
1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direclion des acquisitions e',
Bibhograp:Jic services Branch des services bibliographiques

395 Wellinglon Street
Dnawa. Ontario
K1AON4

NOTICE

395. Ne Wellington
Dnawa (Onlario)
K1AON4

AVIS

The quality of this micr010rm is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Models and Toois for Cooperating Rule-Based Systems

Clifford Grossner

School of Computer Science

McGill University, Montréal,

September 1994

A Thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

© Clifford Grossner 1994

1+1 National Ubrary
o!Canada

BibliolhèQue nalionale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellington Sireel 395. rue Wellinglon
Ottawa. onlario Onawa (Onlerio)
K1A0N4 K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LŒRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF mSIHER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING TffiS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSmP
OF THE COPYRIGHT IN mSIHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT mSIHER
PERMISSION.

ISBN 0-612-05716-X

Canad~

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BŒLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Models and Tools for Cooperating Rule-Based Systems

To my parents ...

Abstract

A Cooperative Distributed Problem Solving system (CDPS) is composed of a set

of agents designed to solve a single problem by working together in a cooperative

fashion. In this thesis, we present models and tools which aid the CDPS designer in

determining how data items are to be shared between the agents (dat.. distribution)

in a CDPS, when the agents are implemented as rule-based systems. Our models

consider CDPS from two dilferent perspectives: the inter-agent perspective, and the

intra-agent perspective. The inter-agent perspective is concerned with issues relating

to the manner in which the agents in a CDPS achieve cooperation. The intra-agent

perspective is concerned with the internai structure of an agent, and how an agent is

alfected when it cooperates with other agents. The inter-agent perspective is modeled

using a notion of an "organization" that is imposed on a set of agents sharing data

items via a "blackboard"; this model permits the COPS designer to indicate the

mechanism used to achieve both forms of cooperation between the rule-based systems

in a CD PS: cooperation by sharing data, and cooperation for control. The intra-agent

perspective is modeled using a notion of a "path", which captures the sequence of

rules fired by a rule-based system. Based upon the path model, we have developed

two tools: Path Hunter and Path Tracer. The models and tools described in this

thesis permit the COPS designer to study the impact of the data distribution chosen

for a COPS on the performance of a rule-based system that will be a member of that

COPS; this helps the COPS designer in setting the data distribution within a COPS.

•
Résumé

Un système COPS ("Cooperative Oistributed Problem Solving") est constitué

d'un ensemble d'agents qui ont pour but de résoudre un problème par un travail

cooperatif. Dans cette thèse, nous présentons des modèles et des outils qui aide le

concepteur de COPS à déterminer comment les unités de données sont partagé<,s

entre les agents (distribution des données) dans un COPS quand les agents sont

réalisés par un système en base de règles. Nos modèles considères les CDPS de deux

perspectives diiférèntes: une perspective inter-agent, et une perspective iIMa-agent.

La perspective inter-agent ce concern des sujets qui traite la manière dont les agents

arrive à la cooperation. La perspective intra-agent ce concern de la structure interne

d'un agent et de l'impacte sur celui·ci d'entré en cooperation avec d'autres agents. Le

modèle de la perspective inter-agent s'appuis sur un concept "d'organisation" qui est

imposé sur un ensemble d'agent qui partages des unitées de données par l'intermédiare

d'un "tableau" (blackboard)j œ modèle permet au concepteur de CDPS d'indiqué

le méchanism utilisé pour obtenir les deux formes de cooperation entre les systems

en base de règles dans un COPS: la cooperation par le partage de donnée, et la

cooperation pour le control. La perspective intra-agent s'appuis sur le concept de

"parcour". Un parcour définit la séquances des règles activées dans le system en

base de règles. En s'appuiant sur le modèle "parcour", nous avons déveloper deux

outils: 'Path Hunter' et 'Path Tracer'. Les modèles et les outils décrit dans cette

thèse permettent au concepteur de COPS d'étudier l'impact de la distribution des

données choisi pour un COPS sur la performance d'un système en base de règles qui

serra un agent de ce COPSj ceci aide le concepteur de COPS à régler la distribution

des données à l'intérieur du COPS.

Acknowledgments

1 would like to thank both my :;upervisors: Thiruvengadam Radhakrishnan and

Monty Newborn. I:adhakrisbnan and [have been working together on dilferent en·

deavors since 1980, and we have experienced both happy and sad occasions. As 1am

now at the end of a long journey, 1can say that my respect for Radahakrishnan has

only increased as 1came to know more about him, by being witness to his generosity

and maturity. While 1 have known Monty for a shorter time than Radhakrishnan,

Monty has had ample opportunity to demonstrate his patience during the time we

have worked together. 1am grateful to both my supervisors for ail th" time and effort

they have spent on my behalf.

1would like to thank Alun Preece and Gokul Chander. The three of us spent many

hours brainstorming together as we worked out the details of the path mode\. It was

truly a pleasure to work with both Alun and Gokul. 1must also thank Alun Preece

for the time he took to read my entire thesis and give me his comments. 1 have no

doubt that this thesis is a better product due to Alun's influence. Gokul contributed

a significant amount of his time towards the implementation of Path Hunter, and

Alun did the same for Path Tracer.

The development of the Blackbox Expert was a large project, and many people

made contributions. Kristina Pitula and John Lyons were instrumental in our choice

or the Blackbox puzzle as our sample problem. John Lyons made significant contri·

butions to the design of the Blackbox Expert, and Lee Hoc to the implementation

and testing of the Blackbox Expert's rule base. Carol De Koven and Kristina Pitula

are the BJackbox experts that designed the test set used to validate the functional

performance of the Blackbox Expert. Alun Preece was also helpful in the design of

the experiment we carried out to validate the functional performance of the Blackbox

Expert.

1would like to thank Rick Clark for the hours we spent brainstorming together

during the development of the organizational mode\. Rick spent many hours work­

ing on the details of the Consensus protoco\. Rick's contribution to our team was

instrumental in providing an opportunity for us to begin to interact with other DAI

researchers, including Victor Lesser's team at University of Massachusetts.

iv

1 would like to thank Larry Thiel for the support lit' has l'rovi''''I!. Larry has l"'I'n

as flexible as possible in permitting me to balance my rl'sponsibilitie5 to illY 1'1111 lilll"

job and to my research. Larry was also instrumental in arranging for a 5tudy lt'avt',

granting me the tilT'e 1 needed to study for my comprehensive examination.

1 would like to thank Lee Covington. Many theses that 1 have read contain an

acknowledgment to a loved one that has had to be understanding. Thert' i5 no doubt

in my mind that this type of acknowledgment is earned with a lot of hard work on

the part of the loved ones referred to by countless researchers. There i5 al50 no dOllbt

in my mind that Lee has been an important factor in my suceess.

v

•
Contents

1 Cooperating Agents
l.l Thesis Olllline ..

:~ A Madel for CDPS
2.1 IIl-Structllred Problcms.

2.1.1 Planning for lIl-structured Problems
2.2 The Organization

2.2.1 Human Organizations .
2.2.2 Organizations for Cooperating Rule-Based Systems
2.2.:3 Information Deficit Metric
2.2.4 Choosing an Organizatiûn

2.3 Conclusion .

3 A Testbed for CDPS
:3.1 The B1ackbox Puzzle
:3.2 The Blackbox Expert .
:3.:3 Validating the Performancc of the Blackbox Expert
:3A Data Distribution and Performance: An Experiment.

:U.l Experimcntal Design .
:3.4.2 Experimental Results .
3.4.3 Discussion of Results

3.5 Conclusion .

4 A Madel for Rule-Bascd Systems
4.1 Rule Base Structure .

4.1.1 Abstract Rules .
4.1.~ Constructing Sequences of Inter-Dependent Rules
4.1.3 Enabling a Rule.
4.1.4 The Path .

4.2 Path Hunter .
4.2.1 Discovering Paths .
'1.2.2 Controlling Combinatorial Explosion
'1.2.3 Analyzing the Blackbox Expert's Rule Base

,1.3 Conclusion .

vi

1
6

10
Il
[.'j

li
li
21
2!)
:33
:35

70
~')
,~

il
i8
81
81
84
85
93
95
9i

5 Applying the Organization and Path Models 99

• .5.1 Data Items Required · Illl
.5.1.1 !dentifying Data Items Reqllired Ill:!
5.1.2 Determining Data Items Reqllired: An Algorithm Ill·1-.) Monitoring Goals Achieved . Illli::l.~ · .
5.2.1 Idelltifying Goals Achieved . Illi
-?'J Validating Our Mèthod . II:!::l._._ ..

5.3 Applying Our Models: A Case Study IJ5
5.:1.1 The Inter-Agent Perspective . II,)
5.3.2 The Intra-Agent Perspective. 11(i

5.3.:3 The Inter-Agent Perspective Revisited 1:!(i
5.:3.4 Summary 1:ll

5.4 Conclusion. · . .. I:I:!

6 Conclusion 135
6.1 Future Work · 1·10

A Source Tables 150

B Glossary of Symbols 155

VII

List of Figures

2.1 SampIe Blackboard
2.2 Sample Organization for a CDPS
2.3 Data Items for a Subproblem ..

3.1 Bearn Behavior in Blackbox . . .
3.2 An Example of a Shielded Region..
3.3 Diagnosis Type Problems.
3.4 Structure of the Blackbox Expert .
3.5 Sampie Bearn Selection Rule
3.6 The Blackbox Expert 's User Interface .
3.7 Testbed for Cooperating Rule-Based Systems
3.8 Best, Median, and Worst Player .
3.9 Best, Median, and Worst Scores
3.10 Scores of the Blackbox Expert ..
3.11 Blackbox Expert vs Humans ...
3.12 Computational Performance - Execution
3.13 Performance - Planning
3.14 Functional Performance .

,l.I Sampie CLIPS Rule. . . .
4.2 An Example Path
4.3 Path Hunter Algorithm ..
4.4 An Example Fragment ..
4.5 Constructing Paths from Fragments .
4.6 Single Rule Paths ...
4.7 Single Chain Paths
4.8 Multiple Chain Paths
,1.9 Merge: Non-Common Origin ..
4.10 Merge: Non Identical Remainder
4.11 Combinatorial Explosion Generating Fragments
4.12 Combinatorial Explosion Merging Fragments . .
4.13 Control1ing Combinatorial Explosion in Practice .

5.1 Data Requirements
5.2 Determining Data Items Required
5.3 Completion and Start Predicates of a Path .

viii

2·1
·r_1

:\0

40
42
43
47
48
!i0
51
54
55
58
59
64
65
66

76
83
86
87
87
89
89
89
92
92
94
95
97

102
105
106

.j,4 Identifying Rules Fired in a Path . . .
5.5 Rules Fired Using the Liberal Strategy
5.6 COPS for Blackbox .
5.7 SCORE, Rules Fired, and Go~ls Achieved
5.8 Sensitivity of Specifie Goals ..
5.9 Interactions Between Goals .
5.10 Undesirable Events
5.11 Paths Achieving Goal 136 and Goal 133
5.12 Path Achieving Goal 20 .
5.13 Two Sets of Paths.
5.14 Conclusion Oraw Outside Window .
5.1.j Local vs Global View . .
5.16 Selecting a Bearn to Fire .

ix

110
IH
Il ï
117
120
121
122
123
124
12.'1
128
12\)
1:10

List of Tables

:J.I Average Score and Total Errors in Placing Balls
:J.2 Analyses of Variance .
:J.:j Average Score and Bali Errors

4.1 Predicates and User Dcfined Function for Blackbox
4.2 Example Rule Set

5.1 Perccntages of Rules Fired

x

.56

.57
58

ïï
ï9

113

•
Chapter 1

Cooperating Agents

"The greatest task before civilization at present is to make machines IV/Ill/ they olt!lht
to be, the slaves, instead of the masters of men. "

- Havelock Ellis, "Little Essays of Love and Vil'llte", 19:J!J

With the advent of high speed communication networks and low cost l'Ompllting

platforms, it has become reasonable to think of many computers, or more preciscly

programs, working together to solve a large problem. One view taken by researchers

in distributed computing is that these programs operate asynchronously, maintain

their own data structures, and communicate with each other by passing messages [l].

Researchers in distributed artificial intelligence (DAI) consider these programs to be

intelligent agents, each having its own data available locally, and the agents cooJlerate

with each other to solve a problem [2, 3]. The data available locally to an agent is

commonly referred to as its local view of the problem being solved [3]. The agents

are programs constructed by explicitly representing knowledge about how a problem

is to be solved.

While researchers in both fields are exploring the issues that arise whcn multi·

pie programs are used to solve a problem (how to distribute control flo\\' and data

flow), the philosophical approach used and the focus of the research carried out in

each field is very different. Researchers in distributed computing are concerned with

issues such as paradigms for passing messages between programs, detecting global

states, programming languages and environments that are appropriate for writing

distributed programs, methods for synchronization of programs running on processors

with asynchronous docks, and techniques for debugging distribllted programs [4, 5].

1

Researchers in DAI have heen concerned with methods for modeling and program­

ming agents, protocols for cooperation and negotiation among intelligent agents, and

appropriate structures for controlling the interaction among intelligent agents [6, i, 8].

The notion of an agent has been considered by several researchers in artificial

intelligence. Minsky proposes that agents are extremely simple entities that can

perform actions only as a part of a society of agents [9]. A simple definition of an

agent is used by Decker et al.: an agent is an entity that can be considered to have

internai states that correspond to belief and intention when observed externally [10].

Rosenschein et al. add the property of rationality when describing the decision making

properties of an agent [Il]. Shoham considers agents to be entities that follow social

laws describing the actions they are permitted to perform [12]. Several models have

heen proposed by which agents may be programmed [8, 12]. For our purposes, we

will consider an agent to be a rule-based system.

In DAI, there are two different perspectives on how agents cooperate. Researchers

who consider societies of multiple autonomous agents believe that cooperation occurs

when two agents that have distinct problems to solve encounter each other, and the

agents determine that they can pool their resources in order to perform sorne of the

tasks that are cornmon to both of their assigned problems; models from game theory

have been used show how agents can independently decide that it is advantageous

to cooperate [13J. Researchers who view a problem-solving system using multiple

agents as a system that is designed with the intention that the agents will cooperate

to solve the same problem believe that the agents must be constructed to cooperate

with cach other; these systems are referred to as cooperative distributed problem

solving systems (CDPS) [14]. In both COPS and distributed systems composed of

multiple autonomous agents, the central problem for OAI researchers is how to achieve

cooperation among agents, so that the agents can accomplish more as a group than

individually. In this thesis, we will be considering only COPS.

One of the first COPS constructed was the Hearsay speech recognition system.

The designers of Hearsay attempted to achieve cooperation among agents by permit­

ting the agents to share data items that comprised their local view. Hearsay per-

2

mitted the agents l to share the data items in their local view using the hlal'khoilrcl

paradigm [15]; a blackboard is a specialized data structure designed specifically for

this purpose [16, 17J. Hearsay used a data-driven control mechanism to uetermine

the actions that each agent would perform [15]. In the data-driven approach, each

agent signais when it is ready to perform an action. The agenb perform their actions

opportunistically, exploiting new data as it appears on the blackboard.

While Hearsay did benefit from permitting the agents to share data, experiments

with the Hearsay system revealed that the data-driven method can have trouble

in converging upon a solution; thus, the agents tend to perform many unfruitful

actions. Attempts were made to reduce the number of unnecessary actions performeu,

giving the system a "focus", by adding a knowledge base and a scheduler to the

blackboard [16]. The scheduler used the knowledge base to sequence the actions that

the agents were ready to perform. This addition to the data-driven approach proviued

some improvement, but still couId not provide a goou focus among the agents. The

system could not reason about what data was required to complete the solution it was

constructing; hence, it couId not trigger the agents to perform actions which would

generate the required data. Thus, experiences with Hearsay indicated that simply

permitting the sharing of data items among the agents in a CDPS is not sufficient to

ensure that the agents can accomplish more as a group than indiviuually.

The Distributed Vchicle Monitoring Testbed (DVMT) was a second gencration

CDPS system, which included a mechanism to place an ordering on the actions that

w~re performed by the agents [18J. Lesser and Corkill extended the bla"kboard model

used in Hearsay, by adding an agent (referred to as the planner) that was responsible

for evaluating the different actions that were proposeu by the other agents in DVMT,

and by adding a planning section to the blackboard used in DVMT. The planner uscu

the planning section of the blackboard to record data elements that were nceueu to

complete solutions currently under construction. Also, the planner rated the actions

that could be performed by the agents to signify how important they might be in

solving the problem. Experiments with DVMT have shown that it is beneficial to

have a blackboard architecture which combines both an opportunistic and a plan-

1Agents were reCerred to as knowledge sources by HearBay's developers.

3

based approach [191. Thus, in order to achieve cooperation among agents in a CDPS.

the system requires a mechanism for evaluating the different actions that can be

performed by the agents as weil as a mechanism permitting the agents to share data

items.

Researchers began to consider various planning protocols, once they understood

that achieving cooperation among agents in a CDPS requires a mechanism for eval­

uating the different actions that can be performed by the agents. Researchers first

considered centralized planning protocols where a plan for ail agents in the CDPS is

constructed by one of the agents [20]. The centralized protocols that have been pro­

posed require that the agent responsible for creating plans maintains a "global view"

of the problem being solved, composed from the local view of each of the agents in the

CDPS. As the complexity of the problems to be solved increases, the capacity of a sin­

gle agent to maintain a global view of the problem being solved can be exceeded [20].

This led researchers to consider distributed planning.

Distributed planning protocols do not require a single agent to maintain a global

view of the problem being solved. The agents in a CDPS using a distributed planning

protocol jointly select the actions to be pursued to solve the problem for which the

CDPS is designed. Protocols used for distributed planning allow for three different

relationships between the agents; the agents can interact as peers, as in a hierarchy,

or as in a free market [71. Agents that are peers must ail agree on the actions they

will perform; in a hierarchy, one agent has the ability to issue commands to another,

indicating the actions to be performed. Agents that follow the free market model

will issue "tenders" for "contracts" upon which other agents will offer "bids" [21].

Distributed protocols should ensure that under a specific set of conditions the agents

converge upon an agreement [22J.

Cooperation is a notion that has been the subject of much debate. While there

is still no universally accepted definition for cooperation, experiences with early at­

tempts at constructing CDPS systems provide us with evidence that cooperation

manifests itself in at least two forms between the agents in a CDPS: cooperation by

sharing data; and cooperation for control, where agents jointly select the actions to be

purslled to solve the problem for which the CDPS is designed. Although construct-

4

ing COPS requires mechanisms supporting both fonns of cooperat.ion. t.hl' iSSIU'S t.hal

must be solved in achieving each form of cooperation are large. Thus, while we brit'fly

touch upon achieving cooperation between agents by having the agents in a CDPS

jointly select actions, in this thesis we will focus on achieving cooperation by having

the agents in a COPS share data.

Once researchers had developed mechanisms for permitting the agents in a COPS

to share data items and experimented with various planning protocols in t.heir quest

to achieve cooperation among the agents in a COPS, they began to consider methods

for structuring the interaction between the agents. The structure imposed on the

interaction between the agents in a COPS is called an organization [23]. Reseal'chers

have speculated that the organization chosen for a COPS would affect the problem­

solving performance of the agents in the COPS [3, 7, 2'~, 25]. Experimental evidence

from the OVMT testbed indicates that the organization chosen for the agents in

OVMT did affect thcir problcm-solving performance [23J.

A designer of a COPS is faced with many choices when selecting an organization:

the nümber of agents to be included in the COPS, the capabilities that each agent will

possess, the planning protocols to be used by the agents, and the manner in which

data items are to be shared among the agents in the COPS (referred to as data dis­

tribution). The designer of a COPS must also ensure that several constraints are not

violated when selecting an organization: the processing requircment.s placed on e<tch

agent for problem-solving must not exceed its capacity, and the distribution of dal,a

items required for problem-solvihg must be such that the capacity of the communi·

cation channel is not exceeded [71. The COPS designe~ must select an organization

that maximizes the performance of the agents within the COPS.

Various researchers have evaluated the performance of a COPS in diffcrent ways.

Lesser et al. consider the quality of the results obtained for the problem being solved

in terms of the "completeness" of the result and the number of errors it contains, as

weil as the quality (measured by the number of "steps" required to solve the problem)

of the strategy by which the results were produced [3]. Other criteria for performance

that have been suggested include the computational resources and communication

resources consumed to solve the problem [26]. We refer to the quality of the rcsults

5

obtained and the qua:ity of the strategy used to solve the problern as the funclionnl

performance of a COPS, and refer to the resources consumed as computatÎonal perfor­

mance. In this thesis, we consider both the functional and computational performance

of the agents in a COPS.

How to construct a COPS with an appropriate organization for the problem to

be solved is still an open question. There is no consensus among researchers as to

how the components of an organization can be adjusted to maximize the performance

of the agents within the COPS. While severallaboratory prototypes for COPS have

been constructed, there are no modeIs or tooIs available to the COPS designer to aid

in selecting an organization for a COPS soIving a given probIem.

1.1 Thesis Outline

In this thesis, we present modeIs and tools which aid the COPS designer in seIecting

an organization for a COPS. We focus on the use of our modeIs and tools for aiding

the COPS designer in setting the data distribution in a COPS; thus, cooperation

is achieved by having the rule-based systems in a COPS share data. Our models

consider COPS from two different perspectives: the inte;-agent perspective, and the

intra-agent perspective. The inter-agent perspective is concerned with issues relating

to the manner in which the agents in a COPS achieve cooperation. The intra-agent

perspective is concerned with the internai structure of the agent, and how the agent is

affected by the environment in which it must operate - the COPS. The organizationaI

model (our model for the inter-agent perspective) permits the COPS designer to

specify the mechanism used to achieve both forms of cooperation between the ruIe­

based systems in a COPS. The path model (our model for the intra-agent perspective)

aIong with Path Hunter and Path Tracer (our tools constructed based upon the path

modeI) permit the COPS designer to study the impact of the data distribution chosen

for a COPS on the performance of a rule-based system that will be a member of that

COPS, aiding the COPS designer in setting the data distribution within the COPS.

In this thesis, we focus on mechanisms for setting data distribution, because data

distribution affects many aspects of the performance of the rule-based systems in a

COPS [7J.

6

In chapter 2, we present our formai model for the inter-agent perspecti\·e. ralbl

an organization [27, 28, 29]. Our organizational model permits the cors designer

to specify the mechanism used to achieve both forms of cooperation between the

rule-based systems in a COPS: cooperation by sharing data, and cooperation for

control. Our organizational model also includes a metric for the data distribution of

an organization. We then discuss the speculations of various researchers on effects an

organization chosen for a COPS may have on the performance of the agents that are

members of that COPS.

In chapter 3, we discuss the design and validation of our testbed for experimental

research [30]. Our testbed is called the Blackbox Expert, and it solves a puzzle

called Blackbox. Using the Blackbox Expert, we can conduct exp~riments in which

we change the data items available to a single rule-based system, and we observe

its functional and computational performance, simulating the environment the rule­

based syste.n would face as a member of a COPS. We then present results from an

experiment that we conducted, using the Blackbox Expert, that quantifies the effects

of data distribution on functional and computational performance of the Blackbox

Expert eolving any Blackbox puzzle [31]. Our experiment also confirms many of the

expectations of researchers as ta the effects an organization chosen for a COPS may

have on the performance of the agents that are members of that COPS, when the

agents are implemented as rule-based systems [23, 26, 7, 321.

In chapter 4, we describe our model for the internai structure of a rule-based

system [33, 34, 35]. Our model for rule-based systems captures the structure of a

rule base as chain~ of inter-dependent rules called paths. We show that our model

for the structure of a rule-based system is an improvement over previous attempts

by researchers ta capture dependencies between the rules in a rule-based system; our

model meets three criteria which we believe are essential for modeling the structure

of a rule base as sequences of inter-dependent rules, and our model permits the

knowledge engineer ta control the cast of analyzing the structure of a rule base, a

prcblem which has plagued models proposed by other researchers. We have embodied

our formai model for the structure of a rule base inta Path Hunter, our tool for

analyzing the structure of < rule-base. Using Path Hunter, we analyse the rule-base

7

of the Blackbox Expert to dctermine the paths contained in its rule base.

ln chapter .5, we discuss our method for applying the path model to study the

intra-agent perspective. In our study of the intra-agent perspective, we focus on the

relationship between the data items required by a rule-based system and the result

produced. We apply the path model to capture the data items required by a rule­

based system to produce specifie results in two separate steps: paths are analyzed to

determine the specifie data items required by a rule-based system to achieve each of

its goals [361, and then paths are used to monitor the goals that are achieved by a

rule-based system as it solves a set of test cases [37,38,39]. We present an algorithm

for analyzing paths to determine data items required, and a method for monitoring

goals achieved. We have constructed Path Tracer, a tool embodying our method for

monitoring the goals that are achieved by a rule-based system. We present resuIts

from an experiment to validate the accuracy of our method for monitoring goals

achieved.

ln order to demonstrate the use of our models (organizatiolls and paths) and tools

(Path Hunter and Path Tracer), we present a case study for the design of a COPS

to solve Blackbox (also in chapter 5); the agents in the COPS are constructed using

the rule base of the Blackbox Expert. Using the organizational model, we describe

a COPS for solving Blackbox. Then, using the path model, Path Hunter, and Path

Tl'aœr, we study the goals that are achieved by the Blackbox Expert as the data

items available were reduced. This allows us to establish, for the Blackbox Expert,

the relationship between data items available, goals achieved, and result produced.

We identify several goals whose achievement is adversely affected by a reduction in

the data items available, and using our path model, we are able to determine the

specific data items that are responsible for the undesirable behavior that is observed.

We then discuss how the COPS designer can set the data distribution in a COPS

in order to avoid the undesirable behavior that is discovered using Path Hunter and

Path Tracer; we present three different scenarios in which the COPS designer is able

to avoid undesirable behavior that was discovered.

It is our strong conviction that theoretical models of sufficient complexity to de­

scribe realistic systems require experimental validation, and this view is shared by

8

Cohen [40]. Models that view agents at a very high level of abstraction. as in ~an1t'

theory (agents modeled by a payoff matrix), require few symbols (represeuting various

variables and parameters of the model), provide a basic set of operators that can be

manipulated, and allow for the construction of theorems showing certain properties

that are presumably present in the agent [41]. Unfortunately, these models tend to

abstract an agent to a great extent. Therefore, it is difficult (if not impossible) to find

practical systems containing agents that are sufficiently represented by these simpli­

fied models; thus, it is not clear how the results obtained from ~he simple models can

be applied to practical systems. In order for a model to be adequately representative

of a practical system, it must contain an adequate level of detailj typically, these

models are more detailed than the simple models. These more detailed models will

obviously contain many symbols, and may not providc a small set of operators that

allow for the construdion of theorems, but can still be useful in understanding the

properties of a system [40]. In our research, we use models containing sufficient detail

to capture properties of agents which are complex rule-based systems. In order to

help the reader with the large number of symbols used in our models, we provide a

glossary of symbols in Appendix B.

9

Chapter 2

A Model for CDPS

"Some men see things as they are, and say why?
1 dream things that never were, and say 'Why not?' "

- Robert F. Kennedy, quoted in "Esquire ", 1969

The interactions that occur between problem solvers cooperating te> solve the

same problem have been studied by researchers in <.1ifferent helds [42, 32, 231. In

the management sciences, researchers study the i!lteractions that occur when humans

cooperate to produce a product; the structure of these interactions is referred to

as an organization [32J. In DAI, researchers have been considering the possibility of

imposing a structure on the interaction between agents cooperating to solve a problem

as members of a CDPS [43, 44J. There exists a number of parallels that can be drawn

between the effect of an organization on the performance of humans who are members

of that organization, and the effect on perforn'ance of a structure imposed upon the

interactions that occur between the agents in a CDPS [7J.

In this chapter, we will consider a c1ass of problems known as ill-structured prob­

lems; ill-structured problems are the type of problems commonly solved by rule-based

systems. We will examine the types of organizations that form when humans coop­

erate to solve problems that are ill-structured. We then present a formai model of

an organization for CDPS in which agents are implemented as rule-based systems.

We discuss the parallels that are drawn by researchers between the effect of an orga­

nization on the performance of humans that are members of that organization and

the effects an organization chosen for a set of cooperating agents may have on per­

formance. These parallels identify many of the choices that are faced by the designer

10

of a COPS in specifying an organization.

• 2.1 Ill-Structured Problems

Researchers have developed models for representing problems in a generic manner as

weil as models for representing specialized classes of problellls [.1.1. 46]. Traditionally.

the artificial intelligence community has chosen to view problem-solving as a search

through astate space [47]. The states in the state space are characterized by il sct.

of factors that are extracted from the specification of the problem to b(~ solwd. The

problem solver will find the solution to a problem by starting from an initial state and

then searching through the state space until astate which represents an acceptable

solution to the problem has been reached.

We can abstract the state to state transition as a transformation that may he

applied to the factors representing that state. The set of ail transformations, irre­

spective cf the current state, are referred to as the set of possible transformations.

Not ail the transformations that are possible may be applied by the problem solver

at a given statei we l'l'fer to the possible transformations that may be applied in a

particular state as the set of legal transformations.

For our purposes, we will view a problem as a graph with nodes Sand edges 7':

S is the set of states in the state space of the problem. The Si E fi are described
by an attribute vector A =< al! a2, ... , an >, and ai is a "factor" descrihing
a characteristic of the problem state. The set of initial states for the problem
is denoted by SI, and the set of states which are acceptable solutions to the
problem is denoted by SF.

T is the set of transformations used to traverse the state space of the problem,
and T is partitioned into TL and TP. TL is the set of ail transformations on '"i

that are legal, and TPis the set of ail transformations on s; that are possible,
but not legal.

The set of transformations T define a mapping on Si 0 : T x S --+ S where O(ti, .•J) =

Sk. We say that a state sn is reachable by the problem solver if the state can he

reached using only legal transformations. Formally, astate 8n is reachable if there

exists a sequence of states Sl!82,'" ,Sn such that 81 E SI, 8j+1 = O(ti, 8 j), ti E TL,

and j = 1, ... , n - 1. We say that astate is considerable by the problem solver if

11

reac:hing the state would require the use of at least one transformation that is not

legal. Thus, the problem solver may desire to reach a considerable state, but in

practice the state cann<Jt be reached. Formally, astate s" is considerable if there

exists a sequence of states SI>S2, ••• ,S" such that SI E SI, Sj+! = o(t;,Sj), at least

one t; E TP, and j =l, ... , n - 1. The concept of considerable states was developed

primarily for our understanding of ill-structured problems, and it is not developed

further in this thesis.

Given the state space model, the problem-solving process that is carried out by

the problem solver is as follows: At each state Si of the problem reached during the

problem-solving process, the problem solver must examine the state attribute vector

A, and determine the next state to be reached. Typically, the problem solver reasons

that the next state to be reached is a final state, or an intermediate state representing

a "meaningful" advancement in reaching a final state. The problem solver will then

consider ail the transformations in T, and using o(t;, Sj) choose the transformations

that are believed to be best suited for reaching the next state. Of course, the problem

solver must also be able to determine when astate Sj E SF has been reached. The

computation that is to be c:mied out at each state of the problem that is reached

must be such that it does not exceed the processing and memory capacity of the

problem solver. As lAI and ITI increase, the processing and memory capacity needed

by the problem solver also increase.

There have been several informai attempts by researchers to explain the properties

that indicate whether a problem is ill-structured [48, 49, 501. Voss states that in his

view ill-structured problems can be characterized as having a large number of open

constraints, and the number of constraints is usually much larger than the number of

constraints a problem solver can consider [491. In addition, Voss indicates that when

different problem solvers who are considered to be experts in solving a particular

problem which is ill-structured are asked to solve the problem, they may produce

different results, it is common that each expert will claim that their result is correct,

and there exists no known metric for establishing which result is in fact correct.

Newell characterized the domain of ill-structured problems as a domain where only

weak (heuristic) problem-solving methods were available [50]. Simon states that he

12

believes that the concept of an ill-structured problcm is a residual concept: that is.

a concept which is defined in terms of what it is not [48J. In Simon's view, au ill­

structured problem is defined as a problem whose structure lacks definitioll ill some

respect, and that a problem is an ill-structured problem if it is Ilot a well-slructured

problem. Simon then goes on to informally describe the properlies that he believes

l'an be used to determine if a problem is well-structured (or ill-structured). Given

our formalization for the state space model, let us now consider the properties of

well-structured problems and ill-structured problems in terms of the parameters of

our mode!.

Well-structured problems: A well-structured problem will have a clear specifi­

cation of ail ai E A, and a clear specification of the domain of each ai. The function

O(ti,Sj), the transformations T, and the final states SF are clearly specified by the

problem specification; thus, using O(ti, Sj) the problem solver only searches the set of

reachable states. The lAI and ITI are small compared to the capacity of the problem

solver; thus, the computation required at each state does not exceed the capacity of

the problem solver.

Ill-structured problems: l1l-struetured problems do not have as a part of their

specification a complete specification for at Lenst one of the following:

• the factors ai that should be included in A to accurately represent the problem
state Si; thus, the complete set of states Si in the state space S is not known.

• the transformations ti; thus, the complete set of transformations ti E T is not
known.

• the state transition function O(ti,Sj); thus, the problem solver considers search­
ing both reachable and considerable states white solving the problem.

• the final states SF; thus, two different problem solvers will not always agree on
the result they may produce for an ill-structured problem.

• The lAI and ITI are large; thus, solving ill-structured problems requires large
amounts of computation and memory resources compared with the capacity of
the problem solver.

The solving of ill-structured problems requires the problem solver to approximate

the structure of the problem. The problem solver will decide which factors are to

13

be included in Â, which is an estimate of A. Problem solvers will use their "o\\'n
. F'" Fknowledge" to approxlmate o(I;,sj), T, and S by o(I;,sj), T, and S . Problem

solvers will choose Ô/(I;, Sj), T, and SF based on their "expertise", and different

problem solvers need not agree [491. In order tù reduce the computation and memory

requirements needed to traverse the state space, the problem solver will decompose

an ill-structured problem into subproblems. Each subproblem will consider the state

of the problem to be represented by A' ç Â, and the set of transformations to be

T'Ç T.
We choose to model the problem solver's view of an ill-structured problem as a

triple, pl = (p,ps,G):

P is a problem where Â, â(I;, Sj), T, and SF have been chosen by the problem
solver.

p S is the set of subproblems ps = {S P), SP2, • .. , SPm}, and each SPt is charac­
terized by the following:

- PCl! the set of precedence constraints PCI = {pc), PC2, .•• , pCk} for sub­
problem Sp,. Precedence constraints place conditions on SPI indicating
when the subproblem can be applied to problem P.

- F PCl! the set of factors required by the problem solver to decide if ail
pCj E PCt are met; thus, SPI is to be applied to P.

- S;, the state space of SPl! and S; ç S.
- A;, the current state of SPI, and A; ç Â.
- '1~ the set of transformations for SPl! and Tt ç T.

G is the set of goals G = {Yt,Y2,." ,yd used by the problem solver. A goal Yi
represents a particular problem state S; that the problem solver wishes to reach;
Si may or may not be a final state.

