' National Li
Bl S

Acquisilions and

Bibliothéque nationale
du Canada

Direclion des acquisitions e.

Bibliographic Services Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa, Onlano Ottawa (Ontarnio)
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Your hig Votre rétéance

Our blo Noire rétécance

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféreé le grade.

La qualité d'impression de
certaines pages peut laisser a -
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Models and Tools for Cooperating Rule-Based Systems

Clifford Grossner

School of Computer Science

McGill University, Montréal,

September 1994

A Thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

© Clifford Grossner 1994

i+l

National Library Bibliothéque nationale

of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellington Strest 385, rue Wellington

Qttawa, Ontario Otlawa (Ontario}

K1A ON4 K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIG. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05716-X

Canadi

Youw hig Voi'g téMdrence

Ouwr i Noire réidcence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. N1 LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Models and Tools for Cooperating Rule-Based Systems

To my parents ...

Abstract

A Cooperative Distributed Problem Solving system (CDPS) is composed of a set
of agents designed to solve a single problem by working together in a cooperative
fashion. In this thesis, we present models and tools which aid the CDPS designer in
determining how data items are to be shared between the agents (datu distribution)
in a CDPS, when the agents are implemented as rule-based systems. Our models
consider CDPS from two different perspectives: the inter-agent perspective, and the
intra-agent perspective. The inter-agent perspective is concerned with issues relating
to the manner in which the agents in a CDPS achieve cooperation. The intra-agent
perspective is concerned with the internal structure of an agent, and how an agent is
affected when it cooperates with other agents. The inter-agent perspective is modeled
using a notion of an “organization” that is imposed on a set of agents sharing data
items via a “blackboard”; this model permits the CDPS designer to indicate the
mechanism used to achieve both forms of cooperation between the rule-based systems
in a CDPS: cooperation by sharing data, and cooperation for control. The intra-agent
perspective is modeled using a notion of a “path”, which captures the sequence of
rules fired by a rule-based system. Based upon the path model, we have developed
two tools: Path Hunter and Path Tracer. The models and tools described in this
thesis permit the CDPS designer to study the impact of the data distribution chosen
for a CDPS on the performance of a rule-based system that will be 2 member of that

CDPS; this helps the CDPS designer in setting the data distribution within a CDPS.

Résumé

Un systeme CDPS (“Cooperative Distributed Problem Solving”) est constitué
d’ un ensemble d’agents qui ont pour but de résoudre un probléme par un travail
cooperatif. Dans cette thése, nous présentons des modeles et des outils qui aide le
concepteur de CDPS & déterminer comment les unités de données sont partagées
entre les agents (distribution des données) dans un CDPS quand les agents sont
réalisés par un systeme en base de regles. Nos modeles consideres les CDPS de deux
perspectives différentes: une perspective inter-agent, et une perspective intra-agent.
La perspective inter-agent ce concern des sujets qui traite la maniere dont les agents
arrive & la cooperation. La perspective intra-agent ce concern de la structure interne
d’un agent et de Pimpacte sur celui-ci d’entré en cooperation avec d'autres agents. Le
modele de la perspective inter-agent s’appuis sur un concept “d’organisation” qui est
imposé sur un ensemble d’agent qui partages des unitées de données par 'intermédiare
d’un “tableau” (blackboard); e modele permet au concepteur de CDPS d'indiqué
le méchanism utilisé pour obtenir les deux formes de cooperation entre les systems
cn base de régles dans un CDPS: la cooperation par le partage de dounée, et la
cooperation pour le control. La perspective intra-agent s'appuis sur le concept de
“parcour”. Un parcour définit la séquances des regles activées dans le system en
base de regles. En s’appuiant sur le modéle “parcour”, nous avons déveloper deux
outils: ‘Path Hunter’ et ‘Path Tracer’. Les modeles et les outils décrit dans cette
thése permettent au concepteur de CDPS d'étudier I'impact de la distribution des
données choisi pour un CDPS sur la performance d’un systéme en base de regles qui
serra un agent de ce CDPS; ceci aide le concepteur de CDPS a régler la distribution

des données a l'intérieur du CDPS.

Acknowledgments

I would like to thank both my supervisors: Thiruvengadam Radhakrishnan and
Monty Newborn. Radhakrishnan and [have been working together on different en-
deavors since 1980, and we have experienced both happy and sad occasions. As [am
now at the end of a long journey, [can say that my respect for Radahakrishnan has
only increased as [came to know more about him, by being witness to his generosity
and maturity. While I have known Monty for a shorter time than Radhakrishnan,
Monty has had ample opportunity to demonstrate his patience during the time we
have worked together. I am grateful to both my supervisors for all the time and effort
they have spent on my behalf.

[would like to thank Alun Preece and Goku] Chander. The three of us spent many
hours brainstorming together as we worked out the details of the path model. It was
truly a pleasure to work with both Alun and Gokul. I must also thank Alun Preece
for the time he took to read my entire thesis and give me his comments. I have no
doubt that this thesis is a better product due to Alun’s influence. Gokul contributed
a significant amount of his time towards the implementation of Path Hunter, and
Alun did the same for Path Tracer.

The development of the Blackbox Expert was a large project, and many people
made contribntions. Kristina Pitula and John Lyons were instrumental in our choice
of the Blackbox puzzle as our sample problem. John Lyons made significant contri-
butions to the design of the Blackbox Expert, and Lee Hoc to the implementation
and testing of the Blackbox Expert’s rule base. Carol De Koven and Kristina Pitula
are the Blackbox experts that designed the test set used to validate the functional
performance of the Blackbox Expert. Alun Preece was also helpful in the design of
the experiment we carried out to validate the functional performance of the Blackbox
Expert.

[would like to thank Rick Clark for the hours we spent brainstorming together
during the development of the organizational model. Rick spent many hours work-
ing on the details of the Consensus protocol. Rick’s contribution to our team was
instrumental in providing an opportunity for us to begin to interact with other DAI

researchers, including Victor Lesser’s team at University of Massachusetts.

iv

[would like to thank Larry Thiel for the support he has provided. Larry has been
as flexible as possible in permitting me to balarnce my responsibilities to my full time
job and to my research. Larry was also instrumental in arranging for a study leave,
granting me the time [needed to study for my comprehensive examination.

I would like to thank Lee Covington. Many theses that | have read contain an
acknowledgment to a loved one that has had to be understanding. There is no doubt
in my mind that this type of acknowledgment is earned with a lot of hard work on
the part of the loved ones referred to by countless researchers. There is also no doubt

in my mind that Lee has been an important factor in my success.

Contents

3

Cooperating Agents 1
.1 Thesis Qutline. e 6
A Model for CDPS 10
2.1 IN-Structured Problems., Il
2.1.1 Planning for lll-structured Problems 15
22 TheOrganization i i 17
22,1 Human Organizations L7
2.2.2 Organizations for Cooperating Rule-Based Systems 21
2.2.3 Information Deficit Metric, 29
2.2.4 Choosing an Organization 33
23 Conclusion e e e e 35
A Testbed for CDPS 37
3.1 The Blackbox Puzzle 40
3.2 The Blackbox Expert L ... 15
3.3 Validating the Performance of the Blackbox Expert 52
3.4 Data Distribution and Performance: An Experiment. 60
J.Ll Experimental Design o ..o oo oo 60
342 ExperimentalResults 63
343 Discussionof Results 67
3.5 Conclusion e e e e 63
A Model for Rule-Based Systems 70
4.1 Rule Base Structure 72
4.1.1 Abstract Rules, 71
4.1.2 Constructing Sequences of Inter-Dependent Rules 78
4.1.3 EnablingaRule. 81
414 ThePath, 81
42 Path Hunter i i 84
4.2.1 DiscoveringPaths, 85
4.2.2 Controlling Combinatorial Explosion 93
4.2.3 Analyzing the Blackbox Expert’s Rule Base 95
43 Conclusion 0 i e e e e e e e e e 97

vi

5 Applying the Organization and Path Models

3.1 Data [tems Required

5.1.1 Identifying

5.1.2 Determining Data [tems Required: An Algorithm
Monitoring Goals Achieved
5.2.1 Ideutifying Goals Achieved
5.2.2 Validating Our Method
5.3 Applying Our Models: A Case Study
5.3.1 The Inter-Agent Perspective
3.3.2 The Intra-Agent Perspective
5.3.3 The Inter-Agent Perspective Revisited

[}
[}

5.3.4 Summary
54 Conclusion

6 Conclusion
6.1 Future Work . . .

A Source Tables

B Glossary of Symbols

Data [tems Required . .

..............

........................
....................
......................

..................
...................
............

.............

ooooooooooooooooooooooooooooo

.............................

.............................

vii

99
L0l
102
104
106
107
112
115
P15
116
126
131
132

135
110

150

155

List of Figures

2.1 Sample Blackboard o o oo 2
2.2 Sample Organizationfora CDPS 27
2.3 Data Items for a Subproblem, 30
3.1 Beam Behaviorin Blackbox 40
3.2 An Example of a Shielded Region.. 42
3.3 Diagnosis Type Problems. 43
3.4 Structure of the Blackbox Expert 47
3.5 Sample Beam SelectionRule 18
3.6 The Blackbox Expert's User Interface 50
3.7 Testbed for Cooperating Rule-Based Systems 31
3.8 Best, Median, and Worst Player 54
3.9 Best, Median, and Worst Scores 35
3.10 Scores of the Blackbox Expert, 38
3.11 Blackbox Expert vs Humans 59
3.12 Computational Performance — Execution 64
3.13 Performance-Planning 65
3.14 Functional Performance 66
41 SampleCLIPSRule. 76
42 AnExamplePath 83
4.3 Path Hunter Algorithm, 36
44 An Example Fragment 87
4.5 Constructing Paths from Fragments 87
46 SingleRulePaths00, 89
4.7 SingleChainPaths 89
4.8 MultipleChainPaths 89
4.9 Merge: Non-Common Origin 92
4,10 Merge: Non Identical Remainder 92
4.11 Combinatorial Explosion Generating Fragments 94
4.12 Combinatorial Explosion Merging Fragments 95
4.13 Controlling Combinatorial Explosion in Practice 97
5.1 DataRequirements 102
5.2 Determining Data Items Required 105
5.3 Completion and Start Predicatesofa Path 106

viii.

5.4 Identifying Rules FiredinaPath 110
3.5 Rules Fired Using the Liberal Strategy il
56 CDPSfor Blackbox« v i L e 17
5.7 SCORE, Rules Fired, and Goals Achieved 17
5.8 Sensitivity of Specific Goals oL oL 120
5.9 Interactions BetweenGoals. 121
5.10 Undesirable Events o v o o 0 it it e e e e 122
5.11 Paths Achieving Goal 136 and Goal 133 123
5.12 Path Achieving Goal 20 124
513 Two Setsof Paths. i i it e 125
5.14 Conclusion Draw Outside Window 128
515 Local vs Global View i i 129

5.16 Selecting a Beam to Fire

ix

List of Tables

3.1 Average Score and Total Errors in Placing Balls 56

Analyses of Variance e 37
3.3 Average Scoreand Ball Errors Lo Lo, 58
4.1 Predicates and User Defined Function for Blackbox 77
42 ExampleRuleSet. 79
5.1 Percentages of Rules Fired 113

Chapter 1

Cooperating Agents

“The greatest task before civilization at present is to make machines what they ought
to be, the slaves, instead of the masters of men.”

- Havelock Ellis, “Little Essays of Love and Virtue”, 1922

With the advent of high speed communication networks and low cost computing
platforms, it has become reasonable to think of many computers, or more precisely
programs, working together to solve a large problem. One view taken by rescarchers
in distributed computing is that these programs operate asynchronously, maintain
their own data structures, and communicate with each other by passing messages (1.
Researchers in distributed artificial intelligence (DAI) consider these programs Lo be
intelligent agents, cach having its own dala available locally, and the agents cooperate
with each other to solve a problem [2, 3]. The data available locally to an agent is
commonly referred to as its local view of the problem being solved [3]. The agents
are programs constructed by explicitly representing knowledge about how a problem
is to be solved.

While researchers in both fields are exploring the issues that arise when multi-
ple programs are used to solve a problem (how to distribute control flow and data
flow), the philosophical approach used and the focus of the research carried out in
each field is very different. Researchers in distributed computing are concerned with
issues such as paradigms for passing messages between programs, detecting global
states, programming languages and environments that are appropriate for writing
distributed programs, methods for synchronization of programs running on processors

with asynchronous clocks, and techniques for debugging distributed programs [4, 5].

Researchers in DAI have heen concerned with methods for modeling and program-
ming agents, protocols for cooperation and negotiation among intelligent agents, and
appropriate structures for controlling the interaction among intelligent agents [6, 7, 8].

The notion of an agent has been considered by several researchers in artificial
intelligence. Minsky proposes that agents are extremely simple entities that can
perform actions only as a part of a society of agents [9]. A simple definition of an
agent is used by Decker et al.: an agent is an entity that can be considered to have
internal states that correspond to belief and intention when observed externally [10].
Rosenschein et al. add the property of rationality when describing the decision making
properties of an agent [11]. Shoham considers agents to be entities that follow social
laws describing the actions they are permitted to perform [12]. Several models have
been proposed by which agents may be programmed [8, 12]. For our purposes, we
will consider an agent to be a rule-based system.

In DAI, there are two different perspectives on how agents cooperate. Researchers
who consider societies of multiple autonomous agents believe that cooperation occurs
when two agents that have distinct problems to solve encounter each other, and the
agents determine that they can pool their resources in order to perform some of the
tasks that are common to both of their assigned problems; models from game theory
have been used show how agents can independently decide that it is advantageous
to cooperate [13]. Researchers who view a problem-solving system using multiple
agents as a system that is designed with the intention that the agents will cooperate
to solve the same problem believe that the agents must be constructed to cooperate
with cach other; these systems are referred to as cooperative distributed problem
solving systems (CDPS) [14]. In both CDPS and distributed systems composed of
multiple autonomous agents, the central problem for DAI researchers is how to achieve
cooperation among agents, so that the agents can accomplish more as a group than
individually. In this thesis, we will be considering only CDPS.

One of the first CDPS constructed was the Hearsay speech recognition system.
The designers of Hearsay attempted to achieve cooperation among agents by permit-

ting the agents to share data items that comprised their local view. Hearsay per-

[o)

mitted the agents' to share the data items in their local view using the blackboard
paradigm [L5]; a blackboard is a specialized data structure designed specifically for
this purpose [16, 17]. Hearsay used a data-driven control mechanism to determine
the actions that each agent would perform [15]. In the data-driven approach, each
agent signals when it is ready to perform an action. The agents perform their actions
opportunistically, exploiting new data as it appears on the blackboard.

While Hearsay did benefit from permitting the agents to share data, experiments
with the Hearsay system revealed that the data-driven method can have trouble
in converging upon a solution; thus, the agents tend to perform many unfruitful
actions. Attempts were made to reduce the number of unnecessary actions performed,
giving the system a “focus”, by adding a knowledge base and a scheduler to the
blackboard [16]. The scheduler used the knowledge base to sequence the actions that
the agents were ready to perform. This addition to the data-driven approach provided
some improvement, but still could not provide a good focus among the agents. ‘The
system could not reason about what data was required to complete the solution it was
constructing; hence, it could not trigger the agents to perform actions which would
generate the required data. Thus, experiences with Hearsay indicated that simply
permitting the sharing of data items among the agents in a CDPS is not sufficient to
ensure that the agents can accomplish more as a group than individually.

The Distributed Vehicle Monitoring Testbed (DVMT) was a second generation
CDPS system, which included 2 mechanism to place an ordering on the actions that
were performed by the agents [18). Lesser and Corkill extended the blackboard model
used in Hearsay, by adding an agent (referred to as the planner) that was responsible
for evaluating the different actions that were proposed by the other agents in DVMT,
and by adding a planning section to the blackboard used in DVMT. The planner used
the planning section of the blackboard to record data elements that were needed to
complete solutions currently under construction. Also, the planner rated the actions
that could be performed by the agents to signify how important they might be in
solving the problem. Experiments with DVMT have shown that it is beneficial to

have a blackboard architecture which combines both an opportunistic and a plan-

1 Agents were referred to as knowledge sources by Hearsay’s developers.

based approach [{19]. Thus, in order to achieve cooperation among agents in a CDPS.
the system requires a mechanism for evaluating the different actions that can be
performed by the agents as well as a mechanism permitting the agents to share data
items.

Researchers began to consider various planning protocols, once they understood
that achieving cooperation among agents in a CDPS requires a mechanism for eval-
uating the different actions that can be performed by the agents. Researchers first
considered centralized planning protocols where a plan for all agents in the CDPS is
constructed by one of the agents [20]. The centralized protocols that have been pro-
posed require that the agent responsible for creating plans maintains a “global view”
of the problem being solved, composed from the local view of each of the agents in the
CDPS. As the complexity of the problems to be solved increases, the capacity of a sin-
gle agent to maintain a global view of the problem being solved can be exceeded [20].
This led researchers to consider distributed planning.

Distributed planning protocols do not require a single agent to maintain a global
view of the problem being solved. The agents in 2 CDPS using a distributed planning
protocol jointly select the actions to be pursued to solve the problem for which the
CDPS is designed. Protocols used for distributed planning allow for three different
relationships between the agents; the agents can interact as peers, as in a hierarchy,
or as in a free market 7). Agents that are peers must all agree on the actions they
will perform; in a hierarchy, one agent has the ability to issue commands to another,
indicating the actions to be performed. Agents that follow the free market model
will issue “tenders” for “contracts” upon which other agents will offer “bids” [21].
Distributed protocols should ensure that under a specific set of conditions the agents
converge upon an agreement [22].

Cooperation is a notion that has been the subject of much debate. While there
is still no universally accepted definition for cooperation, experiences with early at-
tempts at constructing CDPS systems provide us with evidence that cooperation
manifests itself in at least two forms between the agents in a CDPS: cooperation by
sharing data; and cooperation for control, where agents jointly select the actions to be

pursued to solve the problem for which the CDPS is designed. Although construct-

ing CDPS requires mechanisms supporting both forms of cooperation, the issues that
must be solved in achieving each form of cooperation are large. Thus, while we briefly
touch upon achieving cooperation between agents by having the agents in a CDPS
jointly select actions, in this thesis we will focus on achieving cooperation by having
the agents in a CDPS share data.

Once researchers had developed mechanisms for permitting the agents in a CDPS
to share data items and experimented with various planning protocols in their quest
to achieve cooperation among the agents in a CDPS, they began to consider methods
for structuring the interaction between the agents. The structure imposed on the
interaction between the agents in a CDPS is called an organization [23]. Rescarchers
have speculated that the organization chosen for a CDPS would affect the problem-
solving performance of the agents in the CDPS [3, 7, 24, 25]. Experimental evidence
from the DVMT testbed indicates that the organization chosen for the agents in
DVMT did affect their problem-solving performance [23].

A designer of a CDPS is faced with many choices when selecting an organization:
the number of agents to be included in the CDPS, the capabilities that each agent will
possess, the planning protocols to be used by the agents, and the manner in which
data items are to be shared among the agents in the CDPS (referred to as data dis-
tribution). The designer of a CDPS must also ensure that several constraints are not
violated when selecting an organization: the processing requirements placed on each
agent for problem-solving must not exceed its capacity, and the distribution of data
items required for problem-solving must be such that the capacity of the commumni-
cation channel is not exceeded [7]. The CDPS designer must select an organization
that maximizes the performance of the agents within the CDPS.

Various researchers have evaluated the performance of a CDPS in different ways.
Lesser et al. consider the quality of the results obtained for the problem being solved
in terms of the “completeness” of the result and the number of errors it contains, as
well as the guality (measured by the number of “steps” required to solve the problem)
of the strategy by which the results were produced {3]. Other criteria for performance
that have been suggested include the computational resources and communication

resources consumed to solve the problem [26]. We refer to the quality of the results

obtained and the quality of the strategy used to solve the problem as the functional
performance of a CDPS, and refer to the resources consumed as computational perfor-
mance. In this thesis, we consider both the functional and computational performance
of the agents in a CDPS.

How to construct a CDPS with an appropriate organization for the problem to
he solved is still an open question. There is no consensus among researchers as to
how the components of an organization can be adjusted to maximize the performance
of the agents within the CDPS. While several laboratory prototypes for CDPS have
been constructed, there are no models or tools available to the CDPS designer to aid

in selecting an organization for a CDPS solving a given problem.

1.1 Thesis Outline

In this thesis, we present models and tools which aid the CDPS designer in selecting
an organization for a CDPS. We focus on the use of our models and tools for aiding
the CDPS designer in setting the data distribution in a CDPS; thus, cooperation
is achieved by having the rule-based systems in a CDPS share data. Our models
consider CDPS from two different perspectives: the inter-agent perspective, and the
intra-agent perspective. The inter-agent perspective is concerned with issues relating
to the manner in which the agents in a CDPS achieve cooperation. The intra-agent
perspective is concerned with the internal structure of the agent, and how the agent is
affected by the environment in which it must operate — the CDPS. The organizational
model {our model for the inter-agent perspective) permits the CDPS designer to
specify the mechanism used to achieve both forms of cooperation between the rule-
based systems in a CDPS. The path model (our model for the intra-agent perspective)
along with Path Hunter and Path Tracer (our tools constructed based upon the path
model) permit the CDPS designer to study the impact of the data distribution chosen
for a CDPS on the performance of a rule-based system that will be a member of that
CDPS, aiding the CDPS designer in setting the data distribution within the CDPS.
In this thesis, we focus on mechanisms for setting data distribution, because data

distribution affects many aspects of the performance of the rule-based systems in a
CDPS [7].

In chapter 2, we present our formal model for the inter-agent perspective. called
an organization (27, 28, 29]. Our organizational model permits the CDPS designer
to specify the mechanism used to achieve both forms of cooperation between the
rule-based systems in a CDPS: cooperation by sharing data, and cooperation for
control. Our organizational model also includes a metric for the data distribution of
an organization. We then discuss the speculations of various researchers on effects an
organization chosen for a CDPS may have on the performance of the agents that are
members of that CDPS.

In chapter 3, we discuss the design and validation of our testbed for experimental
research [30]. Our testbed is called the Blackbox Expert, and it solves a puzzle
called Blackbox. Using the Blackbox Expert, we can conduct experiments in which
we change the data items available to a single rule-based system, and we observe
its functional and computational performance, simulating the environment the rule-
based syste.n would face as a member of a CDPS. We then present results from an
experiment that we conducted, using the Blackbox Expert, that quantifies the effects
of data distribution on functional and computational performance of the Blackbox
Expert solving any Blackbox puzzle [31]. Our experiment also confirms many of the
expectations of researchers as to the effects an organization chosen for a CDPS may
have on the performance of the agents that are members of that CDPS, when the
agents are implemented as rule-based systems [23, 26, 7, 32).

In chapter 4, we describe our mode] for the internal structure of a rule-based
system [33, 34, 35]. Qur model for rule-based systems captures the structure of a
rule base as chains of inter-dependent rules called paths. We show that our model
for the structurelof a rule-based system is an improvement over previous attempts
by researchers to capture dependencies between the rules in a rule-based system; our
model meets three criteria which we believe are essential for modeling the structure
of a rule base as sequences of inter-dependent rules, and our model permits the
knowledge engineer to control the cost of analyzing the structure of a rule base, a
preblem which has plagued models proposed by other researchers. We have embodied
our formal model for the structure of a rule base into Path Hunter, our tool for

analyzing the structure of ¢ rule-base. Using Path Hunter, we analyse the rule-base

of the Blackbox Expert to determine the paths contained in its rule base.

In chapter 5, we discuss our method for applying the path model to study the
intra-agent perspective. In our study of the intra-agent perspective, we focus on the
relationship between the data items required by a rule-based system and the result
produced. We apply the path model to capture the data items required by a rule-
hased system to produce specific results in two separate steps: paths are analyzed to
determine the specific data items required by a rule-based system to achieve each of
its goals [36], and then paths are used to monitor the goals that are achieved by a
rule-based system as it solves a set of test cases [37, 38, 39]. We present an algorithm
for analyzing paths to determine data items required, and a method for monitoring
goals achieved. We have constructed Path Tracer, a tool embodying our method for
monitoring the goals that are achieved by a rule-based system. We present results
from an experiment to validate the accuracy of our method for monitoring goals
achieved.

[n order to demonstrate the use of our models (organizations and paths) and tools
(Path Hunter and Path Tracer), we present a case study for the design of a CDPS
to solve Blackbox (also in chapter 5); the agents in the CDPS are constructed using
the rule base of the Blackbox Expert. Using the organizational model, we describe
a CDPS for solving Blackbox. Then, using the path model, Path Hunter, and Path
Tracer, we study the goals that are achieved by the Blackbox Expert as the data
itemns available were reduced. This allows us to establish, for the Blackbox Expert,
the relationship between data items available, goals achieved, and result produced.
We identify several goals whose achievement is adversely affected by a reduction in
the data items available, and using our path model, we are able to determine the
specific data items that are responsible for the undesirable behavior that is observed.
We then discuss how the CDPS designer can set the data distribution in a CDPS
in order to avoid the undesirable behavior that is discovered using Path Hunter and
Path Tracer; we present three different scenarios in which the CDPS designer is able
to avoid undesirable behavior that was discovered.

It is our strong conviction that theoretical models of sufficient complexity to de-

scribe realistic systems require experimental validation, and this view is shared by

Cohen [40]. Models that view agents at a very high level of abstraction. as in game
theory (agents modeled by a payoff matrix), require few symbols (representing various
variables and parameters of the model), provide a basic set of operators that can he
manipulated, and allow for the construction of theorems showing certain properties
that are presumably present in the agent [41). Unfortunately, these models tend to
abstract an agent to a great extent. Therefore, it is difficult (if not impossible) to find
practical systems containing agents that are sufficiently represented by these simpli-
fied models; thus, it is not clear how the results obtained from the simple models can
be applied to practical systems. In order for a model to be adequately representative
of a practical system, it must contain an adequate level of detail; typically, these
models are more detailed than the simple models. These more detailed models will
obviously contain many symbols, and may not provide a small set of operators that
allow for the construction of theorems, but can still be useful in understanding the
properties of a system [40]. In our research, we use models containing sufficient detail
to capture properties of agents which are complex rule-based systems. In order to
help the reader with the large number of symbols used in our models, we provide a

glossary of symbols in Appendix B.

Chapter 2
A Model for CDPS

“Some men see things as they are, and say why?
[dream things that never were, and say ‘Why not?’ ”
- Robert F. Kennedy, quoted in “Esquire”, 1969

The interactions that occur between problem solvers cooperating to solve the
sainc problem have been studied by researchers in different fields [42, 32, 23]. In
the management sciences, researchers study the interactions that occur when humans
cooperate to produce a product; the structure of these interactions is referred to
as an organization [32). In DAI, researchers have been considering the possibility of
imposing a structure on the interaction between agents cooperating to solve a problem
as members of a CDPS {43, 44]. There exists a number of parallels that can be drawn
between the effect of an organization on the performance of humans who are members
of that organization, and the effect on perforn'ance of a structure imposed upon the
interactions that occur between the agents in a CDPS [7].

In this chapter, we will consider a class of problems -known as ill-structured prob-
lems; ill-structured problems are the type of problems commonly solved by rule-based
systems. We will examine the types of organizations that form when humans coop-
erate to solve problems that are ill-structured. We then present a formal model of
an organization for CDPS in which agents are implemented as rule-based systems.
We discuss the parallels that are drawn by researchers between the effect of an orga-
nization on the performance of humans that are members of that organization and
the effects an organization chosen for a set of cooperating agents may have on per-

formance. These parallels identify many of the choices that are faced by the designer

10

of a CDPS in specifying an organization.

2.1 1ll-Structured Problems

Researchers have developed models for representing problems in a generic manner as
well as models for representing specialized classes of problems [45, 46]. Traditionally,
the artificial intelligence community has chosen to view problem-solving as a search
through a state space [47]. The states in the state space are characterized by a set
of factors that are extracted from the specification of the problem to be solved. The
problem solver will find the solution to a problem by starting from an initial state and
then searching through the state space until a state which represents an acceptable
solution to the problem has been reached.

We can abstract the state to state transition as a transformation that may be
applied to the factors representing that state. The set of all transformations, irre-
spective cf the current state, are referred to as the set of possible transformations.
Not all the transformations that are possible may be applied by the problem solver
at a given state; we refer to the possible transformations that may be applied in a
particular state as the set of legal transformations.

For our purposes, we will view a problem as a graph with nodes S and edges T*

S is the set of states in the state space of the problem. The s; € S are described
by an attribute vector A =< ay,a2,...,a, >, and q; is a “lactor” describing
a characteristic of the problem state. The set of initial states for the problem

is denoted by S’, and the set of states which are acceptable solutions to the
problem is denoted by S¥.

T is the set of transformations used to traverse the state space of the problem,
and T is partitioned into T* and TP. T is the set of all transformations on s;

that are legal, and T”is the set of all transformations on s; that are possible,
but not legal.

The set of transformations T define a mappingon S; a: T xS — § where aft;, s;) =
sr. We say that a state s, is reachable by the problem solver if the state can be
reached using only legal transformations. Formally, a state s, is reachable if there
exists a sequence of states s,82,...,5, such that s; € S/, s;41 = a(l;,s;), Li € TL,

and j = 1,...,n — 1. We say that a state is considerable by the problem solver if

11

reaching the state would require the use of at least one transformation that is not
legal. Thus, the problem solver may desire to reach a considerable state, but in
practice the state cannut be reached. Formally, a state s, is considerable if there
exists a sequence of states sy, $2,...,8, such that s; € S, s;41 = a(t;,s;), at least
one t; € TP, and j = 1,...,n — 1. The concept of considerable states was developed
primarily for our understanding of ill-structured problems, and it is not developed
further in this thesis.

Given the state space model, the problem-solving process that is carried out by
the problem solver is as follows: At each state s; of the problem reached during the
problem-solving process, the problem solver must examine the state attribute vector
A, and determine the next state to be reached. Typically, the problem solver reasons
that the next state to be reached is a final state, or an intermediate state representing
a “meaningful” advancement in reaching a final state., The problem solver will then
consider all the transformations in T, and using a(t;, s;) choose the transformations
that are believed to be best suited for reaching the next state. Of course, the problem
solver must also be able to determine when a state s; € SF has been reached. The
computation that is to be cairied out at each state of the problem that is reached
must be such that it does not exceed the processing and memory capacity of the
problem solver. As |A| and |T| increase, the processing and memory capacity needed
by the problem solver also increase.

There have been several informal attempts by researchers to explain the properties
that indicate whether a problem is ill-structured {48, 49, 50]. Voss states that in his
view ill-structured problems can be characterized as having a large number of open
constraints, and the number of constraints is usually much larger than the number of
constraints a problem solver can consider [49]. In addition, Voss indicates that when
different problem solvers who are considered to be experts in solving a particular
problem which is ill-structured are asked to solve the problem, they may produce
different results, it is common that each expert will claim that their result is correct,
and there exists no known metric for establishing which result is in fact correct.
Newell characterized the domain of ill-structured problems as a domain where only

weak (heuristic) problem-sdlving methods were available [50]. Simon states that he

12

believes that the concept of an ill-structured problem is a residual concept: that is,
. a concept which is defined in terms of what it is not [48]. In Simon's view. an ill-
structured problem is defined as a problem whose structure lacks definition in some
respect, and that a problem is an ill-structured problem if it is not a well-structured
problem. Simon then goes on to informally describe the properties that he believes
can be used to determine if a problem is well-structured (or ill-structured). Given
our formalization for the state space model, let us now consider the properties of

well-structured problems and ill-structured problems in terms of the parameters of

our model.

Well-structured problems: A well-structured problem will have a clear specifi-
cation of all g; € A, and a clear specification of the domain of each a;. The function
aft;, s;), the transformations 7', and the final states SF are clearly specified by the
problem specification; thus, using o(t;, s;) the problem solver only searches the set of
reachable states. The |A| and |T'| are small compared to the capacity of the problem

solver; thus, the computation required at each state does not exceed the capacity of

. the problem solver.

Ill-structured problems: Ill-structured problems do not have as a part of their
specification a complete specification for at least one of the following:
e the factors a; that should be included in A to accurately represent the problem
state s;; thus, the complete set of states s; in the state space S is not known.

o the transformations ¢;; thus, the complete set of transformations ¢; € T is not
known.

e the state transition function a(ti, s;); thus, the problem solver considers search-
ing both reachable and considerable states while solving the problem.

e the final states S¥; thus, two different problem solvers will not always agree on
the result they may produce for an ill-structured problem.

¢ The |A| and |T| are large; thus, solving ill-structured problems requires large
amounts of computation and memory resources compared with the capacity of
the problem solver.,

The solving of ill-structured problems requires the problem solver to approximate

. the structure of the problem. The problem solver will decide which factors are to

13

be included in A, which is an estimate of A. Problem solvers will use their “own
knowledge” to approximate a(ti,s;), T, and SF by &({t;, s;), T, and SF. Problem
solvers will choose &{t;,s;), T, and SF based on their “expertise”, and different
problem solvers need not agree [49]. In order to reduce the computation and memory
requirements needed to traverse the state space, the problem solver will decompose
an ill-structured problem into subproblems. Each subproblem will consider the state
of the problem to be represented by A’ C A, and the set of transformations to be
TcT.

We choose to model the problem solver’s view of an ill-structured problem as a

triple, P! = (P, PS,G):

P is a problem where A, a(ti, s;), T, and Sr have been chosen by the problem
solver.

P3 is the set of subproblems PS = {SP,SP,,...,5P,}, and each SP, is charac-
terized by the following:

- PC\, the set of precedence constraints PC, = {pc;,pcs,...,pcr} for sub-
problem SF,. Precedence constraints place conditions on SF, indicating
when the subproblem can be applied to problem P.

—~ FPC,, the set of factors required by the problem solver to decide if all
pc; € PCy are met; thus, SP, is to be applied to P.

