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ABSTRACT

This thesis provides a self-contained account of the functorial correspondence

between irreducible singular G-monopoles on S1 × Σ and ~t-stable meromorphic

bundles on Σ. The main theorem from the work of B. Charbonneau and J. Hurtubise

is thus generalized here from unitary to arbitrary compact, connected gauge groups.

The required distinctions and similarities for unitary versus arbitrary gauge are

clearly outlined and many parallels are drawn for easy transition. Some basic

theory involving induced connections on associated bundles is developed for the

purpose of describing covariantly constant G-equivariant maps between principal

bundles. Several calculations from the references are expanded throughout in order

to demystify any uncertainties.

Once the main correspondence theorem is complete, the spectral data of our

monopoles is provided and the groundwork for a monopole theory on Sasakian

manifolds, along with their analogous abelianization is discussed.
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ABRÉGÉ

Cette thèse décrit une correspondance fonctorielle entre des G-monopoles

irréductibles avec singularités sur S1 × Σ et les GC -fibrés avec automorphismes

méromorphes ~t-stables sur Σ. Ainsi nous généralisons le théorème principal d’un

travail de Charbonneau et Hurtubise à tous les groupes de jauge compacts. Les

différences et les resemblances entre le cas unitaire et le cas général sont clairement

soulignés et beaucoup de parallèles sont tracées pour faciliter la transition. Un

peu de théorie élémentaire à propos des connexions sur les fibrés associés est

développée pour décrire leurs sections G-equivariantes et parallèles. Plusieurs

résultats provenant des références sont développées pour plus de clarté. Une fois la

correspondance principale établie, nous présentons les données spectrales de nos

monopoles , pour le cas étudié, et aussi dans un contexte plus général, sur des fibrés

en cercle non triviaux sur une surface de Riemann, ce qui fait intervenir la géométrie

de Sasaki.
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CHAPTER 1
Introduction

The Bogomolony equation, often seen on vector bundles [5, 28] can be equiv-

alently stated and solved on the more general class of principal G-bundles. This

has been done by Jarvis [25, 26] in the non-compact case where the base is R3.

He provides a bijective correspondence between the space of based rational maps

f : CP1 → Gc/P and the framed moduli space of monopoles whose Higgs field takes

values in the orbit G/P on the sphere at infinity.

The main goal of this dissertation is to provide a complete, self-contained proof

of the bijective Kobayashi-Hitchin type correspondence between the moduli space

of singular G-monopoles over S1 ×Σ and the space of ~t-polystable holomorphic pairs

(P ,ρ). Since working with complex vector bundles is equivalent to working with

principal GLn(C)-bundles, the results of [5] form a model for the constructions

and results found here. Hence, the constructions here will be parallel with the

exception of the fact that Charboneau and Hurtubise had advantage of working in

the Lie algebra of skew-hermitian matrices, which form an inductive system. Careful

considerations will be made about the properties of the more general Lie algebras

involved. For this reason, Gc will be a complex reductive Lie group which can be

realized as the complexification of a compact, connected real reductive Lie group G.

The main theorem, stated in full generality, is as follows;
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Theorem 1.0.1. There is a bijective correspondence between the moduli space

M ir r
k0
(G, S1 ×Σ, {(pi,µi)}Ni=1)

of irreducible principal G-monopoles over S1 × Σ with singularities at pi ∈ S1 × Σ of

µ-Dirac type, degree k0 over {0} ×Σ and the moduli space

Ms(Σ,K,~t)

of ~t-stable holomorphic pairs (P,ψ), where P is a holomorphic principal G-bundle of

degree k0 over Σ and ψ is a meromorphic section of AutG(P) taking the form

Fi(z)µi(z − zi)Gi(z)

when expressed locally near zi with Fi, Gi holomorphic-invertible and µi is a cocharacter

of the complexified gauge group Gc.

