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Separable variance-covariance structure: Estimation, testing, and 

environmental application 

Multi-dimensional, univariate or multivariate datasets arise when one or several random 

variables are observed on a spatio-temporal domain. A parsimonious model is often used 

to facilitate the estimation of variance-covariance parameters. This is the case in 

particular with the matrix and tensor normal distribution models, which imply a simply 

and doubly separable variance-covariance structure, respectively. A separable variance-

covariance matrix is the Kronecker product of two, three, or more component variance-

covariance matrices, each representing variability and dependencies in one dimension 

(e.g. 1-D space and time; multivariate, 1-D space, and time; 3-D space and time). In this 

thesis, the focus is on parameter estimation by maximum likelihood (ML), the likelihood 

ratio test (LRT) of separability, and the application to an original dataset. First, the 

empirical bias of the ML estimator of a simply separable variance-covariance matrix is 

shown to follow a non-monotonic ‘peak-trough’ pattern with increasing sample size, a 

result apparently not conform to theory. This atypical pattern is explained by 

decomposing the ergodic (empirical) bias into an estimation bias and a fluctuation bias 

minus a non-orthogonality factor. Then, an unbiased modified LRT for simple 

separability of a variance-covariance structure, without or with modeling of the mean, is 

proposed. A penalty factor improves the chi-square distribution of the LRT statistic in 

finite samples, which represents a simpler and more general procedure to obtain a valid 

LRT of separability than existing methods. Thereafter, the tensor normal distribution 

model is presented in detail, with a decomposition of the bias of the ML estimator of a 

doubly separable variance-covariance matrix and an unbiased modified LRT for double 

separability. Finally, an original multi-dimensional dataset of wood density in trunk 

sections of white spruce (Picea glauca (Moench) Voss), as measured from computed 

tomography scanning data, is used to test and accept the hypothesis of double separability 

on the variance-covariance structure and to assess direction, height and year effects on 

mean wood density using modified analysis-of-variance F-tests based on Box’s ‘epsilon’. 
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Structure de variance-covariance séparable: Estimation, test, et application 

environnementale 

Les jeux de données multidimensionnels, univariés ou multivariés, se présentent 

lorsqu’une ou plusieurs variables aléatoires sont observées sur un domaine spatio-

temporel. Un modèle parcimonieux est souvent utilisé pour faciliter l’estimation de la 

matrice de variance-covariance. C’est le cas en particulier des modèles de la matrice et du 

tenseur aléatoires normaux, qui impliquent une structure de variance-covariance 

simplement ou doublement séparable, respectivement. Une matrice de variance-

covariance séparable est le produit de Kronecker de deux, trois, ou plus de matrices de 

variance-covariance, chacune représentant la variabilité et les dépendances dans une 

dimension (p. ex. espace 1-D et temps; plusieurs variables, espace 1-D, et temps; espace 

3-D et temps). Dans cette thèse, le focus est sur l’estimation des paramètres par 

maximum de vraisemblance (MV), le test du rapport de vraisemblances (TRV), et 

l’application des modèles à un jeu de données original. Tout d’abord, il est montré que le 

biais empirique de l’estimateur MV d’une matrice de variance-covariance simplement 

séparable décroît de manière non-monotone en suivant un patron ‘pic-creux’ lorsque la 

taille d’échantillon augmente, un résultat non conforme à la théorie en apparence. Ce 

patron atypique est expliqué en décomposant le biais ergodique (empirique) en un biais 

d’estimation et un biais de fluctuation, moins un facteur de non-orthogonalité. Ensuite, un 

TRV modifié non-biaisé de séparabilité simple pour une structure de variance-

covariance, sans ou avec modélisation de la moyenne, est proposé. Un facteur de pénalité 

améliore la distribution chi-deux de la statistique TRV en échantillons finis, ce qui 

représente une procédure plus simple et plus générale d’obtenir un TRV valide de 

séparabilité que les méthodes existantes. Par après, le modèle du  tenseur aléatoire normal 

est présenté en détail, avec une décomposition du biais de l’estimateur MV d’une matrice 

de variance-covariance doublement séparable et un TRV modifié non-biaisé de 

séparabilité double. Enfin, un jeu de données multidimensionnel, fait de mesures de 

densité du bois obtenues à partir de données de tomodensitométrie pour des sections de 

troncs d’épinette blanche (Picea glauca (Moench) Voss), est utilisé pour tester et 

accepter l’hypothèse de séparabilité double de la matrice de variance-covariance et pour 
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évaluer les effets de la direction, de la hauteur et de l’année sur la densité moyenne du 

bois à l’aide de tests F d’analyse de variance modifiés sur base du ‘epsilon’ de Box.  
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Chapter 1. Introduction 

1.1 General introduction 

Large, complex, and multi-dimensional datasets are becoming more prevalent in the 

natural sciences, especially since new measurement technologies generate large datasets 

stored in ever expanding computer memory (Fey et al. 2008). For example, the 

measurement of water pH at several depths in a lake sampled several times in a season 

provides spatio-temporal data (two dimensions, 2-D), while that of wood density for a 

number of directions, heights and growth rings result in doubly spatial, temporal data 

(three dimensions, 3-D). As can be seen from these examples, the random variable of 

interest is indexed from a spatio-temporal domain in such univariate multi-dimensional 

datasets.  

The time axis is particular since it ranges from past to present and future, in one 

direction. Space does not possess this property and there are spatial vertical and spatial 

horizontal dimensions, in which variation may be very different (Dutilleul 2011). Once a 

spatio-temporal point is reached, whether geographically or within an organism, it is cost 

efficient to collect data for several variables instead of only one, resulting in a 

multivariate dataset indexed on a spatio-temporal domain (Njue 2001). The variables 

could be discrete or continuous quantitative, although in this Ph.D. thesis the variables 

are assumed to be continuous quantitative and, in general, normally distributed.  

Datapoints in a univariate multi-dimensional dataset are likely to be inter-

dependent. Your weight today is related to your weight yesterday, so the observation of a 

person’s weight over time results in a vector of dependent data, also known as repeated 

measures (Crowder and Hand 1990). The inter-dependency of datapoints extends to the 

multivariate context, as when several variables related to milk quality are observed over 

time or when fiber length and microfibril angle are measured in addition to wood density 

in an example with trees. 

It is recommended that the inter-dependencies of datapoints be taken into account 

in statistical analyses. Otherwise, statistical tests may not be valid (a test is valid if the 

rejection of the null hypothesis, while it is true, is equal to the nominal Type I error risk 

or significance level fixed by the experimenter), and estimators may not be efficient (their 

variance may be inflated or deflated, Dutilleul 2011). It is possible to mathematically 
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remove inter-dependencies from the data (i.e. pre-whitening), and then use classical 

methods of statistical inference that postulate the independence of datapoints. This 

approach may require some type of stationarity (Dutilleul 2011), which is discussed in 

Chapter 2 of this thesis. Alternatively, it may be possible to develop a variant of the 

statistical method that adequately incorporates the inter-dependencies of the data. 

However, without modeling, a large number of variance-covariance parameters would 

need to be estimated, since there is one covariance for each pair of datapoints in addition 

to two variances. Thus, the variance-covariance matrix, with variances on the diagonal 

and covariances off the diagonal, is often modeled. Instead of estimating each and every 

element of the matrix, the parameters of the variance-covariance structure or model are 

estimated. 

Consequently, multi-dimensional normal distribution models are presented, 

studied, and applied in this thesis, because they allow that inter-dependencies in the data 

be taken into account in a parsimonious way, as they imply that the variance-covariance 

matrix is separable: there is one variance-covariance matrix per dimension. This is the 

case with the matrix normal distribution model, when for example the variance-

covariance matrix for a univariate 2-D spatio-temporal dataset is the Kronecker product 

(see Chapter 2) of two component variance-covariance matrices, one purely spatial and 

the other purely temporal. Multi-dimensional normal distribution models extend the well-

known scalar and vector normal distributions, making them easier to apprehend. It is 

hoped that they will assist scientists in extracting knowledge from increasingly complex 

datasets, and encourage the development of parsimonious statistical models.  

1.2 General hypotheses 

The structure of the thesis is based on four hypotheses: 

1. The bias of the maximum (ML) estimator of a simply separable variance-

covariance matrix, implied by the matrix normal distribution model, decreases 

monotonically with increasing sample size. 

2. The likelihood ratio test (LRT) presently available in the literature for testing the 

hypothesis of simple separability for a variance-covariance structure is biased, in 

that the rejection rate is not equal to the nominal Type I error risk when the null 

hypothesis of separability is true.  
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3. The “MLE-3D” algorithm will allow the estimation of the variance-covariance 

parameters of the tensor normal distribution model of order 3, with small samples. 

4. The variance-covariance structure for a data tensor (multi-dimensional dataset) 

made of wood density measures on white spruce trees in two directions, at two 

heights and in two growth rings is doubly separable.  

1.3   General and specific objectives  

The general objective of this Ph.D. thesis is to study separable variance-covariance 

structures (which are characteristic of multi-dimensional normal distribution models), in 

order to make a number of contributions to estimation and testing aspects, and to apply 

the models and procedures developed to an environmental dataset. 

The specific objectives of the thesis are: 

1. To dissect the bias of the ML estimator of the simply separable variance-

covariance matrix, implied by the matrix normal distribution model. 

2. To develop the unbiased modified LRT for simple separability of a variance-

covariance structure. 

3. To present the tensor normal distribution model or more that is characterized by a 

doubly or more separable variance-covariance matrix. 

4. To dissect the bias of the ML estimator of a doubly separable variance-covariance 

matrix. 

5. To present the unbiased modified LRT for double separability of a variance-

covariance structure. 

6. To estimate wood density from computed tomography (CT) scanning data and 

demonstrate that multi-dimensional normal distribution models can be applied in 

the framework of analysis of variance with doubly and triply repeated measures, 

to assess differences in mean wood density estimates in relation to direction, 

height and year. 
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Chapter 2. Literature review 

2.1 Statistics 

2.1.1 An introduction to multi-dimensional data analysis  

There exists a link between the ‘size’ of data collected in a designed survey or 

experiment and the corresponding mathematical object on which the statistical analyses 

are based. For example, wood density measured for one ring, at one height and in one 

direction inside a tree trunk can be statistically represented as a scalar-valued random 

variable and assumed to be normally distributed with mean m and variance u (Table 2.1). 

Measuring wood density for n  rings in one direction at one height in the same tree trunk 

provides one vector of n observed values or one observation from a random n-variate 

vector x. Assuming the random vector is normally distributed with mean vector m and 

variance-covariance matrix  , the data vectors can be analyzed in a multivariate analysis 

of variance or a repeated measures analysis of variance (Crowder and Hand 1990). 

The vector of n wood density measures, with n re-numbered n1, can be collected 

in n2 directions (e.g. North and South), resulting in one n1   n2 matrix of values or one 

observation from the random n1   n2 matrix X, which may be assumed to be normally 

distributed (Table 2.1). Furthermore, a data matrix of wood densities (e.g. a matrix of 1n  

rows or rings by 2n  columns or directions) can be collected at 3n  heights (e.g. breast and 

live crown heights), resulting in a data tensor of order 3 and size n1   n2   n3 or one 

observation from a random tensor of same order and size  , assumed to be normally 

distributed. Thus, 3-D data are represented with a 3-D mathematical object, the tensor.  

A tensor of order 3 has three dimensions, with the row, the column and the edge 

representing one dimension each (tree ring, direction, height); see Figure 6.1. Dimensions 

are sometimes referred to as repeated factors (Dutilleul and Pinel-Alloul 1996), ways 

(Kroonenberg 2008), or modes (Kolda and Bader 2009), and a size or number of levels is 

associated with each dimension. There are also several tensorial notations, such as those 

used by McCullagh (1987), Kolda and Balder (2009), and Dutilleul (1990). 

 A tree trunk represents a spatio-temporal sampling domain, with direction and 

height corresponding to the horizontal and vertical spaces and the growth ring 

representing time (year). The vertical spatial dimension exists in a tree trunk because of 

primary growth from the apical meristem, while the horizontal spatial dimension exists 
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thanks to secondary growth from the cambium (see Section 2.2). The vertical elongation 

of the buds is influenced by the climatic conditions during the previous season (Duff and 

Nolan 1953), and the secondary growth process implies that wood density at one ring is 

influenced by wood density at the preceding ring (Fritts 1976). Thus, the elements of the 

random matrices or tensors involved in such surveys or experiments are often inter-

dependent or correlated. When analyzing the data and testing for differences in the mean 

value depending on the dimension or the position in the dimension, it is not justified to 

assume that the data were generated independently from their spatio-temporal neighbors. 

More generally, if the variance also changes with the dimension or the position in the 

dimension, it is required to estimate the variance-covariance matrix (which embodies 

both the variability and the inter-dependencies) in order to perform valid tests of 

significance for the mean. The next two sub-sections present a certain number of 

elements about possible multi-dimensional models and variance-covariance structures of 

interest. 

2.1.2 Multi-dimensional normal distribution models 

In what follows, the multi-dimensional (i.e. matrix and tensor) random objects are 

considered normally distributed. The scalar normal distribution is commonly used, in part 

because it is entirely characterized by two parameters, namely its mean and variance. 

This property holds in the cases of the vector, matrix, and tensor normal distributions, 

except the variance then becomes a variance-covariance matrix, which is square and 

symmetrical by definition; in addition to a variance (diagonal) for each element in the 

random vector, matrix, or tensor, there is a covariance (off-diagonal) for each pair of 

different elements. 

By symmetry (i.e. entries below the diagonal are equal to entries above the 

diagonal), the number of distinct entries in an n1n2   n1n2 variance-covariance matrix   

is at most equal to n1n2(n1n2+1)/2. For the moment generating function of the vector 

normal distribution to exist, the variance-covariance matrix only needs to be positive 

semi-definite (Muirhead 1982), but for the probability density function to exist and 

hence, for likelihood-based inference (e.g. solving systems of likelihood equations),   

must be positive definite, that is, y' S y > 0 for any non-null column vector y of size n1n2.  
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In an example where wood density is measured on two rings in the North and 

South directions or the activity of two parts of the brain is recorded at two times, the 

expected values of the corresponding random variables, or population means, can be 

presented in a 2   2 matrix: 

                                                     

11 12

21 22

m m

m m






 

M . 

This mean matrix can be re-arranged as a mean vector by using the vec operator, which 

transforms an 1 2n n  matrix into a column vector of size n1n2 (Schott 1997): 

                                                  

11

21

12

22

vec( )

m

m

m

m

 
 
 
 
 
 

M . 

If the variance-covariance structure of the vectorized random matrix X is simply 

separable, the n1n2   n1n2 variance-covariance matrix is constructed as the Kronecker 

product   (Schott 1997) of two component variance-covariance matrices that each 

embodies the variability and inter-dependencies in one dimension: 

  

11 11 11 12 12 11 12 12

11 12 11 12 11 21 11 22 12 21 12 22

21 22 21 22 21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

2 1 2 1 2 1 2 1

2 2 1 1 2 1 2 1 2 1 2 1
2 1

2 2 1 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

u u u u

u u u u u u

u u u u

u u u u u

u u u u u u

u u u

u

u u u u u u

u u u u u

 
 

   
    
   

 
    

  
 
 

U U , 

where the n2   n2 matrix 2U  (variance-covariance matrix for the columns) has at most 

n2(n2+1)/2 distinct parameters and the n1   n1 matrix 1U  (variance-covariance matrix for 

the rows) has at most n1(n1+1)/2 distinct parameters. These two matrices allow the 

construction of the n1n2   n1n2 matrix   from fewer parameters, but with constraints 

such as 
11 1111 2 1u u  . While the matrix normal distribution model is associated with 

simple separability, the tensor normal distribution model implies a doubly separable 

variance-covariance structure:   is then the Kronecker product of three component 

matrices.  

In general, the variance-covariance matrix of a vector normal distribution model 

is not separable, and is unstructured if no specific model, separable or another, is 
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postulated; in other words, the variance-covariance matrix is positive semi-definite or 

positive definite: 

                                               

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

   
   
   
   

 
 
 
 
 
 

 , 

where 11  is the variance of wood density in ring 1 and direction 1 and 12  is the 

covariance between wood density in ring 1, direction 1 and that in ring 2, direction 1 if 

1U  stands for the rings and 2U  for the directions in the tree example.  

Separability of the variance-covariance structure assists in the estimation, by 

reducing the number of parameters (for n1 = n2 = 2, there are 6 parameters whereas in the 

unstructured case, there are 10; Figure 2.1) while ensuring positive definiteness. Prior to 

discussing estimation of the model parameters, a number of separable and non-separable 

models of variance-covariance structure are the objects of the next section. 

2.1.3 Models of variance-covariance structure 

Below, three assumptions commonly made about the variance-covariance matrix in a 

multivariate analysis with data spatially or temporally referenced, or both, are discussed. 

These assumptions are: stationarity, separability, and circularity. Several other 

assumptions and models exist (Wolfinger 1996), but these three are of high relevance to 

this Ph.D. thesis project.   

As suggested by the name, stationarity implies some form of ‘stability’ either for 

some of the population parameters, those of first and second order in particular, or for the 

complete distribution of the random variable of interest, when this is not normal. Since 

the multi-dimensional distribution models studied in this thesis will be essentially normal, 

it is sufficient to discuss the former type of ‘stability’ here. Weak stationarity implies that 

the mean and variance of the random variable of interest is stable over the space-time 

domain, while the covariance is a function of the lag (i.e. an interval length in time, but a 

vector between two sampling locations in space). The general form of separability for a 

variance-covariance structure does not imply stationarity, even at second order (for 

variances and covariances). See Dutilleul (2011) for details on the concept of stationarity 

and its various forms. 
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In the general case of simple separability 2 1 U U , the component matrices 

1U  and 2U  are unstructured, and so are the component matrices 1U , 2U  and 3U  in the 

general case of double separability 3 2 1  U U U . However, the component 

variance-covariance matrices can be modeled. For example, the structure of 1U  can be 

first-order autoregressive [AR(1)] or compound symmetric (CS), while 2U  is left 

unstructured (Roy 2006, Roy and Khattree 2005). Such liberty in the choice of the model 

in each dimension provides flexibility in modeling (Huang et al. 2007), but may involve 

the assumption of stationarity (e.g. AR(1)). It must be noted that the component variance-

covariance matrices, whether modeled or not, are defined up to a positive multiplicative 

constant: 2 1 2 1(1/ )aa  U U U U   and 

3 2 1 3 2 1(1/ )ba ab   U U U U U U  , with a, b > 0; only the Kronecker product 

is uniquely defined (Dutilleul 1999, Lee et al. 2010), and is the final object of estimation 

(Table 2.1). 

In a separable variance-covariance structure, only limited interactions between 

dimensions are possible. In particular, in the spatio-temporal framework, temporal 

correlations are then the same at each point in space, and so are the spatial correlations at 

each point in time. Thus, to obtain the best linear prediction of 
1 2i iX  (an element of data 

matrix X ) from 
1 2'i iX  (same time, different spatial location) and 

1 2i 'iX  (same spatial 

location, different time), it is sufficient to use 
1 2i 'iX  (O’Hagan 2002). In a predictive 

context like this, information about spatial neighbors at the same time is superfluous 

since the pattern of correlation at each spatial location is repeated over time. Using only 

past data collected at the same spatial location is sufficient.  

The restrictive conditions imposed on covariances by a separable variance-

covariance structure imply that it does not apply to all datasets, and a test of significance 

will help identify when it applies and when it does not (Lu and Zimmerman 2005, 

Mitchell et al. 2006; see also Subsection 2.1.5 and Chapters 4 and 6 here). When a 

variance-covariance matrix is separable, there are several advantages to this: 
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(1) because of the smaller number of parameters, ML estimation requires a (much) 

smaller sample size than for an unstructured variance-covariance matrix – see next 

subsection; 

(2) in each of the dimensions, changes in the mean are tested with a specific variance-

covariance matrix in an extension of the repeated measures ANOVA (Dutilleul and Pinel-

Alloul 1996) – see Chapter 6;  

(3) separability offers computational advantages, notably for matrix inversion (Schott 

1997);  

(4) the parsimony of a separable variance-covariance structure may provide increased 

power in statistical tests for the mean (Wolfinger 1996);  

(5) modeling the covariance can be of crucial scientific interest. 

Circularity is the most general necessary and sufficient condition on variances and 

covariances for valid F-tests for fixed effects in the ANOVA method. An n   n variance-

covariance matrix  (separable or not) is circular if  1 T
n C C I , with  T  the 

transpose operator,   a positive scalar, and C an n   (n – 1) matrix of orthonormal 

contrasts (i.e. particular linear transformations of raw data; the coefficients defining 

contrasts as linear combinations of raw data add up to zero; these linear combinations are 

orthonormal when they are orthogonal for the scalar product and their norm as a vector is 

1). In other words, when   is circular, the variance-covariance matrix of orthonormal 

contrasts is the identity matrix multiplied by a scalar (Crowder and hand 1990). This 

condition or variance-covariance structure is also known as covariance of type H, the 

Huynh-Feldt condition, or sphericity. Deviation from circularity is measured with Box’s 

‘epsilon’ (Box 1954a, 1954b; see Subsection 2.1.6 here). 

The three variance-covariance structures presented and briefly discussed above 

are not mutually exclusive, but they do not necessarily imply one another either. For 

example, (1) a separable variance-covariance matrix need not be stationary; (2) a 

diagonal variance-covariance matrix is stationary and separable if circular, because the 

elements of the diagonal matrix are then all equal; (3) if a variance-covariance matrix is 

separable but not diagonal, then nothing can be said about stationarity. The question of 

estimation of the model parameters is addressed in the next subsection.     
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2.1.4 Maximum likelihood estimation 

In this Ph.D. thesis, the context to which the estimation of multi-dimensional normal 

distribution model parameters belongs is the one in which a number K of identical and 

independently distributed (i.i.d.) observations from a random matrix or tensor are 

available for statistical inference. Although the elements of each of the data matrices or 

tensors are inter-dependent in general, the K matrices or tensors are considered as 

replicates because they come from individuals randomly sampled from one population 

(e.g. trees of about the same height, located not too close to each other within the same 

region).  

The context above excludes fields of application such as environmental 

monitoring, when data are collected at stations over periods of time or a partial 

realization of the underlying spatio-temporal stochastic process or “random function” in 

geostatistics is collected. There is one replicate (i.e. one random matrix) and elements are 

likely to be correlated. Several replicates are not possible in the absence of “parallel 

universes” (Dutilleul 2011). In the context where K = 1, a form of stationarity at order 2 

is usually assumed in the data analysis, sometimes in addition to separability. In this 

thesis, it is assumed that at least two replicates are always available for statistical 

inference, through repeated measures. 

The parameters of normal distribution models can be estimated by ML. The ML 

estimator of the mean in the scalar, vector, matrix, or tensor case is the sample mean in 

the absence of specific modeling; see Chapter 4 for examples of response surface 

modeling. Under the vector normal distribution model, the ML estimator of UN  is: 

                                    
  1

ˆ ˆ ˆ)(
1

)( T
UN k k

K

kK 
   x m x m ,                                   (2.1) 

where m̂  denotes the ML estimator of the mean vector (i.e. x ) and the index UN 

specifies that    is unstructured (i.e. has no specific structure). For the vectorized matrix 

and tensor normal distributions, the equation is the same, except kx  and m̂  are replaced 

by a vectorized data matrix or tensor and the corresponding vectorized sample mean 

matrix or tensor. The estimator (2.1) is available only if K ≥ n + 1, K ≥ n1n2 + 1 and K ≥ 

n1n2n3 + 1, respectively; in the univariate 2-D spatio-temporal case, it means that there 
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are at least as many replicates as space-time sampling points plus one. This estimator is 

not the unbiased sample variance-covariance matrix, as the divisor is K instead of K – 1. 

Actually, ML estimators of variance-covariance parameters are generally biased 

and their bias is inversely proportional to sample size. If θ denotes the variance-

covariance parameter of interest and ̂  is one of its estimators, the bias of ̂  is defined 

as ˆ ˆ) (( )B as Ei     , where E  denotes the expectation operator. In Chapter 3, the bias 

of the ML estimator of a simply separable variance-covariance matrix is studied in detail.  

Several algorithms exist for the estimation of separable variance-covariance 

matrices under the matrix normal distribution model. The most commonly used is the 

iterative MLE-2D algorithm (Dutilleul 1999), later renamed “flip-flop” (Lu and 

Zimmerman 2005), which is presented in Chapter 3. This algorithm is expected to 

produce an output provided 1 2 2 1max( / , / ) 1K n n n n  , and this condition will be 

extended for the MLE-3D algorithm and the ML estimation of a doubly separable 

variance-covariance matrix in Chapter 5. 

Werner et al. (2008) introduced a modification of Dutilleul’s original MLE-2D 

algorithm, by stopping the algorithm after one iteration. Estimation with a specific 

structure on either 1U  or 2U (e.g. AR(1), CS) has been developed (Roy 2006, Roy and 

Khattree 2005). Assuming an AR(1) structure for one of the two variance-covariance 

matrices, Naik and Rao (2001) presented an iterative ML type of estimation algorithm 

that can be used when there are missing data. In the analysis of magneto-

encephalographic data, Huizenga et al. (2002) modeled the temporal variance-covariance 

matrix as Toeplitz and the spatial one as exponential. That is, they assumed both 

stationarity at second order and separability to reduce the number of variance-covariance 

parameters to estimate. 

An iterative ML type of estimation algorithm using Newton-Raphson 

optimization was implemented in SAS PROC MIXED, for example. It was studied by Lu 

and Zimmerman (2004), who concluded that the MLE-2D algorithm was much faster 

than the ML Newton-Raphson algorithm. The latter was even found to not converge at all 

when 2U  was modeled as CS or AR(1), whereas the former converged (Roy and 

Khattree 2005). This is in accordance with the fact that the ML Newton-Raphson 



 

 12

algorithm in SAS PROC MIXED is of general purpose, whereas the MLE-2D algorithm 

is specifically designed for ML estimation of simply separable variance-covariance 

matrices. In the analysis of repeated measures in time and space, a Fisher’s scoring 

algorithm was proposed for iterative residual maximum likelihood estimation (Verbyla 

and Cullis 1992); it can be used when there are missing data. An iterative least-squares 

approach was also presented in the brain science literature (Bijma et al. 2005, Huizenga 

et al. 2002). From now on in this thesis, when referring to ML estimation of a separable 

variance-covariance matrix, we will refer by default to Dutilleul’s MLE-2D algorithm 

used with two unstructured component variance-covariance matrices, their Kronecker 

product being separable by construction, and no missing data. 

The so-called “covariance matching” provides an exact or approximate Kronecker 

product of two component variance-covariance matrices 1U  ( 1 1n n ) and 2U  ( 2 2n n ) 

for a given 1 2 1 2n n n n  variance-covariance matrix  . In simple terms, a rearrangement 

function ( R ) is defined, and )(R   is an 1
2
2

2n n  matrix, i.e., it is not square in general. 

The two component variance-covariance matrices 1U  and 2U  follow from a singular 

value decomposition of )(R  . This method allows the calculation of   (to be used in 

Chapter 4), which measures the separability approximation error (or lack of separability) 

of  : 2 1 || / ||| |||   U U   , where || . ||  denotes the Euclidean norm (also called 

“Frobenius norm”) (Genton 2007).  When   is perfectly separable, 0  , and the upper 

bound for values of   is 1/  1 ( ( )rank R  ;   is approximately 1 for very large 

matrices. Another separability index was developed by Boik (1991). Covariance 

matching is discussed in Van Loan (2000), Genton (2007), and Werner et al. (2007). An 

iterative covariance matching procedure is presented in detail by Bijma et al. (2005). The 

covariance matching method can accommodate additional structures; for example, if   is 

block Toeplitz, then 1U  and 2U  are Toeplitz. 

Werner et al. (2007) [see Figure 1 therein] compared several estimation 

procedures, and showed by simulation that the MLE-2D algorithm provided matrix 

estimates with the smallest normalized root-mean square error with small sample sizes 

(i.e. as small as from 2 to 10 when n1 = n2 = 4). For doubly separable variance-covariance 



 

 13

matrices, there are a limited number of estimation algorithms available, and these are 

reviewed in Chapter 5 before the extension of the MLE-3D algorithm is presented; see 

also Appendix F for the MLE-4D algorithm. Whether in 2-D or 3-D (or 4-D), since 

model parameters are estimated, it is very important to assess that the assumptions of 

multi-dimensional normal distribution models hold for the dataset.  

2.1.5 Likelihood ratio tests for simple separability of a variance-covariance matrix  

The assumptions of the matrix normal distribution model are multivariate normality and 

simple separability of the variance-covariance structure. For ML estimation purposes, an 

i.i.d. random sample of sufficient size is required, implying that the mean matrix and the 

two component variance-covariance matrices are the same for all the distributions of 

matrices of the random sample. Testing of the separability assumption can be based on 

the discrepancy between the Kronecker product of ML estimates of 2U  and 1U  under the 

null hypothesis and the ML estimate of UN  under the alternative. The rationale is that if 

ˆ
UN  “resembles” 2 1

ˆ ˆU U  enough, then separability should not be rejected for that 

dataset.  

The sample size required for testing the assumption of separability (i.e. K ≥ n1n2 + 

1) is superior to that required for ML estimation under the matrix normal distribution 

model (i.e. 1 2 2 1max( / , / ) 1K n n n n  ), since UN  then needs to be estimated by ML. 

Thus, it is possible that the sample size allows ML estimation assuming separability, but 

does not permit testing the assumptions. In that case, separability can only be assumed 

without testing (Dutilleul and Pinel-Alloul 1996). 

Several likelihood ratio tests (LRTs) for simple separability of a variance-

covariance matrix have been developed (Table 2.2); by definition, any LRT statistic is the 

ratio of suprema of the likelihood function under the null and alternative hypotheses 

(Muirhead 1982). So far, all the LRTs proposed for assessing separability are biased 

(Muirhead 1982), an issue distinct from the bias for an estimator and occurring when the 

probability of rejecting the null hypothesis is not minimum under the null hypothesis. A 

solution is proposed here in Chapter 4, with an unbiased modified LRT for simple 

separability. Roy and Leiva (2008) had developed an LRT for double separability of a 

variance-covariance structure when at least one of the component matrices is structured. 
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In Appendix E of this thesis, an unbiased LRT test for double separability when all the 

component variance-covariance matrices are unstructured is presented. 

2.1.6 Modified ANOVA F-tests based on Box’s ‘epsilon’ 

Traditionally, the number of variance-covariance parameters contained in   tends to be 

reduced to one (i.e. the variance) by design of the experiment (e.g. homogeneous material 

and field, randomization of treatment assignment), so that a small number of replicates 

are sufficient to obtain a positive-definite variance-covariance matrix estimate. Why is it 

that the number of variance-covariance parameters cannot be reduced by experimental 

design for multi-dimensional datasets when these are spatio-temporal, univariate or 

multivariate? Because repeated measures are not collected in a ‘classical’ field lay-out: 

sampling times (years, months, days, hours) are usually the same for all units, and so are 

sampling locations (depths, heights, directions). In other words, as ANOVA qualitative 

factors, time and space are usually crossed with other factors whether these are treatment 

factors or more generally, classification factors. Furthermore, due to limited resources, 

there is often a lack of replicates to satisfy the condition 1 2 1K n n   or 1 2 3 1K n n n  , 

and estimate the unstructured 1 2 1 2n n n n  or 1 2 3 1 2 3n n n n n n  variance-covariance matrix. 

Also, it is not recommended to ignore any heterogeneity of variance (heteroscedasticity) 

and inter-dependencies (correlations) in the data that are susceptible to make invalid the 

unmodified ANOVA F-tests for the so-called “within-subject effects” (which are related 

to repeated measures factors). Accordingly, the variance-covariance matrix often needs to 

be modeled. The separable variance-covariance structure with unstructured component 

variance-covariance matrices, as implied by the multi-dimensional normal distribution 

model in its general form, was selected for this Ph.D. thesis because it is parsimonious 

and does not require stationarity. While properties and limitations will be further 

discussed, contributions regarding estimation and testing aspects will be provided. 