— S, the state space of SP,, and S, C S.
— A}, the current state of SP, and A} C A.
— 1T} the set of transformations for SP, and T} C T

G is the set of goals G = {g1,92,-..,9x} used by the problem solver. A goal g;
represents a particular problem state s; that the problem solver wishes to reach;
8; may or may not be a final state.

The solving of ill-structured problems is typically done by a problem solver us-
ing the state space model [48]. Within the state space, the problem solver is able
to identify goal states g;, which are important to reach when solving the problem.
Reaching goal states is important because it indicates that a meaningful advancement
in solving the problem has occurred. As a mechanism for reducing the complexity
of solving ill-structured problems, it is likely that the problem solver will decompose
an ill-structured problem P into subproblems (SP.). The precedence constraints for

each subproblem PC, indicate the manner in which subproblems are “related” to each

14

other with respect to solving the original problem P. Precedence constraints indicate
the sequence in which the subproblems should be solved, and indicate the manner
in which the solutions obtained for each individual subproblem can be combined to
form a solution for the original problem. In addition, solvirg ill-structured problems
requires a mechanism for handling the fact that the outcome of each step taken by

the problem solver cannot be predicted in advance; &(t;,s;) # aft;, s;).

2.1.1 Planning for Ill-structured Problems

Planning involves selecting a sequence of goals to be achieved for solving a prob-
lem [51]; this sequence of goals is called a plan. The goals that are selected when
planning determine the subproblems that are to be solved by the problem solver, and
the subproblems to be solved determine the steps that are to be executed by the
problem solver. In the case of ill-structured problems, planning must account for the
fact that the outcome of each step taken by the problem solver cannot be predicted
in advance; &(t;,s;) # a(li, ;). We now consider how plans can be represented, and
consider one method called incremental planning that has been proposed for han-
dling the fact that the outcome of each step taken by the problem solver cannot be
predicted in advance [52].

Frames [53] and a partial ordering on goals [54] are two different representations

which have been proposed for plans. We consider a plan to be a partially ordered set
Pt =(7,2):
~ is the set of goals chosen by the problem solver when planning for problem P/,
and vy C G.

= indicates the precedence constraints among the g; € 7 indicating an ordering
on which the goals are to be achieved.

When planning, the problem solver uses &(t;,s;) as well as the current and desired
value of A to create the plan. Each gx chosen by the problem solver to be in v will
require the problem solver to solve subproblems from PS5. The set of subproblems that
need to be solved to achieve g is determined by the problem solver using &(t;, s;),
and is denoted by the notation 8 =% g,. When choosing gk, the problem solver

will examine the factors required to determine if the precedence constraints for the

15

subproblems that must be solved to reach g, are satisfied. Formally. the problem
solver will examine {q; | VSP. € B, B8 =" gx, oy € FPC}}.

We say that a plan is complete for a problem P! when the least element of the
plan is g; € S'; and the greatest element is g € S¥. A partial plan is a plan which
is not complete. A plan is said to fail when the problem solver executes an SP, as
determined by the goals in the plan and the state s;4; that is reached was not the
same as predicted by &(¢;, s;). A plan failure occurs because &(t;, s;) # alt;, s;). With
ill-structured problems, the problem solver can determine if a plan fails or succeeds
only by executing the plan.

[ncremental planning is a method for solving an ill-structured problem P! where
the problem-solving process is an interleaving of planning and execution [52]. With
incremental planning, a partial plan is constructed followed by an execution of the
SP;’s as indicated by the plan. If the plan fails, then it must be “repaired”; if the
plan succeeds, it must be “extended”. The repair or extension of a plan requires
further planning. Thus, we can view the problem-solving process for an ill-structured
problem P! to be a sequence PS! = (PP, E\),(PP;, E,),...,(PP,:,E,): PP is a
partial plan for solving P!, and E; is the set of subproblems SP, executed by the
problem solver due to PP;. PP, has a least element g, € 5, and PP, has a greatest
element g; € SF.

When problem-solving, we assume that each time the problem solver creates the
next partial plan PPy, the data available are increased. When creating PP,
the problem solver will know the new value of A that resulted from E;. The new
and previous values for A, along with é(t;,s;) are used by the problem soiver when
planning PP;;. Thus even if a plan fails, the problem solver may be in a better
position to solve the problem because the problem solver is now aware that a(t;, s;) #
a(ti,s;). The new value for A allows the problem solver to repair a failed plan, or
extend a successful plan.

The number of partial plans created during problem-solving is affected by &(¢:, s;).
A better estimate of a(t;, s;) by the problem solver will result in fewer plan failures,
and permit more goals to be included in each PF;. The reduced failure rate of the

PP;’s will reduce the interruptions of E;’s for plan repair. Successful PP;’s that

16

include more goals to be achieved in each E; reduce the number of P£’s necded
when problem-solving.

Problem-solving using incremental planning is one strategy used for solving ill-
structured problems. Incremental planning provides a mechanism by which the prob-
lem solver can solve problems even if the outcome of a step taken by the problem
solver is not as expected; G(t;,s;) # a(ti, s;). When using incremental planning, the
problem solver is able to choose one or more steps that seem promising (P B}, execute
those steps (E;}, and then evaluate the state that is reached. One of the optimiza-

tions that a problem solver may adopt with incremental planning is to minimize the

number of plan failures.

2.2 The Organization

A structure that can be imposed on cooperating rule-based systems solving the same
problem is called an organization. Our model for an organization considers the struc-
ture of the interaction that can occur between rule-based systems in both phases
of problem-solving: planning and execution. In addition, our organizational model
requires the CDPS designer to specify the manner in which both forms of coopera-
tion will transpire between the rule-based systems: cooperation by jointly selecting
actions, and cooperation by sharing data.

In this section, we first discuss the types of organizalions that humans form when
cooperating to solve a problem, and consider the factors that contribute to the type of
organization that is formed by humans. Then, we present our organizational model,
which includes a metric for measuring data distribution. We discuss choices that are
faced by the designer of a CDPS, and consider the parallels drawn by researchers in
DAI between the effect of an organization on performance in human organizations,

and the effects of an organization chosen for a CDPS on the performance of the agents

in that CDPS.

2.2.1 Human Organizations

Human organizations provide a mechanism for many people to cooperate with each

other to solve problems. Researchers in the field of management science have stud-

17

ied organizations of people who cooperate to produce products [32, -12]. Human
organizations consist of two components called the organizational structure and the
coordination structure [26]. The term organizational structure refers to the skills
possessed by each person in the organization, and indicates the tasks each person
can perform when producing products. The coordination structure specifies the role
each person has in decision-making within the organization, and the manner in which
information is shared among the people of the organization.

We believe that studying the different organizations formed by humans and the
factors which influence the organization chosen by humans will help with the de-
sign ol organizations for rule-based systems. Many of the factors affecting human
organizations are analogous to the factors that must be considered when designing
organizations for rule-based systems [7]. An important property of humans, which is
one of the factors that determines the organization formed by humans for producing
a set of products, is Simon’s “principle of bounded rationality” (see (7] page 111).
This principle states that the processing capacity of the human brain is limited, as
is the amount of information it can assimilate. Thus, the processing demands placed
on any person in an organization must not exceed their capacity.

The simplest human organization is the single person. One person is responsible
for all decisions and skills needed to produce the products. This person must assim-
ilate all the information required both for decision-making and for performing the
tasks required to produce the products. The production of most products, except
for “simple” products where the processing capacity required for their production
is small compared to the capacity of a person, exceeds the processing capacity of a
single person.

A group is formed when the processing requirements for producing the products
increase beyond the capacity of a single person. The members of a group share
the tasks required for production, and they participate as peers in decision-making,.
Each member of the group assimilates all the information required to produce the
products. The number of people in the group is based on the number of different
skills needed to produce the products. As the size of the group increases, the peer

relationship becomes an expensive decision-making method, and the demands made

18

on the communication channels between the people in the group increases. Peer
decision-making becomes more expensive because the processing capacity and time
required for the people in the group to arrive at an agreement increase.

A simple hierarchyis formed when the processing capacity of the people in a group
is exceeded. The simple hierarchy has two levels: the upper level contains a single
decision maker who coordinates the tasks performed by the people at the lower level
of the organization. The derision maker is responsible for assimilating all information
required for deciding which tasks are to be performed by each person on the lower
level. Each person is responsible for processing the information required to perform
their tasks.

A uniform hierarchy evolves when the processing requirements of decision-making
increase beyond the capacity of the decision maker in a simple hierarchy. The uniform
hierarchy employs multiple levels of decision makers, and the information available
for decision-making at each level is an abstraction of the information available to
the lower levels of the hierarchy. As the number of levels in the organization and the
number of products increase, the allocation of resources among the people performing
the tasks required for the production of the products becomes a problem. In this type
of organization, the people producing each product compete for the resources available
to the organization.

The multidivision hierarchy solves the resource allocation problem of the uniform
hierarchy by creating a separate uniform hierarchy to produce each product {32]. The
separate organizations are controlled by a hierarchy of decision makers, where each
organization has its own resources. As with the uniform hierarchy, the multidivision
hierarchy uses the technique of abstraction to reduce the processing requirements on
the decision makers.

One might argue that the largest human organization is the free market [7]. In the
free market there are many separate organizations that can produce different prod-
ucts. There is no means of joint decision-making between the different organizations
in the free market. The organizations interact by means of “contracts” which are
awarded to one organization by another, using a “bidding” system. The organiza-

tions in a free market are autonomous; thus there is no guarantee that there will be

19

an organization willing to accept a contract that has been tendered.

Two [actors are believed to be important in determining the type of organization
that is formed by humans: the complexity of producing the products, and uncer-
tainty [32]. The complexity of production is the processing required to perform the
tasks necessary to produce the products, to assimilate all the information required
for production, and the processing requirements for decision-making. Uncertainty is
the difference between the information needed for performing a task, or for decision-
making, and the information available when the task is performed or a decision is
made. Uncertainty affects both decision-making and the tasks performed for produc-
tion. As the uncertainty with which a person performs a task increascs, the quality
of results each person produces are reduced: the results produced may not be com-
plete, or the results may contain errors. However, the processing and communication
capacity required to perform the task are reduced because there is less information to
be assimilated. As the uncertainty with which a decision must be made increases, the
processing capacity required by the decision maker increases because certain options
will be considered by the decision maker that would otherwise have been quickly
eliminated. Decisions taken during conditions of high uncertainty are more likely to
be incorrect.

Human organizations employ various methods to cope with the complexity of pro-
duction. Information complexity is dealt with by using the techniques of abstraction
and omission. When the information complexity for a group exceeds the capacity
of the people in the organization, a simple hierarchy is formed where each person
is responsible for only a portion of the information required for production. The
complexity of performing a task is kept within the capacity of a single person by the
continued subdivision of the tasks as they become more complex. In a simple hierar-
chy, as the complexity of the tasks increases beyond the limits of the people on the
lower level of the organization, additional people are added (when considering these
organizational models, it is assumed that there is always additional labovr available)
and the tasks are subdivided. The complexity of decision-making is reduced when
subdivisions are created as human organizations evolve from a uniform hierarchy into

a multidivision hierarchy.

20

Uncertainty in human organizations can be handled by allowing slack resources,
providing more efficient information distribution facilities to decision makers, and
creating peer relationships among the decision makers. Slack resources are extra
resources that are used to overcome the problems that occur when incorrect or in-
complete results are produced. A more efficient information distribution mechanism
and peer relations allow the decision makers to access more information when they
take decisions. Relationships between peers in an organization provides a mechanism
by which they can share the information at their disposal during decision-making.

The performance of humans in an orgauization is evaluated by examining the
quality of their end products, and the resources they consume [32]. While many
factors may be used to evaluate the quality of an end product, two factors that are
used to measure the quality of an end product are the product’s functionality and
reliability [32]. Resources consumed when producing a product include the process-
ing capacity, communication capacity, and the raw materials required for production.
The complexity and uncertainty reduction techniques employed by human organiza-
tions reduce the amount of resources the humans in the organization consume for
producing a given set of products. High coordination complexity and uncertainty
during decision-making will result not only in a large amount of processing required

for decision-making, but also a poor use of resources.

2.2.2 Organizations for Cooperating Rule-Based Systems

Rule-based systems are typically used to solve ill-structured problems. The rule base
approximates T, S¥, and a(t;, s;}, while the system’s working memory contains the
current value of A [55]. Rule-based systems allow for the fact that c(t;,s;) is not
known. The techniques for dealing with uncertainty that have been developed for
rule-based systems provide a mechanism by which the system will handle &(¢;, s;) #
e(ti, s;) [56]. While problem-solving, a rule-based system using A will adjust &(t;, s;)
by updating the confidence placed on the current hypotheses in its working memory.

Cooperating rule-based systems are advantageous for problems where the |A’| and
|T’| of the SPy’s are large compared to the capacity of a single system, or where the

knowledge bases required for each SP, are distinct. Knowledge bases are distinct

21

when they contain expertise from different domains — possibly created by different
knowledge engineers. Different methods for representing knowledge can be required
to store expertise from different domains {57]. Thus, creating a single knowledge base
integrating expertise from different domains is difficult. In some cases, a problem
requires the use of rule-based systems that are geographically distributed {58].

In this subsection, we present our model for specifying the mechanisms used to
achieve cooperation between the rule-based systems in a CDPS — the organization.
Rule-based systems solving a problem P’ can cooperate with each other by sharing
data, or by jointly selecting actions. The ability to share data items requires the use
of a mechanism for communication between the rule-based systems in a CDPS, and
the ability to jointly select actions requires the use of distributed planning protocols.
We discuss the communication mechanism and the planning protocols used in the
organizational model; then, we present a formal description of the organizational
model (including an example). We discuss how the organization selected for a CDPS
determines the decision-making responsibility of each rule-based system in the CDPS,
and determines the data items required by the rule-based systems in the CDPS when

they are planning.

Communication Mechanism: A blackboard is a data structure which allows co-
operating rule-based systems to communicate with each other when problem-solving
[17, 59]. The data shared by the rule-based systems using a blackboard is organized
into levels. A blackboard is a decomposition hierarchy, and the data items stored on
each level of the blackboard are composed using several data items on the level below
it, along with information supplied by the rule-based system. The data items input
to the system constitute the lowest level of the blackboard. In some cases, the levels
of the blackboard are also an abstraction hierarchy {16]. In an abstraction hierarchy,
as one goes up in the level of abstraction, the volume of information progressively re-
duces because details that are no longer required are omitted. This does not consider
the value of the information at each level of the blackboard.

A generalization of the blackboard structure for data storage views a blackboard as
a hierarchy of levels [60]. Each level is an n-dimensional space where each dimension

is an ordered range. The data items are stored on a level of the blackboard using the

22

dimensions of the level as the index by which they are retrieved. Thus. we have a
notion of distance between two data items stored on the same level of a blackboard.
When data items on one level of the blackboard are combined to determine the value

for a data item on a higher level, the data item could be located at more than one

location in the upper level.

In the organizational model, we view a blackboard, BB = (LV, <), as a hierar-

chical storage structure for A of a problem P’:

LV is the set of levels for BB, LV = {luy,lvy,...,lv,}; lv; is a blackboard level,
lvi =< DM,LB,UB,FD >. DM is the number of dimensions of {v;, where
each dimension is ordered; LB = {{by, {b,,...,lbpar} is the set of lower bounds,
and {b; is the lower bound for the range of dimension j of {v;; UB is the set
of upper bounds UB = {uby, ubs,...,ubpar}, where ub; is the upper bound for

the range of dimension j of lv;; and F'D is the set of factors a; whose values
may be stored on lv;.

1A

is a total ordering on LV indicating the decomposition hierarchy of B B, where
lv; is decomposed into simpler data elements than [v;,,. In the case of an
abstraction hierarchy on BB, lv;y, is considered to be at a higher level of

abstraction than lv;.

An example blackboard is shown in Figure 2.1. The blackboard has three levels, and
each level has its own dimensions. The factors that are stored on each level are also
different, and more than one type of factor can be stored on each level.

A window on a blackboard is composed of a number of regions, and the window
is the mechanism that determines the manner in which the instances of the a;'s
stored on the blackboard are distributed among the rule-based systems in a CDPS. A
region of a blackboard refers to a portion of one level of the blackboard. We denote
a region by bbr = (lv,LBR,UBR): lv is a level of BB; LBR is the set of lower
bounds on the dimensions of {v for bbr, and LBR = {lbr,lbry,...,lbrpy} where
Ibr; > lb;; UBR is the set of upper bounds on the dimensions of {v for bbr, and
UBR = {ubri,ubr,,...,ubrpy} where ubr; < ub;. A window onto a blackboard is
a pair w = (RG,FC): RG is the set of regions RG = {bbr(,bbry,...,bbr,}, and
FC = {A},A3,...,A}} where A] C A is the set of factors q; visible in the window
when they are stored in region bbr;.

Each rule-based system will have a window that describes its access privileges for

the data items that are stored on the blackboard. When a data item is stored on level

23

........................

. 1
1 HE. A e e,
1 \
6
acfyr_3
e Q‘r 001 -----------------
' 20
'
]
]
Factor_2
I
1 10

Level_3 = <3, {1, 1}, {4, 5}, {Factor_3}>
Level 2 = <2,{1, 1}, {8, 6}, {Factor_3}>
Level_1= <2, {1, 1}, {10, 20}, {Factor_1, Factor_2}>

Figure 2.1: Sample Blackboard

{v; of the blackboard, it will be visible to all the rule-based systems whose window
has a region bbr; that includes the location of the data item on {v;, and a; € Af where
a; is the factor whose value is given by the data item. The data items that appear
at several locations on lv; will be visible if any one of the locations at which they are

located is in bbry.

Planning Protocols: Planning protocols provide a mechanism for avoiding the
lack of focus t!la.t can occur when rule-based systems are cooperating to solve the
same problem [16]. Problem-solving by a set of cooperating rule-based systems, PS5/,
requires that they create a partial plan PP, where they jointly choose v and then they
solve the SP’s of PP, Ideally, S* should be chosen so that each SP, can be solved
independently. This is generally not possible because of interactions between the
SF,. When problem-solving, the rule-based systems must examine these interactions
in choosing 4 for PP; [61]. Planning protocols provide a mechanism by which the

rule-based systems jointly choose « for PP;.

Planning protocols can be centralized or distributed, and binding or nonbinding, A
centralized planning protocol has a specialized agent which creates all PP,. A binding
planning protocol obliges the agents to carry out the plan that is created, Early
versions of DVMT used a centralized planning scheme [18]. Multiagent Planning
[62] and Partial Global Planning [63] are examples of distributed planning protocols.
Multiagent Planning is a binding protocol. Partial Global Planning and Contract
Net [64] are nonbinding protocols.

In the organizational model, we proposed two binding planning protoccls called
Consensus and Decree, which permit cooperating rule-based systems to interact in a
peer to peer fashion or hierarchically {27]. The Consensus planning protocol for a set
of rule-based systems PG = {rbs\,rbss,...,rbs,}, written as C{rbs,,rbsy,...,rbs,},
requires that all rbs; € PG choose the goals to be included in a plan, and the rbs;'s
will examine those instances of ax € A that are in their respective windows [28, 29].
Consensus is a distributed planning protocol. The Decree planning protocol for a
set of rule-based systems PG = {rbs;,rbss,...,rbs,} having rbs; as the director,
written as D{rbs; : PG — rbs;}, requires that rbs; chooses the goals to be included
in a plan, and rbs; examines only those instances of a; € A that are in its own
window. Decree is a centralized planning protocol. A set of rule-based systems
PG = {rbs;,rbsa,...,rbs,} that plan using either the Decree D{rbs; : PG — rbs;} or
Consensus C{rbsy,rbs;,...,rbs,} protocol is called a planning group. The combined
window, denoted by CW, of a planning group is the window used during planning:
in the case of Decree, the combined window is the window of the director; in the
case of Consensus, the combined window contains “selected” data items from all the
windows of the rule-based systems in the planning group. Each rule-based system

in the planning group selects data items available in its window to appear in the

combined window.

The Organization: The organizational model is used to introduce a structure on
the interaction between the rule-based systems in a CDPS [65, 7). The organization
specifies the manner in which both forms of cooperation are to be achieved among

the rule-based systems in a CDPS.

25

Definition 1 (Organization.) An erganizetion for a CDPS containing m rule-hased
systems solving problem P! is a quadruple

where:

U =< ES,CP,CS, WS >

ES: the set of rule-based systems in the CDPS; ES = {rbs,,rbss,...,rbsn}.

CP: The capability matriz where cpfi, j] = 1 if rbs; can solve SP; else cpli, ;] = 0.
CP is an m x p matriz where p = |Ps| and ¥j L7, cpli, j] 2> 1.

CS: The coordination structure of is a simple connected graph CS = (ES, ER)} with
rndes ES and edges ER. The labeled edges ER indicate the planning protocols,
L .cree or Consensus, to be used by the rule-based systems of the CDPS. CS is
subject to the following restrictions:

o There is no cycle in CS that contains a Decree protocol.

o If a rule-based system is in two planning groups, both planning groups use

Decree, the rule-based system is not the director in planning group one, and
the rule-based system is the director in planning group two, then the director
in planning group one is also directing the rule-based systems in planning
group two. Formally, D{rbs; : rbs;} A D{rbs; : rbsi} = D{rbs; : rbs;}.

A single rule-based system cannot be directed by two different rule-based
systems. Formally, if D{rbs; : rbs;} then Arbs | D{rbsy : vbs;}.

If a rule-based system is in two planning groups, planning group vne uses
Decree, planning group twoe uses Consensus, and the rule-based system
is not the director in planning group one, then the director in planning

group one is also directing the rule-based systems in planning group two.
Formally, D{rbs; : rbs;} A C{rbs;,rbsy} => D{rbs; : rbs;}.

WS: The set of windows for ES, and w; refers to the window of rbs;.

CP indicates the SP,’s that each rule-based system is capable of solving, and CS

specifies which planning protocols are to be used by the rbs;. The Decree and Con-

sensus planning protocols provide hierarchical and peer relationships between the

rbs;. As Decree and Consensus are both binding, they are used to construct coordi-

nation structures that are analogous to the types of human organizations discussed

in section 2.2.1, except the free market. WS indicates the distribution of instances of

the ax € A (data items) among the rbs;'s when they solve SP,’s, and the CW of each

PG indicates the distribution of instances of the a; € A (data items) during planning.

26

- BLACKBOARD

RBS Windaw
A n.a
B o]
< L]

ot
L}

ingGroup Combined Window
Groupl [AD] nz
Group2 [AC) na

~E—3»= CONSENSUS
DECREE

Figure 2.2: Sample Organization for a CDPS

We refer to the distribution of instances of the a; € A during problem-solving as the
data distribution of the CDPS.

A sample organization for a CDPS is shown in Figure 2.2. In this CDPS there are
three rule-based systems {A, B, C}, and two planning groups: {A, B,} and {A, C}.
Rule-based systems A and B plan using Consensus C{A, B} forming one planning
group; rule-based systems A and C plan using Decree D{A : C} forming the second
planning group. The window of each rule-based system as well as the combined

windows for the planning groups are shown in Figure 2.2.

Decision-Making: The coordination structure is a hierarchy that indicates the
division of responsibility for decision-making among the planning groups in the CDPS.
The rbs; € PG which plan using C{PG} are at the same level in the CS hierarchy.
When the rbs; € PG plan using D{rbs; : PG—rbs;}, the director rbs; is considered to
be one level above the rbs; € { PG —rbs;}. The highest level in the CS hierarchy can

be composed of a planning gro.'» that plans using Consensus, or a single rule-based

27

system which is a member of a planning group that plans using Decree: Formally. the
highest level of the C'S is denoted by either the planning group C{PG\} if (¥rbs; €
PG)(B Dfrbs; : PG, —rbs;}, rbs; € { PG, —rbs;}), or the planning group D{rbs; :
PG, — rbs;} where (APG,, rbs; € PG,). When p.anning, each rule based system
in the CDPS will have its choices for 7 restricted. The restrictions for ¥ are imposed
on rbs; by the rbs;’s on the upper levels of C'S.

When the rule-based systems in a CDPS plan, the set of goals G' C & from which
they can selcct v is determined by the rule-based systems on the upper levels of C'S.
The rule-based systems at the highest level of CS do not face any restrictions. The
restriction for rule-based systems not on the upper level of C'S occurs when a rule-
based system rbs; is a member of two planning groups; once rbs; Las committed to
pursue several goals as a member of one planning group, it must choose goals that
are “compatible” with its current commitments when planning as a member of the
second planning group. Formally, this situation occurs in the following way: Let rbs;
be a member of both planning groups PG, and PG,. When the rbs; € PG, plan,
they create a plan PP,. When the rbs; € PG, create a plan PP, the g, € v of PP,
restrict the choices for 4 of PP;. The goals g € G' from which the rbs; € PG, choose
v must be compatible with each g, € v of PP:. A goal gi is compatible with g, for
an vbs; if the &(t;, s;) of rbs; predicts that there is a sequence of states so,s,...,5:
where sg is the current state of A, gi represents the state s, such that 0 < ¢ < z, and

g, vepresents the state s,.

Data Requirements: We now consider the data items required by the rule-based
systems during planning. When planning, the rbs; € PG, use their &(t;, s;)’s, the
current value of A, and G’ to create PP,. For each g € G' chosen by the rbs; to be
in v of PP, the rbs; will need to examine the {a; | 8 =% gx,SP; € B,a; € FPC}}

Definition 2 (Group Planning Set) The group planning set GPS; is the set of
all factors that can be required by the rbs; € PG, of ¥ when planning:

_ (FPC;) if epli,j]=1
GPS, = (rbsgpc;){ otherwise

Summary: An organization is a model for the interactions that occur between

cooperating rule-based systems during both phases of problem-solving. An organiza-

28

tion specifies how the rule-based systems that are members of a CDPS cooperate as

. follows:

e organizations specify the protocols used by the rule-based systems when plan-
ning (CS) as well as the division of responsibility for planning among the rule-
based systems. Jpecifying the planning protocols and the division of responsi-
bility for planning imposes a structure on the interaction between the rule-based
systems during the planning phase of problem-solving, specifying how the rule-
based systems in a CDPS cooperate by jointly selecting actions.

e organizations specify the availability of data items (a;) during both planning
(CW) and execution (WS). Specifying the window of the rule-based systems
(WS) imposes a structure on the interaction between the rule-based systems
during the planning and execution phases of problem-solving, specifying how
the rule-based systems in a CDPS cooperate by sharing data.

2.2.3 Information Deficit Metric

The information deficit metric is a measure of the data distribution specified when
an organization is selected for a CDPS. Figure 2.3 presents an example of the data
available to a rule-based system when it solves a subproblem. The figure shows one

. level of a blackboard depicting the window of a rule-based system as well as the
regions where instances of two factors required by the rule-based system to solve a
subproblem may be stored. When a rule-based system solves a subproblem SF, the
information deficit metric measures the “overlap” between the data available to the
rule-based system as specified by w; and the data required by the rule-based system
as specified by A}. When a rule-based system is planning as a member of a planning
group PG, the information deficit metric measures the “overlap” between the data
available to the rule-based system as specified by CW of PGy and the data required
by the rule-based system as specified by GPS;.

The information deficit metric that we propose is based on the probability that
each instance of an a; that is required by a rule-based system to solve a subproblem
or for planning will be available, as well as the “importance” of each a;. Let us
now consider how we can determine the importance of each a;, and how we can
determine the probability that an instance of a; is available. Then we will explain

. the formulation of the information deficit metric itself.

29

Blackboard Level k

Figure 2.3: Data Items for a Subproblem

Importance of a;: There are several methods that can be used to establish the
importance of each factor a; required during problem-solving. In our most general
formulation of the information deficit metric, we use the information content of an a;
to indicate its importance. The information content of an @; estimates the information
gained by a rule-based system rbs; when it accesses an instance of a;. In some cases,
the problem domain places an ordering on the factors used to represent the state of
the problem. In other cases, the structure of the rule-based system used to solve the
problem indicates the importance of the various factors that represent the state of
the problem.

In the absence of information about the problem domain or the structure of the
tule-based systems used to solve a problem, we can make use of a general result from
information theory [66]. We can view the blackboard BB = {SC,, SC3,...,5Ch}asa
set of zero memory information sources. The alphabet of symbols ¥; emitted by SC;
is given by the domain of a;. This abstraction makes the assumption that the event
denoted by a rule-based system rbs, storing an instance of a; (a data item) on the
blackboard is independent of the event denoted by rbs; storing an instance of a; on
the blackboard. We also assume that Domain(a;) is finite and that the probability of
each instance of a; (denoted by v;) appearing on the blackboard, P(v;), is known, and

L v eDomain(a;) P(v;) = 1. Then the entropy, or the average amount of information

30

provided by each instance of a; emitted by SC;, is given by

1 .
H(a;) = > P(v;)logy ——— bits
uy€Domain(Q;) P(UJ)
Probability that v; is available: An instance of a; appears in w; (is available)
when w; contains a region bbry which includes locations on the blackboard where
instances of ¢; can be stored and a; € A}. The probability that the location where

an instance of g; is stored on the blackboard is in bbry is derived from the following:

o the degree of “overlap” between bbry and the fization of a;. The fixation of
a; refers to the bbry’s in which the instances of a; can be stored. Formally,
the fixation of a factor @; € A on a blackboard is the set of regions F.X; =
{bbry, bbra,. .., bbr,} where the instances of a; can be stored.

o the expected distribution of the instances of @; on the blackboard.

The degree of overlap between the window of a rule-based system and the fixation
of a; can be measured using the notion of area and is denoted by AREA(FX, Nw,).

Formally, the area of a set of regions RG = {bbry, bbry,...,bbr,} of a blackboard is
given by

DM,
AREA(RG)= Y T] (ubr; - lbr;)
bbrieRG j=1

The intersection operator N used on a window and a fixation is applied to all the
regions in both the window and the fixation, creating a new set of regions. Formally,
the operation N on FX; and w; denotes {bbr, | bbr; = bbry N bbry; bbry C wy, bbr; €
FX;, a; € AL}. In the example shown in Figure 2.3, the darker shaded regions would
be the two regions produced when the intersection operator is applied to window;,
factor;, and factor;.

We can now establish a probability for the availability of an instance of a factor
a; in a window w;: comparing the area of intersection between the fixation of «; and
w; with the area of the fixation of ¢;. If we assume a uniform distribution {of course,
if information is available as to the distribution of the instances that are likely to
appear for a factor, a different distribution could be used) Yv; € Domain(a;), then
the probability that an instance of a; stored on the blackboard is in w; is given by

AREA(FX; 0 w;)

P(aifw;) = AREA(FX))

31

Formulation of the information deficit metric: We now combine the impor-
tance of an a; and the probability that an instance of ¢; is available to determine the
informalion potential of ¢; for a window w;. We simply use the product of the entropy
of a; and the probability that instances of a; will be in window w; to determine the
information potential of a;. Formally, the information-potential of a factor a; for a
window w; is given by IP(a;/w;) = H(a;)P(ai/w;)

Using the entropy and the information potential of the ¢; € A} we can derive
the information deficit for the rule-based systems in an organization when solving a
subproblem, SP;. The information deficit metric is constructed such that the range
in value is between 0 and 1. A value of 1 reflects the situation that no information is
available, and a value of 0 indicates no deficit and that all the information required will
be available, if it is present on the blackboard. In computing the information deficit,
we start by computing a value for the availability of instances of all factors required
to solve a subproblem: a sum is taken of the information potential for each factor
required to solve the subproblem; then, we divide this sum by the value for availability
if all instances of every factor required to solve the subproblem are available (the
total entropy of all factors required to solve the subproblem), normalizing the value
obtained for the information available. Formally, the information deficit when a rule
based system rbs; is solving a subproblem S P, is given by the following:

Definition 3 (Execution-Time Deficit) The information deficit of a rule-based
system rbs; in an organization when it solves SP, is
_ Zawea; IP(ar/wi)

Lapea, H (ak)

Using the entropy and information potential of the factors e; required by a plan-

DE(rbsi/SP,) =1

ning group PGy, we can derive the information deficit for the rule-based systems in an
organization when they plan. The same principle used to determine the information
deficit when solving a subproblem applies to the information deficit when planning,
but for planning we consider the factors required by the planning group and the plan-
ning protocol that the planning group uses. Formally, the information deficit when a

rule based system rbs; is planning in planning group PGy is given by the following:

Definition 4 (Planning-Time Deficit) The information deficit of a rule-based sys-

32

tem rbs; in an organization when planning as a merber of planning group PG\, is

0 D{rbs; : PGy — rbs,}
1 - ZaleGPSkIﬁ(a;fCWk)
Za,ecps,, H{ar)

DP(rbs:/ PGy) =

otherwise

The information deficit metric provides a mechanism to measure the availability
of data items (instances of &;) among a set of cooperating rule-based systems during
both stages of problem-solving, Using the information deficit metric, we can measure
the availability of data items when the rule-based systems in a CDPS jointly select

goals, and measure the data items available to each rule-based system in a CDPS as

it solves a subproblem.

2.2.4 Choosing an Organization

In DAI, researchers have informally discussed and studied CDPS systems. Researchers
have speculated about the effect on performance of an organization that is selected
for a CDPS. There exists some empirical evidence in the literalure to support the
expectations of researchers for certain specific test cases; Durfee et al. have observed
the performance of the agents in a CDPS, given the organization selected for specific
test cases of the Vehicle Monitoring Problem [23]. Using the organizational model as
a formal framework, we now consider the informal speculations of various researchers
as to the effect on performance of choices made by the CDPS designer when selecting
an organization for a CDPS.

Selecting an organization for a CDPS requires a choice of ES,CS,CP, and W S.
Researchers in DAI believe that many of the issues that arise with human organiza-
tions are thought to affect the design of organizations for CDPS [7]. The principle
of bounded rationality applies both to humans and to the agents in a CDPS [7].
As problems grow more complex, requiring more processing capacity, the limits of
the agents will be exceeded. Agents in a CDPS will be faced with complexity is-
sues, as are humans: the agents must perform the necessary operations to solve
the required subproblems (SP;), the agents must process the data items in their
windows (w;), and the agents must decide the subproblems that are to be solved
({SP, | Ygr € 7, B =% gr, SP. € 8}). Uncertainty will also be present in a CDPS:

when problem-solving, the agents must solve subproblems and must determine the

33

subproblems to be solved using only the data items available in their windows.