In less cryptic terminology, this theorem states that one can parameterize the

moduli space of G-monopoles 1 over S1 ×Σ having singularities of Dirac-type by the

more tractable complex algebraic moduli space of ~t-stable meromorphic pairs. There

is a family of these moduli spaces, parameterized by the location of singularities on Σ

and indexed by the combinatorial data given by the degree, and charge of the bundle

at the singularities.

The overall picture portrayed here is that of an intricate correspondence

between a moduli space of singular monopoles, which are solutions to a non-linear

1 i.e. a space of solutions to a partial differential equation
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partial differential equation involving the curvature tensor and a much simpler,

algebraic, moduli space of holomorphic principal G-bundles on Σ equipped with

a meromorphic section of its automorphism bundle. The bijective correspondence

between these spaces is given by a forgetful map which only keeps track of the

monopole’s information along {0} × Σ and the monodromy of a scattering map

around the circle. Thus, the surjectivity of this forgetful map is one of the main

technical and philosophical issues behind the result. That is to say, the real work

lies in verifying that a ~t-stable meromorphic G-Higgs bundle (P,ρ) is the skeletal

information required to uniquely construct a solution to the monopole equation.

The method used to reconstruct a monopole from its singular data is an

interesting application of heat flow on the space of positive hermitian metrics which,

in the course of doing so, makes use of the celebrated Hopf-fibration. Heuristically,

one wishes to, holomorphically, patch together a G-bundle on S1 × Σ having the

correct prescribed ’twisting’, so to be in the correct topological isomorphism class.

This is done by patching together a metric (using a partition of unity) that will be

a parametrix of the solution having the correct singular points. Once this metric is

defined, the heat flow is employed to evenly distribute the curvature, induced by the

metric, towards a solution to the monopole equation.

In history, there have been several results involving classifications of these types

and the general picture is known as the Kobayashi-Hitchin correspondence. There are

three foundational works in this area; namely the papers of Donaldson [9, 10] and

Uhlenbeck-Yau [44, 45] in establishing the Kobayashi-Hitchin correspondence for

holomorphic vector bundles on compact Kähler manifolds [32]. The progression of
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these results is the work of many mathematicians starting with Narasimhan-Seshardi

[35] for Riemann surfaces, Donaldson [9, 10, 11] again for Riemann surfaces and

also algebraic surfaces, and Uhlenbeck-Yau [44, 45] for compact Kähler manifolds. A

careful analysis of heat flow in these settings, and more generally in situations with

singularities, is due to Simpson [42]. A good reference for the completed Kobayashi-

Hitchin correspondence was presented by Lúbke and Teleman [32] in great detail

and generality.

In our situation, the solutions to the Bogomolny (monopole) equation are

required to have singularities. In 1988, Simpson [42] provided a short list of

assumptions sufficient to guarantee the required long term existence of the heat

equation in these cases. Our domains and initial conditions fit Simpson’s profile

(as first employed in [5]) and so we have the existence of our solutions with the

exception of singular neighbourhoods that must be considered with separately.

It was M. Pauly [37], following unpublished work of Kronheimer [31] who

first dealt with Dirac-type singular monopoles on 3-balls. He displayed, via a

radially extended version of the Hopf fibration, a correspondence between Dirac-

type monopoles on B3\{0} and smooth S1-invariant anti self-dual connections on

B4\{0}. This was used to solve the problem of classifying singular Hermitian-Einstein

(G = U(n)) monopoles on S1 ×Σ which was worked out by B. Charbonneau and J.

Hurtubise [5].

1.1 Chapter Breakdown

The first part consists mainly of the literature review and examples of required

topics and results to be employed throughout the main subject matter. It begins with

4



the core facts and ideas behind principal G-bundles, connections and curvature. This

includes some reoccurring examples (e.g. the Hopf fibration) which is extensively

used in the proof of our correspondence theorem. Another important example

found here is the realization of equivariant bundle maps P → P ′ as sections of an

interesting associated bundle (cf. Lemma 2.4.1 and Section 3.5). This example

is required for the proof of injectivity (Proposition 7.1.11) in the correspondence

theorem and drove what led to a small contribution (Proposition ??) to the general

theory of induced connections on associated bundles. There are many available

resources for this type of material but the content found here (in chapters 2 and 3)

are heavily influenced by [4, 13, 15, 23, 28, 29, 30, 33, 43] along with some notes by

M.L. Wong.