Doubly or triply repeated measures ANOVA can be used under the matrix or 

tensor normal distribution model, to test for differences among elements of the mean 

matrix or tensor. Each dimension can then be viewed as a repeated measures factor with a 

certain number of levels (Dutilleul and Pinel-Alloul 1996). Usually, with spatio-temporal 

repeated measures, means should be compared by taking into account discrepancies from 

the circularity assumption (see Subsection 2.1.3) due to heteroscedasticity and 
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autocorrelation. Such discrepancies are evaluated with Box's ‘epsilon’ (Box 1954a, 

1954b), and under separability, it is possible to calculate one Box’s ‘epsilon’ for each 

component variance-covariance matrix (for each repeated measures factor) as well as for 

the Kronecker product (Dutilleul and Pinel-Alloul 1996, Dutilleul 2011). Box’s ‘epsilon’ 

is used as a multiplicative factor to the numbers of degrees of freedom (d.f.) of the 

numerator and denominator of the F-ratio tests for repeated measures effects. Under 

circularity (Subsection 2.1.3), Box’s ‘epsilon’ is equal to 1 and there is no need to adjust 

(reduce) the two numbers of d.f. and modify the ANOVA F-test.  

Actually, in applications, Box's ‘epsilon’ needs to be estimated. Following 

Greenhouse and Geisser (1959), Huynh and Feldt (1976) designed an estimator for 

situations when the number of individuals (on which repeated measures are made) is 

small and the true but theoretical value of Box’s ‘epsilon’ is close to 1. It was corrected 

later to work properly with several groups (Lecoutre 1991). The corrected form of 

Huyhn-Feldt version of Box's ‘epsilon’ estimator was shown to be more robust than the 

uncorrected version, while being equally valid and powerful (Quintana and Maxwell 

1994). 

An interesting relationship between separability and circularity was explored by 

Boik (1991), who proved and showed by simulation that modified ANOVA F-tests based 

on Box’s ‘epsilon’ will be valid in the doubly repeated measures ANOVA if the 

covariance has a separable structure. With increasing departure from separability and 

holding Box’s ‘epsilon’ value fixed, Boik’s simulations suggest that the test size 

(probability of rejecting the null hypothesis while it is true) decreases.  

The statistical models, methods and procedures described above or their latest 

improvement or upgrade as the result of my Ph.D. thesis project will be applied to 3-D 

repeated measures of wood density estimated from CT scan data in Chapter 6. Therefore, 

the next section gives more details about tree growth and the tree species of interest.  

2.2  Trees 

2.2.1 Tree growth 

A tree ring can be seen as the physical embodiment of time: “On cross-sections of trees, 

structures and patterns can be recognized with regularity and the question of time is 

apparent” (Wimmer 2002). Also, a variation in the properties of wood is expected within 
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a ring, at various heights in the tree and at different orientations in the trunk 

(Schweingruber 2007). If wood cores are taken at different heights or orientations within 

a tree for measurement of one property or characteristic, then spatio-temporal data arise, 

and the tree appears as a spatio-temporal sampling domain.  

Ring width and its links with temperature and precipitation are the classical 

subjects of investigation of dendrochronology or dendroclimatology. Chemical and 

anatomical variables, such as calcium concentration, fibre angle, ratio of late to early 

xylem, density of resin duct, and wood density, may be linked to wind events, pollution, 

and management intervention (Wimmer 2002), and may be more responsive to 

environmental changes than ring width (Smith 2008). Such data are multivariate and 

potentially spatio-temporal. 

The autocorrelation of variables and the cross-correlation between variables are 

well-known in tree-ring series analysis (Wimmer 2002), and the dendrochronological 

literature highlights the need for properly evaluating error values: “Proper statistical 

treatment of the data, for example, accounting for non-independence of variables (often a 

large issue in structural research), will allow more correct interpretation of the actual 

patterns” (Gartner et al. 2002). In fact, if cross-correlation is strong, most of the 

information can be extracted by using only those variables that are easy to measure 

(Wimmer 2002), thus reducing the workload to obtain measures. 

Density is a particularly important variable in wood science, since it determines 

the properties and values of pulp and solid wood products, and is highly heritable 

genetically (Pliura 2006). The accurate modeling of wood density variation, both between 

and within trees, should lead to an improved use of raw materials in the forest industry 

(Lindstrom 2002). 

Measurability is a main challenge and “there is a need for new and rapid 

techniques to assess the response variables within the wood” (Gartner et al. 2002). It is 

expensive and time consuming to measure several variables such as wood density and 

microfibril angles within each ring, so that datasets tend to be of small size and limited to 

a few species. SilviScan (Evans et al. 1995, Keunecke et al. 2009) allows the 

measurement of a variety of anatomical and mechanical properties of wood, and its 

ability to measure these properties in more than one dimension is improving (Defo et al. 
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2009). However, the data can only be collected on thin, small stripes of wood. Downes et 

al. (2009) present other measurement technologies, while discussing the importance of 

tree-ring research for commercial forestry. X-ray CT scanning is a technique that allows 

the measurement of density in 3-D on larger pieces of wood. Prior to giving details about 

X-ray CT scanning, the tree species of interest is described below. 

2.2.2 White spruce 

The pieces of wood CT scanned in this Ph.D. thesis project are trunk sections from white 

spruce trees (Picea glauca (Moench) Voss). In 2009, it was estimated that there were 111 

686 hectares of spruce plantations in Canada, about a third of the total area under 

plantation (National Forestry Database 2009). White spruce is an object of genetic studies 

(Beaulieu et al. 2011), breeding programs (Zhang et al. 2004), and dendrochronological 

studies (Szeicz and Macdonald 1996).  

Wood density is known to vary in the trunk of a white spruce tree. Generally, 

from pith to bark, density decreases, stabilizes, and then increases (Corriveau et al. 1990). 

From the stump to the top of the tree, wood density increases (Wang and Micko 1984, 

Singh 1984). These patterns may vary with the diameter of the tree trunk (Singh 1984) 

and the method used to measure wood density (Zhang et al. 2004). Thus, variation in 

wood density estimated from the CT scan data collected for the trunk sections of white 

spruce trees could be expected.    

2.3  Technologies 

2.3.1 Non-destructive techniques for graphical and quantitative analyses of wood 

properties 

Non-destructive methods that allow imaging of the internal structure of wood can be 

classified according to energy, frequency, or length of the emitted wave that interacts 

with the wood material. Based on wavelength, X-rays have the highest energy transmitted 

(i.e. the smallest wavelength, from 1.0E-12 to 1.0E-9 m; Bucur 2003). Theoretically, sub-

microscopic, microscopic, and macroscopic structures can all be observed, depending on 

the resolution of the machine. For example, X-ray computed microtomography allows the 

observation of vessels in small wood cubes (Steppe et al. 2004), while CT scanners of the 

medical type can be used with larger pieces (Fromm et al. 2001). 
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Increasing the wavelength and decreasing the energy results in visible light (1.0E-

6 m), and then in infrared (1.0E-5 to 1.0E-6 m), microwave (1.0E-3 to 1.0E-1 m), 

ultrasound (1.0E-2 to 1.0E3 m), and radio waves (1.0E3 to 1.0E5 m). Radio waves can be 

used to visualize forests and full trees, while infrared and micro waves are used to 

observe macroscopic structures. Visible light, as we know it, can be used to observe 

microscopic and macroscopic features. Ultrasound can be used to visualize entire trees, as 

well as macroscopic and microscopic features (Bucur 2003). Magnetic resonance 

imaging is popular in medical applications because it is safer than X-rays for human uses, 

but it can only be used with material that contains a large amount of water, such as the 

soft tissue of an animal, and unlike CT scanning, magnetic resonance imaging is affected 

by soil iron content (Tollner et al. 1994). Gamma rays can also be used (Macedo et al. 

2002), but the source of waves is then radioactive. 

Basic elements of the theory behind CT scanning are presented below, because 

wood material has been CT scanned with a scanner of medical type in the environmental 

application of this Ph.D. thesis project (Chapter 6). Assume a monochromatic source of 

X-rays (one energy level) emits N photons which traverse an incremental thickness of 

material Y , so that only N N   photons are counted by the receptor on the other side 

of the material. If 0( ) yN y N e  , then the number of photons at position y within the 

material is a function of the initial number of photons entering the material ( 0N ), and of 

  which represents the photon loss rate per distance unit, the absorption coefficient (Kak 

and Slaney 2001). If the coefficient value is very large (e.g. lead), most photons will have 

“disappeared” (Kak and Slaney 2001). At the energies of a medical CT scanner, the 

Compton effect (i.e. deflection of a photon as it interacts with a free electron in the 

material) is considered the most important mechanism behind the “disappearance” of 

photons (Mull 1984). The attenuation coefficient for a heterogeneous material can be 

calculated as 1 1 ... ...i i f fw w w       , where i  is the absorption coefficient for 

material i and iw  is the percent by volume of material i. The absorption coefficient of a 

material is a function of the density and of the atomic composition (Lindgren 1991a).  

Measurements obtained by CT scanning are subject to noise, which arises from 

fluctuations in the numbers of photons counted by receptors; this quantum noise is 
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inherent to the physical process. In general, the larger the number of photons counted by 

receptors, the smaller the noise (Hilts and Duzenli 2004). One possible approach to 

decrease the noise, if necessary, is to increase the energy of the X-rays, Energy = P C T, 

where the energy is the load on the X-ray tube in kilo-Joules, P  is the energy potential in 

kilo-Volts, C  is the electrical current in milli-Amperes, and T  is the scan time per 

rotation in seconds (Hilts and Duzenli 2004). Other approaches have to do with the size 

of the sample and the length of the image reconstruction interval for 2-D CT images. 

2.3.2 CT scanning of wood material 

CT scanning technology has been used with wood material in previous studies (Bucur 

2003, Lindgren 1991b). However, the material is heterogeneous, which influences the 

measurement procedure. Ignoring water and micro-nutrients, wood is composed of 

cellulose, hemicellulose, and lignin, for which the absorption coefficients are: 

0.2634c  , 0.2655h  , and 0.2608l  , respectively (Lindgren 1991b). These 

values are equal to the second decimal, so the total absorption coefficient does not vary 

much for mixtures of the three components (Lindgren 1991b). Furthermore, it is 

generally acknowledged that the density of the cell wall in dry wood is stable at 1500 

kg.m–3. Theoretically, the absorption coefficient for a very small parallelepipedic 

rectangular volume (i.e. a voxel) of wood thus varies nearly perfectly with fluctuations in 

wood density due to the morphology and distribution of anatomical elements (e.g. wide 

lumen). This is empirically verified by a nearly perfect ( 2 0.99R  ) linear relation 

between the absorption coefficient (converted to a CT number; see Chapter 6), and oven-

dried estimated wood density (Lindgren 1991b, Mull 1994). 

Moving away from idealized objects of dry and pure wood, pores in wood can be 

filled with water, and there may be some heavy elements in the cell wall. In the presence 

of water in the wood, the absorption coefficient of a voxel is larger, as water replaces air 

in the pores and absorbs photons (Lindgren 1991b). With wet wood, a measure of the 

percentage of water in the wood is required, which is possible but increases the technical 

difficulty (Macedo et al. 2002). Concerning heavy elements in the cell wall, it was 

calculated that for elements with an atomic number greater than 20, a change of 150 μg.g–

1 of concentration changes the absorption coefficient by 1% with X-ray densitometry 
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(similar to classical radiography), although the change in physical density is minimal 

(Kouris et al. 1981). 

At the end of this literature review, it appears that the statistical models, methods 

and procedures to be developed or validated here could prove very useful to wood 

scientists, and there is great potential for a useful and innovative application of X-ray CT 

scanning. 
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Table 2.1: Normal distribution models under study and objects of estimation: Multi-dimensional normal distribution models  are 

extensions of the well-known scalar and vector models. 

Example Random object Model Variance-covariance 

parameters, object of 

estimation 

Wood density for one 

ring in one direction at 

one height 

Random scalar (0-D) 

variable 

)~ ( ,X N m u  u  

Wood density for two 

rings in one direction at 

one height 

Random vector (1-D) of 

size n  

~ ( ),nNx m U   U  

 

Wood density for two 

rings in two directions at 

one height 

Random matrix (2-D) of 

size 1 2n n  
21, 1 2~ ( , ),n nNX M U U  

  
1 2 2 1~ (vec(vec( ) ), )n nN X M U U  

2 1 U U  

Wood density for two 

rings in two directions at 

two heights 

Random tensor of order 

three (3-D) and size 

1 2 3n n n   

1 2 3, , 1 2 3~ ( , , , )n n nN U U U   

  

1 2 3 3 2 1vec( ) v~ ( ,ec( ) )n n nN  U U U   

3 2 1  U U U  
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Table 2.2: Likelihood-ratio testsa for simple separability of a variance-covariance matrix. 

Reference Modeling of 1U  and 2U b 

Naik and Rao (2001) UN, CS 

Svantesson and Wallace (2003) UN, UN 

Lu and Zimmerman (2005) UN, UN 

Mitchell et al. (2005) UN, UN 

UN, AR(1) 

Roy and Khattree (2005) UN, CS 

Roy (2006) UN, AR(1) 

Mitchell et al. (2006) UN, UN 

Roy and Leiva (2008) UN, CS 

UN, AR(1) 

Srivastava et al. (2008) UN, CS 

UN, UN 
a All the likelihood-ratio tests listed above are biased.  
b UN: unstructured; CS: compound symmetric; AR(1): first-order autoregressive.
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(a) Unstructured variance-covariance matrix 

 

(b) Separable variance-covariance matrix  

 

(c) Identity variance-covariance matrix 

 
Figure 2.1: Design with two repeated measures factors (two dimensions), with two levels 

per repeated measures factor (n1 = n2 = 2). (a) In the unstructured variance-covariance 

matrix, there are four distinct variances (u11, u12, u21, u22) and six distinct covariances (see 

the six double arrows of various types). (b) In the separable model, there are four distinct 

variances and only two distinct covariance parameters (see the two pairs of double 

arrows). (c) Assuming independence (absence of correlation) and stationarity, there is 

one variance, and no covariance (no double arrow). The separable model for a variance-

covariance structure is parsimonious and allows inter-dependencies among datapoints. 

u  u  

u  u  

11u  12u  

21u  22u  

11u  12u  

21u  22u  
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Preface to Chapter 3 

In Chapter 2, the matrix normal distribution model, which implies a simply separable 

variance-covariance structure, was presented. The estimation of variance and covariance 

parameters in particular by ML was discussed, with emphasis on properties of the ML 

estimator such as the bias. Thus, the object of study in Chapter 3 is the bias of the 

Kronecker product of the two estimated component variance-covariance matrices 

obtained as solutions of the iterative MLE-2D algorithm. It is found that the bias follows 

an unexpected ‘peak-trough’ pattern, explained by decomposing the bias – an original 

conceptual contribution. The simulation results are discussed in relation to statistical 

theory, links are made with decompositions performed in geostatistics, and matrix 

algebra details are provided in Appendix A. As of May 2012, a manuscript (co-authored 

by Mr. Manceur and Prof. Dutilleul) based on this chapter was in revision for possible 

publication in Statistics and Computing. Prof. Dutilleul wrote the MLE algorithm in the 

1990s. Mr. Manceur upgraded the algorithm for use in current software, realized the 

simulation studies, observed the unexpected pattern, and wrote the initial manuscript. 
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Chapter 3. Bias decomposition for the maximum likelihood estimator of a 

separable variance-covariance matrix 

3.1 Abstract 

In the matrix normal distribution model 
  

  
 1 2, 1 2( , )~ ,n nNX M U U , the variance-

covariance structure is separable: the variance-covariance matrix of vec( )X  is the 

Kronecker product of the variance-covariance matrices, 2U  for the 2n  columns and 1U  

for the 1n  rows. From an i.i.d. random sample   1,..., KX X  with 

 
    

     1 2 2 1max / , / 1K n n n n  , it is possible to estimate 2 1U U  by ML, by estimating 

1U  and 2U  iteratively with the ‘flip-flop’ MLE algorithm. In this chapter, we report on 

the empirical bias of the ML estimator of 2 1U U , and show that it may decrease 

monotonically or not with K  depending on the values of 1n  and 2n , before vanishing as 

K  becomes very large. To explain this apparent paradox to the theory of properties of 

ML estimators, we decompose the empirical bias, renamed as “ergodic bias”, into an 

“estimation bias” and a “fluctuation bias” minus a non-orthogonality factor. Our results 

also provide valuable information to users of the MLE algorithm for the matrix normal 

distribution, as to which combinations of 1n , 2n  and K  may correspond to higher or 

lower bias values than expected in theory. 

 

3.2 Introduction 

Bias is a measure classically used in the statistical sciences to position an estimator 

relative to the population parameter of interest. In the one-parameter case, it is 

theoretically defined as the difference between the expected value of the sample statistic 

used as an estimator and the value of the parameter that is the object of estimation (Kotz 

et al. 1982, p. 230). In the case of several parameters contained in a vector or a matrix, 

the sample statistic is simply or doubly multivariate, and the extended definition of bias, 

for it to remain a scalar quantity, is based on the norm of the vector or the matrix of 

expected values of the differences between the estimator’s entries and the corresponding 

parameter values. In this case, the bias values are restricted to be non-negative, as they 

are norms or distances. When different from zero, bias values may depend on various 
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factors, such as the method of estimation, the strength of autocorrelation and 

heteroscedasticity in the sample data, and the sample size. 

 In this chapter, we focus on the bias of the ML estimator of the variance-

covariance matrix under the matrix normal distribution model 
  

  
 1 2, 1 2( , )~ ,n nNX M U U  

(Dawid 1981, de Waal 1988). The variance-covariance structure is then said to be 

separable, factorized, or Kronecker structured, as the variance-covariance matrix of the 

vectorized matrix X , vec( )X , is the Kronecker product (  ) of the two variance-

covariance matrices: 2U , for the 2n  columns (e.g. temporal repeated measures), and 1U , 

for the 1n  rows (e.g. spatial repeated measures), in this order: 

             2 1var(vec( ))  X U U .                                         (3.1) 

 Under the vector normal distribution model (~ , )nNx m  , the ML estimator of 

the variance-covariance matrix Σ , obtained from an i.i.d. random sample 1,..., Kx x  with 

K n , is biased, and the bias decreases monotonically with K , and vanishes 

asymptotically (Kendall and Stuart 1967). The system of likelihood equations then has 

one exact, analytical solution for Σ , i.e., the sample variance-covariance matrix 

multiplied by ( 1) /K K . This is not the case for 1U  and 2U  under the matrix normal 

distribution model (Dutilleul 1999), which may have implications for the study of the 

bias of the ML estimator of 2 1U U , built as the Kronecker product of estimators 
 2Û  

and 
 1Û  obtained iteratively as final solutions of the system of likelihood equations for 

1U  and 2U  . 

 Such study of bias is of importance and interest at this moment, for the following 

reasons.  The iterative MLE algorithm developed by Dutilleul (1999) to solve the system 

of likelihood equations for 1U  and 2U  is increasingly used, after it was shown that: (i) it 

converges with datasets for which other estimation methods fail (Roy and Khattree 

2005); (ii) it presents the smallest mean square error in small sample sizes (Werner et al. 

2008); and (iii) with it, there is no need to parameterize 1U  and 2U in a particular way 

prior to proceeding with estimation (Lee et al. 2010). The MLE algorithm for the matrix 

normal distribution has been found useful in several fields, including biochemistry 

(Theobald and Wuttke 2008), image analysis (Dryden et al. 2008), and engineering 
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(Werner et al. 2008), and was mentioned in recent statistical publications on doubly 

multivariate data analysis (Allen and Tibshirani 2010, Wang and West 2009). If the bias 

of the ML estimator of 2 1U U  did not follow the statistical theory as expected, the 

users of the iterative MLE algorithm should better know it, and there might be potential 

for discoveries and original explanations about the bias behavior, and an expansion of the 

bias concept eventually. The simulation results presented in Dutilleul (1999) include 

standardized empirical bias values for the ML estimator of 2 1U U  that were relatively 

constant in small samples sizes and decreased monotonically to approach zero for larger 

sample sizes. Computational power is now much greater, but the results and findings 

presented hereafter are not limited to only simulations and numerical aspects. 

 Therefore, fundamental elements about the MLE algorithm for the matrix normal 

distribution are presented in Section 3.3. In Section 3.4, the empirical bias (renamed 

“ergodic bias”) of the ML estimator of 2 1U U  is decomposed into an estimation bias 

plus a fluctuation bias, minus a non-orthogonality factor. The three biases are studied by 

simulation in Section 3.5. Results are discussed in Section 3.6, where the atypical part in 

the behavior of the empirical bias is explained, a link is made with practice concerning 

uncertainty assessment in geostatistics, and the discussion is completed with the pseudo-

theoretical bias. Conclusions are drawn in Section 3.7, while matrix algebra and 

computational details are given in Appendix A. 

3.3 Maximum likelihood estimation for the matrix normal distribution  

 Under the matrix normal distribution model 
  

  
 1 2, 1 2( , )~ ,n nNX M U U , the variance-

covariance structure is uniquely defined through 2 1U U  (see (3.1)), instead of 1U  and 

2U  separately; 2 1 2 11/ aa U U U U  with 0a  . In other words, 1U  and 2U   are 

defined up to a positive multiplicative constant, and 2 1U U  with 1U  and 2U  both 

assumed to be positive definite is the object of estimation here, as far as variances and 

covariances are concerned. In the absence of analytical solutions for 1U  and 2U  in the 

system of likelihood equations, by ML estimator of 2 1U U  we mean the estimator 

obtained as the Kronecker product of the final solutions 
 2Û  and 

 1Û  of the MLE 

algorithm used to solve the system of equations in 1U  and 2U  iteratively. The MLE 

algorithm for the matrix normal distribution (called ‘flip-flop’ by Lu and Zimmerman 
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2005) was presented in details by Dutilleul (1999). Its most important characteristics are 

summarized below. 

 Using a random sample 1,..., KX X  i.i.d. 
  

  
 1 2 1, 2( , ),n nN M U U  with 1 0U  and 

2 0U , equalling to zero the first derivatives of the log-likelihood function with respect 

to 1U  and 2U  leads to 
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where 
1

1 K

k
kK 

 X X . The existence of estimates 
 1Û  and 

 2Û  at successive iterations of 

the algorithm requires that the sample size K be sufficiently large, but not necessarily 

greater than 1 2n n  if 1 1n   or 2 1n  : 

                                          
  

  

   

1 2

2 1
max , 1

n n
K

n n

 
  

 
.                                         (3.3) 

   The MLE algorithm used to solve (3.2) can be initialized with  

 
 2

0
2

ˆ
nU I  or any 

other justified 2 2n n  positive definite matrix. To stop it, the criterion can be on the norm 

of the difference between the Kronecker products 
 2Û 

 1Û  of two successive pairs of 

estimates or between the estimates taken separately; different positive infinitesimal 

quantities 1  and 2� for the two norms of differences can be used when justified in the 

latter case. 

3.4 Bias decomposition 

The bias which is introduced below and decomposed thereafter is empirical in that it 

cannot be evaluated in finite samples without simulations, due to the random nature of 

the matrix defining the variance-covariance matrix estimates as two sums of K  quadratic 

forms in matrix-valued observations (see   

  2
1

2
ˆ( )K n U  for 

 1Û  and   

  1
1

1
ˆ( )K n U  for 

 2Û  

in (3.2)): 

                                   

    

 2 1 2 1
ˆ ˆ= || ||( )EB E   U U U U ,                             (3.4) 
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where || . ||  denotes the Euclidean norm. We call EB   the “ergodic bias” because the 

difference in (3.4) is between the variance-covariance matrix statistic 
 2Û 

 1Û  

computed from an i.i.d. random sample, and the variance-covariance matrix parameter 

value 2 1U U , used as a reference point. Although the variance-covariance parameters 

could be those of a spatio-temporal random function or stochastic process, this type of 

ergodicity does not correspond to the classical definition that applies in time series 

analysis, when the statistic value tends to the parameter value as the time series length 

becomes very large (Blum 1981). Instead, it can be related to the ergodic variance used in 

geostatistics to assess the uncertainty in the estimation of semivariance parameters (see 

Section 3.6). Computational details about the evaluation of (3.4), including the 

replacement of   

  1
1

1
ˆ( )K n U  by   

   1
1

1
ˆ( ( ) )VK n U  and of   

  2
1

2
ˆ( )K n U  by   

   2
1

2
ˆ( ( ) )VK n U  

where 
  1( ˆ )VU  and 

  2( ˆ )VU  represent averages over V  simulation runs, are given in the 

Appendix A. 

 Because 
 1Û  and 

 2Û , which are involved in the construction of the ML estimator 

 2Û 
 1Û , are the numerical solutions of an iterative algorithm, it is possible that there 

be ‘fluctuations’ in the accessibility of the ‘true’ parameter values from the data in 

applications, especially when the sample size K   is equal to the minimum required (3.3) 

plus a few units. Accordingly, the average 
   2 1

ˆ ˆ( )VU U  of a large number V  (1.0E6) of 

ML estimated variance-covariance matrices would provide a better point of reference and 

could be used to study a new type of bias. Along those lines of thought, the difference 

    2 1 2 1
ˆ ˆ  U U U U  can be decomposed as follows: 

         
    2 1 2 1

ˆ ˆ  U U U U  = 
     2 1 2 1

ˆ ˆ(ˆ ˆ )V  U UU U +
     2 12 1

ˆ ˆ( )V   UU UU ,     (3.5) 

and we call  

     

 2 1 2 1
ˆ ˆ= | ˆ ˆ || ( ( ) |)S VB E  U UU U , the “estimation bias”, and 

 

     

 2 12 1
ˆ ˆ= || ( ) ||F VB   U UU U , the “fluctuation bias”, with 

      2 1 2 1
ˆ ˆ ˆ ˆ(( ) ) ( )V VE U U U U . 

 The bias SB  measures the distance between the expected value of the estimator 

 2Û 
 1Û , as obtained empirically from a theoretical formula (see above and the 

Appendix A), and a different reference point than the classical ‘true’ matrix parameter 
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value, provided by the average of V  estimated variance-covariance matrices obtained 

from the final solutions of the MLE algorithm. The bias FB  for its part measures how the 

average of V  estimated variance-covariance matrices obtained from the final solutions of 

the MLE algorithm ‘fluctuates’ around the ‘true’ matrix parameter value. A large FB  

combined with a small SB  corresponds to a combination of K , 1n  and 2n , for which the 

‘true’ matrix parameter value is hardly accessible from sample data while the estimation 

procedure is successful in providing the average reachable variance-covariance matrix 

estimate. 

 Unlike the ANOVA decomposition, the sum of the two biases SB  and FB  is not 

equal to the ergodic (empirical) bias EB . The difference ( )S F EB B B  , which is 

positive, provides a “non-orthogonality component” denoted  , so that the ergodic bias 

is finally decomposed as follows: 

                                                E S FB B B    .                                          (3.6) 

 To be complete and for comparison purposes, we also studied a “pseudo-

theoretical bias”, TB , which differs from EB  by the presence of non-random matrices in 

the quadratic forms defining 
 1Û  and 

 2Û  in (3.2), that is, by the replacement of 

  

  1
1

1
ˆ( )K n U  by   

  1
1

1( )K n U  and of   

  2
1

2
ˆ( )K n U  by   

  2
1

2( )K n U . No simulation is 

required to calculate this pseudo-theoretical bias (see the Appendix A). 

3.5 Evaluation of the ergodic bias and its components 

The three biases EB , SB , FB  and the non-orthogonality component   were evaluated 

for various combinations of 1n , 2n  and K  (see below), using V=1.0E6  estimates 

 2Û 
 1Û  provided by as many simulation runs and permissible (non-singular) solutions 

 1Û  and 
 2Û  of the MLE algorithm at convergence (

 1  = 
 2  = 1.0E-6,  

 
 2

0
2

ˆ
nU I , 1.0E7 

iterations maximum). A customized program was written in Matlab 2010a (The 

MathWorks Inc., Natick, MA). The mean matrix M  was set at zero and 
  

 11 nU I , 

  
 22 nU I , which did not affect our results except by decreasing the time required for the 

MLE algorithm to converge. The procedure followed to simulate i.i.d. random samples 

from a matrix normal distribution is the same as in Dutilleul (1999), except that the 
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Ziggurat Algorithm (Marsaglia and Tsang 2000) was used here to generate pseudo-

random numbers from a univariate normal distribution. The smallest sample size 

considered for the matrix normal distribution, denoted minK  below, is equal to 

1 2 2 1INT[max( / , / )] 1n n n n  if 1 2 2 1max( / , / )n n n n  is an integer number and 

1 2 2 1INT[max( / , / )] 2n n n n   otherwise;  INT .  represents the integer part of the number 

in brackets. The combinations of number of rows, number of columns and sample size 

considered for the evaluation of biases are: 1 2,  ,  12n    and 2 2, 3n   by steps of 1; 

and , ..., 15minK K  by steps of 1, in addition to 20 as well as 1000 in particular cases. 

Finally, bias values were standardized by the corresponding || U 2   U 1 ||. 

 Values of minK  are plotted as a function of 1n  and 2n  in Figure 3.1. When 1n  = 

2n ,  minK   is equal to two, and then increases by ‘steps’ with 1n . The width of each 

‘step’ is equal to the value of 2n . 

 In Figure 3.2 ( 2n  = 2) and Figure 3.3 ( 2n  = 3), the pattern of the ergodic 

(empirical) bias with increasing sample size K increases from minK  for given values of  

1n   and  2n   is very surprising [see panel (a)] because BE  does not always decrease 

monotonically with K! Actually, non-monotonic patterns are observed for the three biases 

(ergodic, estimation, fluctuation), and present one or two characteristic aspects depending 

on the bias: only a ‘peak’ shortly after minK  for the ergodic bias; a ‘peak’ shortly after 

minK , followed by a ‘trough’ prior to decreasing slowly and approaching zero around K 

= 20 for the estimation and fluctuation biases [see panels (b) and (c)]. The non-monotonic 

patterns are sufficiently regular, stable and repeated for not being artefacts and for being 

related to the values of 1n , 2n   and K because they are observed for particular 

combinations of the three numbers. 

 When 2n  = 2 (Figure 3.2), a ‘peak’ over minK  + 1 and minK  + 2 is present in the 

ergodic bias for the even values of 1n  considered here (2, 4, 6, 8, 10, 12), but not for the 

odd values (3, 5, 7, 9, 11); the ergodic bias decreases monotonically with K for these. The 

estimation bias presents a ‘peak’ over minK  + 1 and minK  + 2, followed by a ‘trough’, 

and this pattern is restricted again to the even values of 1n . For 1n  = 2, 4, 6, the 
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fluctuation bias presents a ‘peak’ over minK  + 1 and minK  + 2, followed by a marked 

‘trough’; for 1n  = 8, 10, 12, there is no ‘peak’ but a higher value, followed by a marked 

‘trough’; for all odd values of 1n  (3, 5, 7, 9, 11), there is only a slight ‘trough’ shortly 

after minK , the largest value of the fluctuation bias being observed at 1n  = 3. In all cases, 

the non-orthogonality component takes very large values at the beginning (small K), but 

quickly converges to a value close to zero as K  increases.  

 When 2n  = 3 (Figure 3.3), similar general patterns are observed, with the 

following differences. The ergodic bias continues to present no ‘trough’, but ‘peaks’ are 

observed at  minK  + 1 for 1n  = 3, 6, 9, 12 (multiples of three). Accordingly, there are 

‘peaks’ in the estimation bias at minK   + 1 for 1n  = 3, 6, 9, 12, and there is a clear 

‘trough’ for smaller values of 1n . The pattern of the fluctuation bias with 2n  = 3 is 

similar to what it is with 2n  = 2 (Figure 3.2), except that ‘peaks’ occur at minK  + 1 for 

1n  = 3, 6 instead of 1n  = 2, 4, 6 and the largest value is observed at 1n  = 5, 2 3n   and 

3minK K  . Again, the non-orthogonality component takes very large values at the 

beginning (small K), but quickly converges to a value close to zero as K  increases in all 

cases. 

 In view of Figures 3.1(a)-(b), 3.2(a) and 3.3(a), the first ‘peak’ in the ergodic bias 

happens for the combination of 1n  and 2n  for which minK  is the smallest, that is, 1n  = 

2n  = 2 and 1n  = 2n  = 3. The three biases become very small for values of K greater than 

20 and values of 1n  and 2n  in the range considered here. For example, with 1n  = 5, 2n  = 

2 and K  = 1000, the values of BE, BS, BF, and   are 7.90E-4, 2.29E-4, 1.01E-3 and 

4.51E-4, respectively. 

