may restrict ourselves to finding a dense sub-

graph on t vertices, which is simpler than finding minors.

Lemma 3.3.1. If k, r, s ∈ N and H is a minor of Sk,r,s, then Sk,r,s has a subgraph isomorphic

to H.

Proof. Let B = (Bu)u∈V (H) be a model of H in G which minimizes
∑︁

u∈V (H) |Bu|. If |Bu| = 1

for every u ∈ V (H), then we are done by the above remark. Hence, assume |Bv| ≥ 2 for

some v ∈ V (H).

If Bv ⊆ Ai for some 1 ≤ i ≤ r, let x ∈ Bv. If Bv ∩ C ̸= ∅, let x ∈ C ∩ Bv. Given the

structure of Sk,r,s and that the subgraph induced by Bv is connected, these are the only two

possible cases. Let B′
v = {x} and B′

u = Bu for u ∈ V (H) \ {v}.

It is easy to verify that in both of these cases, if w ∈ V (G) \ Bv is adjacent to at least

one vertex of Bv, then w is adjacent to x. Hence, (B′
u)u∈V (H) is a model of H in G which

contradicts the minimality of B.

We now compute an upper bound on the density of t-vertex subgraphs of Sk,r,s.

Lemma 3.3.2. If k, r, s, t ∈ N are such that k + rs ≥ t ≥ k, then Sk,r,s does not contain a

subgraph on t vertices with more than

f(k, s, t) =

(︃
k

2

)︃
+ k(t− k) +

⌊︃
t− k

s

⌋︃(︃
s

2

)︃
+

(︃
t− k −

⌊︁
t−k
s

⌋︁
s

2

)︃
(3.1)

edges.

Proof. Let X ⊆ V (Sk,r,s) such that |X| = t which maximizes the number of edges in G[X]

with first priority and then, subject to e(G[X]) being maximum, maximizes |X ∩ C| with
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second priority. This is possible given that v(Sk,r,s) = k + rs ≥ t. Our goal is thus to upper

bound e(G[X]).

We first claim that C ⊆ X. Suppose to contrary that there exists c ∈ C \X. Given that

|X| = t ≥ k = |C| > |C \ {c}|, this implies there exists x ∈ X \ C. Let X0 = X \ {x} and

X ′ = X0 ∪ {c}. Then,

e(G[X]) = e (G [X0]) + |N(x) ∩X0| ≤ e (G [X0]) + |N(c) ∩X0| = e(G[X ′]),

where the inequality follows from the fact that c is a universal vertex of G. Since |X ′ ∩C| >

|X ∩ C|, this contradicts our choice of X. Hence, we have C ⊆ X.

The number of edges in G[C] is
(︁
k
2

)︁
. Given that |X \C| = t−k and every vertex in X \C

is connected to all k vertices in C, the number of edges between C and X \ C is k(t− k).

For 1 ≤ i ≤ r, let ai = |X ∩ Ai|. In particular,
∑︁r

i=1 ai = t − k and for every i we have

0 ≤ ai ≤ s. Then e(G[X \ C]) =
∑︁r

i=1

(︁
ai
2

)︁
. Suppose there exist distinct 1 ≤ i, j ≤ r such

that 0 < ai, aj < s. Without loss of generality, suppose ai ≥ aj. Under this assumption, it

is easy to verify that
(︁
ai
2

)︁
+
(︁
aj
2

)︁
<
(︁
ai+1
2

)︁
+
(︁
aj−1
2

)︁
, and so by choosing one more vertex in Ai

and one fewer vertex in Aj we could obtain a subgraph with more edges, contradicting the

maximality of e(G[X]). Hence ai ∈ {0, s} for all except at most one index i ∈ {1, . . . , r}. It

then follows from
∑︁r

i=1 ai = t− k that ai = s for exactly
⌊︁
t−k
s

⌋︁
choices of i, and the possible

remaining non-empty set of the form X∩Ai contains exactly (t−k)−
⌊︁
t−k
s

⌋︁
s vertices. Hence,

G[X \ C] contains exactly
⌊︁
t−k
s

⌋︁ (︁
s
2

)︁
+
(︁t−k−⌊ t−k

s ⌋s
2

)︁
edges. This concludes the proof of the

lemma.

We may now prove Theorem 3.1.2, which we restate for convenience.

Theorem 3.1.2. For t ∈ N, there exists a graph G with average degree d(G) ≥ t such that

G does not contain a minor on t vertices with more than
(︁
3
4
+ o(1)

)︁ (︁
t
2

)︁
edges.

Proof. We prove the theorem in two ways.
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Figure 3.3.1: Example of a k-tree in the proof of Theorem 3.1.2:
⌈︁
t+1
2

⌉︁
-th power of a path,

here illustrated for t = 8.

. . .

≈ t
4

≈ t
2

≈ t
2

(a) s(t) =
(︁
1
2 + o(1)

)︁
t

. . .

≈ t
2

(b) s(t) = 1

Figure 3.3.2: Examples of graphs Sk(s(t),t),r,s(t) in the proof of Theorem 3.1.2.

Using k-trees

In order to prove the theorem, consider any k(t)-tree G, where k(t) =
(︁
1
2
+ o(1)

)︁
t > t

2
,

and for which v(G) is sufficiently large (as a function of k(t)) such that

d(G) = 2

(︁
k(t)
2

)︁
+ k(t)(v(G)− k(t))

v(G)
= 2k(t)− (k(t) + 1)k(t)

v(G)
> t.

Let G′ be any minor of G on t vertices. As noted earlier, G′ must be a spanning subgraph

of some k(t)-tree. Hence,

e(G′) ≤
(︃
k(t)

2

)︃
+ k(t)(t− k(t)) =

(︃
1

2
+ o(1)

)︃2
t2

2
+

(︃
1

2
+ o(1)

)︃2

t2 =

(︃
3

4
+ o(1)

)︃(︃
t

2

)︃
,

as desired.

See Figure 3.3.1 for an example of such a graph.

Using Sk,r,s

In order to prove the theorem, we consider the graphs Sk(s(t),t),r,s(t) with k(s(t), t) =⌈︂
t−s(t)

2

⌉︂
+1 and some choice of s(t) ≥ 1, to be specified later. Given that limr→∞ d(Sk(s(t),t),r,s(t)) =
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s(t)− 1 + 2k(s(t), t) = s(t)− 1 + 2
(︂⌈︂

t−s(t)
2

⌉︂
+ 1
)︂
≥ t+ 1, we have that d(Sk(s(t),t),r,s(t)) ≥ t

for sufficiently large r.

Applying Lemma 3.3.1 and Lemma 3.3.2, we only need show that f(k(s(t), t), s(t), t) =(︁
3
4
+ o(1)

)︁ (︁
t
2

)︁
. We show that this holds for various choices of s(t).

One possible choice for s(t) is s(t) =
(︁

1
2i
+ o(1)

)︁
t for fixed i ∈ N (see Figure 3.3.2(a) for

the case with i = 1.) Then k(s(t), t) =
(︁
1
2
− 1

4i
+ o(1)

)︁
t. We may then compute that

(︃
k(s(t), t)

2

)︃
=

(︃
1

2
− 1

4i
+ o(1)

)︃2
t2

2
=

(︃
1

4
− 1

4i
+

1

16i2
+ o(1)

)︃(︃
t

2

)︃

and

k(s(t), t)(t−k(s(t), t)) =

(︃
1

2
− 1

4i
+ o(1)

)︃(︃
1−

(︃
1

2
− 1

4i
+ o(1)

)︃)︃
t2 =

(︃
1

2
− 1

8i2
+ o(1)

)︃(︃
t

2

)︃
.

Given that

⌊︃
t− k(s(t), t)

s(t)

⌋︃
=

⌊︄
t−
(︁
1
2
− 1

4i
+ o(1)

)︁
t(︁

1
2i
+ o(1)

)︁
t

⌋︄
=

⌊︃ 1
2
+ 1

4i
+ o(1)

1
2i
+ o(1)

⌋︃
= i

for sufficiently large t, we have

⌊︃
t− k(s(t), t)

s(t)

⌋︃(︃
s(t)

2

)︃
= (i+ o(1))

(︃
1

2i
+ o(1)

)︃2
t2

2
=

(︃
1

4i
+ o(1)

)︃(︃
t

2

)︃

and

(︃
t− k(s(t), t)−

⌊︂
t−k(s(t),t)

s(t)

⌋︂
s(t)

2

)︃
=

(︃
1−

(︃
1

2
− 1

4i
+ o(1)

)︃
− (i+ o(1))

(︃
1

2i
+ o(1)

)︃)︃2
t2

2

=

(︃
1

16i2
+ o(1)

)︃(︃
t

2

)︃
.
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Thus we obtain for the value of f(k(s(t), t), s(t), t):

(︃(︃
1

4
− 1

4i
+

1

16i2
+ o(1)

)︃
+

(︃
1

2
− 1

8i2
+ o(1)

)︃
+

(︃
1

4i
+ o(1)

)︃
+

(︃
1

16i2
+ o(1)

)︃)︃(︃
t

2

)︃
=

(︃
3

4
+ o(1)

)︃(︃
t

2

)︃
,

as desired.

Another possible case is s(t) = o(t) (see Figure 3.3.2(b) for the case s(t) = 1). An

analogous computation to above yields the result in this case (this can informally be seen

by letting i tend to infinity). In fact, in this case the result also follows from the approach

for k-trees discussed above.

3.4 Small graphs

In this section, we prove Theorem 3.1.3. We first need the following definitions.

A (proper) separation of a graph G is a pair (A,B) such that A,B ⊆ V (G), A∪B = V (G),

A \B,B \A ̸= ∅ and there are no edges between vertices in A \B and B \A. The order of

(A,B) is |A ∩ B|. We say a graph G is k-connected if v(G) ≥ k + 1 and G does not have a

separation of order strictly smaller than k. Note that complete graphs are the only graphs

to not have any separation.

Given a graph H and k ∈ N, we say a graph G is an (H, k)-cockade if G is isomorphic to

H or if G can be obtained from smaller (H, k)-cockades G′ and G′′ by identifying a clique of

size k of G′ with a clique of size k of G′′. A simple inductive argument can be used to show

that if G is an (H, k)-cockade then e(G) = v(G)−k
v(H)−k

e(H)− v(G)−v(H)
v(H)−k

(︁
k
2

)︁
.

We first prove the following upper bound on the extremal function for minors in K−4
6 ,

the class of graphs on 6 vertices and 11 edges. See, for instance, the introduction of [B11],

and references therein, for a summary of similar results on the extremal functions of small

graphs. By K−
5 we denote the graph obtained from K5 by removing one edge.
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Theorem 3.4.1. If G is a graph such that e(G) ≥ 5
2
v(G)− 7

2
, then G contains a minor with

6 vertices and 11 edges, unless G is isomorphic to K1, K−
5 or K5.

Proof. First note that
⌈︁
5
2
n− 7

2

⌉︁
= −1, 2, 4, 7, 9, 12 when, respectively, n = 1, 2, 3, 4, 5, 6. It

is then immediate that the only graphs G with v(G) ≤ 5 and at least 5
2
v(G) − 7

2
edges are

K1, K−
5 and K5. If v(G) = 6, then G contains at least 12 edges, and thus the statement

also holds in this case. This shows that the theorem holds if G has at most 6 vertices, and

therefore we may assume v(G) ≥ 7.

Towards a contradiction, suppose then that the statement is false, and let G be a coun-

terexample that minimizes v(G) and then, subject to v(G) being minimum, minimizes e(G).

The latter condition in particular implies that e(G) =
⌈︁
5
2
v(G)− 7

2

⌉︁
< 5

2
v(G).

First suppose G is 3-connected. If some e ∈ E(G) is in fewer than two triangles, then

e(G/e) ≥ e(G)− 2 ≥ 5

2
v(G)− 11

2
=

5

2
(v(G/e) + 1)− 11

2
=

5

2
v(G/e)− 3.

By minimality of G, G/e contains a minor on 6 vertices and 11 edges (using that v(G/e) ≥ 6

to exclude the small exceptions). As this contradicts our assumptions on G, every edge in

G lies on at least two triangles.

Next suppose there exists A ⊆ V (G) of size 5 such that e(G[A]) = 8. Let u ∈ V (G)\A. As

G is 3-connected, Menger’s theorem [B7] implies there exist internally vertex-disjoint u−A

paths P1, P2, P3 in G (with no internal vertices in A). Then, G[A ∪ V (P1) ∪ V (P2) ∪ V (P3)]

contains a minor on 6 vertices and at least 11 edges, which can be obtained by contracting

all but one edge in each of P1, P2, P3. Hence such a set A does not exist.

Given that d(G) = 2e(G)
v(G)

< 5, there exists u ∈ V (G) of degree at most 4 (and at least 3,

by 3-connectivity).

Consider the case degG(u) = 4. As every edge of G is in at least two triangles, δ(G[NG[u]]) ≥

3. In particular, e(G[NG[u]]) = 1
2
d(G[NG[u]])v(G[NG[u]]) ≥ 15

2
, and as this is an integer

e(G[NG[u]]) ≥ 8. However, we have excluded such a choice A = NG[u] earlier.
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Hence, we may suppose that degG(u) = 3, say NG(u) = {x, y, z}. Again as every

edge of G is in at least two triangles, G[NG[u]] is necessarily isomorphic to K4. Let v ∈

NG(x)\N [u] (such a vertex necessarily exists as otherwise ({u, x, y, z}, V (G)\{u, x}) would

form a separation of order 2 in G, contradicting 3-connectivity). As proved above, vx is in at

least one triangle. If v is adjacent to y or z, then G[{u, x, y, z, v}] contains at least 8 edges,

which we have excluded earlier. Hence, there exists w ∈ V (G) \NG[u] which is adjacent to

both x and v. Again, by Menger’s theorem there exist at least three internally vertex-disjoint

paths between {v, w} and {u, y, z}. At most one of these can contain x. Let P1, P2 be two

of these paths which do not contain x, we may also suppose they do not contain any of

{u, x, y, z, v, w} as internal vertices. Then, G[{u, x, y, z, v, w} ∪ V (P1) ∪ V (P2)] contains a

minor on 6 vertices and 11 edges, which can be obtained by contracting all but one edge in

each of P1, P2.

Hence, we may now suppose that G is not 3-connected. As v(G) ≥ 7, we may then

suppose G is not a complete graph, so let (A,B) be a separation of G of minimal order. In

particular, |A ∩B| ≤ 2.

We divide the rest of the proof into cases depending on the size of A ∩B. First suppose

|A ∩ B| = 0. By minimality of G, if e(G[A]) ≥ 5
2
|A| − 2 (in particular, G[A] cannot be

isomorphic to K1, K
−
5 or K5), then G[A] contains a minor on 6 vertices and 11 edges, which

is a contradiction. Hence, we may assume that e(G[A]) < 5
2
|A| − 2, and similarly that

e(G[B]) < 5
2
|A| − 2. Then,

e(G) = e(G[A]) + e(G[B]) <
5

2
(|A|+ |B|)− 4 =

5

2
v(G)− 4 <

5

2
v(G)− 7

2
,

which is a contradiction to our hypothesis, so this case is not possible.

Now suppose |A∩B| = 1, say A∩B = {x}. Then G is connected, and in particular G[A]

and G[B] are connected and |A|, |B| ≥ 2. If G[A] is isomorphic to K5, then G[A ∪ y] is a

6-vertex graph with at least 11 edges, where y is a neighbour of x in B. Hence, G[A] is not
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isomorphic to K5, and similarly for G[B]. Then, by minimality of G, if e(G[A]) ≥ 5
2
|A| − 3

(note that this implies that A cannot isomorphic to K−
5 ), G[A] contains a minor on 6 vertices

and 11 edges, which is a contradiction. Hence, we may assume that e(G[A]) < 5
2
|A| − 3, and

similarly that e(G[B]) < 5
2
|B| − 3. Then,

e(G) = e(G[A]) + e(G[B]) <
5

2
(|A|+ |B|)− 6 =

5

2
(v(G) + 1)− 6 =

5

2
v(G)− 7

2
,

which contradicts our hypothesis, so this case is not possible.

Finally, suppose |A∩B| = 2; say A∩B = {x, y}. Since G is 2-connected, every component

of G − {x, y} has an edge to both x and y. Hence, there exists an x − y path P1 with at

least two edges and with internal vertices in A \ B, and an x− y path P2 with at least two

edges and with internal vertices in B \ A.

If G[A] is isomorphic to K−
5 or K5, then G[A∪V (P2)] contains a minor on 6 vertices and

at least 11 edges, which we can obtain by contracting all but two of the edges of P2. Hence,

G[A], and similarly G[B], are not isomorphic to K−
5 or K5.

By minimality of G, if e(G[A]) ≥ 5
2
|A| − 7

2
or e(G[B]) ≥ 5

2
|B| − 7

2
, then G contains a

minor on 6 vertices and 11 edges, which is a contradiction. Given that the number of edges

must be an integer, we have that e(G[A]) ≤ 5
2
|A| − 4 and e(G[B]) ≤ 5

2
|B| − 4.

If xy ∈ E(G), then

e(G) = e(G[A]) + e(G[B])− 1 ≤ 5

2
(|A|+ |B|)− 9 =

5

2
(v(G) + 2)− 9 <

5

2
v(G)− 7

2
,

which is a contradiction to our hypothesis.

Hence, xy /∈ E(G). Suppose first that e(G[A]) ≤ 5
2
|A|− 9

2
and e(G[B]) ≤ 5

2
|B|− 9

2
. Then,

e(G) = e(G[A]) + e(G[B]) ≤ 5

2
(|A|+ |B|)− 9 =

5

2
(v(G) + 2)− 9 <

5

2
v(G)− 7

2
,

which would be a contradiction to our assumptions on G. Thus, at least one of the two above
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inequalities is invalid. Without loss of generality, we may assume that e(G[A]) > 5
2
|A|− 9

2
and

thus e(G[A]) ≥ 5
2
|A|−4. Now this implies e(G[A]+xy) = e(G[A])+1 ≥ 5

2
|A|−3 > 5

2
|A|− 7

2
.

Contracting P2 into an edge, we obtain that G[A]+xy is a minor of G. Using the minimality

of G, we then find that G[A] + xy is isomorphic to K−
5 or K5. The case G[A] + xy ≃ K−

5 is

impossible, as it would mean that e(G[A]) = 8 < 5
2
|A| − 4. Thus, we have G[A] + xy ≃ K5.

But then by removing superflous vertices and edges from B and contracting all but two of

the edges in P2, we obtain a minor of G isomorphic to the graph obtained from G[A] ≃ K−
5

by adding a new vertex adjacent to x and y. This is a graph on 6 vertices and 11 edges, as

desired.

As we have found a contradiction to our initial assumption that G is a smallest coun-

terexample in every possible case, this completes the proof of the theorem.

Although Theorem 3.4.1 is sufficiently strong for our purposes, it might be possible to

improve it, as we are not aware of any family of graphs G with no K−4
6 minor for which

e(G) ≈ 5
2
v(G). However, (K−

5 , 1)-cockades do not contain any K−4
6 minor and contain

≈ 9
4
v(G) edges.

We are now ready to prove Theorem 3.1.3, which we restate for convenience.

Theorem 3.1.3. If 2 ≤ t ≤ 6 is an integer and G is a graph with average degree d(G) ≥ t−1,

then G contains a minor on t vertices with at least

• 1 edge if t = 2,

• 3 edges if t = 3,

• 5 edges if t = 4,

• 8 edges if t = 5, and

• 11 edges it t = 6.

Furthermore, none of these values can be improved.
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Proof.

Upper bounds

We show that the values in the statement cannot be improved. For t = 2, 3, these values

cannot be improved as no graph on t vertices can have more than
(︁
t
2

)︁
edges.

For t = 4, 5, consider the graphs S2,r,t−3 as defined in Section 3.3. One easily verifies that

for such t and r ≥ 4,

d(S2,r,t−3) =
2
(︁(︁

2
2

)︁
+ r
(︁
t−3
2

)︁
+ 2r(t− 3)

)︁
2 + r(t− 3)

≥ t− 1.

By Lemma 3.3.1 and Lemma 3.3.2, S2,r,t−3 does not contain any minor on t vertices with

more than f(2, t−3, t) vertices, which we can directly compute to be 5 and 8 for, respectively,

t = 4 and t = 5.

For t = 6, consider any (K−
5 , 2)-cockade G with v(G) ≥ 26. First note that e(G) =

v(G)−2
5−2

· 9 − v(G)−5
5−2

(︁
2
2

)︁
= 8

3
v(G) − 13

3
≥ 5

2
v(G) and so d(G) ≥ 5. However, we claim that G

cannot contain any minor on 6 vertices and 12 edges.

It is easy to see that every graph on 6 vertices with at least 12 edges is either 3-connected

or contains a K5 subgraph. However, as G is constructed in a tree-like fashion by identifying

edges between copies of K−
5 , the only 3-connected minors of G are in fact minors of K−

5

(more generally, for k = 0, 1, 2, it is well known that if G is a k-sum of G1 and G2, and H is

3-connected, then H is a minor of G if and only if H is a minor of G1 or of G2). Hence, G

can contain neither a 3-connected 6-vertex graph nor K5 as a minor, proving our claim.

Lower bounds

t = 2 : Any graph with average degree at least one contains an edge, and thus contains a

minor on two vertices with one edge.

t = 3 : It is well known that if G is a forest, e(G) ≤ v(G) − 1, and in particular that

d(G) = 2e(G)
v(G)

< 2 (if G is non-null). Given that d(G) ≥ 3− 1 = 2, G is not a forest and thus
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contains a cycle C and thus G contains K3 as a minor.

t = 4 : It is well known, and easy to see, that K−
4 -minor-free graphs are the graphs for

which every component is a cactus graph, that is a connected graph in which every block is

either an edge or a cycle. It is also well known (for instance, [B15, Exercice 4.1.31]) that

if G is a cactus graph, then e(G) ≤
⌊︂
3(v(G)−1)

2

⌋︂
edges (the proof proceeds by induction on

the number of blocks). Given that G has average degree at least 3, e(G) ≥ 3
2
v(G) and so G

contains a K−
4 minor, i.e. a minor on four vertices with five edges, as claimed.

t = 5 : Dirac [B2, Theorem 1B] proved that for any graph G such that e(G) ≥ 2v(G)− 2,

either G contains a minor on 5 vertices and 8 edges or G is a (K4, 1)-cockade. Note that in

the latter case, e(G) = v(G)−1
4−1

· 6− v(G)−4
4−1

(︁
1
2

)︁
= 2(v(G)− 1) < 2v(G). Hence, if d(G) ≥ 4, we

have that e(G) ≥ 2v(G) and so G contains a minor on 5 vertices and 8 edges.

t = 6 : Given that d(G) ≥ 5
2
d(G), Theorem 3.4.1 implies this result directly (noting that

none of the small exceptions in Theorem 3.4.1 have average degree at least 5).

3.5 Concluding remarks

We have considered the problem of finding the best possible α such that every graph with

average degree at least t contains a minor on t vertices with at least (α− o(1))
(︁
t
2

)︁
edges; we

have shown that
√
2− 1 ≤ α ≤ 3

4
. It would be interesting to further improve these bounds.

We note that in our proof of Theorem 3.1.1, we have only used contractions to be able

to consider the smallest minor of G such that d(G) ≥ t and apply Lemma 3.2.1. Once

we have obtained that all closed neighbourhoods have minimum degree greater than t
2
, we

only consider subgraphs. In this setup, we cannot improve our lower bound on α beyond 1
2
.

Indeed, consider the line graph of the complete graph Kn. It is t := 2(n − 2)-regular, has

closed neighbourhoods of minimum degree (n− 1) > t
2

and it is not hard to verify that this

graph contains no subgraph on t vertices with more than (1+ o(1))n2 = (1
2
+ o(1))

(︁
t
2

)︁
edges.

99



Acknowledgments

This research was partially completed at the Second 2022 Barbados Graph Theory Workshop

held at the Bellairs Research Institute in December 2022.

References

[B1] M. Delcourt and L. Postle. Reducing Linear Hadwiger’s Conjecture to Coloring Small

Graphs. Journal of the American Mathematical Society, July 2024. doi:10.1090/

jams/1047.

[B2] G. A. Dirac. Homomorphism theorems for graphs. Mathematische Annalen, 153:69–80,

Feb. 1964. doi:10.1007/BF01361708.

[B3] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Natur-

forsch. Ges. Zürich, 88:133–143, 1943.

[B4] A. Kostochka. Ks,t Minors in (s+ t)-chromatic Graphs, II. Journal of Graph Theory,

75(4):377–386, Apr. 2014. doi:10.1002/jgt.21744.

[B5] A. V. Kostochka. On Ks,t minors in (s+t)-chromatic graphs. Journal of Graph Theory,

65(4):343–350, Dec. 2010. doi:10.1002/jgt.20485.

[B6] W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen.

Mathematische Annalen, 174:265–268, Dec. 1967. doi:10.1007/BF01364272.

[B7] K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–115,

1927. doi:10.4064/fm-10-1-96-115.

[B8] T. H. Nguyen. Linear-sized minors with given edge density, Aug. 2022. URL: http:

//arxiv.org/abs/2206.14309.

[B9] S. Norin and P. Seymour. Dense minors of graphs with independence number two,

May 2022. URL: http://arxiv.org/abs/2206.00186.

100

https://doi.org/10.1090/jams/1047
https://doi.org/10.1090/jams/1047
https://doi.org/10.1007/BF01361708
https://doi.org/10.1002/jgt.21744
https://doi.org/10.1002/jgt.20485
https://doi.org/10.1007/BF01364272
https://doi.org/10.4064/fm-10-1-96-115
http://arxiv.org/abs/2206.14309
http://arxiv.org/abs/2206.14309
http://arxiv.org/abs/2206.00186


[B10] S. Norin and J. Turcotte. Limits of degeneracy for colouring graphs with forbidden

minors, Apr. 2023. URL: https://arxiv.org/abs/2304.13715.

[B11] M. Rolek. The extremal function for K=
9 minors. Journal of Graph Theory, 94(2):206–

223, June 2020. doi:10.1002/jgt.22515.

[B12] P. Scheffler. The graphs of tree-width k are exactly the partial k-trees. Sept. 1986.

doi:10.13140/RG.2.2.27172.58248.

[B13] P. Seymour. Hadwiger’s Conjecture. In J. F. Nash and M. T. Rassias, editors, Open

Problems in Mathematics, pages 417–437. Springer International Publishing, Cham,

2016. doi:10.1007/978-3-319-32162-2_13.

[B14] P. Seymour. BIRS Workshop: Geometric and Structural Graph Theory

- Open Problems, June 2017. URL: https://drive.google.com/file/d/

1SZCJ-bc8qPXKlkfVFyAocX5bU8W5JYbv/view.

[B15] D. B. West. Introduction to Graph Theory. Prentice Hall, second edition edition, 2001.

[B16] T. V. Wimer. Linear Algorithms on k-Terminal Graphs. Dissertation, Clemson Uni-

versity, Aug. 1987. URL: https://tigerprints.clemson.edu/arv_dissertations/

608.

101

https://arxiv.org/abs/2304.13715
https://doi.org/10.1002/jgt.22515
https://doi.org/10.13140/RG.2.2.27172.58248
https://doi.org/10.1007/978-3-319-32162-2_13
https://drive.google.com/file/d/1SZCJ-bc8qPXKlkfVFyAocX5bU8W5JYbv/view
https://drive.google.com/file/d/1SZCJ-bc8qPXKlkfVFyAocX5bU8W5JYbv/view
https://tigerprints.clemson.edu/arv_dissertations/608
https://tigerprints.clemson.edu/arv_dissertations/608


Part III

Menger’s theorem and induced paths
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Bridging text 2

In the previous two chapters, we discussed related weakenings of Hadwiger’s conjecture, in

which the number of edges in the forbidden minor(s) is relaxed.

In this chapter, we consider minors in which the pieces of the model are pairwise far-apart,

which we have defined in the introduction as fat minors. Georgakopoulos and Papasoglu [47]

have conjectured a version of Hadwiger’s conjecture in the coarse context, where the colouring

is replaced by Assouad-Nagata dimension and the forbidden minor condition is replaced by

forbidding arbitrarily fat Kt minors.

As discussed in the introduction of this thesis, relating H-fat-minor-free graphs to the

large-scale structure of the graph (specifically, quasi-isometry to an H-minor-free graph) was

suggested by Georgakopoulos and Papasoglu [47] as one the first problems to study in this

new field, and they suggested proving a coarse version of Menger’s conjecture as one of the

main tools to do so.

Although the suggested Coarse Menger’s conjecture was disproved by Nguyen et al. [74],

many variants and weakenings of it may still be true.

In the following chapter, we consider the induced case: we wish to find k paths which are

pairwise at distance at least two between sets of vertices X and Y . In the specific variant

we work on, if we cannot find the desired paths, we obtain a set of at most Ck vertices

which separate X and Y , rather than a set k − 1 of balls as in the original Coarse Menger

conjecture. The former would be implied by the latter, in the case of graphs of bounded

maximum degree. Using strong edge colourings, we will show that such a constant C exists,

and find better and sometimes tight bounds in the case of subcubic graphs.
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We also prove an analogous result for graphs with a forbidden topological minor, using

a structure theorem which reduces the problem to either having bounded degree (where we

will use the previously mentioned result) or having a forbidden minor (in which case there

is an easy argument).
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4
On an induced version of Menger’s

theorem
Kevin Hendrey1, Sergey Norin2, Raphael Steiner3, Jérémie Tur-
cotte2

We prove Menger-type results in which the obtained paths are pairwise non-adjacent, both for

graphs of bounded maximum degree and, more generally, for graphs excluding a topological

minor. More precisely, we show the existence of a constant C, depending only on the maxi-
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mum degree or on the forbidden topological minor, such that for any pair of sets of vertices

X, Y and any positive integer k, there exists either k pairwise non-adjacent X-Y -paths, or a

set of fewer than Ck vertices which separates X and Y . We further show better bounds in the

subcubic case, and in particular obtain a tight result for two paths using a computer-assisted

proof.

4.1 Introduction

Given a graph G and X, Y ⊆ V (G), we say a set of vertices Z separates X and Y if

Z intersects every X-Y -path4. In general, we say two paths are disjoint if they do not

share any vertices. Menger’s theorem is a fundamental result of graph theory, relating the

existence of many disjoint paths between two sets of vertices in a graph with the absence of

small separators.

Theorem 4.1.1 (Menger’s theorem [C12]). If k ∈ N, G is a graph and X, Y ⊆ V (G), then

there exists either

(1) k pairwise disjoint X-Y -paths, or

(2) a set of less than k vertices which separates X and Y .

It is a natural question to ask under which circumstances we can guarantee the paths

in point (1) to be far apart from each other in the graph metric, rather than just disjoint.

Georgakopoulos and Papasoglu [C6], motivated by questions in metric geometry, and Al-

brechtsen et al. [C1], have conjectured a “Coarse Menger’s theorem”. Before stating it, we

need the following notation. If G is a graph, Z ⊆ V (G) and d ∈ N, we write BG(Z, d) for

the ball of radius d around Z, i.e. all vertices at distance at most d from one of the vertices

in Z. If Z = {z}, we may simply write BG(z, d).

Conjecture 4.1.2. For every k ∈ N, there exists c = c(k) ∈ N satisfying the following. If

d ∈ N, G is a graph and X, Y ⊆ V (G), then there exists either
4An X-Y -path is defined as a path that has one endpoint in X and the opposite endoint in Y . Notably,

this definition also allows a single vertex in X ∩ Y to qualify as an X-Y -path (of length 0).
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(1) k disjoint X-Y -paths P1, . . . , Pk such that distG(Pi, Pj) ≥ d for all distinct i, j, or

(2) a set Z ⊆ V (G) of size less than k such that BG(Z, cd) separates X and Y .

We note that the conjecture of Albrechtsen et al. is in fact stronger, as it does not allow

c to depend on k. McCarty and Seymour have shown that it is sufficient to prove the

conjecture for the case d = 3 for the entire conjecture to hold, see [C1, Theorem 4].

Both Georgakopoulos and Papasoglu [C6] and Albrechtsen et al. [C1] have shown that

Conjecture 4.1.2 holds for k = 2, the constant of 129 below is from the latter authors.

Theorem 4.1.3 ([C6, C1]). If d ∈ N, G is a graph and X, Y ⊆ V (G), then there exists

either

(1) two disjoint X-Y -paths P1, P2 such that distG(P1, P2) ≥ d, or

(2) z ∈ V (G) such that BG(z, 129d) separates X and Y .

A natural special case of Conjecture 4.1.2 is the case when the graph G has maximum

degree bounded by a constant ∆. Indeed, in this case one can upper-bound the size of the

ball BG(Z, cd) in the statement of Conjecture 4.1.2 by |BG(Z, cd)| ≤ |Z| ·
∑︁cd

i=0∆
i < ∆cd+1k.

In particular, if the strong version of Conjecture 4.1.2 proposed by Albrechtsen et al. holds

(that is, with c independent of k), then also the following must be true.

Conjecture 4.1.4. For every d,∆ ∈ N there exists a constant C = C(d,∆) > 0 such that

the following holds. If k ∈ N, G is a graph with ∆(G) ≤ ∆ and X, Y ⊆ V (G), then there

exists either

(1) k X-Y -paths pairwise at distance at least d in G, or

(2) a set of less than Ck vertices in G which separates X and Y .

The reduction for d ≥ 3 to d = 3 by McCarty and Seymour also holds for Conjecture 4.1.4,

see Section 4.A.
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In the first main result of this paper, namely Theorem 4.1.5 below, we prove Conjec-

ture 4.1.4 in the first non-trivial case when d = 2, that is, when we look for a family of

disjoint X-Y -paths that are pairwise non-adjacent5. For brevity, when saying that paths are

pairwise non-adjacent, they will also be meant to be disjoint.

To state Theorem 4.1.5 concisely we need a bit of terminology. Let G be a graph. We say

M ⊆ E(G) is an induced matching if distG(e1, e2) ≥ 2 for every distinct e1, e2 ∈ M . A strong

edge colouring of G is a partition of the edges of G into induced matchings. In other words,

the edges are coloured such that no two edges of the same colour are adjacent. The strong

chromatic index of G, denoted by χ′
s(G), is the smallest number of matchings in a strong

edge colouring of G. The strong chromatic index is well studied, and there are many known

bounds depending on the maximum degree ∆(G) of G, as well as for more specific classes

of graphs. In general, χ′
s(G) ≤ 2∆(G)(∆(G) − 1) + 1, which can be seen by counting the

number of edges at distance at most 2 of any edge and colouring greedily. For large enough

∆, currently the best bound, by Hurley, de Verclos and Kang [C10], is χ′
s(G) ≤ 1.772∆2

when ∆(G) ≤ ∆.

Theorem 4.1.5. If k ∈ N, G is a graph and X, Y ⊆ V (G), then there exists either

(1) k pairwise non-adjacent X-Y -paths, or

(2) a set of less than 2χ
′
s(G)k vertices which separates X and Y .

Given the bounds on χ′
s(G) mentioned above, we may obtain the d = 2 case of Conjec-

ture 4.1.4 as a direct corollary of Theorem 4.1.5.

By Menger’s theorem (Theorem 4.1.1), Theorem 4.1.5 is equivalent to the following result.

Theorem 4.1.6. If k ∈ N, G is a graph, X, Y ⊆ V (G) and there exists at least 2χ
′
s(G)k

pairwise disjoint X-Y -paths, then there exist k pairwise non-adjacent X-Y -paths in G.
5Since for every X-Y -path P in a graph G there exists an induced X-Y -path P ′ such that V (P ′) ⊆ V (P ),

one can see that the existence of a family of k pairwise non-adjacent X-Y -paths is equivalent to the existence
of a family P of k different X-Y -paths, such that the union of the paths in P forms an induced subgraph of
G. This explains the naming of the paper.

108



We believe this result to be interesting in its own right, as it is a quite natural analogue

to Menger’s theorem in an induced setting. An example of another result of this type would

be Korhonen’s [C11] proof of the grid minor theorem for induced minors for bounded degree

graphs.

The idea behind our proof is as follows. Given a large number of disjoint X-Y -paths and

a strong colouring of the edges in between the paths, we contract all edges of a colour class

(say, green) and apply Menger’s theorem to find many disjoint X-Y -paths in the contracted

graph, which we can then lift back to the original graph. By this contraction, we will be

guaranteed to not have any green edges between the paths, and the strong colouring will

guarantee that there are no edges of the original paths that go between the new paths. After

repeating this argument for every colour, we find a collection of pairwise non-adjacent paths.

We will prove Theorem 4.1.6 in Section 4.2. In fact, given that we do not need to colour

the edges of the original paths, we can obtain an improvement over the constant 2χ′
s(G), which

is most significant when the maximum degree is small. In particular, in Section 4.4, we will

show the following two results. For brevity, if P is a collection of subgraphs (typically, of

paths) of a graph G, then write V (P) =
⋃︁

P∈P V (P ) and E(P) =
⋃︁

P∈P E(P ).

