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Abstract

Explicit engineering of reward functions for given environments has been a major hin-

drance to reinforcement learning methods. While inverse reinforcement learning is a

solution to recover reward functions from demonstrations only, these learned rewards

are generally heavily entangled with the dynamics of the environment and therefore

not portable or robust to the changing environments. Modern adversarial methods have

yielded some success in reducing reward entanglement but only for a single policy. Op-

tions provide a framework to obtain better reward generalization through breaking prob-

lems into task-specific small policies, which leads to better generalization of the under-

lying policy. In this work, we leverage Adversarial Inverse Reinforcement Learning to

create a novel algorithm that learns disentangled rewards with a policy over options. We

show that this method has the ability to create portable reward functions in highly com-

plex transfer learning tasks, while yielding results in continuous control benchmarks that

are comparable to those of the state-of-the-art methods.
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Abrégé

L’ingénierie explicite des fonctions de récompense pour des environnements donnés a

été un obstacle majeur pour les méthodes d’apprentissage par renforcement. Bien que

l’apprentissage par renforcement inverse représente une solution pour récupérer les fonc-

tions de récompense uniquement à partir de démonstrations, ces récompenses apprises

sont généralement fortement intriquées avec la dynamique de l’environnement et donc

non portables ou robustes dans des environnements dont les dynamiques sont changées.

Les méthodes adversariales modernes ont réussi à réduire l’intrication des récompenses,

mais seulement pour une seule politique. Les options fournissent un cadre pour obtenir

une meilleure généralisation des récompenses en décomposant les problèmes en petites

politiques spécifiques à la tâche. Cela conduit ainsi à une meilleure généralisation de la

politique sous-jacente. Dans ce travail, nous tirons parti de l’apprentissage par renforce-

ment inverse adversarial pour créer un nouvel algorithme qui apprend les récompenses

démêlées avec une politique sur les options. Nous montrons que cette méthode a la ca-

pacité de créer des fonctions de récompense portables dans des tâches d’apprentissage de

transfert très complexes, tout en donnant des résultats comparables à ceux des méthodes

de pointe dans les environnements continus classiques.
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Chapter 1

Introduction

Reinforcement learning (RL) algorithms have been used to learn policies in complex en-

vironments, but they usually require designing suitable reward functions for successful

learning. This can be difficult and may lead to learning sub-optimal policies with unsafe

behavior [2] in the case of poor engineering. Inverse Reinforcement Learning (IRL) [1,27]

can facilitate such reward engineering through learning an expert’s reward function from

expert demonstrations.

IRL, however, comes with many difficulties and the problem is not well-defined be-

cause, for a given set of demonstrations, the number of optimal policies and correspond-

ing rewards can be very large, especially for high dimensional complex tasks. Also,

many IRL algorithms learn reward functions that are heavily shaped by environmen-

tal dynamics. Rewards learned on such reward functions may not remain optimal with

slight changes in the environment. Adversarial Inverse Reinforcement Learning (AIRL)

[16] generates more generalizable policy learning with environmentally disentangled reward

functions that are invariant to the environmental dynamics. The reward and value func-

tion are learned simultaneously to compute the reward function which depends only on

states. An instance of a transfer learning problem with changing dynamics is where the agent

learns an optimal reward function in one environment and then transfers it to an envi-

ronment with different dynamics. A practical example of this transfer learning problem
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would be teaching a robot to walk with some mechanical structure, and then generalize

this knowledge to perform the task with differently sized structural components.

In complex tasks with many demonstrations that can often be explained by several

different reward functions, methods such as Maximum Entropy IRL and GAN-Guided

Cost Learning (GAN-GCL) tend to overfit [14]. One way to help solve the problem of

overfitting is to break down a policy into small option (temporally extended action) poli-

cies that solve various aspects of an overall task. This method has been shown to be

able to create policies that transfer better when the task changes [35, 36]. Methods such

as Option-Critic have implemented modern RL architectures with a policy over options

and have shown improvements in generalization compared to usual RL algorithms [3].

OptionGAN [20] also proposed an IRL framework for a policy over options and showed

some improvement in one-shot transfer learning tasks, but it is not able to construct dis-

entangled rewards.

In this thesis, we introduce Option-Inverse Reinforcement Learning (oIRL) [40], to

investigate transfer learning with options. Following the AIRL framework, we propose

an algorithm that computes disentangled rewards to learn joint reward-policy options,

with each option having rewards that are disentangled from environmental dynamics.

The proposed approach is also relatively easy to implement. The rewards produced are

portable in transfer learning tasks. We evaluate this method in a variety of continuous

control tasks in the Open AI Gym environment using the MuJoCo simulator [6, 38]. We

also experiment with grid worlds constructed with MiniGrid [7]. Our method shows

improvements in terms of performance on a variety of transfer learning tasks, while still

performing better than benchmarks for standard continuous and non-continuous control

tasks.

The main impact we see for this work is in applications to robotics tasks. Options

have already been used in previous work to provide good control ability in robotics tasks

[23,25]. Combining this framework with the ability to learn generalizable rewards should

further increase the ability to transfer knowledge in robotic tasks.
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The thesis is structured as follows. In Chapter 2 we provide necessary background on

sequential decision making, including reinforcement learning. In Chapter 3 we review

background on deep learning architectures. Chapter 4 provides the main contribution

of the thesis. Experimental results are presented in Chapter 5. Finally, in Chapter 6 we

provide conclusions and discuss future work.
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Chapter 2

Sequential Decision Making

In this chapter, we provide background on reinforcement learning, including tabular RL,

policy gradient methods, and temporal abstraction. We will also give some background

on inverse reinforcement learning.

2.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework used to model sequen-

tial decision making. It is a process, where at each time step, an agent that is at a state

chooses an action, which causes a transition to a new state. The agent gains reward at each

transition by interacting with the environment. The transition to the next state and the

reward can be stochastic.

An MDP is defined as a tuple 〈S,A, r,P〉, where S is a set of states that the agent can

be in, A is a set of actions that the agent can take at each state, r : S × S × A → R is

real-valued reward function, P(s′|s, a) is the probability of transitioning to state s′ ∈ S

given that the agent is in state s ∈ S and takes action a ∈ A.

By definition, an MDP has the Markov property: the transitions are only conditioned

upon the current state and action, and not on past history. This is more formally stated
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as,

P (st+1|st, at) = P (st+1|st, at, st−1, at−1, . . . , s0, a0). (2.1)

2.1.1 Policies

A policy π is a probability distribution that maps states to actions. It can be thought of as

the agent’s behavior as it traverses the MDP. It is defined formally as π : S ×A → [0, 1]. A

stochastic policy is a conditional probability distribution for actions given states π(a|s).

The main goal in reinforcement learning is to find a policy that is optimal for the given

environment that the agent interacts with, π∗. We say that a policy is optimal when it is

better in terms of its expected reward than all other policies.

2.1.2 Value Functions

In reinforcement learning methods, we wish to define some metrics for comparing differ-

ent policies. The value function of a state s is the expected discounted sum of rewards

(return) for a given policy π. It is defined as,

Vπ(s) = Eπ[
∞∑
t=0

γtrt|s0 = s]. (2.2)

The scalar γ ∈ [0, 1] is a discount factor. It is used to define the importance of current

rewards compared to future rewards. If γ is 1, we call this an un-discounted process

where current and future rewards have the same importance. The smaller γ is, the more

an agent values current rewards compared to future rewards (more discounting).

The optimal value function is the value function with the highest value at all states:

V ∗(s) = maxπ Vπ(s).

Since it is difficult to look at the return in terms of the entire future (horizon), the

Bellman equation [5] defines the value function recursively in terms of value functions of
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the next state as,

Vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)[r(s, s′, a) + γVπ(s′)]. (2.3)

We can additionally define the state-action value function as, Qπ(s, a) = Eπ[
∑∞

t=0 γ
trt|s0 =

s, a0 = a], where the agent’s initial action a is allowed to deviate from policy π. The

corresponding Bellman equation is defined as,

Qπ(s, a) =
∑
s′∈S

P (s′|s, a)[r(s, s′, a) + γVπ(s′)]. (2.4)

2.2 Learning Value Functions

While the Bellman equations provide a framework to compute value functions when a

model of the environment is known, such a model can be hard to estimate. Ideally, an

agent should be able to improve these value function estimates and its policy directly, as

it explores the environment. A simple method to do this takes a Monte Carlo approach.

In this approach, trajectories are sampled and then the average of the discounted sum of

rewards for each state is used to estimate the state value function.

Temporal difference learning [33] allows the agent to change its value function esti-

mates after each step of experience, rather than waiting for the end of a trajectory. Q-

learning [43] can be used to learn value estimates and improve the policy at the same

time. We now briefly review all these methods. We would like to note that we assume in

these two algorithms (as we are describing them next) that we have a sufficiently small

and finite set of states and actions. This is called the tabular setting.

2.2.1 Temporal Difference (TD) Learning

One strategy to learn value functions requires utilizing the Bellman equations to mini-

mize the difference of the estimated state value function between two consecutive time
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steps in a trajectory [33]. In the Bellman equation for the state value function (2.3), the

value of the next state is an expectation over all possible states. The agent is able to sam-

ple a state from that distribution through its interaction with the environment, without

explicitly computing the transition probabilities between the two states. Methods that do

not explicitly compute the transition probabilities are referred to as model free.

Given a sampled state s′ from the agent acting in the environment, the error we wish

to minimize is the Temporal Difference error defined as,

TD-Error = r(s, s′, a) + γVπ(s′)− Vπ(s). (2.5)

The TD-learning algorithm is described in Algorithm 1. The termination condition is

typically either a maximum number of time steps, or the fact that the changes in the

value function fall below a pre-specified threshold. The learning rate α ∈ (0, 1) controls

the speed of the learning algorithm and is a hyper-parameter that needs to be optimized

for best results.

Algorithm 1 Tabular TD-Learning

Input: Initial V (s),Learning Rate: α
1: repeat
2: s← s0

3: while s′ is not terminal do
4: a← π(a|s)
5: Observe s′, r from applying a on environment
6: V (s)← V (s) + α(r + γV (s′)− V (s))
7: s← s′

8: end while
9: until Termination condition is met

2.2.2 Q-Learning

Q-learning [43] uses one policy to obtain trajectories from the environment and then uses

those trajectories to improve the policy and estimate the state-action value function. The

Q-learning algorithm is outlined in Algorithm 2. The learning rate and termination condi-
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tion are like in TD. The policy used to generate actions usually takes the action currently

estimated to have the highest value (also called greedy action) with the highest proba-

bility, and ensures that all actions are taken with some non-zero probability. This can

be ensured, for example, by taking the greedy action with probability (1 − ε) and a uni-

formly random action with probability ε. This approach is called ε-Greedy policy. There

are many strategies used to randomize action choices.

Algorithm 2 Tabular Q-learning

Input: Initial Q(s, a),Learning Rate: α
1: repeat
2: s← s0

3: while s′ is not terminal do
4: a← ε-Greedy Policy from Q
5: Observe s′, r from applying a on environment
6: Q(s, a)← Q(s, a) + α(r + γmaxa′ Q(s′, a′)−Q(s, a))
7: s← s′

8: end while
9: until Termination condition is reached

2.3 Function Approximation

As stated, the algorithms discussed previously operate in the tabular setting. Since the

state space is finite and sufficiently small, we can think of the state s as an index into a

vector of values. This is highly impractical for a few reasons. In this setting, we assume

that there is no information sharing between states, although in many cases states can be

similar to each other, and sharing information is desirable. Also, state spaces can be very

large and are therefore impossible to handle in the tabular setting. For example, in an

arcade game, every possible combination of pixels that makes up every possible frame in

the game would be considered a different state. Any single dimension is continuous in

this system.

It is, therefore, useful to learn a function that takes state or action features as input

and returns approximate state values. We can have parameterized state value and state-
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action value functions Vθ(s) and Qθ(s, a) respectively. Instead of memorizing state values

for every input, we learn a mapping for these values which can then predict values for

unseen states. This greatly speeds up the training process while the derivation of many

methods remains similar to the tabular setting.

2.4 Learning policies with policy gradients

Policy gradient methods [34, 44] learn parameterized policies directly instead of first

learning value functions and then optimizing policies. These methods typically learn

a parameterized stochastic policy πθ(a|s). This set of methods is beneficial when value

functions are difficult to approximate.

