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To. INTRODUCTION: In recent years the Russian mathematicians:
have obtained brilliant solutions to problems in Plane Elastice
ity by representing them in terms of complex: functionse. This.
new. technique is fully explained, along with many significaht

solutioné, in the book
Theory of Elasticity by N.I. Muskhelishvili, who is one of the
foremost proponents. of this method, This work has been trans—
lated into English by J.RM. Radok from the Third Edition-
(1949) in the original Russian and was published by P. Nord-
hoff of Holland in 1953, For the interested reader, a con—
densed treatment of this method may also be found in the
Second Edition of I.S. Sokolnikoff's: Mathematical Theory of
Elspticity (McGraw-H11, 1956)e

The basic: problems. in Theory of Elasticity are to deter—
mine the dis;;lacements and strains yithin the body from those
on the boundary, since it is here that these quantities can
be measured. In Plane Elasticity, the problems reduce to
boundary-value problems in two-dimensions: hence it is natural.
to attempt to utilize the powerful results of complex variable
theory. The success of this method rests with the Plemel}j
Formulae and the Cauchy Integral Formula, which together estab-
lish necessary and sufficent conditions for & (holomorphic)
function to exist throughout a given region which will attain
prescribed vealues at the boundary of the region. These lead

to. solution expressed as: Singular Integral Equations, the



solutions of which are given in Muskhelishvili's book for a
large number of important casese

Of the many problems that may be. solved in this way,. only
one of these--~the most fundamental—-—will be given here: 1In
this case, the cross~section of the body under plane strain is
simply-connected,. i.e., it has the property that every closed
curve in the region may be contracted down to a point while
remaining all the while within the region. Thlis case has the
advantage of illustrating the new method without being un=-
duly complicated.. It should be pointed out that the complex-
variable method is also highly successful for multi-connected
regions, and also for regions which are semi-infinite, these
latter being quite important in application. Muskhelishvili's
book also treats the important topic of the Theory of Compound
Bars (e.g., & steel=reinforced concrete beam) by thi# method
in the later chapters of his book,.

It should be pointed out that we will assume that the
bodies we deal with are elastically igotropic and homogeneous.
By isotropic it is meant that, at any polint, the body behaves
the same in any direction (it may then be shown that the
elastic behavior is completely determined by two real constants,.
n, P called the Lamé constants), and by homogeneous it is
meant that.these constants do not vary at different points in

the bOdy »



In what follows we shall assume that functions are inte-
grable or differentablé whenever we perform such operations,
even though we have not specifically mentioned the conditions:

enabling us to perform these operations..

At the end of this paper an Appendix has been added to
facilitate reference to standard equations and the notation

used in this paper..
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2.. THE PHYSICAL PROBLEMS: Two physical prohblems considered
in the Mathematical theory of Elasticity constitute what is
known ag PLANE ELASTICITY: these are the case of plane gtrain

and the case of generalized plane strain, and both give rise
to equations of the same mathematical formulation.

Plane Strain: A body will be said to be in the state:
of plane strain, parallel to the xy-plane, if the

following conditions hold for the displacements u,v,w
(in the direction of the x~, y-, z~axis, respectively)

at every point (% y, z) of the body:

w =0, and

u and v are functions of x, y only and pot of Z.
In addition, it will be assumed that body is cylindrical,
with generators parallel to the z-axis, and with flat
ends parallel to.the xy-plane.. It will further be
assumed that the external forces are applied only on
the sides of the cylinder,. and that these act parallel

to. the xy-plane.. (see figure)

Under these conditions the atresa-stréin relations

becone

PLv E
e R R SRR PN N\ =

11")\6 ) \Ai “‘rll_ = O

(1)



uhere DIVEINES L
©=35x75 )
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while the equations of equilibrium become

(2) m(“*-k’(“g-v* @) »é\(v"*’ ST+ YO, L=O
O O >N

(see Appendix.for these equations in the general three~ dimen=—

sional case)..

The equation 2 = O indicates that the body force (which
is assumed known in these problems) acts parallel to the xy-
plane, while the equations (1) indicate that the stress com=
ponents Xy, Yo, X, are independent of z, since u, v (and
hence @) are functions of x, y only, 4lso note Z, is &
quantity dependent on X, and Yy, since (1) may be solved to

give
) (Mg + ;\5)

71=‘>\e=1 =

The condition w = o for all points of the body assures
one that points in any cross-section (cut parallel to the xy—
plane) will remain in this same plane after deformationt this
is the basis whereby the problem may be looked upon as one in
two~dimensionss. To do this, the external forces, which before
acted on an element of grea, will now be considered as acting

on an element of apre, instead,.

Generalized Plane Strains Here the body is understood to be



(UENERALIZED

PLanE STRAIN




-6

a.cylinder of very small height Zh (i.e., a thin plate), the
middle surface of which is taken as the xy-plane, It will be
assumed that the flat surfaces of the plate are free . rom ex—
ternal forces, and that the forcea acting on the rim of the
cylinder are parallel to the middle surface, and are symmet-
rically distributed with respect to the middle surface. This

same assumption will be made for the body forces.

