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ABSTRACT

Our perceptual experience of the visual world relies on successful

segmentation of distinct regions in an image to delineate the boundaries

between them. This thesis details a series of studies that begin to bridge

the gap between standard energy models of texture segmentation and the

properties of natural textures that affect human texture segmentation in

ecological settings. Psychophysical and computational methods are applied

to a combination of natural and naturalistic textures in an effort to identify

the statistics found in natural textures that are relevant to human texture

segmentation mechanisms, and to understand how they are processed by the

visual system.

These studies draw a distinction between the energy present in an im-

age of a texture (lower-order statistics, in the Fourier amplitude spectrum),

and the spatial distribution of that energy (higher-order statistics, in the

Fourier phase spectrum). The contribution of higher-order statistics to

segmentation is assessed in a number of contexts by comparing psychophys-

ical and model performance in the presence and absence of higher-order

statistical information. As a whole, this work documents both the statis-

tics that influence segmentation performance when they are the same on

either side of the boundary, and those that enable performance when they

define the boundary, while evaluating the extent to which present models of

segmentation can take these statistics into account.

The first study suggests that the higher-order statistics present in nat-

ural texture photographs not only influence but impair contrast-boundary

segmentation mechanisms, and that sparseness may be a relevant higher-

order statistic in this task. The second study uses naturalistic synthetic
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textures to assess individual image statistics experimentally. These ex-

periments demonstrate that texture sparseness and global phase structure

impair orientation and contrast boundary segmentation, but that local

phase structure has little impact on segmentation. These findings can be

accommodated by a standard filter-rectify-filter model in which the shape of

the intermediate-stage nonlinearity is compressive. The third study suggests

that global phase structure and texture sparseness can both enable and

influence segmentation in the absence of any lower-order statistical cues

for segmentation. The same model employed for contrast and orientation

boundary segmentation data in the previous experiments can also account

for the role of global structure and density, but not the role of local phase

alignment, in these kinds of texture boundaries.
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ABRÉGÉ

Notre expérience perceptuelle du monde visuel se base sur la bonne

segmentation de régions distinctes dans une image pour en délimiter les

bords. Cette thèse présente une série d’études qui tendent à combler le

fossé entre les modèles d’énergie standards de segmentation de texture et les

propriétés des textures naturelles qui affectent la segmentation de textures

par l’homme en conditions écologiques. Des méthodes psychophysiques et

computationnelles sont appliquées à une combinaison de textures naturelles

et naturalistes afin d’identifier parmi les statistiques des textures naturelles,

celles qui sont utiles aux mécanismes de segmentation de textures et

comment elles sont traitées par le système visuel de l’homme.

Ces études distinguent l’énergie présente dans l’image d’une texture

(statistiques d’ordre plus bas dans le spectre d’amplitude de Fourier), et la

distribution spatiale de cette énergie (statistiques d’ordre plus haut dans le

spectre de phase de Fourier). La contribution des statistiques d’ordre plus

haut à la segmentation est étudiée dans différents contextes en comparant

les performances psychophysiques à celles de modèles, en présence ou

non d’information statistique d’ordre plus haut. Dans l’ensemble, ce

travail présente à la fois les statistiques qui influencent la performance

de segmentation lorsqu’elles sont les mêmes de chaque côté d’un contour

et celles qui la permettent lorsqu’elles définissent le contour, en évaluant

jusqu’à quel point les modèles de segmentation présentés peuvent prendre en

compte ces statistiques.

La première étude suggère que les statistiques d’ordre plus haut

présentes dans les photographies de textures naturelles non seulement

influencent mais altèrent les mécanismes de segmentation de contours
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de contraste, et que la dispersion peut être une statistique d’ordre plus

haut pertinente pour cette tâche. La seconde étude utilise des textures

synthétiques naturalistes pour évaluer expérimentalement les statistiques de

chaque image. Ces études démontrent que la dispersion des textures et la

structure de phase globale altèrent la segmentation de contours définis par le

contraste ou l’orientation mais que la structure de phase locale n’a que peu

d’impact sur la segmentation. Ces observations peuvent être accommodées

par un modèle standard filtre-redresse-filtre dans lequel la non-linéarité du

niveau intermédiaire est compressive. La troisième étude suggère que la

structure de phase globale et la dispersion peuvent toutes deux permettre et

influencer la segmentation en l’absence d’indice statistique d’ordre plus bas.

Le même modèle employé pour la segmentation de contours définis par le

contraste ou l’orientation peut aussi expliquer le rôle de la structure et de la

densité globale mais pas le rôle de l’alignement local de phase dans ce type

de contours de texture.
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PREFACE

Original Contributions

This body of work makes novel use of natural and naturalistic textures

as stimuli in human psychophysical tests of texture segmentation. To

my knowledge, it is the first time in the field that naturalistic stimuli are

used in concert with natural stimuli, and are used to fit a model of human

psychophysical texture segmentation performance. These studies also make

a novel distinction between image statistics that influence and those that

enable segmentation.

Chapter 2 uses a novel method of imposing synthetic boundaries on

natural texture stimuli to overcome some of the challenges of working with

natural images. It demonstrates that segmentation mechanisms are sensitive

to the higher-order statistics present in natural scenes, and makes two

novel suggestions: first that removing information by phase scrambling can

improve psychophysical performance, and second that sparseness and local

edge structure are statistics that are potentially relevant to segmentation

mechanisms.

The naturalistic texture stimuli developed in Chapter 3 are novel,

and will be useful for a range of applications outside the scope of this

research. Chapter 3 contains a novel demonstration of texture sparseness

systematically impairing the segmentation of second-order boundaries. It

is also the first time, to my knowledge, that a compressive intermediate

nonlinearity has been found to be the best model of texture segmentation

results.

The final manuscript, Chapter 4, provides a novel account of how

global phase structure and texture density can enable segmentation. It also
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provides evidence that local structure can influence structure and density

segmentation though it cannot enable segmentation reliably. These findings

themselves are novel, and the manuscript goes on to present a new two-stage

filter model approach to successfully segment boundaries defined only by

structure, as well as the first evidence of a single model for boundaries

defined by either structure or energy.
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1 Introduction

In this section I provide a thorough literature review of four sections:

visual stimuli, linear and nonlinear models of visual processing, texture

stimuli, and texture segmentation. In the section on visual stimuli, I

introduce the historically important sine-wave grating along with the

concept of spatial-frequency and orientation selective processing, followed

by a brief summary of the properties of natural images and the efficient

coding principles that make them informative stimuli. In the next section

on models of visual processing, I review the linear systems approach to

understanding visual perception as well as the independent channels model.

I provide an outline of the early visual system, at each stage discussing

the aspects of its behaviour that can be modelled using a linear approach

and highlight those aspects that require nonlinear models. In the section

on texture stimuli, I review historical and modern approaches to creating

textures as well as those statistics used to quantify the properties of

existing textures. Finally, I look into the problem and models of texture

segmentation, focusing on the filter-rectify-filter model architecture and

what has been inferred about its properties. I close the introduction with an

overview of the organization of the thesis.
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CHAPTER 1
Introduction

The world is made up of collections of objects arranged in space, and

boundaries between these objects result in discontinuities in the visual

image. Before many ecologically critical functions such as object recognition

can be computed, discontinuities signalled by one or more changes in an

image property, such as luminance, colour, contrast, or texture, must be

detected and localized. Boundaries signalled by changes in texture are

particularly interesting because textures contain local structure that itself

is composed of fine-scale boundaries. The visual system is able to use

some attributes of textures to segment these more complex boundaries, yet

the mechanisms underlying this segmentation process are only partially

understood.

Figure 1–1 illustrates some of the combinations of features that can

define the boundaries occurring in natural scenes. In the figure (A) shows

a boundary defined by luminance and texture, (B) a boundary defined by

luminance, contrast, and texture scale, (C) a boundary defined mainly by

texture, and (D) a boundary defined by texture, luminance and contrast.

Ultimately we hope to refine our understanding of segmentation mechanisms

so that given a natural scene, we could predict where boundaries of any

type are perceived and how salient they are. Our current understanding of

texture segmentation is focused on a limited number of texture properties

(particularly contrast, orientation and spatial frequency). This thesis

expands our understanding to include the role of texture structure in

segmentation in two ways: first, by assessing how human psychophysical
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performance in a segmentation task is affected by spatial structure, and

then by revising a popular model of segmentation to account for the roles of

different types of structure.

In this chapter, I will begin with an overview of the stimuli used by

vision scientists to examine the visual system, and the relationship between

these signals and visual encoding. Next, I will discuss the behaviour of

the visual system as it constrains the linear and nonlinear models that

are thought to describe visual processing from the retina through the

lateral geniculate nucleus of the thalamus, to the primary visual cortex,

and beyond. The stimuli used in this thesis, texture images, will next be

discussed in detail, and then the particular nonlinear models thought to

produce texture segmentation behaviour. Finally, I will provide an outline of

the organization of the data chapters of the thesis.
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1.1 Visual Stimuli

The problem of understanding the visual system is sometimes couched

in terms of a classic system identification problem: if we know a given input

(a stimulus) produces a given output (a spike train in the case of a single

neuron, a response in the case of a human observer), what properties must

the system have to generate this mapping of input to output? It is evident

that what can be learned about this complex system depends a great deal

on the stimuli that are employed. In this section, I will describe the stimuli

that the visual system processes, and their relationship to our current

understanding of how they are represented.

1.1.1 Low-level stimuli

Vision in the frequency domain

Any signal can be represented as a sum of sine waves, and the most

classic example of this is the square wave: a sum of phase-aligned sine

waves whose amplitudes decrease as spatial frequency increases in a 1/f

relationship. In the same way, any image may be thought of as a two-

dimensional signal, extending as a function of x and y in space. In the

same manner as one-dimensional signals, any image can be represented as

a sum of sine wave gratings simply by specifying their spatial frequency,

orientation, amplitude, and phase. The two-dimensional Fourier transform is

the tool used to represent images in this way, and will be discussed in more

detail below. A detailed account of the use of frequency analysis for visual

stimuli may be found in DeValois and DeValois (1990).

Campbell and Robson (1968) measured the ability of observers to

discriminate between sine wave gratings and more complex wave forms.

They found that the spatial frequency components of the stimulus critical
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to discrimination had to reach their contrast detection thresholds indepen-

dently of the other components present in the stimulus. In other words,

they showed that–at low contrast–the energy in the stimulus appeared

to be processed by independent detectors selective for spatial frequency.

Blakemore and Campbell (1969) strengthened this idea by measuring the

contrast sensitivity function (CSF), a plot of contrast sensitivity (sensitivity

= 1/threshold) against grating spatial frequency (Figure 1–2 A). They

had observers adapt to a particular spatial frequency by viewing it for a

prolonged period of time, and then re-measured the CSF for each observer.

They found that the sensitivity in the region of the CSF corresponding to

the adapting frequency was decreased, while distant parts of the CSF were

unaffected. This too suggested that early visual processing was based on a

number of independent spatial frequency channels.

Earlier, Hubel and Wiesel (1959) recorded from single units in cat

visual cortex while presenting oriented bars of light across the receptive

field. They demonstrated that cortical neurons give the greatest number of

responses to bars of a particular orientation, somewhat fewer responses to

bars of nearby orientations, and few or no responses to distant orientations,

showing orientation selectivity (Figure 1–2 B). Maffei and Fiorentini (1973)

went on to adopt sine wave gratings as a neurophysiological stimulus and

demonstrated that cortical neurons are selective for the spatial frequency of

gratings (Figure 1–2 C) at their preferred orientation.

Sine wave gratings are a powerful stimulus for experiments in psy-

chophysics and neurophysiology. This is largely due to the spatial frequency

and orientation selective behaviour in early vision. Additionally, the prop-

erties of the optics of the eye are linear and thus sinusoidal stimuli may be
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used to provide a good characterization (Hopkins, 1962; Campbell & Green,

1965).

The Fourier transform

The Fourier transform is a very useful tool for vision science because it

enables the analysis of arbitrary stimuli in terms of their spatial frequency

and orientation content. The Fourier transform of an image can be described

in two parts: the amplitude spectrum and the phase spectrum (Figure 1–3).

The amplitude spectrum on the captures how much contrast energy there

is at each oriented spatial frequency component of the image. The phase

spectrum captures the spatial relationships between the orientation and

spatial frequency components, and thus describes the spatial layout of

the energy in the amplitude spectrum. The phase spectrum is necessary

to capture perceptually salient image features, such as broadband edges

(Piotrowski & Campbell, 1982). Recognizable signal features and object

identities both depend critically on the phase spectrum, and not on the

amplitude spectrum (Oppenheim & Lim, 1981; Morgan, Ross, & Hayes,

1991).

1.1.2 Natural Images

As early as fifty years ago, both behavioural (Attneave, 1954) and

physiological (Barlow, 1961) observations led to the idea that an important

role of visual processing is to represent the incoming signal in an efficient

manner. In this section, I will discuss the redundancies in natural image

stimuli, followed by an overview of some efficient coding schemes and

evidence for efficient coding at various levels of processing.

Redundancies in natural images

The set of natural images is much smaller than the set of all possible

luminance combinations amongst all image pixels, because natural images
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are projections of scenes constrained by the laws of the natural world

(Simoncelli & Olshausen, 2001; Chandler & Field, 2007). These constraints

permit generalizations about natural images, and in generalizations there

is redundancy (Olshausen & Field, 2004). Two particular manifestations of

these constraints that I will discuss in more detail are the power spectrum

that is characteristic of natural images (lower-order statistics), and the

redundancy of information in each image due to structural sparseness

(higher-order statistics).

The most basic generalization about natural images is their power

spectrum. The energy in natural images falls off as spatial frequency

increases, in an approximately 1/f relationship Field (1987). A popular

view is that this is because the individual broadband edges in an image

have a 1/f fall-off (Figure 1–4) (Field, 1987). However, Ruderman (1997)

proposed that the physics governing the distribution of discrete objects

of a variety of sizes and distances as they are projected onto a given

image plays an important role in determining the 1/f power spectrum as

well. In this thesis, I take both these theories into account when creating

synthetic natural stimuli in Chapter 3 and Chapter 4. The synthetic

textures employed are composed of 1/f edgelet micropatterns of a variety

of sizes. The proportion of micropatterns at each size is governed by a 1/f

relationship.

The information in an image (such as an image falling on a camera

sensor or the retina) is highly redundant (Barlow, 2001) because there is

a strong correlation between image intensity values and their proximity in

space (Simoncelli & Olshausen, 2001). This is partly because of the 1/f

power spectrum, but is also due to the continuity of surfaces populating

much of the visual world. For example, a pair of neighbouring image pixels
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are far more likely to be part of the same surface than they are to straddle

an object boundary. Because natural images tend to contain mainly surfaces

with localized boundaries, they are said to be ‘structurally sparse’ (Hansen

& Hess, 2007).

The impact that these regularities may have on coding will be examined

below.

Coding

It is important to note that whether or not a code is ‘efficient’ depends

entirely on the basis by which efficiency is judged. For example, the number

of retinal ganglion cells used to represent an image is directly constrained

by the size of the optic nerve, so a code that is efficient in that context

will rely on a minimum of retinal ganglion cells. On the other hand, in the

cortex, there is less need to minimize the number of neurons, but there

are metabolic constraints such that an efficient code should minimize the

number of action potentials. Neural impulses are expensive energetically

(Attwell & Laughlin, 2001), so an economy of impulses would reduce energy

consumption (Levy & Baxter, 1996). This implies that neural responses

in the cortex should be relatively independent of one another to minimize

redundancy: a sparse code. A sparse code is being employed if most neurons

are inactive most of the time, because this means the minimum number of

neurons are being used to represent a signal (Simoncelli & Olshausen, 2001).

In addition to the basis by which efficiency is judged, Field (1987) notes

that whether a code is efficient also depends considerably on the structure of

the image being encoded. A sine wave plaid is most efficiently represented

in the form of its Fourier coefficients. On the other hand, an image of sparse

dots is most efficiently represented as a list of position-intensity data pairs.
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There is evidence for efficient coding in the vertebrate retina (Atick &

Redlich, 1990), as well as evidence that the human visual system develops

to represent the 1/f power spectrum in natural images in an efficient way

(Ellemberg, Hansen, & Johnson, 2007, 2012). Further evidence of efficient

coding has come from natural image analysis. Working backwards from

large libraries of natural images, images of uncorrelated components of these

scenes have been recovered using dimensionality reduction methods (Bell &

Sejnowski, 1997; Olshausen & Field, 2004). The efficient components that

they recover bear a strong resemblance to simple cell receptive fields at a

variety of orientations, spatial frequencies, phases, and positions (Cadieu &

Olshausen, 2012).
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1.2 Linear and Nonlinear Behaviour: History, Models and Utility

Visual perception begins at the interface between air and the cornea,

where incoming light is refracted and focused to form an image on the

retina. Photoreceptors at the back of the retina transduce light into

neural signals, which are propagated through retinal circuitry to retinal

ganglion cells whose axons exit via the optic nerve and project to the

lateral geniculate nucleus (LGN) of the thalamus. From there, visual signals

are passed on to the primary visual cortex, followed by a multitude of

increasingly specialized visual areas of extrastriate visual cortex.

In this section I will describe what we can infer about the properties of

the visual system at various levels of processing from the retinal ganglion

cells to extrastriate visual cortex. I will examine each level’s behaviour,

and note how these properties are represented in the form of models.

Behaviour is presented in the form of single-unit responses, collected using

neurophysiological methods, as well as perceptual measurements collected

using psychophysical methods. It is important that the conclusions drawn

from these separate approaches be considered individually, because the

connection between the behaviour of individual neurons and the behaviour

of a human subject is nontrivial to infer, even when similar phenomena are

observed.

I will pay particular attention to the linear and nonlinear components

of models of spatial processing, because of the nonlinearities that play a

critical role in the topic of this thesis: resolving second-order discontinuities.

Visual neurons also display nonlinear behavior in the temporal dimension of

their spatiotemporal receptive fields (Dawis, Shapley, Kaplan, & Tranchina,

1984; Cai, Deangelis, & Freeman, 1997), and other temporal dynamics (e.g.

adaptation (Bownds & Arshavsky, 1995; Purpura, Tranchina, Kaplan, &
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Shapley, 1990) and response transients (Ikeda & Wright, 1975b, 1975a;

Dean & Tolhurst, 1986)). As this thesis is primarily concerned with spatial

texture processing, I will not cover matters of temporal dynamics in detail.

1.2.1 The independent channels model and linear systems theory

Two paradigms form the basis of many of the early ideas on the nature

of visual computation: linear systems theory, and the ‘independent channels’

model. These concepts were typically used in concert, but are discussed

separately here, because their strengths and weaknesses are not identical

despite considerable overlap.

The independent channels model was developed based on psychophysi-

cal data (Campbell & Robson, 1968; Blakemore & Campbell, 1969; Graham,

1989; Graham & Nachmias, 1971) and suggests that the detection of vi-

sual stimuli is based on independent analyzers that fragment early visual

processing into orientation and spatial frequency specific subsets of Fourier

space. The adaptation experiment performed by Blakemore and Campbell

(1969) to lead to this inference is described in Section 1.1.1, and the inferred

independent spatial frequency channels are illustrated in Figure 1–2 A.

Critically, it predicts that these detectors are 1) individually responsible for

signalling the presence of the stimulus property for which they are selective;

and 2) free from cross-channel interactions, at least at an early point in the

stream of visual processing.

This theory also applies to neurophysiology, in that it suggests that a

single neuron’s responses should depend only on feedforward input. Each

‘channel’ can be imagined to consist of a population of spatial frequency and

orientation selective neurons at an early stage of processing, which respond

independently of one another. The simplest version of this model represents

each neuron as a linear filter.
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Linear systems theory was appealing to visual neurophysiologists be-

cause many receptive fields in early vision have excitatory and inhibitory

zones that appear to summate linearly under many conditions. The theory

is applied by estimating linear response properties for receptive fields at all

stages of early visual processing: in the retina, the lateral geniculate nucleus

of the thalamus (LGN), and in primary visual cortex. The response prop-

erties of these model neurons, because of their linearity, can be estimated

based on the spatial layout of the excitatory and inhibitory regions of their

receptive fields. The precise nature of these models will be examined in sub-

sequent sections. This theory is also useful for interpreting psychophysical

data by passing stimuli through a bank of linear filters that loosely match

the selectivity of visual neurons and are thought to approximate the earliest

stages of cortical processing.

The linear filter model of visual processing has appealed to vision

scientists because approximately linear behaviour is evident in the optics of

the eye, as well as at early levels of visual processing by the nervous system;

and assuming a mostly linear system provides a starting point to provide a

good first approximation that can be improved by adding nonlinear elements

as needed.

Campbell and Green (1965) confirmed that the optics of the eye

itself are linear, so visual stimuli are not transformed in a nonlinear way

before being projected onto the retina. Linear filter models of early retinal,

thalamic, and cortical processing have a long history. Spatially segregated

excitatory and inhibitory regions were one of the earliest observations

about receptive field structure in retinal ganglion cells (Kuffler, 1953),

thalamus (Hubel & Wiesel, 1962), and cortex (Hubel & Wiesel, 1959). Later

experiments quantitatively established that many of the neurons in these

12



areas sum approximately linearly; for example, in retinal ganglion X cells

(Enroth-Cugell & Robson, 1966; Hochstein & Shapley, 1976), LGN (Cai

et al., 1997) and cortical simple cells (Movshon, Thompson, & Tolhurst,

1978b).

Given the predictions of a linear system, it is easier to then identify the

nonlinearities required fit the predictions to observed behaviour (DeValois

& DeValois, 1990). A good example is seen in the results of Enroth-Cugell

and Robson (1966) with the identification of Y-cell nonlinear subunits.

Movshon, Thompson, and Tolhurst (1978a)’s model of complex cells as the

nonlinear combination of simple cell outputs, and the Adelson and Bergen

(1985) model of motion detection using quadrature pairs of linear filters are

both examples of models built in a simple way from nonlinear summation

of linear receptive field inputs. In a similar manner, models of gain control

and second-order modulation are nonlinear, yet rely heavily on linear filter

components. These classes of models will be discussed in depth below.

1.2.2 Linear and Nonlinear Models of Visual Processing

In this section, I will proceed from the retina, through the lateral

geniculate nucleus, to the primary visual cortex and later cortical visual

processing, describing the behaviour of single neurons in these areas and

some of the models that capture that behaviour. Inferences about retinal

and geniculate function are drawn entirely from neurophysiological evidence.

In the cortex, some psychophysical phenomena are noted following the

discussion of neurophysiology to demonstrate that many of the principles

of encoding at the level of single neurons also have counterparts at the

perceptual level.
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The Retina

The retina is the sheet of neurons at the back of the eye, onto which an

image is formed. At the very back of the sheet are the photoreceptors: rods

and cones. Rods and cones transduce photons into neural signals, and so are

where visual information first enters the nervous system. The output layer

of the retina, composed of ganglion cells, projects directly to the lateral

geniculate nucleus of the thalamus via the optic nerve (a bundle of ganglion

cell axons).

Retinal ganglion cells receive input from one or more bipolar cells.

They have receptive fields with spatially segregated excitatory (ON) and

inhibitory (OFF) regions in a centre-surround structure (Kuffler, 1953;

Barlow, 1953). Due to the centre-surround structure, they exhibit some

low-pass spatial frequency selectivity (De Monasterio & Gouras, 1975).

Generally, they exhibit a relatively high level of spontaneous activity

(De Monasterio & Gouras, 1975). There are examples of both linear and

nonlinear behaviour among ganglion cells. For example, the X cells in cat

behave linearly (Enroth-Cugell & Robson, 1966), while a second class, Y

cells, display characteristic nonlinear behaviour (Hochstein & Shapley,

1976).

The receptive field shape of retinal ganglion cells has been modelled

using difference-of-gaussian (DoG) functions (Rodieck, 1965). The shape

of the DoG is representative of the concentric, antagonistic excitatory ON

and inhibitory OFF zones that are typical of retinal and thalamic neurons.

Linear convolution with a DoG model predicts X cell responses to a variety

of stimuli. The nonlinear behaviour of the Y cells can be accounted for with

a model including high-spatial frequency nonlinear subunits in addition to

the linear DoG receptive field (Hochstein & Shapley, 1976).
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Another, more pervasive, nonlinearity in retinal processing is contrast

gain control (Shapley & Victor, 1978, 1981; Victor, 1987; Baccus & Meister,

2002), first evident in retinal ganglion cells, but present in later visual areas

as well. If a neuron were to act as a linear filter, the firing rate of the neuron

would increase linearly with contrast. However, this linear relationship

between firing rate and contrast is not apparent in the responses of retinal

ganglion cells (Shapley & Victor, 1978). Contrast response nonlinearities

as described above are believed to be caused by contrast gain control.

Contrast gain control is thought to depend on the standard deviation of

local luminance intensities, consistent with the fact that it is independent

of precise stimulus position (Benardete & Kaplan, 1999). This process

of gain control is an example of normalization, a computation where

neural responses are modulated (typically modelled as a divisive operation

(Carandini & Heeger, 2012)) by the responses of a local neighbourhood.

Contrast gain control is a distinct mechanism from light adaptation,

which occurs primarily in the photoreceptors (Rushton, 1965; Ullman &

Schechtman, 1982).

Lateral Geniculate Nucleus

The responses of neurons in the lateral geniculate nucleus (LGN) are

very similar to those of retinal ganglion cells, leading to the suggestion that

the LGN is a central ‘relay’ station, rather than a transformative processing

stage (DeValois & DeValois, 1990). As in the retina, neurons in the LGN

have a concentric, antagonistic excitatory and inhibitory receptive field

structure. Many of the response properties of LGN cells can be explained

by their RF structure (Cai et al., 1997), but there is evidence that nonlinear

normalization processes, such as contrast gain control, are stronger in the

LGN than in the retina (Bonin, Mante, & Carandini, 2005).
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The conventional receptive field model for neurons in the lateral

geniculate nucleus is a difference of gaussians (DoG) linear filter, plus half-

wave rectification (Rodieck, 1965; Kuffler, 1953). Unlike retinal ganglion

cells, neurons in the LGN have low levels of spontaneous activity, and so

their responses are thresholded because they cannot decrease their firing

rate below zero. In the simplest case, the response of a neuron is half-

wave rectified : the positive components of the signal are maintained in the

response, but the negative components are not (Figure 1–5 A). When a

neuron responds equally to positive and negative input, there is a full wave

rectification: negative inputs are transformed into proportionally positive

outputs, so the response signals magnitude (i.e. absolute value), but not

signal polarity (Figure 1–5 B).

In simple half- or full-wave rectification, the response magnitudes

are linear with signal strength. However, rectification sometimes includes

other nonlinear aspects such as expansive, compressive, or more complex

saturating nonlinearities. An expansive power law (for example, a square

law) is characterized by proportionally boosting larger responses (Figure 1–5

C, D). A compressive power law boosts smaller responses but saturates

for larger responses (Figure 1–5 E, F). In some cases (as in the contrast

response function of many single neurons), a sigmoidal nonlinearity is

apparent, which boosts low contrast responses in an expansive way, but

saturates at higher contrasts.