 The representation of the three non-theoretical biases in the same graph, as in 

Figure 3.4(a) for 1n  = 2n  = 2 and in Figure 3.4(b) for 1n  = 2n  = 3, provides insight into 

how they vary and differ as K  increases from minK   to 20; for 1 2 4n n   and 5, results 

are very similar to these for 1 2 3n n  , and are not reported. Bias values are larger for K 

= 3 or 4, and the estimation bias provides the largest values, followed by the fluctuation 

bias and the ergodic bias in this order, which is very interesting and is discussed below. 
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From K = 7 on, the three biases and the non-orthogonality components take much smaller 

values and tend to coincide in the graphs. 

3.6 Discussion 

3.6.1 Unusual behavior for empirical bias 

The ML estimator of variance-covariance matrix studied here for its bias is the Kronecker 

product of two estimated variance-covariance matrices, which are dependent on each 

other via the random central matrices defining them as quadratic forms in normal 

matrices (3.2). This makes the ML estimator in question particular. Furthermore, the two 

variance-covariance matrix estimates 
 1Û  and 

 2Û  are the outcome of an iterative 

algorithm in applications, in the absence of analytical solutions for the system of 

likelihood equations. Accordingly, simulations were used to evaluate empirically the 

expected values of centered moments of order 4 involved in the bias analysis. A large 

number of simulations (1.0E6) were necessary to obtain stable values of the ergodic 

(empirical) bias and its components. A minimum number of 1.0E4 simulations are 

required to observe the ‘peak’-and-‘trough’ pattern (Figures 3.2 and 3.3). Thus, Dutilleul 

(1999) empirically showed a ‘plateau’ instead of a ‘peak’ at small sample sizes, because 

of limited computing power at the time. 

 The ergodic (empirical) bias does not always follow a decreasing monotonic 

pattern as the sample size K increases, a novel finding to the best of our knowledge. Such 

behavior made of a ‘peak’ shortly after minK  (generally minK  + 1) is very unusual, but 

may remind the “anomaly” reported by McCullagh (2008) for the Fisher information of 

the autocorrelation parameter estimated from k parallel series of n points in space or time, 

with a decrease of the Fisher information after k = n/2. Our decomposition of the ergodic 

bias into an estimation bias and a fluctuation bias minus a non-orthogonality component 

was aimed to provide an explanation to the unusual behavior of the ergodic bias in 

relation to sample size. (Note: A similar decomposition of the ergodic variance in our 

case would be practically intractable because it would involve eight-order moments for a 

matrix instead of scalar estimator.) As a matter of fact, a ‘peak’ may happen in all three 

biases at the same value of K (see Figure 3.4 for 1n  = 2n  = 2, 3 and Figures 3.2 and 3.3 

for other values of 1n ), meaning that both the expected value of 
 2Û 

 1Û  evaluated 

empirically and the average of ML estimated variance-covariance matrices 
   2 1

ˆ ˆ( )VU U  
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are then far from the true parameter 
 2U    

 1U  (high ergodic and fluctuation biases) and 

from each other (high estimation bias), even if the convergence criterion in the estimation 

algorithm is met without exception. ‘Troughs’ appear with different ‘depths’ for different 

combinations of 1n , 2n  and K in the estimation and fluctuation biases (and the non-

orthogonality component), and this superimposition of ‘troughs’ with different ‘depths’ at 

different places in BS, BF and   results in the absence of ‘troughs’ in the ergodic bias 

BE  =  BS  +  BF  –  . 

 The results discussed above do not preclude the use of the “flip-flop” MLE 

algorithm in practice. In fact, the results of our extensive simulation study show that this 

algorithm can successfully estimate a separable variance-covariance matrix from an i.i.d. 

random sample with a size as small as minK , which is in accordance with former 

simulation results (Dutilleul 1999, Werner et al. 2008). However, our results demonstrate 

that depending on the values of 1n  and 2n , sample sizes greater than minK  + 1 or minK  + 

2 may be required to avoid excessively large bias in the ML estimator and provide a 

behavior of the ergodic bias in accordance with theory, i.e., decreasing with increasing 

sample size. 

3.6.2 Links with geostatistics 

Our decomposition of the bias for the ML estimators of variance and covariance 

parameters for the matrix normal distribution has links with the analysis of uncertainty in 

the framework of the linear model of coregionalization, which is based on variances of 

differences between variogram estimator and semivariance parameter and between the 

two estimators, called “experimental variogram” and “regional variogram” (Larocque et 

al. 2007). Two important differences are that in Larocque et al. (2007), the domain of 

investigation is spatial so that the intensity of sampling (discretely within a region versus 

continuously within the region or over the entire sampling domain) is of concern rather 

than aspects of numerical analysis in the estimation, and the decomposition concerns 

variances of differences instead of biases. 

 If (i) Γ(h) represents the ‘true’ parameters in the linear model of 

coregionalization, that is, the matrix of theoretical direct and cross variograms at distance 

h for the multivariate random function under study; (ii) ΓR(h), the regional variograms, 

are the approximation provided by a partial realization of the multivariate random 
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function if this was thoroughly sampled over a bounded, continuous domain or region R ; 

and (iii) Γ*(h), the experimental variograms, are the estimates obtained from a partial 

realization reduced to a finite number of sampling locations within region R, then the 

following decomposition holds exactly, without a non-orthogonality component: 

              var(Γ*(h) – Γ(h)) = var(Γ*(h) – ΓR(h)) + var(ΓR(h) – Γ(h)).             (3.7) 

 In words, the equation above reads as follows: the ergodic variance of variograms, 

var(Γ*(h) – Γ(h)), is equal to their estimation variance, var(Γ*(h) – ΓR(h)), plus their 

fluctuation variance, var(ΓR(h) – Γ(h)). Since Γ(h) is constant, the first and third 

variances reduce to var(Γ*(h)) and var(ΓR(h)), respectively. The only remaining variance 

of a difference is var(Γ*(h) – ΓR(h)), which measures the dispersion of the discrepancies 

between experimental and regional variograms resulting from the partial sampling of 

region R. For a given ergodic variance, a lower estimation variance corresponds to a 

higher fluctuation variance and vice versa. A higher fluctuation variance means that the 

variance-covariance structure over the region, represented by ΓR(h), is highly uncertain. 

This is the case when sampling is conducted within a region too small for the range of 

spatial autocorrelation, i.e., the range-to-extent ratio is large. 

 Equation (3.7) has a structure similar to our decomposition of the ergodic 

(empirical) bias of 
 2Û 

 1Û , equation (3.6). The regional variogram in (3.7) plays the 

role of 
   2 1

ˆ ˆ( )VU U  in equation (3.6), and represents what is accessible in terms of 

parameter value, while the experimental variogram plays the role of 
 2Û 

 1Û  and 

corresponds to the inferential result for one dataset or sample of data. 

3.6.3 Pseudo-theoretical bias 

The pseudo-theoretical bias defined at the end of Section 3.4, which differs from the 

ergodic (empirical) bias by the use of non-random central matrices in the quadratic forms 

defining 
 1Û  and 

 2Û , does not show a behavior with ‘peaks’ for some combinations of 

values of 1n  and 2n  (Figure 3.5). In that sense, the former bias might seem ‘better’ than 

the latter one, because it is in accordance with theory, i.e., monotonic decrease with 

increasing sample size. Actually, the pseudo-theoretical bias is not a reliable or 

representative measure of the differences between the expected value of  
 2Û 

 1Û  and 
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the parameter value of U2U1. The replacement of   

  1
1

1
ˆ( )K n U  by   

  1
1

1( )K n U  and of 

  

  2
1

2
ˆ( )K n U  by   

  2
1

2( )K n U  in the central part of quadratic forms in the calculation of 

the pseudo-theoretical bias may avoid the circularity of the problem (U1 and U2 are 

needed to evaluate the bias of 
 2Û    

 1Û ), but such a replacement assumes, at the least, 

the absence of bias for 
 1Û  and 

 2Û  as estimators of U1 and U2. The values of the 

fluctuation bias for their Kronecker product (Figures 3.2–3.4) indicate that this is not a 

reasonable assumption.  

3.7 Conclusion 

To the best of our knowledge, the decomposition of the ergodic (empirical) bias into an 

estimation bias and a fluctuation bias minus a non-orthogonality factor is new. We 

proposed it here to explain an unusual pattern in the behavior of the ergodic (empirical) 

bias of the ML estimator of a separable variance-covariance matrix for the matrix normal 

distribution. Such a decomposition might be found helpful to explain other ‘anomalies’, 

for example, in likelihood-based inference with parallel series of points in space or time 

(McCullagh 2008). Besides these fundamental aspects, our study also provides insight 

into practice and applications. In no way is the use of the “flip-flop” MLE algorithm 

questioned here. Simply but importantly, its users, in increasing number, are now better 

informed of the properties of its output. A customized MATLAB (The MathWorks Inc.) 

code is available upon request for those who would like to study the ergodic, estimation 

and fluctuation biases for combinations of 1n , 2n  and K other than the ones considered 

here. 
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Figure 3.1: Minimum sample size minK  (INT[max( 1n / 2n , 2n / 1n )] + 1 if max( 1n / 2n , 

2n / 1n ) is an integer number and INT[max( 1n / 2n , 2n / 1n )] + 2 otherwise), required for 

the ML estimator of U2   U1 (U1: 1n    1n ; U2: 2n    2n ) to exist. The smallest minK  

is at 1n  = 2n . For a given value of 2n , minK  increases in a ‘stairway’ with increasing 1n  

after 1n  = 2n , with a different ‘width’ depending on the value of 2n . 
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Figure 3.2: Standardized (divided by ||U2   U1||) ergodic, estimation, and fluctuation 

biases and the non-orthogonality component for the ML estimator of  U2   U1; 1n  = 2, 

…, 12; 2n  = 2; and sample size K = minK , …, 15 by steps of 1, in addition to 20. The 

vertical axis is in logarithmic scale, basis 10 (‘0’ means 1.0E0= 1; ‘1’ means 1.0E1 = 10, 

etc.). There is an atypical ‘peak’ combined with an atypical ‘trough’ in some of the biases 

and the non-orthogonality component for some values of 1n , as the sample size K  

increases. The pattern is related to the values of minK  in Figure 3.1(a).  
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Figure 3.3: Standardized ergodic, estimation, and fluctuation biases and the non-

orthogonality component for the ML estimator of U2   U1; 1n  = 2, …, 12; 2n  = 3; and 

sample size K = minK , …, 15 by steps of 1, in addition to 20. The vertical axis is in 

logarithmic scale, basis 10. As for 2n  = 2 (Figure 3.2), there is an atypical ‘peak’ 

combined with an atypical ‘trough’ in some of the biases and the non-orthogonality 

component for some values of 1n , as the sample size K increases. The pattern is related to 

the values of minK  in Figure 3.1(b).  
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Figure 3.4: Standardized ergodic, estimation and fluctuation biases and the non-

orthogonality component for the ML estimator of U2   U1 with sample size K = minK , 

…, 15 by steps of 1, in addition to 20. The vertical axis is not in logarithmic scale. The 

first curve from each of the four panels in Figure 3.2 are grouped in panel (a), while the 

second curve from each panel of Figure 3.3 are grouped in panel (b) here. The three 

biases tend to present a ‘peak’ at the same value of the sample size, and the fluctuation 

bias shows a ‘trough’ when the estimation bias becomes smaller than the ergodic bias.  
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Figure 3.5: Standardized pseudo-theoretical bias of the ML estimator of U2   U1 with 

1n  = 2, …, 12 and sample size K = minK , …, 15 by steps of 1, in addition to 20. The 

vertical axis is in logarithmic scale, basis 10. Unlike patterns displayed in Figure 3.2 and 

3.3, there is always a monotonic decay in the pseudo-theoretical bias with increasing 

sample size. 
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Preface to Chapter 4 

The matrix normal distribution model was presented and the bias of the ML estimator of 

the Kronecker product of the two component variance-covariance matrices was studied in 

Chapter 3. In Chapter 4, the object of study is the assessment by LRT of the simple 

separability of a variance-covariance matrix, which is a key assumption of the model. 

The LRT is modified with a penalty, optimized so that the distribution of the LRT 

statistic is very well fitted by the theoretical chi-square distribution which, otherwise, 

holds only asymptotically. As a result, the modified LRT is unbiased. It is also shown 

that the bias of the unmodified LRT is more severe when the mean is modeled. An 

estimated generalized least-squares estimator (EGLS) algorithm, allowing modeling of 

the mean when working with an i.i.d. random sample of the matrix normal distribution, is 

presented in Appendix B. In April 2012, a manuscript (co-authored by Mr. Manceur and 

Prof. Dutilleul) based on this chapter was submitted to Statistics and Probability Letters 

for publication. Mr. Manceur and Prof. Dutilleul designed the unbiased modified 

likelihood ratio test. Mr. Manceur realized the simulation studies, and wrote the initial 

manuscript. Both authors participated in writing the final manuscript. 

 



 

 43

Chapter 4. An unbiased modified likelihood ratio test for simple separability 

of a variance-covariance structure 

4.1 Abstract 

The assumptions of simple and double separability of the variance-covariance structure, 

which are respectively made under the matrix and tensor normal distribution models, 

should be assessed in applications, for example to spatio-temporal repeated measures. 

When used for this purpose, the traditional likelihood ratio test (LRT) statistic does not 

follow a chi-square distribution with the expected number of d.f. when the sample size is 

finite, and is biased because the probability of rejecting the null hypothesis, while the 

separability of the variance-covariance structure holds, is then greater than the postulated 

significance level. Therefore, we modified the LRT statistic with an optimal penalty, so 

that the resulting modified LRT is unbiased by construction. The application of the 

penalty factor consists in a homothetic transformation of the LRT statistic, and the 

distribution of the modified LRT statistic is very well approximated by the chi-square 

distribution with the expected number of d.f. for most finite sample sizes, except very 

small ones. 

4.2 Introduction 

In general terms, a statistical test is said to be “biased if the probability of rejecting the 

hypothesis tested ( 0H ), when 0H  is valid – the significance level – is greater than the 

probability of rejection when some other hypothesis (H, say) is valid” (Kotz and Johnson, 

1982, pp. 230–231). The unbiasedness of statistical tests is important in many if not all 

contexts, including the analysis of multi-dimensional data (e.g., 2-D spatio-temporal, 

multivariate temporal) where the inference usually requires certain assumptions. These 

datasets may be analyzed under the matrix normal distribution model, but this assumes 

that the variance-covariance structure is (simply) separable. Verifying such an 

assumption may be the object of inference by itself, possibly with a LRT preferably 

unbiased. 

 A separable variance-covariance structure, if it holds for a given dataset, presents 

some advantages. In particular, it need not be stationary in the general case, and the 

number of parameters to estimate is reduced compared to the case of an unstructured 

variance-covariance matrix submitted to no other constraint than positive definiteness. 
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For given numbers of rows ( 1n ) and columns ( 2n ) for a random matrix X, the matrix 

normal distribution model is defined as: 

            
1 2, 1 2(~ , , )n nNX M U U  if and only if 

1 2 2 1vec( (v) ~ ),ec( )nnN X M U U      (4.1) 

where 1 2) (( )E n n X M ; 1U  ( 1 1n n ) and 2U  ( 2 2n n ) are the component variance-

covariance matrices among the rows and among the columns of X , respectively; vec( . ) 

is the operator that stacks the columns of an 1 2n n  matrix into an 1 2 1n n   vector;   is 

the Kronecker (direct) product; and var{vec(X)} = 2U  1U . Let K denote the size of an 

i.i.d. random sample available for inference (estimation and testing).   

The LRT statistic for simple separability is defined as the ratio between the 

likelihood function maximized under the null hypothesis ( 0H : the variance-covariance 

matrix is the Kronecker product of two component variance-covariance matrices) and 

under the alternative hypothesis ( H : the variance-covariance matrix is unstructured, or 

positive definite). The LRT statistic is theoretically distributed as 2( )f , where f  is 

equal to the difference between the number of free parameters in the null and alternative 

models (Muirhead 1982), that is, 1 2 1 2 1 1 2 2( 1) ( 1) ( 1)
1

2 2 2

n n n n n n n n
f

  
    . The 

unmodified LRT used to assess whether a variance-covariance matrix equals a specified 

matrix is biased (Muirhead 1982, p. 353).  

Several LRTs for simple separability of a variance-covariance structure have been 

proposed in the literature. Naik and Rao (2001), Njue (2001), Roy and Khattree (2005), 

Mitchell et al. (2005), Roy (2006), Simpson (2010), and Srivastava et al. (2008) 

presented LRTs for simple separability of a variance-covariance structure that are biased 

and in which at least one of the two component matrices is further modeled (e.g., first-

order AR(1), CS). Svantesson and Wallace (2003), Lu and Zimmerman (2005), and 

Mitchell et al. (2006) presented LRTs that are biased and in which both component 

variance-covariance matrices are unstructured. In an article focusing on estimation, 

Dutilleul (1999) succinctly presented an unbiased LRT for simple separability of a 

variance-covariance structure, following Muirhead (1982, p. 357). The statistics of all 
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these tests, whether biased or not, are not distributed as 2( )f  under the null hypothesis 

when the sample size is finite, a common problem for LRTs. To compensate for this, 

Mitchell et al. (2006) proposed to modify the quantile of the 2( )f  distribution in order 

to control the significance level of the biased LRT.  

Given the increasing collection of multi-dimensional data on which simple as well 

as double separability could or should be assessed, we focused on the development of 

modified LRTs for separability that are unbiased and whose test statistics follow 

approximate 
2( )f  distributions already for moderate sample sizes. In section 4.3, the 

estimation method is presented, including aspects of modeling of the mean. In section 

4.4, after a description of the biased LRT for simple separability of a variance-covariance 

structure, the modified LRT, unbiased by construction, is introduced. In section 4.5, the 

optimal penalty p, to be used in the penalty factor that appears in the modified LRT 

statistic and aims to improve the 
2( )f  approximation, is studied by simulation. In 

section 4.6, the power of the new unbiased modified LRT for simple separability of a 

variance-covariance structure is compared to the rejection rate of the traditional biased 

LRT, with or without modeling of the mean. In section 4.7, concluding remarks are 

made. In Appendix B, the EGLS algorithm used to fit a response surface model to the 

mean matrix with a separable variance-covariance structure is described. 

4.3 Estimation 

Provided an i.i.d. random sample of size  1 2 2 1/ , / 1K n n n n   is available for inference 

under (4.1), Dutilleul (1999) presented the MLE (alias ‘flip-flop’) algorithm for the 

matrix normal distribution, more specifically for the two component variance-covariance 

matrices: 

                              

1
1 2

1

2 1
1
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1
1
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

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





U X M U X M

U X M U X M

                 (4.2) 

where M̂  is the estimator of M and T  is the transpose operator. Under first-order 

stationarity, M = mJ and there is one mean parameter to estimate, the scalar m, so 
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1 2

1 2

1 2

,
111 12

1ˆ ˆ
n n

ki
i i k

i

K
m

n n K  

 
  
  
  M J X J , with J  the 1 2n n  matrix of ones. 

Alternatively, M can be modeled with a linear (3 parameters) or quadratic (6 parameters) 

response surface model, vec(M) = D , and estimated by generalized least squares, 

vec( M̂ ) = ˆ
EGLSD  (see Appendix B). M  can also be left unmodeled; there are then 

n1n2 mean parameters and the estimator is the classical sample mean, 
1

1ˆ
K

k
kK 

  M X X . 

Whether the mean matrix M is modeled or not, there is no analytical solution to the 

system of equations above, so the component variance-covariance matrices and their 

Kronecker product are estimated iteratively (Dutilleul 1999). By comparison, the 

unstructured variance-covariance matrix UNΣ  in the vector normal distribution model 

1 2
(vevec( c() ~ ), )n n UNNX M   is estimated by ML using vec( m̂J ), some variant of 

ˆ
EGLS  or vec( X ) depending on the mean model, if K is greater than or equal to 

1 2 1minK n n  .  

4.4 Likelihood ratio tests for simple separability of a variance-covariance structure 

The hypotheses under testing are: 

             
1 2 1 2

1 1
0 2 1 2 1: ( ) against  : ( )UN n n UN n nH H   U U I U U I               (4.3) 

where 
1 2n nI  is the identity matrix of size 1 2n n . Following Muirhead (1982, p. 357), the 

statistic of the biased unmodified LRT is: 

                             2 1 1 2log | | log | | logˆ |ˆ ˆ |UNK n n    U U                   (4.4) 

where | . |  is the determinant. In a preliminary step, we studied the distribution of   by 

simulation, using the Ziggurat algorithm to generate normal pseudo-random numbers 

(Marsaglia and Tsang 2000) in Matlab (The MathWorks, 2010). The number of 

simulation runs was 1.0E5; 
11 nU I ( 1n  = 2); 

22 nU I  ( 2n  = 2); matrix 
2nI  was used to 

initiate the algorithm; and 1E-6, as the tolerance value to stop the iterations. As shown in 

Figure 4.1 (top line), at values of K close to the minimum required for ML estimation of 

UNΣ  ( minK  = 5), the empirical rejection rate (using critical values based on the 2( )f  

distribution) is greater than the significance level of 0.05; at K = 50, the rejection rate is 
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still visibly greater than 0.05. Figure 4.2 presents the theoretical 2( )f  distribution as 

well as the empirical distribution of  . The two do not match. In particular, the peak of 

the former distribution is located at a larger value than in the latter. Consequently, critical 

values based on the theoretical 2( )f  distribution are incorrectly used when   is the 

test statistic. 

 Sugiura and Nagao (1968) and Muirhead (1982, p. 357) present unbiased LRTs 

for variance-covariance matrices in general terms (i.e. not specific to the separable 

structure), using  1K   instead of K  in the definition of   because of the estimation of 

the mean from the data; K – 1 is also the number of d.f. of the Wishart distribution of 

1

{(vec( ) (vec(ˆ ) })) T
UN k k

K

k

K


   X X X X  (Rencher 1995). Note that Mitchell et al. 

(2006) present a test for separability, based on restricted maximum likelihood estimators; 

this test was not formally claimed to be unbiased by the authors, and is not the unbiased 

LRT recommended by Muirhead (1982).  

To improve the 
2( )f  fit of the distribution of the LRT statistic, we propose to 

modify   by replacing K with a value that can be different from K – 1: 

                     2 1 21log | | log | | logˆ ˆ ˆ) |]* ( [ | UN
K p

K p n n
K


     





U U              (4.5) 

where  p  is a penalty applied to adjust the LRT statistic, so that its distribution is fitted by 

2( )f  as closely as possible and the bias is thus corrected by construction. The use of a 

penalty factor (
K p

K


 here), to modify a LRT statistic and fit its distribution, was studied 

by Barndorff-Nielsen and Cox (1985), for testing the equality of variances from two 

samples drawn from normal populations; their work was built on early work by Bartlett 

(1937). The next section explores by simulation the optimal value of  p  for use in (4.5). 

4.5 Optimal value of penalty in unbiased modified likelihood ratio test 

The value of penalty p in equation (4.5) is optimized for the distribution of  *  to be 

best approximated by 2( )f . This implies that the rejection rate will be close to the 

significance level when the critical value 2
1 ( )f   is used in the modified LRT. A 

second simulation study was performed to investigate the effects of the significance level 
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( 0.01, 0.05, 0.1  ), the numbers of rows and columns in the data matrices ( 1n  = 2, 4 

and 2n  = 2, 3, 4, 5, 6, 10), the sample size (K = minK , minK  + 1, …, 50, 100, 500), and 

the estimation of M (Mean Model 1, stationary, M = mJ with m = 2; Mean Model 2, 

linear or quadratic response surface, vec(M) = D  – see Appendix B for coefficient 

values; Mean Model 3, no modeling, M is filled with positive and negative pseudo-

random numbers) on the optimal value of penalty p. For all mean models, the optimal 

penalty p was selected from values of 0 to 1 2n n  + 0.9 by increments of 0.1. 

 Overall, the mean value of the optimal penalty p does not appear to be dependent 

on the significance level, as it is 7.1, 7.1, and 7.2 for   = 0.01, 0.05, and 0.10, 

respectively. Thus, the optimal penalty p values averaged over   are reported in Table 

4.1 for different combinations of values of 1n , 2n , and K. For given values of 1n , 2n , 

and K, the optimal penalty p increases as the number of mean parameters to estimate 

increases, from 1 ( m̂J ) to 1 2n n  ( X ). For all values of K, the increase in optimal penalty  

p, from a response surface model fitted by EGLS to the use of no model for the mean, 

remains small, even when the difference in the number of parameters is large. In the case 

1n  = 2n  = 2, however, the optimal penalty  p  is the same or nearly the same when a 

linear response surface model is used and when the mean matrix is not modeled; the 

difference in the number of mean parameters is then one.  

The optimal penalty p is dependent on 1n  and 2n . However, when comparing its 

values for 1 2n  , 2 6n   vs. 1 4n  , 2 3n   (the product of dimension sizes is 12), they 

are very similar. It is the same thing for the pairs 1 2n  , 2 10n   and 1 4n  , 2 5n   

(product: 20). The optimal penalty p for the pair 1 4n  , 2 4n   (product: 16) falls 

between the optimal penalty p values for 1 2n n  = 12 and 1 2n n  = 20. Thus, the optimal 

penalty p increases with the product of dimensions 1 2n n . For given values of 1n  and 2n  

and given mean model and estimation procedure, the optimal penalty p decreases 

nonlinearly with the sample size: the decrease is rapid for K comprised between minK  



 

 49

and about minK  + 10, then the decrease is less marked and a plateau is almost reached for 

values of K  beyond 100.  

When investigating the interaction between the three factors (i.e. sample size K, 

product of dimensions 1 2n n , mean model and estimation procedure), the largest value of 

the optimal penalty p is found for minK  when 1 2n n  is largest and the mean matrix is 

unmodeled and estimated by X  (Table 4.1). The effect of the optimal penalty p on the 

distribution of the test statistic is illustrated in Figure 4.2: the distribution of *  is fitted 

very closely with 2( )f , thanks to a homothetic transformation of  ; see equation 

(4.5). In Figure 4.1, the modified LRT appears slightly conservative at values of K close 

to minK , but quickly the empirical rejection rate stabilizes at 0.05 when using critical 

values from 2( )f . In conclusion, the LRT thus modified is unbiased, or valid (i.e. the 

theoretical and empirical significance levels match). 

4.6 Power study 

The empirical power for   = 0.05 and K = 2000 was studied by simulation (using a 

procedure similar to that of section 4.5) with 1 4n   and 2 3n  (Table 4.2). Separable 

and non-separable variance-covariance matrices were defined following Boik (1991). The 

degree of non-separability was measured with the   factor, whose range is restricted to 

non-negative values (Genton 2007). Its value could vary from 0 (perfectly separable) to 

0.96 in this study. The variance-covariance matrices with known   were positive 

definite, and were used to generate i.i.d. random samples from the vector normal 

distribution. Estimation procedures for the mean (essentially the EGLS fitting of response 

surface models) were adapted accordingly. 

The empirical probabilities of rejecting 0H  when it is true ( 0  , significance 

level of the test) and when it is false ( 0  , power of the test) are reported in Table 4.2 

for the three mean models and estimation procedures, with   and *  (Mean Model 1: 

optimal penalty p = 1.30; Mean Model 2: optimal penalty p = 3.90; Mean Model 3: 

optimal penalty p = 4.30). The significance level of the LRT based on *  is 0.05, and 

for a given mean model, its power is slightly lower than the empirical rejection rate of the 

biased LRT based on  . While the minimum rejection rate of the LRT based on   is 

achieved at 0H , the bias of this test comes from the fact that its actual significance level 
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is greater than 0.05 even when the sample size is very large. For any value of  , the 

difference between   and *  is largest when the number of mean parameters to 

estimate is largest (Table 4.2).  

4.7 Concluding remarks 

We have modified the statistic of the LRT for simple separability of a variance-

covariance structure in order to improve the fitting of its distribution with the 
2( )f  

distribution with the expected number of d.f. By comparison, Mitchell et al. (2006) used a 

biased LRT (4.4), and modified the critical value to control the significance level, without 

modeling the mean matrix. In our approach, a penalty is applied to the LRT statistic (4.5), 

which has for effect to relocate the distribution of the LRT statistic and ensure it is closest 

to the 
2( )f  distribution. The LRT thus modified is unbiased and the use of 2( )f -

based critical values is justified. This was demonstrated with a stationary mean model, a 

linear or quadratic mean model, and an unmodeled mean matrix. 
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Table 4.1: Penalty (p) found to be optimal for modifying the LRT statistic for simple 

separability of a variance-covariance structure, for three mean models (1: stationary; 2: 

response surface – linear when n1 = 2, and quadratic when n1 = 4; 3: unmodeled matrix), 

six pairs of dimension values ( 1 2,n n ), and sample sizes (K) starting from the minimum 

required for testing (K = n1n2 + 1) up to 500.   

K  Mean 
model 

1 

Mean 
Model 

2 

Mean 
Model 

3 

 K Mean 
Model 

1 

Mean 
Model 

2 

Mean 
Model 

3 

K Mean 
Model 

1 

Mean 
Model 

2 

Mean 
Model 

3 

1 22, 2n n    1 22, 6n n   1 22, 10n n   

5 2.65 3.75 3.75  13 7.05 8.55 8.72 21 11.58 13.23 13.52 

6 2.65 3.65 3.65  14 6.72 7.80 8.07 22 11.07 12.13 12.58 

7 2.65 3.65 3.60  15 6.55 7.45 7.73 23 10.78 11.58 12.08 

8 2.62 3.65 3.57  16 6.40 7.22 7.55 24 10.57 11.27 11.78 

9 2.58 3.65 3.57  17 6.32 7.08 7.38 25 10.38 11.05 11.57 

10 2.62 3.57 3.57  20 6.13 6.78 7.15 26 10.28 10.88 11.43 

25 2.58 3.57 3.57  25 5.95 6.57 6.98 30 9.93 10.42 10.98 

50 2.60 3.57 3.57  50 5.80 6.23 6.78 50 9.37 9.72 10.37 

100 2.60 3.57 3.55  100 5.75 6.23 6.62 100 9.05 9.40 10.08 

500 2.60 3.48 3.55  500 5.07 5.97 6.53 500 8.98 9.00 10.32 

1 24, 4n n    1 24, 3n n   1 24, 5n n   

17 8.68 10.38 10.55  13 6.68 8.28 8.38 21 10.68 12.52 12.75 

18 8.25 9.52 9.68  14 6.35 7.67 7.68 22 10.20 11.48 11.72 

19 8.02 9.08 9.27  15 6.18 7.32 7.35 23 9.92 10.95 11.20 

20 7.82 8.82 9.00  16 6.05 7.10 7.18 24 9.68 10.65 10.90 

21 7.68 8.58 8.78  17 5.93 6.95 7.02 25 9.48 10.35 10.65 

22 7.57 8.43 8.68  20 5.75 6.72 6.78 26 9.35 10.17 10.48 

25 7.32 8.12 8.37  25 5.58 6.50 6.58 30 8.95 9.68 10.03 

50 6.63 7.43 7.72  50 5.37 6.18 6.30 50 8.33 8.87 9.33 

100 6.40 7.13 7.58  100 5.37 6.07 6.25 100 8.03 8.38 9.07 

500 6.45 6.32 7.37  500 5.37 5.55 6.10 500 8.05 8.30 8.42 
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Table 4.2: Empirical probability of rejecting 0H  (simple separability of a variance-

covariance structure) as a function of discrepancy  , with a biased unmodified LRT 

based on   vs. an unbiased modified LRT based on * , for three mean models (1: 

stationary; 2: quadratic response surface; 3: unmodeled matrix), with 1 4n  , 2 3n  , 

2000K   , and 0.05   ( 2
0.95(63) 82.5287  ). 