Theorem 4.1.7. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of at least

16k disjoint X-Y -paths such that every vertex in V (P) is incident to at most one edge in

E(G) \ E(P), then there exist at least k pairwise non-adjacent X-Y -paths in G.

This is a large improvement over the constant 210 which would be obtained from Theo-

rem 4.1.6 with the bound of χ′
s(G) ≤ 10 when ∆(G) ≤ 3 proved independently by Andersen

[C2] and by Horák, Qing and Trotter [C9].

For the case k = 2, we will show in a computer-assisted proof the following tight result.

Theorem 4.1.8. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of five disjoint

X-Y -paths such that every vertex in V (P) is incident to at most one edge in E(G) \ E(P),

then there exist two pairwise non-adjacent X-Y -paths in G.
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Furthermore, the statement does not necessarily hold if either

(a) P contains four paths instead of five, or

(b) we replace the condition that every vertex in V (P) is incident to at most one edge in

E(G) \ E(P) by the condition that the maximum degree of G is three.

Both the proof methods of Theorems 4.1.7 and 4.1.8 and (b) in the latter indicate that

the maximum degree of G−E(P) is a more natural parameter to bound than the maximum

degree of G.

A direct consequence of (1) in this result is that the 16k in Theorem 4.1.7 cannot be

improved below 4k − 3 (consider a disjoint union of k − 1 copies of a graph containing 4

disjoint X-Y -paths but no two non-adjacent X-Y -paths).

We say a graph H is a topological minor of a graph G if G contains a subdivision6 of H

as a subgraph. In Section 4.3, using the structure theorem for graphs excluding a topological

Kr-minor first proved by Grohe and Marx [C7], as well as Erde and Weißauer [C4], we then

generalize our induced Menger’s theorem to the class of graphs excluding the complete graph

Kr as a topological minor.

Theorem 4.1.9. For every r ∈ N, there exists c = c4.1.9(r) > 0 such that the following holds.

If G is a graph not containing Kr as a topological minor and X, Y ⊆ V (G), then there

exists either

(1) k pairwise non-adjacent X-Y -paths, or

(2) a set of less than ck vertices which separates X and Y .

We note that Theorems 4.1.5 and 4.1.9 were also proved, with slightly different constants,

independently by Gartland et al. [C5].
6As usual, by a subdivision of H we here mean any graph that is isomorphic to a graph that can be

obtained from H by replacing its edges by paths of positive length.
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4.2 Graphs with bounded maximum degree

Theorem 4.1.6 follows directly from the following result, by taking M as the colour classes

of edges in E(G[V (P)]) \ E(P) (in other words, the edges not in P but with both ends in

vertices in P) in a strong edge colouring of G.

Theorem 4.2.1. If m, k ∈ N, G is a graph, X, Y ⊆ V (G), P is a collection of 2mk pairwise

disjoint X-Y -paths and M is a partition of E (G[V (P)]) \ E(P) into m induced matchings

of G, then there exist k pairwise non-adjacent X-Y -paths in G.

Proof. First note that we may without loss of generality assume that V (G) = V (P), by

restricting G,X, Y to V (P). This implies that E(G) = E(P) ∪ (∪M), where ∪M :=⋃︁
M∈MM .

We prove the statement by induction on m. If m = 0, then M = ∅. In particular,

E (G[V (P)]) \ E(P) = ∅, and so the 20k = k paths of P are pairwise non-adjacent.

We now show the inductive step. We may assume that the paths of P are chosen such

that the sum of the lengths of paths in P is smallest possible among all collections of k

disjoint X-Y -paths. This immediately implies that every P ∈ P is an induced path in G,

and that every path P ∈ P intersects X and Y only in its endpoints.

Let M ∈ M, chosen arbitrarily, and write M∗ := M\{M}. We define G′ = G−E(M∗),

and let G′′ be obtained from G′ by contracting the edges of M .7 Let f : V (G) → V (G′′)

denote the mapping of vertices underlying the resulting contraction. The sets corresponding

to X, Y in G′′ are then X ′ := f(X), Y ′ := f(Y ′).

By Menger’s theorem (Theorem 4.1.1), there exists either

1. a collection P ′ of 2m−1k disjoint X ′-Y ′-paths in G′′, or

2. a set Z ′ of size less than 2m−1k vertices separating X ′ and Y ′ in G′′.
7An edge is contracted by identifying its end vertices, and removing any resulting loops and parallel edges.
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First suppose we are in case (2). Let Z := f−1(Z ′). As we have contracted by a matching,

the preimage of any vertex in G′′ is of size at most two, and so |Z| ≤ 2|Z ′| < 2mk. We claim

Z separates X and Y in G′, which would be a contradiction as there are at least 2mk pairwise

disjoint X-Y -paths in G′ (the paths in P are not affected by removing M∗). If P is an X-Y -

path in G′, then f(V (P )) corresponds to the vertex set of a X ′-Y ′ walk in G′′, from which

we can extract an X ′-Y ′-path P ′. Given that Z ′ separates X ′ and Y ′ in G′′, there exists

v′ ∈ Z ′ ∩ V (P ′) ̸= ∅. By construction of P ′, there exists v ∈ V (P ) such that f(v) = v′. By

definition of Z, v ∈ Z. Hence, v ∈ Z ∩ V (P ) as desired. Therefore, we are necessarily in

case (1).

Given a path P ′ ∈ P ′, it is easily seen that G′[f−1(V (P ′))] is connected and so there

exists an X-Y path P in G′ such that f(V (P )) ⊆ V (P ′). We may further suppose that this

path is induced in G′. We call such a path a lift of P ′. Let P2 be the collection of lifts of

paths of P ′. Given that the paths of P ′ are pairwise disjoint, so are those in P2.

Let M2 be the collection of matchings of M∗ restricted to edges in E (G[V (P2)])\E(P2).

We claim M2 partitions the edges of E (G[V (P2)]) \E(P2). The fact that the matchings

in M2 are pairwise disjoint is direct from their construction as restrictions of matchings in

M∗. Let e = uv ∈ E (G[V (P2)]) \ E(P2), and suppose for a contradiction that e is not in

any matching of M2.

First suppose that e ∈ M . We cannot have u, v ∈ V (P ) for P ∈ P2, since e /∈ E(P2),

M ⊆ E(G′) and P is induced in G′. Hence, u ∈ V (P1) and v ∈ V (P2) for distinct paths

P1, P2 ∈ P2. However, P1, P2 are lifts of paths in G′′, say P ′
1, P

′
2 ∈ P ′. In particular,

f(u) ∈ V (P ′
1) and f(v) ∈ V (P ′

2). As uv ∈ M , f(u) = f(v), and so P ′
1 and P ′

2 are not

disjoint, which is a contradiction to the choice of P ′. Hence, we may now suppose that

e /∈ M .

Given that e /∈ M and e is not in any matching of M∗, e /∈ ∪M. By our first assumption,

necessarily e ∈ E(P). If we show that both u and v are incident to some edges of M , this

would be a contradiction to the fact that M is a strong matching.
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We will show that u is incident to some edge of M ; the proof for v is analogous. Let

P ∈ P2 be the path such that u ∈ V (P ). There are two cases to consider. First suppose u

is not an endpoint of P , i.e. u has distinct neighbours z1, z2 ∈ V (P ). It is impossible that

both uz1, uz2 ∈ E(P), given that this is a collection of paths (so u cannot be incident to

three edges of E(P)) and we know that e ∈ E(P); without loss of generality say uz1 ∈ ∪M.

Recall that P2 is a collection of paths in G′ and so necessarily uz1 ∈ M , as desired. Now

suppose that u is an endpoint of P , hence u ∈ X ∪Y . If u ∈ X ∩Y , then e would not appear

in P , as we have assumed those paths to be as short as possible. Hence, u /∈ Y and so there

exists some edge uz ∈ E(P2). By our hypothesis that the paths in P are shortest possible,

u is not an interior vertex of any path in P , i.e. u appears in at most one edge of P , which

we already know to be e. Hence uz /∈ E(P) and so uz ∈ ∪M. By the same argument as

previously, uz ∈ M . This completes the proof of the claim.

Note that |P2| = |P ′| = 2m−1k and |M2| = |M∗| = |M| − 1 = m − 1. Hence, by the

induction hypothesis applied to G′, we obtain k pairwise non-adjacent X-Y -paths in G, as

desired.

We now briefly discuss why our proof does not work in the d = 3 case. The main

difficulty is that there is no nice analogue of moving to an induced subgraph; the first step

of the previous proof was that we can assume that V (G) = V (P). Indeed, when we find

non-adjacent paths in an induced subgraph of the original graph, they are also non-adjacent

in the latter. This no longer holds when d = 3. We would need to consider the vertices on

paths length two between any paths in P , but after an iteration of our method, these vertices

might now be part of P . Hence, we must also consider the paths of length two between those,

and so on. It is unclear how one might then manage the complications arising from this.

4.3 Excluding a topological minor

In this section, we will prove Theorem 4.1.9. We first need some definitions and notation.

Let G be a graph. If S ⊆ V (G), we write G[S] for the subgraph of G induced by S.
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A separation in G is to be understood as a pair (A,B) of subsets of V (G) such that

A ∪ B = V (G) and there exists no edge in G with endpoints in A \ B and B \ A. It is

slightly unusual but convenient for us to allow in this definition also degenerate cases in

which A ⊆ B or B ⊆ A. Given a separation (A,B) of G, we call A ∩ B its separator and

refer to |A ∩B| as the order of the separation (A,B).

A tree-decomposition of G is a pair (T,V), where T is a tree and V = (Vt)t∈V (T ) is a

collection of subsets of V (G) satisfying the following properties:

• for every v ∈ V (G), the set {t ∈ V (T ) : v ∈ Vt} induces a non-empty subtree of T , and

• for every uv ∈ V (G), there exists at least one t ∈ V (T ) such that u, v ∈ Vt.

Given a tree decomposition (T,V) of G, for every edge e = t1t2 ∈ E(T ), we denote S(e) :=

Vt1 ∩ Vt2 and call maxe∈E(T ) |S(e)| the adhesion of the tree-decomposition (T,V). Given a

vertex t ∈ V (T ), the torso at t, denoted by τ(t), is defined as the graph obtained from G[Vt]

by adding, for every edge e ∈ E(T ) incident to t, an edge between any two non-adjacent

vertices in S(e), in other words we make S(e) a clique for every incident edge e of t.

For every edge e = t1t2 ∈ E(T ), there exists a natural corresponding separation in G,

namely ⎛⎝ ⋃︂
t∈(T−e)(t1)

Vt,
⋃︂

t∈(T−e)(t2)

Vt

⎞⎠ ,

where (T − e)(ti) denotes the set of vertices of the unique component of T − e that contains

ti. From the definition of a tree decomposition it is not hard to see that this indeed is a

separation in G, with Vt1 ∩Vt2 =
(︂⋃︁

t∈(T−e)(t1)
Vt

)︂
∩
(︂⋃︁

t∈(T−e)(t2)
Vt

)︂
being the corresponding

separator.

Finally, we say a graph H is a minor of G if a graph isomorphic to H can be obtained

from G be removing vertices and edges, and contracting edges. It is direct that if G contains

H as a topological minor, it also contains H as a minor.

The following structure theorem is a key element of our proof of Theorem 4.1.9. We use
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the exact statement of Erde and Weißauer [C4, Theorem 4], see also Grohe and Marx [C7,

Theorem 4.1].

Theorem 4.3.1 ([C7, C4]). If r ∈ N and G is a graph excluding Kr as a topological minor,

then G admits a tree-decomposition of adhesion less than r2 such that every torso either

(1) has fewer than r2 vertices of degree at least 2r4, or

(2) is Kh-minor-free, for h = 2r2.

Broadly speaking, our proof of Theorem 4.1.9 will proceed as follows. Given a collection

of X-Y -paths in a smallest counterexample G, we will apply Theorem 4.3.1 and find a torso

of the tree decomposition which intersects every path in the collection. Then, in order to

find the desired collection of paths, we will either apply our result for bounded maximum

degree (Theorem 4.1.6), if we are in case (1), or use the following lemma, if we are in case

(2).

Lemma 4.3.2. If h, k ∈ N, G is a Kh-minor-free graph, X, Y ⊆ V (G) and there exists

k pairwise disjoint X-Y -paths in G, then there exists at least k
2(h−1)

pairwise non-adjacent

X-Y -paths in G.

Proof. Let P be a collection of k disjoint X-Y -paths in G. Let H be the minor of G obtained

from G
[︁⋃︁

P∈P V (P )
]︁

by contracting each path P ∈ P into a single vertex. In this way, the

vertices of H have a natural one-to-one correspondence with the paths in P , and two vertices

in H are adjacent if and only if the corresponding paths in P are adjacent. Since G is Kh-

minor-free, so is H. Hence, by a classical result of Duchet and Meyniel [C3], we have that

H contains an independent set of size at least α(H) ≥ v(H)
2(h−1)

= k
2(h−1)

. The subcollection

P ′ ⊆ P corresponding to this independent set in H now consists of pairwise non-adjacent

X-Y -paths, as desired.

Theorem 4.1.9 follows directly from the following result, by applying Menger’s theorem

(Theorem 4.1.1) and choosing c4.1.9(t) ≥ 1
ε4.3.3(t)

. The additive 1
2

is used solely for formal

reasons, as it simplifies the inductive proof.
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Theorem 4.3.3. For every r ∈ N, there exists ε = ε(r) > 0 such that the following holds.

If G is a graph not containing Kr as a topological minor, X, Y ⊆ V (G), k ∈ N and there

are k pairwise disjoint X-Y -paths in G, then there also exists a family of at least εk + 1
2

pairwise non-adjacent X-Y -paths in G.

Proof. Fix r ∈ N; we prove the statement with the constant ε(r) := 2−(8r8+3). Towards a

contradiction, suppose the claim is not true, and consider a counterexample G with v(G)

minimum. Hence, there exist X, Y ⊆ V (G) and k ∈ N such that on the one hand, there

exists a collection P consisting of k pairwise disjoint X-Y -paths in G, but on the other hand,

every collection Q of pairwise non-adjacent X-Y -paths in G has size less than εk + 1
2
. Note

that the latter fact implies that 1 < εk + 1
2
, so k > 1

2ε
. Our next claim uses the minimality

assumption on G to guarantee that for every separation (A,B) in G of sufficiently small

order, one of its two sides must intersect all paths in P .

Claim 4.3.3.1. If (A,B) is a separation in G of order |A∩B| < 28r
8+1, then V (P )∩A ̸= ∅

for every P ∈ P or V (P ) ∩B ̸= ∅ for every P ∈ P.

Proof of Claim 4.3.3.1. Suppose towards a contradiction that there exist two paths P1, P2 ∈

P such that V (P1) ⊆ A \ B and V (P2) ⊆ B \ A. Let P1 := {P ∈ P : V (P ) ⊆ A \ B},

P2 := {P ∈ P : V (P ) ⊆ B \ A}, and let us denote k1 := |P1|, k2 := |P2|. Note that since

(A,B) is a separation, every path P ∈ P \ (P1 ∪ P2) must intersect the separator A ∩ B.

Since the paths in P are pairwise disjoint, this implies that k− (k1+ k2) ≤ |A∩B| < 28r
8+1.

Note that P1 is a collection of k1 ≥ 1 pairwise disjoint (X ∩ (A \B))-(Y ∩ (A \B))-paths in

G[A \B], and P2 is a collection of k2 ≥ 1 pairwise disjoint (X ∩ (B \A))-(Y ∩ (B \A))-paths

in G[B \ A]. Since by our minimality assumption on G both graphs G[A \B] and G[B \ A]

satisfy the hypothesis of the theorem, we find that there is a collection Q1 of at least εk1+ 1
2

pairwise non-adjacent (X ∩ (A \B))-(Y ∩ (A \B))-paths in G[A \B], and a collection Q2 of

at least εk2 + 1
2

pairwise non-adjacent (X ∩ (B \A))-(Y ∩ (B \A))-paths in G[B \A]. Since

there are no edges in G between A \B and B \A, the collection Q := Q1 ∪Q2 also consists
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of pairwise non-adjacent X-Y -paths in G. We furthermore have

|Q| = |Q1|+ |Q2| ≥
(︃
εk1 +

1

2

)︃
+

(︃
εk2 +

1

2

)︃
= ε(k1 + k2) + 1

> ε
(︂
k − 28r

8+1
)︂
+ 1 = εk +

1

2
+

(︃
1

2
− ε28r

8+1

)︃
> εk +

1

2
.

This is a contradiction on our initial assumptions that such a collection Q cannot exist.

Hence our assumption was false, and this concludes the proof of the claim. ■

Next, we apply Theorem 4.3.1 to G, which yields a tree-decomposition (T, (Vt)t∈V (T )) of

G of adhesion less than r2, such that every torso τ(t) has at most r2 vertices of degree at

least 2r4, or is Kh-minor-free for h := 2r2.

Claim 4.3.3.2. There exists a vertex t∗ ∈ V (T ) such that V (P ) ∩ Vt∗ ̸= ∅ for every P ∈ P.

Proof of Claim 4.3.3.2. For every edge e = t1t2 of T , we have that

⎛⎝ ⋃︂
t∈(T−e)(t1)

Vt,
⋃︂

t∈(T−e)(t2)

Vt

⎞⎠
forms a separation in G of order |S(e)| < r2 < 28r

8+1. Hence, by Claim 4.3.3.1, every path

in P intersects
⋃︁

t∈(T−e)(t1)
Vt, or every path in P intersects

⋃︁
t∈(T−e)(t2)

Vt. We can therefore

find an orientation T⃗ of T such that for every edge e = t1t2 oriented from t1 to t2 in T⃗ , we

have V (P ) ∩
(︂⋃︁

t∈(T−e)(t2)
Vt

)︂
̸= ∅ for every P ∈ P . Since T is a tree, there must exists a

vertex t∗ ∈ V (T ) that is a sink in the orientation T⃗ of T . We now claim that V (P )∩Vt∗ ̸= ∅

for every P ∈ P . Suppose otherwise towards a contradiction. Let P ∈ P be such that

V (P ) ∩ Vt∗ = ∅ and let R := {t ∈ V (T ) : V (P ) ∩ Vt ̸= ∅}. Since P is a connected subgraph

of G, it readily follows from the definition of a tree-decomposition that R induces a subtree

of T , which does not include t∗. Hence, there is an edge e = t′t∗ ∈ E(T ) incident to t∗ such

that R ⊆ (T − e)(t′). This, however, contradicts the fact that V (P ) ∩
(︂⋃︁

t∈(T−e)(t∗) Vt

)︂
̸= ∅,

which follows since e is oriented from t′ to t∗ in T⃗ . This concludes the proof of the claim.
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Let H be the graph obtained from G[Vt∗ ] by adding an edge between every pair x, y of

non-adjacent vertices in G[Vt∗ ] for which there exists a path in G with endpoints x, y all

whose internal vertices are in V (G) \ Vt∗ .

Claim 4.3.3.3. For every pair of vertices x, y ∈ Vt∗ with xy /∈ E(G) for which there exists a

path in G with endpoints x, y all whose internal vertices are in V (G)\Vt∗, there exists an edge

f = tt∗ ∈ E(T ) incident with t∗ such that x, y ∈ S(f). In particular, G[Vt∗ ] ⊆ H ⊆ τ(t∗).

Proof of Claim 4.3.3.3. Let P be an x-y-path in G such that V (P ) ∩ Vt∗ = {x, y}. Let

S := {s ∈ V (T ) : Vs ∩ (V (P ) \ {x, y}) ̸= ∅}. It follows readily from the definition of a tree-

decomposition (and since P−{x, y} is a connected subgraph of G) that S induces a connected

subgraph of T , i.e., T [S] is a subtree of T . We furthermore have Vt∗ ∩ (V (P ) \ {x, y}) = ∅,

and thus t∗ /∈ S. Therefore, there exists an edge f = tt∗ incident with t∗ such that S is

contained in (T − f)(t). Let x, x1, . . . , xℓ, y be the vertex-trace of P . By definition of a

tree-decomposition, there exist bags Vt1 and Vt2 such that x, x2 ∈ Vt1 and xℓ−1, y ∈ Vt2 . This

directly implies that t1, t2 ∈ S ⊆ (T − f)(t). Hence, we have

x, y ∈

⎛⎝ ⋃︂
s∈(T−f)(t)

Vs

⎞⎠ ∩ Vt∗ = Vt ∩ Vt∗ .

This proves that x, y ∈ S(f), as desired. This concludes the proof. ■

Next, we define a family P∗ of k disjoint paths in H as follows. For every path P ∈ P , let

P ∗ denote the path in H that has vertex-set V (P )∩Vt∗ and visits the vertices in V (P )∩Vt∗ in

the same order as P . This indeed forms a path in H, since for every subpath x, x1, . . . , xℓ, y

of P with x, y ∈ Vt∗ and x1, . . . , xℓ /∈ Vt∗ , we have xy ∈ E(H) by definition.

For every endpoint v of a path P ∈ P , let us denote by v∗ ∈ Vt∗ the unique vertex in

V (P )∩ Vt∗ that is closest to v along the path P . Necessarily, v∗ is an endpoint of P ∗. Using
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this notation, we now define two subsets X∗, Y ∗ ⊆ Vt∗ as

X∗ := {v∗ : v ∈ X and v is the endpoint of some path in P},

Y ∗ := {v∗ : v ∈ Y and v is the endpoint of some path in P}.

In particular, P∗ is a collection of k pairwise disjoint X∗-Y ∗-paths in H.

Claim 4.3.3.4. There exists a family Q∗ consisting of pairwise non-adjacent X∗-Y ∗-paths

in H such that |Q∗| ≥ εk + 1
2
.

Proof of Claim 4.3.3.4. By the properties of the tree-decomposition (T, (Vt)t∈V (T )), we know

that τ(t∗) either has at most r2 vertices of degree at least 2r4, or is Kh-minor-free for h = 2r2.

In particular, the same is true for the subgraph H of τ(t∗).

Let us start with considering the first case. Let Z ⊆ Vt∗ denote the set of vertices of

degree at least 2r4 in H. Then we know that |Z| ≤ r2 and ∆(H − Z) < 2r4 := ∆. Let P ′

be the set of paths of P∗ which do not intersect Z. Then, since the paths in P∗ are pairwise

disjoint, we have that |P∗| ≥ k − |Z| ≥ k − 2r4. Hence, Theorem 4.1.6 implies that there

exists a collection Q∗ of pairwise non-adjacent (X∗ \ Z)-(Y ∗ \ Z)-paths in H − Z such that

|Q∗| ≥
⌊︃

1

22∆2 (k − 2r4)

⌋︃
.

Clearly, Q∗ is also a family of pairwise non-adjacent X∗-Y ∗-paths in H. Using that k > 1
2ε

and ε = 2−(8t8+3), we can lower bound its size as follows.

|Q∗| ≥ k

22∆2−
2r4

22∆2−1 =
k

28r8
− 2r4

28r8
−1 = 8εk− 2r4

28r8
−1 = εk+

1

2
+

(︃
7εk − 2r4

28r8
− 3

2

)︃
> εk+

1

2
.

This establishes the claim in the first case.

Next, consider the case that H is Kh-minor-free. Then, by Lemma 4.3.2 there exists a

collection Q∗ of pairwise non-adjacent X∗-Y ∗-paths in H of size at least k
2(h−1)

= k
2(2r2−1)

>
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2−(8r8+2)k = 2εk > εk + 1
2
, as desired. This concludes the proof of the claim also in the

second possible case. ■

We now finish the proof of the theorem by using Q∗, as given by Claim 4.3.3.4, to

construct a family Q of pairwise non-adjacent X-Y -paths in G of size |Q| = |Q∗| ≥ εk + 1
2
.

For every edge xy ∈ E(H)\E(G[Vt∗ ]), pick and fix a path Pxy in G that has endpoints x, y

and no internal vertices in Vt∗ (such a path always exists by definition of H). Furthermore,

for every edge xy ∈ E(G[Vt∗ ]), we let Pxy denote the path consisting of the single edge xy in

G.

Now consider any path Q∗ ∈ Q∗ and let x1, x2, . . . , xq be its sequence of vertices, such

that x1 ∈ X∗ and xq ∈ Y ∗. Then, by definition, there exist x ∈ X, y ∈ Y such that x∗ = x1,

y∗ = xq. We now define W (Q∗) as the walk in G that starts at x, follows the unique path

in P that x is an endpoint of, until it reaches x∗ = x1, then follows the concatenation of the

paths Pxixi+1
for 1 ≤ i < q and then follows the unique path in P that y is an endpoint of,

until it reaches y.

Claim 4.3.3.5. If Q∗
1, Q

∗
2 ∈ Q∗ are distinct, then W (Q∗

1) and W (Q∗
2) are non-adjacent in

G.

Proof of Claim 4.3.3.5. Suppose towards a contradiction that there exist a ∈ V (W (Q∗
1)), b ∈

V (W (Q∗
2)) that are at distance at most 1 in G. Let a′ ∈ V (Q∗

1) be a vertex closest to a along

W (Q∗
1), and let b′ ∈ V (Q∗

2) be defined similarly for b. In particular, there exist paths R1 and

R2 that form subwalks of V (W (Q∗
1)) and V (W (Q∗

2)), respectively, such that R1 has endpoints

a, a′ and V (R1)∩ Vt∗ = {a′}, and analogously R2 has endpoints b, b′ and V (R2)∩ Vt∗ = {b′}.

Now, as a = b or ab ∈ E(G), then the walk W in G that starts at a′, follows R1 to a, moves

to b, and follows R2 until it reaches b′, satisfies V (W )∩Vt∗ = {a′, b′}. This implies that there

exists an a′-b′-path R in G with V (R) ⊆ V (W ), in particular we have V (R) ∩ Vt∗ = {a′, b′}.

By definition of H, this implies that a′ = b′ or a′b′ ∈ E(H), in either case a contradiction,

since Q∗
1 and Q∗

2 are be non-adjacent in H. This concludes the proof of the claim. ■
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We can now define Q by, for every Q∗ ∈ Q∗, short-cutting the walk W (Q∗) into a path in

G that has the same endpoints and such that V (Q) ⊆ V (W (Q∗)). By Claim 4.3.3.5, any two

distinct paths in Q are non-adjacent. Clearly, |Q| = |Q∗| by definition, and Claim 4.3.3.4

now implies that Q consists of at least εk + 1
2

pairwise non-adjacent X-Y -paths in G. This

yields the desired contradiction, completing the proof of the theorem.

4.4 Subcubic graphs

In this section, we show our results on subcubic graphs. We begin by proving Theorem 4.1.7,

which we restate for convenience.

Theorem 4.1.7. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of at least

16k disjoint X-Y -paths such that every vertex in V (P) is incident to at most one edge in

E(G) \ E(P), then there exist at least k pairwise non-adjacent X-Y -paths in G.

Proof. Let F := E(G[V (P)]) \ E(P). By Theorem 4.2.1, it suffices to partition F into four

induced matchings. By hypothesis, no two edges of F share an end vertex.

A standard tool for studying strong edge colouring is to find a proper vertex colouring

of the square of the line graph; we slightly vary this argument given that we only want to

partition the edges in F . We construct the auxiliary graph H with vertex set F and such

that e1, e2 ∈ F are adjacent if distG(e1, e2) = 1. In other words, e1, e2 are adjacent if and

only if one of the end vertices of e1 and one of the end vertices of e2 are consecutive vertices

on one of the paths in P . This implies that ∆(H) ≤ 4, since the maximum degree in a path

is two and since no two edges in F are incident.

By construction, a proper vertex-colouring of H with four colours yields the desired

partition; each colour class is an induced matching. It suffices to show that H is 3-degenerate.

Suppose, for a contradiction, that H has a 4-regular subgraph H ′. Let P ∈ P such that

some edge e ∈ V (H ′) has an end u ∈ V (P ) and choose such e and u so that the distance

from u to an end of P along P is minimum. Then at most one neighbour of u in P is an end
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Figure 4.4.1: Example requiring four colours for any strong edge colouring of non-horizontal
edges.

of an edge in V (H ′). It follows that e has degree at most three in H ′, obtaining the desired

contradiction to the assumption that H ′ is 4-regular.

We note that the 4-colouring of the auxiliary graph H in the proof above is best possible.

The configuration shown in Figure 4.4.1 (where the horizontal edges are part of the paths

of P), is an example in which we cannot partition the edges outside P into three induced

matchings. In particular, in this case the auxiliary graph is the Moser spindle [C13], which

is easily verified to not be 3-colourable.

We now prove Theorem 4.1.8, which we restate for convenience.

Theorem 4.1.8. If G is a graph, X, Y ⊆ V (G), and there exists a collection P of five disjoint

X-Y -paths such that every vertex in V (P) is incident to at most one edge in E(G) \ E(P),

then there exist two pairwise non-adjacent X-Y -paths in G.

Furthermore, the statement does not necessarily hold if either

(a) P contains four paths instead of five, or

(b) we replace the condition that every vertex in V (P) is incident to at most one edge in

E(G) \ E(P) by the condition that the maximum degree of G is three.

Proof. We begin by proving the first part of the statement.

We define a path system as a quadruple H = (H,A,B,Q) where H is a graph, A,B ⊆

V (H) and Q is a 5-tuple of five disjoint A-B-paths such that

1. V (H) = V (Q),
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2. no vertex in A is incident in H to any edge in E(H) \ E(Q),

3. every vertex of V (H) \ A is incident in H to exactly one edge in E(H) \ E(Q), and

4. there does not exist any collection Q′ of 5 pairwise disjoint A-B-paths such that

V (Q′) ⊊ V (H).

Note that conditions (1) and (4) imply that the paths in Q contain no vertices in A ∪ B

other than their endpoints, and if x ∈ A ∩B then one of the paths consists of exactly x. In

particular |A| = |B| = 5.

We may suppose without loss of generality that G = (G,X, Y,P) is a path system. By

restricting G, X and Y to vertices V (P), we may suppose that (1) holds; any pair of non-

adjacent paths in an induced subgraph remains non-adjacent in the original graph. We may

suppose (2) holds as if a vertex x ∈ X is incident to some edge in E(H) \E(Q), we can add

a new vertex x′ to G as well as the edge x′x, replace X by (X \ {x}) ∪ {x′}, and prepend

x′x to the path of P with x as an endpoint. Any x′-Y -path in the new graph directly yields

a x-Y -path with the same set of neighbours. We may suppose (3) holds for vertices not in

Y given that finding a pair of non-adjacent paths in a graph directly yields such a pair in a

subdivision of this graph. Furthermore, if some vertex y ∈ Y \X is not incident to some edge

in E(G) \ E(P), then y has a neighbour in the path of P of which it is an endpoint, which

exists by (1) (this path cannot be a singleton as y /∈ X); say y′y ∈ E(P). We may then

remove y from G and from its path of P and replace Y by (Y \ {y}) ∪ {y′}; any X-y′-path

directly extends to a X-y-path with the same neighbours. By repeating this argument, we

may suppose that (3) holds for vertices in Y . Finally, we may suppose (4), as otherwise we

could then replace P with these paths. It is easily verified that none of these reductions are

in conflict.

In the following, for k ∈ N we write [k] = {1, . . . , k}.

We now define an operation (which will have two variants) which allows us to easily

construct and represent path systems. Let H = (H,A,B,Q = (Q1, Q2, Q3, Q4, Q5)) be a
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A B

(a) H

A B

(b) H⊕ {2, 3}

A B

(c) H⊕ (1 3 4 5)

Figure 4.4.2: Example of a path system H and two examples for the ⊕ operation. The paths
are labelled from 1 to 5 from top to bottom.

path system. For i ∈ [5], write bi for the vertex of B in Qi.

Let E :=
(︁
[5]
2

)︁
be the collection of (unordered) pairs of integers between 1 and 5. Let

{i1, i2} ∈ E . We define H⊕ {i1, i2} as the path system obtained by

• adding new vertices b′i1 , b
′
i2

and the edges bi1b
′
i1
, bi2b′i2 and b′i1b

′
i2

to H,

• appending the edges bi1b
′
i1

and bi2b
′
i2
, respectively, to Qi1 and Qi2 , and

• replacing B with (B \ {bi1 , bi2}) ∪ {b′i1 , b
′
i2
}

An example of this operation is provided in Figure 4.4.2(b).

Let C be the set of cyclic permutations of length at least two with values in [5]. We write

such cycles as (i1 . . . ik), for instance (i1 i2 i3) = (i2 i3 i1) = (i3 i1 i2). For (i1 . . . ik) ∈ C,

we say H⊕ (i1 . . . ik) is the path system obtained by

• adding new vertices ci1 , . . . , cik and b′i1 , . . . , b
′
ik

and the edges bi1ci1 , . . . , bikcik , ci1b′i1 , . . . , cikb
′
ik

and ci1b
′
i2
, . . . , cikb

′
i1

to H,

• appending edges bijcij and cijb
′
ij

to Qij for every j ∈ [k], and

• replacing B with (B \ {bi1 , . . . , bik}) ∪ {b′i1 , . . . , b
′
ik
}.

An example is provided in Figure 4.4.2(c).

Let H0 = (H0, A0, B0,Q0) be the path system consisting of the graph H0 with singleton

vertices V (H0) = A0 = B0 = {v1, v2, v3, v4, v5} and P0 the 5 paths of length 0 in H0.
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We now show that every path system can be obtained from H0 using the ⊕ operation.

We say two path systems H1 = (H1, A1, B1,Q1) and H2 = (H2, A2, B2,Q2) are isomorphic,

which we denote by H1 ≃ H2, if there exists a graph isomorphism h : V (H1) → (H2) which

maps A1 to A2, B1 to B2 and Q1 to Q2 (the ordering of the paths must be the same).

Claim 4.4.0.1. For every path system H, there exists some sequence m1, . . . ,mk ∈ E ∪ C

such that H ≃ H0 ⊕m1 ⊕ · · · ⊕mk.

Proof of Claim 4.4.0.1. Write H = (H,A,B,Q). We prove the statement by induction on

|E(H) \ E(Q)|.

For the base case, if |E(H) \ E(Q)| = 0, then (3) implies that A = V (Q), and so

necessarily H ≃ H0.

We now show the inductive step. Let F be the set of edges in E(H) \ E(Q) incident to

B. As |E(H) \ E(Q)| > 0, condition (2) implies that A ̸= B, and so by (3) we have that

F ̸= ∅.

First suppose there exists an edge of F with both ends in B, say b′i1b
′
i2
, where b′i1 ∈

V (Qi1) and b′i2 ∈ V (Qi2). Let H′ be the path system resulting from removing b′i1 , b
′
i2
. More

precisely, if bi1 and bi2 are, respectively, the neighbours of b′i1 in Qi1 and of b′i2 in Qi2 (these

exist since b′i1 , b
′
i2

/∈ A), then H′ = (H ′, A,B′,Q′) where H ′ = H
[︁
V (H) \ {b′i1 , b

′
i2
}
]︁
, B′ =(︁

B \ {b′i1 , b
′
i2
}
)︁
∪ {bi1 , bi2} and Q′ is identical to Q except that the edges bi1b

′
i1

and bi2b
′
i2

are removed from, respectively, Qi1 and Qi2 . It is direct from the definitions that H =

H′ ⊕ {i1, i2}. In particular, condition (3) implies that b′i1b
′
i2

were not incident to any edge

other than bi1b
′
i1
, bi2b′i2 and b′i1b

′
i2
. Furthermore, E(H ′)\E(Q′) = (E(H)\E(Q))\{b′i1b

′
i2
}. By

induction, there exists a sequence m1, . . . ,mk−1 ∈ E∪C such that H′ ≃ H0⊕m1⊕· · ·⊕mk−1.

Hence, we obtain that H ≃ H0 ⊕m1 ⊕ · · · ⊕mk−1 ⊕ {i1, i2}, as desired.

Otherwise, we construct an auxiliary digraph J with vertex set F as follows. Let

ci1b
′
i2
, ci3b

′
i4

∈ F , where b′i2 ∈ V (Qi2) ∩ B and b′i4 ∈ V (Qi4) ∩ B, and ci1 ∈ V (Qi1) \ B

and ci3 ∈ V (Qi3) \ B. Further note that i1 ̸= i2 and i3 ̸= i4: these edges are not in Q and
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by (4) the paths of Q are necessarily induced. In our auxiliary digraph J , we put a directed

edge from ci1bi2 to ci3bi4 in J if and only if i2 = i3.

Every edge in F has in-degree at least one in J (in fact, it is necessarily exactly one).

Indeed, let ci1b
′
i2
∈ F . Let b′i1 be the unique vertex of V (Qi1) ∩ B. As ci1 /∈ B, necessarily

b′i1 /∈ A. Hence, by (3), there exists there is some edge e ∈ F incident to b′i1 . In particular,

there is a directed edge in J from e to ci1b
′
i2
.

Hence, there exists in J a directed cycle. By definition, the sequence of vertices in this

directed cycle is of the form ci1b
′
i2
, . . . , cikb

′
i1
, where cij ∈ V (Qij)\B and b′ij ∈ V (Qij)∩B for

every j ∈ [k]. We claim cijb
′
ij
∈ E(Qij) for every j ∈ [k]. Suppose otherwise that for some

j ∈ [k] there exists at least one vertex x between cij and bij on Qij . Then, the following

collection of paths would contradict (4): in Q, replace the paths Qi1 , . . . , Qik with the paths

formed by following Pij until cij and then following the edge cijb
′
ij+1

(with addition modulo

k). In particular, this new set of paths does not contain x.

