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Abstract

In basketball, existing methods to assess individual rebounding ability are problem-
atic because they depend on all players present on the court rather than just the player
of interest. Although there exist modelling approaches to correct for this dependence,
they are generally unsuitable for events with binary outcomes. In this thesis, we propose
a Bayesian, two-stage model for predicting conditional rebounding rates in the National
Basketball Association (NBA). Although similar in flavour to the popular APM frame-
work, it is different in that it does not assume that individual contributions are linearly
additive on the response scale. Furthermore, we improve the regularization approach
by using rebounding-specific heuristics. After defining the model, a simulation study is
performed to verify its effectiveness, and the parameters are then estimated using data
from the 2020-21 NBA season. Predictions are then made for rebounding in the 2021-22
season. It was found that there are some players who are excellent at stealing rebounds
away from the opposing team without collecting them themselves, whereas others are
simply collecting rebounds that their team has already secured. These subtleties are not

captured by relying on traditional rebounding metrics.
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Résumé

Au basketball, les évaluations existantes de la capacité de rebond individuelle sont
problématiques car elles dépendent de tous les joueurs présents sur le terrain, plutdt
qu'uniquement du joueur d’intérét. Bien qu'il existe des approches de modélisation qui
tentent de corriger pour cette dépendance, elles ne sont généralement pas appropriées
pour des événements dont les résultats sont binaires. Dans ce mémoire, nous propo-
sons un modéle bayésien hiérarchique a deux degrés pour prédire les taux de rebonds
conditionnels dans la National Basketball Association (NBA). Bien que la méthodologie
suive dans les grandes lignes 1’approche APM, elle est différente car on ne suppose pas
que les contributions individuelles sont linéairement additives sur 1’échelle de la variable
prédite. Nous améliorons en outre 'approche de régularisation en utilisant des heur-
istiques spécifiques aux rebonds. Une fois le modele défini, une étude de simulation
est réalisée pour juger de son efficacité; par suite, les parametres sont estimés a partir
des données de la saison 2020-21 de la NBA. Des prévisions sont faites pour les taux
de rebonds lors de la saison 2021-22. 1II ressort qu’il existe des joueurs qui sont tres
bons pour empécher I'adversaire de prendre des rebonds sans nécessairement les prendre
eux-mémes, tandis que d’autres joueurs se contentent de prendre les rebonds qui appar-

tiennent déja a I'équipe. Ces subitilités échappent aux mesures traditionnelles.
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Chapter 1

Introduction

All basketball fans agree that rebounding is an important part of the game: whether
it be casual fans referring to players as “walking double-doubles”, analysts commending
players for their willingness to do the “dirty work” and collect rebounds, or coaches criti-
cizing their team’s performance on the boards, there is no debate that effective rebound-
ing helps teams win basketball games. The earliest stars of the game, such as George
Mikan and Bob Pettit, were praised for their extraordinary rebounding ability, as were all
great centers who followed. Although conventional wisdom always valued rebounding,
its importance was further emphasized by Oliver (2004), who formally showed that there
is a positive correlation between rebounding efficiency and the probability of winning.
This makes plenty of sense: despite rebounds not being directly worth any points, by
collecting them effectively, teams can increase their own number of scoring chances, and
decrease that of their opponents.

In assessing the viability of a potential lineup for a game, coaches will generally con-
sider its rebounding ability. Therefore, they need to know how well each player rebounds.
The importance of understanding these individual contributions to team rebounding is
illustrated by the historical evolution of score-keeping and analytics: in the 1950-1951
season of the National Basketball Association (NBA), rebounds made their way onto offi-

cial scoresheets (1950-51 NBA Season Summary n.d.), making them one of the earliest ever
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box score statistics to be recorded. At the time, “Rebounds per game” (RPG) was the gold
standard for assessing individual rebounding ability.

In 1973, scorekeepers began to track offensive and defensive rebounds separately,
which led to players being evaluated based on their offensive rebounds per game (ORB)
and their defensive rebounds per game (DRB). Although being easy to compute and un-
derstand, both ORB and DRB are flawed in that they don’t account for how many re-
bounding opportunities a player had to collect rebounds.

To improve on this, Oliver (2004) proposed the notions of offensive rebounding rate
and defensive rebounding rate, which estimate the percentage of rebounds collected by a
given player. Despite the obvious improvement, these metrics still don’t account for two
important factors. Firstly, they don’t measure the impact of players who help their team
rebound, but who don’t collect rebounds themselves. Secondly, given that at most 100%
of the rebounds can be collected, rebounding rates convey not only information about
the individual’s ability, but must also depend on the other players present on the court,
which makes individual rebounding rate problematic for player assessment.

A general correction for this first issue was proposed by Rosenbaum (2004), namely
the ”Adjusted Plus/Minus Framework” (APM): the linear model’s only predictor is a list
of the players on the court (represented by a sparse matrix containing all lineup com-
binations used in the data set), and the response is the desired team metric (the original
implementation used net rating as the response). Sill (2010) improved on this work by
proposing the “Regularized Adjusted Plus/Minus Framework” (RAPM): by introducing
ridge regression and cross validation, he obtained more stable parameter estimates, with
greater predictive power, making them much easier to implement.

Although Engelmann (2016) suggests applying this framework to rebounding data,
the formal literature on the topic is scarce. Despite the improvement of these metrics,
they have several limitations, the most notable being that they assume that individual
rebounding is additive. Heuristically, this seems unlikely, since only so many shots can

be missed during a game.
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In this thesis, a modified version of the RAPM framework, which more effectively
“isolates” players, is proposed to better understand both individual and team rebound-
ing. This involves designing a framework which is conditional on the number of missed
shots, and therefore allowing to break away from the additive rebounding assumption.

The bulk of the statistical methodology is contained in Chapter?2. Firstly, rebound-
ing numbers are decomposed into two stages, namely team rebounding and individual
rebounding, to better understand which players are actually helping their team, versus
which players have misleading box score statistics. We model these two probabilities
using logistic regression and multinomial regression respectively: a tractable two-stage
Bayesian model is proposed, the choice of prior distributions is thoroughly explored, and
a simulation study is carried out as a proof of concept.

Secondly, by using Gaussian mixture models, a rebounding-specific version of the
“Replacement Player” methodology is developed so that players appearing infrequently
can be be grouped together and represented by fewer parameters, which speeds up es-
timation times, reduces over-fitting and increases estimation accuracy.

Thirdly, the model parameters are estimated using Markov chain Monte Carlo (MCMC)
methods. Fourthly, predictions are made in out-of-sample games to validate the model.
Finally, practical applications of the model are briefly explored.

In Chapter 3, which serves as the conclusion, future avenues of development for the

proposed framework are discussed.



Chapter 2

Contribution

2.1 Introduction

Long has it been known that traditional NBA box scores can misrepresent the true
value of players. One of the earliest alternatives to box-score based metrics in the NBA
was developed by Rosenbaum (2004): by only using plus-minus data and a list of play-
ers on the court, he attempts to measure “pure” impact, independent of the subjective
counting conventions. In this thesis, we adapt this methodology to better evaluate indi-
vidual rebounding ability in the NBA. This is done by improving Rosenbaum’s parameter
reduction method, and introducing a prior layer to the parameters of a logistic model.

An already existing improvement to the Rosenbaum original implementation is the
adoption of regularization techniques, which is in line with the surge of Bayesian ap-
proaches to quantitative sports analysis. The most relevant implementation is that of Sill
(2010), who uses cross-validation to determine the prior parameters. Although some ap-
plications of Bayesian binomial regression do exist in the quantitative sports literature,
such as when Deshpande and Wyner (2017) studied pitch framing for MLB catchers, or
when Miskin, Fellingham and Florence (2010) attempted to quantify skill importance in

women’s volleyball, there appears to be very few applications specifically in basketball.
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Furthermore, Rosenbaum’s original implementation relies on the notion of a “Refer-
ence Player”: to reduce the number of parameters to be estimated, he replaces all play-
ers having played below some threshold of minutes by a single player. This idea was
first suggested by Woolner (2002), when developing ”“Value Over Replacement Player”
(VORP) to evaluate Major League Baseball (MLB) players.

Although parameter reduction is obviously beneficial when data is limited, it seems
that reducing a multitude of players to a single one may be too drastic. A middle of the
road approach would be to reduce the parameters, but to group players who have similar
styles of play.

The idea of player grouping has been popular for NBA players, where the positions
tend to be quite artificial. Bornn et al. (2016) suggest using player tracking data and
non-negative matrix factorization to group players based on where they like to shoot
from (and defend shooters) on the court. Kalman and Bosch (2020) group players using
Gaussian mixture models, and Alagappan (2013) has explored the question of positions
using topological data analysis. In this thesis, we propose an alternative approach that
more heavily relies on styles of play. To this end, these grouped players will be referred
to as replacement players.

Section2.2 goes over how the data set was collected, preprocessed, and some sub-
tleties of data collection in the NBA. Section 2.3, briefly reviews the original APM and
RAPM frameworks, discusses their limitations and possible ways to mitigate them. Fur-
thermore, in this section, our rebounding model is formally defined, and a simulation
study is carried out to assess effectiveness when the true parameter values are known.

In Section 2.4, we explain why modelling every single player is not feasible, outline
the heuristics used for the parameter reduction, formally define the classification model,
and give the estimation results. In Section 2.5, the model parameters are estimated via
MCMC and using data from the 2020-21 NBA season. Predictions are made on the train-
ing data, and goodness-of-fit is measured using the Hosmer-Lemeshow test. We also

discuss characteristics of the posterior distributions.



CHAPTER 2. CONTRIBUTION 6

In Section 2.6, predictions are made for a subset of the 2021-22 season (out-of-sample)
data at both the team and individual levels, and the practical implications for rebounding
assessment are briefly overviewed. Finally, in Section 2.7, we discuss methods for incor-

porating uncertainty in predictions, model limitations, and avenues for future work.

2.2 The data set

All data used in the present project was made publicly available by the NBA. The
data were collected using nba-api (Patel, 2023), an API Client for www.nba.com. Al-
though the data is drawn from a multitude of API endpoints, it can be categorized into
two distinct types of data: box score data and play-by-play data.

Data from the 2020-21 NBA season are used to estimate the models, and data from

2021-22 NBA season are used to evaluate model performance.

2.21 Box score data sets
Raw data collection and brief description

The NBA has two methods for organizing game-level data: data can either be indexed
by date or by game ID. Furthermore, most data sets are exclusively stored using one of
the indexing schemes, meaning that one cannot directly combine all measurements into
a single observation. This indexing hurdle was overcome by creating a correspondence
table between game IDs and dates, allowing for a much richer data set.

The concatenated raw data set contains one row per game per player (hereby referred
to as “performances”). In some very rare instances, game-indexed variables did not have
their corresponding data-indexed variables: this occurred when the performance was in-
credibly short (a few seconds). Such instances were removed from the data set. Practically

speaking, there were three types of variables in the data set:
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1. Count variables: measures like steals, 3PT shots attempted...

2. Game summary variables: measures like average offensive speed, average defens-

ive rebound distance...

3. Identifying information: measures that were not used for position classification,

such as player names or possession counts

Given there are dozens of measured variables for each player, and since many convey
equivalent information or even information that says nothing about player similarity, it
would be both unnecessary and unwise to include all variables as features. Variable se-
lection for classification was based on practical ideas: wherever possible, measures that
are indicative of style of play should be prioritized over measures indicative of efficiency.

The idea is that positions should be used to group players “who play the same way”
rather than to group player “who are just as good.” For example, rather than retaining
3PT shots made, 3PT shots attempted was retained. Given the practicalities of data col-
lection in the NBA, this wasn’t always possible: for example, by looking at the number
of steals, it is impossible to tell whether a player is a smothering defender who steals
the ball applying tremendous pressure, or whether the player is a terrible defender who
aggressively gambles for steals.

It would be far more informative to look at the ratio of steal to steal attempts, but
unfortunately no such data is publicly available. The issue of limited defensive boxscore
measures has been more thoroughly explored by Franks et al. (2015). These features were
then divided into an offensive data set and a defensive data set.

A full list of the retained variables, as well as links to their descriptions, can be found

in Appendix A.

Data pre-possessing

Given that we are interested in classifying players over the course of the season, all

performances belonging to a given player were grouped together as follows:
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a) count variables were summed together;

b) game summary variables (like average game speed, for example) were combined
into a weighted average, where weights depended on the number of possessions in

the corresponding game.

Once performances were grouped, all count variables were scaled to be per 100 pos-

sessions, in order to adjust for players with varying amounts of playing time.

2.2.2 Play-by-play data set

The play-by-play data set is very straightforward: for every line of the play-by-play
log of a given game, we look at the substitution times of players, and determine who
was on the court. In some instances, there were errors in the player substitution times,
which would leave more or less than five players on the court at a given time. When
this occurred, any lines of the play-by-play log that did not contain exactly five players
for each team were removed, but if any other rows in the game had the correct number
of players on the court, they were preserved. These errors were rare, occurring in fewer
than 10 of the 1080 games.