Under these conditions 4the points lying in the middle
plane will remain in it after deformation, and the displace-
ment component w will be very small for points: lying off the
middle surface, and therefore may effectively be teken as
zeroe. Also, the variation of the components u and v across
the thickness. of the plate will be insignificant,. and hence
the problem may be satisfactorily approximated by replacing
u and v by their mean values

W AL
_u*(x\u@v,{—\'\ M(*\“’RIQA‘L p 'U‘*(*Ms =,\T~\,\S'\T(*»U§FQ It
- -\

W
It may be shown that one may teke Z, = 0 with good

approximation in this problem, (see Muskhelishvili, pe 93)

By taking the mean values of the equilibrium equations,

(see Appendix) over the plate, we obtain




aX-L
a-/_

(where the asterisk denotes the mean value) making use of

a3 +\
gz)\)(-,_c\l.,‘/\l\ O - ©Y~7__ 4 g’&ﬁ’zéi-‘ﬁ.\ = O

=0 T ' 9T M ™
)\, W W i

(since. at z = th by assumption x’z = ¥, = 0).

Furthermore, the stress~strain relations (see Appendix)
become,  upon solving the third of these for '%?3? (since
z, = 0) and substituting this expression in the renaining
two equations,.

. )bemy g (ﬁ)eux S

By taking the mean values of these expressions and the relation

N U, O
5( = Ty }»( V\G>



3, THE BASIC EQUATIONS, AND REDUCTION TO THE CASE OF ZERO
BODY FORCES: As we have seen above, both physical problems,
plane strain and generalized plane strain, are governed by

equations of the same form, i.e.,

(5) 2 +§‘ﬁ§s+><=o , %%“S*%}f@“@*ﬂ“o

(6) )(x "-")\@ +{1P§£ ) ._,K—)\e *Q}Aaw XVK= )J\ %U{( t &(—Q&\.Ky

where it is understood that for the. case of generalized plane
gtrain all quantities are to be replaced by their mean values

over the thickness of the plate, and >\ is to be replaced by
¥ o ’1.)~§?
A+ ]U\ ’

All the quantities<1&,_ I&, X&, u,. v in these equations
are functions of x, y only: that is, they are defined in the
crogss~gection of the body cut by the xy-plane, which has been
assumed to be simply-connected. Hereafter we shall designate
the interior of this cross—section as the region S, bounded
by the closed curve L. (The positive direction of L will be

taken so that S lies on the left of L ).

It is known from the general theory of Elasticity the
solution X, Yy, Xy, u, v of the equation (5) and (6) is
unique for prescribed values of either Xx, Xy or u,

on the boundary (except for arbitrary displacements expressing



rigid-body translations or rotations),.

It may also be shown that the equations (5) along with

A (e w’~x€§= 'Q‘ﬁ*f @i* ifg ’

2 Q
where the operator A =g‘——,,_ + 2~ , (For derivation,

see Muskhelishvili, p.. 96=97) serve to completely determine
the stresses X, Yy, Iy from their knoun values at the
boundarys: the displacements may then be found from the re-—

lations (6).

The' solution of the equations is considerably simplified
in the absence of body forces, i.c., when X =Y =0, It is
possible,, however, to reduce the general problem to this case:
for suppose gny particular solution Xx(o’)' s Yy(ﬂ’), Xy(o‘), u(o)’,

v(Q) has been found; put.

XX = *X“) ¥ X,}O) 3 etc.,

then X (1), etc., will setisfy the same equations, but with
X=7Y=0, 4s an example of such a particular solution, con-
sider the case of body forces due to gravity X =0, Y = -gp,
where g is the gravitational acceleration and p is the density,

Equations (5) and (7) become

%y D - D% D7, - -
EX *'&lw?‘ SO 58t <’~>°§G R4 ‘Aw*w"lﬁ <5
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which have the particular solution

‘)(,(=Xuk=o ) ‘TJUY= ct()«%\ ,

(A particular solution of (5) and (7) for the case of centrif-

ugal body forces is given by Muaskhelishvili on pe 101).

Hereafter, we will consider that the problem has been
reduced to one with zero body forces:t i.e., the equations
(5) and (7), are now

My LMy - o hy  hy
DX M &g;g ) &~;% Oxgt ©

A(%x*\'\l{r )3 O .
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Le THE AIRY STRESS FUNCTION:s: In the absence of body forces,
equations (5) become

x \75 “js
which are the necessary and sufficient conditions that the

expressions

Y\ c\)( *,\Avg \[) Cl)( * AUK

are the exact differentials of functions -B(x, y) and A(x, y)

with
™ _ Y 3% | '
X W } &vG Xx )
dH &£ -\

AR o '
The first and last of these yield the further relation

o . dH
o X &\_)6\

which is again the necessary and sufficient condition that

Adx + Bdy is the exact differential of a function U(x, y) with

DY .\ Y
ay\ 2 Q;)"’G ‘b 3
The function U(x, y) is the Airy Stress Function, and

it is easzily deduced from the above that the stress are re-

lated to U(x, y) by

g

W L DY . O LY,
@ FaT T Sy o Sxdoy R
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Furthermore, in the absence of body forces equation

(7) becomes

A (Xﬁwr'ux\:o .

Noting that X, + ¥ % =AU from the proceeding equations,
we have that
AAD =O |

or that
4
SYA T oSt Syt

which is called the Biharmonic Equation..

