
Running Head: MONOTONIC POLYNOMIAL

The monotonic polynomial graded response model:
Implementation and a comparative study

Carl F. Falk

McGill University

This is the author post-print copy of the article published in Applied Psychological Measure-
ment, 44(6), pp. 465-481. Copyright © 2020, Carl F. Falk. DOI: 10.1177/0146621620909897

We acknowledge the support of the Fonds de recherche du Quebec - Nature et
technologies [2019-NC-255344]. The author thanks the editors and reviewers for helpful
comments during the review process. Address all correspondence to: Carl F. Falk,
Department of Psychology, McGill University, 2001 McGill College, 7th Floor, Montreal,
QC H3A 1G1, Canada. tel: 514.398.6133. Email: carl.falk@mcgill.ca.

mailto:carl.falk@mcgill.ca


MONOTONIC POLYNOMIAL 1

Abstract

We present a monotonic polynomial graded response model (GRMP) that subsumes

the unidimensional graded response model for ordered categorical responses and results

in flexible category response functions. We suggest improvements in the parameterization

of the polynomial underlying similar models, expand upon an underlying response

variable derivation of the model, and in lieu of an overall discrimination parameter we

propose an index to aid in interpreting the strength of relationship between the latent

variable and underlying item responses. In applications, the GRMP is compared to

two approaches: 1) a previously developed monotonic polynomial generalized partial

credit model (GPCMP); and 2) logistic and probit variants of the heteroscedastic graded

response model (HGR) that we estimate using maximum marginal likelihood with the

expectation-maximization algorithm. Results suggest that the GRMP can fit real data

better than the GPCMP and the probit variant of the HGR, but is slightly outperformed by

the logistic HGR. Two simulation studies compared the ability of the GRMP and logistic

HGR to recover category response functions. While the GRMP showed some ability to

recover HGR response functions and those based on kernel smoothing, the HGR was

more specific in the types of response functions it could recover. In general, the GRMP

and HGR make different assumptions regarding the underlying response variables, and

can result in different category response function shapes.

Keywords: Graded response model; Nonparametric item response theory; Mono-

tonic polynomial; Heteroscedastic graded response model.
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The monotonic polynomial graded response model:

Implementation and a comparative study

A recent flexible approach to response function estimation involves replacing the

linear predictor of standard item response models – the two- and three-parameter logistic

(2PL and 3PL; Birnbaum, 1968) and generalized partial credit models (GPC; Muraki,

1992) – with a monotonic polynomial (MP; Falk & Cai, 2016a, 2016b; Liang, 2007; Liang &

Browne, 2015). Although there are other flexible models (e.g., Duncan & MacEachern,

2013; Miyazaki & Hoshino, 2009; Ramsay & Wiberg, 2017), the MP approach is promising

for several reasons. Variants of the MP approach that use the EM algorithm to maximize

the marginal likelihood (EM-MML; Bock & Aitkin, 1981) can be used with multiple groups,

facilitating their use in scaling, linking, or tests of differential item functioning (Falk &

Cai, 2016a; Feuerstahler, 2016). Under conditions of high information, the approach has

been shown in simulations (Falk & Cai, 2016a, 2016b; Feuerstahler, 2016) to improve

recovery of response functions and item fit on par with kernel smoothing (Ramsay, 1991)

and smoothed isotonic regression (Y.-S. Lee, 2007). With EM-MML estimation, the MP

approach can be used with missing data and can be used on the same test as standard

items rather than requiring all items to be estimated non-parametrically.

The main purpose of this manuscript is to define the monotonic polynomial graded

response model (GRMP), formed by replacing the linear predictor of the graded response

model (GRM; Samejima, 1969, 1972) with an MP. This development is important given

the popularity of the GRM for psychological assessments. Indeed, some advocate use of

a non-parametric model for personality or psychopathology data to reveal how certain

items behave differently than what is expected (Meijer & Baneke, 2004).

In addition, previous MP-based models considered logistic building blocks to be

monotonically increasing. Here we propose a modification to the MP parameterization

that retains monotonicity, but allows for boundary response functions of the GRMP to be

either all increasing or all decreasing for any given item. Such a case is useful when some



MONOTONIC POLYNOMIAL 3

items are reverse coded, and may be useful to multidimensional extensions of the model.

We also seek to enhance interpretation of MP-based models by discussing features of

the GRMP as they relate to other variants of graded models such as the heteroscedastic

graded response model (HGR; Molenaar, Dolan, & de Boeck, 2012), expanding upon a

derivation of the model using the underlying variable approach (Bolt, 2005; Takane & de

Leeuw, 1987), and providing conversion from logistic to probit parameterizations of the

model. Although MP-based models lack a discrimination parameter, this work results in

a quantity that may signify how closely related the item is to the latent trait.

We compare the GRMP with the monotonic polynomial generalized partial credit

model (GPCMP; Falk & Cai, 2016a) using data from the Patient Reported Outcomes

Measurement Information System (PROMIS; Hansen et al., 2014). Next, the GRMP,

GPCMP, and HGR are compared on data from the Synthetic Aperature Personality

Assessment (SAPA) project (Condon, 2018). Although the original HGR model considered

only a probit link function and directly maximized the marginal likelihood (Bock &

Lieberman, 1970) using Mx (Neale, Boker, Xie, & Maes, 2002), we implement both logistic

and probit variants using EM-MML. A test of HGR with EM-MML is important as

otherwise the HGR is not feasible for a long test. The two best fitting models from this

latter example (logistic HGR and GRMP) are then compared in a small simulation study.

