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'ABSTRACT
© oz ) [

- '
" ‘. R u -

The twelve-pulse bridge converter is treated as a

piece~wise "linear "network, allowing‘foi ~the use of linear

=

+ circuit theory in its analysis. Explicit solutions™ are

. obtaine& fqr ;ﬁe converﬁer\ operating iﬁ a v?;iety of
' different 'modes,; ds- specified by the valve .commutation
gngles. The éomplexities of Q‘the final mathematical
formulat;ons are greatly reduced by fully exploitin5 a
number of'érope:tiéiiof the time-varying topology including:
beriodic}ty in 'T,. transposped ;eriodicity in T/6, and
"balancedhghree-phaag sympetrical AC network components.
Basgé on -these equitions a digital alg§rithm is
developed ' which conyerges rapiily on the steady-state
sblption.\Post—procé;%ing,routines are produced which render
this method a dgequ tool.in the design and analysis of the

‘twelve-pulse copverter. ' ,
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. rapidement ve;)rs la solut:.onv en regime permanent.

4 . 4

La théorie des ciqrc'uits linéairespermet 1'analyse de
cohverﬁisseurs‘ a douze“impulsiorisa»don*‘t les ,paxaméi:res sont -
continus et a 'segment; l'inéaire‘s.‘r v

Des solutif)ns explicites‘ sont .obtenues pour: le ;
convertisseur ope'rent dans plusieurs modés en fonction des

a{!gle's“ de commutation des valves.

Les comp’le'xités de la 'formulation mathématique sont
grandement réduites lorsque les propnetes simplificatricesu
suivantes sont exploitees la perioda.c:.te en T, la
periochcs.te transposée en 'I.‘/6, et la symetrn.e du circuit
triphase equil:.bre.

&

De ces équations; unh algorlthme est constru:.t qui converge

"

Des programes utihsant cette methode sent developpes

Iy

\
.pour l.’analyse détailée du convertlsseur a douze impulsions.
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1.1 History of HYDC sistemso

The first practical electric power systems consisted of
e generatdrs connected to lighting loads., Despite this
historical precedent direct-current was almost entirely
rep%aced by alternating current.as' the standard mode of
electric power generation,’distribution and utilization. One
of the main reasons for the wider usage of AC power was the
lack of a DC counterpart for the transformer. Also the AC

machines, and in particular the induction machine, proved
more reliable and had wider applicability than machines with
commutators.
- Recentlg DC systems have m;de a resurgence in certain
applications including: .
1) ﬁong transmission lines
2) Cable transmission
\ 3) Frequency Converggrs
%n these areas AC system implementations have a number
of important dis-advantages. The main. drawback encountered
reactive

with AC transmission 1lines is the -need for

o
compensation. The compensation requirements increase with

increagt . length thus setting practical limitations on

the distances across which AC transmission is possible, The

7\
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) difficultiés associated with attaching shunt fompensators to
underground or . ‘underwatér cables make fz‘ACv c;ohpections
impractical for these transmission" applications. )

The solution to bQth these problems is found in the
interconnection of AC systemg through AC/DC converters to DC
transmission lines. DC lines do not suffer from the same

) problems as the 1\\C lines and are therefore better suited ‘for
many transmission applications.

’ Recent developments which have led to higher power

capabilities in thyr;stg::, make the DC transmission

N alternative more attractive.

*

-

1.2 Basic Graetz Bridge Configuration

Y

"“%he Graetz Bridge is used for the bulk of three-phase

AC to DC conversion. The basic valve connection is shown i
L

Fig. 1.1(a) with the standard symbol for the bridge‘ shown
in Fig.1.1(b). '

30 3 3-9 DC
AC oc. AC
/S| / l , (b)

¢ ' (@

My,
(}i FIGURE 1.1 (a) Valve connection of Graetz
‘ Br'idge Circuit

(b) Symbol for Graetz Bridge Circuit

LY
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Whereas in AC systems limitations are set by the,.

transmission lines and the need for reactive compensation,

)

in DC systems the converters pose the main restrictions. Two
v of the chief concerns involved in the design Jf :}hese
converters is their varying reactive power requirements and

the limited over-voltage and over-current capabilities of

the valves. r

rd

1.3 Overview of Digital Analysis Methods Applied to

Switching Circuits .

Because the DC converters set limitations on the
overall operatién of 'the DC transmission sysiems, it is
important to gain a full understanding of ., their.
characteristics. In the past, the bulk of research done on
the og@g?tion.of - the HVDC comwerters made use of analog
simulatiéﬁ techniques [ 1-5 ] . More recently however, studies
have been directed towards making the digital’ computer  a
more useful tool in the simulati?h of HVDC system operation.

}Numerous papers dedicated to HVDC systems and converter

circuits (6~15] have been chiefly interested in the wvalve

modelling and the computer-aided .automatic compilatioﬁ -of -

the network topologies produced using these models, The

system differential equations produced by these methods have

& -
been solved using numerical integration. In general these
programs are flexible in terms of allowing the study of

(\f transient and faulted conditions. Unfortunately, the

solution methods used are time consuming and expensive when

.
T



applied to problems requiring convergence on steady state

solutions. - ..

N A number of authors have presented papers which.

describe the achievement of analytical descriptions for

| ‘ p swiﬁrhing network problems. In 1971 Lipo [16] produced a

| . B B . . i

| : pape{i*SGEIIﬁIEE“Eﬁ’ algorithm wused in the study of a
thyti%tor speed . control for an induction motor. An

| analytical solution to the problem was achieved, through the
use of state space techniques. Similar methods were used in

} the formulations included in a paper presented in 1972 by

Liou [17] dealing with networks coﬁtaining periodically

i
operated switches.

Based on these general techniques, Ooi, Menemenlis and

. o
Nakra [18] studied the steady-state operation of a six-pulse

g -

3 inverter acting as a series tap.

»

.
t

: . . o

s

1.4 &hesis Justification and Qutline

This thesis is a presentation of‘éhe continuing work
baseéron the paper (18] "Fast Steady-State Solution for HVDC
Analysis" by .0oi, Menemenlis and Nakra, and the thesis "A
Semi-Analytical Method for Stead;:State Solution in HVDC
Analysis" [21] by N.Menemenlis. The results developed for the
six-pulse converter, while dramatically demonstrating the
advantages of the piece-wise linear formulation, have

(j) ‘limited practical applications. Because oq the more

A

>

”

oo

extensivé utilization of twelve-pulse <converters, the

T TR s el G e MBS e Sl LTS,
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material presented in  this thesis has much wider
applicability. . , ( .

The introduction of a second ‘bridge, and therefore a

second independent commutation time leads to a number of

prgblems not encountered in ‘the i?alysis of the six-pulse

bridge. The topics discussed in this thesis’includes

Chapter 2 presents an outline of the | gperating
characterisﬁics of the six~pulse and tﬁélve-pplse bridge.
Included 1in this chabter is a discussion of the winding
current distributions in the converter transformers during
the twelve-pulse converter operation. A harmonicﬁanalysis of
the conéerter waveforms is used to compare the six- and
twelve—ﬁulse systems,

Chapter 3 demonstrates How the converéer simulation may
be treated as a piece-wise linear problem. The use of
network ahalysis and the linear state description in the
solution of piece-wise linear problems is, then dquriped.
The symmetries of the network configuration and desired
solution are exploited in reducing the manipulit;ons
required to achieve the final result. )

Chapter 4 presents the actual network configurationé
and algorithms required to determine the solution. It is
demonstrated that the algorithms required are functions of,
the commutation times and therefore musé be selected

concurrent with the solutions. The numerical techniques

required to séggf,the final non-linear equations -«are. also

-

described.
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Chapter 5 descri&hs the manner in which the Fesults of
the algorithmslof Chapter- 4 may best be prESentéd‘tq convey
the most information 96££§iniq§ to, the systep‘\cperationﬂ
Included in this chapter is' a de{ivation Qf the equations
yielding the Fourier ggqgficients‘ for state variable
solutions in piece-wise liﬁear problems. These equations are
used to generate a frquency description of éhe converter
currents for varying operating conditions.

Chapter 6 presents results based on the algorithms of
the previous two chapters. Frequency ard time domain butput

aie presented as well as numerical .information pertaining to

the computer programs.

A
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_CHAPTER 32

-~ o
K

BASIC CONVERTER OPERATION.

Z.i Introduction

The analysis of converter circuits is well documented
[22] and in particular, the application of three-phase bridge
converters in HVDC systems has been the subject of extensive
study (23] - This chapter, therefore, ig not intended to
serve as ah extensive review of the operation of fhese
converters., Instead, it will introduce the reader to common
network configurations, waveforms, and nomenclature
associated with the Graetz Bfidge Circuit. Particular
attention is paid to multi-bridge converters. Fpufier
Series analisis is applied to demonstrate the motivation

behind their comnmon use.

I3

2.2 Operation of Graetz Bridge Circuit

Fig. 2.1 illustrates a six pulse Graetz Bffidge
connection. The IAC side of the bridge is connected to a
balanced three-phase sinusoidal generator. The positive
séqdence line-to-neutral emfs of the wye connected macﬂine

are,

SR

e
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e, (t) =By sin (@ t+7/6)
ey (t)sE, sin(wt-1/2) -
e, (t)=E, sin Wt45T/6) @

where E , is the generator péak voltage and w is the angular

. frequency.

The generator sub:trans}ent inductance and transformer
'1eakﬁge' inductance are lumped together and shown as L.
étator and transfqémer winding reéistances are omitted in
¥’t‘he analysis of this section, t

~ The DC 1line side of the bridge §s modelled as a
constant DC'-:current source Id. ' |
‘ ., The six controlled valves which make up the bridge are

numbered in the relative order in which they receive gate

pulses. This/firing sequence produces:

e,

N

Tl positive—éequence balanced distribution of currents
on the, AC side
2) DC 1line open circuit voltage consisting of six

identical sections of the line-to-line emfs.

&

I"

s

@: ,n,L ‘g1 05 -
N .
la -
e
i Lbe . iy ® 1y
'b 3} L‘
8, .
:j -——-»I

i u ‘ *
. )Eva b& Ve -1
‘94 g2

FIGURE 2.1 Six-pulse Graetz Bridge connection
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2.2.1 Delay Angle

~

. _ ; ,
If the valves receive gate pulses at the instant they

¥

are forward biased the fundamental component of the stator
phase currents will be exactly in phase with|the generator
emfs. To allow for the control of thé.bridges power factor,

b .

the valves gating signals may be delayed. Fdr

delafkangle
between forward bidsing and valve firiﬁg, denoted o, in the

range 0°sa< 90 ° real power is transferred from the AC sfﬂe to
the DC side and the bridge acts as a rectifier., For a delay
angle, 90°<;<180°, real power is delivered to the\AC cirgpit
by the DC line. In this mode the bridge acts as a&‘invezéer.

4N

Under both conditions the bridge absorbs reactive power.

2,.2.2 Commutation Angle ‘ 5

. \ :
Conducting valves are locked by voltage line

commutation. A valve is reverse-biased when another valve in

*

the same row of the bridge i
Fig, 2:1 Vi‘is commutated when V3 is fired. The current in
the commutating valve requires a finite time to reach zero
due to the series inductance L through which it flows. This
commutation time is deﬁoted by u with corresponding angle
W . Since the AC network is balanced and the valves
receive gate pulses at equally spaced times each valve
requires the same ammount of time y to complete its
commutation.

In the normal steady state operation of practical

bridge networks the commutation angle does not exceed 60 °.

hedd s

fired: For instance in

it mamr + =

e At g
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In Fig. 2.2, typical waveforms ([24]

angle aalzoi and a commutation angle in the range

] . f
0 <wu The negative value of average direct voltagde,
V4r clearly indicates that power is transferred from the DC
line tq, \the AC network. This direction of power flow is

also implied by the phase relationship between the

fundament components of the stator currents and the

three—-phase generator emfs,

,ékes . place during ~the angular interval wp .
Throughout these intervals the total current carried by each
row of the bridge equals Id. The bridge circuit is sketched
in Fig. 2. for the first commutation interval where, for
clarity, n
diagram. articular emphasis is placed on the current
relationship between the incoming and outgoing valve.

Analysis of the Graetz Bridge is further complicated if

included in the model. However, if the operating conditions

0

is considered a faulted

N\

n-conducting valves have been removed from the -

(;} circuit resilstances and shunt elements on the AC side are '




0

i

-

FIGURE 2.2 Bridge Waveforms, a-—lzo R 0 < wu<30
(a) Sinusoidal emfs
(b) Gate currents
{c) AC phase currents
(d) DC Voktage
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‘of the, bridge are such that the bulk of the alternating

current is carried in sthe stator phases, Figs. 2.2(c),(d)
and 2.3(b) approximately depict the variations of current
S

e and voltage in the bridge.

>

la

i “ @S.ﬁw ’ Vdgo 'd <

sl
————

i b s | .
N

e
- _@em
i ‘ e @EVA& . l\; i;\‘ #VQ + @

|

|

:L -

: L 1~

c °

— (b)

“wt

o

FIGURE 2.3 Valve commutation
(a) Conducting valves during commutation of V2
(b) Phase currents i_ and ic during commutation

. a
S i
2.3 Multibri§ge Connections ¢ﬁ
In the converter modellof Fig. 2.lithe DC line current
| is assumed to be compiffelf constant while the AC emfs are .
§ (} modelled as perfect sinusoidal sources, Inspectian of -
|

© Fig. 2.2(c),(d) indicates that even under. these operating
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conditions the AC stator phase currents (are clearly
non-sinusoidal while the DC line voltage contéins a high
ripple content. These conditions indicate‘ high harmonic
contents in both the DC line voltage and AC phase currents,
Harmonics -have a number of undesireable effzcts including
excessive heating in generators and interference on
telephone lines. Because of these serious implications two
of the chief criteria uéZd.in assessing the performance of a
particular converter design are:

1), ripple or harmonic content .of the DC line voltage

'2) magnitudes of current harmonics with respect to

fundamental current in the AC phases.

In HVDC applications multibridge connections are often
used to reduce both harmonic contents. These connections
consist of pairs of bridges\connected in series on the DC
side and in parallel on the AC side. While permitting
harmonic reduction, the series DC connection also allows for

increasing the DC line wvoltage to transmission levels.

2.3:1 DC Line Voltage_

The multibridge configuration to be studied in this

thesis is shown in Fig. 2.4. From Fig. 2.5(a), which
depicts the phase relationships between the generator emfs
and the open circuit secondary line-to-line voltages for the
two transformers, it is clear that the wye-delta bridge
voltages lead those of the wye-wye bridge by 30°. As the

valve gating bulses are referenced with respect to the a,b,c

s

»

i

i G

e Y ‘/.;“).J,rm»:—vw*'
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1

¢
» .

terminal voltages for the upper bridge and to the voltages

at ‘terminals A,B,C foi' the lower bridge, the secondary

8, 1% ana 6ut_put voltage vg are identical

b’ "¢

- - lY -Y 'Y Y

to the upper bridge waveforms i 1b ' 1c and vd
. ‘ .

advanced by 0. Fig. 2.5(b) depicts graphically the

y LA .
currents 1,01

except

.addition of the DC line voltages of the two bridges, under

the operating conditions aif. ¢m1=03 From Fig. 2.5 it is

clear that the /¥l turns ratio of the wye-delta transformer

"bank is required to match the sécondarycline-to-line voltage

magnitudes for the two bridges. The sum of the ‘fﬁgwbridge

output voltages yields the overall DC line voltage, which
consists of twelve identical pulses per cycle. For this
reason the multibridge connection of Fig. 2.4 1is often

referred to as a twélve—pulse converter, while the single

-
- Graetz Bridge circuit is known as a six~pulse converter. An

éxact analysis of the DC voltage ripple for the six and

¢

a t
twelve-pulse converters is made in Section 2.4.

4

2.3.2 AC Phase Curéents

Before the overall stator phase currents may be
cgnstructe@, the wye-delta transformer wihding currents ix,

iy and i; must be determined. Since the form of the

A A A . A
wye-delta bridge currents i,, i, and i, are known, the

winding current distribugion may be derived [19] by
satisfying the dot convention quﬂ © ampere~-turns law for the
3 N . '

transformer. The secondary line currents of the wye-delta

" . transformer may be constructed using guperéosition, from the

3
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three basic distributions given in Table 2.1.

DISTRIBUTION | i - ij 38
a (=4
1l {A -1A 0
2 i, 0 i,
3 0 i, -iy

TABLE 2.1 THREE BASIC SECONDARY LINE CURRENT DISTRIBUTIONS
FOR WYE-DELTA TRANSFORMER IN TERMS OF GENERAL
CURRENT iA

v -

The equations relating the winding currents and the
&
general current, iA' for the first distribution of Table 2.1

are written as,

i -1 =i
X Y

A I .
i =1 .

X z * .

(ix +iy+iz)/,/5=0 . (2.2)

where the third egquation represents the ampere-turns
requirement on, thé primary side. Manipulating these three
équations yields the delta winding cyrrent distributions,

ix=i,/3 -

iy==2i)/3

tz=14/3 (2.3)
The two other winding current distributions may be derived
in a similar manner, Table 2.2 1lists the winding curreﬁts

for the three basic cases of Table 2.1. .

y
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DISTRIBUTION i, iy i,
; Y = /3
‘ 1 1A/3 1A/3 1A/
2 -21i /3 i/3 i /3
, - A/ A/ ‘ A/
3 i /3 iA/j -2i /3

TABLE 2.2 DELTA WINDING CURRENTS FOR'THE THREE SECONDARY" LINE

CURRENT DISTRIBUTIONS OF TABLE 2.1

Given the constraints of Table 2.1 on the delta line
currents a general relation for the winding currents may be
derived. These equations are written in matrix form as,

: . A
i, 1 2/3 1/3 iy

z
To illustrate the use of Eqn. 2.4 in determining the

winding current distribution during norma]l bridge operation,
a typical conduction” interval will be studied. Fig. 2.6(a)
illustates the conduction interval involving valves VD3 and
VD4 where the winding distribution is  determined by
substitution of, ) .
iAa=Id ! i%’hld
into Eqn. 2.4.
Fig. 2.6(b) shows the flow of commutation currcent
between valves VD3 and VD5. Egqn. 2.2 is employed with,
ic:iccm ! iﬁ‘-icom '
CGombining these two cases, using superposition, yields
the operating conditions for the wye-delta. transformer

during the commutation “of wvalve VD3 by wvalve VDS. This

overall distribution is shown in Fig. 2.6(c).