If, in a given problem, the stress function U(x, y)
can be found, then the problem is completely solved since
both the stresses and displacements at every point of the
region can be given in terms of U, We assume that U(x, y)
has continuous partial derivatives up. to and including the
fourth order and that, in order to allow for the possibility
of rigid translations and rotations, the derivatives are

single valued starting from the second ordere



5 THE DISPLACEMENTS IN TERMS OF THE STRESS FUNCTION:
We have seen that the stresses X, Yy,
from the Airy Stress Function by the relations (8). We now
seek to also express the displacements u, v in terms of

U(x, y), and in so doing shall unearth a relationship which

leads to the representation of U(x, y) by complex functions,

The equations (6) may be written as

SO (un R R SO 438 4 (i)

° N

(since & '&—3* UK )e

By substituting into the first of these the expression

obtained by solving for %% in the second, one obtains

L +0
PRI REL Sps. L TNCR
% &\»G 2L }A)
Similarly,

. - Y )x-k’l).\ Al
(10) ’).IJ\ S St ’)‘(MIA)

Since AA U = 0, P(x, y) = A U(x, y) is a harmonic

function,. Let Q(x,. y) be the conjugate harmonic of P(x, y)

Xy may be determined

then Q is uniquely determined from P except for an arbitrary

constant.. Then the function defined by

{'(1) = P(%,u@ +¢ Q(x,\kgj



vhere z=x t+ iy
is holomorphic (i.e., analytic and single-valued) in the region

S, since we have assumed S to be simply-connected..

Next, define C? (z) by

(1) D)= Preq - ﬁg Q@)\)Jl)

for = arbitrary & and any z. = x.+ iy in S.. (The % has
been introduced for convenience,) Note that if the lower limit
of intregration is chosen as 0 (0 is assumed to lie in the
region), then CP(o) = 0.. Since f£(z) is holomorphic in S,
the integration indicated above is independent of the path,
provided this path lies wholly in S.. Furthermore, it may

be shown that t? (z) is also holomorphic in S, and that

cP‘(m)z%E(*'@%%"‘[\.(\j*cQ>

which by the aid of the Cauchy-Riemann equations give

(12a); \7 = 4—%& = 4%5&6‘ .

These last relations, when substituted in (9) and (10)

yield
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0.2 = =TV (O L) acL
PSUG &L»g )\+)~A

N\ DM -1 I "LU\*QM) dp
M = Dyt Y DXk
which may now be integrated with respect to y and x

respectively, giving
RIS U NS N IR G g%
. 20 "L()\ULM)
’l))\M S < P +§ (««\G) ‘
By the last of the relations (6), i.0e,
_ =Y ‘Mm é&
and the Cauchy-Riemann relation ——P + —c\: = O , one may

determine that g-g't(’%—g—& (g =0 and hence that
—-{1(*) % (UX) = constant = &. From this we have

Q'L(")‘ aryly Q'(“g)'-“'quﬁ +

(where &, b, c are arbitrary constants)s since these represent

rigid-body displacement and as such do not affect the stress
distribution in the body, they may be omitted.. Thus we have

obtained

U L 0wy _ DY f).(>~+0.pb

=

which are the desired relationships giving the displacements

u, v in terms of the stress function U..
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To: summarize, then,.if the Airy Stress Function U(x, y)
is known,. then the stress components may be determined from
the relation (8), and the displacement:components: found from
the relation (12b), where p and q are determined from U by
the definition (11).



-17=

6o. COMPLEX REPRESENTATION OF THE AIRY STRESS. FUNCTION:

The representation of U(x, y) in terms of two complex. functions,.
holomorphic in S, may now be readily obtained. In fact, we

have already found one of these complex functionss it isﬁ)(z),
defined by (11)..

T6. determine the second complex. function, note that since
from (12a) A (px + qy) = P (remembering that-(P(z:) =p +iq),
it follows: that

O - (PH—CLUKB = V.
is a harmonic function. Let qq be the conjugate harmonic
determined from Pye Then
Yo ()= Pteq,

 will be holomorphic in S..

But now observe that U(x, y) is given by
Olxog) = RIT Q) +70(0)]
(where z = x + iy and & designates the "real part™ of the
complex.expression).. This is the desired representation of
U(x, y) in terms of two complex functions, which may also be

written
(13) U =Zd0) +2 D) 4:'\(»(1) 3 '%(,1)

(because ZTQ(z;) =z+ 32, eta,,) The "bar® designates the "come
plex. conjﬁgate“‘ value, 1l.e., if (é = a: + ib, then\é = a - ib,
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Ag a consequence of this representation, it follows that
U(x, y) is also holomorphic in St that is, U(x, y) has
derivatives of all orders in S (since C\) (z) and ')(J (z) have

this property).

As would be imagined, it is possible to give relations
for the stresses Xy, Y,, X, and also the displacements:
1, v in terms of the complex functions CP (z) and ')(/ (z)s
This will be done in the next sections. These representations
will then become the basis by which we will approach the fun-
damental boundary value problems. Since we will be using the

first derivative of U, it will be convenient to introduce

\‘J(o.l'): %—:L‘ \

In the sequel, CQ (z) and “J (2) will not only be under-
stood to be holomorphic in S, but also continuwocus on S + L
(L. being the boundary of S8). This last condition is & natural
one, since the stresses and displacements are continuous on

S + L, (Otherwise the body would be ruptured.)




Y

X
ds
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7o REPRESENTATION‘CF THE STRESS IN TERMS OF dP (=) AND

“V (z), AND THE FIRST FUNDAMENTAL PROBLEM. Consider any
arc AB lying in the region S.. (The direction given by au‘
point moving along AB from A %o B will be taken as
| positive.) Let ds designate a small element of this arc, and
let X.n and Yn designate the components of the stress acting
on ds: then Xn and Yn are related to components Xx, Yy’

X b
y Y

XN\’ *\‘ oS (‘L.M) +\Au§ co'v(ug\my
T = *“@ c.os{\(,m) 4 \f’-.r cos (.U\;,M)

(keeping in mind that Xy = Y see Appendix) where n is
the normal to ds (taken to the right of the tangent pointing

in the positive direction of AB), and (x, n) and (ys n) denote
the angles this normal makes with the positive x~and y-axis,

respectively..