One point that is especially important to note is the following: if the ball goes out
of bounds after a missed shot, the team is allocated a team rebound. Despite these not
being credited to an individual player, they are often generated by players wrestling for
position, trying to get their team the out-of-bounds call (for those in the know about the
conventions of NBA play-by-play data, also note that the quirky missed first three throw

team rebounds were removed from the data set).

2.3 Rebounding models

In a practical context, a rebound is valuable not because it directly adds points to the

total, but rather because collecting a missed shot controls how many scoring chances a



CHAPTER 2. CONTRIBUTION 9

team, or their opponents, will have on that possession. With this in mind, we believe that
modelling rebounding counts is not as useful as modelling the probability of collecting a
missed shot, which means that directly applying Rosenbaum’s APM approach is not ap-
propriate. Despite this, there are some desirable properties of the APM approach that we
are keen on preserving. Firstly, the main appeal of the APM framework (and all derivative
models) is that it is designed to allow for prediction in unseen lineups. This is obviously
very useful in a practical context when negotiating contract extensions or determining
who would be a desirable trade acquisition, for example. Secondly, the APM approach
allows to model the interaction between individual players and team response variables,
without assuming that the players are making a measureable, direct contribution (like

scoring a basket or collecting a rebound, for example).

2.3.1 A brief overview of APM and RAPM
Rosenbaum’s APM

The core philosophy of the original APM approach is straightforward: good players,
regardless of their box-score stats, will help their team outscore their opponents when
they are on the court. Although simple in theory, this becomes complicated in practice
since not all players have the same quality of teammate on the court, not all players face
the same level of competition, and not all players have the same quality of substitute.

To adjust for this, consider X, a matrix with one column for every player in the league
and one intercept column, and where every row is a portion of the game where no sub-
stitutions took place. On a given row, the column is set to 1 if the corresponding player
is on their home court, —1 if the player is on an away court, and 0 if the player is not on
the court. In the original implementation, the response vector, Y, is the net rating of the
home team (but the methodology could be applied for arbitrary continuous team-level
variables). The weight matrix, I, is a diagonal matrix with entries equal to the number of

possessions played during each substitution-less stint. Each player’s contribution to the
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net rating (and the contribution of home court advantage) is estimated using weighted
least squares, viz.

B=X"TWX)'XTy.

There are two main drawbacks with the original APM implementation. Firstly, be-
cause of the multicollinearity in X, the standard errors of the estimated regression coeffi-
cients are so large that the model is practically unusable on out-of-sample data. Secondly,
because of the design of the predictor matrix, there is no distinction between a player’s

separate contributions to offense and defense, only the net difference between the two.

Sill’s RAPM

Sill (2010) built on the APM framework by using ridge regression. The design, re-
sponse, and weight matrices are identical, but a hyperparameter A and the identity mat-
rix [ are introduced. The estimates for individual contributions to net rating are instead
given by

B= XWX +A)'XTY,

where )\ is chosen to minimize the RMSE in out-of-sample games. By instilling a Gaus-
sian prior on the parameters, the standard errors of the estimated parameters are more

reasonably sized.

2.3.2 Limitations of APM based approaches in rebounding

Notwithstanding the desirable properties mentioned above, there are still a few draw-
backs to APM inspired procedures in the current context, where we are studying rebound-
ing probabilities. Firstly, the most problematic drawback is that the prediction versatility
is achieved by assuming player contributions to the response variable are linearly addit-
ive. Although this sounds reasonable when modelling variables with infinite support,
like point differentials or net ratings, it is not appropriate when modelling probabilities,

as we are in this case: we would expect that adding a good rebounder to a good rebound-
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ing team will make for a less drastic improvement than adding a good rebounder to a
mediocre rebounding team.

There is some anecdotal evidence supporting this claim. For example, Jonas Valan-
ciunas and Steven Adams had a nearly identical OREB% during the 2020-21 NBA season.
Despite this, after being traded for each other, Steven Adams saw a relative increase of
25% in his OREB%, and Mempbhis significantly improved their overall team OREB%. We
argue this has to do with the fact that Adams’s true contributions to offensive rebounding
were obfuscated by playing with other strong individual rebounders on his former team,
such as Zion Williamson.

Secondly, APM-like approaches generally achieve numeric stability in the estimates
by implementing some form of prior layer or regularization parameter, and hence shrink
all players towards some common mean. We suspect that we can improve the shrinkage
in the context of team rebounding: we have a rough indicator of rebounding ability by
looking at a player’s individual rebounding rate, but the difficulty lies in figuring out
how these abilities mesh together in a new lineup.

Thirdly, it seems reasonable to assume that offensive rebounding ability and defensive
rebounding ability are separate attributes, and can be modelled independently. A direct
implementation of APM or RAPM would imply that being a good offensive rebounder is

the same as being a good defensive rebounder. This seems unlikely.

2.3.3 High-level ideas

We propose a procedure that preserves the main benefits of Sill’'s RAPM (i.e., account-
ing for teammate and opponent quality, predictive versatility, and reasonable standard
errors), but use some heuristics about rebounding to overcome some of the drawbacks.
The high-level idea is that each player has two latent measures of rebounding ability on
both offense and defense (meaning there are a total of four variables of interest). The first
latent measure is tied to team rebounding, and the second is tied to individual rebound

collecting. Although these latent variables probably depend on each other, we argue that
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they are not exactly equal. Consider the following three scenarios:

1. Player A boxes out Player B, allowing for a teammate to collect the rebound.
2. Player A boxes out Player B, and collects the rebound themselves.

3. Player A leaves Player B to put themselves in better position to collect the rebound,

but also increasing the chance that Player B collects the rebound.

In the proposed high-level rebounding model, Scenario 1 would be indicative exclus-
ively of positive team rebounding ability and negative individual rebound collecting abil-
ity; Scenario 2 would be indicative of positive team rebounding ability and positive in-
dividual rebound collecting ability; and Scenario 3 would be indicative of negative team
rebounding ability and positive individual rebound collecting.

With these notions in mind, we propose factorizing the conditional rebounding rate

as follows:

Pr(Player A collects rebound | Missed shot) =
Pr(Player A collects rebound | A’s team collects rebound) x

Pr(A’s team collects rebound | Missed shot),

and modelling each conditional probability separately. This is why the parameter reduc-
tion via clustering is essential: after applying the grouping methodology described in
Section 2.4, instead of estimating 2160 parameters, we estimate only 1484 parameters; see

Section 2.4 for details.

2.3.4 Modelling individual contributions to team rebounding
Logistic regression

Logistic regression is a natural modelling approach for the team rebounding prob-

lem: it allows us to assume that team rebounding ability is additive on the log odds scale.



CHAPTER 2. CONTRIBUTION 13

This allows us to preserve the predictive versatility since we can just add up the indi-
vidual contributions to team rebounding, but also naturally allows for the heuristic of
diminishing returns in the team rebounding rate when adding more and more individual
rebounding ability to a given lineup. For the sake of tractability, we do not control for
things like days of rest or home court advantage, but instead assume that rebounding
ability is constant from game to game.

We treat defensive rebounds as Bernoulli random variables, where a defensive re-
bound is considered a success, and an offensive rebound is considered a failure. Let L
denote some arbitrary combination of five offensive players and five defensive players,
let 3P, ..., P denote the rebounding ability of the defensive players, and let 37, ..., 3
denote the rebounding ability of the offensive players. The most straightforward model

for the probability of the defensive team collecting the rebound is given by
oBL - +BE —pP B¢

T 1 PPt AP —BP B2

pL

2.1)

Note that the signs are picked so that the greater the value of the parameter, the greater
the rebounding ability, regardless of whether we are talking about offensive or defensive
rebounding. Although ideal because of its simplicity, a traditional implementation of this

model suffers two main drawbacks: multicollinearity and unidentifiability.

Dealing with multicollinearity

When estimating the parameters of a generalized linear model (GLM) by maximizing

the likelihood, the asymptotic distribution for the estimator (see Agresti, 2015) is given by
B~ AN[B(XTWX)],
where W is a diagonal matrix with
2
= (52) i),

where 1, is the ith mean response, y; is the ith observation, and where
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As is the case with linear regression, if there is severe multicollinearity in the design
matrix, the variance of the components of 3 can explode. We could replicate Sill’s ap-
proach by using ridge regression, but in the context of rebounding, there is reason to
believe we can do better.

Although individual rebounding rates may be misleading when determining whether,
e.g., Jonas Valanciunas is a better offensive rebounder than Steven Adams, it is probably
telling when the difference in individual rates is large, i.e., Jonas Valanciunas (individual
OREB% of 13.4%) is almost certainly helping his team’s offensive rebounding more than
Duncan Robinson (individual OREB% of 0.3%). Although the modelling approach allows
to distinguish between individual and team rebounding ability, we argue that instances
where there is a drastic difference in these two latent variables are probably rare, and we
should only assume that they exist when the evidence is overwhelming.

With this in mind, instead of instilling an identical prior across all players, we propose
that individual rebounding ability be reflected in the choice of prior. Although this dic-
tates the stochastic ordering, since we are modelling rebounding ability on the log odds
scale, it is not obvious what exactly the priors should be. To better understand measuring

rebounding on the log-odds scale, we first discuss model identifiability.

Dealing with unidentifiability

Assume that there exists some underlying quantification of team rebounding ability,
denoted by B2 and 3¢. In its proposed form, the model is not identifiable: we could
tind an equally valid maximum likelihood solution by adding some constant c to every
component of B2 and to every component of 3%. That being said, this alternative model
parameterization isn’t particularly problematic, since the main goal of the model is to
rank the rebounders and predict their performance in unseen lineups. If we add the same

constant to every component, these rankings are unchanged, and so is model prediction.
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To illustrate a more serious issue, consider the simpler example where we have only
two defensive players, denoted by 57 and 3P, and two offensive players, denoted by 3¢
and 7. Also assume that in this simple example, there is only one player per team.

Assume that we have limited lineup mixture, and therefore, that we have only ob-

served (P against 8Y, and 3J against 59, viz.

(2 ) =P -0 () - g - 6.

In this simple case, we could add some constant ¢; to 3”and to 3¢, and add some con-

stant ¢ to A and to 9. We could cleverly pick the constants such that either defensive
player can be chosen to be the best rebounder, or either offensive player can be chosen to
be the best rebounder. Any such model solution is much more problematic. However, un-
der certain lineup conditions, all model solutions will preserve ordering of the parameter

magnitudes.

Theorem 1. If all possible lineup combinations have been used, all model parameterizations pre-

serve the ranking of the parameters (in terms of their magnitude).

Proof. Let B2 and BY denote some arbitrary solutions to the model. Consider some al-

ternative solutions 8" and B°. These can be re-written as

al al Ay
Bl =1 |+ ]|, Bo=]: |+
D )\D O )\O

Since the probabilities must be equal across all lineup combinations, and using Equa-

tion (2.1), we must have that, for any ¢y, ..., i5 and jy, ..., js,
D D o) o _
+ ”+ﬁi5_ T T Mgy T *Z1 +B*Z5_ ®j1 ﬁ*%

as well as

D D D D O O O O
*11+)\ .+ﬁ*15+)\ *]1_)\ - _)\

*J5

5*@1 5*10 - *]1 - 5*]0
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and
Ao+ A =20 1 A9
Assume we were to fix iy, ..., i5. Since the equality must hold for arbitrary jj, ..., js, it
must be that the sum of any subset of five \°’s is the same. This, in turn, obviously means
that all the \°’s must be equal. Similarly, all the A\P’s must also be equal. Consequently,
the relative ordering of the components of 3” and 3° is identical to the ordering of the

components in BY and B9. O

Of course in practice, not all possible lineups are observed, which means that while
there may in fact be some true solutions 32 and B9, the estimated solution is not guaran-
teed to preserve parameter ranking.

Despite Theorem 1 not being particularly useful in practice, it does give some insight
into the problem at hand. By looking at the simple two-player example, it is obvious that
any amount of shift in the defensive parameters must induce an equal (in the aggregate)
shift in the offensive parameters, and hence, given an incomplete system, we can find a
valid parameterization that makes any player appear as the best rebounder.

It seems heuristically reasonable to believe that the more lineup mixture we have, the
more likely it is for the AP’s to be close to each other. This is why introducing replacement
players (see Section 2.4) is so important, since it makes it incredibly unlikely for there to
be subgroups (containing both offensive and defensive players) who have played exclus-
ively amongst themselves, and allow for these ”“subsystems” of independent equations
to arise. Furthermore, notice that if we were to restrict the parameter space of the model,
we limit the values of AP, AP 7S, AY,.., and hence limit how extreme any potential
re-ordering of the parameters can be. Although there is no mathematically rigorous way
to restrict the parameter space, we consider the following thought experiment:

Suppose we could clone the best defensive rebounder, with ability 5%),., and play him
against an average offensive rebounding lineup, who’s aggregated offensive rebounding
ability is given by c. It seems reasonable to assume that although we don’t know the exact

defensive rebounding rate for this lineup, it is certainly not greater than 90%. Suppose we
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could also clone the worst defensive rebounder, with ability 55,., and play him against
an average offensive rebounding lineup. Again, we cannot say for sure what the true
defensive rebounding rate is in this case, but it seems heuristically reasonable that the
percentage must be greater that 50%.