: - ‘A
L;z =-11/3 1 2/ iy %
2/3 1/3 1 ig (2.4)

o
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(b) Commutation current distribution for VD3 co
(c) Overall current distribution during commutation
syb-interval
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By following this procedure, the delta bridge primary
currents are determined for én entire period and are
sketéhed in Fig. 2.7(a). The -wye-wye bridge primary
currents shown in Fig. 2.7(b) are added to the wye-delta
currents to §ield the overall stator currents, sketched in
Fig. 2.7(c). The resultant alternating currents achieved
using this connection approximate the 'desired sinusoidal
distribution better than the AC currents of a single Graetz

Bridge.

2.4 Harmonic Analysis of Bridge. Converter Waveforms

To evaluate the exact effect the l2-pulse converter
connéction has on reducing AC and DC harmonic content,
Fourier Series analysis is employed. The Fourier
coefficients Eo} the DC line wvoltage and AC stator phase
currents are calculated for both the six and-twelve-pulse

configuration with operatiné conditions, wu=0°and o =0. The

coefficients derived under these operating conditions are’

the simplest to evaluate and allow for a useful éomparison
of the characteristics of the two connections. The effect of
comnutation overlap and firing delay on the DC&voltage)and
AC current harmonics will be discussed qualitatively at the
end of the section.

2.4.1 Analysis of DC Line Voltage

The Fourier series describing the wye-wye bridge DC

B
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(a) Wye-delta transformer primarf currents
(b) Wye-wye transformer primary currents
(c) Overall stator currents
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line voltage wavefogm shown in Fig.2.5(b), is given by
Egn. 2.5

vi= (3/3Ep/m (1+,§, (1/(6k+1)-1/(6k-1))coskut (2.5)
¢+ 'The series representation for the wye—delta bridge DC

line voltage is obtained by advancing Egn. 2.5 by 30°.

. V§= (3/§Em/n)(l+k§l(l/(6k+l)-l/(6k—l))(-l)kc055kwt (2.6)

The overall DC line voltage is derived by adding the

two series of Egqns. 2.5 and 2.6.

v4=(6/3E /1) (1+, 8, (1/(12k+1)-1/(12k-1)) cosl2kut (2.7)

2.4.2 Analysis of AC Phase Currents-

For the operating conditions wy =0° and <1=Oi ig, iz and
ia are sketched in Fig. 2.8. 1
The Fourier series describing Fig. 2.8 (b) is
i:= (2/§Id/v){coswtlkzlcos(sk-l)wt/(6k-l)_
+ k%Z__'_)lccs (6k+1l) wt/ (6k+1)} (2.8)
The series for the wye~delta primary current of

&

Fig. 2.8(a) may be written as

A ®
i,= (2/§Id/ﬂ){coswt-kgl(—lkcos(ﬁk-l)mt/(Gk-l)
+ k‘gl(-lly‘ cos (6k+1)wt/ (6k+1)} (2.9)

Y A

Direct addition of the two currents ih and ia yields a

Series expregsion for the overall stator phase current.
i,= (4/T1,/7) {cosut+,§ (-1)*cos (12k-1) ut/ (12k-1)

=51 (1) cos (12k41) wt/ (12k+1) } (2.10)

FPourier series expansions for the b and c phases may be
calculated by shifting Egns. 2.8,2.9 and 2.10 by 120° and

240" respectively,
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The results of this section are given in Tables 2.3 and

2.4 for the characteristic harmonics which are of practical

interest in most engineering applications.
.

L]

3
b e et o b A

.
SIX-PULSE BRIDGE TWELVE-PULSE BRIDGE

AT o/T)  %'OF FUNDAMENTAL | *(2/3 I /)’ §OF FUNDAMENTAL

1 1 100.0 2 100.0

5 | 1/ 20.0 0 0.0 >

10 17 14.3 0 0.0

11} 1/11 9.1 2/11 9.1 .

13| 1/13 7.7 2/13 7.7

TABLE 2.3 MAGNITUDE OF HARMONICS OF AC LINE CURRENTS FOR BRIDGE
OPERATION WITH wu =0°AND q=0° '

\

SIX-PULSE BRIDGE TWEL{IE—PULSE BRIDGE
k *(3/§EM/1;) $ OF DC VALUE *(3/3EM)") $ OF DC VALUE
DC 1 100.0 2 100.0
6 1/5-1/17 5.7 0 0.0
12| 1/11-1/13 1.4 2/11-2/13 1.4
18 1/17-1/§L9 .6 0 0.0
24| 1/23-1/25 .4 2/23-2/25 e

TABLE 2.4 MAGNITUDE OF HARMONICS OF DC LINE VOLTAGE FOR BRIDGE

OPERATION WITH wy =0°AND ¢=0°

From these tables it may be seen that the effect of the

twelve-pulse connection is to remove specific current and

voltage harmonics without changing the ratio

of the

e ot
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remaining hgrmonic magnitudes to their fundmnental and DC
components respectively. ! \ .

Further pairs of bridges may be added to the
connection, each with an appropriate phase shift, to yield
a converfer with characteristic A& current harmonics of
order pk+l and DC voltage harggnics of order pk, where p is
the converters pulse number. Although complex arrangements
have been built and studied, it is generally accepted that
for qup applications filtering is the most economiéal means

of removing AC current harmonics of order k=11 and above,

and DC voltage harmonics of order greater than or equal to

k=12,

E'or‘° practical l2-pulse configurations, tuned filters
are generally employed to remove the k=11 and k=134Aharmonics
while a high-pass filter is employed to remove harmonics of
order k=23 and above. Since the bridges absorb reactive
power under all operating conditions, the filters also serve
the function of injecting needed reactive power into the
system.

The magnitudes of th? DC voltage harmonics of practical
12-pulse bridge networkg have lower per-unit values than
their AC counterparts. The harmonics apéearing on the DC
line are further reducgd by the insertion of a large choke
inductance between the bridges and the DC system. In many
applications, such as undergroﬁnd cable tr?nsmission, rled
side filters are not required and are therefore not included

in .the general analysis of this thesis.
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The énalysts of this section has intentionally omitted.

the effect of both the delay angle and commutationhoverlép,
to allow for simplifications in the’ calculatipns of the
Fourier coefficients. Delay angle hag no effect on the AC
current harmonic content, whilgﬁf the valve commutation
qverlaps tend to reduce the harmonic content of " the
alternating currents below their gu=0 level of 1/k [25] .

However, ‘calculations also indicate that most non-zero

combinations of wy and o tend to greatly increase the .level
. f .
of D€ voltage harmonics. DespiFe this, the values of

Tables 2.3 and 2.4 serve as usetul upper 1limits for the

I
-analysis carried out in system simulations.

|
.

2.5 Summary

The higher power capabilities and reduced harmonic
content of the twelve-pulse bridge connection described in

this chapter make it a useful tool in BVDC conversion

applications. Based on the simple analysis-of this chapter'

the remainder of the thesis will study the means by which

Linear state analysis and computer techniques may be applied

to the study of the twelve-pulse bridge converter.
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CHAPTER 3 \

NETWORK ANALYSIS OF TWELVE-PULSE CONVERTER

*

~ 3.1 Introduction

The firgt step in aéé;ying the digital computer to the
study of éhe thlve—pulse converter is the selection of an
apprbpriate network model. Figure 3.1 1illustrates ﬁhe
network components included in the ' bridge converter ofltﬁis
thesis.

Having selected a suitable mathematical model for tﬁé
network, the next step in the analysis is the determination
and accurate description of the required solution. This
allows for the full ’exploiégtion of any desireable
properties of the solution .in the formation of the numerical
algorithm. 'In networks containing periodically switched
elements careful consideration must be given to the nature
of the periodic solution. k @ ‘

Once A complete study of the network properties has
been‘ made, lhe appropriate mathematical and numerical
anai&sis tools may be sélected and the computer algoritﬁm
prepared. |

This chéﬁter endeavours to describe the first two steps
in the analysis procedure. Particular attention is focussed

on the history of the application of state space techniques

to periodically switched networks. The solution algorithms

)




A

et o e e — U, - - ] — e Vs S
® c
: . |
§
\ ~
Ws -
o, R L, - ’ . ﬁ'l’l Lyy 1l ’? ’ :
— i ) ""'!’ N A =
L} .
Swm MWRYR- RS
N v :
WD .‘.L’u\@ )
i i¥
3
) = ':‘t'z L 7 ;%
. W3 3
WS )
W BB ;
W73 ;
‘c"-E\"‘c"' Vs CaPViaa Viw Via” PV I"m Vie -kvnc
tn Bl 3 o8| frm | Bl B | B :
RS Ll Rt g e 3 e 3 )
FIGURE 3.1 \DTwelve—pulse bridge _coriverter— model
v - ~ ?
® |
— - Jo— - . ““"‘“ﬁ_i ':_\_‘_’_A‘,(t



29

{\bf Chapter 4 follow as a direct progression of the concepts

herein described.

3.2 Digital Representation of Converter balves

In power s&itching analysis programs intended for use
with differing topologies (6 -15], the valves are generally
modelled as variable resistances. When the valve is in its
conducting state the fesistance value is small. When the
Qzlvg(is reverse~biased and enters its blocking state the
resistance value is made very large. The advantage of such
a model is that the system equations need not be re-arranged .
to represent changes in circuit topol due to normal

. switching‘bperations.

For programs - dedicated to the simulation of specific
swiéching circuits,[6-18 ], a Boolean (ON or OFF)
representation is generally chosen for the valves. Such a
representation is ud@ﬁ for the valves of the twelve-pulse
converter in this thesis. Eliminafing non-conducting
branches leads to a reduction in the number of equélions and
variables required to describe the system. However, separate

T systems of equations are required to represent each EPpology
encountered in the process of normal switching operations.
Symmetry properties are generally exploited to reduce the

number -of topologies required to fully define the network

operation.

T .
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3.3 Ngtwork Model of Twelve-Pulse Converter

The twelve-pulse bridge converter model, shown in
Fig. 3.1 congists of:
(1) The DC transmission line, represented by a constant
direct current source of value Id
(2) AC components
(a) Three-phase synchronous generator modelled in each
phase by an emf in back of its sub-transient impedance
Rs ’Ls' To include the bridge firing delay in ﬁ;he
analysis a variable angle is incorpéraped into the
emfs:
ea(t)=EMsin(wt+n/6+e)
eb(t)=EMsin(wt-n/2+6)
e c(t)=EMsin (wt+57/6+6) (3.1)
By using the unbiased emfs of Eqn. 2.1 to determine the
bridge switchings, the desired delay a between forward
biasing and firing may be obtained by controlling?f .
(b) Thé wye-wye and wye-delta transformers are modelled
by ideal transformers connected to the winding leakage
and R

impedances R respectively.

n' Pr 12’ L2
(c) AC shunt filters labelled high-pass (HP), 1ll-th and
13-th, used to remove characteristic harmonics
generated by the converter.

This model 1is sufficient for analysis of the steady

state performance of the converter under normal operating

conditions.
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3.4 Linear Circuit Analysis

Linear networks containing periodical§§ operated

switching elements are often referred to as being piece-wise

| 1 linear. Each circuit obtained by replacing the valves of the

bridges in Fig. 3.1 with their Boolean models, is linear and

| time-invariant and thus amenable to linear circuit analysis

( [26]. | n

The collection of circuits which are formed by

repLacing§§he bridge valves with open or short circuits will

| b;\referred to as sub-networks. The time interval during

which any particular sub-network serves as the working model

‘ of the overall network, as determined by the valve states,

is_ referred to as its sub-interval.The sgating sequence

applied to the network determines which sub-networks are

required to model a complete cyclé of operation, and in
which order they will appear.

The dynamic variables of each sub-network may be

described by a Set of first order differential equations,

fe

x (02 (A1 x (£) + [B lu(t) (3.2)
The wvector fn(t) is the state vector and generally consists
of the minimum number of current and voltage variables which
ailow for a complete description of the n-th sub-network.
Since the sub-networks are linear,[An] and [Bn] are constant
matrices.

The solution for the state' vector of Egn., 3.2 is of the

( \ general form,

; ’ l, ZSR
, x (£)= (0 (£)1g + x 77 (8) o Bt (3.3)

e e vt dth
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where tn and t+l are the n-th sub-interval boundary times.
n

The first part of the solution is the zero-input

response (ZIR), where Eﬂ“tnﬂ is the state transition.

matrix and En is a vector of integration constants. This
part of the solution represents the response of the network
to the initial capacitor voltages and inductor currents.

The second part of the solution, the =zero-state
response (ZSR) depends on the network forcing functions and
topology. Appendix 1 elaborates on the formation of the ZSRs
and state transition matrices for the sub-networks. ;

If t=tn is substituted into Egn. 3.3, the unknown
vector integration constant may be written in terms of the
general solution. The overall solution may now be written

x ()= x*5®(t)+ 10 (t-t )1 (x (t )-x°SR
-n -n n n -1 n -—n

(tn)) (3.4)

The collection of sub-network solutions may be utilized
to form a complete description of the circuit operation when
combined with an understanding of the general nature of the

overall solution.

3.5 Properties of Periodic Solution in Periodically

Triggered Three-Phase Bridge Configurations

This section introduces two properties of the desired
solution which will be wused in conjunction with linear

circuit theory to form the numerical algorithm.

s b s 4 st
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3.5.1 Periodicity in T

The periodic solutions of the differential equations
associated with the steady state operation of the bridge

gonverter and other switching networks differ from the

2
?

classical steady-state solutions in linear networks. 1In
physical linear networks the1 periodic solution consists
entirely of the 2SR, and is reached only after the ZIR"or-
transient solution has been damped to an insignificant
value, !

For networks containing switching elements the ZIR of
each sub-network 1is re-excited in each period by the
switching process. Thus the overall periodic "~ solution
contains both the 2IR and 2SR in each sub-interval. The
periodicity requirement which the solution must satisfy may
be written in terms of the sub-interval state vectors x (t)
and the overall switching period, denoted T, as

X, (8+T)= x (£) < (3.9)

3.5.2 Periodicity in T/6 '

It was pointed out in Section 2.2 that the sequence of
gating currents applied to the valves of the Graetz Bridge
are chosen so as to produce balanced positive-sequence
currents on the AC side. Since the AC network is balanced,
superposition may be employed to show that the combined
effect. of the injected currents and generator emfs 1is to
produce .positive-sequence currents and voltages throughout

the AC network.

e e e ek .
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Due to the balanced, positive-sequence nature of all AC

' variables, the T/6 periohicity property may be exploited.

Simply stated, any T/6 segment of the }hree—phase solution
is sufficient to reconstruct the entire solution.

As an example, Fig. 3.2 shows - the transpositions
required to reconstruct a £full period of the three-phase
emfs from a T/6 section commencing at t=0.

All currents and voltages on the AC side of the network
may be fTeconstructed in exactly the same manner, and the
entire problem may be reduced to studying any T/6 section of

the bridge operation.

3.6 State Analysis Applied to Piece-Wise Linear Problems

The matrix handling capabilities of the digital
computer make state space techniques very attractive for use
in the computer-aided analysis and design of electronic
circuitry. Despite this, the full advantages of this
mathematical description have rarely been applied to the
analysis of switching circuitry.\

In numerous instances sop;isticated methods have been
applied to the : compilation of defining equations of
switching networks only to have these dguations solved by
slow and expensive numerical integration techniques (6-15].
These metheds s;em.particularly inappropriate when applied

to circuits where variable resistors are used to model the

thyristors. In such network models, large order-of-magni tude

At i e o s e
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. (b}

{c)

d)

th

FIGURE 3.2 Example of T/6 periodicity property. Re-construction
of full period of balanced 3-¢ emfs from basic T/6

segment
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differences exist betwe&n the deéﬁning time constants. In
5
order to achieve numerical stabiliﬂy, unnecessarily small

\
step sizes must be used in she integration algoritﬂhs.

Once the problem has been recognised as being -

piece-wise linear, the state\Qescription may be applied to
valve networks in a variety of fashions. To describe these
methods, a general swiﬁthing network, consisting of N
separate switching states’ per period is postulated. Fig. 3.3
shows the connected{sequence of N sub-intervals constituting
a full period of operation. The time origin has arbitrarily

been chosen as t=t The sub-network numbers 1 through N

l L]
correspond to the N consecutive topologies encountered in

one cycle of normal operation of the network.

'—Tl—ll'——tz—*‘-——t3 TN—b%——Tlii—— T,

1 2 3 N 1 2

t t t t tn T+t1 T+‘t:2 T+t3 t

FIGURE 3.3 Sequence of sub-intervals corresponding to operatiol

of arbitrary switching network

The state vectors describing each of the N sub-networks
may contain different elements depending on the topologies.
Compatibility matrices are therefore required at the N

switching instants to match final and initial conditions.

§n+1(tn+1)’ [Cn]xn(tn+1) , n= 1,...N (3.6)

SUB-INTERVAL #

e s m e,
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]
The N compatibility matrices are formed by| applying flux and
charge continuity requirements to the inductor currents and
capacitor voltages respectively, at the switching instants.

|

3.6.1 Iterative Determination of Initial Conditions

The simplest application of linear state analysis to
the problem of Fig. 3.3 involves iteratively modifying an
arbitrary initial condition by applying the sub-network
state solutions, boundary conditions and periodicity in T
property (20] . ’

. An arbitrary initial condition 51(t1) is chosen and the
solution advanced through a period using Eqns. 3.4 and 3.6.
In each subsequent iteration 5_(T+tl) replace the initiai
condit;on El(tl)' The flow chaéé-shown in Fig; 3.4 describes
this iterative procedure.

This method eliminates the stability problem ;ssociated
with the numerical' integration process, however it still
requires a potentially expensive iteration  procedure

requiring multiple calculations of the state transition

matrices and solution vectors.