2.4.1 REINFORCE

REINFORCE [44] is a policy search method that learns a policy directly from sampled tra-

jectories. The policy is then updated using an estimate of the gradient with respect to a

specific loss objective. The objective, in this case, is the expected cumulative discounted

reward,

J(θ) = Eτ,πθ [
T∑
t=1

r(st, at)|s0], (2.6)

where T is the trajectory length and τ is a trajectory. We will also denote G(τ) as the

expected discounted return for a trajectory τ . Since we have an objective, we can now
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take the gradient to obtain a gradient ascent update rule for the policy parameters θ,

∇θJ(θ) = ∇θEτ,πθ [G(τ)]

= ∇θ

∫
τ

P (τ |πθ)G(τ)dτ

=

∫
τ

∇θ

(
P (τ |πθ)G(τ)

)
dτ

=

∫
τ

(
G(τ)∇θP (τ |πθ) +∇θG(τ)P (τ |πθ)

)
dτ

=

∫
τ

( G(τ)

P (τ |πθ)
∇θP (τ |πθ) +∇θG(τ)

)
P (τ |πθ)dτ.

(2.7)

We then apply a log derivative trick after factoring out P (τ |πθ). This is a rule which states
∇θP (x|θ)
P (x|θ) = ∇θ logP (x|θ). We turn our integral into an expectation and obtain,

= Eτ,πθ
[
G(τ)∇θlog(P (τ |πθ)) +∇θG(τ)

]
. (2.8)

Now, we see that G(τ) is not a function of θ. Therefore,∇θG(τ) = 0. In the end, we have,

= Eτ,πθ
[
G(τ)∇θlog(P (τ |πθ)

]
. (2.9)

We can write out the sequence of transitions taking advantage of the Markov property

and obtain,

∇θlog
(
P (τ |πθ)

)
= ∇θlog

[
p(s0)

T−1∏
t=0

P (st+1|st, at)πθ(at|st)
]

= ∇θlog
(
p(s0)

)
+

T−1∑
t=0

∇θlog
(
P (st+1|st, at)

)
+∇θlog

(
πθ(at|st)

)
=

T−1∑
t=0

∇θlog
(
πθ(at|st)

)
,

(2.10)
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where p(s0) is the probability of starting in state s0. The one-step equivalent removes the

summation and is therefore

∇θJ(θ) = Est,πθ
[
G(st)∇θlog(πθ(at|st))

]
. (2.11)

We can now optimize the policy directly with gradient ascent, using the update rule as,

θk+1 = θk + α∇θlog
(
πθk(at|st)

)
G(st), (2.12)

where k is the iteration of the algorithm.

2.4.2 Policy Gradient

Policy gradient methods [34] optimize the parameterized policy πθ using gradient ascent

just as we saw in REINFORCE. Instead of using the discounted return over an entire

trajectory, we can use value function estimates learned through any estimation method,

such as TD or Monte Carlo. Taking the same ideas from the derivation of REINFORCE,

we must maximize,

ρ(st) =
∑
a∈A

πθ(a|st)Qπθ(st, a) = Vπθ(st). (2.13)

Taking the gradient of this objective results in

∇θVπθ(st) = ∇θ

∑
a∈A

πθ(a|st)Qπθ(st, a)

=
∑
a∈A

[
∇θπθ(a|st)Qπθ(st, a) + πθ(a|st)∇θQπθ(st, a)

]
=
∑
a∈A

[
∇θπθ(a|st)Qπθ(st, a) + πθ(a|st)∇θ(r(st, a) + γ

∑
s′∈S

P (s′|s, a)Vπθ(s
′))
]

=
∑
a∈A

[
∇θπθt(a|st)Qπθ(st, a) + πθ(a|st)γ

∑
s′∈S

P (s′|s, a)∇θVπθ(s
′)
]
.

(2.14)
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If we unroll
∑

a∈A∇θπθ(a|st)Qπθ(st, a), it becomes apparent that,

∇θVπθ(st) =
∑
x∈S

∑
s∈S

γkP (st → x, k, πθ)
∑
a∈A

∇θπθ(a|x)Qπθ(x, a), (2.15)

where P (s → x, k, πθ) denotes the probability of going from s to state x in k steps under

the policy πθ.

If we wish to examine this gradient from the initial state, it is helpful to define the

stationary distribution,

dπθ(s) =
∞∑
k=0

P (st → s, k, πθ), (2.16)

which is the discounted weighting of states encountered if starting at initial state s0. We

now have a gradient,

∇θVπθ(st) =
∑
st∈S

dπθ(st)
∑
a∈A

∇θπθ(a|st)Qπθ(st, a). (2.17)

It is difficult and expensive to take the sum over all actions in the gradient as the action

space becomes large. We can perform the following derivation by introducing a log to

reduce the summation over action gradients to an expectation, which allows us to sample

actions instead of calculating the gradient for every action,

∇θVπθ(st) =
∑
st∈S

dπθ(st)
∑
a∈A

πθ(a|st)
πθ(a|st)

∇θπθ(a|st)Qπθ(st, a)

=
∑
st∈S

dπθ(st)
∑
a∈A

πθ(a|st)∇θ
πθ(a|st)
πθ(a|st)

Qπθ(st, a)

=
∑
st∈S

dπθ(st)
∑
a∈A

πθ(a|st)∇θlog
(
πθ(a|st)

)
Qπθ(st, a).

(2.18)

In Equation 2.18, we applied the same log of a derivative trick as seen in Equation 2.8 by

introducing πθ(a|st)
πθ(a|st) . This results in the gradient,

∇θVπθ(st) =
∑
st∈S

dπθ(st)Ea∈A
[
∇θlog

(
πθ(a|st)

)
Qπθ(st, a)

]
. (2.19)
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We can also add a baseline (B) to reduce variance. The state-value function is commonly

used as a baseline. Policy gradient with a baseline takes on the form,

∑
st∈S

dπθ(st)Ea∈A
[
∇θlog

(
πθ(a|st)

)
[Qπθ(st, a)−B]

]
. (2.20)

Sometimes it is useful to learn an estimate of the value function and use sampled state-

action pairs to update the gradient. If we have a sampled trajectory and an estimate of

the value function at time step t, Q̂t, we end up with the objective,

J(θ) = Et
[
∇θlog(πθ(a|s))Q̂t(s, a)

]
. (2.21)

2.4.3 Actor-Critic

As described previously, it is useful to learn both an estimate of the value function and

the policy. Actor-critic algorithms [9] maintain two gradients, one for the policy, similar

to REINFORCE as ’the actor’, and one for the estimate of the value function as ’the critic’,

using a method like TD. The gradient of the actor is described in the previous section

(Equation 2.19) and the gradient of the critic is approximated as,

∇βQβ(s, a) = ∇β

(
R(s, a) + γEs′∼P (s′|s,a)[V (s′)−Qβ(s, a)]

)
, (2.22)

where our state-action value function is parameterized by β. In the on-policy setting, we

simply train using samples taken by taking actions according to the current policy in the

environment. The resulting algorithm is given in Algorithm 3. Note that Qβ does not

actually have to be the exact state-action value function, and in particular can include an

action-independent baseline, for the purpose of reducing variance. A popular choice is to

use the advantage function,

A(s, a) = Q(s, a)− V (s). (2.23)
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Algorithm 3 Online Actor Critic with Q-value function

Input: Initial Qβ(s, a), πθ,Learning Rate: α1, α2

1: repeat
2: s← s0

3: while s′ is not terminal do
4: a← πθ(a|s)
5: Observe s′, r from applying a on environment
6: β ← β + α1((r + γV (s′)−Qβ(s, a))∇βQβ(s, a))
7: θ ← θ + α2∇θlogπθ(a|s)Qβ(s, a)
8: s← s′

9: end while
10: until Termination condition is reached

2.4.4 Proximal Policy Optimization

In Proximal Policy Optimization [29], we have a Monte Carlo REINFORCE style policy

gradient. We also use an estimate of the advantage function as the value function.

We set up a probability ratio between the new and old parameterized policy as ρt(θ) =

πθ(a|s)
πθold

(a|s) . It is easy to see that if we maximize this objective without constraint it would

lead to large policy updates. PPO modifies this object and the resulting optimization

problem is

JCLIP(θ) = Eτ
[
min(ρt(θ)Ât(st, at), clip(ρt(θ), 1− ε, 1 + ε)Ât(st, at))

]
, (2.24)

where ε is a hyper-parameter. In this objective, we clip the probability ratio, which pre-

vents ρt from moving outside of [1 − ε, 1 + ε] at each update. The lower bound is the

unclipped objective.

The advantage function is estimated using Generalized Advantage Estimation (GAE)

[28] as,

Ât =
T∑
i=0

(γλ)iδt+i, (2.25)

where δt+i = −V (st) + rt + γrt+1 + · · ·+ γV (st+i). This method to estimate the advantage

reduces the variances of updates.
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2.5 Imitation Learning

Humans learn many behaviors by observing a demonstrator acting optimally and then

imitating this behavior. In RL, this concept is captured by imitation learning algorithms[4].

In the imitation learning setting, an agent observes a set of state-action trajectories

from an expert demonstrator (who we assume is acting according to the optimal policy).

We let TD = {τE1 , τE2 , . . . , τEn } be the state-action trajectories of the expert, where τEi =

{s0, a0, s1, a1 . . . , sk, ak}. We wish to learn the policy of the expert by leveraging these

demonstrations.

2.5.1 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) [1, 27] is an imitation learning method where the

agent first recovers the expert’s reward function and then learns its own optimal policy

using the estimated expert reward function. IRL algorithms maintain an estimate of the

reward function r̂(s, a) and update this estimate at each iteration.

In IRL, it is assumed that the expert acts optimally with respect to its reward, i.e.,

EπE

[∑
t

γtr̂ (st, at)

]
≥ Eπ

[∑
t

γtr̂ (st, at)

]
∀π, (2.26)

where πE is the optimal expert policy, π is any policy.

The agent learns an optimal policy to maximize EπA
[∑∞

t=0 γ
tr̂ (st, at)

]
, where πA is

the agent’s policy. The reward function can be a parameterized function approximator

rθ(st, at).

Another interpretation of IRL is solving the maximum likelihood problem,

max
θ

Eτ∼D[log pθ(τ)], (2.27)

with pθ(τ) ∝ p(s0)
∏T

t=1 p(st+1|st, at)eγ
trθ(st,at). We are learning a parametrized reward

function rθ(st, at) in this formulation. Another interpretation of pθ(τ) in IRL for arbitrary

15



cost function cθ(τ) is based off a Boltzmann distribution where the energy model is given

by

pθ(τ) =
1

Zθ
exp(−cθ(τ)), (2.28)

where Zθ is the intractable partition function defined by the integral
∫
τ

exp(−cθ(τ)) [13].

2.5.2 Reward Ambiguity

In Fu et al. [16], the authors showed why IRL methods fail to learn robust reward func-

tions, due to the problem of reward ambiguity described below.

Given an arbitrary function Φ : S → R, in Ng et al. [26] it is shown that only for the

reward function transformation,

r̂(s, a, s′) = r(s, a, s′) + γΦ(s′)− Φ(s), (2.29)

the optimal policy will remain the same. In IRL, we only learn rewards from demonstra-

tions of the agent following the optimal policy, and therefore IRL cannot disambiguate

between reward functions within the above transformation types.

The resulting shaped rewards are not robust to changes in transition dynamics [16].

To show this, Fu et al. first defines MDPs M and M ′ that both have the same reward

function but have differing transition dynamics T and T ′ respectively.

Suppose that we perform IRL with an algorithm that finds a shaped reward r̂(s, s′, a)

under M with Φ 6= 0. Now we have MDPs M and M ′ where if we change the transition

model, we break policy invariance onM ′. To simplify, let’s say that we have deterministic

dynamics (s, a) → s′ = T (s, a) and state-action rewards. We can therefore write the

reward transformation as r̂(s, a, s′) = r(s, a, s′) + γΦ(T (s, a)) − Φ(s). By changing the

dynamics T to T ′ such that T (s, a) 6= T ′(s, a), the reward r̂(s, a) is not policy invariant for

M ′.
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2.5.3 Disentangled Rewards

Disentangled Rewards refer to reward functions r∗θ(s, a, s
′) such that under all possible dy-

namics T ∈ T , the optimal policy computed with respect to the reward function is the

same. Hence, the reward is disentangled from the dynamics.

2.6 Temporal Abstraction

Options [35] are a mathematical framework for hierarchical reinforcement learning. An

agent now has a higher-level policy, a policy over options, denoted by πΩ, which chooses

among multiple option policies (denoted by πω). At the initial state, the agent chooses a

temporally extended option policy, and then follows this policy for a period of time until

the option terminates. The agent can then select a new option policy to follow given the

policy over options. The corresponding concept in psychology is to solve separate short

problems with a set of policies [31].