Let H′ be the path system resulting from removing cij and b′ij for every j ∈ [k]. More

precisely, if we write bij for the neighbour of cij in V (Qij) which is not b′ij (this vertex

exists since cij /∈ A by (2)), for every j ∈ [k], then H′ = (H ′, A,B′,Q′) where where

H ′ = H
[︁
V (H) \ {ci1 , . . . , cik , b′i1 , . . . , b

′
ik
}
]︁
, B′ =

(︁
B \ {b′i1 , . . . , b

′
ik
}
)︁
∪{bi1 , . . . , bik} and Q′ is

identical to Q except that the edges bijcij and cijb
′
ij

are removed from Qij , for every j ∈ [k].

Similarly to above, it is then direct from the definitions that H ≃ H0 ⊕m1 ⊕ · · · ⊕mk−1 ⊕

(i1 . . . ik)), and by induction, there exists a sequence m1, . . . ,mk−1 ∈ E ∪ C such that

H′ ≃ H0 ⊕m1 ⊕ · · · ⊕mk−1. Hence, we obtain that H ≃ H0 ⊕m1 ⊕ · · · ⊕mk−1 ⊕ (i1 . . . ik),

as desired. ■

We define a state as an unordered pair {S1, S2} of non-empty disjoint subsets of [5].

Given a path system H = (H,A,B,Q = (Q1, Q2, Q3, Q4, Q5)), we say a state S = {S1, S2}

is H-reachable if there exist sets C1, C2 ⊆ V (H) such that

• C1, C2 are disjoint and non-adjacent in H,
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• C1 ∩ A ̸= ∅ and C2 ∩ A ̸= ∅,

• C1 ∩ V (Qi)∩B ̸= ∅ if and only if i ∈ S1 and C2 ∩ V (Qi)∩B ̸= ∅ if and only if i ∈ S2,

and

• H[C1], H[C2] are connected.

Claim 4.4.0.2. For every path system H, there exists an H-reachable state.

Proof of Claim 4.4.0.2. Let S = {S1, S2} be a state and m ∈ E∪C. We construct a collection

of states f(S,m) by saying S ′ ∈ f(S,m) if and only if S ′ can be written as S ′ = {S1, S2}

such that the following holds: writing, H0 ⊕ m = (Hm, Am, Bm,Qm), there there exists

C1, C2 ⊆ V (Hm) such that

• C1, C2 are disjoint and non-adjacent in Hm,

• C1 ∩ V (Qi) ∩ Am if and only if i ∈ S1 and C2 ∩ V (Qi) ∩ Am if and only if i ∈ S2,

• C1 ∩ V (Qi) ∩ Bm ̸= ∅ if and only if i ∈ S ′
1 and C2 ∩ V (Qi) ∩ Bm ̸= ∅ if and only if

i ∈ S ′
2,

• for every vertex of C1 ∩ Bm, its connected component in H[C1] contains a vertex of

C1 ∩Am, and for every vertex of C2 ∩Bm, its connected component in H[C2] contains

a vertex of C2 ∩ Am.

It is easily verified that for any path system H, if S is H-reachable, then every state in

f(S,m) is H⊕m-reachable. The crucial observation is that H⊕m can be obtained from H

and H0⊕m by identifying the vertices in the B set from the former and the vertices from the

A set in the latter. From this, these conditions are exactly those which allow us to extend

the non-adjacent sets C1, C2 corresponding to states in H to sets in H⊕m.

If S is a collection of states, let g(S,m) =
⋃︁

S∈S f(S,m). Hence, for any H, if S is a

collection of H-reachable states, then g(S,m) is a collection of H⊕m-reachable states. We say
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a collection of states S ′ is a descendant of S if there exists some sequence m1, . . . ,mk ∈ E ∪C

such that S ′ = g(. . . g(g(S,m1),m2) . . . ,mk).

Let S0 := {{{x}, {y}} : x, y ∈ [5], x ̸= y}. It is direct from the definition that every state

in S0 is H0-reachable. By Claim 4.4.0.1, every H can be written as H = G0 ⊕m1 ⊕ · · · ⊕mk

for some sequence of m1, . . . ,mk ∈ E ∪ C. In particular, g(. . . g(g(S0,m1),m2) . . . ,mk) is a

collection of H-reachable states. We want to show that this collection is non-empty. In order

to prove the claim, it thus suffices to show that ∅ is not a descendant of S0. Our strategy

is thus as follows : start with the collection S0, and then repeatedly apply g(·,m) for every

m ∈ E ∪ C until no new collection of states are found. If the ∅ is never encountered, we are

done.

Along the way, we may in fact trim some branches off of this process, in the three following

ways:

(i) If S is a collection of H-reachable states and σ is a permutation of [5], then σ(S), which

is obtained by applying σ to the elements in S, is H′-reachable, where H′ is identical

to H′ except that we have permuted the order of the paths of Q according to σ.

If g(. . . g(g(σ(S),m1),m2) . . . ,mk) = ∅, then g(. . . g(g(S ′, σ−1(m1)), σ
−1(m2)) . . . , σ

−1(mk))

is empty, and so if ∅ is not a descendant of S, it is not a descendant of σ(S) either.

In particular, we need only keep one collection of states from each equivalence class

under permutation.

(ii) If S ⊆ S ′ are collections of states, then g(S,m) ⊆ g(S ′,m). In particular, if ∅ is not

a descendant of S, it is not a descendent of S ′ either. Hence, during our searching

process, we may throw out any collection of states which is not minimal.

(iii) We do not need to use the definition of f to compute every instance of f(S,m). Indeed,

similarly to (i), it is easily verified from the definitions that if σ is a permutation of [5],

then f(S,m) = σ−1(f(σ(S), σ(m))), so we only need to compute f for one pair (S,m)

in every equivalence class.
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X Y

Figure 4.4.3: Counter-example (a) in Theorem 4.1.8.

We have implemented this approach in Mathematica [C14], the code is provided in [C8].

This code is fully commented, consult these for further implementation details. As a bench-

mark, this script can run in under 14 minutes on a 2020 MacBook Air with M1 chip and 16

GB ram running Mathematica 13.0.0.0. ■

In particular, there exists some G-reachable state. This state is a certificate of the exis-

tence of two non-adjacent sets C1, C2 which induce connected graphs and both intersect X

and Y . From these, we may extract two non-adjacent X-Y -paths, as desired. This concludes

the proof of the first part of the statement.

We now show that this result is best possible, in two ways.

First, consider the statement when we are given four paths instead of five. By modifying

the approach used above to prove the statement for five paths so as to it also taking into

account paths which “backtrack”, we were able to find a counter-example to this modified

statement; it is shown in Figure 4.4.3. A short Mathematica script which verifies that no

pair of non-adjacent X-Y -paths exists in this graph is provided in [C8].

Secondly, consider the statement if we replace the condition that every vertex in V (P)

is incident to at most one edge in E(G) \ E(P) by the condition that the maximum degree

is three. Of course, the difference only concerns vertices in X and in Y , given that these

vertices are the only ones with fewer than two neighbours in their path. The graph formed

by a adding a matching between a five-cycle (with vertices X) and the complement of a copy

of this five-cycle (with vertices Y ), as shown in Figure 4.4.4, is easily verified to not contain

any pair of non-adjacent edges between X and Y .
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X Y

Figure 4.4.4: Counter-example (b) in Theorem 4.1.8.
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4.A Reduction of Conjecture 4.1.4 to distance 3

In this appendix, we show that reduction for d ≥ 3 to d = 3 by McCarty and Seymour also

holds for Conjecture 4.1.4, see Section 4.A. For this paper to be self-contained, we reproduce

this proof here with only slight modifications for the change of setting.
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Theorem 4.A.1. If Conjecture 4.1.4 holds for d = 3, it also holds for d ≥ 3 with constant

C(d,∆) = C(3,∆d+1)k.

Proof. Suppose G be a graph with ∆(G) ≤ ∆ and X, Y ⊆ V (G), and k ∈ N. Let H be the

d-th power of G, i.e. the graph obtained from G by adding edges to any pair of vertices at

distance at most d in G. Note that the maximum degree of H is at most ∆d+1. Given that

Conjecture 4.1.4 holds for distance 3, there exists either

(1) k X-Y -paths pairwise at distance at least 3 in H, or

(2) a set of less than C(3,∆d+1)k vertices in H which separates X and Y .

First suppose we are in case (1). Let P ′
1, . . . , P

′
k be X-Y paths in H, pairwise at distance

at least 3. We wish to construct P1, . . . , Pk, X-Y paths in H, pairwise at distance at least d.

For each i ∈ [k], P ′
i can be converted into a path in G with the same endpoints by following

paths of length at most d in G between every pair of consecutive vertices in P ′
i (these exist

by definition of H), and then converting the resulting walk to a path by removing cycles.

In particular, any vertex in Pi is at distance at most d
2

from P ′
i . If dG(Pi, Pj) ≥ d for every

distinct i, j ∈ [k], then we are done. Otherwise, suppose there exists distinct i, j ∈ [k] such

that distG(Pi, Pj) ≤ d. In particular, the distance between P ′
i and P ′

j is at most d
2
+d+ d

2
= 2d.

By definition of H, this implies that distH(P ′
i , P

′
j) ≤ 2, which is a contradiction.

Otherwise, we are in case (2). As G is a subgraph of H, the set of size less than

C(3,∆d+1)k which separates X and Y in H also separates X and Y in G.

4.B Code used

1 (∗ :: Package:: ∗)

2

3 (∗ :: Title :: ∗)

4 (∗Proving the existence of two non−adjacent paths∗)

5

6
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7 (∗ :: Subtitle :: ∗)

8 (∗Code used in the paper "On an induced version of Menger’s theorem" by Kevin Hendrey, Sergey Norin,

Raphael Steiner and J\[EAcute]r\[EAcute]mie Turcotte∗)

9 (∗∗)

10 (∗As part of the proof that given a ( close to) subcubic graph with 5 X−Y paths, there exists a pair of

non−adjacent X−Y paths, this script shows that there is a reachable state for every path system.∗)

11

12

13 (∗ :: Section :: ∗)

14 (∗Preparatory functions∗)

15

16

17 (∗ :: Subsection :: ∗)

18 (∗Basic definitions ∗)

19

20

21 (∗ :: Input :: Initialization :: ∗)

22 pathCount=5;

23 (∗ The number of paths ∗)

24

25 pathList=Range[pathCount];

26 (∗ We will always label the paths 1,..., pathCount ∗)

27

28

29 (∗ :: Input :: Initialization :: ∗)

30 edgeList={#,"Edge"}&/@Subsets[pathList,{2}];

31 (∗ The list of edges we can append to a path system (\mathcal E), the indices are always in growing

order ∗)

32

33 cycleList ={#,"Cycle"}&/@DeleteDuplicatesBy[Flatten[Permutations/@Subsets[pathList,{2,Infinity}],1],

Cycles[{#}]&];

34 (∗ The list of cycles we can append to a path system (\mathcal C), for each cycle one way of writing it

is chosen ∗)
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35

36 edgeAndCycleList=Join[edgeList, cycleList ];

37 (∗ For convenience, we will work with the union of these lists , each edge or cycle has a labelled

attached to it ∗)

38

39

40 (∗ :: Input :: Initialization :: ∗)

41 stateList =Select[Subsets[Subsets[pathList ,{1,4}],{2}], Intersection [#[[1]],#[[2]]]=={}&];

42 (∗ The list of states ∗)

43

44 convertStateToIndex[state_]:= FirstPosition [ stateList , state ][[1]]

45 (∗ Given a state , returns the index of this state in stateList ∗)

46

47

48 (∗ :: Input :: Initialization :: ∗)

49 startStatesIndices =convertStateToIndex/@Select[Subsets[Subsets[pathList ,{1,1}],{2}], Intersection

[#[[1]],#[[2]]]=={}&];

50 (∗ The list of indices of initial states (\mathcal S_0) ∗)

51

52

53 (∗ :: Subsection :: ∗)

54 (∗Computing f∗)

55

56

57 (∗ :: Subsubsection :: ∗)

58 (∗Defining the graph H_m∗)

59

60

61 (∗ :: Input :: Initialization :: ∗)

62 (∗ We define H_m, A_m and B_m from the path system \mathcal H_m =\mathcal H_0 \[CirclePlus] m

63

64 We will write the vertices which start the paths (written b_i in the definition of \[ CirclePlus ]) as {1,

i },and those which are added and end the paths (written b_i’ in the definition of \[ CirclePlus ]) as
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{2, i }. In the case of cycles , the middle vertices (written c_i in the definition of \[ CirclePlus ])

will be denoted by {3/2,i }. Note that this notation also allows a direct embedding, every vertex

having itself as coordinates .

65 ∗)

66

67 am={1,#}&/@pathList;

68 (∗ The vertices in A_m, does not depend on the operation ∗)

69

70 bm[m_]:=Join[{2,#}&/@m[[1]],{1,#}&/@Complement[pathList,m[[1]]]]

71 (∗ The vertices in B_m, depends on which edge or cycle m is appended ∗)

72

73 bmNotam[m_]:=Complement[bm[m],am]

74 (∗ The vertices in B_m\A_m, depends on which edge or cycle m is appended ∗)

75

76 hm[{{i1_,i2_},"Edge"}]:=Graph[

77 Join[am,bmNotam[{{i1,i2},"Edge"}]],

78 (∗ Vertices ∗)

79 {UndirectedEdge[{1,i1},{2, i1 }],UndirectedEdge[{1,i2 },{2, i2 }],UndirectedEdge[{2,i1 },{2, i2 }]}, (∗ Edges ∗)

80 VertexCoordinates−>Join[am,bmNotam[{{i1,i2},"Edge"}]] (∗ Coordinates for embedding∗)

81 ]

82 (∗ The version of H_m for appending an edge ∗)

83

84 hm[{cycle_,"Cycle"}]:=Graph[

85 Join[am,bmNotam[{cycle,"Cycle"}],Table[{3/2,i},{i, cycle }]], (∗ Vertices ∗)

86 Flatten[Table[{UndirectedEdge[{1,cycle [[ i ]]},{3/2, cycle [[ i ]]}], UndirectedEdge[{3/2,cycle [[ i ]]},{2, cycle

[[ i ]]}], UndirectedEdge[{3/2,cycle [[ i ]]},{2, cycle [[Mod[i+1,Length[cycle ],1]]]}]},{ i ,Length[cycle

]}]], (∗ Edges ∗)

87 VertexCoordinates−>Join[am,bmNotam[{cycle,"Cycle"}],Table[{3/2,i},{i,cycle}]] (∗ Coordinates for

embedding∗)

88 ]

89 (∗ The version of H_m for appending a cycle ∗)

90

91
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92 (∗ :: Subsubsection :: ∗)

93 (∗Generating all possible sets C_1,C_2∗)

94

95

96 (∗ :: Input :: Initialization :: ∗)

97 twoDisjointSubsets [ list_ ]:=Select[Tuples[Subsets[ list ],{2}],! IntersectingQ [#[[1]],#[[2]]]&]

98 (∗ Given a list list , returns a list of all (ordered) pairs of disjoint subsets ∗)

99

100 possibleConfigurations [{s1_,s2_},m_]:={Join[{1,#}&/@s1,#[[1]]],Join[{1,#}&/@s2,#[[2]]]}&/@

101 twoDisjointSubsets [Complement[VertexList[hm[m]],am]]

102 (∗ Given a state (s1,s2) and an edge or cycle m, returns all possible pairs of disjoint subsets of V(

H_m) C_1,C_2 such that the second condition, regarding the intersections with A, is respected . In

other words, the intersections with A is fixed , but for the remainder of the sets we impose no

conditions other than disjointness . ∗)

103

104

105 (∗ :: Subsubsection :: ∗)

106 (∗Testing non−adjacent sets∗)

107

108

109 (∗ :: Input :: Initialization :: ∗)

110 jointNeighbourhood[g_,vList_]:=DeleteDuplicates[Join[ vList ,Flatten[AdjacencyList [g,#]&/@vList,1]]]

111 (∗ Given a graph g and a list of vertices vList , returns the list of vertices which appear either in

vList or are adjacent to some vertex in vList ∗)

112

113 nonAdjacentSets[g_,{vList1_,vList2_}]:=!IntersectingQ[jointNeighbourhood[g, vList1 ], vList2]&&!

IntersectingQ[jointNeighbourhood[g, vList2 ], vList1 ]

114 (∗ Given a graph g and a pair of lists of vertices vList1 , vList2 , returns True if and only if vList1 and

vList2 are ( disjoint and) non−adjacent in g ∗)

115

116

117 (∗ :: Subsubsection :: ∗)

118 (∗Testing for connectivity condition∗)
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119

120

121 (∗ :: Input :: Initialization :: ∗)

122 connectedToA[m_,vList_]:=AllTrue[Intersection[vList,bm[m]],IntersectingQ [VertexComponent[Subgraph[hm[

m],vList],{#}],am]&]

123 (∗ Given an edge or a cycle m and a list of vertices vList of H_m, returns True if and only if for every

vertex in vList \[ Intersection ] B_m, its component in H[vlist ] contains a vertex of A_m ∗)

124

125

126 (∗ :: Subsubsection :: ∗)

127 (∗Defining f∗)

128

129

130 (∗ :: Input :: Initialization :: ∗)

131 selectedConfigurations [s_,m_]:=

132 Select[ possibleConfigurations [ s ,m] ,(∗ Only sets respecting the second condition are proposed ∗)

133

134 nonAdjacentSets[hm[m],#]&&

135 (∗ Test for the first condition ∗)

136

137 connectedToA[m,#[[1]]]

138 &&connectedToA[m,#[[2]]]&&

139 (∗ Tests for the fourth condition ∗)

140

141 IntersectingQ [#[[1]], bm[m]]&&IntersectingQ[#[[2]],bm[m]]

142 (∗ In order to yield a valid state (both parts must be non−empty), both C_1 and C_2 must intersect B

∗)

143 &

144 ]

145 (∗ Given a state s and an edge or cycle m, returns the pairs C_1,C_2 which respect the first , third and

fourth conditions as specified in the proof of the claim. ∗)

146

147 f [stateIndex_,mIndex_]:=
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148 Union[convertStateToIndex/@

149 (∗ This converts the states into their indices in stateList , and we sort these and remove duplicates ∗)

150 Map[Sort,

151 (∗ We sort the values inside each part of the states , as well as the order of the two parts in the state

, to use the same form as in stateList ∗)

152 Map[Transpose[Intersection[#,bm[edgeAndCycleList[[mIndex]]]]][[2]]&,

153 (∗ To extract the possible states from the possible configurations , we first take the intersection of

these with B_m, and then keep only the labelling of the path numbers ∗)

154

155 selectedConfigurations [ stateList [[ stateIndex ]], edgeAndCycleList[[mIndex]]]

156 ,{2}]

157 ,{1,2}]

158 ]

159 (∗ Given the index in stateList of a state s and the index in edgeAndCycleList of an edge or cycle m,

returns the indices of states in f(s ,m). We proceed by computing the possible configurations ( sets

C_1,C_2) as above, and the state is then exactly the indices of the paths in which these intersect

B_m (hence the third condition holds) . ∗)

160

161

162 (∗ :: Subsection :: ∗)

163 (∗Defining g∗)

164

165

166 (∗ :: Input :: Initialization :: ∗)

167 g[ collectionStateIndices_ ,mIndex_]:=Union@@(f[#,mIndex]&/@collectionStateIndices)

168 (∗ Given a collection of indices in stateList of states S and the index in edgeAndCycleList of an edge

or cycle m, returns the indices of states in f(S,m) ∗)

169

170

171 (∗ :: Subsection :: ∗)

172 (∗Time improvements using permutations∗)

173

174
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175 (∗ :: Input :: Initialization :: ∗)

176 permutationList=AssociationThread[pathList,#]&/@Permutations[pathList];

177 (∗ The list of permutations of the ( indices of the) paths ∗)

178

179 reversePermutation [permutationIndex_]:=FirstPosition [ permutationList ,KeySort[Association [Reverse/

@Normal[permutationList[[permutationIndex ]]]]]][[1]]

180 (∗ Given the index in permutationList of a permutation, returns the index of the inverse permutation.

KeySort ensures that the permutation is written in the same form as in permutationList . Permutation

reversing code taken from https://mathematica.stackexchange.com/questions/284775/how−can−i−

invert−the−association ∗)

181

182 replaceState [stateIndex_,permutationIndex_]:=replaceState[ stateIndex ,permutationIndex]=

convertStateToIndex[Sort[Map[Sort,stateList [[ stateIndex ]]/. permutationList [[ permutationIndex ]]]]]

183 (∗ Returns the index of the state obtained by applying the permutation with index permutationIndex in

permutationList to the state with index stateIndex . As earlier , we use sorting to ensure that the

states are in the same format as in stateList before finding their indices . ∗)

184

185 canonicalCollectionStates [ collectionStateIndices_ ]:=Sort[Table[Sort[ replaceState [#,i]&/

@collectionStateIndices ],{ i ,1,Length[permutationList ]}]][[1]]

186 (∗ Given a collection of indices in stateList of states S, considers all collections of states which can

be obtained from S by applying a permutation, and chooses a canonical one using sorting . ∗)

187

188 equivalent [m1_,m2_]:=Cycles[{m1[[1]]}]==Cycles[{m2[[1]]}]&&m1[[2]]==m2[[2]]

189 (∗ Given two edges or cycles m1,m2, possibly not written in the same way as in edgeAndCycleList, returns

True if and only if m1 and m2 represent the same edge or cycle ∗)

190

191 convertEdgeOrCycleToIndex[m_]:=FirstPosition[edgeAndCycleList, SelectFirst [edgeAndCycleList, equivalent [#,

m ]&]][[1]]

192 (∗ Given an edge or cycle m, possibly not written in the same way as in edgeAndCycleList, returns its

index in edgeAndCycleList ∗)

193

194 replaceEdgeOrCycle[mIndex_,permutationIndex_]:=

195 convertEdgeOrCycleToIndex[edgeAndCycleList[[mIndex]]/.permutationList [[ permutationIndex ]]]
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196 (∗ Returns the index in edgeAndCycleList of the edge or cycle obtained by applying the permutation with

index permutationIndex to the edge or cycle with index mIndex ∗)

197

198

199 (∗ :: Subsection :: ∗)

200 (∗ Filtering out subsets∗)

201

202

203 (∗ :: Input :: Initialization :: ∗)

204 minimalSubsets[ list_]:=DeleteDuplicates [SortBy[ list ,Length],Intersection[#1,#2]===Sort[#1]&]

205 (∗ Given a list of lists , keeps only those which are minimal (not containing any of the other lists ) ,

this version is from https://mathematica.stackexchange.com/questions/8154/how−to−select−minimal

−subsets ∗)

206

207 minimalSubsets[ list1_ , list2_]:=Select[minimalSubsets[ list1 ],Function[u,AllTrue[ list2 , Intersection [u

,#]!=Sort[#]&]]]

208 (∗ Given two lists of lists list1 and list2 , keeps only lists in list1 which are minimal and which also

don’t contain lists in list2 ∗)

209

210

211 (∗ :: Section :: ∗)

212 (∗Main computation∗)

213

214

215 (∗ :: Subsection :: ∗)

216 (∗Preloading f∗)

217

218

219 (∗ :: Input :: Initialization :: ∗)

220 (∗ Given that computing f can be slow, we only wish to compute f once, which is what the below script

does, as it saves the outputs of f . As noted in improvement ( iii ) in the paper, if \[Sigma] is a

permutation of [5], then \[Sigma]^−1 f(\[Sigma]S,\[Sigma]m)=f(S,m). This can be used to greatly

reduce the computation time by only running the underlying computation of f once for each
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equivalence class . However, if you wish to not use this reduction , change symmetryReduction to

False. ∗)

221

222 symmetryReduction=True;

223

224 Do[

225 permIndex=SelectFirst[Range[Length[permutationList]],replaceState [ stateIndex ,#]<stateIndex ||(

replaceState [ stateIndex ,#]==stateIndex &&replaceEdgeOrCycle[mIndex,#]<mIndex)&];

226 (∗ The index of a permutation \[Sigma] such that f (\[Sigma]S,\[Sigma]m) has already been computed, using

the order in which the Do runs. If no such permutation exists , this will be Missing["NotFound"].

∗)

227

228 If [permIndex===Missing["NotFound"]||!symmetryReduction,

229

230 f [ stateIndex ,mIndex]=f[stateIndex ,mIndex],

231 (∗ This computes f using its definition ∗)

232

233 f [ stateIndex ,mIndex]=Sort[replaceState[#,reversePermutation[permIndex]]&/@f[replaceState[ stateIndex ,

permIndex],replaceEdgeOrCycle[mIndex,permIndex]]]

234 (∗ This computes f from already computed values using a permutation∗)

235

236 ]

237 ,{ stateIndex ,Length[stateList ]},{mIndex,Length[edgeAndCycleList]}]//AbsoluteTiming

238

239 (∗ Runs in 274.472 seconds on a 2020 MacBook Air with M1 chip and 16GB ram running Mathematica

13.0.0.0

240 We note that a less naive ,but less legible implementation of the definition of f can bring this down to

around 25 seconds, more information can be provided upon request. ∗)

241

242

243 (∗ :: Subsection :: ∗)

244 (∗Main computation∗)

245
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246

247 (∗ :: Input :: Initialization :: ∗)

248 AbsoluteTiming[

249 processedList = {};

250 (∗ Will contain the collections of states to which we have already applied g to ∗)

251

252 toProcess ={ startStatesIndices };

253 (∗ Will contain the collections of states to which we have not yet applied g to starts containing only \

mathcal S_0 ∗)

254

255 found = False;

256 (∗ This variable will become True if the empty collection of states is ever found as the result of

applying g (we want this to never happen, and so that found is still False at the end) ∗)

257

258 While[

259 toProcess != {},

260 (∗ As long as we keep finding unseen collections

261 of states , we continue the process ∗)

262

263 toProcess = First[Reap[

264 (∗ The new toProcess is obtained by collecting the applications of g (see below) to the previous states

in toProcess (using Reap and Sow to collect these efficiently ) ∗)

265

266 Do[

267 (∗ For every collection of states in toProcess and every edge and cycle in edgeAndCycleList, we compute

g ∗)

268

269 newCollection = canonicalCollectionStates [g[ currentCollectionStates , mIndex]];

270 (∗ We apply g, and then take an equivalent collection of states obtained by applying some permutation,

which implements improvement (i) ∗)

271

272 If [ newCollection != currentCollectionStates ,

273 (∗ We are only interested in collections of states which are new ∗)
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274

275 Sow[newCollection];

276

277 If [ newCollection == {},

278 found = True

279 ]

280 (∗ Changed found to true if we have found the empty collection of states ∗)

281 ];

282

283 ,{ currentCollectionStates , toProcess},{mIndex, 1, Length[edgeAndCycleList]}];

284

285 processedList = minimalSubsets[Join[processedList , toProcess ]]

286 (∗ We append the now processed states to processedList , and remove non−minimal elements. This is

compatible with ( ii ) since , when we remove elements in the new toProcess list which contain

elements in processedList , we only need to test this for minimal elements. ∗)

287

288 ][[2]], {}];

289

290 toProcess = minimalSubsets[toProcess, processedList ](∗ We remove non−minimal subsets in

toProcess as well as those which contain elements in processedList as described in

improvement (ii ) in the paper ∗)

291 ];

292

293 found

294 ]

295

296 (∗ Runs in 559.123642‘ seconds on a 2020 MacBook Air with M1 chip and 16GB ram running Mathematica

13.0.0.0 ∗)

4.C Code used

1 (∗ :: Package:: ∗)

2
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3 (∗ :: Title :: ∗)

4 (∗Testing the existence of two non−adjacent paths∗)

5

6

7 (∗ :: Subtitle :: ∗)

8 (∗Code used in the paper "On an induced version of Menger’s theorem" by Kevin Hendrey, Sergey Norin,

Raphael Steiner and J\[EAcute]r\[EAcute]mie Turcotte∗)

9 (∗∗)

10 (∗This short script verifies that the example provided in the paper of a subcubic graph with four X−Y

paths does not contain a pair of non−adjacent X−Y paths.∗)

11

12

13 (∗ :: Input :: Initialization :: ∗)

14 (∗ We first define the graph ∗)

15 vertexList ={{1,0},{1,1},{1,3},{1,4},{1,6},{1,9},{1,10},{1,12},{1,15},{1,17},{2,0},{2,1},{2,5},{2,6},

16 {2,8},{2,11},{2,12},{2,14},{2,16},{2,17},{3,0},{3,2},{3,3},{3,5},{3,7},{3,10},{3,11},{3,13},{3,16},

17 {3,17},{4,0},{4,2},{4,4},{4,7},{4,8},{4,9},{4,13},{4,14},{4,15},{4,17}};

18 edgeList={{1,0}\[UndirectedEdge]{1,1},{1,1}\[UndirectedEdge]{1,3},{1,3}\[UndirectedEdge]{1,4},{1,4}\[

UndirectedEdge]{1,6},{1,6}\[UndirectedEdge]{1,9},{1,9}\[UndirectedEdge]{1,10},{1,10}\[

UndirectedEdge]{1,12},{1,12}\[UndirectedEdge]{1,15},{1,15}\[UndirectedEdge]{1,17},{2,0}\[

UndirectedEdge]{2,1},{2,1}\[UndirectedEdge]{2,5},{2,5}\[UndirectedEdge]{2,6},{2,6}\[UndirectedEdge

]{2,8},{2,8}\[UndirectedEdge]{2,11},{2,11}\[UndirectedEdge]{2,12},{2,12}\[UndirectedEdge

]{2,14},{2,14}\[UndirectedEdge]{2,16},{2,16}\[UndirectedEdge]{2,17},{3,0}\[UndirectedEdge

]{3,2},{3,2}\[UndirectedEdge]{3,3},{3,3}\[UndirectedEdge]{3,5},{3,5}\[UndirectedEdge]{3,7},{3,7}\[

UndirectedEdge]{3,10},{3,10}\[UndirectedEdge]{3,11},{3,11}\[UndirectedEdge]{3,13},{3,13}\[

UndirectedEdge]{3,16},{3,16}\[UndirectedEdge]{3,17},{4,0}\[UndirectedEdge]{4,2},{4,2}\[

UndirectedEdge]{4,4},{4,4}\[UndirectedEdge]{4,7},{4,7}\[UndirectedEdge]{4,8},{4,8}\[UndirectedEdge

]{4,9},{4,9}\[UndirectedEdge]{4,13},{4,13}\[UndirectedEdge]{4,14},{4,14}\[UndirectedEdge

]{4,15},{4,15}\[UndirectedEdge]{4,17},{1,1}\[UndirectedEdge]{2,1},{3,2}\[UndirectedEdge

]{4,2},{1,3}\[UndirectedEdge]{3,3},{1,4}\[UndirectedEdge]{4,4},{2,5}\[UndirectedEdge]{3,5},{1,6}\[

UndirectedEdge]{2,6},{3,7}\[UndirectedEdge]{4,7},{2,8}\[UndirectedEdge]{4,8},{1,9}\[UndirectedEdge

]{4,9},{1,10}\[UndirectedEdge]{3,10},{2,11}\[UndirectedEdge]{3,11},{1,12}\[UndirectedEdge

]{2,12},{3,13}\[UndirectedEdge]{4,13},{2,14}\[UndirectedEdge]{4,14},{1,15}\[UndirectedEdge
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]{4,15},{2,16}\[UndirectedEdge]{3,16}};

19 g=Graph[vertexList, edgeList ,VertexCoordinates−>(#−>Reverse[#∗{−1,1}]&/@vertexList)]

20 x={{1,0},{2,0},{3,0},{4,0}};

21 y={{1,17},{2,17},{3,17},{4,17}};

22

23

24 (∗ :: Input :: Initialization :: ∗)

25 (∗ We compute the list of X−Y paths ∗)

26 pathList=Flatten[Table[#&/@FindPath[g,vx,vy,Infinity,All],{vx,x},{vy,y }],2]

27

28

29 (∗ :: Input :: Initialization :: ∗)

30 (∗ We test whether there exist two non−adjacent X−Y paths by testing for each path found above whether

removing the vertices in this path and their neighbours from the graph leaves the remaining vertices

of X and Y in the same connected component ∗)

31

32 removeVertices [g_,vList_]:=Subgraph[g,Complement[VertexList[g],vList]] (∗ Given a graph g and a list of

vertices vList , returns the induced subgraph of g obtained by removing the vertices in vList ∗)

33

34 jointNeighbourhood[g_,vList_]:=DeleteDuplicates[Join[ vList ,Flatten[AdjacencyList [g,#]&/@vList,1]]]

35 (∗ Given a graph g and a list of vertices vList , returns the list of vertices which appear either in

vList or are adjacent to some vertex in vList ∗)

36

37 deleteJointNeighbourhood[g_,path_]:=removeVertices[g,jointNeighbourhood[g,path]]

38 (∗ Given a graph g and a list of vertices vList , returns the induced subgraph of g obtained by removing

the vertices in or adjacent to vList ∗)

39

40 connectedVertices [g_,{v1_,v2_}]:=v1==v2 ||FindPath[g,v1,v2]!={}

41 (∗ Given a graph g and vertices v1 and v2, returns True if and only if there exists at least one path

between v1 and v2 ∗)

42

43 connectedSets[g_,vList1_,vList2_]:=AnyTrue[Tuples[{Intersection[vList1,VertexList [g ]], Intersection [

vList2 , VertexList [g ]]}], connectedVertices [g,#]&]
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44 (∗ Given a graph g and lists of vertices vList1 and vList2 (not necessarily all in g, we will restrict

to those in g), returns True if and only if there exists at least one path with one end in vList1

and one end in vList2 ∗)

45

46 AnyTrue[pathList,connectedSets[deleteJointNeighbourhood[g,#],x,y]&]

47 (∗ Main computation, returns True if and only if a pair of non−adjacent X−Y paths exists in our graph ∗)
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Part IV

New bounds in graph searching
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Bridging text 3

In Chapters 2 and 3, we worked on constructing minors in graphs with high minimum and

average degrees, respectively, in order to work towards Hadwiger’s conjecture. In Chapter 4,

motivated by a conjecture related to fat minors, we showed some versions of Menger’s theo-

rem in which the obtained paths are induced, one of which concerns the related concept of

topological minors.

In the following chapter, we will once again work on graphs with a forbidden minor.

However, we will consider a different graph invariant: rather than work with the chromatic

number (or degree) as in Chapters 2 and 3, we will show bounds on the cop number of such

graphs.

Andreae [7] was the first to derive such bounds. We will generalize Andreae’s methods

to prove stronger bounds for many graphs. One of our main motivations is to find a good

bound on the cop number of linklessly embeddable graphs, which we have mentioned in the

introduction.

We recall that Andreae has shown that both K3,3-minor-free graphs and K5-minor-free

graphs have cop number at most 3, strenghthening Aigner and Fromme’s [1] result for planar

graphs. However, this required a separate proof from Theorem 1.4.4 (although the general

framework was similar). In our case, our more general result implies the K3,3 bound, without

requiring a separate proof.

Similarly to some the proofs in the introduction and in Chapter 2, our proof will be

formulated in the language of models to construct the desired minor. However, rather than

using connectivity tools to connect the bags with paths, we will use use geodesic paths
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obtained using Lemma 1.4.3.
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5
Improved bounds on the cop number

when forbidding a minor
Franklin Kenter1, Erin Meger2, Jérémie Turcotte3

Andreae (1986) proved that the cop number of connected H-minor-free graphs is bounded

for every graph H. In particular, the cop number is at most |E(H − h)| if H − h contains

no isolated vertex, where h ∈ V (H). The main result of this paper is an improvement on

this bound, which is most significant when H is small or sparse, for instance when H − h
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can be obtained from another graph by multiple edge subdivisions. Some consequences of this

result are improvements on the upper bound for the cop number of K3,t-minor-free graphs,

K2,t-minor-free graphs and linklessly embeddable graphs.

5.1 Introduction

The game of cops and robbers is a combinatorial game played on a graph G [D11, 83, 1].

One player plays as the cops and the other plays as the robber. The objective for the cops

is to capture the robber by occupying the same vertex as the robber with one or more cops;

the objective for the robber is to evade capture forever. At the start of the game, the cops

player places m cops on (not necessarily distinct) vertices of the graph, then the other player

places the robber on a vertex. Thereafter, starting with the cops player, the players alternate

moving any of their pieces (cops or robber) to an adjacent vertex. While there are many

variants of the game, we focus on the classical version of the game where a player may decline

to move any (or all) of their pieces on their turn. For a graph G, the cop number, denoted

by c(G), is the minimum number of cops sufficient for the cops player to have a winning

strategy [D1].