3.6.2 Closed~-Form Solution

A few authors have presented papers in which analytical
solution techniques have been developed for handling
networks containing periodically operated thyristors and
syitches. In 1971 Lipo [161} presented an analytical éoiution

to the problem of a thyristor speed control for an induction

>
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START

SELECT INITIAL CONDITION El(tl)

¥

n=1
4{ BLOCK 1
ey AU

ADVANCE SOLUTION THROUGH SUB-~INTERVAL |

APPLY EQN.3.4 TO CALCULATE En(tn+L1, |

B B - L ittt

[PRCTETPIIN

I

| APPLY BOUNDARY CONDITION EQN.3.6 TO l
l GET INITIAL CONDITION OF NEXT SUB- |
I

| |
| |
|

INTERVAL En(tn+1)

n=n+l

COMPLETED PERIOD ?
n=N

Lo o - o - - - YES = — — = —— — =~
NO
SET INITIAL |~ TEST FOR CLOSURE
CONDITION 1%, (T4, ) =%, (£) | |<€
HVTHITHY
x) (%)=
§l(T+t YES

GENERATE DESIRED SOLUTION VALUES
USING ITERATIVELY DETERMINED x, (t,),
COMPATIBILITY MATRICES AND STATE SOLUTIONS

e
STOP

FIGURE 3.4 Flowchart for iterative determination of initial
‘ condition vector
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motor, utilizing state space techniques, The following year
Liou [17] presented a general solution method for handling
linear circuits containing periogically operated switches.
The closed-form solution presented here follows the approach
of these two papers.

In this method gl(tl) is treated not as an iterate but
rather as an unknown. Repetitive application of Eqns. 3.4
and 3.6, through the N sub-intervals, yields an equation for

the final condition.EN(T+tl) in terms of the unknown vector

t ).
51( J‘)

xt4t1+T)= R + [S]ﬁl(tl) (3,7)

In Egn. 3.7 R and {S] consist of the €first 'N-1
compatibility matrices, as well as the N state tfansition
matrices and ZSRs evaluated at the appropriate boundary
times. Since all elements of 5 and (S ] may be calculated
directly, an explicit relation may be obtained to determine
the initial condition. Applying the final compatibility

matrix at t=T+tl,

51 (t1+T)= ?SNﬂ‘l (t1+T)= [CN]ENi(tl*"T) (3.8)

Substituting Egn. 3.7 into Eqn. 3.8, applying the
pefiodicity in T property, and re-arranging/yields,

x) (t))= ([I1-1C 1181) "t (C IR (3.9)
The right hand side of Eqn. 3.9 may be calculated to give

the initial condition and an explicit form for the entire

solution. The inner loop of the flow chart of Fig. 3.4,.

labelled BLOCK 1, is repeated in Fig. 3.5 to describs tHe

}

formulation of the explicit relation. .

4
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FIGURE 3.5 Flowchart for analytical determination of initial
condition vector and problem solution
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(4 ) AT COMMUTATION TIME ITERATES

. ;‘a .
J'c2‘“2” **tTem'™m

TEST FOR SUFFICIENT ACCURACY

[y i) e ity <

NO

€

40

UPDATE COMMUTATION TIME ITERATES
NEW = OLD

My wy o+ fi(lcl,lcz...l

i = l,Z...m

cm)

GENERATE REQUIRED
SOLUTION x(t) FOR ANY

TIME t USING x, (t;)

-
STOP

FIGURE 3.6 Flowchart for iterative determination of initial
condition vector with unknown boundaries
corresponding to commutation times
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This method entirely .removes the need for numerical

¢

iteration,

& '
3.6.3 Unknown Boundaries in Closed-Form Solution ¢

The analytical solution obtéiqed for the initial
condition vector in Eqgn. 3.9 was obtained under the
assumption that all boundary times in Fig. 3.3 were known
beforehand. This of course would be thé case if all the
boundary times corresponded . to the firing of valves at
specified gating times. However, some of g}e changes in
topology correspond to the commutation of valves, and the
corresponding boundary times are therefore related to the
commutation times. These commutation times are dependent on
the initial conditions of the commutating sub-intervals and

must therefore appear as unknowns in Egqn. 3.9. To point out

" .this dépendence, Egn. 3.9 is rewritten as

Xy ()= GO puyee s u )T Ry by e e ) (3.10)
where the E vector and [G]matrix are functions of the m
commutation timeg. 'The initial condition x,(t)" may be
evaluated, using Egn. 3.10, for commutation time itgra;es.
Using each iterate of the initial condition vedtor,. the
solution matrices, and the c¢ompatibility matrices, the
commutation currents may be evaluated at their commdtation

times. By numerically solving the system of equations
;Fj(uj)= 0 , j=1,...,m ‘ = (3.11)

© 4 . !
~a va}ue for each of the commutation times may be determined.

The required procedure is depicted in the flowchart of
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Fig. 3.6. ' ‘

Such a problem was addressed by Ooi, ‘Menemenlis and

Nakra [18] in a paper discussing the particular case of a’

six-pulse Graetz Bridge inverter acting as'a series tap. In
thisiéroblem one independent  variable, a single commutaéion
time, .existed. This - thesis addresses the problem of the
twelve—pulse' conver ter where two independent commutation
current variables exist. Chapt;r 4 describes i mé;hod which
utilizes Egn. 3.10 in conjunctipn with a minimization
algorithm to numerically detétmine the commutation times,

«M
S | ‘

and overall solution.

-~

3.7 Application of T/6 feriodicity Property

The complexity of matrix manipulations associated wiEh
the formulation of the fina}" condition vector in terms of
the initial condition vector, described by Eqn. 3.10,
increase dramatically with increasiné N. In the case of the
twelve-pulse converter the numerous éatings'and commutations
constituting a full period are prohibitive when consiéereé

in terms of an analytical solution. To allow for a practical

digital algorithm to handle the problenm, T/é periodicity

must be applied. . The number of topologies which must be
considered, upon application of this property, are reduced
by a factor~of six. - . . ’

’ Referring to Segtibn 3.5.2 and Fig. 3.2 .

~
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xa(t)=-xc4t-ST/6)
xb(t)=-xa(t-5T/6)
xc(t)a-xb(t—ST/G)
5T/6+t. < t< T+t

1 1
where x.(t), xy,(t), and xc(t) represent the a, b, and ¢

(3.12)

ghase components  of a particular state variable.
Substituting t==T+tl in Egn. 3.12 and applying the
T-periodicity pr&herty of Eqn. 3.5 yielés:

§h(tl)=-xc(t +T/6)

Xp(ty) =-xa(t]:+'r/6)

xc(t1)=-xb(tl+T/6) (3.13)

Application of Egqn.3.10 with T replaced by T/6 and

using the final compatibility matrix [CN] to execute the
transpositions of Eqn. 3.13 allows for a considerably
simpler equation in terms of the commutation times. The

expression thus formed requires considerably less matrix

«manipulations (han if the entire period had been considered.

3.8 Summary !

State space techniques allow for the full exploitation
;f the matrix handling capabilities of advanced digital
computers in the analysis of electfical networks.

This chapter has outlined the techniques and concepts
which, when applied to piece-wise linear configur;tions,
allow Egr( the use of state theory in their analysis.

Chapter 4 describes the formation of the algorithms which
1

.
———

. B
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make use of these concepts in the . analysis of the normal

operation of the twelve-pulse converter.

)
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CHAPTER 4

FORMATION OF SOLUTION ALGORITHMS

1

»"”\

4.1 Introduction

The approaches used to apply linear state analysis to
pipce-wise linear problems were introduced in Chapter 3.
his chapter applies these éoncepts "to formulate the
specific algorithms to be used in the analysis of the
twelve-pulse bridge converter.
Since the commutation times are not known before the
solution has been determined, the exact <Sb~ni}work
configurations ene?untgiggﬁgn-eﬁbh period are alsth;known.
Because of this, separate algorithms must be prepared for
different groupings of commutation lengths. The exact
configuration is then determined during the solution along
with t@e commutation variables Hy and uy Once the problem
has been classified in terms of its commutation times, and
the necessary sub~network state descriptions generated, the
general method described by the flowchatt'of Fig. 3.6 may be

applied.

P
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4.2 Classification According to Commutation Angles

¢

It was poinEed out in Chapter 3 that through the use of

‘the T/6 periodicity property, the problem was reduced to

studying any given T/§ segment of the bridge operation. The
actugi topologies encountered in a given T/6 segment of
operation are determined by the lengths of the commutation
times for the valves of the two bridges. Table 4.1 lists the
permutations of commutation angles which occur during bridge

operation with the two commutation angles,wu1 and WH 5 less

than 60°.

CASE Wiy wy,

1(1) < 30° < 30°
(ii) > 30°,< 60° < 30°

2(1) < 30° > 30°%,< 60°
(ii) > 30°,< 60° > 30°,< 60°

3(1) > 30°+wupy ,< 60° <30°
(ii) < 30° > 30°+wuy ,< 60°

TABLE 4.1 COMMUTATION ANGLE GROUPINGS FOR NORMAL BRIDGE
OPERATION

3 N

Under normal operating conditions the two commutation
angles have similar values and in the analysis that follows
it will be assumed that lwul-wuzl< 30: thus eliminating
Case 3 of Table 4.1 from consideration.

The bridge currents correéponding to bridge operation
with commutation angles in the range of Case 1(i) are shown
in Fig., 4.1. During the defining T/6 segment, 0< t< T/6,
only two dynamic variables are required, one to describe

each of the commutations. To simplify the notation two new
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k.

variables, icy(=iz } and .icd(=—fi ), are introduced.
Figs. 4.3(a) and (b) show the currents i;y and icd for the
first T/6°segment of Case 1(i) and Case 1(il) respectively.
The bridge currents "for converter operation in the
range of Case 2(i) are shown in Fig. 4.2. Because of the
increase in Moo the commutation of VD2 by the switching of
valve VD4 extends into each new period. to maintain a
consistent hotation, the dynamic variables used té represent
the commutations remain icy and icd‘ Because of this
selection, the commencement of the defining T/6 segment was
chosen to coincide with the end of the VD2 commutation,
t=u2—T/12. Fig. 4.3(c) and (d) show the currents icy and icd
for the T/6 segment, - uz-T/lzi t<u2 4T/12. The current
variable icy now includes parts of two separate commutations

in the defining interval. This does not lead to any real

difficulty since ea commutation current has the same form,

due to the balanced nature of the AC circuit and the equally-

spaced valve triggerings. Referring . to Fig.‘2.3 of
Chapter 2, the relation between icy evaluated at the initial
and final boundary times may bq written as,

lo, 4y T/12)= Io+d (uper/12) 0 (4.1)

This boundary condition supplieg £he additional
information required to form the compatibility matrix used
to match the boundary eonditions for the defining T/6
segment.

Separate solution algorithgs must be developed to

handle the converter operation in the two Wl 5 ranges given
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in Table 4.1. For Case 1, Egn. 3.10 1is formulated with

t =0. With wu2>30°, in Case 2 operation, the initial

condition vector of Egn. 3.10 is evaluated for t =u2-T/6.

4.3 Selection of State Variables for Sub—-Networks

The first step in formulating the solution algorithms
is tﬁe determination of the state variables required to
describe each sub-network constituting the basic T/6
segment, The minimum number of network variables, which
allow for a complete description of the operation of each

sub-network, are utilized.

4.3.1 Cagse 1, wu2<gg

Five separate sub-networks are required to fully
describe the <comrverter operation when the wye-delta
commutation angle remains below 30°. These five sub-networks
labelled 1 through 5, are shown on the following pages as
Figs.4.4(a)-(e). Open circuited branches corresponding to
valves in the blocking state have been removed from the
diagrams. A The inductor currents and capacitor voltages
labelled on each diagram indicate the state elements to be
included in each state vector. The complete state vector for
each sub-network is also included in the diagram.

Due to the balanced three-phase nature of all AC
circuit quantities, only two state variables are necessary

to fully describe each three phase inductor current or

v
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capacitor voltage. As shown in, the diagram the a and b
phasés have been used to define the thrge-phase voltage and
current variables.

For the non-commutating sub-networks, numbers 2 and 4,,
n% other state variables are required since the wye-wye and
wye-delta transformers carry only the DC line currents. The
dimension of the state véctor for the non-commutating
'sub-intervals is definedi\ as N2. Clearly, for the
sub-networks of Figs. 4.4(b) and (d); N2=14,

Sub-networks 1, 3 and 5 represent the converter during

various commutations, and the redquired commutation variables
are luded in the state vectors. BSub-networks 1 and 3
which inclu§e a single commutation each have state vectors
of dimension N2+1. Sub-network 5 represents the network
while commutations 'a;e occuring in the - two bridges
simultaneously. Its state vector includes the two

Eommutation? variables, icy and icd’ and has a dimension

equal to N2+2.

4.3.2 Case 2, 30< umzsso" | /

Comparison of Figs. 4.3(a),(%i with Figs. 4.3(c),(d)
indicates that only one new sub-network is introguced by the
302 wu2<60° condition. This sub-network corresponds to a new

commutation commencing in the wye-wye bridge before the

wye-delta commutation is completed. Sub-network 6 1is shown

in Fig. 4.4(f). The state vector for sub-network 6 includes

the same variables as those used to describe the fifth




@;

u

59
: %
sub-network and, therefore, has the same dimension, N2+2.
Having gelected the currents and voltages to be used in
describing each of the sub-networks, KVL and KCL are used to
generate the’ required state matrices (A) and

1

(B] ( Appendix 1 ). -

4.4 Solution Algorithm. Case 1

The procedure of BLOCK 1 of the flowchart of Fig. 3.4

is used in the following analysis to generate the required

matrix expression for 51(0). First the expression is derived
. .
for thewu1<30 condition, and this result 1is then repeated

with some modification for 30°<wul<60°.

4.4.1 Case 1(i), yu, <30°

The notation and essential data used in this section,

i

- S
for the formation of a solution algorithm for Case 1(i), are,

collected together in Fig. 4.5.

The initial condition vector 51(0) may be partitioned

as
1cy(0) I, . N

Xx. (0)= R = .
=1 51(0) §l(0) (4.2)

where the initial wvalue Id' of the commutation current has
\

been substituted. The N2-dimension vector 5I(t) contains all
the AC side state variables of the Nl-dimension state vector
fl(t)‘ Thus in applying the general method developed in

Chapter 3 it is only necessary to solve for the vector
W 4

b

N

e e i bt 81 AL AT WS NAOYIY S P b e e it A At A

\v~




S~
/ T T T
CONBUCTING AL ' - vy3  vp3 vy
Vw3 vey ! B -
vaLvEs cwi oW L omom ¢ W ol oW
CIRCUIT TOPOLOGY |  FiGaaw |,  FiG.ad®) Fleaa) | FE.4d)
i ] ' i ' N
STATE VECTOR X = [!‘3"] X X, : .x,g=[,a-°°] | Xq
S, o R S ) I, T E .;.___.____.__ _____
DIMENSION N2+1 ! N2 , N2+1 : N2
—_—— .2 T L —_—
K= oy ! ' ! ' ! o
: T :
a \ i ' °
10 = Iy j _ Iy : cd X o
1 ] —
cowPATIBILITY | . R ——= —
MATRIX £ (1 €] 4]
——————— T T e e e e e
T stare Iy :[bj [t '
! x4(uy) :
——————— ]
STATE [ﬁ] [ 1 -'1T2J : : 9 9
TRANSITION MATRIX Ll [ WCW B (@,] N P [@,]
t= b 4y ———————- I/llz —————— Y- — —— — — — 6
. e V12, = v a0 T/12-4—)
; V6 :

»

FIGURE 4.5 Case 1(i); wu1<30°¢ wu2<30°

/

//
P

Notation used in d%rivation of solution algorithm

[N 4

09

o

B A el R A




()

i 61
g
%
51(0), in terms of the commutatiqh times My and My

Applying the state solution for the first sub-interval

yields the expression ‘

14

By (up)= X5 (up )+ (0 (u))] ([x;(oJ -x; (0)) (4.3)

hY

where the superscript s is used to identify the ZSR.
Referring to the state vectors showﬁ in Figs.4.4(a),(b) the
first compatibility matrix may be written as,
1

. N2

1 (4.4)
1 N2

[C1]= 0

-
The boundary condition at t-ul is written as

I
4
. S - S »
X, (uyd=1c 1{x (u,) [¢l(u1)l§l(0)}+[cl][¢l(ul)l[§1(OJ (4.5)

With the state transition matrix partitioned as

;T
Py Guy) Ploup) 1

[¢l(ul)]=
P, (u) (P, (u;) ]| N2 (4.6)
1 N2
Egqn. 4.5 may be re-written as
52 (u1)= 51(u1)+ {Pzz(ul‘)lgi(O) , (4.7)
where J - /
= s - s .
R, (u)) [C 1{x, (u) (0, () 1x (0)}+R,, (W) I, (4.8)

Eqn. 4.7 is substituted into the second sub-interval
solution, evaluated at t=T/12, to yield,
X, (T/12) = x,(T/12)+(0, (;r/lz M Ry (up) =%, ()}

+ [oz(T/IZ-ul)l[Pzz(ul)1§;(0) (4.9)
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As was done for 31(0), 55(T/12) may be partitioned as

icd(T/12) Id
53(T/12)= ig(T/lZ) s ES(T/IZ)

With this notation,

(4.10)

and the second compatibility matrix is simply the identity
matrix.
Egn. 4.11 is substituted into the state solution for

the third sub-interval, at t=T/12+, to yield,

d
‘53(T/12+u2)= §§(T/12*“2)+I¢3(“2)]{[EZ(T/lzJ -§§(T/12)}(4.12)

The same compatibility matrix may be used between the
third and fourth sub-intervals as was used for the first
two, and the boundary condition at t=T/12+u2 may be written
as I,

X, (T/12+4u )= [Cll[¢3(u2}]{[gz(T/lz{]-ii(T/lz)}
+(C, 15 (/1241 (4.13)
Substituting Egn. 4.9 and the partitioned state matrix,

T
Q,, ;) Qq, () 1
(o, (u,) 1=

Q,; (uy) szztuz)] N2

1 N2 (4.14)
into Egn. 4.13 yields

2y (T/12¢u) 0= R, (Wysu,) + 1S, () ,u,) 1%2 (0) (4.15)

where

) S S
R, (uyruy)= fcllffa(T/12+u2)-[?3(u2)153(T/12)}+g21(u2)1d
HQ,, (M) 15 (T/12) 419, (T/12-4 ) 1 (R (u)=x53 (1))} (4.16)
and

(8, (Myouy) 1= [Q,, (uy) 110, (T/12-u ) 1 [Py, (ki )) (4.17)
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The equation is advanced through the final sub-interval

by applying the fourth state solution.
X (T/6)= x (T/6)+10, (T/12-u )] {x, (T/12+u,) =x7 (T/12+u )} (4.18)

(

The final compatibility matrix applies the periodicity
in T/6 property as well as satisfying the continuity
constraints. Considering the state vectors of Figs. 4.4(a)
and (d) as well as the phase transpositions of'Eqn. 3.13
leads to the final boundary condition. '

x1(0)= (C,1x,(T/6) (4.19)

where

N2

N2 (4.20)

Substituting Egn. 4.15 into Eqn. 4.18 and multiplying
by the compatibility matrix ,as in Egn. 4.19 gives a matrix

*
relation for xl(O) in terms of the two commutation times.

xy(0)= [C, }[x (T/6)+(¢,(T/12-u,) ) (R (ul,u ) =X, (T/12+u ))}
+IC, 11, (T/1l2- M, )18 (ulfuz)IX*(O) (4.21)
Combxning the x:(O) terms and 1inverting leads to the

- final equation,

-1

x1(0)= {Gl(ul,uz)l El(“l’“z) (4.22)

where
[Gy (M) ,u,) )= [I]-[C4][¢4(T/12-u2)1[sz(ul;u2)]
) (uyouy)= (G 1% X5 (1/6)
( ; +[O (T/12-u J1(R (ul,u2 (T/12+u ))) (4.23)
) The right hand side of Egn. 4.22 may be calculated

|
!
i
§
i
5
:
%
i
b
i
i



straightforwardly for given iterates of the commutation
times My and My . The determination of the commutation times
leading to a final solution of Eqn. 4.22 is described in

Section 4.6.
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Notation used in derivation of solution algorithm
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4.4.2 Case 1(ii), 302mu1<60°

The notation and a summary of the essential data used
for Case 1(ii) is shown in Fig. 4.6. The procedure of
Section 4.4.1 may be repeated, with some modifications, to
generate the required matrix relation for 5:(0) when the
commutation angle is in the range, 30°5wu1<60°.