The next important bit of core material is that of stability theory for complex

vector and principal bundles on Riemann surfaces taken mainly from [4, 16, 17, 32,

34] for vector bundles and [24, 38] for principal. A proof of a result I like to refer to

as reduced curvature for Hermitian-Einstein bundles (found in both [17] - chapter 0

and [32] - chapter 2) is translated into the language of principal bundles and proven

in our notation (Theorem 4.2.2). This result allows us to integrate more easily on

our 3-manifolds assists in removing the use of induction in the proof of G-monopole

stability.

The heart of this document lies in part II which provides a self-contained

account of the correspondence theorem between the differential geometric family

of irreducible singular G-monopoles over S1 ×Σ and the equivalent algebraic family

of ~t-stable meromorphic pairs over Σ. This theorem and much of the groundwork
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behind it was inspired mostly by [5] which proved the analogous theorem for

complex vector bundles (i.e. the case G = Un). More substantially, chapters 5 and

6 are geared toward the development and understanding of the geometric objects

of interest (namely, monopoles and bundle pairs). Some important constructions

here are the µ-Dirac monopole (Section 5.2) which generalize the standard Dirac

monopole found in [5] to the principal bundle setting. Explicit definitions and

calculations are made regarding the stability of these objects while keeping the

reader informed about the choices made and ties back to more familiar notions. One

should notice the lack of mathematical induction required in the proof of Proposition

6.3.5 which, contrary to [5] (Proposition 3.6), allows us to discuss the stability of

monopoles for reductive groups that do not carry an inductive system (e.g. G2).

Chapter 7 is dedicated entirely to the proof, via Propositions 7.1.2 and 7.1.11,

of our main Theorem 7.1.1. The proof technique is quite standard for correspon-

dence theorems of this type. It involves defining a forgetful map from the differ-

ential/monopole side to the algebraic (recording only the skeletal/algebraic data

involved in the solution to the differential equation) and proceeds by showing bijec-

tivity. Once all of the correct notions (induced connections on associated bundles

and isomorphism between monopoles and bundle pairs) are in place, the proof of

injectivity is rather quick and not much different than found in [5]. The surjectivity,

shown by demonstrating that any stable bundle pair gives rise to a monopole, is

where M. Pauly’s “Hopf-trick” [37] and Simpson’s heat-flow [42] are employed.

Essentially, this process is described as follows;

(i) one takes the algebraic data of a stable meromorphic pair,
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(ii) patches this information together to define a G-bundle on the S1 × Σ with

appropriate singularity data,

(iii) applies Simpson’s heat flow on the space of hermitian metrics (with initial

metric specified by the alignment of our fibres from parti(ii)) to obtain a

hermitian metric whose associated curvature tensor is evenly distributed2 and

(iv) finally checks to make sure that the resulting bundle has not been affected to

drastically near the singularities (i.e. still has the required Dirac monopole data

at the singularities).

Once, this correspondence theorem is proven, there are several directions in

which this project can be taken further. Indeed, this correspondence between the

monopole moduli space and the space of stable holomorphic pairs is only two pieces

in a circle of three corresponding families of objects, the third being the spectral data

of the monopole. The topic of this dissertation is the bijection between monopoles

and stable holomorphic pairs. This circle of equivalent moduli spaces and all the

technical analysis involved has not yet been investigated for the case of principal

bundles with reductive structure groups and careful study of the relations between

these objects could lead to many beautiful results. When Σ has genus one, there

is in addition a Nahm transformation, taking us to instantons over Σ∗ × R × S1.