This game has a rich history in topological graph theory as surveyed in [D4]. A classical

result by Aigner and Fromme is that for any connected planar graph G, the cop number is at

most 3 [D1]. A long series of results have also established a relationship between the genus of

the graph, g, and the cop number. Quilliot’s [D12] bound is that c(G) ≤ 2g+3; this has since

been improved to c(G) ≤ ⌊3
2
g + 3⌋ by Schröder [D16] and subsequently to c(G) ≤ 4

3
g + 10

3

by Bowler, Erde, Lehner and Pitz [D5]. Lehner [D10] very recently showed that for any

connected toroidal graph c(G) ≤ 3, solving a question of Andreae [D2]. Originally, Schröder

[D16] conjectured that c(G) ≤ g + 3; however, more daringly, Bonato and Mohar [D4]

conjectured that, in fact, c(G) ≤ g1/2+og(1).

An edge contraction is an operation by which we obtain from G a new graph G′ by

identifying the two end vertices of an edge and removing resulting loops and multiple edges.
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We say H is a minor of G if a graph isomorphic to H can be obtained from G by removing

vertices and edges and by contracting edges. Given a family of graphs H = {Hi}i∈I , we say

G is H-minor-free if Hi is not a minor of G for every i ∈ I. If H = {H}, we simply write

that G is H-minor-free. Many topological classes of graphs can be defined using forbidden

minors. Most notably, Wagner [D19] proved that planar graphs are exactly the {K5, K3,3}-

minor-free-graphs (where Kt is the complete graph on t vertices and Ks,t is the complete

bipartite graph with parts of size respectively s and t). More generally, Robertson and

Seymour [D13] famously proved that for any minor-closed family of graphs F there exists a

finite set of graphs H such that F are exactly the H-minor-free graphs.

Shortly after Aigner and Fromme’s result on the cop number of planar graphs, Andreae

[D2] studied the cop number of graphs with a forbidden minor. In particular, Andreae proved

the following theorem.

Theorem 5.1.1. [D2] Let H be a graph and h ∈ V (H) be a vertex such that H − h has no

isolated vertex. If G is a connected H-minor-free graph, then c(G) ≤ |E(H − h)|.

Andreae also proves, using similar but more specific methods, that connected K3,3-minor-

free graphs and K5-minor-free graphs have cop number at most 3, strengthening Aigner and

Fromme’s result, as well as showing that connected K−
3,3-minor-free graphs and K−

5 -minor-

free graphs (here H− designates the graph H with one edge removed) have cop number at

most 2, and that when forbidding the (t + 1)-vertex wheel graph Wt as a minor the cop

number is at most
⌈︁
t
3

⌉︁
+ 1.

Joret, Kaminsky and Theis [D9], inspired by Andreae’s paper, have considered the cop

number when forbidding a subgraph or an induced subgraph, and when bounding the

treewidth of the graph. The question of bounding the cop number of graphs with one

or multiple forbidden induced subgraphs has gained traction in recent years, see for instance

[D17, 30, 67] and references therein. However, there have been no improvements to the upper

bounds on the cop number of graphs with an excluded minor since Andreae’s paper.

Our main result generalizes and improves the bounds in Theorem 5.1.1. As it requires
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some technical definitions, we postpone its statement to Section 5.4. The improved bounds

are most significant when H is sparse, for instance graphs when H − h is a subdivision of

a much smaller graph, or is small. In particular, we show a few notable applications of our

main result:

• We show that the cop number of linklessly embeddable graphs is at most 6; previously

the upper bound was 9.

• We show that our main result encompasses Theorem 5.1.1, as well as many of Andreae’s

more specific results mentioned earlier.

• We improve the known upper bounds on the cop number of K3,t-minor-free graphs and

K2,t-minor-free graphs by a factor of 2.

• We provide an example where our method improves the cop number by a factor of 4.

In Section 5.2, we define the notation we will be using throughout this paper. In Sec-

tion 5.3, we recall the classical path guarding strategy for cops and deduce a more convenient

form for our use. In Section 5.4, we will state and prove our main result. Finally, in Sec-

tion 5.5, we derive the corollaries of our main result mentioned above.

5.2 Notation

We begin with some notation, which is mostly standard. For n ∈ N, we write [n] = {1, . . . , n}.

If A is a set, we will use the notation
(︁
A
2

)︁
= {{u, v} : u, v ∈ A, u ̸= v} for the set of unordered

pairs of distinct elements of A; in general we will write uv or vu to represent the pair {u, v}.

If f : X → Y and A ⊆ X, then f(A) = {f(a) : a ∈ A} is the image of A. If B ⊆ Y , then

f−1(B) = {a ∈ A : f(a) ∈ B} is the pre-image of B.

Let G be a graph, which we always consider to be simple and finite. We denote by V (G)

the set of vertices of G and by E(G) ⊆
(︁
V (G)
2

)︁
the set of edges of G. If v ∈ V (G), we write

N(v) for the neighbourhood of v and N [v] = N(v) ∪ {v} for the closed neighbourhood of v.
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Given a set S ⊆ V (G), we write N [S] =
⋃︁

v∈S N [v] for the closed neighbourhood of S, and

we define the coboundary of S as the set N(S) = N [S] \ S, i.e. the vertices adjacent to but

not in S (note that N(S) is not
⋃︁

v∈S N(v), as it is often defined).

If S ⊆ V (G), we write G[S] for the subgraph of G induced by S. We also write G − S

for G[V (G) \ S]. If x ∈ V (G), we use the shorthand G− x for G− {x}. If A ⊆
(︁
V (G)
2

)︁
, then

we write G−A for the graph on vertex set V (G) with edge set E(G) \A. If e ∈ E(G), then

we write G− e for G− {e}.

A matching in G is a set of edges which pairwise do not share vertices.

We denote by U(G) the graph obtained from G by adding an universal vertex (a vertex

adjacent to all other vertices). Given graphs G1, G2, we write G1+G2 for the graph obtained

as the disjoint union of G1 and G2. Analogously, mG is the graph obtained as the disjoint

union of m copies of G.

We use the convention that the length of a path or a cycle is the number of edges it

contains. For non-empty paths this is the number of vertices minus 1; for cycles this is

exactly the number of vertices. A path may have length 0, whereas a cycle necessarily has

length at least 3. When a u − v path has length 1, we will often write it simply as the

edge uv to simplify notation. The end vertices of a path are its first and last vertices (given

some arbitrary orientation of the path). In general, our cycles will have a clearly defined

root vertex; we will say the end vertices of the cycle to be this root. We say the interior of

a path or a cycle is its set of vertices except for the end vertices. Given a non-empty x− y

path (or x-rooted cycle, if x = y) P and z ∈ V (P ), write P [x, z] for the subpath of P with

ends x and z, and P [z, y] analogously. If P1 and P2 are internally-disjoint, respectively x− y

and y − z paths, then we write P1 ⊕ P2 for their concatenation; this is also a path except

when x = z in which case it is an x-rooted cycle. For convenience, we write ∅ for the empty

path.

Given an x − y path P , we say {Xi}i∈I , a family of subsets of vertices of P , is non-

intertwined if there do not exist distinct i, j ∈ I and three distinct vertices a1, a2 ∈ Xi,
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b ∈ Xj such that these vertices appear in the order a1− b−a2 in P (perhaps with additional

vertices in between). If P is an x-rooted cycle such that the neighbours of x in the cycle are

y, z, then we say {Xi}i∈I , a family of subsets of vertices of P , is non-intertwined if it is is a

non-intertwined family of subsets of the path P − xy or of the path P − xz.

5.3 Guarding paths

Let G be a connected graph, and C be the set of cops playing the game of cops and robbers.

We say a cop C ∈ C guards a subset S ⊆ V (G) if its strategy guarantees that if the

robber enters S it is immediately captured by C. For now, we require that this strategy

be independent of the strategy of the other cops, that is the strategy still works even if the

other cops change their strategies. Let us note that if C guards S, then it also guards any

S ′ ⊆ S; we are not claiming that S is an exhaustive list of all vertices this cop is blocking

the robber from entering. In general, if one vertex is guarded by multiple cops, we will select

one of the cops to guard this vertex. In particular, if all the vertices guarded by C are also

guarded by other cops, this cop can be given a new strategy as it is currently useless.

The following result of Aigner and Fromme, originally used to prove that planar graphs

have cop number at most 3, is one of the main tools in the study of the game of cops and

robbers.

Theorem 5.3.1. [D1] If G is a connected graph, u, v ∈ V (G) and P is a shortest u−v path,

then there exists a strategy for one cop to, after a finite number of turns, guard P .

Andreae noticed that the proof of Theorem 5.3.1 gives us the following stronger result,

which we have reformulated for convenience.

Theorem 5.3.2. [D2] If G is a connected graph, u, v ∈ V (G), P is a shortest u − v path

and C is a cop currently on u, then there exists a strategy for C to keep guarding u and,

after a finite number of turns, also guard P .

Theorem 5.3.2 is indeed stronger than Theorem 5.3.1, since if a cop C has no current

strategy, then one can still use C to guard a new path by first sending the cop to u in a finite
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number of turns and then applying the strategy given by Theorem 5.3.2. The importance

of this result is that sometimes a cop is already busy guarding a vertex and it is important

that it keeps guarding it whilst it prepares to guard the path.

Andreae’s proof of Theorem 5.1.1 uses this path guarding strategy repeatedly to incre-

mentally reduce the robber’s territory, i.e. the vertices the robber can reach without being

caught by a cop, while gradually constructing an instance of the forbidden minor as the game

is being played. The fact that the minor is forbidden implies that the game will eventually

end, with the robber being caught. This is also our approach. With the objective of being

as rigorous as possible, we will use the following corollary, which is implicit in [D2] (see, in

particular, Section 2). This formulation will clarify the dependencies between the strategies

of the cops, since Theorem 5.3.2 is usually applied not to G but to a subgraph of G (roughly

speaking, to the subgraph induced by the current robber’s territory). The strategy we get

thus only holds as long as the robber is guaranteed to not leave this subgraph.

Corollary 5.3.3. Let G be a connected graph, let R ⊆ V (G) such that G[R] is connected

and the robber is in R, and let u ∈ N [R] and v ∈ N(R) be distinct vertices such that v has

at least one neighbour in R \ {u}.

If a cop C is currently on u, then there exists a u−v path P of length at least two with all

internal vertices of P in R and a strategy for C to keep guarding u and, after a finite number

of turns, also guard P , under the conditions that the robber never moves to N(R) \ {u, v},

and that the robber does not move to v before C guards P .

Proof. Consider the graph G′ = G[R ∪ {u, v}] − uv. Let P be a shortest u − v path in G′;

such a path exists given that v has a least one neighbour in R which is not u. By choice of

G′, the only vertices of P which are possibly not in R are u, v, and so all internal vertices of

P are in R. Given that uv /∈ E(G′), P must contain at least one vertex other than u, v, and

so P must have length at least two.

Apply Theorem 5.3.2 to get a strategy for C to guard u and, after a finite number of

turns, also guard P , if the game is played on G′. We claim this strategy is also a valid
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strategy when playing on G. Of course, given that G′ is a subgraph of G, every move of the

cop remains valid. We need to show that the robber cannot, without being caught, make

any move on G which it could not have done on G′. Suppose to the contrary that we are at

the first turn where the robber makes such a move. The first type of illegal move is using

the edge uv, which implies the robber was on u or v at the previous turn. The first case is

impossible, given that u was guarded by C, and the latter is impossible because either the

robber was supposed to not move to v (if the cop was not yet guarding P ) or C was guarding

v (if the cop was guarding P ). The other type of illegal move is moving outside R ∪ {u, v}.

By hypothesis, the robber can only leave R through either u or v, which is impossible by the

same argument as above.

5.4 Main result

In this section, we state and prove the main result of this paper, which is an upper bound

on the cop number for graphs G with some forbidden minor H. By and large, the proof

optimizes and greatly extends the techniques used in the proof of Theorem 5.1.1, with very

technical modifications. We summarize these key elements following the proof.

The statement of the result requires the two following definitions.

Definition 5.4.1. Given a graph H, we say that the tuple H = (h,W,P ,M, f) is a decom-

position of H, where

(a) h ∈ V (H),

(b) ∅ ≠ W ⊆ V (H − h),

(c) P is a collection of distinct pairwise internally vertex-disjoint paths and (rooted) cycles

with end vertices in W such that every edge of H − h is contained in some P ∈ P ,

(d) M ⊆ P is a collection of paths of length 1 which forms a matching of H − h, and

(e) f : W → P \M is such that u is an end of f(u) for every u ∈ W .
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Figure 5.4.1(a) gives an example of a decomposition.

Conditions (b) and (c) can be seen as stating that the graph H − h is a subdivision of

a multigraph (with loops allowed) on the vertex set W . Note that in condition (d) M does

not need to be a perfect matching, and may be empty. Given that a path or (rooted) cycle

P ∈ P may only have at most 2 vertices, condition (e) implies that |f−1(P )| ∈ {0, 1, 2}.

Intuitively, a decomposition of H is, after choosing some vertex h ∈ H, a way of repre-

senting H − h around a “core” set of vertices W , between which there are paths (those in

P). We will use this decomposition as the blueprint when we attempt to construct H as a

minor of the graph G on which the game is played.

To further motivate this definition, we broadly outline the idea behind the proof. We will

progressively construct a minor of H inside G, using the properties of the game to show that

we can add every vertex and edge of H to our partial minor. The robber’s territory, that is

the region in which the robber will be confined to, will correspond (will be contracted to) to

the vertex h. The cops’ territory, that is the region guarded by the cops, will consist of bags

(denoted Aw, for every w ∈ W ) and paths between these bags (denoted QP , for P ∈ P),

with the property that if P is a path in H between w1 and w2, then QP will be a path in G

between Aw1 and Aw2 . If we can ensure that every Aw is non-empty (and has a neighbour

in the robber’s territory) and that every P ∈ P has a corresponding (and sufficiently long)

path QP in G, we will have obtained a minor of H in G. Broadly speaking, the paths QP

in the cop territory will completely contain every vertex which is outside of but adjacent

to the robber’s territory, and a cop will always guard every such vertex, ensuring that the

robber is confined to its territory. Indeed, for every P ∈ P , a group of cops CP will be

assigned to guard the path QP . If, for example, a path P between w1 and w2 does not

yet have a corresponding path QP in our model, one of those cops will, using the results of

the previous section, start protecting a path path between Aw1 and Aw2 going through the

robber’s territory, which will thus reduce it. In some specific cases, we will be able to add

a path to the model without requiring any cops to protect it: these are edges of M . The
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ends of this path will be guarded by cops assigned to other paths of the model; this is why

we require M to be a matching. Furthermore, as we have noted above, we want every bag

Aw to have a least one neighbour in the robber’s territory. In our proof, we will in fact be

able to guarantee that only one vertex of Aw will be adjacent to the robber’s territory. As

this vertex only needs to be guarded by one cop, the role of the function f is to indicate

the group of cops (the group assigned to Qf(w)) which will be responsible for guarding this

vertex. We will formally define this partially constructed minor in the context of the game

as a state, an example of which is shown in Figure 5.4.1 below.

We may then define the following parameter for each path of P . It will always be

approximately be the length of the path, but takes into account these technicalities: we only

need to know the length of the part of the path for which the corresponding vertices in G

needs to be guarded by cops.

Definition 5.4.2. Given a decomposition H = (h,W,P ,M, f) of a graph H, we define for

each path P ∈ P the following parameter:

ℓP =

⎧⎪⎪⎨⎪⎪⎩
0 P ∈ M

max(|E(P )| − 1 + |f−1(P )|, 1) P /∈ M.

We are now ready to state our main result.

Theorem 5.4.3. If H is a decomposition of a graph H and G is a connected H-minor-free

graph, then

c(G) ≤ 1ℓ +
∑︂
P∈P

⌈︃
ℓP
3

⌉︃
,

where the indicator function 1ℓ is equal to 1 if and only if there is some P ∈ P with ℓP /∈

{0, 1, 2, 4}.

In this theorem, we do not impose any conditions on which decomposition is picked. As

can be seen in Definition 5.4.1, a graph H may have multiple possible decompositions. When
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using this theorem, the best bound will be obtained by choosing an optimal decomposition

of H, roughly speaking by choosing a decomposition that yields the smallest possible sum of

ℓP . Note that the minor relation is transitive, and so if H is a minor of H ′, then if a graph

is H-minor-free, it is also H ′-minor-free. Hence, one might obtain a better upper bound by

applying Theorem 5.4.3 to H ′ instead of H. We make such an application of Theorem 5.4.3

in the proof of Corollary 5.5.5. This is also useful when H does not have any decomposition,

for instance if H − h contains an isolated vertex. Further discussion on applications of this

result is provided in Section 5.5.

The structure of the proof is as follows:

• Set up terminology surrounding both G and the H decomposition, using precisely the

number of cops given by the upper bound.

• Define a game state to detail the particular relationship between G and the forbidden

minor H through its decomposition. This state relates paths in G to paths in H, using

the terminology of initialized to indicate that the feature will later be used to build

the minor. Furthermore, we will say that the cops are active when they have been

assigned a particular strategy and are actively guarding vertices of G.

• Define a partial order on the game states. The robber will be captured when the

robber’s territory decreases to zero, which can be achieved by taking smaller and

smaller game states.

• Assume that we are in some minimal game state, where the robber’s territory is non-

zero for the sake of contradiction. That is, we assume that our current bound is

insufficient for the cops to win.

• Explore the game state to show that certain features of the decomposition must be

present in G, by assuming their absence and finding a smaller game state, thus con-

tradicting the minimality of the game state.
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• Finally, we will show that with all features present, we must in fact have an H minor of

G, which is forbidden, contradicting the assumption that the game is a minimal game

state with non-empty robber’s territory.

We now prove Theorem 5.4.3.

Proof. Let G be a connected H-minor-free graph, and H = (h,W,P ,M, f) be a decomposi-

tion of H. We will play the game of cops and robbers with 1ℓ +
∑︁

P∈P
⌈︁
ℓP
3

⌉︁
cops. Let C be

the set of all cops.

For each P ∈ P , we define CP to be a set of
⌈︁
ℓP
3

⌉︁
cops, such that for all pairs of distinct

paths P1, P2 ∈ P , CP1 ∩ CP2 = ∅. Since ℓP = 0 if and only if P ∈ M , it follows that CP = ∅

if and only if P ∈ M . In particular, for every vertex w ∈ W , Cf(w) ̸= ∅, since the function

f maps only to non-matching paths in P . If the indicator function 1ℓ = 1 (if some P ∈ P

is such that ℓP /∈ {0, 1, 2, 4}), we then define Cℓ be an additional, distinct cop. Note that

the set CP to which each cop belongs, may change throughout the proof as the cops “switch

roles” but they will always do so in a way that leaves the sizes of these sets unchanged.

In order to show that the cops have a winning strategy, we next need to define the concept

of a game state. We will then define a partial order between game states. We will call the

process of going from one game state to another smaller game state a transition.

Definition. We say the game is in state (A,Q, R, s) if all of the following hold.

(1) A = (Aw)w∈W is a collection of pairwise disjoint subsets of V (G) (which we will call

bags) such that for every w ∈ W , G[Aw] is either connected or contains no vertices.

We say w is initialized if Aw ̸= ∅.

(2) Q = (QP )P∈P is a collection of pairwise internally vertex-disjoint paths such that if P

has end vertices u, v, then either QP is empty or QP has end vertices respectively in

Au and Av, and such that internal vertices are not in any of the sets in A. If P is not

a path but a rooted cycle, the end vertices of QP are allowed (but not obliged) to be
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the same (i.e. QP is allowed to be a rooted cycle). We say P ∈ P is initialized if QP

is not empty.

(3) If u, v ∈ W are initialized and uv ∈ M , then uv is initialized.

(4) R is the set of vertices of the connected component of G−
(︁⋃︁

w∈W Aw ∪
⋃︁

P∈P V (QP )
)︁

containing the robber.

(5) For each w ∈ W , Aw contains at most one vertex adjacent to R.

(6) s : C → 2V (G)\R is a function such that C ∈ C is following a strategy to guard the

vertices in s(C) which is irrespective of the strategy of the other cops, but holds only

as long as the robber does not leave R by moving to a vertex in N(R) \ s(C). A cop

is said to be active if s(C) ̸= ∅. Inactive cops C may follow any strategy.

(7) Every vertex in the coboundary of R is in one of the images of s, i.e. N(R) ⊆⋃︁
C∈C s(C).

(8) If P ∈ P is initialized, then s(CP ) is a non-intertwined family of subsets of V (QP ).

(9) If P ∈ P is uninitialized, with end vertices u, v, and C ∈ CP , then s(C) is either empty

or contains a unique vertex, in Au or Av.

(10) If Aw contains a vertex x adjacent to R, then x ∈ s(C) for some C ∈ Cf(w).

(11) If 1ℓ = 1, the extra cop Cℓ is inactive.

Furthermore, we will use the notations |A| = |{w ∈ W : Aw ̸= ∅}| and |Q| = |{P ∈ P :

QP ̸= ∅}| to denote respectively the number of initialized vertices of W and the number of

initialized paths of P . When helpful, we will call the graph G
[︁⋃︁

w∈W Aw ∪
⋃︁

P∈P V (QP )
]︁

the model since it is a partial construction of a graph which could be contracted into H −h.

A visualization of an example of a game state is provided in Figure 5.4.1.
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h

a
b

c

d e

P1 P2

P3 P4 P5 P6

P7

W = {a, b, c, d, e}

P = {P1, P2, P3, P4, P5, P6, P7}

M = {P4, P6}

f(a) = P3, f(b) = P1, f(c) = P2

f(d) = P3, f(e) = P5

(a) Decomposition (h,W,P,M, f) of a graph H.

Robber

R

Aa Ab Ac

Ad

QP3 QP4

QP2

s(C1), C1 ∈ CQP3

s(C2), C2 ∈ CQP3

s(C3), C3 ∈ CQP1
s(C4), C4 ∈ CQP2

(b) State (A,Q, R, s). We notice that e is the only uninitialized vertex of W , and that the unini-
tialized paths are P1, P5, P6 and P7. As b and d are initialized, it was obligatory for P4 to be
initialized. Further notice that despite P1 not being initialized, one of the cops of CQP1

is active,
and is protecting a vertex in Ab by sitting on it. Finally, note that every vertex adjacent to R that
is also in one of the bags Aw is protected by a cop in CQf(w)

. As P4 ∈ M , there no cops assigned to
protect it, so it cannot contain in its interior any vertices adjacent to R.

Figure 5.4.1: Example of a decomposition of a graph H and of a state of a game played on
an H-minor-free graph G.
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Note that condition (11) does not state that the extra cop is never used. It simply implies

that when the game in a specific state, it not used. This cop will however be used when

transitioning from one state to another, as we will see below.

Let us also note that once the game is in a state, it may remain in this state as long as

the cops’ strategies do not change. Indeed, the robber is in R by (4), and cannot leave R due

to (7), as long as the cops maintain their current strategies, which is possible, as specified

in (6), as long as the robber does not leave R. In general, note that every cop C ∈ C may

change its actual strategy, as long as the vertices it guards are the same, since the strategies

of the other cops do not depend on it.

Definition. We can define a partial order on states by setting (A′,Q′, R′, s′) < (A,Q, R, s)

if

(i) R′ ⊊ R (the robber’s territory is decreased),

(ii) R′ = R and
∑︁

C∈C |s(C)| >
∑︁

C∈C |s′(C)| (the number of guarded vertices, with multi-

plicity, decreases),

(iii) R′ = R,
∑︁

C∈C |s(C)| =
∑︁

C∈C |s′(C)| and |A′|+ |Q′| < |A|+ |Q| (the number of pieces

of the model decreases), or

(iv) R′ = R,
∑︁

C∈C |s(C)| =
∑︁

C∈C |s′(C)|, |A′| + |Q′| = |A| + |Q| and
∑︁

w∈W |A′
w| >∑︁

w∈W |Aw| (the total size of the bags increases).

It is easy to see that this defines a well-founded relation on the set of states, in particular,

using that these parameters have a finite number of possible values.

If the cops change strategies changes to bring the game from one state to a smaller state,

we will say the type of the transition is the condition (either (i), (ii), (iii) or (iv)) in the

definition of the partial order by virtue of which the new state is smaller.

For brevity, in general when defining a new smaller state (A′,Q′, R′, s′), we will only define

the values A′
w (w ∈ W ), Q′

P (P ∈ P) and s′(C) (C ∈ C) which are different from (A,Q, R, s)
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(in particular, all cops except those mentioned will maintain their current strategies). In

general, we will also not explicitly define R′ as it will always be the component of G −⋃︁
w∈W A′

w∪
⋃︁

P∈P V (Q′
P ) containing the robber. In all instances, we will indeed have R′ ⊆ R

since only vertices not adjacent to R will ever be removed from the model.

With the technical definitions completed, we now proceed with proving that the cops have

a winning strategy. Suppose for the sake of contradiction that the robber has a strategy to

escape any strategy employed by these cops.

In order to find a contradiction, we first place the cops arbitrarily on G and assign them

no strategy. Then,

((∅)w∈W , (∅)P∈P , V (G), s(·) = ∅)

is a valid state since all of the conditions hold trivially. Then, the cops will follow a strategy

to minimize the game state. Given the defined partial order, it must be the case that

after some finite amount of time the game is in some minimal state (A,Q, R, s). We will

investigate this game state and construct an H-minor if the robber territory is non-empty

(i.e. if the game has not been won).

To avoid repetition, we first explain more precisely why, with the strategies we will use,

(6) continues to hold for every cop C during a transition from (A,Q, R, s) to (A′,Q′, R′, s′).

There are essentially two kinds of strategy changes we will use, which we summarize here:

Case I: The first kind to consider is that, as noted above, the cop C maintains its current

strategy (and it has maintained it during the transition between the game states) and that

s′(C) ⊆ s(C) (of course, we will always choose s′(C) in a way that s(C) \ s′(C) will only

contain vertices which are also guarded by other cops, so (7) will still hold). To show that

(6) still holds, we suppose that we know that the robber is in R′ but never leaves R′ by

moving to a vertex in N(R′)\ s′(C) ⊇ N(R′)\ s(C), and we must show that C guards s′(C).

We however know that C guards s(C) ⊇ s′(C) as long as the robber does not leave R by

moving to a vertex in N(R) \ s(C), so it suffices to verify this last condition. Recall that
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R′ ⊆ R. The robber cannot leave R directly from R′ since it would have to be through a

vertex in N(R′) \ s(C), which is forbidden. The robber also cannot leave R by first going to

a vertex in R \ R′, as this would be forbidden since R ∩ N(R′) ⊆ N(R′) \ s(C) since s(C)

contains no vertex of R.

Case II: The other kind uses Corollary 5.3.3: we get a new x − y path (or x-rooted

cycle if x = y) Q with internal vertices in R such that, after a finite of moves, a cop C

will be guarding Q, under the condition that the robber does not leave R by going on a

vertex of N(R) \ {x, y}. When using this argument, generally V (Q) will be the new part

of the model and we will set s′(C) = V (Q), although it will be clear in the proof when

this is not the case. To show that (6) holds, we need to prove that if the robber does not

leave R′ by moving to a vertex in N(R′) \ s′(C), the new strategy that C is following still

works. Note that by the definition of R′ in (4), N(R′) ⊆ N(R) ∪ V (Q). If the robber

were to leave R by going to a vertex in N(R) \ {x, y}, it could be directly from R′ if this

vertex is in N(R′) \ V (Q), which is forbidden. Otherwise, the robber would need to go first

through V (Q) to reach vertices in R\R′ which is impossible given that V (Q) is guarded by C.

We will now prove a series of claims about the minimal state (A,Q, R, s) the game is

currently in. Most of the proofs of these claims will be by contradiction, showing that if the

claim does not hold, then the cops can, after a finite number of turns, bring the game into

a smaller state.

Claim 5.4.3.1. For every C ∈ C, s(C) contains only vertices adjacent to R.

Proof. If for some C ∈ C, there exists x ∈ s(C) such that x has no neighbour in R, then C

does not need to explicitly guard x, as the robber cannot reach that vertex (see (7)). Let

s′(C) = s(C) \ {x}. Then, (A,Q, R, s′) is a new valid state, with transition of type (ii),

which is a contradiction to the minimality of the current game state.
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Claim 5.4.3.2. s has disjoint images, i.e. if C1, C2 ∈ C are distinct cops, then s(C1) ∩

s(C2) = ∅.

Proof. If x ∈ Aw for some w ∈ W , is in multiple elements of s(C), condition (10) implies

that at least one of the cops guarding x is some C ∈ Cf(w). Defining s′ such that x is

only contained in s′(C), and otherwise identically to s, yields a new state (A,Q, R, s′) with

transition, similarly to the previous claim, of type (ii).

If a vertex x in the interior of QP (for some P ∈ P) is in multiple elements of s(C),

choose arbitrarily which of these cops will keep guarding x and proceed as previously. Note

that (8) is maintained, the only difference is that the sets of s(CP ) can no longer overlap.

In both of these situations, we get a contradiction to the minimality of the current game

state.

Claim 5.4.3.3. If P ∈ P \M is initialized, either the interior of QP contains a neighbour

of R, or P = f(u) = f(v) for distinct u, v ∈ W so that both ends of QP , say x ∈ Au and

y ∈ Av have neighbours in R.

Proof. Suppose there exists P ∈ P \ M for which the statement does not hold. Let x ∈

Au, y ∈ Av be the end vertices of QP (note that it is possible that x = y if P is a cycle).

By Claim 5.4.3.1, only vertices adjacent to R appear in the elements of s(CP ), and by (8)

only vertices of QP can appear in s(CP ). In particular, given that QP contains no internal

vertex adjacent to R, only x, y can appear in s(CP ). Note that by (10) and Claim 5.4.3.2,

the ends x, y of QP may only appear in s(CP ) if respectively P = f(u), P = f(v). Since we

are assuming that the claim does not hold for P , this holds for at most one of x, y (unless

x = y). Hence, either s(C) = ∅ for all C ∈ CP , or only one cop of CP is active and only

guards one vertex in Au (without loss of generality). These two cases will correspond to the

two possible cases in (9) of the new smaller state, which we now define. Set Q′
P = ∅. Note

that R is still a component of G −
(︁⋃︁

w∈W Aw ∪
⋃︁

P∈P V (Q′
P )
)︁
, given that no neighbour of

R was in the interior of the removed path. It is then easy to verify that (A,Q′, R, s) is a
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new valid state with transition of type (iii), which is a contradiction to the minimality of the

current game state.

Claim 5.4.3.4. If C ∈ C is such that s(C) = {x}, we may assume that C is guarding x by

sitting on it.

Proof. Suppose C ∈ C is such that s(C) = {x}. Of course, there are possibly many strategies

that C could be using to block the robber from moving to x. For instance, C could be using

some larger path guarding strategy such as in Corollary 5.3.3, or sitting on a neighbour of x

until the robber enters x.

Given that C is guarding x if the robber only moves in G[R ∪ {x}], the distance (at the

cops’ turn) between x and C in G cannot be more than one larger than the distance between

x and the robber in G[R ∪ {x}]. Indeed, otherwise the robber could follow a shortest path

to x and not be caught by C on the way.

Let C abandon its current strategy and move towards x via the shortest path in G until

the cop reaches x, after which it will sit on x to guard it. We claim that once this is done,

the state of the game will be unchanged; it suffices to show that the robber could not have

escaped R through x, given that all of other cops may follow their strategies as long as the

robber not leave R, as specified in (6). Given the distances between x and C and the robber

discussed above, the cop will either arrive at x before the robber does or capture the robber

on x.

Given there are a finite number of cops and this strategy takes at most diam(G) ≤ |V (G)|

turns, we can apply the above strategy for every cop if needed. Hence, from now on, if a cop

is only guarding one vertex, we may suppose it is sitting on that vertex.

Note that once the change of strategy is complete, the state of the game is unchanged.

Claim 5.4.3.5. If w ∈ W is initialized, then Aw contains a vertex adjacent to R.

Proof. Suppose to the contrary that there is some w ∈ W which is initialized but such that

Aw contains no vertex adjacent to R. There are a few cases to consider here.
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If there are no initialized paths in P \M incident to w, then set A′
w = ∅. If wv ∈ M for

some v ∈ W , let Q′
wv = ∅. The cop assignment s is still well defined. Indeed, Aw contained

no vertex adjacent to R, and thus by Claim 5.4.3.1 none of its elements was guarded by

a cop. In the case where wv ∈ M , no internal vertex of Qwv is guarded by a cop given

that Cwv = ∅. It is easy to see that (A′,Q′, R, s) defines a new valid state, this time with

transition of type (iii).

Suppose now f(w) is initialized. Say f(w) has ends w, v and Qf(w) has end vertices x, y,

with x ∈ Aw and y ∈ Av (note that if w = v, it is possible that x = y). We know that x is

not adjacent to R. By Claim 5.4.3.3, Qf(w) must then contain a vertex in its interior which

is adjacent to R. Take z such a vertex which is as close as possible to x in Qf(w) (when

traversing it from x to y). Let A′
w = Aw ∪ V (Qf(w)[x, z]) and Q′

f(w) = Qf(w)[z, y] (note that

Q′
f(w) is necessarily a path, even if Qf(w) was a cycle). As Aw contained no vertex adjacent

to R and by our choice of z, A′
w still respect (5). Then, (A′,Q′, R, s) will define a new valid

state, here the transition being of type (iv), since the only change is that A′
w absorbed some

vertices of Qf(w). Note that it is important for (10) that we absorbed parts of Qf(w) and not

of any incident path, so that the vertex of A′
w be guarded by one of the cops of Cf(w).

Hence, we may suppose that f(w) is uninitialized, but there exists P ∈ P \M containing

w which is initialized. Suppose P has end vertices w, v and f(w) has end vertices w, u.

Say QP has ends x, y (where x ∈ Aw and y ∈ Av). Claim 5.4.3.3 again yields that there

exists z in the interior of QP which has a neighbour in R. Again take z as close as possible

to x in QP . Given that all active cops are guarding at least one vertex adjacent to R by

Claim 5.4.3.1 and that Aw contains no neighbour of R, either all cops of Cf(w) are inactive,

or one of them is guarding a vertex a ∈ Au and the others are inactive (in this second case,

necessarily u ̸= w and so f(w) is not a cycle). Let C ∈ Cf(w) be a cop which, depending on

the case above, is either inactive or on a.

In the first of these two cases, we first send the inactive cop C to sit on z to guard it.

Let A′
w = Aw ∪ V (QP [x, z]), Q′

P = QP [z, y], s′(C) = {z} and s′(C ′) = s(C ′) \ {z}, where

169



C ′ ∈ CP is the cop which was guarding z previously. Then, the game is now in the new state

(A′,Q′, R, s′); this transition has type (iv).

In the other case, using Corollary 5.3.3 (note by Claim 5.4.3.4 that C is sitting on a)

there exists an a−z path Q with internal vertices in R (of which there is at least one), which

can, after a finite number of turns (during which C still guards a), be guarded by C. Let

A′
w = Aw ∪ V (QP [x, z]), Q′

P = QP [z, y], Q′
f(w) = Q, s′(C) = V (Q). The game is now in the

new state (A′,Q′, R′, s′); this transition has type (i). Note that in this case we initialized

f(w), which was necessary as a (or the) cop of Cf(w) was already busy guarding one vertex.

In both of these cases, it is important for (10) to hold that one of the cops of Cf(w) guards

z, which is now the unique vertex of A′
w adjacent to R′.

In all cases, we can reach a strictly smaller game state, which is a contradiction to the

minimality of the current game state.

Claim 5.4.3.6. If w ∈ W and C ∈ Cf(w) is such that s(C) = {x}, where x ∈ Aw, and f(w)

is uninitialized, then x has at least 2 neighbours in R.

Proof. Suppose to the contrary that x has exactly 1 neighbour a in R (by Claim 5.4.3.1, x

cannot have no neighbours in R). By Claim 5.4.3.4, C is sitting on x. Move C to a. Let

A′
u = Au ∪ {a} and s′(C) = {a}. The game is now in state (A′,Q, R′, s′), with transition

of type (i), which is a contradiction to the minimality of the current game state. Note that

given that x only has a as a neighbour in R, x is not a neighbour of R′, and so (5) and (7) are

indeed still respected. Further note that (8) is still respected since f(w) is uninitialized.

Claim 5.4.3.7. Every w ∈ W is initialized.

Proof. Suppose w is uninitialized. Throughout the proof, let w, v be the ends of f(w). When

initializing w, recall that by (10) we must take care that a cop of Cf(w) will guard the possible

vertex which is adjacent to the robber’s territory. We will consider two main cases.
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We first consider the case in which wu /∈ M for every initialized u ∈ W . Under this

assumption, we can initialize w without being concerned with (3) (of course, as long as w is

the only vertex we are initializing). There are two subcases to consider.

The first subcase is if all cops of Cf(w) are inactive. Let x ∈ R be arbitrary (which exists

as the game is still being played). Send some C ∈ Cf(w) to guard x by sitting on it. Let

A′
w = {x} and s′(C) = {x}. It is easy to verify that (A′,Q, R′, s′) is indeed a new valid

state, with transition of type (i).