The performance obtainable with a particular organization will be of interest to the
CDPS designer. As with human organizations, performance will be concerned with
the quality of the results produced (functional performance) by the agents as well as
the resources consumed (computational performance) [23]. The quality of the resuits
produced is typically assessed by using problem dependent measures. The resources
consumed would be measured in terms of the processing and communication capacity
required to solve the problem. Of course, the CDPS designer wishes to maximize the
functional and computational performance of the agents in a CDPS when selecting
an organization. Thus, strategies are required for controlling the effects of processing
complexity and uncertainty.

Researchers expect that the choices made for £S and C P determine the manner
in which the processing load incurred when solving a subproblem is shared among
the agents in the CDPS. As the number of agents in the CDPS that possess the
capability to solve a subproblem increases, the processing requirements for solving
that subproblem placed on each of them is expected to decrease. However, the com-
munication resources consumed by the agents solving a subproblem are expected to
increase. Depending on the planning protocol used (Decree or Consenst.s) between
the agents, the cost of planning may also increase.

The use of Decree and Consensus when constructing C'S is expected to affect the
cost of planning, and as the number of agents in the CDPS increases, the number of
different configurations for C'S increase rapidly [67]. Agents that plan by Consensus
benefit from an increase in the number of data items available during planning. The
use of additional data items when planning can result in “better” plans, but the cost
of creating the plan increases because we anticipate an increase in communication
overhead and processing capacity required to assimilate the additional data iteins.
The cost of planning using Decree is less than that for Consensus because of the
increased number of data items that must be processed by each agent when Consensus
is used for planning. Thus, the use of Decree at appropriate points in the C'S of the
organization can reduce the cost of planning.

Changing W S adjusts the data distribution in a CDPS, and is believed to affect

34

the computational and functional performance of the agents [32. 26. 12. 3. 7. 21, 23],
Researchers have speculated that when an agent solves a subproblem. as the number
of data items in its window that are available to solve the subproblem decreases, the
following occurs: the number of errors in the results produced for the subproblem
increases, the quality of the results produced decreases, and the processing and com-
munication resources consumed by the agent to process the data items required to
solve the subproblem decreases [3, 7]. When the agents plan. the effect of the data
distribution on the processing and communication resources consumed will depend
upon the type of planner that is used. In the case of a planner which svnthesizes
goals using the data items that are in the combined window of the plauning group,
or adjusts the rating of a predetermined set of goals using the data items that are
in the combined window of the planning group, it is expected that the processing
and communication resources consumed by the agents to create the plan decrease
as the number of data items available decrcases. In the case of a planuner that uses
the data items that are in the combined window of the planning group to eliminate
goa.ls-from a predetermined set of potential actions, it is expected that the processing
and communication resources consumed by the agents to create the plan increase as
the number of data items available decreases; this occurs because many options are
explored that could have been quickly eliminated if more data items were available.
When planning, as the number of data items that are available in the combined win-
dow of a planning group decreases, there may be an increase in the number of plan
failures. An increase in the number of plan failures could occur because the agents in
the planning group choose goals to be included in the plan that would not be selected

if they could access all the data items required for planning.

2.3 Conclusion

Our srganizational model provides a formal framework for studying the effect (on
performance) of the organization selected for a CDPS in which the agents are imple-
mented as rule-based systems. The organizational model provides a mechanism for
specifying how the rule-based systems in a CDPS cooperate; the model includes a

formal description of the planning protocols used to define the coordination structure,

35

the structure of the blackboard used for sharing data items. the availability of data
items during both phases of problem-solving, and a metric for the data distribution
in the CDPS (based upon a notion of distance between two data items stored on
a blackboard). The rule-based systems that are members of a CDPS employ the
problem-solving model for ill-structured problems we described in section 2.1.

Design of a CDPS is a complex task. and no single thesis can address all aspects
of CDPS design. In this thesis, we will restrict ourselves to consider only the choices
that face the CDPS designer in setting the data distribution (W S) in a CDPS. given
that £S, CP, and CS have already been specified. Considering the informal specu-
lations by different researchers in light of our formal framework for CDPS systems.
we identifly two issues which (studied in this thesis) we believe are important to the
CDPS designer when setting the data distribution in a CDPS:

o for a CDPS in which the agents are implemented as rule-based systems solving

a specific problem. how important is the data distribution in the CDPS in
determining performance?

— we lack evidence that the trends expected by researchers will actually occur
in an operational rule-based system.

— we lack evidence that the effects of data distribution on performance are
important for specific problems, or classes of problems, other than the
specific test cases reported in the literature,

¢ how does the availability of a specific data item affect the performance of the
rule-base systems in the CDPS?

- we are unable to determine exactly how to set the availability of specific
data items in order to improve the performance of the rule-based systems
in a CDPS, or avuid serious failures.

36

Chapter 3
A Testbed for CDPS

“It is common sense to take a method and try it.
If it fails, admit it frankly and try another.
But above all, try something.”

- Franklin D. Roosevelt, Speech, 22 May 1932

Designing a testbed for experimental research requires the consideration of dif-
ferent requirements. Of primary importance is the type of experiments that will be
carried out using the testbed; that is, the hypotheses that will be tested in the ex-
periments, the input parameters required for conducting the experiments, and the
outputs that are to be measured during the experiments. The method chosen for the
implementation of the testbed is also important; the cost of constructing the testbed
as well as the costs of conducting the experiments for which the testbed is intended
must be justified by the gains that are expected from the experiments. Several of the
prototype systems used in DAI rescarch have been very complex, and have require-
several person-years of effort. For example, the work expended in the DVMT project
is estimated to be 15 to 20 person-years.

The design and implementation of a testbed for experimental research is a large
task, typically requiring the participation of many people; our testbed is no exception.
My role in the design, implementation, and use of our testbed has been to participate
in the conception of the design for the testbed, to act as a project leader for the
graduate students who worked on the implementation of the testbed, to integrate the
individual components of our testbed that were constructed by the graduate students

into a single functioning system, to design the experiments to be conducted using

37

the testhbed, and to carry out these experiments. The people who participated in the
design of our testbed are as follows: Kristina Pitula and John Lyons were instru-
mental in choosing the sample problem for our testhed; John Lyons made significant
contributions to the design of our testbed; Lee Hoc worked on the implementation
and testing of the rule base of our testbed; Carol De Koven and Kristina Pitula are
the domain experts for our sample problem, and they designed the test set used to
validate the functional performance of our testbed. Alun Preece helped with the de-
sign of the experiment we carried out to validate the functional performance of our
testbed.

The long term goal of our research is to explore the implications of the different
design choices available to the CDPS designer when selecting an organization for a
CDPS in which the agents are implemented as rule-based systems. In this thesis
(our current research), we will focus on the choices available to the CDPS designer in
specifying data distribution (WS). In consideration of hoth our current research and
longer term research goals, we envisage our testbed to be used for different types of

experiments, in each stage of our research, as follows:

Stage 1: we expect to conduct experiments in which we can change the data items
available (g;) to a single rule-based system, and observe the functional and
computational performance of the system. In stage 1, our testbed consists of
a single rule-based system, which allows us to specify its window (w;) as if it
were a member of a CDPS, simulating the environment the rule-based system
would face as a member of a CDPS.

Stage 2: we expect to conduct experiments in which we can change the organization
imposed on a set of cooperating rule-based systems, while we observe the func-
tional and computational performance of the rule-based systems. In stage 2,
our testbed would be a complete CDPS, consisting of several rule-based systems
constructed from the original single rule-based system used in stage 1.

In our current research, reported in this thesis, we only conduct experiments of the
type described in stage 1. However, we will discuss the features that have been
included in our testbed that will allow us to transform our testbed to conduct the
type of experiments we expect to perform in stage 2 of our research.

Based upon the experinienis that we intend to conduct, our testbed must include

the following;:

38

¢ A sample ill-structured problem that can be decomposed and solved by sev
eral cooperating problem solvers. In order to quantitatively measure functional
performance, we also require a metric for evaluating the quality of any result
produced for the sample problem,

o A rule-based system for solving the sample problem. It must be possible to
specify the availability of data items, and it must be possible to measure the
computational performance of the system. In addition, we require that the rule-
based system be constructed in a manner that will permit its components to be
reused when we construct a CDPS for solving our sample problem.

o The construction of any system is not complete until the system has been tested,
demonstrating that the system is capable of solving the problem for which it.
has been constructed. In the case of our testbed, validating its ability to solve
our sample problem is especially important, because we intend to study the
system’s ability to solve our sample problem as we vary the data items available.
In order to be certain that our testbed can properly exhibit the reduction in
performance that we expect when the number of data items available to the
system is reduced, we must establish that the ability of the svstem to solve our
sample problem is “respectable” when all data items are available.

In this chapter, we present the design of our testbed, and present resuits from an
experiment we conducted using our testbed. We describe the sample problem we have
chosen for our testbed, which is called Blackbox. We explain why Blackbox is consid-
ered to be an ill-structured problem, and discuss the decomposition of Blackbox. We
present our rule-based system for solving the Blackbox puzzle, called the Blackbox
Expert. We explain how the Blackbox Expert permits the experimenter to control
the availability of data items, and how the components of the Blackbox Expert can
be reused to construct a set of rule-based systems that will cooperate to solve the
Blackbox puzzle. We then discuss the method used to validate the functional per-
formance of the Blackbox Expert; we compare the results produced by the Blackbox
Expert for a set of test cases with the results produced by humans for the same set of
test cases. We then present results from an experiment that we conducted, using the
Blackbox Expert, that quantifies the effects of data distribution on functional and

computational performance, confirming the expectations of researchers as discussed

in chapter 2.

39

H-|@®

B R C

A-D: Deflected Beams
R: Reflected Beams
H: Absorbed Beams
® Ball Location

Figure 3.1: Beam Behavior in Blackbox

3.1. The Blackbox Puzzle

. The Blackbox puzzle consists of an opaque square grid (box) with a number of balls
hidden in the grid squares. The puzzle solver can fire beams into the box. These
beams interact with the balls, allowing the puzzle solver to determine the contents of
the box based on the entry and exit points of the beams. As illustrated in Figure 3.1,
the beams may be fired from any of the four sides of the box (zlong one of the grid

rows or columns) and follow four simple rules:

¢ If a beam hits a ball, it is absorbed (labeled by ‘H’).

¢ If a beam tries to pass next to a ball, it is deflected 90 degrees away from the
ball in the square diagonally next to the ball (labeled alphabetically except for

‘H’ and ‘R"}.

o [f a beam tries to enter the grid at a square adjacent to a border square that
contains a ball, it is reflected back 180 degrees (labeled by ‘R’).

o Ifa beam tries to pass between two balls, it is reflected back 180 degrees (labeled
by ‘R’).

The objective of the puzzle solver is to determine the contents of as many of the

. grid squares as possible, while minimizing the total value of beams fired. Beams that

40

are absorbed or reflected have a value of one point. while deflections have a value of
two points. Beams that are absorbed or reflected are given one point because the
puzzle solver only knows the entry point of the beam, and that the beam did not
exit the blackbox. Beams that are deflected are given a value of two points because
the puzzle solver knows the entry point of the beam as well as the exit point for the
beam: the additional data indicating the exit point of the beam is very useful to the
problem solver in determining the contents of the grid squares.

The Blackbox puzzle is solved iteratively by firing beams and observing their exit
points from the grid. The information obtained from observing the exit points of
the beams, and the problem solver’s knowledge of how the beam can be affected
by the balls within the box are used to drzw conclusions about the contents of the
box. In addition, the problem solver must decide if the conclusion drawn for a grid
square is certain. As an intermediate step, the puzzle solver can determine that there
is evidence indicating that a square is both empty and contains a ball, signaling a
conflict. Conflicts may be resolved as additional evidence is obtained. For example,
additional evidence may indicate that the ball is certain. Thus, the grid square would
be considered to certainly contain a ball, and the evidence suggesting that the square
is empty would be disproven.

In certain configurations of the Blackbox grid, the contents of a number of grid
squares cannot be identified; we refer to these as shielded regions. A region is called
a shielded region if it is a proper subset of the Blackbox square, it contains at least
one ball, and the ball is shielded by other balls that are surrounding it, so that no
beam can penetrate into the region. An example of a shielded region is shown in
Figure 3.2, wherein the shielded region is shaded. No beam can penetrate into the
shaded region. The balls contained in this region are called “unmappable balls”. In
the case of a shielded region, the puzzle solver can only state that the contents of
each square in the region remains unknown.

Unlike the case of other well known games and puzzles such as chess, there are no
known ways of rating a result produced by a Blackbox puzzle solver. In consultation
with a group of Blackbox experts, a metric has been devised to evaluate the quality

of a result produced for any test case of the Blackbox puzzle. The factors that

4]

@
[]

Figure 3.2: An Example of a Shielded Region.

were chosen to determine the quality of a result are: the number of balls that were
correctly located, the number of grid squares (other than those which contain balls)
whose contents are correctly identified, and the total value of the beams fired to solve
the puzzle. As stated in the objectives of Blackbox, the best result would have all
the balls and grid squares correctly identified as well as a minimum total value for
the beams that were fired.

The metric that was adopted is as follows:

C _ W cC_rw Vv
SCORE:(Q—B B" _L°-L b—)xlOO

B T T T
where:

BC: The number of correctly located mappable balls.
BY: The number of incorrectly positioned balls.
BM: The total number of mappable balls.

L¢: The number of grid squares which do not contain a mappable ball that are
correctly identified.

LY: The number of grid squares which do not contain a mappable ball that are
incorrectly identified.

LT: The total number of grid squares which do not contain mappable balls.
b¥: The total value of the beams fired to solve the puzzle.

bT: The total number of entry/exit positions of the Blackbox.

42

Evidence
Actions
Quicome

L

Choose Observe

Figure 3.3: Diagnosis Type Problems

The SCORE metric assigns a numerical value to a result produced for any test case
of Blackbox. A result with a lower score is considered to be of better quality than
a result with a higher score. The weights placed on each factor rank the number of
balls correctly identified as the most important factor, followed by the value of the
beams fired, and the number of correctly identified grid squares (those not containing
balls) is the least important.

Blackbox is an example of a diagnosis type problem (see Figure 3.3). Diagnosis
type problems are structured such that there is a set of facts, and a set of actions
available to the problem solver. The problem solver must examine the sct of facts
(or evidence) currently available, and based upon the evidence, the problem solver
chooses one of the actions; then, the problem solver performs that action. The result
of performing the action will be the introduction of new facts, which the problem
solver can use to solve the problem. The problem solver can repeat this process until
it is determine that there is adequate evidence available to reach a conclusion for the
problem, or that none of the actions is likely to allow a conclusion to be reached.

Blackbox can be used to model many diagnosis type problems; for example the
Blackbox puzzle could be used to model medical diagnosis: the beams fired by the
problem solver are analogous to symptoms reported and diagnostic tests ordered by a
physician, placing a ball is analogous to selecting a disease, and marking a square as

empty is analogous to ruling out the possibility of a disease [30]. Our metric for the

43

quality of the result produced by the problem solver (SCORE) can be adapted to
reflect the values that are appropriate in evaluating a problem solver for the problem
that is being modeled, by adjusting the weights used in the SCORE metric. For
example in the case of medical diagnoses, a physician might choose the weights used
in the SCORE metric to make the selecting of the correct disease most important,
followed by minimizing the number of tests ordered; this reflects the value that making
a correct diagnosis is considered most important by physicians, and physicians are
also sensitive to the fact that they should subject their patients to as few tests as
possible. On the contrary, the administrators of private hospitals might not be that
concerned about minimizing the number of tests ordered by physicians, and they may
choose different weights for the SCORE metric than physicians.

Blackbox is an ill-structured problem. At first glance, representing the state of
the Blackbox puzzle seems trivial. However, if we consider the set of hypotheses that
must be constructed by the puzzle solver as part of the state of the problem, then
representing the state of the Blackbox puzzle is not trivial [68]. When the puzzle
solver selects a beam to be fired, the outcome of firing the beam is not known. Also,
the number of states in the state space for the Blackbox puzzle is large because of
the number of different ways in which the balls can be placed in the grid.

Blackbox is a problem that is suitable to be decomposed and solved by several
puzzle solvers at the same time. The Blackbox puzzle can be decomposed geograph-
ically, and partial results to the Blackbox puzzle are possible as well as acceptable.
A distributed version of the Blackbox puzzle has been created in which the Blackbox
grid is divided into several regions, and a different problem solver is given the re-
sponsibility of determining the contents of the grid squares in each region [68]. Each
problem solver has access to the grid squares in its region, and these grid squares con-
stitute its local view. De Koven et al. have conducted several experiments in which
teams of human problem solvers have cooperated to solve the distributed version of
the Blackbox puzzle [69).

The Blackbox puzzle is a good choice as a sample problem for our testbed. The
Blackbox puzzle meets our criteria for ill-structuredness, it can be decomposed and

solved by several cooperating problem solvers, and we have a metric that can be

44

used to evaluate the result produced by a problem solver. In addition. Blackbox is
cost effective for use in laboratory experiments: knowledge acquisition is not “too
expensive”, the time required by a human puzzle solver to solve a single Blackbox
puzzle is not “too” long, and the results we obtain by studying the solving of the
Blackbox puzzle are generalizable to other diagnostic type problems. The process
of knowledge acquisition, required to construct a rule base for solving the Blackbox
puzzle, is not too expensive because it is simple for a human to learn to solve Blackbox
puzzles; thus, we are not obligated to consume the time of highly priced human experts
in constructing the rule base. The time required for a person to solve a single Lest
puzzle varies between 10 and 30 minutes; thus, the cost of collecting data concerning

the ability of human puzzle solvers to solve a set of Blackbox puzzles is not prohibitive.

3.2 The Blackbox Expert

The Blackbox Expert is our rule-based system for conducting experiments in which
we change the data items available to a single rule-based system, while we observe the
functional and computational performance of the system [70]. The Blackbox Expert
allows a human experimenter to specify a window (w;) for the Blackbox Expert,
changing the data items available as if the Blackbox Expert were a member of a
CDPS, simulating the environrnent the rule-based system would face as a member of
a CDPS. In addition, we expect to be able to reuse the components of the Blackbox
Expert when we construct a test bed consisting of several cooperating rule-based
systems, to be used in subsequent stages of our research.

In the types of experiments that we expect to conduct with the Blackbox Expert,
an experimenter may wish to have the Blackbox Expert solve a single test case of
the Blackbox puzzle, while the experimenter monitors the progress of the Blackbox
Expert as it solves the puzzle. In other more complex experiments, the experimenter
may wish to have the Blackbox Expert solve a set of test cases repeatedly, and each
time the same test case is solved, a different number of data items are available to
the Blackbox Expert. The features that must be included in the Blackbox Expert in

order to permit an experimenter to conduct these types of experiments are as follows:

e the ability for the experimenter to set the data items available to the Blackbox

45

Expert.

e the ability for the experimenter to record the result produced by the Blackbox
Expert for each test puzzle that it solves.

e the ability for the experimenter to evaluate the functional performance of the
Blackbox Expert. The Blackbox Expert must apply the SCORE metric to each
result it produces.

o the ability for the experimenter to monitor the computational performance of
the Blackbox Expert. When dealing with rule-based systems, computational
performance can be measured by recording the number of basic operations per-
formed — inferences (or rules fired), and accesses to working memory {71]. The
Blackbox Expert must record the number of rules fired and the number of facts
it accesses as it solves cach test puzzle.

e the ability for the Blackbox Expert to solve a single test case of the Blackbox
puzzle, or solve a set, of Blackbox puzzles without requiring human intervention.

The Blackbox Expert is composed of four modules: the User Interface, the Test
Puzzle, the Current Hypothesis, and the Puzzle Solver, as shown in Figure 3.4 {72].
The User Interface allows the experimenter to control the Blackbox Expert. The
Test Puzzle maintains the configuration of the current test puzzle that the Blackbox
Expert is required to solve. The Puzzle Solver is a rule-based system responsible for
solving Blackbox Puzzles, and the Current Hypothesis module contains the current
state of the result that the Puzzle Solver is constructing as well as the entry and exit
points for the beams that have been fired.

The Test Puzzle is responsible for simulating the problem domain. It contains
the rules describing the basic principles of the interactions that can occur between
the beams and the balls inside the Blackbox. The Test Puzzle maintains the data
structure that contains the location of the balls within the Blackbox grid for the cur-
rent test puzzle. The Test Puzzle receives from the Puzzle Solver (X, Y') coordinates
of the entry point for beams that are fired by the Puzzle Solver. The Test Puzzle
determines the trajectory of beams, and returns the (X,Y) coordinates of the exit
point for the beams.

The Current Hypothesis module contains the Puzzle Solver’s current hypothesis
about the contents of the Blackbox grid squares, the certainty of any conclusion
that has been drawn for the grid squares, and a list of the entry and exit points

of the beams that have been fired (referred to as shot records). The Puzzle Solver

46

Puzzle Solver
Curre is
Inference Engine o Hypothest
: Grid Certainty
Test Puzzle Beam 1 Beam
Selection | Analysis Grid Contents
1
Rule Base Shot Records
Working Memory

User Interface

Blackbox Expert

fesneasranasoeraaacrer ool i T e e a e Rt et r e aN R E Rt EE iR RO TR AR et et ra bbb baan bttt i arraasasasseennnnnnaannad

Figure 3.4: Structure of the Blackbox Expert

accesses the Current Hypothesis module only through a set of pre-defined functions,
which specify the interface between the Current Hypothesis module and all the other
components of the Blackbox Expert. These functions allow the Puzzle Solver to record
a hypothesis for the contents of a grid square, to check the certainty of a hypothesis
for the contents of a grid square, to check a region of the grid to see if it is known to
be empty, etc.

The Current Hypothesis module provides the mechanism for controlling the avail-
ability of data items to the Puzzle Solver that we require for our experiments. The
access functions defined for the Current Hypothesis module check the access privi-
leges of the Puzzle Solver, before the Puzzle Solver is given access to any of the data
items that are stored within the Current Hypothesis module. The access privileges
of the Puzzle Solver are set by the human experimenter via the User Interface.

The Puzzle Solver is responsible for solving the Blackbox puzzle. The Puzzle
Solver is composed of the standard modules found in rule-based systems: the rule
base, an inference engine, and working memory. We make use of the CLIPS expert
system shell in order to implement the Puzzle Solver [73]. CLIPS provides the in-

ference engine required for the Puzzle Solver. CLIPS also manages the storage and

47

(defrule WO1-24-left
(phasae salection)
(poss-ball-found 7 7rowl 7col 37)
(poss-ball-found 7 ?rouw2k:(>= 7roa2 (+ ?roul 2)) Zcol §7)

Fira only during beam selection phase

Tha balls should be in the same
column, at least tmo rows apart

A beam has not been fired that eill
pass naxt to the upper ball

Only adjust the beam once

Is the grid empty batsaen the balls
and the edge of the box

(SHOTLEFT =(+ 7reul 1) 0 37)

(not (ADJUSTED-SHOT =(+ row?1 1} O W51-24-left)
(test (isampty 7roml 1 ?ros2 (-Tcol 1)})

=>
(assart (ADJUST-SHOT =(+ 7rowl 1) 0 50 W91-24-left 0)) i Then adjust tha value of the baam
)

Figure 3.5: Sample Beam Selection Rule

retrieval of facts in working memory, and the rule base is constructed using the rule
langnage provided by CLIPS.

The Puzzle Solver uses a two phase approach when solving the Blackbox puzzle;
the rule base of the Puzzle Solver is divided into two portions: beam selection, and
beam analysis. The rules for beam selection encode the knowledge required to deter-
mine the next beam that is to be fired by the Problem Solver. The rules for beam
analysis encode the knowledge required to analyze the beam entry and exit points,
providing hypotheses about the contents of the grid squares. Beam selection corre-
sponds to the planning phase (PP;) of our problem-solving model for ill-structured
problems, and beam analysis corresponds to the execution phase { £;).

Figure 3.5 shows a sample beam selection rule, called W91-24-1eft. This rule
will fire when there is a beam that has not been fired which would potentially pass
between two balls, and the area of the grid that the beam would pass through is known
to be empty. Once the rule fires, it asserts a fact that will cause an adjustment to
the beam’s rating. The pre-defined function is.empty is used by W91-24-left to
access the Current Hypothesis module, and is_empty determines if the area of the
grid where the beam would pass before it reaches the ball is empty.

The User Interface, shown in Figure 3.6, is responsible for handling the interaction
between human experimenters and the Blackbox Expert. It allows the experimenter
to monitor and assert control over the Blackbox Expert’s progress as it solves the

Blackbox puzzle, The User Interface consists of four areas: the Real Grid, the Hy-

48

pothesis Grid, the Dialog Window, and the Command buttons. The Real Grid allows
an experimenter to view the contents of the Blackbox grid, as is contained in the Test
Puzzle module. The Hypothesis Grid allows an experimenter to view the current
hypothesis of the Puzzle Solver, as is contained in the Current Hypothesis module.
The Dialog Window allows the Blackbox Expert to annotate the actions it takes to
solve the puzzle, providing a trace of its actions for the experimenter to monitor.
The Command buttons allow the experimenter to issue commands to the Blackbox
Expert, setting the conditions for the different experiments that the experimenter

wishes to conduct. The commands that can be issued by the experimenter are as

follows:

¢ load a single test puzzle into the Test Puzzle module.

¢ solve the test puzzle that is currently stored in the Test Puzzle module, pausing
after each shot is fired, until instructed to continue.

e solve the test puzzle that is currently stored in the Test Puzzle module, without
pausing.

e set the window of the Puzzle Solver, to be enforced by the Current Hypothesis
module, as the Puzzle Solver is solving test puzzles.

e save the result produced for 2 test puzzle, the SCORE of the result, and the

computational performance of the Blackbox Expert when solving the test puzzle
to a file.

o execute a sequence of commands which are contained in a file. This option is

used by the experimenter to instruct the Blackbox Expert to solve a set of test
puzzles.

When we construct a test bed consisting of several cooperating rule-based systems
to be used in stage 2 of our research, we expect to be able to reuse the components
of the Blackbox Expert, as shown in Figure 3.7. The cooperating rule-based systems
will interact with each other when planning using the Decree and Consensus planning
protocols, and share data using a blackboard. Each rule-based system has a window
(w:) on the blackboard. The Puzzle Solver module will be used to create the set
of cooperating rule-based systems, and the working memory will contain the facts
that will comprise the local view of the Puzzle Solver. The original ruls base of the
Puzzle Solver used in the Blackbox Expert will be decomposed to create the rule bases

required for the set of rule-based systems, based upon the type of experiments that

49

xbbmain

(5

COMIANDS -
[Load][Save] [Log] [Fun] (Start | (Resune] IR [bort | Guit] Print |
- HTNDON
T:; = 1|[Left = 1|[Botton = 10][Right = 10||Sh=Top = 1][Sh-Loft = 1][Sh-Bat 2 1|[Sh-Right = 1| il
REAL GRID HYPD GRID
DEBEEEEBIEEDEIE[DEDEDDG@
B } N B . N . . ‘} : J! . I .
|] loend |
| —'J Ly uLuj‘uiu U
' ’ 3 ‘ IR ERIIOOITHIE
| . ARk uiu_i'ﬂu
) e |uiii v

DDDEDDEDHEE

O BIEE

HHEHEEEEEEB

|
(I
O —

El=l=leleieie =il
+DDDDDDDDDD

: il
MOEAC

|

DIALOG

Vowdose b85S =10 ICF |,
I w BB Frpec b S tem plagaing Lo < Ja
Hilt tog to vdue Lo Badden Balle)
apet b Tared: 1
Bal l=tanmd 1
MakeBad {1 b .
Fli=t=ukln « Kfil="4-14] . ARITER BT
10 Y 3 1 T AT
Mol tog ta
Eapmrt bacesdy 0oz
Lol T=tamal o on Phy-|

HabeBal b o bagn PH=16t-0 .
Fri=9-uktin FH=0-tep=lenn | " [T I S LR TR TR TR ISR Y R ITL BT
Popent Laoedty | - 1.1
[T R B N TIR S B I I

Pr=tt-wbde Frl=d-trnap=toir oo 1 oo oo 1 a4 abe i an o an 2 o
oo vy 4 [BT
[T T Y SO Y (L LY I RO T YO B T (U B G T Y T TR B O OV N VR N DN P
oot bavadd: 4 = Lisd o han
N N R P] B e T N TR T LR T s F R L IR TR |
P I N NI T R 11..1. 10

0%
et bpnaadr oz 1:.% B

t
Favmot bavaalr o2 o,
t
| R PR RS I S T B T T T R [T R TV I PURTT N BT LM]

Figure 3.6: The Blackbox Expert’s User Interface

50

Puzzle Solver Puzzle Solver
Inference Engine Inference Engine
Consensus
Rule Base Rule Base
Test Puzzle
Working Memory Working Memory
g Curent Hypothesis
3 Grid Certainty
Puzzle Sclver Grid Contents
Inference Engine Shot Records
Rule Base
Blackboard
Working Memory
User Interface

Figure 3.7: Testbed for Cooperating Rule-Based Systems

are to be carried out. The Current Hypothesis and the Test Puzzle module will be
combined to form the blackboard used by the rule-based systems. The data structures
contain~d in the Current Hypothesis module will be shared by all the rule-based
systems, z2ccording to the access privileges that each rule-based system is granted,
when the experimenter sets the window of each rule-based system. The beam exit
points that are calculated by the Test Puzzle module will be placed on the blackboard,
and the rule-based systems will only be able to access the shot records which are
contained within their window. The User Interface will allow the experimenter to set
a window for each rule-based system, and issue commands to the rule-based systems.

The Blackbox Expert permits experimenters to conduct experiments in which they
can change the data items available to a single rule-based system, while observing the
functional and computational performance of the system, in a cost effective manner.
Our testbed permits an experimenter to observe the ability of the Blackbox Expert
to solve a single Blackbox puzzle, or a set of puzzles, recording the result produced,
recording the functional performance of the Blackbox Expert, and recording the com-
putational performance of the Blackbox Expert. The Blackbox Expert is able to solve

a set of test puzzies without requiring the intervention of the experimenter, and the

51

time required by the Blackbox Expert to solve a single test puzzle is between 20
and 30 seconds; thus, the cost of conducting experiments with the Blackbox Expert
is not prohibitive. The development time for the Blackbox Expert is estimated to
be about one person-year, which is “reasonable” given the resources available in our

environment.

3.3 Validating the Performance of the Blackbox
Expert

The validation of computer software systems refers to the process of determining if
the system satisfies the need for which it was designed {74]. Validation of software
systems is concerned with the factors that determine the system’s usefuiness, such as
correctness of the results the system produces, its speed, efficiency, cost effectiveness,
and many human factors. For our purposes, we will concentrate on validating only
the functional performance of the Blackbox Expert.

The functional performance of the Blackbox Expert is validated by comparing
the result it produces with the result produced by humans, for a specially designed
set of test puzzles. A group of people, whose familiarity with Blackbox ranges from
a few hours of exposure to several years of exposure, solved a set of test cases for
Blackbox. Using the SCORE metric, each person received a rating for their ability
to solve Blackbox puzzles. The Blackbox Expert solved the same set of test cases
and was assigned a rating for its ability. Then, we compared the rating obtained by
the Blackbox Expert with the ratings of the people, establishing the skill level of the
Blackbox Expert.

The Blackbox puzzle includes several features that facilitate the validation of the
Blackbox Expert. Any result that is proposed by a person for a test case of the
Blackbox puzzle can be evaluated using the SCORE metric. The time consumed
by humans to solve each test case of Blackbox is between 10 minutes for someone
with a lot of experience, and 30 minutes for a beginner. The time required for the
Blackbox Expert to solve a test puzzle varied between 20 and 30 seconds. Therefore,
validation of the Blackbox Expert is not costly. Developing a population of human

experts against whose performance the Blackbox Expert can be validated is simple

52

because the effort required by a human to become skilled at solving Blackbox is not
prohibitive,

Kristina Pitula and Carol De Koven (both having several years of experience
in solving Blackbox puzzles) designed the set of test cases used for validating the
Blackbox Expert. The puzzles in the test set were given a rating of easy, medium,
or hard. Kristina Pitula and Carol De Koven also participated in a group discussion
with several other people who also had a lot of experience with Blackbox. The group
focused its discussion on the factors that would determine the degree of difficulty of
a test case of the Blackbox puzzle. Using the input from this discussion, the two
people responsible for the test set determined the criteria used to develop the test
set, and placed each test case that was developed into one of the three categories
(easy, medium, and hard).

Kristina Pitula and Carol De Koven decided that the following features would

contribute to the complexity of a test case:

¢ the presence of unmappable grid squares.

¢ beam entry and exit points that can be accounted for by many different trajec-
tories through the grid.

¢ the presence of balls in the corners of the box.

a positioning of balls that results in a large number of hits and reflections.

The presence of unmappable grid squares increases the complexity of a test case
because it makes it difficult to decide when a result has been found. Many people seem
to have an aversion to leaving parts of the Blackbox grid unknown. They will actually
convince themselves that they are able to pinpoint the locations of balls which actually
are unmappable. People tend to always choose the simplest solution; thus, when there
are many possible trajectories that can account for the entry and exit points of a beam,
people tend to make errors. If people do not confirm their hypbtheses for the locations
of the balls by firing more beams, they risk making mistakes. The strategy used by
many people when solving Blackbox is to work from the edges of the grid towards the
center. Balls in the corners of the grid prevent a person from following this strategy,
thereby increasing the difficulty of solving the puzzle. Deflections provide a lot of

information than hits or reflections because deflections often pinpoint the location of

a3

] 4
/
/
o]
//
"
5 |y
*/ ‘ :‘_;'-_';;:;_

Figure 3.8: Best, Median, and Worst Player

a ball, and often indicate that many grid squares are empty. A puzzle in which the
positioning of the balls results in many hits and reflections is very difficult to solve,
as there is very little information with which one can determine the contents of the
grid.