The remainder of this manuscript is organized as follows. In Section 1, we present the

GRMP, its alternative parameterizations, and briefly discuss the relationship between the

GRMP and other models. In Section 2, we present both empirical examples. In Section 3,

we present two small simulation studies. We end in Section 4 with remaining challenges

on the use of MP-based item models, and promising avenues for future research.

1 The Proposed Item Model

1.1 Monotonic Polynomial Graded Response Model

Consider i = 1, 2, . . . , N independent respondents who complete a subset of j =

1, 2, . . . , n polytomous items with k = 0, 1, . . . , Kj − 1 as response options for item j. Let
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Yij be a random variable for respondent i’s response to item j, and yij its realization,

yij ∈ [ 0, 1, . . . , Kj − 1 ]. The latent variable is θ, which is often assumed standard normal

in single group applications. The GRM (Samejima, 1969, 1972) is a popular choice

for representing the relationship between θ and responses to ordered categorical items.

To construct the model, consider first boundary response functions (BRF) that define the

probability that a response is equal to or greater than category k:

Pj(Yij ≥ k|θi) =
1

1 + exp(−(cjk + ajθi))
= Ψ(cjk + ajθi) (1)

where Ψ(·) is the cumulative distribution function for the standard logistic distribution,

and aj is a slope. The intercepts are ordered, cj1 > cj2 > · · · > cj,Kj−1, such that BRFs are

parallel and do not cross (top-left of Figure 1). BRFs for the GRM form category response

functions (CRF) by taking the difference between adjacent BRFs (top-right of Figure 1):

Tj(k|θi) =


1− Pj(Yij ≥ (k + 1)|θi) if k = 0

Pj(Yij ≥ k|θi)− Pj(Yij ≥ (k + 1)|θi) if 0 < k < Kj − 1

Pj(Yij ≥ (k + 1)|θi) if k = Kj − 1

(2)

To obtain BRFs for the GRMP, we replace the term ajθi in (1) by an MP, m(θi; bj):

Pj(Yij ≥ k|θi) =
1

1 + exp(−(cjk + m(θi; bj)))
= Ψ(cjk + m(θi; bj)) (3)

where b′j = [ bj,1 · · · bj,2qj+1 ] is a 2qj + 1 vector of coefficients, and qj is a user-specified

non-negative integer. Suppressing item and respondent subscripts, m(θ; b) is of order

2q + 1, and its derivative (with respect to θ), m′(θ; a), also contains 2q coefficients in

a = [ aj,1 · · · aj,2qj
]:

m(θ; b) = b1θ + b2θ2 + · · ·+ b2q+1θ2q+1 (4)

m′(θ; a) = a0 + a1θ + a2θ2 + · · ·+ a2qθ2q (5)
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Figure 1: Example boundary response functions and category response functions

Note: GRM = Graded response model; GRMP = Monotonic polynomial graded response; BRF = Boundary
response function; CRF = Category response function. Darker lines indicate a higher value of k.

Use of (3) results in more flexible BRFs (bottom-left of Figure 1), and (2) is again used to

construct CRFs in a completely analogous manner (bottom-right of Figure 1).

The GRMP is a heterogeneous model (Samejima, 2008, 2010) as BRFs for a single item

do not follow the exact same shape. Bends occur in the same locations along θ due to

ordered intercepts and BRFs that are a function of an MP involving θ. This is in contrast

to the GRM, in which all BRFs differ only in their location along the latent trait. The BRFs

for the GRMP are also asymmetric (S. Lee & Bolt, 2018; Samejima, 2000). The shape of

BRFs is not symmetric about points where its concavity changes, unlike the BRFs in (1).

1.2 Monotonic Polynomial Parameterization

The coefficients, b, are not directly estimated, but are a function of other parameters.

To maintain monotonicity, the derivative, m′(θ; a) has typically been parameterized such

that is it always non-negative, and the coefficients of m(θ; b) can easily be obtained from

this parameterization (e.g., see Falk & Cai, 2016a; Liang, 2007). In this paper, we propose
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Table 1: Item parameters from example item response functions

Parameter
λ c1 c2 c3 c4 α1 τ1 α2 τ2 α3 τ3

q = 0 1.76 4.20 2.09 0.27 -1.57
q = 3 1.53 4.07 1.93 0.12 -1.73 -0.57 -9.72 0.69 -3.35 -0.39 0.55

a slight modification to parameterizations used in the psychometrics literature:

m′(θ; a) = m′(θ; λ, α, τ) =

 λ ∏
q
u=1(1− 2αuθ + (α2

u + exp(τu))θ2) if q > 0

λ if q = 0
(6)

where α = [ α1 · · · αq ] and τ = [ τ1 · · · τq ] are vectors of parameters. In Falk and

Cai (2016a), λ was reparameterized as λ = exp(ω). In Liang & Browne (2015), exp(τu)

was replaced by βu and λ ≥ 0 and βu ≥ 0 for all u = 1, . . . , q were required constraints.

