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Abstract

At the HERA particle accelerator, 27.5 GeV electrons collide with 920 GeV protons.

Photoproduction events, in which the quasi real photon emitted from the electron

interacts with the proton with small momentum transfer, are dominant by 90% of the

data sample. K0
SK

0
S candidate pairs, which might couple to glueballs, are selected and

studied with the ZEUS detector in the photon-proton center-of-mass range 130 GeV

< Wγp < 270 GeV using the entire data luminosity of 0.5 fb−1. Enhancements at-

tributed to the production of f2(1270)/a0
2(1320), f

′
2(1525) and f0(1710) are observed

in the K0
SK

0
S invariant mass spectrum. A coherent fit, which has taken into account

the interference effects by SU(3) symmetry argument, provides precise measurement

values on mass and width of the states. It gives a five standard deviation enhance-

ment on state f0(1710) in terms of statistical significance. This is by far the best

measurement in ep collision experiments, and is consistent with results from other

experiments and the world averages. Furthermore, spin analysis on the glueball can-

didate f0(1710) are performed as an approach to reveal the glueball content of the

meson state. However, due to the complicated background condition, the angular

distribution method and the partial wave analysis are undetermined and fail to give

a positive result on the spin.
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Résumé

À l’accélérateur de particules HERA, des électrons de 27.5 GeV entrent en collision

avec des protons de 920 GeV. Les événements de photoproduction, où le photon

émis par l’électron est quasi-réel et interagit avec le proton avec un petit échange de

quantité de mouvement, dominent l’échantillon de données. Les paires K0
SK

0
S, sus-

ceptibles de se coupler aux boules de gluons (“glueballs”), sont choisies et étudiées

avec le détecteur ZEUS dans un domaine d’énergie du centre de mass photon-proton

entre 130 GeV et 270 GeV en utilisant la luminosité complète de 0.5 fb−1 des données.

Des structures observées dans le spectre de masse invariante K0
SK

0
S sont attribuées

aux états f2(1270)/a0
2(1320), f

′
2(1525) et f0(1710). Une procédure d’ajustement de

fonctions cohérentes, qui tient compte des effets d’interférence de par un argument

de symmétrie SU(3), procure des valeurs mesurées précises de masse et de largeur de

signal pour ces états. En terme de signification statistique, une déviation par cinq

sigmas est obtenue pour l’état f0(1710), ce qui est de loin le meilleur résultat dans des

expériences aux collisions ep et est consistant avec les résultats d’autres expériences

et les moyennes mondiales. De plus, une analyse de spin est effectuée sur le candidat

“glueball” f0(1710) dans une tentative de déduire le contenu “glueball” de cet état

mésonique. Toutesfois, à cause des conditions sévères du bruit de fond, les méthodes

de distributions angulaires et d’analyse d’ondes partielles ne peuvent parvenir à don-

ner un résultat positif sur la valeur du spin.
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Chapter 1

Introduction

1.1 Motivation

The HERA collider had provided an ideal laboratory environment for high energy

physics studies for about 15 years. Electron or positron beams, and proton beams

were accelerated and collided head on at very high momenta. Fundamental forces

and particles that are invisible under ordinary conditions are studied. Their prop-

erties that theorists have predicted are put to a test by reconstructions using the

data collected in the detectors. Known particles and new particles are detected and

compared to their theoretical predictions. Detector resolutions and limitations are

taken into account to reconstruct the physics processes. Corresponding corrections

are made on the data. Among the wide range of high energy physics topics, particle

production has been very important as one of the fundamental explorations into the

nature. It gives insights and proof to the high energy particle theories and serves

as signatures of physic processes. The analysis presented in this thesis is the search

for glueballs, which is a particle consisting of pure gluons. The glueball has been

predicted by theory for a long time and the search for it and its properties has been

attempted in many high energy experiments all over the world in different physics

processes and production channels. Now with much more data collected and ad-

vanced tracking detector features, this analysis should surpass the previous ZEUS

1
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analysis [1]. It is the first exploration in ep collisions with such high statistics in the

more general framework of glueball searches.

1.2 Overview

This thesis will start with the theory that lies behind and supports the objectives

of this analysis. The standard model, with its fundamental principles and particle

categories, will be introduced first in chapter 2. It is believed to be the cornerstone of

modern high energy physics. The main goal of this analysis, the search for glueballs,

is introduced with the concept of glueballs, their theoretical properties, predictions,

processes and places to look for glueballs. To determine the spin of the glueball

candidate, i.e. the way to differentiate them from ordinary particles, spin analysis

is introduced as a method to look into the angular distributions of the states. This

is also part of the procedure to step into a more advanced method called partial

wave analysis. It makes it possible to investigate the natural spin of the particles

by convoluting different wave functions into the mass spectrum to differentiate their

spin properties even under complicated background conditions. At the end of this

chapter, kinematical variables and physics processes are briefly introduced. The

physics processes give one the idea of the production mechanism and phase-space in

which it could happen.

Chapter 3 is from the hardware point of view. The HERA acceleration ring that pro-

vided high energy colliding electron and proton beams will be introduced. The ZEUS

detector, where the interaction took place, will be briefly introduced with its compo-

nents and how they worked together. Emphasis will be put on the key components

that this analysis relies on. These include the tracking and vertex detectors, which by

their name detect the tracks and vertices of particles coming out from the interaction

point. The uranium-scintillator calorimeter was also the heart of the ZEUS detector,

and measured the energy deposited by the particles. To make the data gathered

from all components flow smoothly into the computing facility, the data acquisition

system plays an important role. Meanwhile the three level trigger system removes

background and random event fast and keep the good data with highest possible
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quality.

In chapter 4, the Monte Carlo simulation methods will be introduced. They are used

to check on the quality of the data and correct for detector acceptance. In chapter

5, the ZEUS trigger and various selections are explained in detail to extract a clean

K0
S sample with large statistics. K0

SK
0
S pairs are combined and the mass spectrum is

fitted and studied in chapter 6 and mark the start of my own thesis work. In chapter

7, the results are compared with those from previous experiments.

Furthermore, spin analysis is performed on the data sample and results are shown,

studied and compared in chapter 8. The conclusion of the thesis and future perspec-

tives are laid out in the final chapter.



Chapter 2

Theory and Kinematics Overview

This chapter gives an introduction to the theories in high energy physics which are

the most pertinent to this analysis.

Modern high energy physics started with the understanding of matter and of the

fundamental forces that act on matter. The four known types of forces are the

electromagnetic force, mediated by the photon; the weak force, mediated by the W±

and Z bosons; the strong force, mediated by gluons and the gravitational forces,

mediated by gravitons 1. The Quantum Electrodynamic (QED) theory has been a

dramatic success, using quantum field theory to explain electromagnetic interaction.

The electroweak interaction is the unified description of electromagnetism and the

weak interaction. The later developed Quantum Chromodynamics (QCD) describes

the strong interactions based on a non-Abelian gauge theory, and it covers the two

most important properties: confinement and asymptotic freedom. Confinement is

the evidence that the quarks cannot be separated and they are bound into particles

like protons. Asymptotic freedom means that with the energy increasing quarks and

gluons interact very weakly.

1Gravitational interactions are generally considered to be negligible in high energy physics.

4
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2.1 Standard Model

The Standard Model [2] is a paradigm example of the quantum field theory for elemen-

tary particle physics without gravity, which so far has been verified by experiments.

It has been successfully tested up to the energy scale around 100 GeV for the strong,

weak and electromagnetic fundamental forces and the fundamental constituents of

matter. It is currently the most complete framework to describe the fundamental

particles and their interactions. The gluons mediate the strong interactions, while

W and Z bosons are the mediators of the weak interaction. In this section, we will

put aside the experiments, and focus on the beautiful theory just assuming gauge

symmetries.

2.1.1 Formalism

The low energy weak interaction is well described by an effective field theory with

vector currents, such as the four-fermion interaction. At high energy, the current

might be a non-local operator, exchanging gauge boson, which is similar to photon

exchange in electromagnetism.

Using the elementary particle content and their symmetries, one can construct a

model using gauge field theory. At present, leptons and quarks are treated as ele-

mentary particles. For the conservation of electron-type and muon-type leptons and

conservation of baryons, one can guess what is the gauge group in Standard Model.

But there is no deep understanding why the gauge group is SU(3)c×SU(2)L×U(1)Y .

There is an exact symmetry between quarks in terms of color under strong inter-

actions. This symmetry can be represented by the group SU(3)c (c is for ‘color’).

Its particular application is in QCD. SU(2)L is coming from the fact that there are

left-handed (L) and right-handed (R) electrons, but only left-handed neutrinos. The

largest possible group is SU(3)c × SU(2)L × U(1)L × U(1)R. There is evidence from

experiments that only one component in U(1) from U(1)L × U(1)R exists, which is

called U(1)Y . The charge Y associated with the group U(1)Y is called hypercharge.
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We take the electron and electron-neutrino doublet in the transformation of SU(2)

group in the example below. It is easy to extend the argument to SU(3)c in which

the massless gluon is the gauge mediators. For an infinitesimal gauge transformation

ε, the doublets are transformed as: ,

δ

(
νe

e

)
→ (ε · t+ εy)

(
νe

e

)
, (2.1)

where

t =
g

4
(1 + γ5)

{(
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

0 −1

)}
, (2.2)

y = g′
[

1 + γ5

4

(
1 0

0 1

)
+

1 − γ5

2

]
. (2.3)

The coupling constant g and g′ of their corresponding group will be defined below.

γ5 is the matrix related to chiral symmetry. The chiral symmetry is a property of

the Lagrangian under which the left-handed and right-handed parts of Dirac fields

transform independently.

γ5 =

(
1 0

0 −1

)
(2.4)

Based on the gauge symmetry invariance and on the requirement of the renormaliz-

ability, the Lagrangian is written as:

L = −1

4
(∂μA

a
ν−∂νA

a
μ+gAμ×Aν)

2− 1

4
(∂μBν −∂νBμ)2− l̄(∂μγ

μ−iAμγ
μ ·t−iBμγ

μy)l ,

(2.5)

where Aμ is the non-Abelian SU(2) gauge field, (The gauge fields have electric charge

and interact with each other) and Bμ is the Abelian U(1)Y gauge field. μ, ν are the

space-time index from 0 to 3. a (= 1, 2, 3) is the index of the SU(2) internal space. l

and l̄ denote lepton and anti-lepton fields. The SU(2)L×U(1)Y gauge field should be

broken to subgroup U(1)em, where the gauge field is the well-known photon. It means

that the electroweak unification is broken at some energy scale. The spontaneous

symmetry breaking is not necessary but still a good method. Meanwhile, there are

other methods to realize it, which is still an open question, such as technicolor.
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Whatever the symmetry breaking mechanism may be, it is certain that the canonically

normalized vector field corresponding to particles of spin one and definite mass consist

of one field of charge +e with mass mW :

W μ =
1√
2
(A1

μ + iA2
μ) , (2.6)

another of charge −e and the same mass:

W μ� =
1√
2
(A1

μ − iA2
μ) , (2.7)

and two electrically neutral fields of mass mZ and zero respectively, given by or-

thonormal linear combinations of A3
μ and Bμ,

Zμ = A3
μ cos θ +Bμ sin θ , (2.8)

Aμ = −A3
μ sin θ +Bμ cos θ , (2.9)

where θ is the weak mixing angle tan−1(g′/g). From the equation of (2.9), we can

obtain that the electric charge matrix is

q = −t3 sin θ + y cos θ . (2.10)

Comparing with the electric charge formula:

q = e

(
0 0

0 1

)
=
e

g
t3 − e

g′
y , (2.11)

it is obvious that

g = − e

sin θ
, g′ = − e

cos θ
(2.12)

2.1.2 Higgs Mechanism

To make the theory complete, some assumptions have to be made. The role of the

symmetry breaking is to give mass to all gauge bosons except the photon, and to

give mass to the leptons and quarks. The direct assumption is that the vacuum

expectation value of the scalar fields give the mass term of these fields in the gauge

field Lagrangian. This spontaneous symmetry breaking mechanism is known as the
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Higgs Mechanism. Although the Standard Model has proved very successful in the

real world [2], the Higgs particle is still missing experimentally. Some hints of new

physics such as the neutrino mass problem [3] are very interesting topics. Many at-

tempts that have been made to extend the standard model are beyond our discussion

here.

Fermion and gauge boson masses are derived from the Higgs vacuum expectation

value. As expected from Higgs mechanism, one gauge degree of freedom is massless

and we identify this as the photon, while the W and Z bosons have masses:

mW =
v|g|
2

, mZ =
v
√
g2 + g′2

2
(2.13)

Also, the tree level mass for the electron is

me = Gev, (2.14)

where Ge is related the Higgs-electron coupling, and the vacuum expectation value

of the Higgs fields is 246 GeV [2].

2.1.3 Particles

As long as fundamental particles are concerned, they are defined in the sense that

they have no internal structure. In Standard Model, they are categorized into two

groups based on their intrinsic angular momentum: particles with half-integral spin

called fermions with their corresponding antifermions, and particles with integral spin

called bosons.

The fermions can be further classified into two families: quarks and leptons, according

to their color charges. All have antiparticles. Quarks and gluons are often called

partons and they form hadrons like the protons, neutrons or postulated pure glueballs.

Particles composed of two quarks are called mesons and those composed of three

quarks are called baryons. Six flavors of quarks were discovered so far as: up (u),

charm (c), top (t), down (d), strange (s) and bottom (b), each possessing spin 1
2
, a

color charge of red (r), green (g) or blue (b), and an electric charge of +2
3

or −1
3
.
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Leptons have spin 1
2
, no color and an electric charge of 0 or −1. Charged leptons are

all better understood as the electron, muon and tau, while the neutral leptons are

known as the neutrinos. The neutrinos are called the electron-, muon- and the tau-

neutrino from their weak interaction partners in the family.

The bosons 2 are known as the mediators of the forces and they do not follow the

Pauli Exclusion Principle. The photons are massless and are well-described by QED

describing the electromagnetic force between electrically charged particles. The W±

and Z bosons mediate the weak interaction(s). The gluons are the mediators in

strong interactions. More information will be given in the following sections.

The elementary particles with their properties are summarized in figure 2.1. The left

12 boxes are the fermions. The right four boxes are the bosons.

2.2 Glueballs

In the Standard Model, the quark theory has been a success to describe the hadronic

states in which quarks and gluons are the basic building blocks of the strongly inter-

acting particles. It is very interesting that the existence of ‘mesons’ without any quark

content, but with pure gluonic components is also predicted in QCD. The glueball,

as a quark flavor singlet bound states, decays to uū, dd̄ and ss̄ equally. Gluons carry

color and anti-color. Two or three gluons may be confined together as color singlet

as demonstrated in figure 2.2. Intensive interest has been brought into this topic in

the search for this peculiar state. For decades, countless efforts have been made to

verify the existence of glueball by its decay property. But so far no firm evidence of

a pure glueball has been established. The glueball is very likely to mix with nearby

quark-antiquark scalar meson state with the same quantum numbers. This makes it

difficult to find a glueball candidate and determine its parton content. Lattice QCD,

the only available approach to give numerical predictions, indicates that the lightest

glueball, which is modelled as gg scalar states with S = 0, L = 0, JPC = 0++ lies

around the mass range of 1750 MeV [4] and a heavier tensor state with S = 2, L = 0,

2The bosons here refer to gauge bosons. The Higgs bosons are not discussed here.
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Figure 2.1: The family of the Standard Model elementary particles. (Figure is quoted

from Wikipedia.)

JPC = 2++ lies around 2400 MeV [4]. A recent set of glueball mass predictions from

the quenched lattice is shown in figure 2.3 [5].

Experimentally a number of candidates have been established in high energy experi-

ments across the world. According to glueball spin attribute, the Particle Data Group

(PDG) has listed the following scalar particles as glueball candidates:

I=0: f0(600)(σ), f0(980), f0(1370), f0(1500), f0(1710)...

I=1
2
: K∗

0 (800)(κ), K∗
0(1430), K∗(1950)...

I=1: a0(980), a0(1450)...
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Figure 2.2: Two examples of colorless glueballs.

The physical processes that may involve glueball production are illustrated in fig-

ure 2.4. Processes in figure 2.4 (a) regarded as gluon-rich processes and are preferred

in the search. Radiative J/ψ decays are always a good place to look for glueballs as

the J/ψ may decay into a gluon pair and a photon in the production of cc̄ system.

The two gluons may interact with each other and form a glueball. The second most

favorable place to look for a glueball is in the central production process in which

glueballs are expected to be produced abundantly. In central production process, the

two hadrons pass each other and scatter off diffractively as double Pomeron exchange.

The absence of valence quarks in the interaction makes it a glue-rich place. In addi-

tion the pp̄ annihilation process is also a glue-rich place where the quark-antiquark

pairs annihilate into gluons and these gluons can then form glueballs. Meanwhile

there are processes regarded as glue poor as shown in figure 2.4 (b). γγ collisions are

a well-known place where glueball production is suppressed as the photons couple

to the electric charges of the quarks and not to the electrically neutral gluons. This

on the other hand provides a good anti-glueball filter to rule out certain states in

the spectrum. Finally general hadron collision processes (e.g. pp or pp̄) like photo-

production are one more place where glueballs can be produced. However, since the

gluon couples equally to all flavors of the quarks, this makes the decay pattern ‘flavor

blind’. This increases the complexity of the meson spectrum to pick out pure glueball

candidate from.
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Figure 2.3: Lattice QCD predictions of glueball mass spectrum in the gauge theory [5].

The left scale is in terms of r0 (r−1
0 = 410 MeV) and the right is in GeV. The thickness

of each box indicates the theoretical uncertainty of the mass.

More complicated radial excitation states of ggg composition with angular momentum

L ≥ 1 can also exist in glueball mechanism like in figure 2.2. Lattice QCD also

predicts the existence of hybrid states qq̄g [5]. For example, a lightest hybrid with

JPC = 1−+ at 1.8 to 1.9 GeV. States with four quark composition like the a light

isosinglet (udūd̄) [6], isodoublet (uds̄d̄) [7] and isotriplet (dsūs̄) [8] are also interesting

topics for exploration.

In this ep collision analysis, K0
SK

0
S production is investigated. The K0

SK
0
S system is
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Figure 2.4: Examples of processes that are regarded as glue rich (a) and glue poor

(b).

expected to couple to scalar and tensor glueballs with the same quantum numbers.

The K0
S has S = L = 0, P = −1, C = +1. The combination of two K0

S results in

the quantum numbers to be P = +1, C = +1 and J = even numbers. Here parity

P = (−1)(L+1), charge conjugation C = (−1)(L+S) and total angular momentum

J = L⊕ S where L is the orbital angular momentum and S is the total spin.

2.3 Spin Analysis

To uncover the properties of the investigated states, one would like to determine the

mass, width, spin and intrinsic parities of the glueballs.

In this analysis, it is important to measure the spin of the fJ(1710) state as a can-

didate for glueballs, as it fits into the theoretical predicted lowest glueball candidate

mass range. This is possible in the theory as almost all the particles in collider exper-

iment are expected to be produced and decay into the light Standard Model particles

of known spin. Therefore in principle the gauge quantum numbers of the initial res-
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onance can be reconstructed by adding-up all the known products of light Standard

Model particles. The spin itself can not be directly measured. But indirectly its con-

sequence can be reflected in the distributions of various kinematic variables related

to the production itself and the decay products.

By correlating all information from the decay particles, one can infer back the spin

of the original state. For a particle with spin s and helicity λ that decays into two

particles of spin s1 and s2 with helicity l1 and l2 respectively, the matrix element that

governs the helicity amplitude can be written as: [9]

Msλ
l1l2

(θ, φ) =

√
2s+ 1

4π
Ds∗

λl (φ, θ,−φ)Ms
l1,l2

=

√
2s+ 1

4π
ei(λ−l)φDs

λl(θ)Ms
l1,l2

(2.15)

In the equation, M is the matrix element of the Standard Model process, θ and φ are

the polar and azimuthal angles measured with respect to the projection of the spin

on the quantisation axis, l = l1 − l2. The distributions of these angles contain the

spin information. The rotation matrix D is factorized into the phase factor ei(λ−l)φ.