The rating of cach person who participated in our validation experiment was
done in two stages: a learning stage, and a puzzle solving stage. The learning stage
included a set of instructions explaining the basic principles of the Blackbox puzzle as
well as the SCORE metric, a demonstration of how a person would solve the puzzle,
and a set of sample puzzles designed to demonstrate the principles and the SCORE
metric, The puzzle solving phase required each person to solve the test cases, which
were presented to them in a random order. Even the people with a lot of previous
exposure to Blackbox were required to go through the learning phase, in order to
ensure that they fully understood the SCORE metric.

Fifteen people participated in our validation experiment. They solved the 17 test
cases in our Blackbox test set. Figure 3.8 shows the scores obtained by the people
who had the best (lowest), median (middle), and worst (highest) average score for all

seventeen test cases., Test cases A, B, and C were placed in the easy category, cases D,

54

1

»W

R L S e e S L o T R N A T I)
TestCase ‘

l—n—Worst —»— Median -5~ Best]

Figure 3.9: Best, Median, and Worst Scores

E, F, and G were placed in the medium category, and the other test cases were placed
in the hard category. The person with the best score was also found to be the most
consistent puzzle solver; this consistency is evident from the narrow fluctuation in the
scores for the person. The scores for the best person tend to rise slowly from casy
to hard test cases. The person at the median has scores that fluctuate more widely
than the best player. The person with the worst average score also experiences the
largest variation in score.

The best, worst, and median scores for each test case are shown in Figure 3.9.
Again, the lowest scores obtained by any person exhibit the least variation. The
median scores vary more than the best scores and the worst scores have the largest
variation. These scores also exhibit an upward trend when the easy, medium, and
hard test cases are compared.

The average scores and total number of errors made in placing balls in the Black-
box grid by the people who solved the test set are shown in Table 3.1. Both the
average score and total errors made in placing the balls increase when comparing the

easy, medium, and hard test cases. As expected, this trend seems to suggest that the

55

~Total Ball Errors AVG SCORE

1

UBIECT] EASY_MED_HARD ALL
1 B0 40 180 300 7 800 722 847 809
2 00 00 20 20 2 600 663 633 669
3 00 00 90 90 a 450 563 735 644
4 00 00 40 40 4 692 744 791 762
5 20 10 90 120 5 647 601 827 789
6 20 20 200 270 6 500 652 9078 817
7 00 00 60 60 7 575 625 782 708
8 00 60 80 140 8 617 1070 881 879
9 00 00 70 70 g 502 625 786 714
10 |00 60 210 270 10 | 502 &8 93 843
11 foo 80 170 250 1 667 939 1147 1014
12 | 00 40 130 170 12 | 542 766 W5 826
13 [20 200 330 550 13 | 467 1374 1304 1173
14 | 80 150 300 530 14 | 861 1182 1244 1162
15 J 100 220 27.0 500 15] 1026 1252 1411 1306
WG | 21 59 151 234 AVG | 642 852 %3 674

Table 3.1: Average Score and Total Errors in Placing Balls

performance of the people when solving the test cases from each of the three groups
in our test set is different. In order to validate this assumption, we performed an
analysis of variance to determine if the difference that is observed in the mean scores
of the three groups can be accounted for by the variance in the scores of all the test
cases solved. The ANOVA table is shown in Table 3.2, The F ratio obtained with
2 and 252 degrees of freedom is 13.42. An F ratio of 4.69 or greater is needed for
significance with a confidence level of 99%, thus we can reject the null hypothesis
that feasy = tmedium = Hhard.

Having determined that the average scores for the three groups are statistically
different, we must now examine the individual differences between the groups. Ta-
ble 3.2 shows the confidence intervals for the pairwise comparisons of the means
of the groups in the test set. These comparisons are done using an F value of
F3252,05 = 3.035. As the confidence intervals for pleasy — fimedium and fleasy — fhard
do not contain zero we can reject the null hypotheses (ffeqsy — fmedium) = 0 and
(Heasy — Bhard) = 0. Thus, feasy < Mmedium aNd pegsy < fnerq. However, the con-
fidence interval for gmedium — fthard does contain zero, which does not permit us to
reject the null hypothesis (#medium — fshard) = 0. Thus, there is a statistical differ-

ence between the easy and medium groups, the easy and hard groups, but not the

56

Source of Vanaton |[SumofSquares df — MeanSquare F
Between group 391597 200 16957.99 13.42
Within group 318506.48 252.00 1263.91

Total 352422.45 254.00

I Confidence” Interval

Pairwise Comparison] Lower Limit | Upper Lmit
Easy-Medium -38.34 -3.79
Medium-Hard -23.44 3.32
Easy-Hard -46.01 -16.24

{onfidence interval

Group Comparnson Lower Uimit | Upper Limit
Easy-{Medium,Hard) -40.77 -11.42
Hard{Easy,Medium) 9,38 31.81

Table 3.2: Analyses of Variance

medium and hard groups. The factors we used to place the different test cases into
the groups are valid. However, the difference betwcen the medium and hard groups
is not confirmed.

The last set of tests to be performed on our test set are the group comparisons
shown in Table 3.2. The confidence intervals are given for fieq,, — (Lmetwntithard)
and ppard — (&r‘*_;M) using an F value of F2352.95 = 3.035. In both cases,
we can reject the null hypothesis that (peasy — (“mcdwmdsrard)) = 0 and (ptherd —
(LeesyFimedum)) = (, Thus, the easy group is different from tiie average of the medium
and hard groups and the hard group is different from the average of the casy and
medium groups.

The performance of the Blackbox Expert on the test cases is shown in Figure 3.10.
The Blackbox Expert is compared to the people who were rated as the best, median,
and worst players. Except for one test case (I), the best player performed better than
the Blackbox Expert. The Blackbox Expert performed better than the worst player
in 15 of the 17 test cases. The Blackbox Expert performed better than the median
player in 7 of the 17 test cases. The two test cases (C and P) where the Blackbox

57

ﬁ‘/l

VA
SN 7 ST 7
7777277777777 77777
77 77777777777

/
(L0777 77

Figure 3.10: Scores of the Blackbox Expert

Expert performed poorly compared to the worst player indicate a deficiency in the
knowledge base. Both test cases C and P have balls located near the corners of
the Blackbox grid. The knowledge base of the Blackbox Expert is lacking rules to
determine when balls are located near the corners of the Blackbox.

The average score and the total number of errors made placing balls by the humans
and the Blackbox Expert are shown in Table 3.3. The Blackbox Expert on average

made fewer errors locating balls than the humans. The lowest total number of errors

Average Score
Y MEDIUM HARD ALL

PEOPLE| 64.2 852 953 B874|
EXPERT| 64.2 736 889 809
Average Ball Emor
2.1 59 157 231
EXPERT] 0.0 20 120 140

Table 3.3: Average Score and Ball Errors

58

Blackbox
Ovesal Bpet
- - i
Blackbox
| Had | ot
w
@
<
S Blackbox Expert
o | Medm |
E- >— i — -——

B % &5 5 6 B & % W N5 15 35 14k
SCORE

Figure 3.11: Blackbox Expert vs Humans

(2 errors in 17 test cases) was made by a person with several years of experience
solving the Blackbox puzzle as seen in Table 3.1. Also, the Blackbox Expert had a
better average score on each group of test cases in the test set except on the easy
test cases where it had the same average score. When the total number of errors
in locating balls is considered, the Blackbox Expert ranks 7** compared to the 15
people.

The average score obtained by the Blackbox Expert for each group of test cases
as well as the entire test set is compared to the average score obtained by the people
in Figure 3.11. The Blackbox Expert ranks 10t on the easy test cases, 7** on the
medium and hard test cases, and 7% on the entire test set. The improvement observed
in the Blackbox Expert's ranking on the medium and hard test cases occurs because
even though the Blackbox Expert and the humans can find all the balls in the easy
test cases, the Blackbox Expert requires more beams to solve the test cases. In the
case of the medium and hard test cases, the Blackbox Expert still tends to fire more
beams than the humans. However, on average it makes fewer errors, which allows it
to improve its position.

Considering the types of experiments that we intend to conduct using the Black-

a9

hox Expert, the results of our validation experiment indicate that the functional
performance of the Blackbox Expert is acceptable. The Blackbox Expert’s ability to
solve Blackbox puzzles is superior to the ability of many humans, but not superior
to humans with a lot of experience solving Blackbox puzzles. We believe that the
ability of the Blackbox Expert is adequate, permitting us to to study the Blackbox
Expert’s ability to solve Blackbox puzzles, as we vary the data items available. We
believe that the Blackbox Expert can exhibit the reduction in performance that we
expect when the number of data items available to the system is reduced, because its
ability to solve test puzzles is respectable when compared to the ability of humans to

solve the same test puzzles.

3.4 Data Distribution and Performance: An Ex-
periment

Given the existence of the Blackbox Expert, we can now conduct experiments specif-
ically to examine the effects of data distribution on performance. Based upon our
survey of the literature, in chapter 2 we discussed the trends in the change in per-
formance that were expected by researchers as the data distribution chosen for a
CDPS is varied by the CDPS designer. However, we lacked evidence that the ex-
pected trends will actually occur in operational rule-based systems. In this section,
we present results from an experiment that quantifies the effects of data distribution
on the performance of the Blackbox Expert [31]. We then discuss how the insight
gained from our experiment may be used by a CDPS designer, when selecting the

data distribution in a CDPS for solving a diagnosis type problem.

3.4.1 Experimental Design

We conducted our experiment using the Blackbox Expert to solve a set of randomly
selected test cases of the Blackbox puzzle, and measured the Blackbox Expert’s per-
fcrmance. We used randomly selected test cases in order to avoid introducing any bias
into the experiment. While our experiment is conducted using the Blackbox Expert to
solve a given set of test puzzles, we also determine the implication of the results from

this experiment on the entire population of Blackbox puzzles; we statistically analyze

60

the data obtained in this experiment to discover if any of the trends observed in the
data collected using the randomly selected test puzzles are statistically significant. A
statistically significant trend indicates that the trend observed in the data obtained
from our set of test puzzles is representative of the performance we can expect when
the Blackbox Expert solves any Blackbox puzzle.

Our experiment involved having the Blackbox Expert solve 20 randomly selected
puzzles. Each puzzle is solved 10 times with a reduced number of data items available
(measured using the information deficit metric) on each successive run. The Blackbox
Expert started by solving each puzzle with an information deficit of zero (all data
items are available). On each successive run, the information deficit faced by the
Blackbox Expert was increased by 0.1. Each time a test puzzle is solved by the
Blackbox Expert, we recorded the Blackbox Expert’s functional and computational
performance.

The hypotheses that we tested in our experiment considered the functional and
computational performance of the Blackbox Expert in both problem-solving phases:
beam selection (PF;), and beam analysis (E;). The effects of an increase in infor-

mation deficit on computational performance are hypothesized to be as follows:

Hy: the processing resources consumed by a rule-based system to process the data
items required to solve a subproblem decreases. In the case of the Blackbox
Expert, the processing resources consumed to solve a subproblem is given by the

average number of rules fired during each beam analysis phase, and is denoted
by Er.

H,: the communication resources consumed by a rule-based system to process the
data items required to solve the subproblem decreases. In the case of the Black-
box Expert, the communication resources consumed to solve a subproblem is
given by the average number of accesses made to the Current Hypothesis module
during beam analysis, and is denoted by E.

Hj: the processing resources consumed by a rule-based system to create a plan de-
creases. In the case of the Blackbox Expert, the processing resources consumed
to create a plan is given by the average number of rules fired during beam
selection, and is denoted by Pg.

Hy: the communication resources consumed by a rule-based system to create a plan
decreases. In the case of the Blackbox Expert, the communication resources
consumed to create a plan is given by the average number of accesses to the
Current Hypothesis during beam selection, and is denoted by Pj.

61

The effects of an increase in information deficit on functional performance
. are hypothesized to be as follows:

Hsi

Hs:

H7:

the number of errors in the results produced by the rule-based system for the
subproblem increases. In the case of the Blackbox Expert, the number of errors
in the results produced is given by the number of ball errors, and is denoted
by Bg. A ball error occurs whenever a ball in the Blackbox grid is not located
by the Blackbox Expert, or the Blackbox Expert concludes that a grid square
contains a ball, when in fact it does not.

the rate of plan failures increases. In the case of the Blackbox Expert, a
plan failure occurs whenever a beam is fired and then no changes are made
to the grid during the next beam analysis phase. The plan failure rate is

(lﬁ mpls:rllect:.::cl)l;n;shas = X 100), and is denoted by Pg.

the quality of the results produced by the rule-based system decreases. In the

case of the Blackbox Expert, the quality of the results produced is given by the
SCORE metric.

We statistically analyzed the data obtained (curves for functional and computa-

tional performance) to determine its use in establishing the pcrformance that we can

expect with the Blackbox Expert solving any Blackbox puzzle; »sing a multivariate

repeated measures design, we performed an analysis of variance on the data collected

for each measure [75]. A separate analysis was performed for each measure, because

the hypotheses that we tested in our experiment do not consider any joint effects of

information deficits. The contrasts that we chose to use for the analysis of variance

are as follows:

o the measures for computational performance (E4, Eg, P4, and Pgr) were tested

using the standard polynomial contrasts. The polynomial contrasts indicate if
there exists a statistically significant trend in the data being tested. A statis-
tically significant trend identified in the data would allow us to establish the
trends that could be expected in the Blackbox Expert’s computational perfor-
mance as the information deficit changes, when the Blackbox Expert solves any
Blackbox puzzle.

The measures for functional performance (SCORE and Bg) were tested using
repeated pairwise contrasts. The repeated pairwise contrasts test for a statis-
tically significant difference in the data being tested. A statistically significant
difference identified in the Blackbox Expert’s functional performance solving
the given set of test puzzles would allow us to establish the changes in the
Blackbox Expert’s functional performance that could be expected, when the
Blackbox Expert solves any Blackbox puzzle as the information deficit changes.

62

¢ the measure for the rate at which plans fail (Pr) was tested using the Helmert
contrasts. The Helmert contrasts test for a significant difference between the
plan failure rate observed at each information deficit level and the average plan
failure rate that occurred with larger information deficits. A statistically sig-
nificant difference identified in the Blackbox Expert’s plan failure rate would
allow us to establish the changes in the Blackbox Expert’s plan failure rate that

could be expected, when the Blackbox Expert solves any Blackbox puzzle as
the information deficit changes.

3.4.2 Experimental Results

The trends that were expected for the computational performance of the Blackbox
Expert are evident in the raw data. The means for the measures of computational
performance during beam analysis (E4 and Egr) obtained from the 20 puzzles solved
at each information deficit are shown in Figure 3.12. The number of accesses to the
Current Hypothesis module and number of rules fired during beam analysis decrease
as the information deficit increases. The means for the measures of computational
performance during beam selection (P4 and Pg) obtained from the 20 puzzles solved
at each information deficit are shown in Figure 3.13. The number of accesses to
the Current Hypothesis module decreased as the information deficit increased, and
the number of rules fired during beam selection decreased as the information deficit
increased, which is consistent with the fact that the Blackbox Expert uses a planner
that operates by rating a set of goals.

The trends that were expected for the functional performance of the Blackbox
Expert are evident in the raw data. The means for the measures of functional perfor-
mance of the Blackbox Expert (SCORE, Bg, and Pr) obtained from the 20 puzzles
solved at each information deficit are shown in Figure 3.13 and Figure 3.14. The
quality of the result produced by the Blackbox Expert is reduced as the information
deficit increases (Figure 3.14), and the number of ball errors also increased with an
increase in information deficit (Figure 3.14). We also observed an increase in the plan
failure rate as the information deficit increased (Figure 3.13).

Significant trends in the Blackbox Expert’s computational performance were found
(see Appendix A), with & = 0.05. The strongest significant trends found for each

measure are as follows: in Py, linear and quadratic; in Pg, linear and cubic; in E4,

63

g—n—.—n—;—;g
prr

Accesses Per Execution Phase (EA)

0 01 02 03 04 05 06 07 08 09
Information Deficit

\

o

ey
R

Y

A\

Rules Fired Per Execution Phase (ER)

0 01 02 03 04 05 06 07 08 039
Information Deficit

Figure 3.12: Computational Performance - Execution

64

3

& & & ®
E
é

on

S =8 K
-

166

g 8
4

01 02 03 04 05 06 07
[nformation Defict

~ PR~ FF

08 09

—t

8

8

8

—t

Accesses Per Planning Phase (PA)

0 01 02 03 04 05 06 07 08 09

Information Deficit

Figure 3.13: Performance - Planning

65

Score

Total Ball Errors (BE)

150

10'}‘/

0 01 02 03 04 05 06 07
Information Deficit

08 09

(=]

/-

L

o

e

N

—r

7

/

0 01 02 03 04 05 06 07
Information Deficit

08 09

Figure 3.14: Functional Performance

66

linear and quadratic; and in Epg, linear and quadratic. The trends for the measures
Py, E,4, and ER indicate that we can expect the Blackbox Expert's performance on
these measures when solving any Blackbox puzzle to follow a curve with a shape
that is composed of linear and quadratic polynomials, and the curve will decrease
as the information deficit increases. The trends for the measure Pg indicates that
we can expect the Blackbox Expert’s performance on this measure when solving any
Blackbox puzzle to follow a curve with a shape that is composed of linear and cubic
polynomials, and the curve will decrease as the information deficit increases.
Significant differences in the Blackbox Expert’s functional performance were found
in measures SCORE, Bg, and Pr !:'2 Appendix A), with @ = 0.05. SCORFE
and Bg show statistically significant differences in the Blackbox Expert’s functional
performance at each information deficit used in the experiment. The trends for the
measures SCORE and Bg indicate that we can expect a change in the Blackbox
Expert’s functional performance when solving any Blackbox puzzle, if the information
deficit changes by at least 0.1. Significant differences in the Blackbox Expert’s plan
failure rate Pr occur only when the information deficit is very small or very large;
thus, we only expect a change in the Blackbox Expert’s performance on this measure

when solving any Blackbox puzzle if the information deficit is small or large, and a

change in the information deficit occurs.

3.4.3 Discussion of Results

This experiment studied the effects of an information deficit on the computational
and functional performance of the Blackbox Expert. Using a set of randomly se-
lected Blackbox puzzles, the relationships between the information deficit faced by
the Blackbox Expert and its performance have been established quantitatively. The
analysis of variance tests used in the experiment showed that the effects of informa-
tion deficits on the performance of the Blackbox Expert are significant at o = .05,
establishing the effects of an information deficit on the performance of the Blackbox
Expert that can be expected when the Blackbox Expert solves any Blackbox puzzle.

The performance curves we measured in our experiment can aid the CDPS de-

signer in selecting the data distribution in an organization imposed on a set of co-

67

operating rule-based systems. While our experiment was based on the Blackbox
Expert solving Blackbox puzzles, we believe that these results are relevant to other
rule-based systems solving diagnoses type problems. For example, the statistically
significant linear and quadratic trends we measured in the number of accesses re-
quired by a rule-based system during execution (£,) indicates that we can expert
that there would be a large change in £4 when the information deficit experienced by
the rule-based system varies between 0 and 0.1 as compared to the change in E4 when
the information deficit varies between 0.1 and 0.8. We expect that the performance
curves that were obtained for the Blackbox Expert to be similar to the performance
curves of other rule-based systems that solve diagnoses type problems in the same
manner as the Blackbox Expert; thus, the results of our experiment can be used as
a model for the effects of data distribution on rule-based systems solving diagnoses

type problems.

3.5 Conclusion

Testbeds are required for experimental work that are flexible and cost effective. The
Blackbox Expert is a testbed that can support experiments in which we can change
the data items available (a;) to a single rule-based system, and observe the functional
and computational performance of the system. The cost of constructing the Blackbox
Expert as well as the cosls of conducting experiments using the Blackbox Expert is
not prohibitive. A human can become proficient at solving the Blackbox puzzle (the
problem solved by the Blackbox Expert) in a few days. Therefore, we do not have
to rely on human experts in constructing the rule base of the Blackbox Expert, or
its velidation. The time required for humans or the Blackbox Expert to solve the
Blackbox puzzle is not too costly.

Using the Blackbox Expert, we conducted an experiment to examine the effects of
data distribution on performance. Our experiment establishes that data distribution
is an important factor determining the performance of the rule-based systems in a
CDPS, when the agents in the CDPS are implemented as rule-based systems. Qur
experiment providcs evidence that the trends expected by researchers for the change in

performance as the data distribution in an organization chosen for a CDPS is varied by

68

the CDPS designer do actually occur in operational rule-based systetns. and provides
evidence that the effects of data distribution on performance are important for the
Blackbox puzzle as well as diagnoses type problems. Confirming the importance of
data distribution in determining performance represents a step forward; the CDPS
designer must be very careful when selecting the data distribution in an CDPS.

The results of our experiment shed some light on the effects of data distribution
on performance. Yet, the CDPS designer must be cautious in using the trends and
relationships measured in our experiment for estimating the effect of data distribution
on other rule-based systems. There does not exist any well known theory by which a
CDPS designer can evaluate the similarities between different rule-based systems, and
the problems they solve; thus, the CDPS designer must rely on intuition to decide if
the effect of the data distribution we measured on the performance of the Blackbox

Expert is indicative of the effect of data distribution on other rule-based systems,

69

Chapter 4
A Model for Rule-Based Systems

“If I have been further, it is by standing on the shoulders of giants.”
- Sir Isaac Newton

Thus far in our study of CDPS systems, we have focused on an inter-agent per-
spective, which is concerned with issues relating to the manner in which the agents in
a CDPS interact: the manner in which a problem is decomposed, the tasks assigned to
each agent, the sharing of data items both during problem-solving, and the planning
protocols used by the agents. We have introduced a model that permits the CDPS
designer to specify the manner in which data items are shared by the rule-based sys-
tems in an organization during both phases of problem-solving: planning (CW) and
execution (W S). Our organizational model specifies the data iteins that are available
to a rule-based system within its window (w;).

We have not considered the internal structure of rule-based systems that are to
be agents in a CDPS (the intra-agent perspective); we believe that such a model
is required to aid the CDPS designer in determining how to set the availability of
specific data items in order to improve the performance of the rule-based systems.
Qur intent is to use this model to capture the data items required by the system to
produce specific results (discussed further in chapter 5). An understanding of the
data items required by a rule-based system to produce specific results will be useful
to the designer of CDPS when specifying the availability of data items in the CDPS.

Researchers in the field of database design have modeled the structure of a rule

base in order to address the problems of efficient compilation, storage, and access to

70

large sets of rules {76]. Their assumption is that the underlying mechanism for storage
of rules is the relational schema. The goal of the research in that area is to determine
the rules required to answer a particular query as well as the most efficient method
for building a response to a query. Determining which rules are required to answer a
particular query is necessary, given the assumption that not all rules are resident in
the memory of the computer. The notion of efficiency that is used to determine the
rule sequence that is best suited for answering a query is based upon assumptions
about the relationships between the relational operators that are used to construct
an answer for the query. Based upon these assumptions, researchers have proposed a
notion of access paths to capture the dependencies that exist among the rules in the
database. The models proposed by the researchers in this field are not adequate for
our purposes.

The rule-based expert system validation literature reports a number of approaches
for defining the structure of a rule base as chains of inter-dependent rules, called
execution paths. The EVA system [77] defines a dependency graph (DG) that is used
to generate test cases for validating a rule-based system. The definition of the rule-
dependency relation used to construct the DG is unsatisfactory because it allows EVA
to consider rules to depend upon each other when in fact they do not; thus, many
paths are identified in the DG which do not reflect sequences of rules that fire when a
rule base is exercised. Rushby and Crow [78] propose a refinement to the DG used in
EVA, where the rule-dependency relation is improved, but under certain conditions
the improvement obtained is still unsatisfactory, and suftecs from the same problem as
the DG used in EVA. A stricter method for determining rule dependencies is propesed
by Kiper [79], which models the state of the rule-based system as it would appear
when the rules are fired. While this method permits only true rule dependencies to
be captured, the rule base states are very costly to compute, which prohibits the use
of this method on large rule bases.

We believe that the best approach for capturing the structure of a rule-base that
can be used to identify the data items required by a rule-based system to produce
specific results is to consider a rule-base to be composed of a set of chains of inter-

dependent rules. Based upon our survey of previous attempt by researchers to define

71

the notion of a path in a rule base, we believe that a path must satisfy the following

criteria:

Accuracy There are two aspects to accuracy in defining paths:

o the notion of path must be well-defined and unambiguous, so that it
can sarve as an adequate specification for an automatic path-enumeration
program.!

o cach path must correspond to sequences of rule firings that can actually
occur al run-time.

Meaningfulness When the rules forming a path fire, their combined actions should
carry out a function as intended by the knowledge engineer, which is seen as
having significantly advanced the state of the problem being solved.

Computational Tractability In order to enable efficient automatic generation of
the paths in a rule base, we require that the computational effort involved in
finding the rules that comprise a path be small, and the number of paths that
will be generated for a rule base must be computable; that is, we want to
prohibit a combinatorial explosion in finding paths.

In this chapter, we describe a formal model for the structure of a rule-based
system, and this model meets the above three criteria [33, 34, 35]. Then we present
the algorithms used to implement Path Hunter, our rule base analysis tool which
identifies the set of paths contained in a given rule-base; we show that Path Hunter
will identify all the paths that exist in a given rule base. We then discuss how the
knowledge engineer can control combinatorial explesions when using Path Hurier to
analyze a rule base. We then use Path Hunter to analyze the rule base of the Blackbox

Expert, identifying all the paths that exist in its rule base.

4.1 Rule Base Structure

It is our belief that problem solving requires two entities: the problem to be solved,
and the artifacts designed to solve the problem. Previous efforts by researchers char-
acterizing the structure of a rule-based system focused solely on the artifacts designed

to solve the problem, that is, the rule base. Qur model considers both entities: the

'This may seem obvious, but not all previous proposals are sufficiently well-specified, as observed
in [78).

72

problem to be solved, and the rule base designed to solve that problem. When mod-
eling the structure of the rule-based system, we will make use of the interaction
between the structure of the problem to be solved and the structure of a rule-base
that is designed to solve that problem. The structure of the problem to be solved
will introduce a semantics that defines a notion of meaningfulness and completeness
for the structural components of the rule-based system captured by our model.

When constructing a rule-based system, the expertise possessed by the domain
expert is embodied by the knowledge engineer into a set of rules. We consider a
rule-based system € to be a triple (E, RB, WM) where: E is an inference engine,
RB is the set of rules for solving P/, and WM is the working memory where facts
(representing current data) are stored. Each subproblem SP, of P! will have its own
set of rules within RB. We refer to the collection of rules {r; | r; used to solve SP;}
as task T,. The state of £ is denoted by the set of facts present in WM. When a rule
fires, it changes the state of the system by adding or removing facts from the WM,

The structure of the facts used by £ is important in representing the state of the
probfem being solved. Facts consist of a predicate name and a list of arguments.
Each fact is an instance of a factor of P/ (a;). The predicate in a fact indicates the
relationships that exist among the arguments of a fact as well as which factor of P/
that the fact is an instance of. Let R be the set of all predicates used by € in solving
P!, We use the notation f; to represent a fact that may be present in the working
memory WM, where: f; = (A, i) such that [; is a list of data elements, and A; € R
identifies the relationship between the elements of ;. The choice of predicates by the
knowledge engineer will impact upon the states of £ that can be represented. Of
course, the choice of predicates made by the knowledge engineer is not independent
of the representation of the problem state used by the domain expert.

When a rule-based system is problem-solving, identifying that a goal state has
been reached will be important for determining that a meaningful advancement in
solving the problemn has occurred. When the knowledge engineer specifies the struc-
ture of the problem that is to be solved (in terms of the subproblems it is decomposed
into, the goal states for each subproblem, and the predicates to be used by the facts

present in W M), the knowledge engineer must also indicate which of the predicates

73

are to be used to identify the goal states for each subproblemn: these predicates are
called end predicates, and the set of end predicates for a subproblem SP, is denoted
by Z;. Each goal state g; for a subproblem SP, is identified by a conjunction of end
predicates; thus when a rule-based system is problem solving, we can determine if a

goal state has been reached.

Definition 5 (Logical Completion) A logical completion for SP, is a conjunction
of selected predicates from Z,, denoting a s.ate which corresponds to a goal for SP;.

We use the notation SP, ~ U to denote a set of rules U/ that assert facts using all
the predicates of a logical completion for SF,. When the r; € U fire, a goal statc of
the problem being solved has been reached. If we consider the beam analysis phase
used by the Blackbox Expert as one of the subproblems of Blackbox, then a logical
completion for beam analysis would be GHAP B A BALL. The semantics attached to the
goal state identificd by GMAP_B A BALL is that a ball has been located in one of the
Blackbox grid squares, and that grid square has been updated.

Qur model for rule-based systems is intended to capture the structure of a rule
base as chains of dependent rules. In our model, each path depicts a structural
component of the rule base. Qur intent is to construct chains of inter-dependent rules
that advance the state of the problem being solved from one goal state to another,
where goal states are identified by logical completions. The basic unit that will be
used to construct paths will be the rule; thus, we must formally specify what is meant
by a rule in our model. We will then examine how the intuitive notion of one rule
being dependent upon another can be used to construct chains of rules that are inter-
cdepeident. As our model is to capture sequences of rules that will fire when the
rule-based system is problem-solving, we formally define when a rule is enabled by

the rules that precede it iz the sequence; this leads us to our definition for a path.

4.1.1 Abstract Rules

There are many different rule languages that have been reported in the literature {80].
Each language has its own syntax and provides different features: rule languages
can be restrictive, allowing for rules that strictly follow the syntax of horn clauses

and restrict the use of variables; or be flexible, permitting rules to contain complex

74

procedural code, and permit free use of variable expressions. In order for our model
to be applicable to many rule-based systems, we must specify the exact form of rules
to be used in the model, and develop methods for handling cases where the rule
language used to code rules allows the use of constructs that do not match the form
of the rules in our model. In order to reduce the complexity of our model, we specify
rules that have a simple form: rules are modeled by considering only the facts they
use and produce, in terms of the predicates appearing in expressions on their left hand
side (LHS) and right hand side (RHS); thus, we require a method for abstracting the
complex rules permitted by the different rule languages into the simple rules used in
our model.

We refer to the rules used in our model as abstract rules. An abstract rule r; is
composed of an LHS and a RHS where: the LHS indicates the set of fact templates,
denoted by ZI™, such that at least one fact matching each template riust be present
in WM for the rule to fire; the RHS indicates the set of facts that are asserted by
ri, denoted by A™. A template ¢; = (A;, L} is a predicate A; and a list of variables
L;; thus, a template is a specification for the type of fact that must be present in the
W M in order for a rule to become enabled to fire. A fact is said to match a template
if there exists a most general unifier § such that {(A;, L;}- 6 = (A, [;). We also define a
mapping function U : A — B where A = {{A, L1),...{An, Ls)} is a set of templates
or facts, B = {A1...\.} is a set of predicates, and A; satisfies the specification for
A;. For simplicity, we will denote U({{As, L;)}) = {A]} by O({Ai, L)) = Ai. The
mapping function U abstracts a template or fact, representing the template (fact) by
the predicate it uses.

The abstraction provided by the mapping function U permits the knowledge cn-
gineer to reduce the computational complexity in determining when a fact asserted
by a rule matches a template contained on the LHS of another rule. In the case that
the function U is used to abstract a template or a fact, the knowledge enginecr is
indicating that the predicate used carries sufficient information to capture tule de-
pendencies and variable bindings can be ignored; thus, the computation required for
dependencies is reduced. If o*'r model did not permit an abstraction of the facts used

by the rule-based system, computing rule dependencies would require full unification

15

; Update the grid to indicate that a ball in a particular location is to ba considered
+ a certain ball,
{defrule Ball-Certain

7varl <~ (BALL_CERTAIN 7sn 7rule-ID ?row ?col) ;4 ball is to bs pade certain

?var2 <~ (CERTAIN_BALLS 7cb) ;Get number of certain balls located
=

{retract ?vart)

(it (not (iscertain ?row ?col)) then ;Is the ball already marked as certain?
(retract ?var2}
(assert (CERTAIN_BALLS =(+ ?cb 1))) 1Increment # of certain balls
{setcertain ?row ?col) iUpdate the grid making the ball certain
(it (eq (status ?row ?col) CONFLICT) then ;Is There a Conflict?

(assert (RMC_B 7sn ?rule-ID ?row ?col)) ;Indicate the conflict is to be resolved

¥)) ; end tule Ball-Cartain

Figure 4.1: Sample CLIPS Rule

and constructing sequences of dependent rules would require checking every possible
state of the system; this would be computationally intractable for complex rule-based
systems. Of course, it is the responsibility of the knowledge engineer to select the
predicates to be used in facts to ensure that they capture rule dependencies with the
degree of accuracy that is required.

A sample rule (Ball-Certain) from the rule base of the Blackbox Expert is
shown in Figure 4.1. Table 4.1 lists the predicates and pre-defined functions used
by Ball-Certain and the other rules from the Blackbox Expert’s rule base that will
be used for example purposes. Ball-Certain is activated when ample evidence is
gathered to support making certain a ball located in the Blackbox grid. This rule will
be activated by the presence of the fact using the predicate BALL_.CERTAIN as well as
a fact using the predicate CERTAIN.BALLS. Q:uce the rule is activated, it will check to
see if the grid square is already certain, in which case no action is needed. Otherwise,
the square is made certain and, if a conflict exists, a fact using the predicate RMC_B is
asserted indicating it can be resolved.