 Mean Model 1 Mean Model 2 Mean Model 3

   -

based 

LRT 

* -

based 

LRT 

 -

based 

LRT 

* -

based 

LRT 

 -

based 

LRT 

* -

based 

LRT 

0.0000 0.0504 0.0500 0.0512 0.0499 0.0514 0.0500

0.0050 0.0548 0.0544 0.0536 0.0523 0.0537 0.0524

0.0100 0.0644 0.0640 0.0649 0.0633 0.0648 0.0633

0.0146 0.0829 0.0823 0.0837 0.0819 0.0837 0.0819

0.0210 0.1269 0.1261 0.1284 0.1256 0.1281 0.1255

0.0296 0.2372 0.2362 0.2358 0.2319 0.2367 0.2329

0.0404 0.4790 0.4776 0.4827 0.4783 0.4832 0.4787

0.0694 0.9887 0.9886 0.9888 0.9884 0.9886 0.9882
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Figure 4.1: Empirical probability of rejecting 0H  (simple separability of a variance-

covariance structure) when true, as a function of sample size K, using the critical value 

2
0.95(5) 11.0705   with 1 2n  , 2 2n  , and Mean Model 3 ( ˆ M X ). The empirical 

significance level of the unbiased modified LRT based on *  is very close to the 

targeted significance level.   
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Figure 4.2: Empirical distribution of the LRT statistics   and *  for 1 2n  , 2 2n  ,  

Mean Model 3 ( ˆ M X ), and 10K  , vs. the theoretical 2(5)  distribution. The latter 

fits the empirical distribution of *  so closely that they can barely be distinguished from 

each other. 
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Preface to Chapter 5 

In Chapter 5, the matrix normal distribution model is extended to the tensor normal 

distribution model of order 3 and more. The object of study is the tensor normal 

distribution model for which a detailed definition is given, together with the MLE-3D 

algorithm (with the derivatives of the log-likelihood function for the tensor normal 

distribution model with respect to variance-covariance matrices in Appendix C). 

Thereafter, the bias and dispersion of the ML estimator of a doubly separable variance-

covariance matrix are studied by simulation; the bias of the ML estimator of a doubly 

separable variance-covariance matrix is decomposed in Appendix D. An example using 

3-D brain data completes the presentation. The unbiased modified LRT of double 

separability and the MLE-4D algorithm are presented in Appendix E and Appendix F, 

respectively. A manuscript (co-authored by Mr. Manceur and Prof. Dutilleul) based on 

this chapter was submitted in November 2011 to Journal of Computational and Applied 

Mathematics for publication. Mr. Manceur programmed the algorithm, performed the 

simulation studies, and wrote the initial manuscript. Both authors participated in writing 

the final manuscript. 
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Chapter 5. Maximum likelihood estimation for the tensor normal 

distribution: Algorithm, minimum sample size, and empirical bias and 

dispersion 

5.1 Abstract 

Recently, there has been a growing interest in the analysis of multi-dimensional data 

arrays (e.g. when a univariate response is sampled in 3-D space or when a multivariate 

response is sampled in time and 2-D space). In this chapter, we scrutinize the problem of 

ML estimation for the tensor normal distribution of order 3 or more, which is 

characterized by the separability of its variance-covariance structure; there is one 

variance-covariance matrix per dimension. In the 3-D case, the system of likelihood 

equations for the three variance-covariance matrices has no analytical solution, and 

therefore needs to be solved iteratively. We studied the convergence of an iterative three-

stage algorithm (MLE-3D) that we propose for this, determined the minimum sample size 

required for matrix estimates to exist, and computed by simulation the empirical bias and 

dispersion of the Kronecker product of the three variance-covariance matrix estimators in 

eight scenarios. We found that the standardized bias and a matrix measure of dispersion 

decrease monotonically and tend to vanish with increasing sample size, so the Kronecker 

product estimator is consistent based on simulation results. An example with 3-D spatial 

measures of glucose content in the brain is also presented. Finally, results are discussed 

and the 4-D case is presented with simulation results in appendix.  

5.2 Introduction 

There is growing literature on the analysis of 2-D and 3-D data arrays, also called “multi-

way data” (Dryden et al. 2008, Mardia and Goodall 1993, Bijma et al. 2005, Theobald 

and Wuttke 2008, Werner et al. 2008). Such data present correlations and heterogeneity 

of the variance, both within and among dimensions, through multiple responses and 

space-time levels. The variance-covariance structure is then often modeled to reduce the 

number of parameters and ensure the existence of parameter estimates. In a separable 

model (sometimes called “factorized” or “Kronecker structured”), the variance-

covariance matrix of the vectorized multi-dimensional array is the Kronecker (direct) 

product of a number of variance-covariance matrices equal to the number of dimensions. 

The variance-covariance matrices used as factors in the Kronecker product define the 
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respective dependencies and variability among rows and columns in 2-D and among 

rows, columns and edges (or slices) in 3-D and beyond. 

 In 2-D, Dutilleul (1990, 1998, 1999) presented an iterative two-stage algorithm 

(MLE-2D) to estimate by ML the variance-covariance parameters of the matrix normal 

distribution 
  

 1 2, 1 2~ ( , , )n nNX M U U , where the random matrix X  is 
  1 2n n , = ( )EM X , 

1U  is the 
  1 1n n  variance-covariance matrix for the rows of X  (e.g. repeated measures 

in space), and 2U  is the 
  2 2n n  variance-covariance matrix for the columns of X  (e.g. 

repeated measures in time). The matrix normal distribution model implies a separable 

variance-covariance structure, defined by 
 2 1U U . Other authors also studied the MLE-

2D algorithm, and later nicknamed it “flip-flop” (Lu and Zimmerman 2005). Werner et 

al. (2008) compared it to four alternative estimation procedures, and found it was 

providing estimators with the lowest normalized root-MSE (mean square error), starting 

with very small sample sizes. The MLE-2D algorithm was found to be useful in brain 

science (Bijma et al. 2005), image analysis (Dryden et al. 2008), biochemistry (Theobald 

and Wuttke 2008), electrical engineering (Werner et al. 2008), and the environmental 

sciences (Dutilleul and Pinel-Alloul 1996), for example. Two unstructured variance-

covariance matrices (with no other assumption than positive definiteness) are then 

estimated using a small number K of replicates, with 1 2

2 1
max , 1

n n
K

n n

 
  

 
, in order to 

ensure that the estimated variance-covariance matrices are positive definite. 

 Three-dimensional data arrays are obtained when a single response is sampled in 

3-D space or in 2-D space and time or when multiple responses are recorded in 2-D space 

or in 1-D space and time. In the natural and life sciences, such data are provided by the 

measurement of wood density in given growth rings and directions at several heights in a 

tree trunk (Koga and Zhang 1996), the recording of a vector of air pollutants at a number 

of field stations over months (Mardia and Goodall 1993), and the monitoring of a vector 

of physiological variables in different organs over days (Roy and Leiva 2008). These data 

have rarely been analyzed by using a 3-D statistical methodology, apparently because it 

was not of easy access and the computational tools were not available. As the collection 

of 3-D data arrays is rising, it has become timely to fill in the gap. Therefore, we present 

the MLE-3D algorithm, define its conditions of application, and study by simulation the 
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properties of estimators in this chapter. In that non-trivial extension of the MLE-2D 

algorithm, the parameters are estimated by maximum likelihood under the relevant 

statistical distribution called “tensor normal distribution” and characterized by 

multivariate normality and a doubly separable variance-covariance structure, with no 

need to specify a variance-covariance matrix model at each dimension. Below, we 

summarize the approach followed and the results obtained in five earlier studies where a 

doubly separable variance-covariance structure was used for data analysis, prior to 

inserting our contribution in the developing field and explaining how this chapter is 

organized. 

 In 1993, Barton and Fuhrman explored the modeling of the variance-covariance 

structure of multi-dimensional data arrays that commonly arise in signal processing 

problems. They presented a notation system based on a “natural hierarchical block 

structure on the covariance data”, and discussed the variance-covariance structures of 

block-circulant, block-Toeplitz type vs. unstructured type, with limited discussion of 

estimation algorithms. Corrections were provided by Fuhrman (1997). 

 Still in 1993, Mardia and Goodall (p. 358) presented an iterative three-stage 

estimation algorithm which resembles the MLE-3D algorithm that will be presented here, 

but the authors did not use it to analyze their multivariate spatio-temporal data due to 

insufficient replication. Eventually, they applied the MLE-2D algorithm by making the 

assumption of some temporal independence, and reported convergence in 10-14 iterations 

(Mardia and Goodall 1993, p. 357). Throughout, the authors assumed that the expected 

value of the random multi-dimensional array was constant along one of the three 

dimensions (i.e. time), and chose to use an isotropic variogram spherical model for the 

spatial variance-covariance matrix.   

 In the context of the analysis of doubly and triply repeated measures in the 

medical sciences, Galecki (1994) tried various types of variance-covariance structures, 

including autoregressive, compound symmetric, spherical (i.e. independence and 

homoscedasticity), and unstructured. He also developed the concept of covariance 

profile, and presented one application of an estimation algorithm without detailing it.  

 In 2008, an iterative ML algorithm for 3-D data arrays was proposed by Roy and 

Leiva, together with a LRT aimed to assess the adequacy of a doubly separable model for 

the variance-covariance structure. The estimation algorithm assumed an AR(1) or CS 
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structure for one variance-covariance matrix, and an intra-class correlation structure was 

assumed for the two others. The simulation study designed to verify the small-sample 

behavior of the LRT was limited to a reduced form of the tensor normal distribution of 

order 3, in which one of the three variance-covariance matrices was a scalar.  

 More recently, a Newton-Raphson type of algorithm (i.e. with no “flip-flop”) was 

used by Richter et al. (2008) to estimate by ML the parameters of the tensor normal 

distribution model. This algorithm was developed in the context of tensor-valued signals 

in electrical engineering. In that Newton-Raphson ML algorithm, a score function is used 

and a variance parameter is estimated in addition to the three variance-covariance 

matrices. Furthermore, Richter et al. (2008) used a block-diagonal approximation for the 

Hessian matrix required by the Newton-Raphson algorithm. 

 To our knowledge, Dutilleul (1990) was the first to present the probability density 

function and the moment generating function of the tensor normal distribution, using 

tensor notations inspired from McCullagh (1987). Other notations for tensor operators 

such as the inner and outer products and the tensor multiplication appear more popular 

nowadays (Kolda and Bader 2009), so Dutilleul’s original equations were re-written in 

Section 2 here. Still to our knowledge, Mardia and Goodall (1993), followed by Dutilleul 

(1998), first proposed the MLE-3D algorithm for the tensor normal distribution, which 

was recently presented by Hoff (2011, p. 185, in 3-D or more) and Ohlson et al. (2011, p. 

15) in a theoretical framework and without numerical and simulation results concerning 

the convergence of the algorithm and the empirical properties of the estimators. The 

contribution lies in a detailed presentation of the algorithm with numerical and simulation 

results in addition to practical guidelines. 

 More specifically, we start by defining the tensor normal distribution of order 3 or 

more from the moment generating function in the general case and from the probability 

density function in the regular case (of particular interest for ML estimation) in Section 

5.3; so doing, we will see that only the Kronecker product of variance-covariance 

matrices is defined uniquely. In Section 5.4, the system of likelihood equations for the 

mean and variance-covariance parameters of the tensor normal distribution of order 3 is 

derived; the complete MLE-3D algorithm is presented in details; and the minimum 

sample size required to ensure an output (i.e. positive-definite estimated variance-

covariance matrices) is determined. In Section 5.5, simulations are used to study in small 
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and larger samples the empirical bias and dispersion of the Kronecker product of 

estimated variance-covariance matrices provided by the MLE-3D algorithm; special 

attention is paid to the questions of initial solutions and convergence criteria. In Section 

5.6, an application with 3-D spatial data of brain glucose content is presented. In Section 

5.7, other applications and extensions (e.g. MLE-4D) are discussed. Four appendices 

present the first derivatives of the log-likelihood function in the 3-D case (Appendix C), 

the bias decomposition for the ML estimator of a doubly separable variance-covariance 

matrix (Appendix D), the LRT of double separability (Appendix E), and the MLE-4D 

algorithm, with simulation results (Appendix F).  

5.3 Definition of the tensor normal distribution 

The random tensor of order J and of dimensions
  

  1 ... Jn n  , 
 

  
  

 
1 ...  )(

Jiix �  with 

1  ( 1 ... )... j ji jn J  , is normally distributed with mean parameter   (same order and 

dimensions as  ) and variance-covariance parameters jU  ( j jn n ) positive 

semidefinite  ( 1 ... )j J  if, by definition, its moment generating function is given by:  
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1... 1...
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) exp , exp{ (( ) }

2

J

j
j

J JM


    U      ,       (5.1) 

where 
 

 
  

 

 
1 ...  )(

Jiit�  is a non-random tensor of same order and dimensions as  , “< , >” 

denotes the inner product, “  ” is the outer product and “
 1...J ” is the tensor 

multiplication over all J dimensions, i.e. a generalization of the n-mode product (Kolda 

and Bader 2009): 

             ,     = 
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  . 

 Setting J = 3 in equation (5.1) provides the moment generating function of the 

tensor normal distribution of order 3. This distribution is denoted: 

      

   
  1 2 3, , 1 2 3( , , )~ ;n n nN U U U  ,                             (5.2) 

where ( )E  . 
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 An equivalent formulation of the tensor normal distribution involves the 

Kronecker product   and the vec operator (Kolda and Bader 2009). For a random tensor 

 
  

  
 

1 ...  )(
Jiix �  of order J and of dimensions 

  

  1 ... Jn n  , vec( ) � is the 
  1

1
J

j
j

n

   

random vector:      

                        
         

  
    

1 1 2  1  1  2  1  1  2  1  11...11 1...11 12 ...11 ... 1 11...12 ... ..2 .vec( ... .) ..   ... ( ... )
J J J Jn

T
n n n n n nn n n nx x x xx x x

  


                          (5.3) 

where the entries of   are aligned column after column, from edge to edge. Therefore, 

the tensor normal distribution of order J can also be defined as: 

        

  

    
1, ..., 1( ,  . )~ ; ..,

Jnn JN U U                               (5.4) 

if and only if 

    
 

 

  

 1

1
vec( () ~ ),vec( )

j
j

J j
n j J

N






U  ,                             (5.5) 

where vec( ) {vec( )}E   and 
  

1
var{vec( )}j

j J
 U   is positive-semidefinite. The 

tensor normal model is not adequate for any vector normal distribution of size 
  1

J

j
j

n

 , 

with 
 

 1 ( 1 ... )jn j J  ; only the vector normal distributions with the required separable 

variance-covariance structure can be modeled accordingly.   

 The 3-D distribution model defined above cannot be identified uniquely because 

for two scalars 
  

 1 2, 0a a   and for the same moment generating function, we have: 

    
    

   
  

    
1 2 3

1
1 1 2 2 1, , 2 3~ ;( , , ( ) )n nnN a a a a U U U  .                 (5.6) 

 A main advantage of the separable model is an important reduction in the number 

of variance-covariance parameters. An unstructured matrix   for the 
   

  1 2 3 1n n n   

random vector is composed of       

      1 2 3 1 2 3( 1)

2

n n n n n n 
 distinct variance-covariance 

parameters. By comparison, a separable matrix   for the random tensor of order 3 and 

dimensions   

   1 2 3nn n   is composed of 
   

  

 

 

    

 

 3 31 1 2 2 ( 1)( 1) ( 1)

2 2 2

n nn n n n  
   distinct 

variance-covariance parameters. This difference in the number of variance-covariance 
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parameters will be reflected in the minimum sample size (i.e. number of data tensors) 

required to obtain positive-definite estimated variance-covariance matrices under the 

separable normal distribution model (see Subsection 5.4.2), which is substantially smaller 

than the minimum sample size of 
   

  1 2 3 1n n n   (i.e. number of data vectors) required 

when separability is not assumed or does not hold. Furthermore, the properties of the 

Kronecker product help reduce the computational time of certain matrix operations (e.g. 

3
1

1 2 )(  U U U  = 1 1 1
1 2 3 )(    U U U , assuming 1 2 3,  and U U U  are positive 

definite). 

 Galecki (1994) suggested advantages for the interpretation of repeated factors 

under the separable variance-covariance structure. However, the parsimony of the 

separable model implies restrictions for cross-correlations. In fact, for 

   

   1 1 1, 1... ,i i ' n
   

   2 2 2, 1...i i ' n  and 
   

   3 3 3, 1...i i ' n , the cross-correlation function is 

restricted to be symmetrical: 

         
           1 2 3 2 3 1 1 2 2 3 3 1 1 2 2 3 3 1 3 31 2 1 2

cov( , ) cov( , )i i i ' i ' i ' i ' i ' ii i i i i i i i i i i' i ' i ' i ' i ' ' i 'x x u u u u u u x x  
  

               
(5.7) 

In particular, the variance is 
        

       
 

  1 2 3 1 1 2 2 3 3
var[ ]i i i ii i i i ix u u u . 

 If  

  

    
1, ..., 1( ,  . )~ ; ..,

Jnn JN U U   and 1 .... JU U  are positive definite, then the 

distribution of   is said to be regular, and is characterized by the probability density 

function:   
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               (5.8) 

where   | . |  denotes the determinant. For a regular normal tensor of order 3 (i.e. U1, U2 

and U3 are positive definite), the probability density function is: 

         

    

  

  

  

1 2 3 2 3 1 3 1 2 3
12 2 2 2

1 2 3
1

1... 1...
1

) (2 ) | | | | | exp{ ( ) ( ) ( )}
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f ( |

n n
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n n
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
     U U U U     

               (5.9) 

 In the development of the MLE-3D algorithm (see Section 5.4), data tensors, 

centered or not with respect to the sample mean tensor, will need to be reshaped as 
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matrices in various ways. The matricization operator presented in Kolda and Bader 

(2009) and the companion notations will be used for this. More specifically, if   is a 

tensor of third order and dimensions   

   1 2 3nn n  , then (1)  (2)  and (3)  will denote 

the matricized tensors with dimensions   

   1 2 3nn n ,   

   2 1 3nn n  and   

   3 1 2nn n , 

respectively; see Kolda and Bader 2009, page 460 for details and an example. 

5.4 Maximum likelihood estimation 

5.4.1 The three-stage algorithm 

The MLE-3D algorithm presented below requires an i.i.d. random sample of tensor data, 

which implies that the mean values and variance-covariance matrices are homogeneous 

within the sample; such practical implications will be discussed in the example with real 

data in Section 5.6. Let 
 

 ( 1 ... )k k K  be an i.i.d. random sample from the regular 

tensor normal distribution  

   
  1 2 3, , 1 2 3~ , ) .;( ,n n nN U U U   The log-likelihood function to 

be maximized can then be written as  
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   (5.10) 

First derivatives of the log-likelihood function are given in Appendix C. 

 Let ̂  and 1Û , 2Û , 3Û  denote the ML estimators of   and 1U , 2U , 3U , 

respectively. Equalling to zero the first derivative of the log-likelihood function with 

respect to   provides that the sample mean is the ML estimator:       

1

1ˆ
K

k
kK 

    . 

After replacing   by ˆ    and using the property of positive definiteness of 1U , 2U , 

3U , equalling to zero the first derivatives of the log-likelihood function with respect to 

1U , 2U , 3U  provides the following system of three equations, for which 1Û , 2Û , 3Û  

are the solutions: 
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         (5.11) 

 There is no analytical solution to this system, but it can be solved iteratively by 

using the following three-stage algorithm, where || . ||  denotes the Euclidean norm and 

0
2Û , 0

3Û  are initial solutions for 2Û , 3Û . 

Initialization: step = 0; 2
*
2

0ˆU U ; * 0
3 3

ˆU U ; 
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step = step+1; 
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While a given convergence criterion (based on separate rates of change in variance-

covariance matrix estimates or on the rate of change in their Kronecker product) is not 

met, 

Repeat: 

step = step+1; 

*
1 1

U U ; *
2 2

U U ; *
3 3

U U ; 

Re-evaluate equations (5.12)–(5.14). 

The convergence criterion is met. Maximum likelihood solutions are: *
1 1

ˆ U U ; *
22

ˆ U U ; 

*
33

ˆ U U .  
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 When available, prior information may direct the choice of 0
2Û  and 0

3Û . 

However, 
 

 2

0
2

ˆ
nU I  and 

 
 3

0
3

ˆ
nU I  will generally be suitable initial solutions for the 

search of 2Û  and 3Û . Initial solutions 0
2Û  and 0

3Û  are also required to initiate the search 

for 1Û , since estimates of U2 and U3 appear on the right-hand side of the first equation 

(i.e. for U1) in system (5.11). The choice of initial solutions for variance-covariance 

matrix estimates is further discussed in the frame of the simulation study (Section 5.5). 

The convergence criterion may be based on separate rates of change in variance-

covariance matrix estimates (i.e. while 
   

*
1 1 1|| ||    U U   or  

 

*
2 22|| ||    U U   or 

 

 

*
3 33|| ||    U U  , where 

 1 , 
 2 , 

 3  are infinitesimal positive quantities) or on the rate of 

change in their Kronecker product (i.e. while 
 

  3 2 1||     U U U    

* * *
3 2 1 ||    U U U  , 

where   is an infinitesimal positive quantity). The former convergence criterion allows 

some flexibility, with the possible use of different infinitesimal positive quantities when 

the variance-covariance matrices are of very different sizes, and is not in contradiction 

with the fact that the variance-covariance matrix parameters are defined up to a 

multiplicative constant, since differences are not made relative to them; a similar criterion 

was used by Dutilleul (1999) for the MLE-2D algorithm. The latter convergence criterion 

is global and based on the fact that the Kronecker product of the three variance-

covariance matrices is var{vec( )} . We studied the use of the two convergence criteria 

with simulations (Section 5.5). With no other constraint than positive definiteness, the 

ML estimators 1Û , 2Û , 3Û  are defined up to two multiplicative constants, in the same 

way that the three variance-covariance matrices 1U , 2U , 3U  of the tensor normal 

distribution of order 3 are defined up to two positive scalars a1 and a2; see equation (5.6). 

Only the Kronecker product 3 2 1
ˆ ˆ ˆ U U U  is defined uniquely and will therefore be 

studied for bias and dispersion in Section 5.5. 

5.4.2 Existence of ML estimates for variance-covariance matrices 

Hereafter, we prove that the ML estimators exist for the variance-covariance matrices of 

the regular tensor normal distribution of order 3 if and only if the sample size K of the 

i.i.d. random sample drawn from  

   
  1 2 3, , 1 2 3( , , )~ ;n n nN U U U   satisfies the condition: 
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 
.               (5.15) 

In particular, when 2n  = 1 and 3n  = 1, equation (5.15) reduces to the classical condition 

K > 1n  for the regular 1n -variate normal distribution; when 3n  = 1, it reduces to the 

condition in Dutilleul (1999) for the regular 1 2n n  matrix normal distribution. 

 To prove equation (5.15), let us rewrite the system of equations (5.11) in matrix 

notation: 
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(5.16) 

where JK  is the K   K matrix of ones. 

 Thus, the random matrices 1Û , 2Û , 3Û  are quadratic forms in 1(1) (1) ... K  , 

1(2) (2) ... K   and 1(3) (3) ... K  , respectively, and their ranks are given by 
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 It follows that the matrix estimators 1Û , 2Û  and 3Û  are positive definite, which 

includes that 
 1 1r ( ˆank ) nU , 

 2 2r ( ˆank ) nU  and 
 3 3r ( ˆank ) nU , if and only if 
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  , which completes the proof. 
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5.5 Simulation studies 

5.5.1 Description of scenarios 

The general objective of our simulation studies was to determine empirically the bias and 

dispersion of 3 2 1
ˆ ˆ ˆ U U U  with small and large samples. Specific objectives concerned 

the choice of initial solutions for variance-covariance matrix estimates and the definition 

of the convergence criterion, and their effects on the performance of the algorithm and 

the final ML estimates. Two simulation studies were completed. Infinitesimal positive 

quantities (i.e. 
 1 , 

 2 , 
 3 ,  ) were set at 1.0E-6. Two ‘extreme’ sets of initial solutions 

for 2Û  and 3Û  were tried for comparison purposes: very basic, 
 2

0
2

ˆ
nU I  and 

 3

0
3

ˆ
nU I , 

which may be far (initially) from the true parameter values in practice, vs. the true 

parameter values, 0
2 2

ˆ U U  and 0
3 3

ˆ U U . 

 In the first simulation study, 1n  = 5, 2n  = 3, 3n  = 4; the sample sizes considered 

are K = 5, 10, 15, 20, 100, and 500; and the number of scenarios is eight. In each 

scenario, variance-covariance matrices 1U , 2U , 3U  were built so that they possess 

known theoretical properties measured by Box’s ‘epsilon’ (Box 1954a, 1954b), which is 

a measure of the deviation of a variance-covariance matrix from the circularity condition 

(an n   n variance-covariance matrix   is said to be circular if 
  

 

 1  T
n C C I , with 

 , a positive scalar, and C, an n   (n – 1) matrix of orthonormal contrasts). Box’s 

‘epsilon’ is given by 
 

  

2

2

{tr(  

( 1) tr{(

}

})

)T

Tn 

C C

C C




. Its value varies from 

1

1n 
 to 1.0 (i.e.   is 

circular). The smaller it is, the more complex the variance-covariance matrix usually is 

(see below and in Table 5.1). 

Scenario T1: The three variance-covariance matrices satisfy the circularity condition, as 

they are identity matrices (i.e. there is no correlation and no heteroscedasticity): 51 U I , 

2 3U I , 3 4U I . 

Scenario T2: 1U , 2U , 3U  satisfy the circularity condition because they are compound 

symmetric; in other words, they are characterized by intra-class correlation (i.e. there is 
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constant correlation and no heteroscedasticity):     1 5 5
1

[(1 )
6

1
3.0 ],

6
 U I J  

    2 3 3
1

[(1 )
4

1
4.0 ],

4
 U I J      3 4 4

2 2
5.0 1 )

5
][(

5
 U I J . 

Scenario T3: The three variance-covariance matrices are still circular but not of the 

compound symmetric type: 

         

1

5.00 3.00 2.50 2.00 1.50

3.00 4.00 2.00 1.50 1.00

2.50 2.00 3.00 1.00 0.50

2.00 1.50 1.00 2.00 0.00

1.50 1.00 0.50 0.00 1.00

 
 
 
 
 
 
  

U , 2

3.00 1.50 1.00

1.50 2.00 0.50

1.00 0.50 1.00

 
   
  

U , 

    

3

4.50 3.50 3.00 2.50

3.50 3.50 2.50 2.00

3.00 2.50 2.50 1.50

2.50 2.00 1.50 1.50

 
 
 
 
 
 

U . 

Scenario T4: More complex, non-circular positive-definite variance-covariance matrices 

were generated artificially. Covariances do not necessarily decrease from the diagonal, 

and can be positive or negative. Heteroscedasticity (heterogeneity of the variance) is 

intermediate or stronger (i.e. ratio of 1 to 10 or 20): 

                         

1

0.5528 0.8676 0.8938 0.1265 0.3505

0.8676 1.8519 1.5800 0.3881 0.4953

0.8938 1.5800 1.8656 0.3798 0.3307

0.1265 0.3881 0.3798 0.2375 0.0176

0.3505 0.4953 0.3307 0.0176 0.3947

 
  
  
  
     

U , 

2

3.4397 1.0588 0.4014

1.0588 0.3455 0.0809

0.4014 0.0809 0.1598

  
   
  

U , 3

0.5781 0.6113 0.0103 0.4031

0.6113 0.9624 0.2235 0.1695

0.0103 0.2235 0.2611 0.3606

0.4031 0.1695 0.3606 0.8857

  
    
   
   

U . 

 In the next four scenarios, combinations of variance-covariance matrices from 

Scenarios 1–4 are used, so Scenarios T5–T8 are not described in Table 5.1.  

Scenario T5: 1U  (Scenario T2), 2U  (Scenario T1), 3U  (Scenario T1). 

3 2 1 2|| || U U U  = 24.29, Box’s ‘epsilon’ = 0.9028. 
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Scenario T6: 1U  (Scenario T1), 2U  (Scenario T2), 3U  (Scenario T4). 

3 2 1 2|| || U U U  = 31.19, Box’s ‘epsilon’ = 0.4532.  

Scenario T7: 1U  (Scenario T4), 2U  (Scenario T3), 3U  (Scenario T2). 

3 2 1 2|| || U U U  = 230.54, Box’s ‘epsilon’ = 0.1576. 

Scenario T8: 1U  (Scenario T3), 2U  (Scenario T4), 3U  (Scenario T3). 

3 2 1 2|| || U U U  = 450.02, Box’s ‘epsilon’ = 0.0444. 

 In Scenarios T1–T8 above, 1U , 2U , 3U  are 5   5, 3   3, 4   4, respectively. 

Therefore, we completed a second simulation study for another group of scenarios, in 

which 1U , 2U , 3U  are identity matrices but their size varies, with 1 2,...,5n  , 

2 2,...,5n   and 3 2,...,5n  , for K = 5 and K = 10. The objective was to assess the 

effects of varying the numbers of levels for the three dimensions (e.g. responses, space-

time) on the empirical bias and dispersion of 3 2 1
ˆ ˆ ˆ U U U . 

5.5.2 Procedures and methods 

The number of simulation runs was set at 5.0E4, after preliminary trials showed that such 

a number was sufficient to obtain stable values of the empirical bias and measure of 

dispersion for the combinations of K and 1n , 2n , 3n  considered. Observations from 

vec( ) ~  
   

  1 2 3 3 2 1(vec( , ))n n nN  U U U  were generated using 

vec( ) vec( ) vec( )T C   , with  

 

   

1 2 3 1 2 3 1 2 31i iim i i i i i i      for the mean tensor 

 ; C, the Cholesky root of 3 2 1 U U U ; and   

      

 
  1 2 3 1 2 3, ,~ ;( , , )n n n n n nN I I I  , where 

  is the zero tensor. Simulations, array manipulation and matrix algebra calculations 

were performed with Matlab (The MathWorks, 2010). The existence of ML estimators 

1Û , 2Û , 3Û  was ensured by the use of values of K satisfying equation (5.15), given 1n , 

2n , 3n . The normal pseudo-random number generator was the Ziggurat algorithm 

(Marsaglia and Tsang 2000). 

 The standardized empirical bias was calculated as 

3 2 1 3 2 1

3 2 1

2

2

|| ˆ ˆ ˆ ||

|| ||

   
 

U U U U U U

U U U
, where the bar indicates that the Kronecker product 
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of ML estimates 1Û , 2Û , 3Û  is averaged over the 5.0E4 simulation runs. Note that 

unlike the scalar case, such a measure of bias cannot be negative because it is based on 

the distance between two matrices, using the Euclidean norm. (For variance estimates 

(i.e. diagonal entries of 3 2 1
ˆ ˆ ˆ U U U ), we calculated the conventional empirical bias, 

which is not restricted to be non-negative, and this was found to be negative as expected 

in small samples for ML estimates of variances.) A standardized empirical measure of 

dispersion was defined as  3 2 1 3 2 1

3 2 1

2

2

|| ˆ ˆ ˆ ||

|| ||

   
 

U U U U U U

U U U
, where the bar indicates 

that the Euclidean norm of the difference between estimated and theoretical Kronecker 

products is averaged over the 5.0E4 simulation runs. The standardization ensures that 

results can be compared among scenarios, even though the norms of variance-covariance 

matrices vary by several orders of magnitude. 

5.5.3 Results 

Our simulation results are in accordance with the theoretical properties of ML estimators 

for variance-covariance matrices (Kendall and Stuart 1967), whether the initial solutions 

for the MLE-3D algorithm were identity matrices or the true parameter matrices and 

whether the convergence criterion was defined on each of the three variance-covariance 

matrices or on their Kronecker product. More specifically, the standardized empirical 

bias and measure of dispersion computed for 3 2 1
ˆ ˆ ˆ U U U  decreased monotonically 

towards zero as K increased (see Tables 5.2 and 5.3 for results obtained with identity 

matrices as initial solutions and the separate convergence criterion). The use of true 

parameter matrices as initial solutions decreased the number of iterations required to 

reach convergence by 10–20% when K ≤ 20; this is the only difference worth reporting, 

as other differences regarding the ML estimates themselves and the empirical bias and 

dispersion were minor. In other words, we may conclude that 3 2 1
ˆ ˆ ˆ U U U  is a 

consistent estimator of 3 2 1 U U U . 

 Standardized empirical bias values for K ranging from 5 to 500 were similar for 

all eight scenarios (Table 5.2), despite the differences in Box’s ‘epsilon’ values. The 

mean standardized empirical measure of dispersion was the smallest, with a large 

standard error, for Scenarios T4 and T8 (Table 5.3). The average number of iterations 
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required to reach convergence decreased with increasing sample size; for example, it 

decreased from 25 for K = 5 to less than 5 when K = 500 in the simulations performed for 

Tables 5.2 and 5.3. Slightly more iterations were required to reach convergence in 

Scenarios T4 and T8, for which Box’s ‘epsilon’ was close to the theoretical minimum. 

