
Directional Graph Attention Network

Jiaqi Zhu, School of Computer Science

McGill University, Montreal

August, 2023

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

©Jiaqi Zhu, 2023

Abstract

In recent years, graph neural networks (GNNs) have become a promising method for analyzing

data structured in graph format. By considering connections between entities in a graph,

GNNs are able to extract valuable insights. One notable variation of GNN is the graph

attention network (GAT), which employs the attention mechanism and has demonstrated

promising performance in various applications. However, its ability to incorporate feature

information from nodes beyond the immediate neighborhood is limited, leading to degraded

performance on heterophilic data. To address this limitation, this thesis proposes a novel

attention-based model, namely the Directional Graph Attention Network (DGAT). This

model combines the feature-based attention with the global directional information extracted

from the graph topology, as inspired by the Directional Graph Network (DGN). A new class

of Laplacian matrices is proposed and an existing theoretical result on DGN is extended.

This extension bridges a gap in the literature. The experimental results presented in the

thesis, based on nine real-world benchmarks and ten synthetic data sets, demonstrate the

superiority of the proposed DGAT model compared to the GAT baseline model. Particularly

on heterophilic data sets, DGAT showed a notable average increase of approximately 35%

in node classification tasks across all heterophilic real-world data sets. In addition, DGAT

outperforms GAT by an average margin of around 51% in all ten synthetic data sets with

various levels of heterophily.

i

Abrégé

Durant ces dernières années, les réseaux de neurones graphiques (GNN) sont devenus une

méthode prometteuse pour analyser des données structurées sous forme graphique. En

considérant les connexions entre les entités dans un graphique, les GNN sont capables

d’extraire des informations précieuses. Une variante notable de GNN est le réseau d’attention

graphique (GAT), qui utilise le mécanisme d’attention et a démontré des performances

encourageantes dans diverses applications. Cependant, sa capacité d’incorporer des informations

sur les caractéristiques des nœuds au-delà du voisinage immédiat est limitée, ce qui entraîne

une dégradation des performances sur les données hétérophiles. Pour adresser à cette

limitation, cette thèse proposera un nouveau modèle basé sur la méthode d’attention, le

réseau d’attention graphique directionnel (DGAT). Le modèle proposé combine le mécanisme

de l’attention basée sur les caractéristiques avec l’information directionnelle globale extraite

de la topologie du graphe, inspirées par le réseau de graphes directionnels (DGN). Une

nouvelle classe de matrices laplaciennes sera présentée dans cette thèse ainsi qu’un résultat

théorique existant sur DGN sera étendu. Cette extension comblera la lacune existante

dans la littérature. Les résultats expérimentaux présentés dans cette thèse démontreront

la supériorité du modèle DGAT proposé par rapport au modèle de référence GAT, à l’aide

de neuf benchmarks de données du monde réel et dix ensembles de données synthétiques.

En particulier sur les données hétérophiles, la DGAT montrera une augmentation moyenne

notable d’environ 35% dans la classification des nœuds parmi tous les ensembles de données

ii

réelles hétérophiles. De plus, DGAT est capable de surpasser GAT avec une marge moyenne

d’environ 51% dans les dix ensembles de données synthétiques avec différents niveaux d’hétérophilie.

iii

Acknowledgements

Two years back, I embarked on my pursuit of a master’s degree fueled solely by my foolish

enthusiasm and naive eagerness for knowledge. Over the course of my studies, Professor Xiao-

Wen Chang exhibited exceptional patience, provided me with generous support and guided

me with his empathetic expertise. He embodied the traits of a true scientist, displaying

rigorousness, passion and an insatiable thirst for knowledge. Although the journey was

challenging and fraught with difficulties, I cherish the memorable moments of discovery

and enlightenment that I experienced along the way. Nonetheless, there were also times of

struggle and hardship that I faced. In light of this, I would like to take this opportunity

to express my heartfelt appreciation to my collaborator, QinCheng Lu. Not only did she

accompany me on this journey, but she also provided me with immense inspiration during

the most challenging and uncertain periods. I am truly grateful to her for her unwavering

support. This academic endeavor would not have been possible without the companionship

and encouragement of my loved ones, including my husband Cheng, my parents, and my

friends: Ann, Sonia, Lihua, Fei and Sitao. Their steadfast support illuminated my path

forward and provided me with the courage and determination to push through the challenging

times.

iv

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iv

List of Figures . ix

List of Tables . x

1 Introduction 1

1.1 Goals, Organization and Contributions . 2

1.2 Notation . 3

2 Preliminary 5

2.1 Graph Representation Learning . 5

2.2 Neural Network Basics . 7

2.2.1 Neural networks . 7

2.2.2 Back-propagation . 11

2.3 Structured Neural Networks for Grids and Sequences 18

2.3.1 Convolutional neural networks . 18

2.3.2 Recurrent neural networks . 20

2.4 Graph Neural Networks . 21

2.4.1 The message-passing framework . 22

2.4.2 Different types of graph learning tasks 23

v

2.4.3 Homophilic vs. heterophilic graphs 24

3 Related Work 26

3.1 Graph Convolutional Networks . 26

3.2 Attention Mechanism . 30

3.3 Graph Attention Network . 34

3.4 Direction in Graph Neural Network . 39

3.4.1 Vector fields in a graph . 40

3.4.2 Directional smoothing and derivatives operation 41

3.4.3 Using gradient of the Laplacian eigenvectors as vector fields 44

3.4.4 Directional Graph Network . 44

3.4.5 Theoretical Analysis . 46

4 Directional Graph Attention Network 49

4.1 Problem Statement . 49

4.2 Methodology . 50

4.2.1 Neighbour pruning . 51

4.2.2 Global Directional Aggregation Mechanism 52

4.2.3 Parameterized normalized Laplacian and Adjacency Matrices 54

4.3 Vectorized Implementation . 61

4.4 Training . 62

4.5 Testing . 65

4.6 Summary . 66

5 Experimental Studies 67

5.1 Real-World Datasets . 67

5.1.1 Wikipedia networks . 68

5.1.2 Actor co-occurrence network . 68

5.1.3 WebKB . 68

vi

5.1.4 Citation networks . 69

5.2 Synthetic Datasets . 69

5.3 Experimental Setup . 70

5.4 Results and Analysis . 72

5.4.1 Real-world Dataset . 72

5.4.2 Synthetic Dataset . 75

6 Conclusion and Future Work 78

6.1 Summary of Contributions . 78

6.2 Future Work . 79

vii

List of Figures

2.1 Example of an artificial neuron. Image on left by Clker-Free-Vector-Images

from Pixabay. Image on right shows an example of an artificial neuron. The

dashed circle and arrow denotes the bias term. 7

2.2 Example of an MLP with one hidden layer 10

2.3 Example of an MLP with two hidden layers 15

2.4 An overview of a typical CNN architecture 19

2.5 Illustration of the convolution operation. Left: a 2 × 2 kernel, right: the

convolution input and output. 19

2.6 Example of an Recurrent Neural Network (RNN) 21

3.1 Traditional 2D convolution used in CNNs (left) vs. graph convolution (right)

used in GCNs . 27

3.2 An example of GraphSageNode Sampling . 30

3.3 Example of a seq2seq model with encoder-decoder architecture for machine

translation . 31

3.4 (a) traditional encoder-decoder seq2seq model, (b) encode-decoder seq2seq

model with attention mechanism, from [10] 33

3.5 Left: attention mechanism employed by GAT. Right: an illustration of multi-

head attention by node 1 and its neighbouring nodes, where each different

colour denotes an independent attention computation; from [56] 38

viii

https://pixabay.com/users/clker-free-vector-images-3736/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=296581
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=296581

3.6 An example of how directional aggregation works at a node v1 in the graph.

Here v1 is the node that receives the message, and v2, v3 and v4 are neighbouring

nodes of v1, the arrow directions indicate f12 > 0, f13 < 0 and f14 < 0. . . . 43

4.1 Overall architecture of DGAT . 61

4.2 A two hidden layer neural network (a) with dropout(b) 64

5.1 Synthetic datasets experiment results. The light and dark green bars represent

the accuracies of the DGAT model with γ that have the best and worst results

respectively . 77

ix

List of Tables

5.1 Benchmark dataset statistics. The ⋆ statistics are reported from [35]. 68

5.2 Hyperparameters of DGAT on different datasets 71

5.3 Experimental results: average test accuracy (%) of 9 real-world benchmark

datasets. The best results are highlighted. Results "†" are reported from [43].

Results "‡" are ran by searching the hyperparameters in the following ranges

similar as Beaini et al.’s experimental setting [5]: weight decay ∈ [10−6, 10−5],

learning rate ∈ [10−5, 10−4], droupout ratio ∈ [0.3, 0.5], aggreagators ∈ {"mean-

dir1-av", "mean-dir1-dx", "mean-dir1-av-dir1-dx"}, net type ∈ {"complex",

"simple"}. For fair comparison, we use the same experimental setup as [43],

and report the average test accuracy over the same 10 random splits. 72

5.4 Ablation study on 9 real-world datasets [43]. Cell with ✓means the component

is applied to the DGAT model. The best test results are highlighted. 74

5.5 Experimental results: average test accuracy (%) of 10 synthetic datasets with

different homophily coefficients. The best results are highlighted. For the

DGAT model, we list the best and worst test runs (in the column DGAT (γ)

and DGAT* (γ) respectively) with different choices of of γ in the bracket, e.g.

54.96 (0.1) means γ = 0.1, the average test accuracy is 54.96%. 76

x

Chapter 1

Introduction

The field of deep learning has gained much attention in recent years. People have achieved

state-of-the-art results on many distinct tasks in fields such as natural language processing

and computer vision by utilizing neural network models.

In those fields where deep learning methods proved to be effective, the data fed into

the models are all structured and Euclidean (e.g. 1-dimensional sequence text/audio data

and 2-dimensional grid image data). Nevertheless, there also exist an extensive amount of

real-world data that cannot be represented using those regular data structures. Those data

have more complex underlying structures and can be found in many domains like biology,

chemistry, social network analysis and e-commerce, to name a few. Naturally, graphs are

chosen to be the best data structure for representing them.

The inherent complexity and irregularity of graph data have imposed significant challenges

on existing deep learning models. When working with graph structured data, the traditional

deep learning models often discard the connectivity between the data entities and ignore

the topological structure of it, which often lead to potential information loss and poor

performance results. Over the years, new models have been proposed to address those issues.

This new generation of deep learning models built directly to work with graph-structured

data is often referred to as graph neural networks (GNNs).

1

Graph neural networks learn the representation of the input graph by generating embeddings

of each graph node in a lower-dimensional space. The embedding generation of a node is

done recursively by aggregating information of its neighbours. This mechanism of embedding

generation is also referred to as the message passing framework. Depending on the downstream

tasks, the node-level embedding can also be used to obtain a graph or subgraph level

representation.

LeCun et al. are the pioneer in the filed of graph deep learning, they combined graph

signal processing and convolutional neural networks [31]; since then, various GNN architectures

have been proposed [48, 24, 56, 29, 5]. The graph attention network (GAT) [56] has

demonstrated promising results in node classification tasks on graphs and stands out among

various graph neural network variations. The graph attention mechanism employed by GAT

contributes to its success. Additionally, Beaini et al. introduced a novel approach that

involves defining and leveraging a vector field on the graph. This integration of global

topological information enhances the GNN architecture with remarkable effectiveness.

1.1 Goals, Organization and Contributions

The graph attention mechanism adopted by the GAT model is purely based on the local node

features, which could lead to performance loss when applied to highly heterophilous graphs

[64][35]. In this thesis, we aim to mitigate this problem by incorporating topological-based

global attention to the original graph attention mechanism. In particular, we introduce a

brand-new attention-based model, the DGAT model. By utilizing two mechanisms, namely

the neighbour pruning and global directional aggregation, the DGAT model is able to

enhance the graph attention mechanism and outperform the GAT model by a large margin on

all real-world heterophilic node classification benchmarks in the experiment. Furthermore,

in the synthetic experiments we conducted, the DGAT model also demonstrates strong

2

performance and outperformed both the GAT and the GATv2 model by large margins on

all datasets with different homophily level.

In Chapter 2, we provide the background knowledge required to understand the rest of

the thesis, including a brief introduction to graph representation learning and the essential

concepts in general neural networks as well as in graph neural networks.

The review of related work to this thesis is given in Chapter 3. The topics covered in this

chapter include graph convolution networks, graph attention mechanism, and how to define

and utilize direction in a general graph.

In Chapter 4, we propose the so-called Directional Graph Attention Network (DGAT)

based on the directional aggregation mechanism proposed by Beaini et al. [5]. The design

principle and the vectorized implementation of the model are explained thoroughly in the

chapter. In addition, the training and inference processes are also outlined Chapter 4.

In Chapter 5, we explain the details of our experiment settings, as well as the datasets

we used in the experimental study. In addition, we also present and analyze the experiment

results in this chapter. We demonstrate the effectiveness of the DGAT model, especially for

the highly heterophilous graphs, by comparing its performance with the original Graph

Attention Network (GAT) on nine different real-world datasets, as well as ten distinct

synthetic datasets. Additionally, we conducted a performance comparison between the

DGAT model and the Directional Graph Network (DGN) proposed by Beaini et al., which

likewise employs the directional aggregation mechanism. This comparison was carried out

on the same nine diverse real-world datasets.

Finally, the summarization of this thesis and discussion regarding further research directions

are presented in Chapter 6.

1.2 Notation

In this section, we introduce some notation and terms to be used in this thesis.

3

We use G := (V , E) to denote a graph with the vertex set V and the edge set E . Unless

specifically mentioned, all graphs G are undirected.

We denote scalars by normal type letters (usually lowercase letters, occasionally upper

case letters), column vectors by boldface lowercase letters and matrices by boldface upper

case letters.

We use R and Z to denote the sets of real scalars and integer scalars respectively, and

Rn and Zn to denote the set of n-dimensional real vectors and integer vectors, respectively;

moreover, Rm×n and Zm×n are used to denote m × n real matrices and integer matrices,

respectively.

For a column vector x ∈ Rn, xi:j denotes the subvector composed of elements of x with

indices from i to j, xi or x(i) denotes the i-th element of x.

For a matrix A ∈ Rm×n, Ai:j,k:l denotes the submatrix containing all the elements of A

whose row indices are from i to j and column indices are from k to l, Ai,: denotes the ith

row of A, and A:,j denotes the jth column of A. The (i, j) element of A is denoted by aij

or A(i, j). The transpose of matrix A is denoted by AT.

We also define some special vectors and matrices here. We use 1n to denote the n-vector

of ones and 0n to denote the n-vector of zeros (sometimes the subscript n may be omitted).

We use I to denote an identity matrix and ek to denote the k-th column of the identity

matrix I.

We use A||B or

[
A

B

]
to denote column concatenation of matrix A and B, and [A,B]

to denote the row concatenation of matrix A and B. We use ⊙ to represent element-wise

matrix product operator.

For a set S, |S| denote the number of elements S has. For a function f of x, ∇xf denotes

the gradient of function f with respect to x.

4

Chapter 2

Preliminary

This chapter provides the background knowledge needed to understand the rest of the thesis.

It first gives a high level description of the graph representation learning in Section 2.1. Then

it introduces basic concepts of neural networks, including the multi-layer perceptron and the

back propagation algorithm in Section 2.2. Afrer that it briefly discuses structured neural

networks for grids and sequences, namely the convolutional neural network and recurrent

neural network, in Section 2.3. Finally, an overview of graph neural network is provided in

Section 2.4.

2.1 Graph Representation Learning

A graph is defined as G := (V , E), where V = {v1, v2, . . . , vn} is a finite set of nodes of size

n, and E is a finite set of edges. An edge eij in the edge set E are expressed as a tuple of

nodes (vi, vj) ∈ V × V . The adjacency matrix A ∈ Rn×n of G is defined as follows:

aij =

1, eij ∈ E

0, otherwise

5

The degree matrix D ∈ of G is a diagonal matrix whose i-th diagonal entry di represents

the number of direct neighbours |N (vi)| a node vi has, i.e., di = |N (vi)| =
∑

vj∈N (vi)
aij. A

graph G may have a node feature matrix X ∈ Rn×d whose ith row is the transpose of the

feature vector xi ∈ Rd of node vi.

Another important type of matrix related to a graph G is the Laplacian matrix [51].