In the case that a rule contains conditionals and pre-defined functions on its RHS,
the rule will be modeled by several abstract rules. Pre-defined functions represent an
access to the Current Hypotheses module, which is modeled as an indirect access to
W M; thus, each function will have a predicate associated with it (see Table 4.1). The

conditionals on the RHS of a rule indicate that different actions can occur when the

76

[(USER FUNCTION] Interpretation [Assaciated Predicate |

iscertain [check the certainty of a square GMAP_.CERT |
setcertain | set a square certain GMAP_CERT.B
status | check the contents of a grid square | GMAP
{ PREDICATE |_Interpretaiion _:l
[BALL.CERTAIN | A ballis to be made certain
SLANK _GRID Place an empty in a grid square
CERTAIN.BALLS | Count of certain balls [ocated
GMAP Access to the contents of a grid square
GMAFP B Ball [ocation on the grid
GMAP_E Empty location on the grid
GMAP_CERT Certainty of grid location
GMAP.CERT.B Ball made certain
GRIDSIZE Dimension of the grid
P_BALL Place a ball on the gnid
RMC_B Remove a conflict by placing a ball
[SHOT_RECORD exit and entry point for a beam

Table 4.1: Predicates and User Defined Function for Blackbox

rule fires; thus, we will create an abstract rule to capture each of the different actions
that can occur when the rule fires. The abstract rules will capture the templates
specified on the LHS of the rule and the facts asserted on the RHS of rule. The
predicate associated with the test used in the condition that was on the RHS of the
rule is placed on the LHS of the abstract rules.

In the case of our sample rule, Ball-Certain contains a conditional on its RHS
representing two different potential actions: the case that the ball made certain
was succcssftilly placed, and the case where there was a conflict when the ball was
placed. Ball-Certain will be resented by two abstract rules Ball-Certain)1, and
Ball-Certain’2. Ball-Certain%i will update the grid to indicate that a ball in a
particular grid square is to be considered a certain ball, a conflict is discovered, and the
conflict is to be resolved. {J(ZBall-Certain®1) — (GMAP, GMAP.CERT, CERTAIN_BALLS,
BALL_CERTAIN}, and U(APall-Certain®l) — (gMap CERT.B, RMC.B, CERTAIN_BALLS).
Ball-Certain¥%2 will update the grid to indicate that a ball in a particular square is to
be considered a certain ball. {J(Z8211-Certain%2) — (GMAP, GMAP.CERT, CERTAIN.BALLS,
BALL CERTAIN}, and U(ABall-Certain®?) — {Gyap CERT.B, CERTAIN_BALLS}.

A set of abstract rules from the Blackbox Expert's rule base are shown in Table 4.2,
When Path Hunter is creating abstract rules, it is possible that two abstract rules r;
and r;, will have the same LHS and RHS: G(A"™) = U(A"), and U(I") = B(I").

This represents the case where there are two rules which are part of the rule base

7

that examine and produce facts using the same set of predicates: thus. in abstraction
these two rules perform the same function. In the case of Blackbox, this arises due
to the symmetry of the problem. Rules r; and r; form an equivalence class. Path
Hunter will recognize that a group of rules forms an equivalence class, and uses equiv-
alence classes when anaiyzing the structure of a rule base. Rules RA-14-Right¥1 and
RA-14-Left%1, shown in Table 4.2, form an equivalence class called RA-14-Class/1.

The notion of an end predicate allows us to identify a set of rules in a task that
will be instrumental in reaching a goal state of tie subproblem. We say that a rule
in a task is an end rule if every fact it asserts uses an end predicate. Furmally, the
set of end rules for a task T} is R = {r; | V(A, ;) € A", X; € Z;}. End rules must
hecome enabled to fire in order for the rule-based system to reach a goal state, and

end rules will play an important role when constructing paths.

4.1.2 Constructing Sequences of Inter-Dependent Rules

We will explore methods for constructing sequences of rules using a notion of rule
deper-ldency. In order for the sequences we construct to be useful for our purpose, we
require that they have the following three properties: the sequences we construct must
terminate when a goal state is reached; sequences of rules constructed for reaching
a goal state must be “continuous”, that is, they must not stop before a goal state is
reached; and each sequence must be ‘unambiguous’, that is, the sequence represents
only one way to reach a single goal state.

We now turn our attention to the types of “dependency” that can exist between
two rules. Intuitively, we say that one rule is dependent upon another if the action
taken by one rule facilitates the other rule to become fire-able. The simplest form of
dependency exists when one rule asserts a fact that is required by the LHS of another

rule.

Definition 6 (Depends Upon) The relation depends upon between two rules r; and
r; is denoted by r; < r;, and it indicates that the RHS of r; asserts a fact (A;, ;) which
uses a predicate that satisfies the predicate specified by a template in the LHS of rj,
with the constraint that \; & Z,. Formally: r; < r; = (3N, h) € A, M € Z,) =
(3(Ai, Li) € I, B((Ai, L)) = i)

The condition A; € Z, is placed on the depends upon relation in order to restrict this

78

[U(T) OA") Commenl
RA-14-Right¥1 | {GMAP, GRIDSIZE, {RA-14} Indicate the occurrence of a
SHOT_RECORD} specific configuration on the
Blackbox grid.
RA-14-Left%1 | {GNAP, GRIDSIZE, {RA-14} Indicate the accurrence of a
SHOT.RECORD} spacific contiguration on the
Blackbox grid.
RA-14-Prepil | {RA-14} {P_BALL, BLANKGRID, Place a ball, mark a location as
BALL_CERTAIN} empty, and indicate that the Ball
is a certain ball.
RA-14-Jprepit | {RA-14} {P_BALL, BLANK GRID} Place a ball, and mark a locaticn
aAB empty.
Place-BallX2 {GHAP, GNAP.CERT, P.BALLJ {GMAPB} Update the grid to indicate that a
ball has been located.
Place-Empty¥%1 | {GMAP, GMAP_CERT, {GHAPE} Update the grid to indicate that
BLANKGRID} an smpty grid square has been
located.

Table 4.2: Example Rule Set

relationship to rules that assert facts which do not identify goal states. Two examples
of the depends upon relation exist between RA-14-Right{{1, Right-14-Lefti1, and
RA-14-Prep’1 (shown in Figure 4.2). More precisely, RA-14-Right¥1 < RA-14-Prepil
and RA-14-Left!1 < RA-14-Prepil.

When constructing chains of inter-dependent rules in a task, we group rules ac-
cording to the dependency relationships in which they participate. Thus, for any rule

in a task we desire the ability to identify those rules which it depends upon.

Definition 7 (Reachability) A rule r; is reachable from a set of rules V, if V
contains all the rules that r; depends upon. We use the notation V. — r; to indicale
that r; is reachable from the rules in V. Formally, V = r; iff (¥ri € Ti)(ri < r;, =

ri€V).
For RA-14-Prep/l in Table 4.2, V = {RA-14-Right%1, Right-14-Left¥1}.
Having defined the depends upon relationship between two rules, we now consider
grouping rules to form continuous sequences. We can ensure that a continuous se-
quence of rules is captured by defining a notion of closure on a set of rules for the
depends upon relationship. When considering a set of rules ¢, we say that ¢ is closed
for depends upon if every rule in ® asserts a fact either using an end predicate, or
a predicate matching a template on the LHS of another rule in ¢. When a set of
rules ® is closed for depends upon, every rule in ® asserting facts using a non-end
predicate participates in depends upon relationships with the other rules in ®; thus,

® captures a continuous rule execution sequence.

79

Definition 8 (Dependency Closure) A set of rules ® is closed for the relation
depends upon when every rule r; € © asserts facts where either N\, € Z,. or the
fact matches a template on the LHS of some r; € ®. Formally, (Vr; € ®)(3r; €
®) such that (V{(Ae, lx) € A™)(3 (A, Li) € I™, U({Ak, L)) = M) V (A € Zy)).

Given that GMAP.B, GMAP_E, CERTAIN_BALLS, and GMAP_CERT.B are end predicates we
can determine that the set & = {RA-14-Right{1, RA-14-Prep’l, RA-14-Jprep/1,
Place-Ball¥%2, Place-Empty%l, BallCertain)1} is closed for depends upon.

Although the set ® is closed under depends upon, it is ambiguous. We say
that a sequence or rules is ambiguous if it represents more than one way to reach
a single goal, or represents ways in which more than one goal can be reached.
When RA-14-Right)1 fires asserting a fact using RA-14, both RA-14-Jprep’l and
RA-14-Prepl1 can follow RA-14-Right%1 in the rule sequence. RA-14-Prep%l as-
serts three predicates allowing Place-Ball)2, Place-Empty/1, and BallCertain’1
to follow it in the rule sequence, and RA-14-Jprep¥1 asserts two predicates allow-
ing Place-Ball)Z2, and Place-Empty¥1 to follow it in the rule sequence. If the facts
asserted by Place-Ball,2, Place-Empty%1,and BallCertainy1 form a logical com-
pletion and the facts asserted by Place-Ball%2, Place-Empty’1 also form a logical
completion, then the rule sequence in ® is ambiguous because two different goal states
may be reached by the rule sequence. We can also demonstrate the case where a rule
sequence containing two different groups of rules for reaching the same goal state can
be constructed, which is also ambiguous. In order to remove these ambiguities from
rule sequences, we introduce a restriction called singular consumption. The restric-
tion of singular consumption on ¢ ensures that every predicate that is asserted by a
rule in ¢ participates in exactly one depends upon relationship.
Definition 9 (Singular Consumption) A set of rules & is singularly consumed if
every fact that is asserted by a rule v; is matched by a template of ezactly one rule r;
where r; < r;. Formally, @ is singularly consumed ff, (¥ri,r; € &, r; < 1}):

(V{Ak) € A™)(if (HAw, Lie) € IV, B({As Lid) = M) =
(Brie®, ri<ry, (A, L) €I, O((Ar, Li)) = Ae))

The set ® = {RA-14-Right}1, RA-14-Prep)l, Place-Ball%2, Place-Empty%1,
BallCertainl} is singularly consumed. Thus, ® contains an unambiguous sequence

of rules for advancing the state of a problem to a particular goal state.

80

4.1.3 Enabling a Rule

The rulc sequences we have considered thus far are not sufficient for our purposes
because they do not consider the facts that are needed to enable each rule in the
sequence to fire. We now consider the set of rules that enable a rule to fire. Informally,
we say that a set of rules W enables a rule r; when the rules in W assert facts causing

r; to fire. This set of rules W must satisfy a number of conditions for it to be an

enabling-set for a rule r;:

e Given rj, then W C V; that is, r; must depend upon every rule in W'

e Every rule in W must assert at least one fact that uses a predicate specified by
the LHS of r; where a fact using that predicate is not asserted by any other
rule in W. Formally, we say W is minimal if (Vr; € W)(3{\;,1}) € A™) such
that (Ari € W, (A, 1) € A™)

o For each predicate specified by a template on the LHS of r;, if that predicate
is used in a fact asserted by at least one rule, then some rule that asserts a

fact using the predicate must be a member of W. Formally, we say that W is
mazimal if:

(V(A,’, L,') € I"J)((Brk € V, (.\;,[,’) [.Ar", U((A,, L,)) = 4\,) =
(31‘,‘ € W'r (’\hli) € -Ar‘s U((AH L:)) = ’\l))

Definition 10 (Enablement) A set of rules W enables a rule r; if W is a minimal
sel of rules that asserts facts matching the mazimum number of templates in the LIS
of rj; we write W — r; to denote that W is an enabling-set for r;. Formally, given
ri€TyandV or;, W r; i WCV, and W is both minimal and mazimal.

For RA-14~Prepii1 in Table 4.2 there are two enabling-sets: W, = {RA-14-Right¥%1},
and W, = {RA-14-Left}1}.

4.1.4 The Path

We consider a rule-base to be composed of a set of chains of inter-dependent rules
called paths. A path in a rule base must identify a sequence of rule firings that can
occur when the rule-based system is solving a subproblem, advancing the state of the
problem to be solved from one goal state to another. Each path is composed of a
sequence of rules that depend upon each other. Paths must capture continuous rule

sequences, and they must be unambiguous. The set of rules comprising a path must

81

be defined such that each rule in the path is enabled by a subset of the rules contained

in the path. The rules in each path must assert facts using all the predicates of a

logical completion for a subproblem.

Definition 11 (Path) P{, a path k in task T; is a partially-ordered set of rules
(®,).

® is a set of rules {r,ry...r,} with r; € T, such that,
(3U C @, SP,~ U),
(Vr; € ©)(AW — ri, W C @),
& is closed under depends upon, and
& is singularly consumed.

7 is a partial order indicating which rules in path P} depend upon others;
(Vri€®, rimrj=>r<r;).

A path formed by the rules in Table 4.2 as found by Path Hunter is shown in
Figure 4.2, This path represents the combined actions of five rules, depicting a
meaningful advancement of the solution to the Blackbox puzzle: upon examining the
evidence (beam entry and exit points) currently available, select the actions of placing
a ball on the grid and marking a grid square as empty, and the outcome is that the
ball is placed and the location is marked as empty. The logical completion that is
asserted by this path is GMAPE A GMAP.B A CERTAINBALLS A GMAP_CERTB. The path
shown in Figure 4.2 contains an equivalence class: RA-14-Class}1. Thus, the path
shown in Figure 4.2 represents {wo paths that can be observed when the Blackbox
Expert’s rule base is executed: one path starting with RA~14-Right/1, and one path
starting with RA-14-Left/1.

The path shown in Figure 4.2 is not a siinple linear sequence of rules; this is
unlike a linear sequence of statements that would be obtained when considering the
execution paths in a traditional imperative program. This is not surprising because,
with rule-based systems, we are not concerned with the actual sequences of rule firings
that occur at run time, only rule dependencies. The sequence of statements that are
considered to be an execution path of an imperative program form a total ordering,
while the dependencies between the rules in a rule base form a partial ordering; hence,
paths in a rule base are not linear sequences of rules.

We believe that our definition for path is appropriate for our objective: to capture

the structure of a rule base as chains of inter-dependent rules (a path). Each path is

82

N | N - -
BANK.GRD = PocEzp®l . Wi]

RA-l 4 Clash RA-14 RA-14-Prepel I

 pBAL ¥ PxeBd®) ——— GUAPB]
r\ i L ’ !
~ M CeRTB |
Rie & Y Faaligol , | Py v, Lope Completion
' LA preeae Prdicae ¥
LEGEND

Figure 4.2: An Example Path

intended to depict a structural component of the rule base that advances the state
of the problem being solved from one goal state to another, where goal states are
identified by logical completions. We can show that each path contains all the rules
that are needed to perform the computation required to advance the state of the
problem being solved in a meaningful way (a goal state is reached). We first consider
the inclusion of individual rules into a path based upon our depends upon relation.
and then conclude that paths are complete with respect to the logical completion
asserted by the rules in the path.

Lemma 1 [f there is at least one rule that asserts a‘fact (MY, i € Zy, and @

path P{ contains a rule r; where (A;, L;} € I™, and U({A;, Li)) = A;, then (3r; €
@, (A, h) € A7),

Proof We will assume that r; is in path P{, (A;, L) € I", (Are € @, (A, 6) €
A, B((Ai Li)) = A), and (3r;, (Mo) € A, B({Ap, L)) = Aiy Ai € Zin). Then
W, W < 1; in path P! is not maximal; thus, (3r, € @, (M, &) € A™, B({Ai, Li)) =
f\i).

Corollary 1 (Completeness) A path will contain all the rulesr; € U, SP, ~ U
as well as all the rules present in the rule base that enable the r; € U.

83

Thus. paths will group together all the rules that are required to fire so as to advance

the state of the problem being solved from one goal state 1o another.

4.2 Path Hunter

We have embodied our formal model for the structure of a rule base into Path Hunter,
our rule base analysis tool. Given a list of the logical completions for a problem, Path
Hunter will analyze a CLIPS rule base to determine the paths it contains. Several
issues arise in the construction of the Path Hunter algorithm: analyzing a rule base to
determine all the paths it contains can become too expensive to be practical, and we
must be certain that the algorithm used to search for paths is sufficiently exhaustive
to guarantee that no paths can remain undiscovered. Thus, we must employ methods
that are economical in searching for paths, and we must show that the algorithm used
to search for paths will discover all the paths that exist in a rule base.

The cost of searching for all the paths in a rule base can become prohibitive due to
either the complexity of the algorithm used to construct each path, or due to the size
of the space that must be searched to discover all the paths that exist in a rule base.
Previous attempts by researchers in minimizing the cost of analyzing the structure of
a rule base have focused on the cost of constructing each path, assuming that the size
of the space that must be searched to discover all the paths is determined by the rules
found in the rule base [79, 77]. Thus, if the size of the space as defined by the rules in
the rule base was too large, these methods would be unable to analyze the structure
of rule base (a combinatorial explosion in the size of the search space occurs). We
believe that our model is unique because it permits the knowledge engineer to control
the size of the search space, avoiding combinatorial explosions. Using our model, the
cost of constructing each path is also minimized due to our method for the abstraction
of rules and facts.

In this section, we discuss the Path Hunter algorithm, shown in Figure 4.3. We
show that Path Hunter will discover ail the paths that exist in a rule base. We then
show how the size of the space that must be searched by Path Hunter can be controlled
by the knowledge engineer; thus, combinatoria! explosions are avoided. Finally, we

discuss the results from our analysis of the rule base of the Blackbox Expert.

84

4.2,1 Discovering Paths

The first step in the Path Hunter algorithm is to compute the set of reachable rules
V and the enabling sets W’s for each rule in the rule base. Then, Path Hunter will
begin constructing sequences of inter-dependent rules called fragments, denoted by
F.

Definition 12 (Fragment) A fragment F{ in task t is a set of rules that meets all
the requirements for a path, excepl that it may not be closed under depends upon, or
the rules in the fragment may nol assert a logical completion.

An example of a fragment that is not closed is shown in Figure 4.4. After creating
all fragments, Path Hunter will merge fragments until a fragment is created that is
closed for depends upon. The merge operation on two fragments is a union of the
set of rules in each fragment, which forms another fragment. Two fragments may be
merged if and only il they pass several tests to determine if the rule sequence that
would result would also be a fragment. Once a fragment has been constructed that
is closed for depends upon, it is tested to determine if the rules it contains assert
a logical completion. If the rules in the fragment assert a logical completion, the
fragment is accepted as a valid path, else it is discarded.

Three fragments constructed by Path Hunter that are not closed are shown in Fig-
ure 1.5, Path Hunter constructs each fragment starting with an end rule; Path hunter
sclects an enabling set for the end rule, and then adds all the rules in the enabling set
to the fragment. Path Hunter then selects an enabling set for one of the rules in the
enabling set just added to the fragment, continuing the process until it encounters a
rule that does not have an enabling set. When Path Hunter constructed Fragment B,
shown in Figure 4.5, it selected the end rule Place-Ball}2, chose RA-14-Prep¥1 as
Place-Balllj2’s enabling set, and then selected RA-14-Class’/1 as RA-14-Prepil’s
enabling set. RA-14-Class’1’s enabling set is empty; thus, Path Hunter determined
that the end of Fragment B had been found. |

The three fragments shown in Figure 4.5 were merged by Path Hunter to form
the sample path given in Figure 4.2. During the merge phase, Path Hunter examines
each fragment to determine if it is closed. If a fragment is not closed, Path Hunter

will identify the splice rules in the fragment.

85

Program Path_Hunter {Find All Paths in Rule Base 8}
{
build fragment(r,) {Build one fragment starting from r,}
{
BPF = r; {B_PF accumulates r, in fragment}
Got Next W — r,; {Get a W for r,}
Mark W as Seen:
Forsach r, € IV Do {det rest of fragment starting from r}
BPF = B.PF U build fragment(r,);
Return(B_PF)
}
{
Foreach rule r, € RB Do {Find all rules that r, depends upon)
{ {Find all enabling sets for r,}

Find ¥V such that V — r,:
Find A1l W such that W« r;;

}
Foreach rule r; € RB Do {Ganerate all fragmants for each end rule}
If (r, € Z;) then
Repeat
{
PF = build.fragment(r,);
Record PF;
® !
Until (Seen ALl Combinations of W 's starting from r,)
Foreach Fragment FR, Do {Find all Splice=Rules in the fragment}
Find All splice-rules SPR; € FR,;
Foreach Fragment FR, Do {Merge fragments to form paths}
P’ = FR,; {PP accumulates potential path}
Repaat
{ .
While Kot Closed(PP)ido
{
Get next FR, Matching SPR, € PP;
Mark FR; as Seen;
It (Commonlrigin(FR,, PP) AND
¥OT.Split.Tail(FR,, PFP)) then
PP = Merga (PP, FR;); {Combine potantial path and fragment}
}
If Asserts.Logical Completion(PFP) then
Record PP; {PP is a valid path}
}
Until (Seen All Combinations of FR,'s for FR,)
}
}
}

Figure 4.3: Path Hunter Algorithm

86

Figure 4.4: An Example Fragment

Fragment A

P

{ owarc |

P———
T |

RA-L4-Pregl

BALL CERTAIN Fragment B
Fragment C

CERTAIN_BALLS

Figure 4.5: Constructing Paths from Fragments

87

Definition 13 (Splice Rule) A rule r; is said fo be a splice rule in fragment I
if it asserts at least one fact using a non end predicate which is not specified by a

template on the LHS of any other rule in the fragment. Formally, r; is a splice rule
in Fy iff:

3((:\;..,&.) c .Ar') A (E(Tj € ‘D), (-'\kaLk) €N, U((!\k, Lk)) = \;)

RA-14-Prepiil is a splice rule. Using splice rules, Path Hunter determines the frag-
ments that could result in fragments that would be closed if merged. However, before
Path Hunter merges two fragments, it performs two additional tests to determine if
the rule sequence formed by merging the fragments would be a valid fragment: the
common-origin test, and the split-tail test (see Figure 4.3).

When considering if the Path Hunter algorithm finds all paths that are present
in a rule base, we must examine two issues: does the algorithm gencrate the frag-
ments required to construct all the paths, and are all the appropriate combinations of
fragments merged. When generating fragments, we must determine if all fragments
can be constructed starting from the end rules. We will assume that it is possible to
produ‘ce error free code that selects all combinations of enabling sets for a rule when
generating fragments. When merging fragments, we must determine if the two tests
used by Path Hunter permit the merging of only combinations of fragments that may
form valid paths. We assume it is possible to produce error free code to determine
all the fragments that are potential candidates for being merged.

We can show that by starting its search for paths with end rules, Path Hunter is
guaranteed to find the fragments required to construct all the paths in the rule base.
[n order to show this, we prefer to view paths in an alternative manner. All paths
can be placed into one of three categories: single rule paths, single chain paths, or
multiple chain paths. A chain is a sequence or rules that depend upon cach other:
the first rule in the sequence has no enabling sets within the rule hase, the last rule in
the sequence is an end rule, and only one of the facts asserted by each rule in a chain
matches a template on the LHS of another rule in the chain. Single rule paths contain
only one rule, (see Figure 4.6, ignore shaded region). An example of a single chain
path is shown in Figure 4.7 (ignore shaded region), and an example of a multiple
chain path is shown in Figure 4.8 (ignore shaded region). By categorizing paths in

this manner, we will show that every path must contain at least one end rule. When

. 88

'

Figure 4.6: Single Rule Paths

Figure 4.7: Single Chain Paths

proving that each path must contain an end rule, we will also show that each chain
in a path will terminate with an end rule. We conclude that every fragment required
to construct all the paths in a rule base can be generated starting with the end rules
because {ragments can be categorized in the same manner that we have categorized

paths.

Theorem 1 Every path Pi must contuin at least one end rule.

Proof To show that every path must contain at least one end rule we first show
that all paths are finite, and then consider the case of the single rule path, the single
chain path, and the multiple chain path. We can see that all paths are finite because

the number of rules in any path is bounded by the number of rules in the rule base,

which is of course finite.

T~ LI UM vy,
)

(%2
2 A
Fm.1 ma - vl Tma K

Figure 4.8: Multiple Chain Paths

Case 1: We will assume that Figure 1.6 is an example of a single rule path, that
a logical completion for T} is {1,.....rn}. but r; is not an end rule becanse it
asserts a fact using a predicate y, and y € Z;. However, given these assumptions
the path shown in Figure 4.6 is not a valid path because ¢ is not closed. This
contradicts our original assumption that Figure 4.6 depicts a single rule path;
thus, r; must be an end rule, and r; cannot assert a fact using predicate y.

Case 2: We will assume that Figure 4.7 is an example of a single chain path. Single
chain paths are finite; thus, there is a rule r, that is the last rule in the path.
The same argument used in case | is applied to ry,; thus, r, is an end rule.

Case 3: We will assume that Figure 4.8 is an example of a multiple chain path. In
the case of the multiple chain path, there will be a rule r;, at the end of cach
chain. Again, the same argument used in case 1 can be applied to r;,; thus,
rin 1s an end rule.

The proof for Theorem 1 allows us to draw two conclusions aboul the structure of

paths.
Corollary 2 Every chain in a path lerminates with an end rule.

Corollary 3 (End-Rule Complete) All the paths that exist in a rule base can be
found by starting the search with the end rules.

Thus, the Path Hunter algorithm which starts its search with the end rules in the
rule base and follows the chain of rule dependencies unti! it encounters a start rule
will discover the fragments required to construct all the paths in the rule base.

The merge phase of the Path Hunter algorithm is also important in establish-
ing its correctness. Two fragments are candidates for being merged if they share
a common splice rule. However, the two fragments are merged only if they differ
in the rule that depends upon the splice rule: the LHS of the rule depending upon
the splice rule in each fragment must contain a template specifying a different pred-
icate from the set of predicates used by the facts asserted by the RHS of the splice
rule, if the merge phase is to produce fragments that are closed for depends upon.
As an example, Fragment A and Fragment B in Figure 4.5 contain the splice rule
RA-14-Prep/1, but in Fragment A RA-14-Prep’l < Place-Emptyi1, and in Frag-
ment B RA-14-Prep’l < Place-Ball%2. When Fragment A and Fragment B arc
merged, RA-14-Prep/i1 will have only one fact on its RHS that uses a predicate that

90

is net specified by the LHS of any rule in Fragment A: thus. merging Fragment A
and Fragment B produces a fragment that is closer to being closed for depends upon
than either Fragment A or Fragment B.

Once two fragments have become candidates to be merged, we must consider the
conditions that permit two [ragments to be merged producing a rule sequence that
is a valid fragment. We treat the origin of each fragment in a different manner than
its tail, The origin of a fragment is the sequence of rules it contains before the splice
rule, and the tail of a fragment is the sequence of rules it contains after the splice rule.
Two fragments may be merged if and only if their origins are identical; Figure 1.9
shows the case where Fragment D and Fragment E are merged to form Fragment F,
but they do not have identical origins; in the proof for theorem 2, we show that
Fragment F is not a valid fragment. The first rule in the tail of two fragments that
are candidates for being merged are always distinct. Two fragments may be merged
only if the remainders of the tails in each fragment are identical.

Definition 14 (Remainder) The remainders of the tails of two [ragments is the

sequence of rules starting with the first rule the tails have in common, ending with
the end of the tail of each fragment.

Figure 4.10 shows the case where Fragment G and Fragment H are merged to form
Fragment [, but they do not have identical remainders; in the proof for theorem 3.

we show that Fragment [is not a valid fragment.

Theorem 2 (Common-Origin) Two fragments may be merged iff their origins are

identical,

Proof Let us assume that the origin of two fragments (Fragment D and Fragment E)
differ by one rule as shown in Figure 4.9, but Fragment F formed by merging Frag-
ment D and Fragment E is a valid Fragment. In Fragment D we have r, < r,, and
in Fragment E we have r, < ry; thus in Fragment F we have ry < r; and ry < rp,
but U(A"™) = {31}. Therefore, U(.A™) is not singularly consumed, and Fragment F is
not a valid fragment. This violates our assumption that the origin of two fragments
may differ by one rule and still produce a valid fragment when merged; thus, two

fragments can be merged to form a new fragment only if their origins are identical.

91

Origin o

- e Tail -

o et)

p
I ! Ta

Fragment D

'[‘s H l rb ,2 ,...c .

Fragment E

Fragment F

Figure 4.9: Merge: Non-Common Origin

¥

Tail
p———————Remainder

-l s e s e)

5
Tail
j————— Remander
% ,I r4 ’l % LI rﬂ ——.{ 'z I

Figure 4.10: Merge: Non Identical Remainder

92

Theorem 3 (Split-Tail) Two fragments may be merged iff their remainders are

identical.

Praof Let us assume that the remainder of two fragments (Fragment G and Frag-
ment H) differ by one rule as shown in Figure 4.10, but Fragment I formed by merging
Fragment G and Fragment H is a valid Fragment. In Fragment G we have ry < rs.
and in Fragment H we have ry < rg; thus in Fragment [we have ry < rs and ry < r,
but B(A™) = {ya}. Therefore, 5(.A™) is not singularly consumed, and Fragment 1 is
not a valid fragment. This violates our assumption that the remainder of two frag-
ments may differ by one rule and still produce a valid fragment when merged; thus,
two [ragments can be merged to form a new fragment only if their remainders are
identical.

Path Hunter will find all the paths that exist in a rule base. Corollary 3 assures us
that Path Hunter will discover every fragment in a rule base by starting its search for
fragments with end rules. Theorem 2 and Theorem 3 assures us that the Common-
Origin and Split-Tail tests used in Path Hunter Algorithm (shown in Figure 4.3) do

not permit two fragments to be merged that will not result in a valid fragment.

4.2.2 Controlling Combinatorial Explosion

There are two stages in the Path Hunter algorithm that are prone to combinato-
rial explosion: fragment generation, and the merging of fragments. During fragment
generation, the number of fragments produced can becorac too large to be computa-
tionally tractable. During the merge phase, the number of combinations of fragments
that must be merged to discover all the paths in the rule base can become unmanage-
able. In both these cases, the combinatorial explosion is controllable by the logical
completions that have been specified by the knowledge engineer.

When a logical completion is too general, many different paths will be formed
that assert this logical completion. Thus, a combinatorial explosion may result. In
this case, the knowledge engineer can control the combinatorial explosion by creating
several, more specific, logical completions. This new set of logical completions will
lead Path Hunter to create a set of paths for each new logical completion, where the

total number of paths for all the new logical completions is less than the paths that

93

n x m Fragmaonts

B are ‘
. J - BaY

L

L m Fragments

1 Fragment

n + m +1 Fragments

Figure 4.11: Combinatorial Explosion Generating Fragments

were to be created for the original logical completion.

An example of where combinatorial explosion occurs when fragments are gener-
ated is shown in Figure 4.11. Figure 4.11 shows the scenario where p3 is a logical
completion, 7« is an end rule, there are n rule sequences producing a fact using pred-
icate p1, and m rule sequences producing a fact using predicate p,. Path Hunter will
generate fragments starting from ry, and it will generate n x m fragments: one {rag-
ment for each possible combination of rule sequences producing p, and pg. I n and
m are large, a combinatorial explosion in the number of fragments will occur, Based
upon the number of rule sequences present in the rule base for producing facts using
predicates p; and p,, Path Hunter is indicating the importance of py and p; in solving
the problem; thus, p) and p, should be goal states. When the logical completions are
changed to reflect the importance of p, and ps, Path Hunter will generate n + m + |
fragments, as shown in Figure 4.11.

An example of where combinatorial explosion occurs when fragments are merged
is shown in Figure 4.12. Figure 4.12 shows the scenario where p, A p; is a logical
completion, there are n rule sequences starting from ps generating a fact using p,
and m rule sequences starting from p4 generating a fact using p,. Path Hunter will
generate n fragments starting with ry and ending with p, as well as m fragments

starting with r; and ending with p,. In the m + n fragments, i is a splice rule, and

94

| Fragmeni—
(Pa) T] P

m Fragments

n +m + 1 Fragments

Figure 4.12: Combinatorial Explosion Merging Fragments

Path Hunter will attempt to merge the fragments in n x m combinations. If n and
m are large, a combinatorial explosion will occur. Path Hunter, in performing its
analysis, is indicating the importance of p; and p4 in solving the problem; thus, ps
and p, should represent a goal state; When the the logical completions are changed
to reflect the importance of p; and p,, Path Hunter will generate n+m+ 1 fragments,
as shown in Figure 4.12

The knowledge engineer can control any combinatorial explosions that occur when
using Path Hunter to analyze a rule base by introducing additional goal states. When
new goal states are introduced, the paths to be created using the criginal logical com-
pletion are broken down into smaller paths where there are fewer potential combina-
tions of rules for creating these smaller paths, resulting in a fewer number of total

paths produced. Nevertheless, these smaller paths are still meaningful.

4.2.3 Analyzing the Blackbox Expert’s Rule Base

Given the set of logical completions, Path Hunter has been used to analyze the struc-
ture of the Blackbox Expert’s rule base. This rule base contains 442 CLIPS rules
which formed 512 abstract rules. The abstract rules formed 72 equivalence classes
as well as 170 rules not in any equivalence class. Path Hunter found 516 paths, and

we believe this is reasonable given the complexity of the Blackbox puzzle and our

95

set of logical completions; there are rule bases which cause the generation of many
thousands of paths from a small number of rules, as was demonstrated by the analysis
of the ONCOCIN rule base [81]. The smallest paths consisted of a single rule; the
deepest had a depth of 7 rules; the broadest had a breadth of 7 rules. The mean path
depth was 4 rules, and the mean path breadth was 3.5 rules. The paths produced by
Path Hunter have been manually verified by the knowledge engineer as being accurate
and meaningful; that is, they capture the original intent with which the rules in the
path were specified and the rules that are depicted in the paths combine together as
intended.

The process of applying Path Hunter to the Blackbox Expert’s rule base identified
an application for our structural model apart from our intended application of the
path model to CDPS design. We have found that our structural model will also
play an important role in the validation of rule-based systems {35, 38, 37]. Path
Hunter identified various anomalies in the Blackbox Expert’s rule hase: the improper
use of predicates, undesired dependencies between rules, and rules which were not
considered to be part of any path due to programming inconsistencies. In some cases,
it was determined that the same predicate had been used within the rule base to
reflect slightly different semantics. Thus, it was determined that while the rule base
designer had intended Lo represent two distinct situalions, an undetected ambiguity
had occurred. These ambiguities also led to undesired potential interactions between
the rules in the rule base, One of the rules in the Blackbox Expert’s rule base did
not appear in any path because it was dependent upon rules in the Beam Trace
task, but asserted a fact that used an end predicate from the Beam Selection task.
This situation indicated a poor design for the rule in question because the rule was
dependent upon rules from one task, but the rule was performing actions that would
reach a goal state from a different task. The use of Path Hunter to analyze the
Blackbox Expert’s rule base provided a method to validate the design of the rule
base by indicating these inconsistencies and ambiguities.