Overall, the choice of identity matrices as initial solutions for the MLE-3D algorithm can 

be considered appropriate in most future applications. Of course, the use of different 

initial solutions and the comparison of the corresponding final solutions remain a safe 

way to proceed.  

 Concerning the effects of size of the variance-covariance matrices on the 

properties of ML estimators (Figure 5.1), the standardized empirical bias and measure of 

dispersion are higher for K = 5 than for K = 10 as expected, and show a reverse 

relationship for a given sample size. Increasing 1n , 2n , 3n  results, in fact, in an increase 

of the bias and a decrease of the measure of dispersion; more specifically, the highest bias 

in our second simulation study is observed for 1n  = 2n  = 3n  5, where the measure of 

dispersion is the lowest. Furthermore, the ranges of values of the empirical bias and 

dispersion are narrower with K = 10 than with K = 5. In summary, increasing the number 

of levels per dimension, without increasing the sample size, results in an increased bias 

combined with a decreased dispersion for the estimated Kronecker product in the case of 

the tensor normal distribution of order 3. 

 In Appendix D, the bias of the ML estimator of the doubly separable variance-

covariance matrix is decomposed, as an extension of the bias analysis performed for the 

simply separable variance-covariance matrix in Chapter 3. The existence of a ‘peak-

trough’ pattern is established therein. 

5.6 Example with real dataset 

We used 3-D spatial data of glucose measures in 15 regions of the brain, defined by their 

centroid coordinates (x, y, z) in cm, to illustrate the application of the MLE-3D 

algorithm; these data were collected by Tyler et al. (1988) and presented in Worsley et al. 

(1991). In our example, the glucose measure at position (x, y, z) in one of the two 

hemispheres of the brain is projected on the vertical y–z plane, which is divided into 

2 3  sections. Six relatively well-aligned regions corresponding to these sections were 

selected: posttemporal, occipital, precentral, hippocampus, midfrontal, and caudate 
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(Worsley et al. 1991, Table 1). The same selection procedure was followed for the other 

hemisphere. Spatial heteroscedasticity and auto- and cross-correlations (auto: within a 

hemisphere in 2-D; cross: between hemispheres) are likely to exist, as different parts of 

the brain have specific roles and do not function independently. This provided one 

2 3 2   tensor of data per individual.  

 In the original study, there were two experimental groups, with 10 individuals 

each ( 1 2 10K K  ), and brain glucose measures were made with slightly different 

methods in the two groups. Following Worsley et al. (1991), we used different means for 

the two groups but assumed their variance-covariance structure was the same, and we 

log-transformed the data. Then, the residuals of the log-transformed data were pooled, so 

1 2 320 12K n n n    and tests of multivariate normality became possible. Provided 

multivariate normality is accepted (see below), the minimum sample size required for the 

existence of solutions to the MLE-3D algorithm is two in this case; see equation (5.15) in 

Subsection 5.4.2. 

 With 
 1 2n  , 

 2 3n  , 
 3 2n  , and K = 20, univariate and multivariate tests of 

normality were performed at 0.05   on the residuals of the log-transformed data, with 

the SAS 9.1 macro multnorm. For each of the 12 glucose measure variables taken 

separately, the null hypothesis of normal distribution was not rejected by the univariate 

test. Multivariate normality tests were then performed on the 12 1  data vectors, using 

  
  1

1
vec( ) vec( vec( ) veˆ ) ( )c

TK

k
k kK 
        as variance-covariance matrix 

estimate. 

 Mardia’s (Mardia 1974) test based on multivariate skewness (P = 0.6221) and the 

Henze-Zirkler’s (Henze and Zirkler 1990) test (P = 0.1648) both supported multivariate 

normality; only Mardia’s (Mardia 1974) test based on multivariate kurtosis (P = 0.0294) 

rejected it at 0.05  . Therefore, we proceeded to ML estimation under multivariate 

normality, with vs. without separability of the variance-covariance structure (with: under 

the tensor normal distribution model; without: under the vector normal distribution 

model).  
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 After 17 iterations, starting with 0
32

ˆ U I , 0
23

ˆ U I  and using 1 2 3 1.0 6E      , 

the MLE-3D algorithm converged, and the following estimates were obtained:  

1

  0.0136 0.0067 

0.0067  0.0160
ˆ  
  
 

U  (along y), 2

0.9681 0.4525 0.6306

 0.4525 1 .0946  0.4812

0.6306 0.4812 0.9995

ˆ
 
   
  

U  (along z), 

3

1.2623  0.9680

0.9680 1.1 4
ˆ

3 4

 
  
 

U  (between hemispheres), and 

3 2 1
ˆ ˆ ˆ U U U = 

0.0166 0.0082 0.0078 0.0039 0.0108 0.0054 0.0128 0.0063 0.0060 0.0030 0.0083 0.0041

0.0082 0.0195 0.0039 0.0091 0.0054 0.0127 0.0063 0.0150 0.0030 0.0070 0.0041 0.0097

0.0078 0.0039 0.0188 0.0093 0.0083 0.0041 0.0060 0.0030 0.0144 0.0071 0.0063 0.0031

0.0039 0.0091 0.0093 0.0220 0.0041 0.0097 0.0030 0.0070 0.0071 0.0169 0.0031 0.0074

0.0108 0.0054 0.0083 0.0041 0.0172 0.0085 0.0083 0.0041 0.0063 0.0031 0.0132 0.0065

0.0054 0.0127 0.0041 0.0097 0.0085 0.0201 0.0041 0.0097 0.0031 0.0074 0.0065 0.0154

0.0128 0.0063 0.0060 0.0030 0.0083 0.0041 0.0150 0.0074 0.0070 0.0035 0.0097 0.0048

0.0063 0.0150 0.0030 0.0070 0.0041 0.0097 0.0074 0.0175 0.0035 0.0082 0.0048 0.0114

0.0060 0.0030 0.0144 0.0071 0.0063 0.0031 0.0070 0.0035 0.0169 0.0084 0.0074 0.0037

0.0030 0.0070 0.0071 0.0169 0.0031 0.0074 0.0035 0.0082 0.0084 0.0198 0.0037 0.0087

0.0083 0.0041 0.0063 0.0031 0.0132 0.0065 0.0097 0.0048 0.0074 0.0037 0.0154 0.0076

0.0041 0.0097 0.0031 0.0074 0.0065 0.0154 0.0048 0.0114 0.0037 0.0087 0.0076 0.0181

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

By comparison, the variance-covariance matrix ̂  estimated under the vector 

normal distribution model is equal to 

0.0311 0.0288 0.0252 0.0238 0.0261 0.0266 0.0269 0.0269 0.0242 0.0259 0.0262 0.0261

0.0288 0.0337 0.0256 0.0220 0.0235 0.0257 0.0262 0.0318 0.0219 0.0257 0.0237 0.0245

0.0252 0.0256 0.0282 0.0213 0.0256 0.0235 0.0231 0.0234 0.0239 0.0211 0.0245 0.0235

0.0238 0.0220 0.0213 0.0261 0.0216 0.0219 0.0218 0.0212 0.0205 0.0247 0.0213 0.0224

0.0261 0.0235 0.0256 0.0216 0.0339 0.0245 0.0225 0.0225 0.0228 0.0204 0.0297 0.0259

0.0266 0.0257 0.0235 0.0219 0.0245 0.0265 0.0241 0.0238 0.0219 0.0229 0.0243 0.0254

0.0269 0.0262 0.0231 0.0218 0.0225 0.0241 0.0261 0.0251 0.0211 0.0233 0.0243 0.0231

0.0269 0.0318 0.0234 0.0212 0.0225 0.0238 0.0251 0.0326 0.0196 0.0243 0.0219 0.0221

0.0242 0.0219 0.0239 0.0205 0.0228 0.0219 0.0211 0.0196 0.0237 0.0209 0.0219 0.0229

0.0259 0.0257 0.0211 0.0247 0.0204 0.0229 0.0233 0.0243 0.0209 0.0297 0.0217 0.0235

0.0262 0.0237 0.0245 0.0213 0.0297 0.0243 0.0243 0.0219 0.0219 0.0217 0.0294 0.0250

0.0261 0.0245 0.0235 0.0224 0.0259 0.0254 0.0231 0.0221 0.0229 0.0235 0.0250 0.0267

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

. 

 Thereafter, the null hypothesis of separability of the 3-D spatial variance-

covariance structure,  13 2var{vec( )}   U U U  or 
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 3 2 1
1

12var{vec( )} ( )   U IU U , was tested against the alternative, var{vec( )}  is 

positive definite, using an unbiased modified likelihood ratio statistic of double 

separability, 1 2 3 1 3 2 2 3 1log | | log | | log | | log |( ) ][ |* UNn n nK p n n n    U U U  , 

where p = 6.68 is a penalty, resulting in an observed value * 121.20   here (Appendix 

E, Table E.1). The critical value is 2
0.95(67) 87.1081  . In conclusion, the null 

hypothesis of separability is rejected, which confirms the visual inspection of the two 

12 12  estimated variance-covariance matrices above; most covariances in the former 

are smaller than 0.01, whereas most covariances in the latter are greater than 0.02. 

5.7 Discussion 

We have given a detailed presentation of the MLE-3D algorithm for maximum likelihood 

estimation of the variance-covariance parameters of the tensor normal distribution of 

order 3,  

   
  1 2 3, , 1 2 3( , , )~ ;n n nN U U U  , with 1U , 2U , 3U  unstructured. After 

determining the minimum sample size, we computed by simulation the empirical bias and 

dispersion of the estimated Kronecker product of variance-covariance matrices in a 

number of scenarios. As expected in the case of ML estimators, the standardized 

empirical bias and measure of dispersion were found to be decreasing with increasing 

sample size. 

 Recently, there has been a debate on the definition of ML estimators and their 

unicity for separable variance-covariance structures in 2-D. On the one hand, Werner et 

al. (2008) compared the MLE-2D (alias “flip-flop”) algorithm to four alternative 

estimation procedures, and found it was providing estimators with the lowest normalized 

root-MSE already with very small samples. On the other hand, Srivastava et al. (2008) 

preferred to work by setting the bottom-right or top-left entry of one of the two variance-

covariance matrices at 1.0. As pointed out by Lee et al. (2010) in their comment in 

response to the interpretation that had been made of their own results, Srivastava et al. 

(2008) worked in the curved exponential family instead of the regular exponential family, 

and presented theoretical results without simulations. This kind of discussion could be 

extended to the 3-D case, with a similar comment eventually. 

 In our example with a real dataset, the variance-covariance structure was assumed 

to be the same in both groups. It would have been better to test the assumption of 

homogeneity of the variance-covariance matrix between groups in a preliminary step, but 
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this was not possible because the sample sizes (
  1 2 10K K  ) were smaller than 

   

  1 2 3 12n n n  . Nevertheless, the MLE-3D algorithm can be used with datasets composed 

of tensors of order 3 collected for different levels of a treatment provided the number of 

replicates is sufficient. After centering each data tensor to the corresponding group mean, 

multivariate normality can be assessed, and if accepted, the homogeneity and separability 

of the variance-covariance structure can be tested in turn. When the three conditions are 

satisfied, the group means (mean tensors for the groups) can be compared with a 

modified F-test in which the autocorrelation and heteroscedasticity in 3-D are taken into 

account through an estimate of Box’s ‘epsilon’ (Box 1954a, 1954b); see Dutilleul (1998) 

for examples in 2-D and 3-D.  

 The collection of data tensors of order 4 may become more common in a near 

future. For example, consider the non-destructive measurement by computed tomography 

scanning of several wood properties (e.g. density, fiber length) in several growth rings 

and directions at different heights in a tree trunk. Therefore, an extension of the MLE 

algorithm to four dimensions (MLE-4D), under multivariate normality and four-way 

separability of the variance-covariance structure, is presented in Appendix F, together 

with simulation results. Although the MLE-5D algorithm may be seen as the next 

obvious and straightforward extension technically speaking, one cannot do otherwise but 

question the scope of its applications, which seems to be, at least at this moment, more 

limited than the 2-D, 3-D and 4-D versions.  
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Table 5.1: Characteristics of the variance-covariance matrices in simulation scenarios 

T1–T4. 

Scenario  1 )(5 5U  2 )(3 3U  3 )(4 4U  3 2 1 U U U  

Euclidean norm 2.2361 1.7321 2.0 7.7560 T1 

Box’s ‘epsilon’ a 1.0 1.0 1.0 1.0 

Euclidean norm 7.0711 7.3485 12.1655 632.1392 T2 

Box’s ‘epsilon’ 1.0 1.0 1.0 0.5497 

Euclidean norm 10.7238 4.5826 11.0 540.5691 T3 

Box’s ‘epsilon’ 1.0 1.0 1.0 0.1439 

Euclidean norm 4.1354 3.8150 1.8982 29.9460 T4 

Box’s ‘epsilon’ 0.4825 0.5381 0.6436 0.0510 

a A value of 1.0 means that the variance-covariance matrix is circular, while a value close 

to the minimum (
1

1jn 
, j = 1, 2, 3, or 

   

  1 2 3

1

1n n n 
) indicates a strong deviation from 

circularity.  
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Table 5.2: Standardized empirical biasa as a function of the sample size (K) and the 

simulation scenario (T1–T8) (see text and Table 5.1 for the definition of the eight 

scenarios). 

Sample 

size 

Scenario 

K T1 T2 T3 T4 T5 T6 T7 T8 

5 0.1848 0.1847 0.1839 0.1838 0.1844 0.1849 0.1844 0.1836 

10 0.09687 0.09733 0.09679 0.09648 0.09693 0.09680 0.09696 0.09675 

15 0.06539 0.06592 0.06622 0.06558 0.06542 0.06584 0.06576 0.06608 

20 0.04940 0.04934 0.04840 0.04843 0.04923 0.04943 0.04854 0.04841 

100 0.01004 0.01008 0.01022 0.01022 0.01007 0.01010 0.01014 0.01025 

500 0.00202 0.00206 0.00212 0.00213 0.00205 0.00205 0.00210 0.00213 

a 3 2 1 3 2 1

3 2 1

2

2

|| ˆ ˆ ˆ ||

|| ||

   
 

U U U U U U

U U U  
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Table 5.3: Standardized empirical measure of dispersiona with the standard error below (in parentheses), as a function of the 

sample size (K) and the simulation scenario (T1–T8) (see text and Table 5.1 for the definition of the eight scenarios). 

Sample 

Size 

Scenario 

K T1 T2 T3 T4 T5 T6 T7 T8 

5 0.4824 

(0.00030) 

0.4447 

(0.00074) 

0.3316 

(0.00056) 

0.3251 

(0.00056) 

0.4724 

(0.00030) 

0.4433 

(0.00032) 

0.3546 

(0.00049) 

0.3173 

(0.00060) 

10 0.3225 

(0.00018) 

0.2973 

(0.00022) 

0.2169 

(0.00039) 

0.2116 

(0.00039) 

0.3156 

(0.00019) 

0.2965 

(0.00021) 

0.2330 

(0.00035) 

0.2064 

(0.00042) 

15 0.2594 

(0.00014) 

0.2389 

(0.00018) 

0.1723 

(0.00032) 

0.1676 

(0.00031) 

0.2539 

(0.00016) 

0.2380 

(0.00017) 

0.1855 

(0.00028) 

0.1638 

(0.00034) 

20 0.2230 

(0.00013) 

0.2051 

(0.00015) 

0.1466 

(0.00027) 

0.1427 

(0.00027) 

0.2181 

(0.00013) 

0.2046 

(0.00015) 

0.1581 

(0.00024) 

0.1390 

(0.00029) 

100 0.09796 

(5.75E-5) 

0.08986 

(6.89E-5) 

0.06329 

(0.00012) 

0.06147 

(0.00012) 

0.09574 

(5.98E-5) 

0.08970 

(6.67E-5) 

0.06846 

(0.00011) 

0.05997 

(0.00013) 

500 0.04364 

(2.58E-5) 

0.04004 

(3.10E-5) 

0.02810 

(5.36E-5) 

0.02726 

(5.31E-5) 

0.04266 

(2.67E-5) 

0.03993 

(2.97E-5) 

0.03045 

(4.83E-5) 

0.0265 

(5.69E-5) 

a 3 2 1 3 2 1

3 2 1

2

2

|| ˆ ˆ ˆ ||

|| ||

   
 

U U U U U U

U U U
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Figure 5.1: Standardized empirical bias [panels (a) and (b)] and measure of dispersion 

[panels (c) and (d)] for the Kronecker product of ML estimators, 3 2 1
ˆ ˆ ˆ U U U , with 

 11 nU I , 
 22 nU I , 

 33 nU I , as a function of 1n , 2n , 3n , and sample size K (results of 

our second simulation study). 
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Preface to Chapter 6  

The application of the tensor and matrix normal distribution models and the companion 

MLE-3D and MLE-2D algorithms and unbiased modified LRT tests of double and simple 

separability is the object of study in Chapter 6. It is performed on an original dataset of 

wood density estimates in two growth rings, two directions, and two heights, obtained 

from CT scanning data (with details of calibration process in Appendix G). The null 

hypothesis of double separability of the variance-covariance structure, tested with the 

unbiased modified LRT, is accepted. A triply repeated measures ANOVA shows 

significant variation in mean wood density with height and direction. This application 

presents the statistical toolbox developed for multi-dimensional data analysis in a less 

mathematical manner, while demonstrating the potential of the use of the statistical tools 

in the environmental sciences. As of May 2012, the manuscript (co-authored by Mr. 

Manceur, Dr. Beaulieu, Mr. Han, and Prof. Dutilleul) derived from this chapter is in press 

in the Canadian Journal of Forest Research (doi: 10.1139/x2012-053). Dr. Beaulieu 

furnished the prepared wood samples and contributed to the development of the 

approach. Mr. Han operated the computed tomography scanner and contributed to data 

analysis. Mr. Manceur wrote the initial manuscript. All authors participated in writing the 

final manuscript. 
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Chapter 6. A multi-dimensional statistical model for wood data analysis, 

with density estimated from CT scanning data as an example 

6.1 Abstract 

The trunk of a tree can be seen as a spatio-temporal sampling domain from the statistical 

perspective, where space is represented by direction horizontally and height vertically, 

and time through annual growth rings. In this framework, wood properties such as 

density can be the object of data collection for given estimation and testing purposes. We 

present a multi-dimensional statistical model, the tensor normal distribution, in which the 

variation (variance) of and dependency (covariance) between wood property 

measurements made for different years at various locations in a tree trunk can be inferred. 

Its application requires a smaller number of replicates (trees) than the traditional vector 

normal distribution because variances and covariances for directions and growth rings, 

for example, must be the same at all heights, up to a multiplicative constant. This 

assumption on the variance-covariance structure is called “separability”, and we explain 

how to test it. An illustration with wood density estimates obtained from computed 

tomography scanning data for 11 white spruce (Picea glauca (Moench) Voss) trees is 

presented. This example is completed by assessing differences in mean wood density 

according to location in the trunk, with analysis-of-variance F-tests adjusted for the 

estimated variances and covariances obtained by fitting the model. 

6.2 Introduction 

The trunk of a tree may be conceptualized in a variety of ways, depending on the 

perspective. From the statistical perspective, it represents a spatio-temporal sampling 

domain, with height vertically and direction horizontally for space and annual growth 

rings for time (Figure 6.1a). As part of the tree growth process, some level of covariation 

(association) between measurements made for a given wood property may be expected 

inside the trunk, as cambial initials are always formed in the previous growing season 

(Fritts 1976). The analysis of variances (variation) and covariances (dependency) is a 

preliminary step for the analysis of autocorrelation, the property of correlation of a 

variable with itself at different times in different spatial locations. The variance-

covariance structure must also be identified and the corresponding variance-covariance 

matrix must be estimated in order to perform valid tests of significance for mean values 
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in a multi-dimensional context, as the one of the spatio-temporal example of tree trunk. 

Modeling the variance-covariance structure reduces the number of parameters to be 

estimated and ensures that estimation can be carried out despite a limited sample size.  

 In forestry, and in dendrochronology in particular, autocorrelation in time series 

of tree-ring widths is often modeled with an autoregressive equation (Apiolaza et al. 

2000, Apiolaza and Garrick 2001). Alternatively, shorter time series (also called 

longitudinal data) can be analyzed by repeated measures ANOVA (analysis of variance; 

Crowder and Hand 1990). In both cases, the observed time series is a vector of 

observations, or a one-dimensional statistical object. Multi-dimensional datasets such as 

matrix or tensor datasets can then be seen as extensions in 2-D and in 3-D or more 

dimensions (Figure 6.1b).  

 Assume, for example, that wood cores (from pith to bark) were collected at 

several heights on one side of a tree trunk, and a measure of density was made for each 

growth ring along the core available at each height. The resulting data constitute spatio-

temporal repeated measures on the tree, with year as time factor and height as space 

factor. If this data collection procedure is reproduced for several trees with same age and 

approximately same total height, a variance and a covariance can be estimated for each 

spatio-temporal sampling site and each pair of sites inside the trunk, respectively. Spatio-

temporal datasets are common in forestry, but are rarely analyzed in a multi-dimensional 

statistical framework based on a distributional model. Tian et al. (1995), Wilhelmsson 

et al. (2002), Molteberg and Høibø (2007), and Via et al. (2007), among others, collected 

2-D data for wood properties on tree trunks but did not take into account the inherent 

spatio-temporal autocorrelation in their analyses. Jordan et al. (2005) and Antony et al. 

(2010) for their part did take autocorrelation into account but in one of the dimensions 

only, and Herman et al. (1999) accounted for autocorrelation in micro-fibril angles within 

a ring and among rings in different types of analysis, due to sample size limitation. 

 Three-dimensional datasets are less common, are often obtained with non-

destructive techniques, and are very rarely analyzed with a statistical method that exploits 

the full dimensionality and very nature of the data. Gjerdum and Bernabei (2009) 

modeled grain angle in 3-D for Norway spruce wood, and stated that the interpretation of 

statistical analyses was limited by the lack of modeling of autocorrelation; Defo et al. 
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(2009) used SilviScan-3 and imaging algorithms to generate a 3-D image of the 

distribution of wood density values; and Pont et al. (2007) presented a literature review, 

and developed measurement tools and imaging algorithms to visualize wood properties in 

3-D. To the best of our knowledge, only Dutilleul (1998) used a multi-dimensional 

normal distribution model to analyze wood properties in a tree trunk in 3-D.   

 Modern technologies allow the collection and visualization of multi-dimensional 

datasets in forestry, but appropriate statistical methods for their analysis are handful. As 

mentioned above, modeling the variance-covariance structure in multi-dimensional data 

should be a pre-requisite to testing hypotheses about mean values, while such modeling is 

of primary interest to understand key physiological processes such as tree growth. 

Furthermore, CT scanning and other non-destructive techniques that can be used to 

measure wood properties generate extremely large datasets. For all those reasons, we 

built up on the vector normal distribution model and the repeated measures ANOVA and 

their two-dimensional version, and extended the distributional model and the companion 

statistical method to three dimensions. The 2-D and 3-D extensions are not trivial 

mathematically speaking, and new estimation algorithms had to be developed (Dutilleul 

1999; Chapter 5). This chapter is mainly aimed at providing a simple presentation of the 

multi-dimensional statistical model called “tensor normal distribution” in the context of 

forestry, to illustrate its use and perform statistical inference (estimation and testing) 

under this model using wood density estimates obtained from CT scanning data for white 

spruce (Picea glauca (Moench) Voss). A specific objective is to present a ML estimation 

algorithm and a LRT for the variance-covariance structures which characterize the matrix 

(2-D) and tensor (3-D) normal distribution models. Secondarily, a link and a brief 

comparison are made between wood density estimates obtained from CT scanning data 

and those provided by SilviScan (Evans et al. 1995; Keunecker et al. 2009). 

 To achieve these objectives in section 6.3, the tensor and matrix normal 

distribution models are first defined, together with the corresponding MLE algorithm and 

LRT procedure. Then, the ANOVAs for triply and doubly repeated measures are 

presented, including modified F-tests designed to assess differences among means in the 

presence of autocorrelation and heteroscedasticity (heterogeneity of the variance). In 

section 6.4, the white spruce wood samples and the CT scanning protocol are described. 
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In section 6.5, the results obtained in the new statistical framework for the white spruce 

3-D data are summarized. In the section 6.6, results are interpreted and discussed in 

statistical and non-statistical terms, and future perspectives are outlined. In Appendix G, 

the calibration method used to determine the beginning and the end of annual growth 

rings in series of SilviScan and CT scan wood density estimates is explained. 

6.3 Statistical models 

6.3.1 The tensor normal distribution model 

As the collection of data is upgraded from a core of wood to the tree trunk, the 

mathematical object describing the biological object has a larger number of dimensions. 

A tensor of order three (shortened into “tensor” hereafter) is a mathematical object 

composed of three dimensions corresponding to the row, the column and the edge; a data 

tensor is a 3-D array of observations or measurements. In our example, there is one data 

tensor per tree for a total of 11 trees (sample size K = 11), and each data tensor is 

composed of 1n  = 2 rows (annual growth rings: 1r  = 1997, 2r  = 2003), 2n  = 2 columns 

(direction: 1d  = North, 2d  = South) and 3n  = 2 edges (heights: 1h  = breast; 2h  = live 

crown). All those data tensors will be assumed to come from the same statistical 

distribution (the same tensor statistical distribution) defined below; they are observations 

of the same random tensor. 

 As the number of dimensions of the mathematical object increases, the statistical 

distribution model becomes multi-dimensional. The tensor normal distribution is a three-

dimensional extension of the scalar normal distribution X ~ N(m, u) parameterized like 

this in order to facilitate extensions (see below), where X  is a random scalar, m is the 

mean parameter and u is the variance parameter. In the tensor normal distribution, each 

element of the random tensor   is characterized statistically by a mean, a variance and 

covariances (dependencies) with the other 1 2 3n n n  – 1 elements. This can be written as 

follows: 

                                    

   
  1 2 3, , 1 2 3( , , )~ ;n n nN U U U  ,                                       (6.1) 

where   is the 1n    2n    3n  random tensor,   is the 1n    2n    3n  mean tensor 

parameter, U1 is the 1n    1n  variance-covariance matrix between the rows of   (the 

annual growth rings in our example), U2 is the 2n    2n  variance-covariance matrix 
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between the columns of   (the directions), and U3 is the 3n    3n  variance-covariance 

matrix between the edges of   (the heights); while   is the 3-D extension of m in the 

scalar case, each of the three variance-covariance matrices U1, U2 and U3 is an extension 

of u and characterizes variation and dependencies in one dimension. 

 A tensor with 1n  rows, 2n  columns and 3n  edges can be transformed into a 

vector with 1 2 3n n n  components by using the “vec” operator which concatenates the 1n    

2n    3n  tensor  , column by column and edge by edge, resulting in an 1 2 3n n n    1 

vector. This provides a second, equivalent formulation of the tensor normal distribution 

model:   

                    
   

  1 2 3 3 2 1vec( (vec) ~ ),( )nn nN  U U U  ,                                 (6.2) 

where the variance-covariance matrix of vec( ) , var[vec( )] , is doubly separable, i.e., 

it is constructed as the Kronecker product ( ; see Van Loan 2000) of the variance-

covariance matrices for edges, columns and rows in this order, 3 2 1 U U U . 

 The assumption of double separability on the variance-covariance structure may 

seem arcane at first glance, but the use of any model requires a number of assumptions. 

Here, the separability assumption means among other things, that the variation and 

dependencies for annual growth rings and directions remain the same, up to a 

multiplicative constant, from one height to the other. In other words, the interaction 

between the first two dimensions is maintained along the third dimension. However, it 

does not imply that in each dimension, variances are constant and covariances only 

depend on the vector linking the measurement points (stationarity). A major advantage of 

the constraints of separability on the variance-covariance structure is that the sample size 

(number of trees) required for estimating a doubly separable variance-covariance matrix 

is reduced. 

 Indeed, for ML estimation purposes, assume that (1) an i.i.d. random sample of 

size K from a tensor normal distribution, 
 1 , …, 

 K , is available, and (2) the sample 

size K satisfies the condition 

                              

    

  

  

  

   

31 2

2 3 1 3 1 2
max , , 1

nn n
K

n n n n n n

 
  

 
.                                     (6.3) 
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The minimum sample size for the 1n    2n    3n  tensor normal distribution is much 

smaller than the number of replicates required for the general 1 2 3n n n    1 vector normal 

distribution model (see below), which is 21 3n n n  + 1. The ML estimation is performed 

with the “MLE-3D” iterative algorithm, which finds the solutions to the system of 

likelihood equations (i.e. a system of three equations with three unknowns: the three 

variance-covariance matrices, U1, U2 and U3; Mardia and Goodall 1993, p. 358; Chapter 

5).  

 For testing purposes, the general vector normal distribution model, with no other 

constraint on the variance-covariance matrix than positive definitiveness, usually plays 

the role of alternative hypothesis, while the tensor normal distribution model and the 

doubly separable variance-covariance structure constitute the null hypothesis. Again, the 

vec  operator can be used to write the vector normal distribution model: 

                               
 

   
  1 2 3

vec( (vec) ~ , )nn UNnN   ,                                     (6.4) 

but this time, 
 

var[vec( )] UN   is “unstructured” (UN) and hence, not separable.  

 If the sample size K of an i.i.d. random sample from a vector normal distribution 

is at least equal to the number of components plus one, then the ML estimator of the 

unstructured variance-covariance matrix 
 UN  is (K – 1)/K  times the sample variance-

covariance matrix. If the raw data are 1n    2n    3n  tensor data and K ≥ 1 2 3n n n  + 1, 

then the ML estimator of 
 UN  can be written as: 

                          
  

 

  1

1
vec( ) vec( vec(ˆ ) v) )ec(

K

k

T
UN k kK 

      
                    (6.5)  

 where   denotes the arithmetic mean of k  (k = 1, …, K).  

 There are many other variance-covariance structures (Wolfinger 1996), besides 

the doubly separable and unstructured ones. At one extreme, the simplest variance-

covariance structure is one with all variances being equal and all covariances being zero; 

there is only one variance parameter. Such variance-covariance matrices are unrealistic in 

forestry applications. Comparatively, two advantages of a separable variance-covariance 

structure are that in general, variances need not be the same everywhere in space or time, 

or both, and that covariances, although restricted by the model, can be different from 
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zero. At the other extreme is the unstructured variance-covariance structure, which has 

1 2 3n n n ( 1 2 3n n n  + 1)/2 distinct variance-covariance parameters. The major advantage of 

using a separable variance-covariance structure with 1n ( 1n  + 1)/2 + 2n ( 2n  + 1)/2 + 

3n ( 3n  + 1)/2 distinct parameters is a substantial reduction of the sample size required to 

estimate them (see above). Also, there are computational advantages, in the inversion of 

variance-covariance matrices in particular (Van Loan 2000). Prior to taking advantage of 

the tensor normal distribution model, the assumptions of double separability and 

multivariate normality need to be tested.  

6.3.2 Testing model assumptions 

To assess the assumptions of the tensor normal distribution model, the multivariate 

normality of vec( )  is tested first, using vec( )k  (k = 1, …, K). This can be done with 

the “multnorm” macro in SAS 9.2 (SAS Institute Inc., Cary, USA), which combines 

Mardia’s tests based on multivariate skewness and kurtosis (Mardia 1974) and the Henze-

Zirkler test (Henze and Zirkler 1990). Secondly, after the multivariate normality of 

vec( )  has been accepted, the double separability of the variance-covariance matrix 

structure is tested: 

  

    
      

    
  

1 2 3 1 2 3

1 1
0 3 2 1 3 2 11: ( )  against   : ( )n n n nUN n UN nH H      U U U I U U U I 

 
(6.6) 

where 
 

   
  1 2 3n nnI  is the identity matrix (i.e. a square matrix with ones on the diagonal and 

zeroes off the diagonal). The equality under the null hypothesis 0H  is equivalent to 

 3 2 1UN   U U U , which is rewritten in order to have the identity matrix on the 

right-hand side of the equality in (6.6); this is in accordance with the usual way of writing 

tests of significance for variance-covariance matrices (Muirhead 1982). The test used for 

(6.6) is an unbiased modified LRT (Muirhead 1982, Chapter 4, Appendix E): 

              21 2 3 3 2 3 11( )[ log | | log | | log | | log |ˆ ˆ |]ˆ ˆ* UNK p n n n n n n    U U U             (6.7) 

where p is a penalty that adjusts the distribution of the test statistic so that it fits to the 

theoretical chi-square distribution, log is the natural logarithm and | . | denotes the 

determinant of a matrix. If the sum of the three first terms is close to the last one in (6.7), 

then the value of the test statistic is close to zero and there is evidence for the structure of 

the variance-covariance matrix to be doubly separable. More formally, if the value of the 
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test statistic *  is smaller than the critical value for a given significance level (e.g.   = 

0.05), the null hypothesis 0H  is accepted and the variance-covariance matrix is 

considered doubly separable.  

