
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly trom the original or copy submitted. Thus, sorne

thesis and dissertation copies are in typewriter face, while others May be

trom any type ofcomputer printer.

The quality of tbis reproduction is dependent upon the quality of the

copY submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be notOO. Also, if

unauthorizOO copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with srnaII overlaps. Each

original is also photographed in one exposure and is includOO in reduced

form at the back ofthe book.

Photographs included in the original manuscript have been reprodueed

xerographica1ly in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this eopy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb~ ADn Arbor MI 48106-1346 USA
313n61-4700 SOO/521...()6()()

(

(

(

Implementation of Procedures in a Database
Programming Language

Rebecca Lui

School of Computer Science
McGill University, Montreal

November 1996

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science.

Copyright © R. Lui 1996

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K 1A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A ON4
Canada

Your hls Votre référence

Our fils Notrs rs'érsnes

The author bas granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in tbis tbesis. Neither the
thesis nor substantial extracts frOID it
may be printed or otbeIWÏse
reproduced without the author's
penmsslon.

L'auteur a accordé une licence non
exclusive petmettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29748-9

Canada

(
Abstract

This thesis documents the design and implementation of procedures

in a database programming language. The purpose of this thesis is to

integrate procedure facilities into an existing relational database system.

A relation is defined over a set of attributes. Given the values of a

subset of attributes as input, a selection operation looks up the relation

and outputs the values of the remaining attributes. Our proposed pro

cedure construct supports this concept: a procedure is defined over a set

of parameters, and the procedure can be invoked with different subsets of

input parameters. This is accomplished by allowing procedures to have

a sequence of blacks within the procedure body. Each block abstracts a

sequence of actions which requires a subset of parameters as input. Users

cau select different blocks to be activated by supplying different subsets

of input parameters. While a relation can he selected with any subset of

input attributes, a procedure can only be invoked with defined subsets of

parameters.

Our proposed procedures also support the usual properties of pro

cedural abstraction: encapsulation and parameterization. A procedure

declaration defines the procedure name, formal parameters, and the body.

Procedure invocation is through the use of a stand-alone procedure calI

statement which specifies the procedure name and a list of actual param

eters. Befote a procedure is activated, the formal parameters within the

procedure body are replaced by the corresponding actual parameters.

Moreover, a procedure can be printed, shown, deleted, called by itself

or other procedures, and passed as a parameter.

i

(

Résumé

Cette thèse documente la conception et la création de procédures dans

un langage de programmation pour les bases de données. Le but de cette

thèse est d'intégrer la notion de procédure dans un système de base de

données relationnelle existant.

Une relation est définie sur un ensemble d'attributs. Les valeurs

d'un sous-ensemble d'attributs étant données à l'entrée, l'opération de

sélection vérifie la relation et retourne la valeur des attributs restants.

Notre outil de construction de procédures proposé supporte le concept

suivant: une procédure est définie sur un ensemble de paramètres, et elle

peut être appelée avec différent sous-ensembles de paramètres cl'entrée.

Cela est accompli en permettant aux procédures d'avoir une séquence

de blocs ("blocks") dans leur définition. Chaque bloc correspond à une

séquence d'actions qui requiert un sous-ensemble des paramètres d'entrée.

L'utilisateur peut sélectionner différents blocs à activer en envoyant dif

férents sous-ensembles de paramètres d'entrée. Malgré que la relation

puisse être sélectionnée avec n'importe quel sous-ensemble d'attributs à

l'entrée, la procédure ne peut être appelée que sur un sous-ensemble défini

de paramètres.

Les procédures proposées supportent aussi les propriétés usuelles d'ab

straction procédurale: encapsulation et paramétrisation. La déclaration

d'une procédure définie son nom, ses paramètres formels, et son implanta

tion. L'appel d'une procédure se fait par l'utilisation d'une seule instruc

tion spécifiant le nom de la procédure ainsi que la liste des paramètres.

Avant que la procédure soit lancée, les paramètres utilisés dans la de

scription d'implantation sont remplacés par les paramètres fournis lors de

l'appel de procédure. De plus, une procédure peut être imprimée, visu-

ü

(
alisée , détruite, appelée par elle-même ou par une autre procédure, ou

passée en paramètre.

iii

(

(

Acknowledgements

1 would like to express my gratitude to my thesis supervisor, Professor

T. H. Merrett, for his attentive guidance, invaluable advice, and endless

patience throughout the research and preparation of this thesis.

1 would like to thank my colleagues in the ALDAT lab, especially

Dr. Heping Shang and Xiaoyan Zhao for their assistance on the usage of

facilities in the lab and their consultation on the existing Relix system.

A special thanks goes to Josée Turgeon who translated the abstract of

this thesis to French. 1 would also like to thank an the secretaries of the

School of Computer Science for their continuous encouragement, and all

the system staff for their technical assistance.

1 am grateful to Fonds pour la Formation de Chercheurs et l'Aide à

la Recherche (FCAR) for their financial support throughout my study of

the master program.

Finally,I would like to dedicate this thesis to my husband and my

son, Phillip Hurst and James Hurst, whose love and inspiration made this

thesis possible.

iv

(

(

Contents

Abstract

Résumé

Acknowledgements

1 Introduction

1.1 Database Programming Languages

1.1.1 Programming Language Approach ...

1.1.2 Database Approach .

1.2 Subprograms .

1.2.1 Using Subprograms .

1.2.2 Parameters

1.2.3 Others Forms of Subprograms

1.3 Thesis Aim and Outline .

2 Relix Tutorial

2.1 Getting Start .

2.2 Domain and Relation Declarations

2.2.1 Domain Declaration

2.2.2 Relation Declaration

2.3 Basic Commands On Domains and Relations .

v

i

ii

iv

1

1

2

6

9

10

Il

13

14

16

18

18

19

20

24

I(
2.3.1 Print Relation Command. . 24

2.3.2 Show Commands 24

2.3.3 Delete Commands 26

2.4 Relational Algebra Statements . 27

2.4.1 Unary Relational Operations. . 29

2.4.2 Binary Relational Operations 33

2.5 Domain Algebra Statements . . 44

2.5.1 Horizontal Operations 47

2.5.2 Vertical Operations. 49

2.6 Update Statements 53

2.6.1 Add . 54

2.6.2 Delete 55

2.6.3 Change 56

2.7 If-then-else Statements 58

2.8 Computations 59

2.8.1 Computation Declaration 60

2.8.2 Symmetrical Functions 62

3 Users' Manual on Procedures 64

3.1 Basic Concept of Procedure 64

3.1.1 Procedural Abstraction . . 65

3.1.2 Parameter Passing 66

3.1.3 Symmetry 68

3.2 Commands on Procedures 72

3.2.1 Print .. 72

3.2.2 Show 73

3.2.3 Delete 74

(3.2.4 Show Procedure . . 75

vi

(

3.3 Formai Syntax .

3.3.1 Procedure Declaration

3.3.2 Procedure CaU

3.4 Type of Procedure ..

3.4.1 Inputs and Outputs of Statements in Procedures.

3.4.2 Global Variables and Formai Parameters

3.4.3 Types of Blocks ..

3.4.4 Examples

3.5 Errors .

3.5.1 Procedure Declaration

3.5.2 Procedure CaU .. .

3.5.3 Procedure Execution

3.6 More Examples

3.6.1 Recursive Procedure

3.6.2 Event Handler.

3.6.3 Domain Algebra Definition.

4 Implementation of Procedures

4.1 Implementation of Relix

4.1.1 System Relations

4.1.2 Lexical Analyzer, Parser, and Interpreter

4.2 Representation Of Procedures .

4.2.1 Source File

4.2.2 I-code File .

4.2.3 Interface Information ..

4.3 Declare..............

4.3.1 I-code for Procedure Declaration

4.3.2 Algorithm to Declare a Procedure ..

vii

. .. " . 76

76

78

79

79

82

83

86

87

88

90

90

92

92

94

95

97

97

98

100

104

104

105

106

107

107

110

(

Bibliography

B List of Error Messages

A Modification of the Parser Module

A.1 Parser Rules for Procedure

A.2 Translator Parameters for Procedure

4.5 Commands on Procedures .

4.5.1 Print.

4.5.2 Delete

4.5.3 Show Procedure .

111

111

113

115

115

116

... " '" 117

119

119

121

121

123

124

127

127

132

133

135

Aigorithm for Procedure CalI

I-code for Procedure CalI

4.4 CalI

4.4.1

4.4.2

5 Conclusion

5.1 Summary

5.2 Future Work .

5.2.1 Procedures To Domain Operations

5.2.2 Relations to Attributes . .

5.2.3 Abstract Data Type ..

(
viü

1

Chapter 1

Introduction

This thesis documents the implementation of procedures in a database programming

language. The work was done by extending an existing relational database system

with procedure features. We first have a historical overview of database programming

languages and subprograms. The aim and outline of this thesis is given at the end of

this section.

1.1 Database Programming Languages

Database management systems (DBMSs), sucb as System R [A+76] and INGRES

[SWKH76], usually impose severe restrictions on the kind of computations that cau

be performed. As a result programs that require complicated manipulation of the

database cannot be written in these systems. The traditional solution to this prob

lem has been to use two languages, embedding the database query language~in a 1
computationally more powerful host programming languag~. For example the query j
language SQL of System R may he used with COBOL [COD68], and the query lan

guage QUEL of INGRES may be embedded in a C [KR78) program. Access to data

is done by issuing database commands in the host languages, and the database com-

1

CHAPTER 1. INTRODUCTION 2

(

mands are preprocessed. As a consequence data has to he passed between these

two languages. Since both languages might be semantically as weIl as structurally

different, such transformations may lead to ~loss of information. This problem is

known as "impedance mismatch" [Atk78]. Its avoidance is an essential motivation

for the development of database programming languages (DBPLs), which attempt to

integrate features from programming languages and databases.

Early work on DBPLs has been surveyed [AB87]. Essentially two ditferent ap

proaches have been employed :

• the programming language approach which extends programming languages

with database features; and

• the database approach which extends database systems with programming lan

guage features.

1.1.1 Programming Language Approach

This approach extends programming languages with database features. The first

successful example is PascalfR (Sch77). PascalfR is a system that extends Pascal

(Wir71] with a relational database system. It extends the type system of Pascal

to include a relation type built on Pascal records, and a database type built on

relations. Other extensions to Pascal include:

• the iterative foreach statement and built-in procedures (low and next) to

traverse relations;

• operators to update and to manipulate relations; and

• predicates to evaluate relations.

PascalfR demonstrates that a simple extension to an existing programming language

allows the manipulation of relations together with the appropriate mechanisms to

-

• CHAPTER 1. INTRODUCTION 3

(

support persistence and efficiency. This research has evolved inta the design of DBPL

[MS89), a relational programming language which extends Modula - 2 [Wir83] with

keyed set and first-order predicates.

In late 1970s, a number of similar proposaIs and implementations emerged:

• PLAIN [Was79) extends Pascal to support two kinds of database type declara

tions: relation and marking. Markings are designed for storing intermediate

results derived by evaluating expressions in the relational algebra over rela

tions and markings. Relational update operators almost identical with those

in Pascal/R are available. Unlike Pasal/R, the foreach statement in PLAIN is

consistently defined to be applicable to all structured variables.

• RIGEL [RS79)extends Modula [Wir77] with relation, view, and tuple types.

An expression that produces sequences of values, called a generator, is defined

which integrates relational query expression with the for-statement to provide

a consistent form of iteration. The language also provides a data abstraction

facility to encapsulate the database interface and to support the disciplined use

of views.

• Theseus [Sho79) extends EUCLID [L+77] with the data types relation and a

set (for "association set"). Relations are defined to be sets of a-sets. Theseus

ensures that the key values are unique and present in every a-set in any relation

declared. The language allows programmers to define the insertion and deletion

procedures on relations to support constraints on the database.

However, these languages limit the programmer to a particular data model with

a limited set of operations for manipulating them. In addition, the programmer

does not have explicit control over which data or data definitions are persistent and

similarly which data is large scale.

(CHAPTER 1. INTRODUCTION 4

(

A second important step at integrating features from databases ta programming

languages is the addition of persistence to programming languages. The persistence of

a data object is the length of time that the abject exists. In traditional programming

languages data cannot last longer than the activation of the program without the

explicit use of sorne storage agency such as a file system or a DBMS. In persistent

programming, data can outlive the program, and the method of accessing the data

is uniform whether it he long or short term data.

Atkinson, one of the early advocates of the persistence programming languages,

proposes two principles for persistent data [Atk89]:

1. persistence independence whereby the persistence of a data value is independent

of how the program manipulates that data value, and conversely, a fragment of

program is expressed independently of the persistence of the data it manipu

lates; and

2. persistence data type orthogonality whereby, consistent with the general pro

gramming language design principle of data type completeness, all data values,

whatever their type, should he allowed the full range of persistence.

Languages that achieve both of the principles are called persistent programming

languages. Sorne examples are PS-algol [ACe81, ABC+83], Napier [AM88], and

Galileo [AC085].

PS-algol adds persistence ta S-algol [CM82). In PS-algol a database exists as a

persistent heap extemal to the program, and there is a persistent object management

system which makes the database appear transparently as part of the standard pro

gram heap. Data on the heap may persist beyond the lifetime of the program if they

are made reachable from the top level table of a database. PS-algol supports proce

dures as first class data objects. That is, procedures are allowed the same rights as

any other data object in the language, sucb as being assignable, the result of expres

sions or other procedures, elements of structures, etc. Combining persistence with

CHAPTER 1. INTRODUCTION 5

-

(

first class procedures, one can simulate abstract data types, modules, and views in

PS-algol [Atk85]. The work on PS-algol has evolved into the design of Napier which

suPport~tional types and operations. In Napier, a column in a relation can he--

of any type permitted in the language (inc1uding procedure) .

Galileo is a strongly-typed, interactive DBPL based on ML [Mil84]. Galileo is

designed to support semantic data model features (classification, aggregation, and

specialization) as well as the abstraction mechanisms of modern programming lan

guages (types, abstract types, and modularization). In Galileo, the database is part

of a global environment inside which each transaction runs. A database program

is an expression evaluated in this environment, and this evaluation may modify the

updatable objects in the database.

Object-oriented database management systems (OODBMSs) start from object

oriented programming languages and add persistence and object sharing. Objects

(instances of abstract data types) are encapsulated and only accessible through a

predefined interface. Object manipulation is by invoking type-specific interface func

tions (methods). Typically object-oriented databases have a complete programming

language environment but provide little means of descriptive set-operations [GM88].

This refiects their origin from the programming language realm. Varieties of re

search prototypes and commercial products are available. For example~ Gemstone

[MSOP86}, which isth~OODBMS, extends Smalltalk [GR83]. 02 [Deu90] and

ObjectStore [LLOW91~ev~lved from C++ [Str86].

The DBPLs developed using the programming language approach provide the

ability to manipulate database relations or objects but ail at the tuple or object

level. The interface to the storage manager ends up with a tuple- or an object-at-a

time interface thus forcing a lot of data and command traffic between the application

program and the storage manager. Moreover, tuples and objects are assumed to he

small enough to fit into RAM. Hence, objects that are too large for RAM cannot be

programmed in these languages.

(CHAPTER 1. INTRODUCTION

1.1.2 Database Approach

6

(

Another approach of the research in DBPLs is to extend relational database systems

with programming language constructs such as complex objects, user-defined types,

procedures and functions, etc. This approach can overcome the weaknesses of the

programming language approach because database systems are oriented toward effi

cient access of large amounts of secondary storage data. Secondary storage access is

embedded in the evaluation methods for the relational operators, making application

independent of the access structures. We now review sorne examples of this approach.

POSTGRES [SR86] is an extended relational database system developed at the

University of California, Berkeley in 1986 as a successor to INGRES. POSTGRES

supports programming language concepts such as complex objects and user-defined

data type. The query language of POSTGRES is POSTQUEL which is an exten

sion of QUEL used in INGRES. The following built-in data types are provided in

POSTGRES:

• integers;

• floating point numbers;

• fixed length character strings;

• unbounded varying length arrays of fixed types with an arbitrary number of

dimensions;

• POSTQUEL, which contains a sequence of data manipulation commands used

to simulate shared complex objects [SAHR84); and

• procedure, which contains procedures written in a general purpose programming

language with embedded data manipulation commands also used to represent

complex objects [SAH87].

(CHAPTER 1. INTRODUCTION 7

(

In addition to these built-in data types, user-defined data types can he defined using

an interface similar to the one developed for ADT-INGRES [St086].

Starburst [LLP891] is an experimental database system developed at the IBM

Almaden Research Center in San Jose, California as a successor of System R. The

data access and manipulation interface is an extension of SQL. Starburst includes

support for complex objects and user-defined types and functions similar to those in

POSTGRES.

Relix is an experimental relational database system developed at McGill Univer

sity in 1986 [Lal86]. The data manipulation language of Relix is Aldat, an algebraic

data language proposed by Merrett [Mer77]. The purpose of developing Relix is to

provide users with an interactive version of Aldat for exploring the concept of the re

lational database model as described in [Mer84). Aldat has been extended to connect

several programming language concepts to relations.

• Scalars, arrays, and records[ML89]. Together with associated operations and

syntax, these data types are implemented as special cases of relations. For

example, an one-dimensional array can be represented by a relation A(row, col,

value), and the selection of an array element A[ij] is a special case of projection

and selection

[value] where row = i and col = j in A.

• Scoping[MS91]. It permits us to build up a strncture of databases sucb as

Canada

RD

Ontario

RI

R2

(CHAPTER 1. INTRODUCTION

Quebec

Rn

8

(

Here, Canada, Ontario, and Quebec are databases and sub-databases, while RD,

Rl, R2, and Rn are relations. Canada contains the relation RO and databases

Ontario and Quebec. Ontario contains relations Rl and R2, and Quebec con

tains relation Rn. Assuming we were initially in the parent database Canada,

the command

begin Quebec

would place ourselves in the scope of the Quebec database, and the command

end

would retum again to Canada.

• Object-orientation and inheritance [Mnu92). Classes are identified with rela

tions. Object identity (Id) is given by ordinary attributes. Class hierarchy is

represented by a relation where each superclass-subclass pair is represented by

a tuple. Attribute inheritance is implemented by projecting the superclass's

attributes from the join of the subclass with its superc1ass on the ID field:

Superclass [Superld isa SublD] Subclass

• Functions and parameterization [Mer93}. Functions are treated as special forms

of relations called computations. As with relations, computations are defined

over sets of attributes. Subset of attributes can be defined as input attributes

and the remaining attributes are output. We will further discuss computations

in Chapter 2.

CHAPTER 1. INTRODUCTION

1.2 Subprograms

The evolution of a programming language involves three steps[AS85]:

9

(

1. primitive expressions, which represent the simplest entities with which the lan

guage is concerned;

2. means of combination, by which compound expressions are built from simpler

ones; and

3. means of abstraction, by which compound objects can be named and manipu

lated as units.