An example of where a combinatorial explosion occurred when Path Hunter was
analyzing the rule base of the Blackbox expert is shown in Figure 4.13. Figure 4.13

shows the structure of the paths that Path Hunter was attempting to produce when

96

10 R T e B 4103,

BALL CERTAIY Rid (|

"l, CERTAIN BALLS I
—‘{ GMap (ERT B l

7

Figure 4.13: Controlling Combinatorial Explosion in Practice

GMAPC A GMAPB A BALL A CERTAINLBALLS A GMAP_CERT.B was declared by the rule
base designer as a logical completion. The predicate CONFLICT.B indicates that a
conflict occurred when a ball was to be placed in one of the squares of the Blackbox
grid, and RMC_B indicates that a conflict can be resolved. A combinatorial explosion
resulted because there are many rule sequences in the Blackbox Expert’s rule base for
placing a ball as well as for determining that a conflict can be resolved. Path Hunter's
analysis pointed out to the rule base designer that placing a ball or determining that
a conflict could be resolved should be considered as goal states, and that the action
of actually resolving a conflict should be treated separately from a conflicts creation

or detection.

4.3 Conclusion

Our model for the internal structure of a rule-based system captures the structure of
a rule base as chains of inter-dependent rules (paths). Each path depicts a structural
component of the rule base that advances the state of the problem being solved from
one goal state to another, where goal states are identified by logical completions. Our
model also meets our three criteria,

¢ Our model is accurate. The path, as we have defined it, has served as a specifica-
tion for the construction of the Path Hunter algorithm. The concepts of logical

07

completions, depends upon, enablement. singular consumption. and closure en-
sure that paths only represent sequences of rules that can occur at run-time,

and this has been demonstrated by the use of Path Hunter on the Blackbox
Expert.

Paths are meaningful. Qur structural model accounts for the structure of the
problem being solved, providing a notion of meaningfulness for the actions taken
by the rules in a path,

Our structural model is computationally tractable. With our model. the knowl-
edge engineer, using logical completions, can control any combinalorial explo-
sion that can potentially occur when Path Hunter is generating the paths in

a rule base. This was also demonstrated by the use of Path Hunter on the
Blackbox Expert.

98

Chapter 5

Applying the Organization and
Path Models

“The woods are lovely, dark and deep.
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.”
- Robert Frost, “Stopping by Woods on a Snowy Evening”, 1923

Applying the organizational model and the path model to building CDPS enables
us to consider both an inter-agent perspective and an intra-agent perspective; we
focus on the use of these models in setting the data distribution in a CDPS. The
organizational model is designed to capture the inter-agent perspective and the path
model is applied to capture the inira-agent perspective. The organizational model
specifies the interactions that occur between the rule-based systems in a CDPS, in-
cluding the data items available to the rule-based systems. We apply the path modecl
to capture the data items required by a rule-based system to produce specific results.
Using the path model, the CDPS designer can determine the impact of the availabil-
ity of a specific data item on the result produced by a rule-based system that is a
member of a CDPS, aiding the CDPS designer to set the availability of specific data
items (the windows specified using the organizational model), in order to improve
the performance of the rule-based systems in a CDPS. Thus, when specifying the
interactions that are part of the inter-agent perspective, the CDPS designer is guided
by studying the intra-agent perspective.

When studying the intra-agent perspective, the CDPS designer is concerned with

99

determining how to set the availability of specific data items in order to improve
the performance of the rule-based systems in a CDPS, or avoid serious failures. In

determining how to set the availability of data items, the CDPS designer is faced with

the following questions:

e what is the set of data items required by the rule-based systems to achieve each
goal?

o what is the impact of a patticular data item being unavailable on the ability of

the rule-based system to achieve a goal?

e what is the direct impact of achieving each goal on the ability of the rule-based
system to produce a result, or the quality of the result produced?

e what are the interactions that occur between goals as the data items available
are reduced? That is, when a rule-based systemn cannot achieve a goal due to
the unavailability of a particular data item, will it achieve an alternate goal,
and if so, which goal is achieved as an alternate?

e in the case that a rule-based system achieves a goal when operating with a
reduced number of data items (this goal may be an alternate goal achieved due
to an interaction), is it desirable for the rule-based system to achieve that goal?
That is, will the result produced by achieving that goal be acceptable?

e if a goal is achieved by a rule-based system when operating with a reduced
number of data items, but the CDPS designer determines that it is not desirable
for that goal to be achieved, how can the availability of data items be adjusted
to avoid achievement of that goal? Which path is responsible for that goal being
achieved, and which data items are required by the rules in that path to fire?

The understanding gained by the CDPS designer in studying intra-agent perspective
to answer these questions will aid the CDPS designer to set the availability of specific
data items in the CDPS. The CDPS designer can set the availability of data items
to ensure that the goals that are most “important” are achieved; each goal can be
assigned a priority when studying the intra-agent perspective to determine the impact
of achieving that goal on the ability of the rule-based system to produce a result, or
the quality of the result produced. The CDPS designer can also ensure that the
achieving of goals that would produce unacceptable results is avoided, by using paths
to identify the data items responsible for the achievement of those goals, and then
adjusting the data distribution in the CDPS.

Applying the path model to study the intra-agent perspective is accomplished in

two separate steps as follows:

100

step 1 determinethe data items that are required by the rules in each path to achieve
the goal identified by the logical completion asserted by the rules in that path.
We determine data items required by analyzing each path to determine the data
items required for all the rules in that path to fire.

step 2 determine the effect on the resuit produced when a goal is achicved; we de-
termine this by monitoring the goals that are achieved by a rule-based system
as it solves a set of test cases. Monitoring the goals that are achieved by a rule-
based system permits us to study the goals achieved by a rule-based system as
we reduce the data items available.

In this chapter, we show how the organizational model and the path model can be
applied to aid the CDPS designer set the data distribution in a CDPS. We explain how
to analyse paths to determine the data items that are required by the rules in each
path to fire, and then present an algorithm for this analysis. We present a method
for monitoring the goals that are achieved by a rule-based system, by determining
when all the rules in a path have fired. We have constructed a tool, Path Tracer,
embodying our method for monitoring the goals that are achieved by a rule-based
system. We present results from an experiment to validate the accuracy of our method
for monitoring goals achieved; in this experiment, Path Tracer is used to determine
the goals that were achieved by the Blackbox Expert when it solved the set of test
cases used for the functional validation experiment described in chapter 3. In order to
demonstrate the use of our models (organizations and paths;} and tools (Path lunter
and Path Tracer), we then present a case study in which we examine the intra-agent
perspective for the Blackbox Expert and consider setting the data distribution in a
CDPS for solving the Blackbox Puzzle.

5.1 Data Items Required

In this section, we first present an approach for analyzing the paths in a rule base
to identify the data items required for all the rules in each path to fire, and then we
present an algorithm for implementing this approach. We also show that the cost of
analyzing the paths in a rule base using our algorithm grows linearly with an increase

in the number of rules and paths in the rule base.

101

Path

Precedence Constraints

e m e m— G AT — - ——— -

Figure 5.1: Data Requirements

5.1.1 Identifying Data Items Required

We can view a path as a set of rules that require certain facts to achieve a specific goal,
see Figure 5.1. The facts required by the rules in a path are the precedence constraints
for achieving the goal. There are two issues that must be tackled when using the
path model to determine the facts require.c‘l by a rule-based system: determining the
precedence constraints required for a single rule in a path to fire, and determining
when all the rules in a path will be able to fire.

The first rules that must fire in a path are called start rules. Start rules will
then assert facts enabling other rules in the path. The start rules of a path, denoted
by SR., is the set of rules r; € ® where the templates in the LHS of r; do not
depend upon any other rule r; € ®; SR, = {ri | r; € ®,(Vrr € ®, ri £ 1)}, The
start rule for the example path shown in Figure 4.2 is in fact an equivalence class
S Rﬂixp{‘;‘ alysis . (RA-14-Classii).

A start set of a path is a set of facts matching the LHS of all the start rules of
that path. A start set of a path is identified by the set of start templates, dencted
by ST§, which is the union of the set of templates present on the LHS of each of
the start rules of the path; ST{ = U,espt I™. The set of predicates used in the
start templates for a path, called the start predicates, indicate factors from P’ from
which data items must be available to enable the start rules to fire, this set is given
by SP{ = {}; | V{Ai, Li) € STy, B((Ai, L)) = A;}-

The facts required for all the rules in a path, except start rules, to fire is called a

completion set. The completion set of a path is identified by the set of completion tem-

102

plates for a path, denoted by C'T;. The completion templates is the set of all templates
present on the LHS of all the rules of the path, except start rules, which specify a fact
that is not asserted by any rule in the path. Formally, CT} = Ur.ete-sri)(I"™ — PT).
PTj, is the set of templates from I™ that are matched by the facts asserted when
the rules that enable r; fire. PTY, = {{Ai, Li) | (Yrje W, W — r)(36, (A, L) -6 =
(AL L), (Mi Y € A1)} The set of predicates used in the completion templates for
a path, called the completion predicates, indicate the factors from P! for which in-
stances (data items) must be available so that all the rules in the path become enabled
to fire, assuming the start rules have fired. Formally, the set of completion predicates
is given by CP{ = {); | V(Ay, L) € CT¢, B({Ai, Li)) = A;}.

Now, let us consider the precedence constraints for a rule in a path. A rule in a
path can fire when there are facts present in WM that satisfy all the templates in its
LHS. Facts matching the LHS of a rule can be present in WM because they were
placed into WM by other rules in the path, or because they were present in WM
before the rules in the path fired. Given a path P{, r; € ®, r; € SR, and W — ry,
then the set of completion templates for r; is given by CTf, = (I — PT},).

Lemma 2 If facts malching the completion templates CT}, of rule r; in a path P}
are present in WM and the (r; € W, W — r;} fire, then r; can fire.

Proof When the r; € W fire, WM contains at least the following facts:

{0, 6 [V(AL L) € CTy, (36, (Aiy Li)6 = (A L) JU{(Xi, b} | Vr € W, (A1) € A}

The templates that are matched by the facts in WM are given by

CT;, U PT},
= (I" - PT},)U PT},
= TI"

Thus, r; can fire because WM contains facts matching all the templates in Z™.
Now that we have understood the conditions required for an individual rule in a

path to fire, we can specify the conditions for all the rules in a path to fire.

Theorem 4 Giver a path P}, if facts matching the completion templates CT{ and
start templates ST} are present in WM, then all the rules in the path can fire.

103

Proof The theorem follows directly from Lemma 2 by induction.
Thus, when assessing if all the rules in a path can fire, we must be able to determine
if facts matching ST{ U CT} are present in WM.

The path model provides the CDPS designer with the ability to determine the data
items that are required by a rule-based system to achieve its goals. In Theorem 1, we
have shown that the precedence constraints for each path, ST and CTY, indicate the
facts required for all the rules in that path to fire, achieving a goal; the goal achieved

is identified by the logical completion asserted by the rules in the path.

5.1.2 Determining Data Items Required: An Algorithm

Applying the path model to determine the facts required by the rules in each path to
achieve a goal (ST} and CT}) required the addition of a new module to Path Hunter.
The new module provides a list of the data items that are required to achieve cach
goal, SP{ and C P{. The algorithm used to implement the module that we added to
Path Hunter is shown in Figure 5.2. The first step in determining the facts required
to achieve a goal is to compute the start templates (STf,) and completion templates
(CT};) for each rule. The intuitive method for computing ST}, and CT}; would be
to compute them for a rule, each time the rule appears in a path. However, we can

show that ST}, and C'T}, for rule r; are independent of the path P in which r; is

contained.

Theorem 5 When a rule is in two or more paths its set of completion templates is
unique. Formally, if r; is in path P{ and r; is in P! (k # n), then CT}, = CT},.

Proof We will assume that r; is in path P{ and P}, but CTf, # CT{,. Since
CT}, U PT{, = CT},U PT},, we note that PT}, # PT{ . That is, the predicates
used in the facts asserted by Wy, W, «— r; for P{ are not the same as the predicates
used in the facts asserted by Wp, W, — r; for Pt Therefore, (3Ir; € Wy, (A i) €
Aty (A LY = 8-(A, L), (A, Li) € I), but (Arr € W, {Ai, 1) € A™). This leads to
the conclusion that W, is not maximal; thus, P! is not a path. Since this contradicts

our earlier assumption that P! is a path, we conclude that CT{, = CT},,.

Corollary 4 The facts required by a rule r; in task T; to fire that are nol supplied by
rules in Ty ({(Xi,) | (i,) = 6+ {Ai, L), "Ni, Li) € CTY}) are independent of the

104

get.data.items() {Determine data items required to achieve goals}
{

Foreach r, € RB Do {Determina the facts required for a rule}
1f StartRule(r,) then
Find ST/,
alse
Find CT},;

Foreach path P! ¢ RB Do {Determine the facts required}
Foreach r, & P,: Do

1¢ Start Rule{r;) then
STy =ST}v ST},
else
CT{ =CT} UC‘T:‘*;
Foreach path P € RB Do {Detarmine the type of data items required}
SP; = U(ST{);
CPi = B(CT!);
Return()

}

Figure 5.2: Determining Data {tems Required
path in which r; is contained.

Thus, the facts that must be present in WM in order for a rule in a path to fire is
independent of the path in which the rule is found.

Path Hunter will determine the data items rvequired by a rule-based system to
achieve goals, and the cost of determining data items required grows linearly as the
the number of rules and paths in the rule base increase. In Theorem 2 and Corollary 2,
we showed that we can calculate ST} and C'T} without computing the facts required
by a rule, for every path in which that rule appears; this reduces the computational
complexity of determining data items required.

As a part of our experimental work, we used Path Hunter to analyze the paths in
the rule base of the Blackbox Expert. The start predicates and completion predicates
for the example path from chapter 4 are shown in Figure 5.3. The start predicates for
the example path are SPheanie 7**® ={GMAP, GRIDSIZE, SHOT-RECORD}. The start
predicates of our sample path indicate the data items that are required for the start
rules in the path to fire, indicating that a specific configuration on the Blackbox grid
is recognized. For the start rules in our example path, the Blackbox Expert requires

access to data items that indicate the entry and exit points for the beams that have

105

BLANK GRID

‘..._.f__: PloeFapry &1 I—P\’T\l\l‘t_]

IT

RA-14Prp %l

o mw:_}—g'Loun,ﬁ

................

;] BALL CERTAN JTTY prceraasy o CERTAIS BALLS]
(0 ovae e . :
:. :) GMAPCERTR)
1 * ' .

.................

Figure 5.3: Completion and Start Predicates of a Path

been fired, the data item indicating the size of the grid used in the current puzzle,
and data items indicating the current hypothesis for several of the Blackbox grid
squares. The completion predicates for the example path C Pg:::pfe“l”is = {GMAP,
GMAP_CERT, CERTAIN.BALLS}. The completion predicates in our sample path indicate
the data items that are required for the non-start rules in the path to fire, indicating
that a conclusion can be drawn as to the contents of several squares of the Blackbcx
grid. For the non-start rules in our example path, the Blackbox Expert requires
access to data items that indicate the current hypothesis for several of the Blackbox
grid squares, data items that indicate the certainty of hypotlieses drawn for various
squares of the Blackbox grid, and data items indicating the number of balls that have

been located which are considered to be certain.

5.2 Monitoring Goals Achieved

Identifying each goal that was achieved by a rule-based system when it is problem-
solving and the path that was responsible for achieving that goal requires a method
to monitor the system at run-time. Our method to monitor rule-based systems relies
upon the ability of the rule-based system to produce a trace file as it is problem-
solving. The trace file contains the rule firing events which occurred when the system
was exercised. In order to validate our method for detecting goals achieved, we show

that Path Tracer (our tool for monitoring the goals achieved by a rule- based systein)

106

is able to account for all the rule firing events that appeared in trace files obtained

during the functional validation experiment we described in chapter 3.

5.2.1 Identifying Goals Achieved

Our method for monitoring a rule-based system to determine goals achieved is based
upon detecting when all the rules in a path have fired; this indicates that the goal
represented by the logical completion asserted by the rules in the path has been
achieved, and indicates the path Lhat is responsible for that goal having been achieved.
Our method for identifyiné the goals achieved by a rule-based systems assumes that
the rule-based system can produce a trace file. From this trace file, it must be
possible to identify the sequence of rules which fired, and to identify the actual causal
dependencies between the rule firings. We refer to run-time rule firings described in
a trace file as concrete rule firings. A trace file describing this information can be
obtained in several ways: many inference engines, such as the CLIPS inference engine,
supply the required information; or it may be possible to modify an inference engine
to produce the desired information, or one could instrument the rule base itself.

We faced several issues in applying our path model to determine the goals achieved
and the path that was responsible for achieving each goal: identifying causal rule
dependencies among the concrete rule firings, finding mappings from the concrete
rule firings to abstract rules, and developing a method for determining when all of

the rules in a path have fired. We will now discuss each of these issues in detail.

Finding Causal Run-time Dependencies: A trace file contains a linear sequence
of rule firings. Within this sequence, causal sequences of rule firings are likely to be
interleaved because of the opportunistic inference mechanism used by production
rule systems. In order to determine true causal dependency relations, each asserted
fact is assigned a unique identifier, so we can track which facts are “produced” and
“consumed” by the rules. It is another useful feature of CLIPS that these identifiers
are assigned automatically; otherwise, we would have had to instrument the rule
base (instrumenting the rule base can be done automatically, of course). Given the
existence of the unique fact identifiers, we are able to determine when a fact asserted

by a concrate rule firing #{ helps to cause another concrete rule rf to fire. If this is

107

the case, we say that r{ causes ri to fire, indicated by the notation > r'f .

Mapping From Concrete Rules to Abstract Rules: This is straightforward
when the concrete rule has no conditionals on its RHS, because there viill be only
one corresponding abstract rule; otherwise, it is necessary to determine which one
of several abstract rules corresponds to the rule which fired. In such cases, we are
sometimes unable to make an unequivocal mapping from a concrete rule firing to an
abstract rule because when a rule fires, not all of its expected assertions arc observed.
This is not a weakness of our model, since it points to one of two situations, cach of

which reveals information about the behavior of the rule base which is useful to the

knowledge engineer:

e an assertion is not observed because (at least part of) the action performed by
the rule has already been done by another rule, indicating that the rule firing
is (at least partially) redundant; or

o the rule fails to assert some fact that it should assert, according to the spec-
ification of the rule-based system—this indicates a fault in the design of the
Tule and, since the rule violates the specification, of course there can be no
corresponding abstract rule.

When a concrete firing cannot be mapped unequivocally to a single abstract rule,
all the possible mappings are recorded as equivocal mappings. For example, if the
sample rule, shown in Figure 4.1, Ball-Certain is observed (in the trace file) to
fire at run-time, but it does not assert anything at that time because its first RHS
conditional is false, then we cannot tell whether the concrete rule should correspond
to Ball-Certainli, or Ball~ Certain’2. We allow it to correspond to both abstract
rules, as an equivocal mapping. An unambiguous {unequivocal) mapping from the
concrete rule firing r{ to the abstract rule r; is denoted by r{ « r;. An equivocal
mapping from r{ to r; is denoted by rf S rj.

Determining Rules Fired: Equivocal mappings complicate the task of determin-
ing when all the rules in a path have fired. One central question is: can we say that
a specific abstract rule has been observed to fire when it participates in an equivocal
mapping? We can argue that, on one hand, we do not want the abstract rule to be

accepted as having fired unless we can be absolutely sure that it did so; on the other

108

hand, if the rule fired but failed to assert all the facts that it should. we can argue
that the rule did fire. To capture this distinction, we use three different strategies for
assessing if all the rules in a path have fired.

We illustrate our method for assessing if all the rules in a path have fired using
an example; Figure 5.4(a) is a simplified representation for a path, showing its rules
and their dependencies only. The path contains six dependencies, labeled d,,...,d.
Assume that we are able to map concrete rule firings observed in the trace file to the

abstract rules shown in Figure 5.4(a) as follows:

RA-13-Right! — RA-13-Classi1

RA-13-Prep/ — RA-13-Prepiit
Place-Emptyf, +— Place-Empty’i

F’lac:.e-B::v.ILl}‘r = Place-Ball}2
Empty-Certain/, — Empty-Certain)1

Remove-Conflic‘c;’: =+ Remove-Conflicti1

Assume also that we observe the following rule firing causalities in the trace file:

RA-13-Right! > RA-13-Prep/
RA-iB-Prep_{ > Place-Empty{
RA-13-Prep] > Place-Ballf
RA-l:i-Prenpj-r > Empty-Certain/,
Place-':':mpty{ » Remova-Conflict{‘

Empty-Certainf, > Remove-Conflict]

Paths are identified in a trace file using the notion of a thread, defined as follows:
there is a thread T from rule r; to rule r,, in a path if the path contains the set of
depends upon relations 7 = {r; < rp,72 < r3,...,"n-1 < rn}. Sample threads in the
example path are; {dy,ds}, {d1,ds,ds},{dh,ds,ds}. A thread is said to be observed if
and only if:

e there is a set of mappings {r,f — rl,r}' + T2, T T3, .. ,r{ = Taa1, 75+ o},

and

109

Place-Ba1%2

RA-13-Clasa®l

Place-Empty %1

Place-Empty%1
Remove-Conflict®l
d,

dS
7.

Remove-Conlict®]

(d) Rules Fired Using Liberal Strategy

Figure 5.4: Identifying Rules Fired in a Path

110

o there is a set of firing causalities observed in the trace {r{ > r;', rf > Ny
. rf > rl}.

Observed threads in the example path are: {d,d,}, {di,ds}, {di,ds}. The thread
{dy,ds,ds} is not observed because there is no unequivocal mapping to Remove-
Conflictl1 involving dependency ds. Thread {d),d;,ds} is not observed for the same
reason.

We assess the rules that have fired in a path by examining dependencies between
rules which are observed in the trace file. When we observe two rule firing events
that are dependent upon each other, we can determine if these two rule firings can
be safely accepted as belonging to a particular path. Dependent pairs of rule firing
events are accepted based upon the position in a path of the dependency between
the rules, and the position of any equivocal mappings in that path. Each strategy
(conservative, moderate, and liberal) considers equivocal mappings differently for the
purposes of accepting rule firings. The rules for deciding whether or not to accept a

specific pair of dependent rules as being part of a path for each strategy are stated

. below.

Conservative Accept the dependent pair r; < r; if and only if there is an observed
thread T from r, to ., where r, is a start rule for the path, r. is an end rule for
the path, and (r; < r;) € T. Intuitively, we accept a thread from a start rule
to an end rule in its entirety if every dependent pair in the thread is observed,
and none of the rule mappings involved are equivocal; otherwise, we do not
accept any dependent pairs in that thread as having been observed. Using this
strategy, only the two pair of dependent rule firings comprising the example
thread (dy,d;) are accepted, because all other threads from a start rule to an
end rule involve an equivocal mapping. This is illustrated in Figure 5.4(b).

Moderate Accept the dependent pair r; < r; if and only if there is an observed
thread T from r, to r;, where r, is a start rule for the path, and (r; < r;) € 7.
Intuitively, starting from the start rule of each thread, we accept observed de-
pendent pairs until the first dependent pair involving an equivocal mapping, or
until the end of the thread. We do not accept the actual dependent pair involv-
ing equivocal mappings. Using this strategy, four of the dependent rule pairs in
the example (d;,d;,d3,d;) are accepted. This is illustrated in Figure 5.4(c).

Liberal Accept the dependent pair r; < r; if and only if there is an observed thread
from r, to r;, where r, is a start rule for the path, rf — r;, r{ > r/, and there
. is an equivocal mapping r{ += r;. Intuitively, starting from the start rule of

111

each thread, we accept observed dependent pairs until the first dependent pair
involving an equivocal mapping, or until the end of the thread, including the
first dependent pair involving an equivocal mapping. Using this strategy, all

six of the dependent rule pairs in the example are accepted, as is illustrated in
Figure 5.4(d).

5.2.2 Validating Our Method

Before applying the path model to the design of any CDPS, it is important that we
establish the validity of using the path model to determine if a rule based system has
achieved a goal. In order to validate the accuracy of our method for detecting goals
achieved, we use Path Tracer to analyze the rule firing events that appear in the trace
files obtained during the functional validation experiment we described in chapter 3.
Path Tracer provides two different outputs:

e for each path that Path Hunter has discovered in a rule base, Path Tracer

produces a count of the number of rules in that path that have been accepted
as having fired.

e Path Tracer produces a list of all rule firing events that it cannot accept as
belonging to any path.

We will first examine a summary of the number of rules in each path that Path Tracer
has accepted as having fired, and then show that we can account for all rule firing
events listed by Path Tracer as not belonging to any path.

A summary of the results of using Path Tracer to analyze the trace files produced
by the Blackbox Expert is given in Table 5.1. The number of rules fired is expressed
as a percentage of the number of rules in a path; thus, the column marked 100%
refers to paths in which all the rules fired. The entries in the table are expressed
as a percentage of the paths in the rule base; thus, the entry 17.4 in the upper
right-hand corner of the table indicates that all (100%) of the rules fired in 17.4% of
the paths in the rule base when assessing rules fited using the conservative strategy.
Using the liberal strategy, all rules fired in 33.3% of the paths. As we would expect,
the number of paths in which all rules have been accepted as firing increases as the
strategy becomes more generous (conservative to liberal). Note that the same number

of paths were observed at > 0% rules fired using the moderate and liberal strategies,

112

Percent Rules Fired

Strategy >0% >50% >60% >70% >8% >90% 100%
Conservative | 64.2 324 25.0 20.0 18.6 17.6 17.4
Moderate 7.7 50.6 44.6 36.5 27.5 19.0 18.4
Liberal 7.7 529 49.6 45.1 42.2 350 33.3

Table 5.1: Percentages of Rules Fired

indicating that no equivocal mappings were involved in any dependency which also
involved a start rule.

The results produced by Path Tracer indicate that many of the paths that were
discovered by Path Hunter are never exercised when the Blackbox Expert solved the
test cases. This does not point to a problem with our method for determining the
paths in which all rules have fired, rather Path Tracer has uncovered an incomplete-
ness in our test set. This is not surprising since the test set was generated using only
functional criteria. Most of the cases in which paths were never initiated at run-time
are explained by the fact that the scenarios which those paths were designed to handle
were not present in the test set. Therefore, the start rules for these paths never had
cause to fire.

When Path Tracer analyzed the trace files produced by the Blackbox Expert, 6%
of the total rule firings contained in the trace files could not be accepted as being

part of any path. Path Tracer has rules to classify such firings, as follows:

Redundant Firings When a rule r; fires and the facts it is to assert are already
present in WM, due to actions taken by other rules, r; does not asseri any new
facts, and cannot cause any other rule to fire; thus, r; cannot participate in
any mapping that indicates a depends upon relation, unless r; is an end rule.
If r; is not an end rule, Path Tracer reports such concrete firings as redundant
firings. The presence of a large number of these redundant firings that involve
the same rule at run-time would be anomalous, and would suggest that there
is some fault in the rule base.

Equivocal Firings Consider the example path shown in Figure 5.5. Let us as-
sume that rules r,r,, ry, rs and r7 are mapped unequivocally, but r; and rg are
mapped only equivocally. Using the liberal strategy, the dependent pair r3 < rg
is not accepted because there is no observed thread from the start rule, ry, to r3
(the mapping to ry is equivocal). Since the liberal strategy is the most general
of the three, dependent pair r3 < rg is not accepted in the other strategies
either. Therefore, the concrete firing which maps equivocally to rg is never ac-

113

rs

—=J» dependency counted
— dependency not counted

Figure 5.5: Rules Fired Using the Liberal Strategy

cepted as belonging to any abstract path by Path Tracer. Path Tracer reports
such firings as equivocal firings. They are important because they indicate rule
firings (usually near the end of paths) which fail to assert all of their expected
predicates (hence the equivocal mappings). In many of the cases we have man-
ually checked so far, this is because some other rule has “interfered” to carry
out those assertions prior to the equivocal firing rules. Other cases pointed to

coding errors in the rules, such as where a rule does not assert all the facts that
it should.

All of the rule firing events in the trace files produced by the Blackbox Expert
. that could not be accepted as being part of any path were classified as belonging
to one of the above cases: redundant firings or equivocal firings. This statement is

highly significant, since it means that:

o the path mode! for rule base execution paths was sufficiently powerful to explain
all the rule firing events observed in the trace files.

e the 516 paths produced by Path Hunter accurately described all the rule firing
events observed during the functional testing of Blackbox Expert.

e the mechanisms used by Path Tracer for identifying causal concrete rule rela-
tionships, mapping from concrete rule firings to abstract rules, and identifying
rules fired in a path, were capable of accounting for all of the rule firing events
observed in terms of the paths discovered by Path Hunter in the Blackhox
Expert’s rule base.

These results provide us with strong empirical evidence for the validity of our

structural model and tools. We can be confident in applying our model by using Path
Hunter to discover the paths in a rule base, and by using Path Tracer to determine
when all the rules in a path have fired; determining paths in which all rules have fired
. identifies each goal that is achieved by a rule-based system, and identifies the path

which is responsible for achieving that goal.

114

5.3 Applying Our Models: A Case Study

We now apply our models to the design of a CDPS for solving the Blackbox puzzle.
Using our organizational model, we discuss the inter-agent perspective: describing an
organization for the CDPS in which the agents are rule-based systems constructed
using the Blackbox Expert’s rule base. Then we show the application of the path
model to study the intra-agent perspective, considering the goals achieved by the
Blackbox Expert as we reduced the data items available. We then demonstrate by
means of three examples how our study of the intra-agent perspective aids the CDPS

designer in setting data distribution.

5.3.1 The Inter-Agent Perspective

The specification of an organization for a CDPS to solve the Blackbox puzzle requires

the CDPS designer to determine the following:

¢ the number and structure of the agents in the CDPS
o the coordination structure to be used by the agents
o the structure of the blackboard

¢ the window of each agent

For the purposes of our case study, we will assume that the CDPS contains three
ugents, and each agent contains the complete set of rules in the Blackbox Expert’s
rule base. As shown in Figure 5.6, the agents use Consensus to determine the beams
to be fired {29].

The are many different options for representing the Blackbox grid using a black-
board; the CDPS designer must select the number of levels that are required, and
the data items to be stored on each level. In the case of Blackbox, which is an ill-
structured problem, the structure imposed by the problem-solver (the factors a; that
are used to represent the state of the Blackbox puzzle) will determine the number
of levels required on the blackboard as well as the data items to be placed on the
blackboard. More specifically, the “relationship” between the different objects to be
placed on the blackboard will impact on the number of levels required. By relation-

ship between objects on the blackboard, we refer to the manner in which the problem

115

solver will make use of the objects on one level of the blackboard to construct ob-
jects to be placed on the upper levels of the blackboard. For example, in the case
of Blackbox, shot records placed on the lowest level of the blackboard are used as
evidence to support hypotheses for the trajectory of the beams, and these hypotheses
are recorded on higher levels of the blackboard than the shot records [68].

Figure 5.6 depicts the topmost level of the blackboard where the Blackbox gird
is represented as a matrix, and the lowest level of the blackboard containing the
beam entry and exit points are shown surrounding the grid. There would also be
several intermediate levels (not shown in Figure 5.6) containing hypotheses as to
trajectory of the beams that have been fired. On the lower levels of the blackboard, the
hypothesis for beam trajectories would explain only a portion of the entire trajectory
of a beam. On the upper levels of the blackboard, hypotheses from the lower levels
on the blackboard would be used to construct hypotheses for the entire trajectory
of a bearn, and the hypotheses for entire beam trajectories would then be used to
support the hypotheses for the contents of the grid squares, on the highest level of
the blackboard [68].

In the absence of any input from examining the intra-agent perspective, at this
stage we can consider only simple intuitive options for setting the window of each
agent in the CDPS. Figure 5.6 shows the upper level of the blackboard divided into
three approximately equal regions, and each agent can access only one of the regions.
In the case of shot records (the lowest level on the blackboard), the agents can access

a shot record if either the beam’s entry or exit point is in the region of the blackboard

it is allowed to access.

5.3.2 The Intra-Agent Perspective

Our study of the intra-agent perspective considers the ability of the Blackbox Expert
to produce specific results, as the data items available are reduced. Using Path Tracer,
we monitor the goals that are achieved by the Blackbox Expert as it solves a set of
test puzzles with a reduced number of data items available. Analyzing the paths that
are responsible for the achievement of these goals and the data items required for all

the rules in these paths to fire, we determine the following:

116

H —
Y N O I O A
Figure 5.6: CDPS for Blackbox
= "
» o Wl 50 X
o)
I Tt o
En 158 “E ° ST
i 3 "
3 »-&:ﬁi N] X ;M%
/ N\ iy
" L M -
" - Uy s
! . L 2z Z / Vet
.r \' [Z 7 "7 Comraiive
" + o Vd v d Vd /7 Pudes Find
-] t [1] [{] 0 [+ a4 T oA
Information Deficit Information Defict

Figure 5.7: SCORE, Rules Fired, and Goals Achieved

e specific goals that are achieved by the Blackbox Expert and the result produced
when those goals are achieved

e interactions that occur between goals

o the paths responsible for achieving goals that are identified by the CDPS de-
signer as being undesirable; we also identify the data items required by all the
rules in these paths to fire.

In our study, we selected 10 random test cases of the Blackbox puzzle, and the
Blackbox Expert attempted each test case five times; each time the same test case
was attempted, the availability of data items (measured using the information deficit

metric) to the Blackbox Expert was reduced by 0.2, In order to ensure that our

117

experiment was unbiased, we used random test cases and we reduced the availability
of each type of data item in equal proportions. We then used Path Tracer to analyze
the trace files produced by the Blackbox Expert to determine the effect that the
change in data items available to the Blackbox Expert had on the goals that were
achieved. We used the SCORE metric (described in chapter 3) to measure the quality
of the results produced by the Blackbox Expert for the test cases.