But cos(x, n) = %ﬁé , and cos(y, n) = f}— ,- while also

_so B0y LB
e Sogt 0 T w0 Aog %% g

from (8)‘so that the above relations become

_3vO d YO dx - d 3
XM‘ ébﬁl—{% g*gu\ggs 3: ® )

W=D ) SO dy _—d (3
TN uxi 3%t do  de




These may be combined in compley form, giving

o L d (30 3\ d Qg+~a_&i)
(142) XM*“\'J""XZ;TJS o« ‘1o \5x K)bs

where it is easily deduced from (13) that

(14b) S):)“b@\i@: Pl 2 Q') + ¥l

The above expressions allow us to formulate the

FIRST FUNDAMENTAL BOUNDARY-VALUE PROBLEM: Given the values
of the stress components: X, ¥, acting along the boundary L

of the region S, deteremine the components of stress.
) & Yy, Xy and the components of displacement u, v at all

points: yithin the region..

This problem may be formulated, using (14a) and (4b),
in the following way:. firstly,‘ since the stresses must be
continuous throughout the region and also at its boundary, the
boundary L may be taken for the arc AB used in deriving
the relations (14a) and (14b) above.,. Along L, the values
Kn, Yn are assumed known, and we shall suppose that they are

given as functions of the arc-lengths. For convenience, denote

the expression @ (z) + z C_P 1(z) + ¥ (2) as

(15a). Q = €‘+C€Q = C.P(‘L.) + ICP'Q‘L_) ¥ ‘*)QI)
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along the boundary L.. From (14&) and (14b), (15a)can be

written
<
(15b) §=§.+c§q_= < S U\Mﬁ\r’m\és + c,ow_;\-.

Since Xn and Yn are known along L, f may be deter—
mined, and then (15a) enables us to solve for the functions.
¢D (z) and ' (2), by employing Cauchy-type integrals, which
will be done in Section 11.. Of course, once CP (z) and ¥ (2)
have been found, the problem is solved since the stress func-
tion U may now be determined, and the stresses and displace-—

ments are given in terms of TU..

For the problem in which the boundary displacements are
known (the Second Fundamental Problem) the analysis leads to
an equation of the type (15a) again. This will be discussed
in detail in the next section.
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8. REPRESENTATION OF THE DISPLACEMENTS IN TERMS OF @ (z)
AND ¥ (z), AND THE SECOND FUNDAMENTAL PROBLEM: Here our

purpose is to formulate the

Given the values

of the displacements. g, gy #&long the boundary L of the
region S, determine the componenta of stress. Xx, Yy, Xy

and the components of displacement u, v at all points with-

in the region..

This formulation is readily obtained, since the equations (12l)

may be written in complex.form to give

U, LY n
- (24 + A0+

/)_J“(MJ«‘mr) = Q—JK Mw\s(‘wcoo

which becomes, utilizing the relations (11), and (14b)

Q;v.&u-\-iv‘) = \(CPLT-)"""L m -+ ()
vhere.

AED
w= i

Along the boundary L, the left-hand side of this relation

assumes known values, i.e.,, u + iv = g4 + ig, where g4 and

g, are given displacements.. We now have, along L,

(16): ckz Q}A(ct,‘+éc&1_)’= k@(.'z_)*im)—- ‘\J(,‘L)
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from which the functions CQ (z) and ¥’ (z) throughout the
region may be found by the method we shall see in Section 11.

Note that the formulation (16) of the Second Fundamental
Broblem is almost entirely analogous to the formulation (15)
of the First Fundamental Problem, since K is a constant, For
this reason we will restrict our attention to the solution of
the First Fundamental Problem, since the Second is solved in

an identical manner,.

It should be pointed out that there also exists the

ep, in which the streases
]Ln, Yn are known on only a portion of the boundary L, while
the displacements. g» 8y are known on the remaining portion

of L.. This problem will not be considered here..

As: would be expected, there exists a certain amount
of arbitrariness in the determination of the functions CD (2)
and ¥ (z)t in fact, it may be shown that the state of stress
within the body remains unaltered when < (z) and ‘P (z) are

replace by
D)+ ¢ Tz +¥

Y+ ¥
where C is a real constant and ¥ ,,.K‘ are complex constants.

This is the extent of the arbitrariness for a given state of

stress, To remove this arbitrariness, in the case of the



~ 2

First Fundamental Froblem, one may impose that.

L)=0 i](d}'(o))r-o

(where {J designates the M™maginary part®): in this way the
constants. ‘6 and C will be fixed values. The constant
will be determined by the choice of the arbitrary constant

appearing in the expression (15b).

In the case: when the displacements: are given, as in the
Second Fundamentsl Problem, it may be shown that the extent

of the arbitrariness is reduced in that

C:O , V%~‘6‘=O

so that only one of the constants N ’ ‘6‘ may be chosen at
will.. Thus, in this cage, the arbitrariness may be removed
by settin '

¥ g D(o) = o

(These points are considered in detail in Muskhelishvili in
Section 34 and also on page 146.)



9.  RESULTS FROM COMPLEX VARIABLE THEORY: Several results
from the theory of functions of a complex variable will be

of use to us, so we pause now to recollect these. Since the
problems we are considering in this paper are only those cases
in which the region is bounded by a simple closed contour,

we will list here only theorems which are pertainent to such
regions (see Muskhelishvili, Chapters 12 and 13 for similar

theorems for multiconnected regions and the half-plane).