In programming we deal with two kinds of object: data and operations. Subprograms

represent operational abstraction with two important properties[DJ95] :

• encapsulation which refers to the isolation of the operational details of a suh

program from the environment where it is used; and

• parameterization which refers to the ability to create a generalized abstraction

that has the l1exibility to perform a variety of activities based on the values of

parameters.

In other words, the basic components of a procedural abstraction mechanism are

[Ten81]:

• a body, a construct whose interpretation is deferred until the subprogram is

invoked by being supplied with appropriate arguments; and

• a formai parameter part (possibly empty) which contains binding occurrences

of the formal parameter identifiers .

The advantages of using subprograms as abstractions are as follows.

I(CHAPTER 1. INTRODUCTION 10

• Program units are simpler. This simplicity results in units that are easier to

read, write, and modify. By hiding lower levels of detail, a unit can concentrate

on a single task. This property is important in the implementation of top-down

design.

• Program units are independent. Abstraction permits the actions of a sub

prograrn to be independent from its use. Therefore, the program using the

abstraction is not affected by the details of the abstraction's implementation.

• Program nnits are reusable. A subprogram, once defined, can be used with

many different programming environments. This eliminates redundant pro

gramming effort and rednces errors.

1.2.1 Using Subprograms

The use of subprograms for rea1izing program modularity was developed as early as

1951 [WWG51]. Today two forms of subprogram are commonly used in programming

languages, procedures (or subroutines) and functions. A procedure is a sequence of

operations that is invoked as though it were a single statement. A function is a

sequence of operations that returns a single value and is invoked from within an

expression. Usually control retums to the point of invocation after execution of the

subprogram thus forming a one-in, one-out control structure.

Languages sucb as FORTRAN [Ame66], Pascal [Wir71], and Ada [U.S80] make

clear distinctions between procedures and functions. ALGOL 68 (W+75] and C

[KR78] regard a procedure as a special function in which the retumed value is void.

Modula - 2 [Wir83] treats a function as nothing more than a procedure which re

tums a value. In this thesis, we will maintain the distinction between procedures and

functions. We will use subprograms to refer to both procedures and functions.

(CHAPTER 1. INTRODUCTION

1.2.2 Parameters

11

(

There must be some means of passing data between the subprogram and the invoking

unit. The usual methods of passing data are through global variables and through

parameters. Moreover, parameters are an important part of almost every facility

for subprograms, for it is through parameters that we generalize the action of a

subprogram.

Parameters can be classified into three groups or modes [ML87]:

1. INPUT parameters, which are passed from the invoking unit ta the subpro

gram at the time of invocation;

2. OUTPUT parameters, which are passed from the subprogram to the invoking

unit at the time of return; and

3. UPDATE parameters, which pass information both ways.

A parameter needs to be specified at two points: in the invoking unit and in

the subprogram definition itself. The parameters specified in the invoking unit are

referred ta as actual parameters or arguments. The parameters in a subprogram

definition are referred to as formai parameters. The identifiers used for the formai

parameters of a subprogram are purely local ta the subprogram and have no connec

tion with any identifiers used outside the subprogram.

When a subprogram is invoked (or caIled), each actual parameter is associated

with its corresponding formai parameter. There are four mechanisms for pairing

actual and formal parameters (DJ95).

• PositionaI association, which is commonly used by most imperative languages,

simply associates the actual and formai parameters according to their relative

positions in their parameter lists.

• Named association requires that the name of the formai parameter be appended

to the actual parameter in the invocation statement.

(CHAPTER 1. INTRODUCTION 12

(

• Mixed association wherein positional can be used for all parameters up to the

first named association, after which aU remaining associations must be named.

• Default association permits the specification of default vaIues for formai pa

rameters in the procedure header. When an invocation is made with no actual

parameter associated with the formal parameter, the default value is used. This

is appropriate only for input parameters.

Six mechanisms for passing information between the invoking unit and the sub

programs are usually used.

• Pass by value is used for INPUT parameters only. The formaI parameter acts

as a local variable which is initialized with the value of the actual parameters.

The actual parameter can be a variable or an expression.

• Pass by result is used for OUTPUT parameters only. The formal parameter

again acts as a local variable but its value must be initialized locally with the

subprogram body. After the statements of the body have been executed, the

value of the fonnal parameter is assigned to the corresponding actual parameter.

In this case the actual parameter must be a variable.

• Pass by value-result is used for UPDATE parameters only. The formai parame

ter is considered as a variable local ta the subprogram. Its initial value is given

by the value of the corresponding actual parameter, and the final value of the

formal parameter is assigned to the actual parameter on completion of execu

tion of the subprogram. This is another case where the corresponding actual

parameter must be a variable.

• Pass by location (or reference). The address of the actuaI parameter is passed

to the formai parameter. The formal parameter is considered as a local vari

able of the subprogram., but its location is the location of the corresponding

(CHAPTER 1. INTRODUCTION 13

(

actual parameter. Thus, any reference to the value of the formal parameter is

considered to be a reference to the value of the actual parameter. Here again,

the actuaI parameter must be a variable.

• Pass by Name and Expression. The actual parameter can be a variable or an

expression. This involves the equivalent of textual substitution of the actual

parameter for each occurrence of the formaI parameter. In pass by name and

expression, the actual parameter is passed unevaluated and is recalculated each

time the formal parameter is used during the execution of the subprogram.

• Pass by Name. This is the same as pass by name and expression but the actual

parameter must be a variable.

Type is an error detection mechanism for matching formai parameters and actual

parameters. In a strongly typed language like Pascal, the types of the formal param

eters must be specified at subprogram definition, and the corresponding actual and

formaI parameters must have the same type when the subprogram is invoked. We

propose to use type as a mechanism to check if a procedure is being called correctly.

We will discuss this mechanism in Chapter 3.

1.2.3 Others Forms of Subprograms

Other than procedures and functions, some programming languages support other

forms of subprograms.

• Overloaded subprograms permit two or more subprograms to have the same

name if they can be distinguished by the number or type of their formal param

eters, or, in the case of a function, by the type of the return value. Overloading

permits subprograms that perform the same operation on different parameter

types to be called by the same name.

(CHAPTER 1. INTRODUCTION 14

(

• Generic subprograms allow the sarne algorithm to he applied to different types

of parameters. A generic subprogram is a template from which an actual sub

program rnay he obtained by instantiation. The compiler stores the templates

internally. Whenever sorne code makes use of an instantiation of a template,

the complier replaces the formal type parameter in the subprogram with the

actual type and generates the necessary code.

• Coroutines are special subprograms that, when invoked, execute from the point

where they last suspended execution up ta the next instruction that later sus

pends their execution.

• Event handlers subprograms that are invoked implicitly by the occurrence of an

event. An event is a condition that requires sorne immediate action on the part

of the program. Such a condition might be an error, a user-generated interrupt,

a modification of a specified storage location, etc. When events occur, the event

handler is invoked implicitly; that is, without an explicit call. Two different

actions are possible on termination of the event handler: resumption of the

invoking unit, as with procedures, or termination of the invoking unit.

1.3 Thesis Aim and Outline

The purpose of this thesis is to extend Aldat with procedure facilities. This thesis is

divided into five chapters.

• Chapter 1 cantains a literature review of database programming languages and

subprogrd.IIlS•

• Chapter 2 provides a tutorial on the Relix system, the relational database sys

tem developed at McGill University. The chapter also presents the syntax of

(CHAPTER 1. INTRODUCTION 15

(

the statements and commands of Relix that are relevant ta the work in this

thesis.

• Chapter 3 is the users' manual on procedures which shows the semantic and

syntax for procedure definition and invocation, commands on procedures, type

of procedure, error messages, and examples.

• Chapter 4 discusses the implementation details of procedures in Relix.

• Chapter 5 concludes the thesis with a summary and proposals for future work.

il

(

Chapter 2

Relix Tutorial

Relix, standing for Relational database on Unix, is a database programming lan

guage based on relational and domain algebra [Mer84]. AH the design and implemen

tation work in this thesis follows the conceptual framework of existing Relix. The

purpose of this chapter is to provide readers with enough Relix background to un

derstand the rest of the thesis. Therefore, we will present only the subset of Relix

that is relevant to this thesis.

We will use a tutorial style to present Relix. Simple examples are given during

the presentation to il1ustrate the general format and functionality of the commands

and statements. Formal syntax for the commands and statements is also provided

for readers to explore the full capability of the language.

We will use the fol1owing convention for the examples throughout this thesis.

• The typevriter font indicates program output.

• The boldface font ie nsed for reserved words in user input which must be typed

as 9(is.
• The italic font indicates identifiers in user input which can be substituted by

other sequences of characters.

16

:(CHAPTER 2. RELIX TUTORIAL 17

(

BNF (Backus-Naur Form) notation is used ta illustrate the formai syntax through

out this thesis. BNF contains a set of rules. A rule has the form

<rule..name> := definition

which means "assign the definition to the rule..name". The convention of the BNF

definition is hriefly summarized in Table 2.1.

Form Meaning

< symbol > The symbol is a rule name and must be further
substituted.

, symbol ' The symbol is a reserved ward and must be
typed as it is.

{ symbol } The symbol is optional..

(symbol)* The symbol may appear zero or more times.

{ symbol)+ The symbol may appear one or more times.

symbol1 1symbol2 Either symbol1 or symbol2 can be used.

Table 2.1: BNF Definition Convention

We begin with Section 2.1 describing how to start Relix. Section 2.2 explains the

declarations for domains and relations in Relix. Section 2.3 introduces sorne basic Re

lix commands on domains and relations. Relational algebra and domain algebra are

discussed in Section 2.4 and Section 2.5 respectively. Section 2.6 introduces the up

date statements, and Section 2.7 introduces the if-then-else control statement. Finally

we will end the chapter by presenting a special form of relation called computation.

(

CHAPTER 2. RELIX TUTORlAL 18

2.1 Getting Start.e&
~

Relix is an interactive command driven parser, interpreter for relational database

programming language running on an UNIX operating system. Relix accepts and

executes one command or statement at a time. When the user enters a command or

statement, ReUx checks the syntax of the input using the grammar predefined in the

system. If the input is syntactically correct, Relix executes it.

Relix runs on the UNIX operating system. To start Relix with a new or existing

database one should use the syntax

'relix' <database-name>

at the UNIX command prompt. For example, the command

relix sample

starts a database named "sample". Relix will setup the database and display a

welcome message as shown below.

setup-database: create a new database "sample"
relix(g) parser/interpreter (V.4) October 1994

>

The symbol '> ' is a Relix prompt indicating that Relix is ready to receive input

from the user. To display an on-Hne manual, enter man! at the Relix prompt. To

quit Relix, enter q!.

2.2 Domain and Relation Declarations

Relix deals with two kinds of data objects: domains and relations. A relation is

defined on one or more attributes. The domain of a given attribute determines its

(CHAPTER 2. HELIX TUTORIAL 19

data type.

Figure 2.1 shows a Cheque_Book relation which is defined on four attributes:

Chq#, Ta, Amount, and Back. The domain of the Chq# attribute is an integer.

The domain of the Ta attribute is a string. The domain of the Amount attribute is a

real number. The domain of the Back attribute is a boolean value. In this section, we

will use the Cheque_Book relation to describe how to declare domains and relations.

Chq#

1
2
3

To

Joe
Tom
Mary

Amount

225.00
250.00
225.00

Back

true
true
false

(

Figure 2.1: Cheque..Book relation

2.2.1 Domain Declaration

In order to create a relation, the domains of its attributes must he declared. The

declarations

> domain Chq# integer ;

> domain To string;

> domain Amount real ;

> domain Back boolean ;

decIare the attributes of the Cheque-Book relation. The first statement declares the

domain of an attribute named Chq# to be an integer. The second one declares

the domain of an attribute named Ta to be a string. Similarly the third and the

CHAPTER 2. RELIX TUTORIAL 20-
fourth statement declare the domains of Amount and Back to he a rea! number and

a boolean value respectively.

Formal Syntax

The formaI syntax for domain dec1aration is

<domain..dec1aration>

<attribute-llame>

where:

.- 'domain' <attribute..name> <data_type> ';'

.- <identifier>

• <identifier> is a case sensitive combination of characters, digits, underscore

(_), number sign (#), and single quote (). with a maximum length of 80

characters;

• if the attribute name already exists in the database and has another data type,

the system may have two possible actions whereby if the attribute is free1 the

oid declaration will he overwritten by the new declaration, otherwise the new

declaration is denied; and

• <data_type> is one of the six basic data types summarized in Table 2.2 with

the short forms which can he used instead of the usuaI data type name.

2.2.2 Relation Declaration

The declaration

> relation Cheque-Book(Chq#, To, Amount, Back);

1 An attribute is free if it is not used by any relation or virtual attribute. Virtual a.ttribute will

he discussed in Section 2.5.

(
CHAPTER 2. RELIX TUTORIAL

Data Type Short Forro Domain Values Examples

Integer intg signed integer 32, -445

long long signed long integer 2347468, ·4

short short signed short integer 32711, -234

raal rasl signed fJoating point 3.1416,O.61E-2

string strg sequence of characters -day-, -don't·

boolean bool TRUE and FALSE true, false

Table 2.2: Basic Data Types in Relix

21

(

declares the previous Cheque.JJook' relation. We can also declare a relation and ini

tialize it with data at the same time. For example, the declaration statement

> relation Cheque-Book (Chq#, To, Amount, Back) <
{(l, IlJoelt , 225.00, true),

(2, IlTom Il , 250.00, true),

(3, IlMaryIl , 225.00, false)};

declares the Cheque.J3ook relation and initialize with the data shown in Figure 2.1.

The symbol '< -' in the above statement is a Relix assignment operator. New

relations and attributes can be created using the assignment operator in a relational

algebra statement being discussed in Section 2.4. The statement

(CHAPTER 2. RELIX TUTORlAL

> Chq < - Cheque_Book;

22

(

creates a new relation named Chq and copies the attributes and data from the

Cheque..Book relation to the Chq relation. The statement,

> Cheque [Num, Name < - Chq#, Ta] Cheque_Book;

creates two newattributes: Num having the same domain as Chq#, and Name having

the same domain as To. The new relation Cheque is shown below.

Cheque:

Nuro Name

1 Joe
2 Tom
3 Mary

FormaI Syntax

The formal syntax for relation declaration is

<relation.declaration> := 'relation' <relationJlame> '(' <attributeJist> ')'

{<optionalinit..data>} ';'

<relation.name> .- <identifier>

<attributeJist> .- <attributeJl.ame> (',' <attribute-Ilame»*

1 CHAPTER 2. RELIX TUTORlAL 23

<optionalinit_data>

<relation_value>

<constant_tupleJist>

<constant_tuple>

<constantJist>

<constant_token>

where:

:= '< -' <relation_value>

:= 'empty'

1 <relation.name>

l '{' <constant_tupleJist> 'l'
:= <constant_tuple> (',' <constant_tuple»*

:= '(' <constantJist> ')'

:= <constanLtoken> (',' <constant_token»*

:= 1 <constant>

(

• if the relation_name already exists in the database, the old declaration will be

overwritten by the new declaration;

• the domains of the attributes in the <attributeJist> must he previously de

clared in the database;

• <relation_value> can be

- an empty relation which is a relation with no tuples,

- an existing relation, or

- tuples of constant lists enclosed hy a pair of curly brackets ({ . o.});

• a <constant> cau be

- a signed integer,

- a signed floating point number,

- a sequence of characters enclosed in a pair of double quotes ('III),

- a boolean value true or faIse,

- a nuU value 'dc' (don't care) or 'dk' (don't know) which represents inele-

vant information and IDissing data respectively.

2.3 Basic Commands On Domains and Relations
(

CHAPTER 2. RELIX TUTORIAL 24

Relix provides users with basic commands to print, show, and delete domains and

relations declared in the database.

2.3.1 Print Relation Command

The "print relation" command displays the data associated with a particular relation.

The formaI syntax is

<print-l'elation> := 'pr!!'<relation..name>

and the command

> pr!!ChequeJ3ook

displays the data of the Cheque_Book relation. The display is shown below.

Chq#

1
2
3

TO

Joe
Tom
Mary

Amount

225
250
225

Back

true
true
false

(

relation: ·Cheque_Book- has "3- tuple(s)

2.3.2 Show Commands

The family of "show" commands displays the declaration and system information

associated with the relations and domains declared in the database. There are three

types of "show" commands: "show relation", "show domain", and "show relation

with domain" .

c CHAPTER 2. RELIX TUTORIAL

Show Relation

25

(

The "show relation" command displays the name(s), the number of attributes, the

number of attributes sorted, the number of tuples, and the sort status of the rela

tion(s) in the database. The formai syntax is

<show-Ielation> := 'sr!!'{<relation.name>}

where a relation name is optional. Without a relation name, the command will dis

play the information for all the relations declared in the database. The command

> sr!!Cheque-Book

displays the information associated with only the Cheque_Book relation.

Show Domain

The "show domain" command displays the name(s), the data type(s), and other sys

tem information associated with the attribute(s) in the database. The forma1 syntax

is

<show_domain> := 'sd!!'{<attribute..name>}

and the command

> sd!!Chq#

displays the information associated with the Chq# attribute.

(CHAPTER 2. RELIX TUTORIAL

Show Relation With Domain

26

(

The "show relation with domain" command displays the relation name(s), the asso

ciated attributes, the attribute positions, and other system information of the rela

tion(s) in the database. The formaI syntax is

<show..relation..domain> := 'srd!!'{<relation.name>}

and the command

> srd!! Cheque..Book

displays the attributes information associated with the Cheque.JJook relation.

2.3.3 Delete Commands

The family of "delete" commands removes the declaration of a particular relation

or attribute from the database. There are two kinds of "delete" commands: "delete

relation" and "deIete domain" .

Delete Relation

The "delete relation" command removes the declaration of a specified relation from

the database. The formal syntax is

<delete..relation> := 'dr!!'<relation..name>

and the command

> dr!!ChequeJJook

deletes the ChequeJJook relation from the database.

(CHAPTER 2. RELIX TUTORIAL

Delete Domain

27

(

The "delete domain" command removes the declaration of a specified attribute from

the database. However if the specified attribute is used in any existing relation, the

command would fail. Therefore one must delete all the relations associated with the

specified attribute before issuing the "delete domain" commando The formai syntax is

<delete_domain> := 'ddH'<attribute..name>

and the command

> dd!!Back

deletes the attribute named Back from the database.

2.4 Relational Aigebra Statements

Relational algebra consists of a set of algebraic operations to manipulate relations.

Operands and results of any relational algebra operation are always relations. Re

lational algebra operations can be combined into an expression called a relationaI

expression. The result of a relational expression can be further used in other rela

tionaI expressions or assigned to a relation object.