The solving of ill-structured problems is typically done by a problem solver us­

ing the state space model [48J. Within the state space, the problem solver is able

to identify goal states Yi. which are important to reach when solving the problem.

Reaching goal states is important because it indicates that a meaningful advancement

in solving the problem has occurred. As a mechanism for reducing the complexity

of solving ill-structured problems, it is likely that the problem solver will decompose

an iIl-structured problem Pinto subproblems (SPI)' The precedence constraints for

each subproblem PCt indicate the manner in which subproblems are "related" to each

14

other with respect to solving the original prohlem P. Precedence Cûnstraints indicat.,

the sequp.nce in which the subproblems should be solved, and indicate the manner

in which the solutions obtained for each individual subproblem can he combined to

form a solution for the original problem. In addition, solvir.g ill-structured problems

requires a mechanism for handling the fact that the outcome of each step taken by

the problem solver cannot be predicted in advance; â(I;,sj) of n(I;,sj).

2.1.1 Planning for Ill-structured Problems

Planning involves selecting a sequence of goals to be achieved for solving a proh­

lem [51]; this sequence of goals is called a plan. The goals that are selected when

planning determine the subproblems that are to be solved by the prohlem solver, and

the subproblems to be solved determine the steps that are to he executed by the

problem solver. In the case of ill-structured problems, planning must account for the

fact that the outcome of each step taken hy the prohlem solver cannot he predicted

in advance; â(I;,sj) of 0(1;,8i)' We now consider how plans can be represented, and

consider one method called incremental planning that has been proposed for han­

dling the fact that the outcome of each step taken by the problem solver cannot be

predicted in advance [52].

Frames [53] and a partial ordering on goals [54] are two different representations

which have been proposed for plans. We consider a plan to be a partially ordered set

pL =(-Y, j):

"1 is the set of goals chosen by the problem solver when planning for problern pl,
and "1 ç G.

-< indicates the precedence constraints among the gi E "1 indicating an ordering
on which the goals are to be achieved.

When planning, the problem solver uses â(I;,8i) as well as the current and desired

value of Â to create the plan. Each gk chosen by the problem solver to be in "1 will

require the problem solver to solve subproblems from pS • The set of subproblems that

need to be solved to achieve gk is determined by the problem solver using â(li, si),

and is denoted by the notation (3 =>+ gk. When choosing gk, the problem solver

will examine the factors required to determine if the precedence constraints for the

15

subproblems that must be solved to reach 9k are satisfied. Formally. the prohlclIl

solver will examine {ail VSP, E {3, {3 =}+ 9k. a, E FPCi }.

We say that a plan is complete for a problem pl when the least element of the

plan is 9i E SI j and the greatest element is 9k E SF. A partiat plan is a plan which

is not complete. A plan is said to Jail when the problem solver executes an S P, as

determined by the goals in the plan and the state Sj+! that is reached was not the

same as predicted by ô(t;, Sj). A plan failure occurs because Ô(ti, Sj) i= a(ti, Sj). With

ill-structured problems, the problem solver can determine if a plan fails or succeeds

only by executing the plan.

Incrementai planning is a method for solving an ill-structured problem pl where

the problem-solving process is an interleaving of planning and execution [521. With

incremental planning, a partial plan is constructed followed by an execution of the

SP,'s as indicated by the plan. If the plan fails, then it must be "repaired"; if the

plan succeeds, it must be "extended". The repair or extension of a plan requires

further planning. Thus, wc can view the problem-solving process for an ill-structured

problem pl to be a sequence PSI = (PPhEtl,(PP2,E2), ... ,(PPn,En): PPi is a

partial plan for solving pl, and Ei is the set of subproblems S P, executed by the

problem solver due to PPi. PPI has a least element 9k E SI, and PPn has a greatest

elemcnt 91 E SF.

When problem-solving, we assume that each time the problem solver creates the

next partial plan PPi+h the data available are increased. When crcating PPi+h

the problem solver will know the new value of Â that resulted from E;. The new

and previous values for Â, along with Ô(ti,Sj) are used by the problem solver when

planning PPi+!. Thus even if a plan fails, the problem solver may be in a better

position to solve the problem because the problem solver is now aware that Ô(ti, Sj) i=
a(ti,Sj). The new value for Â allows the problem solver to repair a failed plan, or

extend a successful plan.

The number of partial plans created during problem-solving is affected by Ô(ti, Sj).

A better estimate of a(t;, Sj) by the problem solver will result in fewer plan failures,

and permit more goals to be included in each Pp;. The reduced failure rate of the

PPj'S will reduce the interruptions of Ej's for plan repair. Successful PPj's that

16

•
include more goals to be achieved in each Ei reduce the number of PP,'s Ill'ed,',l

when problem-solving.

Problem-solving using incremental planning is one strategy used for solving ilI·

structured problems. Incrementai planning provides a mechanism by which the prob·

lem solver can solve problems even if the outcome of a step taken by the problem

solver is not as expected; â(ti,Sj) # Q(ti,Sj). When using incremental planning, the

problem solver is able to choose one or more steps that seem promising (P Pi), execute

those steps (E;), and then evaluate the state that is reached. One of the optimiza·

tions that a problem solver may adopt with incremental planning is to minimize the

number of plan failures.

2.2 The Organization

A structure that can be imposed on cooperating rule-based systems solving the saIlle

problem is called an orgallizatioll. Our mouel for an organizatioll considers the struc·

ture of the interaction that can occur between rule-based systems in both phases

of problem-solving: planning and execution. In addition, our organizational model

requires the CDPS designer to specify the manner in which both forms of coopera­

tion will transpire between the rule-based systems: cooperation by jointly selecting

actions, and cooperation by sharing data.

In this section, we first discuss the types of organizations that humans form when

cooperating to solve a problem, and consider the factors that contribute to the type of

organization that is formed by humans. Then, we present our organizational model,

which includes a metric for measuring data distribution. We discuss choices that are

faced by the designer of a CDPS, and consider the parallels drawn by researchers in

DAI between the effect of an organization on performance in human organizations,

and the effects of an organization chosen for a CDPS on the performance of the agents

in that CDPS.

2.2.1 Human Organizations

Human organizations provide a mechanism for many people to cooperate with cach

other to solve problems. Researchers in the field of management science have stud-

17

ied organizations of people who cooperate to produce products [:12. 012]. Human

organizations consist of two components called the organizationai structure and the

coordination structure [261. The term organizational structure refers to the skills

posses5~d by each person in the organization, and indicates the tasks each person

can perform when producing products. The coordination structure specifies the role

each person has in decision-making within the organization, and the manner in which

information is shared among the people of the organization.

We believe that studying the dilferent organizations formed by humans and the

factors which influence the organization chosen by humans will help with the de­

sign of organizations for rule-based systems. Many of the factors alfecting human

organizations are analogous to the factors that must be considered when designing

organizations for rule-based systems [7J. An important property of humans, which is

one of the factors that determines the organization formed by humans for producing

a set of products, is Simon's "principle of bounded rationality" (see [i] page [·11).

This principle states that the processing capacity of the human brain is limited, as

is the amount of information it can assimilate. Thus, the processing demands placed

on any person in an organization must not exceed their capacity.

The simplest human organization is the single pe,son. One person is responsible

for ail decisions and skills needed to produce the products. This person must assim­

ilate ail the information required both for decision-making and for performing the

tasks required to produce the products. The production of most products, except

for "simple" products where the processing capacity required for their product;on

is small compared to the capacity of a person, exceeds the processing capacity of a

single person.

A group is formed when the processing requirements for producing the products

increase beyond the capacity of a single person. The members of a group share

the tasks required for production, and they participate as peers in decision-making.

Each member of the group assimilates ail the information required to produce the

products. The number of people in the group is based on the number of different

skills needed to produce the products. As the size of the group increases, the peer

relationship becomes an expensive decision-making method, and the demands made

18

on the communication channels between the people in the group increases. P,','I'

decision-making becomes more expensive because the processing capacity and lime

required for the people in the group to arrive at an agreement increase,

A simple hierarchyis formed when the processing capacity of the people in a group

is exceeded. The simple hierarchy has two levels: the upper level contains a single

decision maker who coordinates the tasks performed by the people at the lower level

of the organization. The der.ision maker is responsible for assimilating all information

required for deciding which tasks are to be performed by each person on the lower

leve!. Each person is responsible for processing the information required to perfol'm

their tasks.

A uniform hierarchy evolves when the processing requirements of decision-makiug

increase beyond the capacity of the decision maker in a simple hierarchy. The uniform

hierarchy employs multiple levels of decision makers, and the information available

for decision-making at each level is an abstraction of the information available to

the lower levels of the hierarchy. As the number of levels in the organization and the

number of products increase, the allocation of resources among the people performing

the tasks required for the production of the products becomes a problem. In this type

of organization, the people producing each product compete for the l'l'sources available

to the organization.

The multidivision hierarchy solves the l'l'source allocation problem of the uniform

hierarchy by creating a separate u:liform hierarchy to produce each product [32]. The

separate organizations are controlled by a hierarchy of decision makers, where each

organization has its own resources. As with the uniform hierarchy, the multidivision

hierarchy uses the technique of abstraction to l'l'duce the processing requirements on

the decision makers.

One might argue that the largest human organization is the free market [7J. [n the

free market there are many separate ûrganizations that can produce dilferent prod­

ucts. There is no means of joint decision-making between the dilferent organizations

in the free market. The organizations interact by means of "contracts" which arc

awarded to one organization by another, using a "bidding" system. The organiza­

tions in a free market are autonomousj thus there is no guarantee that there will be

19

an organization willing to accept a contract that has been tendered.

Two factors are believed to be important in determining the type of organization

that is formed by humans: the complexity of producing the products, and uncer­

tainty [32J. The complexity of production is the processing required to perform the

tasks necessary to produce the products, to assimilate ail the information required

for production, and the processing requirements for decision-making. Uncertainty is

the difference between the information needed for performing a task, or for decision­

making, and the information available when the task is performed or a decision is

made. Uncertainty affects both decision-making and the tasks performed for produc­

tion. As the uncertainty with which a person performs a task increasc:;, the quality

of results each person produces are reduced: the results produced may not be com­

plete, or the results may contain errors. However, the processing and communication

capacity required to perform the task are reduced because there is less information to

be assimilated. As the uncertainty with which a decision must be made increases, the

processing capacity required by the decision maker increases because certain options

will be considered by the decision maker that would otherwise have been quickly

eliminated. Decisions taken during conditions of high uncertainty are more likely to

be incorrect.

Human organizations employ various methods to cope with the complexity of pro­

duction. Information complexity is dealt with by using the techniques of abstraction

and omission. When the information complexity for a group exceeds the capacity

of the people in the organizatioh, a simple hierarchy is formed where each person

is responsible for only a portion of the information r~quired for production. The

complexity of performing a task is kept within the capacity of a single person by the

continued subdivision of the tasks as they become more complex. In a simple hierar­

chy, as the complexity of the tasks increases beyond the limits of the people on the

lower level of the organization, additional people are added (when considering these

organizational models, it is assumed that there is always additionallabol'f available)

and the tasks are subdivided. The complexity of decision-making is reduced when

subdivisions are created as human organizations evolve from a uniform hierarchy into

a multidivision hierarchy.

20

Uncertainty in human organizations can be handled by allowing slack rl'sourn·s.

providing more efficient information distribution facilities to decision makcrs. and

creating peer relationships among the decision makers. Slack resources are extra

resources that are used to overcome the problems that occur when incorrect or in­

complete results are produced. A more efficient information distribution mcchanism

and peer relations allow the decision makers to access more information when they

take decisions. Relationships between peers in an organization provides a mechanism

by which they can share the information at their disposai during decision-making.

The performance of humans in an organization is evaluated by examining the

quality of their end products, and the resources they consume [321. Whilc many

factors may be used to evaluate the quality of an end product, two factors that are

used to measure the quality of an end product are the product's functionality and

reliability [32]. Resources consumed w1;"n producing a product include the process­

ing capacity, communication capacity, and the raw materials required for production.

The complexity and uncertainty reduction techniques employed by human organiza­

tions reduce the amount of resources the humans in the organization consume for

producing a given set of products. High coordination complexity and uncertainty

during decision-making will result not only in a large amount of processing required

for decision-making, but also a poor use of resources.

2.2.2 Organizations for Cooperating Rule-Based Systems

Rule-based systems are typically used to solve ill-structured problems. The rule base

approximates T, SF, and O(t;,Si)' while the system's working memory contains the

current value of Â [55]. Rule-based systems allow for the fact that o(ti,si) is not

known. The techniques for dealing with uncertainty that have been developed for

rule-based systems provide a mechanism by which the system will handle ô(tj, si) =1

o(ti, Si) [56]. While problem-solving, a rule-based system using Â will adjust ô(ti, si)

by updating the confidence placed on the current hypot.heses in its working memory.

Cooperating rule-based systems are advantageous for problems where the IA'I and

IT'I of the SPt 's are large compared to the capacity of a single system, or where the

knowledge bases required for each SPt are distinct. Knowledge bases are distinct

21

when they contain expertise from different domains - possibly created by differcnt

knowledge engineers. Different methods for representing knowledge can be required

to store expertise from different domains [5i]. Thus, creating a single knowledge base

integrating expertise from different domains is difficult. In sorne cases, a problem

requires the use of rule·based systems that are geographically distributed [58].

In this subsection, we present our model for specifying the mechanisms used to

achieve cooperation between the rule·based systems in a CDPS - the organization.

Rule·based systems solving a problem pl can cooperate with each other by sharing

data, or by jointly selecting actions. The ability to share data items requires the use

of a mechanism for communication between the rule·based systems in a CDPS, and

the ability to jointly select actions requires the use of distributed planning protocols.

We discuss the communication mechanism and the planning protocols used in the

organizational model; then, we present a formai description of the organizational

mode! (including an example). We discuss how the organization selected for a CDPS

determines the decision-making responsibility of each rule·based system in the CDPS,

and determines the data items required by the rule-based systems in the CDPS when

they are planning.

Communication Mechanism: A blackboard is a data structure which allows co­

operating rule-based systems to communicate with each other when problem-solving

[17, 59]. The data shared by the rule..based systems using a blackboard is organized

into levels. A blackboard is a decomposition hierarchy, and the data items stored on

each level of the blackboard are composed using several data items on the level below

it, along with information supplied by the rule-based system. The data items input

to the system constitute the lowest level of the blackboard. In sorne cases, the levels

of the blackboard are also an abstraction hierarchy [16J. In an abstraction hierarchy,

as one goes up in the level of abstraction, the volume of information progressively re­

duces because details that are no longer required are omitted. This does not consider

the value of the information at each levelof the blackboard.

A generalization of the blackboard structure for data storage views a blackboard as

a hierarchy of levels [60]. Each level is an n·dimensional space where each dimension

is an ordered range. The data items are stored on a level of the blackboard using the

22

dimensions of the level as the index by which they are retrieved. Thus. 11",' han' a

notion of distance between two data items stored on the same level of a blackboard.

When data items on one level of the blackboard are combined to determine the mllll'

for a data item on a higher level, the data item could be located at more than one

location in the upper level.

In the organizational model, we view a blackboard, BB = (L \/, -< l. as a hier:,r·

chical storage structure for Â of a problem pl:

LV is the set of levels for BB,LV = {lv.,lv2, ... ,lvn}; IVi is a blackboard level.
IVi =< DJvl,LB,UB,FD >. DM is the number of dimensions of h'i. where
each dimension is ordered; LB = {lb.,I~, ... , IboM} is the set of lower bOllnds.
and Ibj is the lower bound for the range of dimension j of IVi; UB is the set
of upper bounds UB = {ub., ub2, ... , ubOM }' where ubj is the upper bouml for
the range of dimension j of IVi; and F D is the set of factors ak whose values
may be stored on IVi.

-< is a total ordering on LV indicating the decomposition hierarchy of BB, where
IVi is decomposed into simpler data clements than IVi+!. In the case of an
abstraction hierarchy on BB, IVi+! is considered to be at a higher level of
abstraction than IVi.

An example blackboard is shown iu Figure 2.1. The blackboard has three levels, and

each level has its own dimensions. The factors that are stored on each level are also

different, and more than one type of factor can be stored on each level.

A windowon a blackboard is composed of a number of regions, and the window

is the mechanism that determines the manner in which the instances of the ai's

stored on the blackboard are distributed among the rule-based systems in a COPS. A

region of a blackboard refers to a portion of one level of the blackboard. We dcnotc

a rcgion by bbr = (Iv, LBR, UBR): Iv is a level of BBi LBR is the set of lowcr

bounds on the dimensions of Iv for bbr, and LBR = {lbr.,lbr2, ... ,lbrD",r} where

lbr; ~ Ibi; UBR is the set of upper bounds on the dimensions of Iv for bbr, and

UBR = {ubr., ubr2" .. ,UbrOM} where Ubri ::; Ubi. A window onto a blackboard is

a pair w = (RG, FC): RG is the set of regions RG = {bbr., bbr2'"'' bbrn }, and

FC = {A~, A~, ... ,A~} where Ai ç Â is the set of factors ai visible in the window

when they are stored in region bbrj.

Each rule-based system will have a window that describes its access privileges for

the data items that are stored on the blackboard. When a data item is stored on level

23

Level_2

...................

10

Level_3 - <3, {l, l}, {4, S}, {Faelor_J}>

Level_2 - <2, {I,I}, {8, 6}, {Faclor_3}>

Level_l- <2, {l, l}, {IO, 20}, {Factor_l, Faetor_2}>

Figure 2.1: SampIe 8lackboard

IVj of the blackboard, it will be visible to ail the rule-based systems whose window

has a region bbrk that includes the location of the data item on IVj, and ai E AZ where

ai is the factor whose value is given by the data item. The data items that appear

at severallocations on IVj will be visible if any one of the locations at which they are

10cated is in bbrk.

Planning Protocols: Planning protocols provide a mechanism for avoiding the

lack of focus that can occur when rule-based systems are cooperating to solve the

same problem [16]. Problem-solving by a set of cooperating rule-based systems, PSI,

requires that they create a partial plan PPi where they jointly choose i and then they

solve the SPI's of PPi • Ideally, sP should be chosen so that each SPI can be solved

independently. This is generally not possible because of interactions between the

SPI' When problem-solving, the rule-based systems must examine these interactions

in choosing i for PPi [61]. Planning protocols provide a mechanism by which the

rule-based systems joint1y choose i for Pf'i.

2<1

Planning protocols can be centrilli=ecl or clistributed. and bindil/g or 1/0I/bil/"iI/9. .\

centralized planning protocol has a specialized agent which creates ail PP.. :\ billlling

planning protocol obliges the agents to carry out the plan that is created. Early

versions of DVMT used a centralized planning scheme [18]. Multiagent Planning

[62J and Partial Global Planning [63J are examples of distributed planning protocols.

Multiagent Planning is a binding protocol. Partial Global Planning and Contract

Net [64] are nonbinding protocols.

In the organizational model, we proposed two binding planning protocols calle,l

Consensus and Decree, which permit cooperating rule-based systems to interact in a

peer to peer fa;;hion or hierarchically [27J. The Consensus planning protocol for a set

of rule-based systems PC = {rbs ll rbs2 , ••• , ,·bs.}, wri tten as C{rbs Il rbs2 , ••• , rbs. },

requires that ail rbs; E PC choose the goals to be included in a plan, and the rbsj's

will examine those instances of ak E Â that are in their respective windows [28, 29].

Consensus is a distributed planning protocol. The Decree planning pl'otocol for a

set of rule-based systems PC = {rbs ll rbs2, ••• , rbs.} having rbs; as the director,

writtén as 1J{rbs; : PC - rbs;}, requires that rbs; chooses the goals to be included

in a plan, and rbs; examines only those instances of ak E Â that are in its own

window. Decree is a centralized planning protocol. A set of rule-based systems

PC = {rbs!> rbs2, ... , rbsn } that plan using either the Decree 1J{rbs j : PC - "bs;} or

Consensus C{rbs ll rbs2 , •• • , rbs.} protocol is called a planning group. The combirlCtl

window, denoted by CW, of a planning group is the window used during planning:

in the case of Decree, the comoined window is the window of the directorj in the

case of Consensus, the combined window contains "sel~cted» data items from ail the

windows of the rule-based systems in the planning group. Each rule-based system

in the planning group selects data items available in its window to appear in the

combined window.

The Organization: The organizational model is used to introduce a structure on

the interaction between the rule-based systems in a CDPS [65, 7J. The organizatioll

specifies the manner in which both forms of cooperation are to be achieved among

the rule-based systems in a CDPS.

25

Definition 1 (Organization.) An organi:ationfora CDP,) (:01ltai1liug 111 rule-hu..,,,
systems solving problem pl is a quadruple

I{I =< ES,CP,CS, WS >

where:

ES: the set ofrule-based systems in the CDPS; ES = {rbst.rbs2, ... ,rbsm}.

CP: The capability matriz where ep[i,jJ = 1 if rbsi can solve SPj else ep[i,jJ = O.
CP is an mx p matriz where p = !Psi and Vj L~I cp[i,jJ ~ 1.

CS: The coordination structure of is a simple connected graph CS =(ES, ER) with
r"des ES and edges ER. The labe/ed edges ER indicate the planning protocols.
L. .cree or Consensus, to be used by the rule-based systems of the CDPS. CS is
sll,bject ta the following restrictions:

• There is no cycle in CS that contains a Decree protoeol.

• If a rule-based system is in two planning groups, both planning groups use
Decree, the rule-bused system is not the director in pluuning group one, aud
the rule-based system is the director in planning group two, then the director
in planning group one is also directing the rule-based systems in planning
group two. FormaI/y, V{rbsi : rbsj } 1\ V{rbs j : rbsk} =? V{rbs i : rbsk}.

• A single rule-based system cannot be dir~cted by two different rule-based
systems. FormaI/y, if V{ rbs j : rbsj } then ,Brbsk 1 V{ rbsk : rbs j}.

• If a rule-based system is in two planning groups, planning group one uses
Decl'ee, planning group two uses Consensus, and the rule-based system
i.~ not the director in planning group one, then the director in planning
group one is also directing the rule-based systems in planning group two.
FormaI/y, V{rbsi : rbsj} I\C{rbsj,rbsk} =? V{rbs j : rbsk}.

WS: The set of windows for ES, and Wj refers to the window ofrbs j •

CP indieates the SP,'s that each rule-based system is capable of solving, and CS

specifies which planning protocols are to be used by the rbs j • The Decree and Con­

sensus planning protocols provide hierarchical and peer relationships between the

rbs j • As Decree and Consensus are both binding, they are used to construct coordi­

nation structures that are analogous to the types of human organizations discussed

in section 2.2.1, except the free market. WS indicates the distribution of instances of

the ak E Â (data items) among the rbsj's when they solve SP,'s, and the CW of each

PG indicates the distribution of instances of the ak E Â (data items) during planning.

26

.....,
2

1

o

BLACXBOARD

'E aa CONSENSUS

l DECRES

PlannlaSCroIlp CombWdWlndow
Cl'OupllA.D1 UOU'
Crou~ IA.CJ Il.2J

R8S Window

A IIJ)
• 01
c ~I

Figure 2.2: Sample Organization for a CDPS

We refer to the distribution of instances of the ak E Â during problem-solving as the

data distribution of the CDPS.

A sampie organization for a CDPS is shown in Figure 2.2. [n this CDPS there are

three rule-based systems {A, B, Cl, and two planning groups: {A, B,} and {A, Cl.

Rule-based systems A and B plan using Consensus C{A, B} forming one planning

group; rule-based systems A and C plan using Decree 'D{A : C} forming the second

planning group. The window of each rule-bâsed system as weil as the combined

windows for the planning groups are shown in Figure 2.2.

Decision-Making: The coordination structure is a hierarchy that indicates the

division of responsibility for decision-making among the planning groups in the CDPS.

The rbsj E PG which plan using C{PG} are at the same level in the CS hierarchy.

When the rbs j E PG plan using 'D{rbsj : PG-rbsj }, the director rbsj is considered to

be one level above the rbsk E {PG - rbs j }. The highest level in the CS hierarchy can

be composed of a planning gro.·", that plans using Consensus, or a single rule-based

27

system which is a member of a planning group that plans using Oecree: Formally. the

highest level of the CS is denoted by either the planning group C{PCk} if (Vrbs i E

PCk)(1J V{rbsj : PCq - rbs j }, rbs j E {PCq - rbs j }), or the planning group V{rbs j :

PCk - rbsj} where (fJPCp, rbsj E PCp). When p:anning, each rule based system

in the COPS will have its choices for 7 restricted. The restrictions for 7 are imposed

on rbs j by the rbs/s on the upper levels of CS.

When the rule-based systems in a COPS plan, the set of goals Cf ç C from which

they can select 7 is determined by the rule-based systems on the upper levels of CS.

The rule-based systems at the highest level of CS do not face any restrictions. The

restriction for rule-based system~ not on the upper level of CS occurs when a rule­

based system rbsj is a member of two planning groups; once rbSi has committcd to

pursue several goals as a member of one planning group, it must ehoose goals that

are "compatible" with its eurrent eommitments when planning as a member of the

second planning group. Formally, this situation occurs in the following way: Let rbsj

be a member of both planning groups PCt and PCr' When the rbsi E PCt plan,

they create a plan PPk. When the rbs j E PCr create a plan PP" the g. E 7 of PPk

restrict the choices for 7 of Pp,. The goals gk E Cf from which the rbsj E PCr choose

7 must be compatible with each g. E 7 of PPk' A goal gk is compatible with g. for

an rbsi if the â(ti, Sj) of rbsi predicts that there is a sequence of states so, SI,' .. ,S:

where So is the current state of Â, gk represents the state Sq sueh that 0 < q < z, and

g. represents the state S:.

Data Requirements: We now consider the data items required by the rule-based

systems during planning. When planning, the rbsi E PCt use their â(ti,Sj)'S, the

current value of Â, and Cf to create PP,. For each gk E Cf chosen by the rbs j to be

in 7 of PP" the rbsi will need to examine the {a,1 {3 =>+ gk,SPi E {3,a, E FPCi}

Definition 2 (Group Planning Set) The group planning set CPSt is the set of
aIl factors that can be required by the rbsi E PCt of III when planning:

CPS = U {(FPCj) if cp[i,~J =1
t b 0 otherwlse

(r SiEPGr)

Summary: An organization is a model for the interactions that occur between

cooperating rule-based systems during both phases of problem-solving. An organiza-

28

tion specifies how the rule·based systems that are members of a COPS cooperait' ilS

follows:

• organizations specify the protocols used by the rule·based systems when plan­
ning (CS) as weil as the division of responsibility for planning among the rule·
based systems. 3pecifying the planning protocols and the division of responsi­
bility for planning imposes a structure on the interaction between the rule-based
systems during the planning phase of problem.solving, specifying how the rule·
based systems in a COPS cooperate by joint1y selecting actions.

• organizations specify the availability of data items (ai) during both planning
(CW) and execution (WS). Specifying the window of the rule-based systems
(WS) imposes a structure on the interaction between the rule·based systems
during the planning and execution phases of problem·solving, specifying how
the rule·based systems in a COPS cooperate by sharing data.

2.2.3 Information Deficit Metric

The information deficit metric is a measure of the data distribution specified when

an organization is selected for a CDPS. Figure 2.3 presents an (,xample of the data

available to a rule·based system when it solves a subproblem. The figure shows one

level of a blackboard depicting the window of a rule·based system as weil as the

regions where instances of two factors required by the rule·based system to solve a

subproblem may be stored. When a rule·based system solves a subproblem SPI! the

information deficit metric measures the "overlap" between the data available to the

rule-based system as specified by Wi and the data required by the rule·based system

as specified by A:. When a rule-based system is planning as a member of a planning

group PGk. the information deficit metric measures the "overlap" between the data

available to the rule-based system as specified by CW of PGk and the data required

by the rule-based system as specified by GPSk.

The information deficit metl'il' that we propose is based on the probability that

each instance of an aj that is required by a rule·based system to solve a subproblem

or for planning will be available, as weil as the "importance" of each aj. Let us

now consider how we can determine the importance of each ail and how we l'an

determine the probability that an instance of aj is available. Then we will explain

the formulation of the information deficit metric itself.

29

Blackboard Level k

Figure 2.3: Data Items for a Subproblem

Importance of ai: There are several methods that can be used to establish the

importance of each factor ai required during problem-solving. ln our most general

formulation of the information deficit metrie, we use the information content of an ai

to indicate its importance. The information content of an ai estimates the information

gained by a rule-based system rbsi when it accesses an instance of ai' ln sorne cases,

the prohlem domain places an ordering on the factors used to represent the state of

the problem. ln other cases, the structure of the rule-based system used to solve the

problem indicates the importance of the various factors that represent the state of

the problem.

ln the absence of information about the problem domain or the structure of the

'!Ule-based systems used to solve a problem, we can make use of a general result from

information theory [66]. We can view the blackboard BB = {SCl, SC2, • •• , SCn } as a

set uf zero memory information sources. The alphabet of symbols Ei emitted by SCi

is given by the domain of ai. This abstraction makes the assumption that the event

denoted by a rule-based system rbsk storing an instance of ai (a data item) on the

blackboard is independent of the event denoted by rbsl storing an instance of ak on

the blackboard. We also assume that Domain(ai) is finite and that the probability of

each instance of ai (denoted by vi) appearing on the blackboard, P(vi), is known, and

Eu,EDomain(ai) P(Vi) = 1. Then the entropy, or the average amount of information

30

DM.
AREA(RG)= L: II (ubrj -lbrj)

bbr;ERG j=l

provided by each instance of ai emitted by SCi , is given by

Probability that Vj is available: An instance of aj appears in lUi (is availabll')

when Wi contains a region bbrk which includes locations on the blackhoard whcre

instances of ai can be stored and aj E A~. The probability that the location where

an instance of aj is stored on the blackboard is in bbrk is derived from the following:

• the degree of uoverlap" between bbrk and the fixation of aj. The fixation of
aj refers to the bbrl's in which the instances of aj can he stored. Formally,
the fixation of a factor ai E Â on a blackboard is the set of regions FXi =
{bbrb bbr2" , "bbrn } where the instances of ai can be stored.

• the expected distribution of the instances of aj on the blackboard.

The degree of overlap between the window of a rule-based system and the fixation

of ai can be measured using the notion of area and is denoted by liRE II(FX, n lU)),

Formally, the area of a set of regions RG = {bbrb bbr2, ... ,bbrn } of a blackboard is

given by

The intersection operator n used on a window and a fixation is applied to ail the

regions in both the window and the fixation, creating a new set of regions, Formally,

the operation n on F Xi and lOj denotes {bbr, 1 bbr, = bbrk n bbr'i bbrk C Wh bb,', E

FXi, ai E An. In the example shown in Figure 2.3, the darker shaded regions would

be the two regions produced when the intersection operator is applied to lOindolOj,

factorj, and factorj.

We can now establish a probability for the availability of an instance of a factor

ai in a window Wj: comparing the area of intersection between the fixation of (Ii and

lOj with the area of the fixation of ai, If we assume a uniform distribution (of course,

if information is available as to the distribution of the instances that are likcly to

appear for a factor, a different distribution couId be used) "'Vj E Domain(a;), then

the probability that an instance of ai stored on the blackboard is in lOj is given by

P('f .) - AREA(FXinWj)
a, W) - AREA(FXi)

31

Formulation of the information deficit metric: We now combine the impor­

tance of an ai and the probability that an instance of ai is available to determine the

information potential of ai for a window Wj. We simply use the product of the entropy

of ai and the probability that instances of ai will be in window Wj to determine the

information potential of ai. Formally, the information-potential of a factor ai for a

window Wj is given by l'P(a;fwj) = H(ai)P(a;fwj)

Using the entropy and the information potential of the ai E A; we can derive

the information deficit for the rule-based systems in an organization when solving a

subproblem, SP,. The information deficit metric is constructed such that the range

in value is between 0 and 1. A value of 1 rellects the situation that no information is

available, and a value of 0 indicates no deficit and that ail the information required will

be available, if it is present on the blackboard. In computing the information deficit,

we start by computing a value for the availability of instances of ail factors required

to solve a subproblem: a sum is taken of the information potential for each factor

required to solve the subproblemj then, we divide this sum by the value for availability

if ail instances of every factor required to solve the subproblem are available (the

total entropy of ail factors required to solve the subproblem), normalizing the value

obtained for the information available. Formally, the information deficit when a rule

based system rbsi is solving a subproblem S P, is given by the following:

Definition 3 (Execution-Time Deficit) The information deficit of a rule-based
system rbsi in an organization when it salues S P, is

DE(rbs;fSP,) = _ L ••EA:I'P(ak/wi)
L••EA: H(ak)

Using the entropy and information potential of the factors ai required by a plan­

ning group PGk , we can derive the information deficit for the rule-based systems in an

organization when they plan. The same principle used to determine the information

deficit when solving a subproblem applies to the information deficit when planning,

but for planning we consider the factors required by the planning group and the plan­

ning protocol that the planning group uses. Formally, the information deficit when a

rule based system rbs j is planning in planning group PGk is given by the following:

Definition 4 (Planning-Time Deficit) The information deficit ofa rule-based sys-

32

lem rbsi in an organi=alion when planning as a menber of planning gl'OIIJI /'(;" i.<

The information deficit metric provides a mechanism to measure the availability

of data items (instances of ai) among a set of cooperating rule-based systems during

both stages of problem-solving. Using the information deficit metric, we can measure

the availability of data items when the rule-based systems in a COPS jointly select

goals, and measure the data items available to each rule-based system in a CO PS as

it solves a subproblem.

2.2.4 Choosing an Organization

In OAI, researchers have informally discussed and studied COPS systems. Researchers

have speeulated about the effect on performance of an organization that is selected

for a COPS. There exists sorne empirical evidence in the literalul'c to support the

expectations of researchers for certain specific test cases; Ourfee et al. have observed

the performance of the agents in a COPS, given the organization selected for specifie

test cases of the Vehicle Monitoring Problem [23]. Using the organizational model as

a formai framework, we now eonsider the informai speculations of various researchera

as to the effect on performance of choices made by tite COPS designer when selecting

an organization for a COPS.

Seleeting an organization for a COPS requires a choice of ES, CS, CP, and WS.

Researehers in OAI believe that many of the issues that arise with human organiza­

tions are thought to affect the design of organizations for COPS [7]. The principle

of bounded rationality applies both to humans and to the agents in a COPS [71.

As problems grow more complex, requiring more processing capacity, the limita of

the agents will be exceeded. Agents in a COPS will be faeed with complexity is­

sues, as are humans: the agents must perform the necessary operations to solve

the required subproblems (SPt), the agents must proeess the data items in their

windows (Wi)' and the agents must decide the subproblems that are to be solved

({SPt l 'Vgk E "'f, P:}+ gk, SPt E Pl). Uncertainty will also be present in a COPS:

when problem-solving, the agents must solve subproblems and must determine the

33

suhprohlems to he solved using only the data items available in their windows.