Spatial frequency selectivity is weak in the LGN because the surround

is weaker than the centre, and low pass at low contrasts. Size selectivity is

greater at high contrasts, an effect attributed to nonlinear normalization

resulting in surround suppression (S. Solomon, White, & Martin, 2002;

Bonin, Mante, & Carandini, 2003). In surround suppression, when the
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region of the visual field that can evoke a response from a neuron (the

classical receptive field or CRF) is stimulated at the same time as the

region of the visual field that can influence the response of a neuron (the

extra receptive field or ERF), the response is lower than when the CRF is

stimulated alone.

In the above model the surround suppression is computed locally: the

response to the linear CRF is divided by the standard deviation (local

contrast) of the population of responses in the ERF (Bonin et al., 2005).

This assumes the relevant contrast measure is the variance of the stimulus

intensities, which is appropriate, because the response of the neurons is

invariant to skew or kurtosis of the distribution of intensities (Bonin, Mante,

& Carandini, 2006). Models of LGN responses have been used to predict

actual responses to artificial and natural stimuli with considerable success

(Mante, Bonin, & Carandini, 2008; Dan, Atick, & Reid, 1996).

Primary Visual Cortex

The primary visual cortex receives afferents from the lateral genicu-

late nucleus mainly onto neurons in layer 4 (Humphrey, Sur, Uhlrich, &

Sherman, 1985). As in the retina and LGN, neurons that respond to input

from similar areas in visual space are nearby in the cortical tissue (Talbot &

Marshall, 1941). The receptive field structures of cortical neurons have been

mapped using oriented bars of light (Hubel & Wiesel, 1959; Movshon et

al., 1978b). They have also been recovered with the more agnostic methods

of reverse correlation based on white noise stimulation (Jones & Palmer,

1987), and regression using natural images (Theunissen et al., 2001; Talebi

& Baker, 2012).

Based on their receptive field properties, two broad classes of cortical

neurons have been identified: simple and complex cells (Hubel & Wiesel,
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1962). Simple-cell receptive fields contain adjacent, elongated excitatory and

inhibitory regions. They are phase sensitive, i.e. their responses increase and

decrease with the phase of a grating stimulus. Complex cell receptive fields

also respond best to elongated stimuli, but they do not contain well-defined

on and off regions (Hubel & Wiesel, 1962), and are therefore not sensitive to

stimulus phase. Complex cells often exhibit frequency doubling: responses to

both stimulus onset and offset (De Valois, Albrecht, & Thorell, 1982; Maffei

& Fiorentini, 1973). Both simple and complex cells display orientation and

spatial frequency selective behaviour.

Orientation selectivity first appears in the behaviour of visual cortical

neurons, apparent from Hubel and Wiesel (1959)’s experiments onward in

cat (Hammond & Andrews, 1978), and monkey (Hubel & Wiesel, 1968).

Orientation tuning bandwidth is invariant to stimulus contrast (Sclar &

Freeman, 1982). Anatomy following functional staining (Willmer & Rutter,

1977; Hubel, Wiesel, & Stryker, 1978) and optical imaging techniques

(Grinvald, Lieke, Frostig, Gilbert, & Wiesel, 1986) have revealed in cats

and monkeys that cells selective for the same orientations are arranged in

columns, and that cells selective for similar orientations are in adjacent

columns.

Following Hubel and Wiesel’s (1962) observation of sensitivity to stimu-

lus size, measurements of cortical neuron responses using sine wave gratings

found that single units are tuned to spatial frequency (Campbell, Cooper,

& Enroth-Cugell, 1969; De Valois et al., 1982). Maffei and Fiorentini (1973)

measured spatial frequency tuning in the retina, LGN, and cortex, and

showed that tuning sharpened with each stage of processing. They were

struck by the improvement in tuning and so proposed that the visual cortex

was a ‘spatial frequency analyser’.
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Simple cell receptive fields consist of adjacent, elongated, ON and OFF

regions. They are believed to be created by combining centre-surround LGN

cell responses, supported by evidence in ferret (Chapman, Zahs, & Stryker,

1991) and cat (Reid & Alonso, 1995; Alonso, Usrey, & Reid, 1996; Chung

& Ferster, 1998; Alonso, Usrey, & Reid, 2001). Monosynaptic connections

between LGN and cortical simple cells are likely if they share the following

receptive field characteristics: position, size, timing, and sign (ON or OFF)

(Alonso et al., 2001). LGN responses are thought to be arranged in the

primary visual cortex with simple cell ON regions being both excited by ON

responses and inhibited by OFF responses, and conversely, OFF regions are

excited by OFF responses and inhibited by ON responses (Heeger, 1992b;

Hirsch, 2003). This type of model has been termed ‘push-pull’ (Glezer,

Tsherbach, Gauselman, & Bondarko, 1980, 1982).

The shape of the simple cell receptive field is typically modelled with

a gabor-type function (Gabor, 1946): a sine wave grating windowed by

a two-dimensional Gaussian function (Marčelja, 1980; Daugman, 1985).

However, there is evidence that gabor functions do not accurately capture

the spatial frequency selectivity observed in cortical neurons. In log units,

spatial frequency tuning functions tend to be quite symmetrical, while

gabor functions are symmetrical in linear units and have a heavy low spatial

frequency bias when plotted in log units of spatial frequency (Hawken &

Parker, 1987). Field (1987) proposed that ‘log gabor’ functions provide a

useful alternative to gabor functions. They look very similar in the space

domain, but in the frequency domain (on log axes), log gabor functions

equally represent all spatial frequencies in natural images, while gabor

functions overrepresent low spatial frequencies. Additionally, gabor functions

are zero-balanced in odd phase, but in even phase a small mean level is
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present. Log gabor functions are zero balanced in both even and odd phase.

Regardless of its precise form, the gabor-like filter is typically followed by

a half-wave rectification in most models of cortical simple cells (Movshon

et al., 1978b; Carandini, 2006). As in the LGN, this rectification is used to

account for the lack of spontaneous activity in cortical neurons.

The behaviour of complex and simple cells are alike in many ways,

but because the complex cell receptive fields lack discrete inhibitory and

excitatory regions (Hubel & Wiesel, 1962; Movshon et al., 1978a), they are

not selective for the spatial phase of a stimulus. The popular model of a

complex cell is the sum of the responses of several simple cells in misaligned

phases (Hubel & Wiesel, 1962; Movshon et al., 1978a; Carandini, 2006),

measuring stimulus energy in a particular band of spatial frequency and

orientation regardless of phase. Both simple and complex cells have spatially

localized classical receptive fields (CRF), within which a visual stimulus can

elicit a response.

As in the LGN, cortical neurons are subject to nonlinear influences from

within and outside the CRF. At least three major types of nonlinear be-

haviour are apparent in many cortical neurons (DeAngelis, Robson, Ohzawa,

& Freeman, 1992; DeAngelis, Freeman, & Ohzawa, 1994; H. Tanaka &

Ohzawa, 2009): (1) Contrast response saturation, (2) surround suppression,

and (3) cross-channel suppression. All of these types of suppression can be

captured (as in the LGN) using divisive suppression which is based on a

pool that includes, or extends beyond, the classical receptive field (Albrecht

& Geisler, 1991; Carandini, Heeger, & Movshon, 1997; Sceniak, Hawken, &

Shapley, 2001; Cavanaugh, Bair, & Movshon, 2002a; Carandini & Heeger,

2012).
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Contrast response saturation. As in earlier visual areas, the firing rate

of cortical neurons does not increase linearly with contrast. When the

firing rate of a neuron is plotted against stimulus contrast (i.e. a contrast

response function), it is evident that response rates saturate quite heavily

at high contrast (Albrecht & Hamilton, 1982). This saturation is thought

to be the result of contrast gain control, a self-inhibition mechanism that

adjusts the operating range of a neuron depending on local levels of contrast

(Heeger, 1992b; Carandini, Heeger, & Anthony Movshon, 1999). Models of

contrast gain control sum responses from within and immediately around

the classical receptive field, and use this aggregate response as a divisor for

the CRF response.

Surround suppression. A neuron will respond at its maximum when

the entirety of its classical receptive field is covered by a grating of the

preferred orientation and spatial frequency. If the neuron exhibits surround

suppression, when the size of the stimulus is expanded into the extra

receptive field (ERF), the firing rate is reduced. The shape of the ERF is

not typically concentric with respect to the CRF as in the LGN, but instead

asymmetric with clear regions of strong suppression (DeAngelis et al., 1994;

Cavanaugh, Bair, & Movshon, 2002b; Walker, Ohzawa, & Freeman, 1999;

H. Tanaka & Ohzawa, 2009). Also unlike the LGN, the suppressive ERF

is orientation-selective (Blakemore & Tobin, 1972; DeAngelis et al., 1994),

and thus established at least partially in cortex (Carandini et al., 1997;

Carandini, 2004). Complex cells and simple cells appear to have equal

amounts of suppression (DeAngelis, Ohzawa, & Freeman, 1995; Bonds,

1989), although reports to the contrary exist (Morrone, Burr, & Maffei,

1982). It is believed that surround suppression is the result of divisive

normalization of the classical receptive field by the extra receptive field
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(Carandini & Heeger, 2012). The ERF is modeled as the sum of neuronal

responses in a localized area of the visual field outside the CRF, drawing

from a relatively narrow range of orientation selectivities, but a wide range

of phase selectivities.

Cross-channel suppression. A neuron will respond well to a grating of

the preferred orientation and spatial frequency, and not at all to a grating

well outside the preferred range of either of these parameters. However,

when the non-preferred grating is presented in conjunction with a grating

of the neuron’s preferred orientation and spatial frequency, the response

to the preferred grating is substantially reduced (De Valois & Tootell,

1983; Bonds, 1989; DeAngelis et al., 1992). This interaction is termed

cross-orientation or cross-spatial frequency suppression, because a stimulus

which elicits no response on its own can still modulate the response to a

stimulus that does elicit a response. This suggests normalization interactions

between spatial frequency and orientation selective channels. The functional

role of cross-channel inhibition has been debated. It was proposed that

it helps sharpen orientation tuning in the cortex (Morrone et al., 1982),

supported by an apparent correlation between narrowband selectivity and

the presence of suppressive effects (Foster, Gaska, Nagler, & Pollen, 1985).

However, DeAngelis et al. (1992) determined that cross-channel suppression

contributes negligibly to the sharpening of tuning. Priebe and Ferster (2006)

suggest that this inhibition might not occur between orientation and spatial

frequency-tuned channels, but instead may be inherited from the LGN. In

that case, the ERF would be modeled over the same spatial extent as the

CRF but with broadband orientation and spatial frequency tuning.

A clear comparison of the traditional linear model and the modern

model of simple and complex cells is given in Rust and Movshon (2005).
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Higher Visual Areas

Beyond the primary visual cortex, receptive fields increase both in

size and the complexity of their selectivities. In humans and monkeys,

following early visual cortical processing (V1/V2), information is divided

into two largely independent pathways: the dorsal pathway which processes

complex motion patterns, and contributes to motor planning, and object

localization; and the ventral pathway which processes shape, colour,

and object properties, and contributes to object recognition (Mishkin,

Ungerleider, & Macko, 1983).

Early in the dorsal stream, the motion-selective neurons in area MT are

relatively well-modeled and understood (Simoncelli & Heeger, 1998; Rust,

Mante, Simoncelli, & Movshon, 2006; Nishimoto & Gallant, 2011). Models

of higher level neurons are a challenge to construct, but Mineault, Khawaja,

Butts, and Pack (2012) have recently made progress modelling the receptive

fields of area MST neurons. MST neurons receive inputs from area MT, and

are selective to complex motion patterns such as contraction, expansion,

and rotation (Duffy & Wurtz, 1991; K. Tanaka et al., 1986). Mineault et al.

(2012) model the MST receptive field with a compressive nonlinear sum of

inhibitory and excitatory MT inputs.

Often, the output nonlinearities in models of neural responses have

been described as being expansive (Heeger, 1992b). However, there is

evidence that when outputs of lower visual areas are combined to create

more complex selectivities (as from area MT to MST), the sum is less than

what would be expected in a linear system (Mineault et al., 2012), rather

than greater as an expansive nonlinearity would predict. This suggests that

a compressive nonlinearity before summation (or ‘sublinear summation’)

is employed by the nervous system beyond the primary visual cortex. It
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has been shown that compressive nonlinear effects on neural responses

(such as those caused by gain control or surround suppression) can result

in selectivity for conjunctions of properties, such as the conjunction of

orientation selective units to form curvature selective units (Peirce, 2007,

2011).

Psychophysics

There are psychophysical phenomena that exhibit many of the same

properties as the single unit behaviour described above. Most funda-

mentally, there is psychophysical evidence for orientation- and spatial

frequency-selective channels. These channels can be independently adapted

to orientation (Georgeson & Harris, 1984; Bradley, Switkes, & De Valois,

1988) and spatial frequency (Pantle & Sekuler, 1968; Blakemore & Camp-

bell, 1969; Georgeson & Harris, 1984; Bradley et al., 1988). Orientation-

specific masking has been observed (G. Phillips & Wilson, 1984), as has a

spatial frequency shift aftereffect (Blakemore & Sutton, 1969; Blakemore,

Nachmias, & Sutton, 1970).

Cross-orientation masking, like cross-orientation suppression, occurs

when two gratings of different orientations are superimposed and the

contrast threshold of a target grating is elevated in the presence of an

orthogonal, suprathreshold mask (Henning, Hertz, & Broadbent, 1975;

Olzak, 1985; Burr & Morrone, 1987; Olzak & Thomas, 1991; Albrecht &

Geisler, 1991; Ross & Speed, 1991; Ross, Speed, & Morgan, 1993; Foley,

1994; Meese & Holmes, 2007). Surround masking has been observed when

the mask is presented in an annulus surrounding the target grating, or in

more complex flanking configurations (Petrov, Carandini, & McKee, 2005).
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Role of normalization processes and other nonlinearities

First and most critically, normalization serves to scale a neuron’s

response so that it will lie within its limited dynamic range of possible

firing frequencies, while still signalling changes in a natural world with

a dynamic range orders of magnitude larger. Second, tuning functions

for spatial frequency (Albrecht & Hamilton, 1982) and orientation (Rose

& Blakemore, 1974) have a consistent bandwidth, regardless of stimulus

contrast. In a linear system with a threshold to prevent action potentials

evoked by non-preferred orientations, the low threshold required to show

selectivity at low contrasts would result in barely tuned responses at high

contrasts. Contrast gain control forms a necessary (but not sufficient)

component to a model that maintains selectivity bandwidth regardless of

contrast (Carandini, 2007; Finn, Priebe, & Ferster, 2007). Third, there is

evidence that the responses of populations of neurons are more effective at

representing a stimulus than any single detector, and that the detectors that

are not responding are just as important as those that are (Busse, Wade, &

Carandini, 2009). A critical component of a population model that decodes

stimulus orientation at the same level of performance as an ideal observer

is an intermediate nonlinearity such as normalization (Deneve, Latham, &

Pouget, 1999). Finally, normalization may also serve to reduce redundancy

in visual coding. Wainwright, Schwartz, and Simoncelli (2002) showed that

nonlinear transformations, such as divisive normalization, can make coding

more efficient.
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1.3 Texture

In this section, I will examine texture as a particular class of visual

stimuli, touching on what sorts of images are typically considered ’textures’,

how texture might be represented by the visual system, and some types of

visual tasks in which texture is an important property.

1.3.1 What is texture?

What precisely is considered visual texture is typically approached

with either a great degree of rigour but limited applications, or more

commonly a subjective assessment with each author having a slightly

different dividing point in the dichotomy of texture versus non-texture

patterns or applying different criteria. Portilla and Simoncelli (2000) took

a quantitative approach and defined texture as any pattern described well

enough by the statistics accounted for in their model to be synthesized

with a high enough fidelity to be perceptually equivalent. Most authors

have taken the route of a qualitative description, for example, Bergen and

Adelson (1991) defined texture as the emergent statistical properties of

an ensemble of texture elements. This sort of reasoning is common and

descends from the Gestalt history of considering how perceptual systems

group smaller units to form a larger perceptual whole (Beck, 1966; Olson &

Attneave, 1970). Wilkinson and Wilson (1998) found that the perception

of a pattern as a textured surface versus an array of discrete elements was

related to element spacing, suggesting that it is likely that the dividing

line between textured and non-textured surfaces is density-dependent. In

this thesis, I remain agnostic to the limits of the set of patterns that can

be defined as texture, and instead perform quantitative tests for spatial

homogeneity as described in Chapter 2. Many types of textures have been
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used as visual stimuli in recent decades. Here, I will review some of the most

common.

Grid-based patterns with statistical constraints: This type of texture

consists of a grid, in which each square is given a grey-level value depending

on some rule defining the spatial correlational statistics of the texture

(Julesz, 1962; Julesz, Gilbert, & Victor, 1978). In these textures, the

distribution of grey values, sometimes binarized to black and white, depends

on pixel histogram statistics (e.g. variance) (Julesz, 1962). Alternatively,

the texture may consist of a noise background with some repetitively

embedded pattern (Julesz, 1981a, 1981b). The higher-order statistics

of these textures have been manipulated using a recursive formula that

depends on n neighbouring pixels, where n is the order of statistic being

manipulated (Julész, Gilbert, Shepp, & Frisch, 1973). These types of

textures are historically important because they were employed in the

first attempts to apply signal processing techniques to texture perception

(Julesz, 1962; Bergen & Adelson, 1991), and in fact the first attempts to

view texture as statistical vision. However, they have since largely fallen

out of modern use due to a lack of biological relevance, and the emergence

of alternative methods for manipulating texture statistics, evident in more

modern types of textures described below.

Micropattern textures: This is a very commonly used class of textures

with several sub-types, typically defined by micropattern type (dots, gabors,

complex features), and micropattern arrangement (gridded, randomly

positioned). In early studies, a micropattern was typically a complex feature

element (Beck, 1966; Olson & Attneave, 1970; Julesz, 1986; Caelli & Julesz,

1978; Julesz, 1980). These elements were reasoned to be local features that

were conspicuous because of their role as fundamental features extracted by
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early visual processing, termed ‘textons’ by Julesz (Julesz & Bergen, 1983;

Julesz, 1984). With the linear filtering models of early visual processing,

it became more common to use texture elements matched to the shapes

and selectivities of early visual neurons, such as gabors (Caelli & Moraglia,

1985), or the orientationally broadband and luminance-balanced difference-

of-gaussians (DoGs). (Motoyoshi & Kingdom, 2007). Finally, some work on

texture perception used element-arrangement patterns, where the layout of

the micropatterns is not randomized, or gridded, and is itself an important

parameter. The micropatterns might be placed so that their orientation or

spatial frequency alternates in rows, columns, or a checkerboard pattern

(reviewed in Beck (1983); Wolfson and Graham (2005)).

Micropattern textures are probably the most commonly used class of

textures, and have been particularly useful in the field of texture segmenta-

tion. The synthetic textures used in this thesis are examples of micropattern

textures.

Filtered noise: This is an alternative approach to creating textures

with specific spectral characteristics, spurred on by the assumptions of the

energy model of segmentation (as discussed in the next section). A random

noise texture is typically filtered to a specific band of spatial frequency

and/or orientation, and then may be modulated to create a boundary (e.g.

Dakin & Mareschal, 2000; Landy & Oruç, 2002; El-Shamayleh, Movshon, &

Kiorpes, 2010). Sometimes the amplitude spectrum of the noise is shaped

to a specific slope (e.g. Schofield & Georgeson, 2003). It is mainly used by

researchers studying segmentation, but it has also been used for texture

discrimination (F. Phillips & Todd, 2010). These types of textures are the

successors to the approach of studying vision using sine wave gratings. They

are powerful stimuli for two main reasons: their phase spectra are random,
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so they contain no spatial structure that might confound results, and it

is easy to create an infinite number of stimuli with the same statistical

properties.

Natural Textures: These textures are digital images of textured surfaces

extracted from photographs of natural scenes, and are frequently employed

in texture synthesis work (Portilla & Simoncelli, 2000; Zhu, Guo, Wang, &

Xu, 2005), but rarely psychophysically (unlike photographs of entire natural

scenes). However, natural textures are powerful stimuli, and some degree of

parametric control is possible. For example, structural information may be

gradually reduced by perturbing the phase spectrum (e.g. Emrith, Chantler,

Green, Maloney, & Clarke, 2010). In the first data chapter of this thesis, I

use photographs of natural textures as stimuli. These textures are appealing

as stimuli because they are representative of the natural visual environment,

but are limited in their use because they are difficult to parameterize, and

developing a sufficiently large library is labour-intensive.

Synthesized Textures: A popular way of examining texture statistics,

with many practical applications, is to employ an ‘analysis-synthesis’

algorithm. These algorithms take as input a representative sample of an

exemplar texture, measure its properties, and using those measurements

produce fresh samples of the ‘same’ texture. The extent to which the new

samples appear to be the same depends on the sufficiency of the statistical

measurements. There are several algorithms of this type, though none as

widely used to generate texture stimuli as the Portilla and Simoncelli (2000)

algorithm. The outputs of this process are sometimes used as stimuli with

all or a subset of the available statistical constraints (e.g. Balas, 2006), or as

intermediate cases between a natural texture and one synthesized without a

complete set of constraints (e.g. Ziemba, Freeman, Movshon, & Simoncelli,
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2012). Using synthesized natural textures it is much easier to build large

libraries of varied stimuli.

1.3.2 Texture as statistical vision

A common thread throughout most work on texture is the idea that

a texture image is not one-of-a-kind, but rather one instance of a class of

possible images, constrained by statistical regularities rather than precise

feature positions within a given instance of that class (Victor, 1994). The

question of what statistics are required to fully describe a texture forms the

foundation of the entire field of texture synthesis, but is also of interest to

vision scientists in a slightly modified form: ‘What image statistics capture

the attributes of a texture that are relevant to perception?’.

Image statistics used to describe textures

When textures are described by their statistics, it is important to

be clear about exactly what statistics are being used. This has been

approached in a variety of ways, but following is a summary of the most

notable. These are conceptually distinct, but in practical use are not

mutually exclusive.

Julesz order statistics: First suggested by Julesz (1962), these texture

statistics based on correlations between image pixels had a profound impact

on the way texture was approached. ‘First-order’ statistics refer to the

probability of any given pixel having a particular intensity value, which

in practice determines the mean luminance of the image. Higher-order

correlations increase the complexity of the spatial relationships between

intensity values. For example, second-order statistics refer to the likelihood

of a pixel having a given intensity value, contingent on the value of one

other pixel (at any arbitrary spatial offset). Textures that are created from

the same second-order probability distribution on average will have the
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same autocorrelation function, and therefore the same Fourier amplitude

spectrum. Third- and fourth-order correlations depend on two and three

neighbouring values respectively.

Moments of a distribution: In many fields of study, the ‘order’ (n) of

a statistic refers to the moment of the random distribution that is being

measured (Kingdom, Hayes, & Field, 2001). For any distribution, the

nth moment can be calculated as
∑N

i=1 (xi − µ)n/N , where xi is the ith

pixel intensity, N is the number of sampled pixels, and µ is the mean

pixel intensity (Bendat & Piersol, 1966). As in Julesz order statistics, the

first moment of a distribution of image intensities is the mean luminance,

computed as
∑N

i=1 xi/N . Variance (n = 2) measures the spread of the

intensity distribution around the mean. In terms of image appearance,

this affects the contrast (Bex & Makous, 2002); a low contrast image will

have its intensity values clustered around the mean, whereas a higher

contrast image will have a much larger spread. The skewness (n = 3) of

the distribution refers to whether the values in the pixel distribution are

evenly divided on either side of the mean, or if there are a greater number of

relatively light or dark intensities. Motoyoshi, Nishida, and Adelson (2005)

have shown that skewness affects perception of surface properties such as

gloss. Kurtosis (n = 4) describes the the extent to which the distribution is

peaked around the mean, which in practice measures whether the variance is

due to many moderate deviations from the mean, or relatively fewer extreme

deviations. Perceptually, kurtosis has been shown to correspond with

texture density (Kingdom et al., 2001), where distributions with a high peak

and heavy tails are perceived as less dense. The basis (x) values for which

the distribution is defined is very important. For example, a distribution

of pixel intensity values may be less relevant to visual perception than the
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distribution of gabor wavelet responses which mimic early visual cortical

representation (Kingdom et al., 2001).

Feature correlations: Rather than capturing the contingencies between

specific intensities, these statistics use more complex pre-processing (typi-

cally the outputs of linear filters), and define image ‘features’ in a variety

of ways, but always dependent on the presence of multiple filter responses.

Martin, Fowlkes, and Malik (2004) and Arbelaez, Maire, Fowlkes, and Malik

(2011) use clustering to find sets of filter responses that frequently co-occur

in spatial position, while Portilla and Simoncelli (2000) and Freeman and

Simoncelli (2011) use local averages of products between pairs of filters in a

bank of gabor filters, and scale the size of the neighbourhood depending on

eccentricity. Feature correlations are similar to pixel correlations, but they

are more physiologically relevant because they frame spatial information

in a way that could be (and occasionally is) implemented in the context of

generally accepted models of early vision.

Fourier spectrum: The Fourier transform and its usefulness in un-

derstanding visual processing was covered in the previous section. The

amplitude spectrum corresponds to second-moment statistics, which can

be measured given two points of reference (contrast, orientation, and

spatial frequency). The phase spectrum corresponds to higher-order statis-

tics, which require more than two points of reference for measurement

(Oppenheim & Lim, 1981; Thomson & Foster, 1997). This definition of

order statistics is appealing because it relates directly to the above definition

(moments), and the broader study of texture boundaries. Like moment

measurements and feature correlations, it generalizes easily to any type of
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texture image because the Fourier transform can be applied to any two-

dimensional signal. Additionally, it has a straightforward relationship to

results obtained using traditional visual stimuli such as sinewave gratings.

Metamers, crowding, and the texture of a scene

The term ‘metamer’ is borrowed from colour vision where it is used

to describe a pair of stimuli with different spectral components, but per-

ceptually identical colours. Generally, metamers are stimuli that are not

physically identical and yet appear the same, because they generate equiv-

alent responses in some fundamental sensory representation. This property

means that metamers, when they can be found, may provide useful stimuli

for probing how information is preserved or discarded by the visual system.

While the term is not commonly used in the texture literature, the

methodology of looking for perceptually indistinguishable stimuli forms a

large part of the history of texture processing. Much of Julesz’ work was

focused on finding ‘metamers’ based on segmentation rather than appear-

ance, and defined by orders of spatial correlational statistics (Julész et al.,

1973). Richards and Polit (1974), looked for metamers in texture appear-

ance by using sums of sine waves, and found that the presence of different

spatial frequency components resulted in perceptually distinct textures,

yet differences in the phase relationships between those components were

metameric.