Rather than’ repeating the matrix formulation, the
required state 561utions and boundary conditions are listed.
The four state solutions evaluated at each sub-intervals
final time are: _
1y X, (T/12)= gf(T/12)+[¢l(T/12)1{il(0)-5j(0)} (4.24)
2) x5 (uy)= Eg(ul)+[®5(ul-T/12)]{§S(T/12)-§§(T/12)} (4.25)

3
) x5 (1/1240,)= x5 (2/124u,)

+05(1/124p,-u) Mg u)-x3 (0 ) b (4.26)
1) x,(1/6)= x5 (1/6)

s
+[¢4(T/12-u2)]{54(T/12+u2)-§4(T/12+u2)} (4.27)
The four boundary conditions required to connect the

solution are given by:

1) Iq T4
% (T/10)= | 1Y (1/12)| = |x (1/12)
E;(T/L’-) (4.28)

2) x,(u)= (C,1x. (1))

3
where
1. 0 11
' 0 1 0
[C2]= Q. ‘. N2
X 0°'1
1 N2+l (4.29)

. n an
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3) %, (T/12+u,)= [C 1% (T/12+u,) : (4.30)
where [CI] was defined by Egn. 4.4.
4) The final boundary condition remains Egn. 4.19.

If the state transition matrices are partitioned as,
T
P, (T/12) P ,(1/12) |1

[¢1(T/12)]=
gzl(T/lZ) [PZZ(T/lz)] N2 “
(4.31)
1 N2
Mo (uo-T/12) MY (uo-T/12) ] 1
Myy (0, -T/12) (M, (u -T/12)]| N2+l ,
4. 2
1 ' N2+1 ( )
the final equation may be written as
- \ -l ’
X3(0)= (G, (M ,H)17" E (U k) (4.33)
where
[Gz(ul,u2)1= [I]-[C4][¢4(T/12-u2)][54(u1,u2)] (4.34)
Ey (upruy)= [C 1{X;(T/6)+10, (T/12-p,)]x

/ (Ry (g ruy) =X (T/12+u,)) } (4.35)
(S, (uyruy) = [C1][¢3(T/12+U2'U1)1[?2][53(U1)] (4.36)

R, (uysu,)= [C1]{§§(T/12+u2)+[¢3(T/l2+u2-u1)]x

S
(IC, IR, (1 ) =% (u;))} (4.37)
T _ T
[’-‘12‘“1 T/12) ][-’112 (T/12) J

[53(1.11)]= [M22(ul-T/12)] [PZZ(T/}Z)] B (4.38)

T

. Mll(ul—T/IZ)
§3ful)= Xg (M) =10, (u)=T/12) 1%5 (T/12) « My, () mT/12) T

KT, (1,171 .
* My (4 =T/12)) (4.39)
P ,(1/12)
-]
“{x) (T/12)+ By (T/12)| T4-18;(7/12) 1x5(0) }
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4.5 Solution Algorithm. Case 2

Once again the procedure depicted in Fig. 3.6 1is
apélied, however in this case it is utilized to generate the

initial conditions at tauz—T/lz. It is noteworthy,. that in

Figs. 4.3(c) and (d) at each boundary point there is at

least one commutation occuring. Because of this it is
v [

necessary to include a commutation current variable 1in' the

T e e AL 3 I Sl 5
1

initial state vector no matter where the time origin -is

selected.

4.5.1 Case 2(i), wu1<30°

\

Féllowing the precedent of the p}evious section, the
collected notation of this section is shown in Fig. 4.7.

At the initial boundary time, t=u2-T/12 the commutation N
current must be included with the other unknown state
variables. The initial .condition ‘vector is advanced to t=u1

using the first state solution.

Xy Gup)= X700 )+ 0, (uy=u,#T/12) 1 {x (u,=F/12) x5 (u,~T/12) } (4.40)
The first compatibility matrix [(C,] is once again
defined by Eqn. 4.4. Applying the boundary condition at t?gl
and the state solution for the second sub-interval leads to,

A

" the expression, ' [

X, (1/12) = gs(ul,u2)+rss(ul.u2)1:_:,1.(112-1-/12) 4.4y
where . '
R (uyrm,y)= ES(T/12)+[°2(T/12‘U1)1X .

!

L]

Te 1 (x] (uy) =10, (uy-u,+7/12) 127 (u,-T/12) )=%5 (u) )
(4.43) :




ra

B

(:b ~, The boungary condition at t=T/12 has the form of

Egn. 4.11. Combining this‘boundary.coddition with the étaﬁe
so%qtion for the thi;d su?—interval evaluated at t=T/6

yieldsy - .
I e

8 d | s“

Xy (T/6)= x,(T/6) +[9, (T/12) ] {[352 ('1‘/12)] -x,(T/12)} (4.44)

.

Comparing the state vectors shown in Figs. 4.4(¢) and

(£) leads to the boundary condition,

‘ |
i (T/6] . L ‘ | !

. Vv o y
Xg (T/6)= | X (T/6) |= [C Ix, (T/6) _ (4.45) 'g
| |
|
where . #
1l of, X
oL~ 3
o0
[C ]= o' ‘- N2
3 10 -1 : - (4.8) 1
1 N2 ' . ’ ' ,

Substituting the partitioned state transition matrix,
T

Q,(T/12) @/ (1/12) |1

gzl(Txlg) Q,, (T/12) 1| N2

[¢,(T/12) )=

(4.47)
1 N2 . : ,

Plugging Eqn. 4.41 into Eqn. 4.44 and  substituting " the

result into the boundary condition of Eqn:w4u45 yields
X (T/6)= gs(ul,u2)+[36(ulfuz)lgl(uz*T/lZ)’ . (4.48)
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,/ ’
Ri—(
“where
o, /) [of, @12 -
R (u su,)= [CJJ{{;‘(T/QGH Q) (T/12)] T,+{Q,, (1/12) IR, () 1u1))
s ‘
-19,(1/12) 1%, (T/12) } (4.49)
[gﬁwuq -
lss(ul.u2)1= (c,) [022(T712)1[ Ss(ul,u2)1 (4..50)‘%\“%%

Eqn. 4.48 is' substitubted into the state solution for
the sixth sub-network, evaluated - at t-u2+T/12, resulting in

3

' the expression,

Xg (u¥T/12) = X0 (0, ¥1/12) +0 (u,=1/12) | (R, (u, ) = (T/6) )

1’72 =6
C+00 (uy~T/12) 1 (S () m,) 1%, (0 ~1/12) (4.51)
As in the Case 1 analysis, the final compatibility
matrix applies the q}/s“periodicity property along "with the
éontinuity constraints. . In Section 4.2' it was meptioned
that particular attention was required in- applying the final
boundary conditions to the wye-bridge commutation currents
for Case)z analysis. bpon considerat109 of Figs. 4.3(c) anb
(d) as well as the sketch of .Fig. 2.3(b); Egqn. 4.1 was
derived. The remainder of the terms are matched by the
equation
ﬁi(uz"l‘/lzh [C4]§g(u2+'1'/12) (4.52)
where [c4]wa§ ptevioaily defined in Eqn: 4,20.
Eqns. 4.1 and 4.52 may be combined to form an overall
compatibility ;e;atidn between fl(uz-T/IZ{ and §6(“2+T/12)°
x, (u,~1/12)= K +IC Ix, (u,41/12) (4. 53)@

@
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where ; 0
gw 1 01 Fooom 1
)
\ b R B 1§
. §1= 1 Q [Csl- ] .. (4.54)
2 N2

Upon substitution of Egn. 4.51 into Eqn.” 4.53 the final
matrix relatior for the initial condition §1‘“2‘T/12’ ip

terms of the commutation times is written,

-1
51(112"1'/12)' [63(111:“2)] ga(ul.uz) (4.55)
where
(G em,) )= (I1-1C.] [‘1’6(112‘1'/12)] [56(u1:u2)1 (‘%-55)

By (uyup)= Ky #1C 1K, (4 #T/12)4 (8 (u,~1/12) 1 (B (1, ) - (1/6))
(4.57)

<
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Notation used in derivation of solution algorithm
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4.5.2 Case 2(ii}), 30 ¢y <60°
i
As was done for Section 4.4.2, the four sub-interval
solutions and boundary conditions are listed, and the

initial condition relation derived by comparison with the

’
4

wul<30° result.
1) x (1/12)= ﬁ('r/12)+wl('r/s-u2)1{51(112%21‘-5:(;12-?/12)} (4.58)
2) Egqn. 4.25

3) X, (1/6)= X (T/6)+1(0, (/6 =) }{x, (u))-%5 (u))} (4.59)
8 S '
4) 56(52+T/12)= X, (1, 4T/12)+ (0 (u,~T/12) ] {x, (T/6)-x_(T/6) } (4.60)

The boundary conditions required to formulate the
solution have already been presented as Eqn. 4.28,
Egn. 4.29, Egn. 4.45 | and Egn. 4.53. With the state
transition matrix for the fifth sub-network partitioned as

in Eqn. 4.32, the final equation is written as

-1

X, (u~1/12)= Gy (uy )] ™ By (uypu) (4.61)
where '

(G (uy suy) 1= [T1=1C,1 19, tu,~T/12)1 [Sg (uy k) ] (4.62)

S

g(ul.uz)afcsl{x_c'f‘(u2+’r/l2)+[¢6(u2-41‘/12)1(l_ie(ul,uz)-gc(s(T/G)} (4.63)

[Sg () 1y 1=1C,1 1@, (T/6~, )] [C,118; (uy rky)) (4.64)
Ry (u /1,)= [c3]{3¢_§(vr/5)+m3(1-/6-u1)] ([czlg_.,(ul,uz)-zs:(ul))} (4.65)

(u,~1/12) ]
(U, =1/12)1] (0, (1/6-11.)] ' (4.66)

E&lhﬁfé/lzq

R, suy)= >_c§(ul)+ M, (4, ~1/12)| I ~[0, (ul-’r/12)])_:_;('1'/12)

M, (u, ~1/12)
| My 4y 171201 (0 (1/12) =10, (T/671,) 1% (u,-T/12)}
(4.67)

T
. M
[57 (ul.u2)1= [Mzg

e P
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4.6 Determination of Commutation Times

The four vector equations developed in Sections 4.4l,
4.42,- 4.51 and 4.52 give initial conditions in terms of
commutation times for the converter 6perating anywheré
within the range 0°:wul<60° and Oﬁfwu2<60°. Since the
commutafion times are not known beforehand, the selection of
the initial condition equation must b; made to match the

commutation iterates. The flowchart of Fig. 3.6 could be

moflified to include this step by inserting a selection block

~
within the inner 1loop, before BLOCK 1. Each time the

%

comMmutation time iterates are updated the routine branches
to the appropriite evgaugtion of one of Eqns. 4.22, 4.33,
4.55 or 4.6l

Once an initial condition has been formed, either at
t=0 or tsuz-T/lz, the solution is advanced, using the
appropriate state solutions and compatibility matrices, to
t=7/6 or t=y +T/12. If the commutation <currents are
sufficientlb/ small at these points, ‘%Y(ul)‘ and
|icd(u2+T/12)| , the initial condition may be used to
generate values for the network variables for an entire
period. If sufficient accuracy has ﬁot been attained, the

two currents are treated as the general functions,
f2 (ul,u2)= 1d(112""’r/12) (4.69)

The roots of

(4.70)
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are determined using a second order Newton method. If k is

the iterate number, the equations for the new iterates are

written as
k  k k  k
=£ (upouy)  AF (uyon)/du,

k _k k k
u};+l= ul;+ —fz(ulyuz) dfz(ulauz)/duz /m (4.71)
k k k  k
df (uieuy)/au, £, (upouy)
K+l k k kK _ k
My = W, ¥ dfz(ulvugs/aul -£, (uyu,) | /DET (4.72)
where
k  k k k
VAN df, (o) /du,  af (uj,uy)/du,
N
\ k k k k ) .7
= dfz(ul-uz)/dul dfz(ulyuz)/duz (4 3)
The pfttial derivatives are approyzmitfu\numerically.
For ple *
k k k k k k
dfl(“l'“z)/a“z' [fl(ul,u2+&)-fl(ul,u2)J/A (
where A is an arbitrary step size.

0 Although other methods may be used to solve Eqn. 4.70,
practical experience indicates that\the Newton method used
converges rapidly for this application.

4.7 Summary
Algorithms have “"been formulated which allow for
simulation of the twelve-pulse converter operating with
commutation angles less than 60 . Separate formulations of
the initial conditions were made dependent on the value of
° 5
( ) the commutation angle iterates specified.

The results of this chapter allow for' a determination

12
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of the commutation times and the initial condition vector.
For these results to be useful in design and analysis
various forms of output are required. The next chapter Meals

with the development of output progr ams.
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CHAPTER 5

-~

OUTPUT IN TIME AND FREQUENCY DOMAIN

$

5.1 Introduction

The algorithms developed in Chapter 4 allow for the
numerical determination of the commutation times and the
initial condition vector. For the purpose of analysis, it
is necessary to present the results of converter simulations
in a more accessible form. First, in the time domain, plots
of the vario&é network curreﬁts and voltages are produced.
These plots aid in’understanding the converter operation and
may be used to compare the conversion process under various
épérating conditions. The second basic category ofﬂoutpuE
used in this thesis is preseﬁted in the frequency domain.
Frequency decompositions of the network currents allow for
an evaluation of the effect of particular circuit elements
on the characteristic harmonics. The frequency analysis is
particularly useful in the selection of filters and other
network components designed to reduce harmonics in the AC
network.

This chapter describes the methods by which the program
time and frequency domain outputs are proﬁuced. Equations
are derived which may be used to calculate the Fourier

coefficients for any general piece-wise linear problem.

-
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5.2 Time Domain Output

To produce plots of the state variables and other
network voltagéé and currents through a full-period rﬁquires
the use of the initial condition vector, commutation times,
sub-interval state solutions; compatibility matrices and
transposition properties. Starting frgm the appropriate
initial condition vector, the first sub-interval state
solution may be used to generate values at any time t within
the sub-interval. At the boundary time, the compatibility
matrix may be used to formulate the initial conditions for
the following sub~interval. This process is continued until
plot points are generated for the entire defining T/6
segment. '

Having generated the required solution values for the

first 60 segment no further calculation of state variables
. Y

is required. The current wagg voltage values for the
remainder of the period may be formed using the T/6
transposition property described in Section 3.4H2.

This method may be applied straight-forwardly when the
network solution yields a wye-delta commutation angle in the
range, wy,< 30 . For network configurations in which wy,
exceeés 30 ° the defining T/6 segment was chosen to commence
at t UZ’T/U‘- Therefore, to allow for meaniﬂnggul
cémp risons, the first step in generating Case 2 plots is to
use the transposition prZ;erty ihmediately to generate
values between 0 <t <u£¢/12. Applying the transpositions of

Eqn. 3.13 to the state equations associated with the sixth

o SO

ke T A e
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sub-network and using the notation of Fig. 4.2 allows f&r a
complete re-construction of the period commencing at t=0.

A number of the network currents and voltages are not
included in the state vectors. To obtain values for these
variables throughout a period, KCL and KVL are used to form
algebraic expressions in terms of the state variables.

These methods were utilizeq to produce the plots shown

o

in Chapter 6.

\

[

5.3 Frequency Domain Output
P

Output in the frequency domain |is not directly
available 'froﬁ the results of the solution algorithms,
Instead, the Fourier coefficients of the various current and
voltage variables must be calculated from the available time
domain information. Rather than relying on numerical
analysis programs, which calculate approximations to the
coeﬁficienté, the piece-wise linear description of the
Eonverter variables is exploited to achieve analytical forms
for the coefficients.

The first step in the analysis, involves writing
equations for the coefficients in each sub-interval. Next,
T/6 periodicity 1is applied to generate values for the

Fourier coefficients for a full period.