Typically, three different Laplacian matrices are commonly used in practice, namely the

unnormalized (or combinatorial) Laplacian, random-walk (or degree) normalized Laplacian

and symmetric normalized Laplacian:

L = D−A, Lrw = D−1L, Lsym = D− 1
2LD− 1

2 (2.1)

The eigenvalues and eigenvectors of Laplacians are important in graph representation

learning. Since L is symmetric and positive semi-definite, it has n non-negative eigenvalues.

Often the eigenvalues are arranged in the ascending order. Note that it is easy to see L1 = 0.

Thus the smallest eigenvalue of L is 0 and 1 is its one corresponding eigenvector.

The random walk Laplacian matrix Lrw and the symmetric normalized Laplacian matrix

Lsym shares the same set of eigenvalues, which are between 0 and 2. For the same eigenvalue,

the corresponding eigenvectors ϕrw of Lrw and ϕsym of Lsym have the simple relation:

ϕrw = D
1
2ϕsym

Graph representation learning aims to learn low-dimensional representations that encode

structural information about the graph (so-called embeddings) at different levels, including

the node level, sub-graph level and graph level [25]. The learned embeddings of the graph

can be further used for different downstream machine tasks, such as node classification, link

prediction, community detection and clustering.

6

Traditionally, graph representations are generated based on graph statistics, kernel functions

or hand-engineered features. However, those approaches are limited due to their inflexibility

and difficulty of generalizing [23].

Recently, there has been a surge of graph neural network-based graph embedding methods

and has drawn much research attention. The key idea of those approaches is to encode nodes

into vectors by compressing their local neighbourhood information [9] [58]. More details

about this class of methods will be presented in later sections.

2.2 Neural Network Basics

2.2.1 Neural networks

Neural networks are computation models inspired by human brains. They are modelled

by early descriptions of neuron activity, characterized by a linear operation followed by a

typically nonlinear activation function [37]. The artificial neurons (as shown in Figure 2.1)

are the building block of neural networks. Each neuron performs some simple computations,

and those interconnected units form neural networks.

Figure 2.1: Example of an artificial neuron. Image on left by Clker-Free-Vector-Images from

Pixabay. Image on right shows an example of an artificial neuron. The dashed circle and

arrow denotes the bias term.

The right image of Figure 2.1 shows a detailed structure of an artificial neuron (also

called perceptron), where x1, x2, . . . , xn are numerical value input units taken from the raw

7

https://pixabay.com/users/clker-free-vector-images-3736/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=296581
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=296581

input or output of other perceptrons, and x0 = 1, which is introduced for the sake of

writing convenience (see later); w1, w2, . . . , wn are weight parameters that control the level

of importance of each input, and w0 is a bias parameter, usually written as b. The optimal

values for wi for i = 0, 1, . . . , n are obtained during the learning process of the neural network.

As shown in Figure 2.1, a perception first takes the inputs x1, x2, . . . , xn, multiplies them

by weights, w1, w2, . . . , wn, and add the bias term b, which can be written w0 · x0 = b · 1.

Then, it computes the weighted sum:

z =
n∑

i=0

wi · xi (2.2)

Finally, a nonlinear activation function f(·) is applied to get the output y. We can write the

output y as:

y = f

(
n∑

i=0

wi · xi

)
(2.3)

Multi-layer perceptron (MLP) is the most basic neural network, where the neurons are

organized into layers. MLP has an input layer, one or more hidden layers and an output layer.

The input layer takes input values and passes them to the hidden layer, which processes the

input data and presents it to the output layer. Each layer consists of several neurons, and

each neuron is fully interconnected to neurons in the subsequent layer; furthermore, a weight

is associated with each connection. A neuron computes the weighted sum of outputs from

the previous layer and applies a non-linear activation function to it.

As mentioned earlier, an MLP is layered; thus, it is helpful (and commonly what people

do in practice) to represent a single-layer unit in the matrix form. Moreover, people often

take a step further and express the entire MLP in the matrix form. Notation-wise, it is a

common practice to only use x to denote the input vector at the input layer, and use h to

represent the input vector to other layers. We will adopt this convention in this thesis.

8

Let h(k−1) ∈ Rdk−1+1 represents the input vector to layer k (where dk−1 is the dimension

of input with an additional bias term):

h(k−1) = [1, h
(k−1)
1 , h

(k−1)
2 , . . . , h

(k−1)
dk−1

]T

where we let h(0) = x.

Let W(k) ∈ R(dk+1)×(dk−1+1) represents the weight matrix at the kth layer of an MLP:

W(k) =

w
(k)
00 w

(k)
01 . . . w

(k)
0dk−1

w
(k)
10 w

(k)
11 . . . w

(k)
1dk−1

.

w
(k)
dk0

w
(k)
dk1

. . . w
(k)
dkdk−1

where dk is the size of that layer. The matrix-vector product W(k)h(k−1) ∈ Rdk+1 contains

all the linear combinations in the kth hidden layer of the MLP, where the ith entry can be

expressed in a fashion similar to (2.2):

(W(k)h(k−1))i = w
(k)
i0 +

n∑
j=1

w
(k)
ij h

(k−1)
j

Next, we can extend the notation of activation function f(·) to deal with the general

matrix as input. For a matrix A ∈ Rm×n, we define

f(A) =

f(a11) f(a12) . . . f(a1n)

f(a21) f(a22) . . . f(a2n)

.

f(am1) f(am2) . . . f(amn)

i.e., f is an element wise function.

9

Finally, with this notion we developed, the matrix representation of (2.3) at the kth layer

can be written as:

h(k) = f (k)(W(k)h(k−1)) (2.4)

where k ≥ 1. In particular, the ith entry of h(k) can be written as

h
(k)
i =

(
f (k)(W(k)h(k−1))

)
i
= f (k)

(
w

(k)
i0 +

n∑
j=1

w
(k)
ij h

(k−1)
j

)

Figure 2.2: Example of an MLP with one hidden layer

Figure 2.2 shows an example of MLP with an input of size 3, one hidden layer of size 4,

and an output layer of size 1, which can be represent as:

y = f (2)

(
4∑

i=0

w
(2)
i · f (1)

(
3∑

j=0

w
(1)
ij · xj

))
(2.5)

where xj denotes the input j, w(1)
ij denotes the weight from input unit j to hidden unit i in

the hidden layer; w(2)
i denotes the weight from hidden unit i in the hidden layer to output

unit in the output layer; f (1)(·) and f (2)(·) denote the activation function in hidden and

output layer respectively; and y denotes the output.

Equation (2.5) can be written in matrix form as:

y = f (2)(W(2)f (1)(W(1)x))

10

where x ∈ R4×1, W(1) ∈ R5×4, and W(2) ∈ R1×5.

There are a few commonly used activation functions.

1. Hyperbolic tangent (tanh) is defined as tanh(z) = ez−e−z

ez+e−z . It is non-linear, continuously

differentiable, and has a fixed output range (between -1 and 1) [27]. The biggest

problem tanh activation gives rise to is the “vanishing gradients” problem, which causes

weights stop updating, this concept will be further explained in the next section.

2. Rectied Linear Unit function (ReLU) is defined as ReLU(z) = max(0, z) [40]. It avoids

the vanishing-gradient issue and can be evaluated quickly. However, it suffers from the

“dead neurons” problem, in which the neurons with z < 0 stop outputting anything

other than 0.

3. LeakyReLU is defined as LeakyReLU(z) = max(αz, z), where α is a hyperparameter

that represents the slope of the function for z < 0 (see [60]) It addresses the “dead

neurons” problem by making a small variations.

4. The softmax function is a function that takes an n-dimensional column (resp. row)

vector z and outputs an n-dimensional column (resp. row) vector z̃:

z̃i := softmax(z)i =
exp(zi)∑n
j=1 exp(zj)

Note that each z̃i ∈ (0, 1) and
∑

i z̃i = 1. Thus, these elements can be interpreted as

probabilities.

2.2.2 Back-propagation

Back-propagation [47], an efficient algorithm used for training neural networks, is considered

one of the most fundamental building blocks in deep learning.

Each back-propagation step consists of two passes, namely a forward pass and a backward

pass. The predicted output is evaluated against the expected result in the forward pass;

11

moreover, all the intermediate results are preserved since they are used later in the backward

pass. The algorithm first measures the network’s output error during a backward pass using

a cost function; it then computes the error gradient by the chain rule and propagates it

through all the hidden layers until it reaches the input layer. Finally, the computed error

gradients are used to update the network’s parameters (weights and biases).

Let’s first define the general forward pass of a MLP with K hidden layers. We denote

the input layer as the 0th layer and the output layer the (K + 1)th layer. Given the input

vector x, we define h(0) = x. Then for k ∈ {1, 2, . . . , K + 1}, we have:

Weighted sum at hidden layer k: z(k) = W(k)h(k−1)

Activated weighted sum at hidden layer k: h(k) = f (k)(z(k))

Finally, we denote the output of the network h(K+1) as y.

As mentioned in preceding paragraph, the network’s output error (also called loss) is

then measured by using the output vector y against an expected output vector ȳ using a

cost function:

C = cost(y, ȳ)

The expected output ȳ is part of the training data and is associated with the input x,

which is often expressed as a tuple (x, ȳ). Depending on the task, there are different choices

of the cost function. Some commonly used ones include MSE (mean squared error) and

cross-entropy. The smaller the loss returned by the cost function C, the closer the output y

is to the expected output ȳ.

The objective during the neural network training process is to minimize the loss with

respect to the weights for the training data set. The most common method for solving

such a problem is the stochastic gradient descent method [3], which solves the minimization

problem in an iterative manner. In particular, at each iteration we use the back-propagation

12

algorithm to compute the gradient of the loss with respect to the weights, and then update

the weights accordingly. We need to calculate the derivative of C with respect to every

weight in the network, starting from the output layer and working backwards through the

network to the input layer:
∂C

∂w
(k)
ij

(2.6)

where k ∈ {1, . . . , K +1} with K being the total number of hidden layers, w(k)
ij is the weight

of unit i in layer k − 1 to unit j in layer k in the network. With the help of chain rule, this

computation can be done efficiently.

Let W be the representation of the weight matrices W(k) for k = 1, . . . , K + 1 of the

network. In matrix notation, (2.6) can be expressed as:

∇W(k)C(W) =

(
∂C(W)

∂w
(k)
ij

)

To emphasize C is a function of the variable W, here we write C as C(W), but often we

omit W for simplicity.

In the output layer, the gradient ∇yC is a column vector:

∇yC =

∂C
∂y1

∂C
∂y2

...

∂C
∂ym

where m is the number of output units. The gradient of C with respect to the weighted sum

z(k) at the kth hidden layer (i.e., z(k) = W(k)h(k−1)), ∇z(k)C, can be defined in the similar

fashion.

13

Since y = f (K+1)(z(K+1)), by applying the chain rule, we can compute the gradient of C

with respect to the weighted sum vector z(K+1) at the output layer as:

∇z(K+1)C = ∇yC ⊙ ∂f (K+1)

∂z(K+1)

where ⊙ is the element-wise product operator (so-called Hadamard product) and

∂f (K+1)

∂z(K+1)
:=

∂f (K+1)(z(K+1))

∂z(K+1)
=

∂f (K+1)(z
(K+1)
1)

∂z
(K+1)
1

∂f (K+1)(z
(K+1)
2)

∂z
(K+1)
2

...
∂f (K+1)(z

(K+1)

m′)

∂z
(K+1)

m′

Since z(k+1) = W(k+1)f (k)(z(k)) = W(k+1)

f (k)(z

(k)
1)

...

f (k)(z
(k)
n)

,

∂C

∂z
(k)
j

=
∑
j

∂C

∂z
(k+1)
j

∂z
(k+1)
j

∂f (k)

∂f (k)

∂z
(k)
i

=

(∑
j

∂C

∂z
(k+1)
j

w
(k+1)
ji

)
∂f (k)

∂z
(k)
i

Then we have

∇z(k)C = ((W(k+1))T∇z(k+1)C)⊙ ∂f (k)

∂z(k)

Note that z(k) = W(k)h(k−1). Thus, w
(k)
ij is involved only in z

(k)
i . Specifically, z

(k)
i =∑

ℓ w
(k)
iℓ h

(k−1)
ℓ . Therefore,

∂z
(k)
i

∂w
(k)
ij

= h
(k−1)
j

Then
∂C

∂w
(k)
ij

=
∂C

∂z
(k)
i

∂z
(k)
i

∂w
(k)
ij

=
∂C

∂z
(k)
i

h
(k−1)
j

14

Write the above equality in matrix-vector form:

∇W(k)C = ∇z(k)C · (h(k−1))T

To demonstrate the idea of the back-propagation algorithm, we will use a more complex-

structured MLP with two hidden layers and two output units, as shown in Figure 2.3.

Figure 2.3: Example of an MLP with two hidden layers

The forward pass of the network can be expresses by the following set of equations :

Input layer: h(0) = x

Weighted sum at hidden layer 1: z(1) = W(1)h(0)

Activated weighted sum at hidden layer 1: h(1) = f (1)(z(1))

Weighted sum at hidden layer 2: z(2) = W(2)h(1)

Activated weighted sum at hidden layer 2: h(2) = f (2)(z(2))

Weighted sum at output layer: z(3) = W(3)h(2)

Final output: y = f (3)(z(3))

15

We first write the cost function of our network as a function of weights by substituting

the output y by the explicit expression of each layer:

C = cost(ȳ, f (3)(z(2)))

= cost(ȳ, f (3)(W(3)h(2)))

= cost(ȳ, f (3)(W(3)f (2)(z(1))))

= cost(ȳ, f (3)(W(3)f (2)(W(2)h(1))))

= cost(ȳ, f (3)(W(3)f (2)(W(2)f (1)(z(1)))))

= cost(ȳ, f (3)(W(3)f (2)(W(2)f (1)(W(1)h(0)))))

= cost(ȳ, f (3)(W(3)f (2)(W(2)f (1)(W(1)x))))

Next, we compute the gradient of C with respect to the weight W(3) in the output layer

as:

∇W(3)C = ∇yC · (h(2))T

where

∇yC =

 ∂C
∂y1

∂C
∂y2

Then we calculate the gradient of C with respect to the weight W(2) in the hidden layer 2:

∇W(2)C = ∇z(2)C · (h(1))T

where

∇z(2)C = ((W(3))T∇yC)⊙ ∂f

∂z(2)

Lastly, we can calculate the gradient of C with respect to the weight W(1) in the hidden

layer 1:

∇W(1)C = ∇z(1)C · (h(0))T

16

where

∇z(1)C = ((W(2))T∇z(2)C)⊙ ∂f

∂z(1)

As mentioned earlier, the chain rule is the key ingredient in gradient computation. In order

to avoid the redundant computations of intermediate terms in the chain rule, the back-

propagation algorithm starts backward from the last layer, as in the sample computation we

showed above.

Once the gradients are computed, we can update the weights in the k-th layer of the

network by:

W(k) := W(k) − ϵ · ∇W(k)C

where ϵ is a hyperparameter that controls how much the weights are being adjusted with

respect to the gradient, and it is often referred to as the learning rate. Weights for each layer

is updated in a sequential order.

A common practice people have adopted to ensure a neural network trains properly is to

initialize the weights randomly before running it, which is sometimes referred to as "break

symmetry" between neurons [30]. If two neurons at the same hidden layer have the same

initial weights, then their weights may be updated similarly during the training process and

remain indistinguishable from each other at each iteration. In this case, the model may be

biased towards a particular set of weights and fail to generalize the input data. Another

common pitfall worth mentioning during the initialization stage is that, if initialized weights

of a neural network are too small or too large, it may lead to undesired phenomena often

referred to as the “vanishing gradient” and “exploding gradient” problem. In particular,

“vanishing gradient” describes the scenario where the gradients become smaller and approach

zero as the back-propagation algorithm advances backwards from the output layer towards

the input layer, which eventually leaves the weights of the lower layers of a neural network

nearly unchanged. On the contrary, “exploding gradient’ describes the situation where

the gradients become larger and larger as the back-propagation progresses, which causes

17

huge weights update and makes the gradient descent algorithm diverge. Some initialization

methods, such as Xavier’s initialization [20] and He’s initialization [26] are often used for

network weight initialization, which can significantly alleviate the vanishing/exploding gradient

problem.

2.3 Structured Neural Networks for Grids and Sequences

This section will briefly introduce two types of specialized neural networks targeting two

distinct input forms: the convolution neural network that processes grid-like data and the

recurrent neural network that processes sequential data.