The second subcase is if not all cops of Cf(w) are inactive. Given that Aw = ∅, there can be

no paths incident to Aw, and so f(w) is necessarily uninitialized. By (5), (9), Claim 5.4.3.1

and Claim 5.4.3.2, there is only one active cop in Cf(w), say C, which is guarding (and sitting

on, by Claim 5.4.3.4) a vertex y ∈ Av. Let x ∈ R be any neighbour of y, which must exist

by Claim 5.4.3.1. It is easy to see that C can guard the path xy, for instance by sitting on

y and moving to x if the robber goes on x. Set A′
w = {x}, Q′

f(w) = xy and s′(C) = {x, y}.

Then (A′,Q′, R′, s′) is a new valid state, with transition of type (i).

The other case to consider is if there exists some initialized u ∈ W such that wu ∈ M .

Note that necessarily w ̸= u in this case. Given that M is a matching, there is only one such

u, and so to ensure that (3) is respected after initializing w we only need to consider this u.

Recall that by definition of f , f(w) /∈ M and so f(w) ̸= wu. By Claim 5.4.3.5, there exists

y ∈ Au such that y has at least one neighbour in R. There are once again two main subcases

here.

The first subcase now is that all cops of Cf(w) are inactive, let C ∈ Cf(w). Let x ∈ R

be a neighbour of y. Send C to guard x by sitting on it. Let A′
w = {x}, Q′

wu = xy, and

s′(C) = {x}. Then (A′,Q′, R′, s′) is indeed a new valid state, with transition of type (i).

The other subcase is that there exists C ∈ Cf(w) which is active. Given that Aw is

uninitialized, f(w) is also uninitialized. As earlier, the cop C must then be guarding (by

sitting on) a vertex x ∈ Av adjacent to R (and so w ̸= v), and by Claim 5.4.3.2, any other

cop in Cf(w) is inactive.
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First suppose u ̸= v. Apply Corollary 5.3.3 to get a x− y path Q through R of length at

least 2, such that C can guard Q after a finite number of turns. Let z be the penultimate

vertex of Q, i.e. z is the vertex of Q adjacent to y. Set A′
w = {z}, Q′

wu = zy, Q′
f(w) = Q[x, z]

and s(C) = V (Q) \ {y}. Then (A′,Q′, R′, s′) is a new valid state, with transition of type (i).

Now suppose u = v. By (5) we have that x = y, so we know that y is already guarded by

C. Given that C ∈ Cf(w) but is sitting on a vertex of Au, by (10) and Claim 5.4.3.2 we have

that necessarily f(w) = f(u), which we recall is uninitialized. By Claim 5.4.3.6, y has at

least two neighbours in R, let a be such a such a neighbour. In particular, |f−1(f(w))| = 2.

Also, given that wu ∈ P already, f(w) cannot be an edge (since H is not a multigraph), and

thus has length at least two. Hence, ℓf(w) ≥ 3. If ℓf(w) = 3, then 1ℓ = 1 and the extra cop

Cℓ is present in the game, so let C ′ = Cℓ. If ℓf(w) ≥ 4, then |Cf(w)| ≥ 2 and so let C ′ ∈ Cf(w)

which is distinct from C (in particular, C ′ is inactive). First move C ′ to a. Then, apply

Corollary 5.3.3 to get an a−y path Q of length at least two (in particular, not using the edge

ay) with internal vertices in R which can be guarded by C ′ after a finite number of turns.

Note that is important when applying Corollary 5.3.3 that C keeps guarding y while C ′ goes

to guard Q, as otherwise the robber could escape R through y. Only once C ′ is guarding Q

can C stop guarding y. Let A′
w = {a}, Q′

wu = ay, Q′
f(w) = Q, s′(C ′) = V (Q) and s′(C) = ∅.

If C ′ = Cℓ, we also need to switch the labels of C and Cℓ, i.e. C becomes the new extra cop,

and Cℓ becomes a cop of Cf(w). The game is now in state (A′,Q′, R′, s′), with transition of

type (i).

Note that in all of these subcases, the reason no cop is required in Cwu is because Q′
wu

is only an edge, hence contains no internal vertex adjacent to the robber’s territory. The

ends of this path, if they are adjacent to the robber’s territory, are protected by the cops

designated by f given (10).

In all cases, we can reach a strictly smaller game state, which is a contradiction to the

minimality of the current game state.

172



Claim 5.4.3.8. Every P ∈ P is initialized.

Proof. Suppose to the contrary there exists some uninitialized P ∈ P . If possible, choose

P such that there is u ∈ W for which P = f(u). By Claim 5.4.3.7, all vertices in W are

initialized. By (3), P /∈ M and so CP is necessarily non-empty.

Suppose P has end vertices u, v. There are two main cases to consider: when u ̸= v and

u = v.

First suppose that u ̸= v. By Claim 5.4.3.5, there exists x ∈ Au and y ∈ Av adjacent to

R. As in the previous claims, (9) implies that any active cop of CP is either sitting on x or

y, without loss of generality say it is on x. If no cop of CP is active, first send one inactive

cop of CP to x. In both cases, there is a cop C ∈ CP sitting on x. Using Corollary 5.3.3,

there exists at least one x− y path Q with internal vertices in R, which can be guarded by

C after a finite number of turns (and such that during these turns, x remains guarded by

C). Define Q′
P = Q and s′(C) = V (Q). Once C is following this new strategy, the game is

now in state (A,Q′, R′, s′), with transition of type (i).

We now consider the case u = v, so P is an u-rooted cycle. By Claim 5.4.3.5, there exists

x ∈ Au adjacent to R. There are two subcases here based on the number of neighbours of x

that are in R.

First suppose x has at least two neighbours in R, let one of them be a ∈ R. By (10), we

know that x is guarded by a cop C ′ ∈ Cf(u). We first want to find a cop (distinct from C ′)

to guard a new path used to initialize P . If P ̸= f(u), all cops of CP are necessarily inactive

by (9) and Claim 5.4.3.2 given that x is already guarded by C ′, so let C ∈ CP . Suppose

now that P = f(u). Recall that we want to find an inactive cop distinct from C ′. Given

that a cycle has length at least 3 we have ℓP ≥ 3. If ℓP = 3, then 1ℓ = 1 and the extra cop

Cℓ is present in the game, so let C = Cℓ. If ℓP ≥ 4, |CP | ≥ 2 and so let C ∈ CP which is

distinct from C ′. In both cases, C is inactive and thus available to take on a new strategy.

Move C to a, and apply Corollary 5.3.3 to get an a − x path Q of length at least two (in
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particular, not using the edge ax) with internal vertices in R. This path can be guarded by

C after a finite number of turns. Note that it is important when applying Corollary 5.3.3

that C ′ keeps guarding x while C prepares to guard Q (which is why we wanted C to be

distinct from C ′). Set Q′
P = xa⊕Q and s′(C) = V (Q). In the case where C = Cℓ, also set

s′(C ′) = ∅. This only happens if, in particular, C ′ ∈ Cf(u), and so C ′ was necessarily sitting

on x by (9). In this case, we also need to switch the labels of C ′ and Cℓ, that is C ′ becomes

the new extra cop, and Cℓ becomes a cop of CP . The game is now in state (A,Q′, R′, s′),

with transition of type (i).

Second, suppose x has exactly one neighbour a in R. If P = f(u), then by (10), there

necessarily exists C ∈ CP which is guarding x. By (9), s(C) = {x}. Given that P = f(u)

is uninitialized, this contradicts Claim 5.4.3.6, so P ̸= f(u). In particular, by the same

argument in the previous case, no cop of CP is active, so we let C ∈ CP . By our initial choice

of P , f(u) must be initialized. Let w be the other end of f(u), and let y be the vertex of

Aw adjacent to R, which exists by Claim 5.4.3.5. We next consider whether the interior of

Qf(u) contains vertices adjacent to R, and separate this into two subsubcases.

First suppose the interior of Qf(u) contains no vertex adjacent to R. Note that by

Claim 5.4.3.3, f(u) is not a cycle, so u ̸= w. Apply Corollary 5.3.3 to get an x − y path Q

which goes through R which can be guarded by C after a finite number of turns. The cops

of Cf(u) guarding (the ends of) Qf(u) may now be relieved. Let Q′
f(u) = Q, s′(C) = V (Q)

and s′(C ′) = ∅ for every C ′ ∈ Cf(w). Note however that this would no longer respect (8),

given that C is in CP but is guarding Q′
f(u). Hence, switch the roles of C and of one cop

C ′ ∈ Cf(w), that is we redefine Cf(w) = (Cf(w) \ {C ′}) ∪ {C} and CP = (CP \ {C}) ∪ {C ′}).

Then, the game is now in state (A,Q′, R′, s′), with transition of type (i).

Second, suppose now the interior of Qf(u) contains a vertex adjacent to R (note that here

it is possible that u = w). Choose z to be such a vertex as close to x as possible, i.e. the

interior of Qf(u)[x, z] contains no vertex adjacent to R. Apply Corollary 5.3.3 to get an x−z

path Q which goes through R which can be guarded by C after a finite number of turns.
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Define A′
u = Au ∪ V (Qf(u)[x, z]), Q′

f(u) = Qf(u)[z, y] and Q′
P = Q. Given that x, z ∈ A′

u,

Q′
P is indeed an A′

u − A′
u path. Let s(C) = V (Q) and let s′(C ′) = s(C ′) \ {x} for the cop

C ′ ∈ Cf(u) which was previously guarding x, in order for (8) to still hold. The game is now

in state (A′,Q′, R′, s′), with transition of type (i). Note that given that x only had a as a

neighbour in R, a is necessarily in Q, and so z is the only vertex of A′
u which is potentially

adjacent to R′, hence (5) still holds.

In all cases, we can reach a strictly smaller game state, which is a contradiction to the

minimality of the current game state.

Claim 5.4.3.9. For every P ∈ P,
∑︁

C∈CP |s(C)| ≥ ℓP .

Proof. Suppose to the contrary that there exists P such that
∑︁

C∈CP |s(C)| < ℓP .Since

|CP | =
⌈︁
ℓP
3

⌉︁
by definition, there must be some C ∈ CP with |s(C)| ≤ 2. If possible, choose

this C with |s(C)| ≤ 1.

By Claim 5.4.3.8, P is initialized, so s(CP ) is a non-intertwined family of subsets of

V (QP ). Let u, v be the end vertices of P , and x, y the end vertices of QP , where x ∈ Au

and y ∈ Av. Notice that when, ℓP ∈ {0, 1, 2, 4}, we have 2
⌈︁
ℓP
3

⌉︁
≥ ℓP , and so there exists

C ∈ CP such that s(C) ≤ 1; in this case, such a C would have been chosen above. Hence, if

|s(C)| = 2, we know it must be the case that ℓP /∈ {0, 1, 2, 4}.

If |s(C)| = 1, let z1 be the vertex C is currently sitting on. If |s(C)| = 0, let z1 be the

vertex of QP which is adjacent to R (such a vertex exists by Claim 5.4.3.3) and closest to x

(when traversing QP from x to y), and then send C to z1.

If z1 is the only vertex of QP adjacent to R, by Claim 5.4.3.3 z1 is necessarily an internal

vertex of QP . In this case, by Claim 5.4.3.5, Av must contain a vertex z2 ̸= z1 which is

adjacent to R. Otherwise, let z2 be the first vertex adjacent to R which appears after z1

when traversing QP from x to y.

By Corollary 5.3.3, there exists a z1 − z2 path Q of length at least two with internal

vertices in R such that C has a strategy to keep guarding z1 and, after a finite number of
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turns, guard Q. If z2 ∈ QP , let Q′
P = QP [x, z1]⊕Q⊕QP [z2, y]. Otherwise we chose z2 ∈ Av,

and so let Q′
P = QP [x, z1] ⊕ Q. Note that in all cases, the parts of QP which are being

dropped did not contain any neighbour in R, so (7) still holds, and Q′
P still has ends in Au

and Av. Let s(C) = V (Q). It is direct that this maintains (8). The game is now in state

(A′,Q′, R′, s′), with transition of type (i).

Suppose now that |s(C)| = 2. By the choice of C above, ℓP /∈ {0, 1, 2, 4}. In particular,

1ℓ = 1, and so the cop Cℓ exists and is inactive. Let z1, z2 be the vertices of s(C), suppose

without loss of generality that z1 appears before z2 when traversing QP from x to y. By (8)

and Claim 5.4.3.1, QP [z1, z2] contains no internal vertex adjacent to R (in the very specific

case where QP is a cycle with root x = z1, given the somewhat technical definition of non-

intertwined for cycles, it is possible that one might need the consider QP to be travelled in

the opposite direction for this to hold).

By Corollary 5.3.3, there exists a z1 − z2 path, call it Q, of length at least two with

internal vertices in R such that Cℓ has a strategy to guard Q, after a finite amount of turns.

Set Q′
P = QP [x, z1]⊕Q⊕QP [z2, y], s(Cℓ) = V (Q) and s(C) = ∅. With C now inactive, we

relabel C to be Cℓ and vice versa, in order for (8) and (11) to hold. The game is now in

state (A′,Q′, R′, s′), with transition of type (i).

In all cases, we can reach a strictly smaller game state, which is a contradiction to the

minimality of the current game state.

Claim 5.4.3.10. H is a minor of G.

Proof. We use the model in the current state (A,Q, R, s) to construct a minor of H in G.

First, contract all edges in the connected component R and call the resulting vertex h′.

Any vertex in V (G) \R adjacent to R is now adjacent to h′.

For every w ∈ W , Aw is non-empty by Claim 5.4.3.7. By the definition in (1), G[Aw] is

connected for every w ∈ W . Hence, we may contract every edge between vertices in Aw to
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obtain one vertex, which we denote w′. Since Aw contains at least one vertex adjacent to R

by Claim 5.4.3.5, h′ is adjacent to w′ in the resulting graph.

By Claim 5.4.3.8, every P ∈ P is initialized. For every P ∈ P and every edge uv ∈ QP ,

contract the edge uv if either u or v is not adjacent to h′. Let P ′ be the resulting path (or

cycle), which has ends u′ and v′. With these contractions, every vertex of P ′ is adjacent to

h′.

By Claim 5.4.3.2, the images of s are disjoint, which contain only vertices adjacent to R

(and now h′) by Claim 5.4.3.1. Let P ∈ P with ends u, v. By (10), the end vertices of QP ,

say x, y, are in one of the sets of s(CP ) only if P = f(u) and P = f(v) respectively. Thus,

P ′ contains
(︁∑︁

C∈CP |s(C)|
)︁
− |f−1(P )| internal vertices. By Claim 5.4.3.9, P ′ then contains

at least ℓP − |f−1(P )| ≥ |E(P )| − 1 internal vertices. As the number of edges in a path or

a rooted cycle is one more than the number of internal vertices, P ′ contains at least |E(P )|

edges. We may contract further edges of P ′ in order for P ′ to contain exactly |E(P )| edges.

Mapping h to h′, w to w′ for every w ∈ W and P to P ′ for every P ∈ P , we conclude

that H is isomorphic to a subgraph of our contracted graph, and so H is a minor of G.

Given that G is H-minor-free, Claim 5.4.3.10 yields the contradiction. This completes

the proof of the theorem.

5.4.1 Key ideas of the proof

We now highlight a few key elements of the proof of Theorem 5.4.3.

The method introduced by Andreae in [D2] consists in, as long as the robber is not

caught, gradually constructing a minor of H − h by buildings bags corresponding to the

vertices of H − h and using path guarding strategies for cops in order to add paths between

bags when the corresponding vertices are adjacent in H − h. These paths are taken through

the robber’s territory, gradually reducing its size. Once the minor of H − h is completed,

contracting the robber’s territory then yields a minor of H. As the graph is H-minor-free,

this process cannot be completed, and hence the cops must eventually capture the robber.
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Our proof builds on this basic framework in multiple ways.

1. In the proof of Theorem 5.1.1, exactly one cop is used to recreate each edge of H − h

in the minor by guarding a path between two bags corresponding to adjacent vertices

of H − h (which yields the bound c(G) ≤ |E(H − h)|). In a specific proof sketch for

wheel graphs (a cycle plus a universal vertex), Andreae [7, Theorem 3] uses the fact

that one cop can be used to recreate at least three vertices of the cycle: when a cop

is guarding fewer than three (for simplicity, say there are two) vertices adjacent to the

robber’s territory, the extra cop can relieve this cop by guarding a new path between

these two vertices through the robber’s territory. Using a more specific assignment

of cops, in which now cops are grouped together to guard paths (and rooted cycles)

between pairs of “core” vertices W , the same idea can be used for general graphs.

2. To go from a model of H − h to a model of H, one requirement is that each bag Aw

(which will be contracted to give w in the minor) must contain at least one vertex

adjacent to R (at least, when wh ∈ E(H)). Furthermore, the existence of at least

one such vertex is needed when adding a new u − v path to the model, as it allows

us to get a new path between Au and Av passing through R. In Andreae’s proof,

when Aw no longer has a neighbour in R, it gains one by absorbing parts of one of

the paths incident to it, or otherwise it is uninitialized. Using this approach directly

with the previous improvement, we would get Corollary 5.5.2 below. However this is

not optimal, as it requires that the group of cops of any of the paths be large enough

to guard not only the required number of neighbours of R internally in the path, but

in the ends of the path as well. Hence, another key idea in our proof is that it is in

fact possible to designate for each w from which path to absorb vertices to acquire a

vertex adjacent to R; this is the role played by f . If this is not possible, i.e. if f(w)

is uninitialized, a neighbour of R will be acquired from another path incident to Aw

(if one such path exists), and then we use a cop of Cf(w) to guard this vertex. This is

reflected by (10).
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3. In the last point, what happens if instead of a long path between u, v ∈ W , there is

simply an edge, and uv is not in the image of f? In some sense, to get the minor we do

not need any neighbour of R to be present in the path Quv which will be contracted to

uv. However, if we take Quv to be a path between Au and Av, a cop is still potentially

needed: even though Quv is not required to contain a neighbour in R, it might contain

one. However, when we first initialize Au or Av, we can do so in a way that Quv is

only an edge and thus no cop will need to be assigned to guard it. This is the role the

matching M plays. Let us note that this only works when M is a matching; this is a

consequence of the fact that we cannot much control the order in which sets Aw are

initialized and uninitialized.

4. When using a group of cops to recreate a path to build the minor of H − h, one extra

cop is often required. More precisely, we expect every cop to be able to guard at least

three vertices adjacent to R. However, if one cop is guarding exactly two vertices

adjacent to R, there is generally no way for that cop to start guarding a new path

through R between these vertices without losing control of one of these vertices, and

all other cops might also be busy. We can use the extra cop to do so, after which

the first cop can be relieved (the cops may then switch their roles); this is what is

suggested for wheel graphs in [D2]. In some very specific cases with short paths, we

can guarantee that if the cops are not on average guarding at least three neighbours of

R, then one of these cops is necessarily guarding at most one neighbour of R, in which

case the extra cop is not required. We will see in the applications in the next section

that this difference can be very useful when H is small. We note that the extra cop is

also used in very specific technical situations involving edges of the matching or cycles

in Claim 5.4.3.7 and Claim 5.4.3.8.

Note that many of the technicalities of the proof concern the interplay between these

various improvements. Indeed, we often need to break the proofs of the claims into various

cases depending on whether, for instance, the P ∈ P in question is a path or a cycle, is in
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the image of f or not and is in the matching M or not. These complexities also require a

more technical proof statement and system of states and state transitions. Our proof is also

quite formal when it comes to path guarding strategies, hence the use of Corollary 5.3.3 and

the specific formulation of condition (6).

5.5 Applications

In this section, we will see various consequences of our main result Theorem 5.4.3.

5.5.1 Simplified versions of the main result

In many cases, one might not need the full flexibility of Theorem 5.4.3, which is quite

technical. In this section we present some simpler versions of this result. This will also allow

us to better isolate the various improvements described in Section 5.4.1.

Firstly, we have a version of Theorem 5.4.3 in which the only difference with Theo-

rem 5.1.1 is the addition of a matching of “free” edges.

Corollary 5.5.1. Let H be a graph, h ∈ V (H) and M be a matching of H − h such that

H − h − M has no isolated vertex. If G is a connected H-minor-free-graph, then c(G) ≤

|E(H − h)| − |M |.

Proof. Let W = V (H − h), let P = E(H − h) (considering every edge as a path of length 1)

and let f be arbitrary; at least one such function exists since every vertex of H − h−M is

not isolated. Then, (h,W,P ,M, f) is a decomposition of H.

For every P ∈ P , we have that |E(P )| = 1 and thus

ℓP =

⎧⎪⎪⎨⎪⎪⎩
0 P ∈ M

max(|E(P )| − 1 + |f−1(P )|, 1) P /∈ M

≤

⎧⎪⎪⎨⎪⎪⎩
0 P ∈ M

2 P /∈ M.
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This implies that 1ℓ = 0. Hence, by Theorem 5.4.3 we have that

c(G) ≤ 1ℓ +
∑︂
P∈P

⌈︃
ℓP
3

⌉︃
≤

∑︂
e∈E(H−h)\M

⌈︃
2

3

⌉︃
+
∑︂
e∈M

⌈︃
0

3

⌉︃
= |E(H − h)| − |M |.

We might also want a version of Theorem 5.4.3 in which we use the improvements for

long paths in H − h but without some of the technicalities.

Corollary 5.5.2. Let H be a graph and h ∈ V (H) be a vertex such that H−h has no isolated

vertex. Let W ⊆ V (H − h) be non-empty and let P be a collection of pairwise internally

vertex-disjoint paths and cycles with end vertices in W such that every edge of H − h is

contained in some P ∈ P.

If G is a connected H-minor-free graph, then

c(G) ≤ 1 +
∑︂
P∈P

⌈︃
|V (P )|

3

⌉︃
.

Proof. Let f be arbitrary; at least one valid choice exists given that no vertex of W is

isolated. Then, (h,W,P , ∅, f) is a decomposition of H.

If P ∈ P is a path, |f−1(P )| ≤ 2, and so ℓP ≤ |E(P )|+ 1 = |V (P )|. If P ∈ P is a cycle,

then |f−1(P )| ≤ 1, and so ℓP ≤ |E(P )| = |V (P )|. Furthermore, 1ℓ ≤ 1.

5.5.2 Recovering Andreae’s results

Here we show that Theorem 5.4.3 is indeed a generalization of Andreae’s results. Firstly, we

indeed recover Theorem 5.1.1, which we restate for convenience.

Theorem 5.1.1. [D2] Let H be a graph and h ∈ V (H) be a vertex such that H − h has no

isolated vertex. If G is a connected H-minor-free graph, then c(G) ≤ |E(H − h)|.

Proof. Apply Corollary 5.5.1 with M = ∅.
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Consider the wheel graph Wt = U(Ct) (where Ct is the cycle graph on t vertices). As

noted in the introduction, Andreae proved the following. As noted in Section 5.4.1, the proof

of that result partially inspired Theorem 5.4.3. We can recover that result.

Theorem 5.5.3. If G is a connected Wt-minor-free graphs (t ≥ 3), then c(G) ≤
⌈︁
t
3

⌉︁
+ 1.

Proof. Apply Corollary 5.5.2 with h being the universal vertex, W = {u} where u is some

arbitrary vertex of Wt − h and P containing only the cycle Wt − h which we root at u.

Further results of Andreae, for K3,3-minor-free graphs and K2,3-minor-free graphs, are

recovered in the next subsection. We note however that we cannot recover all of Andreae’s

results for small graphs, in particular the upper bound of 3 on the cop number of connected

K5-minor-free graphs. Andreae’s method to prove this, although similar to the methods

used to prove Theorem 5.1.1, constructs the minor more carefully, in a way which only

works for very small graphs. In particular, whereas in the general framework used to prove

Theorem 5.1.1 and Theorem 5.4.3 we do not have much control over what Aw (the set of

vertices which are going to be contracted to obtain w) looks like, in Andreae’s proof for

K5-minor-free graphs the structure of the model of H is much more rigid; some edges in the

minor can be obtained as a consequence of the fact that when building a minor of a small

graph, one can keep track of the presence of specific vertices and edges.

5.5.3 Complete bipartite graphs

We can improve the bound from 2t to t for K3,t-minor-free graphs.

Corollary 5.5.4. If G is a connected K3,t-minor-free graph (t ≥ 2), then c(G) ≤ t.

Proof. Let h, a, b be the vertices in the part of K3,t with 3 vertices. Then, K3,t − h consists

of exactly t internally disjoint paths P1, . . . , Pt of length 2 between a and b. Let W =

{a, b}, P = {P1, . . . , Pt} and define f by f(a) = P1, f(b) = P2. Then, (h,W,P , ∅, f) is a

decomposition of H.
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We have that |E(Pi)| = 2 for i ∈ [t], |f−1(P1)| = |f−1(P2)| = 1 and |f−1(Pi)| = 0 for

i ∈ [t] \ {1, 2}. Hence ℓPi
≤ 2 for every i ∈ [t], and in particular 1ℓ = 0. Theorem 5.4.3 then

yields the result.

In particular, we recover the bound for K3,3-minor-free graphs from [D2] without needing

a separate argument.

We can also improve the upper bounds for K2,t-minor-free from t to essentially half that.

Corollary 5.5.5. If G is a connected K2,t-minor-free graph (t ≥ 1), then c(G) ≤
⌈︁
t+1
2

⌉︁
.

Proof. First note that it suffices to show the result when t is odd, since K2,t−1-minor-free

graphs are also K2,t-minor-free, and in this case
⌈︂
(t−1)+1

2

⌉︂
=
⌈︁
t
2

⌉︁
= t−1

2
+ 1.

Consider the graph H = U
(︁
U
(︁
t−1
2
K2 +K1

)︁)︁
. In other words, if h is one of the universal

vertices, H−h is a graph obtained by identifying one vertex of t−1
2

triangles and of one edge.

In particular, K2,t is a subgraph of H, and so it suffices to prove that connected H-minor-free

graphs have cop number at most t−1
2

+ 1. Let G be such a graph.

Let a be the universal vertex of H−h. We have that H−h is the union of t−1
2

internally-

disjoint a-rooted cycles of length 3 (write Paa for this collection of cycles), and one other

edge ab. Let W = {a, b}, let P = Paa ∪ {ab} and define f by f(a) = f(b) = ab. Then,

(h,W,P , ∅, f) is a decomposition of H.

For every cycle (of length 3) P ∈ Paa, we have ℓP = 2, and ℓab = 2. In particular, 1ℓ = 0.

Theorem 5.4.3 yields that c(G) ≤ t−1
2

+ 1 as desired.

Note that both of these corollaries give us an bound of 2 for K2,3-minor-free graphs, which

does not follow from Theorem 5.1.1 but is a consequence of Andreae’s [D2] stronger upper

bound of 2 on the cop number of K−
3,3-minor-free graphs.

5.5.4 Complete graphs

One of the consequences of Theorem 5.1.1 is that if G is a connected Kt-minor-free graph

for t ≥ 3, then c(G) ≤
(︁
t−1
2

)︁
= (t−1)(t−2)

2
.
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We can improve this result.

Corollary 5.5.6. If G is a connected Kt-minor-free graph (t ≥ 4), then c(G) ≤
⌊︂
(t−2)2

2

⌋︂
.

Proof. Let h be an arbitrary vertex of Kt, and let M be a maximum matching of Kt − h ≃

Kt−1, which has size
⌊︁
t−1
2

⌋︁
. Note that Kt − h −M contains no isolated vertex since t ≥ 4.

Then, Corollary 5.5.1 yields that

c(G) ≤ |E(H − h)| − |M | =
(︃
t− 1

2

)︃
−
⌊︃
t− 1

2

⌋︃
=

⌊︃
(t− 2)2

2

⌋︃
.

The cop number of Kt-minor-free graphs in particular has received some interest. Andreae

[D2] posed as an open problem to find Kt-minor-free graphs with large cop number.

Furthermore, Bollobás, Kun and Leader [D3] noted the bound on Kt-minor-free graphs is

related to Meyniel’s conjecture. Meyniel’s conjecture [D8] is the most famous and important

conjecture on the game of cops and robbers. It states that c(G) = O(
√
n) if G is a connected

graph on n vertices. A weaker but still open conjecture is the weak or soft Meyniel conjecture,

stating that c(G) = O(n1−δ) for some fixed δ > 0. Bollobás, Kun and Leader note that if

we prove that Kt-minor-free graphs have cop number at most O(t2−ε), then weak Meyniel

holds for δ = ε
4−ε

. Briefly, their argument goes as follows. Suppose we wish to bound the

cop number of an arbitrary graph G on n vertices. If G has a vertex u of degree Ω(nδ), then

place a cop on this vertex and proceed by induction on G−N [u]. Otherwise, G has O(nδ+1)

edges, and so G cannot contain a complete minor on more than O(n
δ+1
2 ) vertices. We may

then apply the bound for graphs forbidding a complete minor to obtain the desired result.

We note that Bollobás, Kun and Leader’s argument holds more generally. Suppose

{Gt}t≥1 is a family of graphs indexed by t such that e(t) = |E(Gt)| is monotone increasing,

and let f be a monotone increasing upper bound on the cop numbers of these graphs, i.e.

c(Gt) ≤ f(t). If f(e−1(m)) = O(m1−ε), then weak Meyniel holds for δ = ε
2−ε

.
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(a) P1 (Petersen graph) (b) P2 (c) P3 (d) P4

(e) P5 (f) P6 (K−
4,4) (g) P7 (K6)

Figure 5.5.1: Petersen family.4

In other words, if we find any class of graphs Gt (not only complete graphs) for which

the order of the cop number of Gt-minor-free graphs is polynomially smaller than that of the

number of edges of Gt, one gets an improvement towards Meyniel.

5.5.5 Linklessly embeddable graphs

A linkless embedding of a graph is an embedding of the graph into R3 such that every pair

of two disjoint cycles forms a trivial link (i.e., they do not pass through one another). A

graph that has a linkless embedding is called linklessly embeddable. Robertson, Seymour,

and Thomas [D15] showed that the linklessly embeddable graphs are exactly the graphs

excluding the Petersen family (see Figure 5.5.1) as minors. The Petersen family contains

seven graphs that are all ∆ − Y equivalent (i.e. can be obtained by replacing an induced

claw by a triangle) to K6, which notably includes K−
4,4 and the Petersen graph.

Given the various topological results on the game of cops and robbers discussed in the

introduction, one might then be interested in determining the maximum cop number of link-

lessly embeddable graphs. It follows from Theorem 5.1.1 that for any linklessly embeddable
4Drawings based on [D14].
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graph, c(G) ≤ 9: take H = P4 and let h be the degree 6 vertex (H − h is then K3,3).

Using our main result, we are able to improve this upper bound.

Corollary 5.5.7. If G is a Pi-minor-free graph (i ∈ [4]), then c(G) ≤ 6. In particular, if G

is a connected linklessly embeddable graph, then c(G) ≤ 6.

Proof. Let h be the top vertex of Pi in the drawings in Figure 5.5.1. Then, we can represent

Pi − h as follows. Let W = {a1, a2, a3, b1, b2, b3} be vertices of Pi − h such that aibj is an

edge for every distinct i, j ∈ [3], and for every i ∈ [3] there is either an edge or a path of

length 2 between ai and bi. Let P be the collection of these paths of length 1 or 2. Let

M = {a1b2, a2b3, a3b1}. For i ∈ [3], let f(ai) = f(bi+2) = aibi+2 (with indices modulo 3).

With these choices, (h,W,P ,M, f) is a decomposition of h.

We then have that ℓP ≤ 2 for every P ∈ P \M (of which there are 6), since either P is

an edge which is the f -image of 2 vertices of W (hence ℓP = 2), or P is a path with 2 edges

but is not in the image of f (hence ℓP = 1). In particular, 1ℓ = 0. Theorem 5.4.3 then yields

that c(G) ≤ 6.

As for lower bounds, we were unable to find any linklessly embeddable graph with cop

number at least 4 (planar graphs being linklessly embeddable, the dodecahedral graph is an

example with cop number 3 [D1]). It hence remains open to determine what the maximum

cop number of linklessly embeddable graphs is.

One might also be interested in relating the cop number to the Colin de Verdière spectral

graph parameter µ(G). While we omit the formal definition here, Colin de Verdière showed

that µ(G) ≤ 1 if and only if G is disjoint union of paths, µ(G) ≤ 2 if and only if G is

outerplanar, and µ(G) ≤ 3 if and only if G is planar [D7]. This pattern was extended by

Van der Holst, Lovász and Schrijver who showed µ(G) ≤ 4 if and only if G is linklessly

embeddable [D18].

For the first three of these classes, it turns out the upper bound on the cop number is

the same as the upper bound on the Colin de Verdière invariant, and that the examples
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for which the cop number bound is tight are also tight for the Colin de Verdière bounds.

It is trivial that paths have cop number 1. Furthermore, if G is a connected outerplanar

graph, i.e. a graph which can be embedded in the plane without edge crossings and such

that all vertices are on the outer face, then c(G) ≤ 2. This was originally stated and proved

by Clarke [D6], however it was also a consequence of Andreae’s bound for K2,3-minor-free

graphs and K4-minor-free graphs, as it is well-known that the outerplanar graphs are exactly

the {K2,3, K4}-minor-free graphs. Any outerplanar graph of cop number 2 (for example, a

cycle of length at least 4), is necessarily not a path and thus has Colin de Verdière number 2.

Finally, as mentioned earlier, Fromme and Aigner [D1] have proved that any connected planar

graph G has c(G) ≤ 3. Any planar graph of cop number 3 (for example, the dodecahedral

graph) is necessarily not outerplanar, and thus must have Colin de Verdière number 3.

Hence, one might wonder whether this pattern continues to linklessly embeddable graphs

with an upper bound of 4 for the cop number in this class, and more generally whether

c(G) ≤ µ(G) for all connected graphs G.

5.5.6 Greater improvement factor

We have seen earlier that we can improve the bound on H-minor-free graphs by a factor of

3 (relative to the number of edges of H − h) when H − h can be obtained by subdividing

the edges of another graph many times, for instance when applying Corollary 5.5.2 to the

wheel graph. In fact, in some cases we can essentially get an improvement factor of 4. Let

us see an example.

Define Ht to be the graph formed by identifying the end vertices of m copies of a five

vertex path, as shown in Figure 5.5.2. Recall that U(Ht) is the graph Ht with an additional

universal vertex. Theorem 5.1.1 shows that if G is a connected U(Ht)-minor-free graph, then

c(G) ≤ 4m. We can improve this result by almost a factor of 4.

Corollary 5.5.8. If G is a connected U(Ht)-minor-free graph (t ≥ 1), then c(G) ≤ t+ 2.

Proof. Let h be the universal vertex of U(Ht) and let a, b be the two end vertices of Ht (those
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· · ·

Figure 5.5.2: The graphs Ht.

obtained by identification). Let W = {a, b} and let P = {P1, . . . , Pt} be the collection of

t internally disjoint a − b paths of length 4 of Ht. Finally, define f by f(a) = f(b) = P1.

Then, (h,W,P , ∅, f) is a decomposition of H.

We have that ℓP1 = 5 and ℓPi
= 3 for i ∈ [t] \ {1}. With these values, 1ℓ = 1. Theo-

rem 5.4.3 yields that

c(G) ≤ 1ℓ +

⌈︃
ℓP1

3

⌉︃
+

t∑︂
i=2

⌈︃
ℓPi

3

⌉︃
= 1 + 2 + (t− 1) = t+ 2.

5.6 Future directions

In Section 5.5.6, we have seen that our results allow us to, in some cases, obtain an improve-

ment of factor 4 over the previous results. There still appears to be a lot of work to be done

further optimizing the upper bounds on the cop number when forbidding an minor, both for

general classes of graphs and specific graphs.

It would be interesting to get a better upper bound on the cop number when forbidding

multiple minors, especially when they are very similar (for instance, for linklessly embeddable

graphs). This might in particular yield interesting results for various topological classes of

graphs, where the obstruction set usually contains a large number of graphs.

Finding lower bounds, i.e. constructing graphs with some forbidden minor but relatively

high cop number, also appears difficult.
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Bridging text 4

In the previous chapter, we studied the game of cops and robbers on connected graphs with

a forbidden minor. In the next chapter, we will study graph burning, which can also be

formulated as a game on connected graphs, although only with one player. These games are

two of the most studied games in the field of graph searching.

We will show an upper bound on the burning number of a connected graph, the invariant

describing the minimum length of a game, which converges to the square root of the order of

the graph. The non-asymptotic version of this result is generally referred to as the Burning

Number Conjecture [20].

The Burning Number Conjecture can be formulated as stating that paths have the highest

possible burning number. This is a marked difference with the cop number, where paths have

cop number 1. Arguably, a more appropriate comparison is with a different invariant related

to the cop number: the capture time [18].

As noted in the introduction, it will suffice to work on trees. As suggested by the title of

this thesis, trees are also sparse graphs (they are also exactly the connected K3-minor-free

graphs).