The overall effect of changing the data items available to the Blackbox Expert
on the number of goals that were achieved is shown in Figure 5.7(a). This figure
shows the number of goals that were achieved by the Blackbox Expert when solving
our test set, as the data items available were reduced. Figure 5.7(a) also shows the
average SCORE of the results produced by the Blackbox Expert. The SCORE of
the results produced by the Blackbox Expert increased as the data items available
decreased, and the number of goals achieved under each strategy decreased. Based
upon our experiment described in chapter 3, the trends observed in these results are
as expected.

While the overall effects shown in Figure 5.7(a) are as one would expect, if we
compare the rate of decrease in goals achieved with the rate of decrease for rules
fired, we find an interesting anomaly. Figure 5.7(b) presents the ratio of rules fired
at each information deficit to the number of rules fired with an information deficit of
zero, and the ratio of the number of goals achieved at each information deficit to the
number of goals achieved with an information deficit of zero. At information deficit
0.8, the number of rules fired decreases by 60%, but the number of goals achieved
declines by only 39% (using the liberal strategy); even though the Blackbox Expert
is still able to achieve over 60% of the goals it achieved with an information deficit of
zero, it is nearly unable to solve any portion of the Blackbox puzzle (SCORE is 291).

Let us now consider the effect of reducing the data items available to the Blackbox
Expert on its ability to achieve specific goals as well as the impact of achieving these
goals on the ability of the system to produce a result, or the quality of the result
produced. Figure 5.8(a) shows a sample of goals that were affected by the change in
data items available to the the Blackbox Expert. For each goal, we plot the number of

test cases in which the goals were achieved as the data items available were reduced.

118

Figure 5.8(b) explains the meaning attached by the knowledge engineer to each goal.
Examining the paths that can achieve each goal, and the data items required by the

rules in each path, the trends shown in Figure 5.8(a) can be interpreted as follows:

e goal 7 exhibits a rapid decline; goal 7 can only be achieved if sufficient data

items are available for the Blackbox Expert to detect that all the balls in the
grid have been located. This is only likely to occur in situations where most
of the data items regarding the contents of the grid squares are available. The
non achievement of goal 7 impacts the ability of the Blackbox Expert to detect
when an end game situation has been reached. In the case that the Blackbox
Expert is unable to detect end game situations, it tends to fire too many beams,
resulting in an elevated score.

goal 8 exhibits a rapid increase; goal 8 is achieved when the Blackbox Expert is
unable to choose a beam to fire. As the number of data items used to evaluate
the beams to be fired is reduced, the Blackbox Expert is unable to select a beam
to be fired; thus, goal 8 is achieved more often as the number of data items is
reduced. The achievement of goal 8 indicates that the reduced ability of the
Blackbox Expert to select beams has been detected, and the Blackbox Expert
should terminate its problem-solving efforts.

o goal 9 exhibits a rapid decline; as with goal 7, goal 9 can only be achieved if

it is possible to detect that all the balls in the grid have been located. The
non-achievement of goal 9 indicates the reduced ability of the Blackbox Expart
to detect that it should terminate its problem-solving effort because all the balls
have been located.

goal 25 exhibits a decline, but not as rapid as the decline experienced by goal T;
The achievement of goal 25 is dependent upon data items tnat indicate the
contents of different grid squares, that indicate the certainty of grid squares,
and shot records for the beams that have been fired. As the data items available
are reduced, it is less likely that the Blackbox Expert can detect the scenario
required to achieve goal 25. The non-achievement of goal 25 indicates that the
quality of the result produced by the Blackbox Expert is reduced because the
Blackbox Expert is unable to determine the contents of the grid squares.

It is evident that when determining the impact of the availability of data items
on the result produced by a rule-based system, not all goals can be considered to
be equal in the role they play in the problem-solving process, in the effect they will
have on the result produced by the rule-based system, or in sensitivity to a change
in the availability of data items. Certain goals, while central to the problem-solving

process (such as goals 7, 8, and 9 for the Blackbox Expert), may have little direct

119

" % .-"'/'.
R
AN N
g . ¥ GOAL | SEMANTICS
1. A\ \ Goal 7 | Detect if all balls located
| AR Y Goal § | End of game, no desirable heams
:’ A \ AN Goal 9 | End of game, all balls located
IL = Goal 25 | Mark square as empty, and it is
T b Dot w certain
(a) (b)

Figure 5.8: Sensitivity of Specific Goals

effect on the final result that is produced by the rule-based system, even if they can
be achieved more often. Other goals, such as goal 25 for the Blackbox Expert, have
a direct impact on the result produced each time they are achieved.

Let us now consider the interactions that occur between goals as the data items
available to the Blackbox Expert are reduced. Figure 5.9(a) shows a sample of goals
that interacted with each other as we changed the data items available to the the
Blackbox Expert. For each goal, we plot the number of test cases in which the goals
were achieved as the data items available were reduced, and Figure 5.9(b) explains
the meaning attached by the knowledge engineer to each goal. Examining the paths
that can achieve each goal, and the data items required by the rules in each path, the

trends shown in Figure 5.9(a) can be interpreted as follows:

e goals 8 and 9 interact with each other. Goals 8 and 9 form a set of goals in which
at least one of the members of the set has to be accomplished; problem-solving
terminates when either goal 8 or goal 9 is achieved. Of course, problem-solving
must terminate, even when the number of data items available is small; thus in
each test case, either Goal 8 or Goal 9 is achieved. As the data items available
are reduced, the number of test cases which terminate by achieving goal 9

reduce, causing the number of test cases which terminate by achieving goal 8
to increase.

e goals 11 and 198 interact with each other. The paths achieving goais 11 and 198
have the same start rules, and thus the same start sets. However, the completion
sets for these two paths are different. Goal 11 is achieved when the data items

120

% T
) A B
1 e GOAL] SEMANTICS
1 AV] Goal 3 | End of game, no desirable beams
(VAN Goal § | End of game, all balls located
LY Goal 11 | Terminate line of reasoning
F—=r Goal 198 [Mark square as empty, and termi-
] 07 —= (. + nate line of reasoning
Iniormation Defic
(a) (b)

Figure 5.9: Interactions Between Goals

specified in the completion set of the path achieving goal 198 are unavailable,
preventing the Blackbox Expert from achieving goal 198.

When the Blackbox Expert achieves goal 8 rather than goal 9, or goal 11 rather
than goal 198 the quality of the result produced by the Blackbox Expert is reduced.
In achieving goal 8 rather than goal 9, the Blackbox Expert would have fired more
beams and identified the contents of fewer grid squares. In achieving goal 11 rather
than goal 198 the Blackbox Expert is able to identify the contents of fewer grid
squares. However, in each of theses case the Blackbox Expert is exhibiting a graceful
degradation in its performance as the number of data items available are reduced;
thus, even though the quality of the result produced by the Blackbox Expert is reduced
when it chooses to achieve alternate goals as the number of data items available is
reduced, we cannot categorize these goal interactions as undesirable.

We observed two goals that were achieved in a larger number test cases as the data
items available were reduced, and we believe that an increase in the achievement of
these goals is undesirable, see Figure 5.10. We observed an increase in the number of
test cases in which goal 136 and goal 20 are achieved. The increased achievement of
goal 20 indicates that the Blackbox Expert is placing additional balls as the number
of data items available is reduced, and the increased achievement of goal 136 indicates

that the number of conflicts encountered by the Blackbox Expert has also increased.

121

y .
S
|) -
7
L 1A GOAL [SEMANTICS
. 7 _Goal 20 { Place a ball
o _.-..Liu Goal 136 | Conflict on placing empty, and con-
® ionratonDabdl @ flict on placing hall
(a) (b)

Figure 5.10: Undesirable Events

Let us use the path model to look deeper into the cause for the two undesirable
events that we observed in our experiment. Using Path Tracer, we were able to
identify the paths that were responsible for the additional achievement of goal 136
and goal 20. In the case of goal 136, the paths we identified indicate that the Blackbox
Expert produced the additional conflicts when it attempted to access data items for
which it did not have access permission. We were able to identify two different sets
of paths responsible for the achievement of goal 20 when the number of data items
available were reduced. In one case, the Blackbox Expert erroneously placed a ball
in a grid square (achieving goal 20). In the other casc, the Blackbox Expert chose
to fire a different beam than the beam it chose to fire with all data items available;
firing a different beam produced a different set of data items, causing a ball to be
placed in the Blackbox grid (achieving goal 20) rathen: than placing a ball that was
also certain as well as marking several squares as empty.

Figure 5.11 shows the path responsible for achieving goal 136, and the path re-
sponsible for achieving goal 133; goal 133 was the goal achieved by the Blackbox
Expert when all data items were available (the achievement of goal 133 indicates that
the Blackbox Expert has successfully placed a ball, marked the ball as certain, and
marked a square as being empty as well as certain). The increased achievement of
goal 136 as the number of data items available to the Blackbox Expert are reduced

occurs because of an interaction between goal 136 and goal 133. Both the paths

122

| Stan predicawes - Place-Bali% .

o N, :

; H DALL _CERTADN] - . .

B H Ball-Centain® 2 H '

:(sHOT_RECORD §— RA 1" 1%l = GMAP_CERT_ it :
: . ' H

1 1 +

. :

. f J- Y Place.Emptyna H - :

{(_ormsze_§; - 3 :

i ; :

' H 3 K Empty-Certain®2 L z .

Camas o B+ =

1}

! H

{(amrTaN_sars -

[)

: i

{GETTORED o ;

H Logical Completion !

| Compledon Predicates ! :

B G

it e eiietad el
-------------- Nguroormms)

I Sn tes ' : : —_ J
! Stan Predica H T AN, 1‘.

'
] ———— . .
: DALL_CERTADN _ ——te{ CERTAIN a.u.r,;s. !
L] ' »
{(omMar cERT D}
? = puco erpoy ——(Giee) |
] H :
--------------- 1
:
' Empty-Certain® t ‘ol GMAP CERT :
:(omar_cent I+ —1 p et SRR A
' H : Logicsl Completion !
(corTam_pALLEl PO - 7 - S
(e &
i !
1]
1]

1)
| Compietion Predicates

Figure 5.11: Paths Achieving Goal 136 and Goal 133

achieving goal 136 and goal 133 have the same start rule and require the same start
predicates. As we reduced the data items available, the data items as identified by the
slart predicates for both paths were still available to the Blackbox Expert, but the
data items identified by the completion predicates were not. As a result, all the rules
in the path responsible for achieving goal 136 fire, but not all the rules in the path
achieving goal 133 can fire; thus, goal 136 is achieved rather than goal 133, signal-
ing a conflict. The conflict signaled by the Blackbox Expert indicates that although
the Blackbox Expert has sufficient data items available to recognize a specific con-
figuration in the Blackbox it is unable to draw a conclusion (updating grid squares)
based upon that configuration because it required access to data items that were un-
available. This understanding of a conflict identifies an additional cause for conflicts,
originally discussed in chapter 3, to include the situation where the Blackbox Expert
attempts to update a grid square based upon a configuration that it recognizes, but

it cannot due to access restrictions.

123

................

RIBO%L

................

Figure 5.12: Path Achieving Goal 20

Figure 5.12 shows a path that was responsible for increased achievement of goal 20.
In this case goal 20 is achieved, but it should not be achieved; thus, a grid square
is marked as containing a ball by the Blackbox Expert, when in fact the square is
empty. The erroneous achievement of goal 20 is due the the unavailability of the
data items required by the Blackbox Expert to determine the number of grid squares
that have not yet been identified. Rule RiB-1%1 is designed to detect if there is
only one grid square that is still unidentified, and only one ball not yet located. We
observed that with a reduced number of data items available all the rules in this path
fired, erroneously concluding that one of several remaining unidentified grid squares
contains the one remaining ball. Of course, this is incorrect.

Figure 5.13 shows two sets of paths. The rules in each set of paths are activated
depending upon the beam chosen to be fired by the Blackbox Expert. When all data
items were available to the Blackbox Expert, the Blackbox Expert chose to fire a
beam which lead to the firing of all the rules in the set of paths achieving goal 25,
goal 88, and goal 147. The achicving of goal 25, goal 88, and goal 147 causes the
Blackbox Expert to place a ball that is certain and mark several grid squares as empty,
which are also certain. When the number of data items available were reduced, the
Blackbox Expert chose to fire a beam which caused goal 20 to be achieved; achieving
of goal 20, causes the Blackbox Expert to correctly place a ball, but the ball is not
identified as being certain. The beam chosen with a reduced number of data items

available causes the Blackbox Expert to produce an inferior result.

124

S
.
Place-Ball®l !
:
L]
L]
L]
1
1
)
1]
[]
! H
+ Logical Completion !
....Gouss ___:
Rt L L L LI L1
. STOP
:
H
Place-Empty %l '
H
H
Empty-Ceruin%1 1 GMAP_CERT_E
i Lopical Completion
FO.=. 8
Rt iiil il LILE AL}
Place-Empty %l ‘ GMAP_E
'
L]
|
o Empty-Ceitain%l = GMAP_CERT_E
! Logical Completion
SR - L
H
H
Place-Ball%] !
H
' Logical Completon
\o...Bosl20

125

SET-\
SET-2

Two Sets of Paths

A3

5

Figure

RA-24d-Class

- H |
e ELNYEITANE | s i [&
3 Bl al gl a2 | 12 sl [B] &
T i Bl |35 | iE v 13
|5 £ 151° 15| (5[5 (%1% | i3 O3] 3
ougirJBULUg 1PV O U B Y 2

5.3.3 The Inter-Agent Perspective Revisited

Having studied the intra-agent perspective for the Blackbox Expert, we now recon-
sider the inter-agent perspective for the CDPS to solve the Blackbox puzzle, described
in section 5.3.1. We will focus on demonstrating how the “information” gained by
studying the intra-agent perspective can be used by the CDPS designer in setting
data distribution, in order to improve performance. In studying the intra-agent per-
spective (see section 5.3.2), we observed an increase in the achievement of goal 20
and goal 136, and we determined that this increase was undesirable because the per-
formance of the Blackbox Expert was adversely affected. Using Path Tracer, we were
able to isolate the paths that were responsible for the increased achievement of these
goals; and using Path Hunter, we were able to determine the data items required by
all the rules in each path to fire.

As a demonstration of the use of the information gained from studying the intra-
agent perspective, we present three scenarios in which the CDPS designer can avoid an
increase in the achievement of goal 20 or goal 136, by using the intra-agent perspective
as a guide in adjusting the data distribution in the CDPS for solving Blackbox. In
developing these scenarios, we used Path Tracer to identify the specific test case in
which the increased achievement of goal 20 and goal 136 occurred, indicating the
data distribution that was in effect when the Blackbox Expert solved these test cases.
We developed each scenario by examining the paths responsible for achicvement of
goal 20 and goal 136, the data items required by all the rules in the paths responsible
for achieving these goals to fire, and the data distribution that was in effect when
there was an increase in the achievement of these goals; giving us the conditions
in which the increased achievement of these goals occurred. We then determined if
it would be possible for the conditions responsible for the increased achievement of
goal 20 or goal 136 to be replicated in the CDPS for solving Blackbox.

We developed one scenario for each of the paths, or sets of paths, that were
identified as being responsible for the increased achievement of goal 20 or goal 136
(see section 5.3.2). In each scenario, we first describe how the conditions responsible
for the increased achievement of goal 20 or goal 136 can be replicated in the CDPS

for solving Blackbox, and then we discuss how the data distribution in the CDPS can

126

be modified to avoid the increased ‘achievement of the goal. We are able to suggest a
modification to the data distribution by examining the path that was responsible for
the increased achievement of the goal, and examining the data items required for all

the rules in that path to fire.

Scenario 1: Let us now consider how the conditions that lead to an increase in the
achievement of goal 136 can occur in the CDPS for solving Blackbox. The CDPS
shown in Figure 5.14 depicts the situation where a beam has been fired, and its entry
point and exit point are labeled by ‘A’. Rule-based system 3 has access to the data
items indicating the entry and exit point of the beam. The data items available within
the window of rule-based system 3 are sufficient for the start rule (RA-18-1%1) of both
paths shown in Figure 5.11 to fire. Given the access privileges for rule-based system 3
as shown in Figure 5.14, goal 136 will be achieved because rule-based system 3 does
not have access to the grid squares labeled by ‘C’. The conditions that lead to an
increase in the achievement of goal 136 are that rule-based system 3 has sufficient data
itemg available in its local view to recognize a specific configuration on the Blackbox
grid, but it does not have access to grid squares labeled by ‘C’ which it requires in
order to draw a conclusion based upon the configuration it has recognized.

The conditions that lead to an increase in the achievement of goal 136 can be
avoided by adjusting the data distribution in the CDPS. Clearly, the original specifi-
cation for the window of each rule-based system is inadequate. Rule-based systern 3
is able draw a conclusion based upon the data items available within its own window
which impacts on rule-based system 1’s and on rule-based system 2’s window. The
data distribution in the CDPS should be adjusted to ;.)ermit rule-based system 3 to
access the portions of the Blackbox grid for which it can draw conclusions given the
data items available for recognizing specific configurations in the Blackbox, rather
than simply concluding that a conflict has occurred.

This scenario is an example of how applying our models to study CDPS, we
can determine that the setting for the data distribution in the CDPS is inadequate,
because a rule-based system in the CDPS has sufficient data items available to be able
to draw a conclusion, but it does not have access to the region that is impacted by the

conclusion. Given the windows for each of the rule-based systems in the CDPS, we

127

e | ot

111111

—4
i

nljlojn|aja|n|n

®
1 A
o

wle|n[o]alaloja]o
o lefaialalafalnlad

Figure 5.14: Conclusion Draw Outside Window

determined that one of the rule-based systems is able to draw a conclusion based upon
the data items available with its local view. However, the conclusion drawn by the
rule-based system impacts the local view of another rule-based system in the CDPS.
Typically, this situation would be avoided by adjusting the windows of the rule-based

systems in the CDPS to permit the rule-based system drawing the conclusion to share

the data items it is able to produce.

Scenario 2: Let us now consider how the conditions that lead to an increase in
the achievement of goal 20, by erroneously placing a ball, can occur in the CDPS for
solving Blackbox. An example of how the path we identified as being responsible for
the achievement of goal 20 can cause a rule-based system in our CDPS to erroneously
place a ball is shown in Figure 5.15. There is one ball that has not yet been located
in rule-based systems 1's window. Rule-based system 3's local view, given by its
window, shows that five of the six balls have been located and only one unmarked
grid square remains. All the rules in the path shown in Figure 5.12 fire, and goal 20 is
achieved, concluding that the unidentified grid square must contain the one remaining
ball; thus, rule-based system 3 incorrectly places a ball in its own window, when in
fact the ball is located in rule-based system 1's region. The conditions that lead to
an increase in the achievement of goal 20 are that rule-based system 3 is drawing
a conclusion based upon the data items available in its window, but the data items
indicating the number of unidentified grid squares must reflect a global view.

The conditions that lead to an increase in the achievement of goal 20 by er-

128

Rule-Based

]
I

B ® 1 f N
- - - b Bal
]] - - B Certain Ball
= 1 E

' & Ball not Located
— — bemee-e % Due to emor

t
- — '] Incorrectly Placed
| | .= m Balt Y
] b b [- L Legend

b |
B B Lo
1

Figure 5.15: Local vs Global View

roneously placing a ball can be avoided by providing a mechanism by which the
rule-based systems in the CDFS can determine the global number of unidentified
grid squares. Our analysis of the path that is responsible for achieving goal 20 in-
dicates that the conclusion drawn when all the rules in that path fire is dependent
upon obtaining data items required to determine the total number of unidentified
grid squares.

This scenario is an example of how applying our models to study CDPS, we
can determine that the setting for the data distribution in the CDPS is inadequate,
because a rule-based system in the CDPS is dependent upon the availability of data

items whose value must reflect a global view of the problem-solving state.

Scenario 3: Let us now consider how the conditions that lead to an increase in the
achievement of goal 20 due to a different beam being fired can occur in the CDPS for
solving Blackbox. In Figure 5.16 we draw attention to the bottom row of the grid,
which is in rule-based system 3’s window. Several beams have been fired, and many
of the grid squares have been identified as being empty and certain. in the case that
a beam is to be fired into the grid from the right side, as indicated in Figure 5.18,
all the rules in the set of paths achieving goal 88, goal 147, and geal 25 (shown in
Figure 5.13) will fire, placing a ball that is certain and marking several grid squares as
empty. In the case that a beam is fired into the grid from the bottom, all the rules in

the path achieving goal 20 (shown in Figure 5.13) will fire, placing a ball that is not

129

ot LT T T T T

|| B

L | .

— — " 7 Competing Outcome
b B | E —» Polentisl Next Beam

] | % ® Empty Certain

] 0. O Leew J

| | B

| | eo|o/ @000 82

L1 1 [T Tulgl IJIAIHJ

Figure 5.16: Selecting a Beam to Fire

certain. Given the local view of rule-based system 3, it would choose to fire the beam
into the grid from the bottom. The conditions leading to this choice by rule-based
system 3 are that rule-based system 3 is unaware of the balls that have been located
in rule-based system 2's region.

The conditions that lead to an increase in the achievement of goal 20 can be
avoided by ensuring that rule-based system 2 shares data items indicating the location
of the balls located in its region with rule-based system 3 when selecting the next
beam to fire. The path model identifies different sets of paths in which all rules will
fire, given the beam that is chosen to be fired. In Consensus, rule-based system 2
can determine that it must supply data items indicating the position of the balls that
have been located in its region, in order to indicate to rule-based system 3 that firing
the beam from the right side is better than firing the beam from the bottom.

This scenario is an example of how applying our models to study CDPS, we can
determine that the setting for the data distribution in the CDPS may be inadequate,
because a rule-based system fails to share data items which are relevant to the options
being considered by the rule-based systems during Consensus. When a rule-based
system in a CDPS is able to determine the sets of paths in which all the rules in
one of the sets can become enabled to fire, depending upon the option chosen by the
agents in a CDPS.

130

5.3.4 Summary

We demonstrated the application of the organization and path models to the design of
a, CDPS for solving the Blackbox puzzle, focusing on setting data distribution. Using
the organizational model, we considered the inter-agent perspective for the CDPS;
and using the path model, we studied the intra-agent perspective. In our study of
the intra-agent perspective, we identified three events in which a path, or a set of
paths, were responsible for an increase in the achievement of goals, and the increased
achievement in these goals was determined to be undesirable. Then we demonstrated,
by presenting one scenario for each undesirable event, how a study of the intra-agent
perspective can be used by the CDPS designer in adjusting the data distribution in
a CDPS to improve performance as follows:

Scenario 1 the path model identified a path in the rule base of the Blackbox Expert
which would produce superior results if specific data items were made available
by adjusting the windows of the rule-based systems.

Scenario 2 the path model identified a path in the rule base of the Blackbox Expert
which is dependent upon the availability of data items whose value must reflect
a global view of the problem-solving state in order to avoid placing a ball in a
grid square that is in fact empty.

Scenario 3 the path model identified different sets of paths in the rule base of the
Blackbox Expert in which all the rules in one of the sets can become enabled to
fire, depending upon the beam selected. These sets of paths indicate the data
items that should be shared to choose the option that will produce the best
result.

The precise steps we followed in applying our models to study the design of a
CDPS for Blackbox were as follows:

The Intra-Agent Perspective

1. We used Path Hunter to determine the paths in the rule base of the Blackbox
Expert as well as the data items required by the rules in each path to fire.

2. We used the Blackbox Expert to solve a set of test cases while reducing the
number of data items available.

3. We used Path Tracer to analyze the goals achieved, the paths responsible for
achieving these goals, and result produced by the Blackbox Expert as it was
problem-solving with a reduced number of data items, The specific issues that
were studied are as follows:

131

e the ability of the Blackbox Expert to achieve specific goals, and the impact
of achieving those goals on the result produced.

¢ the interactions that occurred between goals.

o the data items required by the paths responsible for the achievement of the
goals where the achievement of that goal was considered to be undesirable
because its achievement adversely affected performance.

o for each path identified as being responsible for the achievement of a goal
where the achievement of that goal was considered to be undesirable, we

determined the data distribution that was in effect when all the rules in
that path fired.

The Inter-Agent Perspective

1.

V]

We used the organizational model to specify a CDPS for solving the Blackbox
puzzle. '

. For each goal that is adversely affected by a reduction in the availability of data

items (identified by studying the intra-agent perspective), we determined the
conditions which led to the goal being achieved.

. We determined if it would be possible for the conditions responsible for the
-achievement goals that adversely affect performance can be replicated in the

CDPS for solving Blackbox.

. We determined how to adjust the data distribution in the CDPS to avoid the

achievemnent of goals that adversely affect performance, by examining the path
that was responsible for the increased achievement of the goal, and examining
the data items required for all the rules in that path to fire.

5.4 Conclusion

We have applied our organizational and path models to-building CDPS, by considering

both the inter-agent perspective and the intra-agent perspective. In this thesis, we

have discussed the use of our models only in aiding the CDPS designer in setting data

distribution. Applying our models, the CDPS designer is able to determine how to

set the availability of specific data items in order to improve the performance of the

rule-based systems in a CDPS, or avoid serious failures. The organizational model

permits the CDPS designer to specify interactions between the rule-based systems in

a CDPS (the inter-agent perspective), and the path model permits the CDPS designer

to analyze from the intra-agent perspective the effect of a reduction in the availability

of data items as follows:

132

o determinethe specific goals that are achieved and the result produced by achiev-
ing those goals; Also, identify the path that is responsible for the achievement
of each goal.

o determine the interactions that can occur between goals.

e determine how to avoid the achievement of goals that are identified by the
CDPS designer as being undesirable, by analyzing the paths responsible for the
achievement of the undesirable goals, obtaining the data items responsible for
all the rules in the path to fire.

Using the Blackbox puzzle as a sample ill-structured problem, we have demon-
strated that a study of the intra-agent perspective provides guidance to the CDPS

designer in improving the performance of the rule-based systems in a CDPS as follows:

o paths are identified in the rule base of an agent, which could produce superior
results if specific data items were available, guiding the CDPS designer in setting
the data distribution in the CDPS.

o paths are identified which are dependent upon the availability of data items
whose value must reflect a giobal view of the problem-solving state in order to
avoid producing erroneous results.

¢ diiferent sets of paths are identified in which all the rules in one of the sets can
become enabled to fire, depending upon the option chosen by the agents in a
CDPS. Thus, the paths can be used to determine the data items that should be
shared between the agents in a planning group, enabling 2 choice of the option
that will produce the best result.

In applying the organizational and path models, we have used Blackbox as our
sample problem, and the Blackbox Expert as our sample rule-based system. We
believe that these models can be applied to other rule-based systems following the
steps outlined in section 5.3.4. In order to use our models and tools in setting the
data distribution in a CDPS for solving ill-structured problems in general, several
assumptions must be satisfied:

1. there must exist an implementation of the agents to be used in the CDPS, and

the agents must be implemented as rule-based systems.

2. the knowledge engineer must be able to identify the set of logical completions
for the problem solved by the rule base.

3. there must exist a “suitable” set of test cases.

4. there must exist a method for limiting the data available to the rule-based
system as it solves the test cases.

133

(w81]

the rule-based system must be able to produce a trace file recording the rules
fired, when it is exercised.

6. the CDPS designer must be able to identify goals that adversely affect the result
produced when they are achieved.

=]

. the CDPS designer must be able to identify goals that must be achieved in order
to produce an acceptable result.

One difficulty that will be faced by a CDPS designer in applying the path model
to study the intra-agent perspective is to determine if a given a test set will ensure
detection of all conditions under which a goal is achieved that adversely affects per-
formance. In order toc ensure that a study of the intra-agent perspective will identify
all cases in which goals are achieved that adversely affect performance, the CDPS de-
signer must determine if all paths in the rule base have been exercised when studying
the intra-agent perspective; this is referred to as maximizing the coverage obtained

on the rule base when the rule-based system is used to solve the test set.

134

Chapter 6

Conclusion

“The important thing is not to stop questioning.”
- Albert Einstein

[n this thesis, CDPS is viewed from two different perspectives: the inter-agent per-
spective, and the intra-agent perspective. The inter-agent perspective is concerned
with issues relating to the manner in which the agents in a CDPS interact: the man-
ner in which the problem is decomposed, the tasks assigned to each agent, the sharing
of data items during planning and during execution, and the planning protocols used
by the agents. The intra-agent perspective is concerned with the internal structure
ol the agent, and how the agent is affected by the environment in which it must op-
erate — the CDPS. In addition to this dichotomy, in our research we have followed
two complementary tracks: theoretical and experimental. We have developed formal
modlels for both the inter-agent and the intra-agent perspectives (our models for the
intra-agent perspective apply only to rule-based systems), developed an experimen-
tal testbed for an agent implemented as a rule-based system, and we have applied
‘our models to aid the CDPS designer in setting the data distribution in a CDPS,
demonstrating the benefits to the CDPS designer of using our models.

With the intent of studying the intra-agent perspective, we have developed a model
for the structure of a rule-based system that models a rule base as a set of entities
called “paths”. Our model makes use of the dependencies between the rules in the rule
base to define paths. Based upon our study of the problems with previous attempts by

researchers to define models for the structure of a rule base, we believe that structural

135

models for rule based systems should satisfy three criteria: accuracy. meaningfulnoess,
and computational tractability. Our structural model meets these three criteria:
thus, our model is an improvement over previous attempts by researchers to capture
dependencies between the rules in a rule-based system.

We apply the path model to study the intra-agent perspective by using paths
to analyze the effect of a reduction in the availability of specific data items on the
result produced by a rule-based system. The path model is applied in two separate
steps: each path is used to identify the data items (start templates and comple-
tion templates) required by the rule-based system to achieve one of its goals (logical
completion), and then paths are used to determine the goals that are achieved by a
rule-based system as it solves a set of test cases; we also monitor the result produced
for each test case. When the rule-based system is solving the test cases, we reduce
the data items available; this permits us to determine interactions that occur between
goals, and to determine the data items responsibie for the achievement of specific goals
whose achievement is considered to be undesirable by the CDPS designer.

We have constructed the Blackbox Expert, a testbed for experimental research.
The Blackbox Expert is designed to permit us to perform experiments in which we
change the data items available to a single rule-based system while we observe the
functional and computational performance of the system, simulating the environment
that the Blackbox Expert would experience as a member of a CDPS. We selected
the Blackbox puzzle (the problem solved by the Blackbox Expert) as a sample ill-
structured problem, which is suitable as a testbed application for CDPS: solving the
Blackbox puzzle requires a rule-base that is sufficiently complex (containing several
hundred rules) to serve as a realistic testbed, the effort required by a human to become
proficient at solving the puzzle is small (less than one person-week), and the Blackbox
puzzle can be used to model diagnosis type problems, a common application for rule-
rule-based systems. Before using the Blackbox Expert in our research, we believed
that the ability of the Blackbox Expert operating as a single agent solving the puzzle
had to be established; thus, we validated the functional performance of the Blackbox
Expert in solving Blackbox puzzles experimentally, establishing a baseline with wlich

we could compare the performance of the Blackbox Expert as we changed the data

136

items available.

We have constructed a rule-base analysis tool called Path Hunter, which embodies
our structural model. Path Hunter analyzes a rule base to determine the paths
it contains, including the data items required by each path (start templates and
completion templates) and the goal that will be achieved when all the rules in a
path fire (logical completion). We have used Path Hunter to analyze the rule base of
the Blackbox Expert, obtaining the set of paths in the Blackbox Expert's rule base.
Using Path Hunter to analyze the structure of the Blackbox Expert’s rule base has
provided us with an opportunity to demonstrate that our structural model does in
fact meet our three criteria. In order to use Path Hunter to analyze the structure of
the Blackbox Expert’s rule base, we had to specify all of the logical completions for
the Blackbox problem; the logical completions are an input to Path Hunter.

We have developed a second tool, Path Tracer, embodying our method for applying
the path model to monitor the goals achieved by a rule-based system. Path Tracer
analyses trace files produced by a rule-based system when it is problem-solving; a
trace file contains a list of all the rules fired by the rule-based system. Path Tracer
will also identify the path that is responsible for achieving a goal, by determining the
path in which all the rules have fired, asserting the logical completion representing
that goal. In order to validate the accuracy of Path Tracer in monitoring goals
achieved, we used Path Tracer to analyze the trace files produced when we validated
the functional performance of the Blackbox Expert. Path Tracer is able to account
for all the rule firing events that are recorded in these trace files, demonstrating the
accuracy of the mechanism used by Path Tracer to identify the rules in a path that
have fired.

We have developed a model for CDPS which allows for a precise description of
the interactions that are permitted between the agents in a CDPS (the inter-agent
perspective), providing a specification of the manner in which the agents in 2 CDPS
are to cooperate. We refer to our model as an organization. Work by-other re-
searchers has referred indirectly to the types of interactions that could occur between
the agents in a CDPS, but there had been no precise definition of the components

of a CDPS and the types of interactions that should be specified when designing a

137

CDPS. Our organizational model also includes the information deficit metric, which
is a metric introduced in this thesis for measuring the data distribution in a CDPS.
The information deficit metric allows the CDPS designer to measure the availability
of data items (data distribution) to the agents in a CDPS when they communicate
with each other using a blackboard.

Our organizational mode! provides a basis upon which the design parameters for
CDPS can be studied from an inter-agent perspective. We show the use of our orga-
nizational model and the Blackbox Expert to study the trends in performance that
can be expected as the data distribution in a CDPS is modified. While many re-
searchers have speculated as to the effect of the data distribution in a CDPS on Lhe
performance of the agents in that CDPS, we lacked evidence that the trends expected
by researchers would actually occur when the agents in a CDPS were implemented as
rule-based systems. Using the information deficit metric to measure the data items
available to the Blackbox Expert as it solved a set of random test cases, we were able
to statistically verify that the trends expected by researchers in functional and com-
putational performance occurs for the Blackbox Expert solving any Blackbox puzzle
as the availability of data items changed. Qur experiment confirmed that the trends
expected by researchers can actually occur in operational rule-based systems, and es-
tablishes that data distribution is an important factor in determining the performance
of the rule-based systems in a CDPS. Thus, our study of global trends in performance
confirms that the CDPS designer must be concerned with the data items availabie to
each rule-based system in a CDPS when attempting to maximize performance.