Notice that only the bare minimal information will be provided. The goal is to assist

readers in better understanding the later content of this thesis, which is the neural network

on the graph.

2.3.1 Convolutional neural networks

Convolutional neural networks (CNNs) are a specialized class of neural networks designed for

processing grid-like data. The typical inputs of a CNN are order d tensors, which represents

images with h height, w width and d colour channels. Figure 2.4 shows a typical CNN

architecture, which consists of a series of interleaved convolutional and pooling layers (we

showed only one convolution and polling layer in the figure). Until the input is reduced

sufficiently, it will be fed into and processed by an MLP.

The main building block of CNNs is the convolution layer, which is based on a mathematical

operation called convolution. In a convolution layer, a convolution operator slides the

parameter tensor along the input tensor and measures the summation of their element-wise

multiplication.

Figure 2.5 demonstrates how a 2 × 2 convolution operator (kernel) works on an image

represented by a 3× 4× 1 tensor. The sliding of the kernel starts from the top-left corner,

18

Figure 2.4: An overview of a typical CNN architecture

and it keeps moving towards the right until it reaches the border of the image. The kernel

then returns to the left of the image and moves down by an element. This process is

repeated until the kernel reaches the bottom-right of the image. The element-wise product

between the kernel and its overlapped area (so-called the receptive field) with the image

tensor is computed at each location. The convolution result will then be the summation of

the products.

Figure 2.5: Illustration of the convolution operation. Left: a 2 × 2 kernel, right: the

convolution input and output.

Recall from the preceding section that, in an MLP, each neuron is connected with all the

other neurons. However, this is not always the case with CNNs. In a CNN, each neuron

in a convolutional layer is only connected to neurons in its receptive field. This particular

property of CNNs is often referred to as sparse connectivity. Sparse connectivity enables

CNNs to have fewer parameters in a convolution layer; furthermore, it allows the parameters

19

to be used as the kernel moves to different locations (so-called parameter sharing). The

parameter sharing encodes a structural bias: a feature extracted by a convolution kernel is

important, no matter where it happens in the image. Note that it is conventional to apply a

nonlinear layer after a convolutional layer, with the same purpose of the activation function

in the MLP, which is to insert non-linearity.

Once one or more convolutional layers are applied to the input image, another critical

ingredient of CNNs comes into play, namely the pooling layer. A pooling layer’s primary

function is to successively reduce the size of the computed convolution representation, which

further reduces the number of parameters and computations in the network. The reduction

is made by retaining only the most critical information in a spatial neighbourhood of the

input representation. One of the most commonly used pooling layers is max-pooling, which

takes a filter and moves over the input patches across each channel and transforms them by

taking only the maximal value.

2.3.2 Recurrent neural networks

Recurrent neural networks (RNNs) are a specialized class of neural networks designed for

processing sequential data. The most typical input of RNNs is text data, which consist of

arbitrarily many words. One thing to notice is that before feeding the input text into an

RNN, people often first convert each word in the text into a feature vector.

Similar to CNNs, RNNs also use a special layer to process the input data, namely the

recurrent layer. A recurrent layer is composed of the recurrent neuron. The input of each

recurrent layer at time step t consists of two types of data: the new input from time t and

the hidden representation generated from time t− 1. Just like the inputs, there are also two

types of outputs produced by a recurrent layer at each time step t, the hidden representation

and the RNN output.

Figure 2.6 shows an example of the typical RNN architecture.

20

Figure 2.6: Example of an Recurrent Neural Network (RNN)

Since there are two types of inputs for each recurrent neuron, there will also be two sets

of weights associated with each input type; and just like CNNs, those weights are shared

and updated across time steps.

More specifically, as illustrated in Figure 2.6, for each time step t, xt ∈ Rn is the input

feature vector, ht ∈ Rp is the hidden representation, which can be expressed as:

ht = fh(Whxxt +Whhht−1)

and yt ∈ Rm is the RNN output vector, which can be repressed as:

yt = fy(Wyxt)

where Whx ∈ Rp×n is the weight matrix associated with the input in the recurrent layer,

Whh ∈ Rp×p is the weight matrix associated with the hidden units in the recurrent layer,

Wy ∈ Rm×n is the weight matrix associated with the hidden units in the to the output; fh(·)

and fy(·) are nonlinear activation functions.

2.4 Graph Neural Networks

Inspired by the success of convolutional neural netroks (CNNs) and recurrent neural networks

(RNNs), people attempted to apply neural network models to graphs.

21

Gori et al. were the first who outlined the notion of graph neural networks [21]; later

on, the idea was further developed by Scarselli et al. in their work [48] and Gallicchio et

al. in the work [18]. Those graph neural network models share a similar spirit as the RNN

models (also referred to as RecGNNs), which aims to learn representations for each node via

recurrent neural architecture. An important assumption made by this type of GNNs is that

a node and its neighbours are constantly exchange information/propagate messages until a

stable equilibrium state is reached [59].

Another family of graph neural network models that inherits the idea from CNN architectures

was developed in parallel by redefining the convolution for graph data. Bruna et al. developed

the first ConvGNNs based on spectral graph theory [7]. A representation of each node is

generated iteratively based on its own representation and the representation of its neighbours

(referred to as the message passing process). One key distinction between ConvGNNs and

RecGNNs is that, ConvGNNs stack several graph convolutional layers to extract high-level

node representation. Right after their introduction, ConvGNNs successfully proved their

effectiveness, and the idea of message passing became the fundamental building block of

constructing graph neural networks.

Formally, we can define the architecture of a graph neural network (GNN) as follows:

A GNN typically takes a graph G := (V , E) represented by the adjacency matrix A and a

node feature matrix X as inputs, and it outputs a set of node-level representation vectors

{hu : ∀u ∈ V}, or a single graph-level representation vector hG.

2.4.1 The message-passing framework

As mentioned in the proceeding section, most modern GNNs adopt the message-passing

framework, in which the representation hu of node u is generated by iteratively aggregating

the representation of its neighbours, as well as its own representation generated from the

previous layer. The kth layer of a GNN can be represented by the two following operations

22

[23]:

m(k)
u = AGGREGATE(k)({h(k−1)

v : ∀v ∈ N (u)}),

h(k)
u = UPDATE(k)(h(k−1)

u ,m(k)
u)

where m
(k)
u is the aggregated message by applying the AGGREGATE operator to node u’s

direct neighbours, N (u); and h
(k)
u is the representation vector for node u at the kth layer

generated by using the UPDATE operator (in practice, people often initialize h
(0)
u to be the

feature vector xu), and N (u) is the set of neighboring nodes of u. Since the AGGREGATE

function operates on a subset of nodes, it should be invariant under the permutation; some

commonly used AGGREGATE functions are: mean, sum and max function.

The operators AGGREGATE and UPDATE in a GNN model have learnable parameters

similar to other types of neural networks (refer to Chapter 3 for more details), and the choice

of the operators varies in different models, but most of GNNs can be expressed by the above

two expressions [23].

2.4.2 Different types of graph learning tasks

Typically, GNNs are used for three levels of downstream tasks, namely the node level task,

edge level task and graph level task.

In a node-level task, each node u ∈ V is associated with a label (for node classification

task) or a target value yu (for node regression task), the goal is to learn a representation

vector hu of u so that the label or target value associated with u can be accurately predicted

using such representation.

Edge-level tasks are sometimes referred to as relation prediction or link prediction tasks.

Typically, an incomplete set of edges Ẽ between the nodes is given in such a task. The goal

is to learn a representation vector for each node, such that given node representations hu

23

and hv of node u and v, where uv ∈ E and uv /∈ Ẽ , the missing edge uv can be accurately

inferred by utilizing hu and hv

In a graph-level task, a set of graph {G1, G2, ..., Gm}, and a set of the corresponding

labels L = {L1, L2, ..., Lm} (for graph classification) or values Y = {y1, y2, ..., ym} (for graph

regression) are given; and the goal is to learn a graph-level representation vector hGi
for each

graph Gi ∈ G, such that its label or target value can be accurately predicted using hGi
.

For node-level and edge-level tasks, the node representation h
(K)
u learned at the last

hidden layer will be used directly for prediction/inference; whereas for graph-level tasks, an

additional READOUT pooling function is required to generate the full graph representation

hGi
by aggregating all the node-level representations from the final layer [57]:

hGi
= READOUT(h(K)

v | v ∈ V)

The most straightforward pooling strategy is to use a permutation invariant function, such

as the summation function. More sophisticated pooling strategies involve performing graph

clustering or coarsening techniques, which also exploit the graph topological property at the

pooling stage [8][62].

In this thesis, we focus on the node-level classification task.

2.4.3 Homophilic vs. heterophilic graphs

Homophily and heterophily are both properties of of a graph G := (V , E). In particular, in

the context of graph representation leanring, homophily refers to the tendency for nodes in a

graph to share the same labels with their neighbours [38]. Heterophily, in contrast, describes

the tendency for nodes to connect with other nodes with different labels. The homophily

level of a graph can be measured by using two different types of metrics, namely the node

homophily [43] and the edge homophily [64].

24

The node homophily metric Hnode calculates the average ratio of the nodes which have

neighbours that have the same class label as themselves:

Hnode =
1

|V|
∑
u∈V

|yu = yv : v ∈ N (v)|
|N (u)|

(2.7)

On the other hand, the edge homophily metric Hedge measures the average ratio of the edges

that connect two nodes with the same class label:

Hedge =
1

|V|
∑
u∈V

|yu = yv : euv ∈ E|
|E|

(2.8)

Both Hnode and Hedge ranges from 0 to 1. Graphs with strong homophily have large

Hnode and Hedge (typically ranges between [0.5, 1]); on the contrary, heterophilous graphs

have small Hnode and Hedge (typically < 0.5).

25

Chapter 3

Related Work

In this chapter, an overview of the recent research literature related to the graph attention

model is presented; in addition, another critical GNN architecture that inspired this work,

the Directional Graph Network (DGN), is also discussed. First of all, Section 3.1 of this

chapter gives an overview of the "ancestor" of the Graph Attention Network (GAT), namely

the Graph Convolutional Networks (GCNs). The general concept of the attention mechanism,

which originated in the language models, is then briefly discussed in Section 3.2. Next,

Section 3.3 gives a thorough introduction to the GAT model, which is one of the essential

works that this thesis is based. Lastly, another important work [5] that introduces the

notion of direction in graph neural network and has inspired this thesis is presented in detail

in Section 3.4.

3.1 Graph Convolutional Networks

As briefly discussed in Section 2.4, inspired by the success of Convolutional Neural Networks,

people attempted to generalize the convolution operation to graph-structured data. This

genre of graph neural networks based on graph convolution operations is often referred to

as Convolutional Graph Neural Networks (ConvGNNs); or simply as Graph Convolution

Networks (GCNs). Akin to convolutional layers used in CNNs, a graph convolutional layer

26

in GCNs generates higher-level representations of each graph node u by leveraging the

information of its neighbourhood. However, as illustrated in Figure 3.1, unlike grid-like

image data, which has a fixed and regular neighbouring structure, in a graph, a node’s

neighbours are unordered and vary in size, which makes the generalization of the graph’s

convolution operation much more challenging.

Figure 3.1: Traditional 2D convolution used in CNNs (left) vs. graph convolution (right)

used in GCNs

The first GCN proposed by Bruna et al. [7] is based on the spectral theorem, which

uses graph Fourier transformation to transform the graph signal into its spectral domain,

and then perform the graph convolution in that domain. Graph convolutions defined by the

spectral method are closely related to filters in the context of graph signal processing, which

can be interpreted as operations removing noise from the graph signals (or graph features in

the context of graph representation learning) [7]. However, this method is computationally

intensive since it requires calculating the graph Fourier transformation as well as the inverse

graph Fourier transformation. Furthermore, the graph convolution relies on the eigen-

decomposition of the Laplacian matrix, which implies that learnt convolution operations

are domain-dependent and are not easily transferable to graphs with different topological

properties [39].

ChebNet is then proposed to address those drawbacks [17], it uses Chebyshev polynomials

to approximate the spectral graph convolution operation up to kth order. ChebNet implicitly

27

avoids the graph Fourier transformation computation, thus reducing the computation complexity

by a large margin.

Kipf and Welling further simplified the convolution operation in their work [29] by

explicitly setting k = 1. Many later pieces of literature referred their model as GCN; thus,

the same parlance will be adopted in the rest of this thesis.

GCN can be understood from the perspective of message passing, which has been introduced

earlier in Section 2.4. Given a graph G := (V , E), and let X ∈ Rn×(d+1) be the feature matrix

of G, whose the first column is 1 that reserved for bias terms in the weight matrix and whose

ith row spanning from the 2nd column to the (d+1)th column is the transpose of the feature

vector of node vi. To obtain a high level representation h
(k)
i of node vi at the kth GCN layer,

an intermediate representation m
(k)
i is generated first by aggregating the representation of

vi’s neighbouring nodes and its own representation h
(k−1)
i generated by the previous layer.

This intermediate representation m
(k)
i is then transformed into the output representation

h
(k)
i with a one hidden layer MLP.

The above process of node representation generation can be expressed in the matrix form

as the following:

H(k) = f(ÃH(k−1)W(k)) (3.1)

where H(k−1) ∈ Rn×(dk−1+1) is the node representation matrix at the (k − 1)th GCN layer

(an extra dimension for the bias term), such that its ith row is the transpose of the node

representation vector h
(k)
i of node ui ∈ V , the matrix Ã := A + In is the adjacency matrix

with self-loops added in, W(k) ∈ R(dk−1+1)×(dk+1) is a learnable weight matrix (note that

here we shall use (W(k))T instead of W(k) if we consider notation consistency with Chapter

2. But for simplicity we use the latter.) and f(·) is an element-wise non-linear activation

function. As usual, we take the initial H(0) = X.

One issue with the above expression is that ÃH
(k−1)

is not normalized. This may

introduce numerical instability and cause the exploding/vanishing gradient problem (e.g.

nodes with many neighbours will get tremendous values in their representations) when

28

multiple GCN layers are stacked together [29]. The most trivial solution to fix the issue

is to modify (3.1) as follows:

H(k) = f(D̃−1ÃH(k−1)W(k)) (3.2)

where D̃ := D+ In, and D is the degree matrix of the graph G. Adding the term D̃−1 into

(3.1) is equivalent as applying the mean operation, which normalizes each row of Ã based

on the degree of nodes involved in. The node-wise message passing rule of (3.2) can be

expressed as:

h
(k)
i = f

(∑
j:vj∈{N (vi),vi}

1

(|N (vi)|+ 1)
(W(k))Th

(k−1)
j

)

where (h
(k)
i)T is the ith row of of the representation matrix H(k).

In the GCN model proposed by Kipf and Wellington [29], a more sophisticated normalization

method, namely the symmetric normalization, is adopted:

H(k) = f(D̃− 1
2 ÃD̃− 1

2H(k−1)W(k)) (3.3)

and the equivalent node-wise expression can be written as:

h
(k)
i = f

(∑
j:vj∈{N (vi),vi}

1√
(|N (vi)|+ 1)(|N (vj)|+ 1)

(W(k))Th
(k−1)
j

)

The utilization of symmetric normalization allows the definition of a more refined aggregation

process, as this no longer amounts to the simple averaging of neighbouring nodes. However,

both the normalized and symmetric normalized GCN models require prior knowledge of

the entire graph structure to perform message passing, which makes them less robust and

inapplicable to inductive-learning tasks (see Section 4.4 for more deatils). GraphSAGE [24]

addressed this issue by introducing a general inductive framework, which samples a fixed-

size set of neighbours of each node and only uses them to aggregate information in the

29

message-passing step. The node representation generated by GraphSAGE can be expressed

as:

h(k)
u = f

(
(W(k))TAGGREGATEk(h

(k−1)
u , {h(k−1)

v , ∀v ∈ SN (u)}
)

where SN (u) is a random sample of the neighbours of node u, and AGGREGATEk(·) is the

AGGREGATE operation at kth layer. Figure 3.2 shows an example of nodes sampled (red

nodes) for the centering yellow node in its neighbourhood.

Figure 3.2: An example of GraphSageNode Sampling

3.2 Attention Mechanism

The idea of attention was first proposed in the field of psychology, which is used to explain

the cognitive process of selectively processing certain information in an environment while

ignoring others [34]. Bahdanau et al. [13] were the first researchers who utilized the attention

mechanism in machine learning; more specifically, they applied it to the machine translation

task in natural language processing [10]. After their enormous success, people began to

adopt and integrate the attention mechanism into different sub-domains of machine learning,

such as computer vision [22] and recommendation systems [61]. Nowadays, the attention

mechanism has became a prevailing concept in machine learning and it is also an essential

component of many neural network architectures.