Our understanding of textures is constrained to those aspects of the

visual world that appear to be texture-like in photographs: relatively ho-

mogeneous collections of like elements viewed at a sufficient distance to be

considered ‘stuff’ (Adelson, 2001). However, there is evidence that scenes

are themselves represented as ‘summary statistics’ (Balas, Nakano, & Rosen-

holtz, 2009), and in some circumstances (e.g., peripheral viewing) their
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representation may be indistinguishable from what is traditionally consid-

ered texture (Oliva & Torralba, 2001; Lazebnik, Schmid, & Ponce, 2006;

Walker Renninger & Malik, 2004). Oliva and Torralba (2007) propose that

local scene details are abstracted out to form regions of relatively homoge-

neous texture, while only the global structure of the scene is represented in

perception of scene ‘gist’.

A longstanding observation about the visual system has been the under-

representation of information in the visual periphery (Flom, Weymouth, &

Kahneman, 1963; Andriessen & Bouma, 1976). When low-level explanations,

such as differences in acuity, have been accounted for, this phenomenon is

commonly termed ‘crowding’, because the presence of additional objects

in the periphery distorts the appearance of objects that are identifiable in

isolation (e.g. Levi, 2008). Crowding effects may be predicted by the same

spatial correlations used in summary-statistical representations, suggesting

that representation of the visual scene outside the fovea is statistical (Parkes

et al., 2001; Freeman & Simoncelli, 2011). Balas et al. (2009) also show that

a model using spatially localized summary statistics accounts well for effects

of crowding. These results suggest that some aspects of visual processing are

carried out in a statistical manner that we have typically associated with

texture, and that the inferences we make about texture processing might

actually have far broader applications.

1.3.3 How is texture used by the visual system?

Identification of ‘stuff’: Texture appearance can be helpful for identi-

fying collections of things (DeValois & DeValois, 1990; Adelson, 2001), and

recognizing surface material. This is particularly true when shape informa-

tion is unhelpful: for example, when discerning long from short grass at a

distance.
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Surface affordance: Texture appearance, and the consequent inferences

we can make about surfaces help with motor planning (Watt, 1995; Gibson,

1977, 1950). This is related to identification, but in this case texture is

associated with its utility for possible subsequent actions by the observer. Is

the surface wet? slippery? rugged? How we interact with different kinds of

surfaces is often based on their visual texture (Adelson, 2001).

Depth, and depth gradients (slant): Texture gradients have long been

considered a powerful monocular cue for depth (Knill, 1998), as well as

surface slant (Marr, 1982).

Three-dimensional Shape: The projection of texture on 3-D objects is

distorted in the eye’s image plane, both because of slant and depth, and

also because of occlusion (Aloimonos, 1988). These distortions contain

information on object shape (Blake, Bülthoff, & Sheinberg, 1993), and it

is believed that the gradients of orientation energy introduced by these

distortions is particulary informative about 3D shape (Li & Zaidi, 2000).

Disambiguating surface changes from illumination changes: Contrast,

one of the most basic texture properties, has been shown to have utility

in disambiguating image gradients arising from illumination effects (such

as shading) from those caused by changes in surface properties (Schofield,

Rock, Sun, Jiang, & Georgeson, 2010).

Segmentation: Changes in texture provide a powerful cue for segment-

ing surface discontinuities. The ability of texture to support segmentation is

the primary subject of this thesis, and will be discussed in detail in the next

section.
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1.4 Texture Segmentation

As the term is used in this thesis, boundary segmentation refers to a

pre-attentive, involuntary process that detects and characterizes discon-

tinuities defined by changes in some image property such as luminance,

colour, stereo disparity, motion, or–of primary interest here–texture. Texture

properties that enable segmentation include (but are not limited to) contrast

(Burton, 1973), orientation (Nothdurft, 1991; Landy & Bergen, 1991; King-

dom, Keeble, & Moulden, 1995; Motoyoshi & Nishida, 2001), and spatial

frequency (Caelli & Moraglia, 1985).

Psychophysical tasks to test segmentation performance include:

discrimination of modulation spatial frequency (Smith & Scott-Samuel,

2001) or orientation (Morgan, Mason, & Baldassi, 2000), as well as detection

(Landy & Bergen, 1991; Beck, 1983), identification (Nothdurft, 1985), or

localization (Rubenstein & Sagi, 1996) of embedded shapes. For example,

Caelli and Julesz (1979) created micropattern textures differing in dipole

orientation variance, and presented pairs of textures as the left and right

halves of a square stimulus. The magnitude of the difference in micropattern

orientation variance was used to make the task easier or more difficult. To

test the effect of micropattern density, they asked subjects whether two

textures were present, or if the square was one homogeneous texture, and

measured orientation variance thresholds for a range of densities. They

found that thresholds were higher as density was increased. Caelli and

Julesz (1979) did not make a distinction between texture segmentation and

discrimination (see below) but the task and spatial relationship between

the textures (abutting in each target stimulus) ensured that boundary

segmentation mechanisms were being tested.
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It is important to note that texture boundary segmentation should not

be confused with texture discrimination. Discrimination is an appearance-

based judgement that gauges how similar two textures appear, which is a

task that may not necessarily rely on the same mechanism as segmentation

(Northdurft, 1997; Landy & Graham, 2004), in spite of how the two terms

have often been used interchangeably (e.g. Caelli & Julesz, 1978). This

is evident when one considers how textures that appear very different,

for example those composed of T- versus L-shaped micropatterns, do not

produce a visible boundary when rendered side-by-side (Beck, 1966). Studies

of texture discrimination are usually based on the statistics of the texture,

with novel samples being generated for individual trials (e.g. Balas, 2006),

though sometimes the same texture samples are used repeatedly, to measure

how the features they contain are learned and used for discrimination (e.g.

F. Phillips & Todd, 2010).

Objective criteria used to test discrimination include just-noticeable-

difference measurements (Morgan, Chubb, & Solomon, 2008) and oddball

detection (Balas, 2006) in addition to subjective criteria, such as visual

inspection (Portilla & Simoncelli, 2000). Often, textures are presented over

multiple intervals so that they may not be compared side-by-side.

1.4.1 Feature-based approaches

Early studies of texture perception noted that some pairs of textures,

even those distinct in appearance, were segmented effortlessly while others

required inspection (Julesz, 1962; Beck, 1966). Much effort was targeted

towards characterizing texture pairs based on whether or not they supported

segmentation, and then trying to divine the statistical rules that united

the segmentable textures while excluding those that were not effortlessly

segmented (Julesz, 1984 contains a summary). Early research on texture
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segmentation suggested that certain texture statistics resulted in clusters of

like-luminance pixels (Julesz, 1962). These clusters resembled image features

matching hypothesized ‘feature-detectors’ in visual cortex, such as the report

of neurons that appeared to behave like ‘oriented line detectors’ in primary

visual cortex of the cat (Hubel & Wiesel, 1959).

How such feature clustering might occur was a problem that has only

been approached recently. For example, Martin et al. (2004) propose a

clustering/classification algorithm for texton extraction for segmentation

in three stages: 1) detect the features, 2) link the features to form texture

elements, 3) compare the texture elements present in many adjacent regions,

4) localize the boundaries. However, this and other clustering algorithms are

not (and do not attempt to be) biologically plausible.

1.4.2 Energy-based approaches

Filter-rectify-filter model

Several researchers noticed a correspondence between the properties of

some of the features that supported segmentation, the passbands of gabor

filters, and the resemblance of gabor filters to early visual receptive fields

(Bergen & Adelson, 1988; Jain & Farrokhnia, 1991; Fogel & Sagi, 1989;

Malik & Perona, 1989, 1990).

A family of models constructed from differences of filter responses

developed a consistent format similar to those models used to detect

stimulus properties not evident in the amplitude spectrum (i.e. Malik &

Perona, 1989). These models use a basic architecture consisting of two

stages of filtering, separated by a rectifying nonlinearity (filter-rectify-filter,

or FRF). The FRF model is able to detect differences of Fourier energy

across a boundary (Bergen & Landy, 1991). This style of model is very

widely used, and explains both neurophysiological (e.g. Zhou & Baker, 1994)
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and psychophysical (e.g. Bergen & Adelson, 1988) results (Baker, 1999;

Landy & Graham, 2004).

First-stage Filter: The first stage of filtering uses a bank of linear (often

gabor) spatial filters (Heeger & Bergen, 1995) that span all orientations and

a range of relatively high spatial frequencies, which extracts information

about the texture’s spatial frequency and orientation content (represented

by which filters have the highest responses), and information about its

contrast (conveyed by the strength of those responses). This stage is

illustrated in Figure 1–6 A and can be thought of as being instantiated by

the responses of early cortical neurons.

Rectify: There will be little difference in the mean response of the filter

bank over an image containing a texture boundary, so linear filtering alone

is not enough to detect these boundaries. However, a difference that might

be detected is the difference in magnitudes of the responses. Regions with

intensely positive responses also contain complementary intense negative

responses due to the zero-balanced nature of the first-stage filters. Mutual

cancellation of these opposite-sign responses is prevented by a nonlinearity,

for example a rectification that either sets all negative values to zero (half

wave) or converts them to positive responses of the same magnitude (full

wave). The rectification traditionally takes the form of a square law, as a

measure of image energy (Heeger, 1992a), which is relevant to the goal of

analyzing the Fourier energy across the boundary of the texture. However,

any nonlinearity that creates a difference in the mean responses across

a texture boundary could enable segmentation by an FRF model. This

stage is depicted in Figure 1–6 B. As discussed in section 1.2.2, rectifying

nonlinearities are a pervasive attribute of visual processing in the LGN and

visual cortex.
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Second-stage Filter: The second stage of filtering responds to the

difference in early-stage responses following the rectification. These filters

must be at a coarser scale (to respond to the texture change rather than the

details of the texture itself). Which filters in this bank are relevant depends

on the task and stimulus. This stage is depicted in Figure 1–6 C.

The filter-rectify filter model predicts the following: 1) Boundaries

between textures differing in contrast, orientation or size of elements should

be segmentable; 2) If the rectification is a square-law nonlinearity, textures

should not be segmentable if the energy in their Fourier amplitude spectra is

the same (Bergen & Landy, 1991).

Many aspects of the model remain unspecified, such as how the

early-stage channels are integrated (Mussap, 2001), what normalization

processes affect the model at which stages (Ellemberg, Allen, & Hess, 2004;

Wang, Landy, & Heeger, 2011), and the precise nature of the intermediate

nonlinear rectification (J. Solomon & Sperling, 1994; Graham & Sutter,

1998). Beck, Sutter, and Ivry (1987) concluded that spatial frequency

analysis is capable of performing texture segregation in many cases, but

also noted that feature-level differences can also lead to segregation in the

absence of mean differences in spatial frequency, orientation, or contrast.

This seems problematic for the FRF model as it is currently conceived,

because while it can and does accurately account for results in many

circumstances, accounting for structural information has been shown

to require more complex processing. For example, Graham, Sutter, and

Venkatesan (1993) found that an additional layer of rectification and

filtering was required to account for segmentation of textures that differed

only in the arrangement of their elements.
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1.4.3 Second-Order Vision

When sine wave gratings of slightly different spatial frequencies

are added together, ‘beats’, periodic alternating regions of high and low

contrast, appear to the viewer even though they are not represented in the

Fourier spectrum (Henning et al., 1975). These contrast beats are visible,

even though this seems surprising from the perspective of the independent

channels model, because such a model predicts that only those frequencies

present in the stimulus should be visible. It was apparent that some

nonlinear process in perception was required to see these patterns (Burton,

1973). Human psychophysical studies showed that beat detection is not

driven by early, ‘trivial’ nonlinearities as might occur in a computer monitor

or in the photoreceptors, but nonlinearities at some stage of processing

within the nervous system (Derrington & Badcock, 1986). It was also shown

that the mechanism for beat detection was different from the mechanism

used to detect modulations in luminance (Derrington & Badcock, 1985).

Beats appeared to be modulations in the amplitude of a luminance pat-

tern, suggesting the creation of a new, more general class of psychophysical

stimuli containing amplitude modulations. These stimuli were earlier called

‘non-Fourier’, later called ‘second-order’ (not to be confused with the ‘order

statistics’ discussed earlier). Second-order stimuli contained a relatively high

spatial frequency pattern, termed the ‘carrier’, which might be a simple

sine wave grating or a complex texture. A second, ‘envelope’ pattern (which

might also be a sine wave grating, or some other pattern) of a lower spatial

frequency was applied multiplicatively as a contrast modulation. The enve-

lope captured the appearance of the ‘beats’ evident in earlier stimuli, but

could be used with both simpler grating carriers and more complex texture

stimuli instead of being restricted to the addition of two luminance gratings.
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Indeed, any texture boundary can be defined as a modulation in one or more

texture properties.

Perception of both second-order texture boundaries and beat detection

require a nonlinear mechanism. It is likely that the same or similar processes

are responsible for the detection and segmentation of most types of discon-

tinuities that rely on second-order comparisons. In this way, a number of

historically disparate areas of research based on a variety of signals (beats,

non-Fourier or second-order motion, texture segmentation, illusory contours)

could be understood using a common mechanism: second-order processing.

In this context, the filter-rectify-filter model is a natural candidate. The

first stage of filtering is selective for the carrier pattern and the second

stage of filtering is selective for the envelope pattern, so one can explicitly

test the first-stage filter properties by varying the carrier, and examine the

second-stage filter properties by varying the envelope.

Properties of Second-Order Mechanisms

In this section, I will review what has been inferred about the mecha-

nisms that perform second-order segmentation, pulling from data obtained

through neurophysiology and psychophysics, with an emphasis on how these

findings relate to a model of second-order vision. I will examine: (1) the ex-

tent to which second-order segmentation mechanisms are independent from

those that segment first-order boundaries; (2) invariance to different types of

second-order cues; (3) the tuning properties of the first-stage filters; (4) the

tuning properties of the second-stage filters; and finally (5) the relationship

between the tuning properties of the first- and second-stage filters.

Independence: Mechanisms of second-order segmentation are function-

ally distinct and independent of first-order edge detection mechanisms. They

are considered independent psychophysically because noise in one channel
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does not mask the other (Schofield & Georgeson, 2003; Allard & Faubert,

2007), and because psychophysical adaptation does not transfer between

first and second order stimuli (Langley, Fleet, & Hibbard, 1996). In fMRI

studies, adaptation does not transfer from luminance to orientation modula-

tions (Larsson, Landy, & Heeger, 2006). The sensitivity functions for first-

and second-order vision are quite different, with the classic contrast sensi-

tivity function peaking around 4 cycles per degree (Campbell & Robson,

1968) and the modulation sensitivity function being more low-pass (Sutter,

Sperling, & Chubb, 1995). Neurophysiological evidence, on the other hand,

demonstrates that second-order responsive neurons are also selective to

first-order modulations, and that the preferred orientation (Mareschal &

Baker, 1999) and, to some extent, spatial frequency (Zhou & Baker Jr,

1996; Mareschal & Baker, 1999), for these two kinds of stimuli are tightly

correlated. Sensitivity to second order stimuli is lower than to first order in

both psychophysical (Schofield & Georgeson, 1999) and neurophysiological

(Ledgeway, Zhan, Johnson, Song, & Baker, 2005) contexts. In a model of

single-unit responses, this is accounted for with two pathways: a linear

pathway that conforms to the typical model of simple-cell responses, and a

nonlinear pathway with some type of filter-rectify-filter arrangement (Zhou

& Baker Jr, 1996).

Cue Invariance: There is some question whether the same cue-invariant

mechanism serves all types of second-order boundaries, or if different

boundary types are segmented by different mechanisms. Based on psy-

chophysical evidence, Motoyoshi and Nishida (2004) suggest that orientation

and contrast-defined boundaries are segmented by different, but ultimately

connected pathways. Song and Baker (2007) showed that individual neurons
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can segment different types of second-order boundaries (contrast modula-

tions and illusory contours). Given an appropriate bank of first-stage filters,

the FRF model is capable of segmenting boundaries defined by a variety of

cues (i.e. spatial frequency, orientation, illusory contours, and contrast).

First stage filter tuning: Psychophysical measurements of carrier fre-

quency dependence have generally found that there is no specific tuning to

spatial frequency (Schofield & Georgeson, 2003) or orientation (A. Arse-

nault, Wilkinson, & Kingdom, 1999), though there have been observations

of broad orientation tuning (Langley et al., 1996). This suggests either

that 1) the first stage filters feeding into each second-stage filter have di-

verse preferred spatial frequencies and orientations, or 2) each instance of a

second-stage filter is tuned to a specific carrier, but that tuning varies across

the population of responses. This is connected to studies of cue invariance in

an important way: an FRF model with a limited range of orientations in the

bank of first stage filters will have gaps in its ability to segment orientation-

defined boundaries, but no gaps in its ability to segment contrast-defined

boundaries. For this reason, and because there is little psychophysical evi-

dence for orientation tuning, FRF models aimed at capturing psychophysical

performance typically cover all orientations in the first bank of filters, but at

relatively high spatial frequencies.

Single unit recordings in visual cortex found that second-order neurons

were always tuned to the carrier spatial frequency. In addition, they were

sometimes tuned to the orientation of the carrier texture, but the bandwidth

of that tuning was highly variable from one neuron to another (Mareschal

& Baker, 1999; Song & Baker, 2006). This suggests that an FRF model

of a single unit response should use a smaller range of first-stage filter

frequencies, selective for a variable range of orientations, depending on the
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neuron being modelled (Mareschal & Baker, 1999). Testing these neurons

on orientation-defined boundaries would help to determine whether neurons

with broad carrier selectivity have a pool of many tightly-tuned orientation-

selective filters, or fewer broadly tuned first-stage filters.

Second stage filter tuning A. Arsenault et al. (1999) measured the

psychophysical tuning of second-order segmentation mechanisms using a

masking paradigm like those used to measure tuning in first order vision.

They found that second-stage filters were tuned both to orientation and

spatial frequency, though in both cases this tuning was quite broad.

Neurophysiological results show consistent selectivity for the orientation

and spatial frequency of the second-order boundary (Baker, 1999), typically

(as mentioned previously) at the same preferred orientation and similar

spatial frequency as the neuron’s first-order responses (Zhou & Baker Jr,

1996; Mareschal & Baker, 1999). This tuning is characterized in FRF

models by using an orientation and spatial-frequency selective filter in the

second stage.

By definition, the spatial frequency of the carrier (and thus the filters

selective for it) is higher than that of the envelope. There is no neurophys-

iological evidence of a systematic coupling (e.g., fixed ratio) between the

preferred carrier and envelope spatial frequencies in single units (Mareschal

& Baker, 1999; Song & Baker, 2006), though the preferred spatial frequency

of the carrier has consistently been found to be much higher than that of the

envelope (Mareschal & Baker, 1999).

In single units, a consequence of a suppressive ERF is sensitivity

to contrast modulations (H. Tanaka & Ohzawa, 2009). This is not to

be confused with the segmentation performed by the filter-rectify-filter

mechanisms inferred by the research presented here. The ERF-mediated
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segmentation differs from FRF-mediated segmentation in two important

ways: 1) FRF-mediated segmentation evokes responses from contrast

modulations within the classical receptive field, and 2) the ratio of carrier

to envelope spatial frequency is between 6:1 and 40:1 for FRF-mediated

segmentation (Mareschal & Baker, 1999), but only around 2:1 in ERF-

mediated segmentation (H. Tanaka & Ohzawa, 2009).
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1.5 Organization of the Thesis

This thesis first uses photographs of natural textures to psychophysi-

cally demonstrate that texture segmentation mechanisms are dependent on

higher-order statistics, then uses naturalistic synthetic stimuli to examine

how specific statistics influence and enable segmentation. An FRF-style

model is introduced and modified to account for the role of global texture

statistics in texture orientation, contrast, and structure.

In the first study (Chapter 2), photographs of natural textures, and the

same photographs phase-randomized, are employed as textures over which

contrast modulations are applied. Human segmentation thresholds are found

to be much lower for the phase-randomized textures, implying that the

presence of higher-order structure impairs the performance of segmentation

mechanisms. Based upon a rank-ordering of the textures according to the

magnitude of the threshold reduction, sparseness and local edge structure

appear to be candidates for higher-order statistics that might impair the

segmentation of contrast boundaries.

In the second study (Chapter 3), naturalistic synthetic textures are

created to assess individual image statistics experimentally. Segmentation

thresholds for contrast and orientation are compared between textures

whose local edge structure and sparseness are systematically manipulated.

These experiments demonstrate that texture sparseness and global phase

structure impair orientation and contrast boundary segmentation, but that

local phase structure has little impact on segmentation. The experiment is

simulated using a standard filter-rectify-filter model, which is optimized with

a compressive nonlinearity to accommodate the psychophysical data.

In the third study (Chapter 4), the same synthetic textures are paired

to determine the extent to which differences in texture structure can enable
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segmentation. The results suggest that global phase structure and texture

sparseness can both enable and influence segmentation in the absence of

any lower-order statistical cues for segmentation. The same model employed

for contrast and orientation boundary segmentation data in the previous

experiments is found to also account for the role of global structure and

density, but not the role of local phase alignment in these kinds of texture

boundaries.

Finally, the impact of these results, some of the logistical issues we

encountered while modelling these results, and future areas for potential

study are considered.
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Figure 1–1: Sample of the types of boundaries that occur in natural scenes.
Highlighted boundaries are defined by: (A) luminance and texture, (B)
luminance, contrast, and texture scale, (C) mainly texture, (D) texture,
luminance and contrast.
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Figure 1–2: Evidence for spatial frequency- and orientation-selective pro-
cessing in early vision. (A) Adaptation of a single spatial frequency channel.
Pictured is a schematic of the results observed by Blakemore and Campbell
(1969). The solid line shows sensitivity to gratings of a wide range of spatial
frequencies. The dots show the sensitivity at a range of spatial frequencies
following adaptation to a grating of the spatial frequency marked by the
thin dashed line. Grey dashed curves show the spatial frequency-selective
channels inferred from these results. The sensitivity of the channel closest to
the adapted spatial frequency has been reduced. (B) Orientation selective
neuron in visual cortex. This panel illustrates the type of results observed
by Hubel and Wiesel (1959). The dashed lines in the shaded area show
stimulus-specific responses to bars of light at different orientations (pictured
at right). The neuron depicted prefers vertical stimuli. (C) Spatial frequency
selective units in visual cortex. Each curve depicts the response amplitude
of a different cortical simple cell. Each neuron is tuned to a different spatial
frequency. Adapted from Maffei and Fiorentini (1973).
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Figure 1–3: Relative contributions of amplitude and phase spectra to tex-
ture appearance. The ‘Image’ column shows two texture photographs (vines
and grass), and their amplitude spectra are illustrated in the centre column.
The grass is very broadband for orientation, and while the vines are broad-
band, most of the energy in the image is located in the vertical dimension
(horizontal in the frequency domain). In the final column, the phase spec-
tra are swapped between the two images. In the top image, the amplitude
spectrum of the vines is paired with the phase spectrum of the grass. In the
bottom image, the amplitude spectrum of the grass is paired with the phase
spectrum of the vines. The vertical energy of the vines is still very apparent
in the resulting image, though the continuous contours of the vines them-
selves are no longer present. The structure of the grass is visible, though
faint, as relatively little energy is available to provide these features with
contrast. In the bottom image, the leaves from the texture of vines appear
to have been transplanted into a field of broadband noise.
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Figure 1–4: Natural textures and their spatial frequency amplitude spectra.
The amplitude for each spatial frequency component is plotted on the graph.
These graphs are the same as those in the centre column of Figure 1–3, but
averaged over the rotational axis (orientation). An inverse relationship be-
tween amplitude and spatial frequency with the most power in the lowest
spatial frequencies is evident. There are some individual differences between
textures, but the trend for a 1/f energy falloff is consistent.

52



Half-wave rectification Full-wave rectification
C

om
pr

es
si

ve
Ab

so
lu

te
 V

al
ue

Ex
pa

ns
iv

e

A B

C D

E F

Figure 1–5: Different basic rectifications. The linear input signal is shown
as a dashed line with a slope of 1, and the output is shown in solid grey.
The columns compare half- and full-wave rectification, and the rows show
(from top to bottom): compressive (square root), linear (absolute value),
and expansive (square law) nonlinearities.

53



A B C

+ +
- -

Figure 1–6: Algorithm for second-order segmentation. (A) The luminance
structure of a texture carrier with an oblique contrast modulation is de-
tected by high-spatial frequency filters. (B) The responses of these filters
cannot be used for contrast boundary segmentation by a linear filter of an
appropriate spatial frequency and orientation because the mean response is
the same between the high- and low-contrast regions. (C) Following rectifi-
cation by a pointwise absolute value transformation, all filter responses are
positive and so the mean response to the excitatory region is greater than
that to the inhibitory region, and the boundary may be segmented.
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2 Higher order texture statistics impair

contrast boundary segmentation

In the following manuscript I employ photographs of natural textures,

and the same photographs phase-randomized as textures over which contrast

modulations were applied. I found that human segmentation thresholds

were much lower for the phase-randomized textures, which implies that the

presence of higher-order structure impairs the performance of segmentation

mechanisms. Following rank-ordering the textures based on the magnitude

of the threshold reduction, sparseness and local edge structure appear to

be candidates for higher-order statistics that impair the segmentation of

contrast boundaries.
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CHAPTER 2
Higher order texture statistics impair contrast boundary

segmentation

This chapter has been published as: Arsenault, E., Yoonessi, A. & Baker
Jr., C. (2011). Higher order texture statistics impair contrast boundary
segmentation. Journal of Vision, 11(10), 14. c©Association for Research in
Vision and Opthalmology

2.1 Abstract

Texture boundary segmentation is conventionally thought to be

mediated by global differences in Fourier energy, i.e., low-order texture

statistics. Here, we have examined the importance of higher-order statistical

structure of textures in a simple second-order segmentation task. We

measured modulation depth thresholds for contrast boundaries imposed on

texture samples extracted from natural scene photographs, using forced-

choice judgments of boundary orientation (left vs. right oblique). We

compared segmentation thresholds for contrast boundaries whose constituent

textures were either intact or phase scrambled. In the intact condition, all

the texture statistics were preserved, while in the phase-scrambled condition

the higher-order statistics of the same texture were randomized, but the

lower order statistics were unchanged. We found that (1) contrast boundary

segmentation is impaired by the presence of higher-order statistics; (2) every

texture shows impairment but some substantially more than others; and (3)

our findings are not related to scrambling-induced changes in detectability.