In this analysis, where e+p→ (K0
SK

0
S)+X and K0

SK
0
S → K0

S +K0
S, the θ (Gottfried-

Jackson angle) and φ (Thieman-Yang angle) angles are defined in the center of mass

frame of the double K0
S system as illustrated in plot 2.5 [10]. The Gottfried-Jackson

frame shown is constructed in the rest frame of the resonance d(K0
SK

0
S). d decays

into 1(K0
S) and 2(K0

S). a and b are the electron and proton with 27.5 GeV and

920 GeV beam momentum respectively, and the direction of the proton is along the

positive z-axis. The x-axis is taken perpendicular to the z-axis in the same plane(β)

with a. The y-axis is taken perpendicular to the plane β. As in the center of mass

frame of d, decay products 1 and 2 have back to back directions. The production

plane α is taken by the z-axis and one of the two decay products (1 and 2). In this

diagram, 1 is chosen. The polar angle θ is the angle between the direction of 1 and

the z-axis. The azimuthal decay angle φ is the angle between the planes α and β.

Though SU(3) has provided some relations among the decays of the resonances that

have simple final state effects, the task is usually even more difficult with a lot of

overlaps among the resonances and complicated production processes.
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Figure 2.5: The Gottfried-Jackson frame for a + b → c + d and d → 1 + 2 reactions.

See text for more details.

Two methods will be used in this analysis: angular distribution and partial wave

analysis. They will be introduced as follows.

2.3.1 Angular Distribution

The angular distribution cos θ is calculated in the center of mass frame of the double

K0
S system, as described in the Gottfried-Jackson frame above. The angular distribu-

tion should be corrected for detector acceptance. The shape of the distribution gives

the first hand basic idea on the spin of the particle. The theoretical spin profiles of

spin zero and spin two angular distributions are demonstrated in figure 2.6. Spin zero

distribution has a flat profile while spin two distribution is curved. It usually works

well in conditions where the signal is clean with very little background contribution.
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Figure 2.6: The theoretical spin profiles of spin zero (left) and spin two (right) angular

distributions.

More details will be introduced in analysis section 8.1.

2.3.2 Partial Wave Analysis

In a scattering process, the partial wave description starts with the basic Schrödinger’s

equation:

− �

2μ
∇2Ψ(�r) + V (�r)Ψ(�r) = EΨ(�r) (2.16)

The incident wave Ψ(r, θ, φ) can be expressed in its simplest form as eikz, and the

potential V = 0. The angular and radial wave function can be separated by expanding

the initial state in terms of Legendre polynomials Pl: [11]

|i〉 = Ψi =
N∑

l=1

Ul(r)Pl(cos θ) (2.17)

where Ul(r) is a function of r, independent of the angle. However experimentally to

find the solution to the wave equation, the following procedures have to be done. As
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described in the previous sections the data can be analyzed by an expansion of the

invariant matrix amplitude M. The wave intensity distribution as a linear expansion

can be expressed in terms of the spherical harmonics as follows (Ω is the solid angle):

I(Ω) =
∑

l

tl0Y
0
l (Ω) + 2

∑
l,M>0

tlmRe{Y m
l (Ω)} (2.18)

In this analysis of the two-K0
S system, only l = 0, 2, 4, ... are allowed because of

the quantum number of a single K0
S. The coefficients tlm are called moments. The

intensity is normalized by: ∫ 4π

I(Ω)dΩ = t00. (2.19)

Multiplying both sides of equation 2.18 with Y l∗
m (Ω) and integrating over the solid

angles gives:

∫
dΩY l∗

m (Ω)I(Ω) =

∫
dΩY l∗

m (Ω)
1√
4π

∑
l′,m′

tl′,m′Y l′
m′(Ω)

=
1√
4π

∑
l′,m′

{
∫
dΩY l∗

m (Ω)Y l′
m′(Ω)}tl′m′

(2.20)

where the moments tlm are calculated by summing the angular distributions over

each bins of the K0
SK

0
S invariant mass spectrum:

tlm =

∫
dΩI(Ω)Y l∗

m (Ω) �
N∑

i=1

Y l∗
m (Ωi). (2.21)

N is the number of bins in the K0
SK

0
S mass spectrum.

In terms of amplitudes (or moments), the cross sections are given by:

dσ

dxdy
=

1√
4π

∑
l,m≥0

cmtlmRe{Y l
m(Ω)} (2.22)

where cm = 1 for m = 0 and cm = 2 for m > 0. The moments therefore are given in

terms of the spherical harmonics by:

tlm =

∫
dΩY l1∗

μ1 Y
l2
μ2Y

l∗
m =

√
4π

√
(2l1 + 1)(2l + 1)

2l2 + 1
(l1μ1lm‖l2μ2)(l10l0‖l20), (2.23)



18 2.3. Spin Analysis

where the ( ‖ ) is the Clebsch-Gordan coefficients [12], which is used in angular

momentum coupling under the laws of quantum mechanics. In the case of K0
SK

0
S,

the spherical harmonics of each Y [L,M, θ, φ] with l up to 4 expressed by the set

of Legendre polynomials are summarized in the formulas 2.24 and the moments tlm

related to the wave amplitudes (up to l = 4) are listed in equation 2.25 [13, 14]. l is

the total angular momentum and m is its z component.

Y [0, 0, θ, φ] =
1

4

√
5

π

Y [2, 0, θ, φ] =
1

4

√
5

π

(
3 cos2(θ) − 1

)
Y [2, 1, θ, φ] = −1

2

√
15

2π
eiφ sin(θ) cos(θ)

Y [2, 2, θ, φ] =
1

4

√
15

2π
e2iφ sin2(θ)

Y [4, 0, θ, φ] =
3 (35 cos4(θ) − 30 cos2(θ) + 3)

16
√
π

Y [4, 1, θ, φ] = −3

8

√
5

π
eiφ sin(θ) cos(θ)

(
7 cos2(θ) − 3

)

(2.24)

√
4πt00 = |S−

0 |2 + |D−
0 |2 + |D−

1 |2 + |D+
1 |2

√
4πt20 =

√
5

7
(2|D−

0 |2 + |D−
1 |2 + |D+

1 |2)
+ 2|S−

0 ||D−
0 |cos(φS−

0
− φD−

0
)

√
4πt21 =

√
10

7
|D−

1 ||D−
0 |cos(φD−

1
− φD−

0
)

+
√

2|S−
0 ||D−

1 |cos(φS−
0
− φD−

1
)

√
4πt22 =

√
15

7
√

2
(|D−

1 |2 − |D+
1 |2)

√
4πt40 =

6

7
|D−

0 |2 −
4

7
(|D−

1 |2 + |D+
1 |2)

√
4πt41 =

2
√

15

7
|D−

0 ||D−
1 |cos(φD−

0
− φD−

1
)

√
4πt42 =

√
10

7
(|D−

1 |2 − |D+
1 |2)

(2.25)
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To understand the equations in 2.25, a basis called naturality ε (or reflectivity) needs

to be introduced. It relates the spherical harmonics according to equation 2.26.

Y Jε
m = cm(Y J

m − ε(−1)J−mY J
m) (2.26)

The wave functions S−
0 , D−

0 , D−
1 are for naturality ε = −1. The wave functions D+

1

is for naturality ε = +1. 0 and 1 subscripts on S and D wave functions refer to the

absolute value of helicity (or z-component) of the spin. The cosine angle is the phase

angle between the wave functions.

2.4 Kinematical Variables

Some of the most commonly used kinematical variables to describe the ep scattering

physics processes are introduced as follows:

Figure 2.7: Electron-proton scattering.

As shown in figure 2.7, the incoming electron with a momentum k collides with

the proton with a momentum of p from the opposite direction. The electron is

then scattered off at an angle of θe with respect to the proton beam direction with

momentum k′ after the interaction. The momentum transfer during the process is

quantified into the negative squared four-momentum transfer variable called Q2, also
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used to describe the virtuality of the exchanged photon.

Q2 = −q2 = −(k − k′)2 > 0 (2.27)

The center of mass energy of the electron-proton system squared is defined as:

s = (p+ k)2 (2.28)

The center of mass energy squared of the photon-proton system, also known as the

invariant mass of the outgoing hadronic system is:

W 2 = (p+ q)2 (2.29)

The Bjorken scaling variable x is defined as the fraction of the momentum of the hard

scattering quark with that of the initial state proton at the Born or lowest level:

x =
Q2

2p · q (2.30)

The inelasticity of the interaction y is defined as:

y =
p · q
p · k (2.31)

x and y and related to s by

Q2 = sxy (2.32)

In our measurement performed at HERA with electron beam momentum at 27.5 GeV

and proton beam momentum at 920 GeV, the center of mass energy
√
s ≈ 318 GeV.

2.5 Physics Processes

In scattering experiments, particles are made to collide and then the emerging parti-

cles are detected, their effects measured and their properties compared to theoretical

predictions. Generally speaking, scattering can be further classified into: elastic scat-

tering, where both targets are left non-excited and intact, and inelastic scattering,

where breaking up of the target particle occurs. Deep Inelastic Scattering (DIS) has
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electroweak bosons involved to mediate the interaction and it is characterized by large

moment transfer during the process.

In deep inelastic scattering process, the point-like photon emitted from the electron is

scattered by the incoming proton with large momentum transfer (large Q2). This will

break up the nucleon and produce hadronic final states, photons, electrons, neutrinos,

muons and other secondary decay products. The photon acts as a probe interacting

deeply within the inner structure of the proton. In the process, when the exchanged

boson is a neutral particle like the photon or the Z0 vector meson, and the final state

is a scattered electron with other hadronic final state particles, it is noted as neutral

current (NC) DIS. When the exchanged boson is a charged boson, W±, the process is

denoted as charged current (CC) DIS, and is characterized with missing momentum

as the outgoing lepton is a neutrino or an anti-neutrino.

On the other hand, another process called photoproduction is also very interesting

because it is the dominant process in this analysis. The quasi real photon emitted

from the incoming electron is scattered at small angles with minimum momentum

transfer (low Q2). The photon structure can be investigated. When the photon

interacts directly with a parton from the proton, it is called direct photoproduction

process. When the photon resolves into a quark anti-quark pair, and then interacts

with the parton from the proton, it is called resolved photoproduction process. [15]



Chapter 3

Experimental Setup

This chapter addresses the setup of the main detector components, with which the

ZEUS experiment was conducted. Descriptions of the HERA accelerator facility,

infrastructure, design and performance will first be described.

3.1 HERA

The HERA (Hadron Electron Ring Accelerator) particle accelerating facility was

located at the DESY (Deutsches Elektronen-Synchrotron) research center in the sub-

urbs of the city of Hamburg, Germany. See figure 3.1. Electrons (or positrons) and

protons were accelerated in a 6.3 kilometer-long circular tunnel in opposite directions

and made to collide at two interaction points: ZEUS and H1. This made HERA a

unique accelerator in the world since two different types of particles actually collided.

To be complete, one should mention here the other two possible interaction points

where fixed target experiments were located: HERMES and HERA-B. HERMES ex-

periment studied the spin structure of the nucleon with polarized electrons fired at

polarized gas targets. The HERA-B experiment aimed at measuring CP violation [16]

in the decays of heavy B-mesons into the so-called ‘golden decay mode: B → J/ψK0’.

Unfortunately the latter was cancelled.

22
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Figure 3.1: HERA was located at the western suburb of Hamburg, Germany. The

ZEUS, H1, HERMES and HERA-B detectors were located at point S, N, O and W

respectively.

For 15 years of successful running until summer 2007, HERA delivered a total of

779.9 pb−1 [17] to the detectors. It is worth mentioning that HERA luminosity was

dramatically improved after the machine upgrade performed in year 2000-2001, in

part of which the proton momentum was increased from 820 GeV to 920 GeV, while

the electron momentum remained at 27.5 GeV. The post-upgrade running period is

noted as HERA-II. The figure 3.2 below shows the luminosity delivered by HERA

during the entire running period. Details on the luminosity detector can be found in

section 3.2.3.

The HERA machine is also called “super electron microscope”, as the point-like elec-

tron particle acts as a probe that reveals the inner structure of the proton in the

course of the high energy collisions. Elementary particles that cannot be studied

under normal conditions due to energetic instability can be created and detected.

The modern particle physics theories like the standard model, which can almost be

described entirely by quantum field theory, has been tested and perfected experimen-

tally over decades. A wide range of interesting studies are made possible in different



24 3.2. The ZEUS Detector

HERA delivered

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500
days of running

In
te

g
ra

te
d

 L
u

m
in

o
si

ty
 (

p
b

-1
)

days of running

In
te

g
ra

te
d

 L
u

m
in

o
si

ty
 (

p
b

-1
)

days of running

In
te

g
ra

te
d

 L
u

m
in

o
si

ty
 (

p
b

-1
)

days of running

In
te

g
ra

te
d

 L
u

m
in

o
si

ty
 (

p
b

-1
)

Figure 3.2: Integrated luminosity delivered by HERA over the whole running period

in terms of days.

processes. Known particles are measured and tested against theoretical predictions.

Unknown particles are explored and studied. Frontiers of high energy physics have

been pushed by more advanced particle accelerators and colliders.

3.2 The ZEUS Detector

The ZEUS detector was one of the two colliding detectors at HERA. The other one

was called H1. The ZEUS detector was located in the south hall of the HERA ring.

It weighed about 3600 tons and had dimensions of 12 m (length along the beam pipe)

by 10 m (height) and by 19 m (width). This sophisticated multi-purpose detector

was designed to measure precisely energies and directions.

Starting from the center of the detector in figure 3.3, right outside of the beam

pipe was the VXD (vertex detector), which was later replaced by the MVD (Micro

Vertex detector) due to radiation damage. Vertex information of particle tracks

was extracted from their data. Outside of the vertex detectors were the tracking

detectors: Central (CTD), Forward (FTD), Rear (RTD) Tracking Detectors, and the
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later added-in Straw Tube Tracking detector (STT). These tracking detectors were

contained in a thin superconducting solenoid, which provided an axial magnetic field

of 1.4 Tesla. Momenta of charged particles were measured with high precision by

the tracking detectors. Outside of the solenoid and the tracking detectors were the

uranium scintillator calorimeters which measured energies deposited by the particles

and jets with high precision. An outer backing calorimeter (BAC) detected energies

missed in the calorimeter. The muon detectors were located in the outermost of the

BAC to catch muon particles and measure their momenta by the deflections of the

trajectories by the solenoid and the iron yoke.

The tracking systems play an important role in this analysis, hence more details

will be given in the following sections. Calorimetry, other components and data

acquisition system will be described briefly after.

3.2.1 Tracking and Vertex Detectors

The tracking and vertex components are among the main components of the ZEUS

detectors.

Tracking Detectors

The tracking detector is divided into the forward (FDET), central (CTD) and rear

(RTD) detectors, as shown in the schematic view in figure 3.3.

CTD

As seen in figure 3.4 1, the Central Tracking Detector (CTD) consisted of a cylin-

drical drift chamber of nine superlayers, each with eight sense wire layers. In total

1The ZEUS coordinates are described by a right-handed coordinate system with its origin at the

nominal interaction point. The z-axis is pointing along the incoming proton direction and the x-axis

horizontally towards the center of HERA. A diagram of the coordinates and angles are shown in

figure 3.5.
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Figure 3.3: The longitudinal view (upper plot) and the cross-section view (bottom

plot) of the components of the ZEUS detector.
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Figure 3.4: The cross section of a segment of the CTD drift chambers showing su-

perlayers and wires in the z direction.

these seventy-two cylindrical layers cover the polar angles from 15◦ to 164◦ and all

azimuthal angles. Among the nine superlayers from 1 to 9 in figure 3.4, the five with

odd numbers have wires parallel to the chamber axis (z axis) and the remaining four

have a small stereo angle as specified in table 3.1. The purpose of tilting the wires

in those stereo chambers is to roughly equalize the angular resolutions in both polar

and azimuthal angles and help determine the z position of the hit with an accuracy

of approximately 2 mm. The spatial resolution in the r−φ plane is 180 - 190 μm and
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Figure 3.5: The ZEUS coordinate system.

2 mm in the z direction from timing. The typical transverse momentum pT resolution

of CTD tracks is σp

p
= 0.005p⊕ 0.007 ⊕ 0.001

p
, with pT in GeV. The parametrisation

was obtained with simulations tuned to data. The first term is related to the hit po-

sitions, the second term to smearing and the last term to multiple scattering before

entering the CTD. [18]

The CTD covered the region from -100 cm to 105 cm around to the interaction point

in the z direction. The list of 576 cells with 4608 sense wires and 19584 field wires is

broken down per layer and per superlayer in table 3.1.

All the cells were filled with a gas mixture of 82% Argon (Ar), 13% Carbon-dioxide

(CO2) and 5% Ethane (C2H6). The choice of the gas mixture takes into account

both the ionization of charge particles and safety concerns. An electric field was

created between the sense wires (about +1.5 kV potential) and the field wires (from

-2.4 to -3.8 kV potential) connected with a high voltage system. When a charged

particle penetrates the chamber, the gas is ionized into negatively charged electrons

and positively charged ions. The electrons move to the positively charged sense wires
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Table 3.1: The breakdown of the CTD cells and their wire stereo angles, center radius

and polar coverage.

by the force of the electromagnetic field. The ions move to the ground wires. The

signal pulse is thus collected by the sense wires and passed through to amplification

and electronic read-out.

The inner and outer cylinders, made from 6 mm aluminium alloy sheet together with

two end plates, gave structural support of the 24192 wires in individual sections and

formed a closed volume for the gas.

FTD and RTD

The design of the Forward Tracking Detector (FTD) and the Rear Tracking Detectors

(RTD) was very similar to the CTD’s. In total the CTD, FTD and RTD covered

polar angles between 7.5◦ and 170◦. A detailed cell design of the FTD (RTD) is

shown in table 3.2.

Straw Tube Tracker (STT)

The STT was installed in the ZEUS detector during the 2000-2001 upgrade in the

gaps between the three chambers of the FTD replacing the Transition Radiation
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Table 3.2: The breakdown of the FTD (RTD) design specifications. X0 is the

radiation length, which is the mean distance for an initial electron to lose its en-

ergy to bremsstrahlung by a factor of 1/e. It is approximately determined by

X0 � 180A
Z2 [g/cm2], where A and Z are the atomic number and mass number of

the material respectively.
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Figure 3.6: Enhanced forward tracking by the STT with higher efficiency small angle

coverage.

Detector (TRD). These additional layers of tracking detectors enhanced the tracking

performance in the forward region (5◦ − 25◦), as illustrated in figure 3.6.

The STT had two superlayers of straw chambers. Each superlayer had 12 layers and

was oriented in four stereo views as shown in figure 3.7. Straw tube had an outer

diameter of 7.740 mm and was filled with an Ar/CO2 gas mixture. Each straw was

fitted with end-plugs equipped with wire fixation, polycarbonate insert, copper strip

and wire/resistor for high voltage and signal readout. [19] A spatial resolution of

120 μm was achieved.

Vertex detectors

The Microvertex detector was designed and commissioned inside the ZEUS central

drift chamber during the HERA II upgrade in 2000-2001, replacing the radiation

damaged Vertex detector (VXD). [20] This upgrade proved to be a remarkable en-
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Figure 3.7: The two STT superlayer pairs. Each pair in each gap is artificially

separated for clarity.

hancement to the tracking capabilities of ZEUS.

As seen in figure 3.8, the MVD consisted of two sections: the barrel microvertex

detector (BMVD) and the forward microdetector (FMVD). The BMVD was 60 cm

long surrounding the nominal interaction point with three double sensor layers and

the FMVD was 40 cm long with four double sensor planes.

Sensors were made of 300 μm thick n-type silicon strips. Every group of six strips (the

pitch was 120 μm and the five intermediate strip pitch was 20 μm) with p+ implants
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Figure 3.8: (a) Transverse cross section view of a FMVD wheel, (b) longitudinal view

of the MVD detector, (c) transverse cross section of the BMVD.

is AC-coupled by a di-electric to an aluminium readout. A schematic cross section

of the MVD sensor is shown in figure 3.9. All the readout strips were connected to

shapers, preamplifiers and a 136-step analog pipeline. The pipeline readout amplifier,

the 40 MHz analog multiplexer and current buffer is made up the back-end stage of

the MVD readout system.

The design of the MVD made measurements possible on tracks and vertex as close

as possible to the interaction point without introducing too much dead material in

the path of particles. The hit efficiency was evaluated as follows: more than 99.3%

of the CTD tracks have at least two and 91.3% have four or more associated MVD

hits. [20] A spatial resolution of 7.5 μm was achieved.