30

Before the attention mechanism was used for language modelling, the predominant architecture

for natural language processing tasks was the sequence-to-sequence model (or the seq2seq

model in short) [52]. The seq2seq model consists of two main components: an encoder and

a decoder, which both are recurrent neural networks introduced in Section 2.3.2. With this

specialized architecture, a seq2seq model can transform an input with an arbitrary length

into an output with an arbitrary length. In particular, the encoder compresses the input

sequence of tokens/words into a single fixed-length context vector, which then serves as the

decoder’s input and is used to generate the output sequence. Figure 3.4 shows a high-level

overview of a seq2seq model that translates the English sentence "They are watching" into

the French sentence "Ils regardent".

Figure 3.3: Example of a seq2seq model with encoder-decoder architecture for machine

translation

Regardless of its prevalence, the traditional seq2seq model faced two major challenges.

[10]. The first challenge is dealing with long input sequences; since the context vector

generated by the encoder is fixed-length regardless of the input sequence size, this may

lead to information loss when the input sequence is long [11]. The second challenge is to

model alignment between the input and the output sequences, which is essential for certain

tasks, such as machine translation and summarization. Intuitively speaking, in sequence-to-

31

sequence tasks, each output token should be more influenced by certain parts of the input

sequence than the rest. As an example, for the English-French translation showed in Figure

3.4, "Ils" in the output sequence should be associated with "They" in the input sequence,

while "regardent" should be related to "are watching". Unfortunately, the encoder-decoder

architecture utilized in the seq2seq model lacks any mechanism to selectively focus on relevant

input tokens while generating each output token [63].

The attention model was proposed to mitigate those two challenges. The fundamental

idea behind it is that, instead of generating the context vector solely based on the last

hidden state of the encoder, attention weights, which reflect the inter-relationships between

each pair of tokens in the input sequence, are used in lieu of in the context vector generation.

The attention weights are learned jointly with all the other model parameters during

the training (by using a MLP). Next, the context vector is computed as the weighted sum

of the encoder’s hidden states on all input tokens to avoid information loss. Then, when

generating the output sequence, the attention weights prioritize a set of positions in the input

sequence where the relevant information presents [10]. Figure 3.4 compares the traditional

encode-decoder seq2seq architecture with the attention-based seq2seq architecture.

Even though the attention mechanism boosts the performance of the seq2seq model

in many language-related tasks, it still has some drawbacks inherited from the recurrent

architecture. One of the drawbacks is computational efficiency. It is difficult to parallelize the

input sequence processing since the tokens are processed sequentially. [10]. Another flaw the

seq2seq model has is its lack of ability to relate the tokens within the input/output sequence

itself. To address these problems, Vaswani et al. proposed the Transformer architecture

in [55], which profoundly impacted the later research of neural network architecture. In

short, the Transformer eliminates the sequential processing and the recurrent architecture

by utilizing the self-attention mechanism, allowing the model to see the entire input sequence

simultaneously.

32

Figure 3.4: (a) traditional encoder-decoder seq2seq model, (b) encode-decoder seq2seq model

with attention mechanism, from [10]

As hinted by its name, self-attention is an attention mechanism that computes a representation

of a sequence by relating tokens at different positions of a sequence itself. The results

in [55] revealed that the Transformer achieves higher accuracy with less training time via

parallel processing for the machine translation task without using any recurrent component

33

[10]. Apart from self-attention, another essential mechanism introduced in [55] is the multi-

headed attention. Instead of computing the attention only once, the multi-headed mechanism

runs through the attention computation multiple times in parallel by using different linear

transformations of the same input sequence. The outputs are then concatenated and linearly

transformed into the expected dimension [10]. The empirical results have shown that the

attention weights learned using the multi-headed mechanism can even further boost the

model’s performance.

3.3 Graph Attention Network

As mentioned in the preceding section, the attention mechanism frees the transformer model

from the sequential processing of the input; this characteristic allows the idea to be easily

extended to data structures other than a sequence, such as graph-structured data.

The graph-structured data extracted from the real-world are often large and chaotic;

using attention can help highlight elements of the graph that are more relevant to the main

task. Moreover, the attempt that forces the model to focus on the most important part of the

graph potentially allows it to filter out the noises, thus improving the signal-to-noise ratio

[32]. Another benefit of using attention is interpretability; the learned attention weights are

a potential tool that may be used to interpret the results obtained from the model [12]. The

attention mechanism on a graph can be defined at different levels, namely the node level,

edge level, or sub-graph level; in this thesis, the focus will be on the node-level attention

mechanism.

Given a graph G := (V , E), let node vi ∈ V and let N (vi) ⊆ V be the set of neighboring

nodes of vi. The attention on graph is defined as a function f : vi × N (vi) → [0, 1] that

maps the node vi and any node in N (vi) to a relevance score, which defines how much

attention the target should give to each of its neighbor. Moreover, it is often assumed that∑
vj∈N (vi)

f(vi, vj) = 1 [33].

34

Several different types of graph attention mechanisms exist, though they all share the

same principle and only differ in how the attention function f is defined.

One may quickly realize some similarities between the attention mechanism and the

symmetric normalized adjacency matrix used in GCN ((3.3)). Both of them seem to be

used to indicate the strength of relationship between a pair of connected node. Intuitively

speaking, the elements in the symmetric normalized adjacency matrix can be viewed as a

relevance score that are used to determine the importance of a given node and its neighbouring

nodes during the message passing. The most significant distinction between the relevance

score used by the two models is that the edge weights in the attention mechanism are learnt

implicitly during the training.

The graph attention network (GAT) [56] extends the GCN by leveraging an explicit

self-attention mechanism. As the name suggests, GAT introduces the attention mechanism

when aggregating the neighbouring nodes’ features to substitute the normalized convolution

operation. How important a node is to another node is determined jointly with other

parameters during the training.

Let vi and vj be two connected nodes of G, and let h(k−1)
i ∈ Rdk−1+1 and h

(k−1)
j ∈ Rdk−1+1,

respectively denote the representation vector of the nodes generated by the (k − 1)th layer.

In particular, at the kth GAT layer, the amount of the attention node vi should give to node

vj based on their representation vectors is computed via a shared attention mechanism att

as:

r
(k)
ij = att((W(k))Th

(k−1)
i , (W(k))Th

(k−1)
j)

where W(k) ∈ R(dk−1+1)×(dk+1) is a learnable weight matrix shared over all nodes.

In different variations of the GAT mode, r(k)ij is computed differently. In the original GAT,

the attention mechanism is a one-layer MLP parameterized by a weight vector a ∈ R2(dk+1),

and applying the the LeakyReLU non-linearity:

r
(k)
ij = LeakyReLU((a(k))T[(W(k))Th

(k−1)
i ∥ (W(k))Th

(k−1)
j]) (3.4)

35

Brody et al. proposed GATv2 in [6], which modifies the original GAT model by defining r
(k)
ij

as:

r
(k)
ij = aTLeakyReLU((W(k))T(h

(k−1)
i + h

(k−1)
j)) (3.5)

In particular, if we let a(k) := [a
(k)
1 ||a(k)

2]; since a(k) is shared across all nodes in a graph,

then in GAT, if there exists a node vjmax such that (a
(k)
2)T(W(k))Th

(k−1)
jmax

is maximal among

all the nodes, then for every vi, the node vjmax will always obtain the highest attention score.

As shown in (3.5), the GATv2 model alleviates the problem by making a(k) non-global.

As shown in (3.4), the first step performed in GAT is to transform the feature vectors by

(W(k))T linearly, then two transformed vectors are concatenated and mapped by (a(k))T to

an attention score r
(k)
ij .

GAT adopts masked attention to preserve the structural information - the attention

scores are only computed between a node and its neighbouring nodes (i.e., in other words,

GAT only computes r
(k)
ij between nodes vi and vj ∈ N (vi)), whereas in the most general

form of graph attention, every pair of nodes can be attended to each other, which implies

the graph structure is dropped completely. In particular, we use mask matrix M to enforce

the structural information of the input matrix. The most commonly used mask matrix is

defined by converting the zero-entry in the adjacency matrix into −∞, i.e.

mij :=

0, eij ∈ E

−∞, otherwise

Let R(k) = (r
(k)
ij) denote the matrix of raw attention scores at the kth layer. To enforce the

graph structural information into R(k), we update it by using M: R̃(k) = R(k) +M. Thus,

r̃
(k)
ij :=

rij, eij ∈ E

−∞, otherwise

36

Furthermore, in order to make the computed attention scores to be easily comparable

across different nodes, they are normalized by using the softmax function:

α
(k)
ij = (softmax(R̃

(k)
i:))j =

exp(r̃
(k)
ij)∑n

k=1 exp(r̃
(k)
ik)

=
exp(r̃

(k)
ij)∑

k:vk∈{N (vi),vi} exp(r
(k)
ik)

(3.6)

After applying the softmax function, all attention scores α
(k)
ij will be in range [0, 1]. This

process is illustrated in Figure 3.5 (left).

Once the attention scores of node vi and its neighbouring nodes are obtained, a new

representation h
(k)
i of node vi can be computed by:

h
(k)
i = f

(
(W(k))T

∑
j:vj∈{N (vi),vi}

α
(k)
ij h

(k−1)
j

)
(3.7)

where f(·) is a non-linear activation function and h
(k)
i is the aggregated representation for

node vi. This process is illustrated in Figure 3.5 (right).

The matrix form of (3.7) can be written as:

H(k) = f(A
(k)
attH

(k−1)W(k))

where row i of H(k) is (h
(k)
i)T and A

(k)
att is the attention matrix with A

(k)
att(i, j) = α

(k)
ij for

eij ∈ E and 0 otherwise.

Alternatively, GAT utilizes a similar multi-head attention approach inspired by the

transformer, which is a popular architecture in NLP [55]. Running multi-head attention is

equivalent as running multiple attention mechanisms in parallel and aggregating the results.

The multi-head attention allows the network to learn a richer representation of the input

data and can help to stabilize the learning process of self-attention [56]. For example, M

independent attention mechanisms are executed in parallel follows equation (3.7), and each of

these attention mechanism is referred to as an “attention head”. The resulting representations

37

Figure 3.5: Left: attention mechanism employed by GAT. Right: an illustration of multi-

head attention by node 1 and its neighbouring nodes, where each different colour denotes an

independent attention computation; from [56]

are then concatenated to form the output feature representation:

h
(k)
i =

wwwwM

m=1

f

(
(W(k,m))T

∑
j:vj∈{N (vi),vi}

α
(k,m)
ij h

(k−1)
j

)
(3.8)

where α(k,m) is the normalized attention score computed by using the mth attention head at

the kth layer, and W(k,m) is the corresponding weight matrix. The matrix form of (3.8) can

be written as:

H(k) =
[
f(A

(k,1)
att H(k−1)W(k,1)), f(A

(k,2)
att H(k−1)W(k,2)), . . . , f(A

(k,M)
att H(k−1)W(k,M))

]

Note that when multi-head attention is performed on the final layer of the network, concatenation

no longer works, and averaging is employed instead:

h
(K)
i = f

(
1

M

M∑
m=1

(W(K−1,m))T
∑

j:vj∈{N (vi),vi}

α
(K−1,m)
ij h

(K−1)
j

)

38

or equivalently,

H(K) = f

(
1

M

M∑
m=1

A
(K,m)
att H(K−1)W(K,m)

)
where K is the total number of GAT layers. Figure 3.5 illustrates the aggregation of a

multi-head graph attention layer. Every neighbour i (as well as node 1 itself) of node 1

is associated with three attention score ᾱ1i, which denoted by different colour lines in the

figure. They are then been used to compute and aggregate the next level representation of

node 1, h̄′
1.

GAT has significantly outperformed GCN on the node classification task on several

citation networks. However, recent studies [64] [35] have shown that applying it or some

other popular GNN architectures (including GCN) to heterophilous datasets can lead to

significant performance loss.

3.4 Direction in Graph Neural Network

As mentioned in the preceding section, most GNNs choose between the mean, max or

sum function as their AGGREGATE operation. However, this choice of AGGREGATE

operation may lead to low discriminative power of GNNs, since all neighbours are treated

equally [5]. Furthermore, some more serious issues that many GNNs suffered from could

also be triggered by the utilization of such operations, namely the over-smoothing and

over-squashing problems [2]. In particular, over-smoothing states the problem that node

representations become indistinguishable as the number of layers in a GNN increases, whereas

over-squashing refers to the lack of capability of GNN to propagate information between

distant nodes effectively.

The most natural way to alleviate the aforementioned issues is by introducing a mechanism

into the aggregation step to allow the model to distinguish messages passed from different

neighbours. The GAT model introduced in the previous section adopts the attention mechanism

based on the node features and utilizes attention scores to discern incoming messages. In

39

particular, the weights defined by the node features can be considered as a form of the local

directional flow that guides the message passing in the aggregation step [5]. In this section,

we introduce the global directional flow over general graphs proposed by Beaini et al.’s [5].

3.4.1 Vector fields in a graph

In vector calculus and physics, a vector field is an assignment of a vector to each point in

a subset of space. In order to establish the sense of direction in a graph, Beaini et al. [5]

introduced the notation of vector field to a graph. Given a graph G := (V , E), define the

vector space L2(V) as the set of functions V → Rn, along with x, y ∈ L2(V) and scalar

products :

< x,y >L2(V):=
∑
i:vi∈V

xiyi

Similarly, the vector space L2(E) is defined as the set of functions E → Rn×n with F,H ∈

L2(E), and scalar products :

< F,H >L2(E):=
∑

i,j:eij∈E

fijhij

Here L2(E) can be regarded as the set of “vector fields” on the space V . For F ∈ L2(E), each

row Fi,: represents a vector at node vi and each element fij is a component of the vector

going from node vi ∈ V to node vj through the edge eij. Note that fij = 0 for nodes vi and

vj that are not connected; furthermore, if no self-loops are added into the graph G, fii = 0

for all nodes vi ∈ V .

Let |F| denote the absolute value of F (i.e., |F| = (|fij|), and let ||Fi,:||LP denote

the LP -norm of the i-th row of F. The positive/negative part of F± then defines the

forward/backward directional flow.

The pointwise scalar product is defined as the map L2(E)× L2(E) → L2(V), which takes

two vector fields and returns their inner product at each node in V . The value at the node

40

vi is defined as:

< F,H >i:=
∑

j:vj∈N (vi)

fijhij

The gradient ∇ of x ∈ L2(V) is defined as a mapping L2(V) → L2(E):

(∇x)(i,j) := xj − xi (3.9)

and the divergence div of F ∈ L2(E) is defined as a mapping L2(E) → L2(V):

(div F)i :=
∑

j:vj∈N (vi)

fij (3.10)

Using (3.9) and (3.10), the directional derivative of the function x ∈ L2(V) in the direction

of the vector field F̂ can be defined as:

DF̂x(i) :=< ∇x, F̂ >i =
∑

j:vj∈N (vi)

(xj − xi)f̂ij (3.11)

where each row of F̂ is the normalized by the L1-norm:

F̂i,: :=

Fi:

∥Fi,:∥L1
, Fi,: ̸= 0

0, otherwise

for i = 1, . . . , n.

The directional derivative can be interpreted as the instantaneous rate of change of the

function x moving through each node vi ∈ V with velocity specified by F̂.

3.4.2 Directional smoothing and derivatives operation

Now, we have defined the vector field F and established the sense of direction in graphs.

In order to utilize those concepts to guide the information propagation in the graph, two

41

weighted aggregation matrices, namely the directional average matrix Bav and the directional

derivative matrix Bdx will be introduced.

The directional average matrix Bav is defined as

Bav(F)i,: = |F̂i:| (3.12)

As shown in the above equation, Bav is a weighted aggregation matrix with non-negative

weights; furthermore, all non-zero rows of Bav have their L1-norm equal to 1. It assigns a

large weight to the elements in the forward or backward direction of the field, while assigning

a small weight to the other elements, with a total weight of one [5].