The performance obtainable with a particular organization will be of interest to the

cors designer. As with human organizations, performance will be concerned with

the quality of the results produced (functional performance) by the agents as weil as

the resources consumed (computational performance) [231. The quality of the results

produced is typically assessed by using problem dependent measures. The resources

consumed would be measured in terms of the processing and communication capacity

required to solve the prohlem. Of course, the COPS designer wishes to maximize the

functional and computational performance of the agents in a COPS when selecting

an organization. Thus, strategies are required for controlling the effects of processing

complexityand uncertainty.

Researchers expect that the choices made for ES and CP determine the manner

in which the processing load incurred when solving a subproblem is shared among

the agents in the COPS. As the number of agents in the CDPS that possess the

capability to solve a subproblem increases, the processing requirements for solving

that subproblem placed on each of them is expected to decrease. However, the com­

munication resources consumed by the agents solving a subproblem are expected to

increase. Depending on the planning protocol used (Decree or ConsensL.) between

the agents, the cost of planning may also increase.

The use of Decree and Consensus when construeting CS is expected to affect the

cost of planning, and as the number of agents in the CDPS increase&, the number of

different configurations for CS increase rapidly [671. Agents that plan by Consensus

benefit from an increase in the number of data items available during planning. The

use of additional data items when planning can result in "better" plans, but the cost

of creating the plan increases because we anticipate an increase in communication

overhead and processing capacity required to assimilate the additional data iteins.

The cost of planning using Oecree is less than that for Consensus because of the

increased lIumber of data items that must be processed by each agent when Consensus

is used for planning. Thus, the use of Decree at appropriate points in the CS of the

organization can reduce the cost of planning.

Changing WS adjusts the data distribution in a CDPS, and is believed to affect

34

the computational and fllnctional performance of the agents [:l:!. :!(i. I:!.:\. ï. :!:. :!;-,j.

Researchers have speculateu that when an agent solves a subproblelll. as tht' Ilulllbt'r

of data items in its window that are available to solve the subproblem decreases. thl'

fol!owing occurs: the number of errors in the results produced for the subproblelll

increases, the quality of the results prouuced decreases, and the processing and com­

munication resources consumed by the agent to process the data items reqllired to

solve the subproblem decreases [3, 71. When the agents plan. the elfect of thl' data

distribution on the processing and communication resources consumed wil! dep"nd

upon the type of planner that is used. In the case of a planner whit:h syntlwsiz.·s

goals using the data items that are in the combined window of t.he planning group.

or adjusts the rating of a predetermined set of goals using the data items that are

in the combined window of the planning group, it is expected that the processillg

and communication resources consumed by the agents to creat.e the plan decreasl'

as the number of data items available decreases. In the case of a planner that. Ilses

the data items that are in the combined window of the planning group to c1iminate

goals from a predetermined set. of potential actions, it is expected that the processing

and communication resources consumed by the agents to create the plan increase as

the number of data items available decreases; this occurs because many options are

explored that could have been quickly eliminated if more data items were amilnhle.

When planning, as the number of data items that are availnble in the combined win­

dow of a planning group decreases, there may be an increase in the number of plan

failures. An increase in the number of plan failures could occur because the agents in

the planning group choose goals to be included in the plan that would not be sclected

if they couId access al! the data items required for planning.

2.3 Conclusion

Our c;rganizational model provides a formai framework for studying the elfect (on

performance) of the organization selected for a CDPS in which the agents are imple­

mented as rule-based systems. The organizational model provides a mechanism for

specifying how the rule-based systems in a CDPS cooperate; the model includes a

formai description of the planning protocols used to define the coordination structure,

35

the structure of the blackboard used for sharing data items. tlll' availahility of data

items du ring both phases of problem-solving, and a metric for the data distrihution

in the CDrS (based upon a notion of distance between two data items stored on

a blackboard). The rule-based systems that are members of a CDPS employ the

problem-solving model for il1-structured problems we described in section 2.1.

Design of a COPS is a complex task, and no single thesis can address ail aspects

of CDrS design. [n this thesis, we will restrict ourselves to consider only the choic<'s

that face the COPS designer in setting the data distribution (WS) in a CDPS. gi\'eu

that ES, CP, and CS have already been specified. Considering the informai sp<'cu­

lations by different researchers in light of our formai framework for COPS systems.

we identify two issues whieh (studied in this thesis) we believe are important to the

COPS designer when setting the data distribution in a COPS:

• for a COPS in which the agents are implemented as rule-based systems solving
a specifie problem, how important is the data distribution in the COPS in
determining performance"?

- we lack l'vidence that the trends expeeted by researchers will actual1y occur
in an operational rule-based system.

- we lack evidence that the effects of data distribution on performance are
important for specifie problems, or classes of problems, other than thl'
specifie test cases reported in the literature.

• how does the availability of a specifie data item affect the performance of the
rule-base systems in the COPS?

- we arc unable to determine exactly how to set the availability of specifie
data items in order to improve the performance of the rule-based systems
in a COPS, or avuid serious failures.

36

Chapter 3

A Testbed for CDPS

"lt is common sense to take (1 method and try it.
If it faits, admit il frank/y and try another.
But above ail, try some/hing."

- Franklin D. Roosevelt, Speech, 22 Muy /9.72

Designing a testbed for experilllentai research requires the consideration of dif­

ferent requirements. Of pri mary importance is the type of experimcnts that will be

carried out using the testbed; that is, the hypotheses that will be tested in the ex­

periments, the input parameters required for conducting the experiments, and the

outputs that are to be measured rluring the experiments. Thc method chosen for t.he

implementation of the testbed is also important; the cost of constructing the testbcd

as weil as the costs of conducting the experiments for which the testbed is intcnded

must be justified by the gains that are expected from the experiments. Several of the

prototype systems used in DAI research have been very complex, and have requiw.l

several person-years of effort. For (·xample, the work expended in the DVMT project

is estimated to be 15 to 20 person-years.

The design and implementation of a testbed for experimental research is a lal·ge

task, typically requiring the participation of many people; our testbed is no exception.

My l'ole in the design, implementation, and use of our testbed has been to participate

in the conception of the design for the testbed, to act as a project leader for the

graduate students who worked on the implementation of the testbed, to integrate the

individual components of our testbed that were constructed by the graduate students

into a single functioning system, ta design the experiments ta be conducted using

37

the testbec!, anu to carry out these experiments. The people who participated in tl1l'

design of our tcstbeu arc as follows: Kristina Pitula anu .John Lyons wcre instru­

mentai in choosing the sampie problem for our testbeu; .John Lyons maue significant

contributions to the uesign of our testbed; Lee Hoc worked on the implementation

anu testing of the ru le base of our testbed; Carol Oe Koven and Kristina Pitula arc

the domain experts for our sampie problem, and they designed the test set used to

validate the functional performance of our testbed. Alun Preece helped with the de­

sign of the experiment we carried out to validate the functional performance of om

testbed.

The long term goal of our research is to explore the implications of the different

design choices avaHable to the COPS designer when selecting an organization for a

COPS in which the agents are implemented as rule·based systems. In this thesis

(our cul'l'l'nt research), we will focus on the choices available to the COPS designer in

specifying data distribution (WS). In consideration of both onr current research and

longer term research goals, we envisage our testbed to be used for different types of

cxperiments, in each stage of our research, as follows:

Stage 1: 11'1' expect to conduct experiments in which we can change the data items
available (ai) to a single rule·based system, and observe the functional and
computational performance of the system. In stage l, our testbed consists of
a single rule·based system, which allows us to specify its window (Wi) as if it
werc a member of a COPS, simulating the environment the rule·bascd systl'Ill
would face as a member of a COPS.

Stage 2: we expect to conduct experiments in which 11'1' can change the organization
imposed on a set of cooperating rule-based systems, while we observe the func­
tional and computational performance of the rule-based systems. In stage 2,
our testbed would be a complete COPS, consisting of several rule-based systems
constructed from the original single rule-baseu system used in stage 1.

ln our cul'l'l'nt research, reported in this thesis, we only conduct experiments of the

type described in stage l. However, we will discuss the features that have been

included in our testbed that will allow us to transform our testbed to conduct the

type of experiments we expect to perform in stage 2 of our research.

Based upon the experimcnts that 11'1' intend to conduct, our testbed must include

the following:

38

• A sample ill·structured problem that can be decampo'l'd aud ,ol\'l'd k '<'"

eral caaperating prablem salvers. In arder to quantitatively ml'a,II1'" funclion,d
performance, we also require a metric for evaluating the quality ai' any l't',nll
produced for the sample problem,

• A rule·based system for solving the sample problem, It mu,t he passibl,' 10

specify the availability of data items, and it must be possible ta m,'a'url' tlll'
computational performance of the system. In addition, wc rl'quire that tlll' mit'·
based system be constructed in a manner that will permit it, companent, to hl'
reused when we construct a COPS for solving our sample problem,

• The construction of any system is nat complete until the system ha, l'''l'n t,·'Il'd.
demonstrating that the system is capable of solving the prablem for which il.
has been constructed. In the case of our testbed, validating its ahility 1.0 ,olv<'
our sample problem is especially important, because wc intend 1.0 ,tudy t111'
system's ability to solve our sample problem as we vary the data items available.
ln order to be certain that our testbed can properly exhibit the reduction in
performance that we expect when the number of data items available to lhe
system is reduced, we must establish that the ability of the system to solve our
sam pie problem is ;'respectable" when ail data items are availabl<',

ln this chapter, we present the design of our testbed, and present results from an

experiment we conducted using our testbed. We describe the sampie problem wc hav<'

chosen for our testbed, which is called Blackbox, We explain why Blackbax is consid­

ered ta be an ill·structured problem, and discuss the decomposition of B1ackbax, We

present our rule·based system fol' solving the Blackbox puzzle, called the Dlackbax

Expert. We explain how the Blackbox Expert permits the experimenter ta control

the availability of data items, and how the components of the Blackbox Expert can

be reused to construct a set of rule·based systems that will cooperate to sol ve the

Blackbox puzzle. We then discuss the method used ta validate the functional per­

formance of the Blackbox Expert; we compare the results produced by the Blackbox

Expert for a set of test cases with the results produced by humans for the same set of

test cases. We then present results from an experiment that wc conducted, using lhe

Blackbox Expert, that quantifies the elfects of data distribution 'ln fllndional and

computational performance, confirming the expectations of researchers as discussed

in chapter 2.

39

Il A c

o

- 0

---'- ---- -- _. ,, ,, • ,, •
, - j- --, , •, • , ,, , ,
1 ___

~
, ,, ,

• , , ,, , ,
;

___ 1 1_ .L ---,, • • ,, ,
, , ,, • ,, ,, • ,

A -

Il -

Il R c
A-D: Dcncclcd Bcmm
R: RCnCClCd Bcams
Il: Absortlcd Scams

• Ilall Localion

Figure :1.\: Beam Behavior in B1ackbox

3.1. The Blackhox Puzzle

The Blackbox puzzle consists of an opaque square grid (box) with a number of balls

hidden in the grid squares. The puzzle solver can lire beams into the box. These

beams interact with the balls, allowing the puzzle solver to determine the contents of

the box based on the entry and exit points of the beams. As illustrated in Figure :3.1,

the beams may be lired from any of the four sides of the box (along one of the grid

rows or columns) and follow four simple rules:

• If a beam hits a bail, it is absorbed (labeled by 'H').

• If a beam tries to pass next to a bail, it is def!ected 90 degrees away from the
bail in the square diagonally next to the bail (labeled alphabetically except fOI'
'H' and 'R').

• If a beam tries to enter the grid at a square adjacent to a border square that
contains a bail, it is reflected back 180 degrees (labeled by'R').

• If a beam tries to pass between two balls, it is ref!ected back 180 degrees (Iabeled
by'R').

The objective of the puzzle solver is to determine the contents of as many of the

grid squares as possible, while minimizing the total value of beams lired. Beams that

40

are absorbed or refiected have a value of one point. whil.· deflections have a vallll' ,,1'

two points. Beams that are absorbed or refiected are given one point because th"

puzzle solver only knows the entry point of the beam, and that the beam did nol

exit the blackbox. Beams that are defiected are given a value of two points becans.·

the puzzle solver knows the entry point of the beam as weil as the exit point for tl\('

beam: the additional data indicating the exit point of the beam is very nscful to the

problem solver in determining the contents of the grid squares.

The Blackbox puzzle is solved iteratively by firing beams and observing theil' "XiI

points l'rom the grid. The information obtained l'rom observing the exit points of

the beams, and the problem solver's knowledge of how the beam l'an be alfectecl

by the balls within the box are used to dr•.w conclusions about the contents of the

box. In addition, the problem solver must decide if the conclusion drawn for a gricl

square is certain. As an intermediate step, the puzzle solver l'an determine that ther<'

is evidence indicating that a square is both cmpty and contains a bail, signaling a

conflict. Conflicts may be resolved as additional l'videncc is obtained. For exalllple,

additional evidence may indicate that the bail is certain. Thus, the grid sqnare would

be considered to certainly contain a bail, and the evidence suggesting that the sqnare

is empty would be disproven.

In certain configurations of the Blackbox grid, the contents of a number of gl'icl

squares cannot be identified; we l'l'fer to these as shieltll'd l'l'9iolls. A region is calicd

a shielded region if it is a proper subset of the Blackbox square, it contains at least

one bail, and the bail is shielded by other balls that are surrounding it, 50 that no

beam l'an penetrate into the r"l',ion. An example of a shielded region is shown in

Figure 3.2, wherein the shielded region is shaded. No beam l'an penetrate into the

shaded region. The balls contained in this region are called "unmappable balls". In

the case of a shielded region, the puzzle solver l'an only state that the contents of

each square in the region l'l'mains unknown.

Unlike the case of other weil known games and puzzles such as chess, there are no

known ways of rating a l'l'suit produced by a Blackbox puzzle solver. In consultation

with a group of nJackbox experts, a metric has been devised to evaluate the quality

of a l'l'suit produced for any test case of the Blackbox puzzle. The factors that

41

• •
• •

Figure 3.2: An Example of a Shielded Region.

were chosen to determine the quality of a result are: the number of balls that were

correctly located, the number of grid squares (other than those which contain balls)

whosc contents are correctly idcntified, and the total valuc of the beams fired to solve

thc puzzle. As stated in the objectives of Blackbox, the best result wouId have ail

the balls and grid squares correctly identified as weil as a minimum total value for

the beams that were fired.

Thc met rie that was adopted is as follows:

where:

BC : The number of correctly loeated mappable balls.

B IV : The number of incorrectly positioned balls.

BM: The total nurnbcr of mappable balls.

LC : The number of grid squares which do not contain a mappable bail that are
corrcctly idcntified.

L IV : The number of grid squares which do not contain a mappable bail that are
incorrectly identified.

LT: The total number of grid squares whieh do not contain mappable balls.

bV : The total value of the beams fired to solve the puzzle.

bT: The total number of entryjexit positions of the Blaekbox.

42

'"co.:>
u
<

Choose 0 serve

,--_.:..:N."o Adequatcl-_-'
Evidencc

Figure 3.3: Diagnosis Type Problems

The SCORE metric assigns a numerical value to a result produccd for Rny lest case

of Blackbox. A result with a lower score is considered to be of better '1uality than

a result with a higher score. The weights placed on each factor rank the number of

baIJs correctly identified as the most important factor, followed by the value of the

beams fired, and the number of correctly identified grid squares (those not containing

baIJs) is the least important.

Blackbox is an example of a diagnosis type problem (sel' Figure 3.3). Diagnosis

type problems are structured such that there is a set of facts, and a set of actions

available to the problem solver. The problem solver must examine the set of fads

(or evidence) currently available, and based upon the evidence, the problern solver

chooses one of the actions; then, the problem solver performs that action. The result

of performing the action will be the introduction of new facts, which the problem

solver can use to solve the problem. The problem solver can repeat this proccss until

it is determine that there is adequate evidence available to reach a conclusion for the

problem, or that none of the actions is likely to aIJow a conclusion to be reached.

Blackbox can be used to model many diagnosis type problems; for example the

Blackbox puzzle could be used to model medical diagnosis: the beams fired by the

problem solver are analogous to symptoms reported and diagnostic tests ordered by a

physician, placing a baIJ is analogous to selecting a disease, and marking a square as

empty is analogous to ruling out the possibility of a disease [30]. Our metrie for the

43

quality of the result produced by the problem solver (S'CORE) can he adaptee! tn

reflect the values that are appropriate in evaluating a problem solver for the prohlem

that is being modeled, by adjusting the weights used in the SCORE metric. For

example in the case of medical diagnoses, a physician might choose the weights used

in the S'CORE metric to make the selecting of the correct disease most important.

followed by minimizing the number of tests ordered; this reflects the value that making

a correct diagnosis is considered most important by physicians, and physicians are

also sensitive to the fact that they should subject their patients to as few tests as

possible. On the contrary, the administrators of private hospitals might not he that

concerned about minimizing the number of tests ordered by physicians, and they may

choose different weights for the SCO RE metric than physicians.

Blackbox is an ill-structured problem. At first glance, representing the state of

the Blackbox puzzle seems trivial. However, if we consider the set of hypotheses that

must be constructed by the puzzle solver as part of the state of the problem, then

representing the state of the Blackbox puzzle is not trivial [68]. When the puzzle

solver selects a beam to be fired, the outcome of firing the beam is not known. AIso,

the number of states in the state space for the Blackbox puzzle is large because of

the number of dilferent ways in which the balls can be placed in the grid.

Blackbox is a problem that is suitable to be decomposed and solved hy several

puzzle solvers at the same time. The Blackbox puzzle can be decomposed geograph­

ically, and partial results to the Blackbox puzzle are possible as weil as acceptable.

A distributed version of the Blackbox puzzle has been created in which the Blackbox

grid is divided into several regions, and a dilferent problem solver is given the re­

sponsibility of determining the contents of the grid squares in each region [68]. Each

problem solver has access to the grid squares in its region, and these grid squares con­

stitute its local view. De Koven et al. have conducted several experiments in which

teams of human prohlem solvers have cooperated to solve the distributed version of

the Blackbox puzzle [69].

The B1ackhox puzzle is a good choice as a sampie problem for our testbed. The

Blackbox puzzle meets our criteria for ill-structuredness, it can he decomposed and

solved hy several cooperating problem solvers, and we have a metric that can he

44

used to evaluate the result produced by a problem solver. [n addition. Rlackhox is

cost effective for use in laboratory experiments: knowledge acquisition is not "too

expensive", the time required by a human puzzle solver to solve a single Blackbox

puzzle is not "too" long, and the results we obtain by studying the solviug of the

Blackbox puzzle are generalizable to other diagnostic type problell1s. The process

of knowledge acquisition, required to construct a rule base for solving the Blackbox

puzzle, is not too expensive because it is simple for a human to Icarn to solve R1ackbox

puzzles; thus, we are not obligated to consume the time of highly pricccl hUlllan experts

in constructing the rule base. The time required for a person to solve a single test

puzzle varies between 10 and 30 minutes; thus, the cost of collecting data concerning

the ability of human puzzle solvers to solve a set of BlackbOlc puzzles is not prohibitive.

3.2 The Blackhox Expert

The Blackbox Expert is our rule-based system for conducting experirnents in which

we change the data items available to a single rule-based systenl, whilc we observe the

functional and computational performance of the system [701. The Blackbox Expert

allows a human experimenter to specify a window (Wi) for the Blackbox Expert,

changing the data items available as if the Blackbox Expert were a membcr of a

CDPS, simulating the environrnent the rule-based system would face as a II1crnb..r of

a CDPS. In addition, we expect to be able to reuse the components of the Blackbox

Expert when we construct a t!lst bed consisting of several cooperating rule-based

systems, to be used in subsequent stages of our research.

In the types of experiments that we expect to conditct with the Blackbox Expert,

an experimenter may wish to have the Blackbox Expert solve a single test case of

the Blackbox puzzle, while the experimenter monitors the progress of the Blackbox

Expert as it solves the puzzle. In other more complex experiments, the experimcnter

may wish to have the Blackbox Expert solve a set of test cases repeatedly, and each

time the same test case is solved, a different number of data items are available to

the Blackbox Expert. The features that must be included in the Blackbox Expert in

order to permit an experimenter to conduct these types of experiments are as follows:

• the ability for the experimenter to set the data items available to the Blackbox

45

Expert.

• the ability for the experimenter to record the result produced by the Blackbox
Expert for each test puzzle that it solves.

• the ability for the experimenter to evaluate the functional performance of the
B1ackbox Expert. The Blackbox Expert must apply the SCORE metric to each
result it produces.

• the ability for the experimenter to monitor the computational performance of
the Blackbox Expert. When dealing with rule-based systems, computational
performance can be measured by recording the number of basic opel'llliolls per­
formed - inferences (or ru les fired), and accesses to working memory [ill. The
Blackbox Expert must record the number of rules fired and the number of facts
it accesses as it solves each test puzzle.

• the ability for the B1ackbox Expert to solve a single test case of the Blackbox
puzzle, or solve a set of Blackbox puzzles without requiring human intervention.

The B1ackbox Expert is composed of four modules: the User Interface, the Test

Puzzle, the Current Hypothesis, and the Puzzle Solver, as shown in Figure 3.4 [i21.

The User Interface allows the experimenter to control the Blackbox Expert. The

Test Puzzle maintains the configuration of the current test puzzle that the Blackbox

Expert is required to solve. The Puzzle Solver is a rule-based system responsible for

solving Blackbox Puzzles, and the Current Hypothesis module contains the current

state of the result that the Puzzle Solver is constructing as weil as the entry and exit

points fol' the beams that"have been fired.

The Test Puzzle is responsible for simulating the problem domain. It contains

the ru les describing the basic principles of the interactions that can occur between

the beams and the balls inside the B1ackbox. The Test Puzzle maintains the data

structure thaL contains the location of the balls within the Blackbox grid for the cur­

rent test puzzle. The Test Puzzle receives from the Puzzle Solver (X, Y) coordinaLes

of Lhe entry point for beams that are fired by the Puzzle Solver. The Test Puzzle

determines the trajectory of beams, and returns the (X, Y) coordinates of the exit

point for the beams.

The Current Hypothesis module contains the Puzzle Solver's current hypothesis

about the contents of the B1ackbox grid squares, the certainty of any conclusion

that has been drawn for the grid squares, and a Iist of the entry and exit points

of the beams that have been fired (referred to as shot records). The Puzzle Solver

46

..

Puzzle Solver

lnierence Engine
Current Hypothesis

, Grid Cenainty
Test Puzzle Be:lll\ , Be:lll\

Selection
,

Analysis Grid Coments,
1,

Rule ,Base Shot Records

Working Memory

User Interface

Blackbox Expert
..

Figure 3.4: Structure of the Blackbox Expert

accesses the Current Hypothesis module only through a set of pre-defined functions,

which specify the interface between the Current Hypothesis module and all the other

components of the Blackbox Expert. These functions allow the Puzzle Solver to record

a hypothesis for the contents of a grid square, to check the certainty of a hypothesis

for the contents of a grid s(]uare, to check a region of the grid to SCl' if il is kllowlI tu

be emply, etc.

The Current Hypothesis module provides the mechanism for conlrolling the avail­

ability of data items to the Puzzle Solver that we require for our experiments. The

access functions defined for the Current Hypothesis module check the access privi­

leges of the Puzzle Solver, before the Puzzle Solver is given access to any of the data

items that are stored within the Current Hypothesis module. The access privileges

of the Puzzle Solver are set by the human experimenter via the User Interface.

The Puzzle Solver is responsible for solving the Blackbox puzzle. The Puzzle

Solver is composed of the standard modules found in rule-based systems: the rule

base, an inference engine, and working memory. We make use of the CLIPS expert

system shell in order to implement the Puzzle Solver [73]. CLIPS provides the in­

ference engine required for the Puzzle Solver. CLIPS also manages the storage and

47

(d.trul. W91-24-1.ft
(pha•• selection)
(po••-b.ll-toand ? ?roll ?eol $?)
(po••-b.ll-tound? ?roI2l:(>= ?rol2 (+ ?roll 2» ?eol $?)

(SKOTLEfT =(+ ?roll Il 0 $?)

(not (AOJUSTED-SKOT =(+ rol?1 1) 0 W91-24-1.ft)
(t••t (i,,"pty ?roll 1 ?rol2 (-?eol 1»)

=,
(••••rt (ADJUST-SKDT =(+ ?roll 1) 0 50 W91-24-1.tt 0»

)

; Fin only during beu selection phase

; Th. b.ll••hODld b. in th.....
: coluan, It lelst tao rovs apart
i Abela bas Dot been fired that viII
; p." n'lt to th. 'pp.r b.ll
; Only .djD.t th. b... one.
: 1. th. grid ••pty b.tl••n th. b.ll.
: and th••dg. Dt th. bOl

: Then adjult the value of the beam

Figure 3.5: Sarnple Bearn Selection Rule

retrieval of facts in working rnernory, and the rule base is constructed using the rule

language provided by CLIPS.

The Puzzle Solver uses a two phase approach when solving the Blackbox puzzle;

the rule base of the Puzzle Solver is divided into two portions: bearn selection, and

bearn analysis. The rules for beam selection encode the knowledge required to deter­

mine the next beam that is to be fired by the Problem Solver. The rules for beam

analysis encode the knowledge required to analyze the beam entry and exit points,

providing hypotheses about the contents of the grid squares. Bearn selection corre­

sponds to the planning phase (PPi) of our problem-solving model for ill-structured

problems, and beam analysis corresponds to the execlltion phase (Ej).

Figure 3.5 shows a sample beam selection rule, called W91-24-1eft. This rule

will fire when there is a beam that has not been fired which would potentially pass

bdwcen two balls, and the area of the grid that the beam wOllld pass through is known

to be empty. Once the rule fires, it asserts a fact that will cause an adjustment to

the beam's rating. The pre-defined function is.empty is used by W91-24-1eft to

access the Current Hypothesis module, and is.empty determines if the area of the

grid where the beam would pass before it reaches the bail is empty.

The User Interface, shown in Figure 3.6, is responsible for handling the interaction

between human experimenters and the Blackbox Expert. It allows the experimenter

to monitor and assert control over the Blackbox Expert's progress as it solves the

Blackbox puzzle. The User Interface consists of four areas: the Real Grid, the Hy-

48

pothesis Grid, the Dialog Window, and the Command buttons. The Real Grid allows

an experimenter to view the contents of the Blackbox grid, as is contained in the Test

Puzzle module. The Hypothesis Grid allows an experimenter to view the current

hypothesis of the Puzzle Solver, as is contained in the Current Hypothesis module.

The Dialog Window allows the Blackbox Expert to annotate the actions it takes to

solve the puzzle, providing a trace of its actions for the experimenter to monitor.

The Command buttons allow the experimenter to issue commands to the Blackbox

Expert, setting the conditions for the different experiments that the experirnenter

wishes to conduct. The commands that can be issued by the experimenter are as

follows:

• load a single test puzzle into the Test Puzzle module.

• solve the test puzzle that is currently stored in the Test Puzzle module, pausing
after each shot is fired, until instructed to continue.

• solve the test puzzle that is currently stored in the Test Puzzle module, without
pausing.

• set the window of the Puzzle Solver, to be enforced by the Current Hypothesis
module, as the Puzzle Solver is solving test puzzles.

• save the result produced for? test puzzle, the seoRE of the result, and the
computational performance of the Blackbox Expert when solving the test puzzle
to a file.

• execute a sequence of commands which are contained in a file. This option is
used by the experimenter to instruct the Blackbox Expert to solve a set of test
puzzles.

When we construct a test bed consisting of several cooperating rule-based systems

to be used in stage 2 of our research, we expect to be able to reuse the components

of the Blackbox Expert, as shown in Figure 3.7. The cooperating rule-based systems

will interact with each other when planning using the Decree and Consensus planning

protocols, and share data using a blackboard. Each rule-based system has a window

(Wi) on the blackboard. The Puzzle Solver module will be used to create the set

of cooperating rule-based systems, and the working memory will contain the facts

that will comprise the local view of the Puzzle Solver. The original rulll base of the

Puzzle Solver used in the Blackbox Expert will be decomposed to create the rule bases

required for the set of rule-based systems, based upon the type of experiments that

49

181 xI1bm6/n

WIIDIl

REAl GllID -1- HYPlI GIlID

Figure 3.6: The Blackbox Expert'. User Interface

50

Puzzle Solver Punie Solver

Inference Engine (nferencc Engine
Consensus

Rule BIlSC Rule Base:

1 1
Test Puzzle

Working Memory Working Memory ,
j Current Hvpolhesis

Grid Cenainty

Pu7.z1e Solver
Grid Contents

Inference Engine Shot Records

Rule Base:

~ Blackboard
Working Memory

1 User Interface

Figure 3.7: Testbed for Cooperating Rule-Based Systems

are to be carried out. The Current Hypothesis and the Test Puzzle module will be

combined to form the blackboard used by the rule-based systems. The data structures

contair.~d in the Current Hypothesis module will be shared by ail the rule-based

systems, ac.cording to the access privileges that each rule-based system is grantcd,

when the experimenter sets the window of each rule-based system. The beam exit

points that are calculated by the Test Puzzle module will be placed on the blackboard,

and the rule-based systems will only be able to access the shot records which aw

contained within their window. The User Interface will allow the experimenter to set

a window for each rule-based system, and issue commands to the rule-based systems.

The Blackbox Expert permits experimenters to conduct experiments in which they

can change the data items available to a single rule-based system, while observing the

functional and computational performance of the system, in a cost effective manner.

Our testbed permits an experimenter to observe the ability of the Blackbox Expert

to solve a single Blackbox puzzle, or a set of puzzles, recording the result produced,

recording the functional performance of the Blackbox Expert, and recording the corn­

putational performance of the Blackbox Expert. The Blackbox Expert is able to solve

a set of test puzzles without requiring the intervention of the experimenter, and the

51

lime required by the Blackbox Expert 10 solve a single lest puzzle is bplwP('1l :!lJ

and 30 seconds; thus, the cost of conducting experimenls with the Blackbox Experl

is not prohibitive. The development time for the Blackbox Expert is estimaled 10

be about one person-year, which is "reasonable" given the resources available in our

environment.

3.3 Validating the Performance of the Blackhox
Expert

The validation of computer software systems refers to the process of determining if

the system satisfies the need for which it was designed [74]. Validation of softwarp

systems is concerned with the factors that determine the system's usefulness, such as

correctness of the results the system produces, its speed, efficiency, cost effectiveness,

and many human factors. For our purposes, we will concentrate on validating only

the functional performance of the Blackbox Expert.

The functional performance of the Blackbox Expert is validated by comparing

the result it produces with the result produced by humans, for a specially designed

set of test puzzles. A group of people, whose familiarity with Blackbox ranges from

a few hours of exposure to several years of exposure, solved a set of test cases for

Blackbox. Using the SCORE metric, each person received a rating for their ability

to solve Blackbox puzzles. The Blackbox Expert solved the same set of test cases

and was assigned a rating for its ability. Then, we compared the rating obtained by

the Blackbox Expert with the ratings of the people, establishing the skilllevei of the

Blackbox Expert.

The Blackbox puzzle includes several features that facilitate the validation of the

Blackbox Expert. Any result that is proposed by a person for a test case of the

Blackbox puzzle can be evaluated using the SCORE metric. The time consumed

by humans to solve each test case of Blackbox is between 10 minutes for someone

with a lot of experience, and 30 minutes for a beginner. The time required for the

Blackbox Expert to solve a test puzzle varied between 20 and 30 seconds. Therefore,

validation of the Blackbox Expert is not costly. Developing a population of human

experts against whose performance the Blackbox Expert can be validated is simple

52

because the effort required by a human to become skilled at solvillg Blarkhox is Ilot

prohibitive.

Kristina Pitula and Carol De Koven (both having several years of experienre

in solving Blackbox puzzles) designed the set of test cases used for validating the

Blackbox Expert. The puzzles in the test set were given a rating of easy, medium,

or hard. Kristina Pitula and Carol De Koven also participated in a group discussion

with several other people who also had a lot of experience with Blackbox. The group

focused its discussion on the factors that would determine the degree of difficulty of

a test case of the Blackbox puzzle. Using the input from this discussion. the two

people responsible for the test set determined the criteria used to devclop the test

set, and placed each test case that was developed into one of the three categories

(easy, medium, and hard).

Kristina Pitula and Carol De Koven decided that the following features would

contribute to the complexity of a test case:

• the presence of unmappable grid squares.

• beam entry and exit points that l'an be accounted for by many different trajec·
tories through the grid.

• the presence of balls in the corners of the box.

• a positioning of balls that results in a large number of hits and reflections.

The presence of unmappable grid squares increases the cornplexity of a test case

because it makes it difficult to decide when a result has been found. Many people seem

to have an aversion to leaving parts of the Blackbox grid unknown. They will aetually

convince themselves that they are able to pinpoint the locations of balls which aetually

are unmappable. People tend to always choose the simplest solution; thus, when there

are many possible trajeetories that l'an account for the entry and exit points of a beam,

people tend to make errors. If people do not confirm their hypotheses for the locations

of the balls by firing more beams, they risk making mistakes. The strategy used by

many people when solving Blackbox is to work from the edges of the grid towards the

center. Balls in the corners of the grid prevent a person from following this strategy,

thereby increasing the difficulty of solving the puzzle. Defleetions provide a lot of

information than hits or reflections because deflections often pinpoint the location of

53

~.+:."+'<~::-.~.~.+:.+:.~o"+'."+'::-.?;o.~.+:.+:.~.~.::-< w

Test Case

Figure 3.8: Best, Median, and Worst Player

a bail, and often tnciicate that many grid squares are empty. A puzzle in which the

positioning of the balls results in many hits and refiections is very difficult to solve,

as there is very little information with which one can determine the contents of the

grid.

The rating of each person who participated in our validation experiment was

done in two stages: a learning stage, and a puzzle solving stage. The learning stage

included a set of instructions explaining the basic principles of the Bla.:kbox puzzle as

weil as the SCORE metric, a demonstration of how a person would solve the puzzle,

and a set of sampie puzzles designed to demonstrate the principles and the SCORE

metric. The puzzle solving phase required each person to solve the test cases, which

were presented to them in a random order. Even the people with a lot of previous

exposure to Blackbox were required to go through the learning phase, in order to

ensure that they fully understood the SCORE metric.

Fifteen people participated in our validation experiment. They solved the 17 test

cases in our Blackbox test set. Figure 3.8 shows the scores obtained by the people

who had the best (Iowest), median (middle), and worst (highest) average score for ail

seventeen test cases. Test cases A, B, and C were placed in the easy category, cases D,

54

•
TeslCase

1 Worsl Mecian -e- Sesl

Figure 3.9: Best, Median, and Worst Scores

E, F, and G were placed in the medium category, and the other test cases were placed

in the hard category. The person with the best score was also found to be the most

consistent puzzle solver; this consistency is evident from the narrow fluctuation in the

scores for the person. The scores for the best person tend to rise slowly from easy

to hard test cases. The person at the median has scores that fluctuate more widdy

than the best player. The person with the worst average score also experiences the

largest variation in score.

The best, worst, and median scores for each test" case are shown in Figure :l.9.