Indeed, these bounds seems reasonable if not abundantly cautious: of lineups having
played at least 200 possessions, the lowest empirical defensive rebounding rate was 64%,
and the greatest empirical defensive rebounding rate was 84%, according to Falk (2021).
These restrictions can be written as follows:

e5ﬁ]€hzw_c eSBAD/Iin_c
<09, M S5

1 + e5Bitae—c — 1+ Bhim—c —
We are interested in finding a support for the defensive parameters that would allow
for predictions as extreme as those laid out above, but that is as "narrow” as possible, to
limit the potential for re-ranking of the parameters. This can be formulated as follows in

terms of an optimization problem:

: D D
min /BMaX - ﬁMin

s.t.

e5ﬁﬁax 65Bﬁm

- =04,
]_ + 6551@“1 1 + esﬁﬁin

D D
BMax Z BMin‘

Note that we can just add ¢/5 to each parameter, re-parameterize, and solve this
slightly simpler but equivalent form of the problem, since (8., — ¢/5) — (84, — ¢/5)
has the same solution, and we are only interested in the difference between the two para-
meters.

Given that the constraint is simply the difference of two independent sigmoids, the
gradient can easily be computed, and the optimal solution is readily found using the Lag-
rangian multiplier. We can, therefore, compute that i1, — Bif;, < 0.340. If we repeat the
same thought experiment but for offensive rebounding parameters (and instead allowing

for there to be a difference of 35% instead of 40%), we find 3., — S, < 0.292.
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Although the assumptions imply that there is some meaningful parameterization of
the model in which the offensive parameters are “close” to each other, and defensive
parameters are “close” to each other, we have said nothing about the distance between the
collection of offensive parameters and the collection of defensive parameters. However,

note that the model can be re-parameterized as follows:

(BP -+t B —0 59

L:
b 1 4+ efr++B8Y—BY ——p9
exp{BP +ap+--+ 8P +ap— (B +ao) — - — (85 + ao) + —5ap + 5ap}
L+exp{By +ap+--+ B +ap— (B +ao) — - — (B + ao) + —Sap + 5ao}
o exp{BP 4+ BB = = 3%+ o
L+exp{BfP +-- -+ 8P - 09— =9 +a}’

where the new parameterization simply shifts all the defensive parameters by some fixed
amount, and all the offensive parameters by some other fixed amount.

As explained above, a solution to this model is equivalent in practice, since it preserves
the ordering of the parameters and yields identical predictions. Note that as long as our
heuristics about the maximal difference between parameters are correct, and as long as
we leave o unrestricted, we can restrict the rebounding parameters to their respective

ranges, and still be able to solve the model.

A Bayesian solution

To summarize, to make finding a solution tractable, we have made the following as-

sumptions about the underlying model parameters:

1. Extreme differences in individual rebounding rates likely suggest a difference in

team rebounding ability.

2. The defensive model parameters are probably close to each other and the offensive
model parameters are probably close to each other, and can be modelled on a similar

scale as individual rebounding rates.
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3. If we restrict both the offensive and defensive parameters to some subspace, we

need an unrestricted parameter to allow for each group to be adequately far apart.

Thus far, we have not formally defined what we mean by “restricted,” and we have re-
lied almost exclusively on intuition and heuristics, but a Bayesian model offers a natural,
mathematically rigorous framework to implement the idea of parameter restrictions.

Recall that in a Bayesian model, prior beliefs are updated based on observed data. We
can effectively “restrict” the parameter space by instilling some informative prior distri-
bution on the parameters (and conversely, leave parameters unrestricted by instilling an
uninformative prior).

We propose using the following hierarchical Bayesian framework
B8P | DREB%;,0 ~ N(DREB%;, %),
BY | OREB%;,0 ~ N(OREB%;,0%),

a ~ improper uniform prior over (—o0, 00),

D D 30 o (L
Yie | Biys--osBis Bjs -+ -5 By, ~ Bernoulli(p™),
where
D D o o
5 SR ++BE—BG ——BQ +a
- D,..13D_pgO0 _.._gO )
1+ Pt tBis=P5 B +o

and where Y7, denotes whether the kth missed shot in the lineup L is a defensive rebound
(a success) or an offensive rebound (a failure), and where the subscript i relates to the ith
defensive player, and where the subscript j relates to the jth offensive player. Note that
in the case of the replacement players, all the rebounds and rebounding opportunities of
the grouped players were aggregated to create the rebounding rate.

To justify the choice of mean for each of the parameters, note that the greatest indi-
vidual offensive rebounding rate was 15.5% (Clint Capela) and the smallest individual
rebounding rate was 0.3% (Duncan Robinson). The greatest defensive rebounding rate
was 33.6% (Andre Drummond) and the smallest individual defensive rebounding rate
was 4.7% (Trey Burke). These offensive and defensive spreads are slightly smaller than

the ones implied by the above thought experiments.
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Outside of the rough parameter restrictions suggested by the thought experiment,
there is no obvious choice for the variance of the prior distributions. Although often
times Bayesian applications rely on high variance, minimally informative priors, given
the very severe data limitations of the current context, using a broad prior would be akin
to just maximizing the likelihood. Ideally, we would like to pick the maximal prior vari-
ance that allows for meaningful and useful parameter estimates, to maximize the weight
of the data on estimates.

With this in mind, we set the prior variance equal to 4 times the variance of the ob-
served individual rebounding rates, which yields a prior standard deviation of 0.1. There
are a few reasons for this. Firstly, since we hypothesized that the effect on the log odds
can be modelled using a similar scale to that of the rebounding rates, it follows naturally
that scaling up the variance of the rebounding rates is a sufficiently cautious approach.

Secondly, the upper bound on a 95% confidence interval for the best defensive re-
bounder prior is equal to 0.532, and the lower bound on a 95% confidence interval for the
worst defensive rebounder prior is equal to —0.149. If the thought experiment is broadly
reasonable, then there is ample “room” to capture the variability of different players. Sim-
ilarly, the likely range of the offensive parameters is between —0.193 and 0.351.

Thirdly, from a practical standpoint, the chosen variance seems to be sufficiently cau-
tious when passing judgement about relative player quality. For example, the priors sug-
gest that a priori, there is a 93% chance that Clint Capela is a better defensive rebounder
than Trey Burke, which seems a bit too optimistic about Burke’s ability, but only a 59%
chance that Andre Drummond is better than Jonas Valanciunas (who had a defensive
rebounding rate of 28.9%). Figure 2.1 contains 50% confidence regions for the priors of
some notable players, to provide practical justification for the prior construction method-
ology. Although this doesn’t truly restrict the possible parameter values, it does achieve

a similar effect, by making extreme values unlikely.
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Defense Offense

Ja Morant

Robin Lopez

Trae Young

Fred VanVleet
Duncan Robinson
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Stephen Curry
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Steven Adams
Jayson Tatum
Dejounte Murray
James Harden
Luka Doncic
LeBron James
Jarred Vanderbilt
Deandre Ayton
Karl-Anthony Towns
Russell Westbrook
Dwight Howard
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Figure 2.1: Example priors means for the team rebounding ability of some players in the

2019-20 season, as well as 50% central interval.

A simulation study

Given that the proposed model relies heavily on heuristics about how to reduce the
parameter space, and that in the case of non-identifiability, the posterior distributions
are heavily influenced by the choice of priors, we deem it necessary to see how well the
proposed model can recover the parameters under realistic (albeit simplified) conditions.

Before running a simulation study, we define the following data structures:

1. Players: Each player has a known defensive rebounding attribute, 37, which is gen-
erated from Normal distribution, and a known offensive rebounding attribute, 39,
which is generated from a separate Normal distribution. The choice of parameters

for these Normal distributions is discussed below.

2. Teams: Each team has eight players. We create a single lineup by sampling five
players without replacement. We do this 30 times to create a list of 30 lineups that
will be used when playing games. We then assign each lineup a weight by sampling
from a symmetric Dirichlet over the 30-dimensional simplex. We denote the weight

of the ith lineup of team A by w?.
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3. Games: For each game, we draw eight lineups from each of the two teams, with the
probability of being drawn equal to each lineup weight. We scale the weight of the
drawn lineups to determine the proportion of playing time of each lineup, i.e., L
will play wi*/(wit + - - + w;}) of the game. Each game consists of 100 missed shots

(50 per team) that need to be allocated to a player.

4. Allocating rebounds: Within a given lineup, we first allocate the team a rebound
using the following probability:

D D_ g0 o
Pt Big =B =By

L o

Then, based on which team collected the rebound, we randomly assign that rebound
to an individual player. The probability that Player i is assigned an individual de-
fensive rebound is given by

87

e8P . edBy”

py =

where the numerator is the sum across all other players appearing in the same
lineup as Player i. Similarly, team offensive rebounds are conditionally allocated
to an individual using the following probabilities:

o
P

O _
p’L e7ﬂ?+...+e7ﬁ50'

Note: the inclusion of a scaling factor of 4 and 7 is so that the simulated individual
probabilities more closely resemble observed probabilities. Directly using the para-
meters does not allow for sufficient variability in the individual rebounding rates to

match observed rates.

With these structures defined, the actual simulation algorithm is quite straightfor-
ward: every team plays each opponent three times (meaning each team plays a total of 87
games instead of the usual 82). During each game, each team will miss 50 shots, and their

opponents will miss 50 shots (teams on average miss 47 field goals per game, according
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to Basketball-Reference), each of which is then allocated to an individual player. Obvi-
ously there is nowhere near as much complexity in this simple simulation as there is in
actual NBA games, and we therefore briefly discuss what will be referred to as facilitating
simplifications and impeding simplifications.

Facilitating simplifications are simplifications which make parameter estimation easier
than real-world conditions. The most notable of the simplifications is that not only are
team rebounding ability and individual rebound collecting correlated, they are perfectly
dependent. This was done mainly because it was unclear how to link the two latent
variables without snooping through the data. Another significant simplification was that
lineups are generated randomly, meaning that there is probably less multi-collinearity in
the simulation than there is in the true league. Lastly, there are the practical simplifica-
tions, like having fewer players per team, players not getting injured, or there not being
any team rebounds. These simplifications are probably not that significant.

Impeding simplifications are simplifications which make parameter estimation more dif-
ticult than real-world conditions. One key simplification is that there are no replacement-
like players and no trades, which greatly decreases the amount of lineup mixture, and
makes it more difficult to construct priors that are consistent with each other (since, as
shown in Theorem 1, lineup mixture is key to preserving the ordering of rebounding abil-
ity). Also, since the lineups and players are truly random, there are probably instances
of very unrealistic lineup combinations, which means the variability between lineups is
much greater than in the true league.

The hope is that both the impeding and facilitating simplifications roughly cancel each
other out, and make for broadly reasonable test conditions.

Parameters for the two Normal distributions used to generate the players were chosen
based on the observed rebounding rates of 5-man lineups having appeared in at least
100 offensive possessions and 100 defensive possessions during the 2020-21 NBA season
(note that instances with the same 10 players are far too short for the probabilities to be

meaningful).
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Figure 2.2: Comparison between team rebounding rates of observed lineups and gener-

ated probabilities.

To judge whether the Normal parameters were appropriate, 5000 ten-man combin-
ations were created by sampling five players from the defensive distribution and five
players from the offensive distribution. The probabilities for these lineups were com-
puted using the logistic function, and the simulated distribution was compared to the
observed data. Since the likelihood function is not identifiable, as long as the center of the
distributions are adequately spaced, their exact values are insignificant.

The mean of the defensive distribution was chosen to be 0.22, and the mean of the
offensive distribution was chosen to be 0. Furthermore, as shown in Figure 2.2, we can
achieve nearly identical lineup rebounding rates by setting the standard deviation to 0.1
for each of the two Normal distributions. However, the observed rates are obviously em-
pirical, can contain as few as 50 trials, and are marginalized across all opponents, which
means that the variance in the observed lineup rebounding is probably greater than the
variance of the true underlying probabilities that will be used in the simulation. With this

in mind, we also opted for a second simulation, but with a standard deviation of 0.07.
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Figure 2.3: Comparison between the distribution of observed rebounding rates of players

and the simulated individual rebounding rates.

At this stage, a scale factor was introduced such that the simulated individual re-
bounding rates roughly resemble the observed individual rebounding rates. The distri-
butions of the observed and simulated data are given in Figure 2.3.

The simulation was carried out for each choice of variance, as described above. The
parameters were estimated using Stan (Carpenter et al., 2017), which is an implement-
ation of Hamiltonian Monte Carlo. The Markov chains consisted of 1000 warm-up it-
erations and 1000 sampling iterations. To evaluate the convergence of the process, four
separate chains were used, the values of R, as described by Vehtari et al. (2021), were
calculated for each marginal distribution. In all instances, these were close to 1. This was
especially important for the estimate & of the intercept, since the prior was improper.

To evaluate the accuracy of the model, however, we cannot simply compare the es-
timated parameters to the known ones: as mentioned earlier, we can shift any paramet-
erization by a constant, and end up with an equivalent model. This is why the inclusion
of an intercept term when estimating the parameters was crucial. To make comparisons

possible, we assume that the shift across all parameters is constant, and the total shift for
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each lineup is aggregated into o. We can therefore re-write the linear predictor as

BY 4B+ + 80— B0 =89 —-- =B +a
= (8P + o)+ (B + o)+ + (8P + 15)
()~ (8 =) (5 5)

Therefore, we compare the shifted parameter estimates with the parameter values used
to create the simulated data. Figure 2.4 contains scatter plots of the shifted estimated
parameters against their true values.