Let X ∈ Rn×d (note that we omit the bias term here) denote the feature matrix of G,

then its mth column X:,m ∈ Rn is a vector consisting the mth features of all nodes in V , the

directional smoothing aggregation at X:,m is defined as

ym = Bav(F)X:,m (3.13)

Note the kth element in ym can be viewed as an weighted average over all the mth features

of the neighbouring nodes of node vk, more specifically, by the direction and amplitude of F.

The directional derivative matrix Bdx is defined as

Bdx(F)i,: = F̂i,: − diag(F̂1)i,: (3.14)

The aggregator Bdx works by subtracting the projected forward message by the backward

message (similar to a center derivative), with an additional diagonal term to balance both

directions [5].

The directional derivative aggregation ym of the mth feature vector X:,m is defined as

ym = Bdx(F)X:,m (3.15)

42

which is essentially same as the centered directional derivative of X:,m in the direction of F̂.

It is easy to show that (3.15) can also be expressed using (3.11):

ym = DF̂X:,m = (F̂− diag(F̂1))X:,m (3.16)

Figure 3.6 illustrates an example of how the directional aggregation works on a singe

node v1 with three neighbouring nodes v2, v3 and v4.

Figure 3.6: An example of how directional aggregation works at a node v1 in the graph.

Here v1 is the node that receives the message, and v2, v3 and v4 are neighbouring nodes of

v1, the arrow directions indicate f12 > 0, f13 < 0 and f14 < 0.

Let x1,m, x2,m, x3,m and x4,m denote the mth feature of nodes v1, v2, v3 and v4 respectively.

The directional smoothing aggregation Bav(F)X:,m of the graph in Figure 3.6 centred at

node v1 can be written as:

(
Bav(F)X:,m

)
1
=

|f12|x2,m + |f13|x3,m + |f14|x4,m

|f12|+ |f13|+ |f14|

Similarly, the directional derivative aggregation Bdx(F)X:,m of the graph in Figure 3.6

centred at node v1 can be written as:

(
Bdx(F)X:,m

)
1
=

|f12|(x2,m − x1,m) + |f13|(x1,m − x3,m) + |f14|(x1,m − x4,m)

|f12|+ |f13|+ |f14|

where we assume f12 > 0, f13 < 0 and f14 < 0.

43

3.4.3 Using gradient of the Laplacian eigenvectors as vector fields

With everything we have discussed in the preceding section, one may wonder what would be

a reasonable choice of the vector field for general graphs. In [5], Beaini et al. proposed to use

the gradient of low-frequency eigenvectors of the graph Laplacian as such vector field. The

eigenvectors of the common types of Laplacian matrices (namely the unnormalized, degree-

normalized and symmetric normalized Laplacian matrix) have been studied intensively in

the field of spectral graph theory [14], and has been used extensively in the graph signal

processing [41]. They are known to capture many imperative properties of graphs, thus

making them a sensible choice for directional message passing (some theory is provided in

Section 3.4.5).

In particular, if we let ϕ(k) to denote the kth eigenvector of the Laplacian matrix of the

input graph G, then its gradient is defined as:

∇ϕ
(k)
ij =

 ϕ
(k)
i − ϕ

(k)
j , if eij ∈ E .

0, otherwise.
(3.17)

3.4.4 Directional Graph Network

Based on the theoretical motivation discussed in the proceeding sections, Beaini et al.

designed the Directional Graph Network (DGN), which utilizes directional smoothing and

directional derivative aggregators in the message-passing step. In contrast to GAT and other

previously mentioned message-passing GNNs, DGN demonstrates a distinct advantage over

heterogeneous datasets due to its inherent anisotropic nature.

When utilizing the DGN model, there are two phases involved, namely the pre-computation

phase and the GNN phase [5]. During the pre-computation phase, we compute the set of

L eigenvectors {ϕ(1), . . . ,ϕ(L)} corresponding to the L smallest positive eigenvalues of the

Laplacian matrix of the input graph. From now on, we denote the eigenvector associated

44

with the eigenvalue λ(k) by ϕ(k), i.e.,

Lϕ(k) = λ(k)ϕ(k)

Then we calculated the gradients {∇ϕ(1), . . . ,∇ϕ(L)} of the eigenvectors as defined in

(3.17). The computed gradients are then be used as the vector field, which we denoted

by F(k). Lastly, we construct the directional smoothing aggregation matrix B
(k)
av and the

directional derivative aggregation matrix B
(k)
dx for each F(k) as shown in (3.12) and (3.14)

respectively.

In the GNN phase, the DGN model takes the graph feature matrix X ∈ Rn×(d+1), the

adjacency matrix A ∈ Rn×n, and the set of directional smoothing and directional derivative

aggregation matrices B = {B(1)
av ,B

(1)
dx , . . . ,B

(L)
av ,B

(L)
dx } as inputs (where B

(k)
av ∈ Rn×n and

B
(k)
dx ∈ Rn×n for each k). Then, the set of aggregation matrices B is used jointly with other

aggregation operators, such as the simple mean operator D̃−1 (same as the normalization

operation used in the GCN introduced in Section 3.1), to aggregate the feature X of the

input graph:

X̂ =
[
D̃−1ÃX,B(1)

av X, |B(1)
dxX|, . . . ,B(L)

av X, |B(L)
dx X|

]
where X̂ ∈ Rn×(2L+1)(d+1) is the row concatenation of all directional and non-directional

aggregation of the nodes features. Note that for the directional derivative aggregation

operation B
(k)
dx , the absolute value is taken in order to avoid the sign ambiguity. Then

similar to GCN, a one hidden layer MLP is applied to the aggregated node features generate

the new representations of nodes:

H(1) = f(X̂W(1))

45

where W(1) ∈ R(2L+1)(d+1)×d′ is a learnable weight matrix. Then at the kth DGN layer, the

node representation matrix is computed as:

Ĥ(k−1) =
[
D̃−1ÃH(k−1),B(1)

av H
(k−1), |B(1)

dxH
(k−1)|, . . . ,B(L)

av H(k−1), |B(L)
dx H

(k−1)|
]

H(k) = f(Ĥ(k−1)W(k))

In the DGN model the number of eigenvectors to be used is regarded as a hyperparameter.

However, Beani et al. showed both empirically and theoretically in [5] that taking the

smallest non-trivial eigenvector is enough. Furthermore, the type of Laplacian matrix used

by the DNG model is also a hyperparameter, where the options are L, Lrw and Lsym.

3.4.5 Theoretical Analysis

In this section, we review the theoretical analysis in [5], which justifies the choice of using the

eigenvector ϕ(1) corresponding to the smallest non-trivial eigenvalue λ(1) of a graph Laplacian

to define the global directional flow in a graph. This analysis also serves as an important

theoretical foundation to our work in this thesis.

The theorem in [5] states that by following the gradient of the eigenvectors, the diffusion

distance between a pair of nodes on a graph could be reduced effectively.

Let P = D−1A be the transition matrix (also called the random-walk matrix) of a j

step Markov process on a graph G := (V , E), where the transition probability of graph nodes

at each step is defined by {P,P2, . . . ,Pj}. Then the continuous time random-walk can be

defined on the same graph, with the transition probability from node vi to node vj:

qt(vi, vj) =
∞∑
k=0

e−ttk

k!
pk(vi, vj) (3.18)

where t represents continuous time and pk(vi, vj) := Pk(i, j) is the probability to transit from

node vi to node vj in k steps. For instance, if k = 1, then p1(vi, vj) =
1
di

if eij ∈ E and 0

otherwise. This transition probability is also referred to as the continuous heat kernel.

46

First, we outline the following lemma based on the results from [15].

Lemma 3.4.1. The transition probability qt(vi, vj) of the continuous time random walk on

graph can be written in the matrix form as:

Qt = e−t(I−P) = e−tLrw

where Qt(i, j) := qt(vi, vj).

Next, we give the following definitions of diffusion distance and gradient step from [5].

Definition 3.4.1 (Diffusion distance). The diffusion distance at time t between the nodes vi

and vj is

dt(vi, vj) :=

(∑
m:vm∈V

(qt(vi, vm)− qt(vj, vm))
2

) 1
2

Note that the diffusion distance is small when there is high probability that the random

walk starts in node vi will meet the random walk starts in node vj at time t. In graph

representation learning, the diffusion distance is often used to model how node vi influence

node vj [5].

Definition 3.4.2 (Gradient step). Let ϕ denote an eigenvector that corresponds to a non-

trivial eigenvalue of a Laplacian matrix. Suppose that

ϕm − ϕi = max
j:vj∈N (vi)

(ϕj − ϕi)

then we will say vm is obtained from vi by taking a step in the direction of the gradient of

∇ϕ

Lastly, we outline [5, Theorem 2.3] here.

Theorem 3.4.1 (Gradient steps reduce diffusion distance). Let vi and vj be two nodes

such that ϕ
(1)
i < ϕ

(1)
j , where ϕ(1) is the eigenvector corresponds to the smallest non-trivial

47

eigenvalue λ(1) of Lrw. Let vm be the node obtained from vi by taking one step in the direction

of ∇ϕ(1) (as defined in the Definition 3.4.2). Then there is a constant C such that for t ≥ C,

dt(vm, vj) < dt(vi, vj)

with the reduction in distance being proportional to e−λ(1).

The theorem presented in [5] considers only the eigenvector ϕ(1) of Lrw for the DGN

model. However, besides Lrw, [5] also utilized the eigenvectors from two other Laplacian

matrices, namely L and Lsym, in their experimental setting. In particular, DGN using

direction defined by the eigenvector of L corresponding to the smallest non-trivial eigenvalue

yielded the best results (though this is not showing directly in [5], the choice of hyperparameters

can be found in the authors’s github repository [4]). Therefore, it is imperative to extend

the theorem to encompass the case that L is used.

48

Chapter 4

Directional Graph Attention Network

In this chapter, we propose our model, Directional Graph Attention Network (DGAT),

which aims to enhance the performance of the original Graph Attention Network (GAT) on

heterophilous datasets (verified empirically using node classification tasks). We introduce the

global directional flow to the model, which is defined based on the vector field utilizing the

low-frequency Laplacian eigenvector. More specifically, two new mechanisms are introduced

on top of the original GAT architecture: the neighbour pruning and the global directional

aggregation mechanism.

In Section 4.1, a formal statement of the problem is outlined. Next, our purposed

DGAT model is described in Section 4.2 in detail. Lastly, the implementation, training

and inference details of the DGAT model are outlined in Section 4.3, Section 4.4and Section

4.5 respectively.

4.1 Problem Statement

Let G = (V , E) be an undirected graph with n = |V| nodes. Let A ∈ Rn×n and D ∈ Rn×n

denote the adjacency matrix and the degree matrix of G, respectively, and let X ∈ Rn×d

denote the feature matrix of nodes, where d is the number of features for each node. Our

goal is to generate node representations that can be used for down-streaming tasks.

49

4.2 Methodology

As briefly mentioned in the proceeding chapter, the GAT model suffers significant performance

lose when applying to heterophilous datasets [64] [35]. In heterophily settings, the label yu of

and feature xu of a node u might be very different from those its neighbours have. However,

the GAT model generates the node representation solely based on the representations of

its neighbours. While this might work well in the homophily case, where a node and its

neighbours are likely to have the same label, a challenge is posed when the input graphs are

heterophilic.

In this thesis, we propose the Directional Graph Attention Network (DGAT) to better

guide the information propagation during the message passing, which aims to alleviate the

aforementioned issue that the original GAT model has by exploiting both the local feature-

based information and the global topology-based directional flow.

More specifically, the local feature-based message aggregation is accomplished by utilizing

the standard attention mechanism in GAT, as introduced in Section 3.3. Therefore, we only

need to design the global topology-based aggregation strategy, which should be flexible and

can be easily integrated with the original GAT.

In this section, the two mechanisms, namely the neighbour pruning and the global

directional aggregation mechanism, which our model utilizes to achieve the global topology-

based directional aggregation, are outlined in detail.

Similar to the DGN model, two phases are involved while using the DGAT model: the pre-

computation phase and the GNN phase. In the pre-computation phase, the eigenvector ϕ(1)

associated with the smallest non-trivial eigenvalue of a graph Laplacian matrix is computed,

which is then used to define the vector field used by neighbour pruning and attention head

mechanisms. Specifically, the gradient ∇ϕ(1) of the eigenvector ϕ(1) is computed using (3.17)

and the vector field is defined as

F := ∇ϕ(1) (4.1)

50

Here the Laplacian matrix we use is a new normalized Laplacian matrix, namely, the

parameterized normalized Laplacian matrix, to be introduced in Section 4.2.3 Note that the

DGN model uses one of the three graph Laplacian matrices introduced at the end of Section

3.4.4. The parameterized normalized Laplacian matrix has a parameter, which allows us to

have a more refined control over the directional aggregation.

4.2.1 Neighbour pruning

Neighbour pruning is one of the two mechanisms that implement the global directional flow

in our model. The intuition behind this mechanism is that we want to filter out the "noisy"

(the nosiness is considered from the graph topology point of view) neighbours of a node

and let it focus on the ones that carry the most important messages. More specifically, we

consider neighbour pruning as a pre-processing step.

During neighbour pruning, for each node vi ∈ V and its neighbouring node vj ∈ N (vi),

we compare |fij| with a pre-defined threshold ϵ (note that F is defined in (4.1)). Then

based on the homophily level of the input graph G, two different cases are considered: for

homophilous G (i.e., Hnode(G) ≥ 0.5; see (2.7)), we want to promote the neighbours with

short diffusion distance, which have high probability sharing the same class labels [54], so if

|fij| < ϵ, two actions are taken: first we remove the the edge eij between vi and vj, then, we

set fij = 0; on the contrary, for heterophilous G (i.e., Hnode(G) < 0.5), we want to promote

neighbours with long diffusion distance, which have higher probability of having different

neighbours [54], so we proceed with the same two actions if |fij| ≥ ϵ. This mechanism acts

as graph denoising for the input graphs with different homophily levels, which forces the

later aggregation step to focus on the appropriate set of neighbours. Note that we treat

ϵ as a hyperparameter, and it is tuned independently for different datasets; a qualitative

guidance on hot to narrow down the hyperparameter search range is provided in Chapter

5. Furthermore, since we are interested in the message passing in both the forward and the

51

backward directions, the absolute value is taken. After performing neighbour pruning on the

input graph, the re-wired graph is used in training.

An earlier edge-dropping mechanism was proposed in [45], where the edges of the input

graph are dropped randomly during the training (similar to the dropout technique used

in training an MLP, see more details in Section 4.4. Our proposed neighbour pruning

mechanism differs from this mechanism fundamentally, we drop out graph edges in a guided

manner, whereas the the aforementioned method is purely random. There also exists some

other graph re-wring techniques. Papp et al. [42] proposed a node-dropping mechanism.

Topping et al. [54] proposed a edge-adding mechanism in order to enhance the connectivity

between poorly-connected clusters.

4.2.2 Global Directional Aggregation Mechanism

As mentioned in the preceding section, the original GAT utilizes multi-head attention to

enrich the model’s capability and stabilize the learning process; more specifically, each

attention head is feature-based, and completely omits the global topology.

To address this shortcoming, we propose two global directional aggregation mechanisms

based on the directional weighted aggregation matrices Bav and Bdx defined in (3.12) and

(3.14), respectively. In computing the two matrices, we use the vector field F defined in

(4.1).

For a node vi ∈ V , let h
(k−1),av
i be its aggregated representation obtained by using the

first global directional aggregation mechanism defined with Bav:

h
(k−1),av
i =

∑
j:vj∈N (vi)

Bav(i, j)h
(k−1)
j (4.2)

where f(·) is a non-linear activation function, Wav is the learnable weight matrix, and

h
(k−1)
j is the representation vector for node vj at the (k − 1)th layer. Note that the initial

representation vectors of the nodes used in the aggregation are just the node feature vectors.

52

The equivalent matrix form can be written as:

H(k−1)
av = BavH

(k−1)

where the ith rows of H(k−1) and H
(k−1)
av are (h

(k−1)
i)T and (h

(k−1),av
i)T, respectively.