The magnitude of phase-scrambling effect for individual textures was

uncorrelated with variations in their amplitude spectra, but instead we
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suggest that it might be related to differences in local edge structure or

sparseness.
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2.2 Introduction

Our rich perceptual experience of the shapes, objects, and surfaces

that make up the visual world relies on successful segmentation of distinct

regions in an image to delineate the boundaries between them. The visual

system can detect boundaries defined by changes in a number of properties,

commonly divided into two categories: those that can be distinguished

based on a point-to-point comparison of simple intensive properties such as

luminance or colour (first-order); and those that require two-stage processing

to distinguish, such as orientation, spatial frequency, or contrast of textures

(second-order). Processing of these first- and second-order boundaries

is widely thought to be mediated by distinct mechanisms (e.g. Schofield

& Georgeson, 1999; Allard & Faubert, 2007). First-order processing is

relatively well modeled in terms of linear Gabor-like spatial filters that

ostensibly represent V1 receptive fields. Second-order boundaries are

inherently more complex, and how they are segmented has been a continuing

subject of investigation.

We use the term ‘segmentation’ not to refer to a specific task, but

to refer to the process by which the visual system detects second-order

boundaries. In this paper, we examine second-order vision through its

simplest manifestation: contrast boundary segmentation. It is well known

that contrast boundary segmentation performance depends on some of the

properties of the texture over which the contrast gradient is defined, i.e.,

the carrier. In particular, carrier orientation orthogonal to the contrast

boundary facilitates contrast boundary detection at low spatial frequencies

(Dakin & Mareschal, 2000), and higher spatial frequency carriers have been

found to show an advantage as well (Sutter et al., 1995; Dakin & Mareschal,

2000). However with relatively broadband noise, spatial frequency content
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was found to have little impact on detection (Schofield & Georgeson, 2003).

These studies were restricted to simple filtered noise carriers, and the

full extent to which a texture’s appearance is relevant to the operation of

second-order mechanisms remains to be seen. In this paper we address this

issue by imposing contrast modulations on textures sampled from natural

images to begin our examination of the importance of a wide range of

statistical structure on second-order vision.

It has long been clear that only a limited subset of a texture’s prop-

erties are used by the visual system to segment it from another texture. A

classic demonstration of this is our inability to segment pairs of textures

whose elements are readily discriminated for example, upright and inverted

chevrons (Olson & Attneave, 1970) or Ts and Ls (Beck, 1966; Bergen &

Julesz, 1983). Such observations led naturally to the idea that textures

should be thought of in fundamentally statistical terms, and that their seg-

mentation is based on a representation in which only some image statistics

are preserved. In the last two decades, most of the work on mechanisms

of texture segmentation has been couched in terms of two-stage filtering

models (Bergen & Adelson, 1988; Landy & Graham, 2004) that can be

thought of as comparing the global Fourier energy across a boundary. These

models have only been evaluated using simple synthetic textures, and it is

unclear how adequately such models can account for human segmentation of

textures, and boundaries defined over textures, that contain a wider variety

of local features. Texture segmentation is an important example of the

emerging general idea that many of our perceptual abilities seem to be based

not on a perfect translation of the retinal image, but on ”summary statis-

tics”, a compressed statistical representation in which only some attributes

of the retinal image are retained (Chong & Treisman, 2003; Rosenholtz,
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2011). There is evidence that such a representation is automatically and

pre-attentively computed (Oliva & Torralba, 2007; Oliva & Torralba, 2001),

and it appears as though we make some judgments based only on a subset

of the statistics available in the image (Ariely, 2001; Chong & Treisman,

2003; Alvarez & Oliva, 2008). In at least some contexts, such as peripheral

vision (Balas et al., 2009), a statistical summary of the information in the

stimulus may be just as relevant to perception as the stimulus itself. Finding

the most appropriate summary statistics for a given task is both informative

about the mechanisms involved and important to consider when evaluating

the results of past studies, or designing stimuli for future experiments.

In this work we employ a particularly useful and popular way of

describing image statistics using a Fourier decomposition of the image. We

can distinguish between lower- and higher-order statistics based on the

Fourier power spectrum and phase spectrum. The lower-order statistics

represented in the power spectrum describe the global energy present in

the image: luminance, contrast, spatial frequency, and orientation. The

phase spectrum embodies higher-order statistics that describe the spatial

distribution of that energy (Oppenheim & Lim, 1981; Thomson & Foster,

1997). For example, step edges in luminance occur when Fourier components

of the same orientation over a range of spatial frequencies are phase-aligned

in their zero-crossings; such broadband edges are considered to be of

particular interest in statistics of natural images (Olshausen & Field, 1996;

Thomson, 1999).

While randomizing an image’s phase structure will severely handicap

identification of image content (Hansen & Hess, 2007), some of the textural

aspects of the image’s appearance are preserved - particularly for textures

with a high degree of structural regularity, or periodicity (Emrith et al.,
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2010). While some aspects of overall texture and shading may be captured

by the power spectrum (Tadmor & Tolhurst, 1993), several studies have

shown that phase spectral information contributes to human perception

of isolated textures. Kingdom et al. (2001) manipulated parameters of

synthetic micropattern textures to modify their contrast, skew and kurtosis -

they found that human observers could most efficiently discriminate textures

differing only in their fourth-order statistics (kurtosis). Demonstrations

of texture synthesis (Portilla & Simoncelli, 2000) showed that a variety

of higher-order statistics are required to capture a texture’s appearance

when they are attentively examined, though evidently only a subset of

these higher-order statistics are necessary for pre-attentive discrimination

of textures (Balas, 2006). Motoyoshi and Kingdom (2010) demonstrated

that discrimination of random paired-Gabor textures was enhanced by a

co-circular relationship between nearby orientational structures.

Even though information in the phase spectrum is critical to higher-

level tasks such as texture appearance judgments, and can aid the discrimi-

nation of one texture from another, its relevance to a pre-attentive, low-level

task such as texture segmentation remains unclear. The popular concep-

tion of an energy model of segmentation emphasizes global comparisons

of lower-order statistics, but other models have been based upon different

sets of statistics, some of which are higher-order. Julesz (1962) conjectured

that texture segmentation mechanisms might operate on only a subset of

available statistics, i.e. the relationship between the luminance values of

any two pixels at a given distance from one another. This theory was later

expanded to include relationships between triplets (Julesz et al., 1978) and

quadruplets (Julesz, 1981a) of pixels. Graham et al. (1993) demonstrated

element arrangement patterns created with oriented gabor patches that
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can be readily segmented along boundaries defined only by differences in

the relative positions of the texture elements, implying a mechanism that

is sensitive to phase information. To achieve human-like segmentation in

natural scenes by a computer vision algorithm, Martin et al. (2004) and

later Arbelaez et al. (2011) made use of higher-order texture statistics

along with other boundary cues. They classified each pixel of an image as

belonging to one of a small collection of ‘textons’ based on the responses

of a range of co-localized oriented filters, followed by a second stage oper-

ator that compares the texton histograms on opposing sides of a putative

boundary. Phase scrambling would remove the spatial co-localization of

filter responses that define these textons, and so texton-based segmentation

would be impossible. Thus there is evidence suggesting that higher-order

statistics influence segmentation, but a systematic study is difficult because

what constitutes a ‘higher-order statistic’ is unbounded, and defined only

by exclusion to consist of anything that is not a lower-order statistic. In

this work, we use natural image photographs to sample higher-order texture

statistics that are likely to be critical to ecological vision, and explore the

relationship between these statistical regularities and human performance on

a texture segmentation task.

The texture statistics most ecologically relevant to segmentation are

those occurring on either side of boundaries that occur in natural images.

However photographs of natural texture boundaries would make poor

experimental stimuli for a number of reasons: (1) the texture boundaries in

natural images most often arise from occlusions of one object by another,

which typically are accompanied by coincident luminance changes, and

therefore are not purely second-order (Johnson & Baker Jr., 2004); (2)

experimentally manipulating the textures on either side of a boundary is
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problematic without affecting the boundary itself; and (3) boundaries in

images from natural scenes (excluding man-made structures) are rarely

straight, further complicating the preceding difficulty. Instead we approach

the problem with photographs of natural textures, which we can individually

manipulate and use as carrier patterns to construct synthetic envelope

boundaries. This semi-natural approach gives us the same access to the

higher-order texture statistics that are present in photographs of the

real world, while affording the benefits of using synthetic boundaries:

experimentally controllable texture statistics and a consistent boundary

shape without luminance artifacts.

We explore segmentation of boundaries defined by contrast differences

imposed across individual textures, rather than segmentation of a boundary

between two distinct textures, for two reasons. Firstly, contrast gradients are

the simplest form of texture boundary, and thus more amenable to analysis.

Secondly, this approach allows us to deal with individual textures one at a

time, affording a better opportunity to investigate the effects of individual

differences in texture statistics.

Note that most previous studies of higher-order texture statistics and

segmentation have explored whether it was possible to segment boundaries

defined by differences in these statistics, such that they were necessary to do

the task (e.g., Julesz et al., 1978). On the other hand, in these experiments

the higher-order texture statistics are, in principle, irrelevant to the task;

instead we ask whether their presence facilitates or impairs segmentation

performance.

To evaluate the role of higher-order carrier statistics in contrast

boundary segmentation, we look at psychophysical performance under

two conditions: natural textures with all the statistics preserved (‘intact’
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condition), or phase-scrambled versions of the same natural textures in

which the higher-order statistics have been randomized but the lower-order

statistics remain the same (‘scrambled’ condition). If the power spectrum

provides the basis of segmentation, we would expect to find no differences in

psychophysical performance between the intact and scrambled conditions. If

any higher-order information is utilized by the visual system in this task, we

would expect to see performance impaired in the scrambled condition. On

the other hand the boundary might be obscured by higher-order information

in the texture, in which case we would expect improved performance in the

scrambled condition.

64



2.3 General Methods

2.3.1 Stimuli

The natural textures used in this experiment were acquired from high-

resolution photographs (3888 × 2592 pixels) taken in a variety of locations

such as parks, beaches, and botanical gardens. A digital SLR camera

(Canon Digital Rebel XTi) was used to take the photos in RAW format

with a linear gamma profile, which were then converted to 16-bit TIFF

and imported into Matlab. From each of these photographs, we manually

extracted candidate texture regions of 480 × 480 pixel squares.

The candidate images were then screened subjectively by the authors

to evaluate the extent to which they exemplified key characteristics of

‘texture’: uniformity of lightness, contrast, and granularity (Wilkinson, 1990;

Bergen & Adelson, 1991; Wilkinson & Wilson, 1998; Portilla & Simoncelli,

2000; Kingdom et al., 2001). We used these characteristics to define our

acceptance criteria for textures as images that appeared to be relatively

uniform and composed predominantly of a single type of material (such as

grass, bark, or ripples in sand) or a homogeneous mixture of materials (e.g.

branches and leaves). We also required the detail of the texture to be in

focus, and free of prominent segmentable objects. Textures of man-made

materials such as bricks, concrete, or tiles were excluded. Examples of

textures excluded in this stage are shown in Figure 2–1A (top).

The textures that passed the subjective screenings were converted

to greyscale (using the Matlab function rgb2gray) and further screened

objectively for internal homogeneity by comparing the luminance and RMS

contrast (Kingdom et al., 2001; Bex & Makous, 2002), of four quadrants

of the texture. If there were any pairwise differences greater than 3dB

the texture was excluded (Figure 2–1A (bottom)). Approximately 64% of
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the hand-selected textures passed this test, providing a database of 239

natural texture images. Four examples of these textures are displayed in

Figure 2–1B.

The stimuli for all of our experiments used the textures from this

database as carrier patterns. Texture stimuli for the baseline (‘intact’)

condition were created using the texture as described above, to measure

segmentation with all the higher- and lower-order statistics present in

greyscale natural photographs. In the second (‘scrambled’) condition we

phase scrambled the intact texture to remove structure of the higher-order

statistics. We created scrambled textures by applying a Fourier transform to

both the intact texture and a white-noise image of the same size. The phase

values in the natural texture were replaced with those of the white noise

and inverse-transformed, thus leaving the power spectrum unchanged while

completely randomizing the phases (Dakin, Hess, Ledgeway, & Achtman,

2002).

To create the carriers, each texture was scaled to have a mean value of

0, and its extreme values were clipped at ±3 standard deviations and scaled

to fit in the range of intensities between ±1.0. This texture carrier was then

modulated by an envelope pattern to create a synthetic contrast boundary.

For our envelope, we used a half-disc pattern with an oblique orientation

boundary, graduated over 20% of the image width with a cosine taper

(Figure 2–2). The final stimulus, Sx,y, is the product of the stimulus window

Wx,y, the carrier, Cx,y, and the envelope, Ex,y, scaled by the modulation

depth, m:

Sx,y = Lo{1 + cCx,yWx,y((1 +mEx,y)/2)} (2.1)
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where |Cx,y| ≤ 1.0, |Ex,y| ≤ 1.0, and 0 ≤ Wx,y ≤ 1. Lo is the mean

luminance, m is the modulation depth, and c is a contrast scaling factor

which is adjusted to produce the desired RMS contrast.

We used these stimuli to measure threshold values of modulation depth

(m) or carrier contrast, for intact (Figure 2–2, left) and phase scrambled

(Figure 2–2, right) natural textures using an envelope orientation judgment

(±45 deg) in a two-alternative forced-choice task. We presented the stimuli

at a suprathreshold contrast in all experiments unless otherwise specified.

To prevent observers from performing the task by monitoring the

contrast of only one quadrant of the texture, the phase of the envelope was

randomly shifted 180 degrees from trial to trial. To further diversify the

stimulus appearance, and impair observers’ ability to learn and use specific

texture features, carrier textures were randomly flipped vertically and/or

horizontally on each trial, prior to applying the contrast envelope.

The stimuli were presented on a CRT monitor (Sony Trinitron Multi-

scan G400, 81 cd/m2, 75 Hz, 1024 × 768 pixels), gamma-linearized with a

digital video processor (Bits++, Cambridge Research Systems) that allowed

us to present low contrast stimuli without binarizing artifacts by increasing

the bit-depth from 8 to 14 bits. Stimulus patterns appeared in a central

480 × 480 pixel patch on a mean grey background. Observers viewed the

stimuli from a distance of 114 cm, resulting in a stimulus visual angle of

approximately 6.5 degrees. The experiments were run on a Macintosh (Desk-

top Pro, MacOSX) using Matlab and PsychToolbox (Brainard, 1997; Pelli,

1997).

2.3.2 Task

At the beginning of each trial observers were presented with a central

fixation point, and used a button press to initiate each 100-millisecond
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stimulus presentation. The envelope boundary was oriented 45 degrees

either left or right oblique, and observers indicated with a button press

the perceived orientation of the boundary. Feedback was not provided as a

precaution against aiding spurious cue learning. The screen was maintained

at the mean grey background between stimulus presentations.

We measured thresholds using a method of constant stimuli with five

logarithmically spaced level values, chosen to span an appropriate range

as determined from pilot experiments for each observer and texture that

spanned 5% to 60% modulation depth. A minimum of three blocks of

100 trials, with 20 trials per level, were run for each condition to yield a

total of at least 60 trials per level. Percent-correct data from a total of 600

trials were fit with a logistic function, and a threshold was interpolated

for 75% correct. Curve fitting was performed by the statistics package

Prism (GraphPad Software, Inc.), and standard error measurements were

estimated with its bootstrapping algorithm.

We tested the significance of the difference between thresholds in the

intact and scrambled conditions using a two-tailed paired-samples t-test

with a criterion α = 0.05, and measured the effect size (D. Klein, 2005)

using Cohen’s d with the standardizer s computed as:

s =
√
σ2
1 + σ2

2/2 (2.2)

where σ1 and σ2 are the sample standard deviations of the compared

conditions.
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2.4 Experiment 1

This experiment examined whether an observer’s ability to segment

contrast boundaries is affected by higher-order statistics of carrier textures

drawn from a large sample of texture appearances. This was accomplished

by comparing modulation depth thresholds for contrast boundaries with nat-

ural texture (‘intact’) carriers, and those with phase-scrambled (‘scrambled’)

carriers.

2.4.1 Methods

To obtain a general picture of the contribution of higher-order statistics

to segmentation, we measured modulation depth thresholds for the texture

library as a whole. On each trial, a carrier texture was selected from the

database randomly without replacement within each block of 100 trials. At

a suprathreshold carrier RMS contrast of 14.5%, we measured modulation

depth thresholds for each observer in the intact and scrambled conditions.

We collected data from four experienced psychophysical observers, three of

whom (JB, AM, JH) were naive to the hypotheses of the experiment.

2.4.2 Results

The results for Experiment 1 are shown in Figure 2–3. Modulation

depth thresholds for phase-scrambled textures (light bars) are substantially

lower than those for intact textures (shaded bars) for each observer. We

found a large, statistically significant effect of phase scrambling (t(3) =

14.71, p < .05, d = 2.86) with the average observer’s intact threshold 2.36

dB above their scrambled threshold. These results not only suggest that

the presence of higher-order statistics in natural textures is a relevant factor

in performance on this task, but also that segmentation improves when

higher-order statistics are removed.
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2.5 Experiment 2

In the previous experiment, we observed a difference in thresholds for

ensembles of intact and ensembles of phase-scrambled textures, providing

evidence for a role for higher-order texture statistics in boundary segmenta-

tion. But since our textures vary widely in appearance, it is unclear to what

extent our result is uniformly representative across textures, or if some tex-

tures demonstrate a greater effect of phase scrambling than others. In this

experiment, by comparing modulation depth thresholds for individual intact

and phase-scrambled textures, we aimed to determine what effect individual

differences in texture appearance have on modulation depth thresholds of

contrast boundaries.

2.5.1 Methods

This experiment was conducted in the same manner as Experiment 1

in almost every respect. However, rather than randomly selecting textures

on each trial, modulation depth thresholds were measured in separate

blocks for each of twenty individual textures chosen to span a wide range of

appearances and represent a variety of scales, materials and environments.

For each threshold measurement, a single texture was used on every stimulus

presentation, so that modulation depth thresholds, and therefore any

difference between the intact and phase-scrambled conditions, could be

assessed separately for each texture.

A modulation depth threshold was determined for each texture in the

intact and scrambled conditions. Data were collected for three observers,

two of whom (JH & AM), were naive to the hypotheses of the experiment.

2.5.2 Results

The results from this experiment are shown in Figure 2–4, where

each symbol indicates the thresholds for the scrambled versus the intact
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conditions for a particular texture. The dashed line indicates the 1:1 ratio

between the two thresholds, which is where we would expect the data to fall

if there were no effect of phase scrambling. The thresholds for all textures

tested fall below the 1:1 line, indicating that the intact thresholds are

higher than the scrambled thresholds, in agreement with the results from

Experiment 1. On average, intact thresholds are 2.25 dB (SD = 0.84 dB)

higher than scrambled for observer LA, 2.48 dB (SD = 1.08 dB) higher for

JH, and 2.44 dB (SD = 1.29 dB) higher for AM. Overall, thresholds for

all subjects show a substantial, statistically significant reduction after the

carrier is phase scrambled : LA (t(19) = 8.46, p < .05, d = 2.00), AM

(t(19) = 4.89, p < .05, d = 2.00) and JH (t(19) = 7.3, p < .05, d = 1.99).

From the scatter plots in Figure 2–4 it is apparent that while thresholds

for all textures are affected by phase scrambling to some extent, some

thresholds are reduced substantially more than others. One contributing

factor appears to be the magnitude of the intact threshold; textures with

higher intact thresholds seem to show more reduction than those with lower

intact thresholds. A one-tailed Spearman correlation shows a significant,

positive correlation between the intact threshold and the threshold reduction

in decibels: LA (r(20) = 0.72, p < .05), AM (r(20) = 0.60, p < .05), and

JH (r(20) = 0.84, p < .05). Thus the textures that are more difficult on the

segmentation task are the ones that benefit most from phase scrambling.

To get an idea of what specific texture attributes might contribute to

the differing thresholds, we sorted the textures into a histogram (Figure 2–5)

based on the threshold change for each texture averaged across the three

observers. The textures that have a small effect of phase scrambling tend

to be made up of densely packed, smaller features or markings, while the

71



textures that showed a large effect of phase scrambling tend to be composed

of larger elements with longer continuous contours.
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2.6 Experiment 3

In the previous experiments, the textures were all equated for RMS

contrast, and this metric (like other low-order image statistics) is preserved

after phase scrambling. Nevertheless, it is conceivable that our results

could be explained by systematic differences in detectability between the

intact and phase-scrambled texture conditions. If the scrambled textures

were easier to detect than their intact counterparts, they might be at an

advantage in the contrast boundary segmentation task. Here, the same task

was undertaken as before on a representative subset of the textures from

Experiment 2, but using stimuli constructed from textures at fixed contrast

increments above their individually measured detection thresholds.

2.6.1 Methods

In this experiment, two thresholds were determined in separate blocks

for each condition: first the carrier contrast threshold, and then the mod-

ulation depth threshold. As before, ‘modulation depth’ (m in Equation

2.1) refers to the extent to which the envelope, in this case a contrast

change, is applied. ‘Carrier contrast’ refers to the RMS contrast level of the

unmodulated carrier.

We measured carrier contrast thresholds using a method of constant

stimuli for each condition, texture and observer. Five logarithmically spaced

carrier contrast levels were tested at a modulation depth of 100% (Figure 2–

6) using the same left- or right-oblique segmentation task. Then, to compare

modulation depth thresholds as directly as possible, we presented the stimuli

at 6dB above each observer’s carrier contrast threshold for that particular

texture. We tested eight natural textures from the previous subset of

twenty for this experiment. Carrier contrast, and then modulation depth
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thresholds, were measured for two observers, one of whom (JB) was nave to

the purposes of the experiment.

2.6.2 Results

The carrier contrast threshold results are shown in Figure 2–7, where

each symbol indicates the scrambled and intact thresholds for a particular

texture. The points fall very close to the equality line, suggesting that there

is no systematic effect of phase scrambling on detectability. We found no

statistically significant differences between the carrier contrast thresholds of

intact and scrambled textures for either observer LA (t(7) = 0.412, p > .05)

or JB (t(7) = 2.038, p > .05). We also found relatively little variability

between textures; the axes illustrated in Figure 2–7 span a range of only

one octave, compared with a four-octave range illustrated in Figure 2–4.

This finding of very similar detection thresholds for different RMS contrast-

equated textures, whether intact or scrambled, is consistent with the report

of Bex and Makous (2002) that RMS contrast provides a good contrast

metric for natural images.

Modulation depth thresholds for the detectability-equated intact and

phase-scrambled textures are shown in Figure 2–8. All points lie below

the 1:1 line as in Experiment 2, indicating that thresholds were again

lowered following phase scrambling. Comparing the average effect of phase

scrambling, we find that intact thresholds are still 2.17dB (SD = 0.83)

higher than scrambled for observer LA, and 2.53dB (SD = 1.28) higher for

observer JB. The difference between the thresholds in the intact and phase

scrambled conditions remains statistically significant for both observers:

LA (t(7) = 5.734, p < .05, d = 2.59) and JB (t(7) = 4.326, p < .05, d =

2.11). Furthermore, the large effect sizes (d) reported here are similar to

those found in Experiment 2, as are the average changes in threshold,
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indicating that the effect observed in Experiments 1 and 2 is not the result

of differences in effective RMS contrast for intact and phase-scrambled

textures.
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2.7 Discussion

In this study we found that the presence of higher-order statistics

impaired performance on a basic texture segmentation task. In Experiment

1 we used an ensemble of more than 200 natural texture photographs to

show that it is more difficult to segment contrast boundaries imposed

on intact textures than those imposed on phase-scrambled textures. We

extended this result in Experiment 2, showing that this effect occurs in

varying degrees for different individual textures. Finally, in Experiment 3

we showed that intact and scrambled textures are about equally detectable,

and that scaling the carrier contrast to the detection thresholds of individual

textures and observers does not eliminate or even reduce the observed effect.

Based on these results, we cannot rule out the possibility that some kinds of

higher-order statistics could contribute positively to segmentation; we simply

conclude that whatever help some statistics might contribute, they do not

overcome the impairment imposed by other statistics.

Our finding that higher-order information impairs performance runs

contrary to what has been found in many non-segmentation tasks such

as texture discrimination (F. Phillips & Todd, 2010), spectral slope dis-

crimination (Thomson & Foster, 1997) and scene recognition (Hansen &

Hess, 2007), where higher-order statistics improve performance. However,

higher-order statistics have previously been found to impair the detection

of distortions in natural scenes (Bex, 2010). As in the work described here,

other studies have found that perception depends on more than simply the

presence or absence of higher-order statistics; it depends on some statistics

more than others, and the degree of their importance varies from image to

image for reasons that are not entirely clear (Hansen & Hess, 2007; Bex,

Solomon, & Dakin, 2009; F. Phillips & Todd, 2010).
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In the past, different investigators have considered various kinds of

‘higher-order’ statistics - excellent reviews can be found in Kingdom et al.

(2001) and Landy and Graham (2004). Julesz et al. (1978) emphasized the

importance of considering higher-order statistics in segmentation models,

but their use of the term is not congruent with the more conventional

Fourier-based statistics that we employed in this study. By controlling n-th

order correlations, one can create images with identical autocorrelation

functions, and therefore identical Fourier amplitude spectra in an ensemble

average (Julesz, 1962; Julesz et al., 1978; Victor, Chubb, & Conte, 2005).

The Julesz constraint that second-order correlations be identical does not

preclude individual samples of these populations from differing in their

second-order statistics (Yellott Jr, 1993; Chubb & Yellott, 2000). Though

Victor (1994) argued that texture statistics, by nature, characterize a

population rather than individual samples, segmentation mechanisms

have access to only a pair of samples at any given moment and so sample

statistics cannot be ignored. Furthermore, these statistics are difficult to

examine in the context of the linear filtering models that are prevalent

in modern vision theory, because the Julesz statistics are not maintained

following linear filtering (S. Klein & Tyler, 1986).

Which higher-order statistics impair segmentation?

What image statistics might be at the root of our results remains

unclear. In the histogram of our stimuli (Figure 2–5), there is a strong

visual impression of a difference in structural appearance between the

textures whose thresholds are least affected by phase scrambling (left side)

and those most affected by phase scrambling (right side). Some specific

apparent differences are relative amounts of high and low spatial frequency
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information, structural sparseness, and local edge structure, which we will

now consider.

Spectral slope. While we find an effect of higher-order statistics on

segmentation, the magnitude of the threshold change could be associated

with individual differences in the amplitude spectra of the textures. It

appears as though the textures whose thresholds are most affected by phase

scrambling might have relatively less energy in the high spatial frequencies

and proportionately more energy at lower frequencies. This difference in

the proportions of low and high spatial frequency information could have

an impact on segmentation mechanisms. To assess the relative amounts of

high and low spatial frequencies in our stimuli, we measured their spectral

slopes by fitting a linear regression to the log-log plot of Fourier amplitude

vs. spatial frequency (Thomson & Foster, 1997; Bex & Makous, 2002) for

each texture - steeper negative slopes would indicate relatively more energy

in the high spatial frequencies. The results are plotted in Figure 2–9A

as a function of the change in threshold between intact and scrambled

conditions - note that most of the spectral slopes were close to -1, as

expected for natural images (Field, 1987; Ruderman, 1997). There does not

appear to be any relationship between threshold change and spectral slope,

and a Pearson correlation on these variables failed to find any significant

correlation (r(20) = −0.39, p > .05). This lack of relationship suggests that

an explanation of our results based on relative differences in high vs. low

spatial frequencies is unlikely.