Although the method seems to work reasonably well in general, there are few outliers.
Outliers on the extremes of the cloud seem reasonable enough: because of the shape of
the logistic function, for extreme players, a large difference in the parameter can lead to a
negligible difference in predicted probability.

The more concerning/interesting outlier is the one player found far above the cloud in
the offensive high-variance graph. We suspect that this could be an artefact of lineup con-
struction: since the lineups were completely random, if a weak rebounder just happened
to have teammates and/or opposition that were even weaker, it would be nearly im-
possible to detect that they were weak. In practice, lineup strategy probably makes for
more homogeneous lineups that the randomly generated ones. Removing this point alone
increases the value of R? from 0.42 to 0.48.

Given the satisfactory behaviour of our suggested estimation strategy, we continued

by applying the proposed methodology with our NBA data set.

2.3.5 Modelling individual rebound collecting ability

Recall that in traditional multinomial regression, we choose some baseline category,
say k, and use a linear relationship to model the log-odds ratio between each non-baseline

category and the baseline. That is, if there are k possible categories for the response, we
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Figure 2.4: Scatter plot of shifted estimated parameters (y-axis) against their true values

(r-axis).
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p
In (Wij/mk) = Zﬁjhﬂfih,
h=1

where 7;; denotes the probability of observation ¢ belonging to category j, and where z;,
denotes the hth predictor of observation i, and where p denotes the number of predictors.

Although multinomial regression seems like a natural way to model individual re-
bounding probabilities, the implementation is not trivial: for every missed shot, the re-
bound must be either allocated to the team (when the ball goes out of bounds after the
missed shot) or to one of the five players on the court. This means that although we can
treat each rebounding event as a multinomial random variable, the response categories
differ for each trial, meaning that traditional multinomial regression, where each outcome
can belong to any of the same possible categories, is not suitable.

To remedy this, we assume that each player has some latent rebound collecting ability
both on offense and defense, respectively denoted by 7 and ~” for Player i. Similarly
to team rebounding, we assume that these variables are constant across lineups, and that

rebounding is linearly additive on the log-odds scale.
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Furthermore, although players differ between lineups, every lineup can potentially
produce a team rebound, meaning that there is at least one common category across all
lineups. Therefore, if we model the log-odds ratio between an individual collecting the
rebound and there being a team rebound, the resulting framework allows for mixing and
matching of never-before seen lineups.

In other words, assume some lineup L, consisting of players 1 to 5, collects a de-
fensive rebound (the same procedure hold for offensive rebounds). We assume that the
conditional probability of Player i collecting that rebound is given by

D
e

L+et +-- e’

pi =

and the probability of there being a team rebound is given by

1
L L .. L L L
= =1—py —py —ps —pi —pr.
Pr 14+ei 4+ .oodge?d Py =Py —P3 =Py — D5

Because the response categories differ between responses, the likelihood is different
from that of traditional multinomial regression.

Let x4, ..., xn denote the 5-dimensional vectors of multinomial responses where the
number of trials is known. Let n; denote the number of trials for the ith multinomial
variable, let x ) denote the number of rebounds collected by the jth player in the ith
lineup, and let NV denote the total number of observed lineups.

The likelihood of the above model, with the multinomial coefficient omitted for the

sake of readability, is given by

N
o [ )7 (p)7E x (p)PE x (p)E x (p)PE x (phyreer ek ek e el
L=1

N () x () x (B) ) x (7)) x (F)eE

H L+ed . ew

Note that a single player can appear across multiple lineups with a different index,
meaning that technically, the 7’s should also depend on the lineup, and that v’s with

different indices can actually represent the same underlying parameter.
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It is straightforward to show that the log-likelihood is proportional to

N

1 2 3 4 5
> " 2P + 2P + 2P + a0 + 2P P
L=1

—nrln (1 +e¥ 4% 4 4t 675D). (2.2)

Directly maximizing the log-likelihood in this instance is less problematic than in the
team rebounding model: instead of players confounding each other’s contributions to
team rebounding, we actually have more “complete” information, since we know exactly
which player collected the rebound. This means that although player appearances are
correlated, they don’t lead to the same explosion in the variance of the parameter estim-
ates, although lineup mixture still obviously eases parameter estimation.

However, there a few reasons we avoid this direct maximization. Firstly, since we
are not using a traditional GLM, we would have to manually implement a maximization
procedure. Secondly, not all variables have the same predictors (the features for each
observation are the five players in the lineup), which greatly complicates estimating the
parameter variances. Although we could in theory estimate the asymptotic variance us-
ing the Fisher information, in practice, we have no feature matrix and therefore cannot
use matrix calculus to compute the derivatives, which means the implementation would
not be very efficient.

We instead estimate the parameters again using MCMC, but unlike the team rebound-
ing procedure, by instilling (improper) uniform priors over the real line. We note that the

posterior distribution is proportional to the product of the prior and the likelihood, i.e.,

T(y | ®) occ7w(y) x L(v | z)

for all v, . Therefore, by using the posterior mean to estimate the parameters, we are
effectively using a weighted average over the parameter space, where the weight is pro-
portional to the likelihood at the given point. Furthermore, when the likelihood function

is symmetric and unimodal, the posterior mean is in fact exactly equal to the MLE.
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Figure 2.5: Distribution of possessions played by players in the 2020-21 NBA Season. A

total of 540 players were in the data set.

2.4 Player clustering

Over the course of the 2020-21 NBA season, 540 different players appeared in at least
one game. However, many of the players were merely an injury replacement, were played
exclusively to rest starters once a game has been decided, or were simply given a trial run
before being cut from the team. A histogram of the distribution of possessions played
during the season is given in Figure 2.5. Because of these players’ very limited opportun-
ities, it would be impossible to obtain any statistically significant results for them in the
limited data set of games. Furthermore, a sizable portion of the players will never make
another NBA appearance, meaning that in a practical setting, there is no point in estim-
ating their rebounding ability. These players will henceforth be referred to as unusable
players, from the perspective of our analysis.

To reduce the number of parameters to estimate and reduce overfitting, all these un-

usable players could be grouped together, and treated as a single “reference” player, as
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proposed by Rosenbaum (2004). One issue with this approach is that we would be im-
plicitly assuming that all these players should be considered as equivalent rebounders.
This is almost certainly not the case: a 7-foot rim-running big man is almost certainly a
different rebounder than a 5”10 scoring guard, despite there not being sufficient data to
significantly test for this difference.

Therefore, one similar but less rigid approach would be to group players based on
their listed position. However, this would represent further challenges: depending on
the data set, not only will player positions not be consistent, but also, the set of avail-
able positions may be different.! This also completely glosses over positions that many
pundits would argue exist, e.g., the pass-first point guard, the point forward, or the stretch big.

Because of the subjectivity and discrepancies in these labels, a more objective approach
is explored to group players who are more likely to have similar rebounding ability.

The big picture is as follows: firstly, we retain all players with a lot of playing time,
since we have a good idea of their tendencies. We then use these players to learn the
underlying positions of the NBA. Then, having learned these positions, we assign each
unusable player one of these positions; note that the usable players are not assigned a
position, they are just used to learn them.

Finally, we assume that all players of the same position are identical, and therefore
treat them as a single player, hence greatly reducing the number of parameters to estim-

ate. Figure 2.6 shows how the clustering fits into whole modelling procedure.

2.4.1 Heuristics

Henceforth we distinguish two terms:

1For example, the NBA official box scores contains seven unique labels (G, G-E F-G, F, F-C, C-F, C), but
ESPN uses five positions (PG, SG, SF, PF, C) to categorize players.
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Figure 2.6: Diagram of the high-level modelling procedure.

Position label: the position that a player is assigned in the NBA data set.

Underlying position: the latent position of a player that we are interested in learning.

Moreover, we propose the following postulates:

1. The first grouping heuristic is that there exist separate offensive and defensive pos-

itions.

. The second grouping heuristic is that the position labels do convey meaningful pos-

ition information in the aggregate: although there may be some “mislabelled” play-

ers (especially amongst players who have played very little), players who are of the

same underlying position are more likely to end up with the same position label.

Moreover, we assume that the ordering in compound position labels also conveys

information about the underlying position, and hence permutations are treated as a

unique label. Hence we rely on seven position labels: G, G-F, F-G, F, F-C, C-F, C.
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3. The third grouping heuristic is that the set of possible underlying positions is the
same for all players, regardless of how much playing time they get: this allows us
to learn the underlying positions from players who have a large sample of games

played, and then assign these labels to unusable players.

This third heuristic is important because the small sample sizes of unusable players
mean that their features are often extreme, and make them unsuitable for clustering.
Because of this, only players having played in at least 1000 possessions are retained
for ”“positional learning.” This cutoff divided the data set into 366 usable players

and 174 unusable players.

4. The final modelling heuristic is that there exists a traditional center underlying po-
sition on both offense and defense, and that in general, this underlying position is
very easy to identify compared to other positions, meaning that the C position label

is more reliable.

This heuristic is based on the fact that the traits of the traditional center are well cap-
tured by the data set, since measurements like average shot distance, shots blocked,

or lack of three pointers shot are recorded.

2.4.2 Reformatting the data set

The raw player tendency data sets (we handle offensive variables and defensive vari-
ables separately) cannot be used directly to “learn” the underlying positions: as shown
by Figure 2.7, there is significant correlation between the columns of the feature matrices.
This can be problematic when dealing with GMMs, since the re-assignment of points to
a cluster can be very unstable and vary wildly between iterations. The most obvious
solution to this problem is to reduce the dimension of the feature matrices by performing
PCA, and retaining only some subset of the principal components. This obviously begs
the question of how many principal components should be retained for classification,

which will be discussed in Section 2.4.4.
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Figure 2.7: Left: Correlation matrix of the offensive feature data set. Right: Correlation

matrix of the defensive feature data set.

At a first glance, performing PCA on the normalized data set appears to work well:
Figure 2.8 suggests that we can greatly reduce the number the dimensions of the data
sets. This plot is however slightly misleading in that some position characteristics are
over-represented in the data set because of the ease with which they can be collected.
For example, there are multiple features relating to posting up, but very few related to
shooting three pointers. This issue becomes obvious when looking at the proportion of
variance retained for each position label.

Since the data have been standardized, the proportion of variance retained by the ith
principal component for a given player is given by

PC?
PC}+---+ PC}’

where PC? denotes the eigenvalue associated with the jth principal component. These
values can then be averaged across players sharing a position label to get an idea of how
well the variability of the said position label is preserved after reducing the dimension.
As shown by Figure 2.9, and assuming our heuristics are correct, if we were to reduce the
dimension of the data set, we would require a lot of principal components to keep all the

non-centers from being “squished” together.
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Figure 2.8: Left: Scree plot for first 10 principal components of offensive data set. Right:

Scree plot for first 10 principal components of defensive data set.
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Figure 2.9: Left: Scree plot for average variance proportion retained for a given position in
offensive data set. Right: Scree plot for average variance proportion retained for a given

position in defensive data set. Note that the labels are those used by the NBA.
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2.4.3 Clustering using Gaussian mixture models

The underlying assumption of a Gaussian mixture models (GMM) is that for the n
data points, there are K underlying subpopulations, each of which is characterized by
some (potentially multivariate) Gaussian distribution. That means that the density for a

given observation is given by

f(.’E ‘ 71',[1,,2) = Zﬂ-jg(w | Mj72j>>

where 7; denote the mixture weights, and where 1; and X; denote the parameters of the
jth subpopulation.

In practice, both subpopulation membership and the parameters of each distribution
are unknown and must be estimated; in this case, the number of subpopulations is also
unknown. For a fixed number of subpopulations, the parameters can be estimated using
the expectation maximization algorithm, given by Dempster, Laird and Rubin (1977).

Let z(® denote the feature vector of the ith observation. Let also (¥ denote the
latent cluster membership categorical variable of the ith observation. Furthermore, let
My -y s 21, - - 5 2k, T1, - - -, T, be the current values of the subpopulation parameters.

First, we have the E-step. Foreachi € {1,...,n}and j € {1,..., K}, set
Pr(:v(i) | z(i)); ™, U, ) Pr(z(i) = j)
PI‘(.’B(i);ﬂ',p,, E) '

wf) = P9 = j | 25 m,p, %) =

J

Then we have the M-step. Foreach j € {1,..., K}, let

I G G i G
SRS S ST St Y oit
=1 =1 =1
and

=1

These steps are repeated until the change in the estimated parameters is negligible.
Using the final values of w§i), we can determine, upon convergence, which subpopulation

likely generated each observation by assigning =¥ to cluster k if

arg max ’U)](Z) = w,(:) .
J
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2.4.4 Clustering approach

Because of this “squishing” phenomenon, an iterative approach was implemented:

1. Perform PCA on the whole data set.

2. Learn to separate centers and non-centers (based on their underlying position) using

some subset of the principal components.
3. Remove underlying centers from the data set.
4. Perform PCA on the original features of the non-centers.