Similarly, its aggregated representation h
(k−1),dx
i by using the second global directional

aggregation mechanism Bdx can be expressed as:

h
(k−1),dx
i =

∑
j:vj∈N (vi)

Bdx(i, j)h
(k−1)
j

The equivalent matrix form can be written as:

H
(k−1)
dx = BdxH

(k−1)

To combine the global directional information with the feature-based attention heads, we

can write the final representation of a node vi produced by the kth DGAT layer as:

h
(k)
i =

wwwwM

m=1

f

(W(k,m))T

 ∑
j:vj∈{N (vi),vi}

α
(k,m)
ij h

(k−1)
j

wwwwh(k−1),av
i

wwwwh(k−1),dx
i

where M is the number of feature-based attention heads, α(k,m)

ij is the normalized attention

score between node vi and vj computed by the mth attention head at the kth DGAT layer

(as defined in (3.6)) and W(k,m) is the weight matrix corresponds to the mth attention head

at the kth DGAT layer. The equivalent matrix form can be written as:

H(k) =
[
f
([

A
(k,1)
att H,BavH, |BdxH|

]
W(k,1)

)
, · · · , f

([
A

(k,M)
att H,BavH, |BdxH|

]
W(k,M)

)]

53

4.2.3 Parameterized normalized Laplacian and Adjacency Matrices

As briefly mentioned in the proceeding section, Beaini et al. [5] treat the type of Laplacian

matrix (the choices being L, Lrw and Lsym) as a hyperparameter of the model and tune it

for each individual benchmark. In order to gain a more refined control over the directional

aggregation, we define a new class of Laplacian matrices, namely the parameterized normalized

Laplacian matrix. In particular, this new class of the Laplacian matrix can be considered as a

generalized version of the normalized Laplacian matrix as defined in (2.1). By using this new

class of normalized Laplacian matrix (as defined in (4.3)) we introduce two parameters γ and

α to the DGAT model, which control the eigenvalues and eigenvectors of the corresponding

Laplacian matrix. Though not mentioned explicitly, the empirical results given in [4] showed

that the model DGN using L has better performance than using Lrw and Lsym. Our newly

defined class of Laplacian matrix will also help us to extend Theorem 3.4.1 to cover the case

of L.

Definition 4.2.1 (Parameterized normalized Laplacian). A parameterized normalized Laplacian

matrix is defined as

L(α,γ) = γ(γD+ (1− γ)I)−αL(γD+ (1− γ)I)α−1 (4.3)

where the parameter γ ∈ [0, 1] and α ∈ [0, 1].

Note that when α = 0 and γ = 1, L(α,γ) becomes the random-walk Laplacian Lrw, and

when α = 1
2

and γ = 1, L(α,γ) becomes the symmetric normalized Laplacian Lsym. Although

we cannot choose α and γ such that L(α,γ) becomes L, we have the following result:

lim
γ→0

1

γ
L(α,γ) = lim

γ→0
(γD+ (1− γ)I)−α ∗ L ∗ lim

γ→0
(γD+ (1− γ)I)α−1 = L (4.4)

This implies that when γ is small enough, an eigenvector of L(α,γ) is a good approximation

to an eigenvector of L.

54

Definition 4.2.2 (Parameterized normalized adjacent matrix). The parameterized normalized

adjacent matrix corresponding to L(α,γ) is defined as

P(α,γ) := I− L(α,γ)

where the parameters α, γ ∈ [0, 1].

When α = 1, the following result indicates P(1,γ) is a valid random walk matrix.

Theorem 4.2.1. The parameterized normalized adjacent matrix P(α,γ) is non-negative (i.e.,

all of its elements are non-negative), and when α = 1, P(α,γ)1 = 1.

Proof. By Definition 4.2.2, we have

P(α,γ) = I− L(α,γ) = I− γ(γD+ (1− γ)I)−αL(γD+ (1− γ)I)α−1

= (γD+ (1− γ)I)−α(γD+ (1− γ)I− γD+ γA)(γD+ (1− γ)I)α−1

= (γD+ (1− γ)I)−α(γA+ (1− γ)I)(γD+ (1− γ)I)α−1

It is easy to see that all elements in P(α,γ) are non-negative.

When α = 1,

P(α,γ) = (γD+ (1− γ)I)−1 (γA+ (1− γ)I)

Since A1 = D1, we have

P(α,γ)1 = (γD+ (1− γ)I)−1 (γA+ (1− γ)I)1 = 1

completing the proof.

Next we study the properties of eigenvalues of L(α,γ) in the following Lemma.

55

Theorem 4.2.2. Suppose the graph G = (V , E) is connected. Let the symmetric L(1/2,γ) ∈

Rn×n have the eigendecomposition:

L(1/2,γ) = UΛUT

where Λ = diag(λ(i)(γ)) with λ(0)(γ) ≤ · · · ≤ λ(n−1)(γ), U ∈ Rn×n is orthogonal and its i-th

column is an eigenvector corresponding to the eigenvalue λ(i)(γ). Then the eigenvalues have

the following bounds:

0 = λ(0)(γ) ≤ λ(1)(γ) ≤ · · · ≤ λ(n−1)(γ) ≤ 2 (4.5)

where λ(1)(γ) ̸= 0, and λ(i)(γ) is strictly increasing with respect to γ for i = 1 : N − 1.

Furthermore, L(α,γ) has the eigendecomposition

L(α,γ) =
(
(γD+ (1− γ)I)

1
2
−αU

)
Λ
(
(γD+ (1− γ)I)

1
2
−α)U

)−1

i.e., all λ(i) are also the eigenvalues of L(α,γ) and the columns of (γD+ (1− γ)I)
1
2
−α)U are

the corresponding eigenvectors.

Proof. For any nonzero x ∈ Rn, write y := (γD+ (1− γ)I)−1/2x. Then

xTL(1/2,γ)x

xTx
=

xTγ(γD+ (1− γ)I)−1/2L(γD+ (1− γ)I)−1/2x

xTx

=
γyTLy

yT(γD+ (1− γ)I)y

=
γ
2

∑
ij aij(yi − yj)

2

γ
∑

ij aijy
2
i + (1− γ)

∑
i y

2
i

By the Rayleigh quotient theorem,

λ(0)(γ) = min
y ̸=0

γ
2

∑
ij aij(yi − yj)

2

γ
∑

ij aijy
2
i + (1− γ)

∑
i y

2
i

= 0 (4.6)

56

where the minimum is reached when y = 1 and

λ(n−1)(γ) = max
y ̸=0

γ
2

∑
ij aij(yi − yj)

2

γ
∑

ij aijy
2
i + (1− γ)

∑
i y

2
i

≤ max
y ̸=0

∑
ij aij(y

2
i + y2j)∑

ij aijy
2
i

≤ 2

leading to (4.5).

The proof of showing λ(1)(γ) ̸= 0 if and only if G is connected is similar to [28, Theorem

2.3, Corollary], thus we will omit the details here.

By the Courant-Fischer min-max theorem, for γ ̸= 0,

λ(i)(γ) = min
{S:dim(S)=i}

max
{x:0̸=x∈S}

xTL(1/2,γ)x

xTx
= min

{S:dim(S)=i}
max

{y:0 ̸=y∈S}

yTLy

yT(D− I+ (1/γ)I)y

It is obvious that the Rayleigh quotient yTLy
yT(D−I+(1/γ)I)y

is strictly increasing with respect to

γ ∈ (0, 1] if Ly ̸= 0, i.e., y not a multiple of 1. Note that λ(0)(γ) = 0 and it is reached when

Ly = 0, or equivalently y is a multiple of 1. Thus, λ(i)(γ) is strictly increasing with respect

to γ for i = 1 : n− 1.

From the eigendecomposition of the symmetric L(1/2,γ), we can find the eigendecomposition

of L(α,γ) as follows:

L(α,γ) = (γD+ (1− γ)I)−α+1/2L(1/2,γ)(γD+ (1− γ)I)α−1/2

= (γD+ (1− γ)I)−α+1/2(UΛUT)(γD+ (1− γ)I)α−1/2

=
(
(γD+ (1− γ)I)1/2−αU

)
Λ
(
(γD+ (1− γ)I)1/2−αU

)−1

Thus, λ(i) is also an eigenvalue of L(α,γ) for i = 0 : n−1, and column i of (γD+(1−γ)I)1/2−αU

is a corresponding eigenvector.

Finally, we extend [5, Theorem 2.3] as follows.

57

Theorem 4.2.3 (Gradient steps reduce diffusion distance v2.). Let vi and vj be two nodes

such that ϕ(1)
i (γ) < ϕ

(1)
j (γ), where ϕ(1)(γ) is the eigenvector corresponds to the smallest non-

trivial eigenvalue λ(1)(γ) of L(1,γ). Let vm be the node obtained from vi by taking one step

in the direction of ∇ϕ(1)(γ) (as defined in the Definition 3.4.2). Then there is a constant C

such that for t ≥ C,

dt(vm, vj) < dt(vi, vj) (4.7)

where dt(·, ·) is the diffusion distance between two nodes, as defined in Definition 3.4.1. With

the reduction in distance being proportional to e−λ(1)(γ).

Proof. The proof is very similar to the proof of [5, Theorem 2.3]. Let pk(vi, vj) = (P(1,γ))k(i, j),

then qk(vi, vj) =
∑∞

n=0
e−ttk

k!
pk(vi, vj), which is the transition probability from node vi to vj

as defined in (3.18). The parameterized diffusion distance can be written as

dt(vi, vj) :=

(∑
vm∈V

(qt(vi, vm)− qt(vj, vm))
2

) 1
2

(4.8)

By [15], we can rewrite (4.9) as:

dt(vi, vj) =

(
n−1∑
k=1

e−2tλ(k)(γ)(ϕ
(1)
i (γ)− ϕ

(1)
k (γ))2

) 1
2

(4.9)

where λ(1)(γ) ≤ λ(2)(γ) ≤ · · · ≤ λ(n−1)(γ) are eigenvalues of L(1,γ), and {ϕ(1)(γ),ϕ(2)(γ), . . . ,ϕ(n−1)(γ)}

are the corresponding eigenvectors. We omit λ(0)(γ) since it equals to 0.

The inequality dt(vm, vj) < dt(vi, vj) is then equivalent as

(
n−1∑
k=1

e−2tλ(k)(γ)(ϕ(1)
m (γ)− ϕ

(1)
k (γ))2

) 1
2

<

(
n−1∑
k=1

e−2tλ(k)(γ)(ϕ
(1)
i (γ)− ϕ

(1)
k (γ))2

) 1
2

(4.10)

58

We can take out λ(1)(γ) and ϕ(1)(γ) and rearrange the above inequality as:

n−1∑
k=2

e−2tλ(k)(γ)
(
(ϕ(1)

m (γ)− ϕ
(1)
k (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
k (γ))2

)
<

e−2tλ(1)(γ)
(
(ϕ(1)

m (γ)− ϕ
(1)
j (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
j (γ))2

) (4.11)

Note that, the left-hand side of (4.11) is bounded above by:

n−1∑
k=2

e−2tλ(k)(γ)
∣∣∣(ϕ(1)

m (γ)− ϕ
(1)
k (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
k (γ))2

∣∣∣ ≤
e−2tλ(2)(γ)

n−1∑
k=2

∣∣∣(ϕ(1)
m (γ)− ϕ

(1)
k (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
k (γ))2

∣∣∣
Then (4.11) holds if:

e−2tλ(2)(γ)

n−1∑
k=2

∣∣∣(ϕ(1)
m (γ)− ϕ

(1)
k (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
k (γ))2

∣∣∣ ≤
e−2tλ(1)(γ)

(
(ϕ(1)

m (γ)− ϕ
(1)
j (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
j (γ))2

) (4.12)

which is equivalent to

1

2(λ(1)(γ)− λ(2)(γ))
log

 (ϕ
(1)
i (γ)− ϕ

(1)
j (γ))2 − (ϕ

(1)
m (γ)− ϕ

(1)
j (γ))2∑n−1

k=2

∣∣∣(ϕ(1)
m (γ)− ϕ

(1)
k (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
k (γ))2

∣∣∣
 < t (4.13)

Let the constant C be the left-hand side of (4.13), then if we take t ≥ ⌊C⌋+ 1, we have

dt(vm, vj) < dt(vi, vj).

Note that C exits if

(ϕ
(1)
i (γ)− ϕ

(1)
j (γ))2 − (ϕ

(1)
m (γ)− ϕ

(1)
j (γ))2∑n−1

k=2

∣∣∣(ϕ(1)
m (γ)− ϕ

(1)
k (γ))2 − (ϕ

(1)
i (γ)− ϕ

(1)
k (γ))2

∣∣∣ > 0 (4.14)

which requires |ϕ(1)
i (γ)−ϕ

(1)
j (γ)| > |ϕ(1)

m (γ)−ϕ
(1)
j (γ)|, and is based on the assumption that

the chosen neighbor vm of vi always satisfies the condition that ϕ(1)
i (γ) < ϕ

(1)
m (γ) < ϕ

(1)
j (γ).

59

However, it cannot be guaranteed that such neighbour vm always exist, and this is indeed a

shortcoming of this proof.

The theorem presented in the original work [5, Theorem 2.3] (i.e., Theorem 3.4.1 in

Section 3.4.5) provides justification solely for the direction utilized in the DGN model

concerning the random walk matrix Lrw. However, our extended theorem given above

significantly extends the scope of the original work by offering a theoretical justification

for a much broader class of Laplacian matrices (as defined in Definition 4.2.1). Of particular

note, we observe in (4.4) that as γ approaches zero, the eigenvectors of L(1,γ) approach the

eigenvectors of L, which provides strong evidence for the theorem’s asymptotic applicability

to the unnormalized Laplacian matrix L.

Moreover, we can now provide theoretical justification for the empirical results observed

in the experiments from [4], which demonstrate that defining directions in DGN by utilizing

the eigenvectors of L leads to superior results as compared to using the eigenvectors of Lrw.

As previously mentioned, the eigenvector Φ(1)(γ) of L(1,γ) corresponding to the eigenvalue

λ(1)(γ) converges to the eigenvector Φ(1)(0) of L as γ approaches 0; furthermore, L(1,γ) = Lrw

when γ = 1. Based on Theorem 4.2.2, it can be inferred that for γ ∈ (0, 1), λ(1)(γ) is less

than λ(1)(1), which implies e−λ(1)(1) < e−λ(1)(γ). Moreover, by applying Theorem 4.2.3, we

can infer the direction defined in DGN with the utilization of Φ(1)(γ) is expected to result

in a more significant reduction in diffusion distance when γ approaches 0. In other words,

utilizing Φ(1)(γ) to define direction in DGN will enable more efficient message passing due

to the reduced diffusion distance.

Parameter γ and α affect the amount of diffusion distance reduction. Thus, by adding γ

and α as a tunable hyperparameter to the DGAT model, we will be able to have finer control

over the message aggregation. In Section 5.4.1, we provide qualitative guidance on choosing

γ and α for different input graphs based on their heterophily level.

60

4.3 Vectorized Implementation

The DGAT model is constructed by stacking two directional attention layers, which is based

on the standard graph attention layer with extra global directional information added in. We

designed our model to have two directional attention layers for the sake of a fair comparison

with the original GAT which usually works best with a couple number of layers. Figure

4.1 illustrates the overall structure of the DGAT model. More specifically, we use efficient

matrix multiplications to implement it.

Figure 4.1: Overall architecture of DGAT

Suppose we have already performed the neighbour pruning on the input graph G :=

(V , E). Let Ĝ denote the re-wired graph, and let Â, X represents its adjacency matrix

and the node feature matrix respectively. As mentioned in the preceding section, in order

to get the masked attention scores for the mth attention head at the kth DGAT layer, we

need to first compute the matrix according to (3.4): R(k,m) = (r
(k,m)
ij), which contains the

unnormalized attention scores for all pairs of nodes in Ĝ.

61

After we compute R(k), according to (3.6) we calculate the masked attention matrix score

as A
(k,m)
att = (α

(k,m)
ij). Then the model can be written as follows:

H(1) =
[
f
([

A
(1,1)
att X,BavX, |BdxX|

]
W(1,1)

)
, . . . , f

([
A

(1,M)
att X,BavX, |BdxX|

]
W(1,M)

)]
H(2) = f

(
1

M

M∑
m=1

([
A

(2,m)
att H(1),BavH

(1), |BdxH
(1)|
]
W(2,m)

))

Like the GAT model, our new model uses LeakyReLU as the activation function f(·) in our

implementation.

Note that in spite of the improvement made by GATv2 to the original GAT model, in

our implementation, we still use the attention mechanism proposed in the GAT model for

the following reasons:

• The GAT model is the first graph model that adopts the attention mechanism. Although

the GATv2 model is better, its attention mechanism is still feature-based and there is

no essential difference between the two models.

• The mechanisms we proposed are immune to the type of attention mechanisms they

can combine with and can be used to enhance any attention mechanism.