Here, we place no estimation constraints on λ. If using EM-MML for estimation, Falk

and Cai’s (2016a) parameterization allows for unconstrained optimization at the M-step,

whereas that by Liang and Browne (2015) requires enforcing inequality constraints. Use

of either parameterization results in response functions (or logistic building blocks) that

are monotonic increasing. This feature is analogous to having all test items with positive

loadings, which may make sense for educational tests. However, some non-cognitive

tests (such as those in personality) regularly employ items that are reverse-keyed. For

such tests and before reverse coding, we would expect some response functions to be

monotonic decreasing – analogous to having negative loadings. Although we do not yet

develop multidimensional models, use of a parameterization that allows the response

surface to monotonically increase across the space for one latent trait, but monotonically

decrease for another latent trait may be needed. The parameterization in (6) accomplishes

this change by allowing λ to be either positive (increasing) or negative (decreasing).

Example item parameters for the item in Figure 1 appear in Table 1.
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1.3 Alternative Representation and Relationship to Other Approaches

In a vein analogous to the relationship between categorical factor analysis and item

response theory (Takane & de Leeuw, 1987), additional insight into the GRMP can be

obtained by considering other related ways of deriving or representing the model. For

instance, Falk and Cai (2016b) considers that underlying observed responses to item j, yj,

is a continuous variable that is a function of a monotonic polynomial,

y∗j = m(θ, b∗j ) + ε j =
2q+1

∑
t=1

b∗jtθ
t + ε j (7)

where m(θ; b∗j ) = b∗j,1θ + b∗j,2θ2 · · · b∗j,2qj+1θ2qj+1 is the polynomial, b∗j is a 2qj + 1 vector of

its coefficients for item j under this alternative parameterization, and ε j is an error term.

In this manuscript, we suppose that y∗j is discretized into Kj categories according to

Kj − 1 thresholds, rj = [ rj,1 rj,2 . . . rj,Kj−1 ],

yj =


0 if y∗j < rj,1

k if rj,k < y∗j < rj,k+1

Kj − 1 if y∗j > rj,Kj−1

(8)

Then, let E[y∗j |θ] = m(θ; b∗j ) and Var(y∗j |θ) = ψ2
j be the conditional expectation and

variance of y∗j given θ, respectively. If we further assume that the errors are normally

distributed, ε j ∼ N (0, ψ2
j ), then BRFs can be represented in the following way:

Pj(Yij ≥ k|θi) =
1

ψj
√

2π

∫ ∞

rj,k

exp

−1
2

(
y∗j −mj(θi; b∗)

ψj

)2
 dy∗j = Φ

(
mj(θi; b∗)− rj,k

ψj

)
(9)

where Φ(·) is a standard normal cumulative distribution function. CRFs can be con-

structed from (9) in a manner analogous to that already presented for the GRMP by using

Equation (2). Equation (9) resembles the BRF for the GRM with a probit link function (or
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Table 2: Example monotonic polynomial coefficients from different parameterizations.

Logistic Normal ogive Stand. normal ogive
Coef. q = 0 q = 3 Coef. q = 0 q = 3 Coef. q = 0 q = 3

c1 4.203 4.070 r1 2.469 2.391 r1 -1.715 -0.219
c2 2.091 1.926 r2 1.229 1.131 r2 -0.854 -0.104
c3 0.273 0.122 r3 0.161 0.072 r3 -0.112 -0.007
c4 -1.572 -1.728 r4 -0.924 -1.015 r4 0.642 0.093
b1 1.763 1.533 b1 1.036 0.901 b1 0.719 0.083
b2 0.400 b2 0.235 b2 0.022
b3 0.488 b3 0.287 b3 0.026
b4 -0.342 b4 -0.201 b4 -0.018
b5 -0.337 b5 -0.198 b5 -0.018
b6 0.098 b6 0.057 b6 0.005
b7 0.067 b7 0.039 b7 0.004

Note: Normal ogive and standardized normal ogive coefficients are approximated from the
logistic coefficients using conversion formulae presented in the main text. The
coefficients here correspond to the item that also appear in Table 1 and Figure 1.

a standard normal ogive model), except with the linear predictor replaced by an MP.

Falk and Cai (2016b) provide a similar expression to (9), except with a lower asymp-

tote and for dichotomous items. These authors were concerned with priors to prevent ψj

from becoming too small and potentially causing estimation difficulty. Here we provide

additional details on interpretation of (9) and conversion between logistic and probit

parameterizations. For example, it is possible to approximate what the MP coefficients

under the GRMP would be if we had assumed normally distributed errors using the fact

that Ψ(z) ≈ Φ(z/D), where D is the usual scaling constant (e.g., D = 1.702). That is, we

can divide all logistic intercepts and MP coefficients by D to convert them to the normal

ogive metric, c̃k = ck/D, and b̃ = b/D, noting that Φ(c̃k + m(θ; b̃)) ≈ Φ(ck + m(θ; b)).