Sparseness. Colloquially, structural sparseness can be defined in terms

of the amount of ‘stuff’ that appears to be in a texture (Adelson, 2001). A

collection of 50 leaves seen close up can be considered a ‘sparse’ texture,

while a field of millions of blades of grass seen from a distance appears less
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sparse. Textures that have been phase scrambled do not appear sparse

because there are no local concentrations of energy (e.g., small edges or

other texture markings) and complementary regions of blank space forming

discrete objects. Upon phase scrambling, the pixel and wavelet distributions

become normal (Bex & Makous, 2002), rather than the kurtotic distribution

that is a signature of sparseness (Kingdom et al., 2001). Sparseness is

well known as a key attribute of natural scenes (Ruderman, 1997; Field,

1987), but it is also a primary property of textures. Victor and Conte

(1996) proposed ”granularity” as an important higher-order distinction

between textures, which they investigated using textures formed with a

range of element sizes. Computer science and image statistical methods

have described ‘coarseness’ as a major dimension along which textures vary

(Rubner & Tomasi, 1998). Durgin (1995, 2008) showed that density is a

primitive texture feature for which adaptation effects can be measured, and

Kingdom et al. (2001) demonstrated that textures can be discriminated

based on sparseness. However, none of these previous efforts examined the

impact of sparseness on boundary segmentation.

To measure sparseness, Kingdom et al. (2001) suggested intensity

histogram or wavelet-based kurtosis, and Hansen and Hess (2007) developed

a wavelet-based measure of kurtosis, the LSSM, to assess the sparseness of

natural images. We computed these metrics for each texture, and plotted

them against the textures’ change in threshold (Figure 2–9B, C) - in both

cases, there is no systematic relationship, as confirmed by the lack of

significant correlation between threshold change and either pixel kurtosis

(r(20) = −0.15, p > .05) or LSSM (r(20) = −0.07, p > .05). These results

suggest either that sparseness is not a relevant higher-order statistic, or

that the sparseness metrics we employed are not sufficiently sensitive to
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sparseness. Note that textures appear relatively dense compared to images

of scenes, and it may be that these sparseness metrics perform less well in

this context.

Edge structure. It might not be the global arrangement of the energy

(sparseness) that determines the difference in the thresholds, but the varying

density of broadband features within the image (local edge structures). The

textures that were more affected by phase scrambling (Figure 2–5, right

side) appear to have more prominent local edges. We assessed the amount of

local edge structure using a modified version of the method for computing

edge density outlined in Bex (2010). We integrated a Canny edge map

(constructed using Matlab’s canny edge detector), and normalized by the

number of pixels in the texture to obtain an index of edge density. In a plot

of this edge density index against the textures’ change in threshold (Fig-

ure 2–9D), we can see a systematic relationship: the textures with greatest

effect of phase scrambling had higher edge density indices, while those with

least effect had lower edge densities. This relationship was confirmed by

a significant correlation between this rough measure of edge density and

threshold change (r(20) = −0.80, p < .05), suggesting that some aspect

of both broadband edges and the density in which they occur may impact

the effect of higher-order image statistics on segmentation performance.

However this result is also consistent with a role for sparseness, since sparser

textures would produce smaller indices of edge density. Untangling these

factors may be problematic with natural texture photographs, but using

synthetic textures, where both sparseness and local edge structure can be

controlled, is a clear way forward.

Higher-order statistics impair segmentation performance
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Why the presence of higher-order statistics might impair the segmenta-

tion of contrast boundaries is an open question.

Camouflage or masking. It could be the case that luminance-defined

contours in intact textures camouflage the target boundary - however

luminance noise has little impact on contrast boundary segmentation (Allard

& Faubert, 2007), so we do not think that this causes our results. Aside

from luminance variation, sparse images contain low- and high-contrast

regions, and this spatial modulation of contrast could mask the modulation

that observers are tasked with identifying (Allard & Faubert, 2007). We

consider this unlikely for three reasons: (1) the observer knows that the edge

will be in one of two positions, so there is very little positional uncertainty;

(2) the textures are randomly flipped from trial-to-trial, so any texture

features that happen to appear along the envelope boundary will only affect

some (25%) of the trials; and (3) second-order masking is spatial-frequency

dependent (Hutchinson & Ledgeway, 2004), which suggests that such high

spatial frequency contrast noise should not affect performance on our low

spatial-frequency boundary. Low spatial-frequency contrast noise should not

present a problem because we specifically excluded textures that were too

coarse or had large-scale contrast gradients. However the precise bandwidths

of the noise, boundary, and second-order mechanisms are ill-defined, so

while it seems unlikely we cannot rule out the possibility that second-order

masking plays a role in determining our results.

Subjective texture selection. One might argue that including those tex-

tures we excluded based on their subjective characteristics could somehow

reduce or nullify the observed effect of phase-scrambling. Because we find a

strong correlation between threshold and Canny edge density, we performed

the analysis of Figure 2–9D on the 49 textures excluded in the subjective
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stage of texture screening. We found that they have systematically lower

edge density (M=0.060, SD= 0.02) than the 20 we tested in Experiment 2

(M=0.095, SD=0.03), and thus their inclusion would in fact have been more

likely to increase the size of the effect we observe.

Edge vs. region processing. Finally, it may be that phase-scrambled and

dense images provide more support along the contrast boundary itself, and

so are easiest to segment. This explanation supposes that the mechanism

responsible for segmentation preferentially uses information near the texture

boundary (an edge-based process) rather than integrating information

throughout the entire stimulus (a region-based process). This is possible,

but is a departure from the common conception of texture segmentation

mechanisms as two-stage filter models with large second-stage filters that

can operate across the entire region. In the context of this model, a strong

reliance on edge support would be surprising, particularly for contrast

modulations.

The regional summation in the second stage of a standard energy model

is not explicitly selective for the local features encoded in higher-order

statistics, but there are various ways to adapt this model to enable such

selectivity. The simplest modification of a standard FRF model would

entail changing the nonlinear function separating the first- and second-

stage filters. Graham and Sutter (1998) found that an expansive power-law

nonlinearity with an exponent between 3 and 4 better accounted for their

findings with element arrangement patterns. By using a nonlinearity that

is more expansive than a square-law, textures with localized areas of high

energy (such as sparse natural images) would give a greater response. A

more serious modification to the FRF scheme would be to use first-stage

filters that act like nonlinear ‘feature-detectors’ - for example, Martin et
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al. (2004) used histograms of different types of local features, defined by

the co-localizations of wavelet responses, to segment texture boundaries.

Finally, one might add an additional nonlinear process beyond the second

stage. Graham et al. (1993) argued that an additional stage of a filter-rectify

cascade (i.e., Filter-Rectify-Filter-Rectify-Filter rather than FRF) was

necessary to segment some element arrangement patterns that differed only

in their higher-order statistics.
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2.8 Conclusion

We have shown that texture segmentation mechanisms are sensitive

to the information in the phase spectrum of an image. From these findings

we cannot be certain which specific statistics contribute, but it appears

as though sparseness and local edge structure in particular might be

relevant statistics in this task. To address these issues, we intend to use

synthetic stimuli to isolate these specific higher-order statistics, and to gauge

their impact on segmentation independently. It is not yet clear whether

current models of texture segmentation account for how humans process

higher-order statistics, but testing and modifying those models may prove

to be informative. A detailed examination of the effects of higher-order

statistics as an ensemble and as individual exemplars (e.g., sparseness) on

segmentation will be useful for refining models to the point where we can

begin to apply them to biologically relevant stimuli. We can conclude that

while textures are segmented using a limited subset of the information they

contain, this subset must be expanded to include higher-order statistics in

some capacity.
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Figure 2–1: Examples of excluded (A) and included (B) natural textures.
(A-top): Images that were excluded due to a subjective judgment that they
were not sufficiently uniform, homogeneous, in focus, or contained prominent
segmentable objects. (A-bottom): images that were excluded during com-
puter screening due to inhomogeneity of luminance or contrast between two
or more quadrants. (B): Images that were included in the texture corpus.
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Figure 2–2: Examples of the stimuli used to determine modulation depth
thresholds in experiments 1, 2, and 3 shown at three modulation depths
(top-bottom: 75, 50 & 32). The envelope is a left- or right-oblique half-disc
contrast modulation applied to an intact (left) or phase-scrambled (right)
natural texture.
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Figure 2–3: Modulation depth threshold results from Experiment 1 for four
observers for intact and scrambled texture conditions. Thresholds were lower
for the phase-scrambled textures (light bars) than for the intact textures
(shaded bars). Error bars represent ± 1 standard error.

87



4 8 16 32
4

8

16

32

JH

Sc
ra

m
bl

ed
 T

hr
es

ho
ld

 (%
)

Intact Threshold (%)

4 8 16 32
4

8

16

32

LA

4 8 16 32
4

8

16

32

AM

Figure 2–4: Modulation depth threshold results from Experiment 2 for three
observers. Each symbol plots the phase-scrambled versus the intact thresh-
old for a particular texture. In almost all 20 textures tested, for all three
observers, the symbols lie below the 1:1 line (dashed), indicating that the
intact threshold is higher than the phase-scrambled threshold. The amount
of reduction, or the distance from the 1:1 line, is texture-dependent. Error
bars show the standard error on each measurement.

88



Figure 2–5: Histogram of texture carriers used in Experiment 2, based on
average magnitude of the effect of phase scrambling. The textures that show
a larger change (> 2 dB) tend to have more prominent edges, and appear to
be more sparse.
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Figure 2–6: Stimuli used to determine carrier contrast thresholds in Exper-
iment 3 shown at a range of carrier contrasts (top-bottom: 8,5 & 3% RMS
contrast), all with 100% modulation depth. Thresholds were determined for
intact (A) and scrambled (B) textures.
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Figure 2–7: Carrier contrast threshold results from Experiment 3 for two
observers. Each symbol plots the phase-scrambled vs the intact threshold for
a particular texture. The dashed line indicates where a texture’s intact and
phase-scrambled thresholds correspond exactly. Carrier contrast thresholds
are centered on the 1:1 line, suggesting no systematic change in detectabil-
ity when a texture is phase scrambled. Variation in thresholds between
observers, textures, and conditions is minimal.
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Figure 2–8: Modulation depth threshold results from Experiment 3 for two
observers. Each symbol plots the phase-scrambled versus the intact thresh-
old for a particular texture, with each texture a fixed increment above its
detection threshold. The dashed line indicates where a texture’s intact and
phase-scrambled thresholds correspond exactly. Modulation depth thresh-
olds measured with these detectability-equated contrasts are still systemati-
cally lower for scrambled than for intact textures.
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Figure 2–9: Relationship between image statistic indices and the change in
segmentation threshold between intact and scrambled conditions in decibels.
(A) Slope of fall-off of Fourier spectrum. (B) sparseness, as measured using
intensity histogram kurtosis. (C) sparseness, as measured with Hansen and
Hess (2007)’s LSSM a wavelet-based metric developed for natural scenes.
(D) Edge density, modified from Bex (2010). Note the lack of relationship
between threshold change and kurtosis, LSSM, or slope, but a clear correla-
tion between edge density and threshold change.
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3 Texture sparseness, but not
local phase structure, impairs second-
order segmentation

In the previous study I showed that higher-order statistics impaired

texture segmentation, and used a rank-ordering method to infer that sparse-

ness and local phase alignment were important statistics. In this study, I

create naturalistic synthetic textures to manipulate these individual image

statistics experimentally. I compare contrast and orientation boundary

segmentation thresholds between textures varying in their structure and

sparseness. These experiments demonstrate that texture sparseness and

global phase structure impair orientation and contrast boundary segmen-

tation, but that local phase structure has little impact on segmentation. I

simulate the experiment using a standard filter-rectify-filter model, which I

optimize to accommodate the psychophysical data by employing a compres-

sive nonlinearity.



CHAPTER 3
Texture sparseness, but not local phase structure, impairs

second-order segmentation

3.1 Abstract

Texture boundary segmentation is typically modeled by comparing dif-

ferences in Fourier energy (i.e. low-order texture statistics) on either side of

a boundary, but in a previous study (Arsenault, Yoonessi, and Baker, 2011)

we showed that the distribution of that energy within the texture (higher-

order statistics) also influences contrast boundary segmentation. Here we

examine which higher-order texture statistics influence the segmentation of

contrast- and orientation-defined boundaries. We use naturalistic synthetic

textures to manipulate the sparseness, global phase structure, and local

phase alignments of carrier textures, and measure segmentation thresholds

based on forced-choice judgments of boundary orientation. We find a similar

pattern of results for both contrast and orientation boundaries: (1) removing

all structure by globally phase scrambling the texture reduces thresholds

substantially, (2) decreasing sparseness also reduces thresholds, and (3)

removing local phase alignments has no effect on segmentation thresholds.

A two-stage filter model with an interposed compressive nonlinearity can

account for the pattern of contrast and orientation boundary segmentation

data. From these results, it is apparent that sparseness, created by global

phase structure, impairs second-order segmentation.
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3.2 Introduction

Boundaries between objects result in discontinuities in a variety of im-

age properties, among which changes in texture are a particularly interesting

example because the means by which they are segmented is not yet well

understood. Texture can be represented in terms of spatial statistics, but

it is unclear what subset of these statistics is actually employed by segmen-

tation mechanisms. Research on texture segmentation usually focuses on

those statistics that are different on either side of a boundary and that are

sufficient to enable segmentation, such as orientation. However textures con-

tain, and their neuronal representation may include, many other statistics

that are constant on either side of the boundary. For example, in Figure 3–1

the ivy forms a different percept than the bark, even though both contain

contrast-defined boundaries. Such texture statistics may not vary across

the boundary so they cannot enable segmentation but, if the form they

take affects the efficiency of segmentation mechanisms, their presence could

influence segmentation.

Much previous research has aimed to determine the precise statistical

differences that enable segmentation, but few have considered which texture

statistics influence performance when they are common to the textures

on either side of the boundary. Caelli (1980) examined the influence of a

box-shaped feature common throughout the stimulus on segmentation of

a boundary defined by a difference in the orientation of the line segments

within the boxes. He found that segmentation was more difficult when

the boxes were present than when the line segments were presented alone.

E. Arsenault, Yoonessi, and Baker Jr (2011) used contrast modulations

applied to natural textures to show that higher-order statistics, though

they are not relevant to the segmentation task, impair contrast boundary
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segmentation. Following a rank-ordering of textures based on the difference

in threshold between the intact and phase-scrambled conditions, we noticed

that textures with a greater difference appeared to be more sparse as well.

We applied a number of image statistical measures that have been used in

the literature to measure density of textures or natural scenes, and found

that a measure of edge density correlated strongly with the difference

between thresholds. From this, we suggested that local edge structure

and sparseness were two candidates for texture properties that might

cause such a performance difference. It could be the case that the overall

contrast boundary is masked by local contrast modulations caused by the

regions of high-contrast features that form the structure of sparse textures

(Allard & Faubert, 2007), if they are of a low enough spatial frequency

to interfere with the task boundary (Hutchinson & Ledgeway, 2004).

Additionally, changes in higher-order texture properties could produce

different responses following a non-square-law rectification (i.e. a sparse

texture will have higher peaks that would be accentuated by an expansive

nonlinearity). Given these possibilities, sparseness and local broadband

edges are particularly logical statistics of interest, because both result in

localized concentrations of image energy.

Previous efforts to understand segmentation of naturalistic textures

have faced some serious limitations. It is difficult to target specific statistics

using natural textures because individual properties cannot be varied

independently or manipulated parametrically. While we have reason

to suspect that sparseness or local edge structure might be important

influencing statistics, our results are only correlational. In the following

experiments, we addressed these challenges by creating synthetic textures

consistent with observations of the statistical properties of natural textures
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using broadband edge-segment micropatterns. These textures allowed

us to not only manipulate global structure through phase scrambling

as before, but also the presence of local structure (by phase-scrambling

individual micropattens) and the sparseness (by changing the number of

micropatterns).

Here, we first aim to verify that these synthetic textures contain the

relevant properties of natural textures by demonstrating again the effect

of phase-scrambling on contrast boundary segmentation thresholds as in

E. Arsenault et al. (2011). By varying texture density and phase structure,

we are also able to differentiate the influence of local phase alignments,

global phase alignments, and sparseness in segmentation of both contrast

and orientation boundaries. We chose to study contrast boundaries because

they are the simplest kind of texture boundary, and orientation boundaries

because we have observed that natural textures are frequently narrowband

for orientation and this type of boundary has been widely studied (Landy

& Oruç, 2002; Meso & Hess, 2011). Finally, we present a filter-rectify-filter

model with a compressive intermediate nonlinearity that accounts for the

pattern of both our contrast and orientation boundary segmentation results.
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3.3 General Methods

3.3.1 Stimuli

Each stimulus consisted of a single texture pattern that was contrast-

modulated with a half-disc envelope, or two texture patterns ‘quilted’

together to form a disc with distinct halves (Figure 3–2C). The textures

we used were designed to mimic the image statistics of natural textures,

while allowing for control of specific texture properties. These synthetic

textures were constructed by summing together a large number of randomly

scattered edgelet micropatterns.

Micropatterns

To emulate natural textures, we used edgelet micropatterns that

contained a spatially localized edge composed of phase-aligned Fourier com-

ponents. The edge was created by adding together the Fourier components

of a half-cycle of a square wave (f, 3f, 5f, , nf where n = size/4), with

decreasing amplitudes (scaled by 1/f) and aligned in sine-phase (φ = 0).

One cycle of the lowest spatial frequency pattern was combined with like-

oriented in-phase harmonics of gratings (G) to form a square wave ‘edge’

(D) (Equation 3.1):

Dx,y(θ, s) =

s/4∑
j=0

1

f
Gx,y(θ, φ, f, s), f = 2j + 1 (3.1)

Once the edge had been created, we applied a Gaussian window, whose

sigma was 1/8 of the size of the micropattern, for the final edgelet (D′)

(Figure 3–2A - top) (Equation 3.2):

D′x,y = Dx,y + e
−
(

(x−s/2)2

2σ2x
+

(y−s/2)2

2σ2y

)
(3.2)
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To generate novel textures rapidly, we created a library of 48 such

micropatterns at four widths (16, 32, 64, 128 pixels, or 0.22, 0.44, 0.87, and

1.74 degrees of visual angle), each at twelve orientations evenly spaced in 30

degree increments.

In addition to square-wave edgelets, we created phase-scrambled

edgelets in a similar manner but with the components’ phases (φ) random-

ized rather than aligned (Figure 3–2A - bottom). A total of 50 versions of

the phase-scrambling (e.g., Figure 3–2B) were added to the library at each

micropattern size and orientation.

Textures

Edgelets drawn from the library were randomly positioned on a

544×544 pixel canvas and summed where they overlapped. While the

square-wave edgelets are luminance-balanced with equally sized light and

dark regions, the random phases of the scrambled edgelets may result in

net mean luminance differences from the gray background. To luminance-

balance the texture stimuli, when a phase-scrambled edgelet was randomly

selected for inclusion in a texture, it had a 50% chance of having its polarity

reversed before being drawn (Figure 3–2B). To obtain an approximately

1/f amplitude spectrum, four sizes of micropatterns (16, 32, 64, and 128

pixels) were added in proportions necessary to achieve equal coverage for

each spatial frequency (Ruderman, 1997; Kingdom et al., 2001). Thus,

for each 128-pixel micropattern, 4, 16, and 64 of the progressively smaller

micropatterns were be added - so each texture contained an integer multiple

of 85 micropatterns. The possible positions of the micropatterns were

constrained to lie entirely within a 544×544 canvas, which was subsequently
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cropped to the central 480×480 region after all the micropatterns had been

drawn.

Three density conditions were created by varying the number of

micropatterns within each texture stimulus. The low density condition

had 595 micropatterns, medium density 1530, and high density 2975.

These conditions were chosen to result in textures that were qualitatively

different in appearance, while satisfying the above constraints to produce an

approximately 1/f amplitude spectrum.

For each density, three structure conditions, where higher-order struc-

ture was randomized, were created. Intact (INT) textures were composed

from square-wave edgelets as described above - these textures were rich in

both global (arrangement of micropatterns) and local (broadband edges)

structure. By one-dimensionally phase-scrambling the individual edgelets we

produced a locally scrambled (LS) texture that had an equivalent amount of

global structure but lacked local phase alignments (broadband edges). We

created globally scrambled (GS) textures by applying a Fourier transform to

both the intact texture and a white-noise image of the same size. The phase

values in the original texture were replaced with those of the white noise

and inverse-transformed, thus leaving the power spectrum unchanged while

completely randomizing the phases (Dakin et al., 2002).

Due to the random arrangement of micropatterns, some of the INT and

LS textures exhibited substantial inhomogeneity, and thus were unsuitable

to use as carrier patterns. To circumvent this problem we rejected textures

having differences in luminance or RMS contrast greater than 3dB between

quadrants of the texture (E. Arsenault et al., 2011). In the low density

condition, only about 12% of the generated textures passed this test; in the

medium density condition, about 47% of textures passed; and in the high
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density condition, about 76% of textures passed. Each texture was scaled to

have a mean value of 0, and its extreme luminance values were clipped at ±

3 standard deviations and scaled to fit in the range of intensities between ±

1.0.

3.3.2 Boundary Creation

Contrast boundaries: To create contrast-defined boundaries, textures

were contrast-modulated by an envelope pattern, consisting of an obliquely

oriented half-disc, graduated with a cosine taper. The final stimulus, Sx,y,

is the product of the texture carrier, Cx,y, and the envelope, Ex,y, scaled by

the modulation depth, m:

Sx,y = Lo{1 + cCx,yWx,y((1 +mEx,y)/2)} (3.3)

where |Cx,y| ≤ 1.0, |Ex,y| ≤ 1.0, and 0 ≤ Wx,y ≤ 1, Lo is the mean

luminance, m is the modulation depth, and c is a contrast scaling factor

which is adjusted to produce the desired RMS contrast. The top row of

Figure 3–3 shows three examples of stimuli with contrast boundaries at

different modulation depths.

Orientation boundaries : Orientation-defined boundaries were created

between different textures using a method of ‘quilting’ described by Watson

and Eckert (1994) and Landy and Oruç (2002), and illustrated in Figure 3–

2C. To modulate two texture carriers (CA and CB) with respect to one

another we used a half-disc envelope function (Ex,y), scaled to create the

carrier A’s modulator (EA), and scaled and inverted to create carrier B’s

modulator (EB):

EA =
√

(1 +mEx,y)/2 (3.4)
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EB =
√

(1−mEx,y)/2 (3.5)

The modulation depth parameter (m) scales the difference between the

envelope halves.

The luminance-balanced carrier textures (CA and CB) are scaled to

yield the desired contrast with scaling factor c, and their means are adjusted

so that the final stimulus will be luminance balanced after the envelope has

been applied.

C′A = cCA −
∫∫

cCAEA − 0.5∫∫
EA

(3.6)

C′B = cCB −
∫∫

cCBEB − 0.5∫∫
EB

(3.7)

The final stimulus (Sx,y) is the sum of the two carriers, each spatially

weighted by their respective envelopes:

Sx,y = L0{1 + C′AEA + C′BEB} (3.8)

The weight is specified by the modulation depth, m in Equations

3.4 and 3.5. At a modulation depth of zero, the resulting stimulus is a

homogeneous blend of the two textures. At a modulation depth of 100%,

one half of the disc is entirely CA, and the other half entirely CB, with a

smooth taper between them at the boundary. The bottom row of Figure 3–3

shows three examples of stimuli with orientation boundaries at different

modulation depths.
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3.3.3 Apparatus and Observers

The stimuli were presented on a CRT monitor (Sony Trinitron Multi-

scan G400, 81 cd/m2, 75 Hz, 1024×768 pixels), gamma-linearized with a

digital video processor (Bits++, Cambridge Research Systems) for greater

bit-depth at low contrasts. Stimulus patterns appeared in a central 480×480

pixel patch on a mean grey background. Observers viewed the stimuli

from a distance of 114 cm, resulting in a stimulus visual angle of approxi-

mately 6.5 degrees. The experiment was run on a Macintosh (Desktop Pro,

MacOSX) using Matlab and PsychToolbox (Brainard, 1997; Pelli, 1997).

3.3.4 Task

Observers were presented with a central fixation point and initiated

each 100-millisecond stimulus presentation with a button press. The

stimulus contained a boundary that was oriented 45 degrees, either left

or right oblique, and observers indicated the perceived orientation with a

button press. Feedback was not provided. The screen was maintained at the

mean grey background between stimulus presentations.

We determined an appropriate range of testing values from pilot

experiments for each observer, and used a method of constant stimuli over

five logarithmically spaced level values of modulation depth to measure

each threshold. All stimuli were presented at a suprathreshold carrier RMS

contrast of 14.5%. A minimum of three blocks of 100 trials, with 20 trials

per level, were run for each condition to yield a total of at least 60 trials per

level.

3.3.5 Data Analysis

Percent-correct data from a total of 600 trials were fit with a logistic

function, and a threshold was interpolated at the 75% correct point.

Curve-fitting was performed using the statistics package Prism (GraphPad

105



Software, Inc.), and standard errors were estimated with its bootstrapping

algorithm.

We used two-way ANOVAs to test for significance with a criterion

α = 0.05. We measured the effect size (D. Klein, 2005) using Cohen’s d with

the standardizer s computed as:

s =
√
σ2
1 + σ2

2/2. (3.9)

where σ1 and σ2 are the sample standard deviations of the compared

conditions.
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3.4 Experiment 1: Contrast boundary segmentation

In this experiment we set out to (1) test whether our finding that

higher-order statistics impair contrast boundary segmentation in natural

textures (E. Arsenault et al., 2011) could be replicated using synthetic

edgelet textures and, if so, (2) investigate the influence of sparseness

and local edge structure on segmentation thresholds. Given our previous

findings, we expect better performance in the globally scrambled (GS)

condition than in the intact (INT) condition, at least for some values

of density. If local edge structure influences segmentation, we expect a

difference between the LS and INT conditions; if sparseness influences

segmentation, we expect a decrease in threshold as density is increased in

the INT and LS conditions.

3.4.1 Methods

This experiment measured the modulation depth threshold for segmen-

tation of contrast-defined boundaries over a number of synthetic textures,

created as described in the general methods. We tested intact, locally,

and globally scrambled textures at each of three density levels. These are

depicted in Figure 3–4 with the structure changes (INT, LS, GS) varying

across columns and the density increasing down each column. Thresholds

were measured for four experienced psychophysical observers with normal or

corrected-to-normal vision, three of whom (JH, AR, PCH) were naive to our

hypotheses.