The policy over options is πΩ : S × ω → [0, 1]. An option is defined by an intra-option

policy πω : S × A → [0, 1] and a termination function βω : S → [0, 1] which gives the

probability of terminating the option policy at each state. Optionally, an initiation set

contains all the states that an option can start from Iω ⊆ S.

Options are able to break down a large task into many sub-problems and therefore

improve policy generalization and learning speed.

2.6.1 Semi-Markov Decision Processes

An intra-option policy will be executed for some number of steps depending on the state

termination probabilities. Options are applied at every timestep in the MDP, so the past

information (the option you are currently following) does affect the future and therefore

we do not have the Markov property. MDPs with options are called Semi Markov Deci-

sion Processes.
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It is useful to redefine transition probabilities in terms of options [3, 35]. At each step

we have an additional consideration, we can continue following the policy of the current

option we are in or terminate the option with some probability, sample a new option from

the inter-option policy and follow that option’s policy. We have therefore have transition

probabilities,

P (st+1, ωt+1|st, ωt) =
∑
a∈A

πω(a|st)P (st+1|st, a)((1− βωt(st+1))1ωt=ωt+1+ (2.30)

βωt(st+1)πΩ(ωt+1|st+1)),

and,

P (st+1, ωt+1|st) =
∑
ω∈Ω

πΩ(ω|st)
∑
a∈A

πω(a|st)P (st+1|st, a)((1− βωt(st+1))1ωt=ωt+1+ (2.31)

βωt(st+1)πΩ(ωt+1|st+1)),

and,

P (st+1, wt+1|st, ωt, at) = P (st+1|st, at)((1− βωt(st+1))1ωt=ωt+1+ (2.32)

βωt(st+1)πΩ(ωt+1|st+1)),

where 1wt=ωt+1 is the a probability of 1 of following option ω at timestep t+1. Termination

of an option is a Bernoulli random variable dependent on the state and option. Each

option is a stochastic distribution with actions sampled dependent on states.

We can define an option Q-function [3] as a state option value function and write out

the probability of selecting each action,

QΩ(s, ω) =
∑
a∈A

πω,α(a|s)QU(s, ω, a), (2.33)
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where QU is defined below. The state-option-action value function is an expectation over

states with a utility term U(ω, s′) that sums the probability of an option terminating or

not. If options terminate, we have the state value of the next state weighted by the next

option sampled from the policy over options. If we continue the option, we have the

value function of the next state and option. This is defined as,

QU(s, ω, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)U(ω, s′), (2.34)

where,

U(ω, s′) = (1− βω,δ(s′))QΩ(s′, ω) + βω,δ(s
′)VΩ(s′). (2.35)

2.6.2 Intra-Option Policy Gradient

We must compute a policy gradient for a single option where we can maximize the ex-

pected return of a state and option. The expected return to optimize is given as,

E[
∞∑
t=1

γt−1Rt|s0, ω0,Ω] = QΩ(s0, ωo). (2.36)

The intra-option policy gradient is similar in derivation to the previous policy gradients.

For these derivations, the intra-option policies are parameterized by α for each option,

and the option termination probabilities by δ. Taking the derivative state-option value

function yields

∇αQΩ(s, ω) =
∑
a∈A

∇απω,α(a|s)QU(s, ω, a) +
∑
a∈A

πω,α(a|s)
∑
s′∈S

γP (s′|s, a)∇αU(ω, s′). (2.37)

Expanding∇αU(ω, s′) yields,

∇αU(ω, s′) =
∑
ω′∈Ω

(
(1− βω,δ(s′))1ω′=ω + βω,δ(s

′)πΩ(ω′|s′)
)
∇αQΩ(s′, ω′). (2.38)
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Finally, it is shown that the gradient of the expected return for the initial state and option

(s0, ω0) is

∇αQΩ(s0, ω0) =
∑

s,ω∈S,Ω

µΩ(s, ω|s0, ω0)
∑
a∈A

∇απω,α(a|s)QU(s, ω, a), (2.39)

with µΩ(s, ω|s0, ω0) =
∑∞

t=0 γ
tP (st = s, ωt = ω|s0, ω0) (similar to traditional policy gradi-

ent).
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Chapter 3

Deep Learning

In this chapter, we introduce Deep Learning and the background information on using it

for RL problems. Deep learning is a set of machine learning algorithms that utilize arti-

ficial neural networks (ANNs). ANNs can learn non-linear functions by using multiple

layers to extract higher-level features from the input. This class of models is frequently

used in RL methods.

3.1 Function Approximation and Supervised Learning

In machine learning problems, we assume the presence of a data generating distribution,

which we denote as pdata and we have some samples of observations of data from this

distribution. The data is paired samples (x, y) ∼ pdata and a fundamental problem is to

learn the mapping between x ∈ X and y ∈ Y which are both of fixed size. The variable

x is frequently referred to as a set of features (frequently we reduce x to a vector x ∈ Rn).

The variable y is referred to as the label and is frequently a one-hot encoded vector when

our outputs are categorical.

The core problem in supervised learning is to learn a good mapping f : X → Y . The goal

is for every pair of points (x, y) that can possibly be generated from pdata, we want our

function to have f(x) = y.

21



In supervised learning, it is assumed that pairs (x, y) are collected from independently

and identically distributed random variables (i.i.d.). Therefore if we are given a set of

{x1, x2, . . . , xn} ∼ x data points, we can use these points as an unbiased estimator of E[X]

and therefore learn a mapping that will generalize to unseen points, not in the fixed set

but generated from pdata.

As we saw previously, tabular methods in RL provide a framework to store values for

every possible state, but as the state space becomes large we must use function approxi-

mation. The same idea applies to supervised learning frameworks. For a small fixed set of

{xi, . . . , xn} values we can store the corresponding labels (y), but as the set becomes large

we need a function approximator to learn a mapping function. The mapping function (f )

can take on a set of heuristics or a wide range of algorithms, but it is most common to

learn a function that depends on some parameters θ = {θ1, θ2, . . . , θn} with fθ : X → Y .

The core goal in machine learning methods is to learn the parameter θ which best learns

the mapping from feature to labels for all possible data generated from pdata.

3.2 Linear Modelling

We will first introduce the linear regression model, which is not actually a deep learning

model but is fundamental to understanding the concepts of deep learning. These are

simple models which learn a function f : Rn → Rm (or output R for scalar labels). Linear

models generally require a matrix of weights W ∈ R(n×m) (the learned parameters in the

case of this model), an input vector x ∈ R(n×1), and an output y ∈ Rm×1. A bias term

β ∈ Rm×1 is also usually learned. The function takes the form of

f(x) = WTx + β, (3.1)

where we wish to have f(xi) = yi for all possible point pairs (xi,yi) ∼ pdata and find the

appropriate W to achieve this.
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To solve this problem, we are generally given a size n set of data generated from pdata

denoted asD = {(xi,yi), . . . , (xn,yn)}. We then wish to minimize some arbitrary measure

of performance or loss. In the derivations we will say that f is parameterized by θ =

{W, β}. A common objective which is independent of positive or negative differences is

the mean squared error (MSE) loss,

J(θ) =
1

n

n∑
i=1

||f(xi; θ)− yi||2. (3.2)

The function has a better fit to the dataset D for lower values of the loss (but not necessar-

ily our true goal pdata as we will see later) and our optimization goal to find the optimal θ

is

θoptimal = arg min
θ

J(θ). (3.3)

3.3 Neural Networks

We have now seen simple linear functions that can represent a wide class of regression

problems, but some more complex data distributions can only be represented as nonlinear

functions. Neural networks can learn complex nonlinear functions (shown to be able to

learn any function) [17].

They are biologically inspired by the architecture of neurons in the human brain. They

receive input, combine this input with the neuron state (this is called activation) and then

learn an optimal threshold to decide when to output information. Human neurons receive

electrochemical input at dendrites, process this information in the soma, and output an

electric signal at the axon.

A neural network contains a set of stacked linear models in each layer, these are the

neurons. These neurons take any number of inputs and create an output which is a com-

position of the outputs of previous layer. Each neuron has a nonlinear activation function

which gives the output of the layer. A layer has a set of neurons that take input from the
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Figure 3.1: An example of a fully connected neural network with an output layer. Image

from: Probabilistic Deep Learning With Python, Keras and TensorFlow Probability [12].

previous layer (or initial feature values for the initial layer). This is explained in the next

section. A single neuron has the form

h(x) = σ(
∑
i

wixi + b), (3.4)

where wi is the weight for input position i in this particular neuron, b is a bias term and

xi ∈ x is a vector of input values to the neuron from the previous layer. An activation

function is denoted by σ.

We can represent the output of an entire layer in a neural network as a vector xh. The

term Wh denotes a matrix of weight vectors for each neuron for the layer h. The vector

b is a vector of bias terms for each neuron in the layer. In a neural network with initial

input x0, we have,

xh = σ(Whxh−1 + bh). (3.5)

Before training a neural network, it is required to choose the number of layers and the

number of neurons in each layer. If all neurons in all layers are connected to every other

neuron in the next layer, we have a fully connected neural network. The final layer is of

fixed output. A fully connected neural network is shown in Figure 3.1.
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3.3.1 Activation Functions

As described, each layer has a non-linear activation function that is applied to the output

of the neurons (the weight matrix in the layer (Wh) multiplied by an input vector x) in

every layer.

Activation functions sometimes restrict the output domain to [0, 1]n or [−1, 1]n. The

sigmoid function, denoted by σ(x), is bounded by 0 and 1 so it is often used when proba-

bility valued outputs are required. It is also smooth and easily differentiable. We will see

later how differentiable activation functions are required for gradient learning methods.

The sigmoid function is defined as,

σ(x) =
1

1 + e−x
. (3.6)

The sigmoid function has a derivative that can be found as a function of the input,

∇xσ(x) = σ(x)(1− σ(x)). (3.7)

The hyperbolic tangent function (denoted as tanh) is also smooth and differentiable

but bounded by -1 and 1. It has a similar property of having a derivative that is a function

of its input. It is defined as,

tanh(x) =
ex − e−x

ex + e−x
. (3.8)

The ReLU function is a very simple activation function which guarantees that the out-

put is larger than 0. It is defined as,

ReLU(x) = max(0, x). (3.9)

In the case of the sigmoid and tanh activation functions, the gradient becomes very

small when x is either very large or very small. This is not optimal for gradient-based

learning and increases training time (This is discussed in Section 3.4). In the case of ReLU
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activation, the gradient is large and consistent at any time the neuron is active (x > 0) in

terms of output.

The softmax activation function is applied to the entire layer output and it compares

each neuron output value to the rest of outputs in the layer. It defined as,

softmax(x)i =
exi∑n
j=1 e

xj
, (3.10)

where n is the number of outputs in the layer. The softmax function is extremely useful as

it can be interpreted as a probability with softmax(x)i = pi and
∑n

i=1 pi = 1. It can be used

as the output of a classifier to represent a probability distribution of each output over n

different classes.

3.4 Learning Deep Neural Networks

The most common method for learning the parameters in neural networks (shown thus

far as the weight values and bias terms) are gradient descent methods. Similar to gradient

descent methods used in reinforcement learning, we must define some objective to use in

our optimization problem.

We can think of our neural network as a parametric model p(y|x; θ) and optimize

using a maximum likelihood estimation (MLE) method. We are therefore using the cross-

entropy between the training data and model distribution as a cost function and take the

negative log-likelihood given by,

J(θ) = −Ex,y∼pdata [logpmodel,θ(y|x)]. (3.11)

In deep learning, we commonly use a cross-entropy loss where a log function undoes

the exponent in the softmax, therefore preventing gradients from exploding. For a vector

26



of predictions ŷ made by the model, our cross entropy loss L(y, ŷ) is defined as,

L(y, ŷ) = −
∑
i

yilog(ŷi). (3.12)

Our goal is now to optimize our model parameters using Gradient Descent .

3.4.1 Gradient Descent

Here we will formally define Gradient Descent. Given a function f(x) with input vector

x ∈ Rn, we wish to find the value of x that minimizes f(x). The gradient of f with respect

to x is a vector of first order partial derivatives which is ∇xf(x) = [ ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]. To

find the value of x, we use the Gradient Descent algorithm (described in Algorithm 4),

which iteratively takes small steps at a learning rate of α using the gradient of our objec-

tive. These steps are said to be in the direction which minimizes our objective since they

are in the direction of the gradient. Repeating this iterative procedure for a large number

of steps, we converge to our optimal x which minimizes f(x) as long as these steps are

small enough. The step size is determined by α and is used to scale the magnitude of the

change at each step.