Track Reconstruction

In the HERA-I running periods, the tracking reconstruction relied mainly on the

CTD information for the charged particles and on the limited tracking information

from the calorimeter cells location for the neutral particles. In order to fully ex-

ploit all detectors, with combined information from MVD, CTD and STT, the track

reconstruction in the HERA-II running periods had to go through a complicated

multi-pass processing chain to become usable to higher level physics analysis. The

chain consisted of coordinate reconstruction made up of the following basic steps:

MVD-CTD-STT combined track pattern recognition, tracking fitting, vertex finding

and vertex fitting. The present reconstruction in MVD uses center-of-gravity algo-
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Figure 3.9: The cross section of a MVD sensor. The dashed arrows indicate the θ

and φ angles defined in the ZEUS coordinate system. The lower plot is a detailed

schematic layout of a single sensor with six strips.

rithm, which has obtained 25-35 μm resolution for vertical incidence. This cluster

algorithm is the crucial step in determining tracking resolution. The CTD is still

the dominant component to provide tracking information on charged particles. The

STT expands the tracking efficiency in the forward region. The complex multi-pass

procedure among all the tracking detectors becomes a challenge in the reconstruction,

but the improved efficiency has become a major highlight in the HERA-II periods.

It is worth mentioning that in the HERA-II track fit, the Kalman filter method was
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used to account for multiple scattering and ionization energy loss in the MVD part of

the trajectory [21]. For example, the new Kalman filter improves the mass resolution

of the K0
S by a factor of 1.3 and of the J/ψ by a factor of 1.8 while increasing the

signal/background ratio.

In HERA-II vertexing, the Deterministic Annealing Filter (DAF) [22] was combined

with beam constraint to give the best primary vertex resolution. The beam constraint

is a feature in the DAF vertexing software package to give precise fitted measurement

on the beam spot location. An example is given in figure 3.10. The histograms from

top to bottom represent respectively basic pattern recognition, basic track refitting,

refitting with Kalman Filter, revertexing with DAF, revertexing with DAF and beam

constraint in terms of the displacement of the x vertex by Monte Carlo simulation.

It clearly demonstrate the improvement in DAF revertexing, especially with beam

constraint. The vertex displacement on the x projection serves as an example. Dis-

placement on the y projection is the same.

3.2.2 The Uranium-Scintillator Calorimeter (CAL)

The ZEUS Calorimeter (CAL) is a compensating sampling calorimeter with depleted

uranium as absorber and plastic scintillator as active material. The CAL measured

the energy deposited by particles and jets as well as the position of the energy deposit.

A maximum polar coverage with good resolution was also taken into consideration

in the design. The CAL was subdivided into three parts: the Forward Calorimeter

(FCAL), covering polar angles (θ) from 2.2◦ to 39.9◦, the Barrel Calorimeter (BCAL)

covering polar angles from 36.7◦ to 129.1◦ and the Rear Calorimeter (RCAL) covering

polar angles from 128.1◦ to 176.5◦, as seen in figure 3.11. [23]

Figure 3.11 shows the longitudinal view of the CAL indicating the placements of

the electromagnetic calorimeter (EMC) and hadronic calorimeter (HAC) cells. EMC

cells were placed at the inner part (closer to the interaction point), while HAC cells

were at the outer part. Each section of the calorimeter was divided into modules.

In the FCAL and RCAL, the modules were parallel to the y-z plane. While in the

BCAL, 32 wedge-shaped modules were arranged coaxially around the beam line, thus
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Figure 3.10: The displacements in x vertex value in Monte Carlo simulation using

different vertexing methods.

spanning the full azimuthal angle. Each BCAL module was rotated by a small angle

in the azimuthal plane around an axis parallel to the beam axis. The reason for this

rotation was to let the modules point slightly off the beam axis as to prevent photons

from escaping undetected in the gap between modules. Each module was segmented

into towers, which were further segmented into HAC and EMC cells. The two types

of cells could detect and measure hadronic showers and electromagnetic showers. In

each cell, the depleted uranium was sandwiched with scintillator and stainless steel

cladding as shown in figure 3.12. The ratio of absorber and scintillator thicknesses was

chosen carefully to achieve compensating response between electrons and hadrons.

This makes the ZEUS Calorimeter a compensating calorimeter. (e/h = 1.00 ± 0.03



3 Experimental Setup 37

Figure 3.11: Longitudinal view of the CAL embracing the tracking detectors, showing

the placement of EM and HAC cells.

for E > 3 GeV)

The depths of the calorimeter EMC and HAC cells are listed in table 3.3 in terms of

centimeters, nuclear absorption length λ and radiation length r.l.. Nuclear absorption

length is the mean path length required to reduce the energy of penetrating charged

particles by a factor of 1
e
. Radiation length is the mean distance for an initial particle

to loss the energy to its 1
e
.

The working principle of calorimetry is based on particle interaction with matter

and energy deposition. Heavy charged particles and low energy electrons lose energy
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Table 3.3: The maximum, medium and minimum depths of FCAL, BCAL and RCAL

cells.
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Figure 3.12: The cross section view of the CAL ‘sandwich’ unit. The stainless steel

thickness varied between 0.2 to 0.4 mm from EMC to HAC cells.

mainly by ionization effects or excitation with the atoms in inelastic collisions. If

the velocity of the particle is more than the velocity at which light travels inside

this material, Cherenkov radiation light is emitted. High energy electrons also loss

energy by photon radiation when the electrons are scattered in the electromagnetic

field of the nuclei. Photons generated from the interaction or emitted from particles

penetrating the scintillator was collected by photomultipliers tubes (PMT) on both

sides of the calorimeter modules via wave length shifters. The analog signal from the

PMTs was read out by the frontend card, converted into digital signals then fed into

the local CAL data acquisition and trigger systems.

The nominal energy resolutions of the CAL from test beam results are: σ(E)
E

=
18%√

E
(electrons), σ(E)

E
= 35%√

E
(hadronic) [79, 80]. The hadronic performance is still

unsurpassed by any high energy physics experiment.

3.2.3 Luminosity Detector

The luminosity detector was made of two calorimeters located downstream of the

electron beam. The electron calorimeter (noted as lumi-e in figure 3.13) was placed

at z = −35 m, while the photon calorimeter (noted as lumi-γ in figure 3.13) was at
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Figure 3.13: Schematic view of the ZEUS LUMI, showing their relative displacement.

z = −107 m. They determine the ZEUS luminosity by measuring the electron-proton

Bremsstrahlung or Bethe-Heitler processes. The average achieved precisions on the

luminosity measurement are in the range of 1.5 - 2.2% [24] while the most accurate

single luminosity measurement achieved is 1.1% [25].

3.2.4 Other Components

ZEUS was a very sophisticated detector that hosted about 29 components working

together. For example the VETO walls protected the central detector against beam

halo particles from the proton bunches. The C5 counter was located three meters

away from the interaction point on the same side of the VETO wall and measured the

timing of the proton and lepton bunches. The timing provides crucial information to

enable the regulation of the otherwise overwhelming background. The Leading Proton

Spectrometer (LPS) was located from 20 m to 90 m downstream and measured the

outgoing proton energy for a special type of event. The Forward Neutron Calorimeter

(FNC), located 90 m downstream, measured the energy of the neutrons scattered at

small angles. The Small-angle Rear Tracking Detector (SRTD) sat behind the RTD

to measure small angle scattered charged particles. The Hadron-Electron Separator

(HES) helped in the identification of electrons. [23]
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3.2.5 Data Acquisition System

In the busy environment at the interaction point with a bunch crossing at every

96 ns, processing massive amounts of information from all components and making

immediate on-line decisions to reduce background and non-physics events are huge

challenges. The data acquisition system could be separated into three phases:

1. Component readout and trigger. The components like the calorimeters or the

tracking detectors have their own readout systems and first level trigger systems

to pre-select events and reduce background.

2. Global three-level trigger system.

3. Data flow monitoring and event reconstruction.

The ZEUS Data Acquisition system, the normal event rates and the data processing

volume per event are displayed in figure 3.14.

First Level Trigger

The local individual components like the CTD, MVD, CAL had their own first level

triggers systems [26, 27], which are either analog or digital pipelines clocked at 96 ns.

This trigger processed raw data fed directly from the component readout with ded-

icated hardware processors but relatively coarse criteria. The locally treated data

were collected by the Global First Level Trigger (GFLT) system, where they were

synchronized in time and checked for physics signatures. A decision was made after

46 bunch crossings, or 4.4 μs, to either keep or reject the event, and the decision

was sent back to the component pipelines. For every crossing, around 600 bits of

data were processed by GFLT against Memory Looking Tables (MLT’s). These ta-

bles were reprogrammable, depending on different running environments and user

requirements. At the beginning of each run, a trigger logic configuration, out of more

than 600 definitions, was loaded into GFLT and stayed unchanged during the run.

The FLT processing was almost dead-timeless. When a positive decision was made
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Figure 3.14: The ZEUS Data Acquisition system, the event rates and the data pro-

cessing volumes per event.

to keep an event, 15 μs were spent in the readout to let the components retrieve the

data from the pipelines into primary buffers. The maximum design output rate was

set to 1 kHz for FLT, which means the maximum dead time was 1.5%. [28, 29]

It is worth mentioning that a Fast Clear trigger system was implemented into the

Calorimeter First Level Trigger (CFLT) [27] system. It sat in between the local
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and global first level triggers and could abort events by clearing out the pipeline

and buffers in case of jamming situations, which usually occurred when background

conditions deteriorate, or faulty components could not handle the data flow because

of hardware or configuration errors.

Second Level Trigger

A design similar to the FLT’s was used for both the components and the global

second level trigger systems. A transputer system consisted of a series of parallel

processors and worked in a synchronous pipeline manner under the system clock.

This trigger system was the second level trigger (SLT) in the ZEUS DAQ chain.

The main triggering algorithms were based on event rejection from timing, event

preservation with tracks and/or CAL clusters. The purpose was to remove a lot of

background before going to the next trigger level. SLT further reduced the event

rates down to 100 Hz. The event builder (EVB), which was a complicated transputer

network, collected the data and built it into an event, providing access of the full data.

The physics signatures of events started to surface and more heavy duty iterative

calculations were applied which were not possible in the FLT short pipeline time. [30]

Third Level Trigger

After the first two trigger systems, physics events started to come into shape with

additional information like the timing from the counters, energy deposited in the

CAL as well as isolated electrons, tracking multiplicity, etc. At the third level trigger

(TLT), offline analysis codes with more physics specifics were involved in the trigger

selection. At the TLT two major phases were strategically performed. In the first

phase, background was rejected with fast calorimeter timing and track reconstruc-

tion. For example, beam-gas event background could be identified with the CAL

by measuring the timing offset of the particles arriving to the Forward and Rear

calorimeters.

There are basically three sources for beam-gas background. The first source is the
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scattered synchrotron radiation. The second source is the lepton beam-gas scattering,

which is strongly related with vacuum conditions and well understood. The increased

radiation dose affected mostly the silicon trackers which were close to the beam. The

third source is the proton beam-gas scattering, which is also strongly associated with

vacuum conditions. A typical proton beam background event showed up in RCAL

12 ns early with respect to an ep collision event that took place at the center of

the detector. The mechanism is demonstrated in figure 3.15. Beam gas events or

secondary produced events originating from outside of the interaction region could

be picked up by using the CTD and MVD information. Background from cosmic rays

could be identified by the time difference between the top and bottom parts of the

calorimeter. Halo muons that were produced in the proton beam could be rejected

by using the Veto-wall counters.

In the next phase, physics filters aimed at different off-line analysis purposes were

setup to classify and select required physics events. Most of the filters used kinematic

cuts and each had its own prescale factor. The prescale factor is set to reduce the data

size by taking only a fraction of the same type of events. The main filters classifying

physics events are categorized as below: [31, 32]

� Soft Photoproduction: It is characterized with a photon tagged by the LUMI

(refer to section 3.2.3) with energy over 3 GeV and energy deposit in the RCAL

of over 700 MeV. ep bremsstrahlung and beam gas events are the sources of

these backgrounds.

� Hard Photoproduction: Charm events with at least three good track vertices

are studied in the process γp → cX, where the charm jet is produced at large

pT . For J/ψ events, two back-to-back tracks of opposite signs, a vertex with at

least three tracks and energy deposits in EMC cells are required.

� Deep Inelastic Scattering: Neutral current events must have an isolated

EMC cluster energy deposit as scattered electron candidate. Charged current

events have jets detected in the CAL with the absence of scattered electron

candidate but large missing transverse momentum from neutrinos.
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Figure 3.15: Diagram (a) demonstrates an ep collision physics event in which the

timings arriving to the FCAL and RCAL are the same. Diagram (b) shows that in a

typical beam gas interaction background event induced from the proton beam where

the vertex are away from the interaction points, the timing difference to the FCAL

and RCAL could be used to make rejection. Plot (c) shows the different distributions

in terms of calorimeter timing between physics and background event.
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� Exotic Physics: General kinematic cuts on energy, timing and tracking to

preserve exotic events like the excited quarks, excited electrons, leptoquarks,

diffractive process and central interactions.

3.2.6 Computing Environment

The large amount of online data processing including DAQ and TLT was done in

the “rucksack” rooms adjacent to the detector. Most of the offline computing was

performed by computers in the DESY computing center.

Now the main ZEUS analysis facility has been upgraded from Silicon Graphics multi-

processors to a PC farm of 73 dual processor nodes and 19 nodes with two dual-core

processor nodes. 36 nodes run with Intel Xeon 3.06 GHz, 37 nodes run on 2.6 GHz

AMD CPUs and 19 nodes have dual-core Intel Xeon 3.0 GHz CPUs. Figure 3.16

shows a general layout of the ZEUS data flow environment.

ZDIS is a Monte Carlo generator software that administrates various Monte Carlo

generators for simulation purposes (refer to chapter 4). Monte Carlo events then can

be passed through MOZART, which is a ZEUS-specific detector simulation software.

ZGANA simulates the ZEUS triggers and ZEPHYR makes event reconstruction with

data collected from all components either real or simulated. EAZE is a user oriented

interface that allows advanced users to define individual selection and reconstruction

requirements, meeting their own purposes. Meanwhile the reconstructed events can

be displayed on LAZE, where the data collected and reconstructed are projected

and presented onto a simulated detector. A typical double K0
S event is displayed in

figure 3.17.
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Figure 3.16: The layout of the ZEUS program flow. The left are the Monte Carlo

simulations. The right is the measurements form the ZEUS detector.
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Figure 3.17: A typical event display. The cross section view is on the left and the

longitudinal view is on the right. The tracks and energy deposits are clearly marked

as lines and filled areas with important kinematic variables values being summarized

in the header. The lower plot is the zoomed-in look at the tracks in the MVD and

CTD.



Chapter 4

Monte Carlo Simulations

Monte Carlo (MC) simulations are series of numerical computational algorithms that

rely on repeated sequences of random sampling in realistic frameworks to solve real

world complex problems. Their applications in high energy physics are extensive and

very important. Monte Carlos generate high energy physics events to simulate detec-

tor data. The simulations become very useful for the detector design and optimization

even before the actual detectors are built. The simulations can optimize the detector

on geometrical acceptance, space and energy resolutions of all its components. When

physics data are being analyzed when the detector starts to run, MC simulations can

estimate the expected signals and backgrounds of the physics processes or even the

possibilities of new particles or physics.

4.1 Generator Level

All simulations start with the basic principles of particles traveling through matter

and interacting with one another. These interactions and outcomes of the processes

are simulated with well-defined probability by high energy physics theory models.

As seen in figure 4.1 for HERA, a series of independent phases are performed in the

simulation. First comes the event generation, in which the ep scattering process is

49
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Figure 4.1: The schematic view of a typical Monte Carlo simulation chain.

simulated at parton level. QCD radiation, hadronization and fragmentation processes

are next simulated, including hard processes, resonances and their decays, partons

and final-state showers, etc. At the parton level, the fundamental building blocks are

the quarks and gluons. They fragment and form hadrons by recombining with each

other. These processes are called hadronization. In addition to perturbative quan-

tum field theory, non-perturbative processes and modifications like photon/gluon

bremsstrahlung theories are also involved. The following general purpose event gen-

erators are widely used in different experiments: PYTHIA [33], HERWIG [34, 35] and

ARIADNE [36]. PYTHIA is based on Lowest Order (LO) matrix elements, parton

showers and Lund hadronization. HERWIG (Hadron Emission Reactions With Inter-

fering Gluons) is based on matrix elements, parton showers including color coherence

with jets and cluster model hadronizations. ARIADNE simulates QCD cascades with

the Color Dipole Model (CDM).
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4.2 Detector Level

The second phase is the detector simulation. At ZEUS, it is done via a full GEANT [37]

simulation of the ZEUS detector software called MOZART (Monte Carlo for ZEUS

Analysis, Reconstruction and Trigger). It simulates the detector components, through

which it tracks the particle transport in every region of the detector. It also gives

graphical representation of the experimental setup and the particle trajectories. All

these take into account the geometrical volume boundaries of the detector components

and all natural physical effects of the particles themselves, including their interactions

with matter.

4.3 Trigger Simulation

The final phase is the ZEUS trigger simulation package called ZGANA (Zeus Geant

ANAlysis), which produces a standard data sample to be used by the physics groups

to evaluate their trigger branch performances at each trigger level. As no specific

trigger selection is involved, ZGANA is not used in this analysis.

4.4 PYTHIA Physics Event Generator

The PYTHIA generator was chosen for this analysis as it is a well tuned general pur-

pose MC generator that provides simulated data samples in a wide range of reactions.

And it is the only available general purpose MC sample available at ZEUS for HERA-

II data sample that has been understood. The HERWIG simulation generator was

not yet well understood for HERA-II at the time of the analysis. PYTHIA’s ability to

simulate multi-hadronic final states suits this analysis. Therefore for the purpose of

checking the phase space of the data sample used, a general purpose QCD group MC

sample with 2004 and 2005 electron data is used with PYTHIA version 6.4 [38]. The

MC sample contains 400,000 direct and 400,000 resolved photoproduction events. See

section 2.5 regarding photoproduction processes.
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Generator PYTHIA 6.4 Process Photoproduction

Lepton p -27.52 GeV Proton p 920 GeV

pT min. 6 GeV Number of Jet min. 2

ET (jet) min. 19 GeV |η(jet)| < 3

proton PDF CTEQ 41 LO [38, 40] photon PDF GRV G LO [38]

Jet finder KTCLUS [38, 41] KT mode 3212 1

Table 4.1: Specifications of the low-ET di-jet photoproduction MC sample. p is the

momentum.

This MC sample is an inclusive low-ET di-jet photoproduction sample. The main

specifications are summarized in table 4.1. The reason to select the photoproduction

sample for this inclusive measurement analysis is based on the study which will be

introduced in chapter 5 that photoproduction accounts for 90% of the full data sample

while the rest is deep inelastic scattering events. Therefore this sample should be able

to represent the whole data sets, especially when the purpose is only to check the

phase space of the data. The main characteristic of this pure photoproduction MC

sample is the presence of at least two jets. The reason of this selection is based on the

fact that charm photoproduction is dominantly produced by the Photon Gluon Fusion

(PGF) [39] process in leading order perturbative QCD. In this process the quasi-real

photon emitted by the electron interacts with a gluon in the proton producing a charm

quark pair cc̄. The quark pair will further hadronize into two jets. The process is

demonstrated in diagram 4.2.

The result of the Monte Carlo comparison with the data will be presented in sec-

tion 5.1.1.

13 = ep collision type, 2 = δR used, 1 = relative pseudoparticle angles derived from jets, 2 = pT

scheme used.
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Figure 4.2: The Feynman diagram of photon gluon fusion process.



Chapter 5

Event Selection and

Reconstruction

To achieve a good measurement statistically, the full HERA data sets of around

0.5 fb−1 in terms of integrated luminosity are used in this analysis. The electron

energy Ee was 27.5 GeV, while the proton energy Ep was 820 for the HERA-I (year

1996-2000) running period and 920 GeV for the HERA-II (year 2004-2007) running

period. The luminosity for each running period is broken down in table 5.1 below:

HERA-I periods

period 1996 1997 1998 1999-1 1999-2 2000 TOTAL

collision type p/e+ p/e+ p/e− p/e− p/e+ p/e+

Lumi(pb−1) 10.77 27.85 4.60 12.08 19.65 46.22 121.17

HERA-II periods

period 2004-1 2004-2 2005 2006-1 2006-2 2007 TOTAL

collision type p/e+ p/e− p/e− p/e+ p/e+

Lumi(pb−1) 42.30 152.26 61.23 99.54 46.35 401.68

Total of HERA-I + HERA-II: (pb−1) 522.85

Table 5.1: Luminosity break down in different running periods over HERA-I and

HERA-II.