3.4.2 Results

Contrast boundary segmentation results are shown in Figure 3–5,

for individual observers in the upper four graphs, and as a group average

in the lower graph. For all observers the global scramble (GS) condition

(open triangles) yielded the lowest thresholds, particularly at low and
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moderate densities. This result indicates that higher-order statistics

impair segmentation, in agreement with our earlier results for natural

textures (E. Arsenault et al., 2011). Because phase scrambling eliminates

any effect of density, it was not surprising that we found no difference in

thresholds across different density levels in the GS condition (Figure 3–5,

open triangles). On average we found no difference between segmentation

thresholds for the intact (INT, filled circles) and locally scrambled (LS, open

circles) texture carriers. The impact of density on performance for these

textures was modest, but there was a trend towards higher thresholds at

lower densities.

A two-way ANOVA confirmed a main effect of structure (whether the

texture is in the GS, LS, or INT condition) F (2, 18) = 28.41, p < .05,

but not density F (2, 9) = 1.510, p > .05, and an interaction between

structure and density F (4, 18) = 3.236, p < .05. The interaction between

structure and density suggests that there is an effect of density in the INT

and LS conditions, but not in the GS condition (as expected). Post-hoc

Bonferroni tests (Table 3–1) indicated no difference between the INT and

LS conditions, but both are significantly different from the GS condition

at the low density of 595, and the moderate density of 1530. The trend for

decreasing effect sizes (d) with increasing density supports our observation

that thresholds in the INT and LS conditions are lower at higher densities.

From these results we conclude that our synthetic textures capture at

least some of the image statistics that are related to the phase scrambling

effect we observed earlier in natural textures (E. Arsenault et al., 2011). In

both experiments, we observed substantially lower segmentation thresholds

in textures that were completely phase-scrambled compared to textures

that were completely intact or only locally scrambled. Furthermore, because
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Density t p d
INT vs. GS

595* 4.546 < .05 1.58
1530* 2.783 < .05 1.34
2975 2.217 > .05 2.02

LS vs. GS
595* 6.999 < .05 4.41
1530* 3.402 < .05 2.22
2975 2.087 > .05 2.38

INT vs. LS
595 2.453 > .05 0.76
1530 0.618 > .05 0.32
2975 0.130 > .05 0.10

Table 3–1: Results of Bonferroni post-hoc tests for contrast boundary seg-
mentation. t is the Bonferroni-corrected t statistic, p the significance level, d
Cohen’s d, and * indicates a statistically significant comparison.

segmentation thresholds decrease as density is increased it appears that

sparseness and global structure impair contrast boundary segmentation, but

because the intact and locally scrambled conditions are the same, it appears

that local phase structure does not.
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3.5 Experiment 2: Orientation boundary segmentation

In the previous experiment we found that global phase structure,

specifically sparseness, influenced contrast boundary segmentation. This

experiment aimed to extend those findings to texture boundaries defined

by orientation. The structure of the models used to segment orientation-

defined boundaries are very similar or the same as those used to segment

contrast boundaries - two stages of linear filtering separated by a pointwise

nonlinearity - so we expect the two conditions will produce a similar pattern

of results.

3.5.1 Methods

In this experiment, we measured modulation depth thresholds for

observers segmenting boundaries defined by orientation. To maximize

orientation contrast we used pairs of textures, each texture narrowband for

orientation with micropatterns oriented at 0 and 90 degrees respectively

to form a ‘herringbone’ along the ± 45 degree boundary in the quilted

stimulus. As in the contrast boundary segmentation task, thresholds were

measured for intact and locally scrambled textures at each of three density

levels (Figure 3–6). The globally scrambled stimulus is only depicted once

because density information is destroyed following phase scrambling so it

was not tested at various density levels. Thresholds were measured for four

experienced psychophysical observers with normal or corrected-to-normal

vision, three of whom (JH, AR, JB) were naive to our hypotheses.

3.5.2 Results

The segmentation thresholds from this experiment are plotted in Fig-

ure 3–7, with individual results in the four top graphs, and group-average

results at bottom. The global scramble (GS) condition was tested once and

cannot vary with density. These results are qualitatively consistent with
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those from contrast boundaries (Experiment 1). Removing global phase

(GS) decreased thresholds substantially relative to the intact texture thresh-

olds, but removing only local phase alignments (LS) had no systematic

effect on segmentation. In both the intact and LS conditions, increasing

micropattern density reduced modulation depth thresholds. Quantitatively,

thresholds were much higher in every condition than those for contrast mod-

ulations, suggesting that orientation boundary segmentation is more difficult

than contrast boundary segmentation. We found that contrast modulation

depth thresholds (Figure 3–5) ranged from 7-40% across all conditions for all

observers tested while orientation modulation depth thresholds ranged from

15-80% across all conditions and observers. In any given condition, for any

given observer who participated in both experiments, the orientation mod-

ulation depth threshold was higher. This is consistent with Motoyoshi and

Nishida (2004), who also found this quantitative difference when comparing

orientation- and contrast-defined boundary segmentation directly.

A two-way ANOVA confirmed main effects of structure (GS, LS, vs.

INT), F (2, 18) = 151.53, p < .05, and density, F (2, 9) = 21.32, p > .05,

and an interaction between structure and density, F (4, 18) = 23.09, p < .05.

The interaction between structure and density results from the decline in

the INT and LS conditions with increasing density. Post-hoc Bonferroni

tests (Table 3–2) confirmed the lack of difference between the INT and

LS conditions, but showed that both were significantly different from the

GS condition at every density. The trend for decreasing effect sizes (d)

with increasing density again suggests that thresholds in the INT and LS

conditions decline at higher densities, as we found in the Experiment 1.

Taken together with the results from Experiment 1, we conclude

that performance measurements for segmenting orientation and contrast
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Density t p d
INT vs. GS

595* 15.12 < .05 8.65
1530* 7.088 < .05 2.99
2975* 3.701 < .05 1.55

LS vs. GS
595* 15.26 < .05 7.88
1530* 7.328 < .05 4.08
2975* 3.722 < .05 2.01

INT vs. LS
595 0.133 > .05 0.08
1530 0.239 > .05 0.11
2975 0.021 > .05 0.01

Table 3–2: Results of Bonferroni post-hoc tests for orientation boundary seg-
mentation. t is the Bonferroni-corrected t statistic, p the significance level, d
Cohen’s d, and * indicates a statistically significant comparison.

boundaries are influenced by the presence of higher-order statistics in the

same way: global phase structure, particularly the structure that results in

sparseness, impairs segmentation, but local edge structure appears to have

no effect.
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3.6 Model

Second-order boundary segmentation has often been understood in

terms of a ‘filter-rectify-filter’ model using early high spatial-frequency

filters to capture the texture, followed by a nonlinearity and a late, low

spatial-frequency filter that recovers the boundary (e.g. Chubb & Sperling,

1988; Malik & Perona, 1990; Landy & Graham, 2004). Here we implement

a model with a filter-rectify-filter architecture in order to see whether the

observed effects of structure and density can be accounted for using such a

model, and if so, for what configuration and parameter values.

3.6.1 Filter-Rectify-Filter Model

We implemented a basic filter-rectify-filter model (Figure 3–8), as

described in the previous study. First the stimulus (Sx,y) was convolved

(∗) with a bank of linear filters (G1) that varied in orientation (θ), spatial

frequency (ω), and phase (φ) (Eq. 3.10):

F1(θ, ω, φ, x, y) = G1(θ, ω, φ) ∗ S(x, y). (3.10)

The filters were log-gabors, generated using code provided by Kovesi

(2000), at two phases (even and odd), six orientations (evenly spaced with

their bandwidths chosen for approximately uniform coverage), and four

spatial frequencies (160, 80, 40, and 20 cpi, each with a bandwidth of

approximately 1.5 octaves). Log gabors are spatial frequency and orientation

bandpass functions that were selected instead of typical gabor functions

because they are zero-balanced in both even and odd phase, and because

they are symmetric in the frequency domain (Field, 1987). The output of

each of these filters (F1) was weighted (wf ), full-wave rectified and raised
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(pointwise) according to a power-law of order k, then pooled over phase (Eq.

3.11):

R(θ, ω, x, y) =
∑
φ

|F1(θ, ω, φ, x, y) · w(f)|k. (3.11)

The values of wf were chosen to equalize responses across spatial scales

for a stimulus with a 1/f spectral falloff, as in the synthetic textures used

here, and is typical of natural images on average (Field, 1987). To this

end, the responses to the higher spatial frequency channels were magnified

relative to the responses to lower spatial frequencies, using a weighting

function w(f) = 2f , where f is an index of spatial frequency with f = 1

designating the lowest spatial frequency. Dot products were computed

between these responses (Rx,y) and two second-stage filters (G2) in the

form of low spatial frequency sine-phase gabor functions that match the two

possible orientations of the boundary in the stimulus (45 and -45 degrees),

as well as its central position:

F2(45, θ, ω) = G2(45) •R(θ, ω, x, y) (3.12)

F2(−45, θ, ω) = G2(−45) •R(θ, ω, x, y). (3.13)

The outputs (o) were computed by pooling the magnitudes of the

late-stage filter responses across the orientations and spatial frequencies of

the early-stage filters. The pooled response magnitudes were raised to a

power (the reciprocal of k), and then combined with additive decision noise

for the final output value. (Equations 3.14 & 3.15). The noise values n1
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and n2 were drawn from a normal distribution with a mean of 0 and whose

standard deviation, or amplitude, a is a free parameter of the model.

o45 =

(∑
θ,ω

|F245(θ, ω)|

)1/k

+ n1 (3.14)

o−45 =

(∑
θ,ω

|F2−45(θ, ω)|

)1/k

+ n2 (3.15)

These outputs were compared, and the late-stage filter (left- or right-

oblique) with the strongest response determined the decision (d) of the

model (Equation 3.16):

d(o) =

 45 if o45 ≥ o−45

−45 if o−45 > o45

(3.16)

3.6.2 Simulation

We tested the model to determine its segmentation thresholds in much

the same manner as we tested our human participants. The model made

left- or right-oblique decisions in 60 trials for each of the stimulus conditions

illustrated in Figure 3–4 and Figure 3–6 on 12 logarimithically-spaced

modulation depth levels that spanned chance to perfect performance. We

measured the percent-correct for each level and stimulus condition, and then

fit a cumulative Gaussian function using Matlab to determine the model’s

threshold. Because the stimuli are randomly generated on each trial, model

results varied from one simulation to another. For this reason, we simulated

the experiment four times and averaged the thresholds. Standard errors

were determined based on variability between the four runs.
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3.6.3 Optimization

The model, as specified, has two free parameters: k, the order of

the power-law nonlinearity, and a the amplitude of the decision noise

distribution from which n1 and n2 are selected. We chose to optimize the

model based on the human orientation boundary segmentation data, because

of its smaller variability between subjects.

We simulated the experiment as described above for each of five power-

law exponents and six noise levels. We evaluated the model’s responses

based on four metrics, chosen to capture key aspects of the pattern of

our data for human performance on this experiment (Figure 3–9A): (1)

The slope of the intact performance with respect to density (INT slope)

was computed between the thresholds at the lowest and highest density

values. This metric captures the rate at which performance improves

with density. (2) The difficulty of the globally scrambled condition (GS

difficulty) compares the GS threshold between the model and humans. (3)

The difference between the intact and locally scrambled conditions (INT-LS

difference) was consistent over density, and so was measured here at the

lowest density as the difference in decibels between these conditions. This

should reflect the contribution (or lack thereof) of local structure to the

threshold. (4) The difference between the intact and globally scrambled

conditions (INT-GS difference) was measured in the same manner as INT-

LS difference, at the lowest density. This reflects the magnitude of the

reduction in threshold that results from phase scrambling. These metrics

were computed for both human and model performance, and error was

measured as the decibel difference between the two. Positive error values

reflect the model over-estimating these metrics, and negative values reflect

under-estimates.
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We created two-dimensional error maps (Figure 3–9A) to help visualize

how each of the metrics are affected by the two parameters. Each vertical

axis refers to the values of k, while the horizontal axis refers to the range of

six noise values used for each value of k. The value of k has a substantial

effect on the magnitude of the second-stage filter responses and therefore

the magnitude of the noise values that are required to affect performance. A

different set of six noise levels was chosen for each value of k. The colour of

each cell shows the decibel difference between model and human for a given

value of k, noise level, and metric. Green cells are closest to zero, blue signal

under-estimates and red over-estimates, so green cells signal lowest error and

the optimal model parameters.

The slope of the intact thresholds (INT slope) with respect to density,

and the difference between the intact and locally scrambled conditions (INT-

LS difference) are primarily affected by the nonlinear power-law exponent

and hardly at all by the decision noise, while the difficulty of the globally

scrambled condition is strongly affected by the decision noise. The difference

between the intact and globally scrambled conditions is determined by an

interaction between these parameters, in which increasing values of the

nonlinear power-law exponent yield minimal error for decreasing levels of

decision noise.

We chose to optimize the difficulty of the globally scrambled condition

first, because that graph shows a clear minimum for performance at each

value of nonlinear power-law exponent. A noise level within the range

illustrated in Figure 3–9A, but chosen with more precision so that the

difficulty of the globally scrambled condition was correct within ±0.5 dB,

was determined for every value of k. When the model was evaluated at

each nonlinear power law exponent with the level of noise fixed, a simple
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relationship between error the other three error metrics and the value

of k emerged (Figure 3–9B): all the metrics improve as k decreases (i.e.:

the nonlinearity becomes more compressive) and error appears to reach

asymptote at a k below 0.5.

3.6.4 Results

We evaluated the model at k=0.25 with the noise level optimized as

described above to match the difficulty of the globally scrambled condition

on the orientation boundary segmentation task, and used these parameters

to predict performance on the contrast boundary segmentation task. The

average thresholds from four model runs are show in Figure 3–10.

The orientation boundary segmentation results for the model (black)

and humans (grey) are shown in Figure 3–10A. The model matches the

quantitative human data in the GS condition very well, as it should because

the noise parameter was optimized for these data. As in the human data,

the model shows little difference between the INT and LS conditions at any

density, and the rate at which thresholds in these conditions decrease with

density is very similar to the human results. The model appears to slightly,

but consistently, underestimate thresholds for the INT and LS conditions at

all densities.

The contrast boundary segmentation results are plotted in Figure 3–

10B, determined using the model parameters that were optimized for the

orientation boundary segmentation data. The model, like human observers,

shows a decrease in segmentation thresholds for globally scrambled textures

relative to the similar intact and locally scrambled texture conditions, and

matches the human thresholds reasonably well. Thresholds for intact and

locally scrambled textures are again very similar and the model consistently

predicts declining threshold with density, but the model considerably
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overestimates the rate at which thresholds decrease with density in the INT

and LS conditions. The threshold predictions at low densities are too high,

and those at high densities are too low.

Both the model and human observers had higher thresholds for orienta-

tion than for contrast boundary segmentation, which is readily explainable

in terms of the model. The information for orientation segmentation is only

in two orientation channels of the early filters (vertical and horizontal),

whereas contrast information is available in all of the first-stage spatial

frequency and orientation channels. Overall, the model performs very well

given that only two free parameters were optimized. With a compressive

nonlinearity and an appropriate amount of decision noise, the model per-

formance depends upon global higher order statistics in the same way that

human performance does, yet also (like humans) is insensitive to local phase

structure.
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3.7 Discussion

Our previous work (E. Arsenault et al., 2011) indicated that higher-

order statistics impair segmentation but only suggested that sparseness and

local edge structure might be important statistics. Here we have identified

sparseness as a critical texture property and ruled out a role for local phase

alignments, and extended our findings on contrast boundary segmentation

to orientation boundary segmentation. The results of this work demonstrate

that higher-order statistics influence the segmentation of second-order

boundaries defined by contrast or by orientation. In both cases the presence

of higher-order statistics was found to impair segmentation; in particular

sparser textures impaired segmentation more. For both orientation and

contrast-defined boundaries, the presence of local phase alignments did not

affect segmentation. We found that these results can be accounted for using

an FRF-style model with a compressive pointwise nonlinearity and decision

noise.

Any number of high-level explanations for our data can be ruled

out using the model. Because whatever causes density and global phase

scrambling to influence performance is present in both human observers and

the model, we are able to quickly narrow down the possible causes of the

density and phase scrambling effects to one common factor: second-order

noise. When sparseness is increased, while overall RMS contrast is held

constant, energy is clumped into higher local contrast regions with lower

local contrast regions between them. These changes in local contrast are

themselves contrast modulations that could act as noise for the mechanism

segmenting the main boundary (Allard & Faubert, 2007). We were able to

test this possibility with the model by measuring the average second-stage

filter response to unmodulated textures for ten randomly generated textures
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in each condition (Figure 3–11A). We found that, though the second-stage

filter was narrow-band, its response to the texture was affected by the

texture’s second-order variations. Second-stage filter responses were lowest

(little second-order interference) in the GS condition, and highest (greatest

second-order interference) in the INT & LS-595 condition. The average

response decreased parametrically as density was increased to 1530 and

then to 2975. When a modulation 0.5 dB above threshold was introduced,

the pattern persisted (Figure 3–11B); responses were higher for intact and

locally scrambled textures than for globally scrambled textures. The right

oblique filter, responding to the modulation, has a greater output than the

left in every condition, though the difference between the left and right

filters (before the addition of noise) is more for the GS textures than INT or

LS.

That the contrast noise affects contrast boundary segmentation does

not obviously imply that it would have the same effect on orientation

boundary segmentation. In this case, we can see that because the model

processes orientation and contrast boundaries within the same pathway,

the sparseness (which could result from local contrast, orientation, or

spatial frequency changes) provides image features that interfere with the

second-stage filter in the same way.

We determined that a compressive intermediate nonlinearity provided

the best fit for our results, which has not been previously suggested in

segmentation literature, but is in agreement with diverse models of various

visual processes. In texture segmentation tasks, a square law has been

the traditional nonlinearity shape, because it conceptually corresponds

to the Fourier energy present in the stimulus (Malik & Perona, 1990).

Graham and Sutter (1998) used a local contrast summation paradigm to
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estimate that this nonlinearity was even more expansive than k=2, but

probably less expansive than k=4. Otherwise, models of the visual system

in the literature tend to favour compressive nonlinearities. Mineault et

al. (2012) estimated that the nonlinearity which transforms MT outputs

before they are combined in MST is usually compressive, with values of k

falling between 0.2 and 0.4. Nishimoto and Gallant (2011) found that the

model that best-predicted responses of MT neurons utilized a compressive

nonlinearity (k=0.5) between V1 outputs and MT. Thus our model is

consistent with what may be an emerging principle of compressive nonlinear

summation of sub-units. This compressive summation might be the result

of gain control mechanisms implemented by divisive normalization, or by

localized surround suppression.

The current model fits the data reasonably well with two free param-

eters, but there are a number of biologically relevant changes that could

improve the model, e.g., interactions across space in the form of surround

suppression (H. Tanaka & Ohzawa, 2009), or between channels in the form

of cross-orientation inhibition (Motoyoshi & Nishida, 2004). Any spatial

interactions are critical to account for because spatial arrangement of in-

formation is inherently higher-order. Likewise it is important to capture

cross-channel interactions when examining broadband stimuli (David, Vinje,

& Gallant, 2004; Bex, Mareschal, & Dakin, 2007).

In the contrast boundary segmentation task, unlike the orientation

boundary segmentation task, there was a substantial amount of variability

between observers. This was unexpected because pilot data was far less

variable. We believe that this variability is due mainly to the range of values

tested, because we had difficulty selecting a range of modulation depths

that spanned floor and ceiling performance. Had we increased the spacing
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between the level values, or tested more levels, we expect that these data

would have been much cleaner.

Based on our results using contrast modulations of natural textures

(E. Arsenault et al., 2011), we expected to find an effect of local edge

structure– a difference between the intact and locally scrambled textures–

because our results in that study correlated well with the Canny edge

density metric (Bex, 2010). We applied the same metric to the synthetic

textures used in these experiments, and found that it estimates a higher

edge density for LS textures than for INT because it picks up on the

narrowband striations in each scrambled edgelet. For this reason, the

Canny edge density metric would predict a slight reduction in segmentation

thresholds for locally scrambled textures.

There are texture properties that we know to be relevant to segmen-

tation that edgelet-based textures did not allow us to manipulate. For

instance, we did not consider local contrast polarity, though it can enable

segmentation (Malik & Perona, 1990; Motoyoshi & Kingdom, 2007), or

the higher-order spatial properties that are known to be relevant to tex-

ture appearance (Portilla & Simoncelli, 2000). However, these textures

provide a useful tool for studying the impact of specific texture properties

on segmentation in a parametric way. They allow control over the shape

of the amplitude spectrum, which we fixed at 1/f , and allowed us to vary

sparseness while separating global from local phase alignments. This enabled

us to characterize the distinct effects (or lack thereof) of local phase align-

ments, global phase alignments, and density on second-order segmentation

mechanisms.
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Figure 3–1: Examples of properties that enable versus those that influence
segmentation. In both of these textures, a contrast difference enables the
percept of a right oblique boundary. The properties of the materials (leaves
and bark) forming the carrier textures are different in structure which re-
sults in a difference in the strength of the boundary percept, even though
the modulation depth of the contrast boundary is identical in both ex-
amples. In this example, the characteristics of the textures can be said to
influence segmentation.
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Figure 3–2: Procedure for constructing naturalistic textures and orientation-
modulated boundaries. (A) Micropattern types used to create synthetic
textures. Top: Intact Gaussian-enveloped square wave, Bottom: Phase-
scrambled square wave within the same Gaussian envelope. (B) Top: Vari-
ations of phase scrambled micropatterns, Bottom: Same instances, polarity
reversed. (C) Procedure for quilting stimuli. Half-disc envelopes are multi-
plied with their corresponding carrier textures. These modulated halves are
then combined. The modulation depth of the stimulus shown is 100%.
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30% 50% 75%

60% 80% 100%

Figure 3–3: Examples of stimuli at varying levels of difficulty. Top: con-
trast modulations at (L-R) 30%, 50%, and 75% modulation depths. Bottom:
orientation modulations at (L-R) 60%, 80%, and 100% modulation depths.
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Figure 3–4: Examples of contrast modulated stimuli used for Experiment
1, shown at a modulation depth of 50%. The phase alignment conditions
are arranged horizontally, while the density is increased vertically from
top to bottom. The three phase alignment conditions are intact (INT), lo-
cally scrambled (LS), and globally scrambled (GS). Notice that the globally
scrambled condition does not appear different at varying densities because
density information is destroyed by phase scrambling.
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Figure 3–5: Experiment 1 (contrast boundary segmentation) results for four
observers (small graphs), and the average of these observers (large graph).
The structure conditions are indicated by the data series: intact (INT), filled
circles; locally scrambled (LS), open circles; and globally scrambled (GS),
open triangles. Density increases along the abcissa. Note improved perfor-
mance for phase scrambled carriers (GS) and lack of effect of density in this
condition. In contrast, intact and locally scrambled conditions both result in
higher thresholds at low densities than at high. Error bars indicate standard
errors.
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Figure 3–6: Examples of orientation modulated stimuli used for Experiment
2, shown at a modulation depth of 100%. The phase alignment conditions
are arranged horizontally, while the density is varied vertically. The globally
scrambled condition (GS) was only tested once, because density information
is destroyed by phase scrambling and (as expected) no systematic effect of
density was observed in the previous experiment.
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Figure 3–7: Experiment 2 (orientation boundary segmentation) results for
four observers (small graphs), and the average of these observers (large
graph). The structure conditions are: intact (INT), filled circles; locally
scrambled (LS), open circles; and globally scrambled (GS), open triangles.
These results show improved performance for phase scrambled carriers (GS)
as previously found for contrast segmentation. There is no systematic differ-
ence between the intact and locally scrambled conditions, as both result in
higher thresholds at low densities than at high. Error bars indicate standard
errors.
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of the rectification. The output of each filter following the injection of noise
is indicated by o, and the result of the comparison between the files by d.
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Figure 3–9: Model optimization process. (A) Two-parameter error space
for the model. Intensity in each image is the disparity in decibels between
model and human performance. Four performance metrics (INT slope, GS
difficulty, INT-LS difference, and INT-GS difference) were computed for
each combination of power-law exponent and decision noise level (increasing
from left to right). The standard deviation of the decision noise distribu-
tion was different for each value of k, and its range was selected so that
underestimates and over-estimates GS difficulty were represented. (B) Error
magnitude for each value of k in the three remaining metrics when the noise
level is optimized on GS difficulty.
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Figure 3–10: Results from model in Figure 9 with parameters k and a op-
timized for orientation boundary segmentation. (A) Orientation boundary
segmentation results are similar to those for humans: lower thresholds for
GS and higher thresholds for INT and LS that decrease as density increases.
(B) Contrast boundary segmentation results are also similar to those for
humans: lower thresholds for GS, higher thresholds for INT and LS that
decrease as density increases.
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Figure 3–11: Second-stage filter responses (F2) measured for each of the
conditions tested in Experiment 1 using k=0.25. Responses are averaged
over ten randomly-generated stimuli, and the error bars indicate standard
error. (A) Second-stage filter responses to an unmodulated stimulus. The
measured response reflects the second order structure present in the texture
before modulation. Responses for both left (L, dark colours) and right (R,
light colours) filters are the same, because whatever structure is present is
non-oriented. (B) Second-stage filter responses to a stimulus modulated with
a right-oblique boundary with a modulation depth 0.5 dB above threshold
in each condition. In this case, the responses for the right oblique filters are
higher signalling the presence of a boundary.
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4 Texture segmentation is enabled by

sparseness and global phase structure, but not

local phase alignments

In the previous chapter, I demonstrated that sparseness influences

segmentation, and that this influence could be modeled using a filter-rectify-

filter model with a compressive rectifying nonlinearity. In the following

chapter, I use pairs of the same synthetic textures to determine the extent

to which differences in texture structure enable segmentation. The results

suggest that global phase structure and texture sparseness can both enable

and influence segmentation in the absence of any lower-order statistical cues

for segmentation. I found that the same model employed for contrast and

orientation boundary segmentation data in the previous experiments can

also account for the role of global structure and density, but not the role

of local phase alignment, in segmentation performance on these kinds of

texture boundaries.
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CHAPTER 4
Texture segmentation is enabled by sparseness and global phase

structure, but not local phase alignments

4.1 Abstract

Second-order properties, which describe an image’s energy content,

enable segmentation when they are different on either side of a boundary.