In Relix, the relational algebra statement has the formai sYntax

<relational..statement> := <a.ssignment..by..name>

1<assignment..by_position>

1<increment..by..name>

1<increment-hy_position>

1 CHAPTER 2. RELIX TUTORIAL 28

(

<assignment_by..name> ,- <relation.llame> '< -' <relational..expression> ';'

<assignment_by_position> := <relation.name> '[' <attributeJist> '< -'

<attributeJist> ']' <relationaLexpression> ';'

<increment_by..name> .- <relation.name> '< +' <relational..expression> ';'

<increment_by_position> := <relation.name> 'l' <attributeJist> '< +'

<attributeJist> ')' <relationaLexpression> ';'

and the semantics are given below.

• <assignment..by..name> assigns the values of resulting relation on the right

hand side (RHS) of the assignment operator « -) to the relation specified on

the left hand side (LBS).

• <assignment..by_position> assigns, by position, the values of the subset of at

tributes of the resulting relation on the RHS to the set of attributes of the

relation specified on the LHS. The attributes in the attribute lists of both sides

must have the same domain by position.

• <increment_by-narne> adds tuples from the resulting relation on the RBS of

the increment operator « +) to an existing relation specified on the LHS. The

relations on both sides must be defined on the same set of attributes.

• <increment_by_position> adds tuples from the subset of attributes of the result

ing relation on the RHS to the set of attributes of an existing relation specified

on the LHS. The attrihutes in the attribute lists of both sides must have the

same domain by position.

• <relational..expression> is a relation name or an expression of relational algebra

operations summarized in Figure 2.2.

A detailed discussion on the relational algebra operations can he found in [Mer84].

CHAPTER 2. RELIX TUTORIAL 29

In this section we will focus on the syntax of the operations and use examples to

illustrate the functionalities of sorne of the cornmonly used operations.

2.4.1 Unary Relational Operations

Unary relational operations take a relation as an operand and produce a relation as

a result. The unary operations are projection and selection.

Projection

Projection is a vertical operation on attributes of a relation. It extracts a subset of

the attributes of an operand relation and produces a relation with those attributes.

Duplicate tuples in the resulting relation are removed. The formal syntax for projec

tion operation is given below.

<projection> .- 'l' <projectlist>'l' 'in' <relationaLexpression>

<projectlist> 1 <attributelist>

For example, the projection expression

[Course] in TA

extracts the Course attribute from the operand TA relation. The TA relation and

the resulting relation for the above projection expression are shown below.

(

TA:

Student

Joe
Mary
Tom
Tom

Course

CS1D2
CS314
CS1D2
CS243

[Course] in TA :

Course

CS102
CS243
CS314

:(CHAPTER 2. RELIX TUTORIAL 30

c-
(J-joins fO\

J

C

~

ProJection

UnBry
Operations

selection

Natural
Joln

UnionRelational A/gebra
JolnOperations

J1.-joins Laft or Aight
Joïn

Left or Right
Difference Joln

Syrnmebic
Difference Join

Binary
Operations

~

4~çt_)

(Figure 2.2: Relational Algebra Operations in Relix

• CHAPTER 2. RELIX TUTORIAL 31

If the <projectJist> is empty, the resulting relation is a boolean singleton scalar

relation2
• The value in the resulting relation is true if the operand relation has tuples.

Otherwise the value is false. For example, the projection expression

[] in TA

creates a relation below

[] in TA:

.bool

ture

as a result. The attribute '.boo!' is a system attribute whose domain is a boolean

value.

Selection

Selection is a horizontal operation on tuples of a relation. Tt extracts the tuples of

an operand relation using the condition given in the selection clauses. The formai

syntax for selection operation is

<selection> 'where' <selection...clauses> 'in' <relational..expression>

(

where <selection...clauses> is a comma separated list of logical domain expressions

that cau he evaluated horizontally to true or faIse on ea.ch tuple of the operand rela

tion. Domain expression will be discussed in Section 2.5. The selection expression

where Course = Il CS102" in TA

2A scalar relation is a relation defined on only one attribute. A singleton scalar relation is a

scalar relation which has only one tuple. A boolean singleton scalar relation is a singleton scalar

relation whose value is of type boolean.

(CHAPTER 2. RELIX TUTORlAL

extracts the tuples for CS102 course in the TA relation as shown below.

32

TA: where Course =-CS102- ln TA :

Student Course Student Course

Joe
Mary
Tom
Tom

CS102
CS314
CS102
CS243

Joe CS102
Tom CS102

Relix also allows the projection and selection operations to he combined in a sin

gle operation called T-selection. T-selection has the formai syntax below.

<T-selection> := '[' <attributeJist> ']' 'where'

<selection...clause> 'in' <relational..expression>

The T-selection expression

[Student] where Course = ueSto2" in TA

extracts the Student attribute on the tuples having CS102 course in the TA relation

as shown below.

(

TA:

Student

Joe
Mary
Tom
Tom

Course

CSI02
CS314
CS102
CS243

[student] where
Course = ·CS102- in TA:

Student

Joe
Tom

CHAPTER 2. RELIX TUTORlAL

2.4.2 Binary Relational Operations

33

(

Binary relational operations take two relations as operands and produce a relation

as a result. In ReUx, expressions with binary relational operations have two formal

syntaxes.

1. <relational..expression> <binary_operator> <relational..expression>

This syntax is used for relations which have common attributes. ReUx uses the

set of common attributes of both operand relations as the set of join attributes

in the operation specified by the binary operator.

2. <relational..expression> 'l' <attributeJist>

<binary_operator>

<attributeJist> ']' <relational..expression>
This syntax is used for relations which do not have common attributes. Relix

pairs the listed attributes from each operand relation, and put the pairs in the

set of joïn attributes. Each pair of attributes must have the same data type.

As shown in Figure 2.2, binary relational operations in Relix can he subdivided

into two families: the family of join operations using set operators called J,L-joins, and

the family of join operations using set comparisons called q-join.

JL-joins

J,L-joins consist of a family of join operations using set operators such as intersection

(n), union (U), and difference (-). The J,L-joins on two operand relations are based

on three components:

1. center, the combined tuples from both operand relations such that the values

of the attributes in the set of joïn attributes are in the intersection of the values

of the set of join attributes of both operand relations;

.(CHAPTER 2. RELIX TUTORlAL 34

2. left, the tupies in the left operand relation such that the values of the attributes

in the set of join attributes is the difference between the values of the set of

join attributes of the left operand relation and the right operand relation; and

3. right, the tuples in the right operand relation such that the values of the at

tributes in set of joïn attributes is the difference between the values of the set

of join attributes of the right operand relation and the left operand relation.

For example, we have a TA relation and an Office relation as shown in Figure 2.3.

Since TA and Office relations have the common attribute Student, we use the first

TA:

Student

Joe
Mary
Tom
Tom

Course

CS102
CS314
CS102
CS243

Office:

Student

Joe
Kim
Tom
Tom

Room

101
208
105
208

(

Figure 2.3: TA and Office relation

general form for binary relational operations

TA <jL-join-operator> Office

with TA being the left operand relation, and Office being the right operand relation.

The set of join attributes is {Student}. The values of {Student} for the left operand

relation is {Joe, Mary, Tom}. The values of {Student} for the right operand relation

is {Joe, Kim, Tom}. Since

{Joe, Mary, Tom} n {Joe, Kim, Tom} = {Joe, Tom}

"("

CHAPTER 2. RELIX TUTORlAL 35

the center component consists of combined tuples of bath relations having the value

Joe or Tom in the Student attribute. The tuples are combined by connecting every

thing on one side of the join attribute with everything on the other side as shawn in

the graph below,

-208

_------105Tom _---------
Room

Joe -------_101

Student

CS243

Course

CS102

The relation fonn of the center component is shown below.

centre component of TA and Office:

Student Course Room

Joe
Tom
Tom
Tom
Tom

CS102
CS102
CS102
CS243
CS243

101
105
208
105
208

Since

{Joe, Mary, Tom} - {Joe, Kim, Tom} = {Mary}

the 1eft component consists of the tuple from the TA relation having the value Mary

in the 8tudent attribute as shawn below.

left component of TA and Office:

Student Course

Mary CS314

.(

(
CHAPTER 2. RELIX TUTORIAL

Likewise

{Joe, Kim, Tom} - {Joe, Mary, Tom} = {Kim}

36

the right component consists of the tuple from the Office relation having the value

Kim in the Stu.dent attribute as shown below.

right component of TA and Office:

Student Room

Kim 208

A particular Il-join operation determines which of the three components are com

bined to produce a resulting relation. Table 2.3 lists the seven p-joins, their corre

sponding operators in Relix., and the components of the resulting relations.

The IL-join operator for natura! join is natjoin or ijoin, and the resulting relation

of the expression

<relational..expression> ijoin <relational..expression>

is the center component of the operand relations. For instance, the expression

TA ijoin Office

produces a relation as shown below.

TA ijoin Office :

(

Student

Joe
Torn
Tom
Torn
Torn

Course

CS102
CS102
CS102
CS243
CS243

Room

101
105
208
105
208

(

CHAPTER 2. RELIX TUTORIAL

"-joins LHoin-operator Resulting Relation

Natural Join 'natjoin' or 'ijoin' centre

Union Join 'ujoin' left U centre U right

Left Joïn 'Ijoin' left U centre

RightJoin '~oin' right U centre

Left Difference Join 'djoin' or 'dljoin' left

Right Difference Join 'drjoin' right

Symmetric Difference Join 'sjoin' left U right

Table 2.3: p-join Operators in Relix and Resulting Relations

37

(CH.APTER 2. HELIX TUTORIAL 38

The Jl-join operator for union join is ujoin, and the resulting relation of the ex

pression

<relational..expression> ujoin <relationa1..expression>

is the union of the left, center, and right components of the operand relations. For

instance, the expression

TA ujoin Office

produces a relation as shawn below.

TA ujoin Office:

Student

Joe
Kim
Mary
Tom
Tom
Tom
Tom

Course

CS102
DC
CS314
CS102
CS102
CS243
CS243

Room

101
208
DC
105
208
105
208

Note that the value "De" in the above relation is a "don't care" DUn value which

means that the value of the attribute is irrelevant.

Similarly, the other five JL-joins on the TA and Office relations produce the result

ing relations that follow below.

TA Ijoin Office:

(

Student

Joe
Mary
Tom
Tom
Tom
Tom

Course

CS102
CS314
CS102
CS102
CS243
CS243

Room

101
OC
105
208
105
208

CHAPTER 2. HELIX TUTORIAL

TA rjain Office:

39

Student

Joe
Kim
Tom
Tom
Tom
Tom

Course

CS102
De
es102
CS102
CS243
CS243

ROOIn

101
208
105
208
105
208

TA dljoin Office:

Student Course

Mary CS314

TA drjoin Office:

Student Room

Kim 208

TA sjoin Office:

Student

Kim
Mary

Course

DC
CS314

Room

208
De

(

li the TA relation in Figure 2.3 is defined on attribute Thtor rather than Student,

the TA and OfJice relations would not have any common attributes. We must use

the second general form for binary relational operations, and the join attributes on

those two relations must he specified. In our example the form

TA [Thtor <binary-Operator> Student] Office

(CHAPTER 2. RELIX TUTORIAL 40

pairs the 'Putor and Student attributes as the set of join attributes in the operation.

The set of join attributes is now {('Putor, Student)}. The p.-joins would operate on

the values of {Tator} of the left relation and the values of {Student} of the right

relation. The resulting relations of the JL-joins on these two relations would have an

extra attribute Thtor whose values would be the same as the Student attribute in the

same tuple. For instance, the expression

TA ['Putor sjoin Student] Office

would produce a relation as show below:

TA [Tutar sjoin Student] Office:

Tutor

Kim
Mary

D'-joins

Course

De
Cs314

Student

Kim
Mary

Room

208
De

(

D'-joins consist of a family of join operations using set comparisons: superset (2),

equal set (=), subset (Ç), etc. Each operand relation is grouped by the "non-join

attributes" . For each group in the left relation the set of values of the join attributes

is compared against the set of values of the join attributes of every group in the right

relation. The particular a-join determines the set comparlson. The values of the non

join attributes of the comparlng groups are accepted if the specified set comparison

on the join attributes is satisfied.

For example, the D'-joins on the TA and Office relations, defined in Figure 2.3 ,

TA <0'-join-operator> Office

first group the relations by the non-join attributes. Sînce the join attribute is Student,

the TA relation is grouped by Course and the Office relation is grouped by Room as

shown below.

(CHAPTER 2. RELIX TUTORIAL

TA: Office:

41

Course

CS102
CS102

CS243

CS314

Student

{
Joe }
Tom Group 1

{Tom }Group 2

{ Mary } Group 3

Room

101

105

208
208

Student

{ Joe } Group 1

{ Tom } Group 2

{
Kim}
Tom Group 3

(

The set of values of the join attribute in each group is surrounded by a pair of curly

brackets ({... }). For instance, the set of values of the join attribute for the first

group in the TA relation is {Joe, Tom}, and the set of values ofthejoin attribute for

the first group in Office relation is {Joe}.

Table 2.4 lists all the u-joins in Relix with their set comparison and operators.

The Relix u-join operator 'sup' is for superset (~) comparison. The er-join expression,

TA sup Office

would first compare the set {Joe, Tom} against the sets {Joe}, {Tom}, and {Kim,

Tom}. Since {Joe, Tom} ~ {Joe} is true, the values 'CSl02' and '101' are accepted

for the non-join attributes Course and Room respectively. Likewise, {Joe, Tom}

;2 {Tom} is also true and the values 'CSl02' and '105' are accepted. The next

comparison is {Joe, Tom} and {Kim, Tom}. However, {Joe, Tom} ;2 {Kim, Tom}

is not satisfied and the values 'CSI02' and '208' are rejected. The operation continues

in the same fashion to compare the rest of the sets in the TA relation against the sets

in the Office relation. The final result of the operation is shown below.

(

(

CHAPTER 2. RELIX TUTORlAL

q-joins Set Comparison q-join Operator

:2 Superset 'div' or 'sup' or 'gejoin'

Equal Set 'eqjoin'

C Subset 'sub' or 'Iejoin'-
(à\ Intersection Empty 'sep'

~ Proper Superset 'gtjoin'

C Proper Subset 'Iijoin'

j/d Not Superset I_SUp'

1- Not Equal Set '-eqjoin'

ri Not Subset '-sub'

rA Intersection Not Empty 'icomp'

jJ Not Proper Superset '-gijoin'

>t Not Proper Subset '-lijoin'

Figure 2.4: u-join Operators in Relix

42

(CHAPTER 2. RELIX TUTORIAL

TA sup Office:

Course Room

CS102 101
CS102 105
CS243 105

43

(

Similarly, the other O"-joins on the TA and Office relations would compare the sets

according to the specified set comparison. The resulting relation of the eqjoin, sub,

sep, gtjoin, and ltjoin on those two relations are shawn below.

TA eqjoin Office:

Course Room

CS243 105

TA sub Office:

Course Room

CS243 105
CS243 20B

TA sep Office:

Course Room

CS243 101
CS314 101
CS314 105
CS314 208

TA gtjoin Office:

Course Room

CS102 101
CS102 105

• CHAPTER 2. RELIX TUTORlAL

TA Itjoin Office:

Course Room

CS243 208

44

(

The resulting relations for the negated set comparisons not superset, not equal set,

etc., would he the complements of the corresponding set comparisons. For instance,

the operator for "intersection empty" is sep, and its negation is "intersection not

empty" with operator icomp. The expression

TA icomp Office

produces a resulting relation as show below.

TA icomp Office:

Course Room

CS102 101
CS102 105
CS102 208
CS243 105
CS243 208

2.5 Domain Aigebra Statements

Domain algebra consists of a set of operations ta manipulate attributes such as math

ematical operations, grouping attributes, ordering attributes, etc. Domain algebra

allows operations aver a single tuple (horizontal operations) or over sets of tuples

(vertical operations). Figure 2.5 summarizes the domain algebra operations in Relix.

A thorough description of domain aIgebra can be found in [Mer84].

In Relix, domain algebra statements define virtual attributes with formai syntax

(CHAPTER 2. RELIX TUTORIAL 45

(

r1 Constant r1 Logical]J Operations

H Rename H Comparison

1Operations

r1 Horlzonal l ~ Mathematical l 1 Arithmetic

1Operations J , Operations J 1
Operations

H Predefined) M Minimum

1Funetions Maximum

If-then-else ~ Concatenation

J
'--1

J

Domain Aigebra L
1

Operations

r1 Reduction)

H Equivalence

Li }-Vertical
Operations

H Functional]Mapping

y Partial Functional

JMapping

Figure 2.5: Domain Algebra Operations in Relix

:(CHAPTER 2. HELIX TUTORIAL 46

<domain.statement>

<domain..expression>

.- 'let' <attribute-llame> 'be' <domain-expression> 'j'

.- <horizontal-Operation> 1 <vertical-Operation>

where <horizontal.operation> and <vertical-Operation> are expression using hori

zontal operations or vertical operations which may involve existing actual attributes

or other virtual attributes. Horizontal operations and vertical operations will be

discussed later in this section.

A domain algebra statement defines a new virtual attribute specified by the

<attribute..name>. The definition of the new virtual attribute remains in the database

until the user exits Relix. The domain algebra statement

> let Final be Project + Exam ;

dec1ares a virtual attribute named Final to be the domain expression Project + Exam.

The virtual attribute Final can be used on any relation containing attributes Project

and Exam as in the following example.

Marks:

Student project Exam

Joe
Mary
Tom

30
20
35

40
30
45

(

Virtual attributes are not associated with any relation until they are actualized by

relational algebra statements. To actualize the virtual attribute Final we issue a

relational algebra statement sucb as

> Final-Marks < - [Student, Final] in Marks ;

which creates a new relation FinaLMarks defined on actual attributes Student and

(CHAPTER 2. RELIX TUTORIAL

Final as shown below.

47

Student Final

(

Joe 70
Mary 50
Tom 80

2.5.1 Horizontal Operations

Horizontal operations work on a single tuple of a relation. The value of a virtual

attribute in a tuple is evaluated in terms of the values of the operand attributes

in the same tuple. The virtual attribute Final already discussed uses a horizontal

operation: Project + Exam. The value of Final in a tuple is the sum of the value

of Projeet and the value of Exam in the same tuple. Listed below are some domain

algebra statements using different types of horizontal operations.

• Constant: let One be 1 ;

• Rename: let Ex be Exam ;

• Mathematics: let Profit be (Priee - Cost) * Units

• Predefined Function: let 1092 be 10g(2) ;

• If-then-else: let Grade he if Final> 65 then Il Passif else "Failli

Domain expressions with horizontal operations have formai syntax as show below.