Let L be a simple closed contour: then L divides
the plane into three parts: the finite region S+, enclosed
by L; the line L (the positive direction of L is taken
so that S' lies to the left of L); and the region S~,

which is understood to include the point at infinity..

1°.. Let f£(2) be a function, holomorphic in st ana

continuous in S+ + L. Then

{ j _‘C’ﬁ(‘t) dt - Q(—L) \:orL_ b SR o CD+

2we ), €z
_tdj' ©dt | o cor 1 e <
L , t-z

The first of these is Cauchy's Integral Formula, while

the second follows from Cauchy's theorem.,
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2°a Let f(z) be a function, holomorphic in S (includ~
ing the point at infinity) and continmous in S + L. (It

will be remembered that this means for sufficiently large | z|

C2 s
{»(1\: Cot “-;:*.11_\-
so that floo) = co.) Then

‘ 5£(-’°3‘\t 5{(1)4,&(00) pev T 0 ey

w

_I_ (,‘b) c\t ( 6@3 oy Z v~ ¢_>+ '
DR S %: \ ,

On the other hand, if f£(t) is a continuous function

defined on L, then the function defined by

\ &l_ct)At,
F("‘) T g g

L, T2
is holomorphic for all 2z not on L. It is important to

know the limits of F(z) as. z approaches & point t, of
Lz these are given by the

Plemeli Formulae: Denoting by F+(to) and F(t) the limit-
values of the function F(z) defined above as z ~—% t'o from
st and s respectively, then

F—L(to) - —:—]—_ %(,ﬁo) '\'7)_‘—;5 S_&E')_A_tl—

Tt

\_-QH,Q S g&iﬁl&

‘b—‘ea )
|




vhere the integrals appearing are to be taken as Cauchy
Erincipal Valueg, i.e., :

O LWE g g £rde

YR 8 th*to I o) -y t-t,
where r 1is the radius of a small circle with center to
and L -1 represents the parts of L lying outside this
circle.. These integrals may be shown to exist provided £(t)
satisfies a Holder condition on L in a neighbourhood of

tO; that is, for all t1, t, lyingon L in some neighbour-

2
hood of to, the following condition holds

L) - flea)| ¢ RiE,-ta

where A, « are real constants and 04 A { 1.

The results above combine to give the very important
criteria:

I, The necessary and sufficient condition for a con-
tinuous function f£(t), given on L, to be the boundary value

of some function, holomorphic in S"', is that

4 SQL&)A{: _

. = O
nwi Lﬁ—i‘ for all z. in S~

II. The necessary and sufficient condition for & con-
tinuous function £(t), given on L, to be the boundary value
of some function, holomorphic in S~ (including the point at
infinity), is that
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e € -7

“‘—g LYt |

+
for all z.in S,
where g is some constant (which is equal to the value of the

above mentioned holomorphic function at infinity).

These criteria take on & very convenient form when L
is the circle of unit radius with center at the origin. Let
¥ designate this circle, and designate the points of \ by

o, so that

T- e , oi{e (x

+ [~ Bt
Denote by 2 and ), the interior and the exterior of the
circle, and choose the positive direction on ¥ so that Y
lies to the left of ¥ o Let F(z) be a function defined

+ - -
on v (or Y. ), and define F(1/z) by the relation

— 71 !
F (7_ > = F ( z )
]
(The bar denoting the conjugate complex value.) Then, if
+ - -
F(z) is holomorphic in 23 (or 3 ), then F(1/z) will be
- +

holomorphic in 2 (or Z )e. Furthermore, if F(z) has
the boundary-value f£(o) on ¥ , then 5(1/z) will take the

boundary-value I{o), since as z - 0; 1/z also tends to o



The criteria may now be rewritien as

I's A necessary and sufficient condition for the func-
tion f(o), contimuous on the circle § , to be the boundary-
value of some function, holomorphic inside \K s is

A S £(s) d¢ -5
%

e “
T -"L + for all 2z inside % ’

where a is a constant (which is equal to the value of the:
above mentioned function at z = Q).

II's: A necessary and sufficient condition for the func-
tion f£(o), continuous on the circle < , to be the boundary—
value of some function, holomorphic outside ¥ s is

'fll.;(é S% S:Eio- = O for all z outside Y ’

Also, the following "principal parts® formulae are of
use in many problems.. It should be recalled that if a func-
tion f£(z) can be expanded, in the neighbourhood of a point

8, in the form

()= &)+ folz)




where fo(z;) is holomorphic at a, and G(z) has the form

o) = lal + ‘ELE. v 4 Lo
L-a, (I-Q) ('z.—cx)
(A1, A2, cenny ﬁ being constants), it is said that f£(z)

has a pole of order { at & with the principal part G(z).
If the expansion is at the point at infinity, the principal

part must be taken as

SO(2)= Hy + B2+ o+ ﬂg'zg”

where the constant term AO has been included,.

3% Let f(z) be holomorphic in st and continuous in
st + L. with the possible exception of the points a.;], a;.z, ceeey
an of S+, where it may have poles with the principal parts

G1(Z), ngz), cess 3 Gn(z).‘ Then
1 (LW L (@) - ola) - Galn ) e - Cow (1)
2V L € -1

for z. in S+

and

. LBt | _ 6 (2) -G lz)- o~ om Q“L)
R . € -1

for z in S |



4°: Let £(z) be holomorphic in S and continuous in

S- + L with the possible exclusion of the finite points
85 8y eeey 8 of S and also the point 2z = 0 , where

1
it may have poles with the principal parts G1,(z), coes Gn(z).