We have demonstrated that the spatial distribution of the energy in an

image (higher-order statistics), particularly sparseness and global phase

structure, influences segmentation of contrast and orientation boundaries

(Chapter 3), but that local phase structure does not. Here, we examine

whether higher-order statistics enable segmentation with boundaries defined

by differences in structure and density. We used naturalistic synthetic

textures to manipulate the sparseness, global phase structure, and local

phase alignments of carrier textures, and measured segmentation thresholds

based on forced-choice judgments of boundary orientation. We found that

both global structure and sparseness enable segmentation, and that local

structure affects segmentation thresholds in both these cases. Using a two-

stage filter model, we demonstrated that the same compressive intermediate

nonlinearity best accounts for the segmentation of boundaries defined by

contrast, orientation, structure and density. However the model architecture

we employed, regardless of parameter values, does not properly account for

the influence of local structure on structure or boundary segmentation.
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4.2 Introduction

Boundary segmentation, one of the visual system’s most fundamental

tasks, occurs when segmentation mechanisms detect a discontinuity in at

least one of several first- or second-order properties such as luminance,

orientation or contrast. Second-order properties, which describe an image’s

energy content, enable segmentation when they are different on either side

of a boundary. We have demonstrated that the spatial distribution of the

energy in an image (higher-order statistics), particularly sparseness and

global phase structure, influences segmentation of contrast and orientation

boundaries (Chapter 3), but that local phase structure does not. Occlusion

boundaries in the natural world often have broadband texture on both

sides of the boundaries, which is not typically accounted for in the studies

of contrast and orientation boundary segmentation. It remains to be seen

whether higher-order statistics, either global or local, enable segmentation.

Here, we test the ability of global and local structure to enable segmentation

as a function of density, as well as the ability of sparseness itself to enable

segmentation for different kinds of local structure.

The set of texture statistics that can enable segmentation has been

a subject of intense research in the past. Differences in dipole statistics

(Julesz, 1962) were once considered the primary texture property that en-

abled segmentation, but later studies indicated that local differences, such as

closure and corners, that were not reflected in the dipole statistics could also

be sufficient (Olson & Attneave, 1970; Julesz, 1981a). Bergen and Adelson

(1988) demonstrated that differences in textures’ overall Fourier energy

enable segmentation, and that the effects of many of the ‘local’ texture

properties could be accounted for with this analysis. However, local prop-

erties not captured by the Fourier amplitude spectrum have been shown to
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affect segmentation. Malik and Perona (1990) and Motoyoshi and Kingdom

(2007) showed that local contrast polarity can enable segmentation, and

Graham et al. (1993) used element arrangement patterns of oriented grating

patches to show that the spatial configuration of local features alone could

enable segmentation.

Ideally, we would use natural texture photographs to begin this investi-

gation without eliminating any potentially important statistics, but testing

boundaries between pairs of natural textures presents several difficulties.

In our pilot work, attempting to use natural textures, we observed both

improvements and impairments to segmentation thresholds after removing

higher-order statistics, which suggests that individual differences in higher-

and lower-order statistics are a critical factor. These results tended to

be of an anecdotal nature because psychophysical performance may have

depended on the pairing of properties as well as the individual texture

statistics. Additionally, because natural textures differ on many dimensions

(e.g. orientation bandwidth, dominant orientation, structure), it is not clear

how to create boundaries between them with only higher-order differences.

To overcome these complications, we employed the same naturalistic syn-

thetic textures as in the previous study, because we know that they capture

higher-order statistics that affect segmentation performance.

Most existing models of texture segmentation use a ‘filter-rectify-filter’

architecture: a bank of oriented filters at a range of spatial frequencies,

followed by a pointwise nonlinearity, and finally, a second stage of linear

filtering. In this scheme, the role of the first stage filters is to characterize

the energy present in the texture, the pointwise nonlinearity prevents peaks

and valleys of a luminance-balanced texture from cancelling each other

out, and the second stage of filtering serves to detect the boundary. These
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models have been shown to account for a wide range of texture segmentation

phenomena (Landy & Graham, 2004), and we have shown (Chapter 3) that

if the intermediate nonlinearity has a compressive shape, this type of model

can also account for the influence of higher-order statistics on second-order

texture segmentation.

Here, we will also investigate the ability of the model to account for

human psychophysical performance on segmentation of structure boundaries;

boundaries defined by the structure of the energy in the texture rather than

the type of energy that is present. As initially proposed (Bergen & Adelson,

1988; Malik & Perona, 1990), the FRF model has a square-law pointwise

nonlinearity that measures the energy present in the texture, essentially its

lower-order statistics. Previously, we found that a compressive nonlinearity

in the second-order segmentation mechanism accounted for the influence of

higher-order statistics. Here we will evaluate this model with boundaries

defined by higher-order statistics, to assess its ability to capture the extent

to which structure and sparseness influence and enable structure boundary

segmentation.
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4.3 General Methods

4.3.1 Stimuli

To create the stimuli for these experiments, we used pairs of texture

patterns with identical Fourier amplitude spectra but with some higher-

order statistical difference between them, such as structure or density,

quilted together and windowed by a circular aperture to form a disc

composed of two textured halves with a left- or right-oblique boundary

between them.

Textures

Synthetic micropattern textures were created in the manner described

in Chapter 3. They were designed to capture attributes of natural textures

such as a 1/f amplitude spectrum, sparseness, and local edge structure

while allowing us to parametrically control these and other statistics.

To create such a texture, a number of micropatterns in a range of sizes

and orientations were randomly positioned on an oversize image without

constraints on overlap. With this basic formulation we created three

different types of texture that differ in structure.

Intact (INT) textures used broadband ‘edgelet’ micropatterns consisting

of phase-aligned sine waves producing a step edge, windowed by a Gaussian

function. Locally scrambled (LS) textures were very similar, but the sine

wave components were phase-randomized before windowing to eliminate

local edge structure. To create the globally scrambled (GS) condition, the

phase spectrum of an INT texture was replaced with the phase spectrum

of white noise, removing all phase structure from the texture (Dakin et al.,

2002). Within the INT and LS conditions, density was varied by changing

the total number (595, 1530, or 2975) of micropatterns used to create the

texture.
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Textures were generated on a trial-by-trial basis and subjected to

the same homogeneity constraints as in the previous chapters to preclude

luminance or contrast boundaries caused by unfortunate micropattern

placements. In the low density condition, only about 12% of the generated

textures passed this test; in the medium density condition, about 47% of

textures passed; and in the high density condition, about 76% of textures

passed. Each texture was scaled to have a mean value of 0, and its extreme

luminance values were clipped at ± 3 standard deviations and scaled to fit

in the range of intensities between ± 1.0.

Boundary Creation

Boundaries were created between textures using a quilting method

(Watson & Eckert, 1994; Landy & Oruç, 2002) illustrated in Figure 4–1.

After two carrier textures were created (CA and CB), two complementary

envelope patterns were generated to modulate the contrast of each of them

in a half-disc pattern. A half-disc envelope function with a cosine taper at

the boundary (Ex,y) is scaled to create modulators (EA and EB):

EA =
√

(1 +mEx,y)/2 (4.1)

EB =
√

(1−mEx,y)/2. (4.2)

The modulation depth parameter (m) determines the relative strength

of a texture between the two halves (Figure 4–2). With a modulation

depth of 100% (m = 1), each texture is entirely confined to one half, but

as the modulation depth is decreased, both textures are present in both

halves, but with carrier texture weighted more heavily in one half. When

the modulation depth is 0%, the stimulus is a homogeneous blend of both

textures (i.e., there is no boundary).
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The carrier patterns are scaled to the specified carrier contrast with

scaling factor c. The means of the carriers are adjusted so that the final

stimulus will be luminance-balanced after the envelopes (Equations 4.1 &

4.2) have been applied.

C′A = cCA −
∫∫

cCAEA − 0.5∫∫
EA

(4.3)

C′B = cCB −
∫∫

cCBEB − 0.5∫∫
EB

(4.4)

The final stimulus (Sx,y) is the sum of the two carriers, each spatially

weighted by their respective envelopes, where L0 is the mean luminance:

Sx,y = L0{1 + C′AEA + C′BEB}. (4.5)

4.3.2 Apparatus and Observers

The stimuli were presented on a CRT monitor (Sony Trinitron Multi-

scan G400, 81 cd/m2, 75 Hz, 1024 × 768 pixels), gamma-linearized with a

digital video processor (Bits++, Cambridge Research Systems) for greater

bit-depth at low contrasts. Stimulus patterns appeared in a central 480×480

pixel patch on a mean grey background. Observers viewed the stimuli from

a distance of 114 cm, resulting in a stimulus visual angle of approximately

6.5 degrees. The experiment was run on a Macintosh (Desktop Pro, Mac

OSX) using Matlab and PsychToolbox (Brainard, 1997; Pelli, 1997).

4.3.3 Task

Observers were instructed to fixate a mark at the centre of the screen

and initiate the trial with a button press. The stimulus was displayed for

100ms and the observers indicated whether the boundary between the
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textures was left or right oblique, with a button press. The RMS contrast

of the stimulus was 14%, which was well above threshold for all observers.

Between stimulus presentations the screen was maintained at the gray level

of the mean luminance. No feedback was provided.

We tested observers on five modulation depth levels, logarithmically

spaced between 100% and 25%, with additional levels below 25% if nec-

essary to reach chance performance. Subjects were tested in blocks of 100

trials, with 20 trials per level. At least three of these blocks were run,

staggered between different conditions, for a total of at least 600 trials per

condition.

4.3.4 Data Analysis

Percent-correct data were fit with a logistic psychometric function, and

a threshold was interpolated at the 75% correct point. Prism (GraphPad

Software, Inc.) was used for curve-fitting and standard-error bootstrapping.

To test for significance we used two-way ANOVAs or paired-samples t-

tests with a criterion of α = 0.05. Effect size (D. Klein, 2005) was measured

using Cohen’s d with the standardizer computed as:

s =
√
σ2
1 + σ2

2/2. (4.6)

where σ1 and σ2 are the sample standard deviations of the compared

conditions.

143



4.4 Experiment 1: Structure Boundary Segmentation

That changes in orientation and contrast enable segmentation is well-

documented, and we have demonstrated that contrast and orientation

boundary segmentation mechanisms are affected by higher-order image

statistics (Chapter 3). Whether this effect extends to the ability to enable

segmentation based on differences in higher-order texture statistics has yet

to be examined. Here, we test directly whether differences in higher-order

statistics alone can enable segmentation, and examine the influence of

sparseness and local phase structure on segmentation thresholds.

4.4.1 Methods

In this experiment we measured modulation depth thresholds for

observers segmenting boundaries defined by phase structure. We tested

all pairwise combinations of three phase structure conditions. The intact

(INT) carriers using ‘edgelet’ micropatterns consisting of a phase-aligned

broadband edge in a gaussian window, globally scrambled (GS) texture car-

riers generated by phase-scrambling intact textures, and locally scrambled

(LS) textures using the same broadband micropatterns, but with a phase-

scrambled edge. Density was varied parametrically for the INT and LS

textures by randomly placing 595, 1530, or 2975 micropatterns on a texture

canvas. Two textures were generated for each trial, and quilted as described

in the General Methods and illustrated in Figure 4–1 to create a unique

stimulus. We created boundaries testing all combinations of the phase align-

ment conditions for three structure boundary conditions: INT/LS, INT/GS,

and LS/GS, and tested them at three density levels each (see Figure 4–3 for

examples). All observers had normal or corrected-to-normal vision, and JH,

JB, and AR were naive to the purpose of the experiment.

144



4.4.2 Results

Structure boundary segmentation results are shown in Figure 4–4.

While this was a challenging task, observers experienced no difficulty

segmenting the boundaries at the greatest modulation depths, with the

exception of the INT/LS condition (Figure 4–4, open circles), regardless

of density. Because only half of the observers could perform the task at

any modulation depth less than 100%, the INT/LS condition was excluded

from further analysis. Performance for boundaries between textures with

and without global structure (LS/GS and INT/GS, open triangles and

filled circles in Figure 4–4) were considerably better. In both conditions

the thresholds increased with density. Thresholds in the INT/GS and

LS/GS conditions were almost identical at the lowest density, but the

thresholds for LS/GS boundaries increased more quickly with density

than those in the INT/GS condition. A two-way ANOVA run on only

the LS/GS and INT/GS conditions confirmed a main effect of structure

F (1, 9) = 41.01, p < .05 and a main effect of density F (2, 9) = 6.67, p < .05,

as well as a significant interaction between structure and density F (2, 9) =

26.87, p < .05. Post-hoc Bonferroni tests (Table4–1) confirmed that the

significant difference between the INT/GS and LS/GS conditions was at the

highest density only (t = 9.52, p < .05, d = 1.24).

Globally scrambled (GS) textures have particularly low sparseness,

and so it is likely that at least one of the properties enabling segmentation

is a difference in sparseness on either side of the boundary. These results

indicate that segmentation by structure is easiest when there is a large

difference in sparseness between the textures being segmented. They suggest

that for highly sparse textures (i.e., INT and LS at low density), differences

in local phase structure have little impact on segmentation, but at high
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Density t p d
INT/GS vs. LS/GS

595 0.429 > .05 0.30
1530 2.005 > .05 0.69
2975* 9.516 < .05 2.46

Table 4–1: Results of Bonferroni post-hoc tests for structure boundary seg-
mentation. t is the Bonferroni-corrected t statistic, p the significance level, d
Cohen’s d, and * indicates a statistically significant comparison.

densities a lack of local phase structure impairs segmentation. In this

Experiment, we demonstrated that higher-order statistics, particularly

global phase alignments, can enable segmentation. We showed that at

low densities, local edge structure is not relevant to segmentation, but its

presence may improve performance at high densities where global structural

differences are diminished. Part of the reason the higher densities are more

difficult is likely because decreased sparseness is a major consequence phase

scrambling when density is increased the boundary becomes harder to

segment. We also demonstrated that differences in local phase structure

alone (i.e., INT/LS) provide poor support for segmentation.
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4.5 Experiment 2: Density Boundary Segmentation

In Experiment 1, we found that boundaries defined by a difference in

global structure enable segmentation by creating boundaries between locally

scrambled or intact and globally scrambled textures. Segmentation became

more difficult as the density in the intact or locally scrambled textures was

increased by including more micropatterns in the texture. This suggested

that the difference in sparseness across the boundary was an important

segmentation cue. Here, we isolate density to determine the extent to which

it enables segmentation, and examine the influence of local structure on

density segmentation.

4.5.1 Methods

In this experiment, we used two types of stimuli: intact textures with

density boundaries and locally scrambled textures with density boundaries.

Globally scrambled textures were not considered because their sparseness

does not vary. To create density boundaries, we quilted two carrier textures:

one with 595 micropatterns, and the other with 2975 micropatterns. We

measured segmentation thresholds for density boundaries in intact and

locally scrambled textures, as shown in Figure 4–5. All observers had

normal or corrected-to-normal vision, and JH, JB, and AR were naive to the

purpose of the experiment.

4.5.2 Results

Density boundary segmentation results for four observers are shown in

Figure 4–6. All of the observers were able to segment the boundaries, and

we had no difficulty obtaining thresholds for any observer or condition. We

found that density boundaries enable segmentation at approximately the

same level of difficulty as structure segmentation. The thresholds for the

locally scrambled (LS) condition were lower than those for the intact (INT)
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condition by a small but systematic difference in each of the observers. A

two-tailed paired-samples t-test finds this difference statistically significant

t(3) = 8.01, p < .05, d = 0.96, but the effect size is modest. It appears

that the density boundary is slightly easier to segment for locally scrambled

textures.

In this experiment, we demonstrated that differences in micropattern

texture density support segmentation without any other differences in

global phase structure. Unexpectedly, we found a small but consistent

improvement in density-based segmentation for locally scrambled textures

compared to intact textures.
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4.6 Model

In the past, three-stage models with an additional intermediate non-

linearity (FRFRF) have been proposed to account for the role of structure

(Graham et al., 1993; Kingdom et al., 2001; Landy & Graham, 2004). In

Chapter 3, we determined that a modified filter-rectify-filter (FRF) model

with a compressive intermediate nonlinearity, a final expansive nonlinear-

ity, and decision noise could account for the influence of structure in our

orientation and contrast boundary segmentation data. Here, we examine

whether that model can also account for segmentation of boundaries defined

by structure or density, or if another model better accounts for performance.

4.6.1 Filter-Rectify-Filter Model

We implemented a basic filter-rectify-filter model (Figure 4–7A), as

described in the previous study. First the stimulus (Sx,y) was convolved

(∗) with a bank of linear filters (G1) that varied in orientation (θ), spatial

frequency (ω), and phase (φ) (Equation 4.7):

F1(θ, ω, φ, x, y) = G1(θ, ω, φ) ∗ S(x, y). (4.7)

The filters were log-gabors (Kovesi, 2000), at two phases (even and

odd), six orientations (evenly spaced with their bandwidths chosen for

approximately uniform coverage), and four spatial frequencies (160, 80,

40, and 20 cpi, each with a bandwidth of approximately 1.5 octaves). The

output of each of these filters (F1) was weighted (wf ), full-wave rectified

and raised (pointwise) according to a power-law of order k, then pooled over

phase (Equation 4.8):
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R(θ, ω, x, y) =
∑
φ

|F1(θ, ω, φ, x, y) · w(f)|k. (4.8)

The values of wf were chosen to equalize responses across spatial scales

for a stimulus with a 1/f spectral falloff (Field, 1987). To this end, the

responses to the higher spatial frequency channels were magnified relative

to the responses to lower spatial frequencies, using a weighting function

w(f) = 2f , where f is an index of spatial frequency with f = 1 designating

the lowest spatial frequency. Dot products were computed between these

responses (Rx,y) and two second-stage filters (G2) in the form of low

spatial frequency sine-phase gabor functions that match the two possible

orientations of the boundary in the stimulus (45 and -45 degrees), as well as

its central position:

F2(45, θ, ω) = G2(45) •R(θ, ω, x, y) (4.9)

F2(−45, θ, ω) = G2(−45) •R(θ, ω, x, y). (4.10)

The outputs (o) were computed by pooling the magnitudes of the

late-stage filter responses across the orientations and spatial frequencies of

the early-stage filters. The pooled response magnitudes were raised to a

power (the reciprocal of k), and then combined with additive decision noise

for the final output value. (Equations 4.11 & 4.12). The noise values n1

and n2 were drawn from a normal distribution with a mean of 0 and whose

standard deviation, or amplitude, a is a free parameter of the model.

o45 =

(∑
θ,ω

|F245(θ, ω)|

)1/k

+ n1 (4.11)
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o−45 =

(∑
θ,ω

|F2−45(θ, ω)|

)1/k

+ n2 (4.12)

These outputs were compared, and the late-stage filter (left- or right-

oblique) with the strongest response determined the decision (d) of the

model (Eq. 4.13):

d(o) =

 45 if o45 ≥ o−45

−45 if o−45 > o45

(4.13)

4.6.2 Simulation

We used the same method to determine segmentation thresholds for

the model as we used for our human participants. The model made left- or

right-oblique decisions for each of 60 trials for nine structure boundary and

two density boundary conditions on 10 logarimithically-spaced modulation

depth levels producing performance ranging from chance to near-perfect. We

measured a percent-correct value for each level and stimulus condition, and

then fit a cumulative Gaussian function to determine the model’s threshold.

Because the stimuli were randomly generated on each trial, the model’s

results varied from one simulation to another. For this reason, we simulated

the experiment four times and averaged the resulting thresholds. Standard

error was determined across the four model runs. Each run required 36

hours of computational time. The summed square error was calculated as:

SSE =
∑
i

(log hi − logmi)
2, (4.14)

where h is the series of human thresholds averaged over observers and

m is the series of model thresholds averaged over the four simulations. This
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model described above has two free parameters: the order of the power-law

nonlinearity (k), and the noise amplitude (a) (i.e., standard deviation of the

distribution from which the decision noise is drawn). Previously (Chapter

3), we determined optimal values of these parameters based on segmentation

performance for orientation boundaries. We used those optimal values to

predict human performance in segmenting boundaries defined by structure

and density.

4.6.3 Simulation Results

The results of the structure boundary simulation are shown in Figure 4–

7B. Thresholds for boundaries between intact and globally scrambled

textures (INT/GS) are estimated very well, especially at the lowest and

highest densities. Thresholds for boundaries between locally scrambled

and globally scrambled textures (LS/GS) present a bigger problem for the

model. The model matches human performance well at the highest density,

but over-estimates thresholds at low and moderate densities. Like human

observers, the model could not segment INT/LS boundaries reliably enough

to estimate a threshold. The total sum-of-squares error for this model was

0.315. Figure 4–7C shows the results of the density boundary segmentation

simulation. Thresholds for density boundaries between intact textures are

well estimated, but thresholds for boundaries between locally scrambled

textures were substantially over-estimated. The total sum-of-squares error

for this model was 0.136.

4.6.4 Optimization

Using the model parameters estimated from the orientation boundary

segmentation data of the previous study (Chapter 3), the model produces

good threshold predictions for structure and density segmentation. However

with these parameters the model somewhat over-estimates thresholds
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for sparse, locally scrambled textures in both the structure and density

experiments. Here, we tested whether values of the two free parameters

could be found that reduce the sum-of-squares error of all the data, as well

as provide a better qualitative fit to the human data.

Model performance was simulated for five values of the nonlinear

power-law exponent (k = [3 2 1 0.5 0.25]), and a series of noise levels, chosen

separately for each value of k to span the range of under-estimating and

over-estimating segmentation thresholds. This was necessary because smaller

values of k resulted in much larger responses, which meant that larger noise

values needed to be injected to have an effect.

The sum-of-squares error (Equation 4.14) was computed for the model’s

thresholds for each of these combinations of the two free parameters, for

both the structure and density segmentation conditions. The resulting

two-dimensional error space is illustrated in Figure 4–8A as a colour map

in which darker matrix cells indicate lower error. From this visualization it

can be seen that compressive nonlinearities (i.e., k < 1) at any level of noise

outperform expansive nonlinearities, and that the optimal noise values for

density segmentation are lower than those for structure segmentation. The

most compressive nonlinearity (k = 0.25), as before, produced the lowest

error in both the structure and density conditions. Figure 4–8B shows how

the error at k = 0.25 in these two conditions changed as a function of the

noise level. The density condition has the lowest error for the smallest value

of noise, but the error is minimized in the structure condition at a higher

noise level. The noise level circled in red was selected as a good overall

compromise ‘optimal’ value for these conditions.
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4.6.5 Optimization Results

The results of the structure boundary simulation with the revised

parameters are shown in Figure 4–8C, with the sum-of-squares error for

this condition improved to 0.21. Thresholds for boundaries between intact

and globally scrambled textures (INT/GS) are somewhat under predicted

at all densities, perhaps slightly more so at lower densities. Thresholds

for boundaries between locally scrambled and globally scrambled (LS/GS)

textures are estimated better– no single threshold is very far off. However

the rate at which thresholds increase with density does not appear to

accelerate as in the human data. Boundaries between intact and locally

scrambled textures (INT/LS) could not be segmented by humans or by

the model. Thresholds for density boundaries are also better fit using

the revised parameters, with the sum-of-squares error for this condition

improved to 0.136. The thresholds are well-predicted in the intact (INT)

condition, but they are still substantially over-predicted in the locally

scrambled (LS) condition. The sum-of-squares error for this condition was

improved to 0.136. The difference between the model’s predictions when

optimized for orientation boundaries and applied to all boundary types,

and its predictions when optimized for the present conditions is minimal,

and there is little change in the parameters as well. The optimal value of k

is the same, so the sum-of-squares error is reduced simply by reducing the

amplitude of the decision noise (a).

These results demonstrate that a simple two-stage model is capable

of segmenting boundaries defined by structure or sparseness, but not the

influence of local structure. More importantly, these results show that with

small adjustments to the noise amplitude, the same nonlinear power-law

exponent and model architecture are capable of predicting segmentation
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thresholds to boundaries defined by contrast, orientation, structure, and

sparseness.
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4.7 Discussion

In the first experiment, we observed that differences in global phase

structure (INT/GS and LS/GS), but not local phase alignments (INT/LS),

were sufficient to enable segmentation. We also found that segmentation

thresholds for boundaries between locally scrambled and globally scrambled

(LS/GS) textures became higher more quickly than in the INT/GS condi-

tion as density was increased. In the second experiment we demonstrated

that density alone enabled segmentation, and that a randomizing local phase

alignments (LS) led to slightly better performance. We modelled these re-

sults using the same two-stage filter model as used to predict thresholds for

orientation and contrast boundary segmentation and found that the same,

highly compressive, nonlinearity best predicts these results as well. However

to minimize the sum-of-squares error in the threshold predictions for these

experiments the amplitude of the decision noise was decreased slightly from

the value fitted to orientation boundary segmentation. This model captured

the ability of global phase structure to enable segmentation as well as the

influence of global structure on those thresholds, yet did not account for the

influence of local phase structure on either structure or density segmentation

thresholds.

4.7.1 Psychophysics

In the structure segmentation condition where the boundary was sig-

nalled only by the presence or absence of local phase alignments (INT/LS),

performance varied substantially between participants. All participants

were able to segment the boundaries above chance performance when the

modulation depth was 100%, but performance was not sufficiently high

to provide a psychometric function, and in some cases did not reach the

threshold level (75% correct). The boundaries in the INT/LS condition are
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evident by inspection (Figure 4–3), and may be segmented more reliably

with a longer viewing time, but this segmentation-by-inspection might mean

that some other (potentially more cognitive) mechanism is at work. This

borderline case that cannot be reliably segmented under a 50ms exposure

casts doubt on the early segmentation work where the extent to which a

texture pair could be segmented depended on unlimited viewing time and

subjective assessments of effortlessness (e.g. Caelli & Julesz, 1978; Julesz,

1981b). There is a substantial amount of variability between subjects in

this condition, which may be due to practice effects. The most practiced

subjects were able to segment this condition at the highest modulation

depths (100%) at the low densities and at slightly lower modulation depths

at higher densities, but less practiced subjects struggled with this condition

at all densities, and performance was at chance when the modulation depth

was decreased from 100%.

A major consequence of phase scrambling is a reduction in sparse-

ness. This means that it is difficult to assess the effect of sparseness in the

INT/GS and LS/GS conditions because it is part or all of what enables

segmentation. Given this relationship, it makes sense that performance

degrades as the density of the INT or LS texture is increased. The effect of

local structure, however, is difficult to understand. Orientation and contrast

boundary segmentation performance is the same for the intact and locally

scrambled conditions at a given density, which suggests that local phase

alignment is discarded by the mechanisms that segment these boundaries.

On the other hand, in structure segmentation, performance is the same in

the INT/GS and LS/GS conditions at low densities, but different at the

highest density tested. This suggests that although local structure is ignored
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by segmentation mechanisms when global differences (sparseness in partic-

ular) are sufficient for segmentation, it can be used to boost performance

when the global differences are weak. Furthermore, in the density segmen-

tation task, we see a small but consistent performance improvement in the

LS condition. Overall, we have consistent evidence of structure segmentation

mechanisms being selective for local structure differences while no such

evidence exists for orientation or contrast segmentation mechanisms.