<math_expression>

(CHAPTER 2. RELIX TUTORlAL

<horizontaLoperation> := <constant>

1 <attribute-llame>

1 <math_expression>

l '(' <domain-expression>3')'

1 <function> 'e' <domain-expression> ')'

l'if' <domain..expression>

'then' <domain-expression>

'else' <domain-expression>

.- <unary_opr> <domain-expression>

1 <domain..expression> <binary-Opr>

48

<compare..opr> .-
<arith_opr> .-
<logicaLopr> .-
< function> .-

<unary_opr>

<binary_opr>

<domain..expression>

.- '+' l '-' l '1' l 'not'

.- <compare-Opr> 1 <arith-Opr> 1 <logical..opr>

l'min' l'max' l 'cat'

'=' l '!=' l '.......,=' l '<=' l '<' l '>' l '>='

'+' l '-' l '*' l 'l' l '**' l 'mod'

'and' l '&' l'or' l 'l'
'abs' l 'isknown' l'round' l 'ceil' l 'Hoor' l 'sqrt'

l'ln' l'log' l 'loglO' l 'acos' l 'asin' l 'atan'

l'cos' l'sin' l 'tan'I 'cosh' l 'sinh' l 'tanh'

.(

3It is a recursive definition sinee domain expression is defined as:

<domain~xpression> := <honzontal..operation> 1 <vertical-Operation>

• CHAPTER 2. HELIX TUTORlAL

2.5.2 Vertical Operations

49

Vertical operations process the values of the operand attributes from more than

one tuple of a relation. Vertical operations are reduction, equivalence, functional

mapping, and partial functional mapping.

Reduction

A simple reduction produces a single result from the values of the specified operand

attribute of all tuples in a relation. For example, in

> let Total he red + of Final ;

> let Cnt he red + of 1 ;

> Total-Marks < - [Student, Final, Total, Cnt] in Final-Marks ;

the first statement declares a virtual attribute Total to he the summation of the

values of the attribute Final in a relation. The second statement declares a virtual

attribute Cnt to be the number of tuples in a relation. The third statement actual

izes the virtual attributes Total and Cnt to be associated with a. new relation called

Total-Marks. The Final-Marks and Total-Marks relations are shown helow.

Student Final Student Final Total Cnt

Joe
Mary
Tom

70
50
80

Joe
Mary
Tom

70
50
80

200
200
200

3
3
3

(

The attrihutes Total and Cnt have the same value in each tuple. Although snch

actualization is redundant, it is consistent to the whole approach of the domain alge

bra. We can a1so use the result of a reduction in horizontal operations of the domain

algebra. For instance, the statements

;1 CHAPTER 2. RELIX TUTORIAL

> let Average he if Final > Total / Cnt

then Il above Il else Il below Il ;

> Average_Marks < - [Student, Final, Average] in FinaLMarks ;

50

actualize the virtual attributes Average which uses the results of Total and Cnt in an

horizontal operation. Note that the value of Avemge in a tuple is evaluated in terms

of the values of Total and entin the same tuple. The Final-Marks and Avemge_Marks

relations are shown below.

Student Final

Average_Marks:

Student Final Average

Joe
Mary
Tom

70
50
80

Joe
Mary
Tom

70
50
80

above
below
above

(

Instead of producing extra virtual attributes we can combine vertical operations

and horizontal operations in a domain expression. We can use the statements

> let Avemge he if Final> (red + of Final) / (red + of 1)

then Il above Il else .. below 11 ;

> Avernge-Marks < - [Student, Final, Average] in Final-Marks ;

to produce the sarne result.

Equivalence

Equivalence is similar to reduction but produces a different result for different classes

of tuples in a relation. Instead of calculating from all the tuples in a relation, equiv

alence operations group tuples into different "equiva1ence classes" specified by the

"grouping" attributes. For example, in

• CHAPTER 2. RELIX TUTORIAL 51

> let CSum be equiv + of Final by Course;

> Class_TotaLMarks < - [Course, Student, Final, CSum] in Class-Marks ;

the first statement declares a virtual attribute CSum which is the sum of the values

of Final in each group grouped by Course. The Class..Marks and Class_TotaLMarks

relations are shown below.

Course Student

CS304
CS304
CS304
CS304
CS612
CS612
CS612

Ann
Peter
Sam
Sue
Joe
Mary
Tom

Final

80
65
80
85
70
50
80

Class_Total_Marks:

Course Student Final CSum

CS304 Ann 80 310
CS304 Peter 65 310
CS304 Sam 80 310
CS304 Sue 85 310
CS612 Joe 70 200
CS612 Mary 50 200
CS612 Tom 80 200

(

Functional Mapping

Functional mapping processes the tuples in the order of the specified "controlling"

attributes. For example, in

> let OSum be fun + of Final order Student;

> Order_TotaLMarks < - [Student, Final, OSum] in Final-Marks ;

the first statement dec1ares a virtual attribute OSv,m which is the accumulated sum

of the values of Final in the order of Student. The relations are shown below.

t(CHAPTER 2. RELIX TUTORIAL 52

Student Final Student Final OSum

Joe
Mary
Tom

70
50
80

Joe
Mary
Tom

70
50
80

70
120
200

Partial Functional Mapping

Partial functional mapping performs functional mapping within each equivalence class

specified by the "grouping" attributes. For example, in

> let PSum be par + of Final order Student by Course ;

> Class_Order_TotaLMarks < - [Student, Final, PSum] in Class-Marks ;

the first statement declares a virtual attribute PSum which is the accumulated sum

of the values of Final in the order of Student for each group grouped by Course. The

relations are shown below.

Course Student

CS3D4
CS3D4
CS304
CS304
CS612
CS612
CS612

Ann
Peter
Sam
Sue
Joe
Mary
Tom

Final

80
65
80
85
70
50
80

Class_Order_Total_Marks:

Course Student Final PSum

CS304 Ann 80 80
CS304 Peter 65 145
CS304 Sam 80 225
CS304 Sue 85 310
CS612 Joe 70 70
CS612 Mary 50 120
CS612 Tom 80 200

(

Formai Syntax

The formaI syntax for domain expressions with vertical operations is described below.

(CHAPTER 2. RELIX TUTORIAL

<vertical_operation>

<reduction>

<red_opr>

<equivalence>

<verticalJist>

<funetional..mapping>

<partiaI.iunctionaI..mapping>

53

.- <reduction>

1 <equivalence>

1 <functiona1..mapping>

1 <partiaLfunctionaLmapping>

.- 'red' <red_opr> 'of' <domain..expression>

.- '+' l ,*, l '&' l 'l' l'min' l'max'
:= 'equiv' <red_opr> 'of' <domain..expression>

'by' <verticaIJist>

:= <domain-expression> (',' <domain..expression»*

:= 'fun' <fun_opr> 'of' <domain..expression>

'order' <verticalJist>

:= <red_opr> l '-' l '/' l 'mod' l '**'

l 'eat' l 'pred' l'suce'

.- 'par' <fun_opr> 'of' <domain..expression>

'order' <vertieaIJist> 'by' <verticalJist>

(

2.6 Update Statements

Update statements are special forms of relational algebra statements. Update oper

ations do not extend the eapabilities of relational algebra, but they are easier to use

and to understand. In Relix, an update statement has formal syntax

<update..statement> .- 'update' <relation..name> <update_operation> ';'

where:

• <relation-name> is the name of the "update relation" being updated; and

CHAPTER 2. RELIX TUTORIAL 54

• <update_operation> is one of the three update operations (add, delete, and

change) presented below.

2.6.1 Add

The add operation is equivalent to an increment operation in relational algebra state

ments. It adds the new tuples in the operand relation to the update relation. The

update relation and the operand relation must be defined on the sarne attributes.

For example, there are two relations in the database as shown below.

TA:

Student

Joe
Mary
Tom
Tom

Course

CS102
CS314
CS102
CS243

NewTA:

Student

Peter
Sue

Course

CS102
CS355

The update statement

> update TA add NewTA

adds the tuples in NewTA to TA, and the updated TA relation is shown below.

TA:

(

Student

Joe
Mary
Peter
Sue
Tom
Tom

Course

CS102
CS314
CS102
CS355
CS102
CS243

(CHAPTER 2. RELIX TUTORIAL

Below is the formaI syntax of add operation.

<update-add> := 'add' <relational..expression>

2.6.2 Delete

55

The delete operation works like the "left difference jain" operation in relational alge

bra statement. For example, we have the TA and OldTA relations.

TA:

Student

Joe
Mary
Tom
Tom

Course

CSI02
CS314
CSI02
CS243

OldTA:

Student

Tom

The update statement

> update TA delete OldTA

and the relational algebra statement

> TA < - TA djain OldTA ;

produce the same result as as shown below

TA:

Student Course

(
Joe CS102
Mary CS314

(CHAPTER 2. RELIX TUTORIAL

Below is the formaI syntax of delete operation.

<update_delete> := 'delete' <relationaLexpression>

2.6.3 Change

56

The change operation modifies the values of the specified attributes in selected tu

pIes of the update relation. Domain algebra is used to specify how the values of the

specified attributes are changed. For example, the TA relation has data

TA:

Student Course

Joe CS102
Mary CS314
Tom CS102
Tom CS243

and the update statement

> update TA change Course < - Course cat .. A Il ;

adds an "A" to the end of each Course in the TA relation. The updated TA relation

is shown below.

TA:

Student Course

(

Joe CS102A
Mary CS314A
Tom CS102A
Tom CS243A

.(CHAPTER 2. RELIX TUTORIAL 57

The above update statement changes aH the tuples in the TA relation. Changes cau

also be restricted to selected tuples of the update relation. Relational algebra is used

to specify which tuples are to be changed. For example, given the relations

TA:

Student

Joe
Mary
Tom
Tom

Course

CS102
CS314
CS102
CS243

FaU:

Course

CS102
CS243
CS256

the update statement

> update TA change Course < - Course cat .. A " using Fall ;

changes only the tuples in result of the expression

TA ijoin FaU

or in other words, the above update statement adds an "A" to the end of the Fall

courses only. The updated TA relation is shown below.

TA:

Student Course

(

Joe CS102A
Mary CS314
Tom CS102A
Tom CS243A

The formal syntax for the change operation is given below.

CHAPTER 2. RELIX TUTORIAL 58

<update_change>

<changeJist>

<change_pair>

<optionaLusing_clause>

.- 'change' <changeJist> {<optionaLusing_clause>}

.- <change_pair> (',' <change_pair»*

.- <attribute..name> '< -' <domain-expression>

.- 'using' {<JLjoin-Operator>}< relationaLexpression>

(

2.7 If-then-else Statements

The if-then-else statement is a Relix control statement whose execution is to be based

on the result of a given condition. The if-then-else statement has formal syntax

<if..statement> .- 'if' <if..cond> <then_part> { <else_part> } ';'

<then_part> .- 'then' <statement_part>

<else_part> .- 'else' <statement_part>

<statement_part> .- <one..statement>

l '{' <one..statement> (';' <one..statement»* '}'

<one..statement> .- <domain..declaration>

1 <relation..declaration>

1 <relational..statement>

1 <domain..statement>

1 <update..statement>

where <if..cond> is a relational expression, which gives a boolean singleton scalar

relation as result.

When we discussed projection in Section 2.4.1, we mentioned that the resulting

relation of the empty projection expression

[] in <relational..expression>

• CHAPTER 2. RELIX TUTORIAL 59

(

was a boolean singleton scalar relation. The above expression can be read as "sorne

tuples in ... ". If there are some tupIes in the operand relation the returned value

is troe. If the operand relation is empty the return value is false. Hence, the empty

projection expression can be used as the <iLcond> in the if-then-else statement.

If the returned value in the <if-cond> is true, the statements in <then_part>

are executed. Otherwise, the statements in <else.part>, if given, are executed. For

example, the statement

> if il in TA

then TAO < - TA ijoin Office;

will execute the ijoin operation if there are some tuples in the TA relation.

2.8 Computations

Computations implement proeedural abstraction for domain algebra in Relix with

the following concepts.

• Computations are symmetrical funetions. Whereas a function has specifie input

parameters and a specific output parameter, a computation has specifie param

eters, of which any subset ean be inputs, with the complement of the subset

being output.

• Computations are implicit relations. Whereas an explicit relation contains phys

ical data and finite number of tuples, a computation contains a description of

its tuples and possibly infinitely many tuples. Moreover, a computation can he

called in selection, 'ijoin', or 'icomp' operation.

• Computations can have internai states where the output of the computation

depends not only on the inputs but also on the internal state.

• CHAPTER 2. RELIX TUTORIAL

Computations relate to the work of this thesis in two ways:

60

(

1. the general forms of procedure dec1aration conforms to the generaI form of

computation declaration to retain the simplicity of the syntax of the language;

and

2. the concept of procedure also includes symmetry.

In this section we will use examples to discuss the general form of computation

dec1aration and the concept of symmetrical functions. The basis of computations

cau be found in [Mer93] and a complete documentation of its implementation can be

found in [8ut94].

2.8.1 Computation Declaration

The formai syntax for computation dec1aration is

<computation..dec1aration> := 'comp' <computation..name>

'(' <parameterJist> ')' Lis'

{'def' optionaLpredicate-elause ';' }

'{' <block> '}'

('ait' '{' <block> '}')* ';'

and the definitions are given below.

• <computation..name> is a unique identifier among the set of relation and com

putation names in the database.

• <parameterJist> is a comma-separated list of parameters which must have

aIready been declared as domains.

• <optional-predicate_c1ause> is an optional boolean expression which gives the

relationship among ail the parameters. When all the parameters are supplied as

CHAPTER 2. RELIX TUTORIAL 61

(

input, the predicate clause is evaluated, and the computation returns a boolean

result.

• Each <block> is a single function. It cantains statements that evaluate a set of

output parameters from the rest of the parameters. A single statement assigns

(< -) an expression to a given output parameter. An expression is a domain

algebra expression or a computation caU.

• Blacks are separated by the alt keyword. Each black in a computation must be

unique regarding the set of the input and output parameters. The curly braces

({ }) around a black can be omitted if the block contains only one statement.

For example, 1 = P *i is a formula for simple interest. 1 is the amount of interest,

P is the amount of principle, and i is .the interest rate. The statements

> domain 1 real;

> domain P real;

> domain i real;

> comp Int (l, P, i) is

def 1 = P * i ;

1 <-P*i

aIt

P <-Iii

aIt

i <-IIP;

are needed to declare a computation for the above formula. The first three statements

declare the attributes l, P, and i with data type real. The fourth statement creates a

computation called Int with parameters l, P, and i. The computation Int contains

a p redicate clause and three blocks. Each of the blocks contains only one statement.

.(CHAPTER 2. RELIX TUTORIAL

2.8.2 Symmetrical Fonctions

62

(

Computations are symmetrical functions because a given computation can have more

than one set of input parameters. When a computation is declared, the type of the

computation is determined by the union of the type of the predicate clause and the

types of the blocks. When a computation is called, Relix searches for the corre

sponding type, picks up the block of that type, and evaluates the statements in the

block.

The type of a black is determined by the sets of input and output parameters of

the black. Computation use the convention

[input parameters] - > [output parameters]

to describe the type of the block. For example, the first block of Int contains the

statement

I <-P*i

with P and i being the input, and 1being the output. Hence,

[P, i] - > [I]

is the type of the black. The "show computation" command with syntax

'sd!'<computation..name>

can be used to view the type of a particular computation. For example,

> sc!!Int

shows the type of the Int computation as shown below.

lot (1: real, P: real, i: real)
[1 Pi] -> []
[P i] -> [1]
[1 i] -> [P]
[1 P] -> [i]

CHAPTER 2. RELIX TUTORIAL 63

(

Suppose we supply values for J and P in the Jnt computation. Relix will find the

type

[1 P 1- > [i]

pick up the block, and evaluate the value of i using the statement

i <-I/P

in the block. Likewise, when we supply values for P and i, Relix will find the type

[Pi)->[I]

and use the statement

J <-P*i

to evaluate the value of J. In case we supply only values for P, Relix cannot evaluate

the computation because the type

[P]->[Ii]

is not defined in the computation, and an error message is retumed.

•

(

Chapter 3

Users' Manual on Procedures

This chapter describes how to use procedures in Relix. Section 3.1 explains the basic

concept of procedure in Relix. Section 3.2 presents the commands on procedures.

Section 3.3 il1ustrates the formal syntax for procedure declaration and procedure

caU. Section 3.4 defines the types of procedures. Section 3.5 describes the types of

errors generated by procedure declaration, procedure calI, and procedure execution.

Finally, we end the chapter by showing more practical examples using procedures.

3.1 Basic Concept of Procedure

A procedure is a user-defined object whose declaration bas general form

proc <procedure-Ilame> (<formaLparameters>) is { <body> }

where

• <procedure-name> is an identifier to he associated witb the procedure decla

ration;

• <formaLparameters> are identifiers used within the body of the procedure

wbich will he replaced by actual parameters when the procedure is activated;

and

64

CHAPTER 3. USERS' MANUAL ON PROCEDURES 65

{

• <body> consists of a sequence of statements and/or commands described in

the previous chapter, which will be executed after the formal parameters are

replaced by the corresponding actual parameters.

The basic concept of procedure in Relix covers procedural abstraction, parameter

passing, and symmetry.

3.1.1 Procedural Abstraction

As opposed to entering and executing one statement at a time, a procedure associates

an identifier to a sequence of statements and awaits for special instruction from the

user to start execution. For instance, when the relational algebra statement

> TAO < - TA ijoin Office;

is entered, the statement is executed and the relation TAO is created. On the other

hand, the statement

> proc iTAO () is

{

TAO < - TA ijoin Office;

} ;

creates a procedure with name iTAO to be associated with the body of the procedure

enclosed by a pair of curly brackets ({ ... }). However, the statement in the proce

dure body is not executed until the procedure is called by the user. Hence, the TAO

relation does not exist until we issue a procedure caU statement

> iTAO ();

.(CHAPTER 3. USERS' MANUAL ON PROCEDURES 66

(

which tells Relix to execute the procedure body associated with the procedure name

iTAO.

3.1.2 Parameter Passing

The previous iTAO procedure does not have any formaI parameters. AH the identifiers

used in the body of the iTAO procedure: namely TA, Office, and TAO, are global

variables. Global variables are relations or domains which can be accessed outside

the procedure.

Formal parameters are identifiers that are used within the body of a procedure,

and those identifiers will be replaced by actual parameters before the statements in

the body are executed. Consider the procedure dec1aration

> proe ijoinTA (Operand, Result) is

{

Result < - TA ijoin Opemnd;

};

that declares a procedure ijoinTA with formal parameters Opemnd and Result. In

the body of the procedure, there are two types of identifiers:

• formai parameters (Opemnd and Result), and

• global variable (TA).