6.3.3 The matrix normal distribution model 

Assume wood density is studied in several growth rings along two directions at a given 

height for a number of trees, resulting in 2-D datasets or data matrices; these could be 

‘slices’ of initially 3-D datasets (Figure 6.1). In this case, there is potential for estimating 

the variance-covariance parameters of the matrix normal distribution model with an MLE 

algorithm and for testing the simple separability of the variance-covariance structure with 

an unbiased LRT. The matrix normal distribution model can be written as: 

                                             
  

 1 2 2, 1(~ ,, )nnNX M U U ,                                        (6.8) 

where X is an 1n    2n  random matrix, M ( 1n    2n ) is the mean matrix, U1 ( 1n    1n ) is 

the variance-covariance matrix for the 1n  rows of X, and U2 ( 2n    2n ) is the variance-

covariance matrix for the 2n  columns of X. The two variance-covariance matrices are 

estimated with an iterative algorithm called “MLE-2D”, assuming a sufficient sample 

size: 
    

     2 1 1 2max( / , / ) 1K n n n n   (Dutilleul 1999). 

 Under the vector normal distribution model 
 

  
 1 2

vec( (vec() ~ ) ),n n UNNX M  , 

where UN  ( 1 2n n    1 2n n ) is positive definite without further constraint, multivariate 

normality can be tested first, provided K ≥ 1 2n n  + 1. Following acceptance of 

multivariate normality, simple separability of the variance-covariance structure can then 

be tested with the modified unbiased LRT (Muirhead 1982, Chapter 4): 

                              2 21 1log | | log | | logˆ ˆ ˆ* ( )[ |]| UNnK p n    U U  ,                      (6.9) 

where p is a penalty that adjusts the distribution of the test statistic, and 
 UN  is estimated 

by   
  1

1
vec( ) vec( vec( ) ve) c( )

K

k

T
k kK 
  X X X X . Critical LRT values are obtained by 

simulation when the sample size is moderate, and interpretation rules regarding 

acceptance and rejection of the null hypothesis of simple separability are the same as for 

double separability.  
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6.3.4 Analysis of variance 

Estimates of modeled variance-covariance matrices, such as those of the tensor and 

matrix normal distribution models, can be used in a variety of statistical applications. 

Here, we focus on the repeated measures ANOVA to test differences among means on 

autocorrelated and heteroscedastic sample data as this method is commonly used in 

ecological studies (Potvin et al. 1990), and is an extension of the classical ANOVA 

method. With triply repeated measures, at least three types of hypotheses about the mean 

value of the random variable of interest can be tested. These hypotheses concern: the 

main effects of repeated measures factors considered one at a time (i.e. actual differences 

among means) – there are three of them; the interactions between repeated measures 

factors taken two by two (i.e. ‘differences in differences’ between means) – again, there 

are three of them; and the interaction for all three repeated measures factors (i.e. 

differences in the interaction between two factors depending on the level of the third 

factor) – there is only one. The triply repeated measures ANOVA model without 

treatment factor specifically has seven error terms for testing each of the seven main or 

interaction effects listed above, using trees as replicates: 

                

  

     

   

 

 

1 2 3 1 2 3 1 2
1 2 3 1 2

1 3 2 3 1 2 31 3 2 3 1 2 3

(1) (2) (3) (4)

(5) (6) (7)
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) )( )

(

( (

k k k ki i i i i
i i i k k i i

k k

i i i

i i i i i i ii i i i i i i k

X m d

h h d h

T y d h y

y d y

   

  

     

 

    

      
   

                                   (6.10)  

where 
 1 2 3i i i kX  denotes the wood density for tree k = 1, …, 11 in growth ring 1i  =  1997, 

2003 along direction 2i  = North, South at height 3i  = breast, live crown; 
 1i

y , 
 2id  and 

 3i
h  are the main effects of year, direction and height (all fixed); 

 1 2
( ) i iy d ,  

 1 3
( ) i iy h , 

 2 3
( ) i id h  and 

 1 2 3
( ) i i iy d h   are the year-by-direction, year-by-height, direction-by-

height and year-by-direction-by-height interaction effects (all fixed); kT  denotes the 

random tree effect; and the remaining terms (all random) are the seven error terms.  

 From the triply repeated measures ANOVA model (6.10), a number of ANOVA 

models for the analysis of doubly repeated measures can be built by removing the main 
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and interaction effects of the factor for which the number of levels is reduced to one. For 

example, the doubly repeated measures ANOVA model to be used at a given height is: 

                    

  

        

  1 2 1 2 1 2
1 2 1 2

(1) (2) (3))(
i i ik kik

i i k k i i i iX m T y ' d ' y d '          .        (6.11) 

Note that with simply repeated measures and no treatment factor, observations would be 

indexed by only two subscripts and the model would stop after the first error term. 

 Whether with simply, doubly or triply repeated measures, classical (unmodified) 

ANOVA F-tests assume statistical independence and homogeneity of the variance for the 

random variable of interest at different levels of the classification factor(s). This is 

unlikely to be the case in wood data analysis; it suffices to think of the temporal 

autocorrelation and heteroscedasticity of tree-ring width, wood density and fibre length 

(Dutilleul et al. 1998). It follows that the actual Type I error risk (i.e. rate of rejection of 

the null hypothesis while, in fact, it is true) will generally be different from the nominal 

significance level set by the experimenter, if the classical testing procedure is used. 

 Box’s ‘epsilon’ (Box 1954a, 1954b) provides a solution to the problem described 

above, in the form of modified ANOVA F-tests; the modification is applied to the 

number of d.f. of the numerator and denominator of the F-ratio test statistic. Box’s 

‘epsilon’ is a measure of the deviation of a variance-covariance matrix from circularity, 

which is the most general necessary and sufficient condition for valid unmodified F-tests 

in the ANOVA method. This condition states that an n   n variance-covariance matrix   

(separable or not) is circular if  1 T
n C C I , with   a positive scalar and C an n    

(n–1) matrix of orthonormal contrasts (i.e. particular linear transformations of raw data; 

the coefficients defining contrasts as linear combinations of raw data add up to zero). In 

other words, circular variance-covariance matrices present forms of heterogeneity of 

variance and non-null covariances for raw data such that the classical ANOVA F-tests 

remain valid, because independence and homoscedasticity for orthonormal contrasts 

really matter. Box’s ‘epsilon’ is calculated as: 

                               Box’s ‘epsilon’ =
 

2

2
{tr(  )}

( 1) tr{(  ) }

T

Tn 

C C

C C




,                              (6.12) 

where tr( . ) denotes the trace operator, which applies to any square matrix and returns the 

sum of values of its diagonal entries. The value of Box’s ‘epsilon’ varies from 1/(n – 1) to 
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1.0 (i.e.   is circular); it is exactly 1 for any 2   2 variance-covariance matrix. Box’s 

‘epsilon’ multiplies the numbers of d.f. of the numerator and denominator of the F-ratio 

test statistic, thus taking into account any discrepancy from circularity. In the doubly and 

triply repeated measures ANOVAs with simple and double separable variance-covariance 

structures, there are different Box’s ‘epsilons’ for different main and interaction effects 

involving one or several repeated measures factors; see Dutilleul and Pinel-Alloul (1996) 

and Dutilleul (2011) for details about the doubly repeated measures ANOVA. 

 This completes the description of some of the statistical tools recommended for 

analyzing multi-dimensional data such as wood density measurements made at different 

locations in a tree trunk. 

6.4 Trees and CT scanning 

6.4.1 Trees 

Trunk sections were obtained from white spruce trees harvested for an ecological survey 

conducted by the Ministère des Ressources naturelles et de la Faune du Québec in the 

southern Québec forest (between 48.18 and 49.91 degrees latitude North and between 

62.77 and 67.77 degrees longitude West) in September-October 2006 and August 2008. 

The trees were sampled in different ecological regions. Our goal here is to apply the 

statistical models and companion data analyses in order to assess differences in mean 

wood density within the tree trunk; the number of sampled trees per region does not 

allow comparisons among ecological regions. 

Samples consist of non-extracted wood sections oriented North to South, taken at 

two heights: breast (1.3 m) and live crown (average: 9.4 m). The average diameter of the 

trunk (including bark), width and thickness of the wood samples at breast height are 257 

mm, 52 mm and 18 mm, and the average number of annual growth rings is 60. 

Corresponding values at live crown height were 157 mm, 52 mm and 18 mm, and 31. 

The wood samples were air-dried, and were free of apparent compression wood, cracks, 

and knots, where measurements with the CT scanner were made (Figure 6.2a). 

6.4.2 CT scanning 

The X-ray CT scanning technology is based on X-ray emission by a source in direction of 

an object and the measurement by detectors of the X-rays not absorbed by the object. The 

X-ray absorption coefficient (also known as the linear attenuation coefficient), denoted μ, 
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is first calculated for each voxel (i.e. a volumetric unit, 3-D extension of a pixel) within a 

circular slice of the CT scanned object. The X-ray absorption coefficient is then 

converted to a CT number (CTN) expressed in Hounsfield units (HU): 

                                            CTN 1000object water

object air

 
 







                                     (6.13) 

where μobject is the X-ray absorption coefficient for one voxel of the CT scanned object, 

μwater is the X-ray absorption coefficient for pure water (i.e. 0 HU), and μair is the X-

ray absorption coefficient for pure air (i.e. –1000 HU). Thus, negative CTN values 

correspond to voxels ‘less dense than water’, and positive CTN values, to voxels ‘more 

dense than water’. The CTN values for each slice (with a certain thickness) of the CT 

scanned object are saved as a 512   512 matrix, although only the interior circle of the 

slice really contains a part of the CT scanned object and the rest (outside the circle) is 

considered as ‘background’ and is not used in further analyses. 

 CT scanning sessions took place at the CT Scanning Laboratory for agricultural 

and environmental research on Macdonald Campus of McGill University (Ste-Anne-de-

Bellevue, Québec, Canada), where a Toshiba Xvision high-resolution CT scanner 

(Toshiba Corporation, Medical Systems Division, Tokyo, Japan) is installed. 

Configuration parameters in our study were: field of view of 18 cm in diameter (SS), 

combined with a zoom factor of 8; tube voltage, 120 kV; and tube current, 50 mA. The 

helical scanning mode was chosen because of its advantages in terms of image 

reconstruction and advanced interpolation, resulting in enhanced image precision (Han et 

al. 2008). The reconstruction interval length was 0.1 mm, and a total of 40 CT images 

were constructed sequentially each time, covering a distance of 4 mm in the central part 

of the wood sample (Figure 6.2a). Wood samples were placed flat on the CT scanner 

couch, the bark-to-bark axis being in the x-y plane which is perpendicular to the z-axis 

provided by the couch axis. Because of the use of a zoom factor in order to ensure a 

spatial resolution of less than 50 microns in the x-y plane (i.e. 0.044 mm), each wood 

sample was CT scanned more than one time in order to cover the total distance from bark 

to bark passing by the center of the trunk. Therefore, each wood sample was carefully 

moved by increments of 2 cm starting from the North direction (see black marks in 

Figure 2a). The diameter of CT images being 2.25 cm (i.e. 18 cm divided by 8, the zoom 
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factor), the overlap along the x axis (Figure 6.2b) allowed the merging of CT scanning 

datasets collected for successive portions of the same wood sample in order to produce a 

continuous curve of mean CTN values prior to transformation into wood density 

estimates (see below and Figure 6.3 in Results section). The 25 central rows in 512   512 

CTN matrices were used for this. 

 The mean CTN values thus obtained every 44 microns from bark to bark for each 

wood sample were then converted to wood density estimates, using Lindgren's (1991a) 

calibration equation developed for dry, unextracted wood: D = 1053 + 1.052 CTN, where 

D is wood density in kg.m-3. The slope of the regression line between wood density and 

CTN is close to 1, because the density variation of the cell wall material is small so that 

the variation in X-ray absorption in the sample is directly related to the relative 

proportion of cell wall in a voxel (Jungnikl et al. 2009). This is not true when there are 

knots and other defects, as the cell wall composition, and not only the quantity, would 

then change in each voxel (Jungnikl et al. 2009). This underlines the importance of using 

unblemished wood in such studies. Also, because of the use of a high level of energy 

(120 kV) and dry and relatively small wood samples and since wood has densities lower 

than pure water, limited noise and high accuracy of density estimated from CTN can be 

assumed (Freyburger et al. 2009).  

 The profiles of wood density estimates show a regular oscillating pattern which 

follows the annual growth rings. The transition from late wood to early wood is gradual, 

while the onset of growth in the spring should result in a more abrupt transition. This 

gradual transition is a consequence of the use of means calculated over the successive 

growth rings, through the collection of CT scanning data which are three-dimensional by 

nature. Calibration was thus performed with SilviScan data available for the same wood 

samples, in order to determine where in the gradual transition (Figure 6.3) a ring starts 

and finishes on average; Appendix G is devoted to this calibration. Once the beginning 

and end of growth rings were determined, an average wood density measure was 

computed per ring for each of the 2 directions, 2 heights and 11 trees, and these triply 

repeated measures data were saved as tensors and processed in Matlab 2010a (The 

Mathworks, Inc., Natick, MA, USA).  



 

 94

6.5 Results 

The dataset was composed of K = 11 tensors with dimensions 2   2   2, which were 

reshaped for model testing purposes into 11 vectors with 8 elements. The minimum 

sample size required to estimate the variance-covariance parameters of the tensor normal 

distribution model by ML in such a case is 3; see (6.3). By comparison, the minimum 

sample size necessary to estimate the variance-covariance parameters of the vector 

normal distribution model is 9.  

 Mardia’s tests based on multivariate skewness (P = 0.3122) and multivariate 

kurtosis (P = 0.1137) as well as the Henze-Zirkler test (P = 0.1967) did not reject 

multivariate normality on the raw data (i.e. wood density estimates). Accordingly, we 

proceeded with maximum likelihood estimation without applying a preliminary data 

transformation. 

 Under the assumption of double separability for the variance-covariance structure, 

convergence was achieved in 13 iterations with the MLE-3D algorithm. The estimated 

mean tensor ̂  is: 

                               1 2.. ..
402.3  403.8 404.9  383.4

   and   
403.8  401.5 402.4  384.

ˆ
4

ˆ
   
   
  




  .

 

The estimated variance-covariance matrix for the tensor lines (i.e. the two growth rings) 

is: 

                                                    1
1071.7  735.2

 
735.2    989.1

ˆ  
 





U ; 

the estimated variance-covariance matrix for the tensor columns (i.e. the two directions) 

is: 

                                                     
2

1.058    0.284

0.284    0.953
ˆ  

 





U ; 

and the estimated variance-covariance matrix for the tensor edges (i.e. the two heights) is: 

                                                     
3

1.130    0.020

0.020    0.873
ˆ  

  
 

U . 

On the other hand, under the vector normal distribution model, the estimated 8   

8 variance-covariance matrix is given by: 
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656.2 321.8 405.6 415.5 191.5 164.7 226.7 156.5

321.8 876.3 335.2 377.5 98.5 134.4 389.2 401.7

405.6 335.2 2115.5 1796.8 -562.6 -730.1 -392.5 64.2

415.5 377.5 1796.8 1624.0 -531.4 -570.4 -267.6 142.6

191.5 98.5 -562.6 -531.4 8
ˆ

65.6UN 
693.2 763.7 207.6

164.7 134.4 -730.1 -570.4 693.2 1143.8 609.1 154.1

226.7 389.2 -392.5 -267.6 763.7 609.1 983.6 393.1

156.5 401.7 64.2 142.6 207.6 154.1 393.1 383.1

 
 
 
 
 
 
 
 
 
 
 
  

. 

 At the significance level   = 0.05, the critical value of the unbiased modified 

LRT for double separability is 2
0.95(28) 41.3371  , while the observed value (6.9) is 

34.85 (with p = 5.38, Table E.1). Thus, the null hypothesis of double separability is not 

rejected, and it is justified to perform the triply repeated measures ANOVA in these 

conditions (Table 6.1). So doing, a significant height-by-direction interaction was found. 

The inspection of the estimated mean tensor ̂  (see above) reveals that this is due to a 

lower wood density in the South direction at live crown height on average, compared 

with the three other height-direction combinations.  

 Triply repeated measures data can also be analyzed from ‘slices’ made in 2-D, by 

working with the data at a given level of one of the three repeated-measures factors (e.g. 

at breast height only; see below). Multivariate normality needs not be checked again, 

because once accepted for longer random vectors, it is accepted for shorter vectors (or 

marginal distributions; Muirhead 1982). For the six types of ‘slices’, the MLE-algorithm 

converged in 7 to 24 iterations, and the estimated matrices (mean and variance-

covariance), together with the LRT results, are presented in Table 6.2. Simple 

separability was accepted for all the 2-D datasets but one. The doubly repeated measures 

ANOVA at breast height is presented as an example (Table 6.3), and the direction main 

effects are significant at   = 0.05, again because the mean wood density in South 

direction is smaller than in North direction at that height. Note that PROC MIXED of 

SAS 9.2 (SAS Institute Inc., Cary, USA), used with the UN @ UN variance-covariance 

structure (equivalent to the simple separable structure here) provided similar results; no 

UN @ UN @ UN (our doubly separable variance-covariance structure) is available in 

SAS PROC MIXED at this moment. 
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6.6 Discussion 

6.6.1 Models and estimation 

In previous sections, multi-dimensional (3-D and 2-D) normal distributions with a 

separable variance-covariance structure were described and applied to wood data for 

statistical analysis. As part of this, procedures for estimating the parameters, tests for 

assessing the assumptions of models, and modified ANOVA F-tests taking into account 

the dependency and heterogeneity of variance in data were presented. In a multi-

dimensional context, the estimation of the variance-covariance matrix often requires 

modeling. Indeed, if we were to measure density in 40 growth rings at 10 heights, 

estimating the 79, 800 (400 times 399 divided by 2) distinct parameters of an 

unstructured variance-covariance matrix would require 401 (40 times 10 plus 1) trees. 

Assuming homogeneity of the variance and ignoring covariances in the space-time 

domain is unrealistic, but based on our preliminary example, using separable variance-

covariance structures is reasonable while requiring much smaller sample sizes (only 5 in 

the 40   10 matrix normal distribution model) and thus represents a middle ground 

between an unstructured variance-covariance matrix and an over-simplified 

homoscedastic and independent structure (with one variance and no covariance different 

from zero) for raw data. 

 Several other variance-covariance structures are available (e.g. ante-dependence, 

banded or Toeplitz; see Wolfinger 1996 for examples with the vector normal 

distribution). Some of them require the assumption of homogeneity of the variance in the 

space-time domain (e.g. AR(1) and CS), whereas the separable structure in its general 

form does not require such an assumption. In addition to offering the simple separable 

variance-covariance structure UN @ UN, where both variance-covariance matrices are 

not modeled, SAS also offers UN @ AR(1) and UN @ CS. However, for small sample 

sizes, the estimation algorithm used in SAS PROC MIXED may not converge (Roy and 

Khattree 2005). 

6.6.2 Testing the assumptions of models 

In our example with wood density estimates obtained from CT scanning data for 11 white 

spruce trees, the hypothesis of double separability of the variance-covariance structure 

was accepted with the unbiased LRT, which is encouraging for future applications in 
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wood data analysis since these are ‘real’ data and not simulated data presenting known 

statistical properties. Also, simple separability was found to be an acceptable variance-

covariance structure for most types of 2-D ‘slices’ taken from the 2   2   2 data tensors, 

and triply and doubly repeated measures ANOVAs were performed accordingly. In case 

separability would be rejected and depending on sample size (i.e. whether K ≥ 1 2 3n n n  + 

1, or not), modified ANOVA F-tests or multivariate ANOVA tests available for simple 

repeated measures ANOVA (Crowder and Hand 1990) could be used over all three 

dimensions or only one or two dimensions. 

 Postulating separability when its testing is not possible is another option (see 

Dutilleul and Pinel-Alloul (1996) for a 2-D example in a hydrological application). 

Realistically, postulating a separable variance-covariance structure is reasonable, at least 

more than assuming homogeneity of the variance and that all covariances are zero. The 

effects of mistakenly assuming separability on hypothesis testing in linear models and on 

the estimation of Box’s ‘epsilon’ have already been studied (Boik 1991, Njue 2001), but 

robustness to failure of the separability assumption is worthy of further studies, especially 

in the 3-D case.   

 One of the conditions of application of the tensor and matrix normal distribution 

models is that the variance-covariance matrix is the same for all trees (individuals or 

subjects in general terms) for which a tensor or matrix of data is available. When there 

are several experimental groups, this condition may not be satisfied, which can then 

prevent the MLE 3-D and 2-D algorithms from converging if they are used with all 

experimental groups combined (Dutilleul and Pinel-Alloul 1996). Here, the trees came 

from different regions but the algorithms converged without a problem, and the 

acceptance of double and simple separability was the rule instead of the exception.  

6.6.3 Computed tomography scanning 

The use of non-destructive methods to measure wood properties is receiving increased 

attention lately. Following Pont et al. (2007), more work is needed to improve “the 

correspondence between image greyscale values and wood properties”. In our study, we 

did not have this problem, since we had access to CTN values and transformed them into 

wood density estimates, using a calibration equation (Lindgren 1991a). Thereafter, the 
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multi-dimensional normal distribution models helped take advantage of the very large 

dataset thus generated, with valid and interpretable tests of the mean eventually. 

 Slight inaccuracies may have arisen from the data collection and calibration, 

though. A calibration equation specific to the CT scanner would be more precise than the 

standard equation. Also, the determination of the beginning of annual growth rings 

(Appendix G) was based on an average (32% of the inter-maximum distance; Figure 6.3). 

However, the grand mean value of our wood density estimates (394.5 kg.m-3) is within 

the boundaries of what has been reported in the literature for the same species in the same 

region (Corriveau et al. 1990). As in Corriveau et al. (1990), a substantial portion (75%) 

of the variation in our wood density estimates is associated with tree-related main effects 

and interactions (Table 6.1). In conclusion, imperfections are likely to be small in 

magnitude, and should be much smaller than variations among trees. 

The results of the measures of the wood density in 3-D show that at live crown 

height in the South direction the density was significantly lower. Wang and Micko (1984) 

found that in general density increased with height in white spruce trees from north 

central Alberta. More work is needed to link environmental conditions with wood density 

in the tree trunk. 

6.6.4 Implications for forestry 

The statistical method was demonstrated with the simplest possible tensor (dimension 2 x 

2 x 2) with an original dataset of wood density calculated by CT scanning, a method 

which requires multi-dimensional statistics for data analysis. CT scanning was chosen as 

it is a tool which allows the rapid assessment of response variables in tree trunks or wood 

products in 3-D, and contributes to fill a gap in instrumentation noted by Gartner et al. 

(2002). However, the statistical method can be used with any multi-dimensional dataset 

composed of continuous, multivariate normal data of sufficient sample size, not 

necessarily obtained by CT scanning and with tensors of any size.  

 An example of application in dendrochronology would consist in the collection of 

density in the early and late wood (space horizontal), for all rings (time) at several heights 

(space vertical). Such a dataset can be obtained by CT scanning, X-ray densitometry, or 

manually but can be analyzed for significant difference in the mean with the statistical 

method presented here, especially if the number of trees is limited. In wood engineering, 
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the humidity levels in wood beams can be obtained at different points (two spatial 

dimensions) on several wood beams using a sensor, and a test of the mean can be 

performed to ensure that drying was on average uniform. Finally, in the field, a core can 

be obtained at various heights and directions (two spatial dimensions) in the trunk of 

several trees and the thickness of the sapwood measured, and tested for significant 

differences in the mean.     

In addition to their use to construct valid tests of significance about means, 

estimated variance-covariance matrices present a biological interest, as temporal 

autocorrelation has a physiological basis in the tree growth process (Fritts 1976). As 

shown with 1Û , 2Û  and 3Û  in the example, the variance (variation) can change more in 

one dimension than in another, whereas covariances can be large or close to zero. 

Notably, the covariance (dependency) is stronger in the horizontal spatial dimension than 

in the vertical spatial one, due to smaller distances between measurement points at the 

same height (in cm) relative to distances between measurement points at different heights 

(in m) and the biological implications for the production of new cambium and the density 

of wood in the end.   

 In closing, as measurement techniques allow the collection of an increased 

number of multi-dimensional datasets, including for multiple wood properties (e.g. wood 

density, fiber length and microfibril angle in 2-D), statistical models and methods have 

no other choice but to evolve. With the upgraded models and methods presented here, 

researchers in forestry and wood technology should be prepared to undertake the analysis 

of these new multi-dimensional wood data, with confidence and trust in their statistical 

and biological results.  
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Table 6.1: ANOVA table and results of F-tests for fixed and random effects in the 

statistical analysis of triply repeated measures for wood density estimated from CT 

scanning data in two annual growth rings (r: 1997, 2003), in two directions (d: North, 

South) and at two heights (h: breast, live crown) in 11 white spruce trees (T)a.  

Effect Number 

degrees 

freedom 

Sum of squares Mean square Observed

F-value 

P-value Estimated

Box’s 

‘epsilon’ 

Adjusted 

P-value 

Fixed        

r 1 8.44 8.44 0.02 0.886 1.0 0.886 

d 1 2227.18 2227.18 1.44 0.257 1.0 0.257 

h 1 1814.62 1814.62 0.56 0.473 1.0 0.473 

r d  1 0.14 0.14 <0.01 0.985 0.641 1.000 

r h  1 0.66 0.66 <0.01 0.968 0.565 1.000 

d h  1 2056.78 2056.78 5.07 0.029 0.917 0.032 

r d h   1 70.40 70.40 0.17 0.679 0.585 0.546 

Error 50 20297.50 405.95     

Random        

T 10 26709.80 2670.98 6.58 <.001   

T d  10 15445.80 1544.58 3.80 0.001   

T h  10 32675.18 3267.52 8.05 <.001   

Total 87 101306.50      

a The random interaction effects T r , T dr  , T hr  , and T hd   were not 

significant at 0.05 level and were removed from the model. d is tested against T d (= 

2

(2)

i k
  in equation 6.10), h against T h (= 

3

(3)

i k
 ), and the other effects against the Error (= 

1 2 3

(7)
i i i k ).  
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Table 6.2: Mean and variance-covariance parameter estimates for matrix normal distribution modelsa. 

 Sample mean 
matrix 

Estimated variance-covariance matrices Observed value of *  
statistic (decision) 

Breast height: 

Rings ( 1U )  by directions ( 2U ) 

402.34  403.81

403.76  401.50

 
 
 

1531.1   1191.9

1191.9   1325.1

 
 
   

1.1873   0.1815

0.1815   0.8274

 
 
   

11.3167 

(reject separability) 

Live crown height: 

Rings ( 1U )  by directions ( 2U ) 

404.89  383.45

402.39  384.36

 
 
 

721.23   418.40

418.40   797.79

 
 
   

1.1684   0.4730

0.4730   0.9143

 
 
   

9.8907 

(accept separability) 

North direction: 

Rings ( 1U ) by heights ( 3U ) 

402.34  404.89

403.76  402.39

 
 
 

747.27  495.21

495.21  1011.8

 
 
   

0.9788   0.1604

0.1604   1.0218

 
 
   

0.7726 

(accept separability) 

South direction: 

Rings ( 1U ) by heights ( 2U ) 

403.81 383.45

401.50 384.36

 
 
   

1601.3   1120.6

1120.6   1006.3

 
 
   

0.9873   0.0861

0.0861   1.0151

 
 
   

10.7668 

(accept separability) 

1997 Ring: 

Directions ( 2U ) by heights ( 2U ) 

402.34  404.89

403.81  383.45

 
 
 

882.56   764.46

764.46   1591.3

 
 
   

1.3970   0.1312

0.1312   0.6572

 
 
   

7.1883 

(accept separability) 

2003 Ring: 

Directions ( 2U ) by heights ( 2U ) 

403.76 402.39

401.50 384.36

 
 
   

1131.0   275.90

275.90   892.61

 
 
   

1.2913   0.1756

0.1756   0.7334

 
 
   

9.3230 

(accept separability) 

a Unbiased modified LRT for simple separability of the variance-covariance structure with p = 3.57 (Table 4.1). If the null 

hypothesis is ‘accepted’, then the structure is found to be separable. The decision to accept or reject the null hypothesis of 

simple separability was made at the 0.05 significance level here, with critical value 2
0.95(5) 11.0705  . 



 

 102

Table 6.3: ANOVA table and results of F-tests for fixed and random effects in the 

statistical analysis of doubly repeated measures for wood density estimated from CT 

scanning data in two annual growth rings (r: 1997, 2003) and two directions (d: North, 

South) at live crown height in 11 white spruce trees (T)a. 

Effect Number 

degrees 

freedom 

Sum of squares Mean square Observed

F-value 

P-value Estimated

Box’s 

‘epsilon’ 

Adjusted 

P-value 

Fixed        

r 1 6.92 6.92 0.02 0.898 1.0 0.898 

d 1 4282.26 4282.26 10.41 0.003 1.0 0.003 

r d  1 32.09 32.09 0.08 0.782 0.838 0.733 

Error 30 12337.83 411.26     

Random        

T 10 24798.86 2479.89 6.03 <.001   

Total 43 41457.96      

a The random interaction effects T r  (=
1

(1)

i k
'  in equation 6.11) and T d  (=

2

(2)

i k
' ) 

were not significant at 0.05 significance level and were removed from the model. All the 

effects are tested against the Error. 
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Figure 6.1: (a) A schematized 3-D representation of tree growth. The number of annual 

growth rings decreases with increasing height, while the cambium producing rings in 

higher position is younger for a given calendar year. Dark blocks in growth increments 

indicate sampling locations where wood density could be estimated for two rings, two 

directions and two heights. (b) The resulting triply repeated measures data are arranged in 

a 2 2   2 third-order tensor (r: ring; d: direction; h: height). 

 

(a) 

(b) 
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Figure 6.2: (a) Two wood samples collected at breast (below) and live crown (above) 

heights, viewed from the top while they lay on thinner side horizontally. They were CT 

scanned along the orange tape from right (North direction) to left (South). Black marks 

are separated by a distance of 2 cm. In this perspective, the y-axis points out of the figure, 

while the x- and z-axes are in the horizontal plane. (b) The view is transposed (90-degree 

rotation around the x-axis) here, compared to panel (a). CT images are constructed in the 

x-y plane, as schematized by the dashed circles. See text for CT scanning details.  

 

(a) 

(b) 
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Figure 6.3: Illustration of the oscillating pattern in wood density as estimated from CT 

scanning data, with troughs and peaks corresponding to the succession of early and late 

wood within annual growth rings. This allows the determination of the beginning and end 

of rings, as 32% of the distance between peaks was found to be a good basis overall for 

the definition of ring limits (see Appendix G). Smoothness of the curve is the result of 

averaging wood density estimates, since CT scanning data are 3-D by nature. The two 

grey lines, above and below the black one which represents the mean wood density 

estimate at successive positions along the North-South axis, represent one standard error. 
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Chapter 7. General Discussion 

Environmental datasets are often multi-dimensional and non-stationary. As extensions of 

the well-known scalar and vector normal distributions, the matrix and tensor normal 

distribution models do not require the assumption of stationarity in the general case. 

However, these multi-dimensional normal distributions imply a separable variance-

covariance structure (simple, double or more). The main objectives of this Ph.D. thesis 

were to study the properties of the separable variance-covariance structure and contribute 

to the related estimation and testing procedures in order to present a new type of 

statistical applications.  