NI U L Rk e P S a3
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-
5.3.1 Calculation of Fourier Coeffic1ents in Plece-wise
Linear Problem

AEach state variable contained in the solution vectors

L

of CQapter 4 may be represented by a Fourier series,
(“ .
X(t)=a + kg;(akcoakmt + b, sinkut) (5.1)

S

wherew =2 %T, and T is both the source and switqhihg period

for the converter. ;
¢ .
The Fourier coefficients of Eqn. 5.1 may be written,

°

ag = (1/T)fT+tl x(t)dt (5.2)
8 = (2/T)I$Itl x(t) coskut dt (5.3)
| by = (2/M) /g k(b sinket & (5.4)

For the general piece~wise linear problem discussed in
Chapter 5 each state element may be separated into
components corresponding to the N sub-intervals per period,

x(t)= x (®) , £ gt<t ) (5.5)
where n ranges from 1 to N. b
Using the definition of Eqn. 5.5 the integrals”yof

Egns. 5.2 to 5.4 may be re-written,

N - N
3= (W/m I :n+1 x (t)dt = (1/T) L a0 (5.6)
n
N
a, = (/1) %, ftn+lx (t) coskut dt = (2/T) . zlakn (5.7)
= tn+l- ; _ N . .
b = (2/T)n,§l t X, (t) sinket dt = (2/T) g by, (5.8)
- 2

[¢]

Fach term of Egns. 5.6 through 5.8 may be calculated

4analytically since 1in each sub-interval the state variable

SRR
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solution may be written (Appendix 1),
. L A ,n(t-t,)
= + n n

xn(t) dn+gncoswt hns%?wt+2£lclne % (5.9)

where L is the dimengion of the n-th sub-interval state

L3

vector, and C’Ln and Xln are complex coefficients.

The integrations of Eqn. 5.6 are stzaightforward and
only the results for the sin and cos terms will be
reproduced here for reference.

The n-th term of Egn. 5.7 may be re-written, upon

substitution of Eqn. 5.9, as

a

t
= n+l i
kn ft (d, +g,cos wt+h sin wt

n \ L
zélczne
Each term of Egn. 5.10 may be integrated separately,

A - .
In(t=tn)) cogkut at (5.10)

and the the overall result written as

8 = (dn/kw)x(sinkwtn+l—31nkwtn)

Ao (t -t.) .
’ +ClnX{e Zn'*n+l "n (Azncoskwtn+l+kw31nkwtn+l)
~A2ncoskwtn-kwsinkwtn }/(Afn+k2w2)

gnx{ (tn+l-tn)/2 + (sin2mtn+l-sin2wtn)/4m}

+hn(sin£tn+l~sin2wtn) k=1
+ OR
gn{(sin(k-l)wtn+l-sin(k-1)wtn)/2(k-l)w
+(sin(k+l)wtn+l-sin(k-l)wtn)/2(k+1)w}
+ hn{(cos(k-l)wtn+i-cos(k-l)wtn+l)/2(k-1)w -
+cos(k+1)mtn-cog(k+l)wtn+l)/2(k+l)w}
(5.11)

-

13
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An analagous derivation for the sin term yields, ﬁ,
byn = (dn/kw)x(coskwtn-coskwtn¥l)
, : Agnltnyy=tn) . -
+C,pxle n+1’ (A psinket o kucoskut, )
' - X 2 ., 2 2
=\ p8inkut +kucoskut }/(A; +k"w®)
. 2 L] 2
g_(sin“yt__ .=~sin“wt )/2u
n n+l n k=1
+hn{(tn+l-tn)+(31n2wtn-sin2mtn+1)/4w}
+ OR | . ‘ i
’
gn{ (cos(k-1) mtn-cos {(k-1) wtn+l) /2(k=1)w
+(cos (k+1)ut  ~cos (k+llut,, 1) /2 (k+1)w)
) +hn{13in(k—l)mtn-sin(k-l)mtn)/2(k-l)w 2 k#1
+(sin(k+l)mtn-sin(k+l)wtn+l)/2(k+l)m}
(8% 12)

Egns. 5.11, 5.12 and 5.2 allow for the evaluation of each

contributions of each sSub-interval allows for a

determination of the overall coefficients. .

o

5.3.2 Application of T/6 Periodicity ‘ |

.the a, coefficients .of the stator phase current iz will be

grouped as,

To avoid the calculation of the coefficients of
Section 5.3.1 for the 24 sub-intervals which constitute a I
4
full period- of converter operation, T/6 periodicity is

exploited. To illustrate the applicatipn of this'prOperty,

cons%deréd. ;
‘To simplify the notation used in the analysis, the

coefficient components of the first two T/6 segments are

a a " a “ :
}‘k('r/s), = 8y t ok t gt Ay (5.13)

¥
L




and » :D ’ .\ 3
a - ao a -3, a '
% (1/3) T %5t e * AT * A%k . (5.14)
where the superscript a refers to the current i,
With this - notation, the first four terms of Eqn. 5.7

may be written,

a - T/6+tq | > ' -
ak(T/S) (2/T) ft,l \iacoqskotb,cplt R | w(5.13)
The next four terms of Egn. 5.7 are written, , .
k(T/3) = (Z/T)fgfgitl i, coskut dt ‘ (5.16) '
1 :

~Th computations involved in evaluating the overall

coefficients are greatly reduced by applying T/6

‘periodicity. Applying the periodicity 'properties allows for

Eqn. 5.16 to be evaluated by modifyfng the results achieved
in the firsth/G segment. To achieve this, 1 =t-T/8 is

substituted into Egqn. 5.16.
a = T/6+t ’ . -
*,(r/3) = /M i, (1+1/6) cosku(T+1/6) at  (5.17)

Using the trigonometric identity
coskw (T+T/6) ='coskutcoskwT/6 - sinkwtsinkwT/6 (5.18)
Eqn. 5.17 may be re-writteh as '
a2 =(2/m) x{coskuT/6 /T 8*€1 i (141/6) coskwt ar
k(T/3) \ ty a wt art ’
rsinkwT/Gf%iS+tl i{t ®/6)sinkwtdt} (5.19)
Applying the T/6 periodicity property,

-

i (T+1/6) = i (1) L (5.20)

| and-using a notation consistent with Eqns. 5.13 and 5.lﬁ,

Eqn. 5.19 may be re~wr1tten,

b
ak(T/B) = (2/T)x{- ak(T/G)coskwT/G + bk(T/G)sinkwT/6} (5. 21)

Clearly this method may be applied to~ the coefficient

o

components for the remainder o! the period, to obtain an

o
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' expteasxon for the dverall coefficié;ts, Eqns. 5. 6. 5.7 and
5.8, in terms of the three-phase cOmponents in the defxning.
T/G‘Begment. In actuai fact only £wo phase components of the

doefflcients are required since the following eguations are

4 .'Isatisfied. , ' - ’
a o b o] . - © N .
A +ay +a =0 . . (5.22)
and b B .
) a b c _ L (5.23
-+~ by + by + by =0 : & ‘ Bhiad )
Applying the’procédure'described by Eqns; 5.17 through
* 5.20, along with the phase transpositions‘\aescribed in
. Section 3.5.2, €for the entire overall

‘period yields the

- coefficxent solutions.
?
x{1- coskwT/3 - coska/2 + coskmST/G}

%% k(T/G) ,
+ak(T/6)x{ coskwT/6 - coskwT/3 + coskaT/3 + coskmS'I‘/G}
k(T/G)x{s:v.nkm‘l‘/fs + sinkwT/2 - sinkw5T/6} '
) o \“b’]l:('r/e)"“"i“k“/ 6 + sinkwT/3 - sinkw2T/3 - sinku5T/6}

(5.24) |

b3

~

b, = a;(T/G)x{-sinka/a - sinkwT/2 + sinkw5T/6}
+al 06y *{-SinkeT/6 - sinkwT/3 + sinki2T/3 + sinkw5T/6}
- ‘+b;(T/é) x{l‘- coskwT/3 -‘coska/2'+-¢oskm5T/6}

+b§(T/5) x{-coskwT/6 - coskwT/3 + coskwiT/3 + coskwS5T/6}
: 1,(5.25)




5.4 ‘Summary ‘

v ) . F)

{@ As was the case in de‘wielopiné the solutidn alréatithmsA
of Chapter 4, T/6 periodicity plaYg a pivotal ‘i:ole *in the
presentation of results in both ‘the timé and .ffequency

4

domain. Time plots and Fourier coefficients are derived,

based " on the defining state ‘solutions of the first T/6

saegment. The results of this chapter. are used to generate

the output for the simulations of Chapter 6. ' : .
€ ! .

-
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© - ; SIMULATION EXAMPLES ) .

CHAPTER 6 - m

6.1 Introductxon

v
For the solution algorithmsaof Chegger 4-to be useful

environment, post-processing of the

. Chapter 5 described tne methods which
\

results is require

'exploxted the vpie e-wise linear gtate aaeScription and

periodicity properties to generate t{mé and. f:equency domain

results.
{ [ .

This yhapter deponsnrates”the use of these programs in

the analysis of <the . twelye-pulse converter. Results are
7]

presented for two different LAC network shun g’configu:atxons

and for varying operating conditions. Toe

The final section is devoted to a brief description of
same of the numerical aspects of the program operation.
3 @

P r b

-

6.2 Time‘Domain Results - ' .

-

The piece-wise linear descripton. of the converter

AU " ’ .
. | . Y;

allows , for nsiderable fiexibility in the'formation of

output results in the t1me domain. ?hrough this descrlptlon

an exact for ulation for the netwo:mwwariables solutlons in
e

Mo

rms of the initial conditidns are available for any point,
time. This allows for’ ‘the production of relatively

- -




- "+ inéxpensive plots of- unlimited Pesolution. : /

. o . Tl . S B .

Nty L STy . S :
[ : ‘(‘~6.2?_J. Cotverter: with Sh'unt AC Filters . u B

' : ' o The f’irst converter configuratmn t:o be considered is g
4 N é.he connection of Fig. 3.1 ih which.ll-th,™ 13-:h and apr

i ) ' fil‘ters are attached to the C network The compone ’;fvalues

w v " used in 2“3 simulation ' L B
,‘ N . . < " N ) . >n
\ ) ;.‘1), Source- Values; ’ » .
' : T' E .= §}.6§v_ ' H'Ls-LGOmHFA W . i
L Ig= . R = .1x107%0"; ’

| Co fqo= 60HZ S

| 0 = 120° - Y ‘%, - |

! 2) Transfomer Impedances: ' _ “'

| | Lpp = Lpp = S0mH 24' ] ) ‘

L " Rpy = Rfg =250 " @~

- 3) Pilter Impédgn?es; . . _ |

‘ Ly % 46.48mH ' .

C); = L.1394 VF ° y N
| - Ry, = 01184 0° . | . .
. . L13=46 48mH : * s ‘
D <7 Cpg= .8958uF (, ' .
| Rys3= 2.2720 e ' :
. L yp= 4.46mH | )
Cup=3.583 uF g ) = ' .
G R yp= 64.45 @ L o B
. = ‘ o - ) ¢
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These values are used to approximate the components B

used m . HVDC analog s:.mulators and network analysers., The

. select;on of filt;er resonant frequencies and quality factors -

will be discussed in Section 6.3 in which frequency domain

results areopresented for this system.

. . With tRe tolerance £ _set to 106., as Dspecif'ied § 4
Edns. 6.1 and ﬁ.zfzkprog'r,am converged to the eaeady-et-a'“ﬁe” d

i , ) - ~ “r
solutio/n;g‘;wo steps. o A , - -
? ligylupl < e f// | ‘ SRR (7% 5 BN

llcd(u2+T/12)| < | ” . (6£2)

singe the form imped are equal in this

Tl@"t{o bridges ha‘J ept»idalftransformer _ratios and
e ces

-gimulatio two comfutation ahgles ' are ‘identical,

Y =

” ’ . -~
The following page contain plots of the vartfous

network variables. Fig. ‘6.1 shows the total c-phase bridge

eurrents, the algelraic sum of iz and 127@,'as defined in

Fig. 3.1,/;long /Qi}:h the c~phase stator q;u:rent i. for a
full pex;ioe. This plot dramatically '/indicates the degree to ‘_},,
which’ l::armonics ‘are removed from the AC system bir the shunt
filters. | e .

The two subsequent plots, Figs. 6.2 and .6.3' show the

currents in the 1l-th and 13-tk harmonic filters .

respeetively._ The: magni tude ‘ of the Thigh fr'eguency ) T

A

alternating components of the two currents are between 5 ’a'né N

8 percent. of the peak value of the fundamental. carried by,
ST

the stator phase. As expected these results are below the ‘ggﬁr-

- . €

”\ . 1 . @ -
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values of 9.1% and 7.7% for the ll-th and 13-th harmonic
components of the btidgg cd:renta at zeio commutation.

AT

1 . : 'Pid. 6.4 shows the current ;1o§ing through the
. capacitor t!uY°£ the HP filter. The s§§kes in the’waveform
rﬁ*., S occur at the igyéants of topology changes caused by valve

firing or commutation.

>
”

All three shunt currents contain small, fundamental

E . . components due to the thfeevphase generators. The final plot
" for th?se';gystem values is of the DC voltage v, shown in -
‘ ! - Fig. 6.5. c +
£ , ° ¥
% -
. * ) . - .
6.2. 2 Converter with HP AC Filter
: The next converter configuration to be analysed
consists éf the connection of Section 6.2.1 without the AC
tuned filters. The HP filter is tuned to remove all
characteristic harmonics including the il«th and 13~-th. The
system values used are: -
\ L |
| - N ‘

o —

b e e S
. P -

SRR | ) R A PO RXA



1) Source Values: . . ' . t o
. )
-, E, = 81.65V L' = 6?:1}3 -
. I, v .sA Ry = .1x10™2Qq
T f, = 60Hz ° | . ‘ 4
i - , 8 = 130° - ,

2) Transformer Impedances; -

' A
.

! ' Lypy = Lp, = SOmH - “ E
Rpy = Rpy = .5%107°Q ) )
¢ 3) Filter fﬁpedance; ly )
Ce Lyp = 46.48nH . ]
.CHP = 1.25LluF
. R,, = 350 ' ’
) ‘ ) The lower resistance reducesathe Q factor in the second
:/ Jider HP filter tﬂhs‘al%owing for effective Operation over a

wider range of.frequencies. The program converged to 'the
final commutation angle values of yu= 27.9° in three steps.
reduce the 1level of

P The increased commutation angles

characteristic harmonics injected into the AC system.

c
this

The stator phase current, i, is shown in Fig. 6.6 for the

‘gperating conditions of section. Comparison with

Fig. 6.1 clearly indicates the superiority of the first
r‘ - > * J
filtering scheme. Fig. 6.7 shows the current through the HP

filter.
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6.3 Fréquengyﬁbecomposition of Full Filtering Scheme

The ' frequency domain output algorithms desé;lbed in |

Section 5.3 were used to study'the effect of the commutation
angles on the ﬁarﬁonic content of the stator phase .current.
The system of Section 6.2.1, which was used "for this

purpose, has the following filter characteristics:

1) 1ll-th Harmonic Tuned Filter

w. =11.526 xms rad./sec.

, L
Q=9.063 !

5

2) 13-th Harmonic Tuned Filter

W, =13.0 xwg rad./sec. -

Q=7.7138
3) HP Filter
“:l w?~=20.99 st rad./sec.
0=38.33

where the standard definitigps for the resonant frequencies

andxquality faétors have been used.

w, = 1/YLC : (6.3)
Q ={’wsE/R tuned filter
R/msL high-pasgs filter (6.4)

Figs. 6.8 and 6.9 plot the variation of harmonic

‘current as a percentage of the fundamental component versus

¢

the commutation angle wy. N
From Fig. 6.8 the effect of "deviation £from ‘the

resonant frequency may clearly be seen. The 1ll-th harmonic
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filter is poo&ly tuned a;d as"a conseguence the qtat@; phase
current contains relatively large cémponénts.of‘“the 1l-th
harmonic current for the entire range, of bommﬁgzgion angles.
Fié. 6.9 plots the next %argest,pair’of characteristic
har%?nics generated by the,twglve-pﬁlge c?nverter, the 2§4ra
and 25-th components. e & " ’
Both graphs display the ad&antaqe, iA.ter@s of h;:ﬁonic‘

reduction, achieved by operating thé bridges with 1large

Ay

-commutatipn-angle3.

de

o N

6.4 Numerical Agspects of Results

. e . ) S
The examples of Sections 6.2 and " 6.3 have shown that

. the program converges rapfalg togthé steady-state v es,
with'gqual commdtgpion angles. in the wye and delta Biidges,
convergenge is_usually achieved in three:or four iterations.
In configuratidgs where the two angles héve differeﬁt'valuei
zme‘tolerance' is met wifhfn §evén or eight ;teps. "In both
cases the r: idity of‘convergence with ghe Newton.algorithm
is dépendegzplh the fnifiai guess used. ’ ‘

As an éxgﬁple of the"perfozmance of the ptégzam inA

'arriving'ﬁt_the steady-state resﬁlts,,a simﬁle system wiéh
only one shunt eleﬂ%pt pei phase ‘was studiéd. The dimension

of the “state vectors for non-commutatipg sub~intervals for

» -

3

this system are equal to four. 8

dg.
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T Using the MAHL VIA Model 470 compu‘ter the prégram
tequired .71 seconds to compile and .69 seconds to execute.
The -object code required 76 kbytes.of storage while 7 kbytes
were needed for array storage. Clearly, for larger syatems

/ time itequirements incfease rapidly due to the eigenvalue -

calculations and _matrix manipulations. However signiffcqnt

e savings can be'achieved in the study of systems by qompiling . _
the [A] and [B] matrices and caléulating and storing the
! PN eigenvalue solution matrices separiéLly. The ammount of time

r;quired'to calculate results for a fixed configuiation.with
!

cﬁéngingrinputs could thus be greatly reduced. L

PR . J

!

i . The main sub~routines used to study the system of
| i .

| Section 6.2.1 are 1listed in Appendix B. The eigenvalue

evaluation and linear eqﬁation solution routines wused are

Ay

!/ ‘ from the IMSL subroutine library [ 271
l
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CONCLUSIONS ~_

;7.1 tonclusions

A piece-wﬂt: linear approach is appiied’to‘the analysis

the symmetry properties of the ‘time-varying converter

topology, the complekit;es of the ’ defining equatio
significantly reduced. Applying Newton's method to
solution of the final non-linear equatons, rapid coavergence

to the steady state values is achieved.