54



5 Event Selection and Reconstruction 55

5.1 Trigger Selection

In an inclusive production measurement, no specific trigger requirements are set. As

part of the overall search for glueballs, signals divided into two phase-space domains

are studied, namely in both Deep Inelastic Scattering (DIS) and photoproduction

processes.

5.1.1 DIS Selection

The results as published in the paper “Inclusive K0
SK

0
S resonance production in ep

collisions at HERA” [52] corresponding to this thesis are an inclusive measurement

without specific DIS or photoproduction selections. But motivated by the previous

ZEUS publication [1] and to make a complete study in phase-space, the K0
SK

0
S pro-

duction in Deep Inelastic Scattering events will also be studied by themselves in the

next chapter. Here the DIS selection criteria are introduced.

Most DIS events are characterized by a scattered electron. Sinistra is the ZEUS neu-

ral network electron finder software package [42]. The main features of a scattered

electron are isolation and a narrow energy deposit in the electromagnetic calorimeter

(EMC) with a matched charged track in the tracking detectors. A typical DIS event

is illustrated in figure 5.1. Plot (a) shows the tracks and energy deposits in the lon-

gitudinal view of the detector. The detector description can be found in section 3.2.2

and figure 3.11. The hadronic jet has much wider energy deposits in both the HAC

and EMC clusters with associated multiple tracks, while the electron has narrower

energy deposits with a single track associated to it. Plot (b) is the transverse en-

ergy distribution in the η-φ plane. It shows the electron as an energy island clearly

separated from hadron energy deposits, which are more widely spread. Plot (c) is

the transverse cross-section view of the tracks in the CTD. The scattered electron is

back-to-back to the jet in this plane and balances its hadronic energy.
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For offline analysis, two major electron finders exist in ZEUS. The Sinistra and the

EM finders have basically the same efficiency as function of electron energy. Since

this analysis does not require the highest efficiency provided by EM at high Q2,

the Sinistra finder is chosen for its simplicity to operate. Basically Sinistra uses

calorimeter information to identify electrons and uses a neural net to judge the quality

of the electron. A follow-up program called FINDIS decides about the best candidate

as there are usually a number of them. More information on the ZEUS electron finders

can be found here: Sinistra [42] and EM [43].

The cuts on the electron finder variables and their definitions are listed below. They

constitute standard ZEUS DIS selections cuts [44].

� Ee ≥ 8.5 GeV, where Ee is the energy of the scattered electron found by the

Sinistra finder.

� 38 GeV < E − pz < 60 GeV, where E is the energy deposited in the CAL

cell and pz is the momentum projected on the z axis. This cut removes photo-

production and QED Initial State Radiation (ISR) events. [44]

� ye ≤ 0.95. It is the inelasticity y from electron method. (See section 2.4) It

relies on the precise measurement of the incoming and the scattered electrons.

� yJB ≥ 0.01. It is the inelasticity y from Jacquet-Blondel method, also known

as the hadronic method. It only relies on the measurement of the hadronic

final states and no scattered electron information is needed. This cut on y re-

moves events which are misclassified as DIS events with misidentified scattered

electrons.

� Q2 > 1 GeV2. This represents a rough selection of DIS events by cutting on

the momentum transfer.

In the DIS process of HERA I data, a series of very dedicated trigger selections

are used and apart from a DST 91 electron finder trigger that is used for all the

1DST (Data Summary Tapes) number 9 bit is the TLT trigger configuration that requires at

least one of the four predefined electron finders to find an electron with energy above 4 GeV.
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HERA I years, the rests of the requirements are listed in the table 5.2 below. ‘TLT

inclusive’ is the trigger configuration in the third level trigger selection. ‘Chosen

Trigger for analysis’ is the additional trigger configuration used in this analysis. The

DIS and SPP trigger bits are the configurations in TLT to make DIS selections. HPP

trigger bits are the configurations in TLT to make photoproduction selections so that

photoproduction events can be removed. RCAL boxcut is the geometry box in RCAL

to cut on the position of the scattered electron in the x− y plane. ‘Run Range’ lists

all the run numbers selected.

5.1.2 Photoproduction Selection

The photoproduction selection is simplified by taking the part of data sample that

are not identified as DIS event.

5.2 Event Selection

The ultimate purpose of the event selection is to collect events with at least two K0
S’s.

The two K0
S’s should be decay products from a secondary vertex. We start with the

criteria to make single K0
S particle identification.

5.2.1 K0
S particle identification

Strange kaons are mesons characterized by S = ±1, C = B = 0. S, C and B are

their strangeness, charm and bottomness quantum numbers. Kaons can be neutral

K0 or charged K±, and their quark contents are as follows: [45]

K+ = us̄, K0 = ds̄, K̄0 = d̄s, K− = ūs (5.1)

For neutral kaons, there are two versions with the same mass but different decay

properties: the K0
S and K0

L. They are considered to be linear combinations of the K0
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Table 5.2: The TLT bit DIS selection combinations for 1996 to 2000 HERA-I running

period. Under the ‘Run Period’ column, ‘e’ stands for electron-proton collision data,

while ‘p’ stands for positron-proton collision data. See text for more details.
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PDG mass (MeV) Modes Fraction(Γi/Γ) Decay Length

K± 493.677 ± 0.016 K± → μ±νμ (63.54 ± 0.14)% ≈ 3.6 m

K0
S 497.614 ± 0.024 K0

S → π+π− (69.20 ± 0.05)% ≈ 2.7 cm

K0
L 497.614 ± 0.024 K0

L → π±e∓νe (40.55 ± 0.12)% ≈ 15.3 m

Λ(Λ̄) 1115.683 ± 0.006 Λ(Λ̄) → p(p̄)π−(π+) (63.9 ± 0.5)% ≈ 7.9 cm

Table 5.3: Decay properties of strange particles K±, K0
S, K0

L and Λ(Λ̄). Their masses

from PDG [5] are also listed.

and K̄0 states. Their quark contents are believed to be 1√
2
(ds̄− sd̄) and 1√

2
(ds̄+ sd̄)

for K0
S and K0

L respectively. The decay modes with the highest branching ratios are

listed in the table 5.3 with their decay lengths. The properties of the Λ(Λ̄) are also

shown there as they are a source of background in the particle identification:

Λ0 = uds (5.2)

From the dramatically different properties of the kaon particles, one can clearly see

that K0
L has a too long decay length, which makes it technically impossible to build

detectors big enough to efficiently detect the decay products. K±’s decay products

are very difficult to detect as well, due to the neutrinos. Even though the K±’s leave

tracks in the tracking detectors due to their charge and can be identified by dE/dx

energy loss methods, the shortcoming of the method of low transverse momentum

requirement still limits the detection. K0
S has some wonderful properties for identi-

fication, as it leaves no track in the tracking detectors but decays into two charged

pions with opposite charges after traveling for several centimeters from the interaction

point.

To reconstruct K0
S particles, tracks of opposite charges belonging to the same sec-

ondary vertex are selected [46, 47] in the ZEUS reconstruction algorithms. The tracks

used here are either from CTD only for the HERA-I running period, or from a combi-

nation of MVD, CTD and STT detectors for the HERA-II running period. An event

example with two K0
S candidates, each with two tracks of opposite charges, can be
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Figure 5.2: Reconstruction of two K0
S candidates and definition of variables later

used for event selection. (Not drawn to scale)

seen in figure 3.17.

Selection cuts are enforced on the tracks to restrict the selection to the kinematic

region where the best resolution and understanding are achieved. These are the cuts

on transverse momentum, pseudorapidity, hits per track, CTD tracks per event, beam

spot, decay length, distance to the interaction point, collinearity and Armenteros-

Podolanski cuts as follows:

Transverse Momentum and Pseudorapidity

The transverse momentum (noted as pT ) is the momentum projected in the x-y

plane. Both the tracks’ and the K0
S candidates’ transverse momenta are studied.

The transverse momentum being used instead of absolute momentum is based on

the better tracking resolution in x − y plane, than in z direction. The pT of the K0
S
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Track of π± candidate K0
S Candidate

pT (π±)(MeV) η(π±) pT (K0
S)(MeV) η(K0

S)

HERA-I > 100 (-1.75,1.75) > 300 (-1.5,1.5)

HERA-II > 140 (-1.75,1.75) > 250 (-1.6,1.6)

Table 5.4: Cuts on pT and η (The pT cut on K0
S in HERA-II is invalid as it exceeds

the double of the cut on pion tracks.

candidates is calculated by adding the vectors of the two daughter decay products.

The pseudorapidity η is defined as η = − ln tan θ
2
, where θ is the polar angle with

respect to the z axis. The transformation from the polar angle θ, which is dependent

on the reference frame, to the pseudorapidity makes the direction independent of the

longitudinal boost.

The kinematic cuts used in the analysis in HERA-I and HERA-II running periods

are listed in table 5.4. The increase of the pT cut on tracks from HERA-I to HERA-II

is due to the rougher background conditions in HERA-II after increasing the proton

beam energy and introducing extra materials along with the MVD. The decrease of

pT cut on reconstructed K0
S candidate and larger pseudorapidity range is a result of

better offline reconstruction algorithms, and the benefits of the MVD/STT detectors

for tracking.

A study [48] of the resolution of the K0
S mass with respect to the track momentum

and polar angle on a year 2006 electron data sub-sample after tracking reprocessing

is shown in figure 5.3. Plot (a) is the mass resolution distribution as function of track

momentum. Plot (b) is the mass resolution distribution with respect to the θ angle

from 0 to 180 degrees. One can see that the best resolution is achieved at around

90 degrees (η = 0). A close look at the θ angle range from 0 to 90 degrees is shown

in plot (c), which indicates that a relatively steady and good resolution is achieved

in the central part of the tracking detectors. The cut of −1.75 < ηπ < 1.75 in this

analysis corresponds approximately to a polar angle θ from 20 to 160 degrees and

assures a good containment and detector resolution range.
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Figure 5.3: K0
S Mass resolutions with respect to transverse momentum (a), θ angle

from 0 to 180 degrees (b) and from 0 to 90 degree (c).

After all selection cuts on the pion tracks and K0
S candidates, their pseudorapidity

distributions are shown in figure 5.4 (a) and (b). The pion tracks’ transverse mo-

mentum distribution is shown in (c). The MC sample is normalized to the data by

the number of entries. The result shows a good understanding of the data and the

detector.

Number of Hits per Track

The number of hits per track is a measure of the quality of a track and its test

is applied differently for HERA-I and HERA-II data because of different running
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Figure 5.4: The pseudorapidity distributions of the pion tracks (a), K0
S candidates

(b); The transverse momentum distribution of the pion tracks (c). All are the sample

after all selection cuts. The specific cuts for the variable are marked with arrows.

conditions. In HERA-I, only the CTD tracking is used and therefore the number of

hits per track count is limited to the hits in the CTD only. Since in the HERA-II

period the MVD and STT tracking detector were deployed, the hits also take into

account those two tracking detectors.

In figure 5.5, a Monte Carlo study [1] with HERA-I shows how the cut on ndf > 32

can reduce the K0
S background, while preserving the K0

S signal. The ndf (number of
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Figure 5.5: Study of Monte Carlo in HERA-I DIS shows a cut at 32 Ndf has the best

signal/background ratio.

degree of freedom) is the number of hits minus six (for the handling of the trajectory

helix parameters). Therefore the cut is equivalent to requiring the number of hits per

track to be no less than 38.

This cut is implemented in the selection of the HERA-I data, but not of the HERA-II

data. Such a cut requires that the tracks are detected in the CTD in at least three

superlayers. With additional MVD and STT superlayers available after the machine

upgrade, a penetration of two CTD superlayers is required in the HERA-II data

sample.

CTD Number of Tracks per Event

The number of tracks per event is also known as the multiplicity of the event. As

shown in figure 5.6, the upper histogram is the true number of K0
S particles in the

sample which also have been correctly identified, while the lower one is the background

distribution of K0
S that was not properly identified. One can see clearly that a cut

requiring events over 40 tracks per event being rejected will remove more background

and a much smaller portion of K0
S signals. This cut is only applied on HERA-I data
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Figure 5.6: A HERA-I study of CTD tracks in a reconstructed NC DIS Monte Carlo

event sample. The shadowed histogram is the simulated background distribution.

where the MVD and STT detectors were not yet available.
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Run number x position y position notes

≤ 37715 0. 0. HERA-I data

]37715,51245] 1.92 0.17 HERA-II positron data

[52258,60000[ 1.33 0.20 HERA-II electron data

≥ 60005 1.92 0.17 HERA-II positron data

Table 5.5: Beam spot positions (in centimeters).

Beam Spot

The beam spot is the 3-dimensional space where the collision interaction takes place

and it varies for different run types. The z position of the beam spot is measured as

the z value of the primary vertex. The x and y positions are measured from primary

tracks and listed in the table 5.5:

Decay Length

The decay length is the distance between the beam spot and the secondary vertex

where the K0
S decays into two pions as illustrated in figure 5.2. In this analysis it

always refers to the absolute distance in the 3-dimensional space. The K0
S decay

length distribution of a HERA-II data sample after selection is shown in figure 5.7

(a).

The relation between decay length and lifetime is described in equation 5.3: [50]

l =
p

M
· c · t =⇒ c · t = l · M

p
(5.3)

where l is the experimental measurement of the decay length. p is the momentum.

M is the invariant mass, t is the life time and c is the speed of light.

In order to find out the mean life time of the decay particle, the decay length l dis-

tribution needs to be transformed into life time. Multiplied by the speed of light it

gives the c · t distribution. The number of decayed particles A from original A0 in a

given time t has an exponential decay distribution as in equation 5.4:
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A = A0e
− c·t

c·τ (5.4)

An exponential one dimensional χ2 fit on the c · t distribution is shown in figure 5.7

(b) on the same HERA-II data sample. The fit function is therefore eConstant+Slope·t.

The reason that the ‘Constant’ parameter is placed in the power bracket instead of

in front of the exponential is to correspond to the fit parameter in figure 5.7. The fit

range is from 1 cm to 10 cm to be away from the left threshold region.

The mean life time τ can be written as a distance c · τ , which is therefore found

to be − 1
slope

= 2.59 ± 0.23 cm from the fit result, which in turn corresponds to

(0.8639 ± 0.07) × 10−10 second.

The mean life time measured agrees well with the world measurement average of

0.8953 ×10−10 second, corresponding to ≈ 2.6841 cm [45], whereby more sophisticated

measurements were performed, and factors like the interference with KL were taken

into account.

Pointing Back to the IP

Tagged as Dxy and Dz in figure 5.2, these two variables indicate the closeness of the

primary interaction point (IP) to the K0
S flight direction, projected on the x-y plane

and z axis respectively. Dyz is the same variable projected on the y-z plane.

The cut requirements Dxy < 0.4 and Dz < 0.6 are applied to the HERA-I data, as

seen in figure 5.8.

Collinearity Cut

As illustrated in figure 5.2, the collinearity angle is the angle between the candidate

K0
S momentum vector and the vector connecting the interaction point and the K0

S
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Figure 5.7: (a) shows the distribution of decay length of K0
S. (b) shows the cor-

responding distribution of the K0
S life time (×c). The superimposed curve is an

exponential fit.

secondary decay vertex in the 3-dimensional system. If it is projected on the x-y

plane, it is noted as θxy, or called the 2-dimensional collinearity angle.

For the 2-dimensional case, figure 5.9 shows that a cut at 0.12 removes most of the

non-K0
S and Λ backgrounds. The distribution of a HERA II sample collinearity angle

in the x-y plane is shown in figure 5.10 after the final cuts (except collinearity cut).

In this analysis for the entire HERA data, the 2-dimensional collinearity angle is

required to be less than 0.12 and the 3-dimensional collinearity angle is required to
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Figure 5.8: A study of Monte Carlo in HERA-I DIS shows cuts on Dxy and Dz to

preserve the best signal/background ratios.

be less than 0.24.

Armenteros-Podolanski Cut

One type of K0
S contamination comes from V0 identification. V0 means the decay of

one particle into two particles, thus looking like ‘V’ in the detector. The two charged
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Figure 5.9: The 2-dimensional (upper plot) and 3-dimensional (lower plot) collinearity

angle distributions in Monte Carlo simulation for HERA-I data. The arrows indicate

the places of the cuts.

tracks cannot be identified with their particle type unless their dE/dx energy loss

properties are studied in low transverse momentum conditions. An example plot

from an OPAL experiment paper [49] is shown in figure 5.11, which demonstrates

the different energy loss patterns of μ, π, K, proton and electron particles at low

momentum ranges. Because of the low momentum limitation, particle identification

would need to be studied for this analysis, but the regular dE/dx method is below
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Figure 5.10: The 2-dimensional collinearity angle distribution in a HERA-II data

sample. The collinearity angle cut is marked with an arrow.

the efficient threshold for ZEUS. If the two charged tracks from the same secondary

vertex are assigned to be p(p̄) for higher momentum tracks and π−(π+) for lower

momentum tracks, the V0 candidate is reconstructed into Λ(Λ̄) baryons as proton is

heavier in mass than the pion. (See table 5.3).

A detailed note on the Armenteros-Podolanski plane derivation can be found in the

appendix 10.1 As shown in figure 5.12, which is a sample of HERA-I data on the

A-P plane, the bigger half ellipse in the plot are mainly V0 candidates of K0
S, as it

symmetrically decays into π+π− pairs, while the smaller half ellipses in the plot are

mainly V0 candidate of Λ(Λ̄), as it asymmetrically decays into proton/pion pairs.

It is worth mentioning that at low pT momentum region, the ellipse becomes flatter

into a line parallel to α, according to equation. 10.14. At this threshold region, the

sin θ∗ → 1 (θ∗ → π
2
), as defined in the appendix.
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Figure 5.11: dE/dx with respect to momentum distribution of a sample from OPAL

experiment [49].

As a tool to eliminate the Λ(Λ̄) contamination in the K0
S sample, a cut by requiring

pT > 0.11 GeV in the A-P plane is applied for the HERA-I data sample in plot 5.12

(a). For the HERA-II data sample, the above selection cuts are already sufficient to

remove Λ’s, as shown in 5.12 (b). These are the distributions before applying the

pT > 0.11 GeV cut in the A-P plane.

5.2.2 Additional Selection Cuts

A few extra cuts are applied after the selection cuts discussed above: The π track is

rejected if it has been identified by tracking as a primary track. The four tracks that

make up the two K0
S are checked to see all four tracks are unique to avoid tracks that

are repeatedly used to form two K0
S. A check is made to pick out the cases that any

of the π tracks is identified as an electron track by the electron finders. Overall the
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Figure 5.12: Armenteros-Podolanski(A-P) plane distributions with V0 candidates

with a HERA-I sample (a) and a HERA-II sample (b). The horizontal line on plot

(a) indicates where the cut is. ‘Alpha’ is defined in appendix 10.1.

K0
S sample of large statistics are very ‘clean’, containing mostly true K0

S particles.

Figure 5.16 shows that there are still some combinatorial background.

5.2.3 K0
S Invariant Mass Distributions

The invariant mass of K0
S is calculated by assigning the mass of a π to the two

decay products from the same secondary vertex. Equation 5.5 is the mass-energy-

momentum equation in general relativity:

M2 = (E1 + E2)
2− | p1 + p2 |2, E2

i = m2
π + p2

i (5.5)

In the equation, M is the invariant mass of the K0
S candidate, Ei and pi are the

energies and momentum vectors of the two π candidates, and mπ is the mass of a

pion.

Figure 5.13 shows the K0
S invariant mass distributions for events with as least two K0

S

after all previous selection cuts. Dots are the data points with 1 MeV bin width. The



5 Event Selection and Reconstruction 75

Figure 5.13: K0
S mass distributions of HERA-I (a) and HERA-II (b) data with fits.
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lines are χ2 fits with two bifurcated Gaussian functions, which are explained below

in equation 5.6 and 5.7 where σA and σB are the Gaussian widths on each side of the

mean value X̄, which is common to both Gaussians:

AREA · 2 · σA

σA + σB
/(
√

2π · σA) · e−0.5 (X−X̄)2

σ2
A for X < X̄ (5.6)

AREA · 2 · σB

σA + σB
/(
√

2π · σB) · e−0.5 (X−X̄)2

σ2
B for X ≥ X̄ (5.7)

The dashed line is the mean value of the mass from the fit while the dotted line is the

world measurement average from the Particle Date Group (PDG) [5]. The ‘shift’ is

the difference between the PDG and the fit mean. The arrows on the plots indicate

where the invariant mass cuts are applied.