Algorithm 4 Gradient Descent

Input: Randomly initialized x
1: repeat
2: x← x− α∇xf(x)
3: until x has converged (Termination condition is met)

Typically, in actual implementations of Gradient Descent, we say that x has converged

when at each iteration the norm of x has not changed more than some value ε. There are

many other methods that exist to determine when to stop gradient descent [10].

For a convex optimization problem, gradient descent will converge to a global mini-

mum. In non-convex optimization problems like in neural network optimization, we are

only guaranteed to converge to a local optimum for small step sizes.
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3.4.2 Differentiable Models in Neural Networks

To perform gradient descent, we must be able to take the gradient of the neural network

objective with respect to the parameters. It is possible to write a non-linear neural net-

work model as a differentiable function. Here we will show how to write a differentiable

loss function for our feed-forward neural network and take the gradient with respect to

the weights (parameters).

We will first rewrite our loss function in terms of a simple 1 layer neural network

output f(x) = σ(xTW + b), where W is a matrix of weights for neurons in the layer and

x is an input vector. The cross-entropy loss is

LW(x) = −
∑
i

yilog(f(x)i). (3.13)

To calculate the gradients of the weights, we exploit the chain rule in calculus to per-

form backpropagation [41]. This allows us to propagate the gradient from the output loss

to the first layer weights. If we want to find the gradient of the loss with respect to the

weights in our 1-layer network, we have,

∂LW(x)

∂W
=
∂LW(x)

∂f(x)

∂σ(xTW + b)

∂(xTW + b)

∂(xTW + b)

∂W
. (3.14)

It is easy now see that we can perform this chain rule computation with any number of

layers. With h layers and each layer having output fh(x) = σ(Whxh−1 + bh) we will now

find our gradient with respect to W1. We have the computation,

∂LW(x)

∂W1

=
∂LW(x)

∂fh(xh)

h−1∏
i=1

(∂fi(xh−i)
∂xh−i

)∂f1(x1)

∂W1

, (3.15)

where Wh is the weight matrix of the h-th layer.

We perform a similar process calculating gradients with respect to the weight vectors

of each layer. Each layer requires gradients calculated for the following layer, so we can
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go backward through our network and calculate the gradient for all weights. In turn, we

find the optimal weights to minimize the loss function and therefore increase the fit of

our model to the dataset trained on.

3.4.3 Regularization

The goal in machine learning problems is to model the distribution of the generator pdata,

but we are only given a sample dataset that is generated by this generator. If we make

our model very complex, we can perfectly model our dataset but may not generalize well

to unseen data produced from the generator. With a very large number of layers and

neurons, we will create a highly complex model. It is, therefore, an important issue to

decide on an appropriate level of model complexity in a neural network.

In machine learning, we generally separate data into a training, validation, and testing

set. We train the model parameters using the training set. After training, we use our

models to make predictions on the validation set to determine how well we generalize,

and then finally report model performance on a small testing set.

A model fθ has low bias on a dataset D (same notation as used previously) if the

predictions made by the model (ŷi = fθ(xi)) are very good in terms of being accurate with

respect to every data point yi. High bias is the opposite (predictions are far away from the

labels).

If we retrain our model on a smaller subset of the training set (by removing a few ex-

amples from our initial training set) and the parameters of the model have large changes

after training, then our model is high variance. Complex models that are sensitive to

small changes in the training set and are said to be over-fitting. Models that over-fit do

not generalize well to unseen data. On the other hand, models that under-fit generally

have high bias and therefore generalize too much.

When we say that our model is complex, we are referring to the hyperparameters of

the model. These are parameters that cannot be optimized directly (such as the number

of layers in an ANN). To optimize our hyperparameters, we generally test a variety of
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models with different hyperparameters on our validation set and then pick the one with

the best performance.

Regularization also allows us to prevent over-fitting. A regularizer can control the op-

timization so we have some property that we wish to achieve. An example of a property

could be the optimal model complexity. This can be achieved by not allowing the model

to use every input feature (therefore resulting in a less complex model).

,The most commonly used regularizer is called weight decay. This adds an L1 or L2

regularization term to the loss and has been heavily studied in statistics literature [37].

The L2 regularization term is the squared norm of the parameter vector is

LL2-norm =
∑
i

θ2
i . (3.16)

The L1 regularization term is the sum of the absolute values of every parameter θi denoted

as LL1-norm =
∑

i|θi|. The resulting cross entropy loss is

J(θ) = −
∑
i

yilog(fθ(xi)) + λ
∑
j

θ2
j , (3.17)

where hyper parameter λ determines the weight of the L2 regularization. The result of

regularization is a model that will not learn very large weight values.

Another very simple way of performing regularization is to introduce dropout to a

network [32]. This is a method in which we randomly ”drop” certain activations (add

0 in place of the activation output) with some probability. This results in an increase

in model robustness. Two neurons cannot coordinate with each other explicitly and the

model must learn a more redundant representation.

3.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [18] is a method that uses neural networks in

an adversarial framework to estimate a generative model.
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In the generative modelling problem, we have some data generator x ∼ pdata and

access to a dataset of samples from this generator X ∼ pdata with x ∈ X . We wish to learn

a model which approximates the distribution of pdata and can be used to generate samples

which come from that distribution such that Y ∼ pmodel and X is very close to Y .

In the GAN framework, two models are trained simultaneously. We have a generative

model G that is used to estimate the given training dataset distribution and a discrimi-

native model D that estimates the probability that a sample came from the training data

instead of G.

Given data set x, we must learn the generator distribution pg over x. They prior distri-

bution over input noise variables p(z). Given these input noise variables, a parameterized

neural network is learned Gθg(z), which maps these input noise variables to the data set

space. A 2nd parameterized neural network is learned DθD(x), which learns to estimate

the probability that x came from the data set and not the generator pg.

In the two-player adversarial training procedure, D is trained to maximize the proba-

bility of assigning the correct labels to the dataset and the generated samples. G is trained

to minimize the objective log(1 −DθD(GθG(z))), which causes it to generate samples that

are more likely to fool the discriminator. The dual objective is

Ex∼pdata [log DθD(x)] + Ez∼p(z)[log(1−DθD(GθG(z)))]. (3.18)

At the learned global optimality when pg = pdata, it is shown that the optimal discrimina-

tor for G is

D∗θD(x) =
pdata(x)

pdata(x) + pg(x)
. (3.19)
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3.6 Imitation Learning with Deep Learning

It is easy to see how neural networks can be used as function approximators for param-

eterized value functions or policies. They can also be used to learn parametrized reward

functions which makes learning a complex reward function for IRL possible.

It is possible to exploit the adversarial nature of a GAN for IRL by feature expectation

matching with deep neural networks. This technique is known as Generative Adversarial

Imitation Learning (GAIL) [21].

3.6.1 Generative Adversarial Imitation Learning (GAIL)

GAIL is an imitation learning method that uses the GAN structure [21]. The discrimina-

tor takes state-action pair inputs from expert demonstrations and rollouts from a (learned)

novice parameterized policy. The discriminator is optimized with binary logistic regres-

sion to learn the of the probability that the state-action pair came from the expert or novice

policy roll-out. The probability of the state-action pair belonging to the expert demon-

stration can be used as a reward function for policy optimization. At each step, after es-

timated rewards are obtained using this method, we optimize the novice parameterized

policy with respect to those rewards.

For a discriminator parameterized by θD, given sampled novice trajectories τi ∼ πθi

from our learn-able policy, the objective is

J(θD) = Eτi [∇θD log(DθD(s, a))] + EτE [∇θD log(1−DθD(s, a))]. (3.20)

We then update πθpolicy given the rewards from our discriminator probabilities (of each

state action pairs) using a policy optimization method. We can see that GAIL does not

directly recover rewards. At optimality, the discriminator will output 0.5 for all pairs.
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3.6.2 Adversarial Inverse Reinforcement Learning with Robust Rewards

We will now examine AIRL [16], an IRL method that presents concepts instrumental to

the main algorithm of this thesis.

Adversarial Inverse Reinforcement Learning (AIRL) is an adversarial IRL method that

recovers a reward function. In addition, it shows that these reward functions are robust

to changes in dynamics and are shown to be disentangled rewards.

AIRL is based on GAN-Guided Cost Learning [13], which casts the IRL MLE (Equa-

tion 2.27) objective as a Generative Adversarial Network (GAN) [18] optimization prob-

lem over trajectories. In GAN-GCL, they maximize the likelihood over trajectories in an

energy based model (Boltzmann distribution) to form a generator objective. The discrim-

inator in this GAN operates over an entire trajectory and is defined as,

Dθ(τ) =
exp(fθ(τ))

exp(fθ(τ)) + π(τ)
. (3.21)

Here we have a learned function fθ(τ) with π(τ) being precomputed (since we know

the output of our discriminator and fθ(τ)). The objective to be maximized is R̂(τ) =

log(1−D(τ))− logD(τ). It is also shown that the optimal reward function is found to be

f ∗(τ) = R∗(τ) + const when the GAN is trained to optimality. The policy π is also shown

to be optimal.

In AIRL [16], the discriminator probability Dθ is evaluated using the state-action pairs

from the generator (agent), as given by

Dθ(s, a) =
exp(fθ(s, a))

exp(fθ(s, a)) + π(a|s)
, (3.22)

where fθ(s, a) is again a learned function and π(a|s) is pre-computed. This is because

full trajectories can result in high variance estimates. It is also shown that at optimality

f ∗(s, a) = log π∗(a|s) = A∗(s, a). The rewards are therefore recoverable. The agent’s
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reward function is estimated as,

r̂(s, a) = log(1−Dθ(s, a))− log(Dθ(s, a)). (3.23)

They then propose learning a state only reward function so rewards are not shaped

and will be disentangled. To do this they modify the discriminator function in a manner

which operators on state-action-next state triplets. This is defined as,

Dθ,Φ(s, a, s′) =
exp(fθ,Φ(s, a, s′))

exp(fθ,Φ(s, a, s′)) + π(a|s)
. (3.24)

Recall the definition of Reward Ambiguity (2.5.2), with fθ,Φ having reward approxi-

mator gθ with shaping function hΦ, we can define the function as,

fθ,Φ(s, a, s′) = gθ(s, a) + γhΦ(s′)− hΦ(s). (3.25)

The introduction of this shaping term mitigates unwanted shaping on the reward approx-

imator. They then prove that they can parameterize the reward approximator only as a

function of state, gθ(s). We detail this proof in a proof sketch. If a reward approximator

is only a function of state, it is also a disentangled reward approximator with respect to

transition dynamics.

3.6.3 Proof of State Only Rewards

Here we will show that AIRL recovers a reward function that is state only. Our first step

will be to show that our discriminator function recovers the advantage function for each

(s, a) pair. This is necessary to rearrange terms correctly in our main theorem. We will also

give the definition of decomposability which is required to show relationships between

arbitrary functions of state and next state pairs.

Lemma 3.6.1 fθ,ω(s, a) recovers the advantage.
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Proof. It is known that when π = πE , we have achieved the global min of the discriminator

objective. The discriminator must then output 0.5 for all state action pairs. This results in

exp(fθ(s, a)) = πE(a|s). Equivalently we have f ∗(s, a) = log πE(a|s) = A∗(s, a). �

Definition 3.6.1 Decomposability condition. We first define 2 states s1, s2 as 1-step linked

under dynamics T (s′|s, a) if there exists a state s that can reach s1 and s2 with non-zero probability

in one timestep. The transitivity property holds for the linked relationship. We can say that if s1

and s2 and linked, s2 and s3 are linked then s1 and s3 must also be linked.

The Decomposability condition for transition dynamics T holds if all states in the MDP are

linked with all other states.

Lemma 3.6.2 For an MDP, where the decomposability condition holds for all dynamics. For

arbitrary functions a(s), b(s), c(s), d(s), if for all s and s′,

a(s) + b(s′) = c(s) + d(s′), (3.26)

and for all s,

a(s) = c(s) + consts, (3.27)

b(s) = d(s) + consts, (3.28)

where consts is a constant dependent with respect to state s.

Proof. If we rearrange Equation 3.26, we can obtain the quality a(s)− c(s) = b(s′)− d(s′).

Now we define f(s) = a(s) − c(s). Given our equality, we have f(s) = a(s) − c(s) =

b(s′)− d(s′). This holds for some function dependent on s.

To represent this, b(s′) − d(s′) must be equal to a constant (with the constant’s value

dependent on the state s) for all one-step successor states s′ from s.

Now, under decomposability, all one step successor states (s′) from s must be equal

through the transitivity property so b(s′)− d(s′) must be a constant with respect to state s.