We have demonstrated the usefulness of our models (paths and organizations)
to the designer of CDPS, by considering both the inter-agent and the intra-agent
perspective in the design of a CDPS for solving the Blackbox puzzle; we focused on
applying our models to aid the CDPS designer in setting the data distribution in the
CDPS. Using the organizational model, we presented a CDPS for solving Blackbox
where the agents in the CDPS are constructed using the rule base of the Blackbox
Expert. Then using the path model, we studied the ability of the Blackbox Expert to
achieve its goals as the number of data items available {measured using the informa-

tion deficit metric) was reduced. Using Path Hunter and Path Tracer, we determined

138

the result produced by the Blackbox Expert when a specific goal is achieved. deter-
mined the interactions that occurred between goals, and determined the goals whose
achievement were adversely affected by the reduced number of data items available.
We then identified the paths that were responsible for the achievement of adversely
affected goals, allowing us to isolate the specific data items, or lack of data items, that
caused the behavior we observed. We then presented three scenarios explaining how
our study of the effect of data items available on goals achieved can be used to im-
prove the performance of the rule-based systems in the CDPS, which are summarized

as follows:

e we were able to identify data items which should be shared among the agents
in the CDPS, indicating that an adjustment to the windows of the agents was
required.

o we were able to identify data items whose value must reflect a global view of the
state of the Blackbox problem in order to avoid an agent producing erroneous
results.

e we were able to identify sets of paths that could be used to evaluate the potential
outcome of selecting different beams to be fired, permitting the selection of the
beam that is likely to produce the better result.

To summarize, we believe that our use of both formal models and experimental
systems serves as an example of a research project in which theoretical results are
applied to practical systems, validating the theoretical models. We applied our orga-
nizational model to the design of the Blackbox Expert, permitting us to implement a
mechanism by which we can control the data items that are available to the Blackbox
Expert when it is problem-solving. The information deficit metric has been applied
in measuring the data items available to the Blackbox Expert when problem-solving,
establishing statistically the existence of a relationship between the data available to a
rule-based system and its performance. Qur structural model has been embodied into
the rule-base analysis tools, Path Hunter and Path Tracer. Path Hunter has been
used to analyze the rule-base of the Blackbox Expert, validating the Path model.
Path Tracer has been used to analyze the goals that the Blackbox Expert chooses to
solve at run-time when the data items available to the Blackbox Expert are reduced.
Using the data provided by our experiments, we have been able to provide examples

and show how our models and tools can be used by the CDPS designer.

139

6.1 Future Work

In this thesis, we presented two models (the organizational model and the path
model), two tools (Path Hunter and Path Tracer), and a testbed (the Blackbox Ex-
pert) for performing experiments examining the effect of data availability on the
performance of a rule-based system. By considering the assumptions made in this
thesis, or possible extensions to the line of research described in this thesis, we identify
several problems for future research that we believe would be of interest:

¢ we believe that the experimental track followed in this thesis can be extended
with the development of a multiagent version of the Blackbox Expert which
solves a distributed version of the Blackbox puzzle

¢ the theoretical track can be extended to provide the CDPS designer with a

formal method for using the information gained by studying the intra-agent
perspective to set the data distribution in a CDPS.

e we also envisage the application of the path model to aid in the design of test
sets in which the coverage of the rule base would be considered acceptable by

the CDPS designer.

We will now discuss each of these three avenues in which the work described in this

thesis can be used for future research.

Coverage The design of a test set which maximizes the coverage obtained when a
rule-based system is exercised using that test set is of interest to researchers working
in the area of testing rule-based systems. The rule-based systems to be tested may
be operating as stand alone systems, embedded in conventional software systems, or
operate as a member of a CDPS. We believe that the path model can be applied both
to measure the coverage obtained with an existing test set and to aid the designer of
a test set in adding new test cases to an existing test set to improve the coverage ob-
tained. Using the path model, one could develop a quantitative measure for coverage,
and determine the improvement in coverage obtained on a test set as new test cases
are added as well as the path which were not adequately exercised by the test set.
New test cases could then be developed by examining the paths that were identified
as having not been adequately exercised.

In section 5.2.1 of this thesis, we described three metrics for determining the paths

in which all rules have fired, when a rule-based system is exercised on a given test set.

140

We referred to these metrics as the Conservative, Moderate, and Liberal metrics. [n
fact, these metrics can be extended to also provide a count of the number of rules in
each path that have fired; thus, these metrics could provide a means for measuring
the coverage obtained for a given test set, where coverage is evaluated by measuring
the degree to which all the paths in a rule base have been tested; that is, we would be
able to verify that paths in which all rule have fired did achieve the logical completion
specified by the rule base designer. If these metrics are used to measure coverage, they
also identify paths in which the number of rules fired is considered to be inadequate.

Each path in which the number of rules fired is considered to be inadequate can be
used to aid the designer of the test set in constructing new test cases which increase
the coverage of the test set. Additional test cases would be constructed to ensure that
the data items required by the rules in paths in which few rules fired \;vill be present
in the working memory of the rule-based system. With the addition to the test set
of test cases which ensure that the data items required for all the rules to fire in the
paths in which only few rules were able to fire in the original test set will be present
in the working memory of the system, the coverage of the test set on the rule base is
increased.

In section 5.1.1, we explain how to analyze the paths in a rule base to determine
the data items required for ail the rules in a path to fire. Determining the data
items reql'lired for all the rules in a path to fire would be an important first step
in generating new test cases. However, the entire process of developing a new test
case that would adequately exercise the rules in a specific path is still an unsolved

problem.

Multiagent Testbed In chapter 3, we indicated that our long term goal was to
experiment with a multiagent testbed to determine the effect that an organization
chosen for a CDPS has on performance. We believe that based on the Blackbox
Expert, a multiagent testbed can be developed that will be instrumental in provid-
ing a mechanism for researchers to experimentally validate models they develop for
CDPS. We have designed the components of the Blackbox Expert to be reused in
the construction of such a multiagent testbed. We believe that such a testked could

be constructed using one of the commercially available blackboard systems, such as

141

GBB. Then, the CDPS designer would be able to modify different paramecters as
specified by the organizational model, and measure the computational and functional

performance of each agent in the CDPS.

Theoretical Extension The organizational model discussed in this thesis provides
a mechanism for describing a CDPS at a high level of abstraction; however, the
organizational model is only concerned with issues such as the number of agents in
the CDPS, the protocols that are used by the agents when planning, and the access
privilege of each agent on the blackboard. The path model captures the actions taken
by a rule-based system at a low level of abstraction; the path model considers the
individual rules that are fired by the rule-based system as it is problem-solving.

In order to provide researchers with a formal method for incorporating the in-
formation gained by using the path model to study the intra-agent perspective, we
believe that we will require a model, in addition to the organizational model, for the
inter-agent perspective. One possibility would be to model an agent as a set of paths,
and the computation carried out by an agent in a CDPS could then be modeled by a
“sequence of tuples”. Each tuple would indicate a path in which all rules have fired
and the logical completion achieved by the rules in that path. Let us refer to this
sequence as a line of reasoning; and let each tuple in a line of reasoning represent a
step that is taken by an agent in reaching a final state. Capturing the computation
carried out by a rule-based system using a line of reasoning gives us a model that is at
a higher level of abstraction than the individual rules considered when constructing
paths.

Using a line of reasoning to capture the computa.ti;m that is to be carried out by
each agent in a CDPS, we can determine the data iteins produced hy one agent that
are required by another agent, and also when the data items are required. We can
model each agent in a CDPS using a line of reasoning to indicate the computation that
it is performing. We can analyze the paths in these lines of reasoning to determine
the data items that are required and data items produced by an agent at each stage of
the computation that it would follow when problem-solving. When one agent requires
a data item to take the next step in its line of reasoning that has not been produced

by any of the previous steps it has taken, and there is another agent in the CDPS

142

that will produce that particular data item (as indicated by its line of reasoning).
then the agent producing that data item should share it with the agent that requires
that data item. In addition, we would be able to identify the precise step in which a
data item is required by an agent, giving an indication of when the data item should
be made available. '

In the experiment we described in section 5.3.2, we were able to determine paths
that were responsible for the occurrence of undesirable events (we identified goals that
were achieved more often with a reduced number of data items) as the data items
available to a rule-based system were reduced. Once the paths responsible for the
occurrence of undesirable events have been detected, the CDPS designer can examine
the lines of reasoning that may be attempted by the rule-based systems that include
these paths. The CDPS designer can then examine the line of reasoning of each agent
in the CDPS and adjust the data distribution, if necessary, to ensure that undesirable

events will be avoided.

143

Bibliography

[1} Leslie Lamport. Time, clocks, and of events in distributed systems. Communi-
cations of the ACM, 21(7):558-565, 1978.

{2] Alan H. Bond and Les Gasser. An analysis of problems and research in DAL
In Readings in Distributed Artificial Intelligence, pages 3-35. Morgan Kaufman
Publishers, I[nc., San Mateo, California, 1988,

[3] Victor R. Lesser and Daniel D. Corkill. Functionally accurate, ~ooperative dis-
tributed systems. IEEE Transactions on Systems, Man and Cyvernetics, SMC-
11(1):81-96, November 1981.

[4] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states

of distributed systems. ACM Trensactions on Computing Systems, 3{1):63-75,
1985.

[5] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs.
ACM Computing Surveys, 21(4):593-621, 1989.

[6] Randall Davis and Reid G. Smith. Negotiation as a metaphor for distributed
problem solving. Artificial Intelligence, 20:63-109, 1983.

[7] Mark S. Fox. An organizational view of distributed systems. [EEFE Transactions
on Systems, Man, and Cybernetics, SMC-11(1):70-80, January 1981.

[8] Sarit Kraus. Agents contracting tasks in non-collaborative environments. In

Proc. Eleventh National Conference on Artificial Intellivence (AAAT 98), July
1993.

[9] M. Minsky. Sociely of Mind. Simon and Schuster, New York, 1986.

[10] Keith Decker and Victor Lesser. Quantitative modeling of complex computa-
tional task environment. In Proc. Eleventh National Conference on Artificial

Intelligence (AAAI 93), July 1893.

[11] J. 8. Rosenschien and M. R. Genesereth. Deals among rational agents. In Proc.

Ninth International Conference on Artificial Intelligence (AAAI 85), pages 91-
99, August 1985.

[12] Yoav Shoham. Agent0: A simple agent language and its interpreter. In Proc.
Intgernational Cunference on Artificial Intelligence (AAAI 91), pages 704-709,
1991.

[13] Jeffrey S. Rosenschein. Rational Interaction Cooperation Among Intelligen!
Agents. PhD thesis, Stanford Univ., 1986.

144

[14] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Trends in co-
operative distributed problem solving. Transactions on Knowledge and Data
Engineering, 1(1):63-83, March 1989.

[15] Barbara Hayes-Roth. A blackboard architecture for control. Af Journal, 26:251-
321, 1985,

(16] H. Penny Nii. Blackboard application systems and a knowledge engineering
perspeclive (part 2). Al Magazine, August 1986.

[17] Robert Engelmore and Tony Morgan. Blackboard Systems. Addison Wesley,
Reading, Mass., 1988.

(18] V.R. Lesser and D. Corkill. DVMT: A tool for investigation of distributed prob-

lem solving networks. In M.N. Huhns, editor, Distributed Artificial Intelligence.
Morgan Kaufmann, 1987.

[19] Daniel D. Corkill and Victor R. Lesser. Unifying data-directed and goal-directed
control : An example and experiments. In AAAI pages 143-147, 1982.

(20) Stephanie Cammarata, David McArthur, and Randall Steeb. Strategies of co-
operation in distributed problem solving. Proceedings of the 8th International
Joint Conference on Artificial Intelligence, pages 767-770, 1983.

[21] Reid G. Smith and Randall Davis. Frameworks for cooperation in distributed
problem solving. [EEE Transaction of Systems, Man, and Cybernetics, SMC
11(1):61-70, January 1981.

[22] Gilad Zlotkin and Jeffrey Rosenschein. Negotiation and task sharing among
autonomous agents in cooperative domains. In IJCAI pages 912-917, 1989.

(23] Edmund H. Durfee, Victor Lesser, and Daniel D. Corkill. Coherent cooperation

among communicating problem solvers. IEEE Transactions on Computers, C-
36(11):1275-1291, November 1987.

[24] D. Bobrow. Dimensions of interaction: A shift of perspective in artificial intelli-
gence. Al Magazine, 12(3), 1991.

[25) N. Findler and U. Sengupta. An overview of some recent and current research
in the Al lab at Arizona State University. Al Magazine, 12(3), 1991.

[26) Thomas W. Malone. Modeling coordination in organizations and markets. Man-
agement Science, 33(10):1317-1332, 1987.

[27] C. Grossner and T. Radhakrishnan. Organizations for cooperating expert sys-
tems. In 22ad Southeastern Symposium on System Theory, March 1990,

[28] R. Clark, C. Grossner, and T. Radhakrishnan. Consensus: A planning protocol
for cooperating expert systems. In [1th Inlernational Workshop on Distributed
Artificial Intelligence, Glen Arbor, Michigan, February 1992,

[29] R. Clark, C. Grossner, and T. Radhakrishnan. Consensus and Compromise:
Planning in cooperating expert systems. Submitted for review to Int. Journal of
Intelligent and Cooperative Information Systems, 1993.

145

[30) C. Grossner, J. Lyons, and T. Radhakrishnan. Validation of an expert system
intended for research in distributed artificial intelligence. In 2nd CLIPS Confer-
ence, Johnson Space Center, September 1991.

[31] C. Grossner, J. Lyons, and T. Radhakrishnan. Towards a tool for design of co-

operating expert systems. In {th International Conference on Tools for Artificial
Intelligence, November 1992.

[32] J. Galbraith. Designing Complez Orgenizations. Addison Wesley, Reading,
Mass., 1973.

[33]) C. Grossner, A. Preece, P. Gokulchander, T. Radhakrishnan, and C.Y. Suen.
Exploring the structure of rule based systems. In Proc. Eleventh National Con-
ference on Artificial Intelligence (AAAI 98), 1993.

[34] C. Grossner, P. Gokulchander, A. Preece, and T. Radhakrishnan. Revealing the
sltgrél:icture of rule-based systems. Submitted for review to IEEE SMC, November

[35] A. Preece, C. Grossner, P. Gokulchander, and T. Radhakrishnan. Structural
validation of expert systems: Experience using a formal model. In Jay Liebowitz,

editor, World Congress on Expert Systems. Macmillan New Media, January 1994,
Published on CD-ROM.

[36] C. Grossner, A. Preece, P. Gokulchander, and T. Radhakrishnan. Data sharing

among cooperating rule-based systems. In Submitted for review for the 13th
International Workshop on Distributed Artificial Intelligence, March 1994.

[37] A. Preece, C. Grossner, P. Gokulchander, and T. Radhakrishnan., Structural
validation of expert systems: Experience using a formal model. In Eleventh Na-

tional Conference on Artificial Intelligence (AAAI 93): Workshop on Validation
and Verification of knowledge-Based Systems, July 1993.

(38] A. Preece, P. Gokulchander, C. Grossner, and T. Radhakrishnan. Modeling
rule base structure for expert system quality assurance. In Thirleenth Inter-
national Joint Conference on Artificial Intelligence: Workshop on Validation of
knowledge-Based Systems, August 1993.

[39] A. Preece, C. Grossner, P. Gokulchander, and T. Radhakrishnan. Structure-

based validation of rule-based systems. Submitted for review to IEEE Knowledge
and Date Engineering, January 1994.

[40] Paul R. Cohen. A survey of the eighth national conference on artificial intel-

ligence: Pulling together or falling apart? AI Magazine, 12(1):16-41, Spring
1991.

[41] P.J. Gymtrasiewicz and E. H. Durfee. Logic of knowledge and belief for recursive
modeling: Preliminary report. In Proceedings of the National Conference on
Artificial Intelligence, pages 628-634, July 1992.

[42] James G. March and Herbert A. Simon. Organizations. John Wiley and Sons,
New York, 1958.

[43] T. Ishida. The Tower of Babel: Towards organization-centered problem solv-

ing. In Proc. 11th International Workshop on Distributed Artificial Intelligence,
pages 141-154, February 1992.

146

[44] Moshe Tennenholtz and Yoram Moses. On cooperation in a multi-entity model
(preliminary report). In [JCAI, pages 918-923, 1989.

[45] B. Chandrasekaran. Generic tasks in knowledge based reasoning: High level
building blocks for expert system design. IEEE Ezpert, 1(3):23-30, Fall 1986.

[46] Gregg R. Yost. Acquiring knowedge in SOAR. [EEE Ezpert, 8(3):26-34, June
1993.

[47) Elaine Rich. Artificial Intelligence. McGraw Hill, New York, New York, 1983.

(48] Herbert A. Simon. The structure of ill-structured problems. Artificial Intelli-
gence, 4:181-201, 1973.

[49] J.F. Voss and T.A. Post. On the solving of ill-structured problems. In M. Chi R.

Glaser and M. Farr, editors, The Nature of Ezpertise. Lawrence Erlbaum Asso-
ciates, 1988.

[50] A. Newell. Heuristic programming: Ill-structured problems. Progress in Opera-
tions Research, 3, 1969.

[51] W. Swartout. DARPA workshop on planning. Al Magazine, 9(2):101-112, 1989.

[52) Edmund H. Durfee and Victor R. Lesser. Incremental planning to control a
blackboard based problem solver. In AA A/ pages 58-64, 1986.

(53] Edmund H. Durfee and Victor R. Lesser. Using partial global plans to coordinate
distributed problem solvers. In IJCAI, pages 875-883, 1987.

[54] Mark Drummond and Ken Currie. Goal ordering in partially ordered plans. In
IJCAI, pages 960-965, 1989.

[55] D.A. Waterman. A Guide to Ezpert Systems. Addison Wesley, 1986.

[56] Keung-Chi Ng and Bruce Abramson. Uncertainty management in expert sys-
tems. [EEE Ezpert, 5(2):29-48, April 1990.

[57) W.A. Woods. What’s important about knowledge representation. [EEE Com-
puter, 16(10):22-27, October 1983.

[58] S.K. Goyal and W. Worrest. Expert systems in nctwork management and main-
tenance. In Proc. ICC, pages 1225-1229, 1986.

[69] Victor R. Lesser, Daniel D. Corkill, Robert C. Whitehair, and Joseph A. Her-
nandez. Goal relationships and their use in a blackboard architecture. In V. Ja-
gannathan, Rajendra Dodhiawala, and Lawrence S. Baum, editors, Blackboard
architectures and applications, volume 3 of Perspectives in Artificial Intelligence,
chapter 1, pages 9-26. Academic Press, 1989.

[60] D.D. Corkill, K.Q. Gallagher, and K.E. Murray, editors. GBB: A Generic Black-
board Development System, Philidelphia, PA., August 1986.

[61]) Victor R. Lesser, Daniel D. Corkill, Robert C. Whitehair, and Joseph A. Her-
lilgggez. Focus of control through goal relationships. In I/’'CAI pages 497-503,

147

[62] Michael Georgeff. Communication and interaction in multi-agent planning. In
AAAT 83, pages 125-129, 1983.

[63] Edmund H. Durfee and Victor R. Lesser. Partial global planning: A coordination
framework for distributed hypothesis formation. I[EEE Transactions on Systems,
Man, and Cybernetics, 21(5):1167-1183, September 1991.

[64] D. Randall and R.G. Smith. The contract net protocol: High level commu-

nication and control in a distributed problem solver. [EEE Transactions on
Computers, C-29(12):1104-1113, December 1980.

[65] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal cocperation of
knowledge sources - an empirical investigation. Technical report, Boeing Ad-

vanced Technology Center, Boeing Computing Services, Seattle, Washington,
July 1986.

(66] Norman Abramson. Information Theory and Coding. McGraw-Hill, New York,
1963.

{671 R. Clark and C. Grossner. Generation of organizations for cooperating expert

systems. DAI Technical Report DAI-0290-0002, Concordia University, Montreal,
Quebec, February 1990.

(68] K. Pitula, T. Radhakrishnan, and C. Grossner. Distributed Blackbox: A test bed

for distributed problem solving. In IEEE Int. Phoeniz Conference on Computers
and Communications, March 1990.

[69] C. De Koven and T. Radhakrishnan. An experiment in group problem solving.
In Multi-User Interfaces and Applications, September 1990.

{70] J. Lyons and C. Grossner. A blackbox expert system: User requirements. DAI

Technical Report DA[-0190-0001, Concordia University, Montreal, Quebec, Jan-
uary 1990,

[71] D.E. Smith. Controlling backward inference. Artificial Intelligence, 39(2):145-
208, June 1989.

[72] J. Lyons and C. Grossner. A blackbox expert system: Software requirements

specification. DAI Technical Report DAI-0490-0003, Concordia University, Mon-
treal, Quebec, April 1990.

[73] C. Culbert. Artificial Intelligence Section, Johnson Space Center. Houston, 1989.

[74] W. Boehm. Software engineering: R and D trends and defense needs. In P. (Ed)
Wegener, editor, Research Directions in Software Technology. M. I. T. Press,
Cambridge, Mass., 1979.

[75] S. Maxwell and H. Delany. Designing Ezperiments and Analyzing Data.
Wadsworth Publishing Company, 1990.

[76] T. K. Sellis, N. Rousscpoulos, and R.T. Ng. Efficient compilation of large rule
bases using logical access paths. Information Systems, 15(1):73-84, 1990.

[77) C. L. Chang, J. B. Combs, and R. A. Stachowitz. A report on the Expert
Systems Validation Associate (EVA). Ezpert Systems with Applications (US),
1(3):217-230, 1990.

148

[78] John Rushby and Judith Crow. Evaluation of an expert system for fault detec-
tion, isolation, and recovery in the manned maneuvering unit. NASA Contractor
Report CR-187466, SRI International, Menlo Park, CA, February 1990. 93 pages.

[79] James D. Kiper. Structural testing of rule-based expert systems. ACM Trans-
actions on Software Engineering and Methodology, 1(2):168-187, April 1992.

[80] W. B. Gevanter. The nature and evaluation of commercial expert systems build-
ing tools. I[EEE Compuler, 20(5), May 1987.

(81] M. A. Shwe, S. W. Tu, and L. M. Fagan. Validating the knowledge base of a
therapy planning system. Methods of Information in Medicine (West Germany),
28(1):36-50, January 1989.

149

Appendix A

150

Source Tables

151

e T S TS
asts n
Source of Variance o k
[Batween Group) 112.8
Within G 11
T anwise Lontrasts
BT ST
vs ’ X
Within G 14304.60 19 752.87
2vs 3 mgmup 11662.23 1166223 22.19
Within Group 9966.28 19 525.59
3vs4 |Betwesn Group 313290 1 313290 3755
Within Gi 158510 19 83.43
4vsd |Between gmtp 1 t 1
Within Group 314528 19 165.54
Evab Group —081.60 1 1051.60 10.63 |
Within Group 193340 19 101.76
Bvs7 |Between Group 275560 1 275560 22.24
Within Groun 235440 19 123.92
fvsd oup A 1 17168.1
Within Group 141890 19 74.68
Bva9 |Between Group 355323 1 355323 41.08
Within Group 1643.28 19 86.49
9va 10 |Between Group 273903 1 2739.03 61.63
Within Grouz 84448 19 44.45
Mo BalErors |
u
gmg % dl T
Between Group 9 65.14
Wihin Group 1
[Univanale r~1esis for Individual Pairwise LontTasts
Source of nca Joum of Squares _ di_ Mean Squares | F.
1vs2 |Between Group 000 1 1000 1357
Within Group 1400 19 0.74
2vsd Group 425 1 325 1218
Within Group 628 19 0.33
3vs4 |Bstweon Group 250 250 1056
Within 450 19 024
4v3d .
Within Group 350 19 0.18
Svs 8 |Between Group 123 1 123 7.1
Wihin Group 328 18 017 .
Bvs/ |Detween Group 380 1 360 1555
Wihin Group 440 19 0.23
Tva 8 |Between Group X i 203 1555
Within Group 248 18 0.13
- Bvad | Between Group 450 1 390 1311
Wlhln% 710 19 0.37
9vs10 tween 563 1 he3 aray
Wihin Group 288 19 0.15
SCORE and Total Ball Errors

PaFaerde]

Muffvariale Tesis of Signifcance

Source of Variance d F]

Between Group 9 941

Within Gro 1

Univarte Eestslor!ﬁM Diference Conrasls |
Souce of Varianoe]Sum of Suares 0 MeanCasares F |

Tvs 2-10[Between Group AT 1 AT BAT2
Within Group 108718 19 §1.2

8 v 0-10|Between Group 19253 1 1925 459]
Within Group 013 19 419

9vs 10 | Between Group 125440 1 125440 5%
Within Group 46260 19 2UST

Plan Failure Rate

152

Accesses per Planning Phase |
Hhfeariaio Tesis of Sgrificancs
Sourca of Vartance of F
Group 9 25.10
Within 1
Polynomial Contrasts
B e S R
" Group 1 1 \
Within Group 467667.35 19 2451407
TWO | Betwoen Group 182722311 1 1627223.11 9292
| Within Group 220444 19 16436.55]
THREE | Between Group 127440621 1 127440621 109.57
Within Group 22008804 19 11630.95
FOUR | Between Group 6147415 1 1 5
Within Group 151572.72 19 7977.51
FIVE |[Between Group 23360094 1 23360094 B797
Wﬂh'n% 50451.07 19 265532
SIX | Between Group 6693755 1 6633755 63.08
Within Group_ 2016322 19 1061.22
[SEVEN |Between Group 10123, X
Within Group 6945.79 19 365.57
EIGHT |Between Group 2448.73 1 244873 19.10
Within Group 243569 19 128.19
Accesses per Execution Phase |
Wﬁﬁ%&s& of Significance
Source of Vanence e dt F
Between Group 9 55.34
Within Group 11
Univariate F-tests for | olynomial Contrasts
%ee Source of Varience Sumd% df Mean% F
£ |Between (Group . .
Within Group 244036459 19 12844024
TWO [Between Group 30 1 2330 11792
Within Group 144279328 19 75336.49
THREE | Between Group 55174741 1 857742741 8542
Within Group 124052491 19 65290.78
FOUR | Between (roup K} I]
Within Group 83730731 18 44068.81
HVE | Between Group 1 3 1T 12 94 7480
Within 32581047 19 17147.92
SIX Belween% 4051734 1 aw1734 7128
Within Group 9962028 19 524317
SEVEN | Between Group X ! 41
Within Group 2748479 19 1445.52
Blackboard Accesses: Planning and Execution

163

Rules Frred per Pianning Phas]

Mufivariale Tests of Signficance

[Source of Variance dl F
Between Group 9 64.562
Within Group 11

Unvanaie Fesis for Indvidual Poiynomial Conrasts

Degree | Source of Varience] Sumot% df Mean%uae F |

ONE | Between Gromp 8 1 . ¥
Wilin Group 392367 19 0125 |

THREE |Between Group 384661 1 384661 6547
Within Group 111639 19 5876

FIVE |Between Group 57002 1 57002 22.79
Within Group 47520 19 25.01

[Rules per Execution Phase |
Vitiarals T of SRS

Source of Varniance df
Betwesn Group 9 3757
Within G 1

Unw; -tasts for Incividual Porynomial Conrasts

B et R e
— ONE | Between Group 1854, TE58R. .
|Within Group 1057.50 19 56,66
—TWO {Between Group a6 1 72756 16354
| Within Group 38588 19 2031
THREE | Between Group 140096 1 140096 53.86

Within Group

49419 19 26.01

[FOUR |Between Group

12102 1 12192 7839

Within Group 26552 19 15.55
" FIVE |Between Group 14791 1 14791 2655
Within Group 10586 19 557
SIX | Between Group 12626 1 12628 16.15
Within Group 14859 19 782

Rules Fired: Planning and Execution

154

Appendix B
Glossary of Symbols

A: Attribute vector describing current state of a problem.
A: An estimate of A.
Al: Current state of SP;: A} C A.

AY: Set of factors whose instances are visible in a window when they are stored in
region bbr;.

AREA(z): Function giving area of region x.

g;: A factor describing a characteristic of a problem state.
a(ti,s;): Mappingon S: a: T x S — S where a(t;, s;) = .
&(t;, 3;): An estimate of a(t;, s;): a mappingon S; a: TxS — S where a(ti, s;) = s¢.
Ari: RHS of a rule, set of facts.

B: Set of Predicates.

B®: The number of correctly located mappable balls.

Bg: The number of ball errors.

BM: The total number of mappable balls.

bT: The total number of entry/exit positions of the Blackbox.
bY: The total value of the beams fired to solve the puzzle.

BY: The number of incorrectly positioned balls.
BB: Model of a blackboard.
bbr: Begin on a blackboard.

B =* gk: Set of subproblems 8 that need to be solved to achieve g;.

C{rbs,,rbsa,...,rbs,}: A set of rule-based systems that plan using Consensus.

155

CP: A capability matrix.
C P{: Completion predicates for a path.
CS: Coordination structure of an organization.

CT{: Completion templates for a path.

CTf.: Set of templates on the LHS of r; that are not satisfied by the rules in path k
of task ¢. '

CW: Combined window of a planning group.

DE(rbs;{SP;): Information deficit of a rule-based system rbs; in an organization
when it solves SF;.

DP(rbs;/ PGy): Information deficit of a rule-based system rbs; in an organization
when planning as a member of planning group PG;.

D{rbs; : PG — rbs;}: A set of rule-based systems that plan using Decree.

DM: The dimension of one level of a blackboard.

8: Most general unifier, (A, L;) - 6 = (A, b).

E4: The average number of accesses to the blackboard during an execution phase.
E;: Set of subproblems executed by the problem solver to achieve a plan.

Epg: The average number of rules fired during an execution phase.

€ = (E,RB,WM): Rule-based system: E is an inference engine, RB is a rule base,
and WM is working memory.

ES: Set of rule-based systems in an Organization.

Fl: A fragment & in task ¢,

FC: Set of all factors visible in a window.

FD: Set of factors that may be stored on a level of a Blackboard.
F X;: Fixation of factor ;.

FPCi: Decision-factor set for SF,.

fi={M, L) A fact used by a rule-based system: A; € R.

G: The set of goals used by the problem solver.

G":; The set of goals from which the rule-based systems in an organization can select
goals while planning: G' C G.

gi+ A goal.
GPS;: A group planning set.
4: Set of goals chosen by the problem solver when planning: v C G.

156

H{a;): Entropy.

I7: LHS of a rule, set of templates.

IP(aifw;): Information potential of factor a;in window w;.
A;: Specification for a predicate.

LV: Set of levels on the blackboard.

L;: List of variables.

LC: The number of grid squares which do not contain a mappable ball that are
correctly identihged.

LT: The total number of grid squares which do not contain mappable balls.
lv;t A level on a blackboard.

LY: The number of grid squares which do not contain a mappable ball that are
incorrectly identified.

{;: Data elements.
LB: The set of lower bounds for a level of a blackboard.

Ib;: A lower bound for the range of a level of a blackboard.

LBR: The set of lower bounds for a region.

lbr;: A lower bound for the range of a region.

U: A mapping from a set Templates, or a set of facts, to a set of predicates.
P4: The average number of accesses to the blackboard during a planning phase.
Pr: the plan failure rate.

Pr: The average number of rules fired during a planning phase.

P{: A path k in task T;.

P: A ptl'oblem where A, a(ti, 85), T, and S have béen estimated by the problem
solver.

P!: Problem solver’s view of an ill structured problem: P! = (£, P%,G).
PL: A plan.

PS: Set of subproblems for P.

PCy: Constraint set for SP.

PG, A planniag group.

PP;: A partial plan.

PS!: The problem-solving proéess for an ill-structured problem.

157

PT},: Set of templates on the LHS of r; that are satisfied by the rules in path &.
®: The set of rules in a path.

¥: An organization of rule-based systems.

R: The set of all predicates used by a rule-based system.

RG: Set of regions in a window.

rit A rule.

rl: A concrete rule firing:

r; < 1j: rj depends upon r;.

r{ > r_{ : 1'";-f causes r;-f to fire.

r;-r ~ r;: An unambiguous (unequivocal) mapping from the concrete rule firing r! to

the abstract rule r;.

r! ¥ r;: An equivocal mapping from r{ to r;.

rbs;: A rule-based system.

S: Set of states in the state space of a problem.

Si: State space of SP;: S; C S.

s;¢ A state of a problem.

SF: Set of states which are acceptable solutions to a problem.

SF: An estimate of SF: the set of states which are acceptable solutions to a problem.
S!: Set of initial states for a problem.

S§C;: A zero memory information source.

SP;: A subproblem of P!,

SP, ~+ U: set of rules U that assert facts using all the predicates of a logical comple-
tion for SP.

SPf: Start predicates of a path.
SRi: Start rules in a path.
STjf: Start templates of a path.

PT},: Set of templates on the LHS of start rule r; that are satisfied by the rules in
path k.

T: Set of transformations used to traverse the state space of a problem.
T: A thread.

158

T}!: Set of transitions fo: SP: T{ C T.

Ti: Rules used to solve SPF,.

TE: Set of all transformations on A that are legal.

T*: Set of all transformations on A that are possible, but not legal.
T: An estimate of T.

{(Ai, Li): A template.

UB: The set of upper bounds for a level of a blackboard.
ub;: An upper bound for a level of a blackboard.

UBR: The set of upper bounds for a region.

ubr;: An upper bound for a region.

V — r;: A rule r; is reachable from a set of rules V.,

v;: An instance of a factor a;.

w;: Window onto a blackboard.

W «— r;: W is an enabling-set for r;.
WS: The set of windows in an organization.

Z,: End predicates for Task t.

159