Significant achievements presented in this thesis- /“'

'Beyond mat%nial already presented in the literature, include;

(1) A ‘gimple approach is presented for modelling the
winding ' current distributions in the wye-delta
tfansforgg% during bridge oper;tion.

(2) The nimber of state variables requ?red to Qodel each

sub-network\ is reduced by  taking into account the

three-phase s etry of the ﬁc section of the conggrter.
43) The analy is of the converter is resolvedf?hto four
. separate problemg corzresponding to various combinations
of .éhe 7wo btidge commutation angles in the range,
. ‘wu1< 60° , wu'2< 60" . . ' '
4) For each range of commutation angles a‘pair df/

non-linear equations are derived in terms of My and Uz.

u seﬁéonvenfgr. Further, by fully exploiﬁing‘-

A

.3
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During solution the commutation time i%eratés ard used to

specify which pair of equations are to be used in the
subsequent iteration. = SN 1

4

{5) Analytical equations are ,developed for the

‘ determination\of the frequency distribution in piece-#ﬁse

- °

linear configurations. .

{ e

% ' . '

7.2 Suggestiéns‘forfFurther Investigatiqﬁ

Since much of the analysis of power networ}é involves
the determinaéion of steady-state values; the algqrithm; and
programs developed in this thesis have a number of
applications. Further research in this field could include

investigation of the following topics:

(1), : Incorporation of a more @etailed moddlling of the DC
section pf)tﬁe conver:;;wincluding fhe DC
elemapts and' transmission line equivalents &ould all®w
for ;gtailed stegdy-state analfs s of multi-te
connections. Such studies would be parsicularly udeful in
analysing Jcontrol strategies applied to such
configurations. ) ’ |

(2) Re-definition éf the system forcigg functions and
equations in terms of terminal power vélhes‘ wou;a allow
for the inclusion of these programs in hybrid load-flow
analyses. The programs are particularly economical for
these applicatons since only modifications to the sourcé

vectors aﬁs required betweeﬁriterations.

-

7

ne filteril‘io
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The programs frequency domain output makes it a
potentially quful tool in analysing strategies to reduce
characteristgc harmonics. In particular the routines
could be inc;udéd as part of a general program for the
selection of optimal filter component's'and configurations
subject tolcqpstr;i;;s such as'cost. : . D

The general approach presented in this thesis for
handling piece-wise linear configuratipns could be uéed,
in con;unction with . a symboiiq{langﬁage handler [28 ] to

generate the defining equations for a variety of

switching network configurations.

e, -
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N A?PENDIX 1

[4

FORMATION OF SYSTEM MATRICES AND ‘., \
S STATE SOLUTIONS '

1

7 .
7 “
ﬁgﬁyipg KVL and KCL to the bridge sub-networks, a

system of first-order differential equations may be written
in terms of the network constants. -

[L,] %, (8 + {R)] x (&) = [G] p_(¢t) . (1D

+
be re-arranged as,

k(8 = [A] x (£) + [B ) u (%) (o 61=2) '

>

. The state-transition matrix for Eqn. 1-2 is célﬁﬁigﬁéd~
from the expression, :
- [Aylt

[¢n(t)] = [Mhl e

where [Mﬁ] is the matrix of eigen-vectors for the [An]

w1t z ey

matrix and [An] is the diagonal which satisfies the matrix
' relation,

(Al = ] (a0 gt (1-4)

n
Eigenvalues and vectors are calculated numerically

~
F

‘using the subroutine EIGRF from the IMSL subroutine library.

For the specific application of the bridge converter ' N

the forcing function of Eqn. 1-1 takes on the form, )
4 #
~u-(t) = coswt a + sinut b + ¢, : (1-5)—, -

. : AN
where a . b , and ¢, are constant vectors. Given the

forcing function of Egqn. 1-5 the 2SR of Egqn. 1-1 has the/ﬁ

N L]

general form, : Ch

“n

-

2SR, .. _ Cfa
x "(t) = cos<§\gn +sineth + 4 . ‘ (1-6) ",
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., Substituting Eqn. 1-6 into the state equations, ‘ v B
Egn. 1-2 , and matching coefficients leads to a matrix ”*
solution for the ZSR. .
- d = [A ]_l ‘[B ] c o \ (1-7) g
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APPENDIX 2 - .

- COMPUTER SUBROUTINES

Thé subroutines used to implement the algorithms of
Chapters 4 and 5 are listed on the following pages. The
subroutines LEQT1F, LEQTIC and EIGRF are from the IMS

Subroutine Library Package. For further documentation on

_these subroutines consult referehce 27.
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SUBROUT'INE MATMUL (N1,N2,N3,N4,N5,N6,N7,N8,N9,A,B, AB)

C

c

A| ACTUAL DIMENSION (N1,N2) c
WORKING DIMENSIQN (N3,N4) C

B| ACIUAL DIMENSION (N5,N6) ) C
WORKING DIMENSION (N4,N7) : C
AB| ACTUAL DIMENSION (N8,N9) o
WORKING DIMENSION (N3,N7) c

: o

»
C
C
C
C
Cc
Cc
c
C
C
C

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(N1,N2) ,B{NS,Né6) ,AB (N8,N9)
DO 1 I=1,N3
DO 1.J=1,N7
AB(1,J)=0.D0
DO 1 L=1,N4 .
AB(I,J)=AB(I,J)+A(I,L)*B(L,J)
1 CONTINUE

SUBROUTINE MATVEC (N1,N2,N3,N4,N5,N6,A,B,28B)

A| ACTUAL DIMENSION (N1,N2)
WORKING DIMENSION (N3,N4)

WORKING DIMENSION (N4) ‘
AB| ACTUAL DIMENSION (N6) \
WORKING DIMENSION (N3)

C C
C C
C c
C . c
C B| ACTUAL DIMENSIN (NS) c
C C
C c
C c
C C

IMPLICIT REAL*8 (A-H,0~Z)
DIMENSION A(N1,N2) ,B(NS) ,AB(N6)
DO 1 I=1,N3 .
AB(I)=0.D0
DO 1 K=1,N4

1 AB(I)=AB(TI)+A(1,K)*B(K)

SUBROUTINE CMATMU (N1,N2,N3,N4,NS,Né,N7,N8,N9,ZA,ZB,ZAB)
C FOR DIMENSIONING SEE SUBROUTINE MATMUL

CCMPLEX*16 ZA(N1,N2),ZB(NS,N6) ,ZAB(N8,N9)
DO 1 I=1,N3 ,

DO 1 J=1,N7

2AB(I,J)=DCMPLX (0.D0,0.D0)

DO 1 I=1,N4

T e b e e S st
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2RB (I,J)=ZAB (1,J) +ZA(I, L) *ZB(L;J)
: 1 CONTINUE

RETURN
END

*®
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SUBROUTINE INTSOL (T,N,MD MG ,MH,X1S)

PURPOSE : FORMULATE ZERO STATE RESFONSE AT DIFFERENT TIMES * -

CALLING PARAMETERS : T; TIME FOR EVALUATION °
N; SUB~INTERVAL DIMENSION #OR THIS CALL
MD; POINTER T0 D VECIOR IN COMMON ZSR

MH; POINTER TO H VECIOR IN COMMON ZSR
X1S(N) ; SOLUPION VECTOR TO BE RETURNED TO
N CALLING ROUMINE

NECESSARY QONSTANTS"
2SR; 2ZSR $OLUTIN VECIORS D,G,H STORED HERE

C C
C C
C c
C c
C C
Cc C
C C
Cc MG; POINTER TO G VECTOR IN COMMON ZSR . C
C . C
Cc Cc
C C
C Cc
o C
Cc C
o C

IMPLICIT REAL*8(A~H ,0~Y) ,OOMPLEX*16(Z) !

COMON /OONST/ASORC (4) ,BSORC (4) ,CSORC (4) ,ELS,RS ,ELL,RL,ELT1,RT1,
-ELT2,,RT2,ELD ,FM,ALPHA ,AYED, PI ,OMEGA ,SR3,U10,U20, STEP , EPSI ,DEL, REDU
- /N1,N2,IVEC M ,K1,K2,K3,K4™~

QOMMON /ZSR/VECS (66)

DIMENSION X1S(N)

cC
OT=2.DO*PI*6 .D1*T
DO 10 I=1,N "
10 X1S(I) =VECS (MG+I-1) *DO0S (OT) +VECS (Mi+I~1) *DSIN (OT) +VECS (MD+I~)
RETURN >

-
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C
C
C
C
o
CALLING PARAMETERS : T; TIME AT WHICH THE SOLUTION IS TO BE . C
. TED o

N; SUB~-INTERVAL DIMENSION FOR THIS CALL C

MP; POINTER TO MODAL MATRICES IN COMMON ZIR C

/MVC POINTER TO EIGENVALUES IN COMMON ZIR C

X1H(N/N) ; SQLUTION MATRIX TO BE RETURNED- TO C
- C

C

C

C

C

C

C

C

C

C

o NeNeNeXrNeNeRo e No N o)

CALLING ROUTINE

COMMON BLOCKS: ZIR; CONTAINS MODAL MATRICES AND EIGENVALUES FOR
SOLUTION

MAIN VARIABLES: ZEIG; EIGENVECTOR LOADED HEFE
#P1; EIGENVECTOR MODAL MATRIX m\nm HERE
ZP2; EIGENVECTOR INVERSE MODAL MATRIX LOADED HERE
2K1; MATRIX USED TO LOAD INTERMEDIATE RESULTS

QOOQOQO0O0O0OA00

IMPLICIT REAL*8 (A-H,0~Y) ,COMPLEX*16 (2)
' C BON /ZIR/ZVEC(211)
COMMON /OONST/ASORC (4) ,BSORC (4) ,CSORC (4) ,ELS, RS,ELL,RL,ELT1,RT1,
-.ELT2,RT'2,ELD ,FEM ALPHA ,AYED,PI ,OMEGA , SR3,U10,U20, STEP,EPSI ,DEL,REDU
. N1,N2, IVEC,M ,K1,K2,K3,K4
DIMENSION X1H(N,N) ,ZEIG(6) ,2P1(6,6) 2P2(6 6)-,2ZK1(6,6) ,XCON(2)
EQUIVALENCE (XCON (1) , ZO0N)
ND=N#**2 .

—_— DO 10 J=1,N n ' B

ZEIG (J) =ZVEC (MVCHI-1)
" DO 10 I=1,N
2P1(I,J) #ZVEC (MP+I-1+* (J-1) )
10 2ZP2(I,J)=ZVEC mmx—}m (J=1))

c
"C ZKl& (2) * (EXP LAMBDA*):  2Pl= (ZK1) * (Z) INV
C

DO 20 J=1,N ' ,

ZOONRZETG (J) *T

ZE=CDEXP (ZO0N)

DO 20 I=1,N

20 2K1(I,J)=2P1(I,J)*ZE o
, CALL QMATMJ (NL,N1,N,N,NL,N1,N,NL,NL, 2K1,2P2, 2P1)

N

[

c

\c\ LOAD RESULT INTO REAL MATRIX
c
] DO 30 I=1,N
DO 30 J=1,N . -
Z00N=ZP) (I,J) . . i
30 X1H(I,J)=XCoN(1) (
c )

At Sy ratet
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SUBROUTINE EQUAL (Ul1,U2,L,F,G)

PURPOSE : FORY FUNCTIONS. OF COMMUTATION CURRENTS F AND G
b FOR CASE 1(I) ,
CALLING PARAMETERS : Ul ,U2 ; ITERATE VALUES OF INDEPENDENT
: VARIABLES
L 5 =1 FIRST CALL, CALCULATE ALL CONSTANT
VALUES AS WELL AS F,G WITH NEW INDEP.
. VARIABLES
=2 CALCULATE F,G WITH BOTH INDEP. VAR.
TAKING ON NEW VALUES
=3 CALCULATE F,G WITH UL TAKING ON NEW
 VALUE -
. =4 CALCULATE F,G WITH U2 TAKING ON NEW
. VALUE

Vo

4

P2122(5,6) ,P22U1(5,5) ,P1112(6) ,P21UL(5),
PARTITIONS OF P1(6,6)
* Q3(6,6) MODAL MATRIX K=3 AT T=U2
Q2122(5,6) ,Q2202(5,5) ,Q1112(6) ,Q21U2(5)
C4(5,5) SUB-INTERVAL COMPATABILITY MATRIX FOR
K=1 AND K=4
P2T12U MODAL MATRIX K=2 AT T=T/12-Ul
PAT120 MODAL MATRIX K=4 AT T=T/12-U2
BUL(5,5) ,AU2(5,5) INTERMEDIATE MATRICES
\ R3U2(5) ,R4UL(S) INTERMEDIATE VECTORS
Wil(5) ,W2(5) WORK VECTORS
X S ALL VECTORS F THIS FORM ARE ZSR'S

COMMON BLOCKS : CONST; NECESSARY CONSTANTS
MATGRO; MATRICES LISTED ABOVE STORED HERE
STATE; VECIORS LISTED ABOVE STORED HERE-

c c
c C
c Cc
C c
C c
c c
C C
C C
C c
C C
c c
c c
C c
C c
C c
C c
c ) c
C MAIN VARIABLES -: Pl1(6,6) MODAL MATRIX K=1 AT T=Ul c
C c
C c
C c
c c
c C
C c
c c
C c
C c
C c
C c
c C
C C
C c
C C
c C
C <

IMPLICIT REAL*S8 (A-H,0-Y) OOMPLEX*16(2)
COMMON /OONST/ASORC (4) ,BSORC (4) ,CSORC (4) B8, RS, ELL, R, ELT1,RT'1,
. -ELT2,RI2,ELD,EM,ALPHA, AYE,PI,O’EGA,SR’S,U 020 STEP EPSI,DEL REDU
.,Nl N2,IVEC M,K15K2,K3,K4 .
oo /MATGRO/PL (6, 6) ,Q3(6,6) ,Q2122(5,6) .P2122(5 6) ,BUL(S5,5) ,
- .C4(5,5) ,p22U1(5,5) ,P2T12U(5,5) ,P4T1N(S 5) ,Q2202(5,5) ,AU2(5,5) ,
<R3U2(5) ’
COMMON /STATE/GARB (115) ,X1S0(6) ,X3S'1‘12(6) (X1SUL1 (6) ,
X3812U(6) ,X25T12(5) ,X4ST6(5) ,X2SU1 (5) ,R4UL(5) ,
VWL (5) ,W2(5) ,WW3(6) ,X4ST12(5) ,VW4(5)
DIMENSION WK(6) ,VECX(6) ,AlX(5,5)
m 'IU (10' 20,%0'30) IL

c
c CALCULATE ALL VECTORS NOT REQUIRING U1,U2
Cc

10 TO=0.D0 :

. 4
. R .
PR, S U SUNUUII [ . e -
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AN

ano

11

sNoNeXe]

20

noo

-
/e -

T6=1.D0/(6.D1*6.D0)

T12=1.D0/(6.D1*1.2D1)

CALL INTSOL (TO,N1,1,7,13,X1S0) .

CALL INTSQL(T12,N2,37,42,47,X2ST12)

CALL INTSOL(T12,N1,19,25,31,X3ST12)

CALL INTSQL (T6,N2,52,57,62,X45T6) o

FORM COMPATIBILITY MATRIX C4 BETWEEN K=l AND K=4

DO 11 I=11N2
DO 11 J=1,N2
C4(1,7)=0.D0
C4(1,1)=1.DO
C4(1,2)%1.D0
C4(3:4)""1-D0
C4(4,5)=~1.D0
C4(5,3)>-1.D0

VARIABLE ITERATES

T1=Ul/ (3.6D2*6.D1) .
T1201=T12-T1 "

FORM MODAL MATRICES DEPENDENT ON Ul

CALL HIMG(T1,N1,1,195,P1)
DO 21 I=1,N2

DO 21 J’l'm £
P2122(1,J)=P1(I+1,J)

IF (J.GT.N2)GO TO 21
P22U1(1,J7) =Pl (I+1,J+1)

21 CONTINUE

naa

oNoNe!