Therefore, we can write a(s) = c(s) + const+s for an arbitrary state s and functions b and

d.
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Substituting this into the Equation 3.26, we can obtain b(s) = d(s) + consts. Now we

will show an Inductive proof that this holds for any successor state.

Let us consider for any MDP and any arbitrary functions a(·), b(·), c(·) and d(·),

a(s) + b(S(k)) = c(s) + d(S(k)), (3.29)

where S(k) is the k-th successor state reached in k time-steps from the current state. Let

us denote by T π,(k)(s, S(k)) the probability of transitioning from state s to S(k) in k steps

using policy π. Then, we can express T π,(k)(s, S(k)) recursively as,

T π,(k)(s, S(k)) =
∑
s′∈S

T π,(k−1)(s, s′)T π(s′, S(k)), (3.30)

where T π(s′, S(k)) is the one-step transition probability from state s′ to state S(k) (by defi-

nition of the Bellman operator).

Denote P (S(k)) as the probability of landing in state S(k) in k steps from any current

state. We can write P (S(k)) using (3.30) as,

P (S(k))
∑
s∈S

T π,(k)(s, S(k))µ(s), (3.31)

where µ is the state-distribution.

The unbiased estimator ŝ(k) of an unknown successor state S(k) is given by

ŝ(k)E(S(k)) =
∑
s(k)∈S

s(k)P (S(k)), (3.32)

where P (S(k)) is given in (3.31).

Now, replacing S(k) in (3.29) with its unbiased estimator ŝ(k) as given by (3.32), we

have

a(s)− c(s) = b(ŝ(k))− d(ŝ(k))
(a)
= f(k), (3.33)
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for some function f , where (a) holds since ŝ(k) depends only on k. Thus, we get a(s) =

c(s) + const. and b(s) = d(s) + const. where the constant is with respect to the state s. �

Now we have the shown relationship for arbitrary functions applied to a state and

next state are related by a constant dependent on the state. We are now going to show

that we can apply this relationship to the discriminator function and the reward estimator

to show that the reward estimator is state only.

Theorem 3.6.3 Suppose we have, for a MDP where the decomposability condition holds, then

fθ(s, a, s
′) = g(s, a) + γhΦ(s′)− hΦ(s), (3.34)

where hΦ is a shaping term from our definition of reward ambiguity. If we obtain the optimal

f ∗θ (s, a, s′), with a reward approximator g∗(s, a). Under deterministic dynamics the following

holds

g∗(s, a) + γh∗Φ(s′)− h∗Φ(s) = r∗(s) + γV ∗(s′)− V ∗(s), (3.35)

and,

g∗(s) = r∗(s) + consts. (3.36)

Proof. We know f ∗(s, a, s′) = A∗(s, a) = Q∗(s, a) − V ∗(s) = r∗(s) + γV ∗(s′) − V ∗(s) from

Lemma 3.6.1. We can substitute the definition of f ∗(s, a, s′) to obtain

g∗(s, a) + γh∗Φ(s′)− h∗Φ(s) = r∗(s) + γV ∗(s′)− V ∗(s), (3.37)

which holds for all s and s′. Now we apply Lemma 3.6.2. We say that a(s) = g∗(s) −

h∗(s), b(s′) = γh∗(s′), c(s) = r(s) − V ∗(s) and d(s′) = γV ∗(s′) and rearrange according

to Lemma 3.6.2. We therefore have our results that g∗(s) = r(s) + const and h∗(s) =

V ∗(s) + const.

Since the reward approximator is state only, the rewards are invariant to environmen-

tal transitional dynamics. It is therefore shown in AIRL that there is a state-only reward
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approximator f ∗(s, a, s′) = r∗(s)+γV ∗(s′)−V ∗(s) = A∗(s, a) where the reward is invariant

to transition dynamics and is disentangled. �

It is important to show that the rewards are disentangled to solve a certain set of

problems. These problems arise when we learn rewards in one environment and then

wish to exploit these rewards in a similar environment with similar goals but different

transition dynamics.

It is experimentally shown in AIRL that the rewards learned are highly generalizable

and therefore policy optimization is more portable to being used in new environments

with similar underlying goals. This is an important problem we wish to solve that will be

discussed in greater detail in Chapter 5.
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Chapter 4

Robust Inverse Reinforcement Learning

with Options

In this chapter, we detail the main method of this thesis. We wish to formulate an IRL

method that learns a policy over options with state-only disentangled rewards. As we

have stated, state only rewards are disentangled and therefore highly generalizable. A

policy over options is also shown to create more generalizable policies. The goal of this

method is therefore to learn a state-of-the-art generalizable reward function.

The main steps will include showing an MLE objective for Maximum Entropy hier-

archical inverse reinforcement learning (HIRL) with options. We will then define the ob-

jective and optimization criteria for the discriminator in GAN (GAN-GCL) based HIRL

and show that this is equal to the MLE objective. This shows that our algorithm is equiv-

alent to solving the Maximum Entropy HIRL problem. Finally, we will unify these two

objectives in a manner that is disentangled with respect to environmental dynamics.
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4.1 Preliminaries

We will assume we have an adversarial IRL framework with a generator that generates

trajectories from a policy over options and a discriminator for each option which takes

state-action pairs as input.

Let (s0, a0, . . . sT , aT ) ∈ τEi be an expert trajectory of state-action pairs. Define a novice

trajectory as (s0, a0, ω0 . . . sT , aT , ωT ) ∈ τπΘ,t
generated by policy over options πΘ,t of the

generator at iteration t.

We also commonly refer to the transition probabilities for a policy over options. We

refer to the same formulation as in Subsection 2.6.1.

The policy over options is parameterized by ζ , the intra-option policies by α for each

option, the reward approximator by θ, and the option termination probabilities by δ.

4.2 Overview of Derivation Steps

First, we will formulate an MLE objective for inverse reinforcement learning with a policy

over options. This will be later used to show that a GAN based objective (based on AIRL)

is equivalent to this MLE objective. We will also show the derivative of this objective for

later use in optimizing the objective with Gradient Descent.

We will then formulate a discriminator objective or our IRL problem based on a GAN.

We will show that this objective is the same as the MLE objective and then give the deriva-

tive of it.

Finally, we will show that our discriminator objective recovers state only rewards for

each option’s reward function and is, therefore, invariant to transition dynamics. Since

we have a GAN based objective we can prove this in a way similar to AIRL. This will be

followed by the main algorithm that implements this discriminator and an analysis of its’

convergence.
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4.3 MLE Objective for IRL Over Options

In this section, we will define the MLE objective for our IRL problem in a policy over

options framework. With ω0 selected according to πΩ(ω|s), we can define a maximum

causal entropy RL problem with objective maxθ Eτ∼D[log(pθ(τ))] where,

pθ(τ) ∼ p(s0, ω0)
T−1∏
t=0

P (st+1, ωt+1|st, ωt, at)er̂θ,ω(st,at). (4.1)

4.3.1 Demonstrator Option Inference

We do not know the option trajectories in our expert demonstrations, so they must be

inferred. This is a separate step that we must consider, which we will detail next.

Given the expert trajectories τ{(st, at)}Tt=0, the agent needs to infer the option sequence

{ωt}Tt=0 for each (st, at) to generate the augmented trajectories τω{st, ωt, at)}Tt=0. Also, for

ease of exposition, let us denote by τAE the set of augmented expert trajectories. In order

to solve the inference problem, we start with a parameterised policy over options, πΩ and

parameterised intra-option policies and termination functions corresponding to an option

ωt, πωt and βωt . The posterior P (ωt|s0:t, a0:t) is given by the Bayesian update,

P (ωt|s0:t, a0:t) ∝ πωt(at|st)P (ωt|s0:t, a0:t−1). (4.2)

The prediction P (ωt+1|s0:t, a0:t) can be computed as,

P (ωt+1|s0:t, a0:t) =
∑
ωt∈Ω

P (ωt|s0:t, a0:t)π̃Ω(ωt+1|ωt, st+1),

where π̃Ω(ωt+1|ωt, st+1) is given by,

π̃Ω(ωt+1|ωt, st+1) = (1− β(st+1))δωt+1,ωt + β(st+1)πΩ(ωt+1|st+1). (4.3)

Here δ is the Kronecker delta, δωt+1,ωt = 1 when ωt+1 = ωt and δωt+1,ωt = 0 otherwise.
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Now, the MAP (Maximum a Posteriori) estimator of (4.2) is computed as,

log P̂ (ωt|s0:t, a0:t)← max log πωt(at|st) + log P̂ (ωt|s0:t, a0:t−1), (4.4)

where the maximization is done with respect to the parameterized policies in (4.4). Once

the augmented trajectories τω are generated, for each given option ω, a discriminator Dω is

trained using τω and agent trajectories generated by rolling out the agent policies πωt . The

generator density function with τω is given as,

pθ(τω) ∝ p(s0, ω0)
T∏
t=0

P̂ (ωt|s0:t, a0:t)πωt(at|st)e
r̂θ,ωt

(st,at), (4.5)

where P̂ (ωt|s0:t, a0:t−1) is the inferred probability obtained by solving (4.4). The inference

algorithm is detailed in Algorithm 5.

he actual demonstrations from the expert trajectories. In particular, at any instant t,

the cross-entropy for training is

Algorithm 5 Option Inference Estimation

Input: Expert Trajectories: {τE1 , . . . , τEn } ∈ TD,Policy Parameters:(θ, ζ, δ, α), γ
1: for Expert trajectory τi ∈ {τE1 , . . . , τEn } do
2: {s0, a0, s1} ∼ τi
3: P̂ (ω0|s0:0, a0:0) = πΩ,ζ(ω|s0)
4: ω0 ∼ πΩ,ζ(ω|s0)
5: τi ∪ {ω0}
6: π̂Ω(ω1|ω0, s1) = (1− β(s1))δω1,ω0 + β(s1)πΩ,ζ(ω1|s1)

7: P̂ (ω1|s0:1, a0:0) =
∑

ω0∈Ω P (ω0|s0:0, a0:0)πΩ(ω1|ω0, s1)
8: for step t = 0, 1, . . . , T do
9: log P̂ (ωt|s0:t, a0:t)← max log πωt(at|st) + log P̂ (ωt|s0:t, a0:t−1)

10: π̂Ω(ωt|ωt−1, st) = (1− β(st))δωt,ωt−1 + β(st)πΩ,ζ(ωt|st)
11: P̂ (ωt|s0:t, a0:t−1) =

∑
ωt−1∈Ω P (ωt−1|s0:t, a0:t−1)πΩ(ωt|ωt−1, st)

12: ωt ∼ P̂ (ωt|s0:t, a0:t)
13: τi ∪ {ωt}
14: end for
15: end for
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4.3.2 MLE Objective

From (4.5), we can write the MLE objective for the agent, which is to be maximized (up

to a normalizing constant) as,

J(θ) = Eτω [log pθ(τω)] = Eτ
[

log p(s0, ω0) +
T∑
t=0

[r̂θ,ωt(st, at)+

log P̂ (ωt|s0:t, a0:t−1) + log πωt(at|st)]
]
. (4.6)

This is given by expanding the log term. Note that the first term on RHS of (4.6) does not

participate in the maximization since it is assumed a-priori and thus not parameterized.

Now we will define a loss in terms of the expected returns. Let us denote by Gτω
t the

discounted return from trajectory τω as,

Gτω
t,θ =

T∑
t′=t

γt
′−trθ,ωt′ (st′ , at′). (4.7)

The un-discounted return is

Rτω
t,θ =

T∑
t′=t

rθ,ωt′ (st′ , at′). (4.8)

Then a loss similar to (4.6) can be rewritten in terms of Rτω
t as,

J(θ) = Eτω [Rτω
0,θ] =

∫
τω

Rτω
0,θpθ(τω)dτω. (4.9)

given the expected value of a continuous probability distribution.

In the next steps, we will define a loss function function from (4.6) under deterministic

dynamics. For ease of derivations we let

Tθ(0, τω) = Rτω
0,θ +

T∑
t=0

log[P̂ (ωt|s0:t, a0:t−1)πωt(at|st)], (4.10)
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and,

∇θTθ(0, τω) = ∇θR
τω
0,θ. (4.11)

We can write out our MLE objective for our generator (J(θ)). This is defined similarly

in [16] and [13]. The full derivation is shown (with generator pθ) as,

J(θ) = Eτω∼τAE
[

log(pθ(τ))
]

= Eτω∼τAE
[
Tθ(0, τω)

]
− Zθ

≈ Eτω∼τAE
[
Tθ(0, τω)

]
− Epθ

[
Tθ(0, τω)

]
, (4.12)

where Zθ is a partition function in the formulation of p(θ) from Equation (2.28).