Further conversion to the parameterization in (9) is also possible (Table 2). If we

constrain the variance of y∗j to 1, coefficients under the standardized normal ogive metric

are interpretable as standardized regression coefficients, and can be approximated:

rj,k ≈
−cj,k/D√

1 + (1/D2)b′jΓbj

; b∗j,t ≈
bj,t/D√

1 + (1/D2)b′jΓbj

(10)
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where b′jΓbj = var(m(θ; bj)), and in which Γ is a symmetric matrix containing the

variance-covariances among the 2q + 1 latent variable terms in m(θ; bj) (see Supplemen-

tary Materials). Had the model been estimated using the unstandardized or standardized

normal ogive variant, conversion between these two parameterizations is also possible:

rj,k =
−c̃j,k√

1 + b̃′jΓb̃j

; b∗j,t =
b̃j,t√

1 + b̃′jΓb̃j

(11)

c̃j,k =
−rj,k√

1− b∗′j Γb∗j
; b̃j,t =

b∗j,t√
1− b∗′j Γb∗j

(12)

Figure 2: Relationship between latent trait and underlying response for GRMP and HGR,
with density for three conditional distributions

The Equation in (7) resembles a polynomial regression, with a zero intercept and the

additional constraint that the polynomial is monotonic. Description of the model may

also rely on this analogy: Had none of the quantities in (7) been latent and the polynomial

had no special constraints, we could use standard software for linear regression to obtain

the coefficients. The GRMP is modeling a nonlinear but monotonic relationship between

the latent variable, θ, and the underlying response variable, y∗j . The thick solid line in

the left panel of Figure 2 displays this nonlinear relationship between θ and y∗j , using the
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q = 3 polynomial in Table 2 on the standardized normal ogive metric. This representation

may have useful substantive interpretations to the extent that we would expect this

relationship to be stronger at some regions of the latent trait than at others.

Differences between the GRMP and other models is also easier to see. For example,

Molenaar et al. (2012) presents BRFs for the HGR equivalent to:

Pj(Yij ≥ k|θi) = Φ

(
νj + b∗j θi − rj,k

ψj|θi

)
(13)

where ψ2
j|θi

=
2δj0

1+exp
(
−δj1

θi−E(θ)
SD(θ)

) is a function of θ. When δj1 is non-zero, the HGR allows for

heteroscedastic errors (right panel of Figure 2). Such a model also results in asymmetric

BRFs and CRFs with non-standard shapes (e.g., Molenaar et al., 2012, Figure 7, p. 475). In

contrast, the asymmetric BRFs under the GRMP are assumed to be due to a nonlinear

relationship between the latent trait, θ, and the underlying response variable, y∗j . Errors

are assumed homoscedastic and either normal or logistic, depending on the link function.

We assume that θ is normal, but note that (9) is conditional on θ and the response

variable itself, y∗j , need not be normal when q > 0. In contrast to the GRMP, linearity

between θ and y∗j is assumed under the HGR, which may in some cases be too simple.

In the context of MP models, Feuerstahler (2016, 2019) discussed how an equivalent

model may be specified in which a monotonic transformation of the latent trait results

in changes to MP coefficients for the items. Thus, it is possible to transform away some

of the nonlinearity between θ and y∗j by considering a non-normal distribution for θ. A

transformation for θ may imply similar changes across items and may not fully explain

all non-standard CRFs to the extent that there is heterogeneity across items. The main

application of this previous work is the recognition of “parameters” for MP approaches,

which are not easily interpretable, but allow for linking as well as transformation of

the latent trait, CRFs, and information functions to an alternative metric of choice. For

example, even if a normal distribution were used for calibration, MP-based models could
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in theory be transformed onto a metric that has the same range as sum scores (the metric

used by Ramsay & Wiberg, 2017), which may be palatable by stakeholders and result in

changes in information towards the endpoints of the continuum. This feature of MP-based

items is both interesting, but a limitation due to indeterminacy of the underlying latent

metrics and response functions. One must rely on substantive theory and/or the test

purpose to make an appropriate modeling choice, and such decisions are nontrivial.

Finally, in the standard normal ogive model, there is an item parameter (b∗j,1 when

qj = 0) that can be interpreted as the correlation between θ and y∗j , and when squared

the proportion of variance in y∗j that is explained by θ (Lord, 1980). MP-based item

models lack such a parameter, and also lack a single item discrimination parameter.

However, some useful information about the strength of relationship between θ and

individual responses can be gleaned from approximations to ψ2
j . If y∗j is assumed to have

unit variance, then ψ2
j is interpretable as an estimate of the unexplained variance in y∗j .

Conversely, ρ2
j = 1− ψ2

j corresponds to proportion of variance in the underlying response

variable that is explained by θ, otherwise known as the coefficient of determination. Thus,

estimation of ψ2
j or ρ2

j may be useful for substantive interpretation. The denominator

in (10) is an approximation due to ψ2
j ≈ 1/(1 + (1/D2)b′jΓbj). If estimating the normal

ogive variants directly, then ψ2
j is available in terms of parameters from both versions,

ψ2
j = 1/(1 + b̃′jΓb̃j) = 1− b∗

′
j Γb∗j . Under the q = 0 and q = 3 examples already given,

ψ2 ≈ 0.482 and ψ2 ≈ 0.008, respectively, corresponding to ρ2
j ≈ 0.518 and ρ2

j ≈ 0.992

variance explained in y∗j .