Again, the lowest scores obtained by any person exhibit the least variation. The

median scores vary more than the best scores and the worst scores have the largest

variation. These scores also exhibit an upward trend when the easy, medium, and

hard test cases are compared.

The average scores and total number of errors made in placing balls in the Black­

box grid by the people who solved the test set are shown in Table 3.1. Both the

average score and total errors made in placing the balls increase when comparing the

easy, medium, and hard test cases. As expected, this trend seems to suggest that the

55

s

1 8.0 4.0 18.0 30.0
2 0.0 0.0 2.0 2.0
3 0.0 0.0 9.0 9.0
4 0.0 0.0 4.0 4.0
5 2.0 1.0 9.0 12.0
6 2.0 2.0 23.0 27.0
7 0.0 0.0 6.0 6.0
8 0.0 6.0 8.0 14.0
9 0.0 0.0 7.0 7.0
10 0.0 6.0 21.0 27.0
11 0.0 8.0 17.0 25.0
12 0.0 4.0 13.0 17.0
13 2.0 20.0 33.0 55.0
14 8.0 15.0 30.0 53.0
15 10.0 22.0 27.0 59.0

AVG 2.1 5.9 15.1 23.1

AV\> "'-UHt:
EA:;Y Mt:1) HAHO AU.

1 80.0 722 84.7 80.9
2 60.0 66.3 69.3 66.9
3 45.0 56.3 73.5 64.4
4 692 74.4 79.1 762
5 64.7 80.1 82.7 78.9
6 50.0 652 97.8 81.7
7 57.5 62.5 782 70.8
8 61.7 107.0 88.1 87.9
9 592 62.5 78.6 71.4
10 59.2 80.8 93.3 84.3
11 66.7 93.9 114.7 101.4
12 54.2 76.6 93.5 82.6
13 46.7 137.4 130.4 117.3
14 86.1 1182 124.4 1162
15 102.6 1252 141.1 130.6

AVG 642 652 95.3 87.4

Table 3.1: Average Score and Total Errors in Placing Bal1s

performance of the people when solving the test cases from each of the three groups

in our test set is dilferent. In order to validate this assumption, we performed an

analysis of variance to determine if the dilference that is observed in the mean scores

of the three groups can be accounted for by the variance in the scores of al1 the test

cases solved. The ANOVA table is shown in Table 3.2. The F ratio obtained \Vith

2 and 252 degrees of freedom is 13.42. An F ratio of 4.69 or greater is needed for

significance with a confidence level of 99%, thus we can reject the nul1 hypothesis

that /l•••u = /lm.dium = /lh.rd.

Having determined that the average scores for the three groups are statistical1y

dilferent, we must now examine the individual dilferences between the groups. Ta­

ble 3.2 shows the confidence intervab for the pairwise comparisons of the means

of the groups in the test set. These comparisons are done using an F value of

F2,252,.95 = 3.035. As the confidence interva1s for /l•••u - /lm.dium and /l•••u - /lh.rd

do not contain zero we can reject the nul1 hypotheses (/l...u - /lm.dium) = 0 and

(/l•••u - /lh.rd) = O. Thus, /l•••u < /lm.dium and /l••,U < /lh.rd' However, the con­

fidence interval for /lm.dium - /lh.rd does contain zero, which does not permit us to

reject the nul1 hypothesis (/lm.dium - i'h.rd) = O. Thus, there is a statistical dilfer­

ence between the easy and medium groups, the easy and hard groups, but not the

56

SOurce al VanaUan Sum 01 ~uarel> QI Mean :>auare F
Between group 33915.97 2.00 16957.99 13.42
Within group 318506.48 252.00 1263.91
Talai 352422.45 254.00

n ence
Lower mtt

-40.77
9.38

Table 3.2: Analyses of Variance

medium and hard groups. The factors we used ta place the different test cases into

the groups are valid. However, the difference betwcen the medium and hard groups

is not confirmed.

The last set of tests ta be performed on our test set are the group comparisons

shown in Table 3.2. The confidence intervals are given for p...u - (!!!ll<'!""!J+""'''!)

and ph.rd - ("....+~m.d.um) using an F value of F2.252 ••95 = 3.035. In both cases,

we can reject the null hypothesis that (P...u - ("m'd",,;+eh"")) = 0 and (jlh.rd ­

("...y+~m'd,um)) = O. Thus, the easy group is different from tl;e average of the medium

and hard groups and the hard group is different from the average of the casy and

medium groups.

The performance of the Blackbox Expert on the test cases is shown in Figure a.1 o.
The Blackbox Expert is compared to the people who were rated as the best, median,

and worst players. Except for one test case (1), the best player performed better than

the Blackbox Expert. The Blackbox Expert performed better than the worst player

in 15 of the 17 test cases. The Blackbox Expert performed better than the median

player in 7 of the 17 test cases. The two test cases (C and P) where the Blackbox

57

Figure 3.10: Scores of the Blackbox Expert

Expert performed poorly compared to the worst player indicate a deficiency in the

knowledge base. Both t€3t cases C and P have balls located near the corners of

the Blackbox grid. The knowledge base of the Blackbox Expert is lacking rules to

determine when balls are located near the corners of the Blackbox.

The average score and the total number of errors made placing balls by the humans

and the Blackbox Expert are shawn in Table 3.3. The Blackbox Expert on average

made fewer errors locating balls .than the humans. The lowest total number of errors

Averaae SCOre
EPSY MEDIUM HARD ALL

P 642 852 95.3 87.4
EXPERT 642 73.6 88.9 80.9

Averaae Bail Error
n.vn." 2.1 5.9 15.1 23.1
EXPERT 0.0 2.0 12.0 14.0

Table 3.3: Average Score and Bali Errors

58

Oier.il rlldœx &pert

Han! ~&pert

Medim ~ElpeIt

Easy ~ElpeIt

:l5 4S 55 Ils ~ S5 !l5 lbS Ils Ils Iii l'

SCORE

Figure 3.11: Blackbox Expert vs Humans

(2 errors in 17 test cases) was made by a person with several years of experience

solving the Blackbox puzzle as seen in Table 3.1. Also, the Blackbox Expert had a

better average score on each group of test cases in the test set except on the easy

test cases where it had the same average score. When the total number of errors

in locating balls is considered, the Blackbox Expert ranks 7th compared to the [,)

people.

The average score obtained by the Blackbox Expert for each group of test cases

as well as the entire test set is compared to the average score obtained by the people

in Figure 3.11. The Blackbox Expert ranks loth on the easy test cases, 7th on the

medium and hard test cases, and 7th on the entire test set. The improvement observed

in the Blackbox Expert's ranking on the medium and hard test cases occurs because

even though the Blackbox Expert and the hu.nans can lind all the balls in the easy

test cases, the Blackbox Expert requires more beams to solve the test cases. [n the

case of the medium and hard test cases, the Blackbox Expert still tends to lire more

beams than the humans. However, on average it makes fewer errors, which allows it

to improve its position.

Considering the types of experiments that we intend to conduct using the Black·

59

hox Expert, the results of our validation experiment indicate that the functional

performance of the Blackbox Expert is acceptable. The Blackbox Expert '5 ability to

solve Blackbox puzzles is superior to the ability of many humans, but not superior

to humans with a lot of experience solving Blackbox puzzles. We believe that the

ability of the Blackbox Expert is adequate, permitting us to to study the Blackbox

Expert '5 ahility to solve Blackbox puzzles, as we vary the data items available. We

believe that the Blackbox Expert can exhibit the reduction in performance that we

expect when the number of data items available to the system is reduced, because its

ability to solve test puzzles is respectable when compared to the ability of humans to

solve the same test puzzles.

3.4 Data Distribution and Performance: An Ex­
periment

Civen the existence of the Blackbox Expert, we can now conduct experiments specif­

ically to examine the effects of data distribution on performance. Based upon our

survey of the literature, in chapter 2 we discussed the trends in the change in per­

formance that were expected by researchers as the data distribution chosen for a

CDPS is varied by the CDPS designer. However, we lacked evidence that the ex­

pected trends will actually occur in operational rule·based systems. In this section,

we present results from an experiment that quantifies the eifects of data distribution

on the performance of the Blackbox Expert [31]. We then discuss how the insight

gained from our experiment may be used by a CDPS designer, when selecting the

data distribution in a CDPS for solving a diagnosis type problem.

3.4.1 Experimental Design

We conducted our experiment using the Blackbox Expert to solve a set of randomly

selected test cases of the Blackbox puzzle, and measured the Blackbox Expert '5 per­

f(.rmance. We used randomly selected test cases in order to avoid introducing any bias

into the experiment. While our experiment is conducted using the Blackbox Expert to

solve a given set of test puzzles, we also determine the implication of the results from

this experiment on the entire population of Blackbox puzzles; we statistically analyze

60

the data obtained in this experiment to discover if any of the trends ohst'r\"<'c1 in t hl'

data collected using the randomly selected test puzzles are statistically signilicant. :\

statistically significant trend indicates that the trend observed in the data obtained

from our set of test puzzles is representative of the performance we can expect when

the Blackbox Expert solves any Blackbox puzzle.

Our experiment involved having the Blackbox Expert solve 20 randomly selected

puzzles. Each puzzle is solved 10 times with a reduced number of data items availahlt'

(measured using the information deficit metric) on each successive run. The nIackhox

Expert started by solving each puzzle with an information deficit of zero (ail data

items are available). On each successive run, the information deficit faced by the

Blackbox Expert was increased by 0.1. Each time a test puzzle is solvecl by the

Blackbox Expert, we recorded the Blackbox Expert's functional and computational

performance.

The hypotheses that Wc tested in our experiment considered the functional and

computational performance of the Blackbox Expert in both problem-solving phases:

beam selection (PP;), and beam analysis (E;). The eifects of an increase in infor­

mation deficit on computational performance are hypothesized to be as follows:

Hl: the processing resources consumed by a rule-based system to process the data
items required to solve a subproblem decreases. In the case of the Blackbox
Expert, the processing resources consumed to solve a subprohlem is given hy the
average number of rules fired during each beam analysis phase, and is denoted
by ER,

H2: the communication resources consumed by a rule-based system to process the
data items required to solve the subproblem decreases. In the case of the Black·
box Expert, the communication resources consumed to solve a subproblem is
given by the average numberof accesses made to the Current Hypothesis module
during beam analysis, and is denoted by EA •

Ha: the processing resources consumed by a rule-based system to create a plan de­
creases. In the case of the Blackbox Expert, the processing resources consumed
to create a plan is given by the average number of rules fired during beam
selection, and is denoted by PRo

H4: the communication resources consumed by a rule-based system to create a plan
decreases. In the case of the Blackbox Expert, the communication resources
consumed to create a plan is given by the average number of accesses to the
Current Hypothesis during beam selection, and is denoted by PA'

61

The effects of an increase in information deficit on functional performance

are hypothesized to be as follows:

Hs: the number of errors in the results produced by the rule-based system for the
subproblem increases. In the case of the Blackbox Expert, the number of errors
in the results produced is given by the number of bail errors, and is denoted
by Be. A bail error occurs whenever a bail in the Blackbox gridis not located
by the Blackbox Expert, or the Blackbox Expert concludes that a grid square
contains a bail, when in fact it does not.

HG: the rate of plan failures increases. In the case of the Blackbox Expert, a
plan failure occurs whenever a beam is fired and then no changes are made
to the grid during the next beam analysis phase. The plan failure rate is

(plan failures 100) d' d t d b Dbeam selection phases x ,an IS eno e Y 'F·
H7 : the quality of the results produced by the rule-based system decreases. In the

case of the Blackbox Expert, the quality of the results produced is given by the
SCORE metric.

We statistically analyzed the data obtained (curves for functional and computa­

tional performance) to determine its use in establishing the performance that we can

expect with the Blackbox Expert solving any Blackbox puzzle; :'~ing a multivariate

repeated measures design, we performed an analysis of variance on the data collected

for each measure [75J. A separate analysis was performed for. each measure, because

the hypotheses that we tested in our experiment do not consider any joint effects of

information deficits. The contrasts that we chose to use for the analysis of variance

are as follows:

• the measures for computational performance (EA, ER, PA, and PR) were tested
using the standard polynomial contrasts. The polynomial contrasts indicate if
there exists a statistically significant trend in the data being tested. A statis­
tically significant trend identified in the data would allow us to establish the
trends that couId be expected in the Blackbox Expert's computational perfor­
mance as the information deficit changes, when the Blackbox Expert solves any
Blackbox puzzle.

• The measures for functional performance (SCORE and Be) were tested using
repeated pairwise contrasts. The repeated pairwise contrasts test for a statis­
tically significant difference in the data being tested. A statistically significant
difference identified in the Blackbox Expert's functional performance solving
the given set of test puzzles would a1low us to establish the changes in the
Blackbox Expert's functional performance that could be expected, when the
B1ackbox Expert solves any Blackbox puzzle as the information deficit changes.

62

• the measure for the rate at which plans fail (PF) was tested using the lIdnlt'rt
contrasts. The Helmert contrasts test for a significant difference between the
plan failure rate observed at each information deficit level and the average plan
failure rate that occurred with larger information deficits. A statistically sig·
nificant difference identified in the Blackbox Expert's plan failure rate would
allow us to establish the changes in the Blackbox Expert 's plan failure rate that
could be expected, when the Blackbox Expert solves any Blackbox puzzle as
the information deficit changes.

3.4.2 Experimental Results

The trends that were expected for the computational performance of the Blackhox

Expert are l'vident in the raw data. The means for the measures of computational

performance during beam analysis (EA and ER) obtained from the 20 puzzles 501ved

at cach information deficit are shown in Figure 3.12. The number of accesses to the

Current Hypothesis module and number of rules fired during beam analysis decrease

as the information deficit increases. The means for the measures of computational

performance during beam selection (PA and PR) obtained from the 20 puzzles solved

at each information deficit are shown in Figure 3.13. The number of accesses to

the Current Hypothesis module decreased as the information deficit increased, and

the number of rules fired during beam selection decreased as the information deficit

increased, which is consistent with the fact that the Blackbox Expert uses a planner

that operates by rating a set of goals.

The trends that were expec~ed for the functional performance of the Blackbox

Expert are l'vident in the raw data. The means for the measures of functional perfor·

mance of the Blackbox Expert (SCORE, BE, and PF)'obtained from the 20 puzzles

solved at each information deficit are shown in Figure 3.13 and Figure 3.14. The

quality of the result produced by the Blackbox Expert is reduced as the information

deficit increases (Figure 3.14), and the number of bail errors also increased with an

increase in information deficit (Figure 3.14). We also observed an increBSe in the plan

failure rate as the information deficit increased (Figure 3.13).

Significant trends in the Blackbox Expert's computational performance were found

(sel' Appendix A), with Cl< = 0.05. The strongest significant trends found for each

measure are as follows: in PA, linear and quadraticj in PR, linear and cubic; in E,,,

63

~ ~ M M M M ~ M M
Information Defic~

.....
~1--Q) 1
fil
t1l
J:1
0-

g 1
:;:;
:::l
~ 1

~
"-
Q)
a.
fil
Q)

j
.-'

1?w--

Figure 3.12: Computational Performance - Execution

64

~ ~ M UMM UMM
Information Delicit

al 7 - .

~Cl. 600 --_.__ _ _ __ _ .._ _._.__ ..

g>
'ë

~
Cl....
~
~
~

~1
~ ~ M UMM UMM

Information Deficit

Figure 3.13: Performance - Planning

65

1 .

~ ~ M M M M ~ M M
Information Deficit

w
@. 4 ..

i~
g
w

~

1 .

~ ~ M M M M ~ M M
Information Defictt

Figure 3.14: Functional Performance

66

linear and quadratic; and in ER, linear and quadratic. The trends for the IlW<lSlIl't'S

PA, EA, and ER indicate that we can expect the Blackbox Expert 's performance on

these measures when solving any Blackbox puzzle to follow a curve with a shape

that is composed of linear and quadratic polynomials, and the curve will decrease

as the information deficit increases. The trends for the measure PR indicates that

we can expect the Blackbox Expert's performance on this measure when Holving any

Blackbox puzzle to follow a curve with a shape that is composed of linear and cubic

polynomials, and the curve will decrease as the information deficit increases.

Significant differences in the Blackbox Expert 's fUII<.tional performance were found

III measures SCORE, BE, and PF (, ') Appendix A), with Ci = 0.05. SCORE

and BE show statistically significant tlifferences in the Blackbox Expert 's functional

performance at each information deficit used in the experiment. The trends for the

measures SCORE and BE indicate that we can expect a change in the Blackbox

Expert's functional performance when solving any Blackbox puzzle, if the information

deficit changes by at least 0.1. Significant differences in the 131ackbox Expert's plan

failure rate PF occur only when the information deficit is very smail or very large;

thus, we only expect a change in the Blackbox Expert 's performance on this measure

when solving any Blackbox puzzle if the information deficit is small or large, and a

change in the information deficit occurs.

3.4.3 Discussion of Results

This experiment studied the effects of an information deficit on the computational

and functional performance of the Blackbox Expert. Using a set of randomly se­

lected Blackbox puzzles, the relationships between the information deficit faced by

the Blackbox Expert and its performance have been established quantitativcly. The

analysis of variance tests used in the experiment showed that the effects of informa­

tion deficits on the performance of the Blackbox Expert are significant at Ci = .05,

establishing the effects of an information deficit on the performance of the Blackbox

Expert that can he expected when the Blackbox Expert solves any Blackbox puzzle.

The performance curves we measured in our experiment can aid the CDPS de­

signer in selecting the data distribution in an organization imposed on a set of co-

67

operating rule-based systems. While our experiment was based on the A1ackbox

Expert solving Blackbox puzzles, we believe that these results are relevant to other

rule-based systems solving diagno~es type problems. For example, the statistically

significant linear and quadratic trends we measured in the number of accesses re­

qllired by a rule-based system during execution (EA) indicates that we can expert

that there would be a large change in EA when the information deficit experienced by

the rule·based system varies between 0 and 0.1 as compared to the change in E,\ when

the information deficit varies between 0.1 and 0.8. We expect that the performance

cllrves that were obtained for the Blackbox Expert to be similar to the performance

curves of other rule-based systems that solve diagnoses type problems in the same

manner as the Blackbox Expert; thus, the results of our experiment can be used as

a mode! for the effects of data distribution on rule·based systems solving diagnoses

type problems.

3.5 Conclusion

Testbeds are required for experimental work that are flexible and cost effective. The

Blackbox Expert is a testbed that can support experiments in which we can change

the data items available (ai) to a single rule-based system, and observe the functional

and computational performance of the system. The cost of constructing the Blackbox

Expert as weil as the costs of conducting experiments using the Blackbox Expert is

not prohibitive. A human can become proficient at solving the Blackbox puzzle (the

problem solved by the Blackbox Expert) in a few days. Therefore, we do not have

to rely on human experts in constructing the rule base of the Blackbox Expert, or

its vr:.lidation. The time required for humans or the Blackbox Expert to solve the

Blackbox puzzle is not too costly.

Using the Blackbox Expert, we conducted an experiment to examine the effects of

data distribution on performance. Our experiment establishes that data distribution

is an important factor determining the performance of the rule-based systems in a

CDPS, when the agents in the CDPS are implemented as rule-based systems. Our

experiment providl:s evidence that the trends expected by researchers for the change in

performance as the data distribution in an organization chosen for a CDPS is varied by

68

the COPS designer do actually occur in operational rule-based systems. and pl'<>\"id.,s

l'vidence that the effects of data distribution on performance are important for th.,

Blackbox puzzle as weil as diagnoses type prnblems, r:onfirming the importance of

data distribution in determining performance represents a step forward; the CO PS

designer must be very careful when se1ecting the data distribution in an COPS,

The results of our expl'riment shed sorne light on the effects of data distribution

on performance. Yet, the COPS designer must be cautious in using the trends and

relationships measured in our experiment for estimating the effect of data distribution

on other rule-based systems, There does not exist any weil known theory by which a

COPS designer can evaluate the similarities between different rule-based systems, and

the problems they solve; thus, the COPS designer must rely on intuition to decide if

the effect of the data distribution we measured on the performance of the Blackbox

Expert is indicative of the effect of data distribution on other rule-based systems,

69

Chapter 4

A Model for Rule-Based Systems

"If 1 have been further, il is by standing on the shoulders of giants. "
- Sir Isaac Newton

Thus far in our study of COPS systems, we have focused on an inter-agent per­

spective, which is concerned with issues relating to the manner in which the agents in

a COPS interact: the manner in which a problem is decomposed, the tasks assigned to

each agent, the sharing of data items both during problem-solving, and the planning

protocols used by the agents. We have introduced a model that permits the COPS

designer to specify the manner in which data items are shared by the rule-based sys­

tems in an organization during both phases of problem-solving: planning (CW) and

execution (WS). Our organizational model specifies the data items that are available

to a rule-based system within its window (wJ

We have not considered the internai structure of rule-based systems that are to

be agents in a COPS (the intra-agent perspective); we believe that such a model

is required to aid the COPS designer in determining how to set the availability of

specifie data items in order to improve the performance of the rule-based systems.

Our intent is to use this model to capture the data items required by the system to

produce specifie results (discussed further in chapter 5). An understanding of the

data items required by a rule-based system to produce specifie results will be useful

to the designer of COPS when specifying the availability of data items in the COPS.

Researchers in the field of database design have modeled the structure of a rule

base in order to address the problems of efficient compilation, storage, and access to

70

large sets of rules [i6J. Their assumption is that the underlying Illl'chanism for st <)l'iIg"

of rules is the relational schema. The goal of the research in that area is lo delerminl'

the rules required to answer a particular query as well as the most efficient method

for l'uilding a response to a query. Determining which rules are required to answer a

particular query is necessary, given the assumption that not all rules are resident in

the ml!mory of the computer. The notion of efficiency that is used to determine the

rule sequence that is best suited for answering a query is based upon assumptions

about the relationships between the relationa! operators that are used to conslruct

an answer for the query. Based upon these assumptions, researchers have proposed a

notion of access paths to capture the dependencies that exist among the rules in the

database. The models proposed by the researchers in this field are not adequale for

our purposes.

The rule-based expert system validation literature reports a number of approaches

for defining the structure of a rule base as chains of inter-dependent rules, called

execution paths. The EVA system [7ï] defines a dependency graph (DG) that is used

to generate test cases for validating a rule-based system. The definition of the rule­

dependency relation used to construct the DG is unsatisfactory because it allows EVA

to consider rules to depend upon each other when in fact they do not; thus, many

paths are identified in the DG which do not ref!ect sequences of rules that fire when a

rule base is exercised. Rushby and Crow [781 propose a refinement to the DG used in

EVA, where the rule-dependency relation is improved, but under certain conditions

the improvement obtained is still unsatisfactory, and suffeïll l'rom the: same problem as

the DG used in EVA. A stricter method for determining rule dependencies is proposed

by Kiper [79J, which models the state of the rule-based system as it would appear

when the rules are fired. While this method permits only true rule dependencies lo

be captured, the rule base states are very costly to compute, which prohibits the use

of this method on large rule bases.

We believe that the best approach for capturing the structure of a rule-base that

can be used to identify the data items required by a rule-based system to produce

specific results is to consider a rule-base to be composed of a set of chains of inter­

dependent rules. Based upon our survey of previous attempt by researchers to define

71

the notion of a path in a rule base, we believe that a path must satisfy the following

criteria:

Accuracy 'l'here are two aspects to accuracy in defining paths:

• the notion of path must be well-defined and unambiguous, 50 that it
can s~rve as an adequate specification for an automatic path-enumeration
program.1

• each path must correspond to sequences of rule firings thal can actually
occur al run-lime.

Meaningfulness When the rules forming a path fire, their combined actions should
carry out a function as intended by the knowledge engineer, which is seen as
having significantly advanced the state of the problem being solved.

Computational Tractability In order to enable efficient automatic generation of
the paths in a rule base, we require that the computational effort involved in
finding the rules that comprise a path be small, and the number of paths that
will be generated for a rule base must be computablej that is, we want to
prohibit a combinatorial explosion in finding paths.

In this chapter, we describe a formai model for the structure of a rule-based

system, and this model meets the above three criteria [33, 34:, 35]. Then we present

the algorithms used to implement Path Hunter, our rule base analysis tool which

identifies the set of paths contained in a given rule-base; we show that Path Hunter

will identify ail the paths that exist in a given rule base. We then discuss how the

knowledge engineer can control combinatorial explosions when using Path Hunter to

analyze a rule base. We then use Path Hunter to analyze the rule base of the Blackbox

Expert, identifying ail the paths that exist in its rule base.

4.1 Rule Base Structure

Il is our belief that problem solving requires two entities: the problem to be solved,

ana the artifacts designed to solve the problem. Previous efforts by researchers char­

acterizing the structure of a rule-based system focused solely on the artifacts designed

to solve the problem, that is, the rule base. Our model considers both entities: the

lThis may seem obvious, but not ail previous proposais are sufficienL1y well-specified, as observed
in [78].

72

problem to be solved, and the rule· base designed to solve that problem. When modo

eling the structure of the rule·based system, we will makI' use of the interaction

between the structure of the problem to be solved and the structure or a rule·base

that is designed to solve that problem. The structure of the problem to be solved

will introduce a semantics that defines a notion of meaningfulness and completeness

for the structural components of the rule-based system captured by our mode\.

When constructing a rule-based system, the expertise possessed by t,he domain

expert is embodied by the knowledge engineer into a set of rules. We considcr a

rule-based system e to be a triple (E, RB, W lit!) where: E is an inferencc engine.

RB is the set of rules ror solving pl, and W M is the working memory where rads

(representing current data) are stored. Each subproblem SPI or pl will have its own

set of rules within RB. We refer to the collection or rules {ri 1 r; used to solve SPd

as task Tl' The state of e is denoted by the set of facts present in WM. When a rule

fires, it changes the state of the system by adding or removing facts rrom the WM.

The structure of the facts used by e is important in representing the state of the

problem being solved. Facts consist or a predicate name and a list of arguments.

Each fact is an instance of a factor of pl (ai). The predicate in a fact indicates the

relationships that exist among the arguments of a fact as weil as which factor or pl

that the fact is an instance of. Let R be the set of ail predicates used by e in solving

pl. We tise the notation fi to represent a rad that may be present in the working

memory W M, where: fi = (À j , li) such that li is a list or data elements, and Ài E R

identifies the relationship between the elements of 1;. The choice of predicates by the

knowledge engineer will impact upon the states or e. that can be represented. Of

course, the choice or predicates made by the knowledge engineer is not independent

of the representation of the problem state used by the domain expert.

When a rule-based system is problem-solving, identirying that a goal state has

been reached will be important for determining that a meaningful advancement in

solving the problem has occurred. When the knowledge engineer specifies the struc­

ture of the problem that is to be solved (in terms of the subproblems it is decomposed

into, the goal states for each subproblem, and the predicates to be used by the facts

present in WAl), the knowledge engineer must also indicate which of the predicates

73

arc to be lIsed to identify the goal states for each sllbproblem: thes.. predicates an'

called end predicates, and the set of end predicates for a sllbproblem S Pt is denoted

by Z•. Each goal state gi for a sllbproblem SPI is identified by a conjunction of end

predicates; thus when a rule-based system is problem solving, we can determine if a

goal state has been reached.

Definition 5 (Logical Completion) A logical completion for S Pt is a conjunction
of selected predicates from Zt. denoting a Stute which corresponds to a goal for SPt •

We use the notation S Pt "'-+ U to denote a set of rules U that assert facts using all

the predicates of a logical ~ompletion for SP•. When the ri E U fire, a goal state of

the problem being solved has been reached. If we consider the beam analysis phase

used by the Blackbox Expert as one of the subproblems of Blackbox, then a logical

completion for beam analysis would be GHAP.B /1 BALL. The semantics attached to the

goal state identifieu by GHAP.B /1 BALL is that a ball has been located in one of the

Blackbox grid squares, and that grid square has been updated.

Our model for rule-based systems is intended to capture the ,tructure of a rule

base as chains of dependent rules. In our model, each path depicts a structural

component of the rule base. Our intent is to construct chains of inter-dependent rules

that advance the state of the problem being solved from one goal state to another,

where goal states are identified by logical completions. The basic unit that will be

lIsed t.o construct paths will be the rule; thus, we must formally specify what is meant

by a rule in our mode!. We will then examine how the intuitive notion of one rule

being dependent upon another can be used to construct chains of rules that are inter­

depeildent. As our model is to capture sequences of rules that will fire when the

rule-based system is problem-solving, we formally define when a rule is enabled by

the rules that precede it ::l the sequence; this leads us to our definition for a path.

4.1.1 Abstract Rules

There are many different rule languages that have been reported in the literature [80J.

Each language has its own syntax and provides different features: rule languages

can be restrictive, allowing for rules that strictly follow the syntax of horn clauses

and restrict the use of variables; or be flexible, permitting rules to contain complex

74

procedural code. and permit free use of varia!>le expressions. ln ore!er for our IUllllt·1

ta be applicable ta many rule-based systems, wc must specify the exact fon11 of l'lllt's

ta be used in the model, and develop methods for handling cases where the rul..

language used ta code rules allows the use of constructs that do not match the form

of the rules in our mode!. In order to reduce the complexity of our model. we specify

rules that have a simple form: rules are modeled by considering only the faets they

use and produce, in terms of the predicates appearing in expressions on their left hane!

side (LHS) and right hand side (RHS); thus, we require a method for abstraeting th..

complex rules permitted by the different rule languages into the simple rules usee! in

our mode!.

We refer to the rules used in oU!' model as abstract rules. An absti'aet rule "i is

composed of an LHS and a RHS where: the LHS indicates the set of fact templatcs,

denoted by T;, such that at least one faet matching each template rlUst be present

in WAI for the rule to fire; the RIlS indicates the set of faets that are asserted by

ri, denoted by Ar,. A template ti = (Ai, Li) is a predicate Ai and a list of variables

Li; thus, a template is a specification for the type of faet that must be present in the

WM in order for a rule to beeome enabled ta fire. A faet is said ta match a template

if there exists a most general unifier S such that (Ai, L;) .S = ('\;, li). We also define a

mapping function U : A --> B where A = {(A io LI)"" (A., Ln)} is a set of templates

or faets, B = PI'" An} is a set of predicates, and ,\j satisfies the specilkatioll fol'

A;. For simplieity, we will denote U({(A;, Li)}) = P;} by U((Ai, f,;)) = Ai. The

mapping funetion U abstraets a template or fact, representing the template (faet) by

the predieate it uses.

The abstraetion provided by the mapping funetion U permits the knowled~e ,'n­

gineer ta reduce the eomputational eomplexity in determining when a faet a".;serted

by a rule matches a template eontained on the LHS of another rule. In the case that

the funetion U is used ta abstract a template or a faet, the knowledge engir:~cr is

indieating that the predicate used carries sufficient information ta eaptur(~ rule de­

pendencies and variable bilJdings ean be ignored; thus, the computation required for

dependencies is reduced. If (,'1' model did not permit an abstraction of the faets used

by the rule-based system, computing rule dependencies would require full unification

75

; la the ball already marked as certain?

:1 ball is to be Ilade certain
:Get number ot certain balls located

;Increaent • ot certain balls
iUpdate the grid wing the ball certain
ils There a Conflict?
;Indicate the conflict is to be resolved

: Update the grid ta indicate that a ball in a particular location is to be considered
: a certain ball.
(defrule BalI-Certain

?arl (- (BALL_CERTAIJ ?sn ?rule-ID ?roo ?col)
?ar2 (- (CERTAII_BALLS ?cb)

=>
(retract ?varO
(it (not (iscertain ?r08 ?col» then

(..tract 7.ar2)
(..sert (CERTAII_BiLLS =(+ ?cb 1»)
(setcertain ?r08 ?col)
(if (eq (statui ?roo ?col) CDIFLICT) then

(assert (RMC_B ?sn ?rule-ID ?r08 ?col»
») ; end rule BalI-Certain

Figure 4.1: Sample CLIPS Rule

and constructing sequences of dependent rules would require checking every possible

state of the system; this would be computationally intractable for complex rule-based

systems. Of course, it is the responsibility of the knowledge engineer to select the

predicates to be useJ in facts to ensure that they capture rule dependencies with the

degree of accuracy that is required.

A sampie rule (Ball-Certain) from the rule base of the Blackbox Expert IS

shown in Figure 4.1. Table 4.1 Iists the predicates and pre-defined functions used

by Ball-Certain and th.. other rules from the Blackbox Expert's rule base that will

be used for example purposes. Ball-Certain is adivated when ample evidence is

gathered to support making certain a balllocated in the Blackbox grid. This rule will

be activated by the presence of the fact using the predicate BALL_CERTAIN as well as

a fact using the predicate CERTAIN.1lALLS. O:rce the rule is activated, it will check to

see if the grid square is already certain, in which case no action is needed. Otherwise,

the square is made certain and, if a conflict exists, a fact using the predicate RMC.1l is

asserted indicating it can be resolved.

In the case that a rule contains conditionals and pre-defined functions on its RHS,

the rule will be modeled by several abstract rules. Pre-defined functions represent an

access to the Current Hypotheses module, which is modeled as an indirect access to

W Mi thus, each function will have a predicate associated with it (see Table 4.1). The

conditionals on the RHS of a rule indicate that different actions can occur when the

76

USER FUNCTION Interpretation AssocÎated Prcdicate 1

1 Interpreta\ Ion1 PREDlCATE

iscertain check the certainty or a square GMAp.,-,t;Rr
sclcertain ~et a square cert""'n GMAP.CE/il."
stat.us check the contents" ~lr a grid square GMAP

-
-

BALL.CERTAIN A ball is t.o be made cert.ain
"LAN".'";>" U t'ace an empty an Do grid square
,-, ...tlAIN."ALL~ L'ount 01 certain balla locate
GMA~ Acces! to the cont.enta 01 A grld square
GMAP..B BaU location on the grid
GMAP.E ~mpt.y loca!ion on the grid
GMAP.CERT Certainty or grid location
GMAP.CE"'J .B BAIl made certain
GRlDSIZE Dimension or t.he grid
P.BALL Place a ball on the grid
RMC..B Hemove a conflict by pladng a. bail
SHOT-RECORD cxit and entry point ror Do beam

Table 4.1: Predicates and User Defined Funetion for Blackbox

rule fires; thus, we will create an abstraet mie ta capture each of the dilferent actions

that can occur when the rule fires. The abstraet rules will capture the templatl's

specified on the LHS of the rule and the faets asserted on the RHS of rule. The

predicate associated with the test used in the condition that was on the RHS of the

rule is placed on the LHS of the abstract mies.

In the case of our sample rule, Ball-Certain contains a conditional on its RHS

representing two dilferent potential actions: the case that the bail made certain

was successfully placed, and the case where there was a conflict when the bail was

placed. Ball-Certain will be resented by two abstraet mies Ball-CertainY,l, and

Ball-CertainY,2. Ball-CertainY,l will update the grid ta indicate that a bail in a

particular grid square is to be considered a certain bail, a conflict is discovered, and the

conllict is to be resolved. U(IBall-Certain%l) = {GMAP. GMAP_CERT. CERTAINJlALLS,

BALL_CERTAIN}, and U(ABall-Certain%l) = {GMAP_CERTJl. RMCJl. CERTAINJlALLS}.