4.3.3 MLE Derivative

Now that we have an MLE objective, we take the gradient of it with respect to θ. This

yields,

∇θJ(θ) = Eτω∼τAE
[
∇θ log(pθ(τ))

]
= Eτω∼τAE

[
∇θTθ(0, τω)

]
−∇θZθ

≈ Eτω∼τAE
[
∇θR

τω
0,θ

]
− Epθ

[
∇θR

τω
0,θ

]
. (4.13)

We now define pθ,t(st, at) =
∫
s
t
′ 6=t,at′ 6=t

pθ(τ)dst′dat′ as the state action marginal at time t.

This allows us to examine the trajectory from step t. Consequently, we have

∇θJ(θ) = Eτω∼τAE
[
∇θR

τω
0,θ

]
− Epθ,t

[
∇θR

τω
0,θ

]
. (4.14)

We perform importance sampling over the hard to estimate generator density. We

make an importance sampling distribution µt,w(τ) for option w. We sample a mixture

policy µω(a|s) defined as 1
2
πω(a|s)+ 1

2
p̂ω(a|s) and p̂ω(a|s) is a rough density estimate trained
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on the demonstrations. We wish to minimize the DKL(πw(τ)||pω(τ)). KL refers to the

Kullback–Leibler divergence metric between two probability distributions. Applying the

aforementioned density estimates we can express the gradient of the MLE objective J as,

∇θJ(θ) = Eτω∼τAE [∇θR
τω
0,θ]− Eµt

[
pθ,t,ω(st, at)

µt,w(st, at)
∇θR

τω
0,θ

]
. (4.15)

In our policy optimization objective for a single option policy, we take the derivative of

J(α) with respect to α. Note we are writing a policy gradient in terms of the discounted

return for example (this is not necessarily used in the final algorithm). It is obtained

from (4.9) as,

∇θJ(α) = Eτω
[
Gτω

0,θ

T∑
t=0

∇α log[P̂ (ωt|s0:t, a0:t−1)πωt,α(at|st)]
]
, (4.16)

where Gτω
0,θ is found using our IRL objective for the reward function.

4.4 Discriminator Objective

We formulate the discriminator as the odds ratio between the policy and the exponenti-

ated reward distribution for option ω as in AIRL parameterized by θ. We have a discrim-

inator for each option ω and generator option policy πω,

Dθ,ω(s, a) =
exp(fθ,ω(s, a))

exp(fθ,ω(s, a)) + πw(a|s)
. (4.17)

4.4.1 Loss Formulation

For a given option ω, we define the estimated return function Rτω
0,θ, which is to be max-

imised. We can we let discriminator cost function fθ,ω(s, a) act as the state-action reward
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function for option ω. We can then think of our estimated return as,

R̂τω
t,θ =

T∑
t′=t

fθ,ωt′ (st′ , at′). (4.18)

We minimize the cross-entropy loss between expert demonstrations and generated

examples assuming we have the same number of options in the generated and expert

trajectories. We define the discriminator loss function LD as,

LD = −Eτ∼τAE [log(Dθ,ωt(st, at))]− EπΘ,t
[log(1−Dθ,ωt(st, at))]. (4.19)

The agent wishes to minimize LD to find its optimal policy. We now write a negative dis-

criminator loss (−LD) to turn our loss minimization problem into a maximization prob-

lem. This loss is defined as

−LD = Eτ∼τAE [log(Dθ,ωt(st, at))] + EπΘ,t
[log(1−Dθ,ωt(st, at))]. (4.20)

Since we have set up a maximization problem, we can let cost function inside our

discriminator be R̂τω
t,θ and we have a discriminator in the form,

Dθ,ω(st, at) =
exp(

∑T
t′=t fθ,ωt′ (st, at))

exp(
∑T

t′=t fθ,ωt′ (st, at)) + πω(at|st)
=

exp(R̂τω
t,θ)

exp(R̂τω
t,θ) + πω(at|st)

. (4.21)

4.4.2 Optimization Criteria

Note that θ parameterizes the state-action reward function estimate for option ω. The

term−LD is the negative discriminator loss. We therefore turn our minimization problem

into a maximization problem. We define our objective similar to the GAN objective from

AIRL.
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For a given option ω, we can write the reward (option return) estimator function

r̂ω,θ(s, a) to be used in our policy optimization step as,

r̂ω,θ(st, at) = log (Dθ,ω(st, at))− log (1−Dθ,ω(st, at)) .

= log

 exp
(∑T

t′=t fθ,ωt′ (st, at)
)

exp
(∑T

t′=t fθ,ωt′ (st, at)
)

+ πω(at|st)

−
log

 πω(at|st)

exp
(∑T

t′=t fθ,ωt′ (st, at)
)

+ πω(at|st)


= R̂τω

t,θ − log(πω(at|st)).

(4.22)

With
∑T

t′=t fθ,ωt′ (st, at) acting as the cost function, the discriminator’s objective and

can be defined as,

−LD = Eτ∼τAE
([

log(Dθ,ω(st, at))
]

+ Eπt
[

log(1−Dθ,ω(st, at))
])

= Eτ∼τAE

[
log

(
exp(R̂τω

t,θ)

exp(R̂τω
t,θ) + πω(at|st)

)]

+ Eπt

[
log

(
πω(at|st)

exp(R̂τω
t,θ) + πω(at|st)

)]
= Eτ∼τAE

[
R̂τω
t,θ

]
− Eτ∼τAE

[
log(exp(R̂τω

t,θ) + πω(a|st))
]

+ Eπt [log(πω(at|st))]− Eπt
[
log(exp(R̂τω

t,θ)) + πω(at|st))
]
.

(4.23)

Now, we set a mixture of experts and novice as µ̄ observations to obtain

−LD = Eτ∼τAE
[
R̂τω
t,θ

]
+ Eπt [log(πω(at|st))]− 2Eµ̄t

[
log
(

exp(R̂τω
t,θ) + πω(at|st)

)]
. (4.24)

We can take the derivative with respect to θ (state-action reward function estimate

parameter). The derivation is

∇θ(−LD) = Eτ∼τAE
[
∇θR̂

τω
t,θ

]
− Eµ̄t

[
∇θ

(
exp(R̂τω

t,θ)
1
2

exp(R̂τω
t,θ) + 1

2
πω(at|st)

)
R̂τω
t,θ

]
. (4.25)
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We can multiply the top and bottom of the fraction in the mixture expectation by the state

marginal πω(st) =
∫
a∈A πω(st, at). This allows us to write p̂θ,t,ω(st, at) = exp(L(st, ωt, at))πω,t(st).

Using this, we can derive an importance sampling distribution in our loss,

∇θ(−LD) = Eτ∼τAE
[
∇θR̂

τω
t,θ

]
− Eµ̄t

[(
p̂θ,t,ω(st, at)

µ̂t,ω(st, at)

)
∇θR̂

τω
t,θ

]
. (4.26)

Now we have shown that our discriminator loss (Equation 4.26) is of the same form as

our MLE loss (Equation 4.15).

4.5 Learning Disentangled State-only Rewards with Op-

tions

In this section, we provide our main algorithm for learning robust rewards with options.

We implement this algorithm similarly to AIRL, with a discriminator update that consid-

ers the rollouts of a policy over options. We perform this update with (s, a, s′) triplets

and a discriminator function in the form of fθ,ω(s, a, s′). This allows us to formulate the

discriminator with state-only rewards in terms of option-value function estimates to com-

pute an option-advantage estimate. Since the reward function only requires state, we

learn a reward function and corresponding policy that is disentangled from the environ-

mental transition dynamics. The discriminator function is

fω,θ(s, a, s
′) = r̂ω,θ(s) + γV̂Ω(s′)− V̂Ω(s) = Â(s, a, ω), (4.27)

where,

Q(s, ω) =
∑
a∈A

πω,α(a|s)
[
rω,θ(s, a) + γ

∑
s′∈S

P (s′|s, a)
(

(1− βδ,ω(s′))Q(s′, ω) + βδ,ω(s′)VΩ(s′)
)]
,

(4.28)

and VΩ(s) =
∑

ω∈Ω πΩ,ζ(ω|s)Q(s, ω).
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We now show that the reward approximator is state only for a policy over options in

Theorem 4.5.1. This is important because a state only reward aproximator is disentangled

with respect to transition dynamics of the environment.

Theorem 4.5.1 Suppose we have, for a MDP where the decomposability condition (Definition

3.6.1) holds,

fθ,ω(s, a, s′) = gω(s, a) + γhΦ(s′)− hΦ(s), (4.29)

where hΦ is a shaping term. If we obtain the optimal f ∗θ,ω(s, a, s′), with a reward approximator

g∗ω(s, a). Under deterministic dynamics the following holds

g∗ω(s, a) + γh∗Φ(s′)− h∗Φ(s) = r∗ω(s) + γV ∗Ω(s′)− V ∗Ω(s), (4.30)

and,

g∗ω(s) = r∗ω(s) + cω. (4.31)

Proof. We know f ∗ω(s, a, s′) = A∗(s, a, ω) = Q∗(s, a, ω) − V ∗Ω(s) = r∗ω(s) + γV ∗Ω(s′) − V ∗Ω(s)

from Lemma 3.6.1. We can substitute the definition of f ∗ω(s, a, s′) to obtain our Theorem.

Now we apply Lemma 3.6.2. We say that a(s) = g∗ω(s) − h∗Φ(s), b(s′) = γh∗Φ(s′), c(s) =

r(s) − V ∗Ω(s) and d(s′) = γV ∗Ω(s′) and rearrange according to Lemma 3.6.2. We therefore

have our results that g∗ω(s) = rω(s) + cω, where cω is a constant. �

Our discriminator model must learn a parameterization of the reward function and the

value function for each option, given the total loss function in (4.36). These parameter-

ized models are learned with a multi-layer perceptron. For each option, the termination

functions βω,δ and option-policies πω,α are learned using PPOC (a method which performs

PPO with a policy over options) [22]. In addition, we have shown that the discriminator

objective is defined as the MLE objective for our IRL problem.
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4.5.1 Algorithm

Our main algorithm is given by Algorithm 6. In this algorithm, we randomly initialize all

our initial parameters for our discriminator network, policy, and termination functions.

Figure 4.1: Our GAN architecture.

Algorithm 6 IRL Over Options with Robust Rewards (oIRL)

Input: Expert Trajectories: {τE1 , . . . , τEn } ∈ TD, Initial Parameters:(θ0, ζ0, δ0, α0), γ
1: Initialize policies πω,α0 , πΩ,ζ0 and discriminators Dθ0,ω, and βω,δ0∀ω ∈ Ω
2: for step t = 0, 1, 2, . . . , T do
3: Learn P̂ (ωk+1|s0:k, a0:k−1) according to Algorithm 5 and build τAE

4: Collect trajectories τi = (s0, a0, ω0, . . . ) from πω,αt , πΩ,ζt , βω,δt
5: Train discriminator Dθt,ω∀ω ∈ Ω
6: for step k = 0, 1, 2, . . . do
7: Sample Any (sj, aj, sj+1, ωj) ∼ τi,t s.t. ωj = ωk
8: if s′k not terminal state then
9: lk = −ED[log(Dθt,ωk(sk, ak, sk+1))]− EπΘ,t

[log(1−Dθt,ωk(sj, aj, sj+1))]
10: Optimize model parameters w.r.t.: Lk = −lk
11: end if
12: end for
13: Obtain reward rθt,ω(s, a, s′)← log(Dθt,ω(s, a, s′))− log(1−Dθt,ω(s, a, s′))
14: Update πω,αt , βω,δt∀ω ∈ Ω and πΩ,ζt with any policy optimization method (e.g. PPOC)
15: end for

We show the adversarial architecture of this algorithm in Figure 4.1.
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4.6 Convergence Analysis

In this section, we show an analysis of the convergence of our method.

We have shown in Theorem 4.5.1 that the actual reward function is recovered (up to

a constant) by the reward estimators for each option. We will now show that the reward

estimator error in an IRL setting is bounded. This will be later used in an analysis of

convergence or our IRL algorithm with options.

Definition 4.6.1 Reward Approximator Error. From Theorem 4.5.1, we can see that our re-

ward approximator is g∗ω(s) = rω(s) + cω. We define a reward approximator error over all options

as δr =
∑

ω∈Ω πΩ(ω)|g∗ω(s)− r∗(s)|. This error is bounded by

δr =
∑
ω∈Ω

πΩ(ω)|g∗ω(s)− r∗(s)|≤ max
ω∈Ω

cω, (4.32)

by definition of g∗ω(s).