2 Empirical Examples

2.1 Example 1: PROMIS

The purpose of the first application was to compare the GRMP and GPCMP. We were

particularly interested in: a) whether use of an MP (greater than q = 0) for the GRMP

tended to improve model fit; b) whether the GRMP tended to fit better/worse than the

GPCMP; and c) whether the GRMP resulted in similar CRF shapes as the GPCMP.



MONOTONIC POLYNOMIAL 12

2.1.1 Data

We used responses to sixteen 5-category Likert-type items from 3,605 daily smokers

for measuring hedonic benefits of tobacco smoking from PROMIS (Hansen et al., 2014).

This data overlaps with that analyzed by Falk and Cai (2016a), who found better fit

(according to AIC) with the GPCMP by using at least q = 1 polynomials for all items. We

examined whether a similar result would occur for the GRMP. The study employed 27

overlapping test forms, and approximately 35% of the data we examine here was missing.

2.1.2 Estimation and Fitted Models

Ten final models were estimated: 5 for the GRMP and 5 for the GPCMP. We first

describe the GRMP. Three models were estimated in which the MP order was the same

for all items (q = 0, q = 1, and q = 2). For these models, estimation of the lowest order

polynomial, q = 0, was done first, with a small positive value, exp(−.5) ≈ .61, as the

starting value for λ and equally spaced values between 1.5 and -1.5 for intercept starting

values. Estimates for λ and intercepts were used as starting values for corresponding

parameters when q = 1, with α1 started at 0, and τ1 at -2.3. The same strategy was used

when moving from q = 1 to q = 2: Estimates of λ, intercepts, τ1, and α1 from the q = 1

model were used as starting values (with τ2 and α2 started at zero)1.

An additional two models employed a step-wise approach using either AIC or BIC,

which we refer to as AIC-step and BIC-step, respectively. In particular, these models

started with all items at the lowest-order polynomial (q = 0). We then fit n models that

separately considered increasing q by 1 for each item, and selected the best improved

model according to AIC or BIC. This process repeated until no improvement could be

found, up to a maximum of q = 3 for each item (τ3 and α3 were started at zero).

The GPCMP model was based on Falk and Cai (2016a). We used starting values of

-.5 for ω, and starting values for intercepts ordered in the opposite direction from -1.5 to

1.5. All other estimation details were identical to that already presented for the GRMP.

1Similar τ starting values are used by Murray, Müller, & Turlach (2013) and Turlach & Murray (2019).
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We used Bayes modal estimation coupled with the EM algorithm (Mislevy, 1986),

with integrals evaluated using rectangular quadrature from -5 to 5 in .1 increments. A

standard normal θ was assumed for all models fit in this manuscript2. Following Falk and

Cai (2016a) we used weak priors, π(αu) ∼ N (0, 500) and π(τu) ∼ N (−1, 500) in order

to stabilize estimation. Evaluation of AIC and BIC was done by plugging in obtained

estimates into the marginal log-likelihood (Mislevy, 1986). A maximum of 500 and 2,000

iterations and relative tolerance of 1.0× 10−9 and 1.0× 10−7 was set for the M-step and E-

step, respectively. At the M-step, a Newton-Raphson algorithm with analytical derivatives

was used for estimation (see Supplemental Materials). We used a modified version of

the rpf package (Pritikin, 2016) for CRFs and derivatives3, and estimated models using

OpenMx (Neale et al., 2016; Pritikin, Hunter, & Boker, 2015).

2.1.3 Results

Whether MP-based models improved fit depended slightly on the information

criterion (Table 3). The AIC-stepwise model always fit best according to AIC, followed

by either the q = 1 (GRMP) or q = 2 (GPCMP) models. Examination of q under the

AIC-stepwise models (see Supplementary Materials) also suggested that improvement

in fit was possible with all items as q = 1 or higher (some up to q = 3). In contrast, BIC

favored models with few increases in polynomial order with the BIC-stepwise model

favored for the GPCMP, followed all items with q = 1. For the GRMP, the BIC-stepwise

approach did not find a model that improved fit beyond the GRM. With the exception of

this model, all BIC-stepwise models had items modeled as q = 0 or q = 1. The GRMP

also tended to fit better than the GPCMP; even the worst fitting of any GRMP model

fit better than the best fitting GPCMP model. Stepwise models involving the GPCMP

tended to suggest more higher-order polynomials than did stepwise models with the

GRMP. Despite these differences between the GRMP and GPCMP, the two item models

tended to result in CRF shapes that were very similar (Figure 3).

2This includes the HGR in subsequent sections.
3Available at https://github.com/falkcarl/rpf

https://github.com/falkcarl/rpf
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Table 3: Obtained AIC and BIC for PROMIS data

Dataset/Item Model q = 0 q = 1 q = 2 AIC-step BIC-step

AIC
GRMP 96042 95963 95975 95939 96042
GPCMP 96667 96455 96440 96406 96522

BIC
GRMP 96537 96656 96866 96744 96537
GPCMP 97162 97148 97332 97248 97129

Note: Two best fitting models for each row are in bold. AIC-step: AIC stepwise model;
BIC-step: BIC stepwise model; PROMIS = Patient reported outcomes measurement
information system data; GRMP = Monotonic polynomial graded response; GPCMP =
Monotonic polynomial generalized partial credit.