Among the formal parameters, Operand is the input ta the statement in the procedure

body

Result < - TA ijoin Opemnd;

(CHAPTER 3. U8ERS' MANUAL ON PROCEDURES 67

and Result is the output. When we want to activate the ijoinTA procedure, we

need to supply the actual parameters for the procedure. The actual parameters are

mapped to the corresponding formaI parameters by position. Before the body of the

procedure is executed, the formaI parameters in the procedure body are replaced by

the corresponding parameters. The procedure caU statement

> ijoinTA (in Office, out TAO);

maps the actual parameter list to the formaI parameter list as shown below.

Formai Parameter List:

Actual Argument List:

Position

0 1

Operand Result

1 1
Office TAO

in out

(

The keywords in and out in front of each actual parameter indicate whether the

corresponding actual parameter is input or output to the procedure. Such indication

seems to be redundant here, but it is consistent with the caU for symmetric procedures

being described later in this section.

The statement in the procedure body

Result < - TA ijoin Opemnd;

is changed by replacing the formal parameter Operand to Office, and Result to TAO.

The resulting statement

TAO < - TA ijoin Office;

(
CHAPTER 3. USERS' MANUAL ON PROCEDURES 68

(

is executed.

Note that this is "pass by namell but not "pass by name and expression". Thus,

the caU statement

ijoinTA (in A ijoin B, out TAO);

is invalid.

We can aiso supply only a subset of actual parameters. For instance, the proce

dure caU statement

> ijoinTA (in Office, out) ;

changes only the formal parameter Operand to Office. The statement in the procedure

body becomes

Result < - TA ijoin Office;

and a relation named Result is created as a result of the execution.

Likewise, we can issue a procedure caU statement

> ijoinTA (in, out);

which will not change the statement in the procedure body at aU.

3.1.3 Symmetry

Procedures are symmetric because a given procedure may have more than one set

of input and output parameters. The user can manipulate the actual parameters to

select the block of statements to be executed at each procedure caU. Like computa

tions, the type of a procedure is the union of the types of its blocks. The type of a

block specifies its input parameters and output parameters. We use the convention

[input parameters] - > [output parameters]

.(CHAPTER 3. USER8' MANUAL ON PROCEDURES 69

to denote the type of a block (block type). We will further discuss block types in

Section 3.4. The black types are then used to determine the appropriate black to ex

ecute depending on which parameters are inputs. Consider the procedure declaration

> proc LRU (Lejt, Right, Union) is

{

Union < - ([Student, Course] in Left) ujoin

([Student, Room] in Right) ;

} aIt

{

} ;

Left <
Right <-

([Student, Course] where Course != de in Union);

([Student, Room] where Room != de in Union);

wherein procedure LRU has three formaI parameters and two blocks. Each block is

separated by the keyword alto The first black contains only one statement

Union < - ([Student, Course] in Left) ujoin ([Student, Room] in Right);

with the formal parameters Left and Right being inputs, and the formal parameter

Union being the output. Bence,

[Left Right) - > [Union]

is the type of the first block. The second block contains two statements

Left <
Right <-

([Student, Course] where Course != de in Union);

([Student, Room] where Room!= de in Union);

(
with the formal parameter Union being input, and the formal parameters Left and

Right being outputs. Therefore,

c CHAPTER 3. USER8' MANUAL ON PROCEDURES

[Union] - > [Left Rightl

70

is the type of the second block.

When a procedure is called, the system maps the actual parameter list to the

formaI parameter list, searches for the corresponding type, picks up the block of that

type, changes the formaI parameters to actual parameters in the block, and executes

the block. In the actual parameter list, a keyword in or out must be supplied in

front of each actual parameter to indicate whether the corresponding parameter is

input or output. For example, the procedure caU statement

> LRU (in TA, in Office, out TAO);

maps the actual parameter list to formai parameter list as shown below.

Formai Parameter List:

Actual Argument List:

Position

0 1 2

Left Right Union

t t t
TA Office TAO

in in out

{

The system looks for the type

[teft Right] - > [Union]

and selects the first block. The statement in the first block is changed to

TAO < - ([Student, Course] in TA) ujoin ([Student, Room] in Office);

and then executed. Similarly, the procedure caU statement

(
CHAPTER 3. USERS' MANUAL ON PROCEDURES

> LRU (out TA, out Office, in TAO);

maps the actual parameter list to formai parameter list as shown below.

71

Formai Parameter List:

Actual Argument List:

Position

0 1 2

Left Right Union

1 1 1
TA Office TAO

out out in

The system looks for the type

[Union) - > [Left Right)

and selects the second block. The statements in the second block are changed to

TA < - ([Student, Course] where Course != de in TAO);

Office < - ([Student, Room] where Room != de in TAO);

and then executed.

The procedure caU statement

> LRU (out TA, in Office, out TAO);

maps the actual parameter list to formaI parameter list as shown below.

(CHAPTER 3. USERS' MANDAL ON PROCEDURES 72

Formai Parametar List:

Actual Argument List:

The system searches for the type

Position

0 1 2

Laft Right Union

r r r
TA Office TAO

out in out

(

[Right] - > [Left Union]

which is not defined in the procedure, and an error message is returned. We do not

propose mechanisms to enforce consistency of the blocks in a procedure. It is up

to the users to write code for each block and to relate them to one another. If a

procedure is dec1ared with more than one block of the same type, a warning mess

age is displayed, and the corresponding procedure caU will pick the first block of that

type.

3.2 Commands on Procedures

Commands on procedures are designed to be similar to the ones on relations. The

"print relation" (pr!!), "show relation" (sr!!), and "delete relation" (dr!!) commands

will take an existing procedure name as argument. A new command "show procedure"

(sp!!) is designed to show the type of a specified procedure.

3.2.1 Print

A "print relation" command displays the data associated with a particular relation.

For procedures, the "prlnt relation" command displays the source code of a particular

.(CHAPTER 3. U5ERS' MANUAL ON PROCEDURES

procedure. Recall that the syntax for the "print relation" command is

<print-relation> := 'prll'<relation..name>

73

(

with a relation name as argument. For example, the procedure LRU has previously

been declared, and the command

> pr!!LRU

displays the source code of LRU as shown below.

proe LRU (Left, Right, Union) is
{

Union <- ([Student, Course] in Left) ujoin
([Student, Room] in Right);

} ait
{

Left <~ [Student, Course] where Course != de in Union;
Right <- [Student, Roorn] where Room != de in Union;

} ;

3.2.2 Show

The synta.x for the "show relation" command is

<show-relation> := 'sr!!'{<relation-Ilame>}

where a relation name is optional. Han existing procedure name is given as an argu

ment, the "show relation" command displays the associated system information for

the specified procedure. For instance, the command

(CHAPTER 3. USERS' MANUAL ON PROCEDURES

> sr!!LRU

produces a display as shown below.

Database: "sample" (relation ".rel")

74

Name Arity Rank Ntuples Sort status

LRU o -3 -3 procedure

(

The fields in the display have the fol1owing meanings.

• !lame is the name of the relation.

• Arity is the number of attributes in the relation. Since procedures have no

attributes, the value of Arity is O.

• Rank is the number of sorted attributes in the relation. Since procedures do not

have any attributes, the value of Rank is -3 which means that the information

is not used.

• Ntuples is the number oftuples in the relation. We use this attribute to indicate

whether the procedure is being protected from deletion. The value of Ntuples

is -3 if no one is executing the procedure and the procedure is not protect 00.

• Sort status indicates the type of sorting applied for the relation. We use this

field to specify that the relation is a procedure.

3.2.3 Delete

The syntax for the Hdelete relation" command is

(CHAPTER 3. USERS' MANUAL ON PROCEDURES

<delete-relation> .- 'dr!!'<relation..name>

75

(

with a relation name as argument. If an existing procedure name is specified as

argument, the "delete relation" command removes the declaration and code of the

specified procedure from the database provided that the specified procedure is not

protecte d. For example, the command

> dr!!LRU

removes the procedure LRU from the database if no one is executing the procedure.

3.2.4 Show Procedure

The "show procedure" command displays the formal parameters and the type of a

particular procedure. The formai syntax for the "show procedure" command is

<show_procedure> := 'spH'<procedure-llame>

with an existing procedure name as argument. The command

> sp!!LRU

displays the type of LRU with the type of each block in the order of declaration as

shown below.

LRU (Left, Right, Union)
[Left Right] -> [Union
[Union] -> [Left Right

CHAPTER 3. UBERS' MANUAL ON PROCEDURES

3.3 FormaI Syntax

A procedure declaration or procedure caU statement can be

• entered alone at the Relix prompt, or

• used as a statement in the <if..statement> described in Section 2.7.

76

In this section, we il1ustrate the formal syntax for procedure declaration and proce

dure calI using BNF notation described in Table 2.1.

3.3.1 Procedure Declaration

Procedure declarations can not be nested. AH procedures are defined at the top level

and are global ta the whole program. The syntax for procedure declaration is de

signed to be similar to the one for computations. The formal syntax for procedure

dec1aration is show below.

(

<procedure_declaration>

<procedure..name>

<procedure_parameter..list>

<procedure_body>

<procedure_block>

<procedure_one..statement>

.- 'proc' <procedure..name>

'(' {<procedure_parameterJist>} ')'

'is' <procedure_body> ';'

.- <identifier>

.- <identifier> (',' <identifier»*

.- <procedure_block> ('ait' <procedure_block»*

:= '{' «procedure_one...statement»+ 'l'
.- <procedure_command>

1 <procedure....statement> ';'

• CHAPTER 3. USERS' MANUAL ON PROCEDURES

<procedure_command> .- <print-relation>

1 <show..relation>

1 <show-<iomain>

1 <show..relation...domain>

1 <delete..relation>

1 <delete..domain>

<procedure-5tatement> .- <domain..declaration>

1 <relation...dec1aration>

1 <relationaL.statement>

1 <domain..statement>

1 <update...statement>

1 <procedureJf>

1 <procedure_calI>

<procedure.if> := 'if' <if-.eondition>

'then' <procedure..statement_part>

{'else' <procedure..statement_part>}

<procedure-5tatement_part> .- <procedure...statement>

l '{' <procedure...statement>

(';' <procedure..statement»* 'l'

where:

77

(

• <procedure..name> must be unique among the set of relation, computation,

and procedure names in the same database;

• an optional <procedure_parameterJist> is enclosed by a pair of brackets;

• <procedure_parameterJist> is a list of unique identifiers representing the for

mal parameters of the procedure with a maximum number of 30 formai param

eters;

CHAPTER 3. U8ER8' MANUAL ON PROCEDURES 78

• <procedure_body> contains a sequence of <block> separated by the keyword

alti

• <procedure_block> is enclosed by a pair of curly brackets ({ ... }), and contains

at least one <procedure_one..statement>;

• <procedure_command> is any command described in Section 2.3;

• <procedure...statement> can be

- <domain-Cleclaration>, described in Section 2.2.1,

- <relation..declaration>, described in Section 2.2.2,

- <relational..statement>, described in Section 2.4,

- <domain..statement>, described in Section 2.5,

- <update..statement>, described in Section 2.6.

- <procedureif>, similarto the <if..statement> described in Section 2.7 ex-

cept that only procedure statements are allowed in the < procedure..statement_part> ,

- <procedure.-eall>, described below_

3.3.2 Procedure CalI

Procedure caU is a statement with formal synta.x:

(

<procedure_caU>

<procedure..actuaLparameterJ.ist>

<procedure...actuaLparameter>

<procedure-Ilame>

'(' {<procedure....actuaLparameterJist>} ')' ';'

<procedure-actual_parameter>

(' " <procedure-3.CtuaLparameter»*

'in' {<identifier>}

l'out' {<identifier>}

• CHAPTER 3. USER8' MANUAL ON PROCEDURES

where:

• <procedure-Ilame> is the name of a dec1ared procedure;

79

(

• an optional <procedure...actuaLparameterJist> is enc10sed by a pair of brackets;

• the number of <procedure..actuaLparameter> in <procedure..actual_parameterlist>

must correspond to the number of formal parameters in the formai parameter

list dec1ared with the procedure;

• each <procedure..actuaLparameter> must begin with the keyword in or out,

but the <identifier> of the actual parameter can be omitted.

3.4 Type of Procedure

In Section 3.1.3 we define that the type of a procedure is the union of the types of

its blocks. The type of a block specifies its input parameters and output parameters

which are defined when the procedure is declared. In this section, we present in detail

how to define the type of a black.

3.4.1 Inputs and Outputs of Statements in Procedures

A block consists of a sequence of procedure statements. Hence, the inputs and outputs

of a block are based on the inputs and outputs of its statements. When defining the

inputs and outputs of a statement, we focus on whether the declarations and/or

values of the identifiers are required to carry out the execution of the statement.

Therefore, we generally define the inputs and outputs of a statement as below.

If the declaration and/or value of an identifier is required to execute

the statement successfully; then the identifier is an input of the statement.

Otherwise, the identifier is an output of the statement.

(CHAPTER 3. USERS' MANUAL ON PROCEDURES 80

Let us apply the above general definition to each type of statements and commands

aHowed in procedures.

• Domain Declaration Statements
Form: domain <attribute..name> <data_type>

Inputs: NONE

Outputs: <attribute..name>

• Relation Declaration Statements
Form: relation <relation..name> «attribute..1ist» { < - <init_value> } ;

Inputs: - AlI the identifiers in the <attributeJist>

- AlI the identifiers in the <init_value>

Outputs: - <relation..name>

• Relational Aigebra Statements

Assignment: <LHS> < - <RHS>

Inputs: - AH the identifiers in the <RHS>

Outputs: - AU the identifiers in the <LHS> which are not in the <RHS>

Increment:

Inputs:

Outputs:

<LHS> < + <RHS> ;

- AU the identifiers in the statement

-NONE

(

• Domain Algebra Statements

Form: let <attribute-Ilame> he <domain..expression>

Inputs: - AIl the identifiers in the <domain-expression>

Outputs: - <attribute..name>

• Update Statements

Form: update <relation..name> <update_operations>

Inputs: - AH the identifiers in the statement

Outputs: - NONE

(CHAPTER 3. USER5' MANUAL ON PROCEDURES

• Basic Commands
Form: <command..name>!!<argument>

Inputs: - <argument>

Outputs: - NONE

• Procedure If Statement
Form: if <iLcond> then <then_procedure..statement_part>

{ else <else_procedure..statement_part> }

Inputs: - AIl the identifier in <if-eond>

- The set of input identifiers required to process

<then_procedure..statement_part> in sequential order

- The set of input identifiers required to process

<else_procedure..statement_part> in sequential arder

Outputs: - The set of output identifiers produced by

<then_procedure..statement_part> or

<else_procedure..statement_part>

which are not inputs of the if statement

81

(

• Procedure CaU

Form: < procedure..name> (< actuaLargumentJist>)

Inputs: - <procedure-name>

- AIl the input arguments

Outputs: - AU the output arguments

The table below gives examples for each type of statements allowed in the body of

procedures.

(CHAPTER 3. USERS' MANUAL ON PROCEDURES

Procedure Statement Inputs Outputs

damain a integer; a

relation A (a, b) <- 8; a,b,B A

A <- [a, b] in B; a,b,B A
C <- C ijoin 0; C,D
E<+F; E,F

let b be a * 10; a b

update A change a <- b using B; A,a,b,B

pr!!A A
dr!!B B

if [] in A ijoin B A, B,
then C <- 0 ujoin E O,E C
else F <- G ujoin H G,H F

A (in a, out b, in c); A, a, C b

3.4.2 Global Variables and FormaI Parameters

There are two types of identifiers in each statement:

82

{

1. global variables, the identifiers that are not in the formal parameter list; and

2. formai parameters, the identifiers that are in the formal parameter liste

We do not use the global variables to define the type of a block because global

variables are not associated with procedure caU statements. Moreover, we do not

require the existence of the input global variables when the procedure is declared.

The input global variables can be declared or created any time before the statement is

CHAPTER 3. USER8' MANUAL ON PROCEDURES 83

(

executed. If any input global variable is not available when a statement is executed,

the system will generate a severe error message and stop execution of the statement.

Errors will be discussed in the next section.

Unlike computations, the forma! parameters of a procedure do not need any dec

laration before the procedure is declared. FormaI parameters are neither attributes

nor relations. In Relix, an attribute and a relation can have the same identifier.

Therefore, we cannot define whether a forma! parameter is an attribute or a rela

tion when the procedure is declared. As far as a procedure declaration is concerned,

formaI parameters are just identifiers, and the scope of the formal parameters is the

corresponding procedure body. For example, the procedure dec1aration

> proc ProjectTA (Project) is

{

Resultl < - [Project] in TA;

Result2 < - [Room] in Project;

};

is perfectly legal. The first statement uses the formal parameter Project as an iden

tifier for an attribute in the TA relation, but the second statement use Project as an

identifier for a relation.

3.4.3 Types of Blacks

Using the set of formal parameters to define the types of blocks, a procedure can

have up to 2number of formai parameters different combinations of input param-

eters and output parameters. Rence, to its full potential a procedure can have

2number of formai parameters distinct types of blocks.

When defining the type of a block, we focus on whether the declarations and/or

values of the formal parameters are required to carry out the sequential execution

CHAPTER 3. U8ER8' MANUAL ON PROCEDURES 84

of the statements within the block. We cannot simply take the union of the input

(output) parameters of its statements as the input (output) parameters of the block

because:

1. the input of a statement may be produced by the output of the previous state

ments;

2. the output of a statement may he required as input of the previous statements;

and

3. sorne formal parameters may not be used in the black.

We generally define the input parameters and output parameters of a block as below.

If the dec1aration and/or value of a formal parameter is required to

execute the statements of block sequentially; then the formal parameter

is an input parameter of the block. Otherwise, the formai parameter is

an output parameter of the block.

This implies that if a formai parameter is not used in the block, the formal parameter

is an output parameter of the block.

The statements within the block are analyzed sequentially. For each statement,

the inputs and outputs of the statement are identified. Each input fonnal parameter

of the statement is added to the set of input parameters of the block if it is not in

the set of output parameters of the block. Then, each output formal parameters in

the statement is added the set of output parameters of the block if it is not in the

set of input parameters of the block. After all the statements are analyzed, all the

unused formaI parameters are added to the s et of output parameters of the block.

The algorithm is summarized in Figure 3.1.

,(

(

CHAPTER 3. USERS' MANUAL ON PROCEDURES

lB =the set of Input parameters of the block =empty
OB = the set of output parameters of the block =empty
foreach statement in the block
begin

Find out the inputs and outputs of the statement
foreach 1=Input formai parameter in the staternent
begin

If 1is NOT in OB
then

Add 1to lB
end for
foreach 0 =output formai parameter in the statement
begin

if 0 Is NOT in lB
then

AddOtoOB
end for

end for
Add ail the unused formai parameters to OB

Figure 3.1: Algorithm for Computing the Type of a Block

85

• CHAPTER 3. U5ERS' MANUAL ON PROCEDURES

3.4.4 Examples

86

(

The examples below show how the algorithm in Figure 3.1 works. To represent the

type of a block, we use the convention

[lB] - > [OB]

where lB is the set of input parameters of the block, and OB is the set of output

parameters of the black. The inputs and outputs of each statement are shown in the

column "Statement Inputs Outputs". "Block Type" is updated after the analysis of'

eac h statement. "Procedure Type" is the union of the block types.