The overall fit is the sum of the two bifurcated Gaussians over the central two sigma

regions of the spectrum. As indicated in the plots, the fit mean precisely agrees

with the PDG world averages in plot figure 5.13 (a) for the HERA-I data sets. But

a notable lower shift of about 2.64 MeV is observed for the HERA-II data sets in

plot 5.13(b). The reason for this is that the HERA-I offline K0
S reconstruction soft-

ware had made corresponding corrections to the track momenta due to the magnetic

field by multiplying all track momenta with a correction factor α as in figure 5.14.

The correction factor value for each particular running period was obtained from a

dedicated K0
S analysis done in the past. But this correction has not yet been done

for the HERA-II data sets, and therefore it has to be done manually according to

the following procedure: The K0
S invariant mass spectra for each HERA-II running

period were plotted and fitted. The mass shifts for each year were found out. As

shown in figure 5.14, a factor was applied to the track momenta to correct the mass

assuming px, py and pz the same behavior. The correction factor values listed here

were found by a stepping scan algorithm until the fit mean agreed with the world

average.

The overall result after the correction and all selection cuts including the mass cut

with combined HERA-I and HERA-II data sets is shown in figure 5.15. The fit is not

jeopardized from the chopped tails on the sides as only the central parts are fitted.
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Figure 5.14: The α factors used to correct track momentum in different running

periods. ‘e’ refers to electron-proton beams running. ‘p’ refers to positron-proton

beams running.

The mass shift has been controlled within a negligible level of 0.1 MeV. The values

for the mean mass from the fit is 497.49 MeV. The mean sigma width of the mass

distribution is found to be around 4.10 MeV after weighing the left sigma and right

sigma values on both sides of the mean with their fitted areas. These values are in

agreement with the PDG value (mass = 497.614 MeV) and detector resolution. The

sample contains 1300509 K0
S’s. The K0

S mass spectrum with tails (no mass cut) that

can demonstrate the background level is shown in figure 5.16 for the complete data

set.

5.2.4 Λ Contamination

The two tracks with opposite charges from the secondary vertex are assigned to be

π± to reconstruct K0
S as described in the above sections. But the decay particle

identification is not to be determined without looking into their dE
dx

distributions.

Unfortunately this method does not work well in this momentum range. Therefore

if the two tracks are assigned to proton and pion pairs, the mother would be Λ(Λ̄).

e+e− pairs are also very likely to be produced when particles hit the steel or other

metal structures in the detector. So the two tracks could be e+e− pairs as well.

As shown in figure 5.17 (a), the 2-dimensional distribution of K0
S vs Λ mass at the

stage where only rough pre-selection cuts have been applied. A large contamination

of Λ’s can be seen at the left region, while the K0
S signals are located vertically at

the center around 0.5 GeV as expected. Plot (b) is the distribution after all selection
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Figure 5.15: K0
S mass distributions with mass cut on the full HERA data. ‘Shift’=

‘Fit mean’ - ‘PDG mean’

cuts described above (but mass cut), and a tiny portion of Λ’s still remains. So a cut

to reject events with Λ invariant mass below 1.121 GeV will sufficiently remove this

part of contamination as the Λ mass is 1115.683 MeV (see table 5.3).
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Figure 5.16: The final sample of K0
S mass distribution (without mass cut).

5.2.5 e+e− Mass Separation

For the case of e+e− pair contamination, similar to the above M(Λ) cut, the invariant

mass cut M(ee) > 0.05 GeV is applied to further remove such contaminations. The

invariant mass for e+e− (on the y axis) vs K0
S (on the x axis) is shown in figure 5.18

with a HERA-II sample. Plot (a) is after preselection cuts. Plot (b) is after all

selection cuts (except M(ee) > 0.05). The preselection cuts are a series of loose

kinematic cuts that were applied in the initial event selection to reduce the data size

for easier further processing. It shows that the other selection cuts have sufficiently

removed the e+e− pair contaminations already.
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Figure 5.17: The invariant mass distributions of Λ vs K0
S. (a) before cuts. (b) after

cuts except the mass cut.
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Figure 5.18: Scattered plots of e+e− mass against K0
S mass. (a) is after preselection

cuts. Plot (b) is after all selection cuts (except M(ee) > 0.05).

The four plots in figure 5.19 are the secondary vertex positions (secx and secy) in the

x-y plane. Histograms (a) and (b) are the distributions of the x and y positions after

pre-selection cuts. Plot (c) is the scattered plots of (a) and (b). It is clear that a

sudden increase of secondary vertex position density forms a ellipse on the scattered
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Figure 5.19: The secondary vertex positions in HERA-I data. (a) and (b) are the

distributions of secondary vertex position x and y. (c) is the scattered plot of x

against y. (d) is after all selection cuts.

plot, with a distance of from 7 to 10 cm. The distances match the elliptical beampipe

and inner cylinder radius of the VXD, which is around 9.9 cm. The scattered x-y

distribution after all selection cuts is presented in plot (d) as a unified cone shape

where the e+e− production from secondary interactions are excluded.

For HERA-II, even though more materials have been added around the beampipe,

the enhanced offline reconstruction software has done a great job of picking out these

kinds of backgrounds and eliminating such events. So the vertex positions (d) after
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Figure 5.20: The secondary vertex positions in HERA-II data. (a) and (b) are the

secondary vertex positions of x and y. (c) and (d) are in 3-dimensional and log scale

before and after selection cuts respectively. See text for details.

pre-selection (in figure 5.20 (a)(b)(c)) and after all selection cuts (in figure 5.20 (b))

show no sign of significant increase of secondary vertices at certain distances especially

at the beam pipe position, even when presented at log scale.
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5.3 Event Display Examples

Unlike the example event shown in figure 3.17, which is a particular case with less

than a dozen tracks and an easy to identify a secondary vertex, a more general DIS

event is shown here in figure 5.21 containing another well identified K0
SK

0
S pair in a

more active environment.
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Chapter 6

Results and Discussion

This chapter describes the investigation of the K0
SK

0
S resonance states in the anal-

ysis. The invariant mass spectra will be shown and discussed, as well as various

fitting methods. The uncertainties will be studied. Results will be compared with

measurements from other high energy experiments around the globe in chapter 7.

The K0
SK

0
S invariant mass distribution was reconstructed by combining two K0

S can-

didates selected in the mass window of 481 MeV ≤ M(π+π−) ≤ 515 MeV. Tracks

used for the K0
SK

0
S pair reconstruction were required to be uniquely assigned to each

K0
S in the K0

SK
0
S pair, i.e. no double counting. The K0

SK
0
S resonance invariant mass

is calculated by the same formula as single K0
S invariant mass and is reconstructed

as the following:

m2 = (E1 + E2)
2− | p1 + p2 |2 (6.1)

E2
i = m2

K0
S

+ p2
i (6.2)

where m is the invariant mass of the K0
SK

0
S resonance, Ei and pi are the energy

and momentum vector of each of the two K0
S candidates. The raw invariant mass

distributions of K0
SK

0
S for HERA-I and HERA-II data sets are shown in figures 6.1

(a) and (b), respectively. The HERA-I and HERA-II combined result is shown in

figure 6.2 and will be used in the analysis that follows. The vertical bars on each

data point of the histograms in figures 6.1 and 6.2 are the statistical errors only.
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Figure 6.1: The K0
SK

0
S invariant mass distributions of HERA-I (a) and HERA-II (b)

data sets.

6.1 Fitting Methods

Three enhancements are seen at around 1300, 1500 and 1700 MeV. The distribution

of the invariant mass, m, was fitted as a sum of resonances and a smoothly varying

background U(m). Each resonant amplitude was given a relativistic Breit-Wigner

form [51]:

F (m) =
M

√
Γ

M2 −m2 − iMΓ
, (6.3)

where M and Γ are the resonance mass and width. The background function used is

U(m) = A · (m− 2mK0
S
)B · exp

(
−C(m− 2mK0

S
)
)
, (6.4)

where A, B and C are free parameters and mK0
S

is the K0
S mass [5]. The K0

SK
0
S

mass resolution is about 12 MeV for the mass region below 1800 MeV and its impact

on the extracted widths is small compared to the expected widths of the states [1].

Therefore, the resolution effects were ignored in the fit.

The left threshold region around 980 MeV is difficult to work with due to the steep

acceptance gradient, therefore all fits start from 1.1 GeV, and ends at 2.7 GeV. There
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Figure 6.2: The K0
SK

0
S invariant mass distribution with the full HERA data sample.

The arrows indicate the presumed states.

is no visible enhancement at higher mass regions.

As a standard procedure to fit any spectrum, it is important to evaluate the back-

ground to see if the background function can fit the spectrum with a satisfactory χ2

over the whole range. The results will be introduced in the following section.
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6.2 Fitting with Incoherent Breit-Wigner functions

In the fit of the whole spectrum with Breit-Wigner functions (equation 6.3) on the

three signal regions at around 1300, 1500 and 1700 MeV on top of the background

function (equation 6.4), the Breit-Wigner functions are treated as in-coherent, i.e.

they are first assumed to be independent from each other.

The enhancement at around 1700 MeV is close to the peak at around 1500 and it is

not visually clear if it is indeed a signal peak of one or more certain state(s). The next

step is to fit the two peaks at around 1300 and 1500 MeV regions with in-coherent

Breit-Wigner functions on top of the background function. The results are presented

and listed in figure 6.3. The solid line is the result of the fit described as above and

the dashed line represents the background function. The double peaked curve line at

the bottom of the plot represents the two Breit-Wigner functions. The outcome of

the fit is listed on the plot too. A χ2/ndf of 2.08 reflects the goodness of the fit to

the spectrum. χ2 is defined as:

χ2 =
n∑

i=1

(
datai − F (m)

σi
)2 (6.5)

where i loops through the bins in the histogram for fitting and σ is the standard

deviation of measurement i. χ2 is found to be 195.52 in this fit. ndf is the number of

degree of freedom, where in this case, it is calculated as 107− 13. 107 is the number

of bins in the histogram and 13 is the number of free parameters in the fit function.

One can also see the listed mean mass and width values of the first and second states

and the un-normalized entry numbers under the second peak. A small ‘bump’ seems

to lean on the right shoulder of the second peak signal.

To evaluate the goodness of the background function, the χ2 of the background fit on

the regions from 1.1 to 1.15 and from 1.9 to 2.7 GeV on the K0
SK

0
S mass spectrum

is found to be 52.3 over 60 bins with 3 free parameters in figure 6.3. This indicates

that the background function fits the background distribution well.

To give a clearer look into the bump mentioned above, a background subtracted plot

in figure 6.4 is made by subtracting the invariant mass spectrum with the background
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Figure 6.3: The measured K0
SK

0
S invariant-mass spectrum in ep collisions assuming

two states around 1300 and 1500 MeV. The upper solid line is the result of the fit

described in the text and the dashed line represents the background function. The

lower dotted line is the extracted signal.
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function from the fit, so that only the signal functions and residuals of the data

remain. From this plot one can clearly see a signal structure at around 1700 MeV.

The inclusion of a third Breit-Wigner to describe the structure is necessary to improve

the goodness of the fit.

Figure 6.4: This is the background-subtracted K0
SK

0
S invariant-mass spectrum from

the plot above; the result of the fit is shown as the upper dashed line. There is no

interference term in this fit, therefore the dotted line below is at zero.

Still treated as in-coherent functions, a third Breit-Wigner function is added to de-

scribe the bump at 1700 MeV region. The result from the fit is shown in figure 6.5

and the background subtracted plot in figure 6.6 respectively. A dramatic improve-

ment in terms of χ2/ndf ≈ 0.93 (was 2.08) can be seen in this new fit. The statistical
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significance (defined as the ratio of area
error

of the third signal), which is attributed to

f(1710) is found to be 2828/240 ≈ 12. The first peak from the left most is attributed

to a mixed state of f2(1270) and a0
2(1320) (see section 2.2). The second peak is

attributed to f
′
2(1525).

Figure 6.5: The measured K0
SK

0
S invariant-mass spectrum assuming three resonant

states. The upper solid line is the result of the fit described in the text and the dashed

line represents the background function. The lower dotted line is the extracted signal.

Throughout HERA-I and all periods of HERA-II, the existence of the three structures

can be seen consistently. The invariant mass spectra of K0
SK

0
S are shown in figure 6.7

for each period. For HERA-II data, STT detector information, Kalman filter and

DAF revertexing techniques are also used. (See section 3.2.1)

The numbers of events for deep inelastic scattering (DIS) and photoproduction (PHP)

of each running period are summarized in table 6.1.
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Figure 6.6: This is the background-subtracted K0
SK

0
S invariant-mass spectrum from

the plot above; the result of the fit is shown as the upper dashed line. There is no

interference term in this fit, therefore the lower dotted line is at zero.
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Figure 6.7: K0
SK

0
S invariant mass spectra in all running periods of HERA-I and

HERA-II. e stands for electron-proton beam collisions. p stands for positron-proton

beam collisions.
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HERA-I HERA-II

years 1996-2000 2004 2005 2006e 2006p 2007

PHP 107503 39238 169410 56784 108304 42282

DIS 17106 6343 17645 7720 13365 6094

Table 6.1: Numbers of events breakdown in different running periods over HERA-I

and HERA-II for photoproduction and deep inelastic scattering.

6.3 Fitting with Interference Function

As seen in the previous section 6.2, the K0
SK

0
S mass spectrum is fitted with three

independent Breit-Wigner functions on top of the background function. The goodness

of the fit is satisfactory. However if one takes a closer look at the area between the

first two states, as shown in figure 6.8, there are five data points far out of the same

side of the fit line. The fit significantly fails to describe the valley area between the

two states. There are at least two reasons for this problem, listed as follows.

One is that the χ2 fit treats every point along the spectrum equally because of the

similar uncertainty on each point. This gives the background function a dominant

role in the fit, since the signal is clearly smaller than the background. The χ2 fit

is therefore less sensitive to the signal itself. The background function has to be

well determined on a large mass range with the long tail distribution up to 2.7 GeV

as a long level arm, otherwise the Breit-Wigner function that describes the signals

would be sitting on an unstable or poorly determined background function, and the

mean/width values from the fit would be compromised. One solution was to try to

fix the background fit parameters to the values obtained without signal functions.

But it did not successfully enhance the signal sensitivity in the fit.

The other reason is as illustrated in figure 6.8, the three states f2(1270)/a0
2(1320),

f
′
2(1525) and f0(1710) are expected to interfere with one another due to their quark

composition and quantum number properties. To resolve the dip area between

f2(1270)/a0
2(1320) and f

′
2(1525), amplitudes with one arbitrary phase need to be

added.
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Figure 6.8: A zoom-in look at the region between the first two peaks on the K0
SK

0
S

invariant-mass spectrum.
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So an extra interference term was added in the region between f2(1270)/a0
2(1320)

and f
′
2(1525). The interference term consists of two parts: an amplitude and a

phase [51, 53]. A detailed note on how the interference function is derived can be

found in appendix 10.2.2. The result of this fit is shown in figure 6.9.

Figure 6.9: K0
SK

0
S invariant mass spectrum with interference term fit.

The background subtracted plot is shown in figure 6.10. The dashed line is the

interference term function from the fit. The overall goodness of the fit is improved

in term of χ2. The valley between f2(1270)/a0
2(1320) and f

′
2(1525) is also now better

described by the fit. However this new fit can not lead to a convincing result because

of one big problem. The interference term can not be constrained with a stable

amplitude and phase combination. In another word, the amplitude and phase terms

could have infinite combinations and still give a reasonable χ2 fit. New ideas have to

be introduced to solve this issue.
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Figure 6.10: Background subtracted of K0
SK

0
S invariant mass spectrum with interfer-

ence term fit.
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Coherent states

f2(1270) a0
2(1320) f

′
2(1525)

Isospin I = 0 1 0

Quark Content 1√
2
(uū+ dd̄) 1√

2
(uū− dd̄) ss̄

Charge Factor 1
2
(2

3
× 2

3
+ 1

3
× 1

3
) 1

2
(2

3
× 2

3
− 1

3
× 1

3
) 1

3
× 1

3

Amplitude Ratio 5 BW -3 BW 2 BW

Table 6.2: Coherent states properties. ‘BW’ stands for Breit-Wigner function.

6.4 Fitting with Coherent Breit-Wigner Functions

Based on a private communication with H.J. Lipkin [54], and motivated by SU(3)

symmetry arguments, a theoretical interpretation shows that the decays of the ten-

sor (JP = 2+) mesons f2(1270), a0
2(1320) and f

′
2(1525) into the two pseudoscalar

(JP = 0−) mesons K0
SK

0
S are related by SU(3) symmetry [55] with a specific interfer-

ence pattern. The intensity is the modulus-squared of the sum of these three ampli-

tudes plus the incoherent addition of f0(1710) and a non-resonant background. The

predicted coefficients of the f2(1270), a0
2(1320) and f

′
2(1525) Breit-Wigner amplitudes

for an electromagnetic production process are, respectively, +5, -3 and +2 [55, 54].

The isospin, quark content and corresponding charge factor of each state are listed

in table 6.2. All the resonance masses and widths were allowed to vary in the fits,

where the fit function is illustrated in equation 6.6.

Func. = a · {5 · A1 · BW [f2(1270)] − 3 · A2 · BW [a0
2(1320)] + 2 · A3 · BW [f

′
2(1525)]}2

+ b · {BW [f0(1710)]}2

+ c · Background U(m)

(6.6)

BW stands for Breit Wigner functions. U(m) is the background function. a, b and c

are the free parameters in the fit and found to be 884.6 ± 88.6, 2572.3 ± 626.9 and

55153 ± 2191 respectively. A1, A2, and A3 are the detector acceptances for the first

three states. They are taken as A1 = A2 = A3 = 1 after study shows that the events

lost in the threshold effect cause minor effect on A1 while A2 = A3. Their effects are
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still negligible in the measurement of the mean and width from the fits.

The results of both incoherent (section 6.2) and coherent (this section) fits are sum-

marized in table 6.3. The quality of both fits, characterised by the χ2 per number of

degrees of freedom, is quite satisfactory. Moreover, this new fit describes better the

spectrum around the f2(1270)/a0
2(1320) region and, unlike the fit without interfer-

ences, reproduces the dip between f2(1270)/a0
2(1320) and f

′
2(1525). For this reason

and justified by the theoretical motivation, this fit is preferred. It is shown in fig-

ure 6.11 (a). The background subtracted mass spectrum is shown in figure 6.11 (b)

together with the fit.
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6.5 Uncertainties

As described in chapter 5 on event selection, this inclusive measurement considers all

HERA data. The statistics are very large and hence the statistical uncertainties have

been minor and negligible compared to systematic uncertainties. Both are shown in

table 6.3.

The systematic uncertainties for states f
′
2(1525) and f0(1710) in both the incoherent

and coherent fits are investigated. Part of the reason why f2(1270)/a0
2(1320) is not

studied for systematics is that since this mixed state is situated on the threshold

region of K0
SK

0
S invariant mass, the systematic error is expected to be large. This

state has also been well measured by other experiments [5]. Another reason is that

the state this measurement focuses on is the state f0(1710). Based on the facts

that f
′
2(1525) has a significant signal peak with wide tails on which the f0(1710) is

sitting on, while the f2(1270)/a0
2(1320) is rather away from f0(1710), it is natural to

assume that the systematics of f
′
2(1525) will have much more impact than that of

f2(1270)/a0
2(1320) on the f0(1710) state.

A complete series of systematic checks have therefore been done on states f
′
2(1525) and

f0(1710). They are briefly summarized in table 6.4 for the incoherent fit and table 6.5

for the coherent fit as described in the previous sections 6.2 and 6.4, respectively.

The values on the line starting with ‘Default’ are the nominal values from the fits in

section 6.2 and 6.4. The items below describe briefly what condition has been changed

to see the outcome of the results. These results are listed in bold, their deviation from

the nominal values are listed in percentage and the absolute deviations are columned

into ‘Lower’ if the new outcome is smaller than the nominal value or columned into

‘Upper’ if otherwise. The overall systematic uncertainties for both the peak mean and

the width measurement are summarized in the bottom line by adding in quadrature

assuming no correlations between them.

e =

√√√√ N∑
i=1

(Pi −Default)2 (6.7)

More details will follow to explain these systematic checks.