5. Learn the different positions in the reduced data set using some subset of the prin-

cipal components.

This approach requires the choice of two hyper-parameters: the number of mixture
components in the GMM and the number of principal components retained. Also note

that the procedures below were repeated for both the offensive and defensive data sets.

Learning traditional centers

For the first iteration of clustering, we need only determine the number of principal
components to retain, since we must obviously have exactly two mixture components:
centers and non-centers. The number of principal components to retain was determined
titting a GMM to 1, ..., 10 principal components, and then for each model, the F-score
was computed by matching with the NBA labels, and then simply picking the number of
components which lead to the greatest score. Recall that the F-score (see Dice, 1945 for

more details) is given by
2x1T,

T 2xT,+F,+F,’

1

where T}, denotes “true positives”, F, denotes “false positives”, and F,, denotes “false
negatives”. The positions labels of C, F-C and C-F were all considered centers when

computing the F-score, and all other positions labels were considered non-centers. Also
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note that since GMMSs do not explicitly assign observations a label, to determine which
cluster corresponded to the center cluster, the cluster containing the most players with a
position label of center was considered to be the center cluster. Therefore, when it came
to computing the F-score, all players in the center cluster were predicted to be centers,
and all other players were predicted to be non-centers.

For the offensive data set, one principal component was unequivocally found to be
most appropriate, with an F-score of 0.837. In practical terms, this clustering also seemed
appropriate: some noteworthy false positives were Derrick Favours, Richaun Holmes,
and Kevon Looney, and some notable false negatives were Lauri Markkanen and Kelly
Olynyk. Note that we use the terms false negatives and false positives to denote players
who were clustered incorrectly based on their NBA position label.

As one would expect, the defensive data set was a lot fuzzier: F-scores were nearly
identical for 1, 2, 3 and 4 principal components (all hovered around 0.84), before suffering
a major drop off. For purely practical reasons, one principal component was retained.
In this case, some notable false positives Serge Ibaka, Kevon Looney, and Blake Griffin,
whereas some notable false negatives were Aleksej Pokusevski and Larry Nance Jr.

Tables containing all the false positive and false negative centers can be found in Ap-
pendix B. Tables containing all centers classifications (based on cluster probabilities) can

be found in Appendix C.

Learning the other positions
The current clustering context is slightly different from traditional problems:

1. We need to determine the clustering parameters as well as the number of features

(i.e., principal components) to retain for clustering.

2. We have some useful, but not entirely accurate, label information that we would

like to make use of.
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In traditional applications, a common method for picking the number of mixture com-
ponents (which in this case, corresponds to the number of latent true underlying posi-
tions) in a GMM is to use the Bayesian information criterion (BIC). Given that the BIC of
a model is a function of the likelihood, it can be used to determine the appropriate num-
ber of clusters for some fixed amount of principal components, but it is unsuitable for
determining the number of principal components to retain, since the the likelihood will
decrease when additional principal components are added. Directly using BIC would
also completely ignore the partial label information.

To determine how many principal components to retain, we require an assessment of
tit that is independent of the likelihood. This is why the second modelling heuristic, i.e.,
that sharing an underlying position increases the likelihood of sharing a label, is key.

We first define the following shorthand:
Pr(L; | P;) = Pr(Having label L, | Underlying position P;).

Assume we have some arbitrary clustering. Let 7TJ(~i)

denote player i’s probability of
being assigned position P;. Based on the heuristic that labels convey meaningful inform-
ation in the aggregate, we would expect that for an arbitrary underlying position P;, there
exists some label L; that is much more prevalent amongst players with underlying pos-
ition P;, or more formally, that there is some label L, such that P(Ly | P;) > P(Ly | P))
forall h # k.

For some proposed cluster (i.e., proposed position), we define the following score S;:

Ly, = arg max Pr(Ly, | P;), Ly, = arg L Pr(Ly | P)),

and
S; = Pr(Ly, | P}) ~ Pr(Ly, | P,).
This score basically favors clusters that have one label that is predominant, since by
maximizing it, we maximize the difference in proportions of the most popular label and
the second most popular label. In other words, maximizing the score maximizes the

homogeneity within the cluster.
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Although calculating these conditional probabilities exactly would require knowing
cluster membership, we can estimate them using the predicted cluster membership prob-

abilities, along with Bayes’ Rule, viz.

Pr(P; | L) Pr(Ly) _ o™ (") x (54
PI‘(.P]) ZA]I players 7TJ(Z) ’

)

Pr(Ly | P)) =

where N, denotes the number of players with label L;, and N denotes the total number
of players in the data set. To obtain an overall score for the proposed clustering, we then
simply compute a weighted average of cluster scores, weighted by the number of players
within the respective cluster.

Since the EM algorithm depends on cluster initialization, we note that the clustering
can differ from one iteration to the next, meaning that every iteration can potentially
have a different score, a different likelihood, and different model parameters, for a fixed
amount of principal components and mixture components.

Ideally, we would like a model with a large score (as defined above) and a large like-
lihood (by large likelihood, we mean relative to iterations with the same number of prin-
cipal components and mixture components, since otherwise they are not directly compar-
able). To pick the optimal classification, Algorithm 1 was performed.

Using this procedure, the optimal offensive clustering had an average rank of 99, and
the optimal defensive clustering had an average rank of 99.5. Furthermore, the clusterings

proposed by the final models seemed heuristically correct.

2.4.5 Results and interpretation

A scatter plot of the non-center positions is given in Figure2.10 and the five players
most likely to belong to each non-center cluster are listed in Table 2.1 and Table 2.2. A full
list of all non-center classifications is given in Appendix B. A short practical interpretation
and assessment of the clustering is briefly given here.

Heuristically speaking, the offensive clustering is appropriate. Position 0 seemed to

contain “shooters with a bit of a handle,” i.e., perimeter players who are capable of hand-
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Algorithm 1 An algorithm for picking a suitable classification

foriinl,...,8do
forjin2,...,6do

for £ in 1 to 100 do
Set seed to k.
Fit a GMM using i principal components and j mixture components.
Predict the cluster probabilities.
Compute the score.
Compute the likelihood.

end for

Rank the likelihood for the 100 iterations.

Rank the scores of the 100 iterations.

Retain the clustering with the highest average rank.

end for
end for

Of all the retained models, pick the one with the highest average rank

ling the ball, but that aren’t generally the main ball handler on their team. Some notable
examples were players like Jordan Poole, Eric Bledsoe, and Anfernee Simons.

Position 1 seemed to contain “multi-level” players, i.e., players who tend to operate all
over the floor. Although the model assigned all these players the same position, it is in-
teresting to note that Position 1 shows what appear to be sub-clusters. The left sub-cluster
contained ”strech-bigs,” like Al Horford, Christian Wood, or Brook Lopez, whereas the
right sub-cluster contained players who operate at all three levels by slashing to the bas-
ket, like Jimmy Butler, Kevin Durant, or LeBron James.

Position 2 contained ”offensive initiators”, i.e., scoring threats who handle the ball

a lot, like Ja Morant, Trae Young, or Luka Doncic. Position 3 seemed to contain players
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who operated exclusively on the perimeter, without handling the ball much, such as Mike
Muscala, Trevor Ariza, and Maxi Kleber.

Position 4 contained exclusively Zion Williamson and Giannis Antetokoumnpo. This
agrees with the sentiment that they are (nearly) one-of-a-kind players. Players also ap-
peared to be appropriately placed on the cluster boundaries: for example, Steph Curry
and Damian Lillard were both classified as Position 2, but both had a pretty sizable prob-
ability of belonging to Position 0, which coincides with their willingness to play off-ball.

Although the defensive clustering was interesting, it was a lot fuzzier than the offens-
ive clustering. Position 0 contained what can only be described as “limited defenders”
such as Trae Young, Ja Morant, and Eric Gordon. Position 1 contained defenders who rely
on their size, length and wingspan, such as Grant Williams, Pascal Siakam, and Robert
Covington. Position 2 was by far the most interpretable cluster: it aggregated all the de-
fensive pests with a knack for stealing the ball, such as Matisse Thybulle, Alex Caruso,
and T.J. McConnell.

Position 3 contained defenders who rely on foot speed to defend on the perimeter, like
Marcus Smart, De’Anthony Melton, and Jevon Carter. Given that a big part of defense is
about limiting the offensive player’s ability, it is obviously quite difficult to describe a
defensive performance with count data. One clear avenue for improvement would be to
use tracking data, as suggested by Bornn et al. (2016), but unfortunately it is no longer

publicly available.

2.4.6 Assigning unusable players a position

Recall that the aforementioned procedure is just for learning the positions. It does not
actually involve these unusable players. We now explore how to assign unusable players

a position.



CHAPTER 2. CONTRIBUTION 43

Table 2.1: Five players with greatest classification probabilities for each offensive posi-

tion.
Position 0 Position 1 Position 2 Position 3 Position 4
Austin Rivers Kawhi Leonard Luka Doncic Mike Muscala G. Antetokounmpo
Damyean Dotson Jimmy Butler =~ Ja Morant L. Markkanen Z. Williamson
Trey Burke Julius Randle Paul George Jeff Green
E. Campazzo Ben Simmons  Elfrid Payton Obi Toppin

Payton Pritchard  Pascal Siakam  Kyrie Irving ~ Kenyon Martin Jr.

For unusable players who are close to the 1000 possession cutoff, assigning a position
is straightforward: we simply classify their feature vector, and pick the cluster with the
greatest probability. For players who are nowhere near the cutoff, this approach is more
problematic since their “per 100 possessions” stats can be far too extreme. For example,
some players played fewer than 20 possessions during the season, which means that if
they were to record a single block, they would by far be the greatest shot blocker in the
data set. For these extreme cases, we have no choice but to rely on their labels.

To handle both these cases simultaneously, we propose the following high-level idea:
a weighted average between the mean classification probabilities of their label and the

player’s direct classification probabilities. The more a player has played, the more weight

Table 2.2: Five players with greatest classification probabilities for each defensive posi-

tion.
Position 0 Position 1 Position 2 Position 3
Eric Gordon Nassir Little Matisse Thybulle De’Anthony Melton
DeMar DeRozan Josh Hart Facundo Campazzo David Nwaba
Stephen Curry ~ Deni Avdija T.J. McConnell Caleb Martin
Trae Young Aleksej Pokusevski Gabe Vincent Victor Oladipo

D.J. Augustin Nemanja Bjelica Alex Caruso Gary Harris




CHAPTER 2. CONTRIBUTION 44

. 0 . - 0
15 e 1 6 o 1
= e 2 e 2
e 3 ® e 3
e 4 4 ¢ i
10 = . .o .
. . . o o
. *e . . . . -y * .
LI . 2 2, i .o,“oc’.
o e o o L A I ."0
[§) *e ¢ . 8] o e TN el
o 5 ... . . * 5 a o's® & o
L] . - L™ ... e ’
s . oo . .0. C0 P et * . :&.
. . o 800
** R e | % Speme, e o e o0
. o, ' et e ., J
0 ..“.0 '.}. [T A e %0 * L, *
o« ? ~.o'°.°’ 2 « * .~ %e
’ v Y . ol . * :
':’ . .
O. 4 L] .
-5 . . .
-5 50 -25 00 25 50 75 10.0 -4 -2 0 2 4 ]
PC1 PC1

Figure 2.10: Left: Scatter plots of position clusters on offense. Right: Scatter plots of

position clusters on defense.

should be placed of their direct classification probability, and vice versa.

Time to position convergence

To determine how long a player must play before their position classification can be
considered accurate, we return to the training set of usable players, and study how long
it takes for players to be correctly classified under the assumption that their final classific-
ation is correct. Recall the Kullback-Leibler divergence, which for discrete distributions
P and @ is given by

Dg1(P,Q) = ZP ) In{P(z)/Q(x)}.

reX

The Kullback-Leibler divergence can be used to measure the ”difference” between
two distributions. For a given player i, let m; denote their end-of-season classification
probabilities, and let );, denote their classification probabilities using their running fea-
ture average at time ¢t. We say that a player has converged by time 7' if, for some given

€ (0, 00),
sup D (P, Q) < €

t>T
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Figure 2.11: Left: League-wide convergence rate for offensive non-centers. Right: League-

wide convergence rate for defensive non-centers.

Figure 2.11 shows time to convergence results for the non-center positions. From this
plot, it was heuristically decided that 1000 possessions was in fact a sufficient cutoff for
both offensive and defensive non-centers. The same procedure was performed for the
center position. In line with our heuristics, time to convergence was much shorter when
dealing with centers: 500 possessions seemed sufficient to determine whether a player

was a center both on offense and defense.

Position assignment

Let n(¥ denote the number of possessions played by player i, let c**) denote the mean
cluster membership probabilities for non-center players with label L;, and let p(i) denote
the predicted probabilities for directly classifying player i’s feature vector. We obtained a

”smoothed” probability, pg) by performing the following operation:

n® 1000 —nt )

0 « ),
1000

Ps = 7000

and then assigning the position with the greatest value within the pg) vector. A similar

formula was used to to smooth center probabilities, but the denominator was instead set
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Table 2.3: Replacement players counts for every offensive and defensive position.