I 2%

/C
c
c

CALL HOMG(T12U1,N2,145,207,P2T1L2U) ,

FORM ZSR'S DEPENDENT ON Ul

CALL INTSCL(T1,N1,1,7,13,X1SUL)
CALL INTSQL (T1,N2,37,42,47,X2SU1)

FORM SCLUTION VECTORS AND MATRICES DEPENDENT QN Ul

CALL MATMUL (N2,N2,N2,N2,N2,N2,N2,N2,N2,P2T12U,P22U1,BUlL)
CALL MATVEC (N2,N1,N2,N1,N1,N2,P2122,X1S0,VW1)
25 Is1,N2
(I)=~VW1(I)+AYED*PL(I+1,1)+X1SUL(I+1)~X2SUl(I)
CALL MATVEC (N2,N2,N2,N2,N2,N2;P2T12U,W1l,R4UL)
26 I=1,N2
(I)-R4U1(I)+K281‘12(I)

@0 TO (30,30,40, 30} ,L "

[ SR e
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30 T2=U2/ (3.6D2%6.0DL)
T12U2+T12-T2
1 2U2DP=T1 24T2

FORM MODAL MATRICES DEPENDENT (N U2

CALL HOMG(T2,N1,73,201,03)
DO 31 I=1,N2
DO 31 Jm1,NL
+Q2122(I,J)=Q3(I+1,J)
IF (J.GT.N2)GO TO 31
Q22U2(T,J)=Q3 (T+1,J+1)
31 CONTINUE

FORM ZSR'S DEPENDENT ON U2

CALL INTSQL(T12U2P,N2,52,57,62,X4ST12)
CALL INTSQL(T12U2P,N1,19,25,31,X3512U)

FORM SCLUTION VECTORS AND MATRICES DEPENDENT ON U2

CALL HOMG(T12U2,N2, 145, 207,PATL2U)
CALL MATVEC (N2,N1,N2,N1,N1,N2,Q2122,X3ST12,VW2)
DO 35 I=1,N2
35 VW2(I)=-VW2(I)+Q3(I+1,1) *AYED+X3512U (I+1) ~X4ST12(I)
CALL mm(uz,m,m N2,N2,N2,PAT12U,W2,VW1) *
DO 36 I=1,N2
36 VW1(I)=W1(I)+X4ST6(I)
CALL MATVEC (N2 ,N2,N2,N2,N2,N2,C4,VW1,R3U2) )
CML MM(m,Nz,m,N2¢N2,N2’N2,N2,N2'C4,P4T12U'A].X)
CALL MATMI (N2,N2,N2,N2,N2,N2,N2,N2,N2,A1X,Q22U2,AU2)

mnm'mmcas AND VECTORS TO FORMF & G

40 CALL MATMIL(N2,N2,N2,N2,N2,N2,N2,N2,N2, NJZ,EJLA].X)
DO 41 J=1,N2
AIX (I,J) =RIX (I ])
IF(1.BQ.J)AIX(I,J)=AlX(I,J)+1.D0

41 CONTINUE

CALL MATVEL (N2,N2,N2,N2,N2,N2,AU2,R4UL,W1)
DO 42 I=1,N2
42 W1 (I)=W1(I)+R30U2(I)

IDGr=5
CALL LEQIIF(A1X,IVEC,S,5,W1,IDGT,WK, IER)

VW3 (1) =AYED-X1S0 (1)
DO 43 I=1,N2

VW3 (I+1) =WW1(I)-X1S0 (I+1)

CALL vamcml,m,m,m N1,N1,Pl,VW3,VECX)
DO 44 I=-1,Nl

-
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4fVEﬂ((I) =VECX (I) +X1SUl (I)
F = IC1(Ul)
F=VECX (1)

DO 45 I=],N2
* 45 WW2(I)=VECX (I+1)-X2SUl (I) ¥

CALL MATVEC (N2,N2,N2,N2,N2,N2,P2T12U,WW2,W4)

G=X3S12U (1) +AYED¥Q3(1, 1)
G = IC2(U2+T/12)

anaqQ

DO 51 I=1,Nl

G-G—Q3(1,I)"'X3S'1'12(I)

IF(I.GT.N2)GO TO 51

G=G+Q3(1, I+l)*(XZS'I'12(I)+VW4(I))
51 CONTINUE

RETURN

END
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SUBROUTINE EQUAZ2 (U1,U2,L,F,G) <

PURPCSE: FORM FUNCTIONS O COMUTATION CURRENTS FOR
CASE 1(II)

c
o
c
C

CALLING PARAMETERS: Ul,U2 ; ITERATE VALUES OF INDEPENDENT . C

VARIABLES c

L ; =1 FIRST CALL, CALCULATE:ALL CONSTANT c
VALUES AS WEILL AF.GWITHNEW = C

INDEPENDENT VARIABLES ) C

=2 CALCULATE F,G WITH BOPH INDEPENDENT C
VARIABLES TAKING ON NEW VALUES c

23 CALCULATE F,G WITH UL TAKING ON NEW c

VALUE C

=4 CALCULATE F,G WITH U2 TAKING ON NEW c

VALUE ) W C

. C

MAIN VARIABLES: P1(6,6) MODAL MATRIX K=l AT T=Ul : C
P1222(5,6) PARTITION GF Pl c
CA(5,5) SUB-INTERVAL COMPATIBILITY MATRIX c
BETWEEN K=1,4 c
P5U112(7,7) MOFAL MATRIX K=5 AT T=Ul-T/12 . C
R1222(6,6) PARTITION OF P5UY12 ‘ c
P2T12U(5,5) MODAL MATRIX K=2 AT T=T/12+U2 C
Q3U12(6,6) MODAL MATRIX R=3 AT T=T/124U2-Ul C
Y4U12(6,6) ,XMAT2(S,6) ,WU2(5,5) ,SK1(6,5) c
INTERMEDIATE RESULT MATRICES c
X24(6) MV1(S) MV2(6) ;MAVI(6) ,AV4(6) WV5(T), c
W8(5) WV9(7)  WORK VECIORS c
X S 2SR'S C
C

c

c

c

C

COMMON BLOCKS: OONST; NECESSARY CONSTANTS
MATGRO; WORK MATRICES
STATE; WORK VECTORS

IMPLICIT REAL*S (A-H,0-Y) ,COMPLEX*16(Z2)

COMON /MATGRO/PSULL2(7,7) ,RL222(6,6) ,PL(6,6) ,PL222(6,5),
.Q30U12(6,6) ,XMAT1 (6,6) ,Y4UL2(6,6) ,XMAT2(5,6) ,C4(5,5) ,P2T12U0(5,5),
.Wu2(s,5) ,SK1(6,5) ,X5SUL(7) ,X3SUL(6) ,X3S12U(6) ,XZ4(6) WV5(7) MVI(7)
« 1X48T6 (5)

COMMN /STATE/XSST12(7) ,MV3(6) ,WV2(6) ,X1S0(6) ,X1ST12(6) ,WV1(5),
.X4S12U(5) ,WV8 (5) ,WV4(6) ,WK(210)

COMMON /OONST/ASORC (4) ,BSORC (4) ,CSORC (4) ,ELS,RS,ELL,R.,ELT1,RT1,
.ELT2,RT'2,ELD,BEM,ALPHA ,AYED ,PI ,OMEGA, SR3,U10,0U20, STEP, EPSI ,DEL , REDU
. ,N1,N2,1VEC M,K1,K2,K3,K4,K5,NS

GO TO (MW, 20,20,30) ,L

10 TO=0.D0 _
T6=1.D0/ (6.D1#*6.DO0)

o




k4
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nao

oo

Qo
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T12=1.D0/(6.D1*1.2D1)
CALL INTS(L(TO,N1,1,7,13,X1S0)
CALL INTSQL(T12,M1,1,7,13,X1ST12)
" CALL INTSQL (T6,N2,52,57,62,X45T6)
CALL INTSCL(T12,N5,67,74,81,X55T12) e

FORM QOMPATIBILITY MATRIX BETWEEN K=1,4 ‘

DO 11 I=1,N2
DO 11 J=1,N2
1}, C4(I,J)=0.D0
C4(1,1)=1.D0 .
C4(1,2) =1.D0
C4(2,1)=-1.D0
C4(3,4)=-1.D0
C4(4,5)=-1.D0
C4(5,3)=-1.D0

CALL HOMG(T12,N1,1,195,P1)
DO 12 I=1,Nl -
DO 12 Jwl,N2

12 P1222(I,J)=P1(I,3+1)

CALL MATMUL (N1,N2,N1,N2,N2,N2,N2,N1,N2,P1222,C4,SK1)
CALL MATVEC (N1,N2,N1 ,N2,N2,N1,SK]1,X4ST6,WV3)
CALL W\'lvm (Nl,Nl,Nl,Nl,Nl,Nl‘,Pl,XlSO.M)

FORM QONSTANT SCLUTION VECTOR AND PLME IN wv2

DO 13 I=1,Nl
13 W2(I)=—WV2(I)+XIS’1‘12(I)+WV3(I)+AYED*P1(I 1)

MWWMWMWWG‘F,GM
NEW INDEPENDENT VARIABLE ITERATES

20 T1=Ul/(3.6D2*6.D1)
TU112+T1-T12

FORM MODAL MATRICES DEPENDENT ON Ul
CALL HOMG (TUL12,N5, 212, 310,P5UL12)
DO 14 J=1,N1
R1222(1,J) =PSUL12(1,3+1)

DO 14 I=1,N2
14 R1222(I+1,J)=PSULL2 (I+2,J+1)
FORM ZSR'S DEPENDENT ON UL #

CALL INTSQL(T1,N1,19,25,31,X3SUl)
CALL INTSCL(T1,N5,67,74,81,X55U1)

" CALL MATVEC (NS,N5,N5,NS,NS,N5, PSUL12,XSSTL2,WVS)
W3 (1) =KSSUL ( 1) -HV5 ( 1) ~X3SUL (1) +AYED*PSULL2(1, 1)

\N
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DO 17 I=1,N2

17 WV3 (I+1)=X5SUL (I+2) ~WV5 (I+2) -X3SUL (I+1) +AYED*PSULL2(I+2, 1)

Go 10 (30,30,40,30) ,L

123

CALCULATE ALL VECTORS AND MATRICES REQUIRING U2 ITERATE ONLY

30 T2=U2/(3.6D2*6.0D1)
T12U2-T12+T2
T122¥=T12-T2

CALL HOMG (T1224,N2,145,207,P2T120)

CALL MATMUL (N2,N2,N2,N2,N2,N2,N2,N2,N2,C4,P2T120,WJ2)

FORM ZSR'S DEPENDENT QN U2 (NLY

ONLY

CALL INTSQL (T12U2,N1,19,25,31,X35120)
CALL INTSAL (T12U2,N2,52, 57 62,X48120)

DO 33 I=]1,N2
33 Wl(I) =-X3SlZJ (I+1) -X4SlZU (I)

CALL MATVEC (N2,N2,N2,N2,N2,N2,WJ2,WV1,W8)
COMBINE Ul,U2 VECTORS AND MATRICES AND VECTORS

40 T12U12=T12+T2-T1
CALL HOMG(T12U12,N1,73,201,Q3U12)

" FORM Z4 YECTOR
cm:. MATVEC ml,m,m,m,N1,m,Q3m2,wv3,wv4)

DO 47 I=1,N2
47 W1 (I)=W4 (I+1)

CALL MATVEC (N2,N2,N2,N2,N2,N5 ,WJZ V1, WV5)

48 WVS(I)=WV5 (I)-+WVB(I)

CALL MATVEC(N1,N2,N1,N2,NS,N1,P1222,WV5,XZ4)

DO 49 I’]-'Nl
49 XZ4 (I)=XZ4(I)+W2(1)

FORM (Y4) MATRIX
CALL mm(m,m,m,m,m,m,m,m,m,omz RL222,XMAT1)

DO 57 I=1,N2 p
DO 57 J=1,N1
57 XMAT2(I,J)=XMATL (I+1,J)

CALL MATMIL (N2,N2,N2,N2,N2,N1,N1,NL,N1,W02,XMAT2,P1) -
CALL MATMUL (N1,N2,N1,N2,N1,N1,N1,N1,N1,PL222,P1,Y4U012)

FORM ( (I) - (Y4U12) )INV * 24012

DO 58 I=1,Nl
DO 58 J=1,N1

e s
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1 IR i
 YAUL2(I,9)=-Y4U12(1,J) \ o :
58 IF(I.BQ.J)Y4UL2(I,J)aY4Ul2(I,J)4l.D0 | - = " :
c . ' R i Y
CN.L ImrlF(sz’,Nm,Nl,Nl,XZ‘l,MyWK.ER) ' LT
C
'C  FORM X5(U1)
C . . ) ) B -t
DO 75 I=1,Nl ‘ | .
75 WV5 (I+1) =Xz4 (1) ~XSSTL2(T+1) /
WV (1) sAYED-XSST12(1) . 8
CALL MATVEC (N5, NS, N5, N5, N5, N5, PSULL2 VS Hv3) \
DO 76 I=1,N5 *
76 W9 (I) =V3 (I) +X5SUL(I)
C “‘: .
c FeICL(UL) R
C t >
P9 (2) .
C i
W4 (1) =W (1) 0 I\
DO 77 I=1,N2
77 W4 (T+1) W9 (I+2)
G=X3812U(1)
DO 78 I=1,N1
78 GeGHQ3U12(1,T) * (WV4 (I)~X3SUL(I)) |
C 1
c G=IC2(U24TAL2)
c :
9999 RETURN ‘
BND
ﬂ H
N 11 g 1
1
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SUBROUTINE BQUA3(U1,U2,L,F,G)

ol

) c
PURPOSE: FORM FUNCTICNS OF COMMUTATION CURRENTS FOR c

» CASE 2(I) ¢

Ly S s
CALLING PARAMETERS: Ul;U2; ITERATE VALUES OF INDEPENDENT VARIABLES C
L; =1 FIRST CALL, CALCULATE ALL CONSTANT c
VALJES AS WELL AS F,G WITH NEW INDEP. C

: VARIABLES sC

. =2 CALCULATE F,G WITH BOTH INDEP. VAR. c

. TAKING ON 'NEW VARIABLES 4 C
=3 CALOULATE F,G WITH UL TAKING ON NEW VALUEC

=4 CALCULATE F,G WITH U2 TAKING ON NEW VALUEC

noo

. Q1222(6,5) PARTTTION OF Q3T12
? C5(6,7) SUB-INTERVAL COMPATIBILITY MATRIX BETWEENC
' K=6 AND Kel :
¢ P2T12U(6,6) MODAL MATRIX K=2 AT T=T/12-UL
. . R72M12(7,7) MODAL MATRIX K=6 AT T=U2-T/12
B1(6,6) MODAL MATRIX K=l AT T=U1-U2+T/12
v ‘ ' P2122(5,6) PARTTTIN CF Pl
‘ . XMATL (7, 7) ,RMAT2 (6,6) ,XMAT3(5,5) WORK MATRICES
VECL(6) ,VEC2(5) ,VEC3 () ,VEC4 (7) ,VECS (7) ,VEC6 (6) .
) VECB(6) ,VEC)(6) WORK VECTORS
e '\X 8'S 2ZSR'S

~

OODOOOOOOOOO

c
o

c

c

c

c

C

Cc

c

c

c

c

c

C . & ’
C'  MAIN VARIABLES: Q3T12(6,6) MODAL MATRIX K=3 AT T=12
c

c

c

c

C

c

c

c

c

C

c

C

c

c

IMPLICIT REAL*S (A-H,0-Y) ,COMPLEX*16(2)

COMMON /MATGRO/X2ST12(5) ,X3ST12(6) ,X7ST6(7) ,Q3T12(6,6) ,Q1222(6,5) ,

.X3ST6 (6) ,C5(6,7) ,X2SUL(5) ,X1SUL (6) ,P2T12U(5,5) ,X15212(6) ,
X75212(7) ,RIM12(7,7) ,R713(7,6) ,XMATL(7,7) ,XMAT2 (6, 6) ,

.P2122(5, 6) ,VECL(6) ,VEC2(5) ,VEC3(5) ,VECA (7) ,VECS (7) ,VEC6 (6) ,

.VECB (6) ,VEC9(6) ,GARB(3)

COMMON /OONST/ASORC (4) ,BSORC (4) ,CSORC (4) ,ELS, RS, ELL, RL,ELTL, RT'1,
.ELT2,RT2,ELD,EM,ALPHA, AYED, PI,OMEGA, SR3,UL0,U20, STEP , EPSI, DEL , REDU
. ,N1,N2,IVECM,K1,K2,K3,K4,K7,N5 _ )
DIMENSION WK(S),P1(6,6) ,XMAT3(5,5)

@ TO (10,20,20,30) ,L

C CALCULATE ALL CONSTANT VECTORS AND MATRICES ) :

c
10 T6=1.D0/ (6.D1*6.D0)

T12=1.D0/ (6.D1%1, 2D1)

c
CALL INTSOL(T12,N2,37,42,47,X2ST12) ,
CALL INTSCL (T12,N1,19,25,31,X3ST12) R
CALL INTSCL (T6,N5,67,74,81,X7ST6) )
CALL INTSCL (T%6,N1,19,25, 31,X3ST6)

C
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,\ CALL BOMG(T12,N1,73,201,Q3T12) .

. \ DO 11 I=1,NL - . . -
- DO 11 J=1,N2 . )

11 Q1222¢I,J)=Q3T12(I,J+1) - .

CALL MATVEC(N1,N1,N1,N1,N1,N1,Q3T12,X3ST12,VECS)
"DO 12 I=]1, Nl
12 VECS (I)=-VECS (I)+X3ST6 (I)+AYED*Q3T12(1,1) ,

DO 13 I=1,N1
DO 13 J=]1,N5
13 C5(I,J)=0.D0
C5(1,2)=1.D0
C5(2,3)=1.D0 ~
C5(204) ’I.DO
C5(3,3)=-1.D0
C5(4,6) =-1.D0
C5(5,7)=-1.D0

. . C5(6,5)=-1.D0 AN

REMAINDER OF ROUTINE CALCULATES NEW VALUES CF F,G FOR

20 T1=U1/(3.6D2*6.D1) ’
TI2U1=T12-T1 S

R R CALL INTSQL(TL,N2,37,42,47,X2SUL)
*” CALL INTSOL(T1,N1,1,7,13,X1SU1)

CALL HOMG(T12U1,N2,145,207,P2T120)

c

eNeKeNe]

0

® TO (30,30,40,30),L s~
cmmmvmmammmcssamv%ms REQUIRING U2 ITERATE
£ 3 .