Ball-CertainY,2 will update the grid to indicate that a bail in a particular square is to

be considered a certain bail. U(IBall-Certain%2) = {GMAP. GMAP_CERT. CERTAINJlALLS.

BALL_CERTAIN}, and U(ABall-Certain%2) = {GMAP_CERTJl. CERTAINJlALLS}.

A set of abstract mies from the Blackbox Expert 's rule base are shawn in Table 4.2.

When Path Hunter is creating abstraet mies, it is possible that two abstract mies l·i

and Ti: will have the same LHS and RHS: U(Ar;) =U(Ar,), and U(T;) = U(zr,).

This represents the case where there are two mies which are part of the rule base

77

that examine and producc facts usi'ng the same set of predicates: thus. in abstraction

these two rules perform the same function. In the case of Blackbox, this arises duc

to the symmetry of the problem. Rules ri and ri form an equivalence class. Path

Hunt"r will recognize that a group of ru les forms an equivalence class, and uses equiv­

alence classps when analyzing the structure of a rule base. Rules RA-14-RightY.l and

RA-14-LeftY.l, shown in Table 4.2, form an equivalence class called RA-14-ClassY.1.

The notion of an end predicate allows us to identify a set of rules in a task that

will be instrumental in reaching a goal state of tbe subproblem. We say that a rule

in a task is an end rule if every fact it as';erts uses an end predicate. Furmally, the

set of end rules for a task Tt is Ri = {ri l "I(>'j, lj) E Ar" >'i E Zd. End rules must

become enabled to lire in order for the rule-based system to reach a goal state, and

end ru les will play an important l'ole when constructing paths.

4.1.2 Constructing Sequences of Inter-Dependent Rules

We will explore methods for constructing sequences of rules using a notion of rule

dependency. In order for the sequences we construct to be useful for our purpose, we

require that they have the following three properties: the sequences we construct must

terminate when a goal state is reachedj sequences of rules constructed for reaching

a goal state must be "continuous", that is, they must not stop before a goal state is

l'cachcd; and each sequence must be 'unambiguous', that is, the sequence l'l'presents

only one way to reach a single goal state.

We now turn our attention t"o the types of "dependency" that can exist between

two rules. Intuitively, we say that one rule is dependent upon another if the action

taken by one rule facilitates the other rule to become lire-able. The simplest form of

dependency exists when one rule asserts a fact that is required by the LHS of another

l'lIle.

Definition 6 (Depends Upon) The relation depends upon between two rules rj and
ri is denoted by ri -< ri 1 and it indicates that the RHS of Ti asserts a fact (>,j, li) whir.h
uses a predicate that satisfies the predicate specified by a template in the LHS of "j,

with the constraint that >'i ri Zt. FormaI/y: rj -< ri == (3(>'j,l;) E Ar;, >'i ri. Zt) =>
(3(Aj, L;) E Ir" U((Ai, Li)) = >'i)

The condition >'i ri Zt is placed on the depends upon relation in order to restrict this

78

r. U (r'"') U(A") Commen'
RA-14-Right~1 \GRAP, GRIOSIZE, \RA-14} Indicat. th. occurrence of •

SHDT.RECDRD} specifie configuration on th.
Blackbox gr id .

RA-14-Lettll !GRAP, GRIGSIZE, \RA-14} Indic.te th. occurrence of 4

SHDT.RECDRD} .pecifie configuration on the
Blackbox grid.

1U-14-PrepXl \RA-14} {P.BALL, BLAlK.GRIO, Placi a ball, .ark 4 location a.
BALL_CERTAlI} ••pty. and indic.te that the Bell

i. a clrtain baIl.
RA-14-JprepXt \RA-14j {P.BALL, BLAIK_GRIOJ Place a baIl, and .ark a location

••••pty.
Place-Ball12 {GRAP, GRAP.CERT, P.BALL} {GRAP.B} Updata th. grid to indic.te Chat a

baIl ha. b••n locatad.
PlacI-EIllptyll -{GRAP, GRAP_CERT, -{iJRAP.ET Updatl the gr id ta indicate Chat

BLAIK_GRIO} an ••pty grid squaro has b••n
locaCld.

Table 4.2: Example Rule Set

relationship to rules that assert facts which do not identify goal states. Two examples

of the depends upon relation exist between RA-14-RightY.l. Right-14-LeftY.l, and

RA-14-Prepy'1 (shown in Figure 4.2). More precisely, RA-14-lUghtY.l -< RA-14-PrepY.l

and RA-14-LeftY.l -< RA-14-PrepY.1.

When constructing chains of inter-dependent rules in a task, we group rules ae­

cording to the dependency relationships in which they participate. Thus, for any mIe

in a task we desire the ability to identify those rules which it depends upon.

Definition 7 (Reachability) A rule ri is reachable from a set of rules V, if Il
contains al/ therules that ri depends upon. We lise the notation Il -+ ri III i/l(li(,lIlr:
that ri is reachable from the rules in V. FormaI/y, V -+ l'i iff (Vl'j E T,)(rj -< r J =>
ri EV).

For RA-14-Prepy'1 in Table 4.2, V = {RA-14-RightY.l. Right-14-Lefty'1}.

Having defined the depends upon relationship between two rules, we now consider

grouping rules to form continuous sequences. We can ensure that a continuous se·

quence of rules is captured by defining a notion of closure on a set of rules for the

depends upon relationship. When considering a set of rules ~, we say that ~ is closed

for depends upon if every rule in ~ asserts a fact either using an end predicate, or

a predicate matching a template on the LHS of another rule in~. When a set of

rules ~ is closed for depends upon, every rule in ~ asserting facts using a non-end

predicate participates in depends upon relationships with the other rules in ~j thus,

~ captures a continuous rule execution sequence.

79

Definition 8 (Dependency Closure) A set of rules <I> is closed for the rdlltion
depends upon when every rule ri E <I> asserts faets where either >'k E Z/. or the
faet matches a template on the LHS of some ri E <I>. FormaI/y, (Vrj E <Il)(3ri E

<Il) such that (V(>'k, Ik) E Ar,)((3(Ak, Lk) E TJ, U((Ab Lk) = >'k) V (>'k E Ztl).

Givcn that GMAP..B. GMAP..E. CERTAIN..BALLS, and GMAP_CERT..B are end predicates we

can dctermine that the set <I> = {RA-14-Right7.1, RA-14-Prep7.1, RA-14-Jprep7.1,

Place-Ball7.2, Place-Empty7.1. BallCerta:i.n7.1} is c!osed for depends upon.

Although the set <Il is c!osed under depends upon, it is ambiguous. We say

that a sequence or rules is ambiguous if it represents more than one way to l'each

a single goal, or represents ways in which more than one goal can be reached.

When RA-14-Right7.1 lires asserting a fact using RA-14, both RA-14-Jprep7.1 and

RA-14-Prep%1 can follow RA-14-Right7.1 in the rule sequence. RA-14-Prep7.1 as­

serts three predicates allowing Place-Ball7.2, Place-Empty7.1, and BallCertain7.1

to follow it in the rule sequence, and RA-14-Jprep7.1 asserts two predicates allow­

ing Place-Ball7.2, and Place-Empty7.1 to follow it in the rule sequence. If the facts

asserted by Place-Ball%2, Place-Empty%l, and BallCertain7.1 form a logical com­

pletion and the facts asserted by Place-Ball7.2, Place-Empty7.1 also fOrIn a logicai

completion, then the rule sequence in <I> is ambiguous because two different goal states

may be reached by the rule sequence. We can also demonstratc the case where a rule

seC!lIcnc(' containing two diffcrent groups of rules for reaching the saille goal state can

be constructed, which is also ambiguous. In order to remove thesc ambiguities [rom

rule sequences, we introduce a restriction called singular consumption. The restric­

tion of singular consumption on <Il ensures that every predicate that is asserted by a

rule in <I> participates in exactly one depends upon relationship.

Definition 9 (Singular Consumption) Il set of rules <I> is singularly consumed if
every faet that is asserted by a rule ri is matched by a template of exactly one rule ri
where rj --(ri' F01'11lal/y, <I> is singularly consumed iff, (Vri, ri E <Il, ri --(ri):

(V(>'k,lk) E Ar')(i! (3(Ak,Lk) E TJ, U((Ak, Lk)) =>'k) ~

(,lIr/ E 4>, ri --(ri, (A" LI) ET', U((A" L,)) = >'k))

The set 4> = {RA-14-Right7.1, RA-14-Prep7.1, Place-Ball%2, Place-Empty7.1,

BallCertain%l.} is singularly consumed. Thus, 4> contains an unambiguous sequence

of rules for advancing the state of a problem to a particular goal state.

80

4.1.3 Enabling a Rule

The rule sequences we have considered thus far are not sulficient for our pnrpos<'s

because they do not consider the facts thal. are needed ta cnable each rule in the

sequence ta lire. We now consider the set of rules that enable a rule ta lire. Informally.

we say that a set of rules W enables a rule rj when the rules in IV assert facts callsing

rj ta lire. This set of rules W must satisfy a number of conditions for it ta be an

enabling-set for a rule rj:

• Given rj, then W ç V; that is, rj must depend upon l'very rule in W.

• Every rule in W must assert at least one fact that uses a predicate specilied by
the LHS of rj where a fact using that predicate is not asserted by any other
rule in W. Formally, we say W is minimal if (Vri E W)(3("i,/i) E Ar,) such
that (,th E W, ("i,lp) E Ar.)

• For each predicate specilied by a template on the LHS of l'j, if that predicatc
is Ilsed in a fact asserted by at least one rule, then sorne ru le that assert.s a
fact using the predicate must be a member of W. Formally, we say that IV is
maximal if:

(V(l\i, Li) E TJ)«3rk E V, (.\;, li) E Ar., U((A j, Li}) ="j) =>
(3ri E W, ("j,h) E Ar" U«l\i, Li)} ="i)}

Definition 10 (Enablement) A set of rules W enables a rule rj iffW is a minimal
.<et of ,·,ties that asserts faets matching the maximum number of template., in the [,fIS
of "j; we write W '--, rj to den ote that W is an enabling-set for rj. FormaI/y, give1I
rj E T, and V -+ rh W'-+ rj iff: W ç V, and W is both minimal and maximal.

For RA-14-Prepy'1 in Table 4.2 there are two enabling-sets: WI = {RA-14-RightY.l},

and W2 = {RA-14-Lefty'1}.

4.1.4 The Path

We consider a rule-base to be composed of a set of chains of inter-dependent rules

called paths. A path in a rule base must identify a sequence of rule lirings that can

occur when the rule-based system is solving a subprohlem, advancing the state of the

problem to he solved from one goal state to another. Each path is composed of a

sequence of rules that depend upon each other. Paths must capture conÙnuous rule

sequences, and they must he unambiguous. The set of rules comprising a path mllst

81

be delined such that each rule in the path is "Iwhlecl h~ a SlIhs,'! "f llll' rllh's ""11\ "i\ll'd

in the path. The rules in each path must assert faets using ail the prt'clieat.., of il

logical completion for a subproblem.

Definition 11 (Path) PL a path k ln task T, is a pal'tially-ol'dered sel of l'lIlr,­

(<l>, 1l').

<[> is a set of ru les {1'1o 1'2 ••• "n} witil l'; E Tt SlIch that,
(3U ç <l>, SPt "" U),
(lfr; E <l»(3W '-+ 1';, Wc <l»,
<l> is closed under depends "pon, and
<l> is singulal'ly consumed.

1l' is a partial order indicating whicil ""les in path Pt depend "pon olhel";
(lfr; E <l>, 1'; 1l' rj =} l'; -< rj)'

A path formed by the rules in Table 4.2 as found by Path Hunter is shown in

Figure 4.2. This path l'l'presents the combined actions of live rules, depicting a

meaningful advancement of the solution to the Blackbox puzzle: upon examining the

evidence (beam entry and exit points) currently available, select the actions of placing

a bail on the grid and marking a grid square as empty, and the outcome is that the

ball is placed and the location is marked as empty. The logical completion that is

asserted by this path is GHAP..E /1 GHAP..B /1 CERTAIN..BALL5 /1 GHAP.CERT..B. The path

shown in Figure 4.2 contains an equivalence class: RA-14-ClassY.1. Thus, the path

shown in FlgUl'e 4.2 l'l'presents two paths that can be observed when the Blackbox

Expel't's rule base is executed: one path starting with RA-14-Righty'1, and one path

stal'ting with RA-14-LeftY.1.

The path shown in Figure 4.2 is not a simple !inear sequence of rules; this is

un!ike a !inear sequence of statements that would be obtained when considering the

execution paths in a traditional imperative program. This is not surprising because,

with l'llie-based systems, we are not concerned with the actual sequences of rule lirings

that occur at l'un time, only rule dependencies. The sequence of statements that are

considered to be an execution path of an imperative program form a total ordering,

while the dependencies between the rules in a rule base form a partial orderingj hence,

paths in a rule base are not \inear sequences of rules.

We be\ieve that our definition for path is appropriate for our objective: to capture

the structure of a rule base as chains of inter-dependent rules (a path), Each path is

82

BALLJERTAIN ~[~BliI~-G;'IU;in;~I}K::::::::=--~: ~\[Œ~R~TA~L~.~BAL~L~S) :

, ~ GllAP.ŒRU) :

1RA·II·Chu'" kW~ RA·IH'I,p'l1

Rul, ~

LEG~'D

P.BALL H PIrc-BliI~2

fxtUsing
PmIic>I< Y

: -,

.[GMAP.B)

,
~ Logicl1 Complc1.' :................~

Figure 'L2: An Example Path

intcnded to depict a structural component of the rule base that advances the state

of the problem being solved from onc goal state to another, where goal states are

identified by logical completions. We can show that each path contains ail the ru les

that are needed to perform the computation required to advance the state of the

problem being solved in a meaningful way (a goal state is reached). We first consider

the inclusion of individual mies into a path bascd npon our dcpcnds upon rclation.

and then conclude that paths ~re complete with respect to the logical complet ion

assertcd by the mIes in thc path.

Lemma 1 If there is at least olle rule that asseris a facl ('\il li), '\i fi. Zll and a
path Pl contains a rule ri where (Aj, Lj) E zr·, and U((Ai, Li}) =),j, then (3rj E
<!J, (),i,li) E Ar,).

Proof We will assume that rj is in path Pl, (Aj,Li) E zr" (f-Irk E <!J, (),j,lj) E

Ar., U«Ai,Li}) =),j), and (3rj, (),p,lp) E Ar" U«Ap,Lp}) =),i,),i fi. Zm}. Then

W, W '-+ ri in path Pl is not maximal; thus, (3rk E <!J, (),j,li) E Ar., U«Aj,Li}) =
,\j).

Corollary 1 (Completeness) A path will contain ail the ru les rj E U, SPI"" U
as /Oeil as ail the ru les present in the rule base that enable the ri EU.

83

Thus. paths will group together ail the rules that an' n''1uired to fin' '" as 10 ad";lI"'"

the state of the problem being solved from one goal state to another,

4.2 Path Hunter

We have embodied our formai model for the structure of a rule base into Path lIunt..1",

our ru le base analysis tool. Given a list of the logical completions for a prohlcm, l'al h

Hunter will analyze a CLIPS rule base to determine the paths it contains, Se\'l'ral

issues arise in the construction of the Path Hunter algorithm: analyzing a mie ha,,' 1.0

determine ail the paths it contains can become too expensive to he praclical, and Wl'

must be certain that the algorithm used to search for paths is sufficiently exhansti"l'

to guarantee that no palhs can l'l'main undiscovered. Thus, we musl employ methods

that are economical in searching for paths, e.nd we must show thal the algOl'ithm nsed

to search for paths will discover ail the patlls that exist in a rule base.

The cost of searching for ail the paths in a rule base can become prohibitive due 10

either the complexity of the algorithm used to construct each path, or due to lhe size

of the space that must be searched to discover ail the paths that exist in a ru le hase.

Previous attempts by researchers in minimizing the cost of analyzing the structure of

a rule base have focused on the cost of constructing each path, assuming that the size

of the space that must be searched to discover ail the paUls is determinc'd hy th,' l'lIil's

found in the rule base [79, 77]. Thus, if the size of the space as delined by lhe m\cs in

the rule base was too large, these methods would be unable to analyze the slrucllll'e

of rule base (a combinatorial explosion in the size of the search space occurs). Wc

believe that our model is unique because it permits the knowledge engineer to contl'OI

the size of the search space, avoiding combinatorial explosions. Using onr mode!, the

cost of constructing each path is also minimized due to our method for the abstraclion

of rules and faets.

In this section, we discnss the Path Hunter algorithm, shown in Figure 4.3. We

show that Path Hunter will discover ail the paths that exist in a rule base. Wc then

show how the size of the space that must be searched by Path Hunter can be controlled

by the knowledge engineer; thus, combinatorial explosions are avoided. Finally, wc

discuss the results from our analysis of the rule base of the Blackbox Expert.

84

4.2.1 Discovering Paths

The first step in the Path Hunter algorithm is to compute the set of reachable rules

V and the enabling sets W's for each rule in the rule base. Then. Path Hunter will

begin constructing sequences of inter-dependent rules called fragments, denoted by

F'k'

Definition 12 (Fragment) Il fragment Ft in task t is a set of rules that meets ail
the requirements for a path, except that it may not he closed under tlepends upon, 0"

the "ules in the fragment may not assert a logical completion.

An example of a fragment that is not dosed is shown in Figure 4.4. Artel' creating

ail fragments, Path Hunter will merge fragments until a fragment is created that is

c10sed for depends upon. The merge operation on two fragments is a union of the

set of mies in each fragment, which forms another fragment. Two fragments may be

rnerged if and only if they pass several tests to determine if the rule sequence that

would result would also be a fragment. Once a fragment has been constructed that

is dosed for depends upon, it is tested to determine if the rules it contains assert

a logical completion. If the rules in the fragment assert a logical completion, the

fragment is accepted as a valid path, else it is discarded.

Three fragments constructed by Path Hunter that are not c10sed are shown in Fig­

ure ·1.5. l'ath Hunter constructs each fragment starting with an end rule; Path hunter

selects an enabling set for the end rule, and then adds ail the rules in the enabling set

to the fragment. Path Hunter then selects an enabling set for one of the rules in the

enabling set just added to the fragment, continuing the process until it encounters a

rule that does not have an enabling set. When Path Hunter constructed Fragment B,

shown in Figure 4.5, it selected the end rule Place-BallY,2, chose RA-14-PrepY.1 as

Place-BallY,2's enabling set, and then selected RA-14-ClassY.1 as RA-14-Prepy'1's

enabling set. RA-14-Classy'1's enabling set is emptYi thus, Path Hunter determined

that the end of Fragment B had been found.

The three fragments shown in Figure 4.5 were merged by Path Hunter to form

the sample path given in Figure 4.2. During the merge phase, Path Hunter examines

each fragment to determine if it is dosed. If a fragment is not dosed, Path Hunter

will identify the splice rules in the fragment.

85

Program Path_Huntcr
{

build..:tragment (r,)

{
B-PF • r,;

aet .ext W t-. ri;

Mark W as Sun;

Foreach r] E ~V Do
B.PF II; B_PF U build..:tragment(r]);

Return(B.PF)
}

{
Foreach rule r, E RB Do

{
Find V auch that V - r, ;
Find All W such that W t-. ri;

}

Foreach rule ri E RB Do
If (r, E Zd then

aepeat
{

PF II; build.lragment(rl);

Record PF ô

{Find Ail Path. in Rule Ba." IlH\

{Build one fragaent .tarting fro. ri)

{B..PF accumulates r, in frapent}

{Get a ""0 for r,}

{aet rest of fragment .tarting froll rI}

{Find all rule. that r, depcnds "t'Un)
{Find all cnllbling .ets for ri)

{aenerat. all fras-ents for .ach .nd rul.}

}
Until (S•• n AIL Combinat ions of W'. starting froll ri)

Foreach Fragm.nt FRi Do {Find all Spllc....Rul•• in th. fragm.nt}
Find All splic.-rul.a SPR] E FR, ô

For.ach FraSII.nt FR, Do {M.rs. fragll.nt. ta for. path.}
{

pp =FR, i {pp a.ccumulat.s pot.ntlal path}
R.p.at
{

While .oc..clo••d (PP)\,do
{

a.t n.xC FR] Matching SPR] E PP ô

Mark FR] as S••n ô

If <C........nrigi.<FR,. PP) ABD
IDT..5plit.Tail<FR,. PP» then

pp = M.rs. (PP, FR]) j {Combin. pot.ntial path and fragm.nt}
}
If A•••rt• .Logical.Compl.tion(PP)

R.cord PP ô

th.n
{pp ie a valid path}

}
Until (S••n ALI Co_binationa ot FR] '. for FR,)

}

}
}

Figure 4.3: Path Hunter Algorithm

86

C" 0 --l rI ., h.. , ,

r. ':>1 rn L.L)
, --l r2

I~
., ;Y, , .,

Figure 4.4: An Example Fragment

BLANK.ORlD PJaec.E.pt)"'1 CiMAP.E 1

1 RJr,·I...cw... , H ri RJr,.I".PlI:p'i1RA·I' P.Bill

BALL.CERTAIN FragmentA

BLANK..CiRID

/ OMAP _C 1

RA·I" RA·'"·Prcl''''' P.BALL Plwc·BaU~2 '- OMAP_B :,

B.w..CERTAIN Fragment B

BU.NK...CIUD Fragmente

P.BALL

BALL.CERTAIN

Figure 4.5: Constructing Paths from Fragments

87

Definition 13 (Splice Rule) ..1 ;'1111' T'i i.< s/lit/lo hl' /l sJllia T'Ill, i/l 11'll9111f/l1 Fi.
if it asseT'ls al least o~e faet IIsillg /l 11011 elld Jll'fflicllle which is 1101 sl"cijiffl hy "
template on the LHS of any otheT' T'Ille in the fl'llgme1lt. FOT'mally, T'i is a .<Jllicf T'llh:
in F~ if!:

RA-14-Prep%1 is a splice rule. Using splice rules, Path Hunter determines the frag·

ments that could l'l'suIt in fragments that would be c10sed if merged. However. before

Path Hunter merges two fragments, it performs two additional tests to detl'rminl' if

the rule sequence formed by merging the fragments wouId be a valicl fragment: tilt'

common-origin test, and the split-tai/ test (sel' Figure 4.:3).

When considering if the Path Hunter algorithm finds ail paths that 'Ire present

in a rule base, we must examine two issues: does the algorithm generat.e the frag­

ments l'l'qui l'cd to construct ail the paths, and are ail the appropriate combinations of

fragments merged. When generating fragments, we must determinc if ail fragments

can be constructed starting from the end rules. We will assume that it is possible to

produce l'l'l'or free code that selects ail combinations of enabling sets for a rule when

generating fragments. When merging fragments, we must determine if the two tests

used by Path Hunter permit the merging of only combinations of fragments that may

form valid paths. We assume it is possible to produce l'l'l'or free code to c1etermine

ail the fragments t.hat are potential candidates for being merged.

We can show that by starting its search for p.:ths with end rules, Path \lunter is

guaranteed to find the fragment~ required to construct ail the paths in the rule base.

ln order to show this, we prefer to vie\V paths in an alternative manner. Ail patlls

can be placed into one of three categories: single l'Ille paths, single chain paths, or

multiple chain paths. A chain is a sequence or rules that depend upon each other:

the first rule in the sequence has no enabling sets within the ru le !:lase, the last rule in

the sequence is an end rule, and only one of the facts asserted by each rule in a chain

matches a template on the LHS of another rule in the chain. Single rule paths contain

only one rule, (see Figure 4.6, ignore shaded region). An example of a single chain

path is shown in Figure 4.7 (ignore shaded region), and an example of a multiple

chain path is shown in Figure 4.8 (ignore shaded region). By categorizing paths in

this manner, wc will show that every path must contain at least one end rule. When

.88

Figure 4.6: Single Rule Paths

Figure 4.7: Single Chain Paths

proving that each path must contain an end rule, we will a1so show that each chain

in a path will terminate with an end fuie. We conclude that every fragment required

to construct ail the paths in a rule base can be generated starting with the end rules

because fragments can be categùrizcd in the same manncr that wc ha\'c catcgorizcd

paths.

Theorem 1 Every path p~ must contuin at Least one end ruLe.

Proof To show that every path must contain at least one end rule wc first show

that ail paths are fini te, and then consider the case of the single rule path. the single

chain path, and the multiple chain pat.h. We can see that a11 paths are finite because

the number of rules in any path is bounded by the number of rules in the rule base.

which is of course fini te.

............,
L<~~ ·:·..).J

~:~ :

r/.(r-:y:-,,,-.. """'.) ']

r,., ~ :::: ~)r-::---1r
,.n ~ :::: :

'2., ~y,.,Y·

"-c~:::J

/--'y''''-.I~r· • -l

Figure 4.8: Multiple Chain Paths

89

Case 1: We will assunll' that Figure ·1.6 is ~n l'xample of a sing'" rull' pat h. 1hal
a logical completion for T, is {.rt, .. , •.r,,}. hut l'i is not an end ru Il' h"cilu,,' il
asserts a faet using a predicate y, and y t/. Z,. However. given these assumptions
the path shawn in Figure 4.6 is not a valid path because <t> is not c1osed. This
contradicts our original assump:ion that Figure 4.6 depicts a single rule path;
thus, ri must be an end rule, and /'i cannat assert a faet nsing preuicate y.

Case 2: We will assume that Figure 4.i is an example of a single chain path. Singll'
chain paths are finite; thus, there is a rule l'" that is the last rule in the path.
The same argument used in case l ;s applied ta r n ; th'lS, l'" is an end rule.

Case 3: We will assume that Figure 4.8 is an example of a multiple chain path. III
the case of the multiple chain path, there will be a rule ri,,, at the end of l'iIch
chain. Again, the same argument used in case 1 can be applied ta ri,,,; thus.
/'i.n is an end rule.

The proof for Theorem 1 allows us to draw two conclusions about the structure of

paths.

Corollary 2 Every chain in a path terminates with an end l'ule.

Corollary 3 (End-Rule Complete) Ali the paths that exist in a l'ule base can be

lound by starting the search with the end rules.

Thus. the Path Hunter algorithm which starts its search with the end rules in the

rule base and follows the chain of rule dependencies unti! it encounters a start rule

will discover the fragments required to eonstruet all the paths in the rule base.

The merge phase of the Path Hunter algorithm is also important in establish­

ing its correctness. Two fragments are candidates for being merged if they share

a eommon spliee rule. However, the two fragments are merged only if they dilfer

in the rule that depends upon the spliee rule: the LHS of the rule depending upon

the spliee rule in eaeh fragment must eontain a template specifying a dilferent pred­

icate from the set of predieates used by the faets asserted by the RHS of the spliee

rule, if the merge phase is to produee fragments that are c10sed for depends upon.

As an example, Fragment A and Fragment B in Figure 4.5 eontain the spliee rule

RA-14-Prep%1, but in Fragment A RA-14-Prep%1 ~ Place-Empty%l, and in Frag­

ment B RA-14-Prep%1 ~ Place-Ball%2. When Fragment A and Fragment Barc

merged, RA-14-Prep%1 will have only one faet on its RHS that uses a predieate that

90

is net specified by the LHS of any ru le in Fragment A: thu". lllerging Fragmcllt .\

and Fragment B producc" a fragment that is closer to being closed for depends upon

than eithel' Fragment A or Fragment B.

Once two fragments have become candidates 1,0 be merged, we must consider the

conditions that permit two fragments 1,0 be merged producing a rule sequence that

is a val id fragment. We treat the origin of each fragment in a different manner than

its tai/. The origin of a fragment is the sequence of rules il, contains before the spliee

ru le, and the tail of a fragment is the sequence of rules il, contains after the splice rule.

Two fragments may be merged if and only if their origins are identieal; Figure ·1.9

shows the case where Fragment 0 and Fragment E are merged 1,0 form Fragment F,

but they do not have identical originsj in the proof for theorem 2, we show that

Fragment F is .Ilot a valid fragment. The first ruie in the tail of two fragments that

arc candidates for being merged arc always distinct. Two fragments may be merged

only if the remainders of the tails in each fragment arc identicaI.

Definition 14 (Remainder) The remainders of the tails of two fragments is the
sequence of ru/es starting with the jirst ru/e the tails have in common, ending with
the end of the tai/ of each fragment.

Figure 4.10 shows the case where Fragment G and Fragment H are merged 1,0 form

Fragment l, but they do not have identical remainders; in the proof for theorem :3.

wc show that Fragment 1 is not a valid fragment.

Theorem 2 (Common-Origin) Two fragments may he merged if! their origins are

identica/.

Proof Let us assume that the origin of two fragments (Fragment 0 and Fragment E)

differ by one rule as shown in Figure 4.9, but Fragment F formed by merging Frag­

ment 0 and Fragment E is a valid Fragment. In Fragment 0 we have r. -< ra. and

in Fragment E we have r. -< rbj thus in Fragment F we have r. -< ra and r. -< rb.

but U(Ar,) = bd. 'l'hcrefore, U(Ar,) is not singular1y consumed. and Fragment Fis

not a valid fragment. This violates our assumption that the origin of two fragments

may differ by one rule and still produce a valid fragment when mergedj thus, two

fragments can be merged 1,0 form a new fragment only if thEjir origins are identicaI.

91

Origin

Fragment 0

Fragment E

;. -~_ .. --- T.lil

1'1 -1. .. ··4 llt~}- ~-l ~: ..J

r----l r-- - ÎI
• • ' 'il ,---·t " ...l , --

Fragment F

fragmenlG

fragmenlH

ftogmenll

~ .. '-Lrm]---G--:J

Œ":J-7C::2'.=X " .·--[Ll-ŒJ

Figure 4.9: Merge: Non-Common Origin

10---------- Tail 1

10------- Remainder :

'.'{D--CD

1-------- Tail ---------:1
Remainder ------"

"'{Q-CD

Figure 4.10: Merge: Non Identical Remainder

92

Theorem 3 (Split-Tail) Tien fragmwls may be mel'gerf iff theil' l'unai'Ir"I'.' al"

ideniical.

Proof Let us assume that the remainder of two fragments (Fragment G and Frag­

ment H) differ by one ru le as shown in Figure 4.10, but Fragment 1formed by merging

Fragment G and Fragment H is a valid Fragment. In Fragment G we have l'., -< l's.

and in Fragment H l'le have 1'4 -< 1'6; thus in Fragment 1 we have l'., -< l's and 1'4 -< 1'6.

hut U(Ar,) = {ya}. Therefore, U(Ar,) is not singularly consumed. and Fragment 1 is

not a valid fragment. This violates our assumption that the remainder of two frag­

ments may ditrer by one mie and still produce a valid fragment when merged; thus,

two fragments can be merged to form a new fragment only if their remainders are

identical.

Path Huntel' will find a11 the paths that exist in a mie base. Coro11ary 3 assures us

thal. l'ath Hunter will discover every fragment in a rule base by starting its search for

fragments with end mies. Theorem 2 and Theorem 3 assures us that the Common­

Origin and Split-Tail tests used in Path Hunter Algorithm (shown in Figure 4.3) do

not permit two fragments to be merged that will not result in a valid fragment.

4.2.2 Controlling Combinatorial Explosion

There arc twa stages in the Path Hunter algorithm that are prone to combinato­

rial explosion: fragment generation, and the merging of fragments. During fragment

generation, the number of fragments produced C?n become too large to be computa­

tionally tractable. During the merge phase, the numbe~ of combinat ions of fragments

that must be merged to discover a11 the paths in the rule base can become unmanage­

able. In both these cases, the combinatorial explosion is contro11able by the logical

completions that have been specified by the knowledge engineer.

When a logical completion is too general, many different paths will be formed

that assert this logical completion. Thus, a combinatorial explosion may result. In

this case, the knowledge engineer can control the combinatorial explosion by creating

several, more specifie, logical completions. This new set of logical completions will

lead Path Hunter to create a set of paths for each new logical completion, where the

total number of paths for a11 the new logical completions is less than the paths that

93

n x. rn Frngrncnts

1 ri 1 --(PI)
•

>=-~~)1
•

:
1 r n 1 [PI)

:n Fragments

1 r" 1 L!î)
•

1

•

_J1 rt;; 1 (Pz)
an Fragrnents

1 Frngrnent

n + lTl + 1 Fragments

Figure 4.11: Combinatorial Explosion Generating Fragments

were to be created for the original logical completion.

An example of where combinatorial explosion occurs when fragments arc gcncr­

ated is shown in Figure 4.11. Figure 4.11 shows the scenario where P3 is a logical

completion, rk is an end rule, there are n rule sequences producing a faet using prcd­

icate Pb and m rule sequences producing a faet using predicate P2. Path Huntcr will

generate fragments starting from rk, and it will generate n x m fragmcnts: one frag­

ment for each possible combination of rule sequences prodllcing PI and p~. II' 1/ and

m are large, a combinatorial explosion in the number of fragments will occur. Based

upon the number of rule sequences present in the rule base for producing faets using

predicates Pl and /J2, Path Hunter is indicating the importance of Pl and P2 in solving

the problemj thus, PI and P2 should be goal states. When the logical completions arc

changed to refieet the importance of Pl and /J2, Path Hunter will gencrate n +m + 1

fragments, as shown in Figure 4.11.

An example of where combinatorial explosion occurs when fragments are mergcd

is shown in Figure 4.12. Figure 4.12 shows the scenario where Pl Il P2 is a logical

completion, there are n rule sequences starting from P3 generating a faet using Pl,

and m rule sequences starting from P4 generating a faet using /J2. Path Hunter will

generate n fragments starting with rk and ending with Pl as weil as m fragments

starting with rk and ending with P2. In the m +n fragments, rk is a splicc rule, and

94

=<:;:
1 Frngancnt

(P3) 1 r'" 1 ()J PI
••

(P3) 1 r" 1 (P,)n

n FroJ':,lncnts

(P4) 1 rI 1 (P2)
••

(P4) 1 rrn 1 Œz=-J
nt Fragments

n + an + 1 Frnganents

Figure 4.12: Combinatorial Explosion Merging Fragments

Path Hunter will attempt to merge the fragments in n x m combinations. Ir n and

ln are large, a combinatorial explosion will occur. Path Hunter, in performing its

analysis, is indicating the importance of P3 and P1 in solving the problemj thus, P3

and P.I should represent a goal statej When the the logical completions are changed

to rel1ect the importance of P3 and P4, Path Hunter will generate n +m +1 fragments,

as shown in Figure 4.12

The knowledge enginccr can control any combinatorial explosions that occur when

using Path Hunter to analyze a rule base by introducing additional goal states. When

new goal states are introduced, the paths to be created using the criginallogical com­

pletion are broken down into smaller paths where there are fewer potential combina­

tions of rules for creating these smaller paths, resulting in a fewer number of total

paths produced. Nevertheless, these smaller paths are still meaningful.