To tackle this problem efficiently, we will convert the problem to a continuous version,

and then use a probabilistic approach to find a cover of the graph. Whereas in Chapter 3 the

probabilistic methods used are exclusively a direct application of the first-moment (expec-

tation) method, here we will need to use more intricate, measure-theoretic tools, as well as

Chernoff bounds. The methods used in this chapter will motivate a variant, called fractional

burning, which will be discussed in depth in the discussion section of this thesis.
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6
The Burning Number Conjecture

Holds Asymptotically
Sergey Norin1, Jérémie Turcotte1

The burning number b(G) of a graph G is the smallest number of turns required to burn

all vertices of a graph if at every turn a new fire is started and existing fires spread to all

adjacent vertices. The Burning Number Conjecture of Bonato et al. (2016) postulates that

b(G) ≤ ⌈
√
n⌉ for all connected graphs G on n vertices. We prove that this conjecture holds

asymptotically, that is b(G) ≤ (1 + o(1))
√
n.
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6.1 Introduction

In contrast with graph burning, graph burning is a one player game. Consider the following

process on a finite, usually connected, graph G. At the start, all vertices are said to be

unburned. Then, at every step (or turn) of the process, we may choose to burn (start a new

fire) at some vertex. Furthermore, at every step, all vertices adjacent to burning vertices will

start burning as well (the fire spreads to neighbouring vertices at every turn). How many

steps does it take before all vertices of the graph are burned?

The burning number of G, denoted by b(G), is the smallest number of turns required to

burn the entire graph G. Formally, b(G) is the smallest integer k such that we can cover G

with balls of radii 0, . . . , k − 1.

This process first appeared in print in a paper of Alon [E1] and was motivated by a ques-

tion of Brandenburg and Scott at Intel, and formulated as a transmission problem involving

a set of processors. Alon [E1] proved that the burning number of a d-dimension hypercube

is exactly
⌈︁
d
2

⌉︁
+ 1.

This process was later independently defined by Bonato et al. [E6] (also in the related

[E5, E18]), and named graph burning. In this case, the inspiration is the spread of information

(news, memes, opinions, etc.) in social networks. Since its reintroduction only a few years

ago, a large body of work on graph burning has emerged, concentrating mainly on bounding

the burning number, either in general or on specific classes of graphs, and on the complexity

of graph burning. For instance, it was shown by Bessy et al. that graph burning is NP-

complete, even when restricted to trees of maximum degree three. Kobayashi and Otachi

have shown that it is W[2]-complete when parametrized by k. Even (5
3
− ε)-approximation

of the burning number of NP-hard for general graphs, as shown by Martinsson [E15]. See

[E4] and references therein for a fairly recent survey of results on graph burning.

Bonato et al. [E6] show that b(Pn) = ⌈
√
n⌉ and conjecture that paths are in fact the

connected graphs with the largest burning number.
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Conjecture 6.1.1 (Burning Number Conjecture [E6]). If G is a connected graph on n

vertices, then b(G) ≤ ⌈
√
n⌉.

Since the introduction of graph burning, this conjecture has been the central open prob-

lem in the field. The conjecture is known to hold on multiple classes of graphs, such as

spiders [E9, E8], caterpillars [E14], some p-caterpillars [E11], sufficiently large graphs with

minimum degree at least 4 [E2], and others (for instance [E16]).

The best known bound on the burning number of general graphs has been improved

multiple times. Suppose G is a connected graph on n vertices.

• Bonato et al. [E6] show that b(G) ≤ 2 ⌈
√
n⌉ − 1.

• Bessy et al. [E3] show that b(G) ≤
√︂

32n
19(1−ε)

+
√︂

27
19ε

for every 0 < ε < 1 and b(G) ≤√︂
12n
7

+ 3.

• Land and Lu [E13] show that b(G) ≤
⌈︂√

24n+33−3
4

⌉︂
.

• Bastide et al. [E2] show that b(G) ≤
⌈︂√︂

4n
3

⌉︂
+ 1.

Our main result is the following, which shows that Conjecture 6.1.1 holds asymptotically.

Theorem 6.1.2. If G is a connected graph on n vertices, then

b(G) ≤ (1 + o(1))
√
n.

Bastide et al. [E2, Theorems 2-3] prove that the Burning Number Conjecture holds

for sufficiently large graphs with minimum degree at least four, and almost holds (up to

adding some small constant) for graphs with minimum degree three. We note that with

their argument, one can deduce from Theorem 6.1.2 that the Burning Number Conjecture

also holds for sufficiently large graphs with minimum degree three. In fact, for these graphs

195



we can get the bound b(G) ≤
(︂√︂

3
4
+ o(1)

)︂√
n for graphs with minimum degree three, and

b(G) ≤
(︂√︂

3
5
+ o(1)

)︂√
n for graphs with minimum degree at least four.

The remainder of the paper is occupied by the proof of Theorem 6.1.2, which we now

outline.

As noted in [E6], if T is a spanning tree of G, then b(G) ≤ b(T ); a strategy to burn T

still works when edges are added. Hence, it suffices to prove Theorem 6.1.2 for trees and we

focus on trees from now on.

The results on the burning number mentioned above largely use traditional graph theo-

retical techniques, i.e. induction.

While we borrow many ideas from the previous work, we deviate from this pattern by

shifting to a continuous and probabilistic setting. First, as the burning number is defined in

terms of existence of a cover of the graphs by balls with certain radii, we embrace the metric

nature of the problem and work with metric, rather than discrete, trees, i.e. metric spaces

obtained by replacing the edges of a tree by real intervals. This has several advantages,

in particular allowing us to ignore the scaling issues. Section 6.2 is devoted to introducing

the setting. In Section 6.3 we prove the existence of covers of any given metric tree by

balls, which are “frugal”, in a sense that the sum of the radii of balls is about as small as

can be expected, and flexible, allowing us to choose from many different possible radii. In

Section 6.4 we bootstrap the results of Section 6.3 to prove Theorem 6.4.1 - a fractional

version of Theorem 6.1.2. Informally, Theorem 6.4.1 says that for every metric tree T and

every r there exists a distribution on covers of T by balls of radii at most r which is still

frugal in expectation and such that the distribution is almost uniform - uses all radii with

roughly the same probability. In Section 6.5 we use Theorem 6.4.1 to prove a version of

Theorem 6.1.2 for metric trees and then transfer the result back to the discrete setting. The

key observation here is that if we divide the tree T into many pieces and independently

choose a cover of each piece with the properties guaranteed by Theorem 6.4.1 then the radii

in the resulting cover will be almost uniformly distributed, i.e. close to the desired set of
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radii {1, 2, . . . ⌈
√
n⌉}.

We conclude in Section 6.6 with a few remarks, in particular briefly discussing potential

generalization of the metric version of the Burning Number Conjecture that allows less

restrictive sets of radii.

6.2 Metric trees

As mentioned in the introduction, we will primarily be working with metric trees and we

start this section by formally defining them and introducing the necessary notation.

A metric tree T is obtained from a non-null (discrete) tree T0 by replacing each edge with

a close interval of positive length, so that the end points of the interval are identified with

the end vertices of the edge. The length of T , denoted by |T |, is the sum of the length of

the intervals comprising it. Note that for any two points u, v in a metric tree T there exists

a unique path (simple curve) in T with ends u and v, which we denote by T [u, v], and we

denote its length by dT (u, v) or simply by d(u, v). It is easy to see that (T, dT ) is a metric

space. In fact, T is also compact, since it is obtained from identifying the ends of a finite

number of closed (compact) intervals2.

A leaf of T is a leaf of T0, and a branch point of T is a vertex of T0 with degree three or

greater. Leaves and branch points of a metric tree T can be also defined intrinsically, i.e. a

point v ∈ T is a leaf if and only if T \ v is connected, and a branch point of T is a point of

T such that T \ v has at least three connected components. Let L(T ) and Br(T ) denote the

sets of leaves and branch points of T , respectively. The components of T \ (L(T ) ∪ Br(T ))

are homeomorphic to open intervals. The segments of T are the closures of these intervals.

Thus every point in T \ Br(T ) belongs to a unique segment, and the ends of every segment

lie in L(T ) ∪ Br(T ).

The diameter of T , denoted by diam(T ), is the maximum distance between two points
2Given an open cover of T , one can find a finite subcover by taking the union of the finite subcovers

obtained from the compactness of each interval.
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in T , that is

diam(T ) = max
u,v∈T

dT (u, v).

This is well defined by the compactness of T (and given the continuity of dT ).

A metric tree T is trivial if |T | = 0, in which case T consists of a single point, and T is

non-trivial, otherwise. A metric tree T ′ is a subtree of a metric tree T if T ′ ⊆ T . For instance,

for any u, v ∈ T , T [u, v] is a subtree of T with 2 leaves, unless u = v in which case T [u, v] is

trivial. A collection T = {T1, . . . , Tk} of subtrees of a metric tree T is a decomposition of T

if T = ∪i∈[k]Ti and T1, T2, . . . , Tk are pairwise internally disjoint, i.e. |T | =
∑︁k

i=1 |Ti|.

For a subtree T ′ of a metric tree T we denote by T ′¯ the closure of T \T ′ (in other words,

we remove T ′ from T , except for the boundary points of T ′). We denote by comp¯ (T ′) the set

of components of T ′¯ . Note that every component of T ′¯ is a subtree of T , that {T ′}∪comp¯ (T ′)

is a decomposition of T , and that every component of T ′¯ shares exactly one point with T ′.

A subtree T ′ of T is a branch of T if T ′¯ is connected and non-empty, i.e. T ′¯ is a subtree

of T . It follows from the observations above that for every proper subtree T ′ of a metric tree

T every component of T ′¯ is a branch of T . The anchor anc(T ′) of a branch T ′ of T is the

unique point of T ′ ∩ T̄
′. The depth dp(T ′) of a branch T ′ of T is defined as

dp(T ′) = max
v∈T ′

dT (anc(T
′), v).

Again, this is well defined by compactness.

For some minimality arguments, we will need a stronger compactness property. For a

metric tree T , let S(T ) be the set of subtrees of T . It is easy to see that S(T ) is the set

of closed (hence compact) and connected (in this case as in R, this is equivalent to being

path-connected) subsets of T . Let dS(T ) be the Hausdorff distance [E10] on S(T ), formally

if T1, T2 are subtrees of T ,

dS(T )(T1, T2) = max

(︃
max
v1∈T1

dT (v1, T2),max
v2∈T2

dT (v2, T1)

)︃
,
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where, for v ∈ T and a subtree T ′, dT (v, T ′) = minv′∈T ′ dT (v, v
′). These are well defined (we

can write max, min instead of the usual sup, inf) by compactness of T . In fact, (S(T ), dS(T ))

is a compact metric space; the space of non-empty compact subsets of a compact set with

this metric is compact, and S(T ) is a closed subspace of this space given that the limit of

connected sets is connected [E10] (these properties are fairly straightforward to prove).

Let us now prove some basic properties of metric trees.

Lemma 6.2.1. If z ≥ 0 and T ′ is a subtree of a metric tree T such that dp(J) ≤ z for every

J ∈ comp¯ (T ′), then

diam(T ) ≤ diam(T ′) + 2z.

Proof. Let u1, u2 ∈ T be such that dT (u1, u2) = diam(T ). For i = 1, 2, if ui ̸∈ T ′, let Ti be

the component of T ′¯ such that ui ∈ Ti, and otherwise, let Ti = {ui} be a trivial branch of

T ; in particular, we always have that anc(ui) ∈ T ′. Then

diam(T ) = dT (u1, u2) ≤ dT (u1, anc(T1)) + dT (anc(T1), anc(T2)) + dT (anc(T2), u2)

≤ dp(T1) + diam(T ′) + dp(T2)

≤ diam(T ′) + 2z,

as desired.

Lemma 6.2.2. If T ′, T ′′ are branches of a metric tree T such that T ′′ ⊆ T ′, then

dp(T ′) ≥ dp(T ′′) + dT (anc(T
′), anc(T ′′)).

Proof. Since T ′′ ⊆ T ′, we have that T̄
′ ⊆ T̄

′′. Hence, we know that anc(T ′) ∈ T̄
′ ⊆ T̄

′′. If

anc(T ′) ∈ T ′′, then anc(T ′) ∈ T ′′ ∩ T̄
′′ and so anc(T ′) = anc(T ′′).

The statement is trivial in this case. Hence we can suppose that anc(T ′) /∈ T ′′. Let u ∈ T ′′

such that dp(T ′′) = dT (anc(T
′′), u). Since anc(T ′) /∈ T ′′, any path between u and anc(T ′)

must go through the unique point of T ′′ ∩ T̄
′′, which is anc(T ′′). Hence, dT (anc(T ′), u) =
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dT (anc(T
′), anc(T ′′)) + dT (anc(T

′′), u).

We may thus conclude that

dp(T ′) = max
v∈T ′

dT (anc(T
′), v)

≥ dT (anc(T
′), u)

= dT (anc(T
′′), u) + dT (anc(T

′), anc(T ′′))

= dp(T ′′) + dT (anc(T
′), anc(T ′′)),

as desired.

Given a metric tree T , the following lemma will allow us in Section 6.3 to focus the most

technical part of our analysis on a fairly simple subtree T ′ of T which has most 3 leaves.

Lemma 6.2.3. If T is a metric tree, then there exists z ≥ 0 and a subtree T ′ of T such that

(i) T ′ has at most three leaves,

(ii) dp(J) ≤ z for every J ∈ comp¯ T ′,

(iii) for every v ∈ L(T ′) there exists J ∈ comp¯ T ′ such that anc(J) = v and dp(J) = z,

(iv) |T | ≥ |T ′|+ 4z.

Proof. Let (T ′, z) satisfying properties (ii)-(iv) be chosen with z maximum. This is possible

given that the subspace of S(T )×
[︂
0, |T |

4

]︂
of possible solutions is closed hence compact (for

instance, using the continuity of | · | and of maxJ∈comp¯ (·) dp(J)). Note that (T, 0) satisfies

these properties, and so this subspace is nonempty.

If T ′ has at most three leaves then the lemma holds, and so we assume for a contradiction

that T ′ has at least four leaves.

Let δ > 0 be such that the length of every segment of T ′ is greater than δ. For every

v ∈ L(T ′), let pv ∈ T ′ be chosen so that pv belongs to the unique segment of T ′ with end v
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and dT ′(v, pv) = δ. Let T ′′ be the subtree of T ′ such that pv ∈ L(T ′′) for every leaf v ∈ L(T ′).

In other words, T ′′ is obtained from T ′ by deleting for each leaf the half-open interval of

length δ containing it.

We claim that z′ = z + δ and T ′′ satisfy properties (ii)-(iv). Note that this claim contra-

dicts the choice of z and T ′, and thus implies the lemma.

For every J ∈ comp¯ T ′′ either

• J ∈ comp¯ T ′ , or

• anc(J) = pv for some v ∈ L(T ′) and J is the union of T [v, pv] and all the components

of T ′¯ with anchors in T [v, pv].

In the first case we have dp(J) ≤ z < z′ by the choice of (T ′, z) .

Now suppose that J is a component of T̄ ′′ satisfying the conditions of the second case.

Then dp(J) ≥ z+ δ = z′ by Lemma 6.2.2. Moreover, for every u ∈ J either u ∈ T ′, in which

case dT (pv, u) ≤ δ ≤ z′, or there exists J ′ ∈ comp¯ T ′ such that u ∈ J ′ and anc(J ′) ∈ T [v, pv],

in which case dT (pv, u) ≤ dT (pv, anc(J
′)) + dp(J ′) ≤ δ + z = z′. It follows that dp(J) ≤ z′,

and so dp(J) = z′. Therefore properties (ii) and (iii) hold; for the latter, note that every

pv ∈ L(T ′′), there is a component of comp¯ T ′′ of the second form (the component containing

pv itself).

Finally, |T ′′| = |T ′| − δ|L(T ′)|. As |L(T ′)| ≥ 4 by our assumption, we have |T | ≥

|T ′|+ 4z ≥ |T ′′|+ 4(z + δ) = |T ′′|+ 4z′. Thus (iv) also holds.

A key part of our argument involves dividing the tree T into pieces so that all but one

of them have length at least a certain threshold l, and none of them are much bigger. The

precise definition that works for our purposes is the following.

For a metric tree T and l ≥ 0, we say that T is l-minimal if |T | ≥ l, and there exists a

decomposition {T ′, T ′′} of T , such that |T ′| ≤ l and |T ′′| ≤ l. Note that this implies that

|T | ≤ 2l.
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Lemma 6.2.4. If l > 0 and T is a metric tree such that |T | ≥ l, then there exists a

decomposition {T0, T1} of T such that T1 is l-minimal.

Proof. Let a decomposition {T0, T1} of T be chosen so that |T1| ≥ l and subject to this T1 is

minimal. This is possible given that S(T ) is compact (consider the subspace of S(T ) defined

by valid T1, it is not too hard to see that it is closed, in particular using the continuity of

| · |). We wish to show that T1 is l-minimal. Let v be the unique point in T0 ∩ T1. Note that

if T1 = T , then T0 = {v} will simply be the trivial subtree containing one of the leaves of T .

Suppose first that v is not a leaf of T1. Then there exist a decomposition {T ′, T ′′} of T1

such that T ′, T ′′ are non-trivial branches of T1 with anchor v. If |T ′| ≤ l and |T ′′| ≤ l then

T1 is l-minimal as desired. Thus we assume without loss of generality that |T ′| > l. Then

{T0 ∪ T ′′, T ′} is a decomposition of T contradicting the choice of {T0, T1}.

It remains to consider the case when v is a leaf of T1. Let v′ be chosen in the interior of the

segment of T1 containing v, so that dT (v, v
′) < l. Then there exists a unique decomposition

{T ′, T ′′} of T1 such that T ′, T ′′ are branches of T1 with anchor v′. Without loss of generality

assume that v ∈ T ′′. Then T ′′ is an interval with ends v and v′ and so |T ′′| < l. If |T ′| ≥ l

then {T0 ∪ T ′′, T ′} again contradicts the choice of {T0, T1}. Otherwise, T1 is l-minimal, as

desired.

The next result immediately follows from Lemma 6.2.4 by induction on the size of the

decomposition.

Lemma 6.2.5. For every tree T and every l > 0 there exist a decomposition {T0, T1, . . . , Tk}

of T such that |T0| ≤ l, and T1, . . . , Tk are l-minimal.

The following lemma is a variant of Lemma 6.2.5 that will allow us to break a metric

tree in pieces of roughly the same size.

Lemma 6.2.6. For every metric tree T and any 0 < l ≤ |T | there exists a decomposition T

of T such that l ≤ |T ′| ≤ 3l for every T ′ ∈ T .
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Proof. Applying Lemma 6.2.5 we obtain a decomposition T = {T0, . . . , Tk} of T such that

|T0| ≤ l and T1, . . . , Tk are l-minimal. By l-minimality, l ≤ |Ti| ≤ 2l for every i ∈ [k]. Since

|T | ≥ l, if k = 0 then |T0| = l and T satisfies the lemma. If k ≥ 1, since T is connected,

T0 has to share a point with at least one other Ti, without loss of generality say T1. Then,

l ≤ |T0 ∪ T1| ≤ 2l + l = 3l and so {T0 ∪ T1, T2, . . . , Tk} satisfies the statement.

6.3 Covers

In this section, we analyze the possible (multi) sets of radii of balls that can be used to cover

a given metric tree. These sets, which we simply call covers are formally defined as follows.

For a metric tree T , r ≥ 0 and v ∈ T , we denote by BT (v, r) the closed ball of radius r

with center v, i.e.

BT (v, r) = {u ∈ T |dT (v, u) ≤ r}.

A sequence (r1, . . . , rm) of non-negative reals is a cover of T if there exist v1, . . . , vm ∈ T

such that T = ∪m
i=1BT (vi, ri). We write C(T ) for the set of all covers of T .

The equivalent of the following lemma, which precisely determines the minimum radius

of a single ball that can cover a given metric tree, is well-known for discrete trees, but we

include the proof for completeness.

Lemma 6.3.1. If T is a tree, then there exists y ∈ T such that T = BT

(︂
y, diam(T )

2

)︂
. In

particular, (r) ∈ C(T ) for every r ≥ diam(T )
2

.

Proof. Let u, v ∈ T such that dT (u, v) = diam(T ). Let y be the point on the path T [u, v] at

distance exactly diam(T )
2

from both u, v.

Let w ∈ T . We claim that d(w, y) ≤ diam(T )
2

. Suppose otherwise that d(w, y) > diam(T )
2

.

Let T be the decomposition defined by breaking T at y, in other words T is the set of

minimal branches which anchor y. Let Tw ∈ T be such that w ∈ Tw, and analogously for

u, v. Since u, v are necessarily in different elements of T , we have that, without loss of

generality, Tu ̸= Tw.
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Hence, the path T [u,w] must contain y and thus has length dT (u, y)+dT (y, w) > diam(T ),

which is a contradiction.

One first application of Lemma 6.3.1 is the following.

Lemma 6.3.2. If r1, . . . , rk ∈ R+ and T is a metric tree such that |T | ≤
∑︁k

i=1 ri, then

(r1, . . . , rk) ∈ C(T ).

Proof. By induction on k. If |T | ≤ r1 then (r1) is a cover of T by Lemma 6.3.1 and the

lemma holds. Otherwise by Lemma 6.2.4 there exists a decomposition {T0, T1} of T such

that T1 is r1-minimal. Then |T1| ≥ r1 and (r1) is a cover of T1 by Lemma 6.3.1 since

diam(T1) ≤ |T1| ≤ 2r1. Meanwhile, |T0| ≤
∑︁k−1

i=1 ri and so (r2, . . . , rk) is a cover of T0 by the

induction hypothesis. It follows that (r1, . . . , rk) is a cover of T , as desired.

A similar (but discrete) lemma appears in [E3] (a slightly stronger version appears in

[E13]). Note that this last lemma already gives an interesting bound on the burning number

of graphs. Consider the radii {0, . . . , k} and a tree T on n vertices (which we will consider a

metric tree). Then, if |T | ≤
∑︁k

i=1 i =
k(k+1)

2
, i.e. if k ≥

√
2n + O(1), then T can be burned

(some of the centers of the balls might not be on vertices, so we might also need to increase

each radii by 1, see the proof of Lemma 6.5.4 for more details). This approach to getting a

bound of the form b(G) ≤
√
2n+O(1) first appeared in [E3] (it also appears in [E13, E7]).

The following lemma is the main result of this section and is one of the key parts of

our proof of Theorem 6.1.2. It shows that every metric tree T has covers of size two with

the sum of the radii at most |T |
2

, and a broad range of choices of radii. There is a certain

technical trade-off here, where for certain trees the range is smaller but then so is the sum of

radii. The precise values of parameters matter here and are just right to make the following

arguments work.

Lemma 6.3.3. If T is an l-minimal tree for some l > 0, then there exists 0 ≤ a ≤ min{ l
2
−

|T |
4
, |T |
12
} such that
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• (︃
|T |
4

− 3a− x,
|T |
4

+ a+ x

)︃
is a cover of T for all 0 ≤ x ≤ |T |

4
− 3a, and

• (︃
|T |
4

+ a+ x

)︃
is a cover of T for every x ≥ |T |

4
− 3a.

Proof. Let T ′ and z be obtained by applying Lemma 6.2.3 to T . Let v0, v1, v2, v3 ∈ T ′ be

chosen so that L(T ′) ⊆ {v1, v2, v3}, v0 is the unique point shared by the paths T [v1, v2],

T [v1, v3] and T [v2, v3].3 As T ′ has at most three leaves, by condition (i) of Lemma 6.2.3,

such a choice is always possible. Let li = |T [v0, vi]| for i = 1, 2, 3. Without loss of generality,

suppose l1 ≤ l2 ≤ l3.

Then |T ′| = l1 + l2 + l3 and as T ′ satisfies condition (iv) of Lemma 6.2.3 we have

|T | ≥ l1 + l2 + l3 + 4z. (6.1)

We have diam(T ′) = maxu,v∈L(T ′) dT (u, v) = dT (v2, v3) = l2 + l3. From Lemma 6.2.1 (using

condition (ii) of Lemma 6.2.3) it follows that diam(T ) ≤ l2 + l3 + 2z.

We show that

a = max

{︃
0,

l1 + l2
2

+ z − |T |
4

}︃
satisfies the conditions of the lemma.

First, we need to verify that a ≤ |T |
12

and a ≤ l
2
− |T |

4
. The first of this inequalities follows

immediately from (6.1), as

l1 + l2
2

+ z ≤ l1 + l2 + l3 + 3z

3
≤ |T |

3
,

3More explicitly, if T ′ has exactly three leaves we choose v0 to be the unique branch point of T ′ and
v1, v2, v3 to be the leaves. If T has at most two leaves we choose v1 and v2 so that L(T ′) ⊆ {v2, v3} and
choose v0 = v1 ∈ T ′ arbitrarily.
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and so a ≤ max
{︂
0, |T |

3
− |T |

4

}︂
= |T |

12
.

Showing that a ≤ l
2
− |T |

4
takes a bit more effort. As T is l-minimal there exists a

decomposition {S0, S1} of T such that |S0| ≤ l and |S1| ≤ l. In particular, |T | = |S0|+ |S1| ≤

2l, and so l
2
− |T |

4
≥ 0. Thus we only need to verify the case where a = l1+l2

2
+ z − |T |

4
> 0.

We thus want to prove that l ≥ 2
(︂
a+ |T |

4

)︂
= l1 + l2 + 2z. Substituting (6.1) in the above

inequality a > 0, we get l1 + l2 > l3. In particular, l1 > 0 and so T ′ has exactly three leaves

v1, v2 and v3. By condition (iii) of Lemma 6.2.3 there exists a component T ′
i of T̄

′ with

vi = anc(T ′
i ) and dp(T ′

i ) = z for every i ∈ {1, 2, 3}. Thus there exists wi ∈ T ′
i such that

dT (vi, wi) = z.

Without loss of generality we assume that there exist distinct i, j ∈ {1, 2, 3} such that

wi, wj ∈ S0. Then

l ≥ |S0| ≥ dT (wi, wj) = dT (wi, vi) + dT (vi, vj) + dT (vj, wj) = z + (li + lj) + z ≥ l1 + l2 + 2z,

as desired.

For x ≥ 0, let r1 = |T |
4
+ a+ x and r2 =

|T |
4
− 3a− x (note that since a, x ≥ 0, we always

have r1 ≥ r2). It remains to show that (r1) or (r1, r2) is a cover of T .

If r1 ≥ l2+l3
2

+ z ≥ diam(T )/2, then (r1) is a cover of T by Lemma 6.3.1, and so the

lemma holds if x ≥ l2+l3
2

+ z − a− |T |
4

. Note that if we also have that x ≤ |T |
4
− 3a, then we

can say that (r1, r2) is a cover, given that (r1) alone is a cover. This explains the different

cutoff on x between the statement of the theorem and in this proof.

Thus we assume x ≤ l2+l3
2

+ z − a − |T |
4

. In this regime we will show that (r1, r2) is a
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cover of T . First, we have

r2 =
|T |
4

− 3a− x

≥ |T |
2

− 2a− l2 + l3
2

− z

= min

{︃
|T |
2

− l2 + l3
2

− z,
|T |
2

−
(︃
l1 + l2 + 2z − |T |

2

)︃
− l2 + l3

2
− z

}︃
≥ min

{︃
l1 + l2 + l3 + 4z

2
− l2 + l3

2
− z, l1 + l2 + l3 + 4z − l1 − l2 − 2z − l2 + l3

2
− z

}︃
= min

{︃
l1
2
+ z,

l3 − l2
2

+ z

}︃
≥ z.

In particular, we are necessarily in the case x ≤ |T |
4
−3a, given that otherwise r2 < 0 ≤ z.

Note that by our earlier assumption r2 − z ≤ r1 − z ≤ l2+l3
2

. In particular, it is possible

to choose p1, p2 ∈ T [v2, v3] so that dT (p1, v2) = r1 − z and dT (p2, v3) = r2 − z. We first wish

to show that T ′ ⊆ BT (p1, r1 − z) ∪ BT (p2, r2 − z). Informally, we use the smaller radii to

cover the end of longest branch of T ′ and we use the larger radii to cover the 2nd longest

branch of T ′ (including v0), in order to, as we will see below, maximize the “overflow” onto

the shortest branch of T ′.

First, we show that T [v2, v3] ⊆ BT (p1, r1−z)∪BT (p2, r2−z). To establish this it suffices to

show that dT (p1, p2) ≤ (r1−z)+(r2−z). By the above remark (that r2−z ≤ r1−z ≤ l2+l3
2

), p1

is closer to v2 than p2 is, and similarly p2 is closer to v3 than p1 is (in other words, these points

appear in the order v2−p1−p2−v3 on T [v2, v3]) and so dT (v2, v3) = l2+l3−(r2−z)−(r1−z).
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Therefore,

dT (p1, p2)− ((r1 − z) + (r2 − z)) = l2 + l3 − 2(r2 − z)− 2(r1 − z)

= l2 + l3 − |T |+ 4a+ 4z

= max {l2 + l3 − |T |+ 4z, l2 + l3 − 2|T |+ 2l1 + 2l2 + 8z}

≤ max {−l1, l2 − l3}

≤ 0,

as desired.

Next we show that T [v1, v2] ⊆ BT (p1, r1−z). As we already have seen that v2 ∈ BT (p1, r1−

z), it suffices to show that dT (p1, v1) ≤ r1 − z. First note that

2(r1 − z) ≥ |T |
2

+ 2a− 2z ≥ |T |
2

+

(︃
l1 + l2 + 2z − |T |

2

)︃
− 2z = l1 + l2.

Thus,

dT (p1, v1) = dT (p1, v0) + dT (v0, v1)

= |(r1 − z)− l2|+ l1

= max{r1 − z − (l2 − l1), l1 + l2 − (r1 − z)}

≤ r1 − z.

It follows that T ′ = T [v2, v3]∪T [v1, v2] ⊆ BT (p1, r1 − z)∪B(p2, r2 − z). Finally, we show

that T ⊆ BT (p1, r1) ∪B(p2, r2), i.e. we show that for every u ∈ T we have dT (u, pi) ≤ ri for

some i ∈ {1, 2}. We already established this for u ∈ T ′, so we may assume that u ∈ T̄
′
. Let v

be the anchor of the component T ′′ of T̄ ′ containing u. Then v ∈ T ′ and so dT (v, pi) ≤ ri− z

for some i ∈ {1, 2}. Moreover, dT (u, v) ≤ dp(T ′′) ≤ z, where the last inequality holds by the

choice of T ′ (condition (ii) of Lemma 6.2.3). Thus dT (u, pi) ≤ dT (u, v) + dT (v, pi) ≤ ri, as
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desired.

In [E2, E16], it is used that if there are many leaves in a tree, we can cut them off, burn

(obtain a cover of) the remaining subtree and then increment all radii by 1 to burn the entire

tree. Here, we have pushed this idea further by using Lemma 6.2.3 to cut off as much as we

need to obtain a subtree with at most 3 remaining leaves.

6.4 Random covers of metric trees

In this section we prove a fractional version of Theorem 6.1.2 for metric trees. To state it we

first need to formalize the notion of a random cover of a metric tree and define the necessary

parameters of such a cover.

Let T be a metric tree. Endow C(T ) with the topology of ⊔m∈NRm
+ . Let ν be a finite

Borel measure on C(T ). (Our main focus is the case when ν is a probability measure.)

The key parameter of interest to us is the expectation measure Eν of ν, which is a Borel

measure on R+ defined as follows. For r = (r1, . . . , rm) ∈ C(T ) and B ⊆ R+, let #(B, r)

denote the number of components of r (i.e. radii) that lie in B, i.e.

#(B, r) = |{i | 1 ≤ i ≤ m, ri ∈ B}|.

Then, we can define

Eν(B) =

∫︂
#(B, r)dν(r)

for every Borel B ⊆ R+.4 In particular, when ν is a probability measure, then Eν(B) is

the expected number of radii in a random cover r that lie in B. Note also that when ν is

concentrated on covers of size m then Eν is the sum of m marginals of ν.

Before stating the main result of this section, we need to introduce a few more technical

definitions. First, to convert the random covers in to a particular uniform one in the next
4By rescaling we can assume that ν is a probability measure. Consider each r = (r1, . . . , rm) ∈ C(T ) as a

sum of discrete measures
∑︁m

i=1 δri . Then ν is a point process on R+, and Eν is its expectation or intensity
measure. It is well-known that Eν is a well-defined and is indeed a measure, see e.g. [E17, Lemma 1.1.1].
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section, it will be convenient to ensure that the covers we consider are somewhat tame. The

precise notion of tameness is given in the next definition. For l ∈ R, we say that a cover

r = (r1, . . . , rm) of T is l-good if ∥r∥1 =
∑︁m

i=1 ri ≤ |T | + l. Let C(T, l) ⊆ C(T ) denote the

set of l-good covers of T .

Secondly we will want the expectation measure of our distribution on covers to be close

to uniform and as a result many of the calculation involve the uniform measures on real

intervals. For b ≥ a ≥ 0, let U [a, b] denote the uniform probability (Borel) measure on [a, b].

For future reference, the following is useful identity relating the measures U [a, b], U [a, c] and

U [b, c] for c ≥ b ≥ a, c > a:

U [a, c] =
b− a

c− a
U [a, b] +

c− b

c− a
U [b, c]. (6.2)

We are finally ready to state the main result of this section.

Theorem 6.4.1. If ε, r > 0 and T is a metric tree such that |T | ≥ 24ε−1r, then there exists

a probability measure ν on C(T, r) such that

Eν ≤ (1 + ε)
|T |
r
U [0, r]. 5

Informally, Theorem 6.4.1 implies that if T is large enough compared to r then there

exists a distribution on (r-good) covers of T that uses only radii in [0, r], uses all such radii

approximately equally often, and moreover the expected sum of the radii in a cover is not

much larger than |T |
2

.6

The rest of the section is occupied by the proof of Theorem 6.4.1 starting with introducing

additional notation.
5For two measures on the same measure space µ1, µ2 we write µ1 ≤ µ2 if µ1(B) ≤ µ2(B) for every

measurable B.
6The last property might not be obvious from the statement, but will be made clearer by subsequent

calculations. Note moreover that if T is an interval then the sum of the radii in every cover of T is at least
|T |
2 so this property and the coefficient (1 + ε) |T |

r in the theorem statement can not be improved, except for
eliminating the ε error term.
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For a Borel measure µ on R+, let

m(µ) = 2

∫︂
xdµ(x),

i.e. m(µ) is the first moment of µ rescaled for convenience by a factor of two. If ν is a

probability measure on covers C(T ) then m(Eν) is twice the expected value of the sum of

radii in a cover chosen according to ν, i.e. the expected maximum length of an interval that

can be covered by such a cover. Due to this property we use m(Eν) to keep track of the

“quality” of the distribution ν.

Note that m is a linear map from the space of Borel measures on R+ to R+ and that

m(U [a, b]) = b+ a. (6.3)

We prove of Theorem 6.4.1 iteratively for smaller and smaller ε. A single iteration hinges

on us finding a probability measure on C(T ) that can be complemented by others with

expectation measures of the form ciU [0, ai] for ai < r to produce the desired measure with

expectation roughly uniform on the interval [0, r].

The following definition makes the properties we need precise. For r, δ > 0, we say

that a probability measure ν on C(T ) is (r, δ)-controlled if there exist α1, . . . , αk ≥ 0 and

a1, a2, . . . , ak ∈ [0, (1− δ)r] such that

Eν =
k∑︂

i=1

αiU [ai, r],

With the main definitions in place, we collect all the basic properties of measures on

C(T, l) that we need in the following lemma.

Lemma 6.4.2. Let T be a metric tree.

(a) Let f1, f2, . . . , fm : [0, 1] → R+ be affine functions such that (f1(x), f2(x), . . . , fm(x)) is

a cover of T for every x ∈ [0, 1]. Let ai = min{fi(0), fi(1)} and bi = max{fi(0), fi(1)}
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for i = 1, . . . ,m and let l = max{
∑︁m

i=1 fi(0),
∑︁m

i=1 fi(1)} − |T |. Then there exists a

probability measure on ν on C(T, l) such that

Eν =
m∑︂
i=1

U [ai, bi]. (6.4)

(b) Let {T1, . . . , Tk} be a decomposition of a tree T . Let r, δ, l1, . . . , lk ≥ 0 be such that for

every 1 ≤ i ≤ k there exists an (r, δ)-controlled probability measure νi on C(Ti, li).

Then there exists an (r, δ)-controlled probability measure ν on C(T,
∑︁k

i=1 li), such that

m(Eν) =
k∑︂

i=1

m(Eνi). (6.5)

(c) Let l ≥ 0, let ν0, ν1, . . . , νk be probability measures on C(T, l) and let p0, . . . , pk ≥ 0 be

such that
∑︁k

i=0 pi = 1. Then there exists a probability measure ν on C(T, l) such that

Eν =
k∑︂

i=0

pi · Eνi. (6.6)

Proof. (a): Let the map F : [0, 1] → C(T, l) be defined by

F (x) = (f1(x), f2(x), . . . , fm(x)).

As F is continuous it is Borel measurable and we can define ν = U [0, 1] ◦ F−1 to be the

image measure of the uniform probability measure on [0, 1] under the map F .7 Then ν is a

probability measure on C(T, l) and the marginals ν1, . . . , νi of ν satisfy νi = U [0, 1] ◦ f−1
i .