4.7.2 Model

The model’s ability to segment structure is due to the compressive

nonlinearity employed. The stimuli are RMS balanced, so there is little

difference in the energy on either side of the boundary (which is evident in

the model’s extremely poor performance when the intermediate nonlinearity

is a square-law). A power-law exponent other than two applied before

responses are pooled over space either produces a bigger response for

the high local contrast of the sparse textures (expansive), or boosts the

relatively low local contrasts of dense textures (compressive). Figure 4–

9 shows the effect of the power-law exponent on the image energy that

is passed into the second-stage filter. The amount of energy following a

power-law exponent other than 2 is dependent on density, and thus enables

segmentation based on structural sparseness. That the LS/GS condition is

more difficult for the model to segment than the INT/GS condition might

stem from the fact that intact (INT) edgelets are slightly more sparse than

locally scrambled (LS) edgelets.

This is the first time a two-stage filter model has successfully been

applied to segmentation of textures that differ only in their phase struc-

ture. However many of the attributes of our model are very common in

the literature. Filter-rectify-filter models are an example of summation
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models, because ultimately the information that is processed is summed - in

this case, both across channels and over space. We chose to use Minkowski

summation, which raises the arguments to the summation to a particular

power, and then the resulting sum is raised to the reciprocal of the same

power. Minkowski summation is a common technique used when combining

the outputs of several channels (Meese & Summers, 2007). The compressive

nonlinearity we employ is in agreement with a number of recent studies

showing evidence of sub-additive summation in visual processing, concep-

tualized in a variety of ways: compressive nonlinearities (Mineault et al.,

2012), divisive normalization (Rust et al., 2006), and surround suppression

(Tsui, Hunter, Born, & Pack, 2010).

4.7.3 Sparseness

Density has long been considered an independent texture property

due to its status as an adaptable feature (Durgin, 1995), dissociable from

luminance spatial frequency adaptation (Durgin & Huk, 1997). It is evident

from the results covered here and in Chapter 3 that texture sparseness is

extremely important to consider with respect to second-order segmentation

mechanisms. Sparseness can be described as the extent to which the energy

in the image is clumped into local, high contrast regions. The spatial

modulation that results from sparse contrast is, of course, a contrast

modulation and as such contributes to the response of second-order neurons.

Dakin, Tibber, Greenwood, Kingdom, and Morgan (2011) suggest that

perception of sparseness can be well-measured by the ratio of higher to lower

contrast spatial frequency information. The results of this study indicate

that, with a compressive or expansive intermediate nonlinearity, density

can, in some circumstances, be considered an intensive property that, like

contrast, affects strength of the response but is not a tuned property.
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4.7.4 Structure-defined boundary processing

Boundaries defined by structure in the absence of differences in the

amplitude spectrum have not been the subject of much study. Julesz

(1981b) and Victor et al. (2005) used textures that differed only in their

third- or fourth-order spatial correlations, but this meant that the amplitude

spectra of these even and odd textures were the same only when the

categories were taken as ensembles. Any given pair of textures contained

a difference in the orientation bandwidth of the amplitude spectrum, and

thus (unlike the stimuli used here) they could be segmented on the basis of

lower-order statistics (Turner, 1986).

Graham et al. (1993) used element arrangement patterns that did differ

in only their higher-order statistics, as we have defined the term. They used

a three-stage model (FRFRF) to account for the extra comparison that

would need to be made to segment the textures. Here, we demonstrated

that a third stage of the model is not necessary, and a single pre-summation

compressive nonlinearity is sufficient for differences in the arrangement

of the energy in the texture to enable segmentation. Although they used

textures composed of elements, their element size was quite large and

relatively few were arrayed to form each region. It is questionable whether

images composed of these large elements would be processed as ‘texture’.
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4.8 Conclusions

In these experiments we demonstrated that differences in the structure,

rather than simply the composition, of energy in a texture can enable and

influence segmentation performance. We presented a two-stage model that

accounts for the ability of global phase structure and density to enable

segmentation, but not the influence of local phase structure on these

thresholds. This model is consistent with the model we used to predict

orientation and contrast boundary segmentation thresholds in Chapter 3.

Using only two free parameters we have demonstrated that a two-stage filter

model can segment boundaries defined only by differences in higher-order

statistics, and account for the role of global structure in segmentation.
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Figure 4–1: Procedure for quilting structure- and density-modulated bound-
aries. Half-disc envelopes are multiplied with their corresponding carrier
textures. These modulated halves are then combined. The modulation
depth of the stimulus shown is 100%.
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100% 75% 50%

Figure 4–2: An example of stimuli at varying levels of difficulty. This figure
shows an INT-GS texture at 100%, 75%, and 50% modulation depth.

163



Structure

D
en

si
ty

INT-GS LS-GS INT-LS

59
5

15
30

29
75

Figure 4–3: Structure modulated stimuli used for Experiment 1, shown at a
modulation depth of 100%. The boundary types are organized into columns,
while the density conditions are organized into rows.
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Figure 4–4: Experiment 1 (structure boundary segmentation) results for four
observers. The boundary conditions are: INT/GS, between an intact texture
and a globally scrambled texture (filled circles); INT/LS, between an intact
texture and a locally scrambled texture (open circles); and LS/GS, between
a locally scrambled and globally scrambled texture (open triangles). The
grey symbols for observers AR and JH indicate above-chance performance
only at a modulation depth of 100%, so no threshold could be estimated.
These results show elevated thresholds for the INT/LS condition that do
not appear to be dependent on density. Segmentation performance on the
INT/GS and LS/GS conditions is dependent on density with very similar
thresholds at low densities, but LS/GS becomes more difficult more rapidly
at high densities.
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Structure
INT LS

Figure 4–5: Density boundary stimuli used in Experiment 2 at a modula-
tion depth of 100%. Each stimulus is a modulation between a texture with
595 micropatterns and one with 2975 micropatterns. Because no visible (or
statistical) boundary was formed in the GS condition, it was not tested.
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Figure 4–6: Experiment 2 (density boundary segmentation) results for four
observers. Density boundaries do not exist following phase scrambling, so
the globally scrambled (GS) condition was not tested. Performance on the
locally scrambled (LS) condition appears to be slightly but systematically
better than on the intact (INT) condition.
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Figure 4–7: Segmentation model architecture and modelling results along-
side human data. (A) The architecture of the basic FRF model used in this
study. (B) Results for model as fit using orientation segmentation data com-
pared to human data. Human data is in purple, model in black. INT (in-
tact)/GS (globally scrambled) (shaded circles) thresholds are estimated very
well, though best at the lowest and highest densities. LS (locally scram-
bled)/GS (open circles) thresholds present the most difficulty, the model
matches human performance at the highest density, but over-estimates
thresholds at low and moderate densities. INT/LS (triangles) cannot be
segmented reliably enough to compute a threshold for humans or the model,
and are depicted here at 100% modulation depth. (C) Results for the model
and humans in the density condition. The model performs very well when
the textures are intact (INT), but overestimates thresholds when they are
locally scrambled (LS).
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Figure 4–8: Optimization procedure for structure and density boundaries
and model results. (A) Matrices of SSE for each noise/exponent parameter
value combination. Darker colours indicate lower error. Error is much lower
for compressive nonlinearities. Circled points indicate the model evaluated
for panels C and D. (B) Error with respect to noise level when the exponent
of the nonlinearity is fixed at 0.25 for density and structure segmentation.
The error functions have different minima, so a compromise (circled) was
chosen for the model evaluated in panels C and D. (C) Structure segmenta-
tion results for the model with the noise fit to this particular data to min-
imize sum-of-squares error. INT/GS (shaded circles) is underestimated at
all densities, but more so at low densities. LS/GS (open circles) thresholds
are not far off any single estimate, but the rate at which thresholds increase
with density does not accelerate as in the human data. INT-LS (triangles)
can’t be segmented by humans or the model well enough for thresholds to
be computed. (D) Density shows a reasonably good estimate in the INT
condition, but still over-estimates threshold in LS condition, if less severely.
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Figure 4–9: Image energy following filtering and rectification, for different
texture conditions. Each data point in this figure shows the spatially pooled,
rectified, average (N=4) first-stage filter response to an unmodulated tex-
ture. Three types of textures are shown: an intact texture with a density
of 595 micropatterns (purple diamonds), an intact texture with a density of
2975 (green circles), and a globally scrambled texture (blue triangles). The
power-law exponent (k) is varied along the horizontal axis. All textures have
approximately the same energy when the power law exponent is a square
law because they are presented at a fixed RMS contrast. However, when the
power law exponent is more expansive or compressive than 2, differences
emerge between these textures that can enable segmentation.

170



5 Discussion

Here I present a summary of the findings of the work collected in this

thesis, highlighting the strengths and weaknesses of the approach used,

along with potential avenues of future study. The results of the thesis are

discussed in the context of higher-order statistics, edge and region based

processing, the effect of working above contrast threshold on measuring

nonlinearities in vision, and work on nonlinear processing in general.
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CHAPTER 5
Discussion

These studies form a comprehensive examination of the role of higher-

order texture statistics in human segmentation of second-order boundaries,

and make strong inferences about the mechanisms that underlie perfor-

mance. In Chapter 2, natural and phase scrambled natural textures were

used to demonstrate that higher-order statistics impair segmentation of

contrast boundaries. By correlating image statistical measures against the

magnitude of the impairment it was determined that sparseness and local

phase alignments were important factors to examine. In Chapter 3 natu-

ralistic synthetic textures were used to assess individual image statistics

experimentally. It was shown that texture sparseness and global phase

structure impair orientation and contrast boundary segmentation, but that

local phase structure has little impact on second-order boundary segmen-

tation. An FRF model with two free parameters (exponent of power-law

nonlinearity and decision noise) was fit to these data, and it was determined

that a compressive rectifying nonlinearity is required to fit the segmentation

results. In Chapter 4 it was demonstrated that global phase structure and

density can enable segmentation in the absence of any lower-order cues.

The same model with the same nonlinear power-law exponent employed for

contrast and orientation boundary segmentation data in Chapter 3 could

also account for the roles of global structure and density, though not the

effects of local phase alignments in these data.

As stated at the outset of this thesis, the goal of a great deal of the

research in vision is to understand how different stages of visual processing
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respond to natural scenes. Much of the past work using carefully param-

eterized and controlled stimuli has done a very good job of characterizing

the aspects of the visual system that we know to look for, so Touryan and

Dan (2001) suggest that using natural stimuli will enable us to uncover

further properties of processing that are free of some of these assumptions

(Rumsfeld (2011)’s famous ‘unknown unknowns’). Natural images, however,

are challenging stimuli to work with because they are difficult to manipulate

systematically, and have spatial properties we have no established way of

quantifying. Because of these challenges, Rust and Movshon (2005) argue

that the complexity of natural images leaves them useful only as a bench-

mark for model performance. In this thesis, I have used a combination of

natural and synthetic stimuli to circumvent their respective limitations. To

uncover potential phenomenology, I used natural textures and a correlational

analysis to pinpoint specific texture statistics for further analysis. These

phenomena formed the basis of new hypotheses that I then tested explicitly

using synthetic stimuli designed to address the texture statistics of interest.

I developed and fit a model that accounts for much of the variance in human

performance on synthetic texture segmentation. The final step in this cycle,

and a future direction for this work, is to test this model against results

with natural stimuli.

5.1 Higher-order texture statistics

The most important higher-order statistic found for segmentation,

identified using the method outlined above, is texture sparseness. There is

a widespread misconception that sparseness refers to the spatial frequency

content of an image (e.g., DeValois & DeValois, 1990), in particular that

sparser images contain more low spatial frequency information. This is not

necessarily the case, and the work in this thesis follows Boulton and Baker
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(1993) and Kingdom et al. (2001) in completely dissociating the structure

of an image (i.e. its density) from its amplitude spectrum. This is not the

first work to identify the importance of density as a basic image property

to which humans are sensitive (Durgin, 1995; Nothdurft, 1985; Boulton &

Baker, 1993; Nothdurft, 2000; Wilkinson & Wilson, 1998), or the first to

note that it is a dimension on which natural images differ from random

noise patterns (Hansen & Hess, 2007), but it serves to suggest that there

is a clear relationship between texture density and segmentation, and that

this relationship affects segmentation of natural textures. It shows that

future studies of segmentation should account for or control texture density,

and ensure that it is not inadvertently varied along with a manipulated

parameter, or present as a confounding factor when comparing results

between experiments. This could be a particular problem when using

natural texture photographs, but Dakin et al. (2011) suggest a promising

method for computing the density of any arbitrary image.

Sparseness is only one of many higher-order statistics that could be

important to segmentation. The statistics examined here are by no means

an exhaustive exploration of higher-order image statistics, and identifying

others is an important goal for future studies. Portilla and Simoncelli

(2000) found a set of image statistics that were sufficient to explain natural

texture appearance, but the relationship between appearance judgements

and segmentation mechanisms is unclear. Instead, it could be fruitful to

pursue other structural image properties such as collinearity (Field, Hayes,

& Hess, 1993), regularity (Morgan, Mareschal, Chubb, & Solomon, 2012),

contrast polarity (Malik & Perona, 1990), or co-circularity (Motoyoshi &

Kingdom, 2010) to determine their influence on as well as their ability to

enable segmentation.
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For example, contrast polarity might be of particular interest. The lo-

cally scrambled micropatterns used in this thesis are created by randomizing

the phase of each of their Fourier components. When the lowest spatial

frequency is randomized, some micropatterns end up mostly light or mostly

dark, so that the textures composed of locally scrambled micropatterns have

a greater polarity variance than those with the micropatterns intact. In

retrospect, it would have been more unambiguous to keep the lowest spatial

frequency component centered in the gaussian window, and scramble only

the higher spatial frequency components to dissociate polarity variance and

local phase alignment.

Second-order mechanisms are often probed with regular stimuli, such

as modulated sine wave gratings or checkerboards, that are far simpler than

what is typical of statistically-defined textures. These stimuli are entirely

regular, but in fact regularity exists on a continuum (Morgan et al., 2012)

and might interact with density in interesting ways in both segmentation

and in other texture-related tasks.

As Figure 1-1 shows, in natural images segmentation cues do not

typically occur in isolation. Most boundaries in the natural world are

defined by changes in more than one image property. Restricting the

statistics enabling segmentation was one of the simplifications that made

this research tractable. Future experiments should examine how boundary

cues are combined, particularly cues of different statistical order such as

luminance and density, or orientation and local structure.

5.2 Studying segmentation

In early work on texture segmentation (Julesz, 1962), the criterion

for segmentation was a subjective judgement of whether or not the region

defined by the boundary seemed to be segmented preattentively, or (in
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later papers) ‘popped out’. This term was borrowed from the visual search

literature to describe the percept of salient objects that were apparent

in an array of distractor objects, without any effortful searching required

to localize them. However, using a subjective measure such as salience

may be misleading, especially in cases when the boundary salience is

qualitatively higher than in the ‘no segmentation’ cases, yet lower than in

the pop-out cases. This grey area was dealt with by measuring segmentation

thresholds, to obtain a quantitative estimate of how easy a boundary was to

segment. To prevent observers from searching for a boundary, while avoiding

subjective measurements, we used a very brief stimulus presentation time

(100ms) along with a fixation point to limit eye movements. Bergen and

Julesz (1983) attempted to show that salience in visual search is related

to segmentation because single texture elements that popped out of a

distractor array would typically also form regions that segmented from the

same distractors when presented as a textured patch. This is a tempting

relationship to draw, but is difficult to support or refute.

Models of boundary segmentation usually proceed in one of two ways:

edge-based processing or region-based processing. Region-based processing,

which was implicitly assumed throughout this thesis, weights the entirety

of each texture region more-or-less equally in segmentation (in fact, the

precise weighting is accounted for in the shape of the second-stage filter).

Edge-based processing, on the other hand, uses local discontinuities at

the boundary. Wolfson and Landy (1998) attempted to examine how

information along edges or regions affected segmentation thresholds by using

half-disc stimuli where the halves were either abutting or separated. This is

somewhat misguided, because in the abutting condition they are measuring

texture segmentation, but in the separated condition, they measure texture
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discrimination. As in the famous example with Ts and Ls, and emphasized

in the introduction to this thesis, these tasks are fundamentally different

and easily dissociated (Beck, 1966). We instead addressed the question of

edge- versus region-based processing with a pilot experiment using ‘bubbles’

windows (Gosselin & Schyns, 2001), and found that observers relied on the

entire stimulus image equally. Of course, there are circumstances under

which region-based segmentation fails–in particular, illusory contours from

abutting gratings–though it has been shown that the same filter-rectify-filter

mechanism (Wilson & Richards, 1992) and the same single neurons (Song &

Baker, 2007) can segment both these types of boundaries.

5.3 Role of nonlinearity

Decades of early work in the psychophysics of visual perception was

performed with stimuli presented near their contrast threshold. This was for

a number of reasons, one of which is pertinent here: as contrast is increased

the effect of nonlinearities often increases, so using low-contrast stimuli

helps maintain linearity of responses and enable quantitative modelling. In

this thesis, the primary effect of structure is attributed to the shape of the

intermediate nonlinearity in the two-stage model of texture segmentation.

Recall, however, that in Chapter 2, Experiment 3 (Figure 2–7), when carrier

contrast (rather than modulation depth) thresholds were measured, no effect

of structure was observed. This highlights the importance of understanding

the nonlinear processing that underlies the representation of structure,

and suggests that when reviewing the evidence for the effect of structure

on visual perception it is important to consider the contrast of the stimuli

employed.

This work demonstrates that the FRF-style of model can segment

boundaries based on properties other than those specified by the selectivity
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of the first-stage filters (i.e., orientation and spatial frequency) without

additional nonlinear stages. This is an alternative to the idea that additional

stages of rectification and filtering would be required (Graham et al.,

1993; Kingdom et al., 2001). This finding also serves to ameliorate some

of the tension between the popular energy-based view of segmentation,

and demonstrations that segmentation can occur without differences in the

amplitude spectrum (e.g., Malik & Perona, 1990; Graham et al., 1993).

Still, it is not a complete model, because some influences of local texture

properties in our results are not accounted for.

An intermediate nonlinearity is required for second order segmentation

to occur at all. In any form tested, an intermediate nonlinearity both

enabled segmentation and accounted for the overall qualitative finding

that sparseness impairs contrast and orientation boundary segmentation.

This is because the model’s representation of the signal (the second-order

boundary) is embedded in a noisier background when the texture is sparse.

The background is noisy because sparse images are characterized by local

contrast modulations. This is evident in Figure 3–11A, which illustrates the

greater response of the second stage filter to sparse, unmodulated textures.

The shape of the nonlinearity was important to account for the lack of effect

of local structure, and the degree to which sparseness affects segmentation.

When the boundary is defined by higher-order statistics, such as den-

sity, the interpretation of the model’s responses is somewhat more complex.

As illustrated in Figure 4–9, because the textures that define the boundary

have been matched for RMS contrast, a square law nonlinearity will not

enable segmentation between boundaries defined by density (Figure 4–9,

power-law exponent = 2). However, any other power law nonlinearity will

enable segmentation between these conditions. Relative to a square law, a
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more expansive nonlinearity boosts the areas of high local contrast, and so

sparser textures are stronger stimuli. On the other hand, a more compres-

sive nonlinearity boosts the areas of low contrast and suppresses the high

contrast areas, so a denser texture presents a stronger stimulus. In the case

of structure modulations, the observed effect of increasing density leading to

higher thresholds is almost certainly due to how this decreases the energy

difference between the halves of the stimulus. The modest effect of local

structure in these cases is not replicated by the model, and is thus difficult

to interpret.

It is possible, and even logical, to instantiate both compressive and

expansive nonlinearities in the same model. The best model for our results

employed an intermediate (compressive) nonlinearity between the first- and

second-stage filters, as well as an (expansive) output nonlinearity following

the second stage of filtering and pooling. The sigmoidal function that is

commonly used to represent the contrast response function of a neuron is

expansive at low contrasts and compressive at high contrasts. It is plausible

that the first-stage responses are strong enough to be affected by gain

control mechanisms, and thus compressive, while the second-stage responses

are affected by the lower, expansive, portion of the contrast response

function.

An important aspect of sensitivity to higher-order image statistics

is some sort of ‘conjunction-detection’, i.e. an enhanced (supralinear)

response to combinations of signals. Methods of conjunction detection

have been proposed on the feature level, explicitly using products of early

filter responses (Martin et al., 2004; Freeman & Simoncelli, 2011). While

in Freeman and Simoncelli (2011) this clustering occurs locally, Martin et

al. (2004) use a k-means procedure, which performs clustering on the over
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the entire image. Peirce (2007) suggests that an intermediate compressive

nonlinearity can serve to create conjunction selectivity. Mathematically,

we would expect a compressive nonlinearity and pooling followed by an

expansive nonlinearity to perform something approximating a product, as

a compressive nonlinearity can approximate a logarithm and an expansive

nonlinearity an exponential function (following the laws of logarithms:

log xy = log x+ log y).

5.4 Improving the model

A large part of this work included modelling psychophysical thresholds

by simulating our experiment. We fit a model with only two parameters

to our data quite well– though a model architecture with more parameters

might be desirable, fitting additional parameters presented a challenge.

Running a simulation was very computationally intensive for a variety of

reasons, including generating random stimuli for each trial, and stochastic

stimuli require a large number of trials.

Every micropattern texture was unique, with a new one generated

randomly for each trial as in the psychophysical experiments. The reason

for this was to avoid biasing our results with a relatively small subset

of textures. However it meant that every trial the model ran required

generating at least one texture in the case of contrast modulations, and at

least two textures when quilting was required to impose the modulation. In

addition to texture generation, each trial required the carrier or carriers to

go through the enveloping procedure and– particularly time consuming– be

filtered by our bank of log-gabors.

A consequence of using stochastic stimuli was that the model gave

different results on repeated runs of a given simulation, depending on the

stimuli that had been generated. This required running as many trials as
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were run for human observers in order to average out the case-by-case vari-

ations that could and did impact the best-fitting model parameters. Note

that even if the textures were pre-generated to alleviate the computational

strain of generating stimuli on the fly, a large number of trials would still be

needed to ensure sufficiently general model results. In future studies of this

kind, to cut down on the time it takes to run each simulation and enable us

to fit more model parameters or examine different model architectures, it

may be desirable to pre-compute a stimulus library and associated first stage

filter responses.

The work in this thesis uses what is commonly termed a discrimination

paradigm (Graham, 1989) (not to be confused with texture discrimination),

because the observer must discriminate between two non-blank stimulus

conditions, such as vertical versus horizontal boundary orientation. This is

a common psychophysical paradigm in studies of second-order processing,

but is not frequently addressed by models. In contrast, many psychophysical

studies of early visual processing employ a detection paradigm, where the

observer must identify whether or not a target stimulus was present.

The effects of testing observers’ ability to determine if the boundary

was left- or right-oblique, rather than simply present are evident in the

modelling: for the latter, the model thresholds can be anticipated based on

the strength of the response of the second stage filters. For the former, how

to predict the thresholds in any way other than a complete simulation is

unclear. When the model must determine which of two possible stimuli was

present, its threshold is not proportional to the strength of the second-stage

filter response, nor to the difference between the strengths of the left- and

right- oblique responses. This is well illustrated in Figure 3–11B. All of

the filter responses depicted result in the same slightly-above-threshold
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performance, but this could not be predicted from either the absolute

filter response, or the difference between the left- and right-oblique filter

responses. For this reason, it is necessary to perform a simulation of the

experiment and evaluate the model based on segmentation thresholds

rather than use some proxy such as filter responses. This is the first time,

to our knowledge, that segmentation has been modeled using complete

simulations of individual trials, and these results indicate that care should

be taken when using metrics (e.g. difference in filter responses) to model

segmentation performance, depending on the task.

In the case of orientation and contrast boundary segmentation, the

model accounted for the roles of density and global phase structure, as

well as the lack of a role for local phase alignments. When applied to

structure and density boundaries, the model continued to account well

for the roles of density and global structure, however it did not predict

the role of local phase structure at higher texture densities that we see in

human psychophysical data. This suggests that the model is missing some

component that is selective for local structure. Adapting the model so

that the differences in local phase structure are properly predicted could

possibly be accomplished by implementing local interactions across spatial

frequency channels in the bank of first-stage filters. It is also possible that

the differences could be predicted by accounting for the difference in polarity

variance.

The model is somewhat unrealistic, particularly in the uniform weight-

ings between carrier-selective channels. However, the model performs

extremely well in this simplified form, so a more complex set of experiments

would be required to fit any additional parameters.
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While developing our model, we investigated a range of architectural

possibilities. Because the conditions under which a model does not work can

be informative, we present them here:

The model required some decision noise. Without decision noise, model

performance spanned a wide enough range to obtain thresholds in all con-

ditions however in the absence of decision noise the model gives thresholds

lower than the human observers, particularly in the globally scrambled

condition. The model also gave poor fits when all spatial frequency channels

were weighted equally: when the weights were equal, the model produced a

difference in thresholds between the intact and locally scrambled conditions

in the contrast and orientation segmentation experiments. However, after

applying a 1/f weighting to the channels, the model matched human perfor-

mance by generating equal thresholds for the intact and locally scrambled

conditions. This weighting is what we expect for the efficient coding of

natural images (Field, 1987).

The model also required zero-balanced first stage filters. We found that

models using conventional gabor filters (i.e., not zero-balanced) produced a

difference between the intact and locally scrambled segmentation thresholds

in the contrast and orientation boundary segmentation tasks. This difference

was restricted to the even-phase gabor channel, indicating that zero-

balancing was indeed the problem. Zero-balancing the first stage filters by

using log-gabor filters is arguably the most appropriate way to model early

cortical responses to broadband images (Field, 1987).

Surround suppression between first-stage filters had undesirable side

effects. Surround suppression is a pervasive property of visual processing

(Fitzpatrick, 2000), and one that is appealing for density encoding, because

dense textures will induce much more surround suppression than sparse
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textures. We implemented a surround suppression algorithm based on

Grigorescu, Petkov, and Westenberg (2004), and the extra-receptive field

properties documented in H. Tanaka and Ohzawa (2009), but found the

resulting models’ performance very unlike those of our human participants.

Most problematically, surround suppression enabled intact/locally scrambled

(INT/LS) segmentation with thresholds as low as those for other structure

boundaries, while human observers could not perform this task well enough

to obtain thresholds.

To simplify the model, I chose to only represent two second-stage units

with filters (left- and right-oblique, at a low spatial frequency) in a winner-

takes-all arrangement. Realistically, there should be a population of filters

at this stage, at a range of spatial frequencies and orientations. This change

could be implemented and evaluated based on the human data presented

here because the cosine-tapered boundary used in the envelope construction

is relatively broadband. Instead of a simple decision rule, a more biologically

plausible network approach could be employed, as in Deneve et al. (1999).
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