Position Defense Counts Offense Counts

0 56 61
1 53 12
2 0 5

3 22 58
C 43 38

to 500. Unusable players were classified as centers if their smoothed center probability
was greater than 0.5. Otherwise, they were classified according to their most probable
non-center position.

Table 2.3 contains the counts of players who were assigned each underlying position.
A tull table containing the position assignments of all unusable players can be found
in Appendix E. Note that although we estimated six underlying offensive positions and
five underlying defensive positions, no unusable players were assigned to offensive Pos-
ition4, and no players were assigned to defensive Position 2, which means in the context
of rebounding analysis, we effectively had five offensive replacement players and four

defensive replacement players.

2.5 Estimation Results

2.5.1 Team rebounding estimation results
MCMC implementation details

As in the simulation study, the parameters for the team rebounding model were es-
timated using Stan, with Markov chains consisting of 1000 warm up iterations and 1000
sampling iterations. Again, the convergence was evaluated by running four chains, and
computing the value of R for all marginal distributions. Again, all values, including the

estimated intercept &, yielded values of nearly 1.
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Practical assessment of parameter posteriors

Before formally evaluating the model fit, we deem in pertinent to explore the posterior
distributions from a practical point of view. Further comments on the practical implica-
tions of the model are discussed in Section 2.6.

As shown in Figure 2.12, despite the fact that the distribution of prior means was heav-
ily positively skewed, the posterior means appear to be symmetrical and roughly Normal.
This is in line with how we would expect traits to be distributed within a population: if we
think as team rebounding ability being a function of many latent variables (like strength,
size, positioning, effort, age, etc.), the Central Limit Theorem implies that the combina-
tion of the factors be approximately Normal. Furthermore, the average of the defensive
posterior means is equal to 0.139, the average of the offensive posterior means is equal to
0.0406, and the posterior mean for the intercept is equal to 0.535.

Thus if we were to play five average defensive rebounders against five average offens-
ive rebounders, the predicted defensive rebounding rate of the team would be 73.63%,
which is nearly identical to the league-wide average defensive rebounding rate of 73.8%.

We also explore the standard deviations of the posterior distributions, which are given
in Figure2.13. Reassuringly, for all players, the variance of the posterior distribution is
lesser than that of the prior, which suggests that the choice of prior distributions was
compatible with the likelihood. The average posterior standard deviation was 0.064 for
both offense and defense.

Furthermore, note that the posterior variances are much smaller for the replacement
players (except for offensive Position 2, which only contained five replacement players).
If there were a lot of heterogeneity in the team rebounding ability of all the replacement
players who were grouped together, we would expect the variance of the respective re-
placement player parameter to be larger than if there was homogeneity. Therefore, the
fact that the posterior variances are small suggests that the replacement player grouping

was appropriate.
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Figure 2.12: Distribution of prior means and posterior means.

One final feature worth exploring is whether the estimated parameters (which are
given by the posterior means) tell a different story than the empirical rebounding rates,
since otherwise, one could just as well directly use individual rebounding rates to meas-
ure contributions to team rebounding. Figure2.14 plots the posterior mean against the
observed individual rebounding rate. There is an obvious correlation between the two,
but they are not perfectly concordant. This further supports the idea that individual re-
bounding rates don’t tell the whole story when measuring contributions to team rebound-
ing. This also suggests that the prior variances were not too small, since the likelihood

function clearly plays a part in the posterior distribution.

The Hosmer-Lemeshow test

Although we technically have categorical features in the team rebounding model,
conventional methods for assessing fit, such as the likelihood ratio test or Pearson’s chi-

squared test, are inappropriate: since specific 10-man combinations are so rare, the num-



CHAPTER 2. CONTRIBUTION 49

== Prior standard deviation & Non-replacement players # Replacement players
010 s === == 010 s =c=========
0.09 008
008 0.08
0.07 0.07
L §
0.06 0.06
005 005
0.04 004 .
0.03 . 0.03 .
. bt -
. L ]
0.02 002
00 01 0z 03 04 0.1 0.0 01 02z 03
Defense Offense

Figure 2.13: Standard deviations (y-axis) of each posterior distribution against the pos-
terior mean (z-axis). Given the unequal replacement player partition given in Table 2.3,

the difference in replacement player posterior variance is to be expected.

ber of trials for each observed binomial response is often very low, meaning that the data
behave much like in the ungrouped case. We instead opt to use the Hosmer-Lemeshow
test to evaluate model accuracy; see Hosmer, Lemeshow and Sturdivant, 2013. Effectively,
this involves partitioning observations into equally sized groups based on their predicted
probabilities, and then measuring the difference between observed and expected counts
within each group. The test-statistic is given by

z (O — Fry).
N, 7Tg g) ’

where G denotes the number of groups, O,, denotes the observed successes in group g,

E,, denote the predicted number of success in group g, N, denotes the size of group g,

and 7, denotes the mean predicted probability of observations in the gth group.
Asymptotically, the test statistic follows a chi-square distribution, with G—2 degrees of

freedom. This is obviously problematic since the acceptance of the null hypothesis relies
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Figure 2.14: Posterior mean against prior mean. Although correlation is to be expected,
the ranking of ability suggested by the model is different than that suggested by the raw

rebounding rates.

on the arbitrary choice of the number of groups. However, in the case of the training set,
this is not a major issue: given that we are forcibly restricting the model parameters, there
is a significant difference in the observed and predicted counts of the extreme groups,
meaning that for most binning schemes, the null hypothesis is rejected. However, when
predicting on the testing set, where we have far fewer observations, the choice of group

size can influence the conclusion of the Hosmer—Lemeshow test.

In-sample prediction

To assess whether the model is reasonable, we first assess the fit on the training set.
This was done by grouping the observations into ten equally sized groups (each contain-
ing approximately 10,660 observations), plotting the observed probabilities against the
predicted ones (which is shown in 2.15), and performing the Hosmer-Lemeshow test.

As we would expect, the more extreme the observed probability is, the more the model
struggles to predict it accurately. This is also reflected in the Hosmer-Lemeshow test: the

test statistic is equal to 68.63 (p =~ 0), but the smallest bin and largest bin contribute 15.72



CHAPTER 2. CONTRIBUTION 51

0.85 1
-

0.80 -

=
-~
o

-\

Predicted rate
Y

N
N

.
065 =

065 070 075 0.80 0.85
Observed rate

Figure 2.15: In-sample prediction of rebounding rate during the 2020-21 NBA season.

Lineups were grouped into 10 equally sized bins based on their predicted rebounding

rate.

and 27.30 to the overall statistic, respectively. Although one could obviously improve the
fit by increasing the variance of the prior distributions, this would come at the cost of
poorer out-of-sample performance.

It is also worth noting that the variance of predictions varies drastically between
groups: the smallest group contained predictions between 0.549 and 0.681, and the largest
group contained predictions between 0.794 and 0.878, whereas the widest on the non-
extreme bins had a width of 0.02. Since the league-wide observed average rebounding
rate is 73.8%, the lineups falling into the extreme bins are almost certainly odd lineups
that aren’t used regularly. With these considerations in mind, it was deemed appropriate

to predict on the following season.
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2.5.2 Individual rebound collecting estimation results
MCMC implementation details

The MCMC implementation was identical to that of the team rebounding model, ex-
cept in this instance, since we are modelling individual rebounding probabilities condi-
tional on the team having collected the rebound, we needed to handle the offensive and
defensive parameters separately. For both the offensive and defensive models, all mar-

ginal distributions yielded a value of R near 1.

Practical assessment of parameter posteriors

As with the team rebounding model parameters, we consider practical interpretations
of the estimated parameters. As suggested by Figure 2.16, the posterior means seem to be
roughly normally distributed, which seems more appropriate for rebounding ability than
the heavily skewed empirical rebounding rates (although the offensive parameters still
show some positive skew). The average posterior mean is equal to 1.148 for the defensive
parameters and —0.785 for the offensive parameters.

The shift between offensive and defensive parameters has a practical explanation:
there are a lot more offensive team rebounds than there are team defensive rebounds,
because blocked shots are often swatted out of bounds. These values suggest that for
the average defensive lineup, only about 6% of defensive rebounds are team rebounds,
whereas for the average offensive lineup, that number skyrockets to about 30%. This
quirk of the data, and its practical implications, are discussed further in Section 2.7.

The posterior variances have a lot more going on than in the team rebounding section.
Figure 2.17, which plots the posterior mean against the posterior standard deviation for
each player, has two interesting features. Firstly, the variance of the offensive posterior
means is far greater than those of the defensive posterior means. This is to be expected,
since we are modelling individual rebounding probabilities conditionally on the team

having collected an offensive or defensive rebound, which means that there are far more
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Figure 2.16: Posterior means of the individual rebound collecting parameters.

defensive observations than there are offensive observations. The second interesting fea-
ture is that there is obviously a relationship between the posterior mean and the posterior
variance.

This relationship can be understood through the Fisher information. Consider a single
multinomial observation, whose log-likelihood is given by Equation (2.2), and suppose
we are only interested in the variance of v, (the superscript is omitted for readability).

The second derivative of the log-likelihood with respect to v is

82 6’71 6’71
—— l=—ny 1— .
671 l+en4.--4er l1+en4.--4¢r

Notice this expression does not depend on the data, which means that the Fisher in-
formation is equal to the negative of the second derivative. This further implies that the
Fisher information has a global maximum when e /(1+4¢e" +- - - 4+¢%) is equal to 0.5. It is
also strictly increasing in v; on the left of the global maximum, and is strictly decreasing
on the right of it.

Conditional individual rebounding rates are nearly always less then 0.5, meaning that
in the current context, the Fisher information is essentially an increasing function of the

parameter value. Now, recall the Bernstein—von Mises theorem, which states that the pos-
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Figure 2.17: Posterior standard deviations (y-axis) plotted against their respective means
(z-axis). Color represents the number of minutes of the player in question, and is a proxy
for the number of multinomial observations used to estimate the parameter. Replacement
players were omitted due their much lower standard deviations, which made the mean-

variance relationship less apparent.

terior distribution, under regularity conditions which are satisfied in the present context,

converges to a Normal distribution, i.e., as n — oo,

m(y | &) ~ N[vo.n ()],

where ~, is the true parameter value and /(+,) denotes the Fisher Information. In other
words, asymptotically, the estimator variance is a decreasing function of the Fisher In-
formation, which is itself an increasing function of the parameter. Therefore, the estimator
variance decreases with the parameter value. Also note that this arguments holds when
using the full log-likelihood, since we need only add up the second derivatives across all

lineups containing the specified player.

In-sample prediction

Figure 2.18 plots the (conditional) predicted individual rebound counts in the training

set against their observed values. These is very obvious over-fitting in this case. Although
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Figure 2.18: Predicted individual rebounding counts conditional on rebound collection

(y-axis) plotted against observed individual rebounding counts (z-axis).

the over-fitting could almost certainly be mitigated (by introducing some form of regular-
ization, or by using more seasons for parameter estimation, for example), we opt to leave
it untouched because it effectively acts as an empirical, teammate-independent measure
of "perceived” rebounding ability.

Therefore, comparing these parameters with the team-rebounding ones makes it pos-
sible to detect “overvalued” and “undervalued” rebounders, which is of great practical
use. If one were more interested in out-of-sample prediction accuracy rather than in in-

ference, changes to this conditional model would be the most natural place to start.

2.6 Results

2.6.1 Prediction

To asses fit, predictions were made during the 2021-22 NBA season. By virtue of hav-
ing a new season, we have new players introduced into the data set from two principal

sources: rookies who were just signed to their first NBA contract, or players who were
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formerly replacement players, but who saw a significant increase in playing time relat-
ive to 2020-21. This second group was a combination of established players who were
returning from long-term injuries (such as Jaren Jackson Jr. or Spencer Dinwiddie), and
players who had improved enough to warrant more playing time (such as Gary PaytonII
or Isaiah Joe).

Although we could have just used the replacement player parameters to predict re-
bounding rates in such lineups, in general, this did not seem like an adequate assessment
of model fit: a superstar coming back from injury or a first overall pick are probably not
comparable to a player who is signed to a ten-day contract as an injury replacement.

Given that the main goal is to assess rebounding ability, and that the purpose of pre-
dicting is to ensure that we haven’t just picked up random noise in the training data, we
opted to predict only in instances where all players on the court were non-replacement
players in the training set. Thus we predicted on approximately 25,000 missed shots,
which represented a bit more than 20% of all shots missed during the 2021-22 season.

Within this subset of “predictable” data, we further distinguish between two types of
samples: seen lineup and unseen lineups. Seen lineups represent lineups where the exact
five-man defensive lineup combination also appeared in the training set. We distinguish
between these two types of samples so that we can better detect over-fitting: given the
data limitations and the simplicity of the model, it seems likely that formal assessment
of fit will deem the model inadequate. However, if the model performs far better in seen
lineups than unseen ones, the model was probably over-fit to the training data.

The testing data contains about 19,000 instances with unseen lineups, and about 6000
instances with seen ones. Furthermore, when assessing fit graphically, on top of plot-
ting observed and predicted counts based on the groups used for the Hosmer-Lemeshow
test, we also sum predictions over teams and players, to allow for a more practically in-

terpretable assessment of fit.
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Figure 2.19: Predicted probabilities (y-axis) against observed probabilities (z-axis) for seen
and unseen lineups during the 2021-22 NBA season. Note that the groups for the unseen
lineups contain each about 1940 observations, and the seen lineup groups contain about

560 observations.