As the expectation measure of ν is the sum of its marginals we have

Eν =
m∑︂
i=1

(︁
U [0, 1] ◦ f−1

i

)︁
. (6.7)

7I.e. for every Borel B ⊆ Rm we have ν(B) = (U [0, 1])(F−1(B))
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As fi is an affine bijection from [0, 1] to [ai, bi] we have U [0, 1] ◦ f−1
i = U [ai, bi], and so (6.7)

implies (6.4), as desired.

(b): Let ri = (ri1, . . . , r
i
mi
) ∈ C(Ti, li) for i = 1, . . . , k. Define

R = R(r1, . . . , rk)

= (r11, . . . , r
1
m1

, r21, . . . , r
2
m2

, . . . , rk1 , . . . , r
k
mk

)

to be the concatenation of these covers. Then R is a cover of T as there exist balls of radii

ri1, . . . , r
i
mi

whose union includes Ti for every i, and so the union of such balls over all i is T .

Note also that

∥R∥1 =
k∑︂

i=1

∥ri∥1 ≤
k∑︂

i=1

(|Ti|+ li) = |T |+
k∑︂

i=1

li,

and so R is (
∑︁k

i=1 li)-good.

Thus R is a Borel measurable map from
∏︁k

i=1 C(Ti, li) to C(T,
∑︁k

i=1 li), and we define

ν = (⊗k
i=1νi) ◦ R−1. That is, ν is the probability measure on (

∑︁k
i=1 li)-good covers of T

obtained by taking the union (more formally, a concatenation) of li-good covers of Ti chosen

for i = 1, . . . , k independently at random according to the probability measure νi. Then

Eν =
∑︁k

i=1Eνi, implying that ν is (r, δ)-controlled as each νi is, and implying (6.5) by

linearity of m(·).

(c): Let ν =
∑︁k

i=0 piνi. That is ν the probability measure on l-good covers of T ob-

tained by randomly choosing an index {0, . . . , k} with i chosen with probability pi and then

choosing a cover of T according to the probability measure νi. The identity (6.5) holds as

the expectation measure is linear.

Our next two lemmas establishes existence of a measure that is needed to perform a single

iteration in the proof of Theorem 6.4.1 as outlined above. The first lemma finds a measure

on covers of a single part of an appropriate decomposition of T , and the second combines

the measures for each part of the decomposition.
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Lemma 6.4.3. If 0 < r, 0 < δ ≤ 1
2

are real and T is a 2(1− δ)r-minimal metric tree, then

there exists an (r, δ)-controlled probability measure ν on C(T, 0) such that

m(Eν) ≤ |T |+ δr.

Proof. Let l = 2(1− δ)r. Let 0 ≤ a ≤ l
2
− |T |

4
be as in Lemma 6.3.3. Then |T | ≥ l ≥ |T |

2
+2a.

Suppose first that |T |
2
− 2a ≤ (1− δ)r. By Lemma 6.3.3 we have that

(︃
|T |
4

+ a+ x

)︃

is a cover of T for every x ≥ |T |
4

− 3a. In other words, (x′) is a cover of T for every

x′ ≥ |T |
4
+ a +

(︂
|T |
4
− 3a

)︂
= |T |

2
− 2a. In particular, this holds if x′ ∈ [(1 − δ)r, r] by our

previous assumption. Hence, by Lemma 6.4.2(a) there exists a probability measure ν on

C(T, r − |T |) such that

Eν = U [(1− δ)r, r].

Given that |T | ≥ 2(1− δ)r ≥ r we have that C(T, r−|T |) ⊆ C(T, 0) and so ν is a probability

distribution on C(T, 0).

It is direct from the definition that ν is (r, δ)-controlled (take k = 1, α1 = 1, a1 = (1−δ)r).

Using (6.3), we have

m(Eν) = (2− δ)r = l + δr ≤ |T |+ δr.

It follows that ν satisfies the conditions of the lemma.

Thus we assume |T |
2
− 2a ≥ (1− δ)r. For y ∈ [0, 1],

(︃
max

{︃
0,

|T |
4

− 3a− y

(︃
r − |T |

4
− a

)︃}︃
,
|T |
4

+ a+ y

(︃
r − |T |

4
− a

)︃)︃
(6.8)

is a cover of T by Lemma 6.3.3 applied with x = y
(︂
r − |T |

4
− a
)︂
. Note that as r ≥ l

2
≥ |T |

4
+a,

we indeed have x ≥ 0.
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Suppose further that |T |
2
− 2a ≥ r. By increasing the first component , we further deduce

that (︃
|T |
4

+ a− y

(︃
r − |T |

4
+ 3a

)︃
,
|T |
4

+ a+ y

(︃
r − |T |

4
− a

)︃)︃
is a cover of T for every such y. That this is actually an increase of the first radii is a

consequence of the last supposition (to show that the new first radii is non-negative) and of

the fact that y ≤ 1 (for showing the inequality in the second case).

By Lemma 6.4.2(a) there exists a probability distribution ν on C
(︂
T, |T |

2
+ 2a− |T |

)︂
such

that

Eν = U

[︃
|T |
2

− r − 2a,
|T |
4

+ a

]︃
+U

[︃
|T |
4

+ a, r

]︃
. (6.9)

As |T |
2
+ 2a ≤ l ≤ |T |, C

(︂
T, |T |

2
+ 2a− |T |

)︂
⊆ C(T, 0) and so ν is a probability distribution

on C(T, 0). Using (6.2) we have

U

[︃
|T |
2

− r − 2a, r

]︃
=

r − |T |
4
+ 3a

2r − |T |
2
+ 2a

U

[︃
|T |
2

− r − 2a,
|T |
4

+ a

]︃
+

r − |T |
4
− a

2r − |T |
2
+ 2a

U

[︃
|T |
4

+ a, r

]︃
,

so we can rewrite (6.9) as

Eν =
2r − |T |

2
+ 2a

r − |T |
4
+ 3a

U

[︃
|T |
2

− r − 2a, r

]︃
+

4a

r − |T |
4
+ 3a

U

[︃
|T |
4

+ a, r

]︃
.

As 0 ≤ |T |
2
− r− 2a ≤ |T |

4
+ a ≤ l

2
= (1− δ)r, it follows that ν is (r, δ)-controlled. Using (6.3)

and (6.9), we have

m(Eν) =

(︃(︃
|T |
2

− r − 2a

)︃
+

(︃
|T |
4

+ a

)︃)︃
+

(︃(︃
|T |
4

+ a

)︃
+ r

)︃
= |T |.

Thus ν satisfies the lemma in this case.

It remains to consider the case (1−δ)r ≥ |T |
2
−2a ≤ r. By increasing the first component
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in the cover (6.8) in a different way, we see that

(︃
|T |
4

+ a− y

(︃
|T |
4

+ a

)︃
,
|T |
4

+ a+ y

(︃
r − |T |

4
− a

)︃)︃

is a cover of T for every y ∈ [0, 1]. Verifying that the new first radii is non-negative is direct,

and furthermore this new radii is indeed an increase in the other case as a consequence of
|T |
2
− 2a ≤ r. As

max
y∈{0,1}

(︃
|T |
4

+ a− y

(︃
|T |
4

+ a

)︃
+

|T |
4

+ a+ y

(︃
r − |T |

4
− a

)︃)︃
= max

{︃
r,
|T |
2

+ 2a

}︃
≤ l ≤ |T |,

by Lemma 6.4.2(a) there exists a probability distribution ν on C(T, 0) such that

Eν = U

[︃
0,

|T |
4

+ a

]︃
+U

[︃
|T |
4

+ a, r

]︃
. (6.10)

As in the previous case, we can use (6.2) to get

U [0, r] =
|T |
4
+ a

r
U

[︃
0,

|T |
4

+ a

]︃
+

r − |T |
4
− a

r
U

[︃
|T |
4

+ a, r

]︃
,

we rewrite (6.10) as

Eν =
r

|T |
4
+ a

U [0, r] +
|T |
2
+ 2a− r
|T |
4
+ a

U

[︃
|T |
4

+ a, r

]︃
.

As observed earlier |T |
4
+ a ≤ (1 − δ)r and so ν is (r, δ)-controlled. Finally, using (6.3) and

(6.10), we have

m(Eν) = r +
|T |
2

+ 2a ≤ |T |+ δr

and ν satisfies the lemma in this last case.

Lemma 6.4.4. For every 0 < δ ≤ 1/2, every r > 0 and every metric tree T there exists an
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(r, δ)-controlled probability measure ν on C(T, r) such that

m(Eν) ≤ (1 + δ)|T |+ 2r.

Proof. Let l = 2(1− δ)r ≥ r. By Lemma 6.2.5 there exists a decomposition {T0, T1, . . . , Tk}

of T such that |T0| ≤ l, and T1, . . . , Tk are l-minimal. Note that

|T | ≥
k∑︂

i=1

|Ti| ≥ kl ≥ kr.

By Lemma 6.4.3, for every i ∈ [k] there exists an (r, δ)-controlled distribution νi on

C(Ti, 0) such that m(Eνi) ≤ |Ti|+ δr.

Meanwhile, by Lemma 6.3.1, diam(T0) ≤ |T0|
2

≤ (1 − δ)r and so (x) is a cover of T0 for

every x ≥ (1 − δ)r, and in particular for x ∈ [(1 − δ)r, r]. Applying Lemma 6.4.2(a), there

exists a probability measure ν0 on C(T0, r − |T0|) ⊆ C(T0, r) such that Eν0 = U [(1− δ)r, r],

and so ν0 is (r, δ)-controlled and m(Eν0) ≤ (2− δ)r.

Then, by Lemma 6.4.2(b) there exists an (r, δ)-controlled probability measure ν on

C(T, r), such that

m(Eν) ≤
k∑︂

i=1

|Ti|+ kδr + (2− δ)r ≤ |T |+ kδr + 2r ≤ (1 + δ)|T |+ 2r,

as desired.

With all the ingredients in place, we start the proof of the main result of this section,

which we restate for convenience.

Theorem 6.4.1. If ε, r > 0 and T is a metric tree such that |T | ≥ 24ε−1r, then there exists

a probability measure ν on C(T, r) such that

Eν ≤ (1 + ε)
|T |
r
U [0, r]. 8

8For two measures on the same measure space µ1, µ2 we write µ1 ≤ µ2 if µ1(B) ≤ µ2(B) for every
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Proof. First we show that the theorem holds for ε ≥ 12/11. Let k = ⌈ |T |
r
⌉ ≤ |T |

r
+ 1. By

Lemma 6.3.2 ⎛⎝x, . . . , x⏞ ⏟⏟ ⏞
k times

, r − x, . . . , r − x⏞ ⏟⏟ ⏞
k times

⎞⎠ ∈ C(T )

for every x ∈ [0, r], since the sum of these radii is kr ≥ |T |. By Lemma 6.4.2 there exists a

probabilistic distribution ν on C(T, kr − |T |) ⊆ C(T, r) such that

Eν = 2k ·U [0, r] ≤ 2

(︃
|T |
r

+ 1

)︃
U [0, r] ≤ 2

(︂
1 +

ε

24

)︂ |T |
r
U [0, r] ≤ (1 + ε)

|T |
r
U [0, r],

as desired, where the last inequality holds by the choice of ε to be relatively large.

We now prove that the theorem holds for ε such that ε ≥ 15
n

for some integer n by

induction on n, which implies that the theorem holds all ε > 0. The base case for n ≤ 13

was established above.

Suppose now 15
n−1

> ε ≥ 15
n

for n ≥ 14. Let ε′ = ε+ ε2

13
, δ = ε

8
. Then

ε′ ≥ 15

n

(︃
1 +

15

13n

)︃
≥ 15

n− 1

by our lower bound on n. Thus the theorem holds for ε′ by the induction hypothesis.

By Lemma 6.4.4 there exists a probability distribution ν0 on C(T, r), as well as reals

α1, . . . , αk ≥ 0 and 0 ≤ a1, a2, . . . , ak ≤ (1− δ)r, such that

Eν0 =
k∑︂

i=1

αiU [ai, r],

and

m(Eν0) ≤ (1 + δ)|T |+ 2r ≤
(︂
1 +

ε

8

)︂
|T |+ ε

12
|T | ≤

(︂
1 +

ε

4

)︂
|T |, (6.11)

where the second to last inequality uses the choice of δ and the condition r ≤ ε|T |
24

in the

theorem statement.

measurable B.
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By (6.3) and the linearity of m(·) we have m(Eν0) =
∑︁k

i=1 αi(r+ai), and so (6.11) implies

k∑︂
i=1

αi(r + ai) ≤
(︂
1 +

ε

4

)︂
|T |. (6.12)

Note that |T | ≥ 24r
ε

≥ 24ai
ε′

for every i ∈ [k]. Then by the induction hypothesis, for

each i ∈ [k] there exists a probabilistic distribution νi on C(T, ai) ⊆ C(T, r) such that

Eνi ≤ (1 + ε′) |T |
ai
U [0, ai]. Let

q = (1 + ε′)|T |+
k∑︂

i=1

αia
2
i

r − ai
, p0 =

(1 + ε′)|T |
q

and let

pi =
αia

2
i

(r − ai)q

for i ∈ [k]. Of course,
∑︁k

i=0 pi = 1. By Lemma 6.4.2(c) here exists is a probability measure

ν on C(T, r) such that

Eν ≤ p0 · Eν0 +
k∑︂

i=1

(pi · Eνi)

= p0

k∑︂
i=1

(︃
pi
p0

· Eνi + αiU [ai, r]

)︃

≤ p0

k∑︂
i=1

(︃
αia

2
i

(1 + ε′)|T |(r − ai)
· (1 + ε′)

|T |
ai

U [0, ai] + αiU [ai, r]

)︃

= p0

k∑︂
i=1

(︃
αir

(r − ai)

(︃
ai
r
U [0, ai] +

r − ai
r

U [ai, r]

)︃)︃

= p0

(︄
k∑︂

i=1

αir

(r − ai)

)︄
U [0, r],

using in particular (6.2).

Thus it suffices to show that

(1 + ε)|T |
r

≥ p0

(︄
k∑︂

i=1

αir

(r − ai)

)︄
. (6.13)

219



Substituting the value of p0, expanding q and rearranging, we obtain that inequality (6.13)

is equivalent to

k∑︂
i=1

αir
2

r − ai
≤ (1 + ε)|T |+ 1 + ε

1 + ε′

k∑︂
i=1

αia
2
i

r − ai
,

which we can also rewrite as

k∑︂
i=1

αi(r + ai) +
ε′ − ε

1 + ε′

k∑︂
i=1

αia
2
i

r − ai
≤ (1 + ε)|T |. (6.14)

As ai ≤ (1− δ)r for every i ∈ [k] we have

a2i
r − ai

≤ r(r + ai)

2(r − ai)
≤ (r + ai)

2δ
,

and therefore the second term of the left-hand side of (6.14) is upper bounded by

ε′ − ε

2δ

k∑︂
i=1

αi(r + ai) =
4ε

13

k∑︂
i=1

αi(r + ai),

where the equality holds by the choice of δ and ε′. Thus (6.14) is implied by

(︃
1 +

4ε

13

)︃ k∑︂
i=1

αi(r + ai) ≤ (1 + ε)|T |. (6.15)

By (6.12), the inequality (6.15) is further implied by

(︃
1 +

4ε

13

)︃(︂
1 +

ε

4

)︂
|T | ≤ (1 + ε)|T |.

This last inequality can finally easily seen to hold for ε ≤ 2.
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6.5 Proof of Theorem 6.1.2

In this section, we will deduce our main result from Theorem 6.4.1. We will need some

classical results in probability theory.

Theorem 6.5.1 (Markov’s inequality). If X ≥ 0 is a random variable and a > 0, then

P(X ≥ a) ≤ E[X]

a
.

Theorem 6.5.2 (Hoeffding’s inequality). [E12] If X1, . . . , Xm are independent random vari-

ables with values in [a, b], X =
∑︁m

i=1 Xi and t > 0, then

P (X ≥ E[X] + t) ≤ exp

(︃
− 2t2

m(b− a)2

)︃
.

We now convert the random covers given by Theorem 6.4.1 into uniform covers, proving

a metric (but not fractional) equivalent of Theorem 6.1.2.

Theorem 6.5.3. For every ε > 0, there exists K = K6.5.3(ε) such that if K ≤ k ∈ N and T

is a metric tree such that |T | ≤ (1− ε)k2, then (1, 2, . . . , k) is a cover of T .

Proof. We may of course assume that ε < 1. Choose N ∈ N large enough so that λ :=

1 − (1+ 1
N )(1−ε)

(1− 1
N )

2 > 0. Choose P ≥ 1 large enough so that N exp
(︂
− λ2

24N4(1−ε)2
P
)︂
< λ. Let

D = 24N and K = PD
1−ε

. We show that K satisfies the theorem.

We assume without loss of generality |T | = (1− ε)k2 ≥ PDk by extending T if needed.

By Lemma 6.2.6, there exist a decomposition {T1, . . . , Tm} of T such that Dk ≤ |Ti| ≤

3Dk for every i ∈ {1, . . . ,m}. Note that this implies that mDk ≤ |T | ≤ 3mDk and in

particular m ≥ P
3
.

Setting r =
(︁
1− 1

N

)︁
k, apply Theorem 6.4.1 to Ti for each i ∈ {1, . . . ,m} with the
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parameter ε = 24r
|Ti|to obtain a probability measure νi on C(Ti, r) such that

Eνi ≤
(︃
1 +

24r

|Ti|

)︃
|Ti|
r

U [0, r] ≤
(︃
1 +

1

N

)︃
|Ti|
r

U [0, r].

Let ri be a random cover of Ti following the law νi. For 0 ≤ α ≤ 1− 2
N

, let

Zi(α) = #

(︃[︃
αk,

(︃
α +

1

N

)︃
k

]︃
, ri

)︃

be the random variable equal to the number of radii in ri that belong to the interval[︁
αk, (α + 1

N
)k
]︁
. Then E [Zi(α)] = Eνi

(︁[︁
αk, (α + 1

N
)k
]︁)︁

by definition of Eνi and so

E [Zi(α)] ≤
(︃
1 +

1

N

)︃
|Ti|
r

· (U [0, r])

(︃[︃
αk,

(︃
α +

1

N

)︃
k

]︃)︃
=

(︁
1 + 1

N

)︁
|Ti|

N
(︁
1− 1

N

)︁2
k

for every 1 ≤ i ≤ m. Hence,

E

[︄
m∑︂
i=1

Zi(α)

]︄
≤
(︁
1 + 1

N

)︁
|T |

N
(︁
1− 1

N

)︁2
k
=

(︁
1 + 1

N

)︁
(1− ε)k2

N
(︁
1− 1

N

)︁2
k

=
(1− λ)k

N
.

Firstly, using Markov’s inequality (Theorem 6.5.1),

P

(︄
m∑︂
i=1

Zi(0) ≥
k

N

)︄
≤ E [

∑︁m
i=1 Zi(0)]
k
N

≤ 1− λ.

This above inequality holds for any α, but we will need a stronger result in general. When

α ≥ 1
N

, we will use a Chernoff-type bound.

Since ri is r-good, for every i ∈ {1, . . . ,m} we have

Zi(α) · αk ≤ ∥ri∥1 ≤ |Ti|+ r ≤ (3D + 1)k ≤ 4Dk

and thus

0 ≤ Zi(α) ≤
4D

α
≤ 4N |T |

mk
=

4N(1− ε)k

m
.
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using the conditions |T | ≥ mDk and |T | = (1− ε)k2.

Then, applying Hoeffding’s inequality (Theorem 6.5.2), we get

P

(︄
m∑︂
i=1

Zi(α) ≥
k

N

)︄
≤ P

(︄
m∑︂
i=1

Zi(α) ≥ E

[︄
m∑︂
i=1

Zi(α)

]︄
+

(︃
k

N
− (1− λ)k

N

)︃)︄

≤ exp

⎛⎜⎝−
2
(︁
λk
N

)︁2
m ·
(︂

4N(1−ε)k
m

)︂2
⎞⎟⎠

= exp

(︃
− λ2

8N4(1− ε)2
m

)︃
≤ exp

(︃
− λ2

24N4(1− ε)2
P

)︃
.

Combining these, by the union bound we have

P

(︄
∃j ∈ {0, . . . , N − 2},

m∑︂
i=1

Zi

(︃
j

N

)︃
≥ k

N

)︄
≤

N−2∑︂
j=0

P

(︄
m∑︂
i=1

Zi

(︃
j

N

)︃
≥ k

N

)︄

< (1− λ) +N exp

(︃
− λ2

24N4(1− ε)2
P

)︃
< 1

by our choice of P . Hence, there exist covers r1, . . . , rm of T1, . . . , Tm, respectively using

radii in [0, (1− 1
N
)k] = [0, r] such that the total number of radii in

[︁
j
N
k, j+1

N
k
]︁

that are used

is smaller than k
N

, and so at most
⌊︁

k
N

⌋︁
.

The concatenation of these covers is a cover r of T , from which we now construct a

cover using radii {0, . . . , k}. Let j ∈ {1, . . . , N − 2}. The interval
(︁
j+1
N

k, j+2
N

k
]︁

contains at

least
⌊︁

k
N

⌋︁
integers. Thus we can increase the radii in r that lie in the interval

[︁
j
N
k, j+1

N
k
]︁

replacing them by distinct integers in
(︁
j+1
N

k, j+2
N

k
]︁
. The radii in the resulting modified cover

are distinct integers in the interval [ 1
N
k, k], implying that (1, 2, . . . , k) is a cover of T , as

desired.

We now come back to the original discrete setting. Let T be a (discrete) tree. As in the
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metric setting, for r ≥ 0 and v ∈ V (T ), we denote by BT (v, r) the closed ball of radius r

with center v, i.e.

BT (v, r) = {u ∈ V (T )|dT (v, u) ≤ r},

where dT (·, ·) is the usual graph metric, i.e. dT (v, u) is the number of edges in the unique path

with ends u and v. As before, (r1, . . . , rm) is a cover of T if there exist v1, . . . , vm ∈ V (T ) such

that V (T ) = ∪m
i=1BT (vi, ri). We denote by TM a metric tree obtained from T by replacing

each edge by an interval of length one. Note that dTM (u, v) = dT (u, v) for any u, v ∈ V (T ).

Lemma 6.5.4. If T is a discrete tree and (r1, . . . , rm) is a cover of the corresponding metric

tree TM , then (r1 + 1, . . . , rm + 1) is a cover of T .

Proof. Let v1, . . . , vm ∈ TM be such that TM = ∪m
i=1BTM (vi, ri).

For each i ∈ [m], let ui ∈ V (T ) be an end point of the segment of TM containing

vi. In particular dTM (ui, vi) ≤ 1, and so BTM (vi, ri) ⊆ BTM (ui, ri + 1), implying TM =

∪m
i=1BTM (ui, ri + 1). As V (T ) ⊆ TM and the distances between vertices of T are preserved

in TM , we have V (T ) = ∪m
i=1BT (ui, ri + 1), implying that (r1 + 1, . . . , rm + 1) is a cover of

T .

Our main result, which we restate for convenience, readily follows from Theorem 6.5.3

and Lemma 6.5.4.

Theorem 6.1.2. If G is a connected graph on n vertices, then

b(G) ≤ (1 + o(1))
√
n.

Proof. We need to show that for every 0 < ε < 1, there exists N such that if G is a connected

graph on n ≥ N vertices then b(G) ≤ (1 + ε)
√
n.

Let ε′ = ε
2
, we show that

N = max

{︃
(K6.5.3(ε

′))
2
,
6

ε

}︃
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has the above property.

Let G be a connected graph on n ≥ N vertices. As noted in the introduction, it suffices

to consider any spanning tree T of G; burning T will also burn G, hence b(G) ≤ b(T ). Let

TM be the metric tree corresponding to T .

Set k =
⌈︂√︁

n
1−ε′

⌉︂
. We have that k ≥

√︁
n

1−ε′
≥
√︂

1
1−ε′

N ≥ K6.5.3(ε
′) and |TM | = n− 1 ≤

(1− ε′)
⌈︂√︁

n
1−ε′

⌉︂2
= (1− ε′)k2.

Hence, by Theorem 6.5.3, (1, . . . , k) is a cover of TM . By Lemma 6.5.4 it follows that

(2, . . . , k + 1) is a cover of T . Thus

b(T ) ≤ (k + 1) + 1 =

⌈︃√︃
n

1− ε
2

⌉︃
+ 2 ≤

(︂
1 +

ε

2

)︂√
n+ 3 ≤ (1 + ε)

√
n,

as desired, where the last inequality uses the condition n ≥ N ≥ 6
ε
.

6.6 Concluding remarks

6.6.1 Eliminating the error

We have shown that the Burning Number Conjecture holds asymptotically, i.e. b(G) ≤

(1 + o(1))
√
n for every connected n vertex graph G. A natural next direction would be to

attempt to eliminate the error term, proving the conjecture in full.

Unfortunately, our method does not seem to give much insight in the behaviour of burning

number of small graphs. It might be conceivable that our argument can be used as a starting

point for the proof of the Burning Number Conjecture for sufficiently large n, but such an

extension is likely to be quite difficult and require additional ideas.

On the other hand, eliminating the error term in Theorem 6.4.1 is more likely to be

within reach. The conclusion of Theorem 6.4.1 does not hold with ε = 0 if T is an interval

with |T | < 2r, as the radii of length |T |
2

can not be utilized without waste, but we conjecture

that this is the only obstruction.
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Conjecture 6.6.1. If r > 0 and T is a metric tree such that |T | ≥ 2r, then there exists a

probability measure ν on C(T ) such that

Eν ≤ |T |
r
U [0, r].

It suffices to prove Conjecture 6.6.1 for metric trees T that do not admit a decomposition

{T1, T2} such that |T1|, |T2| ≥ 2r, which might be possible by extending Lemma 6.3.3 from

the class of 2r-minimal trees to this larger class. We were able to do implement this strategy

to show that Conjecture 6.6.1 holds for metric trees with at most three leaves, using by a

more detailed case analysis of the possible ratios between the length of the three branches

in Lemma 6.3.3.

6.6.2 General radii

Given a sequence of radii (r1, . . . , rk) what is the maximum D such that (r1, . . . , rk) is a

cover of every metric tree T with |T | ≤ D. By considering intervals (i.e. paths) we see

that D ≤ 2
∑︁k

i=1 ri. A metric analogue of the Burning Number Conjecture suggests that

the equality holds for the sequence (1, . . . , k), but it is unclear which properties of sequence

make the conjecture plausible, motivating the following question.

Question 6.6.2. Which sequences (r1, . . . , rk) of positive reals have the property that (r1, . . . , rk)

a cover of every metric tree with |T | ≤ 2
∑︁k

i=1 ri?

We believe that the following large and natural class of sequences of radii, which includes

the sequences (1, . . . , k), respects this property. We say a sequence (r1, . . . , rk) of non-

negative reals is convex if

r1 ≤ r2 − r1 ≤ r3 − r2 ≤ . . . ≤ rk − rk−1.

Conjecture 6.6.3. If (r1, . . . , rk) is a convex sequence of non-negative reals and T is a

metric tree such that |T | ≤ 2
∑︁k

i=1 ri, then (r1, . . . , rk) is a cover of T .
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Conjecture 6.6.3 is motivated by the fact that we convinced ourselves that a (rather

technical) fractional variant of this conjecture holds asymptotically.9

The methods of Section 6.3 can be used to show that Conjecture 6.6.3 holds for k = 2.

Theorem 6.6.4. If 0 ≤ r1 ≤ r2
2
, and T is a metric tree such that |T | ≤ 2(r1 + r2), then

(r1, r2) is a cover of T .

Proof. We first claim that T is 2|T |
3

-minimal. Trivially, |T | ≥ 2|T |
3

, so it suffices to prove

that there exists a decomposition {T ′, T ′′} of T such that |T ′|, |T ′′| ≤ 2|T |
3

. Let {T ′, T ′′} be a

decomposition chosen to minimize max{|T ′|, |T ′′|}. (Such a choice is possible by compactness

and continuity of the length function.) Suppose for a contradiction that this value is greater

than 2|T |
3

. Without loss of generality, we have that |T ′| > 2|T |
3

. Let v be the unique point of

intersection of T ′, T ′′. Let {T1, . . . , Tk} be the unique decomposition of T ′ such that each Ti

is a non-trivial branch of T with anchor v and v is a leaf of Ti. If k = 1, we can slightly nudge

v into the segment of T1 incident to v, hence slightly decreasing |T ′| and slightly increasing

|T ′′|. Otherwise k > 1, and so we can assume without loss of generality that |T1| ≤ |T ′|
2

.

Then, consider the decomposition {T ′ \ (T1 \{v}), T ′′∪T1} of T . Then |T ′ \ (T1 \{v})| < |T ′|

and

|T ′′ ∪ T1| = |T ′′|+ |T1| ≤ (|T | − |T ′|) + |T ′|
2

= |T | − |T ′|
2

< |T | −
2|T |
3

2
=

2|T |
3

< |T ′|,

yielding the desired contradiction, and finishing the proof of the claim.

Let a be obtained by applying Lemma 6.3.3 to T with l = 2|T |
3

. In particular, a ≤
2|T |
3

2
− |T |

4
= |T |

12
and then |T |

4
+ a ≤ |T |

3
≤ 2(r1+r2)

3
≤ r2. Hence, there exists x ≥ 0 such that

|T |
4
+ a + x = r2. If x ≥ |T |

4
− 3a then (r2) is a cover of T by Lemma 6.3.3 and hence so is

9More precisely the measure |T |
r U [0, r] in Theorem 6.4.1 can be replaced by any measure µ on [0, r] such

that m(µ) ≥ |T | and µ has non-increasing density with respect to the Lebesgue measure, i.e. there exists a
non-increasing function f : [0, r] → R+ such that µ([a, b]) =

∫︁ b

a
f(x)dx for all 0 ≤ a < b ≤ r.
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(r1, r2). Thus we assume x ≤ |T |
4
− 3a and

(︃
|T |
4

− 3a− x,
|T |
4

+ a+ x

)︃
=

(︃
|T |
4

− 3a− x, r2

)︃

is a cover of T by Lemma 6.3.3. As |T | ≤ 2(r1 + r2) = 2r1 +
|T |
2
+ 2a + 2x, it follows that

r1 ≥ |T |
4
− a− x ≥ |T |

4
− 3a− x, and so (r1, r2) is a cover of T , as desired.

In fact, the answer to Question 6.6.2 for sequences of length two is exactly the set of

convex sequences, i.e. convexity is not only sufficient, but necessary, for (r1, r2) to be the

cover of every metric tree T with |T | ≤ 2(r1 + r2). Consider radii 0 ≤ r1 ≤ r2 such that

r1 > r2
2

and let T be metric tree with three leaves, where all three segments have length
2(r1+r2)

3
. Firstly, |T | = 2(r1 + r2). We claim that (r1, r2) is not a cover of T . Suppose

otherwise, that T = BT (r1, p1) ∪ BT (r2, p2) for some p1, p2 ∈ T . If v is a leaf of T , then v

must be at distance at most r2 from p1 or p2. However, the segment of which v is a leaf

has length 2(r1+r2)
3

> r2+2r2
3

= r2. Hence, either p1 or p2 must be strictly contained in this

segment, i.e. distinct from v. Since T has three branches, it is impossible for every branch

to strictly contain p1 or p2, yielding the desired contradiction.
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7
Discussion

In this thesis, we have studied the structure of sparse graphs through various aspects. In

the first section of this chapter, we summarize the themes studied in this thesis and discuss

which of and how the manuscripts relate to each theme. In the remainder of the chapter, we

will discuss three topics which naturally extend some of the work presented in this thesis.

7.1 Survey of themes

Graph minors

Chapters 2, 4 and 5 all concern graph minors directly. Indeed, in all three of these, we derive

some properties for graphs forbidding one or multiple graphs as minors. In Chapter 2, our

main result upper bounds the minimum degree when a sparse bipartite graph H is forbidden

as a minor. In Chapter 3, we bound the average degree when we forbid all minors with a

fixed number of vertices and a fixed number of edges. In Chapter 5, we upper bound the
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cop number when a minor H is forbidden, roughly speaking as a function of the number of

edges in H, but also taking into account its structure.

The connection of Chapter 4 to graph minor theory is twofold. Firstly, the main motiva-

tion for this problem is the (now disproven) coarse Menger’s conjecture, which was suggested

as a tool to prove a (now disproven) conjecture on fat minors. Furthermore, after proving

our upper bound for graphs with bounded maximum degree, we use it to prove an analogous

results for graphs with a forbidden topological minor, a close variant of graphs minors.

Extremal functions, i.e. upper bounds on the average degree of graphs with a forbidden

minor, is a tool we used multiple times. In Chapter 2, we applied Theorem 2.2.2, a bound on

the extremal functions for sufficiently large bipartite graphs taken from families with strongly

sublinear separators, multiple times. We also used Theorem 2.6.4, a result which shows that

when a graph is sufficiently connected as a function of the extremal function of a graph H,

we can construct the graph H as a rooted minor, which is a stronger concept. In Chapter 3,

for the proof of Theorem 3.1.3, our result for small t, we used multiple extremal functions

as well. Although some of these had already been known, Theorem 3.4.1 is a new bound

on the extremal function for the class of graphs on 6 vertices and 11 edges. We will also

briefly discuss a connection between extremal functions and our work on cops and robbers

in Section 7.3.

Colourings

Our main motivation in Chapters 2 and 3 was to work towards Hadwiger’s conjecture, which

states that Kt-minor-free graphs are (t−1)-colourable. As we have discussed previously, our

methods do not interact directly with colouring: only degeneracy is used to greedily colour

the vertices of the graph. Interestingly, this allows our results to be useful to other types of

colourings, such as list colouring and DP-colouring, for which the degeneracy argument also

works directly.

We also note that in Chapter 4, strong edge colouring was the main tool we used. We

will discuss the limits of this tool below, in Section 7.2.
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Connectivity

Connectivity is one of the most important topics in graph theory. We have used and studied

it at multiple places in this thesis.

In Chapter 2, we have used what is often referred to as a “connectivity toolbox”. The

main results used are presented in Section 2.2.1. We have in particular used results relating

to linkages and rooted minors, with the objective of building minors from smaller pieces.

In Chapter 3, connectivity is used in the proof of Theorem 3.4.1. The proof is split into

cases about whether the graph is 0-, 1-, 2-, or 3-connected. Indeed, as is standard with these

types of proofs on extremal functions, we take a separation of the graph and induct on each

side of this separation, and attempt to construct one of the forbidden minors.

Of course, Chapter 4 is our main study of connectivity. As exhibited by its use in Chap-

ters 2 and 4, connectivity is a very useful tool in building graph minors. It is then natural

that Georgakopoulos and Papasoglu [47] suggested proving a coarse version of Menger’s

theorem in order to study fat minors.

We proved some versions of Menger’s theorem when the condition that the paths be

pairwise disjoint be replaced by the condition that the paths be pairwise non-adjacent.

However, not only do our results concern connectivity, but some the tools used are standard

connectivity tools. Most notably, in our proof of Theorem 4.1.5, one of the main ideas is

to apply Menger’s theorem on a contracted graph and then lift the paths back up to the

original graph. Connectivity is also used in the proof of Theorem 4.1.9 when forbidding a

topological minor (see Claim 4.3.3.1, in particular).

Games on graphs

Both Chapters 5 and 6 concern games on graphs, cops and robbers for the former and graph

burning for the latter. These two games or processes are some of the best-known and most

studied in the field of graph searching. Later in this chapter, in Section 7.3, we will discuss

the cop number of linklessly embeddable graphs in more details. In Section 7.4, we will
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discuss fractional graph burning, a variant of graph burning which is naturally suggested by

the methods used in Chapter 6.

Metric problems

As discussed previously, one of the main motivations for our work in Chapter 4 was the

coarse graph theory suggested by Georgakopoulos and Papasoglu [47]. This is fundamentally

a metric problem, where we are concerned about the distances between objects, in our case

between the pieces of the model (hence the definition of fat minors). In fact, in their original

paper, Georgakopoulos and Papasoglu work in a more general setting than graphs, rather

they work on length spaces, metric spaces which, broadly speaking, “look like” graphs.

Although the original formulation of graph burning as a game does not suggest it to be

a metric problem, we have seen that it is fundamentally a covering problem. In Chapter 6,

we have taken this viewpoint one step further and considered metric trees. This tool was

particularly useful as it allowed us to decompose the tree into small pieces by cutting it into

smaller trees at any point (not only vertices), and by covering them with balls of fractional

radii.

7.2 The limits of strong colouring for coarse Menger

In Chapter 4, we used strong colouring in order to prove an induced version of Menger’s

theorem. The strategy was broadly as follows.