 The first hypothesis was that the bias of the ML estimator of a simply separable 

variance-covariance matrix structure, implied by the matrix normal distribution model, 

would decrease monotonically with increasing sample size. In Chapter 3, a ‘peak-trough’ 

pattern of the empirical bias was detected in a simulation study. To explain such unusual 

results, the empirical bias was renamed “ergodic” and decomposed into two components 

called “estimation” and “fluctuation”, minus a non-orthonogonality factor. These results 

show that the use of numerical methods to find the solution to likelihood equations that 

do not have an analytical solution can lead to surprising discoveries. Nevertheless, the 

‘peak-trough’ pattern of the bias of the ML estimator found here does not challenge the  

theory according to which the bias of a ML variance-covariance matrix estimator 

decreases with increasing sample size, since the pseudo-theoretical bias obtained without 

simulations decreased monotonically. 

The second hypothesis was that the LRT presently available in the literature for 

testing the hypothesis of simple separability for a variance-covariance structure is biased, 

in that the rejection rate is not equal to the nominal Type I error risk when the null 

hypothesis is true. This second hypothesis of the thesis was verified in Chapter 4, and a 

simple and general modification of the LRT statistic corrected for the bias and improved 

the chi-square distribution of the LRT statistic in small to large samples, while theory 

classically predicts it only asymptotically. An EGLS algorithm, which allows modeling 

of the mean, was developed and the bias of the test was shown to be more severe with a 

more complex mean model. 
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The third hypothesis was that a 3-D extension of the MLE-2D algorithm, called 

“MLE-3D”, would allow the estimation of the variance-covariance parameters of the 

tensor normal distribution model of order 3, with small samples. This hypothesis was 

verified in Chapter 5, where the algorithm converged when the sample size was small and 

the variance-covariance matrix was complex and it was shown that the initial solution 

provided to the algorithm did not influence the convergence properties. The “MLE-4D” 

algorithm was also developed as a further extension. Although these extensions do not 

constitute a conceptual leap after the 2-D case has been established, they are not 

straightforward since they require the use of advanced tensor operators whose properties 

and notations are not very familiar or common, and a limited number of statistical 

programs offer the possibility of estimating the parameters of a 3-D or 4-D normal 

distribution model from an i.i.d. random sample. Thereafter, specific objectives such as 

the development of an unbiased modified LRT for double separability of a variance-

covariance matrix and the bias analysis for the ML estimator of a doubly separable 

variance-covariance matrix, showing a ‘peak-trough’ pattern with a slight but clear 

trough in the estimation bias as a function of sample size, were met. 

 The fourth hypothesis was that the variance-covariance structure for a data tensor 

made of wood density measures made from CT scan data on white spruce trees in two 

directions, at two heights and in two growth rings would be doubly separable. This 

hypothesis was verified in Chapter 6. In addition, simple separability was not rejected for 

almost all 2-D subsets of the data. Finally, ANOVA F-tests modified by the use of Box’s 

‘epsilons’ estimated from variance-covariance matrices themselves estimated under 

multi-dimensional normal distribution models showed significant variation in mean wood 

density at different heights and directions in the tree. Overall, a separable variance-

covariance structure was found to be particularly appropriate for the tree data under study 

and the statistical models allowed the exploration of a very large and complex dataset, 

with valid statistical tests. Thus, multi-dimensional normal distribution models and 

separable variance-covariance structures together with wood density measures obtained 

by CT scanning form a coherent package. The relevant statistical software will be 

available at http://www.environmetrics.mcgill.ca soon.  
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 The decomposition of the bias of a ML variance-covariance matrix estimator is an 

important conceptual contribution of this Ph.D. thesis. It followed from the focus on 

small-sample properties of estimators, in relation to the context in which multi-

dimensional models are applied – the environmental sciences – where replication is 

possible and sample sizes are limited. It is difficult to tell if the same conceptual 

discovery would have occurred if the thesis had been realized in another context. 

However, the combination of the two disciplines was fruitful and reciprocally 

advantageous. On the one hand, statisticians are encouraged to pay attention to small-

sample properties of estimators in addition to asymptotic properties, and on the other 

hand, environmental researchers are invited to model the often mentioned connectedness 

and interdependence of nature when performing statistical inference. 
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Chapter 8. Contributions to knowledge 

The contributions to knowledge of this Ph.D. thesis, depending on the chapter or the 

appendix, read as follows. 

The contributions from Chapter 3 and Appendices A and D are: 

 The discovery of a non-monotonic ‘peak-trough’ pattern in the empirical bias of 

the ML estimator of a simply or doubly separable variance-covariance matrix in 

relation to sample size. 

 The explanation of the discovered pattern through the decomposition of the 

ergodic (empirical) bias into estimation and fluctuation biases, minus a non-

orthogonality factor, an important conceptual contribution. 

 The verification at the same time that the fundamental theory of ML estimators 

was not challenged since the pseudo-theoretical bias showed a monotonic 

decreasing relationship with sample size. 

The contributions from Chapter 4 and Appendices B and E are: 

 The development of an unbiased modified LRT for simple separability of a 

variance-covariance matrix structure, through the introduction of an adjustment 

factor and the use in this context of an estimated generalized least-squares 

estimator of the mean matrix when modeled.  

 The evaluation of the differences in terms of performance in small and large 

sample sizes between the proposed unbiased modified LRT and the biased LRT of 

the literature for simple separability of a variance-covariance matrix structure. 

 The presentation of the unbiased modified LRT for double separability of a 

variance-covariance matrix structure.  

The contribution from Chapter 5 and Appendices C and F is: 

 The detailed exposition of (i) the tensor normal distribution model from its 

moment generating function and probability density function, (ii) the MLE-3D 

and MLE-4D algorithms, (iii) the empirical properties (bias, dispersion) of ML 

estimators with simulations, and (iv) a 3-D example with real data. 

The contributions from Chapter 6 and Appendix G are: 

 The application to an environmental dataset of the multi-dimensional normal 

distribution models and related estimation and testing procedures studied and 
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presented in other chapters and appendices (MLE-2D and MLE-3D algorithms, 

LRTs for simple and double separability, ANOVA with double and triply 

repeated measures). 

 The development of a calibration procedure for tree ring determination, from 

wood density measures obtained by CT scanning. 
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Chapter 9. Future research directions 

In this Ph.D. thesis, concepts and methods have been scrutinized, extended and 

developed. The work presented therein may be used as starting point for future research 

in the following directions: 

1. The decomposition of the bias can be further explored. For example, the bias 

could be dissected for each of the component variance-covariance matrices rather 

than the Kronecker product, which assumes some preliminary adjustment to make 

estimated component variance-covariance matrices from different i.i.d. random 

samples comparable.  

2. In addition to the bias, a detailed study of a measure of dispersion of the ML 

estimator of a simply or doubly separable variance-covariance matrix can be 

realized. 

3. Since separability and multivariate normality may be assumed when it is not 

possible to test them in practice, the study of the robustness of algorithms and 

statistical methods (e.g. ANOVA) against departure from them will be useful. 

4. ML estimators can be developed for separable multi-dimensional distributions 

other than normal, since not all environmental variables are distributed like 

multivariate normal (when data transformation is not a workable option). 

5. Algorithmic extensions, such as 3-D and 4-D EGLS algorithms for modeling of 

the mean, are possible and would be of interest, and so would be a detailed 

numerical study of 2-D cases with very large numbers of iterations. 

6. A comparison of the results of various statistical analyses for the same dataset 

(e.g. by assuming or not separability, stationarity, etc. with or without pre-

whitening) could be performed, as a single approach may not be ideal for all 

datasets. 

7. Exploration of the application of multi-dimensional normal distribution models to 

environmental datasets should be continued, with emphasis on the meaning and 

interpretation of variance-covariance parameters in fields such as limnology, with 

the lake as the individual under study instead of the tree in forestry/wood science.  



 

 112

References 

Allen, G. I., and Tibshirani, R. 2010. Transposable regularized covariance models with 

an application to missing data imputation. Ann. Statist. 4 764–790.  

Antony, F., Schimleck, L., Daniels, R., Clark III, A., and Hall, D. 2010. Modeling the 

longitudinal variation in wood specific gravity of planted Loblolly pine (Pinus 

taeda) in the United States. Can. J. For. Res. 40: 2439–2451. 

Apiolaza, L., and Garrick, D. 2001. Analysis of longitudinal data from progeny test: 

some multivariate approaches. Can. J. For. Res. 47: 129–140. 

Apiolaza, L., Gilmour, A., and Garrick, D. 2000. Variance modelling of longitudinal 

height data from a Pinus radiata progeny test. Can. J. For. Res. 30: 645–654.  

Barndorff-Nielsen, O. E., and Cox, D. R. 1984. Bartlett adjustments to the likelihood 

ratio statistic and the distribution of the maximum likelihood estimator. J. Royal 

Stat. Soc. Series B (Methodological) 46: 483–495. 

Bartlett, M. S. 1937. Properties of sufficiency and statistical tests. Proc. Royal Soc. 

London. Series A (Mathematical and Physical Sciences) 160: 268–282. 

Barton, T. A., and Fuhrman, D.R. 1993. Covariance structures for multidimensional data, 

Multidim. Syst. Sign. P. 4: 111–123. 

Beaulieu, J., Doerksen, T., Boyle, B., Clément, S., Deslauriers, M., Beauseigle, S., Blais, 

S., Poulin, P.L., Lenz, P., Caron S., Rigault, P., Bicho, P., Bousquet, J., and 

Mackay, J. 2011. Association genetics of wood physical traits in the conifer white 

spruce and relationships with gene expression. Genetics 188: 197–214. 

Bijma, F., de Munck, J. C., and Heethaar, R. M. 2005. The spatiotemporal MEG 

covariance matrix modeled as a sum of Kronecker products. NeuroImage 27: 402–

415. 

Blum, J. R. 1981. Ergodic theorems. In: S. Kotz and N.L. Johnson, eds. Encyclopedia of 

Statistical Sciences. Wiley & Sons, New York, U.S.A.  

Boik, R. J. 1991. Scheffé’s mixed model for multivariate repeated measures: A relative 

efficiency evaluation. Commun. Stat. Theory Methods 20: 1233–1255. 

Box, G. E. P. 1954a. Some theorems on quadratic forms applied in the study of analysis 

of variance problems, I. Effect of inequality of variance in the one-way 

classification. Ann. Math. Stat. 25: 290–302. 



 

 113

Box, G. E. P. 1954b. Some theorems on quadratic forms applied in the study of analysis 

of variance problems, II. Effects of inequality of variance and of correlation 

between errors in the two-way classification. Ann. Math. Stat. 25: 484–498. 

Bucur, V. 2003. Nondestructive Characterization and Imaging of Wood. Springer-Verlag, 

Dordrecht, The Netherlands. 

Chen, H., Chen, J., and Kalbfleisch, J. D. 2001. A modified likelihood ratio test for 

homogeneity in finite mixture models. J. Royal Stat. Soc. Series B (Statistical 

Methodology) 63: 19–29. 

Corriveau, A., Beaulieu, J., Mothe, F., Poliquin, J., and Doucet, J. 1990. Densité et 

largeur des cernes des populations d’épinettes blanches de la région forestière des 

Grands Lacs et du Saint Laurent. Can. J. For. Res. 20: 121–129. 

Crowder, M. J., and Hand, D. J. 1990. Analysis of Repeated Measures. Chapman and 

Hall, London, U.K. 

Dawid, A. P. 1981. Some matrix-variate distribution theory: notational considerations 

and a Bayesian application. Biometrika 68 265–274. 

de Waal, D. J. 1988. Matrix-valued distributions. In: S. Kotz and N.L. Johnson, eds. 

Encyclopedia of Statistical Sciences. Wiley & Sons, New York, U.S.A.  

Defo, M., Goodison, A., and Uy, N. 2009. A method to map within-tree distribution of 

fibre properties using SilviScan-3 data. Forest. Chron. 85: 409–414. 

Downes, G. M.,  David, D., Battaglia, M., and Schulze, D. 2009. Measuring and 

modelling stem growth and wood formation: An overview. Dendrochronologia, 27: 

147–157. 

Dryden, I. L., Bai, L., Brignell, C. J., and Shen, L. 2008. Factored principal components 

analysis, with applications to face recognition, Statist. Comput. 19: 229–238. 

Duff, N. J., and Nolan, G. H. 1953. Growth and morphogenesis in the Canadian forest 

species. i. the controls of cambial and apical activity in Pinus resinosa ait. Can. J. 

Bot. 13: 471–513. 

Dutilleul, P. 1998. Tests of classification with simply, doubly and triply repeated 

measures. Invited talk at the Statistical Society of Canada Meeting, Sherbrooke, 

Canada, May 31-June 3. 



 

 114

Dutilleul, P. 1999. The MLE algorithm for the matrix normal distribution. J. Statist. 

Comput. Simul. 64: 105–123. 

Dutilleul, P. 2011. Spatio-Temporal Heterogeneity: Concepts and Analyses. Cambridge 

University Press, Cambridge, U.K. 

Dutilleul, P., and Pinel-Alloul, B. 1996. A doubly multivariate model for statistical 

analysis of spatio-temporal environmental data. Environmetrics 7: 551–565.  

Dutilleul, P. 1990. Apport en Analyse Spectrale d’un Périodogramme Modifié et 

Modélisation des Séries Chronologiques avec Répétitions en vue de leur 

Comparaison en Fréquence. D.Sc. dissertation, Département de mathématique, 

Université catholique de Louvain, Louvain-la-Neuve, Belgique. 

Dutilleul, P., Herman, M., and Avella-Shaw, T. 1998. Growth rate effects on correlations 

among ring width, wood density and mean tracheid length in Norway spruce (Picea 

abies (L.) Karst). Can. J. For. Res. 28: 56–68.  

Evans, R., Gartside, G., and Downes, G. 1995. Present and prospective use of Silviscan 

for wood microstructure analysis. Appita J. 91–96. 

Fey, M.,  Gojobori, P.,  Hannick, T., Hide, L.,   Hill, W., Kania, D. P., Schaeffer, R., St- 

Pierre, M., Twigger, S., White, S.,  Rhee, O., Howe, S.Y., and Costanzo, D. 2008. 

Big data: The future of biocuration. Nature 455: 47–50. 

Freyburger, C., Longuetaud, F., Mothe, F., Constant, T., and Leban, J.-M. 2009. 

Measuring wood density by means of X-ray computer tomography. Ann. For. Sci. 

66: 804–13.  

Fritts, H. C. 1976. Tree rings and climate. Academic Press, London, U.K. 

Fromm, J. H., Irina, S., Matthier, D., Kremer, J., Schumacher, P., and Ganter, C. 2001. 

Xylem water content and wood density in spruce and oak trees detected by high 

resolution computed tomography. Plant Phys. 127: 416–425. 

Fuhrman, D. R. 1997. Correction to “On the existence of positive-definite maximum-

likelihood estimates of structured covariance matrices”. IEEE Trans. 

Inform.Theory 43: 1094–1096.  

Galecki, A. T. 1994. General class of covariance structures for two or more repeated 

factors in longitudinal data analysis. Commun. Stat. Theory Methods 23: 3105–

3110. 



 

 115

Gartner, B. L., Aloni, R., Funada, R., Lichtfuss-Gautier, A. N., and Roig, F. A. 2002. 

Clues for dendrochronology from studies of wood structure and function. 

Dendrochronologia 20: 53–61. 

Genton, M. G. 2007. Separable approximations of space-time covariance matrices. 

Environmetrics 18: 681–695. 

Ghazal, G A. 2000. Recurrence formula for expectations of products of bilinear forms 

and expectations of bilinear forms and random matrices. Stat. Prob. Lett. 48:1–9. 

Gjerdum, P., and Bernabei, M. 2009. Three-dimensional spiral grain pattern in five large 

Norway spruce stems. Silva Fenn. 43: 457–464. 

Greenhouse, S. W., and Geisser, S.  1958. An extension of Box's results on the use of the 

F distribution in multivariate analysis. Ann. Math. Statist. 29:885-91. 

Han, L., Dutilleul, P., Prasher, S., Beaulieu, C., and Smith, D. 2008. Assessment of 

common scab-inducing pathogen effects on potato underground organs via 

computed tomography scanning. Phytopath. 98: 118–1125.  

Henze, N., and  Zirkler, B. 1990. A class of invariant consistent tests for multivariate 

normality. Commun. Stat. Theory Methods 19: 3595–3617. 

Herman, M., Dutilleul, P., and Avella-Shaw, T. 1999. Growth rate effects on intra-ring 

and inter-ring trajectories of microfibril angle in Norway spruce (Picea abies). 

IAWA J. 20: 3–21. 

Hilts, M., and Duzenli, C. 2004. Image noise in x-ray ct polymer gel dosimetry. Journal 

of Physics: Conference Series 3: 252–256. 

Hoff, P. 2011. Separable covariance arrays via the tucker product, with applications to 

multivariate relational data. Bayesian Anal. 6: 179–196. 

Huang, H. C., Martinez, F., Mateu, J., and Montes, F.  2007. Model comparison and 

selection for stationary space–time models. Comp. Stat. Data Anal. 51: 4577–4596. 

Huizenga, H. M., De Munck, J. C., Waldorp, L. J., and Grasman, R. 2002. 

Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance 

model. IEEE Trans. Biomed. Eng. 49: 533–539. 

Huynh, H., and Feldt, L. S. 1976. Estimation of the box correction for degrees of freedom 

from sample data in randomized block and split-plot designs. J. Educ. Behavioral 

Stat. 1: 69–82. 



 

 116

Jordan, L., Daniels, R., Clark III, A., and He, R. 2005. Multilevel nonlinear mixed-effects 

models for the modeling of earlywood and latewood microfibril angle. For. Sci. 51: 

357–371. 

Jungnikl, K., Goebbels, J., Burgert, I., and Fratzl, P. 2009. The role of material properties 

for the mechanical adaptation at branch junctions. Trees 23: 605–610.  

Kak,  A. C., and Slaney, M. 2001. Principles of Computerised Tomographic Imaging. 

Society for Industrial and Applied Mathematics, Philadelphia, U.S.A. 

Kendall, M. G., and Stuart, A. 1967. The Advanced Theory of Statistics. Hafner 

Publishing Company, New York, U.S.A.  

Keunecke, D., Evans, R., and Niemz, P. 2009. Microstructural properties of common yew 

and Norway spruce determined with Silviscan. IAWA J. 30:165–178. 

Koga, S., and Zhang, S. Y. 2004. Inter-tree and intra-tree variations in ring width and 

wood density components in Balsam fir (Abies balsamea). Wood Sci. Technol. 38: 

149–162. 

Kolda, T. G., and Bader, B. W., 2009, Tensor Decompositions and Applications. SIAM 

Review 51: 455-500. 

Kotz, S., Johnson, N. L., and Read, C. B. 1982. Bias of an estimator. In: S. Kotz and N.L. 

Johnson, eds. Encyclopedia of Statistical Sciences. Wiley & Sons, New York, 

U.S.A.   

Kouris, K., Tout, R. E., Gilboy, W. B., and Spyrou, N. M. 1981. Effect of constituent 

elements in wood on X-ray densitometry measurements. Archaeometry 23: 95–101. 

Kroonenberg, P. M. 2008. Applied Multiway Data Analysis. Wiley Interscience, New 

York, U.S.A. 

Larocque, G., Dutilleul, P., Pelletier, B., and Fyles, J. W. 2007. Characterization and 

quantification of uncertainty in coregionalization analysis. Math. Geol. 39 263–

288. 

Lecoutre, B. 1991. A correction for the e approximate test in repeated measures designs 

with two or more independent groups. J. Educ. Stat. 16: 371-372. 

Lee, C. H., Dutilleul, P., and Roy, A. 2010. Comment on “Models with a Kronecker 

product covariance structure: Estimation and testing” by M.S. Srivastava, T. von 

Rosen, and D. von Rosen. Math. Methods Statist. 19 88–90.  



 

 117

Lindgren, L. O. 1991a. Medical CAT-scanning: X-ray absorption coefficients, CT-

numbers and their relation to wood density. Wood Sci. Tech. 25: 341–349.  

Lindgren. L. O. 1991b. The accuracy of medical CAT-scan images for non-destructive 

density measurements in small volume elements within solid wood. Wood Sci. 

Tech. 25: 425–432. 

Lindstrom, H. 2002. Intra-tree models of juvenile wood in norway spruce as an input to 

simulation software. Silva Fenn. 36: 521–534. 

Lu, N., and Zimmerman, D. L. 2004. On likelihood-based inference for a separable 

covariance matrix. Technical Report 337, University of Iowa, Iowa City, Iowa, 

U.S.A. 

Lu, N., and Zimmerman, D. L. 2005. The likelihood ratio test for a separable covariance 

matrix. Stat. Prob. Lett. 73: 449–457.  

Macedo, A., Vaz, C. M.,  Pereira, J. C. D.,  Naime, J. M, Cruvinel, P. E., and  Crestana S. 

2002. Wood density determination by X-ray and gamma-ray tomography. 

Holzforschung 56: 535–540. 

Mardia, K. V. 1974. Applications of some measures of multivariate skewness and 

kurtosis in testing normality and robustness studies. Sankhya B 36: 115–128. 

Mardia, K.V., and Goodall, C. 1993. Spatial-temporal analysis of multivariate 

environmental monitoring data. In: G.P. Patil, C.R. Rao, Eds. Multivariate 

Environmental Statistics. North-Holland, New York, U.S.A. 

Marsaglia, G., and Tsang, W. W. 2000. The Ziggurat method for generating random 

variables. J. Stat. Soft. 5: 1–7. 

McCullagh, P. 2008. Marginal likelihood for parallel series. Bernoulli 14: 593–603.  

McCullagh, P. 1987. Tensor Methods in Statistics. Chapman and Hall, London, U.K. 

Mitchell, M. W., Genton, M. G., and Gumpertz, M. L., 2005. Testing for separability of 

space-time covariances. Environmetrics 16: 819–831. 

Mitchell, M. W., Genton, M. G., and Gumpertz, M. L., 2006. A likelihood ratio test for 

separability of covariances. J. Mult. Anal. 97: 1025–1043. 

Molteberg, D., and Høibø, O. 2007. Modelling of wood density and fibre dimensions in 

mature Norway spruce. Can. J. For. Res. 37: 1373–1389. 



 

 118

Muirhead, R. J. 1982. Aspects of Multivariate Statistical Theory. Wiley & Sons, New 

York, U.S.A. 

Mull, R. T. 1994. Mass estimates by computed tomograph: physical density from CT 

numbers. Am. J. Roentgenology 143:1101–1104. 

Naik, D. N., and Rao, S. S. 2001. Analysis of multivariate repeated measures data with a 

Kronecker product structured covariance matrix. J. App. Stat. 28: 91–105. 

National Forestry Database. 2009. Area planted by species. Canadian Forest Service, 

Natural Resources Canada, Government of Canada. Retrieved October 2011, from: 

http://nfdp.ccfm.org/index_e.php, 2011. 

Njue, C. 2001. On the Efficiency of testing Procedures in the Linear Model for 

Multivariate Longitudinal Data. PhD thesis, Department of Statistics, University of 

Manitoba, Manitoba, Canada. 

O’Hagan, A. 2002. Kronecker product. In: El-Shaarawi, A. H., and Piergorsch, W. W., 

Eds. Encyclopedia of Environmetrics. John Wiley & Sons, New York, U.S.A. 

Ohlson, M., Ahmad, M. R., and von Rosen, D. 2011. The multilinear normal distribution: 

Introduction and some basic properties. Technical Report LiTH-MAT-R-2011/02-

SE, Department of Mathematics, Linköping University, Linköping, Sweden.  

Pliura, A., Zhang, S. Y., Bousquet, J., and MacKay, J. 2006. Age trends in genotypic 

variation of wood density and its intra-ring components in young poplar hybrid 

crosses. Ann. For. Sci. 63: 673–685. 

Pont, D., Brownlie, R., and Grave, J. 2007. Disc image-processing software for three-

dimensional mapping of stem ring width and compression wood. New Zeal. J. For. 

Sci. 37: 168–185. 

Potvin, C., Lechowicz, M. J., and Tardif, S. 1990. The statistical analysis of 

ecophysiological response curves obtained from experiments involving repeated 

measures. Ecology 71: 1389–1400. 

Quintana, S. M., and Maxwell, S. E. 1994. A monte carlo comparison of seven epsilon-

adjustment procedures in repeated measures designs with small sample sizes. J. 

Educ. Behavioral Stat. 19: 57-71. 

Rencher, A. C. 1995. Methods of Multivariate Statistics. Wiley & Sons, New York, 

U.S.A. 



 

 119

Richter, A., Salmi, J., and Koivunen, V. 2008. ML estimation of covariance matrix for 

tensor valued signals in noise. Proceedings IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, Nevada, U.S.A., 

March 30-April 14. 

Roy, A. and Khattree, R. 2005. Testing the Hypothesis of a Kroneckar Product 

Covariance Matrix in Multivariate Repeated Measures Data. Paper 199-30, 

Statistics and Data Analysis, SUGI 30 Proceedings, Philadelphia, Pennsylvania, 

U.S.A. 

Roy, A., 2006. Testing the Kronecker product structured mean vectors and covariance 

matrices. J.  Stat. Theo. App. 5: 53–69. 

Roy, A., and Khattree, R., 2005. On implementation of a test for Kronecker product 

covariance structure for multivariate repeated measures data. Stat. Meth. 2: 297–

306. 

Roy, A., and Leiva, R., 2008. Likelihood ratio tests for triply multivariate data with 

structured correlation on spatial repeated measurements. Stat. Prob. Lett. 78: 1971–

1980. 

Roy, A., and Leiva, R., 2011. Estimating and testing a structured covariance matrix for 

three-level multivariate data. Commun. Stat. Theory Methods 40: 1945–1963. 

Schott, J. R. 1997. Matrix analysis for statistics. Wiley, New York, U.S.A. 

Schweingruber, F. H. 2007. Wood Structure and Environment. Springer-Verlag, 

Dordrecht, Netherlands. 

Searle, S. R., 1971. Linear models. Wiley, New York, U.S.A. 

Simpson, S., 2010. An adjusted likelihood ratio test for separability in unbalanced 

multivariate repeated measures data. Stat. Meth. 7: 511–519. 

Singh, T. 1984. Variation in the ovendry wood density of ten prairie tree species. For. 

Chron. 60: 217–220. 

Smith, K. T. 2008. An organismal view of dendrochronology. Dendrochronologia 26: 

185–193. 

Srivastava, M. S., von Rosen, T., and von Rosen, D. 2008. Models with a Kronecker 

Product Covariance Structure: Estimation and Testing. Math. Methods Statist. 17: 

357-370. 



 

 120

Steppe, K., Cnudde, V., Girard, C., Lemeur, R., Cnudde, J. P., and Jacobs, P. 2004. Use 

of X-ray computed microtomography for non-invasive determination of wood 

anatomical characteristics. J. Struct. Biol. 148: 11–21. 

Sugiura, N., and  Nagao, H. 1968. Unbiasedness of some test criteria for the equality of 

one or two covariance matrices. Ann. Math. Stat. 39: 1686–1692. 

Svantesson, T., Wallace, J. W., 2003. Tests for assessing multivariate normality and the 

covariance structure of MIMO data. Proceedings IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong, China, 6-10 

April. 

Szeicz, J. M., and MacDonald, G. M. 1996. A 930-year ring-width chronology from 

moisture sensitive white spruce (Picea glauca moench) in Northwestern Canada. 

The Holocene 6: 345–351. 

Theobald, D. L., and Wuttke, D. S. 2008. Accurate structural correlations from maximum 

likelihood superpositions. PLoS Comput. Biol. 4 1–8. 

The Mathworks, Inc. 2010. MATLAB Version R2010b. The Mathworks, Inc., Natick, 

MA, U.S.A. 

Tian, X., Cown, D., and McConchie, D. 1995. Modelling of Pinus radiata wood 

properties. Part II: Basic density. New Zeal. J. For Sci. 25: 214–30. 

Tollner, E. W., Murphy, C., and Ramseur, E. L. 1994. Techniques and approaches for 

documenting plant root development with X-ray computed tomography. In: 

Anderson, S. H., Hopmans, J. W. , eds. Tomography of Soil–Water–Root 

Processes. SSSA Special Publication No. 36, Madison, WI, U.S.A. 

Tyler, J. L., Strother, S. C., Zatorre, R. J., Alivisatos, B., Worsley, K. J., Diksic, M., and 

Yamamoto, Y. L. 1988. Stability of regional cerebral glucose metabolism in the 

normal brain measured by positron emission tomography. J. Nucl. Med. 29: 631–

642. 

Van Loan, C. F. 2000. The ubiquitous Kronecker product. J. Comput. App. Math. 123: 

85–100. 

Verbyla, A. P., and Cullis, B. R. 1992. The analysis of multistratum and spatially 

correlated repeated measures data. Biometrics 48: 1015–1032. 



 

 121

Via, B., So, C., Groom, L., Shupe, T. F. Stine, M., and Wikaira, J. 2007. Within tree 

variation of lignin, extractives and microfibril angle coupled with the theoretical 

and near infrared modeling of microfibril angle. IAWA J. 28: 189–209. 

Wang, E. I. C., and Micko, M.M. 1984. Wood quality of white spruce from north central 

Alberta. Can. J. For. Res., 14: 181–185. 

Wang, H., and West, M. 2009. Bayesian analysis of matrix normal graphical models. 

Biometrika 96 821–834. 

Werner, K., Jansson, M., and Stoica, P. 2008. On estimation of covariance matrices with 

Kronecker product structure. IEEE Trans. Signal Process. 56: 479–491.  

Werner, K., Jansson, M., and  Stoica, P. 2007. Kronecker product covariance matrix 

estimation. Proceedings IEEE International Conference on Acoustics, Speech, and 

Signal Processing (ICASSP), Honolulu, Hawai’i, U.S.A. 

Wilhelmsson, L., Arlinger, J., Spångberg, K., Lundqvist, S.-O., Grahn, T., Hedenberg, 

Ö., and Olsson, L. 2002. Models for predicting wood properties in stems of Picea 

abies and Pinus sylvestris in Sweden. Scand. J. For. Res. 17: 330–350.  

Wimmer, R. 2002. Wood anatomical features in tree-rings as indicators of environmental 

change. Dendrochronologia, 20: 21–36. 

Wolfinger, R. D. 1996. Heterogeneous variance: covariance structures for repeated 

measures. J. Agric. Biol. Envir. S. 1: 205–230.  

Worsley, K. J., Evans, A. C., Strother, S. C., and Tyler, J. L. 1991. A linear spatial 

correlation model, with applications to positron emission tomography. J. Am. Stat. 

Assoc. 86: 55–67. 

Zhang, S. Y., Yu, Q., and Beaulieu, J. 2004. Genetic variation in veneer quality and its 

correlation to growth in white spruce. Can. J. For. Res. 34: 1311–1318. 



 

 122

Appendix A. Matrix algebra and computational details for the evaluation of 

the bias of the ML estimator of a simply separable variance-covariance 

matrix 

Prior to actually calculating 
  2 1( ˆ )ˆE U U , each entry of the Kronecker product was re-

expressed as a double sum of products of entries from two bilinear or quadratic forms in 

normal vectors, each of them defined by a random central matrix: 

   

 

    

 

   
       

    

   
   

2 1 12 2 2 1 11 1 2 2
1 1

1 1
, , , ,

ˆ ˆ ˆ ˆ( () ( ) ( )) ( )T T
i i i k i k i k' i k'

K K

i ' i ' ' '
k k'

E U U K nE K n






   x U x x U x ,  

              (A.1) 
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i i 'U  is the entry ( 2i , 2i ' ) of matrix 
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              (A.2) 

for k, k' = 1, …, K. Hereafter, the notations 
1i

x , 
 1'ix   and 

 2ix , 
 2'ix  are simplified to 1x , 

 1'x   and 
 2x , 

 2'x , respectively. 

  From Searle (1971, Chap. 2), the expected value of the product of two bilinear 

forms in normal vectors, defined by fixed central matrices A1 and A2 and with zero 

means for the normal vectors, is: 
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              (A.3) 

where  T  denotes the transpose operator and  '  is part of the notations of two of the 

normal vectors. The C  matrices are covariance matrices between pairs of the normal 

vectors 
 1x , 

 1'x , 2x , and 
 2'x . Strictly speaking, the four random vectors are jointly 

normal: 
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 The application of (A.3) to calculate   

  

 
  12 12

ˆ ˆ( )i ' i i 'iE U U  (A.1) in the analysis of the 

ergodic (empirical) bias BE  (3.1) was made by using the observed values of 

  

  2
1

2
ˆ( ( ) )VK n U  and   

  1
1

1
ˆ( ( ) )VK n U  in place of A1 and A2 in (A.3). The computation of 

the C matrices is based on a property that can be found in Dutilleul (1999), among others. 