Finally, we compared estimates of ρ2
j from the simplest of estimated models (the all

q = 0 model) versus the most complex model preferred by AIC (the AIC-stepwise model).

There was a tendency for ρ2
j to increase when higher-order polynomials were used. In the

most extreme case, this relationship jumped from .41 to .99 for item 16. When polynomial

order did not increase, a change in ρ2
j was not apparent (see Supplementary Materials).

2.2 Example 2: SAPA

In Example 2, we continue to compare the GRMP and GPCMP, and add the HGR

model. Thus, we were interested in whether the probit or logistic variants of the HGR

would yield better fit than the GRMP, and whether similar CRF shapes would be observed.

2.2.1 Data

We examined 16,127 responses to ten 6-category anxiety items from the HEXACO

Personality Inventory-Revised (HEXACO-PI-R; K. Lee & Ashton, 2018). The data was

collected as part of the SAPA project (Condon, 2018; Condon & Revelle, 2015). We chose

anxiety rather than the entire emotionality dimension to ensure that MP-based models

are less likely to pick up on any local dependence that may arise from a multidimensional

measurement instrument. The SAPA project employs a planned missing data design

and responses to items are sparse within this large sample: only 2,666 participants on

average completed each of the items we examined here (83% missing data). Finally,
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Figure 3: Category response functions for PROMIS data, GRMP (thick, solid, light) and
GPCMP (thin, dashed, dark) AIC-stepwise models

Note: Darker lines indicate a higher category. Inside each panel, q for GRMP appears on the left and q for
GPCMP on the right.

the anxiety scale included 5 reverse-keyed items, allowing us to test the GRMP with

negatively loading items. In what follows, such items were reverse coded only when

comparing the older MP parameterization of the GPCMP against the GRMP.

2.2.2 Fitted Models

The same GRMP and GPCMP models were fit as in the first example. For the HGR

(Molenaar et al., 2012), a probit or logistic link function can be used in (13), which we

refer to as HGR-P and HGR-L, respectively, with optionally scaling the entire contents

of the HGR-L by 1.702 to ensure that item parameters are approximately on the same

metric as the HGR-P. We programmed CRFs for the HGR-P and HGR-L and used the

createItem() function of the mirt package (Chalmers, 2012) for EM-MML estimation

with numerical derivatives.4 Starting values following supplementary code from Molenaar

et al. (2012) were used, with rj,0 = −2 and rj,1 = −1 fixed for identification. For notational

similarity to the GRMP, we use hj = 1 to indicate modeled heteroscedasticity for any

4Preliminary attempts at estimation with a skewed latent trait yielded negligible change in model fit.
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Table 4: Obtained AIC and BIC for SAPA data

Dataset/Item Model q = 0 q = 1 q = 2 AIC-step BIC-step All h = 1

AIC
GRMP 87593 87544 87565 87535 87569
GPCMP 87804 87627 87650 87623 87660
HGR-P 87624 87639 87628
HGR-L 87526 87537 87533

BIC
GRMP 88054 88159 88333 88104 88046
GPCMP 88265 88242 88419 88238 88213
HGR-P 88131 88124 88166
HGR-L 88026 88014 88071

Note: Two best fitting models for each row are in bold. AIC-step: AIC stepwise model;
BIC-step: BIC stepwise model; SAPA = Synthetic aperture personality assessment data;
GRMP = Monotonic polynomial graded response; GPCMP = Monotonic polynomial
generalized partial credit; HGR-P = Heteroscedastic graded response model with probit
link function; HGR-L = Heteroscedastic graded response model with logistic link
function.

given item, and hj = 0 as homoscedastic. Versions of the HGR-P and HGR-L were

estimated in which all items were modeled with heteroscedastic errors (i.e., all h = 1). We

also estimated AIC and BIC stepwise versions of both models in which heteroscedastic

errors were added to each item one at a time (h may vary across items).

Although the HGR-P could be checked against Mx (Neale et al., 2002) with code

by Molenaar et al. (2012), we encountered some discrepancies across programs and

some estimation difficulty with Mx. Since Mx was slow to estimate relative to our

implementation, we instead decided to conduct the simulation study that follows this

empirical example as an additional check on our code for HGR models, and include

example code in Supplementary Materials.

2.2.3 Results

Results for the GRMP and GPCMP were similar to that in the first empirical example:

The GRMP tended to fit better, some items were modeled with at least q = 1 for all step-

wise models, and step-wise approaches tended to suggest fewer higher-order polynomials

for the GRMP than the GPCMP (Table 4). Results with the HGR models were mixed.
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Step-wise versions of the GRMP fit better than the HGR-P according to both AIC and BIC.

However, the step-wise versions of the HGR-L exhibited the best fit of any fitted models.

Finally, modeling all items with heteroscedastic errors was not necessarily preferred by

BIC, but yielded similar fit to step-wise approaches according to AIC.