Team rebounding prediction

Figure 2.19 shows the observed team rebounding rates against the predicted ones, for
the 10 groups used to conduct the Hosmer-Lemeshow test (note the differences in group
sizes). Visually, it does not seem as though we have over-fit to the training data, and
the formal test seems to support that impression: the p-value for the unseen lineups is
approximately 0.015, and is 0.0483 for the seen lineups, which seems comparable given
the difference in sample size. Unlike the in-sample prediction, the subjectivity of the
grouping scheme is much more problematic in this case: by increasing the number of
groups from 10 to 11, the p-values change to 0.043 and 0.024, respectively. Furthermore,
if we increase the number of groups to 20, for both observation types, we fail to reject
the null at the 5% level. In short, although the model doesn’t seem to explain all the

rebounding variability, it does seem to have least captured some meaningful information.
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Figure 2.20: Predicted vs observed rebounding counts for each of the 30 teams during the

2021-22 NBA season (in all predictable instances).

We also compare predictions aggregated across teams, which are shown in Figure 2.20,
for a more practically interpretable assessment of fit. Also note that the drastic difference
in predictions is due to the variable number of replacement players found across all teams:
for example, the Houston Rockets decided to rebuild, which meant most of their players
were rookies and hence have very few predictable instances, whereas the Los Angeles
Lakers made a point of acquiring established veteran players, which means effectively all
of their missed shots were predictable. The global performance of the team-rebounding

model appears to be reasonably good.

Two-stage individual rebounding prediction

We further attempted to predict individual rebound allocation. For each missed shot,
we computed the expected number of rebounds for every player on the court. For each
player in the testing data set, we then summed up fractional rebounds across all lineups
they appeared in, and compared that to the observed counts across those same lineups.

The resulting scatter plot is in Figure2.21. Given the greater uncertainty in the of-

fensive individual rebounding parameters and the much smaller number of multinomial
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Figure 2.21: Two-stage predicted vs observed rebounding counts for individual players
during the 2021-22 season. Note that about ten players were omitted from the offensive
plot because they had far more offensive rebounds that those plotted, so their inclusion
in the plot "squished” everyone else together. The fit for those players was comparable

to the players retained for plotting.

trials, it is no wonder that the fit is much poorer than in the defensive rebounding case.

2.6.2 Player rebounding assessment

7

Given the goal of accurately assessing players” “true” ability to steal rebounds from
opponents rather than from teammates, we include a list of the top 15 offensive and de-
fensive team rebounders in Table2.4. These rankings are close to those suggested by
looking at raw individual rebounding rates, but interesting re-orderings occur.

For example, Andre Drummond has a reputation for being an overvalued rebounder
due to the large number of uncontested rebounds he collects. The model suggests that
this view is at least somewhat correct. Furthermore, Steven Adams has a reputation for

being an undervalued rebounder because of his willingness to let his teammates collect

rebounds. Again, this view is supported by the model. The posterior means for team
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Table 2.4: Top 15 players for offensive team rebounding ability (left) and defensive team

rebounding ability (right)

Player Posterior mean Prior mean Player Posterior mean Prior mean
Jonas Valanciunas 0.3316 0.134 Jonas Valanciunas 0.4046 0.289
Enes Freedom 0.3300 0.148 Nikola Vucevic 0.3831 0.289
Dwight Howard 0.2624 0.148 Jusuf Nurkic 0.3579 0.283
Moses Brown 0.2570 0.143 Ivica Zubac 0.3491 0.200
Mitchell Robinson 0.2474 0.124 Kevin Love 0.3479 0.272
Steven Adams 0.2314 0.132 Clint Capela 0.3430 0.301
Thaddeus Young 0.2313 0.105 Enes Freedom 0.3336 0.281
Goga Bitadze 0.2282 0.095 DeMarcus Cousins 0.3306 0.293
Daniel Gafford 0.2226 0.118 Andre Drummond 0.3171 0.336
Isaiah Stewart 0.2157 0.105 Derrick Favors 0.3071 0.227
Clint Capela 0.2121 0.155 Tristan Thompson 0.3039 0.212
Andre Drummond 0.2094 0.132 Steven Adams 0.3020 0.187
Robert Williams III 0.2081 0.136 Nikola Jokic 0.3003 0.237
JaVale McGee 0.2068 0.105 Al Horford 0.2883 0.195
Jarrett Allen 0.2040 0.106 Domantas Sabonis 0.2880 0.259

rebounding parameters and individual rebounding parameters for all players are given
in AppendixF.

We also look at players who will appear to be undervalued or overvalued: these terms
refer to players whose individual rebounding parameter is very discordant from their
team rebounding parameter. Given that these parameters are on different scales, we
measure discordance by subtracting the team rebounding parameter rank from the indi-
vidual rebounding parameter rank. Table 2.5 contains the five most undervalued offens-
ive and defensive rebounders, and Table 2.6 contains the five most overvalued offensive

and defensive rebounders.
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Table 2.5: Five most undervalued offensive rebounders (left) and defensive rebounders

(right).
Player Rank difference Player Rank difference
Kira Lewis Jr. 267 Isaac Okoro 303
Furkan Korkmaz 250 Robin Lopez 243
Jayson Tatum 245 Raul Neto 242
Stephen Curry 237 Joe Harris 223
Eric Bledsoe 236 Andrew Wiggins 221

One interesting thing to note when looking that the full discordance rankings is that
there are clearly some player archetypes which are consistently overvalued or underval-
ued. In general, it seems that long-range threats (like Desmond Bane, Davis Bertans or
Damian Lillard) positively impact their team’s offensive rebounding far more than their
individual rates would suggest. Perhaps this is due to the fact that their shooting ability
forces opposing defenders onto the perimeter and away from the basket, which allows
their teammates to more easily collect offensive rebounds for themselves.

Furthermore, there appears to be a subset of centers that could be overvalued on the
offensive glass, such as Willie Cauley-Stein, Nikola Vucevic or Al Horford. This sug-
gests that regardless of rebounding ability, the center will collect a significant amount of

offensive rebounds by virtue of occupying prime rebounding real estate, which sounds

Table 2.6: Five most overvalued offensive rebounders (left) and defensive rebounders

(right).
Player Rank difference Player Rank difference
Derrick Jones Jr. —268 R.J. Hampton —279
Willie Cauley-Stein —256 Torrey Craig —260
Eric Paschall —246 Chris Boucher —258
Michael Carter-Williams —238 Tyler Herro —214

Kelly Oubre Jr. —237 Nerlens Noel —212
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Table 2.7: Timberwolves most common lineup during the 2021-22 season. Note that

parameters were estimated using data from the 2020-21 season.

Player Bp YD

Patrick Beverley 0.1257 1.0883
D’Angelo Russell 0.0422 0.5959
Anthony Edwards 0.1092 1.0665
Karl-Anthony Towns 0.2540 1.7681
Jarred Vanderbilt 0.1254 1.7108

Rudy Gobert 0.2843 2.0078

intuitively reasonable. On the defensive end, there is a trend of ballhandlers generally be-
ing overvalued (such as Russell Westbrook or Devin Booker, for example). Perhaps teams
are “artificially” funnelling more rebounds to their ballhandlers, so that teams can more
efficiently begin their fast break, or maybe these players are matched against opposing

perimeter players, meaning that they have fewer boxing out responsibilities.

2.6.3 Example: The Timberwolves acquire Rudy Gobert

To illustrate the relevance of the model, consider the following hypothetical situation:
suppose the Minnesota Timberwolves feel like their defensive rebounding needs to be
improved. They consider replacing Jarred Vanderbilt, whose defensive rebounding rate
is 21.1%, with Rudy Gobert, whose defensive rebounding rate is 28.8%. We explore the
impact of this change on their most frequent lineup during the 2021-22 season against
average offensive rebounding competition, whose parameter values are in Table2.7.

Using the fact that the average estimated offensive team parameter across the league is
0.0406 and the estimated intercept term is 0.535 (see Section 2.5), we find that before swap-
ping Vanderbilt out for Gobert, the predicted lineup defensive rebounding rate is 72.8%,
and increases to 75.9% after the acquisition, far less than the direct difference between

their individual defensive rebounding rates.
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The especially noteworthy fact is that in spite of such a move making sense from a
team rebounding perspective, looking at predicted individual defensive rebounding rates
suggests that the acquisition does not make sense: the predicted individual rebounding
rate of Towns goes from 21.3% to 20.2%, and Gobert’s predicted rate after the acquisition
is 25.7% (his empirical rate was 28.4%).

When this trade ended up actually being made after the 2021-22 season, the observed
individual defensive rebounding rates for both Towns and Gobert showed a comparable
decline. Note that because of injuries and other players being traded, it is difficult to

directly compare predicted rates versus observed ones.

2.7 Discussion

2.7.1 Uncertainty considerations

Despite the posterior mean being a very natural way to assess team rebounding ability,
one could exercise more caution by considering the posterior distribution as a whole.
Suppose we are interested in quantifying the uncertainty in the predicted team defensive
rebounding rate of a specific ten-man lineup combination (i.e. a specific defensive lineup
and a specific offensive lineup), denoted by p;..

Recall that by the Bernstein-von Mises theorem, the posterior distribution asymp-
totically follows a multivariate Normal distribution. Firstly, this implies that the 11-
dimensional marginal distribution (10 players and the intercept) of the lineup parameters
follow themselves a multivariate Normal distribution. Let puy, and X7 denote the mean
vector and covariance matrix of this marginal distribution.

Secondly, linear transformations preserve normality, which means that the sum of
all 11 components of the marginal distribution follows a univariate Normal distribution,
where the mean is given by ;1 = 1" ug and the variance is given by ¢? = 17X1. This
in turn implies that the linear component of the model follows a Normal distribution. By

using the cumulative distribution function of the Gaussian distribution to approximate
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the logistic function, along with the Taylor approximation of the logistic function, as sug-
gested by Daunizeau (2017), we can get approximate analytical solutions for the mean

and variance of the lineup rebounding rate, which are given by

e

and

w0 (rtm) (o ()}

where c is equal to 7/8 and where s denotes the sigmoid function, which is given by
s(x) =1/(1+e€").

Of course, the catch is that these closed-form approximations rely themselves on the
covariance of the posterior, which must be estimated via sampling. This means that if
one were interested in the variance of a single ten-man lineup, one might as well directly
estimate the mean and variance by sampling from the posterior.

The closed-form approximations are only useful if one is interested in the variance of
multiple lineups: the covariance matrix is 366 x 366, whereas there are roughly (3§6) X (326)
possible lineup combinations. Although estimating the league-wide covariance matrix is
still probably not tractable, one could, e.g., realistically estimate all the covariance terms
for a specific playoff series (roughly 10x 10 = 100 terms), and then approximate the means
and variances of the rebounding rates of the 2 x () x (1) = 127,008 possible lineups.

5

2.7.2 The subtle misleadingness of rebounding numbers

Although rebounding is obviously a coveted skill amongst NBA players, simply meas-
uring team rebounding rate may obfuscate “practical” rebounding ability. For example,
consider two players, A and B, who are identical when it comes to corralling down a
missed shot. However, assume that player A is an excellent shot blocker, whereas B is a

terrible one.
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In a practical sense, it is natural to expect any measure of rebounding ability to value
these two players equally as they are identical at collecting missed shots. But, since most
blocked shots are sent out of bounds (recall that a missed shot sent out of bounds results
in a team rebound for the inbounding team), in a technical sense, A is a worse defensive
rebounder than B because A is generating offensive rebounds for the opposing team. We
also note that some well-known shot blockers, such as Rudy Gobert, Richaun Holmes,
and Hassan Whiteside, have a surprisingly low team rebounding parameter, perhaps due
to this quirk.

One possible remedy to this problem is to simply remove blocked shots from rebound-
ing opportunities, but we end up with a similar issue: if a shot blocker is able to keep
the ball inbound, and tip it to a teammate, should they not be considered a superior re-
bounder? This appears to be the case for some great shot blockers, like Clint Capela and
Jakob Poeltl, who are considered great team rebounders by the model.

On the offensive end, there is potential for the opposite problem to occur: perhaps
there are players who are "extremely good at getting blocked”, and who are therefore
technically incredible offensive rebounders. This is perhaps the case for players like Ja
Morant, Kira Lewis Jr. or Eric Bledsoe: the model views these players as surprisingly
good offensive rebounders, but they all love to attack the basket and are not afraid to
challenge players at the rim.

Since this was a data collection issue rather than a modelling one, it was ignored dur-
ing the estimation procedure. But perhaps future work could explore how to isolate re-
bounding ability even further. For the time being, we simply suggest being wary of player

valuations in the case of exceptional shot blockers and “blockees.”
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2.7.3 Model limitations
Validity of the constant rebounding ability assumption

The idea that team rebounding can be explained solely as an interactionless combina-
tion of players on the court is almost certainly false. For example, one popular strategy to
mitigate the effectiveness of Rudy Gobert has been to force him to guard capable three
point shooters, hence forcing him away from the basket and impacting his defensive
rebounding. This suggests that there is an important interaction that is being ignored.
Obviously, modelling all such interactions is not tractable given the very limited amount
of data, and is omitted in most APM based approaches. One potentially feasible way to
incorporate these interactions would be to include an interaction term based on the posi-
tions (using the positions assigned in Section 2.4) of the players in question, and assuming
that the interaction is identical across all players of the given positions.