Statement Black Procedure
Procedure Declaration Inputs Outputs Tvoe Type
proc Ex1 (At B) is
{

lat A be 1; A [] -> [A]
let B be red+ of A; A B []-> [A B]

} ; [] -> [A B]

The procedure Exl above shows that A is the input of the second statement but the

output of the block.

Statement Black Procedure
Procedure Declaration Inouts Outputs Tvoe Tvoe
prac Ex2 (A, B) is
{

dd!!A; A [A] -> []
let Abe red+ of B; B A [A 8] -> []

}; [A B]-> []

The procedure Ex2 shows that A is the output of the second statement but the input

of the block.

(CHAPTER 3. U5ERS' MANUAL ON PROCEDURES

Statement Block Procedure
Procedure Declaration Inputs Outputs Tvpe Tvpe
proc Ex3 (A, B, C) is
{

A <+ B; A,B [A B] -> []
} ; [A B]->[C]

87

(

The procedure Ex3 shows that the unused formai parameter C is added to the set of

output parameters of the block.

Statement Block Procedure
Procedure Declaration Inouts OutDuts Tvoe TVDe
proc Ex4 (A, B) is
{

B <- R ijoin A; R,A B [A] -> [B]
} [A lM> [B]
ait
{

A <- B ijoin S; B,S A [B] -> [A]
} ; [B lM> [A]

The procedure Ex4 shows that global variables, R and S, are ignored when computing

the types of the blacks. The union of the types of its blacks

[A]->[B]

[B]->[A]

is the type of procedure Ex4.

3.5 Errors

When something goes wrong, the system reports an error message. There are two

kinds of error messages: severe error messages and warning error messages.

,(CHAPTER 3. U8ERS' MANUAL ON PROCEDURES 88

(

Severe errors are usually syntax errors or run time errors. After displaying a se

vere error message, the system stops executing the current statement and goes to the

next statement. A severe error message has general format

*** SEVERE ERROR ***
<function..name>: <message>

where

• <function..name> is the name of the function that issues the error message,

and

• <message> describes the error.

A warning error message is usually caused by minor semantic errors. After dis

playing a warning error message, the system continues the execution of the current

statement and attempts to produce the outputs of the statement. A warning error

message has general format gÏven below.

*** WARNING ERRüR ***
<function..name>: <message>

In this section, we describe the types of severe and warning error messages, to

gether with their causes, that may occur at procedure dec1aration, procedure caU,

and procedure execution. An alphabeticallist of error messages described in this

section can be found in Appendix B.

3.5.1 Procedure Declaration

When the user enters a procedure declaration, the system will not create the proce

dure declaration if any of the following severe error messages is displayed.

CHAPTER 3. USERS' MANUAL ON PROCEDURES 89

(

• Invalid token: n ••• n

An invalid token is encountered when the system is parsing the user input.

The user should check the syntax of the source code using the formal syntax

described in Section 3.3.

• Domain "... Il aIready appeared in this list

A Duplicated identifier is found in the formai parameter list. The user should

ensure that the identifiers in the formai parameter list are unique.

• Name Il ••• Il has been used

The procedure name has been used by other procedures, relations, or computa

tions. The "show relation" command (sr!!) cau be used to display all the used

names.

• " ••• Il has too many parameters

The procedure declaration has more than 3D formai parameters.

However, the system will create the procedure declaration even if any of the following

warning error messages is displayed.

• Procedure Il ••• Il has more than one block

The procedure has no formai parameters and attempts to declare more than

one block. A procedure with no parameters should have 2° block. When the

procedure is caIled, only the first block will be executed.

• Block Il ••• Il and block Il ••• Il have the same type

The procedure declares two blocks with the same type. Each block in a proce

dure should have a unique type. When the procedure is called, only the first

block of that type will be executed.

1
CHAPTER 3. U8ER8' MANUAL ON PROCEDURES

3.5.2 Procedure CalI

90

(

When the user enters a procedure call statement, the system will not execute the

procedure if any of the fol1owing severe errar messages is dispIayed.

• Invalid token: " ... "

An invalid token is encountered' when parsing the procedure caU statement.

• Cannot find "... Il

The procedure name given in the procedure cal1statement is not declared.

• Cannot execute et ••• Il

The procedure name given in the procedure calI statement is not a procedure.

• Too many arguments in "... Il

The procedure caU statement has more a.ctuaI arguments thao the number

of formaI parameters dec1ared. The command pr!!<procedure..name> or

sp!!<procedure..name> can be used to check the declared formai parameters

of the procedure.

• Not enough arguments in "... "

The procedure caU statement has less actual arguments than the number of

formal parameters declared.

• No such type in "... tI

The procedure caU statement attempts to caU an undefined block. The "show

procedure" command (sp!!<procedure..name» cao be used to find out the

defined types of blocks of the procedure.

3.5.3 Procedure Execution

When the system is executing the procedure statements in the selected block, the

system will stop executing the current procedure statement if any of the following

(CHAPTER 3. USERS' MANUAL ON PROCEDURES

severe error messages is found.

91

(

• Procedure li ••• Il is protected. Deletion failed

A "delete relation" command (dr!!<procedure...name» attempts to delete a

caller procedure. A delete command will remove all the information and codes

associated with the procedure. The system cannat locate the codes when the

control is returned ta a deleted procedure. Hence, we protect all the caller

procedures from being deleted.

• Cannot execute Il ••• Il

A statement attempts to use a procedure name in a relational expression.

• Cannot find Il ••• li

A statement attempts to use an undeclared abject as input. AU the inputs ta

a statement must be declared hefore the statement is executed.

• Domain Il ••• Il still used; cannat change type

A domain declaration or domain algebra statement attempts to re-declare an

existing attribute with another data type. Relix does not allow an attribute ta

change its data type if the attribute is used by any relation or virtual attribute.

• Domain "... Il still used

A "delete domain" command (dd!!domain-name) attempts to delete an ex

isting attribute which is used by a relation or virtual attribute.

• Type mismatch

A domain expression attempts to operate on two attributes of incompatible

data type.

• No common attributes

A relational algebra binary operation, except natural join and union join, at

tempts to operate on two relations with no common attributes, but the set

(
CHAPTER 3. USERS' MANUAL ON PROCEDURES 92

of join attributes is not stated explicitly in the expression. The set of join at

tributes must he explicitly listed in the binary operation expression for relations

with no common attributes.

• Attributes of Il ••• Il and Il ••• Il are not same

A relational increment or update add statement atternpts to add two relations

defined on different attributes.

• If_cond is Dot a boolean singleton scalar

The if_cond expression in the if statement does not produce a boolean singleton

scalar.

3.6 More Examples

In this section we will present sorne practical examples using procedures.

3.6.1 Recursive Procedure

A tree can he represented by a relation defined on two attributes. For example,

Tree:

Parent

1
1
2
2

5

Child

2
3
4
5

9

(

the tree on the left can he stored as the 'Pree relation on the right. Each tuple in the

7Tee relation represents a link in the tree. To find out all the paths of a tree we can

CHAPTER 3. USERS' MANUAL ON PROCEDURES

use a procedure:

> proc Path (Ail, 1ree, Parent, Child) is

{

temp < - Tree ;

Ail < - Tree ;

Path(in AU, in Tree, in Parent, in Child)

} ait

{

temp < - temp [Child icomp Parent] Tree ;

if 0 in temp

then

{

Ail < - Ali ujoin temp ;

Path(in All, in Tree, in Parent, in Child)

}

} ;

93

(

The first black initializes the temp and All relations and caUs the second block which

performs the recursive operation. Note that the values of temp and All are updated

with each execution of the second block. We can find out the type of the Path

procedure

Path (AlI, Tree, Parent, Child)
[Tree Parent Child] -> [AlI
[AIl Tree Parent Child] -> [

using the show procedure command (sp!!Path), The procedure caU statement

• CHAPTER 3. USER8' MANUAL ON PROCEDURES 94

> Path(out , in , in , in) ;

starts the execution of the first block without changing the formal parameters in the

first block. The solution of the Path procedure can be applied to other relations of

the same type. For example,

JuniorSenior

Chart:

Joe Tom
Joe Mary
Joe Pete
Tom Kim
Tom Sue
Pete Sam

the organization chart on the left is represented by the Chart relation on the right.

The procedure calI statement

> Path(out AllChart , in Chart, in Senior, in Junior)

computes all the paths in the chart.

3.6.2 Event Handler

Event handlers are user defined procedures with special names. A complete docu

mentation on event handiers in Relix can be found in [EK96]. Here we just give a

simpIe illustration.

Event handlers are called by the system whenever the defined events occur. Sup

pose we want to recalculate all the paths whenever new tuples have been added to

the Chart relation. We can define an event handler

(

CHAPTER 3. U8ERS' MANUAL ON PROCEDURES

> proc post:add:Chart () is

{

Path(out AIlChart , in Chart, in Senior, in Junior)

} ;

which will he called by the system automatically after the event

update Chart add ... ;

is executed.

The name of an event handler has the formal syntax

95

{

<event-llame> .- {<prefix>':'}<type>':'<relation...name>{'['<attributeJist>']'}

<prefix> .- 'pre' l'post'

<type> .- 'add' l 'delete' l'change'

where:

• 'pre' indicates that the event handler is to he executed prior to the execution

of the event which triggered it;

• 'post' indicates that the event handler is to be executed after the triggering

event has been executed; and

• if <prefix> is omitted then 'post' is assumed.

3.6.3 Domain Aigebra Definition

In Relix, the definitions of virtual attributes are not stored permanently in the

database. These definitions will be lost after Relix is tenninated. Procedures can

be used to restore the virtual attributes. For example, the sumt procedure declaration

(CHAPTER 3. U8ER8' MANUAL ON PROCEDURES

> proc su.mt () is

{

letsumtbe red+ of t;

} ;

96

(

defines a virtual attribute sumt. Since procedures are stored permanently in the

database, calling the procedure

> sumtO;

will restored the definition of sumt.

1

Chapter 4

Implementation of Procedures

This chapter is about the implementation of procedures. Section 4.1 overviews the

implementation of Relix. Section 4.2 describes how procedures are represented. Sec

tion 4.3 and Section 4.4 present the implementation of procedure declaration and

procedure caU respectively. Section 4.5 presents the implementation of commands on

procedures.

4.1 Implementation of Relix

Relix is an interactive multi-user system. It is written in C programming language,

and is portable across different platforms running the UNIX operating system. Ex

tensions in Relix require that the modules to he added are compatible with the

existing code. Therefore, in this section we overview the implementation of Relix

that is related to the work of this thesis. A complete documentation for its first

implementation can be found in [Lal86].

97

(
CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4.1.1 System Relations

98

(

A relation is stored in a UNIX file whose name corresponds to the name of the relation.

A database, which is a collections of relations, is equivalent to a UNIX directory.

Every ReUx database maintains a set of system relations which represents the data

dictionary of the database and is stored permanently as UNIX. hidden files. 1 Three

basic system relations are used to store infonnation about domains and relations in

the database.

1. . rel (. reLname, .sort_status, .rank, .nt'Uples)2

The. rel system relation stores information about aU the relations in the database.

• .reLname is the name of the relation,

• .sort..status specifies the type of sorting for the relation,

• .rank is the number of sorted attributes in the relation, and

• .ntuples is the number of tuples in the relation.

2..dom (.dom_name, .type)

The .dom system relation stores information about all the domains in the

database.

• .dom.-name is the name of the domain, and

• .type is the data type of the domain.

3..rd (.reLname, .dom_name, .dom_pos, .dom_count)

The .rd system relation stores information that links the relations with the

domains on which they are defined.

IFile names beginning with a period (.) are UNIX hidden files which are not normally listed

under the UNIX list directory commando

2In Re1ix convention, names begin with a period (.) are system names.

(
CHAPTER 4. IMPLEMENTATION OF PROCEDURES

• .rel..name is the name of the relation,

• .dom..nalne is the name of the domain,

• .dom_pos is the position of the domain in the relation, and

• .dom_count is the number of domains in the relation.

99

(

Computation uses five system relations to store the interface information for all

the computations declared in the database. Two of them are related ta the work of

this thesis.

1. .comp (.comp_name, .dom_pos, .dom_name, .type, .seq_attr)

The .comp system relation contains domain information of computations. The

attributes are:

• .comp..name,the name of the computation;

• .dom_pos, the position of the domain in the computation;

• .dom-name, the name of the domain;

• .type, the data type of the domain; and

• .seq..attr, the sequencing attribute status of the domain.

2..comp_type (.comp_name, .block, .block-type, .code_offset)

The .comp_type system relation contains information on types of computations.

The attributes are:

• .comp-llame, the name of the computation;

• .block, the sequence number of the block;

• .block_type, the type of the block; and

• .code_offset, the offset of intermediate code in the computation I-code file.

(CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4.1.2 Lexical Analyzer, Parser, and Interpreter

100

Relix consists of three main modules: a lexical analyzer, a parser, and an interpreter.

The lexical analyzer is generated by LEX [Les75] to scan the user input into tokens.

The parser is generated by YACC (Joh75] to perform syntax analysis and gener

ate intermediate code (I-code) for the input. The intermediate codes are generated

by invoking a translator function with different parameters when a component of a

sentence is recognized. Simulating a stack machine, the interpreter is a C function

which reads instructions from the I-code and calls other C functions to perform the

operations. Figure 4.1 summarizes the main flow of Relix.

An example for processing one statement will he shown. When the statement:

> R <-8;

is entered by the user, the lexical analyzer scans the input and matches the input

into tokens specified in the LEX token description file. For example,

([a-z]1 [A-Z]1 [0-9]1[_'#])+ {return(IDENTIFIER);}

"<_" {return(ASSIGN);}

specifies the regular expressions for the tokens IDENTIFIER and ASSIGN respec

tively. Literai characters such as the semi-colon are aIso passed through the lexical

anaIyzer and are aIso considered tokens. The tokens

IDENTIFIER ASSIGN IDENTIFIER '.,,

(

are for the example statement. The parser performs syntax analysis and finds that the

above stream of tokens represents a sentence of an <assignmentJ>y..name> expression

described in Section 2.4 with the following YACC mIes:

assignment_by_name:

name_valued_expression A881GB

(

CHAPTER 4. IMPLEMENTATION OF PROCEDURES

Load system relations into RAM

Wait for in ut from the user

r - - - - - - - - - input - - - - - - - - - - - - - - - - -
1 ~ Lexlçal Analvzer Module 1
1 1 Scan inputinto tokens 1 1
1 1

1- - - - - - - - - tokens- - - - - - - - - - - - - - - --'
~ Parser Module 1

: 1 Parsa tokens andgenerate I-code 1 1
1 1
- - - - - - - - - l-code - - - - - - - - - - - - - - - - -11 Interoreter Module 1

1 1
1 1

~--------- ------------------
--- no ----e:::-

yes

Write system relations back to disk

Figure 4.1: Relix Execution Flowchart

101

c CHAPTER 4. IMPLEMENTATION OF PROCEDURES

relational_expression {translator(ASSIGN_SCALAR);} (. ,,

102

(

name_valued_expression:

identifier {strepy(yytext. UnameU); translator(IDENTIFIER);

translator(STRING); translator(CONSTANT_RELATION);}

relational_expression:

identifier

identifier:

IDENTIFIER {translator(IDENTIFIER);}

where actions in YACC are C codes enclosed in a pair of curly brackets. The trans

lator function is a C function which performs various tasks according to the actual

parameter. The tasks of the translator function include:

• maintaining a scalar~tack for storing and retrieving identifiers;

• rnaintaining a set of flags and counters; and

• generating I-code.

For instance, the caU

translator(IDENTIFIER);

pushes the value of the identifier onto the scalar~tack. Sorne of the parameters pro

duce I-code. For example

CHAPTER 4. IMPLEMENTATION OF PROCEDURES 103

parameter

STRING

CONSTANT.RELATION

ASSIGN..8CALAR

I-code

push-name x name

constant-relation

push-name x assign-scalar

where x is a string obtained by popping an item from the scalar-stack. The I-code

for the example statement is shown below.

push-name

R

1* Push the next string onto the stack.*1

name

constant-relation 1* CalI function constant_relation ta

create a new relation using the name

on the stack. *1

push-name

S

assign-scalar

halt

1* Pop item A and B from the stack t and

calI functian assign_scalar to

assign item A ta item B. *1

1* Update system relations and return. *1

(

The comments on the right hand side describe the interpreter actions for the corre

sponding I-codes. The interpreter maintains a stack for the purpose of storing and re

trieving operands. push-name pushes an operand onto the stack. The 'constant-relation'

and 'assign-scalar' are C functions that the interpreter needs to caU with prede-

fined arguments which are obtained by popping the operands from the stack. Note

that 'halt' is required at the end of the I-code for the interpreter to stop execution.

• CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4.2 Representation Of Procedures

104

Procedures are implemented as special forms of relations because procedures are sim

ilar to computations which are special forms of relations. A procedure is represented

as three components: a source file, an I-code file, and interface information. We will

use the fol1owing procedure declaration to il1ustrate the representation.

> proc Sam (R, S) is

{

s <- R;

} aIt

{

R <- S;

} ;

4.2.1 Source File

A source file is a UNIX text file of the same name as the procedure. This contains

the source code of the procedure and is kept only for the purpose of human reading.

It does nothing in the execution process of the procedure. We generate a source file

by storing all the characters that users type in when they declare a procedure. The

source file of the procedure Sam is presented below.

proc Sam (R, S) is

{

R (- S;

} aIt

{

S (- R;

};

CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4.2.2 I-code File

105

An I-code file is a UNIX text file with the name ".<procedure-llame>.proc". This

file contains intermediate codes of the procedure body and plays an important role

in the execution process of the procedure. The I-code file of the Sam procedure is

".Sam.proc" containing I-code that follows below.

push-name

R

name

constant-relation

push-name

S

assign-scalar

p-stmts-delim

hait

push-name

S

name

constant-relation

push-name

R

assign-scalar

p-stmts-delim

ha1t

1* Procedure statement delimiter *1

(

Note that the I-code file contains statements for aU the blocks separated by the I-code

'haIt'.

• CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4.2.3 Interface Information

106

The interface information of a procedure includes its declaration, forma1 parameters,

and type. Interface information is kept in the form of tuples in three system relations.

1. Each procedure has its declaration entry in relation .rel. The .sort_status of any

procedure is set ta a constant PROC-STATUS, which equals 32 in the current

version, to he distinct from other types of relations. The .mnk and .ntuples are

set to RELIX_VüID, which equa1s -3, to indicate the unused state. The entry

.rel (.rel-name, .sort..status, .rank, .ntuples)

Sam 32 -3 -3
is for procedure Sam.