• The experiment results in Section 5.4.2 indicate that our DGAT model outperforms

GATv2 by a large margin on all synthetic benchmarks. Thus, we believe that there

will also be a significant enhancement when applying our mechanisms to the GATv2

model. We will leave the empirical experiments to future work

4.4 Training

To train and evaluate the DGAT model, we use various node classification benchmarks (see

more details about benchmarks in Chapter 5).

62

More specifically, we assume a total of T classes of labels in a node classification task. A

subset of the nodes Ṽ ⊂ V have labels {yi : vi ∈ Ṽ} associated with them, while the labels

for the rest of the nodes are unknown. The focus of the task is to infer the labels for the

nodes in V \ Ṽ . Note that it is a common practice to convert label yi into one-hot vector

yi ∈ RT , where the kth element of yi is 1 if yi indicates the node is in class k, and all the

rest elements are 0. We also adopt this convention in our experiment.

When training and evaluating a model using a node classification benchmark dataset

with T distinct classes, each node vi ∈ V has a label vector yi associated to it. Moreover,

we divide nodes into three sets, namely the training set Vtrain, the validation set Vval and

the test set Vtest. During the training phase, the model only has access to labels of nodes

in Vtrain and in Vval (for hyperparameter tuning), while the labels of the rest of the nodes in

Vtest = V \ (Vtrain ∪ Vval) remain unknown to the model.

The cost function used in node classification tasks is the standard categorical cross-

entropy loss [23], which is commonly used for multi-class classification tasks:

C = − 1

|Vtrain|
∑

i:vi∈Vtrain

yT
i log h̃

(2)
i (4.15)

where yi ∈ RT is the one-hot encoding for the ground-truth class label of node vi, h̃
(2)
i =

(softmax(H
(2)
i,:))

T, and log(·) is applied element-wise.

In our experiment, we adopt the batch gradient descent method using the full training

dataset in each training iteration. In addition, we introduce stochasticity into the training

process by employing the dropout technique [50].

Dropout is a powerful regularization technique for general deep neural networks. Specifically,

when training with dropout, every neuron (along with its connection) in the input and the

hidden layers has a probability p of being dropped. The dropout probability p is considered

as a hyperparameter which requires tuning for different datasets. Figure 4.2 illustrates how

dropout works in a simple neural network with two hidden layer.

63

Figure 4.2: A two hidden layer neural network (a) with dropout(b)

Dropout prevents neural network from over-fitting by forcing each neuron to not rely on

the fixed set of neurons connected to it from the previous layer. As a result, the neural

network is exposed to a wide variety of different contexts provided by the different hidden

units and thus usually generalizes better to unseen data. Note that the dropout is only used

during training and is turned off in the inference/test phase.

Another technique we adopted in the training process is the weight decay [44], which

is a regularization technique that helps to reduce the complexity of a model and prevent

overfitting. In particular, by using the weight decay technique, we modify the original cost

function C by adding a penalty term that is proportional to the squared sum of the weights:

C̃ = C +
λ

2
wTw

where λ is the hyperparameter that determines the strength of the penalty and w is a vector

containing all weights in the neural network.

Moreover, when training a graph neural network to generate node-level representations,

there are typically two learning frameworks, which are

• Transductive learning : The model has access to features of all the nodes during the

training, including the nodes in Vtest. Note that the labels of nodes in Vtest are not

visible to the model, and they are not used in the loss computation; however, the nodes

64

in Vtest will be involved in the message-passing step, and the model will generate the

intermediate representations for them.

and the

• Inductive learning : The model only has access to features of nodes in Vtrain and Vval

during training. In this case, the Vtest nodes are used in neither the loss computation

nor the message-passing step; they are entirely invisible to the model.

In this thesis, we adopt the transductive learning framework in training the DGAT model.

4.5 Testing

After the model is trained (i.e., all the weights have been obtained), we compute the attention

score matrix H(2) of the input graph G. To predict labels for graph nodes in Vtest, we convert

the corresponding rows in H(2) into a one-hot matrix that represents the node classification

results. Specifically, to get a class label for node vi ∈ Vtest, we extract the ith row of H(2) and

find the index of the maximum score in it. Then we turn the element at this index into 1 and

the rest of elements in the row vector into 0. By repeating this process for each node in the

input graph, we convert H(2) into a one-hot matrix Ỹtest, whose ith row in is the predicted

one-hot vector label of node vi ∈ Vtest.

In order to test performance of our model, we calculate the average test accuracy against

the ground-truth labels:

accuracy =
1

|Vtest|
∑

i:vi∈Vtest

ind(yi = ỹi)

where ind(·) is the indicator function, which returns 1 if the classes match and 0 otherwise.

65

4.6 Summary

This chapter describes our proposed model, DGAT, which operates on graph-structured

data, leveraging the graph topology-based directional flow into the standard graph attention

mechanism. To demonstrate the effectiveness of the DGAT model, we conducted a series of

experiments on different real-world and synthetic node classification benchmarks. The detail

and results of our experimental study are presented in the next chapter.

66

Chapter 5

Experimental Studies

This chapter examines the empirical behaviour of the proposed model, DGAT. We demonstrate

the model’s effusiveness by evaluating its performance against various benchmarks. Specifically,

we compare its results to those of the original GAT model and the DGN model across nine

real-world datasets. Furthermore, we conduct an additional evaluation by comparing the

model’s performance to GAT and GATv2 on ten synthetic datasets. This analysis allows us to

gauge the model’s effectiveness in handling graphs that exhibit varying levels of heteroplicity.

In Section 5.1, the real-world datasets used in the experiment are introduced. Next, the

synthetic datasets used in the experiment are presented in Section 5.2. Then in Section 5.3,

our experimental setup is explained. Lastly, the test results are presented and discussed in

Section 5.4.

5.1 Real-World Datasets

We utilized nine real-world node classification benchmarks in our experiment to evaluate

the DGAT model. Those nine datasets can be categorized into four groups: the Wikipedia

network, the actor co-occurrence network, the WebKB and the citation network. The overall

statistics of the datasets are shown in Table 5.1. In the following sub-section, we give a

thorough overview of each of them.

67

Cham. Squi. Actor Corn. Wisc. Texas Cora Cite. Pubm.

Nodes 2,277 5,201 7,600 183 251 183 2,708 3,327 19,717
Edges 36,101 217,073 33,544 295 499 309 5,429 4,732 44,324

Features 2,325 2,089 931 1,703 1,703 1,703 1,433 3,703 500
Classes 5 5 5 5 5 5 7 6 3
Hnode(G)⋆ 0.23 0.22 0.22 0.30 0.21 0.11 0.81 0.74 0.80

Table 5.1: Benchmark dataset statistics. The ⋆ statistics are reported from [35].

5.1.1 Wikipedia networks

The graphs of Wikipedia networks are collected from the English Wikipedia [46], each graph

reflects the page-to-page referencing relationship on some specific topics (e.g. chameleons,

crocodiles and squirrels). In our experiment, the two networks we used are the Chameleon

and the Squirrel. The nodes in a Wikepedia network represent Wikipedia article web-pages

and edges are mutual link between them. The features of the nodes represent the appearance

of certain pre-defined informative nouns in the articles. The nodes are classified into five

categories. Each category represents a range that the average monthly web page traffic falls

into between October 2017 and November 2018.

5.1.2 Actor co-occurrence network

The graph Actor is a actor-induced subgraph of the film-director-actor-writer network [53].

The nodes in this graph represent actors, and an edge connecting two nodes indicates the

co-occurrence of those two actors on the same Wikipedia page. The features of a node of

the graph correspond to a set of specialized keywords on the Wikipedia pages. Moreover,

the nodes are classified according to the words of the actors’ Wikipedia.

5.1.3 WebKB

WebKB [16] is a graph representing web pages collected from the computer science departments

of various universities. In our experiment, three sub-datasets of it are used, namely Cornell,

68

Wisconsin and Texas. The nodes in these networks represent web pages, and edges are

hyperlinks between them. A node’s label is the web page’s categories (Student, Faculty, Staff,

Department, Course and Project). The features of the nodes are bag-of-words representation

(i.e., 0/1-valued word vector that indicates the absence/presence of the corresponding word

from a vocabulary set) of the web pages.

5.1.4 Citation networks

Cora [36], Citeseer [19] and Pubmed [49] are three real-world benchmark datasets commonly

used in node classification tasks. In all three of these networks, nodes represent papers,

and edges between nodes indicate citations of one paper by another. The nodes have been

assigned different labels according to the topic of the paper it represents. The features of

the nodes are the bag-of-words representation of the paper and note that the stop-words

and words that appeared less than ten times are removed from the feature vector to reduce

noises.

5.2 Synthetic Datasets

In addition to the real-world datasets, we also tested the DGAT model on a set of synthetic

graphs generated with different homophily levels ranging from 0 to 1 with the method

proposed in [1].

More specifically, given the total number of nodes n we wish to have in the output graph

G, the total number of classes T and the homophily coefficient µ; we first divide those n

nodes into T equal-size classes. Then the output synthetic graph G (initially empty) is

generated iteratively by adding a new node vi with a random class label vector yi at each

step. Furthermore, whenever a new node vi is added to the graph, we connect it to an

69

existing node vj in G with the probability pij defined by the following rules:

pij =

 di × µ, if yi = yj.

dj × µ× w|ci−cj |, otherwise.
(5.1)

where yi and yj are class labels of node u and v respectively, and w|yi−yj | is the “cost” of

connecting two distinct classes with distance |yi − yj|.

Specifically, the distance between two classes simply implies the shortest distance d

between the two classes on a circle, starting from 1 to T respectively. For instance, if

T = 6, yi = 1 and yj = 3, then distance between yi and yj is 2.

Moreover, the cost wd decreases exponentially with respect to the increase of distance d.

For example, if T = 6 and if we let w|1−4| = 1 (where distance = 3), then w|1−3| = w|1−5| = 2

(where distance = 2) and w|1−2| = w|1−6| = 4 (where distance = 1) [1]. Furthermore, we

normalize the costs such that
∑

w|cu−cv | = 1.

In addition, we also normalize the probability pij defined in (5.1) over the exiting nodes

when generating the synthetic graph, where:

p̄ij =
pij∑

k:vk∈N (vi)
pik

Lastly, the features of each node in the output graph are sampled from a 2D Gaussian

distribution, where each class has its own distribution defined separately.

5.3 Experimental Setup

As mentioned in Section 4.3, the DGAT model is constructed by using two directional

attention layers. In addition, the model’s hyperparameters have been optimized for all

datasets, including learning rate, weight decay, dropout rate, the neighbour pruning threshold

ϵ (as introduced in Section 4.2.1), and γ in the parameterized random-walk normalized

70

Laplacian (as defined in (4.3)). In addition, we use the Adam optimizer and the early

stopping strategy during the training phase, which is the same as the training setting utilized

in the GAT model [56]. The DGAT model also uses the same number of attention heads (8),

the same number of graph attention layers (2) and the same number of initial hidden units

(48 for Chameleon and Squirrel, 32 for Actor, 32 for Cornell, Wisconsin and Texas, 16 for

Cora and Citeseer, and 64 for Pubmed) as the GAT model in [56].

Table 5.2 summarizes the fine-tuned hyperparameters of the DGAT model for each real-

world dataset.

Dataset (Hnode(G)) learning rate weight decay dropout rate ϵ γ α

Chameleon (0.23) 5× 10−3 5× 10−4 0.4 1× 10−7 0.0 0.9

Squirrel (0.22) 5× 10−2 5× 10−5 0.2 1× 10−7 0.2 0.1

Actor (0.22) 1× 10−5 1× 10−7 0.3 1× 10−7 0.2 0.2

Cornell (0.30) 5× 10−3 5× 10−4 0.2 5× 10−6 0.3 0.8

Wisconsin (0.21) 5× 10−3 5× 10−6 0.5 1× 10−6 0.3 0.7

Texas (0.11) 5× 10−5 5× 10−3 0.4 1× 10−5 0.2 0.8

Cora (0.81) 5× 10−3 5× 10−4 0.4 5× 10−7 0.9 0.8

Citeseer (0.74) 5× 10−2 5× 10−5 0.6 1× 10−5 0.5 0.2

PubMed (0.80) 1× 10−2 5× 10−2 0.6 1× 10−6 1 0.3

Table 5.2: Hyperparameters of DGAT on different datasets

In our experiment, we utilize the geom-split strategy [43], which splits nodes in each class

into 60%− 20%− 20% sets for training, validation and testing. Furthermore, we report the

average test accuracies of all datasets over the ten random splits. Finally, to validate the

effectiveness of the DGAT model, we establish the GAT and DGN models as baselines and

compare DGAT’s performance against them across all datasets.

71

5.4 Results and Analysis

5.4.1 Real-world Dataset

We conducted experiments on node classification tasks to evaluate our proposed DGAT

model. As mentioned earlier, we use GAT and the DGN as our baseline models.

Cham. Squi. Actor Corn. Wisc. Texas Cora Cite. Pubm.

GAT† 42.93 30.03 28.45 54.32 49.41 58.38 86.37 74.32 87.62
DGN‡ 50.48 37.46 35.47 77.03 82.75 78.11 84.69 73.87 84.29
DGAT 52.47 34.82 35.68 85.14 84.71 79.46 88.05 76.41 87.93

Hnode(G) 0.23 0.22 0.22 0.30 0.21 0.11 0.81 0.74 0.80

Table 5.3: Experimental results: average test accuracy (%) of 9 real-world benchmark

datasets. The best results are highlighted. Results "†" are reported from [43]. Results

"‡" are ran by searching the hyperparameters in the following ranges similar as Beaini

et al.’s experimental setting [5]: weight decay ∈ [10−6, 10−5], learning rate ∈ [10−5, 10−4],

droupout ratio ∈ [0.3, 0.5], aggreagators ∈ {"mean-dir1-av", "mean-dir1-dx", "mean-dir1-

av-dir1-dx"}, net type ∈ {"complex", "simple"}. For fair comparison, we use the same

experimental setup as [43], and report the average test accuracy over the same 10 random

splits.

Table 5.3 presents the average performance of our model on nine real-world datasets

across ten random splits. The results illustrate the efficacy of our model, as it outperformed

the original GAT on all nine datasets, particularly those with heterophilic characteristics.

To be more specific, the DGAT model outperformed the GAT baseline model by a significant

margin of 9.54%, 4.79%, 7.23%, 30.82%, 35.3%, 21.08% on the heterophilic datasets, namely,

Chameleon, Squirrel, Actor, Cornell, Wisconsin and Texas; and by a relatively smaller

margin of 1.68%, 2.09%, 0.31% on the homophilic datasets, namely Cora, Citeseer and

Pubmed. These results suggest that incorporating global topological information into the

attention mechanism do yield benefits, particularly for benchmark datasets with pronounced

heterophilic characteristics.

72

In addition, the DGAT model outperforms the DGN baseline model by a margin of

1.99%, 0.21%, 8.11%, 1.96%, 1.35% on all the heterophilic datasets except Squirrel, namely,

Chameleon, Actor, Cornell, Wisconsin and Texas; and by a margin of 3.36%, 2.54%, 3.64% on

the homophilic datasets, namely Cora, Citeseer and Pubmed. As previously mentioned, the

DGN model holds a significant advantage over the GAT model due to its inherent anisotropic

nature. The experimental results provide further evidence supporting the effectiveness of

incorporating the directional aggregation mechanism into the original attention mechanism

for notable improvements. Furthermore, the DGAT model demonstrates superior performance

compared to the DGN model across all homophilic datasets. This outcome serves as evidence

that our proposed model effectively combines the advantages of both mechanisms.

In terms of the hyperparameter searching, based on our empirical experience, we advice

to set the search range for ϵ between 10−7 to 10−3, and search range for α between 0.1 to 0.9.

Moreover, the hyperparameter γ in Table 5.2 exhibits a correlation between the homophily

level: the fine-tuned values of γ for strong homophily datasets appear to be larger than those

strong heterophily datasets. This observation suggests that the homophily level of a graph

may have an impact on the choice of γ for the DGAT model.

To assess the effectiveness and efficiency of our proposed model, we perform an ablation

study to examine the impact of different mechanisms, namely the neighbor pruning, global

directional aggregation, and the parameterized random-walk normalized Laplacian matrix.

The study is aimed at evaluating the performance of the proposed framework in the context of

the same real-world benchmark datasets, namely Cornell, Wisconsin, Texas, Film, Chameleon,

Squirrel, Cora, Citeseer and Pubmed, using a 60%/20%/20% random split for train/validation/test.