Furthermore, although the idea that all players have some constant intrinsic value of
rebounding ability is probably approximately true, it is almost certainly not exact, since
players may adapt their play-style based on lineup composition. For example, despite the
model predicting an increase in individual rebounding rate for Draymond Green when
the Golden State Warriors play him in place of Kevon Looney, it is probably the case
that Green’s contributions to team rebounding are underestimated in that specific lineup,
since he is probably more aggressively pursuing rebounds than he would if Looney were
still on the court. Accounting for such a difference is obviously impossible given the
amount of data, and we therefore suggest that model predictions perhaps be viewed as a

“lower bound” on team rebounding ability.

Omitted covariates

For the sake of tractability and ease of implementation, some important intra-season
covariates were omitted. Examples include home-court advantage, days of rest between

games, and whether or not the game was in “garbage time” (i.e. when the outcome of the
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game is already decided and game intensity drastically drops). The current model could
be expanded by including such features. This would of course require that a greater
amount of training data be used, and hence would greatly increase computation time.

Furthermore, given only one season of data was used when estimating the parameters,
inter-season covariates were obviously ignored. For example, we would expect young
players to practice during the off-season and physically develop, which would improve
their rebounding in future seasons. Conversely, for older players, since rebounding is
such a physically demanding task, we would expect them to decline as time goes on.

As currently defined, the model would not be able to account for these trends, even
if multiple seasons were used, and the parameter would simply be the averaged per-
formance of the player across all training seasons. Future work could involve accounting
for expected player development and expected age-related declined, perhaps by adapt-
ing the methodology suggested by Vaci et al. (2019), who used age curves to account for

change in player performance between seasons.



Chapter 3

Conclusion

As mentioned in Chapter 1, assessing individual contributions to team success is of
great importance in professional basketball, since player acquisitions are such an import-
ant part of the sport. Despite there being many APM based approaches, these are almost
exclusively confined to modelling variables with infinite support, like net rating or point
differential. The object of this thesis was to adapt this methodology to model a probab-
ility rather than a net rating for individual rebounding specifically, by both reducing the
number of parameters, and using rebounding specific knowledge to construct the priors.

To achieve this, data were collected from the 2020-21 NBA season. Firstly, play-by-
play data were collected so that we could know exactly who was on the court when a
rebound was collected, and assess impact that cannot be directly measured. Secondly,
player tracking data were collected to learn player tendencies, so that we could reduce
the number of model parameters by grouping underused players with similar play styles.

The first step (but presented second) in the modelling procedure was to use basketball
heuristics to sensibly reduce the dimension of the player tracking data set, thus making
player clustering using GMMs feasible. This clustering procedure allowed us to replace
348 parameters (two for each of the 174 players having played less than 1000 possessions)
with five offensive reference parameters and four defensive reference parameters for each

of the two model stages.
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To model rebounding in such a way that was both consistent with observations and
allowed for impact invisible on the box score, we assumed that the probability of a player

collecting a rebound could be written as

Pr(Player A collects rebound | Missed shot) =
Pr(Player A collects rebound | A’s team collects rebound) x

Pr(A’s team collects rebound | Missed shot),

and we then modelled these probabilities separately.

We assumed that the probability of the team collecting a rebound (the second term of
the above expansion) could be modelled using Bayesian logistic regression: each player
was assumed to have some intrinsic team rebounding contribution parameter, and a nor-
mal prior was constructed on a player-by-player basis based on their individual rebound-
ing rate. The relationship between the lineup defensive rebounding rate and the players
present on the court is given by

. L+ BP =P B +a
p

T 11 PP ABPBY B0 ta

The adequacy of this approach was verified by performing a simulation study.

We then assumed that, conditionally on the team having collected the rebound, the
probability of a specific individual collecting follows a multinomial distribution. The key
idea was that again, every player has some intrinsic weight that is constant across lineups,
and that it could be measured against the probability of there being a team rebound, since
teams rebounds are always a possible outcome, regardless of who is on the court. The
probability of player i collecting the rebound is given by

D
eVi

Yol el e

The posterior distributions were estimated using MCMC, and their properties were
studied to verify firstly, that the choice of prior distributions was sensible, and secondly,

that the estimation was specific enough to be useful in practice. The model was then
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used to predict rebounding outcomes in a subset of the 2021-22 NBA season, where it
performed reasonably well. Furthermore, the model was used in practical contexts, to
both rank players and evaluate potential player acquisitions.

On top of improving the current model, as suggested in Section 2.7.3, we propose a
tew avenues for future work. Firstly, basketball has plenty of binary events of interest:
making a three pointer, getting a stop, scoring out of a timeout, and so on. The proposed
methodology could be used to evaluate how individual players contribute to these events
beyond the box score.

For example, excellent shooters are often said to have “gravity,” i.e., they create higher
quality scoring chances for teammates just by virtue of being on the court. Perhaps a
similar model for scoring probability, and where individual player priors depend on three
point percentage, could be useful for late game situations when a basket is needed.

Another potential avenue for future work is to consider alternatives to linear regres-
sion in APM-like models. The notion of “diminishing returns” seems like it could be
applicable in contexts besides rebounding, and cannot be modelled by assuming per-
formance is directly linearly additive. For example, on a team with plenty of scoring
ability, it seems unlikely that adding another talented scorer would be beneficial, since all

players must share the one ball.



Appendix A

Description of the variables

A glossary giving the definition of most statistics can be found at https://www.
nba.com/stats/help/glossary. Note that some of the tracking data are not actually
included in the glossary, but they generally have quite descriptive names. Some examples

of such data can be found at https://www.nba.com/stats/players/drives.

A.1 Defense variables

¢ AVG DREB Distance ¢ DEF Loose Balls Recovered e STL
e Avg Speed Def * DFGA

) ) ¢ matchup3FGA
¢ Contested 2PT Shots e Dist. Miles Def
¢ Contested 3PT Shots e DREB Chances

¢ matchupTurnovers

¢ Deflections ¢ Uncontested DREB
¢ DEF Boxouts e PFD * matchup2FGA
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A.2 Offense variables

e AVG DRIB PER TOUCH .
* AVG OREB Distance .
e AVG SEC PER TOUCH

* Avg Speed Off

e CATCH SHOOT FG2A

e CATCH SHOOT FG3A

e CFGA

e DIST MILES OFF

e DRIVE AST

e DRIVE FGA

e DRIVE FTA

e DRIVE PASS NO AST

e DRIVE TOV

e ELBOW TOUCH AST .

e ELBOW TOUCH FGA .

ELBOW TOUCH FTA

ELBOW TOUCH PASS NO
AST

ELBOW TOUCH TOV

FT AST

OFF BOXOUTS

OFF LOOSE BALLS RE-
COVERED

OREB CHANCES

PAINT TOUCH AST

PAINT TOUCH FGA

PAINT TOUCH FTA

PAINT TOUCH PASS NO
AST

PAINT TOUCH TOV

PASSES RECEIVED
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PERIMETER AST

PERIMETER FTA

PERIMETER TOUCHES

POST TOUCH AST

POST TOUCH FGA

POST TOUCH FTA

POST TOUCH PASS NO
AST

POST TOUCH TOV

POTENTIAL AST

PULL UP FG2A

PULL UP FG3A

SCREEN ASSISTS

SECONDARY AST

UFGA
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"Missclassified” centers
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Table B.1: False positive centers on Table B.2: False negative centers on

offense. offense.
Name Label Center Prob. Name Label Center Prob.
Bobby Portis F 0.7774 Al Horford C-F 0.2412
Brandon Clarke F 0.5192 Alekesej Pokusevski C 0.0
Bruce Brown G-F 0.5765 Brook Lopez C 0.4571
Derrick Favors F 0.9979 Dean Wade E-C 0.0053
Jarred Vanderbilt F 0.9725 Jalen McDaniels F-C 0.0009
Kevon Looney F 0.855 Julius Randle F-C 0.0003
Marvin Bagley III F 0.7416 Kelly Olynyk F-C 0.0385
Precious Achiuwa F 0.9978 Kevin Love F-C 0.068
Richaun Holmes F 0.9981 Lauri Markkanen F-C 0.0136
Serge Ibaka F 0.9771 Mike Muscala F-C 0.0153
Taj Gibson F 0.9918 Myles Turner C-F 0.3615
Thaddeus Young F 0.9966
Xavier Tillman Sr. F 0.9165

Table B.3: False positive centers on Table B.4: False negative centers on

defense. defense.
Name Label Center Prob. Name Label Center Prob.
Blake Griffin F 0.6853 Alekesej Pokusevski C 0.102
Bobby Portis F 0.9995 Dean Wade F-C 0.2493
Christian Wood F 0.9999 JaMychal Green F-C 0.0448
Darius Bazley F-G 0.63 Jalen McDaniels F-C 0.0861
Derrick Favors F 1.0 Larry Nance Jr. F-C 0.0195
Draymond Green F 0.9324
Eric Paschall F 0.9257
Giannis Antetokounmpo F 0.7901
Isaiah Roby F 0.8878
Jarred Vanderbilt F 0.9351
Juan Toscano-Anderson F 0.5787
Kevon Looney F 1.0
Marvin Bagley III F 0.8526
Maxi Kleber F 0.8928
Nicolo Melli F 0.7364
Oshae Brissett F-G 0.967
PJ. Washington F 0.9618
Precious Achiuwa F 1.0
Richaun Holmes F 1.0
Serge Ibaka F 1.0
Taj Gibson F 0.9982
Xavier Tillman Sr. F 0.9997

Yuta Watanabe G-F 0.5727




Appendix C

Center classifications
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Table E.1: Replacement centers on Table E.2: Replacement centers on

APPENDIX E. REPLACEMENT PLAYER CLASSIFICATIONS

offense. defense.
Name Label Center Prob. Name Label Center Prob.
Alen Smailagic F 0.5199 Alen Smailagic F 0.5279
Alize Johnson F 0.8368 Alize Johnson F 0.6414
Amida Brimah C 0.9305 Amida Brimah C 0.9701
Anzejs Pasecniks C-F 0.8642 Anzejs Pasecniks C-F 0.996
Boban Marjanovic C 0.9999 Boban Marjanovic C 1.0
Bruno Fernando E-C 0.9887 Bruno Fernando E-C 0.996
Chris Silva F 0.7219 Cameron Oliver F 0.5279
Cristiano Felicio F-C 0.851 Chris Silva F 0.5458
Daniel Oturu C 0.9951 Cristiano Felicio F-C 0.8625
Devontae Cacok F 0.7649 D.J. Wilson F 0.9998
Dewayne Dedmon C 0.9979 Devontae Cacok F 0.5637
Donta Hall C 0.9974 Dewayne Dedmon C 0.994
Ed Davis C-F 0.9872 Donta Hall C 0.99
Freddie Gillespie F 0.9774 Ed Davis C-F 1.0
Harry Giles III F-C 0.8783 Ersan Ilyasova F 0.6713
JaKarr Sampson F 0.641 Freddie Gillespie F 0.9811
Jahlil Okafor C-F 0.9856 Harry Giles III F-C 0.9999
Jalen Smith F-C 0.8459 Henry Ellenson F-C 0.8705
Jontay Porter C-F 0.7384 JaKarr Sampson F 1.0
Justin Patton C 0.6701 Jabari Parker F 0.7629
Juwan Morgan F 0.8614 Jahlil Okafor C-F 1.0
Mamadi Diakite F 0.8934 Jalen Smith E-C 0.9223
Marques Bolden C 0.9272 Jaren Jackson Jr. E-C 0.9996
Nathan Knight E-C 0.5402 Jontay Porter C-F 0.99
Nick Richards C 0.9371 Justin Patton C 0.9951
Norvel Pelle C 0.9007 Luka Samanic F 0.7003
Paul Reed F 0.6969 Luke Kornet E-C 1.0
Reggie Perry F-C 0.9482 Mamadi Diakite F 0.7112
Rondae Hollis-Jefferson F 0.6854 Marques Bolden C 0.8845
Tacko Fall C 0.9901 Meyers Leonard F-C 0.8645
Thomas Bryant C-F 0.7566 Mfiondu Kabengele F-C 0.9993
Thon Maker F-C 0.7815 Nathan Knight F-C 0.9457
Tyler Cook F 0.9487 Nick Richards C 0.9661
Udoka Azubuike C-F 0.9139 Norvel Pelle C 0.9522
Vernon Carey Jr. F-C 0.6026 Reggie Perry F-C 0.9821
Vincent Poirier C-F 0.8907 Tacko Fall C 0.9841
Will Magnay C 0.9139 Thomas Bryant C-F 1.0
Thon Maker F-C 0.8924
Trey Lyles F 0.9119
Udoka Azubuike C-F 0.996
Vernon Carey Jr. F-C 0.9183
Vincent Poirier C-F 0.996
Will Magnay C 0.9661
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