For an i.i.d. random sample X1, …, XK ~
  

  
 1 2 1, 2( , ),n nN M U U , 

      
 

1 2 1 12 1 2 2,cov( , )k ' ',k 'i i i i i i 'i iuX X u  for any given k = 1, …, K and 

      
  

1 2 1 2 1 1 2 2

1
cov( , )i i i i i i i' 'i' 'X uX u

K
 . For 

 2 1'x xC , 
 1 2'x xC , 

 2 1' 'x xC , and 
 1 2x xC , the 

calculations are different depending on whether k ≠ k' or k = k'  in (A.1). If k ≠ k', then 
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where 
   2. iu  denotes the 2i -th column of U2, and 

 1.iu , the 1i -th row of U1, etc. On the 

other hand, if k = k', then 
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 Finally, the matrices 
 1 1'x xC  and 

 2 2'x xC  do not depend on whether k, k' are 

different or equal: 
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Appendix B. Estimated Generalized Least Squares (EGLS)  

For Mean Model 2, to obtain ˆˆvec( ) EGLSM D , EGLS  is estimated as  

                                         1 1 1

1

)
1ˆ ˆ vecˆ( )(

K
T T

EGLS k
kK

  


  D D D X                   (B.1) 

where D  is a fixed design matrix with dimensions 1 2n n q , and ˆ
EGLS  is 1q . The 

estimated variance-covariance matrix ̂  is given by 2 1
ˆ ˆU U  under the matrix normal 

distribution model, and by ˆ
UN  under the vector normal distribution model. If 

1 2
ˆ

n nI  , 

then the GLS estimator reduces to the OLS estimator (Searle 1971, p. 87), used to initiate 

the algorithm below. 

Computation under the matrix normal distribution model 

Initialization: Step1 = step2 = 0; * 0 1

1

1ˆ ˆ ( )) vec(
K

T T
EGLS EGLS OLS k

kK



   D D D X    

and * 0 0ˆˆvec( ) vec( ) EGLS M M D ; * 0
2 2

ˆU U ; 

* * * 1
1 2

1
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2) )( ( ) (

K

k k
k

TKn


 U X M U X M ; 
 1 , 2  and 3  are set at ‘infinitesimally 

small’ values. 

Step1 = 1;   

* * 1 *
2

1
1 1( ) ( ) )(

K

k
k

T
kKn 


  U X M U X M ;                                                                  (B.2) 

* 1 *
1 2 2

1

) ( )( ( )
K

k k
k

TKn  


  U X M U X M ;                                                                (B.3) 

 While: *
1 1 1|| ||  U U   or *

2 2 2|| ||  U U  , repeat 

             Step1 = step1 + 1; 

              *
1 1 ;U U  

                        
*
2 2 ;U U  

                        Recompute equations (B.2) and (B.3); 

End 
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 Step2 = 1; 

1 1 1
2 1 2 1
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) ve
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T T
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kK
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   D U U D D U U X ;                                (B.4)  

 Calculate vec( ) EGLS
 M D ; 

While *
3| || |  M M  , repeat 

            While: *
1 1 1|| ||  U U   or *

2 2 2|| ||  U U  , repeat 

             Step1 = step1 + 1; 

  *
1 1 ;U U  

                        
*
2 2 ;U U  

                        
1

* 1
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k k
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                         1
1 2
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K

k k
k

TKn  



  U X M U X M ;                                      (B.6) 

                         Recompute equations (B.5) and (B.6); 

            End 

Step2 = step2 + 1; 

* M M ; 

Recompute equation (B.4) and recalculate vec( M ); 

 End 

Solutions are 1 1
ˆ ;U U  2 2

ˆ ;U U  ˆ M M . 

Computation under the vector normal distribution model 

Initialization: Step3 = 0; * 0 1

1

1ˆ ˆ ( ) vec )(
K

T T
GLS GLS OLS k

kK



   D D D X    and *vec( )M  

0 0ˆˆvec( ) EGLS M D ;   
  1

* * *1
vec( ) vec( vec( )) vec( )

K

k

T

UN k kK 
   X M X M ; 4  

and 5  are set at ‘infinitesimally small’ values. 

Step3 = 1; 
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* 1 1 * 1

1

) vec
1
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T T
EGLS UN UN k
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   


  D D D X   ; 

Calculate vec( ) EGLS
 M D ; 

  
  1

1
vec( ) vec( vec( ) vec) )(

K

k

T

UN k kK
  


   X M X M ; 

 While: 4
*|| ||UN UN

      or *
5| || |  M M   , repeat 

             Step3 = step3 + 1; 

             *   ; 

             * M M ; 

                
  

*

1

*1
vec( ) vec( vec )ve) ( ) c(

K

k

T

UN k kK

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               1 1 1

1

) v
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)(( ec
K

T T
EGLS UN UN k

kK
     


  D D D X   ;                                        (B.8) 

Calculate vec( ) EGLS
 M D ; 

Recompute equations (B.7) and (B.8); 

End 

Solutions are ˆ
UN

   and ˆ M M . 

Matlab program 

A customized Matlab program (The Mathworks Inc., 2010) was used to generate pseudo-

random vectors from a vector normal distribution model with 1 4n   and 2 3n  , using 

the Ziggurat method to generate pseudo-random values from a univariate normal 

distribution (Marsaglia and Tsang 2000). The mean models were of response surface type 

          quadratic (6 parameters) 
1 2 1 2 1

2 2
1 22} 1 9( ) 10( ) 4( ) 2( ) ){ 3(i im i i i i i i     M   (B.9) 

                  and linear (3 parameters) 
1 2 1 2} 1 9{ ( ) 10( )i im i i  M ,      (B.10) 

where 1 11...i n  and 2 21...i n . The mean parameters were estimated by EGLS, with 

1 2 3 4 5 1 6E          , and 
2

0
2

ˆ
nU I  for the matrix normal distribution model.   
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 Note that for 1 2 1K n n  , the EGLS algorithm did not converge in a reasonable 

time (i.e., it had not converged even after several days) for a number of simulation runs 

ranging from 18 out of 1.0E5 when 1 22, 2n n   to 407 out of 1.0E5 when 

1 25, 5n n  . Supplementary simulations were then performed to obtain the needed 

results for 1.0E5 simulation runs. 
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Appendix C. Derivatives of the log-likelihood function for the tensor normal 

distribution model with respect to variance-covariance matrices 

The first derivatives of the log-likelihood function l (equation (5.10)) with respect to   

and 1U , 2U , 3U  are: 
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 Note that equations (C.2)–(C.4) can be rewritten in a more general form as 

follows 
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with j = 1, …, J = 3 and n( j ) =
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Appendix D. Bias decomposition for the maximum likelihood estimator of a 

doubly separable variance-covariance matrix 

D.1 Introduction 

The tensor normal distribution model and the MLE-3D algorithm used for ML estimation 

were presented in Chapter 5. That chapter focused on a complete presentation of the 

estimation of the model parameters, with simulation results and an example with brain 

data. The objective of Appendix D is to decompose the bias of the ML estimator of a 

doubly separable variance-covariance matrix, under the tensor normal distribution model. 

Specifically, the ergodic, estimation and fluctuation biases and the non-orthogonality 

component were evaluated with simulations, in a way similar to Chapter 3 (Bias 

decomposition for the maximum likelihood estimator of a simply separable variance-

covariance matrix). This appendix complements the simulation study presented in 

Chapter 5, by performing simulations starting from the minimum sample size minK , for a 

larger number of values of K, and with a much larger number of simulation runs. 

Such a study is necessary to answer the question: Is there a non-monotonic 

relationship between the empirical bias and the sample size in the doubly separable case 

also? To answer this question, the decomposition of the empirical bias in the doubly 

separable case is presented in Section D.2; the matrix algebra details are given in Section 

D.3; the components of the ergodic bias, together with a pseudo-theoretical bias, are 

evaluated in Section D.4; and the results are summarized and discussed in Section D.5. 

D.2 Bias decomposition 

The decomposition of the ergodic bias (BE) into an estimation bias (BS) and a fluctuation 

bias (BF) minus a non-orthogonality factor ( ) is an extension from the case of a simply 

separable variance-covariance matrix to the case of a doubly separable variance-

covariance matrix. The steps in the reasoning are the same as in Chapter 3, but with the 

object of estimation 3 2 1 U U U  instead of 2 1U U . The three biases are: 

                         

    

 3 32 1 2 1
ˆ ˆ ˆ= || ( ) ||EB E     U U U U U U ,                            (D.1) 

                     

     

 2 13 3 2 1
ˆ ˆ= || ( (ˆ ˆ ˆ ˆ |) ) |S VB E     U UU U U U  and                  (D.2) 

                         

     

 3 3 2 12 1
ˆ ˆ= || (( )ˆ ||)F VB E    U UU U U U ,                (D.3) 
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where subscript V in 
   3 2 1

ˆ ˆ( )ˆ
VU UU  represents the average over V simulation runs 

with non-singular results (see the following section for simulation conditions). The 

decomposition reads as follows: 

                                                .E S FB B B                                            (D.4) 

As in the 2-D case, the pseudo-theoretical bias is calculated as: 

                               

    

 3 32 1 2 1
ˆ ˆ ˆ= || ( ) ||TB E     U U U U U U ,                (D.5) 

where the theoretical matrices U1, U2 and U3 are used two by two, instead of the 

estimated matrices 1Û , 2Û  and 3Û , through the inverse of their Kronecker product (i.e. 

1
2 21 1( ( ))Kn n U U , 1

3 1 3 1( ( ))Kn n U U , 1
2 3 3 2( ( ))Kn n U U ) in the definition of the 

quadratic forms; see equation (D.8) below. No simulations are needed for the calculation 

of the pseudo-theoretical bias. Matrix algebra details concerning the calculation of biases 

are given in the next section. 

D.3 Matrix algebra details  

Prior to calculating 3 2 1
ˆ ˆ ˆ )(E  U U U , each entry is re-expressed as a triple sum of 

expected values of products of entries from three bilinear or quadratic forms in normal 

vectors, each defined by a random matrix at the centre:  
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where  
3 3

ˆ
'i iU  is entry ( 3i , 3i ' ) of matrix 3Û  (idem for 

2 2
ˆ

'i iU  and 
1 1

ˆ
'i iU ), and 
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for , , 1...k k' k'' K . Hereafter, notations 
1i

x , 
 1'ix  , 

 2ix , 
 2'ix  and 

 3i
x , 

 3'ix  are simplified 

into 
 1x , 

 1'x  , 
 2x , 

 2'x  and 3x , 3'x . 

Based on equation (2.27) in Ghazal (2000), the expected value of the product of 

three bilinear forms in normal vectors, when each of the two vectors in each bilinear form 

has an expected value of zero, is: 

              (D.8)  

where T denotes the transpose operator and '  is part of the notation (subscript) of one of 

the two normal vectors. Equation (D.8) was used to calculate 
23 3 2 1 1

ˆ ˆ ˆ( )i ' ' 'i i i i iE U U U  in the 

analysis of the ergodic bias BE, by substituting the observed values 

of    

   3  23
1

2
ˆ( ( ) )ˆ

VK n n U U ,   

   33 1
1

1
ˆ ˆ( ( ) )VKn n U U  and   

   22 1
1

1
ˆ ˆ( ( ) )VKn n U U  to A1, 

A2 and A3. (In the case of the theoretical bias BT, A1, A2 and A3 were replaced by the 

fixed values 1
2 21 1( ( ))Kn n U U , 1

3 1 3 1( ( ))Kn n U U , 1
2 3 3 2( ( ))Kn n U U . 

 The C  matrices are variance-covariance matrices or covariance matrices for the 

normal vectors 
 1x , 

 1'x , 
 2x , 

 2'x , 3x  and 3'x , taken two by two. The six random vectors 

are jointly normal: 
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                                                                                                                          (D.9) 

where 
1 1x xC  is the 2 2 33n n n n  variance-covariance matrix of normal vector x1, 

21x xC  is 

the 2 3 1 3n n n n  covariance matrix between normal vectors 1x  and 2x , etc. 

The computation of the C matrices is based on a property that can be found in 

Dutilleul (1999), among others. For an i.i.d. random sample X1, …, XK 

~
  

  
 1 2 3, , 1 2 3( , , ),n nnN M U U U , 

1 2 3 1 2 3 1 2 21 3 3
cov( , )i ' ' i ' 'i i i i i i i i i i' 'X X uu u  for any given k = 

1, …, K , and 
1 2 3 1 2 3 1 1 2 2 3 3

1
cov( , )i ' ' ' 'i i i i i i i i 'i'i iX X u

K
u u . 

For the covariance matrices in equation (D.9), calculations are different 

depending on whether k k' k''  ; k k' k''  ; , ,k k' k k'' k' k''   ; 

, ,k k' k k'' k' k''   ; or , ,k k' k k'' k' k''   . When k k' k''  , 

                         
121 12 23 3

1
( ) ( ). . . .i i i iK

  x xC U u u U u u               (D.10) 

                          
212 21 13 3

1
( ) ( ). . . .i i i iK

  x xC U u u U u u               (D.11) 

                          
32 233 2 1 1

1
( ) ( ). . . .i i i iK

   x xC u u U u u U                           (D.12) 

                          
23 32 23 1 1

1
( ) ( ). . . .i i i iK

   x xC u u U u u U               (D.13) 

                      
1 31 33 12 2

1
( ) ( ). . . .i i i iK

   x xC U u u U u u               (D.14) 

                      
3 13 11 32 2

1
( ) ( ). . . .i i i iK

   x xC u U u u U u ,                 (D.15) 
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where 
2. iu   denotes the 2i -th column of U2, 

1.iu  denotes the 1i -th row of U1, etc. Note 

that to compute  
1 2'x xC  for example, it suffices to replace 2i  by 2i '  in the relevant 

equation above. Depending on the values of k, k' and k", the second term on the right-

hand side of the equations above is equal to zero, or not.  For example, when  'k k , 

''k k  and ' ''k k , then 
1 12 23( ). .i ix xC U u u , 

2 21 13( ). .i ix xC U u u , 

32 233 2 1 1
1

( ) ( ). . . .i i i iK
   x xC u u U u u U , 

 
23 32 23 1 1

1
( ) ( ). . . .i i i iK

   x xC u u U u u U ,  

3 11 32( ). .i i x xC U u u , and 
1 33 12( ). .i i x xC u U u . 

Finally, the second term on the right-hand side of the equations is always present 

for the matrices 
 1 1'x xC , 

 2 2'x xC  and  
3 3'x xC , whether k, k' and k''  are equal or not: 

                       
1 1 1 1 1 13 2 3 2

1
( ) ( )i' ' i i ' iu u

K
    x xC U U U U ,              (D.16) 

                     
2 22 2 22 1 13 3

1
( ) ( )i i i' ' i' u u

K
    x xC U U U U  and            (D.17) 

                      
3 33 333 2 1 2 1

1
( ) ( )i i i' ' i' u u

K
    x xC U U U U .              (D.18) 

D.4 Simulation procedures  

As in Chapter 5, a customized algorithm written in Matlab 2010a (The MathWorks Inc., 

Natick, MA) was used to generate observations from vec( ) ~  

   
  1 2 3 3 2 1(vec( , ))n n nN  U U U , with vec( ) vec( ) vec( )T C   , following the 

algorithm of Marsaglia and Tsang (2000). The mean tensor   was set at zero, and 

  
 11 nU I , 

  
 22 nU I  and 

 33 nU I . The infinitesimal quantities used to determine that 

the MLE-3D algorithm had converged were 1  = 2  = 3  = 1.0E-6, or the MLE-3D 

algorithm was stopped after 1.0E7  iterations. Cases where the number of iterations 

reached 1.0E7 were rare; in particular, there were seven of them when 1 2 3 2n n n   . 

In all cases, the initial solutions were  

 
 2

0
2

ˆ
nU I  and  

 3

0
3

ˆ
nU I . A total of V = 1.0E6   
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estimates of 
  23 1

ˆ ˆ ˆ U U U , provided by as many simulation runs and permissible (non-

singular) final solutions 
 1Û , 

 2Û  and 3Û  of the MLE algorithm at convergence, were 

used in the evaluation of the estimation and fluctuations biases BS  and BF. 

 Simulations were performed with K = minK , …, 25 by steps of 1, in addition to 

30, 35, 40, 45, 50, and 1000 (for one of the scenarios), where minK  is equal to 

INT[ 1 2 3 2 1 3 3 1 2max( / , / , / )n n n n n n n n n ] + 1 if 1 2 3 2 1 3 3 1 2max( / , / , / )n n n n n n n n n  is an 

integer number and INT[ 1 2 3 2 1 3 3 1 2max( / , / , / )n n n n n n n n n ] + 2 otherwise. Finally, bias 

values were standardized relatively to the corresponding   23 1| |||  U U U . 

D.5 Results and discussion 

For the simplest 3-D model possible (with all dimension sizes greater than 1), that is, 1n  

= 2n  = 3n  = 2 so that minK  = 2, Figure D.1 shows that the ergodic bias decreases 

monotonically, while there is a clear ‘trough’ in the estimation and fluctuation biases. 

However, no ‘peak’ is observed in any of the three biases. When K = 1000, the ergodic, 

estimation, and fluctuation biases are equal to 3.717E-4, 6.316E-4, and 1.003E-4, 

respectively. These values are very small, thus the bias tends to vanish when K becomes 

larger. 

In the second 3-D scenario considered, the six combinations of values of 3, 4 and 

5 for 1n , 2n  and 3n  (so that minK  = 2 again) are explored (Figure D.2). The ergodic and 

fluctuations bias decrease monotonically; the ergodic bias has values close to those of the 

fluctuation bias and the two biases cannot be distinguished in some of the panels of 

Figure D.2. The estimation bias presents an elongated ‘trough’ pattern, and no ‘peak’ can 

be observed. Note that the case 1n  = 5, 2n  = 3 and 3n  = 4 was studied in Chapter 5, and 

the results presented for the ergodic bias here confirm those of the empirical bias in 

Chapter 5.  

Finally, the pseudo-theoretical bias was calculated for 1n  = 2n  = 3n  = 2 and for 

1n  = 3, 2n  = 4 and 3n  = 5 (Figure D.3). (Numerical results are almost identical for the 

other five combinations of values of 3, 4 and 5 for 1n , 2n  and 3n ). The pseudo-

theoretical bias decreases monotonically without exception (Figure D.3), as expected. 
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In summary, in both sets of scenarios (Figures D.1 and D.2), the ‘peak’ is absent; 

in Figure D.1, the ‘trough’ in the estimation and fluctuation biases is clearly present; and 

in Figure D.2, the ‘trough’ is present only in the estimation bias via a more subtle, 

elongated pattern. This is not very different from the 2-D case, where as the size of the 

dimensions increased, the ‘peak-and-trough’ pattern (always present in at least one of the 

three biases) was becoming more subtle. Also as in the 2-D case, the observed patterns 

are stable. 

The results obtained in 3-D under the tensor normal distribution model do not 

preclude the use of the MLE-3D algorithm. There is no ‘peak’ in the bias of the ML 

estimator of a doubly separable variance-covariance matrix, but the bias is very large at 

values of minK  + 1 and minK  + 2. Thus, as in Chapter 3, a larger sample size than the 

minimum required for ML estimation can be useful to prevent a very large bias.  

In conclusion, the ‘peak-and-trough’ pattern in the bias of the ML estimator of a 

separable variance-covariance matrix is not specific to the 2-D case, and is also found in 

the 3-D case. In both cases, since the pseudo-theoretical bias decreases monotonically 

with increasing sample size, the results do not challenge the theory of ML estimation. 

Instead, the results presented in this appendix as well as in Chapter 3 highlight the 

implications of the use of numerical methods for solving estimation equations that have 

no analytical solutions.  
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Figure D.1: Standardized values (i.e. divided by 3 2 1|| || U U U ) of the ergodic, 

estimation, and fluctuation biases and the non-orthogonality component for the ML 

estimator of 3 U  U 2   U 1, with 1n  = 2n  = 3n  = 2 and sample size K = minK , …, 25 

by steps of 1 in addition to 30, 35, 40, 45, and 50. The vertical axis is in logarithmic 

scale, basis 10 (‘0’ means 1.0E0 = 1; ‘1’ means 1.0E1 = 10, etc.). There is an atypical 

‘trough’ in some of the biases and the non-orthogonality component as the sample size K  

increases.  
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Figure D.2:  Standardized values (i.e. divided by 3 2 1|| || U U U ) of the ergodic, 

estimation, and fluctuation biases and the non-orthogonality component for the ML 

estimator of U3   U2   U1, with all six combinations of the values of 3, 4 and 5 for 

1n , 2n  and 3n  and sample size K = minK , …, 25 by steps of 1 in addition to 30, 35, 40, 

45, and 50. The vertical axis is in logarithmic scale, basis 10. There is an atypical 

‘trough’ in the estimation bias and the non-orthogonality component as the sample size K 

increases.  
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Figure D.3: Standardized pseudo-theoretical bias of the ML estimator of U3   U2   

U1, with 1n  = 2n  = 3n  = 2 vs. 1n  = 3, 2n  = 4, 3n  = 5 and sample size K = minK , …, 25 

by steps of 1 in addition to 30, 35, 40, 45, and 50. The vertical axis is in logarithmic 

scale, basis 10. Unlike the patterns displayed in Figures D.1 and D.2, there is a monotonic 

decrease of the pseudo-theoretical bias with increasing sample size. 
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Appendix E. An unbiased likelihood ratio test for double separability of a 

variance-covariance structure 

A biased LRT of double separability with one or two structured component variance-

covariance matrices and one or two unstructured component variance-covariance 

matrices was presented in Roy and Leiva (2008), as well as Roy and Leiva (2011). To our 

knowledge, an unbiased modified LRT for double separability of a variance-covariance 

structure with three unstructured component variance-covariance matrices (referred to as 

the LRT-3D in this thesis) has never been presented.  

 Assuming an i.i.d. random sample of size 

     1 2 3 2 1 3 3 1 2max / , / , / 1K n n n n n n n n n   is available for statistical inference, the ML 

equations for the component variance-covariance matrices under the tensor normal 

distribution model of order 3  

   
  1 2 3, , 1 2 3( , , )~ ;n n nN U U U 

 
(Chapter 5) are: 
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where 
31 2

1 2 3

1 2 3

,
1 1 1 11 2 3

1ˆ
nn n K

i i k
i i k

i
in n Kn    

 
 
  
   �    (Mean Model 1: stationary) or 

      

1

1ˆ
K

k
kK 

     (Mean Model 2: unmodeled mean tensor); as in Chapter 5, the 

tensors are reshaped into matrices with the matricization operator (Kolda and Bader 

2009). As in Chapter 5 also, an iterative algorithm is used to find solutions to the system 

of equations (E.1).  

To test for double separability, the unstructured variance-covariance matrix  , 

UN , needs to be estimated, as this was the case when testing for simple separability 

(Chapter 4). The vector normal distribution model is  
1 2 3

) ~ ,vec( (vec )n n n UNN   . 
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Provided 1 2 3 1K n n n  , the variance-covariance parameters of the vector normal 

distribution model can be estimated by ML. The hypotheses under testing are then:                 

           
1 2 3 1 2 3

1 1
0 3 2 1 3 2 1: ( )  against  : ( )UN n UNn n n nnH H      U U U I U U U I  . (E.2) 

The unbiased modified LRT of double separability is (by extension of the 2-D case): 

                 1 2 3 1 3 2 2 3 1log | | log | | log | | log |( ) ][ |* UNn n nK p n n n    U U U  .    (E.3)                               

Asymptotically, the biased unmodified and unbiased modified LRT statistics follow a 

2( )f  distribution with  

           1 2 3 1 2
1 2 3 1 2

3
3

1 11 1
1

2 2 2 2

n n n nn n
f n n n n n n

                  
      

.    (E.4) 

A simulation study with 1 2n  , 2 2n  , 3 2n   showed that using the biased 

unmodified LRT based on   (i.e., 0p   in equation E.3), with 2
0.95(28) 41.3371   as 

critical value, may result in a rate of rejection of H0, while it is true, of nearly 100% 

(Figure E.1). As for the unbiased modified LRT of simple separability, the optimal 

penalty p value was studied by simulation, and results (Table E.1) are similar. The 

optimal penalty p value (1) does not appear to be dependent on   (p = 5.6, 5.7, 5.8 for 

0.1, 0.05, 0.01  ); (2) increases with the product n1n2n3 and with the number of mean 

parameters to be estimated; and (3) decreases with the sample size K.  Figure E.1 shows 

that the optimal penalty p controls well the significance level of the unbiased modified 

LRT of double separability, which is just slightly conservative at values of K = 

1 2 3 1n n n   (i.e., close to the minimum required for the ML estimation of UN  and hence, 

for testing double separability), as in the unbiased modified LRT of simple separability. 
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Table E.1: Penalty (p) found to be optimal for modifying the LRT statistic for double 

separability of a variance-covariance structure, for two mean models (1: stationary; 2: 

unmodeled mean tensor), two triplets of dimension values (n1, n2, n3), and sample sizes 

(K) starting from the minimum required for testing (K = n1n2n3 + 1). 

K Mean 

Model 1 

Mean 

Model 2 

1 2 32, 2, 2n n n    

9 4.58 6.00 

10 4.40 5.58 

11 4.30 5.38 

12 4.25 5.28 

13 4.23 5.25 

15 4.23 5.18 

20 4.25 5.15 

1 2 32, 3, 2n n n    

13 6.55 8.28 

14 6.25 7.55 

15 6.05 7.25 

16 5.90 7.02 

17 5.78 6.90 

20 5.68 6.68 

30 5.45 6.50 
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Figure E.1: Empirical probability of rejecting 0H  (double separability of a variance-

covariance structure) when true, as a function of sample size K, using the critical value 

2
0.95(28) 41.3371   with 1 2n  , 2 2n  , 3 2n   and Mean Model 2 ( ˆ   ). 
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Appendix F. The MLE-4D algorithm 

Equations (5.1) and (5.8) provide the moment generating function and the probability 

density function for a tensor normal distribution of any order; the tensor normal 

distribution needs to be regular for the probability density function to exist. For a tensor 

normal distribution of order 4, that is, with J = 4, it follows that 

  1 2 3 4, , , 2 31 4~ ( , , ), ,nn n nN U U U U   if and only if 

   1 2 3 4 4 3 12vec( ) ~ (vec( ), )nn n nN   U U U U  . 

 The four variance-covariance matrices can be estimated iteratively with the 

following 4-D version of the MLE algorithm:   

                    

 

 

 

 

 

 

1
1 (1) 2 3 4 4 3 2 (1)

1
2 (2) 1 3 4 4 3 1 (2)

1
3 (3) 1 2 4 2 1 (3)

1
4 (4) 1 2 3 2 1

1

1

4
1

3

ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ ˆ )

( ( (

( ( (

( ( (

( ( (

 ) )

 ) )

 ) )

 )

T
k k

T
k k

T
k k

K

k

k

K

k

K

k

Kn n n

Kn n n

Kn n n

Kn n n















   

 



  

 





  







U U U U

U U U U

U U U U

U U U U

   

   

   

  (4)
1

)
K

k

T
k














 


  

       (F.1) 

As an extension of condition (5.15), the minimum sample size required for the 

existence of ML estimates for variance-covariance matrices is then 

           
1 2 3

2 3 4 1 3 4 1 2 4

4

1 32
max , , , 1

n n n n
K

n n n n n n n n n n n n

 
   

 
       (F.2) 

 As we did for the tensor normal distribution of order 3, we performed simulations, 

this time with the mean tensor 
 1 2 3 4 1 2 3 4 1 2 3 4( ) 1 ( )i i i im i i i i i i i i       (   1 11...i n , 

  2 21...i n ,   3 31...i n ,   4 41...i n ) and using 1 2 3 4 1.0 6E        in the 

convergence criterion and 
2

0
2

ˆ
nU I , 

3

0
3

ˆ
nU I , 

4

0
4

ˆ
nU I  as initial solutions. We 

considered two scenarios: one simple, in which the variance-covariance matrices were 

identity matrices: 41 U I , 22 U I , 33 U I , 24 U I ; and one complex, with 1U  and 

3U  being respectively 3U  and 2U  from Scenario T4 (Section 5.5), together with 
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2
0.5528 0.8676

0.8676 1.8519

 
  
 

U  and 4
0.2375 0.0176

0.0176 0.3947

 
   

U . 

 Our results (Table F.1) show that the bias and dispersion properties expected for 

ML estimators are observed, since the standardized empirical bias and dispersion of the 

estimated Kronecker product decrease monotonically with increasing sample size and 

almost vanish at the largest sample size. The number of iterations needed to reach 

convergence was 21 for K = 5 and 6 for K = 500. As in the 3-D case, the measure of 

dispersion for the simple scenario is larger than for the complex scenario, but the value of 

the bias is very similar in both scenarios. 
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Table F.1:  Standardized empirical biasa and standardized empirical measure of 

dispersionb, with the standard error below (in parentheses), for the tensor normal 

distribution of order 4 (see text for   and 1U , 2U , 3U , 4U ). 

 Simple scenario Complex scenario 

Sample 

Size 

Bias Measure of 

Dispersion 

Bias Measure of 

Dispersion 

5 0.19003 0.43447 

(0.00029) 

0.19016 

 

0.33578 

(0.00050) 

10 0.09789 0.29648 

(0.00020) 

0.09765 

 

0.21947 

(0.00035) 

15 0.06582 0.23402 

(0.00016) 

0.06671 0.17395 

(0.00028) 

20 0.04960 0.20126 

(0.00014) 

0.05041 

 

0.14850 

(0.00024) 

100 0.01010 0.08823 

(6.35E-5) 

0.01011 

 

0.06410 

(0.00011) 

500 0.00201 0.03936 

(2.86E-5) 

0.00200 

 

0.02853 

(4.87E-5) 

a 4 3 2 4 3 21 1 2

4 3 2 1 2

ˆ ˆ ˆ ˆ ||

|| |

||

|

     
  

U U U U U U U U

U U U U
 

b 4 3 2 4 3 21 1 2

4 3 2 1 2

ˆ ˆ ˆ ˆ ||

|| |

||

|

     
  

U U U U U U U U

U U U U
 



 

 148

Appendix G. Calibration for ring determination 

The objective was to find where in the gradual transition from late to early wood (i.e. 

from a peak to a trough in Figure 6.3), a ring is about to begin and end. Calibration was 

performed on wood samples for which both SilviScan (Evans et al. 1995) and CT 

scanning data were available and the oscillating pattern was clear. SilviScan data allow 

accurate determination of the beginning and end of rings (Figure G.1), thanks to rotations 

ensuring that the measurements made are tangent to the ring limits and because of the use 

of a very thin slice of wood. The smoothing of SilviScan data with two uniform moving 

averages of order 11 and 51 resulted in curves resembling the data obtained by CT 

scanning and showing a gradual transition of density from late to early wood in 

particular. Over the calibration dataset, it was calculated that, on average, the beginning 

of a ring (i.e. the end of the previous ring) was located at 32% of the inter-peak distance, 

from the center of the trunk to the bark.  

 For the dataset used here (i.e. K = 11; see Figure 6.3 for an illustration), the 

positions of maxima in the series of wood densities estimated from CT scanning data 

were determined and ring limits were putatively located at 32% of the inter-peak 

distances. More specifically, 32% of the distance between peaks was added in the South 

direction or removed in the North direction, to the position of the maximum. The ring 

limits (beginning and end) thus determined were then corrected if necessary, by 

inspecting the physical sample and making comparisons with the series of wood density 

estimates; for example, small dips in density caused by false rings and spurious rings 

were corrected. For the two calendar years selected (1997 and 2003), the oscillating 

pattern was clearly present in the North and South directions at both heights in the 11 

wood samples. 
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Figure G.1: Example of two series of wood density estimates for the same sample: ragged 

curve, made of raw measurements obtained with SilviScan, and smoothed curve, 

resulting from the application of two uniform moving averages of order 11 and 55. The 

beginning and end of annual growth rings are indicated by a dashed vertical line.  

 

 