4.2.3 Analyzing the Blackbox Expert's Rule Base

Given the set of logical completions, Path Hunter has been used to analyze the struc­

ture of the Blackbox Expert 's rule base. This rule base contains 442 CLIPS rules

which formed 512 abstract rules. The abstract rules formed 72 equivalence classes

as weil as 170 rules not in any equivalence class. Path Hunter found 516 paths, and

we believe this is reasonable given the complexity of the Blackbox puzzle and our

95

set of logical completions; there are rule bases which cause the generation 'lf 1lI11n~'

thousands of paths from a small number of rules, as was demonstratcd b,' the anal\'sis. .
of the ONCOCIN rule base [81J. The smallest paths consisted of a single rule; the

deepest had a depth of 7 rules; the broadest had a breadth of 7 rules. The mean path

depth was 4 rules, and the mean path breadth was 3.5 rules. The paths produced hy

Path Hunter have been manually verified by the knowledge engineer as being accurate

and meaningful; that is, they capture the original intent with which the rules in the

path were specified and the rules that are depicted in the paUls combine l,ogt'lher as

intended.

The process of applying Path Hunter to the Blackbox Expert's rule base identified

an application for our structural model apart from our intended application of the

path model to COPS design. We have found that our structural model will also

play an important roll' in the validation of rule-based systems [:15, :J8, 37]. Path

Hunter identified various anomalies in the Blackbox Expert's rule hase: t.he improper

use of predicates, undesired dependencies between ru les, and rules which were not

considered to be part of any path due to programming inconsistencies. In sorne cases,

it was determined that the same predicate had been used within the rule base to

re!lect slightly different semantics. Thus, it was determined that while the rule base

designer had intended to represent two distinct situations, an undctectcd 1I1l1biguity

had occurred. These ambiguities also led to undesired potential interactions hetween

the rules in the rule base. One of the rules in the Blackhox Expert's rule base did

not appear in any path because it was dependent upon rules in the Bearn Trace

task, but asserted a fact that uscd an end predicate from the Bearn Selection task.

This situation indicated a poor design for the rule in question because the rule was

dependent upon rules from one task, but the rule was performing actions that would

reach a goal state from a different task. The use of Path Hunter to analyzc the

Blackbox Expert's rule base provided a method to validate the design of the rule

base by indicating these inconsistencies and ambiguities.

An example of where a combinatorial explosion occurred when Path Huntcr was

analyzing the rule base of the Blackbox expert is shown in Figure 4.13. Figure -1.1:1

shows the structure of the paths that Path Hunter was attempting to produce whcn

96

1 RA·11MI~ RA-1!.J'RI'1 .-,~"
.: G~l\PJ)

BAlL)

ŒRllCiJIllS

'--------o! Glllp.(IRl.B

Figure 4.13: Controlling Combinatorial Explosion in Practice

GMAP.C /1 GMAPJl /1 BALL /1 CERTAINJlALLS /1 GMAP.CERTJl was declared by the rule

base designer as a logical completion. The predicate CONFLICTJl indicates that a

conOict occurred when a bail was to be placed in one of the squares of the Blackbox

grid, and RMCJl indicates that a conflict can be resolved. A combinatorial explosion

resulted because there are many rule sequences in the Blackbox Expert's rule base for

placing a ball as well as for determining that a conflict can be resolved. Path Hunter's

analysis pointed out to the rule base designer that placing a bail or determining that

a conOict could be resolved should be considered as goal states, and that the action

of actually resolving a confiict should be treated separately from a conflicts creation

or detection.

4.3 Conclusion

Our model for the internai structure of a rule·based system captures the structure of

a rule base as chains of inter-dependent rules (paths). Each path depicts a structural

component of the rule base that advances the state of the problem being solved from

one goal state to another, where goal states are identified by logical completions. Our

model also meets our three criteria,

• Our model is accurate. The path, as we have defined it, has served as a specifica­
tion for the construction of the Path Hunter aigorithm. The concepts of logical

97

completions, depends upon, enablement. singular consumpl.ion. and riosnl'l' <'n'
sure that paths only represent sequences of rules that can occnr al. run·tiltlt',
and this has been demonstrated by the use of Path Hunter on the Blackbox
Expert .

• Paths are meaningfu1. Our structural model accounts for the structure of the
problem being solved, providing a notion of meaningfulness for the actions taken
by the rules in a path.

• Our structural model is computationally tractable. With our mode!, t.he knowl·
edge engineer, using logical completions, can control any combinatorial l'X plo·
sion that can potentially occur when Path Hunter is gelleratillg the paths in
a rule base. This \Vas also demonstrated by the use of Path Hunter on th,'
Blackbox Expert.

98

Chapter 5

Applying the Organization and
Path Models

"The woods are lovely, dark and deep.
But 1 have promises to keep,
And miles to go belore 1 sleep,
And miles to go belore 1 sleep."

- Robert Frost, "Stoppillg by Woods 011 a Saowy Evelling", 1923

Applying the organizational model and the path model to building CDPS enables

us to consider both an inter-agent perspective and an intra-agent perspective; we

focus 011 the use of these models in setting the data distribution in a CDPS. The

organizational model is designed to capture the inter-agent perspective and the path

model is applied to capture the intra-agent perspective. The organizational model

specifies the interactions that occur between the rule-based systems in a CDPS, ill­

cluding the data items available to the rule-based systems. We apply the path model

to capture the data items required by a rule-based system to produce specifie results.

Using the path model, the CDPS designer can determine the impact of the availabil­

ity of a specifie data item on the result produced by a rule-based system that is a

member of a CDPS, aiding the CDPS designer to set the availability of specifie data

items (the windows specified using the organizational model), in order to improve

the performance of the rule-based systems in a CDPS. Thus, when specifying the

interactions that are part of the inter-agent perspective, the CDPS designer is guided

by studying the intra-agent perspective.

When studying the intra-agent perspective, the CDPS designer is concerned with

99

determining how to set the availability of specific data items in order to impl'll\"l'

the performance of the rule-based systems in a CDPS, or avoid serious failurcs, ln

determining how to set the availability of data items, the CDPS designer is faced \Vith

the following questions:

• \Vhat is the set of data items required by the rule-based systems to achieve each
goal?

• what is the impact of a particular data item being unavailable on the ability of
the rule-based system to achieve a goal?

• what is the direct impact of achieving each goal on the ability of the rlllc-based
system to produce a result, or the quality of the result produccd?

• what are the interactions that occur between goals as the data items available
are reduced? That is, when a rule-based system cannot achieve a goal duc to
the unavailability of a particular data item, will it achieve an alternate goal,
and if so, which goal is achieved as an alternate?

• in the case that a rule-based system achieves a goal when opel'ating with a
reduced number of data items (this goal may be an altl~rnate goal achieved duc
to an interaction), is it desirable for the rule-based system to achieve that goal'?
That is, will the result produced by achieving that goal be acceptable?

• if a goal is achieved by a rule-based system when operating with a reduced
number of data items, but the CDPS designer determines that it is not desirable
for that goal to be achieved, how l'an the availability of data items be adjusted
to avoid achievement of that goal'? Which path is responsible for that goal being
achieved, and which data items are required by the rules in that path to fire?

The understanding gained by the CDPS designer in studying intra-agent perspective

to answer these questions will aid the CDPS designer to set the availability of specific

data items in the CDPS, The CDPS designer l'an set the availability of data items

to ensure that the goals that are most "important" are achievedj each goal l'an be

assigned a priority when studying the intra-agent perspective to determine the impact

of athieving that goal on the ability of the rule-based system to produce a result, or

the quality of the result produced. The CDPS designer l'an also ensure that the

achieving of goals that would produce unacceptable results is avoided, by using paths

to identify the data items responsible for the achievement of those goals, and then

adjusting the data distribution in the CDPS.

Applying the path model to study the intra-agent perspective is accomplished in

two separate steps as follows:

100

step 1 determine the data items that are required hy the rules in each path to achi('\'(,
the goal identified by the logical completion asserted by the rules in that path.
We determine data items required by analyzing each path to determine the data
items required for ail the rules in that path to fire.

step 2 determine the effect on the result produced when a goal is achieved; we de·
termine this by monitoring the goals that are achieved by a rule-hased system
as it solves a set of test cases. Monitoring the goals that are achieved by a rule­
based system permits us to study the goals achieved by a rule-based system as
we reduce the data items available.

In this chapter, we ~how how the organizational model and the path model can he

applied to aid the COPS designer set the data distribution in a COPS. 'vVe explaill ho\\'

to analyse paths to determine the data items that are required by the mies in each

path ta fire, and then present an algorithm for this analysis. We present a method

for monitoring the goals that are achieved by a rule-based system, by determining

when ail the rules in a path have fired. We have constructed a too!' Path Tracer,

embodying our method for monitoring the goals that are achieved by a rule-based

system. We present results from an experiment to validate the accuracy of our method

for monitoring goals achievedj in this experiment, Path Tracer is used to determine

the goals that were achieved by the Blackbox Expert when it solved the set of test

cases used for the functional validation experiment described in chapter 3. fn order ta

demonstrate the use of our models (organizations and paths) and tools (Path HUllte!'

and Path Tracer), we then present a case study in which Wf: examine the intra-agcllt

perspective for the Blackbox Expert and consider setting the data distribution in a

COPS for solving the Blackbox Puzzle.

5.1 Data Items Required

In this section, we first present an approach for analyzing the paths in a rule base

to identify the data items required for ail the rules in each path ta fire, and then we

present an algorithm for implementing this approach. We also show that the cast of

analyzing the paths in a rule base using our algorithm grows Iineariy with an increase

in the number of rt1!es and paths in the rule base.

101

Path

Precedence COMtrlints

,------------------

Figure 5.1: Data Requirements

5.1.1 Identifying Data Items Required

We can view a [':!.th as a set of rules that require certain faets to achieve a specifie goal,

see Figure 5.1. The facts required by the rules in a path are the precedencc constrair.ts

for achieving the goal. There are two issues that must be tackled when using the
. ..

path model to determine the facts required by a rule-based system: dctermining the

precedence constraints required for a single rule in a path to lire, and determining

when ail the rules in a path will be able to lire.

The lirst rules that must fire in a path are called start rllies. Start rules will

then assert facts enabling other rules in the path. The start rules of a path, denoted

by SRL is the set of rules ri E <[l where the templates in the LHS of ri do Ilot

depend upon any other rule rj E <[lj 8Rt = {ri 1ri E <[l, (Vrk E ,~, rk f. ri)}' The

start rule for the example path shown in Figure 4.2 is in faet an equivalence class

SR:=::p:~alY.i. = {RA-14-Class%1}.

A start set of a path is a set of facts matching the LHS of ail the start rules of

that path. A start set of a path is identified by the set of start telllplates, dencted

by STl, which is the union of the set of templates present on the LHS of each of

the start rules of the pathj STl = Ur;ESR~ zr,. The set of predicates used in the

start templates for a path, called the start predicates, indicate factors from pl from

which data items must be available to enable the start rules to fire, this set is given

by SPl = {'\j 1V(Ai, Li) E Sn U((Ai, Li)) = '\j}.

The faets required for ail the rules in a path, exccpt start rules, to fire is called a

completion set. The completion set of a path is identified by the set of completion tem-

102

plates for a pz.th. dcnoted by CTt. The completion templates is the set of ail telllplat"s

present on the LHS of ail the mies of the path, except start rules. which specify a fact

that is not asserted by any rule in the path. Formally, eT~ = Ur,E(~-SR~)(I" - PT/.k).

PT/,k is the set of templates from l'' that are matched by the fads asserted when

the ru les that enable rj fire. PTi~k = {(Aj, Li) 1 (Vrj E W, W'-+ ri)(36, (Aj, Li)' 6 =

(Aj,lj), (Ai, li) E Ar,}}. The set of predicates used in the completion templates for

a path, called the completion predicates, indicate the factors From pl for which in·

stances (data items) must be available 50 that ail the rules in the path become enabled

to fire, assuming the start rules have fired. Formally, the set of complet ion predicates

is given by eP~ = {Aj 1 V(Ai, Li} E en U((Ai, Li}) = Aj }.

Now, let us consider the precedence constraints for a rule in a path. A rule in a

path can fire when there are fads present in WM that satisfy ail the templates in its

LHS. Facts matching the LHS of a rule can be present in WM because they were

placed into WM by other rules in the path, or becausc they were present in WM

before the rulcs in the path fired. Civen a path P~, ri E 4>, ri rf. Sœ, and W '-> rj,

then the set of completion templates for ri is given by eTi~k = (l'' - PT/,k)'

Lemma 2 [f facts matching the completion templates eT/k of rule ri in a path P~,
are present in WM and the (rj E W, W '-+ rj) fire, then ri can fire.

Proof When thc rj E W fire, W J'rI contains at least the following facts:

{(Aj, li} 1V(Ai,L;) E eT/,k' (36, (Aj,Li}·6 = (Ai, li}}}U{(A;, li} 1Vrj E W, (Ai,li) E A"}

The templates that are matched by the facts in WM are given by

eT.'k U PT·'kl, l,

= (Ti - PT/.d U PT/.k

Thus, ri can fire because W J"l contains facts matching ail the templates in T'.

Now that we have understood the conditions required for an individual rule in a

path to fire, we can specify the conditions for ail the rules in a path to fire.

Theorem 4 Given a path P~, if facts matching the completion temp/ates eT~ and
start temp/ates ST~ are present in W M, then all the ru/es in the path can fire.

103

Proof The theorem follows directly from Lemma 2 hy induction.

Thus, when assessing if ail the mies in a path can fire, we must bc ablc to <1ctcrmiuc

if faets matching ST~ UCT~ are present in WM.

The path model provides the COPS designer with the ability to determine the data

items that are required by a rule-based system to achieve its goals. In Theorem 1, wc

have shown that the precedence constraints for each path, ST~ and CT~, inclicatc the

faets required for ail the rules in that path to fire, achieving a goal; the goal achieved

is identified by the logical completion asserted by the mies in the path.

5.1.2 Determining Data Items Required: An Algorithm

Applying the path model to determine the faets required by the mies in each path to

achieve a goal (ST~ and CTD required the addition of a new module ta Path Huntcr.

The new module provides a list of the data items that arc required ta achicvc cach

goal, S P~ and CPt. The algorithm used ta implement the module that wc a,lded 1.0

Path Hunter is shown in Figure ;'.2. The first step in determining the faets requircd

to achieve a goal is to compute the start templates (STl,k) and completion templal.cs

(CTl,k) for each rule. The intuitive method for computing STl,k and CTl,k wouId be

to compute them for a rule, each time the rule appears in a path. However, we can

show that STl,k and CTl,k for rule ri are independent of the path Pt in which l', is

contained.

Theorem 5 When a roll' is in two or more paths its set of completion templates is
unique. FormaI/y, ifri is in path Pl and rj is in P~ (k #- n), then CTl,k =CTl,.. ,

Proof We will assume that rj is in path Pl and P~, but CTj~k #- CTl,... Since

CTl,k U PTj~k = CTl,n U PTl,n, we note that PTl,k #- PTl,n' That is, the predicates

used in the facts asserted by Wb W\ '-> l'j for Pl are not the same as the predicates

used in the facts asserted by W2 , W2 '-> ri for P~. Therefore, (3rj E Wh ('\i, li) E

Ar" (,\j, li) =6· (Ai, Lj), (Aj,Lj) E zr'), but (,lIr, E W2, (,\j,I,) E Ar,). This leads ta

the conclusion that W2, is not maximal; thus, P~ is not a path. Since this contradicl.s

our earlier assumption that P~ is a path, we conclude that CTl,k = CTl,...

Corollary 4 The facts required by a roll' ri in task Tl ta fire that are not supplied by
rules in Tl ({ ('\it li) 1 (,\j, li) = 6· (Ai, Li),·.\i, Li) E CTl,k}) are independent of the

104

got.data.ltem.O
{

Fouach ri e RB 00
If Start.!lule(r.> then

Find ST.',.
Il..

Find CT' ,l,A: 1

Foroach path p~ E RB Do
Foreach r, E: P: Do

11 Start.Jlule(ri) thln

ST~ = ST~ U ST.',.
els.

CT' - CT' uCT' .15 - k I,k 1

Foruch path p~ E RB Do
SP~ = U(ST~);

CP~ = U(CTD;

ReturnO
j

{Determine data it••s required ta achieve goals}

{D.termine th. facts required for a rule}

{Determine th, facts requir.d}

{Datarmlne the type of data Item. requiredj

Figure 5.2: Dctermining Data Items Required

patil in whicil ri is contained.

Thus, the faets that must be present in W J\-I in order for a rule in a path to fire is

independent of the path in which the rule is found.

Path Hunter will determine the data items l'equired by a rule-based system to

achieve goals, and the cost of determining data items required grnws linearly as the

the number of rules and paths in the rule base increase. In Theorem 2 and Corollary 2,

we showed that we can calculate STt and OTt without computing the faets required

by a rule, for every path in which that rule appearSj this reduces the computational

complexity of determining data items required.

As a part of our experimental work, we used Path Hunter to analyze the paths in

the rule base of the Blackbox Expert. The start predicates and completion predicates

for the example path from chapter 4 are shown in Figure 5.3. The start predicates for

the example path are SP::::P1A.nalYaia ={GMAP. GRIDSIZE. saOT-RECORD}. The sta,rt

predicates of our sample path indicate the data items that are required for the start

rules in the path to fire, indicating that a specifie configuration on the Blackbox grid

is recognized. For the start rules in our example path, the Blackbox Expert requires

access to data items that indicate the entry and exit points for the beams that have

105

..................
· A BU."" GRID - n..,..rllr~"l ~ J- û\l\rf

SIan Plediclln -
l marjlECl.IIl ..: :, :,
J .MAI' ..t:--3 RA·14CIn>" t--l RM4 .H RM4-,,",'" ~ p.1lALL il! Pla-BaIAo~ Olot"'.8 1

:./
(.RID5IZE J-;
................

:
................

, BALL.ŒRTAIN
:, ,

1
.........., h: ŒRTAL'UAW)

~(.MAI' l! :

:(
, ;"'i OMAP.cnl.8 1

GMAP.CERT 1:
: : : ~lrPapkt...................
~(cmAIN.BAW) ;

.'

. ,
: Cœapktiœ Plt4_ :
.................

Figure 5.3: Completion and Start Predicates of a Path

been lired, the data item indicating the size of the grid used in the Ciment puz3lc,

and data items indicating the current hypothesis for several of the Blackbox grid

squares. The completion predicates for the examplc path C P::::Pl~n'lY.i. = {GMAP.

GMAP_CERT. CERTAINJlALLS}. The completion predicates in our sampIc path indicate

the data items that are required for the non-start rules in the path to lire, indicating

that a conclusion can be drawn as to the contents of several squares of the Blackbcx

grid. For the non-start rules in our example path, the Blackbox Expert rcqllires

access to data items that indicate the cllrrent hypothesis for several of the Blackbox

grid squares, data items that indicate the certainty of hypotheses drawn for variolls

squares of the B1ackbox grid, and data items indicating the nllmbel' of balls that havc

been located which are considered to be certain.

5.2 Monitoring Goals Achieved

Identifying each goal that was achieved by a rule-based system when it is problcm­

solving and the path that was responsible for achieving that goal requires a method

to monitor the system at run-time. Our method to monitor rule-based systems relies

upon the ability of the rule-based system to produce a trace file as it is problem­

solving. The trace lile contains the rule liring events which occurred when the system

was exercised. In order to validate our method for detecting goals achieved, we show

that Path Tracer (our tool for monitoring the goals achieved by a rule- based system)

106

is able to account for ail the mie firing e\'ents that appeared in trace files oh! aincd

during the functional validation experiment we described in chapter 3.

5.2.1 Identifying Goals Achieved

Our method for monitoring a rule-based system to determine goals achieved is based

upon cip.teeting when al! the rules in a path have firedi this indicates that the goal

represented by the logical completion asserted by the rules in the path has be!'!n

achieved, and indicatcs the path Lhat is responsible for that goal having been achieved.

Our method for identifying the goals achieved hy a rule-based systems assumes that

the rule-based system can produce a trace file. From this trace file, it must be

possible to identify the sequence of rules which fired, and to identify the aetual causal

dependencies between the rule firings. We refer to run-time rule firings described in

a trace file as concreie rule firings. A trace file describing this information can be

obtained in several ways: many inference engines, such as the CLIPS infer'ence engine,

supply the required information; or it may be possible to modify an inference engine

to produce the desired information, or one could instrument the rule base itself.

We faced several issues in applying our path model to determine the goals achieved

and the path that was responsible for achieving each goal: identifying causal rule

dependencies among the concrete rule firings, finding mappings from the concrete

mie fil'ings to abstract rules, and developing a method fOl' determining when al! of

the rules in a path have fired. We will now discuss each of these issues in detai1.

Finding Causal Run-time Dependencies: A trace file contains a linear sequence

of rule firings. Within this sequence, causal sequences of rule firings are likely to be

interleaved because of the opportunistic inference mechanism used by production

rule systems. In order to determine true causal dependency relations, each asserted

faet is assigned a unique identifier, so we can track which faets are "produced" and

"consumed" by the rules. It is another useful feature of CLIPS that these identifiers

are assigned automatical!Yi otherwise, we would have had to instrument the rule

base (instrumenting the rule base can be done automatical1y, of course). Given the

existence of the unique fact identifiers, we are able to determine when a fact asserted

by a concr.?te rule firing r{ helps to cause another concrete rule rI to fire. If this is

107

the case, we say that r{ cause.~ rI io]irE, indicated hy the notation r{ ~ r;'

Mapping From Conerete Rules to Abstraet Rules: This is straiglttrorward

when the concrete rule has no conditionals on its RHS, because there will be only

one corresponding abstract rule; otherwise, it is necessary to determine which one

of several abstract rules corresponds to the rule which fired. ln such cases, we are

sometimes unable to make an unequivocal mapping from a concrete rule firing to an

abstract rule because when a rule fires, not ail of its expected assertions are ohsel'\'('(1.

This is not a weakness of our model, since it points to one of two situations, each of

which reveals information about the behavior of the rule base which is uscful to t.he

knowledge engineer:

• an assertion is not observed because (at least part of) the action performed by
the rule has already been donc by another rule, indicating that the l'ule Iiring
is (at least partially) redundant; or

• the rule fails to assert sorne fact that it should assert, according to the spec­
.ification of the rule-based system-this indicates a fault in the design of the
rule and, since the ru le violates the specification, of course there can be no
corresponding abstract ru le.

When a concrete firing cannot be mapped unequivocally to a single abstract ru le,

ail the possible mappings are recorded as equivocal mappings. For example, if the

sample mie, shown in Figlll'e 4.1, BaU-Certain is observed (in the trace file) t.o

fire at run-time, but it does not assert anything at that time because its first RHS

conditional is false, then we cannot tell whether the concrete rule should correspond

to Ball-CertainY,l, or Ball- CertainY,2. We allow it to correspond to bath abstract

rules, as an equivocal mapping. An unambiguous (unequivocal) mapping from the

concrete rule firing r{ to the abstract ru le rj is denoted by r{ H rj. An equivocal

mapping from r{ to rj is denoted by r{ ,!, rj.

Determining Rules Fired: Equivocal mappings complicate the task of determin·

ing when ail the rules in a path have fired. One central question is: can we say that

a specifie abstract rule has been observed to fire when it participates in an equivocal

mappillg? We can argue that, on one hand, we do not want the abstract rule to he

accepted as having fired unless we can be absolutely sure that it did SOi on the other

108

hand, if the mie fired but failed to assert ail the facts that it should. we can arglll'

that the rule did fire. To capture this distinction, we use three different strategies fol'

assessing if ail the rules in a path have fired.

We illustrate our method for assessing if ail the rules in a path have fired using

an example; Figure 5.4(a) is a simplified l'l'presentation for a path, showing its rules

and their dependencies only. The path contains six dependencies, labeled dl, ... ,dG'

Assume that we are able to map concrete rule firings observed in the trace file to the

abstract rules shown in Figure 5A(a) as follows:

RA-13-Right{ t-+ RA-13-Classy'1

RA-13-Prep{ t-+ RA-13-Prepy'1

Place-Empty fk t-+ Place-Emptyy'l

PlaCe-BaUr t-+ Place-BaUY.2

EmptY-Certain~ t-+ Empty-CertainY.l

Remove-Conflict~ • Remove-ConflictY.lt-+

Assume also that we observe the following rule tïring causalities in the trace file:

RA-13-Right{ ~ RA-13-prep{

RA-13-prep{ ~ Place-Empty{

RA-13-Prep{ ~ Place-BaUr

RA-13-prep{ ~ EmptY-Certain~

Place-Empty{ ~ Remove-Conflict~

EmptY-Certain~ ~ Remove-Conflict~

Paths are identified in a trace file using the notion of a thread, defined as follows:

there is a thl'l'ad T from rule ri to rule r n in a path if the path contains the set of

depends upon relations T = {ri -< 1'2,1'2 -< 1'3,.'" rn_1 -< r n }. Sample threads in the

example path are: {dl> d2 }, {dit d3 , ds}, {dl> d4 , de}. A thread is said to be observed if

and only if:

• there is a set ofmappings {rf t-+ rl,r{ t-+ r2,r{ t-+ r3,. .. ,r{ 1-+ rn-l>r~ 1-+ rn },

and

109

(a) An Example Path

Remov..confUdl

(b) Rules Fired Using Conservative Strategy

(c) Rules Fired Using Moderate Strategy

Remme·Connie,"1

(d) Rules Fired Using Liberal Strategy

Figure 5.4: Identifying Rules Fired in a Path

110

• there is a set of firing causalities observed in the trace {r{ » ri, r{ » r{
rf » r~}.

Observed threads in the example path are: {dI, d2 }, {dI, d3 }, {d h d4 }. The thread

{dt,d3 ,ds} is not observed because there is no unequivocal mapping to Remove­

ConflictY.1 involving dependency ds. Thread {dI, d4 , d6 } is not observed for the same

reason.

We assess the rules that have fired in a path by examining dependencies between

rules which are observed in the trace file. When we observe two rule firing events

that are dependent upon each other, we can determine if these two rule firings can

be safely accepted as belonging to a particular path. Dependent pairs of rule firing

events are accepted based upon the position in a path of the dependeney between

the rules, and the position of any equivocal mappings in that path. Each strategy

(conservative, moderate, and liberal) considers equivocal mappings differently for the

purposes of accepting rule firings. The rules for deciding whether or not to aeeept a

specifie pair of dependent rules as being part of a path for each strategy are stated

below.

Conservative Aeeept the dependent pair ri -< rj if and only if there is an observed
thread T from r. to r e, where r. is a start rule for the path, re is an end l'ule for
the path, and (ri -< rj) E T. Intuitively, we aecepi' a thread from a start l'ule
to an end rule in its entirety if every dependent pair in the thread is observed,
and none of the rule mappings involved are equivoealj otherwise, we do not
aeeept any dependent pairs in that thread as having been observed. Using this
strategy, only the two pair of dependent rule firings eomprising the example
thread (dl' d2) are aceepted, beeause ail other threads from a start rule to an
end rule involve an equivoeal mapping. This is illustrated in Figure 5.4(b).

Moderate Aeeept the dependent pair ri -< rj if and only if there is an observed
thread T from r. to ri> where r. is a start rule for the path, and (ri -< rj) E T.
Intuitively, starting from the start rule of eaeh thread, we aeeept observed de­
pendent pairs until the first dependent pair involving an equivoeal mapping, or
until the end of the thread. We do not aeeept the aetual dependent pair involv­
ing equivoeal mappings. Using this strategy, four of the dependent rule pairs in
the example (dh d2 ,d3 ,d4) are aeeepted. This is illustrated in Figure 5.4(e).

Liberal Aeeept the dependent pair ri -< rj if and only if there is an observed thread
from r. ta ri, where r. is a start rule for the path, r~ ri, r~ » r~, and there
is an equivoeal mapping r~ ,!. rj. Intuitively, starting from the start rule of

111

each thread, we accept observed dependent pairs nntil the first depcndcnt pair
involving an equivocal mapping, or until the end of the thread, inclnding t Ill'
first dependent pair involving an equivocal mapping. Using this strategy, ail
six of the dependent rule pairs in the example are accepted, as is illustrated in
Figure 5.4(d).

5.2.2 Validating Our Method

Before applying the path model to the design of any CDPS, it is important that wc

establish the validity of using the path model to determine if a rule based system has

achieved a goal. In order to validate the accuracy of our method for detecting goals

achieved, we use Path Tracer to analyze the rule firing events that appear in the tracc

files obtained during the functional validation experiment we described in chapter :J.

Path Tracer provides two different outputs:

• for each path that Path Hunter has discovered in a rule base, Path Tracer
produces a connt of the number of rules in that path that have bccn accepted
as having fired.

• Path Tracer produces a list of ail rule firing events that it cannot accept as
belonging to any path.

We will first examine a summary of the number of rules in each path that Path Tracer

has accepted as having fired, and t.hen show that we can acconnt for ail l'nie firing

events listed by Path Tracer as not belonging to any path.

A summary of the results of using Path Tracer to analyze the trace files produced

by the Blackbox Expert is given in Table 5.1. The number of rules fired is expressed

as a percentage of the number of rules in a path; thus, the column marked 100%

refers to paths in which ail the rules fired. The entries in the table are expressed

as a percentage of the paths in the rule base; thus, the entry 1i.4 in the upper

right.hand corner of the table indicates that ail (100%) of the rules fired in 17.4% of

the paths in the rule base when assessing rules fired using the conservative strategy.

Using the liberal strategy, ail rules fired in 33.3% of the paths. As we would expect,

the number of paths in which ail rules have been accepted as firing increases as the

strategy becomes more generous (conservative to liberal). Note that the same number

of paths were observed at > 0% rules fired using the moderate and liberal strategies,

112

Percent Rules Fired
Strategy >0% >50% >60% > iO% >80% > 90% 100%
Conservative 64.2 32.4 25.0 20.0 18.6 1i.6 liA
Moderate 71.7 50.6 44.6 36.5 2i.5 19.0 1804
Liberal 71.i 52.9 49.6 45.1 42.2 35.0 33.3

Table 5.1: Percentages of Rules Fired

indicating that no equivocal mappings were involved in any dependency which also

involved a start rule.

The results produced by Path Tracer indicate that many of the paths that were

discovered by Path Hunter are never exercised when the Blackbox Expert solved the

test cases. This does not point to a problem with our method for determining the

paths in which ail rules have fired, rather Path Tracer has uncovered an incomplete­

ness in our test set. This is not surprising since the test set was generated using only

iunctional criteria. Most of the cases in which paths were never initiated at run-time

are explained by the fact that the scenarios which those paths were designed to handle

were not present in the test set. Therefore, the start rules for these paths never had

cause to fire.

When Path Tracer analyzed the trace files produced by the Blackbox Expert, 6%

of the total mie firings contained in the trace files could not be accepted as being

part of any path. Path Tracer has rules to classify such firings, as follows:

Redundant Firings When a rule ri fires and the faets it is to assert are already
present in WM, due to actions taken by other rules, ri does not asser~ any new
facts, and cannot cause any other rule to fire; thus, ri cannot participate in
any mapping that indicates a depends upon relation, unless ri is an end rule.
If ri is not an end rule, Path Tracer reports such concrete firings as redundant
firings. The presence of a large number of these redundant firings that involve
the same rule at run·time would be anomalous, and would suggest that there
is sorne fault in the rule base.

Equivocal Firings Consider the example path shown in Figure 5.5. Let us as­
sume that rules rit r2, r4, rs and r7 are mapped unequivocally, but ra and re are
mapped only equivocally. Using the liberal strategy, the dependent pair ra -< re
is not accepted because there is no observed thread From the start rule, rit to ra
(the mapping to ra is equivocal). Since the liberal strategy is the most general
of the three, dependent pair ra -< re is not accepted in the other strategies
either. Therefore, the concrete firing which maps equivocally to re is never ac-

113

-..,;;;.:. dependency counled
dependency nol counled

Figure 5.5: Rules Fired Using the Liberal Strategy

cepted as belonging 1.0 any abstract path by Path Tracer. Path Tracer reports
such firings as equivocal firings. They are important because they indicate mie
firings (usually near the end of paths) which fail 1.0 assert ail of their expect.ed
predicates (hence the equivocal mappings). In many of the cases we have man­
ually checked 50 far, this is because sorne other rule has "interfered" 1.0 carry
out those assertions prior 1.0 the equivocal firing rules. Other cases pointed to
coding errors in the rules, such as where a rule does not assert ail the facts that
il. should.

Ali of the rule firing events in the trace files produced by the Blackbox Expert

that could not be accepted as being part of any path were c1assified as belonging

1.0 one of the above cases: redundant firings or equivocal firings. This statement is

highly significant, since il. means that:

• the path model for rule base execution paths was suflicient1y powerful 1.0 explain
ail the rule firing events observed in the trace files.

• the 516 paths produced by Path Hunter accurately described ail the rule firing
events observed during the functional testing of Blackbox Expert.

• the mechanisms used by Path Tracer for identifying causal concrete rule rela­
tionships, mapping from concrete rule firings 1.0 abstract rules, and identifying
rules fired in a path, were capable of accounting for ail of the rule firing events
observed in terms of the paths discovered by Path Hunter in the Blackbox
Expert's rule base.

These results provide us with strong empirical evidence for the validity of our

structural model and 1.0015. We can be confident in applying our model by using Path

Hunter 1.0 discover the paths in a rule base, and by using Path Tracer 1.0 determine

when ail the rules in a path have firedj determining paths in which ail rules have fired

identifies each goal that is achieved by a rule-based system, and identifies the path

which is responsible for achieving that goal.

114

...... -.

5.3 Applying Our Models: A Case Study

We now apply our models to the design of a CDPS for solving the Blackbox puzzle.

Using our organizational model, we discuss the inter-agent perspective: describing an

organization for the CDPS in which the agents are rule-based systems constructed

using the Blackbox Expert's rule base. Then we show the application of the path

model to study the intra-agent perspective, considering the goals achieved by the

Blackbox Expert as we reduced the data items available. We then demonstrate by

means of three examples how our study of the intra-agent perspective aids the CDPS

designer in setting data distribution.

5.3.1 The Inter-Agent Perspective

The specification of an organization for a CDPS to solve the Blackbox puzzle requires

the CDPS designer to determine the following:

• the number and structure of the agents in the CDPS

• the coordination structure to be used by the agents

• the structure of the blackboard

• the window of each agent

For the purposes of our case study, we will assume that the CDPS contains three

"gents, and each agent contains the complete set of rules in the Blackbox Expert's

rule base. As shown in Figure 5.6, the agents use Consensus to determine the beams

to be fired [29].

The are many different options for representing the Blackbox grid using a black­

board; the CDPS designer must select the number of levels that are required, and

the data items to be stored on each level. In the case of Blackbox, which is an ill­

structured problem, the structure imposed by the problem-solver (the factors ai that

are used to represent the state of the Blackbox puzzle) will determine the number

of levels required on the blackboard as well as the da.ta items to be placed on the

blackboard. More specifically, the "relationship" between the different objects to be

placed on the blackboard will impact on the number of levels required. By relation·

ship between objects on the blackboard, we refer to the manner in which the problem

115

solver will make use of the objects on one level of the blackboard to construct oh·

jects to be placed un the upper levels of the blackboard. For example, in the case

of Blackbox, shot records placed on the lowest level of the blackboard are used as

evidence to support hypotheses for the trajectory of the beams, and these hypotheses

are recorded on higher levels of the blackboard than the shot records [68).