Go(z)e. Then
_‘_g K1 de _ _Q(*L\ t o ()4 o +C3M(1)+Csoo(1)
Iwi ) €-1
L
for z in §
and

1
K. &)

S .t&“t . o L)t e+ Gnlr) + Gl
-
|

for 2z in Sf

These formulae have been given without proof: all the
results listed in this section are fully explained in Chapters
12 and 13 of Muskhelishvili's book, as are the notions of con-

formal mapping considered next..




10,. CONFORMAL MAPPING WITH RESPECT TO THE UNIT CIRCLE: Because.
of the exceptional form of the Criteria: I' and II', in many
problems it is advantageous to transform the fundamental prob-
lems, by a change of variable, into ones defined on the unit
circle, This is axcomplished by replacing =z in the formula~-
tions (15) and (16) by

z- @ (%)
ﬁhere the above represents a conformal mapping of the unit
circle onto the region S where S is the infinite or finite
part of the plane, bounded by a. single contour. (By conformal
it is meant that w{(%) is a holomorphic function of &, ,
with w'(% ) # 0. for any 5 lying inside of the unit circle ¥ .
Under these conditions it is known that the inverse mapping
A =o51(2) is single-valued, and that the mapping is angle-

preserving.)

To restrict our attention to the First Fundamental
Problem-—~the Second would be treated analogously---the
formulation of the boundary condition for the region S has

been seen to be (15)
f(m)* CP(t)'+1.tP%i) + AJ(1)

where £(z) is known for =z lying on the boundary L and

is given by



<
along the boundary L.

Then, substituting z =uX®), we obtain

u.:(.'%) f
i (@) = fum)r S R+ w)

where we denote

%‘.(u) - (0@, §.65) P(wB) | H(B) = ¥ (w (D))

which represents the same problem, except now defined on the
unit circle || { 1 instead of on S, and with £, @, ¥
holomorphic on H«,I { 1 and continuous on \Bl& 1. As pro-

posed earlier, we may set
(0) _
Pie) =0 ; J(P (°)> 3 w (o) ©
and fix the constant in the expression for f at the top of
the page in some definite manner, to eliminate an arbitrari-
ness in the functions ‘P.'and ‘1’1. Because of the form of (17)

no confusion will result if we drop the subscripts and write

simply

CQ'L*L) + ‘\JQ‘L)

w (D)
(18). {(1')) = C'P(-EL)) + m’(“‘))




-3~

In a. similar manner, the formulation (16) of the Second
Fundamental Boundary-Value Problem takes the form

(19) OK Q}A(OB\*'LCK-,) VCP(‘L’)' N(iﬂ C‘PU") \P(Lb

defined on the unit circle.. To avoid arbitrariness of the

functions CP and V in this case, we set

P(o) =

It is useful also to have
RI))

this is always possible, since if 051 (x) = @, where x # Q,
then the coordinates impoged on the region S could be
translated so that the point o becomes the new origin, i.e.,

the mapping defined by

uo**\(i—x) - oy (7-)

maps S onto the unit circle, and has w*(Q) = 0.
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11.. GENERAL SOLUTIONS OF THE FUNDAMENTAL PROBLEMS: We are
now in a& position to show how the solutions of the fundamental
boundary-value problems may be obtained from the boundary con-~
ditions (18) and (19)s These solutions will. be expressed in
terms of singular integral equations for each of the functions
(_? (L) and ¥ (1), i.e.,. equations involving Cauchy-type

integrals.

Continuing to work with the First Fundamental Problem
(the Second Fundamental Problem would be treated analogously),
the boundary condition tekes the form (18), i.e.,

T) 0 = -, =

(200 Qla)s 2L Q') + W) - ireka ﬁ
w ()

where G~ = ¢'® 15 an arbitrary point of ¥, and & (T),

q)'(r )» W (o) must be interpreted as boundary values for

%,~q from inside ¥ . This condition may also be written

in conjugate complex form

(q‘)) Q(v) + ¥(r) = (;-’76{'2. - { .

wJ
o' (T

(21) P(v) +

The quantity f£ = £, L, " is defined on L by

O

§=€\’\'C’{q_= ¢ 6(Y\“+C‘r'~\\és + wus‘x'.
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where s is the arc length of L and the constant may be
fixed arbitrarily. This expression may be written as a
function of & (or of e) since s may be given as a function

of O .

Note that once the function d\)(‘l,) is known inside and
on § , ¥ (5 ) may be determined quite readilys in fact,
the values:of V¥ (§) along the boundary % are given by

- =T, w (T) '(T)
)= (Pl - == D
wa! (.Q")
(obtained by solving (21) for ¥ (<) ) and hence ¥ (%) is
given ingide the circle by Cauchy's Integral Formula

| P (¢)dr
(220 W(H) = g |\ T
22 (%) X I8 SY ‘-._,‘Zv '

Thus the problem reduces to that of determining CP ('ﬁ,) from

the boundary condition (20).