102 6.5. Uncertainties
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Figure 6.11: (a) The measured K0
SK

0
S invariant-mass spectrum in ep collisions (upper

points). The solid line is the result of the coherent fit and the upper dashed line

represents the background function. (b) Background-subtracted K0
SK

0
S invariant-

mass spectrum (lower points); the result of the fit is shown as a dotted line below.

The data in this plot is the final result and is slightly different from the data in

previous plots due to different selection cuts, however the difference is within the

systematic errors.
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6.5.1 Kinematic Cut Variable Uncertainties

These checks are done by varying the kinematic variables which have been used to

select the events with at least two pure K0
S in chapter 5. The variables are varied

to both tighter and looser cuts by approximately one sigma in resolution to see how

sensitive the results are to these cuts.

� pT track: This varies the cut on the transverse momentum of the tracks by up

and down 0.8%. (Refer to section 5.2.1)

� K0
S mass cut: The window cut on the K0

S invariant mass is tightened or

loosened by one sigma of the spectrum. (Refer to section 5.2.3)

� η track cut: This varies the cut on the pseudorapidity of the tracks by up and

down 0.05. (Refer to section 5.2.1)

� Collinearity cut: This varies the cut on the collinearity of the tracks by up

and down 1%. (Refer to section 5.2.1)

� Momentum correction for K0
S mass: This check varies the momentum

correction by up and down 0.5%, which has been used to correct the K0
S mass

shift. (Refer to section 5.2.3)

� Angular resolution: The θ and φ angles of the tracks are varied by 1.8◦ to

check angular sensitivities. (Refer to section 5.2.3)

The cut variations are based on previous ZEUS studies [1, 46, 47].

6.5.2 Fitting Method Uncertainties

The mean and width values are obtained from the two fitting methods as described

in the section 6.2 and 6.4. The states fitted with Breit-Wigner functions have inter-

ference terms and are very close to one another. This would give relatively larger

uncertainties to the measurement. Therefore these uncertainties are evaluated by
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fixing the fitting parameters (the mean and width) of the neighboring state Breit-

Wigner functions. For the measurement of state f
′
2(1525), the mean and width on the

Breit-Wigner function for state f0(1710) are fixed to PDG values in this systematic

check. Similarity for the measurement of state f0(1710), the mean and width on the

Breit-Wigner function for state f
′
2(1525) are fixed to PDG values in this systematic

check. Indeed that results show that the systematic errors from the fit are larger than

the systematic errors from the kinematic cuts.

For fitting with incoherent Breit-Wigner functions, the interference terms between the

states are not described by the fit. Therefore using the interference term as introduced

in section 6.3 contributes as part of the systematic error check. The result shows that

this is the most significant error in the measurement of both f
′
2(1525) and f0(1710).

All fits both incoherent and coherent are redone by using ‘Maximum Likelihood Esti-

mation (MLE)’ method [56] as an indication of fit goodness instead of the ‘minimizing

χ2’ method. However the error from this is negligible.

An interesting check on all the fits is called “Fitting with phase space”. It was mo-

tivated by a paper measuring ρ0 and ω [58]. A plot from the paper is shown in

figure 6.12. As illustrated in the figure, the ρ0 invariant mass spectrum has an de-

clining curve background function where the signal peak is situated on. Due to the

fact that the signal peak is wide, the measurement on the mean value of the peak

from the Breit-Wigner function will be affected as the Breit-Wigner function is su-

perimposed on top an asymmetric slope. The mean value from the fit thus will be

shifted to the downhill side than its actually real value. To compensate this effect,

a Phaser-Space (PS) term is brought into the Breit-Wigner function (BW ). The fit

done in figure 6.12 is as follows:

Function(m) = a · BW · PS + b ·BG (6.8)

where the a, b are free parameters and BG is the background function. The Phase

Space (PS) function has the same shape of the background function.

To evaluate how the phase space affects the f0(1710) measurement in this analysis,

the procedure described above is taken on f0(1710). The new functions for both in-

coherent and coherent fits are modified from equation 6.5 into equations 6.9 and 6.10
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Figure 6.12: (a) ρ0 invariant mass distribution. The curve shows the fit of the back-

ground function;(b) is the background subtracted fit on the peak. [58]
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using equation 6.6.

Function(Incoh.) = a · {BW [f2(1270)/a0
2(1320)]}2 + b · {BW [f

′
2(1525)]}2

+ c · {BW [f0(1710)]}2 · PS
+ d · Background U(m)

(6.9)

Function(Coh.) = a · {5 · BW [f2(1270)] − 3 · BW [a0
2(1320)] + 2 · BW [f

′
2(1525)]}2

+ b · {BW [f0(1710)]}2 · PS
+ c · Background U(m)

(6.10)

where a, b, c, d are free parameters, BW is the Breit-Wigner function, PS is the

phase space term and U(m) is the background function.

Results from the fit prove the case that as seen in table 6.4 and 6.5 the phase space

has a negligible effect on the state f
′
2(1525) measurement both on the mean and

the width as expected. While for state f0(1710), the mean is 2.6 MeV higher and

the width is 3.4 MeV smaller than without PS for the incoherent fit. The mean is

1.4 MeV and the width is 0.1 MeV larger than without PS for the coherent fit. In

both cases the results confirmed the expectation from the paper [58] that under the

same assumption the mean values would actually be larger.

All systematic checks are summarized by adding in quadrature in table 6.4 and 6.5.

The background function used in the second analysis was of a different form. The

comparison shows that the uncertainty from the background function is within the

overall range of the systematic uncertainties.

6.6 Discussions

Looking back on the incoherent and coherent fits on the K0
SK

0
S invariant mass spec-

trum as described in section 6.2 and 6.4 and summarized in table 6.3, the a0
2(1320)

mass in the coherent fit is below the PDG value [5]. A similar shift, attributed to

the destructive interference between f2(1270) and a0
2(1320), was also seen in a study
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of resonance physics with γγ events [55]. An incoherent fit yields a narrow width for

the combined f2(1270)/a0
2(1320) peak, as also seen by the L3 Collaboration [59]. A

coherent fit yields widths close to the PDG values for all observed resonances. See

chapter 7 for a more detailed discussion. The fitted masses for f
′
2(1525) and f0(1710)

are also somewhat below the PDG values as summarized in table 6.3.

In summary, the systematic uncertainties of the peak position and the width, deter-

mined from the fit shown in figure 6.11, were evaluated by changing the selection

cuts and the fitting procedure. Variations of minimum track pT , track pseudorapid-

ity range, track momenta by ±0.1%, track angles by ±0.5%, accepted π+π− mass

range around the K0
S peak and collinearity cuts were done. In addition a maximum

likelihood fit was used instead of the χ2 fit and event selection cuts were varied.

The largest systematic uncertainties were: fitting with fixed PDG mean and width

for f
′
2(1525) affects the f0(1710) width by -19 MeV and the variation of the track

momenta affects the f0(1710) width by +7 MeV. All individual checks are listed in

table 6.4 and 6.5. The quadratically combined systematic uncertainties are included

in table 6.3.

6.6.1 Comparison with Second Analysis

In the ZEUS collaboration, all analyses that get published have to be crossed-checked

with a second analysis, where independent different approaches should be taken to

verify the results. The second analysis was done by Dr. Sergei Chekanov using C++

programming (instead of FORTRAN) for event selection and fitting with slightly

different cuts. The result of the K0
SK

0
S invariant mass spectrum with incoherent

Breit-Wigner fit to be compared with figure 6.5 is shown in figure 6.13.

The fitting results in terms of f
′
2(1525) and f0(1710) are listed in table 6.6. One can

see that good agreements have been achieved between both analyses. [52, 57]
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Figure 6.13: This shows the K0
SK

0
S invariant mass distribution with full HERA data

sample from the ‘second analysis’.

6.6.2 K0
SK

0
S Invariant Mass Spectrum in DIS

To see how the K0
SK

0
S invariant mass spectrum looks like in a particular phase-space,

the DIS sub-sample has been selected as described in section 5.1.1. After applying all
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C. Zhou S. Chekanov

Comparison Incoherent BW Incoherent BW

χ2/ndf 96/95 151/128
PDG 2007 Values

in MeV Mass Width Mass Width Mass Width

f ′
2(1525) 1523 ± 3+2

−8 71 ± 5+17
−2 1521 ± 3 71 ± 6 1525 ± 5 73+6

−5

f0(1710) 1692 ± 6+9
−3 125 ± 12+19

−32 1689 ± 9 121 ± 15 1724 ± 7 137 ± 8

Table 6.6: Results from incoherent BW fit compared to ‘second analysis’ (by S.

Chekanov) and PDG. States f2(1270)/a0
2(1320) is not provided by the second analysis

and thus not included in this comparison table.

selection cuts, it is found that DIS events are only about 10% of the inclusive selection

sample as shown in figure 6.14. The invariant mass spectrum with an attempted fit

with three incoherent Breit-Wigner functions and background function is shown in

figure 6.15.

One can see that the signals are mixed with background fluctuations due to limited

statistics. The fits on the peaks are not satisfactory. The statistical significance is not

good for any of the states. Therefore DIS spectrum can not be used for a convincing

measurement on f2(1270)/a0
2(1320), f

′
2(1525) or f0(1710).

6.6.3 The Opening Angle Between Two K0
S

cos θkk

As motivated by the previous ZEUS K0
SK

0
S paper [52], a cut on the opening angle of

the two K0
S holds a clue on the threshold effect. It is referred to as cos θkk, the cosine

of the angle between the two K0
S momentum vectors in the laboratory frame. The

two K0
S’s would be back-to-back in the center of mass frame. A cut requiring that

cos θkk < 0.92 was believed to be able to remove the low mass acceptance effects,

reduce the background of broken tracks that might have been mistakenly combined

into two K0
S, and remove Bose-Einstein correlation effects. In this analysis, the
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Figure 6.14: This shows the K0
SK

0
S invariant mass distribution with full HERA data

sample. The shaded areas are deep inelastic scattering (DIS) and photoproduction

(PHP) events.

K0
SK

0
S invariant mass spectrum for the whole HERA data is shown in figure 6.16

without and with the cos θkk cut. It can be seen that events with cos θkk > 0.92

are basically all at the threshold region close to 1 GeV. Therefore this cut is not

used in this analysis since it would affect the threshold region and the contribution

from the states like the f(980) and f2(1270)/a0
2(1320). The background function

would be dramatically changed and thus the Breit-Wigner fits on the f
′
2(1525) and

f0(1710) could be jeopardized at the threshold. This cut is therefore not included in

the systematics.



6 Results and Discussion 113

Figure 6.15: This shows the K0
SK

0
S invariant mass distribution with an attempted fit

in DIS with the full HERA data sample.

θ1 − θ2

As illustrated in the diagram of figure 6.17, the angles of each of the two K0
S with

respect to their vector sum, which is supposed to be the direction of the resonance,

are noted as θ1 and θ2 in the laboratory frame.

This study is done using the whole HERA-II sample. The first step is to plot the

distribution of θ1 − θ2, as shown in figure 6.18 (b). As expected, the distribution

peaks at zero and is symmetric. A rough estimation shows that the mean and width

(sigma) of the peak are 0.1126 and 0.76 respectively. The second step is to find out

how correlated the K0
SK

0
S invariant mass spectrum is to the θ1 − θ2 angle difference.

Three cuts corresponding to |θ1 − θ2| < 2 sigma, 1 sigma and 0.5 sigma width are

applied to the selection, and marked as full circles, triangles and open circles in

figure 6.18 (a). The line is the nominal K0
SK

0
S invariant mass spectrum for HERA-II

data. The dashed arrows in plot (b) show the position of the cuts on the θ1 − θ2

distribution.
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Figure 6.16: This shows the K0
SK

0
S invariant mass distribution with and without the

cos θkk cut on the angle between the two K0
S’s in the laboratory frame.

One can see that the cuts only affect the K0
SK

0
S invariant mass spectrum from

1.05 GeV up. Tightening the θ1 − θ2 angle differences in the double K0
S system

can not strengthen the signal, nor compress the background.

6.6.4 Combinatorial Background

From the event selection, the K0
S sample has been carefully selected to remove as

much as possible background contributions, like mis-identified K0
S, or Λs. From the

K0
S mass distribution in figure 5.16, one can see that the background level has been
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Figure 6.17: This diagram shows the angles θ1 and θ2 in the K0
SK

0
S system.

constrained to the very minimum. The large background on the K0
SK

0
S invariant mass

spectrum can not be from the single K0
S selections, in another word, contaminated

K0
S. The main source of background in K0

SK
0
S spectrum is therefore combinatorial

background, i.e. the combination of any two K0
S’s. The spectrum contains a large

number of background events in which the two K0
S selected are not the decay products

of a single resonance. One or two of the K0
S is(are) actually hadronization product(s)

of a particle. This combinatorial background is very hard to fight because of the

extremely short life time of the resonance that decays into two K0
S. The primary

vertex is very close to the secondary vertex for the K0
S. An attempt to reduce the

background from K0
S which actually are from the primary vertex is to check the

correlation between the K0
SK

0
S invariant mass spectrum to the decay length of the

two K0
S’s.

As shown in figure 6.19, a series of cuts have been made on the decay length l of both

the two K0
S’s in the system. The corresponding invariant mass spectra are plotted

with the cuts. The tightened cuts on decay length push the secondary vertex points

further away from the primary interaction points intended to eliminate background

of K0
S from primary tracks. However the results show that this can not improve

signal/background ratios as the further away secondary vertex cut eliminated almost

the same amount of background and signals.
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Figure 6.18: The K0
SK

0
S invariant mass distributions (a) when applying different cut

values (b) on |θ1 − θ2|. See text for more details.
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Figure 6.19: This shows the K0
SK

0
S invariant mass distribution with different decay

length cuts (in cm) as labeled on the plot.



Chapter 7

Comparison and Discussion

Amongst the f2(1270)/a0
2(1320), f

′
2(1525) and f0(1710) states measured in this analy-

sis, the f0(1710) is most interesting for reasons described in section 2.2. This glueball

candidate has also been measured in other high energy experiments and studied from

other decay channels as well. This chapter will compare the results and thus aim

to better understand the production mechanism of f0(1710), to provide a current

overview and to raise questions that call for answers in future exploration.

7.1 Comparison with the L3 Experiment

The first comparison is with a result [59] from the L3 experiment. The analysis was

done in LEP electron-positron storage ring. K0
SK

0
S final state production is studied

with the L3 detector via the reaction γγ → K0
SK

0
S. K0

S candidates are selected and

identified by secondary vertex reconstruction. The mass resolution for the π+π− mass

distribution is found to be σ = 8.0± 0.5 MeV. After all selections, 802 events remain

in the sample.

The K0
SK

0
S mass spectrum is presented in figure 7.1. Three distinct signal peaks can

clearly be seen over a very low background. f
′
2(1525) is the most dominant in the

spectrum while the f2(1270) and a0
2(1320) signals are smaller presumedly due to their

118
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Figure 7.1: Solid line is the maximum likelihood fit on the K0
SK

0
S mass spectrum.

Dashed lines are the fit of background and three Breit-Wigner functions on the signal

peaks. The arrows on the top show the corresponding mass regions of the states on

the spectrum. [59]

destructive interference [55]. Three incoherent Breit-Wigner functions are fitted on

the signal peaks. The background is fitted by a second order polynomial function.

The background contribution in figure 7.1 is much lower than in this analysis of

ep collision. There is also no state observed over 2 GeV in the spectrum in ep
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Comparison C. Zhou Incoherent BW L3 Incoherent BW PDG 2007 values

in MeV Mass Width Mass Width Mass Width

∗f2/a
0
2 1304 ± 6 61 ± 11 1239 ± 6 78 ± 19 – –

f ′
2(1525) 1523 ± 3+2

−8 71 ± 5+17
−2 1523 ± 6 100 ± 15 1525 ± 5 73+6

−5

f0(1710) 1692 ± 6+9
−3 125 ± 12+19

−32 1767 ± 14 187 ± 60 1724 ± 7 137 ± 8

Table 7.1: Comparison of this analysis to L3 and PDG values of mass and width.

∗f2/a
0
2 refers to f2(1270)/a0

2(1320).

collision. Specifically, the state ξ(2230), which is believed to be able to decay to

K0
SK

0
S was not observed in either analysis. The states present in the mass spectrum

show a large similarity both in terms of peak positions, shapes and relative production

rates. Like the fit with incoherent Breit-Wigner functions in section 6.2, the fit

in this L3 analysis can basically describe the signal peak distribution, but without

trying to reproduce the interference between f2(1270)/a0
2(1320) and f

′
2(1525). Even

though barely significant, there are three dots below the fit in the valley region of

f2(1270)/a0
2(1320) and f

′
2(1525) if studied closely. This confirms the constructive

interference found in this analysis. Comparing the mean values from the fit of the

two analysis, the f
′
2(1525) values are almost identical, while the f2(1270)/a0

2(1320)

value from L3 is slightly lower and the f0(1710) value is dramatically higher. The

widths from the L3 measurements are all larger than this analysis presumably from

experimental energy resolution. If the state in L3 on fJ(1710) is the same as the one

observed in this ZEUS analysis, it is not likely to be a glueball as theoretically it can

not be produced in this γγ interaction [51]. The mean and width of the states are

summarized in table 7.1. The L3 results have much better background conditions

which gives a smaller errors on the measurement of the states.

The production rates of the measured states among different experiments and decay

channels will be compared at the end of this chapter.
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7.2 Comparison with the TASSO Experiment

Back in the 1980s, the TASSO experiment investigated electron-positron collisions

at the DESY storage ring PETRA. An analysis studying K+K− and K0
SK

0
S pair

production in photon-photon collision is summarized in the paper [51]. It corresponds

to an integrated luminosity of 74 pb−1. The K+K− and K0
SK

0
S mass spectra are

shown in figure 7.2. The fit function for the two spectra is shown in equation 7.1,

taking into account the interferences between neighboring states, whereby BW stands

for Breit-Wigner function, U(m) is the background function and m is the invariant

mass:

Function = a · {5 · BW [f2(1270)] ± 3 ·BW [a0
2(1320)] + 2 · BW [f

′
2(1525)]}2

+ b · {BW [f0(1710)]}2

+ c · Background U(m)

(7.1)

According to SU(3) symmetry arguments [51], the ‘+’ sign of the second term applies

to the K+K− final state in figure 7.2 (a), while the ‘−’ sign applies to K0
SK

0
S in

figure 7.2 (b). The interference between the isovector (a2) and the isoscalars (f 0, f ′)

is destructive. The lines in both figures are the results of the fits described above.

The dashed-dotted curve is the contribution from the interference of the resonances

in figure 7.2 (a), the dashed line is the background contribution. In figure 7.2 (b), the

dashed-dotted curve is the total background and the dashed curve is an estimation

of the absolute non-K0
SK

0
S background contribution.

The means and widths are not given in the paper due to limited statistics. However

rough determination from the histograms in figure 7.2 yields the following numbers:

from (a), the first peak which might be the f2(1270)/a0
2(1320) state, has a mean value

of 1.31 GeV and a width of 140 MeV. The peak attributed to f
′
2(1525) has a mean

value of 1.52 GeV, a width of 60 MeV and area of about 87 entries.

From the K0
SK

0
S histogram in figure 7.2 (b), the largest peak attributed to f

′
2(1525)

has a mean of 1.52 GeV, a width of 100 MeV and an area of about 32 entries. The

peak attributed to f0(1710) has a mean value of 1.74 GeV, a width of 40 MeV and

an area of about 7 entries. The results are summarized in table 7.2 and compared to

PDG values.
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Figure 7.2: The TASSO invariant mass spectra with fits for K+K− (a) and K0
SK

0
S

(b). See text for details. [51]

Comparison C. Zhou Inc. BW TASSO PDG 2007 values

in MeV Mass Width Mass Width Mass Width

f ′
2(1525) 1523 ± 3+2

−8 71 ± 5+17
−2 1520 100 1525 ± 5 73+6

−5

f0(1710) 1692 ± 6+9
−3 125 ± 12+19

−32 1740 40 1724 ± 7 137 ± 8

Table 7.2: Comparison of this analysis to TASSO and PDG values of mass and width.

The TASSO values are roughly extracted from figure 7.2 (b), hence no error is quoted.