The results are reported in terms of the average test accuracy and standard deviation.

Ablation Tests

In this section, we present the results of an ablation study conducted on all nine real-world

datasets using DGAT. As aforementioned, the purpose of this study is to assess the efficacy

73

of each proposed mechanism. Table 5.4 displays the results obtained from the ablation tests.

Ablation Study on Different Components in DGAT (%)

Model Components Chameleon Squirrel Actor Cornell Wisconsin Texas Cora CiteSeer PubMed

n.p.1 d.a.2 p.Laplacian3 Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std

DGAT w/

✓ 51.71 ± 1.23 32.91 ± 2.26 35.24 ± 1.07 82.16 ± 5.94 83.92 ± 3.59 78.38 ± 5.13 87.85 ± 1.02 74.50 ± 1.99 87.78 ± 0.44
✓ ✓ 51.91 ± 1.59 34.70 ± 1.02 35.51 ± 0.74 84.32 ± 4.15 84.12 ± 3.09 78.65 ± 4.43 87.83 ± 1.20 76.18 ± 1.35 87.93 ± 0.36

✓ 46.69 ± 1.98 34.67 ± 0.10 29.63 ± 0.52 60.27 ± 4.02 54.51 ± 7.68 60.81 ± 5.16 87.95 ± 1.01 76.31 ± 1.38 87.90 ± 0.40
✓ ✓ 46.95 ± 2.50 34.71 ± 1.02 29.87 ± 0.60 60.54 ± 0.40 54.71 ± 5.68 60.81 ± 4.87 87.28 ± 1.53 76.41 ± 1.62 87.88 ± 0.46

✓ ✓ 52.39 ± 2.08 33.93 ± 1.86 35.64 ± 0.10 84.86 ± 5.12 84.11 ± 2.69 78.92 ± 5.57 87.93 ± 0.99 73.91 ± 1.62 87.82 ± 0.30
✓ ✓ ✓ 52.47 ± 1.44 34.82 ± 1.60 35.68 ± 1.20 85.14 ± 5.30 84.71 ± 3.59 79.46 ± 3.67 88.05 ± 1.09 76.41 ± 1.45 87.94 ± 0.48

Baseline 42.93 30.03 28.45 54.32 49.41 58.38 86.37 74.32 87.62

Table 5.4: Ablation study on 9 real-world datasets [43]. Cell with ✓means the component

is applied to the DGAT model. The best test results are highlighted.

The ablation test results suggest that the utilization of three proposed mechanisms,

namely neighbor pruning, global directional aggregation, and parameterized random-walk

normalized Laplacian matrix, enhances the efficiency of message passing. Additionally,

similar to the previously mentioned observation, graphs exhibiting stronger heterophily

characteristics experience greater benefits from the directional message passing approach.

Furthermore, it is worth mentioning that the utilization of neighbor pruning in DGAT yields

remarkable enhancements in its performance when applied to real-world datasets. These

improvements contribute to the enhanced performance of the heterogeneous dataset, namely

Chameleon, Squirrel, Actor, Cornell, Wisconsin, and Texas, resulting in performance gains

of 20%, 9.59%, 23.87%, 51.25%, 69.84% and 34.26% respectively.

To further prove the effectiveness and investigate the underlying relationship between

γ and the graph homophily level, we conducted more experiments by utilizing synthetic

datasets in the next section.
1neighour pruning
2global directional aggregation
3parameterized random-walk Laplacian matrix

74

5.4.2 Synthetic Dataset

We have shown promising results of our DGAT model on the real-world benchmarks. In this

section, we conducted more experiments on the node classification task using ten synthetic

graphs with homophily coefficients ranging from 0 to 0.9. Note that the correlation between

the homophily coefficient and Hnode is very close to linear, thus we use homophily coefficient

directly in this section to represent the homophily level of the synthetic datasets.

Similar to the experiments run on real-world datasets, we use the original GAT model as

our baseline. In addition, the GATv2 model is also used in the synthetic experiment to further

demonstrate our model’s enhancement to the attention mechanism. The experiment results

can be found in Table 5.5. In order to offer a more thorough depiction of the comparison

between the models’ performances, we added Figure 5.1 to our presentation as well.

Being an important hyperparameter introduced in our model, in order to investigate

how it affects its performance, we repeated the same experiment using ten distinct values of

µ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} for each graph with different homophily

coefficient.

In Table 5.5, the test results of the DGAT model are presented along with the hyperparameter

γ. Based on the results, we observe that the DGAT model achieves remarkably better results

than all the baseline model by substantial margins across all homophily levels. In addition,

in Table 5.5, we present not only the best results of the DGAT model but also the “worst”

ones. It can be seen that even our “worst” runs have much higher accuracies than both the

baseline models.

As observed in the previous section, we also notice the exact relationship between the

value of γ and the homophily level. More specifically, as the homophily level increases, the

optimal γ, which yields the best result, also increases. Interestingly, as shown in Table 5.5, for

each homophily level, the hyperparameter γ in the worst DGAT test run has demonstrated

a reverse correlation with the corresponding homophily level. This is precisely the opposite

of the relationship exhibited by the γ and homophily level in the best runs. In other words,

75

Homophily Coefficient µ GAT GATv2 DGAT (γ) DGAT* (γ)

0.0 22.86 31.06 54.94 (0.1) 47.51 (0.7)
0.1 25.86 33.46 54.13 (0.3) 49.72 (0.9)
0.2 30.42 39.82 57.83 (0.3) 53.11 (1.0)
0.3 38.56 45.36 64.33 (0.3) 59.37 (1.0)
0.4 41.76 52.10 73.54 (0.3) 66.71 (0.7)
0.5 49.80 58.32 82.95 (0.7) 78.81 (0.2)
0.6 59.12 67.30 90.56 (0.7) 88.30 (0.5)
0.7 70.46 74.76 96.00 (0.9) 94.85 (0.4)
0.8 79.92 82.90 98.67 (0.6) 97.84 (0.5)
0.9 88.62 89.02 99.58 (0.8) 98.21 (0.1)

Table 5.5: Experimental results: average test accuracy (%) of 10 synthetic datasets with

different homophily coefficients. The best results are highlighted. For the DGAT model, we

list the best and worst test runs (in the column DGAT (γ) and DGAT* (γ) respectively)

with different choices of of γ in the bracket, e.g. 54.96 (0.1) means γ = 0.1, the average test

accuracy is 54.96%.

if the input graph has strong heterophilic properties, a large diffusion reduction in a gradient

step will help the model to generate the node representations that yield better results in the

downstream task. This observation allows us to provide a general qualitative guidance in

searching for the hyperparameter γ of the DGAT model. More specifically, if the homophily

level of the input graph is known, then for the DGAT model, a large γ should be chosen

(γ ≥ 0.5) if the graph has strong homophilic property, on the contrary, a small γ should be

chosen (γ < 0.5) for a heterophilous graph.

76

Figure 5.1: Synthetic datasets experiment results. The light and dark green bars represent the accuracies of the DGAT model

with γ that have the best and worst results respectively

77

Chapter 6

Conclusion and Future Work

In this chapter, we summarize the contributions of thesis and propose future works.

6.1 Summary of Contributions

• We have introduced a novel class of normalized Laplacian matrices, referred to as

parameterized normalized Laplacians, encompassing both the normalized Laplacian

and the combinatorial Laplacian.

• Utilizing the newly proposed Laplacian, we have introduced a more refined global

directional flow for enhancing the original Graph Attention Network (GAT) on a

general graph.

• Building upon the global directional flow, we have proposed the Directional Graph

Attention Network (DGAT), which is an attention-based graph neural network enriched

with embedded global directional information. More specially, we have proposed two

mechanisms on top of the GAT: the neighbour pruning and the global attention head.

The experiments conducted in Chapter 5 demonstrate the effectiveness of the DGAT

model for both real-world and synthetic datasets. In particular, the DGAT model

exhibited significantly superior performance compared to the original GAT model

78

across all real-world heterophilic datasets. Additionally, the results from the synthetic

dataset experiments further demonstrated the DGAT model’s advantage over the GAT

model across graphs with varying levels of homophily, encompassing both heterophilic

and homophilic datasets.

6.2 Future Work

In the future, we propose to investigate the following problems:

• Now we have a qualitative guidance on how to select the range of hyperparameter γ

for graph with different homophily level. Can we find quantitative guidance instead?

• What is the correlation between γ and the homophily level of graphs? This relationship

might enable us to more efficiently identify an optimal γ value.

79

Bibliography

[1] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,

G. Ver Steeg, and A. Galstyan. Mixhop: Higher-order graph convolutional architectures

via sparsified neighborhood mixing. In International Conference on Machine Learning,

pages 21–29. PMLR, 2019.

[2] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical

implications. arXiv preprint arXiv:2006.05205, 2020.

[3] S.-i. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing,

5(4-5):185–196, 1993.

[4] D. Beaini, S. Passaro, V. L’etourneau, W. Hamilton, G. Corso, and P. Lio. Dgn, 2020.

Available at https://github.com/Saro00/DGN.

[5] D. Beaini, S. Passaro, V. L’etourneau, W. Hamilton, G. Corso, and P. Li‘o. Directional

graph networks. In Proceedings of the International Conference on Machine Learning,

pages 748–758. PMLR, 2021.

[6] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? arXiv

preprint arXiv:2105.14491, 2021.

[7] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

80

https://github.com/Saro00/DGN

[8] C. Cangea, P. Velivckovi’c, N. Jovanovi’c, T. Kipf, and P. Li‘o. Towards sparse

hierarchical graph classifiers. arXiv Preprint arXiv:1811.01287, 2018.

[9] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[10] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath. An attentive survey of

attention models. ACM Transactions on Intelligent Systems and Technology (TIST),

12(5):1–32, 2021.

[11] K. Cho, B. Van Merri"enboer, D. Bahdanau, and Y. Bengio. On the properties of neural

machine translation: Encoder-decoder approaches. arXiv Preprint arXiv:1409.1259,

2014.

[12] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun. Gram: Graph-based

attention model for healthcare representation learning. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

787–795, 2017.

[13] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-based

models for speech recognition. Advances in Neural Information Processing Systems, 28,

2015.

[14] F. R. Chung and F. C. Graham. Spectral Graph Theory. Number 92. American

Mathematical Soc., 1997.

[15] R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic

Analysis, 21(1):5–30, 2006.

[16] M. Craven, A. McCallum, D. PiPasquo, T. Mitchell, and D. Freitag. Learning to

extract symbolic knowledge from the world wide web. In Proceedings of the Fifteenth

81

National/Tenth Conference on Artificial intelligence/Innovative applications of artificial

intelligence, pages 509–516, 1998.

[17] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on

graphs with fast localized spectral filtering. Advances in Neural Information Processing

Systems, 29, 2016.

[18] C. Gallicchio and A. Micheli. Graph echo state networks. In The 2010 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2010.

[19] C. L. Giles, K. D. Bollacker, and S. Lawrence. Citeseer: An automatic citation indexing

system. In Proceedings of the Third ACM Conference on Digital Libraries, pages 89–98,

1998.

[20] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference

Proceedings, 2010.

[21] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains.

In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks,

volume 2, pages 729–734. IEEE, 2005.

[22] M.-H. Guo, T.-X. Xu, J.-J. Liu, Z.-N. Liu, P.-T. Jiang, T.-J. Mu, S.-H. Zhang, R. R.

Martin, M.-M. Cheng, and S.-M. Hu. Attention mechanisms in computer vision: A

survey. Computational Visual Media, pages 1–38, 2022.

[23] W. L. Hamilton. Graph representation learning. Synthesis Lectures on Artifical

Intelligence and Machine Learning, 14(3):1–159, 2020.

82

[24] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large

graphs. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, pages 1025–1035, 2017.

[25] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods

and applications. arXiv preprint arXiv:1709.05584, 2017.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1026–1034, 2015.

[27] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313(5786):504–507, 2006.

[28] Y. Kim and E. Upfal. Algebraic connectivity of graphs, with applications. Bachelor’s

thesis, Brown University, 2016.

[29] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016.

[30] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[32] J. B. Lee, R. Rossi, and X. Kong. Graph classification using structural attention.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery Data Mining, pages 1666–1674, 2018.

[33] J. B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh. Attention models in graphs:

A survey. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(6):1–25,

2019.

83

[34] G. W. Lindsay. Attention in psychology, neuroscience, and machine learning. Frontiers

in Computational Neuroscience, 14, 2020.

[35] Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural

networks? arXiv Preprint arXiv:2106.06134, 2021.

[36] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction

of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

[37] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[38] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in

social networks. Annual Review of Sociology, pages 415–444, 2001.

[39] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein. Geometric

deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[40] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines.

In ICML, 2010.

[41] A. Ortega, P. Frossard, J. Kovavcevi’c, J. M. Moura, and P. Vandergheynst. Graph

signal processing: Overview, challenges, and applications. Proceedings of the IEEE,

106(5):808–828, 2018.

[42] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. Dropgnn: Random dropouts

increase the expressiveness of graph neural networks. Advances in Neural Information

Processing Systems, 34:21997–22009, 2021.

[43] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph

convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

84

[44] R. Reed and R. J. Marks II. Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. MIT Press, 1999.

[45] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph convolutional

networks on node classification. arXiv Preprint arXiv:1907.10903, 2019.

[46] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding.

Journal of Complex Networks, 9(2):Cnab014, 2021.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Nature, 323(6088):533–536, 1986.

[48] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph

neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[49] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective

classification in network data. AI Magazine, 29(3):93–93, 2008.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

A simple way to prevent neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958, 2014.

[51] L. Stankovic, D. Mandic, M. Dakovic, M. Brajovic, B. Scalzo, and T. Constantinides.

Graph signal processing part 1: Graphs, graph spectra, and spectral clustering. arXiv

Preprint arXiv:1907.03467, 2019.

[52] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. Advances in Neural Information Processing Systems, 27, 2014.

[53] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks.

In Proceedings of the Fifteenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 807–816, 2009.

85

[54] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein.

Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint

arXiv:2111.14522, 2021.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin. Attention is all you need. Advances in Neural Information Processing

Systems, 30, 2017.

[56] P. Velivckovi’c, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph

attention networks. arXiv preprint arXiv:1710.10903, 2017.

[57] O. Vinyals, S. Bengio, and M. Kudlur. Order matters: Sequence to sequence for sets.

arXiv preprint arXiv:1511.06391, 2015.

[58] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1225–1234, 2016.

[59] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on

graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,

32(1):4–24, 2020.

[60] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in

convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[61] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu. Sequential

recommender system based on hierarchical attention network. In IJCAI International

Joint Conference on Artificial Intelligence, 2018.

[62] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec. Hierarchical graph

representation learning with differentiable pooling. arXiv Preprint arXiv:1806.08804,

2018.

86

[63] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based

natural language processing. IEEE Computational Intelligence Magazine, 13(3):55–75,

2018.

[64] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in

graph neural networks: Current limitations and effective designs. Advances in Neural

Information Processing Systems, 33:7793–7804, 2020.

87

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Goals, Organization and Contributions
	Notation

	Preliminary
	Graph Representation Learning
	Neural Network Basics
	Neural networks
	Back-propagation

	Structured Neural Networks for Grids and Sequences
	Convolutional neural networks
	Recurrent neural networks

	Graph Neural Networks
	The message-passing framework
	Different types of graph learning tasks
	Homophilic vs. heterophilic graphs

	Related Work
	Graph Convolutional Networks
	Attention Mechanism
	Graph Attention Network
	Direction in Graph Neural Network
	Vector fields in a graph
	Directional smoothing and derivatives operation
	Using gradient of the Laplacian eigenvectors as vector fields
	Directional Graph Network
	Theoretical Analysis

	Directional Graph Attention Network
	Problem Statement
	Methodology
	Neighbour pruning
	Global Directional Aggregation Mechanism
	Parameterized normalized Laplacian and Adjacency Matrices

	Vectorized Implementation
	Training
	Testing
	Summary

	Experimental Studies
	Real-World Datasets
	Wikipedia networks
	Actor co-occurrence network
	WebKB
	Citation networks

	Synthetic Datasets
	Experimental Setup
	Results and Analysis
	Real-world Dataset
	Synthetic Dataset

	Conclusion and Future Work
	Summary of Contributions
	Future Work