Using the fact that gθ,ω(s)→ g∗ω(s) = r∗(s) + cω, and by using Cauchy-Schwarz inequality

of sup-norm, we prove that the update of the TD-error is a contraction. This is neces-

sary for us to later show that we have convergence of intra-option Q learning in the IRL

problem.

Lemma 4.6.1 The Bellman operator for options in the IRL problem is a contraction.

Proof. We prove this by Cauchy-Schwarz and the definition of the sup-norm. We must de-

fine this inequality in terms of the IRL problem where we have a reward estimator ĝθω(s)
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under our learned parameter θ and an optimal reward estimator r∗(s). The derivation is

||QπΩ,t
(s, ω)−Q∗(s, ω)||∞

= ||ĝθ(s) + γ
∑
s′∈S

P (s′|s, a)((1− β(s′))QπΩ,t
(s′, ω) + β(s′) max

ω∈Ω
QπΩ,t

(s′, ω))−

r∗(s) + γ
∑
s′∈S

P (s′|s, a)((1− β(s′)Q∗(s′, ω) + β(s′) max
ω∈Ω

Q∗(s′, ω))||∞

= ||ĝθ(s)− r∗(s) +
∑
s′∈S

P (s′|s, a)[(1− β(s′))(QπΩ,t
(s′, ω)−Q∗(s′, ω))]+

[β(s′)(max
ω∈Ω

QπΩ,t
(s′, ω)−max

ω∈Ω
Q∗(s′, ω))]||∞

= ||
∑
s′∈S

P (s′|s, a)[(1− β(s′))(QπΩ,t
(s′, ω)−Q∗(s′, ω))]+

[β(s′)(max
ω∈Ω

QπΩ,t
(s′, ω)−max

ω∈Ω
Q∗(s′, ω))]||∞+ max

ω∈Ω
cω

≤
∑
s′∈S

P (s′|s, a) max
s′′,ω′′
||QπΩ,t

(s′′, ω′′)−Q∗(s′′, ω′′)||∞+ max
ω∈Ω

cω

≤ γmax
s′′,ω′′
||QπΩ,t

(s′′, ω′′)−Q∗(s′′, ω′′)||∞+ max
ω∈Ω

cω.

(4.33)

This is given by Definition 4.6.1 and Sutton, Precup, and Singh [35] [Theorem 3].

This gives our result maxs′′,ω′′ |QπΩ,t
(s, ω)−Q∗(s, ω)|≤ ε+ maxω∈Ω cω for ε ∈ R>0. �

In order to prove asymptotic convergence to the optimal option-value Q∗, we show

using the contraction argument that gθ,ω(s) + γQ(s′, ω) converges to Q∗.

Theorem 4.6.2 gθ(s) + γQ(s′, ω) converges to Q∗.
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Proof. We know gθ(s)→ g∗θ(s) = r∗(s)+const. Given this we can show by Cauchy-Schwarz

that

|E[gθ(s)] + γE[Q(s′, ω)|s]−Q∗(s′, ω)|

= |E[gθ(s)] + γ
∑
s′∈S

P (s′|s, a)((1− βω(s′))Q(s′ω) + βω(s′)VΩ(s′))

− r∗(s)−
∑
s′∈S

P (s′|s, a)((1− βω(s′)Q∗(s′, ω)) + βω(s′) max
ω∈Ω

Q∗(s′, ω)|

= |E[gθ(s)]− r∗(s) + γ
∑
s′∈S

P (s′|s, a)[βω(s′)[max
ω∈Ω

Q(s′ω)−max
ω∈Ω

Q∗(s′, ω)]

+ (1− βω(s′))[Q(s′ω)−Q∗(s′, ω)]]|
(a)

≤ (max
ω∈Ω

cω)|γ
∑
s′∈S

P (s′|s, a)[max
s′′,ω′′
||Q(s′′, ω′′)−Q∗(s′′, ω′′)|]|

(b)

≤ (max
ω∈Ω

cω)(ε+ max
ω∈Ω

cω)γ
∑
s′∈S

P (s′|s, a)

≤ (max
ω∈Ω

cω)(ε+ max
ω∈Ω

cω)γ, (4.34)

where (a) follows from Lemma 4.6.1 and (b) holds since
∑

s′∈S P (s′|s, a) ≤ 1. �

4.7 Related Work

Hierarchical Inverse Reinforcement Learning methods learn policies with high level tem-

porally extended actions using IRL. OptionGAN [20] provides an adversarial IRL objec-

tive function for the discriminator with a policy over options. It is formulated such that

Lreg defines the regularization terms on the mixture of experts so that they converge to op-

tions. The discriminator objective in OptionGAN takes state-only input and is formulated

as,

LΩ = Eω[πΩ,ζ(ω|s)(Lα,ω)] + Lreg, (4.35)

where,

Lα,ω = EτN [log(rθ,ω(s))] + EτE [log(1− rθ,ω(s))]. (4.36)
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In Directed-Info GAIL [30] implements GAIL in a policy over options framework.

Work such as HIRL [24] solves this hierarchical problem of segmenting expert demon-

stration transitions by analyzing the changes in local linearity with respect to a kernel func-

tion. It has been suggested that decomposing the reward function is not enough [20].

Other works have learned the latent dimension along with the policy for this task [19,42].

In this formulation, the latent structure is encoded in an unsupervised manner so that the

desired latent variable does not need to be provided. This work parallels many hierarchi-

cal IRL methods but with recoverable robust rewards.
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Chapter 5

Experiments

In this chapter, we demonstrate the effectiveness of the algorithm presented in Chapter 4

in a variety of simulated reinforcement learning tasks.

Our algorithm can learn completely disentangled reward functions for each option.

This should present benefits in terms of reward generalizability and transfer learning.

Transfer learning can be described as using information learned by solving one prob-

lem and then applying it to a different but related problem. In the RL sense, it means tak-

ing a reward function trained on one environment and then using this reward function to

optimize a policy to solve a similar task in a different previously unseen environment. An

example would be learning to walk along a surface on the earth and then abstracting that

knowledge to the task of walking on the moon with very different gravity and dynamics.

We run experiments in different environments to address the following questions:

• Does learning a policy over options with the AIRL framework improve reward ro-

bustness in transfer learning tasks (where the environmental dynamics are manip-

ulated)?

• Can the policy over options framework match or exceed benchmarks for imitation

learning on complex continuous control tasks?
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To answer these questions, we compare our model against AIRL (the current state of

the art for transfer learning) in a transfer task by learning in an Ant environment and

modifying the physical structure of the Ant. We also compare our method on various

benchmark IRL continuous control tasks. In addition, we compare against OptionGAN

to give a baseline hierarchical RL algorithm. We wish to see if learning disentangled

rewards for sub-tasks through the options framework is more portable.

We train a policy using each of the baseline methods and our method on these expert

demonstrations for 500 time steps on the gait environments and 500 time steps on the

hierarchical ones. Then we take the trained reward function and use a policy optimized

with respect to this reward function on the transfer environments and observe the reward

obtained. Such a method of transferring the reward function is called a transfer task.

We will then show that our method performs in line with AIRL in continuous control

imitation learning benchmark tasks. There are not transfer tasks. The purpose of these

experiments is to show that our method is useful not only for transfer but is also able to

perform a wide range of forward RL tasks.

5.1 MuJoCo Experimental Environments

We use the MuJoCo physics simulator [6] for most of the experiments in this work. Mu-

JoCo stands for Multi-Joint dynamics with Contact and has been widely adapted in RL

research as a tool to build simulation environments. One of the biggest uses of MuJoCo

is to perform robotic simulations using reinforcement learning algorithms as controllers.

Tasks such as teaching a robot-like object to walk, hop, and go through a maze are exam-

ples of environments that have been created in the engine.

5.1.1 Transfer Learning MuJoCo Environments

For the transfer learning tasks, we use Transfer Environments for MuJoCo [8], a set of gym

environments for studying potential improvements in transfer learning tasks. The task
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involves an Ant as an agent which optimizes a gait to crawl across the landscape. The

expert demonstrations are obtained from the optimal policy in the basic Ant environment.

We disable the agent Ant in two ways for two transfer learning tasks. In Big Ant tasks, the

length of all legs is doubled, no extra joints are added though. The Amputated Ant task

modifies the agent by shortening a single leg to disable it. These transfer tasks require the

learning of a true disentangled reward of walking sideways instead of directly imitating

and learning the reward specific to the gait movements. These manipulations are shown

in Figure 5.1.

(a) Ant environment (b) Big Ant environ-

ment

(c) Amputated Ant envi-

ronment

Figure 5.1: MuJoCo Ant Gait transfer learning task environments. When the Ant is dis-

abled, it must position itself correctly to crawl forward. This requires a different initial

policy than the original environment where the Ant must only crawl sideways.

We believe that exploiting a hierarchical framework such as the options framework

is useful in these tasks because these tasks are in practice hierarchical. The gait, which

involves making different motions of each limb in succession could be thought of as sub-

tasks.

In addition, we adopt more complex hierarchical environments that require both lo-

comotion and object interaction. In the first environment, the Ant must interact with a

large movable block. This is called the Ant-Push environment [11]. To reach the goal, the

Ant must complete two successive processes: first, it must move to the left of the block

and then push the block right, which clears the path towards the target location. There is
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a maximum of 500 timesteps. These can be thought of as hierarchical tasks with pushing

to the left, pushing to the right and going to the goal as sub-goals.

We also utilize an Ant-Maze environment [15] where we have a simple maze with a

goal at the end. The agent receives a reward of +1 if it reaches the goal and 0 elsewhere.

More specifically, in the Ant Maze and Push tasks we define a success as being within

an L2 distance of 5 from the goal on the last step of the episode. The Ant must learn to

make two turns in the maze, the first is down the hallway for one step and then a turn

towards the goal. Again, we see hierarchical behavior in this task: we can think of sub-

goals consisting of learning to exit the first hall of the maze, then making the turn and finally

going down the final hall towards the goal. The two complex environments are shown in

Figure 5.2.

(a) Ant-Maze envi-
ronment

(b) Ant-Push environment

Figure 5.2: MuJoCo Ant Complex Gait transfer learning task environments. We perform

these transfer learning tasks with the Big Ant and the Amputated Ant.

5.1.2 MuJoCo Continuous Control Tasks

In this section, we describe the structure of the objects that gait in the continuous control

benchmarks and the reward functions. For the transfer learning tasks, we use the same

reward function described here for the Ant.

Walker: The walker is a planar biped. There are 7 rigid links comprised of legs and

a torso. This includes 6 actuated joints. This task is particularly prone to falling. The

state space is of 21 dimensions. The observations in the states include joint angles (θ),
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joint velocities (vx), the center of mass’s coordinates. The reward function is r(s, a) =

vx0.005||a||22. The termination condition occurs when zbody < 0.8, zbody > 2.0 or ||θy||> 1.0.

Half-Cheetah: The half-cheetah is a planar biped also like the Walker. There are 9

rigid links comprised of 9 actuated joints, a leg and a torso. The state space is of 20

dimensions. The observations include joint angles, the center of mass’s coordinates, and

joint velocities. The reward function is r(s, a) = vx0.05||a||22. There is no termination

condition.

Ant: The Ant has four legs with 13 rigid links in its structure. The legs have 8 actuated

joints. The state space is of 125 dimensions. This includes joint angles, joint velocities,

coordinates of the center of mass, the rotation matrix for the body, and a vector of contact

forces. The function is r(s, a) = vx0.005||a||22Ccontact + 0.05, where Ccontact is a penalty for

contacts to the ground. This is 5 × 104||Fcontact||22. The term Fcontact is the contact force. Its

values are clipped to be between 0 and 1. The termination condition occurs zbody < 0.2 or

zbody > 1.0.

5.2 MuJoCo Experimental Setup

In this section, we describe the procedures for each of our experiments in the MuJoCo

simulator.

5.2.1 Transfer Tasks

For the transfer tasks, we are given a set of expert demonstrations of our (undeformed)

Ant performing the task optimally. As an example, this demonstration could be walking

optimally in the case of gait tasks or achieving the goal cells on the Ant-Push tasks. These

expert demonstrations are obtained by training a policy on these environments using

vanilla PPO until 2 million iterations (20 million on the AntPush and Maze tasks) and

then sampling trajectories from this policy.
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We train a policy using each of the baseline methods and our method on these expert

demonstrations for 500 time steps on the gait environments and 500 timesteps on the

complex ones. Then we take the trained reward function and use this reward function on

the transfer environments and observe the reward obtained by optimizing a new policy

on this reward function. A random seed in these experiments refers to different random

values that we use to initialize our input parameters.