7.3 Comparison with the BES Experiment

A significant measurement on f0(1710) that has been included in PDG [5] is an

analysis [60] from the BES experiment in year 2006. The data was collected during

the BES II period. The BES large solid-angle magnetic spectrometer is located

at the Beijing Electron Positron Collider (BEPC). Partial wave analysis of J/ψ →
γπ+π− and J/ψ → γπ0π0 is performed with a total of 58 million J/ψ events. Strong

production of f2(1270), f0(1500) and f0(1710) states is observed and measured. Their

helicity amplitude ratios are determined by partial wave analysis. The invariant mass
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Figure 7.3: The BES invariant mass spectra with fits for π+π− (a) and π0π0 (b). The

crosses are the data, the histogram is the maximum likelihood fit and the shaded area

corresponds to the π+π−π0 background. [60]

spectra for π+π− and π0π0 with fit and background are shown in figure 7.3 (a) and

(b) respectively.

The spectra are fitted with seven resonance state candidates from 1.5 to 2.05 GeV.

The results for each Breit-Wigner fit on each resonance are shown in figure 7.4. The

last bottom two plots are the sums of all spin zero and spin two states respectively.

The results of the means and widths from the fit for the states of our interests are

compared with the results of this analysis in table 7.3 (a) and (b). There are no direct

comparisons for the states f0(1500) or f
′
2(1525). Direct comparisons for the states

f2(1270) and f0(1710) are however listed in table 7.3. A good agreement has been

found for state f2(1270), especially on the width. Notable differences can however be

seen for state f0(1710), both on mean and width. The PDG values lie between our

analysis and the BES results, which are much higher. An explanation from the BES

paper indicates that the 0++ state region around 1700 MeV could be a superposition

of both f0(1710) and f0(1790). Studies on J/ψ → φπ+π− and φK+K− [61] show a
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Figure 7.4: The BES invariant mass spectra of individual resonance components in

the fit for J/ψ → π+π−. See text for details. [60]

definite peak at 1790 MeV in π+π−, but not in K+K−. The production rates of the

various states are compared at the end of the chapter.

7.4 Comparison with a pp Experiment

A result is selected from the the WA102 experiment [13, 69] where centrally produced

K+K− and K0
SK

0
S final states are studied in pp collisions at a beam momentum of

450 GeV. The K0
SK

0
S and K+K− mass distributions are shown in figure 7.5 (a) and

(b), respectively.

Further, partial wave analysis was performed on the spectrum, which will be in ex-
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(a)

C. Zhou coherent BW PDG 2007 Values

in MeV Mass Width Mass Width

f2(1270) 1268 ± 10 176 ± 17 1275.1 ± 1.2 185.1+2.9
−2.4

f ′
2(1525) 1512 ± 3+2

−0.6 83 ± 9+5
−4 1525 ± 5 73+6

−5

f0(1710) 1701 ± 5+5
−3 100 ± 24+8

−19 1724 ± 7 137 ± 8

(b)

BES J/ψ → γX PDG 2007 Values

in MeV Mass Width Mass Width

f2(1270) 1262+1
−2 ± 8 175+6

−4 ± 10 1275.1 ± 1.2 185.1+2.9
−2.4

f0(1500) 1466 ± 6 ± 20 108+14
−11 ± 25 1505 ± 6 109 ± 7

f0(1710) 1765 ± 13+4
−3 145 ± 69 ± 8 1724 ± 7 137 ± 8

Table 7.3: Comparison of this analysis (a) to BES results (b) and PDG.

Figure 7.5: K0
SK

0
S (a) and K+K− (b) mass distributions with fit from WA102 exper-

iment. [13, 69]

plained in chapter 8. The mean and width measurements are summarized in table 7.4

and general agreement is observed in the measurement of state f0(1710).
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C. Zhou coherent BW WA102 PDG 2007 Values

Process ep→ K0
SK

0
S pp→ K+K−, K0

SK
0
S

in MeV Mass Width Mass Width Mass Width

∗f2/a
0
2 1304 ± 6 61 ± 11 1305 ± 20 132 ± 25 – –

f0(1500) – – 1497 ± 10 104 ± 25 1505 ± 6 109 ± 7

f ′
2(1525) 1512 ± 3+2

−0.6 83 ± 9+5
−4 1515 ± 15 70 ± 25 1525 ± 5 73+6

−5

f0(1710) 1701 ± 5+5
−3 100 ± 24+8

−19 1730 ± 15 100 ± 25 1724 ± 7 137 ± 8

Table 7.4: Comparison of this analysis to WA102 results and PDG. ∗f2/a
0
2 refers to

f2(1270)/a0
2(1320).

7.5 Comparison with World Averages

As shown in the figure 7.6, the means and widths of both f0(1710) and f
′
2(1525) of

this analysis (top row) are compared with the results from other measurements from

collider and fixed-target experiments.

For the state f0(1710), the experiments are put into five categories:

� The first row is this ZEUS analysis.

� The second row from the top is the weighted average from five e+e− BES and

BES2 results [60, 61, 62, 63, 64].

� The third row is the weighted average from DM2 (Magnetic Detector 2 at Orsay

DCI collider) results [65, 66] and Mark3 results at SLAC [67].

� The fourth row is the weighted average from two OMEGA experiment re-

sults [68, 69] and one result from WA76/102 experiment [70] in pp interac-

tions at CERN. It also includes a result in π−n interaction [71] from MPSF

(Multiparticle Spectrometer at Fermilab).

� The fifth and sixth rows are the results from the section 7.1 (L3) and 7.2

(TASSO).
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∗f2/a
0
2 f2(1525) f0(1710)

f2(1270)/a0
2(1320)

f2(1525)
f2(1525)
f0(1710)

ZEUS 1755 ± 232 4575 ± 228 2828 ± 240 0.384 ± 0.054 1.618 ± 0.159

L3 123 ± 22 331 ± 37 220 ± 55 0.371 ± 0.078 1.505 ± 0.412

TASSO – 32 7 – 4.6

�BES 1.4% – 0.1% – –

Table 7.5: Areas or event counts for the states measured in different experiments. �

BES numbers are the branching ratios. ∗f2/a
0
2 refers to f2(1270)/a0

2(1320).

For the state f
′
2(1525), PDG [5] has done the job of sorting the results according to

the experiment type. All is left to do is to calculate the weighted averages in each

category. There is a note in PDG concerning the mean and width of f
′
2(1525) saying

that ‘This is only an educated guess; the error given is larger than the error on the

average of the published values.’. Therefore no further discussion will be given here

on this state.

Looking at the f0(1710) averages in figure 7.6, it is easy to see that the mean values

from BES and L3 collaborations are much higher than the others. This is also the case

for the width. The explanation that is favored is that the f0(1790) gives a significant

contribution to the measurement that pulls the mean values higher.

In this ZEUS analysis, the number of events in the f0(1710) resonance with coherent

Breit-Wigner function fit is 4058 ± 820, which is hereby defined as a 5σ significance.

This is the most significant observation of this state ever published.

The integrated numbers of event observed for each state and the available branching

ratios are summarized in table 7.5. The ZEUS results are from the incoherent fit in

this analysis (in section 6.2). The L3 results are described in section 7.1. The TASSO

results are described in section 7.2 and is too low on statistics to consider. The BES

paper from section 7.2 only gives the branching ratios of the measured states and are

presented in this table.

Direct comparison of the relative production ratios can be made between this analysis

and the L3 results.
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Theoretically a glueball cannot be produced from the photon-photon production

channels as in L3. This gives a cross reference on the f0(1710) state’s property.

The ratio of the productions between f2(1270)/a0
2(1320) and f

′
2(1525) are also consis-

tent in both this analysis and L3 results. However the ratio of f
′
2(1525) to f0(1710) is

found to be 1.61 in this analysis and 1.50 in L3. This shows that the f0(1710) state

measured in the two experiments have quite large similarity in terms of production

ratios. This gives a negative indication that the f0(1710) state could be a glueball

state, assuming that acceptance does not change significantly from one state to the

next.

The light unflavored meson spectroscopy of scalar states in the low mass range has

long been a controversial place for search for glueballs. Overlapping resonances in-

terfering with one another exist in different production and decay channels. This

analysis gives one more piece of measurement that could help clarify the properties

of these scalar states.
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Figure 7.6: Comparison of the present mass and width measurements of the f0(1710)

and f
′
2(1525) states with other selected measurements [5]. The inner error bars are

statistical and the outer bars are systematical. The bands show the PDG values

and error estimates. The uncertainties for TASSO results are not known so are not

shown. The numbers in brackets are the years when the results were published.



Chapter 8

Spin Analysis and Discussion

As introduced in section 2.3 and the previous chapter, different methods have been

used to try to unveil the spin nature of the fJ(1710) state in other experiments. This

is the first time that the state fJ(1710) in the K0
SK

0
S channel is investigated in ep

collisions with such high statistics. Two techniques are used: angular distribution

and partial wave analysis.

8.1 Angular Distribution

Inspired by the previous ZEUS analysis [1] using an integrated luminosity of 120 pb−1,

the angular distributions of the specific windows from the K0
SK

0
S invariant mass

spectrum could be investigated. This method was introduced in detail in section 2.3.1.

The difference is that in the previous analysis, the background contribution was

relatively smaller than in the present situation.

As seen in figure 8.1, the K0
SK

0
S invariant mass spectrum is divided into several re-

gions, especially around each observed state as marked in the plot. From left to right,

they are marked with capital alphabetic letters as shown in the plot. The segment

‘A’ in the leftmost correspond to the threshold region. Segment ‘B’, ‘C’ and ‘D’ cor-

respond to the signal f2(1270)/a0
2(1320), f

′
2(1525), fJ(1710) regions. The remaining

130
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segments are the background regions. The region ‘E’ marked with ‘BKG’ is taken

as the sample that is the closest to the measured states so that the background con-

tributions are more similar. The position of the signal regions are roughly chosen

to have one sigma width on each side of the fitted mean value obtained from the fit

described in section 6.4. It is clear that the signals are situated on top of a large

background and this will strongly impact on the angular distribution. The idea is to

have the signal region angular distribution subtracted by the normalized angular dis-

tribution at the background region, assuming that they both share a similar content

of background contributions.

The first step is to evaluate the detector effects on the angular distribution with the

help of the Monte Carlo sample described in section 4.4. The invariant mass spectra

in both detector level and hadron level (also known as the ‘true’ level) have been

reconstructed using exactly the same selection criteria as for the data. The matching

between the tracks at both levels is done via the particle ‘ID’s: each particle that

associates with a track is given an identification (ID) number and this number is

used to match the tracks in both detector and hadron levels. By comparing the

angular distributions of the two levels, the detector angular acceptance could be

evaluated. The plots in figure 8.2 are the angular distributions of the divided mass

regions at both detector and hadron levels. The absolute value of cos θ∗ is used as

it is a symmetric distribution around zero. cos θ∗ is the boosted angle introduced in

section 2.3. The plot (a), (b) and (c) from figure 8.2 are the angular distribution

at both levels for the state regions f2(1270)/a0
2(1320), f

′
2(1525) and fJ (1710). It is

clear that the discrepancies between the hadron and detector level distributions are

very small and can be neglected. Therefore the angular distributions do not need

to be corrected for detector effects. The reason of the small discrepancies is the

strict selections applied on the K0
S samples. The tracks have been selected from

good detector resolution regions. Various selection cuts described in section 5.2 keep

the high quality in the data sample and avoid regions where the detector has poor

acceptance.

The angular distribution with the HERA-II data set is next calculated and investi-

gated as shown in figure 8.3. Similarly to the techniques used in the MC sample above,
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Figure 8.1: The K0
SK

0
S invariant mass spectrum. The threshold (section A), signal

(section B, C and D) and background regions (E-H) are divided by vertical lines.

the absolute angular distributions of the regions in the K0
SK

0
S invariant mass spec-

trum corresponding to the threshold region, the states f2(1270)/a0
2(1320), f

′
2(1525),

fJ(1710), the background regions ‘E’, ‘F’, ‘G’ and ‘H’ are shown in figures 8.3 (a) to

(h) respectively. One can see that the background presents different profile distribu-

tion compared to the distribution of the states regions. The distribution profiles are

becoming lower to the right side as the mass gets higher. Then the right side starts
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Figure 8.2: The cos θ∗ angular distributions of the MC sample at both detector and

hadron levels. Plots (a), (b) and (c) correspond to the mass regions for the state

f2(1270)/a0
2(1320), f

′
2(1525) and fJ(1710) respectively. Plot (d) corresponds to the

background as in figure 8.1.

to rise at high mass ends. It should be mentioned that background ‘E’ is chosen to be

compared with the signal regions as it is the closest and thus most relevant. Besides,

the shapes of the background angular distributions of ‘E’ to ‘H’ are very similar to

each other.

A further investigation is performed by normalizing the background angular dis-
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Figure 8.3: The cos θ∗ angular distribution of the data sample. Plot (a) corresponds

to the threshold region ‘A’. Plots (b), (c) and (d) correspond to the mass regions

for f2(1270)/a0
2(1320), f

′
2(1525) and fJ(1710) respectively. Plots (e), (f), (g) and (h)

correspond to background regions as in figure 8.1.

tribution (plot (e)) by area to the distributions in the state (b), (c) and (d) in fig-

ure 8.3. Then the background is subtracted from each signal distribution. The results

are shown in figure 8.4. However the distributions of the state f2(1270)/a0
2(1320),

f
′
2(1525) and fJ(1710) regions present similar profile distributions, which are not

sufficient to demonstrate the nature of the spin of the states.
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Figure 8.4: The background subtracted cos θ∗ angular distribution of the data sample.

Plot (a), (b) and (c) correspond to the mass regions for f2(1270)/a0
2(1320), f

′
2(1525)

and fJ(1710).

The angular distribution profiles of the threshold region (plot (a) in figure 8.3) and

background ‘E’ (plot (e) in figure 8.3) are different. It is easy to understand that

background constitution would be more similar if the segments taken on the mass

spectrum were closer. This means that the background subtraction introduced above

cannot be accurate especially on the segment attributed to f2(1270)/a0
2(1320), as it

is relatively further away from background ‘E’ than the f
′
2(1525) and fJ(1710). The
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logical solution is to involve the threshold angular distribution in the background dis-

tribution subtraction process with weighted contributions. In details, the subtracted

distributions for f2(1270)/a0
2(1320), f

′
2(1525) and fJ(1710) are done as follows in

equation 8.1, where the threshold and ‘BKG’ histograms within the “ | ” signs are

normalized to the state histograms by entries.

subtracted = | (b) f2(1270)/a0
2(1320) | −(

2

3
× | (a) threshold | +

1

3
× | (e) BKG |)

subtracted = | (c) f
′
2(1525) | −(

1

2
× | (a) threshold | +

1

2
× | (e) BKG |)

subtracted = | (d) fJ(1710) | −(
1

3
× | (a) threshold | +

2

3
× | (e) BKG |)

(8.1)

The new weighted subtracted results are shown in figure 8.5. They do now show

slightly different distributions from figure 8.4. However the distributions of the three

states are still too similar to show any characteristic difference in terms of their

natural spins.

In theory, the spin zero angular distribution would present a flatter profile, while

spin two would pose a concave shaped distribution, higher at cos = 0 than at cos =

±1. In the L3 collaboration analysis [59] which has been introduced in the previous

chapter, angular distributions of the two K0
S’s in the photon-photon center of mass

system were calculated to look into the uniformity of cos θ∗. Corresponding windows

in the invariant mass distribution of K0
SK

0
S in figure 7.1 are selected between 1400 to

1640 MeV for f
′
2(1525) and 1640 to 2000 MeV for fJ(1710) or a2(1700) (see PDG [45]).

The distributions revealing the spin J and helicity λ with both data and Monte Carlo

sets are reproduced in figure 8.6. It can be seen from the left plot that at the 1525 MeV

region, the data agrees best with the J = 2, λ = 2 MC distribution than the J = 2,

λ = 0 or the J = 0 distribution. Also for the right plot in the 1750 MeV region of

figure 8.6 (b), the data agrees better with the J = 2, λ = 2 MC distribution than the

J = 0 distribution. This indicates a strong spin-2 content in the state observed at

around 1750 MeV mass region and it is very unlikely to be a glueball with this spin

at this mass region according to Lattice QCD prediction as shown in figure 2.3.

The angular distributions in this ZEUS analysis, unlike L3’s, could not reveal any

spin properties of the states. The very large background contribution jeopardizes the
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Figure 8.5: The weighted background subtracted cos θ∗ angular distribution of

the data sample. Plot (a), (b) and (c) correspond to the mass regions for

f2(1270)/a0
2(1320), f

′
2(1525) and fJ(1710).

efficiency of the angular distribution method.



138 8.1. Angular Distribution

Figure 8.6: The data (dots) and MC (lines) of angular distributions in L3 show-

ing different spin-helicity profiles for 1525 region (left plot) and 1750 region (right

plot). [59]

Application of the Method to a ρ0 Sample

To see if the angular distribution method used here on the K0
SK

0
S sample is correctly

performed, a test on the ρ0 sample from a ZEUS ρ production [101] is conducted. In

the ZEUS paper, the ρ0 sample is reconstructed from π± pairs of primary tracks as are

the K0
S’s from this analysis. The data sample is selected from 120 pb−1 of integrated

luminosity collected during 1996 - 2000. Thanks to the ZEUS ρ0 production analysis

group, the four momenta of the π tracks used to construct the ρ0 meson after all final

selection was made available for this analysis. The invariant mass of ρ0 is shown in

figure 8.7. The mean value is at 0.7716 GeV, which is very close to PDG rest mass

of 0.77549 GeV [45].

The same method of angular distribution is carried out on the ρ0 sample by calculating

the cos θ∗ angle between one of the two π decay particles and the ρ0 in the center

of mass of the two π system. The result of cos θ∗ is presented in figure 8.8 (b), the
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Figure 8.7: The invariant mass distribution of the ρ0 sample.

result from the ZEUS ρ0 production paper is also presented in plot (a) for comparison

where the dots are the data and the line is MC. Similarity is achieved between the two

distributions despite discrepancy that could be from the binning issue. Comparison

with theoretical spin 2 distribution in figure 2.6 shows that a spin-2 property is

involved in the distributions and that the method used for this analysis should be

correct.
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Figure 8.8: The angular distribution of the ρ0 sample. Plot (a) is from the ZEUS

publication of ρ0 production [101]. Plot (b) is calculated from this analysis.

8.2 Partial Wave Analysis

In the manner introduced in section 2.3.2, the partial wave analysis on K0
SK

0
S is

performed, as motivated by the central production paper [13, 14]. In the central

production analysis, the coupling of two exchanged particles in double pomeron ex-

change processes can either be by gluon or quark exchange. If it is by gluon exchange,

a gluonic state is produced: the glueball. Otherwise a qq̄ state is produced. The spin

properties of the final state mesons were studied by using the partial wave analysis.

The data used here are from the complete HERA-II luminosity. The K0
SK

0
S invari-

ant mass spectrum from 0.92 to 3.995 GeV is investigated under maximum possible

coverage. The first step is to slice the K0
SK

0
S invariant mass spectrum into 205 mass

regions, each of 15 MeV in bin width. The angular distribution cos θ∗ (ranging from

-1 to 1) is built from all K0
S pairs falling each into one bin and fills the 205 corre-

sponding histograms. Each histogram has 50 bins in cos θ∗. The azimuthal angle φ

(ranging from 0 to 2π) of each K0
S pairs falling into each of the 50 cos θ∗ distribution

histogram bins then fill another set of 50 corresponding φ distribution histograms,
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each of which has 50 bins.

To be specific, the number of entries in each bin of the φ histograms are convoluted

by the formula 2.24 integrating over the 2π range (summarizing up all 50 bins).

Meanwhile the entries in each bin of the cos θ histograms are also convoluted by the

formula 2.24 integrating over the −1 to +1 range (summarizing up all 50 bins). The

final convoluted entry number is filled back into one of the corresponding bin out

of the 205 in total on the K0
SK

0
S invariant mass spectrum. The final results of the

moments (tlm) are shown in figure 8.9 indicating the series of l and m configurations

for K0
SK

0
S, where l and m are the angular momentum and the z-component of the

angular momentum. The six plots show the moment distribution of t00, t20, t21, t22,

t40 and t41. The choices of the l and m values have been studied in the paper [13]

and the thesis [14] and thus used in this analysis.