2. Each procedure having formai paxameters has its formai parameter information

in relation .comp. The .comp_name is the name of the procedure. The .dom-FOs

is the position of the formai parameter starting from O. The .dom_name is the

name of the formai paxameter. The .type of any formal parameter is set ta a

domain constant any, which equals 6, ta indicate that it can be any type. The

seq_attrof any formai parameter is set ta 0 to indicate unused state. The entries

.comp (.comp..name, .dom_pos, .dom..name, .type, .seq..attr)

Sam

Sam
are for procedure Sam.

o
1

R

S

6

6

o
o

(

3. Each procedure having formaI parameters has its type information in rela

tion .comp_type. The .block is the number of the block starting from O. The

.block.-type is a long integer (32 bits) which represents the type of the correspond

ing block. The bit corresponding to the position of input formai parameters is

marked. Hence, output formai parameters axe the complement of input formal

parameters. For example, the positions of R and S are 0 and 1 respectively.

The procedure type is shown below.

CHAPTER 4. IMPLEMENTATION OF PROCEDURES

[S)->[R)

[R) - > [S]

107

The .black_type of black a is 21 = 2, and that of black 1 is 2° = 1. The

.code_offset indicates the offset of intermediate codes in the I-code file. The

entries
.comp_type (.comp.name, .block, .block_type, .code_offset)

Sam 0 2 a
Sam 1 1 80

are for procedure Sam.

4.3 Declare

In this section, we present the implementation for procedure declaration. We first

describe the I-code for procedure declaration. Then the algorithm to declare a pro

cedure is presented.

4.3.1 I-code for Procedure Declaration

When users declare a procedure, the lexical analyzer scans the input into a stream of

tokens. Using the formal syntax described in Section 3.3.1, we add the rules for pro

cedure declaration to the existing parser module. Appendix A lists all the required

addition to the existing parser. The parser checks the syntax of the declaration state

ment, detects duplicated identifiers in the formal parameter lists, and translates the

statement into I-code. Below is the structure of the I-code for procedure declaration.

(

push-name

push-name

/* Push the next string onta the stack.*1

1* first formaI parameter *1

1* more formaI parameters *1

c CHAPTER 4. IMPLEMENTATION OF PROCEDURES

push-count

1* number of formaI parameters

push-name

108

p-dec

p-blockbgn

push-name-left

push-name-right

p-stmts-delim

1* procedure name *1
1* beginning of procedure declaration *1

1* beginning of a block *1

1* the input identifier of a statement *1

1* the output identifier of a statement*1

1* operator of a statement or command *1

1* statement delimiter *1

1* more statements *1

p-blockend

p-dec-off

/* end of a block

1* more blocks

1* end of procedure declaration *1

(

To examplify this, the I-code for the declaration of procedure Sam described in Sec

tion 4.2 is provided below.

push-name

R

push-name

•

(

CHAPTER 4. IMPLEMENTATION OF PROCEDURES

S

push-count

2

push-name

Sam

p-dec

p-blockbgn

push-name-left

R

name

constant-relation

push-name-right

S

assign-scalar

p-stmts-delim

p-blockend

p-blockbgn

push-name-left

S

name

constant-relation

push-name-right

R

assign-scalar

p-stmts-delim

p-blockend

p-dec-off

haIt

109

(CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4.3.2 Aigorithm ta Declare a Procedure

110

(

When the interpreter meets the instruction 'p-dec' in the above I-code, it caUs the

function declare_proe using the procedure name (P-llame) and the formal parameter

list (P jist) as arguments. The algorithm of the function declare_proc is shown below.

1. If P -llame is in system relation .rel, report error and return.

2. If the number of formal parameters exceeds 30, report error and return.

3. Insert the procedure entry into the system relation .rel. as described in Sec

tion 4.2.3.

4. Create a source file for the procedure as described in Section 4.2.1.

5. Create an I-code file for the procedure as described in Section 4.2.3.

6. If the procedure has no formal parameters, write the I-code within the first

block (p-blockbgn ... p-blockend) to the I-code file. H there is more than one

block, issue a warning and skip the rest of the I-code.

7. If the procedure has formal parameters:

(a) for each formal parameter in P list create an entry in the system relation

.comp as described in Section 4.2.3;

Cb) for each black

i. compute the type of the block using the algorithm in Figure 3.1,

iL if the type of the black already exists in the system relation .comp_type,

issue a waming,

CHAPTER 4. IMPLEMENTATION OF PROCEDURES 111

iii. create an entry for the block in the system relation .comp_type as

described in Section 4.2.3,

iv. write the I-code within each block (p-blockbgn ... p-blockend) to the

I-code file,

v. at the end of each block, add the I-code 'hait' to the I-code, and

vi. update the offset of the block in the system relation .comp_type.

8. Write the source program ioto the source file.

9. Retum.

If the interpreter receives any error from the function declare_proc, it will skip

the I-code until 'p-dec-off' or 'haIt'. In this case, the system relations are not

updated.

4.4 CalI

In this section, we describe the implementation of the procedure caU. We first look

at the I-code for procedure caU. Then we present the algorithm.

4.4.1 I-code for Procedure CalI

The structure of the I-code for procedure calI is giveo below.

push-name

p-cali

p-actual-in

1* procedure name

1* procedure cali

p-actual-out

1* actual input argument *1

• CHAPTER 4. IMPLEMENTATION OF PROCEDURES

1* actual output argument *1

1* more arguments *1

112

p-call-off

Example 1

1* end of procedure calI *1

(

The I-code for the procedure caU without parameters,

Ex10;

is shown below

push-name

Ex1

p-call

p-call-off

haIt

Example 2

The I-code for the procedure caU without actual arguments,

Ex2(in, out);

is shwon below.

push-name

Ex2

p-call

p-actual-in

~A 1* a null string *1

p-actual-out

~A

p-call-off

CHAPTER 4. IMPLEMENTATION OF PROCEDURES

haIt

Example 3

The I-code for the procedure caU with actual arguments,

Ex3(out A, in B, in C);

is given below.

push-name

Ex3

p-caII

p-actual-out

A

p-actual-in

B

p-actual-in

C

p-call-off

haIt

4.4.2 Aigorithm for Procedure CalI

113

(

When the interpreter reaches the instruction 'p-call' in the I-code, it caUs the func

tion proc_call with the procedure name (P..name) as argument. The algorithm for

the function proc_call is given below.

1. Initialize code offset to 0, initialize an order list for the actual arguments to

empty, initialize an order list for the formal parameters to empty, initialize the

type to 0, initialize the argument position to O.

2. H P..name is not in the system relation .rel, report error and retum.

CHAPTER 4. IMPLEMENTATION OF PROCEDURES

3. If P ..name is not a procedure, report error and return.

4. Parse the actual arguments.

114

(

(a) Fetch an I-code.

(b) If the I-code is 'p-actual-in' or 'p-actual-out'

1. if the I-code is 'p-actual-in', mark the bit of the type corresponding

to the argument position;

11. fetch the argument and insert it into the order list for the actual

arguments; and

iii. increment the argument position.

(c) If the I-code is not 'p-call-off', goto step 4a.

5. If the procedure has entries in the system relation .comp, add the formal

parameters declared to the order list for the formaI parameters;

6. If the number of items in the order list for the actual arguments does not match

the number of items in the order list for the fonnal parameters, report the error

and return.

7. If the number of actual arguments is not 0 and the type is not defined in the

system relation .comp_type, report error and return. Otherwise, get the code

offset of that type.

8. Create a temporary file with name ".P.name.proc.x.y" where x is the value of

a static local counter and y is the process-id.

9. Load the I-code from the I-code file of the procedure, and replace formal

parameters:

(a) set the file pointer to the position of the code offset of the I-code file of

the procedure;

CHAPTER 4. IMPLEMENTATION OF PROCEDURES 115

(

(b) fetch an I-code from the I-code file of the procedure;

(c) if the I-code is a formaI parameter and the corresponding argument is not

a null string, write the argument to the temporary file; otherwise, write

the I-code ta the temporary file; and

(d) if the I-code is not 'hait' goto step 9b.

10. Protect the procedure from being deleted by incrementing the .ntuples of the

procedure entry in the system relation .reP.

11. CalI the interpreter ta execute the I-code in the temporary file.

12. Decrement the .ntuples of the procedure entry in the system relation .rel.

13. Delete the temporary file.

14. Retum.

4.5 Commands on Procedures

In this section, the implementation of commands on procedures described in Sec

tion 3.2 is presented. The implementation of the show relation command will not be

presented here because it is not changed.

4.5.1 Print

The I-code

push-name

1* relation name *1
print-rel

3The method for protection takes advantage of the existing concurrency control mechanism.

'. CHAPTER 4. IMPLEMENTATION OF PROCEDURES 116

(

is for the "print relation" commando When the interpreter reaches the I-code 'print-rel',

it will call the function print-rel using the relation name (R-name) as argument.

The algorithm of print-rel is given below.

1. If R-name is not a null string, set one..rel to true; otherwise, set one..rel to false.

2. If one..rel is false, ask the user for R-llame.

3. If R-llame is a null string or 'e!', return.

4. If R..name is a not in the system relation .rel, report error and goto step 8.

5. If R..name is a computation name, caU print_compCR-name) and goto step 8.

6. If R..name is a procedure name, calI print_proc(R-name) and goto step 8.

7. Display the content of the relation.

8. If one..rel is false, goto step 2.

9. Return.

The algorithm of print_proc is shown below.

1. Open the source file of the procedure.

2. Display the content of the source file.

4.5.2 Delete

The I-code

push-name

1* relation name *1

del-rel

(CHAPTER 4. IMPLEMENTATION OF PROCEDURES 117

(

is for the "delete relation" commando When the interpreter reaches the I-code

'del-rel', it will caU the function del_proc using the relation name (R..name) as

argument if the relation name is a procedure name. The algorithm of del_proe is

given below.

1. If the procedure is protected, report error and return.

2. CaU del_compCR..name) to delete its entries in the system relations .rel, .comp,

and .comp_type.

3. Remove the source file, I-code file, and any associated files of the procedure.

4. Return.

4.5.3 Show Procedure

The I-code

push-name

1* procedure name *1
p-shov-proc

is for the "show procedure" command.

When the interpreter reaches the I-code 'p-show-proe', it will caU the function

show_proe using the procedure name (P..name) as argument. The algorithm of

show_proe is given below.

1. If P-!lame is not a null string, set only..one to true; otherwise, set only_one to

false.

2. If only_one is faIse, ask the user for P..name.

3. If P-llame is a nuU string or 'el', retum.

(CHAPTER 4. IMPLEMENTATION OF PROCEDURES

4. If P..naIne is a not a procedure name , report error and goto step 6.

118

(

5. Get the type information of the procedure from the system relation .comp_type,

and display the type of each black.

6. If only_one is false, goto step 2.

7. Return.

(

(

Chapter 5

Conclusion

Procedure facilities have been integrated into Relix, and procedure constructs have

been added ta Aldat. Two programming language concepts, namely procedural ab

straction and parameter passing, have been integrated into an existing database sys

tem. Moreover, the notion of symmetric procedures demonstrates that fundamental

concepts in databases and programming languages can he unified.

Database systems have been criticized for lack of expressive power in [AB87].

While maintaining the simplicity of the language, procedures allow users to build

new complex operations using simple ones. Moreover, procedures can be used as

fundamental tools to integrate other programming concepts to Relix. For example,

procedures have been used to define event handlers in [EK96].

In this final chapter, the work of this thesis is summarized in Section 5.1. Sug

gestions for future work are then given in Section 5.2.

5.1 Summary

Procedures have been built to represent procedural abstraction in Relix. While com

putations abstract only horizontal domain algebra expressions, procedures provide

119

(CHAPTER 5. CONCLUSION 120

(

the users with more expressive power by abstracting a sequence of statements such

as relation and domain dec1arations, relational and domain algebra statements, and

commands.

Procedure declaration is a statement that specifies the name of the procedure,

an optionallist of formaI parameters, and a procedure body containing one or more

blocks of statements. Each block has a distinct type which is inferred by the system

using the set of input and output formaI parameters of the block. The type of the

procedure is then defined to be the union of the types of its blocks. Once a procedure

is declared, it is compiled and stored in the database persistently.

The invocation of a procedure uses a stand-alone statement which is written

as the procedure name with a list of actuai parameters. Each actual parameter

is preceded by a keyword in or out which is used to compute the type of the block

to be activated. Formai parameters and actual parameters are paired by position,

and actual parameters are passed by name. If the name of the actual parameter is

not given, the name of the formal parameter is used as default. Hence, the actual

parameter must be an identifier or empty.

The activation of a procedure pushes a temporary i-code file, containing the block

of statements to be executed, onto the run-time code stack. The i-code file is popped

from the stack when the last statement of the procedure is executed. This implemen

tation aliows procedures to calI themselves or other procedures.

Users can use the procedure commands to examine and manipulate dec1ared pro

cedures. The source code of the procedure can he reviewed any time using the print

commando The system information of the procedure and the type of the procedure

can be displayed using the show commands. Finally, the declaration of a procedure

can be removed from the database explicitly using the delete commando

• CHAPTER 5. CONCLUmON

5.2 Future Work

121

(

In order to increase the expressive power of Relix, the language must support rep

resentation and manipulation of complex objects. This brings us to the suggestion

of incorporating another programming language concept, namely abstract data type

(ADT), into Relix.

In programming language, an ADT is a collection of data structures and oper

ations abstracted into a simple data type. Relix deals with only two types of data

abjects: relations and domains. Procedures have been built ta abstract complicated

operations. The objective is to use relations to specify new attribute types. For this

we need to convert procedures to domain operations and relations to attributes.

5.2.1 Procedures To Domain Operations

Suppose we have the declarations below.

> domain A intg;

> domain B intg;

> relation R(A, B) (- { (1, 2), (2, 5). (3, 6) };

Recall that the domain algebra statement

> let C be A + B;

creates a virtual attribute C which can he actualized with a relation algebra statement

such as

> S (- [A, B, C] in R;

and the actualization of C applies the definition, C = A + B, to every tuple in R.

Hence, the value of C in a tuple is the sum of the value of A and the value of B in

the same tuple. However, this definition will not work if A and B are relations. This

problem can be solved by using the procedure below.

(CHAPTER 5. CONCLUSION

> proc Add(A, B, C) is

{

let C be A + B;

C (- CC] in «[A] in A) ijoin ([B] in B));

};

If A equals 1 and equals 2, we can use the following statements to create S.

122

(

> relation A (A) <- {Ci)};

> relation B (B) <- {(2)};

> Add(in A, in B, out C);

> S <+ CA ijoin B ijoin C);

Note that A, B, and C are scalar relations. Hence, domain algebra operations can he

simulated by procedures. However, in order to simulate the statement

> S (- [A, B, C] in R;

one must enter the above four statements for each tuple in R.

We can solve the problem by including procedures in domain operations. For

instance, the domain algebra statement

> let Cl be Add(in A, in B, out Cl);

defines a virtual attribute Cl. The statement

> S (- [A, B, Cl] in R;

actualizes Cl by applying the definition of Cl to every tuple in R as follows.

1. Get the value of the attribute A and create a scalar relation A. For instance,

the scalar relation A

ACA)

1

(CHAPTER 5. CONCLUSION

is created if the value of A is 1.

2. Get the value of the attribute B and create a scalar relation B.

3. Execute the definition: Add(in A, in B, out Cl).

123

(

4. The value of the attribute Cl is the value in the scalar relation Cl. For instance,

if the scalar relation Cl is

Cl(Cl)

3

the value of the attribute Cl is 3.

5.2.2 Relations to Attributes

We will use complex numbers as an example to illustrate our idea. Complex numbers

can be represented by a relation:

> domain IPart real;

> domain RPart real;

> relation COMPLEX(RPart. IPart);

where COMPLEX is a relation with two attributes. In order to represent and ma

nipulate COMPLEX as a new attribute type, we need to convert a relation to an

attribute, and vise versa.

In the previous section, we have already shown how to convert scalar attributes

to scalar relations. The similar idea can be used to convert ADT attributes to ADT

relations. First the conversion is defined using a new construct

type cmpx is relation COMPLEX(RPart. IPart);

which deflnes a new type called cmpx. This statement has the fol1owing semantics.

(CHAPTER5. CONCLUmON 124

(

• An attribute of type cmpx can he converted to a relation defined on two at

tributes: RPart and IPart.

• The relation COMPLEX is a hidden state relation which will be redefined hy the

system as COMPLEX(id, RPart, IPart). The attribute id is a system generated

unique identifier which is used ta link the relation to the host ADT attribute.

Suppose we have a cmpx type of relation with data as shown below.

(RPart, IPart)

1 0

1 2

If we want to convert the relation ta an attribute CC whose type is cmpx, the system

will perform the followings.

1. If the relation already has an id in COMPLEX, then use that id. otherwise,

generate a new unique id for the relation and add the relation to COMPLEXa

2. The value of the attribute CC is the id.

Now suppose the type of an attribute DD is cmpx, and the value of DD is 1234.

The system can convert DD to a relation using a single Relix statement:

DD (- [RPart, IPart] vhere id=1234 in COMPLEX.

5.2.3 Abstract Data Type

We have already shown how to convert relations to attributes and procedures to

domain operations. The conversions are invisible to the programmer, who writes

ordinary procedures using relational and domain algebras. The conversion is specified

by the OOt construct, which is a special forro of procedure which output one or more

types and one or more procedures. For example, the adt declaration for complex

number is shown below.

'1

.(

CHAPTER 5. CONCLUmON

>adt COMPLEX_ADT (empx, Cwr, C+) is

{

type empx is relation COMPLEX(RPart, IPart);

proe Cwr(R, I, Z) is

{

let RPart be R;

let IPart be 1;

Z (-([RPart] in R) ijoin ([IPart] in 1);

}

aIt

{

let R be RPart;

let l be IPart;

R (- [R] in Z;

l (- [1] in Z;

};

proe C+(X, Y, Z) is

{

let XR be RPart;

let XI be IPart;

let YR be RPart;

let YI be IPart;

let IPart be XI + YI;

let RPart be XR + YR;

Z (- [RPart, IPart] in «[XR, XI] in X)

ijoin ([Ya. YI] in y»;

125

.(CHAPTER 5. CONCLUSION

};

};

To use the adt, we issue a procedure call1ike statement

> COMPLEX_ADT(out cmpx) out Cwr, out C+);

which performs the followings:

1. create the state relation and register the conversion for type cmpx;

2. declare a procedure Cwr;

3. declare a procedure C+.

126

(

Moreover, the above statement implies that changing types and procedures names

within an ADT is possible.