Writing (20) as

—_— w(_ \ '
Fle) = (-l -Hs 9O

and denoting the right~hand side as F(gq ), it is seen that
F(¢~) must be the boundary value of some function V¥ (1, ),
holomorphic ingide ¥ .. By the CriteriaI' (page 29), the

necessary and sufficient condition for this to be so is



~37-

L}

_t S'FKT) do a Yon' L 13 —~ooEe S

Lweg %1 -7

where & is a constant. (Here a =¥ (O))
This gives ( for % inside § )

— d ‘ 0 (wiE) Q) I
a7 g&r - ) L g%_—

2w )y w-T, W) -7

or

| _ | \‘ A
(23) Cp(t)%\— g mlr) P4 ta = QWC& %r-{
¥

i ) w'ile) -5

where we have used
w¢ v-5
b

since <{ (1,) must be holomorphic inside ¥ o (23) is the
promised solution for the function C? (%), expressed in terms
of a singular integral equation., It must be understood that
at the moment the constant & 1is as yet unknown: however,
if a solution cP *(‘Q) may be found for the equation (23)
using an arbitrary value a* for a, where (_P*(Q) = a,, then

@ (B) = P*(B) -
is the desired solution of (23),. since q) (0). = 0, and the

LA

correct value for a is given by
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Arter (P (%) has been determined from the singular integral
equation (23), the function ¥ (7)) is determined from the

singular integral equation

; dy ! S:—G‘) KO

_ S
(24) (%) ")_wag -1 1w \ém‘kw) v-5
" .

which is obtained from the relation (22) by substituting the
relation for ¥ (¥) given by (21). In this manipulation,
use is made of

L (9O e - @) -0
§%q--1, Te A

4z o

by virtue of Criteria I' (page 29). Thus both (%) and
V¥ (1)) may be expressed as solutions to certain integral

equations,.
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12. EXAMPLE: THE SOLUTION OF THE fIRST FUNDAMENTAL PROBLEM
FOR THE INFINITE PLANE WITH AN ELLEPTICAL HOLE. To illustrate
the method of solution proposed above, we may consider the
cage of an infinite plate with an elliptical hole, subjected
to plane strains, In actual application, of course, such a
region does not exists however, it is approximated when the
size of the plate is large compared with that of the hole.

In this problem, the applied forces, acting on the rim of the
elleptical hole, shall be assumed to have zero resultant.
Under the additionel assumptions that the stresses vanish at
the point at infinity and that there is no rotation at infinity,
the functions‘ép (%,) and -t (7%,) are holomorphic throughout
the infinite region, including the point at infinity (see-
Muskhelishvili, Section 3/ and also page 146). To avoid

arbitrariness, we may set .

C&>(eﬁ>) =O J [’dpj(cxijjx-t o

Choosing the origin to coincide with the center of the
ellipse, so that the elliptical boundary is given by

L S
FOMR

we may map the finite region of the unit disk || { 1 onto

the infinite plane with the elliptical hole by the mapping

2= w(B)= ("@* "’"‘1’>

(where R and m are real constants, with Ry 0, © $ m ( 1, determined

so that a=R(1+m), b=R(1L-m ),



which is conformal because this mapping is holomorphic and
%\
wW'(%)#O for all points other than L, =77 , which he out~

aide the uwwr il ,

Using the notation ‘??; (z) = C?("?), etc., we have that
P ()= Pl=)=0, I/ - J[Q )] =0

since w (0) = o

In this problem

Wl 1 (rme?) | D) L zolatee)
o) Ctrm) wi(my (l-mawt)

so that the singular integral equation (23) becomes

| Qrwed) ) 4 ym o A £9T
(25) cp(t))ﬁcg:_“: (;'T_—K) -1 T¥aT oac q
¥

where the integral on the right~hand side is assumed known,.

Writing

oA (H‘W\“ﬂ) D' ()
()7 I§ (vr- )

or

- (w24 M) CQ'(T)

(I- mT?)

as(o") =

we have that g(¥) is the boundary value on ¥ of the function
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CX‘&%) = "(1)~(17 +M/\\ C—p (‘L))

which is holomorphic inside N .+ By virtue of I' on page 29,

\ () 4y T
et g\( v-1 CE(O)

so that the integral on the left~hand side of (25) vanishes,

yielding

(26) P(BL)+a == g Loy

ALK X QG'—'zj

which gives us the solution for the function P () inside
Y . (= is deternined in the above by the condition <f(0) = 0.)

J (7)) is determined by the equation (24),, which in

this case becones

\ giév J g T(“”"*fM'*)ML Acr

Y(h)=0mi\ oo 2w | (-mT?) -5
\
In order to evaluate the second integral appearing in this "

expression, note that

T (T s ) (
(V- masgr ) LP ")

is holomorphic within f& » and hence by Cauchy's Integral Formula.

Ldr 2 b
) ()= g—iz 1(1(% v )\ ®'(15)

X




=42

Thus the solutions »w (%), ‘V(é ) for this problem are
given by (26) and (27).. Specific solutions for various case
of applied forces (thus determining the function f in the

above expressions) may be found in Muskhelishvili,



13, CONCLUDING REMARKS:. In the foregoing, we have illustrated
the basis of the new Russian method for obtaining solution to
the fundamental problems of Plane Elasticity by means of sin-
gular integral equations, where, for simplicity, we have restrict-
ed our attention to those cases having cross-sections which
are simply-connected regions. The method may be generalized

to regions which are multiply-connected, such as an infinite
plate with a finite number of holes. And as one would guess
in view of the treatment of the example given in this paper
(i.e., the infinite plate with an elliptical hole), it is
possible to develope the method for infinite regions in a.
manner analogous to that for finite regions. These topics

are fully discussed in Muskhelishvili's booke.

Several other important problems treated by Muskhelishvili
are worthwhile mentioning here.,. Since the mapping function
oo (%) is conformal within the unit circle, it may be ex~
panded as an infinite power series about the origin. Musk-
helishvili gives the general solutions to the fundamental
problems when the mapping « (%) is a polynomial (in this
case, a partial sum of the infinite series), since the poly-
nomials thus obtained map the unit disk onto regions approxi-
mating the given region to any degree of accuracy. Also
important are those problems when the mapping function w3 (%)

is a rational function,.i.e., a fraction in which both the



numerator and denominator are polynomials, since the Schwarz-
Christoffel transformation of the unit disk on the region may

take this form,.