The GRMP correctly estimated CRFs for the reverse-keyed items (1-2, and 7-9) as λ

estimates were negative, and the highest category CRF increased in probability at lower

levels of θ. Keying all items in same direction, we found some discrepancies in CRF shapes

across the GRMP and HGR-L. Figure 4 plots CRFs for these approaches from both AIC

step-wise models. Items 3, 5, and 7 were modeled with q = 0 and h = 0, and both models

had similar shapes. However, item 6 was modeled with q = 0 by the GRMP, but HGR-L

suggested a large amount of heteroscedasticity. Items 9 and 10 also had non-standard

CRFs, but the shape appeared to be different depending on the item model. Integrating

over X = 121 quadrature nodes from -6 to 6, we calculated Root Integrated Mean Square

Differences, RIMSDj =

(
∑X

x=1(ÊSj(θx)−ẼSj(θx))2φ(θx)

∑X
x=1 φ(θx)

)1/2

, as a measure of the root sum of

squared discrepancy between expected scores, ESj(θx) = ∑
Kj−1
k=0 k · Tj(k|θx)/(Kj − 1), for

the GRMP (ÊS) and HGR-L (ẼS). RIMSD had a similar pattern to these visual inspections,

as the values for the ten items are as follows (larger values indicate a greater difference):

0.036, 0.031, 0.002, 0.026, 0.003, 0.037, 0.001, 0.021, 0.060, 0.045.

3 Simulations

3.1 Simulation 1

To check recovery of the GRMP and HGR-L models, and also probe whether either

approach can recover CRFs from the opposing model, a simulation study was conducted.

3.1.1 Method

Data were generated for 10 items using item parameters from one of two models:

The GRMP or HGR-L AIC stepwise models from the second empirical example (see

Supplementary Materials for item parameters). A standard normal latent trait was

assumed with 50 replications and N = 15, 000 per replication. Two versions of each
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Figure 4: Category response functions for SAPA data, GRMP (top two rows) and HGR-L
(bottom two rows) AIC-stepwise models

Note: Darker lines indicate a higher category.

dataset were also constructed – one with complete data, and another in which 80%

missing completely at random data was induced such that each respondent had completed

only two items. We therefore mimicked the second empirical example, but also study

performance of each approach under high information (i.e., complete data).

To each dataset, five models were fit to the data: 1) GRM as natively available in mirt

(GRM); 2) GRM custom programmed using the parameterization in (13) and estimated

with mirt (GRMcust; δj,1 = 0); 3) the GRMP AIC-step model (GRMP); 4) the HGR-L

AIC-step model (HGR-L); and 5) HGR-L with all heteroscedastic items (HGR-L all).

Examination of Models 1 and 2 allows for a sanity check on our implementation of the

HGR-L model as Model 2 should essentially match Model 1. Models 3 and 4 correspond

to the main comparisons of interest and may outperform Models 1 and 2. Finally, Model

5 studies the consequences of potentially overfitting using the HGR-L model.
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Table 5: RIMSE for Simulation Study 1

Fitted Model
Data Generating Model GRM GRMcust GRMP HGR-L HGR-L all

GRMP (missing) 0.0237 0.0237 0.0156 0.0252 0.0261
GRMP (complete) 0.0229 0.0229 0.0040 0.0227 0.0227
HGR-L (missing) 0.0161 0.0161 0.0170 0.0104 0.0103
HGR-L (complete) 0.0129 0.0129 0.0083 0.0030 0.0031

3.1.2 Results

Recovery of CRFs was calculated for each item and replication using root integrated

mean square error (RIMSE; e.g., Falk & Cai, 2016a), which is calculated in the same

manner as RIMSD, but computed using expected scores based on the true (ẼS) and

estimated (ÊS) CRFs. Lower values indicate better CRF recovery. In what follows, RIMSE

was additionally averaged over items and replications in each cell of the design (Table 5).

Under missing data, GRMP and HGR-L with AIC step-wise selection improved

recovery over the GRM, but only if the model corresponded to the data generating

mechanism. For example, fitting the GRMP to HGR-L data did not tend to improve

recovery and vice versa. Under complete data, a similar pattern held with one exception.

Fitting the closest model to the true data generating model tended to have the best CRF

recovery. However, the GRMP showed some gains in CRF recovery (RIMSE = .008) over

the GRM (RIMSE = .013) when fit to HGR-L data, but was not as good as the HGR-L

(RIMSE = .003). The opposite was not true in that the HGR-L did not have much of an

advantage over the GRM in recovering CRFs from GRMP data.

3.2 Simulation 2

The second study had two goals. First, based on reviewer comments, we sought to

examine CRF recovery from a data generating model that was neither derived from the

GRMP nor logistic HGR. Second, MP models typically do not perform well unless very

large sample sizes are used. Here we experimented with a relatively smaller sample size,

but with stronger priors for the GRMP in an attempt to better stabilize estimation.
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3.2.1 Method

To construct a data generating model, a nonparametric approach that also works

with incomplete item responses as in our empirical examples is not immediately apparent.