The next step is to solve the equations in table 2.25 numerically. The entry numbers

of each bin of the moment distributions are put into the wave function equation 2.25,

an attempt has been made to use the Maple [103] or the Mathematica [104] software

to solve the system of equations for S and D wave values. The corresponding S and

D wave distributions will then show the wave contributions in the K0
SK

0
S invariant

mass spectrum. The attempt was not successful as no solution was found. However,

the main difficulty is that the equations are nonlinear. In this case, Mathematica is

not able to find all the solutions at any one time. The best Mathematica can do is to

find a solution in a given parameter domain. Then one has to determine the physical

regime of the parameters and to check by hand whether the solution Mathematica

returned makes sense in physics. This is a huge amount of work given a large set of

data and so far was not successful. In most of the cases, the sets of equations given

the initial moment values and their uncertainties simply do not have a numerical

solution.
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Figure 8.9: The t00, t20, t21, t22, t40, t41 moment distributions of the K0
SK

0
S system.

8.3 Comparison with the WA102 Results

A more detailed study of partial wave analysis into the spin of fJ(1710) is summarized

in a WA102 paper [13] and a Ph.D thesis [14] for the same experiment. It is so far

the latest as well. Centrally produced K+K− and K0
SK

0
S pairs are produced in the

reaction: pp → pf(K
+K−/K0

SK
0
S)ps with the CERN Spectrometer. The subscripts

f and s mean the fastest and slowest particles in the laboratory frame respectively.

The invariant mass spectra of the reconstructed K0
SK

0
S and K+K− resonances are

shown in figure 7.5 (a) and (b) respectively. There are 30868 events for K+K− and
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2712 events for the K0
SK

0
S system.

One can see from the two plots the presence of a sharp threshold enhancement at

around 1 GeV region and peaks in the 1.5 GeV and 1.7 GeV regions. This is similar

to the observations of this ZEUS analysis. A wide structure can be seen above 2 GeV

in the K+K− spectrum, which is presumably attributed to the state f2(2150). Partial

wave analysis is performed over the spectrum with J = S, P, D waves. The polar (θ)

and the azimuthal (φ) angles of one of the K’s in the K+K− center of mass system

are used. The expressions relating the moments and the waves are given in table 8.1

for the K+K− system and table 2.25 for the K0
SK

0
S system.

For each mass bin, the solutions with the S, P and D waves are found by fitting to the

experimental angular distributions and using the method proposed in reference [102].

Selected results of mass distributions with S and D waves for K+K− and K0
SK

0
S

systems are shown in figure 8.10. It can be seen that similarities in peak locations

are achieved for both K+K− and K0
SK

0
S systems if one compares figure 8.10 (a) to (c)

and (b) to (d). The statistics for K0
SK

0
S are however much lower than for K+K−. The

S-waves which are characterized by J = 0 show a large structure at threshold as well

as peaks at around 1.5 and 1.7 GeV in figure (a) and (c). These two interesting states

could be attributed to f0(1500) and f0(1710), which would then have J = 0. The

D-waves, which are characterized by J = 2 show peaks at around 1.3, 1.5 and 2 GeV

regions. These three peaks could be attributed to the f2(1270)/a0
2(1320), f

′
2(1525)

and f2(2150), which then all have J = 2 spin. No clear evidence of any significant

structure at around 1.7 GeV is seen in D-waves. This gives confidence of a preferred

spin property of fJ(1710) to be zero, rather than two.

Furthermore, a fit using three interfering Breit-Wigner functions to describe the

f0(980) tail, f0(1500) and f0(1710) and a background function of the form a(m −
mth)

bexp(−cm − dm2), where m is the K+K− mass, mth is the K+K− threshold

mass and a, b, c, d are fit parameters, is applied to the S−
0 wave distributions. The

f0(980) state’s mean mass is below the double kaon system’s mass threshold. But it

has a wide mass distribution with a width of about 40−100 MeV [45]. Therefore its

contribution to the KK threshold region cannot be neglected. The fit result is seen

as the lines in figure 8.10 (a) and (c). A fit using three incoherent relativistic spin-2
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Figure 8.10: The invariant mass distributions for K+K− (plots (a) and (b)) and

K0
SK

0
S (plots (c) and (d)) systems with convoluted wave functions: |S−

0 |2 for the

above two plots, and |D−
0 |2 for the lower two plots. The lines in plots (a) (b) and (c)

are the fits.

Breit-Wigner functions to describe the f2(1270)/a2(1320), f ′
2(1525) and f2(2150) and

the same background function as above is applied to the D−
0 waves. The fit result is

seen as the line in figure 8.10 (b). Figure (d) is not fitted due to insufficient statistics,

therefore too large uncertainties. The results from the fit in terms of mean and width

of peaks are summarized in table 8.2 together with values from this ZEUS analysis

and PDG for comparison. Incoherent fit results are selected here because f2(1270)

and a2(1320) are measured separately in a coherent fit. It can be seen that good

agreement is achieved on all the measurement of f
′
2(1525) both in terms of mean and

width values. The measurement on state f2(2150) agrees well with PDG. However

the mean of state fJ(1710) from WA102 is larger, while the width is smaller than

ZEUS and PDG. On the other hand the WA102 analysis gives a direct measurement
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on the fJ(1710) with only a spin-0 requirement. It gives an indications of spin-0

for the fJ(1710) state when it is present in the S-wave spectrum and absent in the

D-wave spectrum. This is the exact method this ZEUS analysis tried but failed to

achieve due to high irreducible background.

The HERA-II data from about 401.68 pb−1 luminosity is studied by spin analysis.

The K0
SK

0
S invariant mass spectrum is divided into signal and background sections

and the signals’ angular distributions are studied. The natural spin property of

the resonance state is buried in a large background and thus can not be directly

revealed. A cross check of the method on a clean ρ0 particle data sample however

brings a confirmation. A further investigation by using the partial wave analysis is

performed. The K0
SK

0
S invariant mass spectrum is sliced into small segments. These

segments are convoluted by polynomial functions into different moments. Due to

the background contributions and fragmentation processes, the moment distributions

could not be solved and the different wave function distributions could unfortunately

not be revealed unlike the similar analysis done by the WA102 experiment.
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Table 8.1: The angular distribution moments tlm related to the partial waves for the

K+K− system with angular momentum l up to 4 and z-component m up to 2. [13]
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L States MeV WA102 ZEUS Incoherent PDG 2007 values

0

f0(980)
M 985 ± 10 – 980 ± 10

Γ 65 ± 20 – 40 to 100

f0(1500)
M 1497 ± 10 – 1500 ± 6

Γ 104 ± 25 – 109 ± 7

f0(1710)
M 1730 ± 15 1692 ±6+9

−3 1724 ± 7

Γ 100 ± 25 125 ± 12+19
−32 137 ± 8

2

f2(1270)/ M 1305 ± 20 1304 ± 6 1257 ± 9/1318.3 ± 0.6

a2(1320) Γ 132 ± 25 61 ± 11 185.2+3.1
−2.5/107 ± 5

f2(1525)
M 1515 ± 15 1523 ± 3+2

−8 1525 ± 5

Γ 70 ± 25 71 ± 5+17
−2 73+6

−5

f2(2150)
M 2130 ± 35 – 2156 ± 11

Γ 270 ± 50 – 167 ± 30

Table 8.2: The means (M) and widths (Γ) of the observed states from the WA102

spin analysis, this ZEUS analysis and PDG for comparison. ‘L’ is the spin of the

state.



Chapter 9

Conclusion and Outlook

K0
SK

0
S final states were studied in ep collisions at HERA with the ZEUS detector.

The full HERA statistics were used. The K0
SK

0
S invariant mass spectrum is studied.

Three enhancements which correspond to f2(1270)/a0
2(1320), f

′
2(1525) and f0(1710)

are observed in the distribution. The shapes of the states are fitted taking into

account the interference pattern predicted by SU(3). The results are studied and

compared with a ZEUS second analysis. Measurements from other experiments are

compared to as well. Similar analysis results from L3, TASSO, BES and WA102

experiments are compared in detail. General agreements in term of the mass and

width of the states are achieved while some significant discrepancies still exist on the

controversial state f0(1710). The production ratios of the f0(1710) state relative to

the other states are compared. This gives a first hand clue of the absence of the gluon

content in the f0(1710) state.

Further investigation into the spin properties of f0(1710) could not result in a pos-

itive conclusion due to the large background contribution. It could also be possible

that the ep → K0
SK

0
S X is a difficult process to work sufficiently on angular dis-

tribution and partial wave analysis with a large hadronic mixture of unknown X

involved. Unlike what is seen in other experiments such as in photon-photon colli-

sions, this is not a clean reaction to produce a definite resonance that leads to K0
S

particles. The important non-correlated K0
S hadronization processes give too large a

148
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background contribution that no spin analysis could handle. Event mixing techniques

could be performed to evaluate the non-correlated background contribution. Then

by subtracting this non-correlated part of background in the K0
SK

0
S invariant mass

spectrum, the errors on the residual signals could be reduced.

The ZEUS computing group has recently reprocessed the data with more sophisti-

cated tracking, alignment and vertexing softwares. The quality of the data could

sharpen the K0
S identification with more accurate information. This would improve

the K0
SK

0
S invariant mass spectrum resolution and reduce the background from detec-

tor smearing and inefficiency. The K0
S mass resolution would be improved to around

2.0 MeV instead of 4.1 MeV in this analysis. This would improve the K0
SK

0
S mass

resolution by a factor of two. Aside from this, combinatorial background in K0
SK

0
S

pairs could be reduced by better tracking detector resolutions in detectors like the

ATLAS (spatial resolution of 61.4 μm) [105] and the International Linear Collider

(ILC) [106] (impact parameter resolution of about 5 μm in both z and Rφ). The

ZEUS CTD spatial resolution is 180 - 190 μm, the MVD is 8 - 10 μm, the STT is 120

- 130 μm. It is obvious that the dramatic improvement in tracking resolutions would

help in the particle identification with better vertex measurements. The primary

vertices of the two K0
S could be better measured to make sure that they come from

the same resonance. This would cut out a large background contribution from quark

fragmentation in the glueball analysis. It is a pity that the partial wave analysis could

not work for this analysis. Continued efforts are being taken in the ZEUS physics

group to follow up in the research of the glueball. [107]

The eyes of the world have turned to the largest high energy facility: the Large Hadron

Collider (LHC). Could it shed a new light on the search for glueballs? That could

very well be. The interesting results from the WA102 proton-proton experiment,

which was commissioned in 1976 at the CERN Super Proton Synchrotron (SPS)

facility, has been shown in previous chapters. The present CERN LHC experiments

are much more sophisticated at much higher proton energies and are well equipped

with twenty-first century cutting edge technologies. First of all, the new LHC data

should be able to boost the search for the lowest mass 0++ glueball candidate around

1700 MeV according to the lattice QCD prediction of figure 2.3, in which mass region
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the glueball state mix strongly with the qq̄ mesons. Improved tracking resolutions

and trigger configurations could better detect the decay products of glueballs. K0
S

particles would be well reconstructed and very clean of background. Secondly, higher

colliding beam energies enable the search at high energy level (3 - 20 GeV). The other

higher-spin glueballs from the lattice QCD predictions at higher energy levels could

be investigated.

A recent (July 13, 2010) article [109] focuses on exclusive glueball production in two-

photon and Pomeron-Pomeron interactions in coherent nucleus-nucleus collisions at

RHIC and LHC. The gluon-rich central diffraction processes may once again be a

fruitful approach to the investigation of glueballs with enhanced event rates and

experimental conditions.
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Appendix

10.1 Armenteros-Podolanski Ellipse Calculation

This calculation refers to section 5.2.1.

To make a separation of the K0
S from Λ(Λ̄), the asymmetric property of p to π,

compared to the symmetric property of π and π can be used in this two-body decay

process: neutral V0 → d1d2 moving along an axis L in the laboratory frame. Here

the d1 and d2 are the daughters from the decay.

Figure 10.1: Diagrams of LAB and Center of Mass frames of a two body decay

As illustrated in figure 10.1, kinematic variables are defined in both laboratory frame

151
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(LAB) and Center of Mass (CM) frame. Variables in CM frames are denoted with

∗, and (+) denotes the daughter with positive longitudinal momentum. p, E and m

are the momentum, energy and mass, respectively.

The relations of the variables between CM and LAB frames are given by the lorentz

transformation (equation 10.1):(
ELAB

pLAB
L

)
=

(
γ γβ

γβ γ

)(
E∗

p∗L

)
, p∗T = pLAB

T (10.1)

The variables of the (+) daughter in the CM frame are:

P ∗
L(+) = p∗ cos θ∗, (10.2)

P ∗
T (+) = p∗ sin θ∗, (10.3)

E∗(+) =
√
p∗2 +m2

+. (10.4)

The variables in the LAB frames can be denoted as:

PLAB
L (+) = γp∗ cos θ∗ + γβE∗(+), (10.5)

PLAB
L (−) = −γp∗ cos θ∗ + γβE∗(−), (10.6)

PLAB
T (+) = p∗ sin θ∗, (10.7)

ELAB(+) = γE∗(+) + γβp∗ cos θ∗. (10.8)

The sum and difference of longitudinal momenta of the two daughters, given equa-

tion 10.5 and 10.6 lead to the approximation:

pLAB
L (+) + pLAB

L (−) = pLAB
L = γβm ≈ γm, (10.9)

pLAB
L (+) − pLAB

L (−) = 2γp∗ cos θ∗ + γβE∗(+) −E∗(−). (10.10)

The ratio of the equation 10.10 to 10.9 is defined as α, an Armenteros-Podolanski

variable:

α =
pLAB

L (+) − pLAB
L (−)

pLAB
L (+) + pLAB

L (−)
=

2p∗ cos θ∗

m
+
E∗(+) − E∗(−)

m
= ζ cos θ∗ + φ (10.11)
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where,

ζ =
2p∗

m
,φ =

E∗(+) −E∗(−)

m
(10.12)

From equation 10.11 and 10.3, we have:

cos θ∗ =
α− φ

ζ
sin θ∗ =

p∗T
p∗

(10.13)

From cos2 θ + sin2 θ = 1, it is easy to derive:
1

ζ2
(α− φ)2 +

1

p∗2
p∗T

2 = 1 (10.14)

The equation above describes an ellipse in the α and pT plane. The center of the

ellipse is at (φ,0). The semi-axis lengths are: ζ in α axis and p∗ in pT .

The advantage of the A-P ellipse is that the center position (φ,0) can differentiate

symmetric decays with φ = 0 from asymmetric decays with φ �= 0. The application

of this method on the K0
S and Λ decay separation is presented in figure 5.12 (a). The

upper bigger half ellipse is the symmetric K0
S decay while the two lower half ellipses

are the assymmetric Λ decay.

10.2 Fitting Functions

10.2.1 Coherent Breit-Wigner Functions

This section refers to section 6.4. The coherent sum of 3 Breit-Wigner functions with

arbitrary amplitudes plus the f0(1710) cross section is computed according to Dr.

Uri Karshon’s recipe: [108]

a1*|5*BW{f2(1270)} - 3*BW{a2(1320)}+ 2*a0*BW{f2(1525)}|2 + a3*|BW{f(1710)}|2,

where the BW for resonance is given by: BW = xm1*
√
g1/(xm12-xmk2 - i*xm1*g1)

xmk is the mass of the K0
SK

0
S system; xm1, xm2, xm3, xm4 are the mass of f2(1270),

a2(1320), f
′
2(1525) and f0(1710) respectively. g1, g2, g3, g4 are their widths. a1,

a0, a3 are their amplitudes. a0 is set to 1 while the relative production ratio of



154 10.2. Fitting Functions

f2(1270), a2(1320) and f
′
2(1525) is fixed to 5, -3 and 2. Therefore there are 10 fitting

parameters.

xn1 = (xm12-xmk2)2 + xm12*g12

xn2 = (xm22-xmk2)2 + xm22*g22

xn3 = (xm32-xmk2)2 + xm32*g32

xn4 = (xm42-xmk2)2 + xm42*g42

bw1 = (xm12-xmk2)*xm1*
√
g1

bw2 = (xm22-xmk2)*xm2*
√
g2

bw3 = (xm32-xmk2)*xm3*
√
g3

bw4 = (xm42-xmk2)*xm4*
√
g4

bi1 = xm12*g1*
√
g1

bi2 = xm22*g2*
√
g2

bi3 = xm32*g3*
√
g3

bi4 = xm42*g4*
√
g4

real part of first 3 coherent BW’s:

ar = 5.*bw1/xn1 - 3.*bw2/xn2 + 2.* a0* bw3/xn3

imaginary part of first 3 coherent BW’s:

ai = 5.*bi1/xn1 - 3.*bi2/xn2 + 2.* a0* bi3/xn3

cross section:

sig1 = ar2 + ai2

fitk is the fitting function by adding the cross section of f0(1710) with factors:

fitk = a1*sig1 + a3* (bw42 + bi42)/xn42

10.2.2 Interference Term Function

This section refers to section 6.3. The interference term is derived between the

f
′
2(1525) and f0(1710) Breit-Wigner functions. The f

′
2(1525) and f0(1710) Breit-



10 Appendix 155

Wigner functions are noted as F1 and F2 as follows:

F1, F2 are the relativistic Breit-Wigner functions. G1, G2 are the widths of BW1

(F1) and BW2 (F2). P1, P2 are the resonance masses. m is energy. a1, a2 are free

parameters. Inter is the interference term between F1 and F2. FF1, FF2 are the

amplitudes of F1 and F2, respectively. Tot is the total amplitude of F1 and F2 with

interference term.

> F1:=a1*P1*sqrt(G1)/(P1^2-m^2-I*P1*G1);

a1 P1
√

G1
P12−m2−iP1 G1

>

> F2:=a2*P2*sqrt(G2)/(P2^2-m^2-I*P2*G2);

a2 P2
√

G2
P22−m2−iP2 G2

> Inter := simplify(2*Re(conjugate(F1)*F2),

> ’assume = positive’);

2
a1 P1

√
G1a2 P2

√
G2(P1 2P22−P12m2−P22m2+m4+P1 G1 P2 G2)

(P1 4−2P1 2m2+m4+P1 2G1 2)(P2 4−2P2 2m2+m4+P22G22)
> FF1:=simplify(abs(F1)^2,’assume=positive’)

a1 2P12G1
P1 4−2P1 2m2+m4+P12G12

> FF2:=simplify(abs(F2)^2,’assume=positive’)

a2 2P22G2
P2 4−2P2 2m2+m4+P22G22

> Tot:=simplify(FF1+FF2+Inter,’assume=positive’);

>

1
(P14−2P12m2+m4+P12G12)(P24)−2P22m2+m4+P22G22 (a1

2P12G1P24−2a12P12G1P22m2)

+a12P12G1m4+a12P12G1P22+a22P22G2P14−2a22P22G2P12m2+a22P22G2m4

+a22P22G2P2
√
G2m4+2a1P12G13/2a2P22G23/2
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Glossary

BAC Backing Calorimeter

BCAL Barrel Calorimeter

BEPC Beijing Electron Positron Collider

BES Beijing Spectrometer

BMVD Barrel Microvertex Detector

CAL ZEUS main uranium calorimeter

CC DIS Charge Current Deep Inelastic Scattering

CDM Color Dipole Model

CTD ZEUS Central Tracking Detector

DAF Deterministic Annealing Filter

DAQ Data Acquisition System

DESY Deutsches Elektronen - Synchrotron

DIS Deep Inelastic Scattering

DST Data Summary Tapes

EAZE Effortless Analysis of ZEUS

EVB Event Builder

EMC Electromagnetic Calorimeter

FCAL Forward Calorimeter

FDET Forward Tracking Detector

FLT First Level Trigger

156
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FMVD Forward Microvertex Detector

FNC Forward Neutron Calorimeter

FTD Forward Tracking Detector

GeV Giga-electron-Volts

GFLT Global First Level Trigger

HAC Hadronic Calorimeter

HERA Hadron Electron Ring Accelerator

HES Hadron Electron Separator in CAL

LO Leading Order

LPS Lepton Proton Separator

LUMI Luminosity Detector

MC Monte Carlo

MLE Maximum Likelihood Estimation

MLT Memory Looking Tables

MPSF Multi-particle Spectrometer at Fermilab

MVD Micro Vertex Detector

MeV Mega-electron Volts

NC DIS Neutral Current Deep Inelastic Scattering

Ndf Number of degree of freedom

NLO Next-to-Leading-Order

PDF Parton Distribution Function

PDG Particle Data Group

PHP Photoproduction

PMT Photomultiplier Tube

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

RCAL Rear Calorimeter

RTD Rear Tracking Detector

SLT Second Level Trigger

SRTD Small-angle Rear Tracking Detector

STT Straw Tube Tracker

TLT Third Level Trigger
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TRD Transition Radiation Detector

VXD Vertex Detector

ZTS ZEUS Trigger Simulation
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