30 T2=U2/(3.6D2%6. OD1)
TIZP2=TI2VT2 |
TM122r2-T1 2

CALL INTSCL(T2412,N1,1,7,13,X15212)
CALL INTSQL(T12P2,N5,67,74,81,K75212)
CALL HOMG (T2M12,N5,212,310 m‘zuz)
DO 31 I=1,N5
R713(I,1)=R72412(I,1)
DO 31 J=1,N2

31 R713(I,J+1)=R7T2M12(I,J+2)

'
[eNsKe) (2Kl o

k4

MWMWS(LUI‘I(NVECNR

[eXeXe

CALL MATVEC (NS,NL,NS,N1,N1,NS,R713, VECS, VECS)
DO 32 I=1,NS
32 VECS (I) =VECS (I) +X75212(1)-VECA (I)

“

C‘) /- CALL MATVEC (N5,N5,NS,NS5,N5, N5, R7212, X 75T6, VECA) (

R O B L
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CALL MATVEC (N1,N5,N1,N5,N5,N1,C5,VECS , VECL)
DO 33 I=1,Nl
33 VEC1(I)=VEC1(I)~X1S212(I)
CALL MATMUL (N5,N1,N5,N1,N1,N2,N2,N5,N5,R713,Q1.222,XMATL)
CALL MATMIL (N1,N5,N1,N5,NS,NS,N2,N1,N1,C5,XMAT1 , XMAT2)

CALCULATE VECIORS AND MATRICES REQUIRING BOTH Ul AND U2
ITEFATES AND OCOMBINE VECIORS AND MATRICES TO FORM F AND
G FINCTIONS ,
40 T12U12=T1~-T2+T12
CALL HOMG(T12U12,N1,1,195,P1)
DO 41 I=1,N2
DO 41 J=1,N1
4] P2122(1,J)=P1(I+1,J)

CALL MATMUL (N2,N1,N2,N1,N1,N1,N2,N5,N5,P2122,XMAT2 , XMAT])
CALL MATMUL (N2,N2,N2,N2,N5,N5,N2,N2,N2, P2T12U,XMATL , XMAT3)
DO 42 I=1,N2
DO 42 J=1,N2
XMAT3(I,J)=-MAT3(I,J) ]
IF(I.BEQ.J)XMAT3(I,J)=XMAT3(I,J)+1.D0

42 CONTTNUE

CaLl, MATVEC (N2,N1,N2,N1,N1,N2,P2122,VEC1,VEC2)
DO 43 I=1,N2

43 VEC3(I)=X1SUL(I+1)+VEC2(I)-X2SUL (I)+AYED*P1(I+1,1)
CALL MATVEC (N2,N2,N2,N2,N2,N2, P2T12U,VEC3,VEC2) f
DO 44 I=1,N2

44 VEC2(I)=VBEC2(I)+X2ST12(I)

FORM X3'(T/12)

4

CALL LEQT1F (XMAT3, IVEC,N2,N2,VEC2,5,WK, IER)
ADVANCE SCLUTION TO FORM FUNCTIONS o

CALL MATVEC (N1,N2,N1,N2,N2,N1,Q1222,VEC2, VECS)
CALL MATVEC (N5,N1,N5,N1,N1,N5,R713,VECE , VEC4)
DO 51 I=1,N5

51 VBEC4 (I)=VECA (I)+VECS(I)

G= X2(U2+1/12) -
G=VEC4(1)
CALL MATVEC (N1,NS,N1,N5,N5,N1,C5,VEC4, VBC6)
VEC6 (1) =VEC6 (1) +AYED
DO 52 I=1,Nl
52 VBC6 (I)=VBEC6(I)~X1S212(1)
. CALL MATVEC (N1,N1,N1,N1,N1,N1,P1,VEC6, VEC9)

. F= X1(U1)




a4

¢
ey

128

ANy
2
:
a .
) mm
O
\ v

e

C




aaon o0

SUBMH.‘INE m4 (Ul'UZ'L'F,G) ° ‘-:

PURPOSE: FORM FUNCTIONS OF COMMUTATION CURRENTS F AND' G FOR
CASE 2(IT)

CALLING PARAMETERS: Ul,U2 ; ITERATE VALUES CF INDEPENDENT
VARIABLES :

L ; =1 FIRST CALL, CALCULATE ALL CONSTANT
VALLES AS WELL AS F,G WITH BOTH
INDEPENDENT VARTABLES

=2 CALCULATE F,G WITH BOTH INDEPENDENT
VARIABLES TAKING ON NEW VALUES
=3 CALCULATE F,G WITH UL TAKING ON NEW
VALUE .
' - =4 CALCULATE F,G WITH U2 TAKING ON NEW
VALLE .

MAIN VARIABLES: Q3T6UL(6,6) MODAL MATRIX K=3 AT T=T/6-UL
S5TL2U(7,7) MODAL MATRIX K=5 AT T=Ul-T/12
WH1(7,7) CONMTAINS PARTITION CF SSTL2U
C5(6,7) SUB-INIERVAL CCMPATIBILITY MATRIX ..

BETWEEN R=l,6 ‘
PLT6U2(6,6) MODAL MATRIX K=l AT T=T/6-U2
RTU2T12(7,7) MODAL MATRIX K=6 AT T=U2-T/12
W{2(7,7) CONTAINS PARTITION OF RTUT12
WAL(7,7) WN2(7,7) ,WH3(7,7) W4 (6,6) ,W5(6,6)
VECA (6) ,VECB (6) ,VECD (7) , VECE(7) ,VECF (6) ,VECG(7)
VECH (7) ,VECT (6) ,VECK(6)  WORK VECTORS AND

MATRICES
X S ZSR'S

COMMON BLOCKS: CONST; NECESSARY CONSTANTS
MATGRO; WORK MATRICES AND VECTORS

IMPLICIT REAL*S (A-H,0-Y) ,COMPLEX*16 (Z)
COMMDN /OONST,/ASORC (4) ,BSORC (4) ,CSORC (4) ELS, RS, ELL, RL,ELT1,RT1,

’ .EL'rz,er,m:,m,mm,m,px,m,sna,ttlo,uzo,smp;zpsx,nm.,mmu
. ,N1,N2,IVEC M,K1,K2,K3,K4,K5,N5,K7
OQOMDN /MATGRO/C5 (6, 7) ,85T120(7,7) ,R7Ur12(7,7) ,Q3T6UL(6,6) ,

.PLT6U2(6,6) ,WHL(7,7) WW2(7,7) MW3(7,T7) ,W4(6,6) WI5(6,6) ,X1ST12(6) .

. 1 X3ST6 (6) ,X7ST6(7) ,X55T12(7) ,X3SUL (6) ,X55U1(7) ,X15U12(6) ,X7SUL2(7)
. ,VECA (6) ,VECB (6) ,VECD (7) ,VECE(7) ,VECF (6) ,VECG(7) ,VECH(7) WOP (5)
DIMENSION VECT (6) ,VECK (7) ,WK{100)

-

& 10 (10,20, 20,30),L
CALCULATE ALL CQONSTANT VECTORS AND MATRICES

10 T0=0.DO
T6=1.D0/ (6.D1*6.D0)

/

\
-




T12=1.D0/(6.D1*1.2D1)
DO 11 I=1,Nl
DO 11 J=]1,N5
11 C5(I,J)=0.D0
C5(1,2)=1.D0
C5(2,3)=1.D0
C5(2,4)=1.B0_-~
C5(3,3)=-1.D0
C5(4,6)=-1.D0
C5(5,7)=1.D0
C5(6,5)=-1.D0 °
CALL INTSQL(T12,N1,1,7,13,X1STL2)
CALL INTSQL(T6,N1,34,40,46,X3ST6)
CALL INTSCL(T6,N5,88,95,102,X7ST6)
CALL INTSQL(T12,N5,67,74,81,X55T12)

REMAINDER CF ROUTINE DEPENDENT N ITERATES.
CALQULATION FOR CHANGES IN UL ITERATE ONLY

anoaon

20 T1pUl/ (3.6D2*%6.D1)

12=T1~T12
/\ - T6Ul=T6-T1
MS%(Tl,Nl 34,40,46,X38U1)

CALL INTSQL (Tl iS,67,74,81,X58Ul)
CALL HOMG (T6U1,N1,123,402,Q3T6UL)
CALL HOMG(TU112,N5,195,408,S5T120) A

c - ‘
" C PARTITION (S(Ul-T/12)) INTO SUB-MATRIX FOR CALCULATION
- C

DO 22 J=1,N5
DO 21 I=1,N2
21 WW1(I+1f) =SST120(I+2,J)
22 WA1(1,d)=85T120(1,J)
CALL MATVEC (NS,N5,N1,N5,N5,N1,Wi1,X5ST12, VECA)
VECA (1) =—VECA (1) +X55U1 (1) +S5T120 (1, 1) *AYED-X3SUL (1)
DO 23 I=1,N2
23 VECA (I+1) =-VECA (I+1) +X5SUL (I+2) ~X3SUL (I+1) +AYED*SSTL2U (I+2, 1)
CALL MATVEC (N1,N1,N1,N1,N1,N5,Q3T6U1,VECA, VECG)
DO 24 I=1,N1
24 VECA(I)=VECG(I)+X3ST6(I)
DO 25 I=1,N1
DO 25 J=1,N1
25 WW4(I,J) ="WW1(I,J+1)
CALL MATMIL (N1 ,N1,N1,N1,NL,NL N1, N5, N5,Q3r601,ww¢,wn1)

VECA, WWl STORE Ul VECTOR,MATRIX SUBSECTION
@ 10 (30,30,40,30),L
CALCULATE ALL VECTORS AND MATRICES REQUIRING U2 ITERATE ONLY

Q0 o0an

30 T2=U2/(3.6D2%6.0D1)
TU212«72-T12
TU212P=T2+T12
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T6U2=T6-T2

CALL INTSQL (TU212,N1,1,7,13,X1SUL2)
CALL MSG..(TUZZLZ!",NS 88,95, 102,X7SU12)
CALL HOMG (T6U2,N1,1,391,P1LT6U2)

CALL HOMG(TU212,NS,293,415,R7UT12)

PARTITION STATE TRANSITION MATRIX

DO 33 I=1,N5

‘WA2(I,1) =RTUT12(I, 1)

DO 32 J=1,N2
32 WW2(I,J+1) =R7UT12(1,J+2)
33 CONTINUE

CALL MATMIL (N1,N1,N1,N1,N1,NS, N5,N5,N5,P1T60U2,C5,WA3)
WW3 = (PL(T/6-U2) (C5) W2 = {RL(R3))

CALL MATVEC (N1,N1,N1,N1,N1,N1,P1T6U2,X1SUl2, VEB)
DO 34 I=1,Nl

34 VECB (I)=-VECB (I)+X1ST12(I)+AYED*P1T6U2(I, 1)
CALL MATVEC(NS,N5,NS,N5,N3,NS,R7UT12,X7ST6, VECD)
DO 35 I=1,N5

35 VEQD (I)=-VECD (I)+X7SU12(I)

WA2,WW3,VECB,VECD STORE U2 VECTOR, MATRIX SUB-SECTION -
N

40 CALL MATVEC (NS5,N5,NS,N1,N1,N5,W42,VECA, VECE)
DO 41 I=1,N5

41 VECE(I)=VECE(I)+VECD(I)
CALL MATVEC (N5,NS,N1,N5,N5,N1,WW3, VECE VE!‘.F)
DO 42 I=]1,Nl

42 VECP (I)=VECF (I)+VECB(I)

VECF SQLUTION VECTOR

CALL MATMUL (NS,NS,N1,NS,N5,NS,N1,N1,N1 ,WW3,WW2 WW4d)
CALIL MATMUL (N1,N1,N1,N1,NS,NS,N1,N1,N1,WW4,WA1,WW5)

WS SQLUTION MATRIX '

DO 43 I=1,Nl !
DO 43 J=1,NL
WW5(I,J)>WW5(I,J).
43 IF(I.EQ.J)WW5(I,J)=WAS(I,J)+1.D0 !

IDGT=5
CALL ImrlF(VMS m,Nl,Nl,VE!F IDGr,WK, IER)

VECF = X1(T/12)
VECG (1) =AYED-X5ST12(1) )

DO 44 I=1,Nl
44 VBOG (I+1) =VECF (I)-X55T12(I+1) b
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O | |
CALL MATVEC (N5,NS,N5,N5,N5,N5,S5T120,VECG, VECH)

DO 45 I=1,N5
45 VECH (I)=VBCH (I) +X55UL(I)

VECH = X5(U1)

(o XoNe!

| ’ VECG (1) =VECH (1) -X3SUL (1) @
DO 46 I=1,N2 .

46 VEQG (I+1) =VBCH (I42)~-X3SUL(I+1)
CALL MATVEC m,m,m,m,ns,m,qsrsm,vms,vmz)
DO 47 I=1,N1

47 VECT (I)=VECT (I)+X3ST6 (I)

VECT = X3(T/6)

e NoK?!

VEOG (1) =VECT (1) ~X7ST6 (1)
VBQG (2) ==X7ST6(2)
DO 48 I=1,N2
48 VEQG (I+2) =VBCI{I+1)-X7ST6 (1+2)
CALL MATVEC (NS,NS,N5,NS,N5,N5, R7UT12, VEOG, VECK)
DO 49 I=1,N5 . .
49 VECK (I)=VECK (I)+X7SU12(I)

VECK = X7(U2+T/12)

F = IC1(UL)
G = IC2(U2+T/12)

QOo00O00000

F=VECH (2)
G=VECK (1)
RETURN
END
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SUBROUTINE FOURIE (L,NOCEFF,NHAR,D,G,H,2C,ZL,AI,BI ,Al,B1,TI,TI1)

L = SUB-INTERVAL DIMENSION v
NCOEFF » NUMBER (F (HARACTERISTIC HARVDNICS TO BE EVALUATED
D,G,H = PARTICULAR ‘SCLUTIQN COEFFICIENTS

2C = VECTOR (F COMPLEX COEFFICIENTS CF ZIR

3L = VECTOR CONTAINING EIGENVALUES

AI,BI = FOURIER COEFFICIENT SOLUTION VECIOR

Al,Bl = FOURIER QOEFFI

FOR FUNDAMENTAL -
TI,TIl = BOUNDARY TIMES '

EVALUATION

IMPLICIT REAL*8 (A-H ,0-=¥)7COMPLEX*16(2)

DIMENSIQN .ZC (L) , 2L {L) ,AI (NCOEFF) ,BI (NOOEFF) ,XA1%2) ,XB1(2) ,
.XAN (2) ,XBN (2) ,NHAR {NCOEFF) L

EQUIVALENCE. (XAl (1) ,ZAl1) , (XB1(1) ,ZBl) , (XAN(1) ,2AN) , (XBN(1) ,ZBN)
PI=4.DO*DATAN(1.D0)

OMEGA=2,D0*PI*6.D1

WRITE(6,112) OMEGA

112 FORMAT(1H ,/,’ m:',gls.s)

TAU=TI1-TI
COMPUTE COEFFICIENTS FOR FUNDAMENTAL

CT1=DO0S (OMEGA*TI1)

CT=DC0S (OMEGA*TT)

ST1=DSIN (OMEGA*TT1)

ST=DSIN (OMEGA*TI)

DAl=D* (ST1-ST) /QMEGA )

GAl=aG* ( (TI1~TI)/2.DO+(DSIN(2.DO*CMEGA*TI])~DSIN (2 .DO*CMEGA*TI) ) /
. (4 .DO*CMEGA) )

HAl=H* (ST1**2~ST**2) / (2.D0 )

DB1=D* (CT-CT1) /OMEGA

GB1=G* (STL**2~ST**2) / (2.DO*CMEGA)

HB1=H* ( (TI1-TI)/2.D0+(DSIN(2.DO*CQMEGA*TI) -DSIN (2 .DO*OMEGA*TIL) ) /
. (4.DO*CMEGA) )

!

" ZA1=DOMPLX (0.DG;0.D0)

ZB1=DCMPLX (0.D0,0.DO)

DO 10 I’l,L

ZE=CDEXP (2L (1) *TAU)

ZA)=2A1+7C (T) * (ZE* ( I) *CT1+OMEGA*ST1) ~ZL (1) *QI‘-QVIEGA*ST) /
. (MBGA*¥247L, (I) #%2) .

ZB1=7B1+2¢ (I)*(2E*( ) *ST1~-MEGA*CT1) ~ZL (I) *ST+-CMEGA*CT) /
. (QMEGA**2+47L, (I) **+2) :

a

10 CONTINUE

Al=DAl+GAL+HAL+XAL (1)
Bl=DBl+GB1+HB1+XB1(1)

OOMPUTE COEFFICIENTS FOR HARMONIC COMPONENTS
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DO 100 M=1,NCOEFF
N=NHAR (M)
CMEGAN=CMEGA™N

WRITE (6, 113) N,OMEGAN

113 FORMAT(1H ,/,' N=',I2,' OMEGAN=',D]S5, 6)

OMPLUS=(CMEGA* (N+1)
OMINUS=CMEGA* (N-1)
CT1=DO0S (OMEGAN*TI1)
CT=DO0S (QMEGAN*TT)
ST1=DSIN (OMEGAN*TT1)
ST=DSIN (OMEGAN*TT)

DAN=D* (ST1-ST) /OMEGAN
GAN=G* ( (DSIN (QMINUS*T11)~-DSIN (OMINUS*TT) ) / (2.PO*QMINUS)

.+ (DSIN(OMPLUS*TTI1) -DSIN (QMPLUS*TT) ) / (2.DO*CMPLUS) )

HAN=H* ( (DCOS (OMINUS*T11)-DCOS (OMINUS*TI) ) / (2.DO*QMINUS)

.+ (DOOS (MPLUS*T1 ) ~DOOS (CMPLUS*TI1) ) / (2.DO*QMPLUS) )

DBN=D* (CT-CT1) /OMEGAN
GBN=G* ( (DCOS (OMINUS*TT) -DCOS (OMINUS*TI1) )/ (2. DO*MNI.IS)

.+(DQOS (OMPLUS*TT) ~DCOS (OMPLUS*TI1) ) / (2.DO*QMPLUS) )

HEN=H* ( (DSIN (QMINUS*TT1) -DSIN (OMINUS*TI) ) / (2.DO*OMINUS)

«+(DSIN(QMPLUS*TI)~-DSIN(OMPLUS*TI1) )/ (2.DO*CMPLUS) )

ZAN=DCMPLX (0.D0,0.D0)
ZBEN=DOMPLX (0 .DO, 0.DO)
DO 20 I=1,L

" WRITE(6,111) ZL(I)

ZK=CMEGAN**2+ZL (I) **2

WRITE (6, 111) ZK

ZE=CDEXP (ZL (1) *TAU)

ZAN=ZANAZC (I) * (ZE* (2L (I) *CT1+QMEGAN*ST1) -ZL (1) *CT—Q‘E@N*ST)/

. (OMEGAN*#2+2ZL (I) **2)

WRITE (6, 111) 2AN
ZEN=ZRWZC (I) * (ZE* (ZL (I) *ST1-OMEGAN*CT1) ~ZL (I) *ST+-OMEGAN*CT') /

« (OMEGAN**24ZL, (I) **2)

WRITE (6,111) ZBN

20 CONTINUE
111 FORMAT(IH ,/,2(D15.6,1X))

AT (M) =DAN+GANAHANAXAN (1)
BI (M) =DBN+GBN+HBN+XBN (1)

100 QONTINUE

RETURN
END
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