We therefore used all respondents with complete data (N = 1068) from the PROMIS

example and estimated CRFs using default options with the KernSmoothIRT package

(Mazza, Punzo, & McGuire, 2013) and a polytomous item Kernel smoothing approach

(Santor, Ramsay, & Zuroff, 1994, see Supplementary Materials for CRFs). For each sample

size condition (N = 250 and N = 2, 500), we generated 50 complete datasets based on

these CRFs and using a standard normal θ.5

All models described in Simulation 1 were fit to each dataset, with one change to

the GRMP: Either weak, π(αu) ∼ N (0, 500) and π(τu) ∼ N (−35, 500), or strong priors,

π(αu) ∼ N (0, .005) and π(τu) ∼ N (−35, .005), were used. A value of 0 for αu and a

large negative value of τu would result in a GRMP model that reduces to the GRM. The

strong priors are aimed at reducing overfitting and the prior mean implies that our best

prior knowledge is that the model is a GRM and not something more complex.

3.2.2 Results

The GRMP and strong priors resulted in the best CRF recovery at the smaller sample

(RIMSE = .0343; Table 6), though gains above the GRM were very small (RIMSE = .0351).

The GRMP was also the best method at the larger sample size, but the difference between

different priors essentially disappeared. Both versions of the HGR, in contrast, had worse

recovery than the GRM and GRMP at both sample sizes.

4 Discussion and Conclusion

We have presented the GRMP, an extension of the GRM in which the linear predictor

is replaced with a monotonic polynomial. The GRMP can model a nonlinear monotonic

relationship between the latent variable and underlying response variables, and can fit

5As the nonparametric CRFs are estimated along a grid and there are no parameters, B splines were
used to interpolate when determining conditional CRFs at different points along θ for the purposes of
generating item responses.
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Table 6: RIMSE for Simulation Study 2

Fitted Model
Sample Size GRM GRMcust GRMP (strong) GRMP (weak) HGR-L HGR-L all

250 0.0351 0.0351 0.0343 0.0351 0.0384 0.0389
2,500 0.0259 0.0259 0.0221 0.0220 0.0289 0.0289

data better than the GPCMP, a previously developed MP-based item model (Falk & Cai,

2016a). That the GRMP fits better than the GPCMP is consistent with Maydeu-Olivares

(2005), who found that the GRM tended to fit data better than the GPC across several

personality datasets. Still, Maydeu-Olivares (2005) suggested that simpler parametric

models may be more likely to cross-validate. One reason that some complex item models

may improve fit over parametric models stems from possible unmodeled multidimen-

sionality. This is part of the impetus for changes in the MP parameterization, which

takes a step towards the development of multidimensional MP models. However, other

parameterizations of MPs may also be worthwhile to investigate (e.g., Murray et al., 2013).

In another example, the GRMP fit better than the HGR, but only if using a probit

link function as originally presented by Molenaar et al. (2012). “Fit” here is quantified by

using AIC and BIC, which have their own limitations. For example, BIC did not always

suggest that higher order polynomials improved fit, yet BIC has a tendency towards

parsimony. In some cases, BIC prefers item response models that are simpler than the

true model (Waller & Feuerstahler, 2017). Falk and Cai (2016b) found a similar result

when using sum score based item fit statistics (Orlando & Thissen, 2000) for determining

polynomial order: BIC suggested that use of MPs might not improve fit. Results of

simulations, however, suggest that AIC selection and the procedure of Falk and Cai

(2016b) or use of other search algorithms (Falk, 2019) can improve recovery of response

functions when using MP-based item models.

Simulations suggested that the GRMP is flexible and can recover a variety of CRF

shapes. In the second simulation study, recovery was improved at small sample sizes
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(N = 250). This result may be due to strong Bayesian priors, and remains to be replicated.

If such a result holds more generally, it is potentially important as MP-based models have

not been shown to perform well in all but very large samples. It may be that the HGR

in this second simulation was overfitting or encountered estimation difficulty and that

placing a strong priors on δ1 (centered around zero) is warranted. In addition, as seen

in the results of empirical examples, ρ2
j for some items approached one. Although it is

not clear if this is problematic, it is possible to adapt priors developed by Falk and Cai

(2016b) for preventing ψ2
j from reaching zero.

That GRMP and HGR tended to suggest different CRF shapes highlights the need

for better theory in choosing an appropriate modeling strategy as mere “curve-fitting”

(Samejima, 2008) may not help us arrive at a useful model. Strong theory coupled

with improved fit may provide a good argument for one model, and can result in better

recovery of CRFs. This, in turn, we would expect to result in better recovery of latent traits

(e.g., Falk & Cai, 2016a). There are a number of reasons why heteroscedasticity in the

response variable may occur in practice (Molenaar et al., 2012). The GRMP is apparently

more flexible than the HGR and may help uncover other oddities in response functions,

but at the cost of more estimated parameters. The HGR has one extra parameter per item,

whereas the GRMP will have two or more depending on the order of the polynomial.

This might suggest that the GRMP is a more complex and less parsimonious model than

the HGR. We have therefore chosen to contrast the underlying assumptions regarding

the GRMP and HGR. Regardless, the current work takes steps at making the HGR more

feasible as simulations supported EM-MML estimation for both the GRMP and logistic

HGR. Evidence that overall model fit is improved due to either item model may warrant

further inspection of item content and an investigation of the possible cause.
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