5.2.2 Continuous Control Tasks

These tasks involve no transfer learning. We simply follow the same method to ob-

tain demonstrator trajectories as described before. We then train our policy given these

demonstrator trajectories on the target environment using our method and the baseline

methods. We do not use the disabled Ants in these tasks, only the normal Ant.

5.2.3 Parameters for MuJoCo Experiments

For these experiments, we use PPO to obtain an optimal policy given our ground truth

rewards. This is used to obtain expert demonstrations. We sample 50 expert trajectories.

PPOC is used for the policy optimization step for the policy over options. We tune the de-

liberation cost hyper-parameter via cross-validation. The optimal deliberation cost found

was 0.1 for PPOC. We also use state-only rewards for the transfer tasks. The hyperparam-

eters for our policy optimization are given in Table 5.1.

Our discriminator is a neural network with the optimal architecture of 2 linear layers

of 50 hidden states, each with ReLU activation followed by a single node linear layer for

output. We also tried a variety of hidden states including 100 and 25 and tanh activation

during our hyperparameter optimization step using cross-validation.

The policy network has 2 layers of 64 hidden states. A batch size of 64 or 32 is used for

1 and any number of options greater than 1 respectively. No mini-batches are used in the

discriminator since the recursive loss must be computed. There are 2048 timesteps per

60



batch. Generalized Advantage Estimation is used to compute advantage estimates. We

list additional network parameters in the next section. The output of the policy network

gives the Gaussian mean and the standard deviation. This is the same procedure as in

[29].

Table 5.1: Policy Optimization parameters for MuJoCo

Parameter Value
Discr. Adam optimizer learning rate 1 · 10−3

Adam ε 1 · 10−5

PPOC Adam optimizer learning rate 3 · 10−4

GAE λ 0.95
Entropy coefficient 10−2

value loss coefficient 0.5
discount 0.99
batch size for PPO 64 or 32
PPO epochs 10
clip parameter 0.2

5.3 MuJoCo Transfer Learning Task Results

For the transfer learning environments, we simply display the mean reward achieved

using the policy learned on the transferred reward function. We train the policy multiple

times (with different random seeds) with one transferred reward function. This is an

average reward obtained after 10 runs of different random seeds.

In our experiments, we refer to our method as oIRL (Optionated Inverse Reinforce-

ment Learning).

Table 5.2 shows the results in terms of reward achieved for the Ant gait transfer tasks.

As we can see, in both experiments our algorithm performs better than AIRL. Remark

that the ground truth is obtained with PPO after 2 million iterations (therefore much less

sample efficient than IRL). We see that the AmputatedAnt performs best with 4 options

and the BigAnt with 2 options. We should note that in terms of complexity and training
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Table 5.2: The mean reward obtained (higher is better) over 100 runs for the Gait transfer

learning tasks. We also show the results of PPO optimizing the ground truth reward. The

value after ± represents one standard deviation.

Big Ant Amputated Ant
AIRL (Primitive) -11.6 ±1.1 134.3 ±8.4
2 Opts oIRL 7.4 ±0.4 135.0 ±13.2
4 Opts oIRL 11.0 ±0.6 173.2 ±15.2
OptionGAN -13.3 ±2.0 94.4 ±8.2
Ground Truth 142.9 335.4

time as well as memory required, our algorithm performs far worse than AIRL. This

is due to the fact that we computing the recursive loss function we must first store the

environment at each step. This is required since we sample different actions depending

on if we terminate or continue with the option in our loss computation. In addition, it is

an added layer of complexity to obtain these roll-outs.

Table 5.3: The mean reward obtained (higher is better) over 100 runs for the MuJoCo Ant

Complex Gait transfer learning tasks. We also show the results of PPO optimizing the

ground truth reward. Amp is Amputated.

Big Ant Maze Amp Ant Maze Big Ant Push Amp Ant Push
AIRL (Primitive) 0.28 ±0.03 0.18 ±0.04 0.22 ±0.00 0.15 ±0.03
2 Opts oIRL 0.68 ±0.07 0.36 ±0.03 0.62 ±0.10 0.51 ±0.12
4 Opts oIRL 0.63 ±0.08 0.40 ±0.07 0.64 ±0.10 0.52 ±0.11
OptionGAN 0.08 ±0.07 0.09 ±0.02 0.17 ±0.04 0.08 ±0.01
Ground Truth 0.96 0.98 0.90 0.93

Table 5.3 shows that oIRL performs better than AIRL in all of the complex hierarchical

transfer tasks. In some tasks such as the Maze environment, AIRL fails to have any or very

few successful runs while our method achieves reasonably high reward. In the BigAnt

push task, AIRL achieves only very minimal reward where oIRL succeeds to perform the

task in some cases.
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(a) Ant (b) Half Cheetah (c) Walker

Figure 5.3: MuJoCo Continuous control locomotion tasks showing the mean reward

(higher is better) achieved over 750 iterations of the benchmark algorithms for 10 ran-

dom seeds. The shaded area represents the standard deviation.

5.4 MuJoCo Continuous Control Benchmarks

We also test our algorithm on a number of robotic continuous control benchmark tasks.

These tasks do not involve the transfer of reward functions and in no way test transfer

learning. The purpose of these tests is to show that our algorithm is also a viable IRL

method for more standard tasks.

We show the plots of the average reward for each iteration during training in Figure

5.3. Achieving a higher reward in fewer iterations is better for these experiments. We

examine the Ant, the Half Cheetah, and the Walker MuJoCo gait/locomotion tasks. We

train in these experiments with 10 random seeds. The results are quite similar between

the benchmarks. Using a policy over options shows reasonable improvements in each

task.

5.5 Gym MiniGrid Experiments

In these experiments, we create transfer learning tasks in a 2D GridWorld environment.

We build our 2D grid-world environments using the Gym ”MiniGrid” package [7].

The environments are fully observable and each observation is a (w, h, 3) tensor. At each
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timestep, the agent can change its direction, actions are as follows: turn-left, turn-right,

move-forward. Facing a wall, the agent will stay in the same state if it moves forward into

the wall.

The rewards in these tasks are sparse, we gave a non-zero reward to the agent only

when it fully completed the mission, and the magnitude of the reward was 1−0.9 ·n/nmax,

where n is the length of the successful episode and nmax is the maximum number of

steps that we allowed for completing the episode, different for each mission. If the agent

goes into lava or reaches the maximum number of steps authorized for each episode, the

episode ends with 0 rewards.

5.5.1 Grid Transfer Learning Environments

We create transfer learning environments in a 2D Maze environment with lava blockades.

The goal of the agent is to go through the opening in a row of lava cells and reach a goal

on the other end. For the transfer learning task, we train the agent on an environment

where the ”crossing” path requires the agent to go through the middle (LavaCrossing-M)

and then the rewards are directly transferred and used on a GridWorld of the same size

where the crossing is on the right end of the room (LavaCrossing-R). The 2 environments

are shown in Figure 5.4. We can think of 2 sub-tasks in this environment, going to the

lava crossing and then going to the goal.
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(a) LavaCrossing-M

MiniGrid Env

(b) LavaCrossing-R

MiniGrid Env

Figure 5.4: The MiniGrid transfer learning task set 1. Here the policy is trained on (a) us-

ing our method and the baseline methods and then transferred to be used on environment

(b). The green cell is the goal.

In the 2nd transfer learning task, we have a simple maze where the path is blocked by

lava to the right of the agent. We train the agent in this environment (FlowerMaze-R) and

then transfer the agent’s policy to the maze where the top path is blocked (FlowerMaze-T)

shown in Figure 5.5.

(a) FlowerMaze-R

MiniGrid Env

(b) FlowerMaze-T

MiniGrid Env

Figure 5.5: The MiniGrid transfer learning task set 2. Here the policy is trained on (a) us-

ing our method and the baseline methods and then transferred to be used on environment

(b).

5.5.2 Grid Experiment Parameters

For experiments, we used the PPOC algorithm with parallelized data collection and GAE.

0.1 is the optimal deliberation cost. Each environment is run with 10 random network
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initialization. As before, in Table 5.4, we show some of the policy optimization parameters

for MiniGrid Tasks. We rely on an actor-critic network architecture for these tasks. Since

the state space is relatively large and spatial features are relevant, we use 3 convolutional

layers in the network. The network architecture is detailed in Figure 5.6. The values n

and m are defined by the grid dimensions.

The discriminator network is a neural network with the optimal architecture of 3 linear

layers of 150 hidden states, each with ReLU activation followed by a single node linear

layer for output.

Table 5.4: Policy optimization parameters for benchmark tasks in MiniGrid

Parameter Value
Adam optimizer learning rate 7 · 10−4

Adam ε 1 · 10−5

value loss coefficient 0.5
discount 0.99
maximum norm of gradient in PPO 0.5
number of PPO epochs 4
batch size for PPO 256
entropy coefficient 10−2

clip parameter 0.2

5.6 Grid Results

Again, we show the mean reward after 10 runs using the policy optimized with the re-

ward function transfers on the environments in Table 5.5. The 4 option oIRL achieved the

highest reward on the LavaCrossing tasks. The FlowerMaze task was quite difficult with

most algorithms obtaining very low reward. Options still result in a large improvement.
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Figure 5.6: Architectures of the actor-critic policies on MiniGrid. Conv is Convolutional

Layer and filter sized is described below. FC is a fully connected layer.

Table 5.5: The mean reward obtained (higher is better) over 10 runs for the Maze transfer

learning tasks. We also show the results of PPO optimizing the ground truth reward.

LAVACROSSING FLOWERMAZE

AIRL (PRIMITIVE) 0.64 ±0.11 0.11 ±0.03
2 OPTS OIRL 0.74 ±0.13 0.33 ±0.06
4 OPTS OIRL 0.86 ±0.09 0.36 ±0.05
OPTIONGAN 0.41 ±0.12 0.07 ±0.06
GROUND TRUTH 1.00 1.00

5.7 Interpretation

We have tested a wide variety of transfer tasks involving the disability on a MuJoCo

Ant. The increases in performance by using our algorithm against OptionGAN and AIRL

indicate 2 main conclusions. The first is that a policy over options with disentangled

rewards results in more generalizable rewards in transfer tasks than just a policy over

options or primitive disentangled rewards. The results are especially clear on the hierar-

chical environments, where using a policy over options is beneficial. We also show that

this algorithm performs better than AIRL and a standard HRL algorithm (OptionGAN) in
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continuous control benchmarks. Our algorithm achieves a higher reward with better sam-

ple efficiency. While in these experiments, we only deal with simulation, the algorithm

could be useful in more realistic scenarios such as hierarchical robotic transfer tasks. If a

robot’s structural components are modified in a similar way to how we modify the Ant,

we should see similar improvements. Also, as video games (such as the Arcade game

environments) are highly hierarchical, our algorithm could potentially perform well in

these tasks. We could perform transfer tasks in terms of different ’levels’ in a game.

We also note that selecting the number of options appears to be important given the

type and complexity of the task we have. For example, 4 options usually performs better

than 2 options with the exception of the Big Ant Maze. A potential reason for this is

because the maze tasks are slightly less complex than the other environments. It is seen

that 4 options performs better in 3/4 of the most complex hierarchical tasks.
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Chapter 6

Conclusion and future work

This thesis presents Option-Inverse Reinforcement Learning (oIRL), the first hierarchical

IRL algorithm able to learn disentangled rewards. We validate oIRL on a wide variety of

tasks, including transfer learning tasks, locomotion tasks, complex hierarchical transfer

RL environments, and GridWorld transfer navigation tasks, and we compare our results

with state-of-the-art algorithms. Combining options with a disentangled IRL framework

results in highly portable reward functions. Our empirical studies show clear improve-

ments for transfer learning. The algorithm is also shown to perform well in standard

(non-transfer) continuous control benchmark tasks.

6.0.1 Real world implications

While we were unable to benchmark our algorithm on real robotics domains, the per-

formance in simulated continuous control tasks suggests that this work can provide im-

provements in real transfer simulations with physical robots. MuJoCo is used as a physics

simulator to provide some simulation of robotic tasks and the results are promising on

these simulations. We could also apply this to a video game learning environment and

perhaps learn better transfer-ability of skills between different types of worlds or similar

styles of games. Autonomous driving also heavily relies on transferable skills in situa-

tions like driving in new areas or different road conditions.
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6.0.2 Future work

For future work, we wish to test other sampling methods (e.g., Markov-chain Monte

Carlo) to estimate the implicit discriminator-generator pair’s distribution in our GAN,

such as Metropolis-Hastings GAN [39]. We also wish to explore other methods for infer-

ring option trajectories. Analyzing our algorithm using physical robotics tests for tasks

that require multiple sub-tasks would be an interesting, albeit challenging, future course

of research.
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