For some constant C depending only on the maximum degree of G, we wish to show

there exists either a set of fewer than Ck vertices which separates X and Y , or k pairwise

non-adjacent X-Y paths (Theorem 4.1.5). By Menger’s theorem, we may suppose that we

begin with Ck pairwise disjoint paths (Theorem 4.1.6). Our strategy is to strongly colour

the edges which go between these paths (i.e., partition these edges into strong, or distance 2,

matchings). Then, we contract one colour class and apply Menger’s theorem to find fewer,

but still many, disjoint paths in this new contracted graphs. As the contracted colour class

formed a matching, we only lose half the number of paths. We then lift them back to paths in
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the original graph, which due to the contraction, do not contain any edges of the contracted

colour between them. Edges from the original paths may however be used in the new paths.

It is because the matching is strong that the edges from the original paths cannot go between

the new paths. We do this for every colour class in order to obtain the result.

It is natural to attempt to generalize this strategy to the distance d = 3 case: suppose

we want the paths not only to be non-adjacent, but to not have any common neighbours.

I have, unsuccessfully, attempted to prove such a result, with my coauthors in Chapter 4,

Hendrey, Norin and Steiner, as well as with Chudnovsky and Seymour. The following is a

summary of discussions and email exchanges I had with them.

One version of this approach would be as follows. Write P for the original path system,

and write Q for the paths of length at most two with endpoints in Q. Instead of colouring

only the edges which go between the paths in P , one might attempt colouring each path in

Q in a way that if the endpoints of these paths are at distance at most two in P , they obtain

distinct colours. At first glance, this would appear to work. Indeed, after the first iteration

of the procedure, we obtain a new path family P ′ between which there are no edges or paths

of the contracted colour. Furthermore, the strong colouring condition again ensures that

there are no edges or paths of length at most two between paths in P ′ which were part of

P . However, we might find that between two paths of P , there is an edge or path of length

two which was neither in P nor in Q : it could have went directly between two paths of Q.

Perhaps, we might choose to modify the condition on the colouring in a way that paths

in Q receive distinct colours not only if their endpoints in P are close, but if they are close in

the entire graph. This works, but only for one iteration. Indeed, to preserve the induction,

after one iteration one must necessarily consider all paths of length at most two between the

new paths P ′, call these Q′. Now, some these paths had not been previously coloured, which

poses an issue. So, in the original colouring, not only should we colour paths in Q, but also

paths between paths in Q, and so on.

It is unclear how to do this. For one, if we consider all of these levels, one edge may be in
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multiple paths of length two. In some sense, the strength of our method in the d = 2 case is

that we can “move to an induced subgraph”, as stated by Steiner in personal communication.

For higher distances, everything else gets “pulled in”.

We recall that Gartland et al. [45] independently proved a statement similar to Theo-

rem 4.1.5, with a slightly weaker bound. In their proof, they strongly colour the vertices

instead of the edges. We have also attempted generalizing their proof to d = 3, and also had

issues arise in every variation of it.

7.3 Cops and robbers and linklessly embeddable graphs

In Chapter 5, we generalized the methods of Andreae [7] in order to improve the upper

bounds on the cop number when forbidding a graph. In Andreae’s bound, one cop is needed

to reconstruct each edge of H − h in the H-minor-free graph on which the graph is played.

Our improvement is, broadly speaking, twofold:

1. If the graph H − h contains a path such that every vertex on this path has degree

exactly two, we only need approximately one third of the cops that Andreae’s main

result requires (note however that this idea was based on Andreae’s [7] argument for

wheel graphs). We have further refined this idea by assigning to each bag of the model

a cop (or group of cops) whose role it is to protect the vertex of this bag which is

adjacent to the robber’s territory (this is the function f in the decomposition of H),

which in some cases allows us to use fewer cops.

2. We can also choose a matching in H − h for which no cops need to be assigned.

We have elaborated on these improvements in more detail in Section 5.4.1.

We have claimed that our result is most significant when H is sparse or small. Indeed,

if a graph is sparse or small, removing a matching from it reduces its number of edges by a

significant proportion. Furthermore, graphs which can be obtained from another graph with

many edge subdivisions, and thus contain many of the types of paths discussed above, are

necessarily sparse.
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As we have discussed in the introduction, one of the most studied aspects of the game

of cops and robbers has been its connection to graph topology. Hence, one of the most

important consequences of our main result, Theorem 5.4.3, is that (connected) linklessly

embeddable graphs have cop number at most 6 (Corollary 5.5.7). In fact, four of the graphs

in the Petersen family have the property that excluding them alone as a minor yields this

upper bound.

One notices that many of the graphs in the Petersen family are structurally similar

(which is natural, given that they are obtained from one another by ∆ − Y replacement).

The drawings in Figure 5.5.1 of the graphs Pi, for i ∈ [4] in particular (as well as i = 5, to

a lesser extent), show this quite clearly. Hence, it might be possible to improve the upper

bound when they are simultaneously forbidden, in a proof which leverages this similarity.

The intuition here would be that at some point in the proof, we might not be sure where

an edge, vertex or path is located exactly, but each possibility gives one of the forbidden

minors.

We recall that Andreae [7], in addition to the main result Theorem 5.1.1, had shown in a

more detailled proof that K3,3-minor-free graphs and K5-minor-free graphs have cop number

at most 3 (strenghtening Theorem 1.4.2). We have put significant effort, without success, in

generalizing this proof in order to prove a stronger bound for linklessly embeddable graphs.

In fact, it is unclear what the optimal bound should be. As discussed in Section 5.5.5, a

cop number of 4 is suggested for this class by the Colin de Verdière invariant (of course, this

is based on a very small number of data points). While preparing the manuscript presented

Chapter 5, we have attempted, unsuccesfully, to construct linklessly embeddably graphs with

cop number at least 4.

The following result was shown by Aigner and Fromme [1] in order to lower bound the

cop number of some graphs.

Theorem 7.3.1 ([1]). If G is a connected graph with girth at least 5, then c(G) ≥ δ(G).

Proof. Suppose at some point in the game the robber has not yet been caught, and it is the
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robber’s turn. Let u be the vertex on which the robber is located. No cop can be on or

adjacent to more than one vertex in N(u): this would necessarily form a cycle of length 3 or

4 which includes this vertex and u. Hence, if there are fewer than δ(G) cops playing, then

there is necessarily at least one neighbour of u on which there is no cop and to which no cop

is adjacent, allowing the robber to not be caught at this turn. By repeating this argument,

the robber has a strategy to never be caught.

To finish the proof, it thus suffices to show that the robber has an initial position such

that it is not immediately captured. Suppose the cops have chosen their initial positions.

Let u be an arbitrary vertex on which there is no cop, and let v be the vertex to which the

robber could escape to if it were on u, which exists by the previous argument. The robber

can begin the game by starting on v.

See [42, 43, 26], for instance, for similar and more general arguments of the type.

Aigner and Fromme have, for example, used this result to show that the bound on the

cop number of planar graphs is tight (consider the dodecahedral graph, which has girth 5

and minimum degree 3). The following question then arises naturally.

Question 7.3.2. Does there exist a linklessly embeddable graph with girth at least 5 and

minimum degree at least 4?

We say a graph G is apex if it contains a vertex u such that G−u is planar. Apex graphs

are important in the study of graph minors. Notably, Robertson et al. [88] showed Hadwiger’s

conjecture for t = 6 by showing that any minimal counter-example would necessarily be

apex (however, these graphs are also 5-colourable, as can be shown by applying the Four-

colour theorem to G − u and using the extra colour for u). Apex graphs are also linklessly

embeddable [88]. We first show that, under mild conditions, these natural candidates do not

answer Question 7.3.2.

Lemma 7.3.3. If G is a graph such that G− u is a connected planar graph, then G cannot

have girth at least 5 and minimum degree at least 4.
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Proof. As G has girth at least 5, G − u must either have (finite) girth at least 5, or be a

tree. The latter case is impossible, as all trees contain vertices of degree 1, and so G would

contain vertices of degree 2.

Consider the former case. By Corollary 1.1.3, |E(G− u)| ≤ 5
3
|V (G− u)|. In particular,

G has average degree at most 10
3
. As G−u has minimum degree at least 3, this implies that

a proportion of at most 1
3

of the vertices of G − u may have degree larger than 3. As all

vertices have degree at least 4 in G, this means that d(u) ≥ 2
3
|V (G− u)|.

This implies that u is necessarily adjacent to some pair of vertices which are, in G − u,

at distance at most two, forming a triangle or a 4-cycle, which would be a contradiction.

Indeed, it is easily seen that the domination number of G − u is at most |V (G−u)|
2

when

|V (G − u)| ≥ 2 (consider a rooted spanning tree of G, pick the neighbour of the deepest

vertex, remove its downward neighbourhood and induct). Hence, by the pigeonhole principle

there necessarily exists two vertices in N(u) which are adjacent or equal to the same vertex

in this dominating set.

Note that we could exclude more apex graphs by considering the version of Euler’s formula

which takes into account the number of components.

Question 7.3.2 is in fact related to many results and open problems on extremal functions

for graph minors (which we have discussed and used in Chapters 2 and 3 and earlier in this

chapter): there are many very similar bounds and open problems. Recall that both K6 and

the Petersen graph are in the Petersen family, the obstruction set for linklessly embeddable

graphs. One approach to showing that no graphs fulfills the conditions of Question 7.3.2

would be to upper bound the average degree at under 4. However, Hendrey and Wood

[50] have shown that n-vertex Petersen-minor free graphs have at most 5n − 8 edges, and

that this bound is best possible. Mader [65] showed that for K6, the extremal function is

4n− 10, and is also best possible. Aigner-Horev and Krakovski [2] showed that 6-connected

graphs with girth at least 6 and no K6-minor have at most 3n− 8 edges (Jorgensen [54] has

conjecture the same, without the condition on the girth), and a similar bound with coefficient
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5

when the girth is relaxed to 5. Chudnovsky et al. [31] proved that bipartite graphs with

minimum degree at least 6 contains a K6-minor. McCarty and Thomas [68] have shown

that bipartite linklessly embeddable graphs have at most 3n − 10 edges. However, to my

knowledge, Question 7.3.2 remains open.

7.4 Fractional graph burning

The Burning Number Conjecture is motivated by the bound for paths, Theorem 1.4.6. In

its proof, every ball of radius r is used to cover (burn) exactly 2r + 1 vertices. Although we

cannot require this to hold for every ball when burning general trees (or graphs), we want

it to hold on average. Our proof of Theorem 3.1.1 shows that this is close to being true: on

average a ball of radius r covers close to 2r vertices.

One of our main ideas was to break up the tree into small pieces, on which we are able

to find many covers of size two (see Lemma 6.3.3) which are almost optimal (in the sense

that on average every ball covers almost what it would be expected to on a path). In order

to prove Theorem 3.1.1, these were then used by randomly choosing one of these covers for

every small subtree. We then piece these together on the original tree in such a way that

these small covers don’t use balls of the same radii (perhaps, by shifting them slightly).

The Burning Number Conjecture states that if we have radii 0, . . . , k − 1, we can cover

every vertex of a tree on n vertices at least once if k = ⌈
√
n⌉. Our result for small (metric)

trees says that if make k larger (or equivalently, make n smaller), we should be able to cover

the tree many times. Conjecture 6.6.1 states that, at least in the metric setting, we should

be able to do this exactly: on average a ball of radius r should cover a length of 2r, whatever

the size of the metric tree (as long as it is sufficiently large, in order for the largest radius to

not be wasted).

If we translate this back to the original setting, we would like to show that if T is a tree

on n vertices, and we have radii 0, . . . , k − 1, we could partition these radii into k2

n
covers

of T , as long as n ≥ 2k − 1. Of course, this would be best possible, as on a path no radius
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r can contribute to burning more than 2r + 1 vertices, and so we cannot burn more than∑︁k−1
r=0 2r + 1 = k2 vertices, with multiplicity. However, this is impossible due to the discrete

nature of the problem: as soon as k2

n
is not an integer, there is some necessarily some waste

(which can also be seen in the Burning Number Conjecture, given the ceiling that is used).

Norin has suggested in personal communication to relax the problem by making it frac-

tional, however in a different way than we used in Chapter 6.

We say a k-cover of a graph G is a collection B of pairs (B,w), where B is a ball in G

with radius r ∈ {0, . . . , k − 1} and w ∈ R+ (we call w the weight of this ball).

We define, for every r ∈ {0, . . . , k−1}, ηB(r) :=
∑︁

(B(v,r′),w)∈B:r′=r w. Note that ηB can be

seen as a vector in Rk, indexed by coordinates 0, . . . , k − 1. We say B is frugal if ηB(r) ≤ 1

for every r. In other words, we allow there to be multiple balls with the same radius in the

cover, as long as the total weight of these balls is at most 1.

Let νB(u) be the total weight of balls covering u ∈ V (G) according to B. Formally,

νB(u) :=
∑︁

(B,w)∈B:u∈B w. We say a k-cover is thick if νB(u) ≥ k2

n
for every u ∈ V (G).

Badiambile, Langevin and Norin have suggested the following conjecture in personal

communication, based on testing using linear programs.

Conjecture 7.4.1. Let n, k ∈ N. If n ≥ 2k and n is even, or if n ≥ 3k and n is odd, then

there exists a thick frugal k-cover of Pn.

However, as later noted by Norin, also in personal communication, the analogous con-

jecture does not hold for general trees, even by changing the lower bound on n (unless one

takes n = k2, in which case the statement is simply a weakening of the Burning Number

Conjecture). Here is an example which shows this.

Proof. As suggested by Norin, consider the spider graph G with q ≥ 2 branches each con-

taining two edges. In particular, G contains 2q + 1 vertices, and take k = 2. We show there

does not exist any thick frugal 2-cover of G. Suppose for a contradiction that such a cover,

say B, exists.
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Only balls of radius 0 and 1 are present in B. Without loss of generality, we may assume

that B does not contains two weighted balls with the same radius and centered at the same

vertex. For i ∈ [r], write ai for the weight of the ball of radius 0 on the leaf of the i-th

branch of G (if it exists, and 0 otherwise), bi for the weight of the ball of radius 0 on the

middle vertex of the i-th branch of G, xi for the total weight of the balls of radius 1 which

are centered at either the leaf or the central vertex of the i-th branch. Write
∑︁q

i=1 ai = a,∑︁q
i=1 bi = b and

∑︁q
i=1 xi = x. Finally, let y be the weight of the ball of radius 1 centered at

the vertex of degree q. Of course, a, b, x, y ≥ 0.

It is then direct that νB(u) is ai + xi if u is the leaf of the i-th branch, and is bi + xi + y

if u is the middle vertex of the i-th branch. As νB(u) ≥ 22

|V (G)| = 4
2q+1

, we know that

a+ x =
∑︁q

i=1(ai + xi) ≥ 4q
2q+1

and that b+ x+ qy =
∑︁q

i=1(bi + xi + y) ≥ 4q
2q+1

.

Furthermore, we have that that a + b =
∑︁q

i=1 ai +
∑︁q

i=1 bi ≤ ηB(0) ≤ 1, and that

x+ y =
∑︁q

i=1 xi + y = ηB(1) ≤ 1.

It is easily verified (either by hand or with an inequality solver such as Mathematica [105])

that this system of inequalities, with variables a, b, x, y, has no solutions when q ≥ 2.

In the remainder of the section, we will approach Conjecture 7.4.1. To simplify the proofs,

and to gain greater understanding of fractional burning. we will use some linear-algebraic

notation. For a vector w, we write w(i) for the i-th component of w, with indices starting at

0.

For n, k ∈ N, let

Wn,k :=

{︄
w ∈

(︁
Z≥0

)︁k
:
k−1∑︂
r=0

(2r + 1)w(r) = w · (1 3 5 · · · 2k − 1) = n

}︄
.

Further define

Vn,k := cone(Wn,k) =

{︄
ℓ∑︂

i=1

αiwi : ℓ ∈ N,wi ∈ Wn,k, αi ∈ R≥0

}︄
,
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the conical hull of Wn,k. We first show that we can reformulate fractional burning in this

language. Define 1k := (1 1 · · · 1), the constant 1 vector in k dimensions.

Theorem 7.4.2. Let n, k ∈ N. There exists a thick frugal k-cover of Pn if and only if

1k ∈ Vn,k.

Proof. We begin by proving the if direction. As 1k ∈ Vn,k, there exists ℓ ∈ N, and wi ∈ Wn,k

and αi ∈ R≥0 (for 1 ≤ i ≤ ℓ), such that
∑︁ℓ

i=1 αiwi(r) = 1 for every r ∈ {0, . . . , k − 1}.

Notice that every wi ∈ Wn,k represents a (discrete) cover of Pn with balls with radii in

0, . . . , k− 1, possibly using the same radii multiple times. Indeed, wi(r) gives the number of

times the radius r is used, and the condition
∑︁k−1

r=0(2r + 1)wi(r) = n ensures that the sum

of the diameters of these balls is exactly n: these covers have no waste. As seen in the proof

of Theorem 1.4.6, on a path it suffices for the sum of diameters of the balls to be n to be

able to obtain a cover: place the balls one after the other in an arbitrary order. Write Bi for

the collection of balls implicit in wi, giving each one weight αi. In particular, νBi
(u) = αi for

every u ∈ V (Pn). Let B := ∪ℓ
i=1Bi. We verify that B is a thick frugal k-cover of Pn.

For every r ∈ {0, . . . , k − 1},

ηB(r) =
∑︂

(B(v,r′),w)∈B:r′=r

w =
ℓ∑︂

i=1

∑︂
(B(v,r′),w)∈Bi:r′=r

w =
ℓ∑︂

i=1

αiwi(r) = 1,

as desired. Hence, B is a frugal k-cover of G.

Furthermore, we know that

k2 =
k−1∑︂
r=0

(2r + 1) =
k−1∑︂
r=0

(2r + 1)

(︄
ℓ∑︂

i=1

αiwi(r)

)︄
=

ℓ∑︂
i=1

αi

k−1∑︂
r=0

((2r + 1)wi(r)) =
ℓ∑︂

i=1

αin.

Hence, νB(u) =
∑︁ℓ

i=1 νBi
(u) =

∑︁ℓ
i=1 αi =

k2

n
, so B is thick, as desired.

We now prove the only if direction. The intuition here is that we want to “decompose”

the cover of Pn into “layers”, in which every ball has the same weight. We need thus introduce

the following additional definition. We say a cover B of a graph G is uniform if wB(u) has
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the same value for every u ∈ V (G). We show inductively that we can do this decomposition.

Claim 7.4.2.1. If Pn has a uniform k-cover B, then ηB ∈ Vn,k.

Proof of claim. We prove the statement by induction on |B|. The base case B = ∅ is trivial,

since ηB is the constant zero vector. Hence, suppose |B| > 0.

We first claim there exists a subset C ⊆ B such that every vertex of Pn is in exactly one

(weighted) ball in C.

We may construct it as follows. As B is non-empty and uniform, every vertex is in at least

one (weighted) ball of B. Let C ⊆ B be a family of disjoint balls which covers completely the

longest possible subpath P ′ of Pn, and is otherwise minimal (i.e., the covered vertices form a

path exactly). If P ′ = Pn, we are done. Otherwise, there exists a vertex u ∈ V (Pn) \ V (P ′),

which is adjacent to a vertex, say v, of P ′. Let (B,w) ∈ C be the ball containing v. If

every ball in B containing u also contains v, then νB(v) ≥ νB(u) + w > νB(u), and so B is

not uniform. Hence, there must exist (B′, w′) ∈ C containing u but not v, contradicting the

maximality of C.

Define wmin := min(B,w)∈C w > 0 the minimum weight over balls in C, and let C1 :=

{(B,wmin) : (B,w) ∈ C} and C2 := {(B,w − wmin) : (B,w) ∈ C} (omitting the balls with

weight 0). We then define B′ := (B \ C) ∪ C2. By choice of wmin, the value w − wmin will be

0 for at least one (B,w) ∈ C, so |B′| < |B|.

As the balls of C cover every vertex of Pn exactly once, and by choice of the new weights,

B′ is a uniform k-cover of Pn (every vertex has weight decreased by exactly wmin). Hence,

by induction, we have that ηB′ ∈ Vn,k.

Let w ∈
(︁
Z≥0

)︁k be defined by w(r) being the number of balls of radius r in the weighed

cover C. As C covers every vertex exactly once, w ∈ Wn,k. Furthermore, ηC1 = wminw, and

in particular, ηC1 ∈ Vn,k.

Noting that ηB = ηB′ + ηC1 , we obtain that ηB ∈ Vn,k, as desired.

We know that there exists a thick frugal k-cover of Pn, say B. We first show that B is
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uniform. (Intuitively, in order for a cover to be both thick and frugal on a path, there can

be no waste whatsoever.) We know that

∑︂
u∈V (Pn)

νB(u) =
∑︂

u∈V (Pn)

∑︂
(B,w)∈B:u∈B

w ≤
∑︂

(B(r,v),w)∈B

w · (2r + 1)

=
k−1∑︂
r=0

∑︂
(B(v,r′),w)∈B:r′=r

(2r + 1)w =
k−1∑︂
r=0

(2r + 1)ηB(r) ≤
k−1∑︂
r=0

(2r + 1) = k2.

Due to this inequality, as νB(u) ≥ k2

n
for every u ∈ Pn (B is thick), it is necessary that

νB(u) =
k2

n
for every u ∈ Pn, as desired.

This furthermore implies that the inequalities in the equation above is necessarily an

equality. We used that ηB(r) ≤ 1 for every r, since B is frugal. Hence, necessarily ηB = 1k.

Applying the claim now directly yields the desired result.

Using this equivalence result, we first show that the lower bounds in Conjecture 7.4.1

cannot be improved. We will use the following well-known lemma.

Lemma 7.4.3 (Farkas’ lemma [41]). If A ∈ Rm×n and b ∈ Rm, then exactly one of the

following holds.

1. There exists x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists y ∈ Rm such that A⊤y ≥ 0 and b⊤y < 0.

It is easy to show that if 2 holds, then 1 cannot hold. We will only be using this direction.

Theorem 7.4.4. Let n, k ∈ N such that k ≥ 3. If n is even and n < 2k, or if n is odd and

n < 3k, then 1k /∈ Vn,k.

We note that the case of n even can be seen directly by noticing that if n ≤ 2k − 2, the

largest ball, of radius 2(k− 1) + 1 = 2k− 1 will have some waste, and so necessarily a thick

frugal k-cover cannot exist. However, the case of odd n is more complex, so we will prove

this more formally.
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Proof. Consider the matrix A in which every column is a vector of Wn,k. By definition of

Vn,k, 1k ∈ Vn,k if and only if there exists x ≥ 0, a vector with only non-negative weights,

such that Ax = 1k.

Hence, to show the theorem, it suffices by Lemma 7.4.3 to find y ∈ Rk such that A⊤y ≥ 0

and 1⊤
k y < 0. The first condition can be reformulated as w · y ≥ 0 for every w ∈ Wn,k.

Let d = 2 if n is even, and d = 3 if n is odd. Define y by y(r) = n − d(2r + 1) for

r ∈ {0, . . . , k − 1}, except if r = n−1
2

in which case we define y(r) = 0. (Note that this

definition of y was chosen by looking at solutions to linear programs.)

If n−1
2

/∈ {0, . . . , k − 1},

1⊤
k y =

k−1∑︂
r=0

y(i) =
k−1∑︂
r=0

(n− d(2r + 1)) = kn− dk2.

In this case, 1⊤
k y < 0 if and only if n < dk, which is exactly the conditions stated in the

theorem. If n−1
2

∈ {0, . . . , k− 1}, the sum is the same except for the term y
(︁
n−1
2

)︁
, for which

the value n− dn is replaced by 0. In this case (necessarily, n is odd and so d = 3), we get

1⊤
k y =

k−1∑︂
r=0

y(i) = (kn− dk2)− (n− dn) = (k − 1 + d)n− dk2

= (k + 2)

(︃
2 · n− 1

2
+ 1

)︃
− 3k2 ≤ (k + 2)(2k − 1)− 3k2 < 0,

as desired, where the last inequality holds for k > 2.

Let w ∈ Wn,k. We know that
∑︁k−1

r=0(2r+1)w(r) = n. The terms (2r+1) on the left hand

side are always odd. Hence, if n is even (d = 2 case), then
∑︁k−1

r=0 w(r) must also be even,

and so at least 2. Otherwise, if n is odd (d = 3),
∑︁k−1

r=0 w(r) must also be odd. Note that by

definition of Wn,k, this value can only be one if w is the vector which has only value 1 for

coordinate r = n−1
2

, and otherwise zero. Otherwise,
∑︁k−1

r=0 w(r) ≥ 3. Hence,
∑︁k−1

r=0 w(r) ≥ d,

except in one specific case.
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First suppose this last inequality holds. Then,

w · y =
k−1∑︂
r=0

w(r) · y(r) = n

k−1∑︂
r=0

w(r)− d

k−1∑︂
r=0

(2r + 1)w(r) ≥ dn− dn = 0.

In the special case where
∑︁k−1

r=0 w(r) = 1, we noted that the vector w has only one

non-zero value in position r = n−1
2

. In this case, y(r) = 0, and so w · y = 0.

This completes the proof of the theorem.

We now proceed to proving some cases of Conjecture 7.4.1. We begin by showing the

easiest case n = 2k. Write ei,k for the vector of length k which has value 1 in position i (with

indices starting at zero), and 0 in all other positions. Define

W
(m)
n,k :=

{︄
w ∈ Wn,k :

k−1∑︂
r=0

w(r) = m

}︄
,

as well as

Vn,k := cone(Wn,k).

Lemma 7.4.5. If n, k ∈ N are such that n = 2k, then 1k ∈ V
(2)
n,k .

Proof. Let wi = ei,k + ek−i−1,k, for i ∈ {0, . . . , k − 1}. It is direct that
∑︁k−1

r=0 wi(r) = 2 for

every i. Furthermore,

k−1∑︂
r=0

(2r + 1)wi(r) = (2i+ 1) + (2(k − i− 1) + 1) = 2k = n,

so wi ∈ W
(2)
n,k .

Finally, the i-th coordinate appears only in the vectors wi (due to ei,k) and wk−i−1 (due

to ek−(k−i−1)−1,k = ei,k). This implies that
(︂∑︁k−1

i=0 wi

)︂
(r) = 2er,k(r) = 2 for every r ∈

{0, . . . , k − 1}. Hence, (2 2 · · · 2) ∈ V
(2)
n,k , and so 1k ∈ V

(2)
n,k as desired.

The following lemma is also useful in an inductive proof, as is allows us to “shift up”
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some radii. For any k ∈ N, we define fi as the function from Rk → Rk+i for which fi(w) is

obtained by prepending i zeroes to w.

Lemma 7.4.6. Let n, k,m ∈ N, i ∈ Z≥0. If 1k ∈ V
(m)
n,k , then fi(1k) ∈ V

(m)
n+2mi,k+i.

Proof. Let w ∈ W
(m)
n,k . Given that

∑︁k−1
r=0 w(r) = m, it is trivial that

∑︁k+i−1
r=0 fi(w)(r) = m.

Furthermore, given that
∑︁k−1

r=0(2r + 1)w(r) = n, then

k+i−1∑︂
r=0

(2r + 1)f(w)(r) =
k+i−1∑︂
r=i

(2r + 1)f(w)(r) =
k−1∑︂
r=0

(2(r + i) + 1)w(r)

=
k−1∑︂
r=0

(2r + 1)w(r) + 2i
k−1∑︂
r=0

w(r) = n+ 2mi,

and so f(w) ∈ W
(m)
n+2mi,k+i.

As V
(m)
n+2mi,k+i is the conical hull of W (m)

n+2mi,k+i and 1k ∈ V
(m)
n,k , this directly implies that

f(1k) ∈ V
(m)
n+2mi,k+i.

We may now prove most of Conjecture 7.4.1.

Theorem 7.4.7. Let n, k ∈ N. If n is even and n ≥ 2k, or if n is odd and n ≥ 4k− 3, then

1k ∈ Vn,k.

Proof. We first show the statement for even n. We prove the statement by induction on n,

then on k. For n = 2, then necessarily k = 1, and so the base case is implied by Lemma 7.4.5.

We may now suppose that n ≥ 4.

First suppose n ≥ 4k. As n ≥ 4, there exists even n1, n2 ∈ N such that n1 + n2 = n.

Here, it is simpler to work covers (which, we recall, are equivalent by Theorem 7.4.2). By

induction, there exists a thick frugal k-cover B1 of Pn1 , and a thick frugal k-cover B2 of Pn2 .

We can see Pn as a concatenation of Pn1 and Pn2 . Hence, we may define

B :=

{︃(︃
B,w · n1

n1 + n2

)︃
: (B,w) ∈ B1

}︃
∪
{︃(︃

B,w · n2

n1 + n2

)︃
: (B,w) ∈ B2

}︃
.

It is easily verified that B is a thick frugal k-cover of Pn.

249



Hence, we may suppose n < 4k. As n is even, this implies that 2k − n
2
≥ 1 and is

an integer. Also, n
2
− k ≥ 0 and is an integer. By Lemma 7.4.5, 12k−n

2
∈ V4k−n,2k−n

2
. By

Lemma 7.4.6, we then have that fn
2
−k

(︁
12k−n

2

)︁
∈ V(4k−n)+2·2·(n

2
−k),(2k−n

2 )+(
n
2
−k) = Vn,k.

Given that n < 4k, we have n
2
− k < k, so by induction, we have that 1n

2
−k ∈ Vn,n

2
−k.

By appending zeroes to it (and overloading notation), we have 1n
2
−k ∈ Vn,k. By definition,

1k = fn
2
−k

(︁
12k−n

2

)︁
+ 1n

2
−k ∈ Vn,k, as desired.

We now prove the case when n is odd. We know that n− (2k−1) ≥ 2(k−1) and is even,

so 1k−1 ∈ Vn−(2k−1),k−1. Furthermore, note that if w ∈ Wn−(2k−1),k−1, then (w 1) ∈ Wn,k.

As Vn−(2k−1),k−1 is the conical hull of Wn−(2k−1),k−1, this implies that (1k−1 1) = 1k ∈ Vn,k,

as desired.

Thus, only the cases where n is odd and 3k ≤ n ≤ 4k − 4 are left. We will only prove

the cases for n of the form 3k + 6i. Given that any ball with integer radius covers an odd

number of vertices, if n is odd, we will not be able to cover it with two balls. We first prove

the base case n = 3k.

Lemma 7.4.8. If n, k ∈ N are such that n = 3k is odd, then 1k ∈ V
(3)
n,k .

Proof. We prove this statement by induction on (odd) k. The case k = 1 is trivial as

(3) ∈ W
(3)
3,1 , and so 1

3
(3) = (1) = 11 ∈ V

(3)
3,1 . The case k = 3 is also easy, as 13 ∈ W

(3)
9,3 .

We now proceed with the inductive step, so we may suppose k ≥ 5 (i.e., n ≥ 15). Note

that n − 6 = 3(k − 2). Hence, by induction, we know that 1k−2 ∈ V
(3)
n−6,k−2 (this is well

defined for n > 6). By Lemma 7.4.6, f1(1k−2) ∈ V
(3)
(n−6)+2·3·1,(k−2)+1 = V

(3)
n,k−1. By appending

a zero to f1(1k−2) (and overloading notation), we may write that f1(1k−2) ∈ V
(3)
n,k−1.

Let wi := ei,k+ e k−1
2

−i,k+ ek−1,k for i ∈ {0, . . . , k−1
2
}, and let vi := e0,k+ e k−1

2
+i,k+ ek−1−i,k

for i ∈ {1, . . . , k−1
2

− 1} (note that this set is only non-empty as k ≥ 5). One easily verifies

that wi, vi ∈ W
(3)
n,k for every i.
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We claim that

k−1
2∑︂

i=0

wi +

k−1
2

−1∑︂
i=1

vi =

(︃
k + 1

2
2 2 · · · 2

k + 1

2

)︃
=: y.

Indeed, e0,k appears in exactly k+1
2

vectors : every vi (of which there are k−1
2

− 1), as

well as w0 and w k−1
2

. Similarly, ek−1,k appears in exactly k+1
2

vectors : every wi. Every other

coordinate appears exactly twice (possibly, in the same vector). If 0 < j ≤ k−1
2

, ej,k is a term

only in wj and w k−1
2

−j. If k−1
2

< j < k − 1, ej,k appears only in vj− k−1
2

and vk−1−j.

Hence, we deduce that y ∈ Vn,k. Thus, to show that 1k ∈ Vn,k, it suffices to note that

k−3
2

· f1(1k−2) + y = k+1
2

· 1k (note that k−3
2

≥ 0).

We now proceed with the inductive step.

Lemma 7.4.9. Let n, k, i ∈ N. If n is odd and n = 3k + 6i, then 1k ∈ Vn,k.

Proof. The proof is similar to part of the proof for the even case.

If 3k + 6i ≥ 4k − 3, then the result follows from Theorem 7.4.7. Hence, we may assume

that 3k + 6i ≤ 4k − 3, and so i ≤ k
6
. In particular, k − 2i > 0.

By Lemma 7.4.8, 1k−2i ∈ V
(3)
3(k−2i),k−2i. By Lemma 7.4.6, we then have that f2i (1k−2i) ∈

V3(k−2i)+2·3·2i,(k−2i)+2i = Vn,k.

As n = 3k + 6i ≥ 24i ≥ 4 · 2i, we have by Theorem 7.4.7 that 12i ∈ Vn,2i. By appending

zeroes to it, we have (with overloaded notation) that 12i ∈ Vn,k.

Thus, 1k = f2i (1k−2i) + 12i ∈ Vn,k, as desired.

Here, we do not prove the cases for the other modulo classes. For these cases, the situation

gets more complex : we need to be able to consider covers with at least 5 radii. This can

be proved similarly to Theorem 7.4.4. Here, we take A such that every column is a vector of

W
(3)
n,k , and we set y ∈ Rk defined by y(r) = 3(2r + 1) − n for r ∈ {0, . . . , k − 1} (this is the

negative of the choice in the proof of Theorem 7.4.4, except for the one special value). We
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obtain

1⊤
k y =

k−1∑︂
r=0

(3(2r + 1)− n) = 3k2 − kn < 0

if n > 3k, and

w · y =
k−1∑︂
r=0

w(r) · y(r) = 3
k−1∑︂
r=0

(2r + 1)w(r)− n

k−1∑︂
r=0

w(r) = 3n− 3n = 0.
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8
Conclusion

In this thesis, we have presented five manuscripts on problems in structural graph theory

and graph searching. Four of these either directly concern, or are inspired by, problems on

the structure of graphs when forbidding a minor.

We have worked on two related relaxations of Hadwiger’s conjecture. In the first, Chap-

ter 2, we showed that graphs excluding a sparse bipartite graph on t vertices have a vertex

of degree at most |V (H)| − 2, and in particular are (|V (H)| − 1)-colourable. This is the

bound suggested by Hadwiger’s conjecture, when H = Kt. This is one of the only classes of

graphs H for which this relaxation, the H-Hadwiger conjecture, is known to be true. As our

method only uses degeneracy, it further extends to list colouring and DP-colouring, other

frequently studied, and more difficult, types of vertex colourings.

In the second, Chapter 3, we have studied a similar problem, in which we forbid all

graphs H on t vertices and a fixed number of edges. Precisely, we have shown that if a graph
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have average degree at least t− 1, then we can find a minor on t vertices and a proportion

of
√
2 − 1 − o(1) of possible edges. We have further showed that this cannot be improved

beyond 3
4
+ o(1).

Hadwiger’s conjecture is considered one of the most important, and difficult, open prob-

lems in graph theory. Although we have shown that our methods on their own have some

limits, the methods used in Chapters 2 and 3 may be helpful in approaching Hadwiger’s

conjecture.

In Chapter 4, we proved for graphs of bounded maximum degree (and more generally,

graphs forbidding a topological minor) a modification of Menger’s theorem in which the

obtained paths are not only pairwise disjoint, but non-adjacent. This work was originally

motivated by recent (now disproved) conjectures in coarse graph theory, where the objective

is to study the large-scale structure of graphs. The result we proved is also on its own a

quite natural variant of Menger’s theorem. It might also be useful in problems related to

induced minors.

We then studied two games on graphs, cops and robbers in Chapter 5, and graph burning

in Chapter 6.

In Chapter 5, we showed new upper bounds on the cop number when excluding a minor.

Our bounds often improve, sometimes significantly (up to a factor of 4), the previous bounds,

which had been proved by Andreae. For example, we have improved bounds on the cop

number of K2,t-minor-free graphs and K3,t-minor-free graphs by a factor of 2. Notably,

motivated by a large literature on the cop number in relation to graph topology, we proved

an upper bound of 6 on the cop number of linklessly embeddable graphs. The most promising

further direction in this area of research is to improve the method by forbidding multiple

graphs as minors, especially when they are very similar (which is often the case for obstruction

sets, such as in the case of the Petersen family for linklessly embeddable graphs).

Finally, in Chapter 6, we studied the Burning Number Conjecture, which is considered

the most important problem in the area of graph burning. We proved that this conjecture
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holds asymptotically. Our probabilistic methods are quite different than the previously

used, most inductive, methods. This new approach might be also useful in, for example,

proving stronger bounds on the burning number for specific classes of graphs, showing that

the Burning Number Conjecture holds for sufficiently large graphs, and in tackling other

covering and metric problems. In the discussion section, we have also studied fractional

burning, a variant that our approach naturally suggests.
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