Figure 5.6 depicts the topmost level of the blackboard where the Blackbox gird

is represented as a matrix, and the lowest level of the blackboard containing the

beam entry and exit points are shown surrounding the grid. There would also be

several intermediate levels (not shown in Figure 5.6) containing hypotheses as to

trajectory of the beams that have been fired. On the lower levels of the blackboard, the

hypothesis for beam trajectories would explain only a portion of the entire trajectory

of a beam. On the upper levels of the blackboard, hypotheses from the lower levels

on the blackboard would be used to construct hypotheses for the entire trajectory

of a beam, and the hypotheses for entire beam trajectories would then be used to

support the hypotheses for the contents of the grid squares, on the highest level of

the blackboard [68).

In the absence of any input from examining the intra-agent perspective, at this

stage we can consider only simple intuitive options for setting the window of each

agent in the CDPS. Figure 5.6 shows the upper level of the blackboard divided Îuto

three approximately equal regions, and each agent can access only one of the regions.

In the case of shot records (the lowest level on the blackboard), the agents can access

a shot record if either the beam's entry or exit point is in the region of the blackboard

it is allowed to access.

5.3.2 The Intra-Agent Perspective

Our study of the intra-agent perspective considers the ability of the Blackbox Expert

to produce specifie results, as the data items available are reduced. Using Path Tracer,

we monitor the goals that are achieved by the Blackbox Expert as it solves a set of

test puzzles with a reduced number of data items available. Analyzing the paths that

are responsible for the achievement of these goals and the data items required for ail

the rules in these paths to fire, we determine the following:

116

1
1
1
1
1.. ------
1
1

,
1
1,..------
1
1
1

,,
~--_ .. --,,,,

1 1 1 1 1 1 1 1 1 1 1 --
§ §

--

~ ~
--

--

§ § --

1 1 1 --

Figure 5.6: CDPS for Blackbox

ID

U l.o ""..-...,
K' .'

"", '"
... .. l 1""-• ---.., ..

• r--.•l•• ..
•

~0: ..
,

lnbmalion lloIIciI

•

(a) (b)

Figure 5.7: SCORE, Rules Fired, and Goals Achieved

• specifie goals that are achieved by the Blackbox Expert and the result produced
when those goals are achieved

• interactions that occur between goals

• the paths responsible for achieving goals that are identified by the CDPS de­
signer as being undesirablej we also identify the data items required by all the
rules in these paths to fire.

In our study, we selected 10 random test cases of the Blackbox puzzle, and the

Blackbox Expert attempted each test case five timesj each time the same test case

was attempted, the availability of data items (measured using the information deficit

metric) to the Blackbox Expert was reduced by 0.2. In order to ensure that our

117

experiment was unbiased, we used random test cases and we reduced the availability

of each type of data item in equal proportions. We then used Path Tracer to analyze

the trace files produced by the Blackbox Expert to determine the effect that the

change in data items available to the Blackbox Expert had on the goals that were

achieved. We used the SCORE metric (described in chapter 3) to measure the quality

of the results produced by the Blackbox Expert for the test cases.

The overall effect of changing the data items available to the Blackbox Expert

on the number of goals that were achieved is shown in Figure 5.7(a). This figure

shows the number of goals that were achieved by the Blackbox Expert when solving

our test set, as the data items available were reduced. Figure 5.7(a) also shows the

average SCORE of the results produced by the Blackbox Expert. The SCORE of

the results produced by the Blackbox Expert increased as the data items available

decreased, and the number of goals achieved under each strategy decreased. Based

upon our experiment described in chapter 3, the trends observed in these results are

as expected.

While the overall effects shown in Figure 5.7(a) are as one would expect, if we

compare the rate of decrease in goals achieved with the rate of decrease for rules

fired, we find an interesting anomaly. Figure 5.7(b) presents the ratio of rules fired

at each information deficit to the number of rules fired with an information deficit of

zero, and the ratio of the number of goals achieved at each information deficit to the

number of goals achieved with an information deficit of zero. At information deficit

0.8, the number of rules fired dècreases by 60%, but the number of goals achieved

declines by only 39% (using the liberal strategy)j even.though the Blackbox Expert

is still able to achieve over 60% of the goals it achieved with an information deficit of

zero, it is nearly unable to solve any portion of the Blackbox puzzle (SCORE is 291).

Let us now consider the effect of reducing the data items available to the Blackbox

Expert on its ability to achieve specific goals as weil as the impact of achieving these

goals on the ability of the system to produce a result, or the quality of the result

produced. Figure 5.8(a) shows a sample of goals that were affected by the change in

data items available to the the Blackbox Expert. For each goal, we plot the number of

test cases in which the goals were achieved as the data items available were reduced.

U8

Figure 5.8(b) explains the meaning attached by the knowledge engineer to each goal.

Examining the paths that can achieve each goal, and the data items required by the

rules in each path, the trends shown in Figure 5.8(a) can be interpreted as follows:

• goal 7 exhibits a rapid declinej goal 7 can only be achieved if sufficient data
items are available for the Blackbox Expert to detect that all the balls in the
grid have been located. This is only likely to occur in situations where most
of the data items regarding the contents of the grid squares are available. The
non achievement of goal 7 impacts the ability of the Blackbox Expert to detect
when an end game situation has been reached. In the case that the Blackbox
Expert is unable to detect end game situations, it tends to fire too many beams,
resulting in an elevated score.

• goal 8 exhibits a rapid increasej goal 8 is achieved when the Blackbox Expert is
unable to choose a beam to fire. As the number of data items used to evaluate
the beams to be fired is reduced, the Blackbox Expert is unable to select a beam
to be firedj thus, goal 8 is achieved more often as the number of data items is
reduced. The achievement of goal 8 indicates that the reduced ability of the
Blackbox Expert to select beams has been detected, and the Blackbox Expert
should terminate its problem-solving efforts.

• goal 9 exhibits a rapid declinej as with goal 7, goal 9 can only be achieved if
it is possible to detect that all the balls in the grid have been located. The
non-achievement of goal 9 indicates the reduced ability of the Blackbox Expert
to detect that it should terminate its problem-solving effort bp.cause all the balls
have been located.

• goal 2.5 exhibits a decline, but not as rapid as the decline experienced by goal i;
The achievement of goal 25 is dependent upon data items tnat indicatc the
contents ~'f different grid squares, that indicate the certainty of grid squares,
and shot records for the beams that have been fired. As the data items available
are reduced, it is less likely that the Blackbox Expert can detect the scenario
required to achieve goal 25. The non-achievement of goal 25 indicates that the
quality of the result produced by the Blackbox Expert is reduced because the
Blackbox Expert is unable to determine the contents of the grid squares.

It is evident that when determining the impact of the availability of data items

on the result produced by a rule-based system, not all goals can be considered to

be equal in the role they play in the problem-solving process, in the effect they will

have on the result produced by the rule-based system, cr in sensitivity to a change

in the availability of data items. Certain goals, while central to the problem-solving

process (such as goals 7, 8, and 9 for the Blackbox Expert), may have little direct

119

.... .----
.-~

............. :

! '.'., '.
\ 1
\1
l' ,,,

\
,

1 ,
\ ,

•
G • ,,

1 ,
............... ,

" • ..
Infonmion llelicil

(a)

GOAL SEMANTICS
Goal i Detect if ail balls localed
GoalS End of game. no desirable beams
Goal 9 End of game. ail halls localed
Goal 25 Mark square as empty. and il is

certain

(b)

Figure 5.8: Sensitivity of Specifie Goals

effect on the final result that is produced by the rule-based system, even if they can

be achieved more often. Other goals, such as goal 25 for the B1ackbox Expert, have

a direct impact on the result produced each time they are achieved.

Let us now consider the interactions that occur between goals as the data items

available to the Blackbox Expert are reduced. Figure 5.9(a) shows a saml'le of goals

that interacted with each other as we changed the data items available to the the

Blackbox Expert. For each goal, we plot the number of test cases in which the goals

were achieved as the data items available were reduced, and Figure 5.9(b) expiai Ils

the meaning attached by the knowledge engineer to each goal. Examining the paths

that can achieve each goal, and the data items required by the rules in each path, the

trends shown in Figure 5.9(a) can be interpreted as follows:

• goals 8 and 9 interact with each other. Goals 8 and 9 form a set of goals in which
at least one of the members of the set has to be accomplished; problem-solving
terminates when either goal 8 or goal 9 is achieved. Of course, problem-solving
must terminate, even when the number of data items available is small; thus in
each test case, either Goal 8 or Goal 9 is achieved. As the data items available
are reduced, the number of test cases which terminate by achieving goal 9
reduce, causing the number of test cases which terminate by achieving goal 8
to increase.

• goals 11 and 198 interact with each other. The paths achieving goals 11 and 198
have the same start rules, and thus the same start sets. However, the completion
sets for these two paths are different. Goal Il is achieved when the data items

120

~1-------
• •
, 1 (..

1
, " .
\, 1 ..-
\/ i

........--
f\!

f ,1. \,1

•Il' \,
1 .. " ~'.....

• • • •
Inionnalon Deliit

(a)

GOAL SEMANTICS
Goal S End of game. no desirable beams
Goal 9 End of game. ail balls located
Goal Il Terminate Hne of reasoning
Goal19S Mark square as empty. and termi·

nate Hne of reasoning

(b)

Figure 5.9: Interactions Between Goals

specified in the completion set of the path achieving goal 198 are unavailable,
preventing the Blackbox Expert from achieving goal 198.

When the Blackbox Expert achieves goal 8 rather than goal 9, or goal Il rather

than goal 198 the quality of the result produced by the Blackbox Expert is reduced.

ln achieving goal 8 rather than goal 9, the Blackbox Expert would have fired more

beams and identified the contents of fewer grid squares. In achieving goal 11 rather

than goal 198 the Blackbox Expert is able to identify the contents of fewer grill

squares. However, in each of theses case the Blackbox Expert is exhibiting a graceful

degradation in its performance as the number of data items available are reduccd;

thus, even though the quality of the result produced by the Blackbox Expert is reduced

when it chooses to achieve alternate goals as the number of data items available is

reduced, we cannot categorize these goal interactions as undesirable.

We observed two goals that were achieved in a larger number test cases as the data

items available were reduced, and we believe that an increase in the achievement of

these goals is undesirable, see Figure 5.10. We observed an increase in the number of

test cases in which goal 136 and goal 20 are achieved. The increased achievement of

goal 20 indicates that the Blackbox Expert is placing additional balls as the number

of data items available is reduced, and the increased achievement of goal 136 indicates

that the number of conflicts encountered by the Blackbox Expert has also increased.

121

,/..... -....
1

-...,
......000

1
1

! / ~
/ ~.. '"/Qi '",

Go
i»

• • •
Infonnallon Delic:il

(a)

GOAL SEMANTlCS
Goal 20 Place a bail
Goal 136 ConRiet on placillg clIlpty. ami (011'

Hiet 011 placillg bail

(b)

Figure 5.10: Undesirable Events

Let us use the path model to look deeper into the cause for the two undesirable

events that we observed in our experimcnt. Using Path Tracer. wc were able to

identify the paths that were responsible for the additional achievement of goal 1:36

and goal 20. ln the case of goal 136, the paths we identified indicate that the Blackbox

Expert produced the additional confiicts when it attempted to access data items for

which it did not have access permission. We were able to identify two different sets

of paths responsible for the achievement of goal 20 when the number of data itcms

available were reducedo ln one case, the Blackbox Expert erroneously placed a bail

in a gl'Îd square (achieving goal 20)0 ln the other case, the Blackbox Expert chose

to fire a dilferent beam than the beam it chose to fire with an data items available;

firing a dilferent beam produced a dilferent set of data items, causing a bail to be

placed in the Blackbox grid (achieving goal 20) rather than placing a bail that was

also certain as \Ven as marking several squares as empty.

Figure 5.11 shows the path responsible for achieving goal 1:36, and the path re·

sponsible for achieving goal 133; goal 133 was the goal achieved by the Blackbox

Expert when an data items were available (the achievement of goal 133 indicates that

the Blackbox Expert has successfuny placed a ban, marked the bail as certain, and

marked a square as being empty as wen as certain). The increased achievement of

goal 136 as the number of data items available to the Blackbox Expert are reduced

occurs because of an interaction between goal 136 and goal 133. Both the paths

122

: L08se,d Completlon

:__ ..•9~~!~6_._...

~ -... - _
P.OAU. Placc·RlII'1t;Z 1""'=:.

~~tAP_~·."~:J
ltart "«tic.1ft

~ CO:o.'FLICf'.O '1
0"" L-r. DALJ._CEJlTACII1"- Dau·entain"'"

~ CERTAIN'.DAlJ..S1I

allar.JtP.CORO A M':~
~ OMAr_CHRT.D J

P.EMPTY PllCe.Empty"" 1. RMC.D

.1_- ~~~~~ .. ~.:_.. -._ ... _.--.~
"'eMPTY.CERTAIN' Empty·Cn1ain'1t2 l : OMAP.C

(OMAP.CERT
CO:"ro~CT_1! 11

(ŒRTAlN.DALL.'S , :" OMAP.CERT.I!

[0"" RMe.B
:

,

,
,

.
:~~~~l!:n_~~~',!2••,,:

.. si.;,-p,.;cijc-.ie: .. -:
{ OMAl" :

.-----~_._-----.

, 'OMAP.CERT :

, .

-_ '.
:..r<;;.; J

~ P.OALL Place.DalI"'l ~U"_I!

""\' P.BMPTY PllCe.l!rNlrY~lJ ~ (OMAr.B J '

"'{EMPTY.CERTAIN' Emply·Cena.in"l OMAP.CERT.B'

: Lop:a1 COmplcLion
:. 9~}~! . _~.

Figure 5.11: Paths Achieving Goal 136 and Goal 133

achieving goal 136 and goal 133 have the same start rule and requice the same start

predicates. As we reduced the data items available, the data items as identified by the

start predicates for both paths were still available to the Blackhox Expert, but the

data items identified by the completion predicates were not. As a result, al! the cules

in the path responsible for achieving goal 136 fire, but not ail the cules in the path

achieving goal 133 can fire; thus, goal 136 is achieved rather than goal 133, signal­

ing a conllict. The conIIict signaler! hy the Blackbox Expert inc1icates that although

the Blackbox Expert has sufficient data items available to recognize a specific con­

figuration in the Blackbox it is unable to draw a conclusion (updating grid squares)

based upon that configuration because it required access to data items that were un­

available. This understanding of a conllict identifies an additional cause for conllicts,

original!y discussed in chapter 3, to include the situation where the Blackhox Expert

attempts to update a grid square based upon a configuration that it recognizes, but

it cannot due to access restrictions.

123

~.--------_ .. _.~

• StAn Prfdk,U'1

~ .. -------_.-_ ..
j OMAl" '

: l OMAl"_CERT ,

:. ~~~~_~.Ie.'~!;

Figure 5.12: Path Achieving Goal 20

Figure 5.12 shows a path that was responsible for increased achievcmcnt of goal 20.

In this case goal 20 is achieved, but it should not be achievedj thus, a grid squarc

is marked as containing a bail by the Blackbox Expert, when in fact thc squarc is

empty. The erroneous achievement of goal 20 is due the thc unavailability of the

data items required by the Blackbox Expert to determine the numher of grid squarcs

that have not yet been identified. Rule R1B-1%1 is designed to dctect if thcl'C is

only one grid square that is stillunidentified, and only one hall not yet located. Wc

observed that with a reduced number of data items available ail the rules in this path

fired, erroneously concluding that one of several remaining unidentified grid squares

contains the one remaining bail. Of course, this is incorrect.

Figure 5.13 shows two sets of paths. The rules in each set of paths arc activatcd

depending upon thc beam chosen to be fired by the Blackhox Expert. Whcn ail data

items were available to the Blackbox Expert, the Blackbox Expert chose to lire a

beam which lead to the firing of ail the rules in the set of paths achieving goal 25,

goal SS, and goal 147. Thc achicving of goal 25, goal 88, and goal 147 causcs thc

Blackbox Expert to place a bail that is certain and mark several grid squares as empty,

which are also certain. When the number of data items available were reduced, thc

Blackbox Expert chose to fire a beam which caused goal 20 to be achievedj achieving

of goal 20, causes the Blackbox Expert to correctly place a bail, but the bail is not

identified as being certain. The beam chosen with a reduced number of data items

available causes the Blackbox Expert to produce an inferior result.

124

LolllcAl Completlon

,..._~!~_.....

STOP

, .. ··_··· .. •• -- .. 0

, OMAP_B ;
,

BALI. :.
•

CERTAIN_ii.,~:

OMAP_CERT_B :

LOlh:Al Complction !
• OOAIS! •.. __ -- ... --_ ...

PI_·Empty'l

EMPTY_CERTAIN

RA·Z4d-C1...

OMAP

·-··s~;p~;:;.····~

: OMAr :: :,
: SIIDT..RECORD,,
: ORID51ZE ,
, --_ - ': -_ ,
• OMAr_ŒRT

:
•
! CERTAIN_BALLS, .
:,~~~~~~n_~~~.":

:"" .s;:';~iC:;; ~

, ', '

,~~~O~MAPii~~tj';i!:;~~;:J
' ',
! 5HOTJtECORD RA.7• .c...
1 ORIDSIZE '·_.._ -.._ :, ,
: OMAP.CERT,,, OMAP, .
~f'~f!!~~~f!dJ~~~....:

SET-l

EMP1Y_CERTAIN

-_ _._ ...- ,
: SUrt PmUutn •· .· ', OMAP '· ',,
: SHOTJtECQRD
•
'(i~mSIZE 't...._...._...._....:
C·~;~;-~~..·-·· ..,
•
: oMAP, ,
:~~,!!!~n..~~~.!~__:

.......... -· ,
1<--

~ OMAP_B 1:· ,· ., ,
...... BALL .1:, ,
! LoaicAl COn'C'letlon !
t~..A!~~_ ••_..:

,_ ··_· •• -0

: OMAl'
:
: OMAr.a:1tT •

: '
1.. S'~~~~~1c.!'!:C!:

SET-2

Figure 5.13: Two Sets of Paths

125

5.3.3 The Inter-Agent Perspective Revisited

Having studied the intra-agent perspective for the Blackbox Expert, we now recol\­

sider the inter-agent perspective for the COPS to solve the Blackbox puzzle, described

in section 5.3.1. We will focus on demonstrating how the uinformation" gained by

studying the intra-agent perspective can be used by the COPS designer in setting

data distribution, in order to improve performance. ln studying the intra-agent per­

spective (see section 5.3.2), we observed an increase in the achievement of goal 20

and goal 136, and we determined that this increase was undesir<\ble becallse the per­

formance of the Blackbox Expert was adversely alfected. Using Path Tracer, we were

able to isolate the paths that were respol\sible for the increased achievement of these

goals; and using Path Hunter, we were able to determine the data items reqllired by

ail the rules in each path to fire.

As a demonstration of the use of the information gained from stlldying the intra­

agent perspective, we present three scenarios in whieh the COPS designer can avoid an

increase in the achievement of goal 20 or goal 136, by using the intra-agent perspective

as a guide in adjusting the data distribution in the COPS for solving Blackbox. ln

developing these scenarios, we used Path Tracer to identify the specific test case in

whieh the increased achievement of goal 20 and goal 136 occurred, indicating the

data distribution that was in elfect when the Blackbox Expert solved these test cases.

We developed each scenario by examining the paths responsible for achievement of

goal 20 and goal 136, the data items required by ail the rules in the paths responsible

for achieving these goals to fire, and the data distribution that was in elfect when

there was an increase in the achievement of these goals; giving us the conditions

in which the increased achievement of these goals occuried. We then determined if

it would he possible for the conditions responsible for the increased achievement of

goal 20 or goal 136 to be replicated in the COPS for solving Blackbox.

We developed one scenario for each of the paths, or sets of paths, that were

identified as being responsible for the increased achievement of goal 20 or goal 136

(see section 5.3.2). ln each scenario, we first describe how the conditions responsible

for the increased achievement of goal 20 or goal 136 can be replicated in the COPS

for solving Blackbox, and then we discuss how the data distribution in the COPS can

126

be modified to avoid the increased 'achievement of the goal. We are able to suggest a

modification to the data distribution by examining the path that was responsible for

the increased achievement of the goal, and examining the data items required for all

the rules in that path to firt'l.

Scenario 1: Let us now consider how the conditions that lead to an increase in the

achievement of goal 136 can occur in the CDPS for solving Blackbox. The CDPS

shown in Figure 5.14 depicts the situation where a beam has been fired, and its entry

point and exit point are labeled by 'A'. Rule-based system 3 has access to the data

items indicating the entry and exit point of the beam. The data items available within

the window of rule-based system 3 are sufficient for the start rule (RA-18-1\!,1) of both

paths shown in Figure 5.11 to fire. Given the access privileges for rule-based system 3

as shown in Figure 5.14, goal 136 will be achieved because rule-based system 3 does

not have access to the grid squares labeled by 'C'. The conditions that lead to an

increase in the achievement of goal 136 are that rule-based system 3 has sufficient data

items available in its local view to recognize a specifie configuration on the Blackbox

grid, but it does not have access to grid squares labeled by 'c' which it requires in

order to draw a conclusion based upon the configuration it has recognized.

The conditions that lead to an increase in the achievement of goal 136 can be

avoided by adjusting the data distribution in the CDPS. Clearly, the original specifi­

cation for the window of each rule-based system is inadequate. Rule-based system 3

is able draw a conclusion based upon the data items available within its own window

which impacts on rule-based system l's and on rule-based system 2's window. The

data distribution in the CDPS should be adjusted to permit rule-based system 3 to

access the portions of the Blackbox grid for which it can draw conclusions given the

data items available for recognizing specifie configurations in the Blackbox, rather

than simply conclurling that a conflict has occurred.

This scenario is an example of how applying our models to study CDPS, we

can determine that the setting for the data distribution in the CDPS is inadequate,

because a rule·based system in the CDPS has sufficient data items available to be able

to draw a conclusion, but it does not have access to the region that is impacted by the

conclusion. Given the windows for each of the rule-based systems in the CDPS, we

127

... Consensus

• Ccnaia Emply

B C....ÎllBalI

C CcofUCI

..........

.,,,,
,,_.

-,,,
l.. _,,,_.

-,,,
... -,,,,

I.Î 1

1 1 1 Il 1 1 1 1

-

§ c 1li:

~§c ~

c [li: .-

~
c ~

i~
-

c ili:
c ~

c ;c!:

§ • efe §- -
B ••

Figure 5.14: Conclusion Draw Outside Window

determined that one of the rule-based systems is able to draw a conclusion based upon

the data items available with its local view. However, the conclusion drawn by the

rule-based system impacts the local view of another rule-based system in the CDPS.

Typically, this situation would be avoided by adjusting the windows of the rule-based

systems in the COPS to permit the rule-based system drawing the conclusion to share

the data items it is able to produce.

Scenario 2: Let us now consider how the conditions that lead to an increase in

the achievement of goal 20, by erroneously placing a ball, can occur in the CDPS for

solving Blackbox. An example of how the path we identified as being responsible for

the achievement of goal 20 can cause a rule-based system in our COPS to erroneously

place a ball is shown in Figure 5.15. There is one ball that has not yet becn located

in rule-based systems l's window. Rule-based system 3's local view, given by its

window, shows that five of the six balls have been located and only one unmarked

grid square remains. All the rules in the path shown in Figure 5.12 fire, and goal 20 is

achieved, concluding that the unidentified grid square must contain the one remaining

ball; thus, rule-based system 3 incorrect1y places a ball in its own window, when in

fact the bail is located in rule-based system l's region. The conditions that lead to

an increase in the achievement of goal 20 are that rule-based system 3 is drawing

a conclusion based upon the data items available in its window, but the data items

indicating the number of unidentified grid squares must re8ect a global view.

The conditions that lead to an increase in the achievement of goal 20 by er-

128

,,,
,..------,,,,
,,,
1.. _,,,,
,,,,
~----_.,,,

b Bail

B Cenain Bali

[{ID] Bail nol Localed
Due lotrror

~ Incorreclly Pl=d
Bail

Legend

1 1 1 1 1 1 1 1 1 1 1 --

§ §'ii'
.-

~ ~
--

.-

§
b D(b

b§
--

B B

1 .-

Figure 5.15: Local vs Global View

roneously placing a bail can be avoided by providing a mechanism by which the

rule-based systems in the cors can determine the global number of unidentilied

grid squares. Our analysis of the path that is responsible for achieving ~oal 20 in­

<licates that the conclusion drawn when ail the rules in that path lire is dependent

upon obtaining data items required to determine the total number of unidentilied

grid squares.

This scenario is an example of how applying our models to study COPS, we

can determine that the setting for the data distribution in the COPS is inadequate,

because a rule-based system in the COPS is dependent upon the availability of data

items whose value must refiect a global view of the problem-solving state.

Scenario 3: Let us now consider how the conditions that lead to an increase in the

achievement of goal 20 due to a different beam being fired can occur in the COPS for

solving Blackbox. In Figure 5.16 we draw attention to the bottom row of the grid,

which is in rule-based system 3's window. Several beams have been lired, and many

of the grid squares have been identilied as being empty and certain. In the case that

a beam is to be lired into the grid from the right side, as indicated in Figure 5.16,

ail the rules in the set of paths achieving goal 88, goal 147, and goal 25 (shown in

Figure 5.13) will lire, placing a bail that is certain and marking several grid squares as

empty. In the case that a beam is lired into the grid from the bottom, ail the rules in

the path achieving goal 20 (shown in Figure 5.13) will lire, placing a bail that is not

129

? Compeling Q'Jlcome
~. ~ Polcntial Next Bc;un! . Emply Certain

Lcgcnd

,,,
o
~-_. __ .,,
o

,.----_.

,,
oL •,,
o
•

: 1 1 1 1 1 1 1 --,

~ ~
,

B ,
,

·-

~ ~
--

b B

·-

§ [- --
B

•• • • • • • ?

1 1 1 1 1 1 ul Dili IH 1 ·-
1

Figure 5.16: Selecting a Bearn to Fire

certain. Given the local view of rule-based system 3, it wonld choose to lire the beam

into the grid from the bottom. The conditions leading to this choice by rule-based

system 3 are that rule-based system 3 is unaware of the balls that have been located

in rule-based system 2's region.

The conditions that lead to an increase in the achievement of goal 20 can be

avoided by ensuring that rule-based system 2 shares data items indicating the location

of the balls located in its region with rule-based system 3 when selecting the next

beam to lire. The path model identilies dilferent sets of paths in which all rules will

lire, given the beam that is chosen to be lired. [n Consensus, rule-based system 2

can determine that it must supply data items indicating the position of the balls that

have been located in its region, in order to indicate to rule-based system 3 that liring

the beam from the right side is better than liring the beam from the boHom.

This scenario is an example of how applying our models to study CDPS, we can

determine that the setting for the data distribution in the CDPS may be inadequate,

because a rule-based system fails to share data items which are relevant to the options

being considered by the rule-based systems during Consensus. When a rule-based

system in a CDPS is able to determine the sets of paths in which all the rules in

one of the sets can become enabled to lire, depending upon the option chosen by the

agents in a CDPS.

130

5.3.4 Summary

We demonstrated the application of the organization and path models to the design of

a COPS for solving the Blackbox puzzle, focusing on seUing data distribution. Using

the organizational model, we considered the inter-agent perspective for the COPS;

and using the path model, we studied the intra-agent perspective. In our study of

the intra-agent perspective, we identified three events in which a path, or a set of

paths, were responsible for an increase in the achievement of goals, and the increased

achievement in these goals was determined to be undesirable. Then we demonstrated,

by presenting one scenario for each undesirable event, how a study of the intra-agent

perspective can be used by the COPS designer in adjusting the data distribution in

a COPS to improve performance as follows:

Scenario 1 the path model identified a path in the raie base of the Blackbox Expert
which would produce superior results if specifie data items were made available
by adjusting the windows of the rule-based systems.

Scenario 2 the path model identified a path in the rule base of the Blackbox Expert
which is dependent upon the availability of data items whose value must refiect
a global view of the problem-solving state in order to avoid placing a bail in a
grid square that is in fad empty.

Scenario 3 the path model identified different sets of paths in the rule base of the
Blackbox Expert in which ail the rules in one of the sets can become enabled to
fire, depending upon the beam selected. These sets of paths indicate the data
items that should be shared to choose the option that will produce the best
result.

The precise steps we followed in applying our models to study the design of a

COPS for Blackbox were as follows:

The Intra-Agent Perspective

1. We used Path Hunter to determine the paths in the rule base of the Blackbox
Expert as weil as the data items required by the rules in each path to fire.

2. We used the Blackbox Expert to solve a set of test cases while reducing the
number of data items available.

3. We used Path Tracer to analyze the goals achieved, the paths responsible for
achieving these goals, and result produced by the Blackbox Expert as it was
problem-solving with a reduced number of data items. The specifie issues that
were studied are as follows:

131

• the ability of the Blackbox Expert to achieve specifie goals, and the impact
of achieving those goals on the result produced.

• the interactions that occurred between goals.

• the data items required by the paths responsible for the achievement of the
goals where the achievement of that goal was considered to be undesirable
because its achievement adversely affected performance.

• for each path identified as being responsible for the achievement of a goal
where the achievement of that goal was considered 1.0 be undesirable, we
determined the data distribution that W"lS in effect when ail the rules in
that path fired.

The Inter-Agent Perspective

1. We used the organizational model 1.0 specify a CDPS for solving the Blackbox
puzzle.

2. For each goal that is adversely affected by a reduction in the availability of data
items (identified by studying the intra-agent perspective), we determined the
conditions which led 1.0 the goal being achieved.

3. We determined if il. would be possible for the conditions responsible for the
'achievement goals that adversely affect performance can be replicated in the
CDPS for solving Blackbox.

4. We determined how 1.0 adjust the data distribution in the CDPS 1.0 avoid the
achievement of goals that adversely affect performance, by examining the path
that was responsible for the increased achievement of the goal, and examining
the data items required for ail the rules in that path 1.0 fire.

5.4 Conclusion

We have applied our organizational and path models to.building CDPS, by considering

both the inter-agent perspective and the intra-agent perspective. In this thesis, we

have discussed t.he use of our models only in aiding the CDPS designer in setting data

distribution. Applying our models, the CDPS designer is able 1.0 determine how 1.0

set the availability of specifie data items in order 1.0 improve the performance of the

rule-based systems in a CDPS, or avoid serious failures. The organizational model

permits the CDPS designer 1.0 specify interactions between the rule-based systems in

a CDPS (the inter-agent perspective), and the path model permits the CDPS designer

to analyze from the intra-agent perspective the effect of a reduction in the availability

of data items as follows:

132

• determine the specifie goals that are achieved and the result produced byachiev­
ing those goals; Also, identify the path that is responsible for the achievement
of each goal.

• determine the interactions that can occur between goals.

• determine how to avoid the achievement of goals that are identified by the
CDPS designer as being undesirable, by analyzing the paths responsible for the
achievement of the undesirable goals, obtaining the data items responsible for
all the rules in the path to fire.

Using the Blackbox puzzle as a sample ilI-structured problem, we have demon­

strated that a study of the intra-agent perspective provides guidance to the CDPS

designer in improving the performance of the rule-based systems in a CDPS as follows:

• paths are identified in the rule base of an agent, which could produce superior
results if specifie data items were available, guiding the CDPS designer in setting
the data distribution in the CDPS.

• paths are identified which are dependent upon the availability of data items
whose value must rellect a global view of the problem-solving state in order to
avoid producing erroneous results.

• diiferent sets of paths are identified in which ail the rules in one of the sets can
become enabled to fire, depending upon the option chosen by the agents in a
CDPS. Thus, the paths can be used to determine the data items that should be
shared between the agents in a planning group, enabling a choice of the option
that will produce the best result.

In applying the organizational and path models, we have used Blackbox as our

sampie problem, and the Blackbox Expert as our sampIe rule-based system. We

believe that these models can be applied to other rule-based systems following the

steps outlined in section 5.3.4. In order to use our models and tools in setting the

data distribution in a CDPS for solving iII-structured problems in general, several

assumptions must be satisfied:

1. there must exist an implementation of the agents to be used in the CDPS, and
the agents must be implemented as rule-based systems.

2. the knowledge engineer must be able to identify the set of logical completions
for the problem solved by the rule base.

3. there must exist a "suitable" set of test cases.

4. there must exist a method for Iimiting the data available to the rule-based
system as it solves the test cases.

133

5. the rule-based system must be able to produce a trace file recording the rules
fired, when it is exercised.

6. the CDPS designer must be able to identify goals that adversely affect the result
produced when they are achieved.

Î. the CDPS designer must be able to identify goals that must be achieved in order
to produce an acceptable result.

One difficulty that will be faced by a CDPS designer in applying the path model

to study the intra-agent perspective is to determine if a given a test set will ensure

detection of aU conditions under which a goal is achieved that adversely affects per­

formance. In order to ensure that a study of the intra-agent perspective will identify

aU cases in which goals are achieved that adversely affect performance, the CDPS de­

signer must determine if aU paths in the rule base have been exercised when studying

the intra-agent perspective; this is referred to as maximizing the coverage obtained

on the rule base when the rule-based system is used to solve the test set.

134

Chapter 6

Conclusion

"The important th;ng is not to stop questioning."
- Albert Einstein

In this thesis, CDPS is viewed from two different perspectives: the inter-agent per­

spective, and the intra-agent perspective. The inter-agent perspective is concerned

with issues relating to the manner in which the agents in a CDPS interact: the man­

ner in which the problem is decomposed, the tasks assigned to each agent, the sharing

of data items during planning and during execution, and the planning protocols used

by the agents. The intra-agent perspective is concerned with the internai structure

of the agent, and how the agent is affected by the environment in which it must op­

erate - the CDPS. In addition to this dichotomy, in our research we have followed

two complementary tracks: theoretical and experimenta1. We have developed formai

models for both the inter-agent and the intra-agent perspectives (our models for the

intra-agent perspective apply only to rule-based systems), developed an experimen­

tal testbed for an agent implemented as a rule-based system, and we have applied

our models to aid the CDPS designer in setting the data distribution in a CDPS,

demonstrating the benefits to the CDPS designer of using our models.

With the intent of studying the intra-agent perspective, we have developed a model

for the structure of a rule-based system that models a rule base as a set of entities

called "paths". Our model makes use of the dependencies between the rules in the rule

base to define paths. Based upon our study of the problems with previous attempts by

researchers to define models for the structure of a rule base, we believe that structural

135

models for rule based systems should satisfy three criteria: accuracy. meaninp;fuhll'~~.

and computational tractability. Our structural model meets these three criteria:

thus, our model is an improvement over previous attempts by researchers to captnre

dependencies between the rules in a rule-based system.