Another important problem is the case of the semi-infinite
plane subjected to the pressure of a rigid-stamp acting on its
boundarys the treatment of this problem also appears in
Muskhelishvili's other book,. Singular Integral Equatjona,
which has been translated into English by J.R.M. Radok and

is published by P.. Nordhoff in Holland,.

Upon reading the bibliography of Muskhelishvili's work,
one is given the impression that this field is one of great
activity, especially with the Russians, and that many more
solutions, of a particular nature, are iet to be discovered.
Surely tremendous strides have been taken in the last few

decades.. And more is yet to come: we'll se@..s
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GENERAL NOTATION AND ZQUATIONS FOR A
THREE-DIMENSIONAL ELASTIC BODY

ASSUMPTIONS

The elastic body is assumed to be isotropic and homogeneous

(see definitions, pages 2 and 3), and alsc perfectly elastic:

that is, the body will fully recover its original shape when the
forces causing its distortion are removed. Furthermore, when dis-

torted, the body is assumed to be in a state of elastic eguilibrium,

f the body,

———— —————

i.e., the forces acting on the body, and every sub-body

satisfy the conditions of static equilibrium (and also the conditions
of dynamic equilibrium if the body is in motion through space). The
conditions of static equilibrium are:

I. The vector resultant of all forces acting on the body is
zZero;

II. The total moment about any point (of the body) caused by
the forces acting on the body is zero.

Two types of forces act on the body: surface forces (given per

unit area), or stresses; and volumetric (given per unit volume), or

body forces.

NOTATION:
In the definitions below, it should be remembered that these
quantities are functions of the point (x,y,z) of the body, where

they are taken,
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" Xy, Yz, Z,s etc.: The Components of Stress.

These are to be interpreted as follows: Let T be a plane

through the point (x,y,z) having n as its normal vector: then
the (vector) components of the stress acting or T at the point

(x,¥sz) are denoted by Koo Yoo 2. s taken in the directions of

n?
the positive x-, y-, and z- axes respectively. Thus, YX designates
the component of the stress in the direction of the y-axis acting

on a ~lane having normal parallel to the x-axis (at some prescribed

point (x,y,z)), and analogously for the other symbols.

Under the conditions of elastic equilibrium, these components

are related by

XX cos{n,x) + Xy cos(n,y) + ¥z cos(n,z) = X

n

Y cos{n,x) *+ Y cos(n,y) + Y_ cos(n,z) =Y
X % Z n
 Z cos(n,x) + Zy cos{n,y) + Z_ cos(n,z) = Zn

X

(at some prescribed soint (x,v,z)), where cos(n,x), cos{n,y), cos(n,z)
are the direction-cosines of the normal n with the x-, y-, and z-axes

respectively. -

X, Y, Z: The Components of the Body Force.

These designate the vector components of the body force, per
unit volume, taken in the directions of the x-, y-, and z-axes,

respectively, at some prescribed point (x,y,z).




u, v, ws: The Components of Displacement.

These are defined as follows: Suppose that when the body is
in an un-strained state,the co-ordinates of a given point of the
body are (xo, Yo zg)s and that after displacement, due to the
applied forces, the co-ordinates of this point (with respect to

the previous system of co-ordinate axes) are (x, y, z). Then

o
1

x
I

Xg 3 VIY =Yg 3 WT 2= 2,

are the (vectorial)components of the displacement of the given

noint, in the directions of the x-, y-, and z-axes, respectively.

The Components of the Strain Tensor, which are not used in

this paper, but occure in the literature, may now be given as

By L. = . _Dur
XX d% ' Tyy @QX 2z oL

_ - DA, O\
e — —— o r—— ]
Xy eYX X * QVK )
_ ~ M duwd .,
®xz ~ Czx N + oK >
Dwy , DU

®y2 zy uB Z .,

N : The Laplacian Operator.

If U(x,y,2) is a function of x, y, and z, theand 1is defined by

DU D0 Y
A\’*am*fﬁkm*aﬂ ,

In two-dimensions this becomes
Y, Y
INEA Uﬁ
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EQUATTIONS ¢

The Zguations of Equilibriums

I. From the first condition of elastic equilibrium, it
follows that

axua)hha%i = O
DY “ﬁ?

TN, D27y 4 DY

&:4 a..;EJ' @Z‘L+\r’ o

§Zlf- EEEQ +.§£Li- =
&*+a°}g aiflo.

II. From the second gondition of elastic equilibrium, it

follows that

X, =V 5 X =205 YV, =2 .

(i.e., the Stress Tensor is symetric.)

The Stress-Strain Relations:

The Stress components are related to the Strain components

in the following way:

- + + ¢
My \ (exx G“/Y OZZ) ! Z'Jhexx
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These relations may be re-written in terms of the displacement

components (using the relations given on page iii) yielding

a»
X >\e+)A‘&—Li y

X
= M [

%"X9+V &m\ )
- dw

Zz‘xe"')"‘ai )

X, = PSS T s
- DU dw
YZ M 9-1_, ¥ Q.E.B '

~ D DAT” I Du”
where 9 &"1- &Vzg S

For further reference, it may be helpful to consult the article

entitled "Elasticity" in the EZncyclopedia Britannica (Eleventh Edition).
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