(

Appendix A

Modification of the Parser Module

In this appendix, we list aH the YACe rules and translator parameters to be added
to the existing parser module of Relix.

A.1 Parser Rules for Procedure

In this section, we list all the rules to he added to the existing parser module of Relix
in alphabetical order. Any role that is already in Relix will not he listed here.

procedure_actual_parameter:
IN identifier {translator(P_ACTUAL_IN);}

1
OUT identifier {translator(P_ACTUAL_OUT);}

IN
{strcpy(yytext, FILLER_s); translator(IDENTIFIER);
translator(P_ACTUAL_IN);}

1
OUT
{strcpy(yytext, FILLER_s); translator(IDENTIFIER);
translator(P_ACTUAL_OUT);}

(

procedure_actual_parameter_list:
procedure_actual_parameter

1
procedure_actual_parameter_list

procedure_actual_parameter_option:
1* empty *1

, ,, procedure_actual_parameter

127

'l"~~.

APPENDIX A. MODIFICATION OF THE PARSER MODULE

1

procedure_actual_parameter_list

procedure_block:
{translator(P_BLOCKBGN); translator(PUSH_NAME_L);}
'{' procedure_statements '}'
{translator(P_BLOCKEND);}

procedure_body:
procedure_block

1 procedure_body 'alt' procedure_block

128

(

procedure_call:
identifier {translator(PUSH_NAME_R); translator(P_CALL);}
'e' procedure_actual_parameter_option ')' {translator(P_CALL_OFF);}

procedure_command:
DEL_DOM {translator(PUSH_NAME_R); translator(DEL_DOM);}

1
DEL_REL {translator(PUSH_NAME_R); translator(DEL_REL);}

1
PRIUT_REL {translator(PUSH_RAME_R); translator(PRINT_REL);}

1
SHOW_DOM {translator(PUSH_RAME_R); translator(SHOW_DOM);}

1
SHOW_REL {translator(PUSH_RAME_R); translator(SHOW_REL);}

1
SHOW_RD {translator(PUSH_RAME_R); translator(SHOW_RD);}

procedure_declaration:
'proc' procedure_name {translator(P_PARAM_OPTION);}
'(' procedure_parameter_list J)J {translator(P_DEC);}
Jis' procedure_body {translator(P_DEC_OFF);}

procedure_definitioD_statement:
LET identifier BE {translator(LET); translatorCPUSH_NAME_R);}
domain_expression {translator(BE);}

1
LET identifier INITIAL {translator(LET); translatorCPUSH_NAME_R);}
domain_expression BE {translator(ELSE);}
domain_expression {translator(LET_WITH_IRITIAL);}

1

(

APPENDIX A. MODIFICATION OF THE PARSER MODULE

procedure_domain_declaration:
DOMAIN_DEC identifier {translator(DOMAIN_DEC);
translator(PUSH_NAME_R);}
,TYPE {translator(IDENTIFIER); translator(TYPE);}

procedure_else_part:
/* empty *1

1
ELSE {translator(PUSH_NAME_L); translator(IF_ELSE); }
procedure_statement_part

procedure_executable_statement:
identifier {translator(EXECUTION);}

1
identifier '{'{translator(LEFT_PARTIAL_FIT);}
constant_list '}' {translator(LEFT_PARTIAL_OFF);}
A8SIGN {translator(PUSH_NAME_R);}
relational_expression{translatorC ASSIGN);}

1
name_valued_expression ASSIGN
{translator(ELSE); translator(PUSH_NAME_R);}
relational_expression {translator(ASSIGN_SCALAR);}

1
name_valued_expression INCREMENT
{translator(ELSE); translator{PUSH_NAME_R);}
relational_expression {translator(INCREMENT_SCALAR);}

1

renaming_increment_left AS51GB
{translator(ELSE); translator{ RENAME_OPTION);
translator(PUSH_NAME_R);}

domain_option ']' relational_expression {translator(RENAME);}
1

renaming_increment_left INCREMENT
{translator(ELSE); translator{ RENAME_OPTION);

translator(PUSH_NAME_R);}
domain_option ']' relational_expression
{translator(RENAME_INCREMENT);}

1
name_valued_expression nest_operator
{push_short_stack(join_flag, tjoin_stack);

129

• APPENDIX A. MODIFICATION OF THE PARSER MODULE

translator(HULL_DOMAIN_OPTION); translator(PUSH_NAME_R);}
identifier {translator(pop_short_stack(tjoin_stack»;}

1
renaming_increment_left domain_option nest_operator
{push_short_stack(join_flag, tjoin_stack);
translator(DOMAIN_OPTION_1); translator(PUSH_NAME_R);}

domain_option)]) identifier
{translator(pop_short_stack(tjoin_stack»;}

procedure_if:
IF { translator(PUSH_NAME_R);}
no_if_relational_expression {translator(IF_THEN); }
THEN {translator(PUSH_NAME_L);} procedure_statement_part
procedure_else_part
{translator(PUSH_NAME_L); translator(IF_STMT_END); }

procedure_name:
identifier

procedure_one_statement:
procedure_command
{translator(P_STMTS_DELIM); translator(PUSH_RAME_L);}

1
procedure_statement);)
{translator(P_STMTS_DELIM); translator(PUSH_DAME_L);}

procedure_parameter_list:
1* empty *1

1
procedure_parameters

130

(

procedure_parameters:
identifier {translator(P_PARAM_LIST);}

1
procedure_par4meters),' identifier {translator(P_PARAM_LIST);}

procedure_relation_declaration:
RELATION_DEC identifier

{translator(DOMAIN_OPTION); translator(PUSH_NAME_R);}
)(' attribute_list '» rcp_ln_option {translator(RELATION_DEC);}

(

(

APPENDIX A. MODIFICATION OF THE PARSER MODULE

procedure_sequence_of_statements:
procedure_statement ';'
{translator(PUSH_NAME_L); translator(STMTS_DELIM); }
procedure_body_of_statements

1
procedure_statement
{translator(PUSH_NAME_L); translator(STMTS_DELIM); }

procedure_statement:
procedure_domain_declaration

1
procedure_relation_declaration

1
procedure_definition_statement

1
procedure_executable_statement

1
procedure_update_statement

1
procedure_call

1
procedure_if

procedure_statements:
procedure_one_statement

1
procedure_statements procedure_one_statement

procedure_statement_part:
procedure_statement
{translatorC PUSH_NAME_L); translator(STMTS_DELIM); }

1
'{' procedure_sequence_of_statements '}'

procedure_update_first:
UPDATE {translator(PUSH_NAME_R);} identifier
{translator(UPDATE_RELATION);}

procedure_update_statement:
procedure_update_first update_last_l

1

131

APPENDIX A. MODIFICATION OF THE PARSER MODULE

procedure_update_first '[' {translator(DOMAIN_OPTION);}
domain_option update_last_2

A.2 Translator Parameters for Procedure

132

In the section, we list all the translator parameters for procedure, together with the
desired I-code, ta be added to the translator function.

Parameter
P-ACTUAL.lN
P-ACTUAL_OUT
PJ3LOCKBGN
PJ3LOCKEND
P_CALL
P_CALL_OFF
P-DEC
P-DEC_OFF
P -PARAM_OPTION
P ..PARAM.LIST
P -STMTS-DELIM
PUSH..NAME.L
PUSH..NAME..R
SHOW..PROC

I-code
p-actual-in x
p-actual-out x
p-blockbgn
p-blockend
push-name x p-call
p-call-off
push-name ... push-count n push-name x p-dec
p-dec-off

p-stmts-delim
push-name-left x
push-name-right x
push-name x p-show-proc

(

where x is a string obtained by popping an item from the scalar.l5tack, and ' ... ' is
a list of identifiers obtained by popping the list from the list.l5tack.

(

(

Appendix B

List of Error Messages

The error messages described in Section 3.5 are summarized alphabetically below.

• " ••• Il has too many parameters
The procedure declaration has more than 30 formaI parameters.

• Attributes of "... Il and Il ••• Il are not same
A relational increment or update add statement attempts to add two relations
defined on different attributes.

• Block Il ••• Il and block Il. • • .. have the SaIne type
The procedure declares two blocks with the same type.

• Cannot execute Il ••• Il

The procedure name given in the procedure calI statement is not a procedure,
or a statement attempts to use a procedure name in a relational expression.

• Cannot find Il ••• Il

A statement attempts ta use an undeclared abject as input.

• Domain Il ••• Il aIready appeared in this list
Duplicated identifier is round in the formai parameter list.

• Domain Il ••• Il still used
A delete domain command (dd!!domain..name) attempts to delete an existing
attribute which is used by a relation or virtual attribute.

• Domain " still used; cannot change type
A domain declaration or domain algebra statement attempts to re-declare an
existing attribute with another data type.

133

(APPENDIX B. LIST OF ERROR MESSAGES 134

(

• ILcond is not a boolean singleton scalar
The iLcond expression in the if statement does not produce a boolean singleton
scalar.

• Invalid token: " ... "
An invalid token is encountered when the system is parsing the user input.

• Name lt has been used
The procedure name has been used by other procedures, relations, or compu
tations.

• No common attributes
A relational algebra binary operation, except natura! join and union join, a
ttempts to operate on two relations with no common attributes, but the set of
join attributes is not stated explicitly in the expression.

• No such type in Il ••• If

The procedure caU statement attempts ta caU an undefined block.

• Not enough arguments in Il ••• Il

The procedure caU statement has less actua! arguments than the number of
formai parameters declared.

• Procedure Il ••• Il has more than one block
The procedure has no forma! parameters and attempts to declare more than
one block.

• Procedure Il ••• Il is protected. Deletion failed
A delete relation command (dr!!<procedure-llame» attempts to delete a
caller procedure.

• Too many arguments in "... 1.

The procedure calI statement has more actual arguments than the number of
formai parameters declared.

• Type mismatch
A domain expression attempts to operate on two attributes of incompatible
data type.

[AB87]

·1

Bibliography

M. M. Astrahan et al. System R: Relational approach to database man~

agement. ACM Transactions on Database Systems, 1(2):97-137, June
1976.

M. P. Atkinson and O. P. Buneman. Types and persistence in database
programming languages. ACM SUnJeys, 19(2):106-190, June 1987.

[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and
R. Morrison. An approach to persistent prograIl1ming. Computer Journal,
26(4):408-419, Nov. 1983.

[ACC81] M. P. Atkinson, K. J. Chisholm, and W. P. Cockshott. Ps-algol: An algol
with a persistent heap. SIGPLAN Notices, 17(7):24-31, July 1981.

[AC085] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed in
teractive conceptual language. ACM 'Pransactions on Database Systems,
10(2), June 1985.

[AM8S} M. P. Atkinson and R. Morrison. Types, bindings and parameters in
a persistent environment. In Data types and Persistence, pages 3-20.
Springer-Verlag, New York, 1988.

[Ame66} Ameriican National Standards Institute, New York. American National
Standard Progmmming Language FORTRAN, 1966.

[AS85} H. Abelson and G. J. Sussman. Structure and Interpretation of Computer
Programs. The MIT Press, Cambridge, Massachusetts, 1985.

[Atk78} M. P. Atkinson. Programming languages and databases. In S. B. Yao, ed
itor, The 4th International Conference on Very Large Data Bases, pages
408-419, Berlin, West Germany, Sept. 1978.

(

[Atk85] M. P. Atkinson. Procedures as persistent data objects. ACM Transactions
o Programming Languages and Systems, 7(4):539-559, Oct. 1985.

135

BIBLIOGRAPHY 136

[Atk89]

[CM82]

[COD68}

[Deu90]

[DJ95)

[EK96)

[GM88]

[GR83]

[Joh75]

[KR78)

[L+77]

M. P. Atkinson. Questioning persistent types. In Proceedings of the Sec
ond International Workshop on Database Programming Languages, pages
2-24, Gleneden Beach, Oregon, June 1989.

A. J. Cole and R. Morrison. An introduction to Programming with S-algol.
Cambridge University Press, New York, 1982.

CODASYL COBOL Committee. COBAL Journal of Development, 1968.

O. Deux. The story of 02 system. IEEE '1ransactions on Knowledge and
Data Engineering, 2(1):91-108, Mar. 1990.

H. L. Dershem and M. J. Jipping. Programming Languages: Structures
and Models. PWS Publishing Company, Boston, MA, 1995.

A. Z. EI-Kays. Implementing Event Handlers in a Database Programming
Language. Master's thesis, McGill University, Montreal, Canada, 1996.

G. Graefe and D. Maier. Query optimization in object-oriented database
systems. In K.R. Dittrich, editor, International Workshop on Object
Oriented Database Systems, pages 358-363, Bad Munster, September
1988.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Imple
mentation. Addison-Wesley, Reading, Mass., 1983.

S. C. Johnson. Yacc: Yet another compiler-compiler. Technical Report 32,
AT&T Bell Laboratories, Murray Hill, N.J., 1975.

B. W. Kemighan and D. M. Ritchie. The C Progromming Language.
Prentice-Hall, Englewood Clîffs, N.J., 1978.

B. W. Lampson et al. Report on the programming language Euclid.
SIGPLAN Notices, 12(2):1-79, Feb. 1977.

[Lal86)

[Les75]

(

N. Laliberté. Design and Implementation of a Primary Memory Version
of Aldat. Master's thesis, McGill University, Montreal, Canada, 1986.

M. E. Lesk. Lex: a lexical analyzer generator. Technical Report 39,
AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications of the ACM, 34(10), Oct. 1991.

1 BIBLIOGRAPHY 137

(

[LLPS91] G. M. Lohman, B. Lindsay, Hamid Pirahesh, and K. B. Schiefer. Exten
sions to Starburst: Objects, types, functions, and rules. Communications
of the ACM, 34(10):94-109, Oct. 1991.

[Mer77] T. H. Merrett. Relations as programming language elements. Information
Processing Letters, 6(1):29-33, Feb. 1977.

[Mer84] T. H. Merrett. Relational Information Systems. Reston Publishing Com
pany, Reston, Virginia, 1984.

[Mer93] T. H. Merrett. Computations: Constraint programming with the rela
tiona1 algebra. In International Symposium on Next Generation Database
Systems and their Applications, pages 12-17, Fukuoka, Japan, September
1993.

[Mil84] R. Milner. A proposal for standard ML. In Proceedings o/the 1984 ACM
Symposium on Lisp and Fitnctional Progrmming, pages 184-197, Austin,
Texas, August 1984.

[ML87] M. Marcotty and H. Ledgard. The World of Programming Languages.
Springer-Verlag, New York, 1987.

[ML89) T. H. Merrett and N. La1iberté. Including scalars in a programming
language based on the relational a1gebra. IEEE 1Tansactions on Software
Engineering, 15(11):1437-1443, Nov. 1989.

[Mnu92] E. Mnushkin. Inheritance in a Relational Object-oriented Database Sys
tem. Master's thesis, McGill University, Montreal, Canada, 1992.

[MS89] F. Matthes and J. W. Schmidt. The type system of DBPL. In Proceed
ings of the Second International Workshop on Database Programming
Languages, pages 219-225, Gleneden Beach, Oregon, June 1989.

[MS91] T. H. Merrett and H. Shang. Unifying programming languages and
databa.ses: Scoping, metadata, and process communication. In The
Third International Workshop on Database Programming Languages:
Bulk Types and Persistent Data, pages 139-148, Nafplion, Greece, Aug.
1991.

[MSOP86] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an Object
oriented DBMS. In AGM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 472-482, Portland, OR,
Sept. 1986.

• BIBLIOGRAPHY 138

[RS79] L. A. Rowe and K. A. Shoens. Data abstraction views and updates in
RIGEL. In P.A. Berstein, editor, Proceedings of ACM SIGMOD Interna
tional Conference on Management of Data, pages 71-81, Boston, Mass.,
May-June 1979.

[SAH87] M. R. Stonebraker, J. Anton, and E. Hanson. Extending a database
system with procedures. ACM Transactions on Database Systems, 6(3),
Sept. 1987.

[SAHR84) M. R. Stonebraker, E. Anderson, E. Hanson, and B. Rubenstein. Quel as a
data types. In Proceedings of the AGM-SIGMOD International conference
on Management of Data, Boston, Mass., June 1984.

[Sch77]

[Sho79]

[SR86)

[Sto86]

J. W. Schmidt. Sorne high level language constructs for data of type
relation. ACM Transactions on Database Systems, 2(3), Sept. 1977.

J. E. Shopiro. Theseus-a programming language for relational
databases. ACM Transactions on Database Systems, 4(4), Dec. 1979.

M. Stonebraker and L. A. Rowe. The design of POSTGRES. In Pro
ceedings of AGM SIGMOD International Conference on Management of
Data, Washington, D.C., May 1986.

M. Stonbraker. Inclusion of new types in relational data base systems. In
Second International Conference on Data Base Engineering, Los Angeles,
Ca., Feb. 1986.

[Str86]

[Sut94]

B. Stroustrup. The G++ Programming Language. Addison-Wesley, Read
ing, Mass., 1986.

N. Sutyanyong. Procedural Abstraction in a Relational Database Pro
gramming Language. Master's thesis, McGill University, Montreal,
Canada, 1994.

[SWKH76] M. R. Stonebraker, E. Wong, P. Kreps, and G. D. Held. The design and
implementation of INGRES. ACM 1ransactions on Database Systems,
1(3), Sept. 1976.

(

[Ten8!]

[U.S80]

R. D. Tennent. Principles of Programming Languages. Prentice-Hall,
New York, 1981.

U.S. Department of Defense, Washington. Reference Manual for the Ada
Programming Language, 1980.

A. Van Wijngaarden et al. Revised report on the algorithmic language
Algol 68. Acta Infonnationca, 5:1-236, 1975.

(BIBLIOGRAPHY 139

(

[Was79] A. 1. Wasserman. The data management facilities of PLAIN. In P.A.
Berstein, editor, Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 60-70, Boston, Mass., May-June 1979.

[Wir71] N. Wirth. The programminglanguage PASCAL. Acta Informatica, 1(1),
May 1971.

[Wir77] N. Wirth. Modula: A language for modular multiprogramming.
Software-Practice and Experience, 7, 1977.

[Wir83] N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

[WWG51] M. V. Wilkes, D. J. Wheeler, and S. Gill. The Preparation of Programs
for a Digital Computer. Addison-Wesley, New York, 1951.

11

1.0 :: IIIII~ \1I11~

~ :: IIWii Illlln.
~ I~ ==

11111

11 ~ I~ 11111
2

.
0

-" ~"" 11~11.8

III~ 1.25 11~11.4 11111.6

'---
.J

1
~-

lS0mm ---.J

- 6" -----.J.....

APPLIED .:fi IMAGE 1_ . ne-== 1653 East Main Street
~~ Rochester, NY 14609 USA
~-== Phone: 716/482-0300
__ Fax: 716/288-5989

Cl 1993. Applied Image. Ine.• Ail Rights Reserved