We apply the path model to study the intra-agent perspective by using paths

to analyze the effect of a reduction in the availability of specific data items on th..

result produced by a rule-based system. The path model is applied in two separate

steps: each path is used to identify the data items (start templates aud complc­

tion templates) required by the rule-based system to achieve one of its goals (logical

completion), and then paths are used to determine the goals that are achieved by a

rule-based system as it solves a set of test caseSj we also monitor the result produced

for each test case. When the rule-based system is solving the test cases, we reduce

the data items availablej this permits us to determine interactions that occur between

goals, and to determine the data items rp.ponsibie for the achievement of specific goals

whose achievement is considered to be undesirable by the CDPS designer.

We have constructed the Blackbox Expert, a testbed for experimental research.

The Blackbox Expert is designed to permit us to perform experiments in which wc

change the data items available to a single rule-based system while we observe the

functional and computational performance of the system, simulating the environntcnt

that the Blackbox Expert would experience as a member of a CDPS. Wc selected

the Blackbox puzzle (the problem solved by the Blackbox Expert) as a sampie ill­

structured problem, which is suitable as a testbed application for CDPS: solving the

Blackbox puzzle requires a rule-base that is sufficiently complex (containing several

hundred rules) to serve as a realistic testbed, the effort required by a human to become

proficient at solving the puzzle is small (Iess than one person-week), and the Blackbox

puzzle can be used to model diagnosis type problems, a cornmon application for rule­

rule·based systems. Before using the Blackbox Expert in our research, wc believed

that the ability of the Blackbox Expert operating as a single agent solving the puzzle

had to be establishedj thus, we validated the functional performance of the Blackbox

Expert in solving Blackbox puzzles experimentally, establishing a baseline with which

we could compare the performance of the Blackbox Expert as we changed the data

136

items available.

Wc have constructed a rule·base analysis tool called Path Hunter, which embodies

our structural model. Path Hunter analyzes a rule base to determine the paths

it contains, including the data items required by each path (start templates and

completion templates) and the goal that will be achieved when ail the rules in a

path fire (logical completion). We have used Path Hunter to analyze the rule base of

the Blackbox Expert, obtaining the set of paths in the Blackbox Expert '5 rule base.

Using Path Hunter to analyze the structure of the Blackbox Expert's rule base has

provided us with an opportunity to demonstrate that our structural model does in

fact meet our three criteria. In order to use Path Hunter to analyze the structure of

the Blackbox Expert's rule base, we had to specify ail of the logical completions for

the Blackbox problemj the logical completions arc an input to Path Hunter.

We have developed a second tool, Path Tracer, embodying our method for applying

the path model to monitor the goals achieved by a rule·based system. Path Tracer

analyses trace files produced by a rule-based system when it is problem-solvingj a

trace' file contains a list of ail the rules fired by the rule-based system. Path Tracer

will also identify the path that is responsible for achieving a goal, by determining the

path in which ail the rules have fired, asserting the logical completion representing

that goal. In order to validate the accuracy of Path Tracer in monitoring goals

achieved, we used Path Tracer to analyze the trace files produced when we validated

the functionai performance of the Blackbox Expert. Path Tracer is able to account

for ail the rule firing events that are recorded in these trace files, demonstrating the

accuracy of the mechanism used by Path Tracer to id~ntify the rules in a path that

have fired.

We have developed a model for COPS which allows for a precise description of

the interactions that are permitted between the agents in a COPS (the inter-agent

perspective), providing a specification of the manner in which the agents in a COPS

are to cooperate. We refer to our model as an organization. Work by ·other re­

searchers has referred indirectly to the types of interactions that could occur between

the agents in a COPS, but there had been no precise definition of the components

of a COPS and the types of interactions that should be specified when designing a

137

CDPS. Our organizational model also includes the information dcfieit metric. which

is a metric introduced in this thesis for measuring the data distribution in a CDPS.

The information deficit metric allows the CDPS designer to measure the availability

of data items (data distribution) to the agents in a CDPS when they communicate

with each other using a blackboard.

Our organizational model provides a basis upon which the design parameters for

CDPS can be studied from an inter-agent perspective. We show the use of our orga­

nizational model and the Blackbox Expert to study the trends in performance that

can be expected as the data distribution in a CDPS is modified. While many re·

searchers have speculated ?.s to the effect of the data distribution in a CDPS on the

performance of the agents in that CDPS, we lacked evidenr.e that the trends expected

by researchers would actually occur when the agents in a CDPS were implemented as

rule-based systems. Using the information defieit metric to measure the data items

available to the Blackbox Expert as it solved a set of random test cases, we were ahle

to statistically verify that the trends expected by researchers in fundional and com·

putational performance occurs for the Blackbox Expert solving any Blackbox puzzle

as the availability of data items changed. Our experiment confirmed that the trends

expected by researchers can actually occur in operational rule-based systems, and es­

tablishes that data distribution is an important factor in determining the performance

of the rule-based systems in a CDPS. Thus, our study of global trends in performance

confirms that the CDPS designer must be concerned with the data items available to

each rule-based system in a CDPS when attempting to maximize performance.

We have demonstrated the usefulness of our models (paths and organizations)

to the designer of CDPS, by considering both the inter-agent and the intra-agent

perspective in the design of a CDPS for solving the Blackbox puzzle; we focused on

applying our models to aid the CDPS designer in setting the data distribution in the

CDPS. Using the organizational model, we presented a CDPS for solving Blackbox

where the agents in the CDPS are constructed using the rule base of the Blackbox

Expert. Then using the path model, we studied the ability of the Blackbox Expert to

achieve its goals as the number of data items available (measured using the informa­

tion defieit metric) was reduced. Using Path Hunter and Path Tracer, we determined

138

the result produced by the Blackbox Expert when a specifie goal is achieved. deter­

mined the interactions that occurred between goals, and determined the goals whose

achievement were adversely affected by the reduced number of data items available.

We then identified the paths that were responsible for the achievement of adversely

affected goals, al10wing us to isolate the specifie data items, or lack of data items, that

caused the behavior we observed. We then presented three scenarios explaining how

our study of the effect of data items available on goals achieved can be used to im­

prove the performance of the rule-based systems in the COPS, which are sllmmarized

as fol1ows:

• we were able to identify data items which should be shared among the agents
in the COPS, indicating that an adjustment to the windows of the agents was
required.

• we were able to identify data items whose value must reflect a global view of the
state of the Blackbox problem in order to avoid an agent producing erroneous
resllits.

• we were able to identify sets of paths that could be used to evaluate the potential
outcome of selecting different beams to be fired, permitting the selection of the
beam that is likely to produce the better result.

To summarize, we believe that our use of both formai models and experimental

systems serves as an example of a research project in which theoretical results are

applied to practical systems, validating the theoretical models. We applied our orga­

nizational model to the design of the Blackbox Expert, permitting us to implement a

mechanism by which we can control the data items that are available to the Blackbox

Expert when it is problem-solving. The information deficit metric has been applied

in measuring the data items available to the Blackbox Expert when problem-solving,

establishing statistical1y the existence of a relationship between the data available to a

rule-based system and its performance. Our structural model has been embodied into

the rule-base analysis tools, Path Hunter and Path Tracer. Path Hunter has been

used to analyze the rule-base of the Blackbox Expert, validating the Path mode\.

Path Tracer has been used to analyze the goals that the Blackbox Expert chooses to

solve at run-time when the data items available to the Blackbox Expert are reduced.

Using the data provided by our experiments, we have been able to provide examples

and show how our models and tools can be used by the COPS designer.

139

6.1 Future Work

In this thesis, we presented two models (the organizational model and the path

model), two tools (Path Hunter and Path Tracer), and a testbed (the Blackbox Ex·

pert) for performing experiments examining the effect of data availability on thc

performance of a rule·based system. By considering the assumptiolls made in this

thesis, or possible extensions to the line of research described in this thcsis, we idcntify

several problems for future research that we believe would be of interest:

• we believe that the experimental track followed in this thesis can bc cxtclldcd
with the development of a multiagent version of the Blackbox Expcrt which
solves a distributed version of the Blackbox puzzle

• the theoretical track can be extended to provide the CDPS designer with a
formai method for using the information gained by studying the intra-agcut
perspective to set the data distribution in a CDPS.

• we also envisage the application of the path model to aid in the design of test
sets in which the coverage of the rule base would be considered acceptable by
the CDPS designer.

We will now discuss each of these three avenues in which the work described in this

thesis can be used for future research.

Coverage The design of a test set which maxilllizes the coverage obtailled when a

rule-based system is exercised using that test set is of interest to researchcrs workillg

in the area of testing rule·based systems. The rule·based systems to be tested may

be operating as stand alone systems, embedded in conventional software systems, or

operate as a member of a CDPS. We believe that the path model can be applied both

to measure the coverage obtained with an existing test set and to aid the designer of

a test set in adding new test cases to an existing test set to improve the coverage ob·

tained. Using the path model, one could develop a quantitative measure for coverage,

and determine the improvement in coverage obtained on a test set as new test cases

are added as well as the path which were not adequately exercised by the test set.

New test cases could then be developed by examining the paths that were identified

as having not been adequately exercised.

In section 5.2.1 of this thesis, we described three metrics for determining the paths

in which all rules have fired, when a rule-based system is exercised on a given test set.

140

We referred to these metrics as the Conservative, Moderate, and Liberal metrics. In

fact, these metrics can be extended to aIso provide a count of the number of rules in

each path that have firedj thus, these metrics could provide a means for measuring

the coverage obtained for a given test set, where coverage is evaluated by measuring

the degree to which ail the paths in a rule base have been testedj that is, we would be

able to verify that paths in which ail rule have fired did achieve the logical completion

specified by the rule base designer. If these metrics are used to measure coverage, they

also identify paths in which the number of rules fired is considered to be inadequate.

Each path in which the number of rules fired is considered to be inadequatc can be

used to aid the designer of the test set in constructing new test cases which increase

the coverage of the test set. Additional test cases would be constructed to ensure that

the data items required by the rules in paths in which few rules fired will be present

in the working memory of the rule-based system. With the addition to the test set

of test cases which ensure that the data items required for ail the rules to fire in the

paths in which only few rules were able to fire in the original test set will be present

in the working memory of the system, the coverage of the test set on the rule base is

increased.

In section 5.1.1, we explain how to analyze the paths in a rule base to determine

the data items required for ail the rules in a path to fire. Determining the data

items required for ail the rules in a path to fire would be an important first step

in generating new test cases. However, the entire process of developing a new test

case that would adequately exercise the rules in a specific path is still an unsolved

problem.

Multiagent Testbed In chapter 3, we indicated that our long term goal was to

experiment with a multiagent testbed to determine the effect that an organization

chosen for a CDPS has on performance. We believe that based on the Blackbox

Expert, a multiagent testbed can be developed that will be instrumental in provid­

ing a mechanism for researchers to experimentally validate models they develop for

CDPS. We have designed the components of the Blackbox Expert to be reused in

the construction of such a multiagent testbed. We believe that such a testhed could

be constructed using one of the commercially available blackboard systems, such as

141

GBB. Then, the CDPS designer 'Would be able to modify different parameters as

specified by the organizational model, and measure the computatiollal and functional

performance of each agent in the CDPS.

Theoretical Extension The organizational model discussed in this thesis provides

a mechanism for describing a CDPS at a high level of abstraction; however, the

organizational model is only concerned with issues such as the number of agents in

the CDPS, the protocols that are used by the agents when planning, and the access

privilege of each agent on the blackboard. The path model captures the actions taken

by a rule-based system at a low level of abstraction; the path model considers the

individual rules that are fired by the rule-based system as it is problem-solving.

In order to provide researchers with a formai method for incorporating the in­

formation gained by using the path model to study the intra-agent perspective, we

beHeve that we will require a model, in addition to the organizational model, for the

inter-agent perspective. One possibility would be to model an agent as a set of paths,

and the computation carried out by an agent in a CDPS could then be modeled by a

"sequence of tuples". Each tuple would indicate a path in which ail rules have fired

and the logical completion achieved by the rules in that path. Let us refer to this

sequence as a line of reasoning; and let each tuple in a line of reasoning represent a

step that is taken by an agent in reaching a final state. Capturing the computation

carried out by a rule-based system using a Hne of reasoning gives us a modellhal is al

a higher level of abstraction than the individual rules considered when constructing

paths.

Using a Hne of reasoning to capture the computation that is to be carried out by

each agent in a CDPS, we can determine the data items produced by one agent that

are required by another agent, and also when the data items are required. We can

model each agent in a CDPS using a Hne of reasoning to indicate the computation that

it is performing. We can analyze the paths in these Hnes of reasoning to determine

the data items that are required and data items produced by an agent at each stage of

the computation that it would follow when problem-solving. When one agent requires

a data item to take the next step in its Hne of reasoning that has not been produced

by any of the previous steps it has taken, and there is another agent in the CDPS

142

that will produce that particular data item (as indicated by its line of reasoning).

then the agent producing that data item should share it with the agent that requires

that data item. In addition, we would be able to identify the precise step in which a

data item is required by an agent, giving an indication of when the data item should

be made available.

In the experiment we described in section 5.3.2, we were able to determine paths

that were responsible for the occurrence of undesirable events (we identified goals that

were achieved more often with a reduced number of data items) as the data items

available to a rule-based system were reduced. Once the paths responsible for the

occurrence of undesirable events have been detected, the CDPS designer can examine

the lines of reasoning that may be attempted by the rule-based systems that includc

these paths. The CDPS designer can then examine the Une of reasoning of each agent

in the CDPS and adjust the data distribution, if necessary, to ensure that undesirable

events will be avoided.

143

Bibliography

[1] Leslie Lamport. Time, docks, and of events in distributed systems. Communi­
cations of the ACM, 21(7):558-565, 1978.

[2) Alan H. Bond and Les Gasser. An analysis of problems and research in DAI.
[n Readings in Distributed Artificial Intelligence, pages 3-35. Morgan l\aufman
Publishers, [ne., San Mateo, California, 1988.

[3) Victor R. Lesser and Daniel D. Corkill. Functionally accurate, cooperative dis­
tributed systems. IEEE Transactions on Systems, J'lilan and CyiJernetics, SMC·
11(1):81-96, November 1981.

[4J K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ,ICM Transactions 0/1 Computing Systcms, :3(1):63-·75,
1985.

[5) Charles E. McDowell and David P. Helmbold. Debugging concurrent programs.
ACM Computing Surveys, 21(4):593-621, 1989.

[6J Randall Davis and Reid G. Smith. Negotiation as a metaphor for distributed
problem solving. Artificiallntelligence, 20:63-109, 1983.

[7) Mark S. Fox. An organizational view of distributed systems. IEEE Tmnsactions
on Systems, Man, aad Cybernetics. SMC-1l(1):70-80, January 1981.

[8J Sarit Kraus. Agents contracting tasks in non-collabora\ive environments. [n
Proc. Eleventh National Conference on Artificiallntelli~'ence (AAAI99), July
1993.

[9J M. Minsky. Society of Mind. Simon and Schuster, New York, 1986.

[10] Keith Decker and Victor Lesser. Quantitative modeling of complex computa­
tional task environment. [n Proc. Eleventh National Conference on Artificial
Intelligence (AAAl 99), July 1993.

[11) J. S. Rosenschien and M. R. Genesereth. Deals among rational agents. [n Proc.
Ninth International Conference on Artificial Intelligence (AAAI 85), pages 91­
99, August 1985.

[12) Yoav Shoham. AgentO: A simple agent language and its interpreter. [n Proc.
International Ctnference on Artificial Intelligence (AAAl 91), pages 704-709,
1991.

[13) Jeffrey S. Rosenschein. Rational Interaction Cooperation Among Intelligent
Agents. PhD thesis, Stanford Univ., 1986.

144

[\41

[18J

Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Trends in co­
operative distributed problem solving. Transactions on l\no1JJledge and Data
Engineering, 1(1):63-83, March 1989.

[15J Barbara Hayes-Roth. A blackboard architecture for control. Al Journal, 26:251­
321, 1985.

[16J H. Penny Nii. Blackboard application systems and a knowledge engineering
perspective (part 2). Al 11tlagazine, August 1986.

[17J Robert Engelmore and Tony Morgan. Blackboard Systems. Addison Wesley,
Reading, Mass., 1988.

V.R. Lesser and D. Corkill. DVMT: A tool for investigation of distributed prob·
lem solving networks. In M.N. Huhns, editor, Distributed Artificiallntelligence.
Morgan Kaufmann, 1987.

[19J Daniel D. Corkill and Victor R. Lesser. Unifying data-directed and goal-directed
control: An example and experiments. In AAAI, pages 143-147, 1982.

[20J Stephanie Cammarata, David McArthur, and Randall Steeb. Strategies of co­
operation in distributed problem solving. Proceedings of the 8th International
Joint Conferenr.P on Artificial Intelligence, pages 767-770, 1983.

[21J Reid G. Smith and Randall Davis. Frameworks for cooperation in distributed
problem solving. IEEE Transaction of Systems, j'vlan, and Cybernetics, SMC
11(1):61-70, January 1981.

[22J Gilad Zlotkin and Jeffrey Rosenschein. Negotiation and task sharing among
autonomous agents in cooperative domains. In UCAI, pages 912-917, 1989.

[23] Edmund H. Durfee, Victor Lesser, and Daniel D. Corkill. Coherent cooperation
among communicating problem solvers. IEEE Transactions on Computers, C·
36(11):1275-1291, November 1987.

[24J D. Bobrow. Dimensions of interaction: A shift of perspective in artificial intelli·
gence. Al Magazine, 12(3), 1991.

[25J N. Findler and U. Sengupta. An overview of sorne recent and current research
in the AI lab at Arizona State University. Al Magazine, 12(3), 1991.

[26] Thomas W. Malone. Modeling coordination in organizations and markets. Man­
agement Science, 33(10):1317-1332, 1987.

[27]

[28]

[29J

C. Grossner and T. Radhakrishnan. Organizations for cooperating expert sys­
tems. In eend Southeastem Symposium on System Theory, March 1990.

R. Clark, C. Grossner, and T. Radhakrishnan. Consensus: A planning protocol
for cooperating expert systems. In 11th International Workshop on Distributed
Artificial Intelligence, Glen Arbor, Michigan, February 1992.

R. Clark, C. Grossner, and T. Radhakrishnan. Consensus and Compromise:
Planning in cooperating expert systems. S..bmitted for review to Int. Journal of
Intelligent and Cooperative Information Systems, 1993.

145

[30] C. Grossner, J. Lyons, and T. Radhakrishnan. Validation of an expert systl'Ill
intended for research in distributed artificial intelligence. In 2nd CLIPS COllfer.
ence, Johnson Space Center, September 1991.

[31] C. Grossner, J. Lyons, and T. Radhakrishnan. Towards a tool for design of co·
operating expert systems. In 4th International Conference on Toois for Artificilll
Intelligence, November 1992.

[32] J. Galbraith. Designing Complex Organizations. Addison Wesley, Reading,
Mass., 1973.

[33J C. Grossner, A. Preece, P. Gokulchander, T. Radhakrishnan, and C.Y. Suen.
Exploring the structure of rule based systems. In Proc. Eleventh Natiollal COIl­
ference on Artificiallntelligence (AAAl 99), 1993.

[34] C. Grossner, P. Gokulchander, A. Preece, and T. Radhakrishnan. Revealing the
structure of rule-based systems. Submilted for review to IEEE SL'ylC, Novembcr
1993.

[35] A. Preece, C. Grossner, P. Gokulchander, and T. Radhakrishnan. Structural
validation of expert systems: Experience using a formai mode\. In Jay Liebowitz,
editor, World Congress on Expert Systems. Macmillan New Media, January 1994.
Published on CD·ROM.

[36]

[38]

[39]

[37]

C. Grossner, A. Preece, P. Gokulchander, and T. Radhakrishnan. Data sharillg
amollg cooperating rule-based systems. In Submitted for review for the J.'Jth
International Workshop on Distributed Artificial lntelligence, March 1994.

A. Preece, C. Grossner, P. Gokulchander, and T. Radhakrishnan. Structural
validation of expert systems: Experience using a formai mode\. In Eleventh Na­
tional Conference on Artificiallntelligence (AAAl99): Workshop on Validation
and Verification of knowledge-Based Systems, July 1993.

A. Preece, P. Gokulchander, C. Grossner, and T. Radhakrishnan. Modelillg
rule base structure for expert system quality assurance. In Thirteenth lnter·
national Joint Conference on Artificialintelllgence: Workshop on Validation of
knowledge-Based Systems, August 1993.

A. Preece, C. Grossner, P. Gokulchander, and T. Radhakrishnan. Structure·
based validation of rule-based systems. Submitted for review ta IEEE I<nowledgc
and Data Engineering, January 1994.

Paul R. Cohen. A survey of the eighth national conference on artificial intel·
ligence: Pulling together or falling apart? Al Magazine, 12(1):16-41, Spring
1991.

[41] P. J. Gymtrasiewicz and E. H. Durfee. Logic of knowledge and belief for recursive
modeling: Preliminary report. In Proceedings of the National Conference on
Artificial Intelligence, pages 628-634, July 1992.

[42] James G. March and Herbert A. Simon. Organizations. John Wiley and Sons,
New York, 1958.

[43] T. Ishida. The Tower of Babel: Towards organization·centered problem solv­
ing. In Proc. llth International Workshop on Distributed Artificiallntelligence,
pages 141-154, February 1992.

[40]

146

[441 Moshe Tennenholtz and Yoram Moses. On cooperation in a multi-entity model
(preliminary report). In lJCAl, pages 918-923, 1989.

[4.5] B. Chandrasekaran. Generic tasks in knowledge based reasoning: High level
building blocks for expert system design. IEEE Expert, 1(3):23-30, FaU 1986.

[461 Gregg R. Yost. Acquiring knowedge in SOAR. IEEE Expert, 8(3):26-34, June
1993.

[47] Elaine Rich. Artificiallntelligence. McGraw Hill, New York, New York, 1983.

[48] Herbert A. Simon. The structure of iIl-structured problems. Artificial Intelli·
gence, 4:181-201, 1973.

[49J J.F. Voss and T.A. Post. On the solving of iIl-structured problems. In M. Chi R.
Glaser and M. Farr, editors, The Nature of Expertise. Lawrence Erlbaum Asso­
ciates, 1988.

[.50] A. Newell. Heuristic programming: m-structured problems. Progress in Opera­
tions Research, 3, 1969.

[.51] W. Swartout. DARPA workshop on planning. AI Magazine, 9(2):101-112, 1989.

[.521 Edmund H. Durfce and Victor R. Lesser. Incrcmental planning to control a
blackboard based problem solver. In AAAI, pages .58-64, 1986.

[.53) Edmund H. Durfee and Victor R. Lesser. Using partial global plans to coordinate
distributed problem solvers. In lJCAI, pages 875-883, 1987.

[.54] Mark Drummond and Ken Currie. Goal ordering in partiaUy ordered plans. In
lJCAl, pages 960-965, 1989.

[55] D.A. Waterman. A Guide to Expert Systems. Addison Wesley, 1986.

[56J Keung-Chi Ng and Bruce Abramson. Uncertainty management in expert sys­
tems. IEEE Expert, 5(2):29-48, April 1990.

[57] W.A. Woods. What's important about knowledge representation. IEEE Com­
puter, 16(10):22-27, October 1983.

[58] S.K. Goyal and W. Worrest. Expert systems in nc'twork management and main­
tenance. In Proc. ICC, pages 1225-1229, 1986.

[59] Victor R. Lesser, Daniel D. Corkill, Robert C. Whitehair, and Joseph A. Her­
nandez. Goal relationships and their use in a blackboard architecture. In V. Ja­
gannathan, Rajendra Dodhiawala, and Lawrence S. Baum, editors, Blackboard
architectures and applications, volume 3 of Perspectives in Artificial Intelligence,
chapter 1, pages 9-26. Academie Press, 1989.

[60] 0.0. Corkill, K.Q. GaUagher, and K.E. Murray, editors. GBB: A Generic Black­
board Development System, Philidelphia, PA., August 1986.

[61] Victor R. Lesser, Daniel D. Corkill, Robert C. Whitehair, and Joseph A. Her­
nandez. Focus of control through goal relationships. In UCAI, pages 497-503,
1989.

147

[62] Michael Georgeff. Communication and interaction in mu\ti-agent planning. ln
AAAl 83, pages 125-129, 1983.

[63] Edmund H. Durfee and Victor R. Lesser. Partial global planning: A coordination
framework for distributed hypothesis formation. IEEE Transactions on Systems.
J'vlan, and Cybernetics, 21(5):1167-1183, September 1991.

[64] D. Randall and R.G. Smith. The contract net protocol: High level commu­
nication and control in a distributed problem solver. IEEE Transactions on
Computers, C-29(12):1104-1113, December 1980.

[1)5] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal cooperation of
knowledge sources - an empirical investigation. Technical report, Boeing Ad­
vanced Technology Center, Boeing Computing Services, Seattle, Washington,
July 1986.

[66] Norman Abramson. Information Theory and Coding. McGraw-Hill, New YOI'k,
1963.

[67] R. Clark and C. Grossner. Generation of organizations for cooperating expert
systems. DAI Technical Report DAI-0290-0002, Concordia University, Montreal,
Quebec, February 1990.

[68] K. Pitula, T. Radhakrishnan, and C. Grossner. Distributed Blackbox: A test bcd
for distributed problem solving. In IEEE Int. Phoenix Conference on Computers
and Communications, March 1990.

[69] C. De Koven and T. Radhakrishnan. An experiment in group problem solving.
ln Multi-User Interfaces and Applications, September 1990.

[70] J. Lyons and C. Grossner. A blackbox expert system: User requirements. DAI
Technical Report D.AI-0190-0001, Concordia University, Montreal, Quebcc, .Jan­
uary 1990.

[71] D.E. Smith. Controlling backward inference. Artificilil Intelligence, 39(2): 145­
208, June 1989.

[72] J. Lyons and C. Grossner. A blackbox expert system: Software requirements
specification. DAI Technical Report DAI-0490-0003, Concordia University, Mon­
treal, Quebec, April 1990.

[73] C. Culbert. Artificial Intelligence Section, Johnson Space Center. Houston, 1989.

[74] W. Boehm. Software engineering: Rand D trends and defense needs. In P. (Ed)
Wegener, editor, Research Directions in Software Technology. M. I. T. Press,
Cambridge, Mass., 1979.

[75] S. Maxwell and H. Delany. Designing Experiments and Analyzing Data.
Wadsworth Publishing Company, 1990.

[76] T. K. Sellis, N. Rousscpoulos, and R.T. Ng. Efficient compilation of large rule
bases using logical access paths. Information Systems, 15(1):73-84, 1990.

[77] C. L. Chang, J. B. Combs, and R. A. Stachowitz. A report on the Expert
Systems Validation Associate (EVA). Expert Systems with Applications (US),
1(3):217-230, 1990.

148

[78] .John Rushby and Judith Crow. Evaluation of an expert system for fault detec­
tion, isolation, and recovery in the manned maneuvering unit. NASA Contractor
Report CR-187466, SRI International, Menlo Park, CA, February 1990. 93 pages.

[79] James D. Kiper. Structural testing of rule-based expert systems. ACl'/l Trans­
actions on Software Engineering and Method%gy, 1(2):168-187, April 1992.

[80] W. B. Gevanter. The nature and evaluation of commercial expert systems build­
ing tools. IEEE Computer, 20(5), May 1987.

[81] M. A. Shwe, S. W. Tu, and L. M. Fagan. Validating the knowledge base of a
therapy planning system. Methods of Information in Jlt1edicine (West Germany),
28(1):36-50, January 1989.

149

Appendix A

150

Source Tables

6.28 18 0.33
2.50 1 2.50 10.56
4.50 19 0.24

3.50 19 0.18
1.23 1 1.23 7.11
3.28 19 0.17
3.80 1 3.80 15
4.40 19 0.23

7.10 19 0.37
5.83 1 .83 37.1
2.88 19 0.15

SCORE and Total BalI Errors

151

cl F
9 9.41
11

SUmo! cl Mean """1 F
4847.84 1 4847.84 84.72
1087.18 19 57.22
192.53 1 192.53 4.59
797.13 19 41.95

1254.40 1 1254.40 5.34
4462.60 19 234.87

Plan Failure Rate

152

1
24614.07

15272Zl.11 92.92
16436.55

1274406.21 109.57
11630.95
1 •
7977.51

233600.94 fIT.97
2655.32

66937.55 63.08
1061.22

365.57
2448.73 19.10

128.19

Aa::esses Executioo Phase
eslso ce

rte lIIllnce
55.34

2440064.59 128440.24
.30 23.30 117.92

144279328 75936.49
5577427.41 5577427.41 85.42
124œ24.91 65290.78

837307.31 44œ8.81
1 12 .94 74.80
325810.47 17147.92
405173.44 400173.44 n28
9962028 5243.17

• 1
27464.79 19 1445.52

Blackhoard Accesses: Planning and Execution

153

AVE 22.79

9 37.57
11

1007.50 19 55.66
3727.56 1 711IiJ 183.54

e· 385.88 19 20.31
1400.96 1 1400.96 53.88
494.19 19 26.01

1 1 1 1 1
295.52 19 15.55

FIVE 147.91 1 147.91 26.55
105.88 19 5.57

SIX 12626 1 12626 16.15
146.59 19 7.62

Rules Fired: Planning and Execution

154

Appendix B

Glossary of Symbols

A: Attribute vector describing current state of a problem.

Â: An estimate of A.

A:: Current state of SPI: A: ç Â.

A'J: Set of factors whose instances are visible in a window when they are storcd in
rl'gion bbrj.

AREA(x): Function giving area of region x.

ai: A factor describing a characteristic of a problem state.

a(tj,sj): Mapping on S: a: T x S -> S where a(tj,sj) = Sk.

â(tj,Sj): An estimateofa(tj, Sj): amappingon Sj a: TxS -> Swherea(tj,sj) = Sk.

AT;: RHS of a rule, set of facts.

B: Set of Predicates.

Be: The number of correctly located mappable balls.

BE: The number of bail errors.

BM: The total number of mappable balls.

bT: The total number of entry/exit positions of the B1ackbox.

bV : The total value of the beams fired to solve the puzzle.

BW : The number of incorrectly positioned balls.

BB: Model of a blackboard.

bbr: Begin on a blackboard.

fJ =>+ 9k: Set of subproblems fJ that need to be solved to achieve 9k.

C{rbsh rbs2, ••• , rbsn }: A set of rule-based systems that plan using Consensus.

155

CP: A capability matrix.

C P~: Completion predicates for a path.

CS: Coordination structure of an organization.

CT~: Completion templates for a path.

CTi~k: Set of templates on the LHS of ri that are not satisfied by the rules in path k
of task t. .

CW: Combined window of a planning group.

DE(rbs;fSPt): Information deficit of a rule-based system rbs j in an organizalion
when it solves SPt.

DP(rbs;fPGk): Information deficit of a rule-based system rbs i in an organization
when planning as a member of planning group PGk.

V{rbsi : PG - rbsi}: A set of rule-based systems that plan using Decree.

DM: The dimension of one level of a blackboard.

S: Most general unifier, (Ai, Li) . S = (Ài, li).

EA: The a-/erage number of accesses to the blackboard during an execution phase.

Ei: Set of subproblems executed by the problem solver to achieve a plan.

ER: The average number of rules fired during an execution phase.

E = (E, RB, WM): Rule-based system: E is an inference engine, RB is a rule base,
and WM is working memory.

ES: Set of rule-based systems in an Organization.

F~: A fragment k in task t.

FC: Set of all factors visible in a window.

FD: Set of factors that may be stored on a level of a Blackboard.

FXi: Fixation of factor Gi_

FPCt: Decision-factor set for SPt.

fi = (À;, li): A fact used by a rule·based system: Ài E R.

G: The set of goals used by the problem solver.

G': The set of goals from which the rule-based systems in an organization can select
goals while planning: G' ç G.

Yi: A goal.

GPSe: A group planning set.

'Y: Set of goals chosen by the problem solver when planning: 'Y ç G.

156

H(ai): Entropy.

X"': LHS of a rule, set of templates.

l'P(a;fwi): Information potential of factor a;in window Wj.

Ai: Specification for a predicate.

LV: Set of levels on the blackboard.

Li: List of variables.

Le: The number of grid squares which do not contain a mappable baIl that are
correctly identified.

LT: The total number of grid squares which do not contain mappable balls.

lVi: A levcl on a blackboard.

LW: The number of ~rid squares which do not contain a mappable baIl that are
incorrectly identlfied.

li: Data elements.

LB: The set of lower bounds for a level of a blackboard.

lbj: A lower bound for the range of a level of a blackboard.

LBR: The set of lower bounds for a region.

lbrj : A lower bound for the range of a region.

U: A mapping from a set Templates, or a set of facts, to a set of predicates.

PA: The average number of accesses to the blackboard during a planning phase.

PF: the plan failure rate.

PR: The average number of rules fired during a planning phase.

Pl: A path k in task Tt.

P: A problem where Â, &(t;,Sj), T, and SF have bèen estimated by the problem
solver.

pl: Problem solver's view of an ill structured problem: pl = (P,pS,G).

pL: A plan.

pS: Set of subproblems for P.
PCt : Constraint set for SPt •

PGk: A planni.lg group.

PPi: A partial plan.

pSI: The problem-solving process for an iIl-structured problem.

157

PTi\: Set of templates on the LHS of ri that are satisfied by the rules in path k.

01>: The set of rules in a path.

111: An organization of rule-based systems.

R: The set of ail predicates used by a rule-based system.

RG: Set of regions in a window.

ri: A rule.

rf: A concrete rule firing:

ri -< ri: ri depends upon ri.

rf » rf: rf causes rf to fire.

rf 1-+ ri: An unambiguous (unequivocal) mapping from the concrete rule firing rf to
the abstract rule ri'

rf o!. ri: An equivocal mapping from rf to ri'

rbs;: A rule-based system.

S: Set of states in the state space of a problem.

Si: State space of SPt : Si ç S.

Si: A state of a problem.

SF: Set of states which are acceptable solutions to a problem.

SF: An estimate of SF: the set of states which are acceptable solutions to a problem.

SI: Set of initial states for a problem.

Sei: A zero memory information source.

SPt : A subproblem of pl.

SPt "" U: set of rules U that assert facts using all the predicates of a logical complc-
tion for SPc.

SPl: Start predicates of a path.

SRL: Start rules in a path.

STl: Start templates of a path.

PTi~k: Set of templates on the LHS of start rule ri that are satisfied by the rules in
path k.

T: Set of transformations used to traverse the state space of a problem.

T: A thread.

158

Tf: Set of transitions fo: SPt: Tf ç T.
TI: Rules used to solve SPI'

TL: Set of ail transformations on A that are legal.

TP: Set of ail transformations on A that are possible, but not legal.

T: An estimate of T.

(Ai, Li): A template.

UB: The set of upper bounds for a level of a blackboard.

ubj : An upper bound for a level of a blackboard.

UBR: The set of upper bounds for a region.

ubrj : An upper bound for a region.

V rj: A rule rj is reachable from a set of rules V.

Vj: An instance of a factor ai.

Wj: Window onto a blackboard.

W '-+ rj: W is an enabling-set for rj.

W S: The set of windows in an organization.

ZI: End predicates for Task t.

159