Alternatively, with the level of comfort developed from this document, one may wish

2 in these stages, we are making use of the well-known equivalence ([4]) between
topological isomorphism classes of bundles with connected components of the space
of hermitian metrics and the and their uniquely induced metric-compatible connec-
tions
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to consider the moduli space of singular G-monopoles on a non-trivial circle bundle

over Σ.

Chapter 8 and 9 are dedicated to the general layout for the problem of spectral

data associated to meromorphic pairs and the notion of singular G-monopoles over

Sasakian manifolds. The spectral curves and line bundles associated to meromorphic

pairs for complex vector bundles are well-understood and discussed near the end

of [5]. A brief review is covered here for the purpose of abstracting to arbitrary

reductive groups where we take a closer look at the orbit theory and generalize

these notions to what are called cameral covers. These cameral covers, introduced

by Donagi and Scognamillo [7, 39] and investigated in several similar contexts by

[8, 22, 20, 21, 40], have been of more recent mathematical interest in describing the

Hitchin map on the moduli space of Higgs bundles. Here, they are adjusted to our

particular system and the lift of our meromorphic data reduces to a maximal torus

bundle over the cameral cover.

Finally, chapter 9 deals with the idea of constructing singular G-monopoles over

a circle bundle of positive degree which can be shown to admit the structure of a

compact Sasakian 3-manifold. These differ from S1 ×Σ in the sense that the domain

is now a non-trivial circle bundle over a Riemann surface. The appropriate metrics,

forms and mechanics of Sasakian geometry is provided and the monopole equations

here are quickly achieved. The classical example of S3, realized as admitting

non-trivial S1-fibration over S2, is examined as a great candidate and calculations

are provided to match the theory. The holomorphic and meromorphic structures

appearing in this context are slightly different and give rise to a correspondence
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of singular monopoles on Sasaki manifolds with what we call twisted holomorphic

bundles over Σ. The generalized notion of twisted spectral data is then addressed

with some ideas left for future work.
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Part I

Core Material
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CHAPTER 2
Principal Bundles

2.1 Definition and basic facts

In order to generalize the theory of vector bundles to bundles having arbitrary

structure group (i.e. not necessarily GLn) we must introduce a more general notion

of bundle. These objects will be constructed from the perspective of their progeny,

the vector bundle. This is followed all the way to the theory of connections and

curvature.

Namely, a principal G-bundle P over a base manifold B is a smooth left G-space

P and a smooth projection π : P → B satisfying that

• The action of G is free and π descends to the quotient P/G inducing a diffeo-

morphism [π] : P/G→ B, and

• P is locally trivializable1

1 meaning, for each b ∈ B (the base manifold) there is an open neighbourhood
U 3 b and a G-equivariant diffeomorphism ϕU : P|U → U × G mapping p to
(π(p),σU(π(p))) for some map σ : U → G.

11



bB

P
p

G

If the base B has dimension n and G has dimension r then dim P = n + r

(based on the local description). Denoting by ρ : G × P → P the group action,

ρ(g, p) = g · p, of G on P we get two types of useful maps ρg : P → P; p 7→ ρ(g, p)

and ρp : G ,→ P; g 7→ ρ(g, p). If Lg and Rg denote the action of G on itself by left and

right multiplication then the following list of identities hold between these maps

1. π ◦ρg = π, since G is a fibre-preserving action on P,

2. ρe = 1P ,

3. ρgh = ρg ◦ρh,

4. ρp ◦ Rg = ρg·p, and

5. ρg ◦ρp = ρp ◦ Lg .

A section of a principal bundle P is a map σ : B → P such that π ◦σ = 1B. The

trivial bundle P = B × G admits a section σ(b) = (b, e). Conversely, if P admits some

section σ ∈ Γ (P), we can define an isomorphism of principal bundles B × G → P by

(b, g) 7→ g ·σ(b). Hence, unlike vector bundles, we find

Lemma 2.1.1. A principal bundle is trivial if and only it admits a section.

Also, as holds for any fibered space, we have

Lemma 2.1.2. A principal bundle over a contractible base is topologically trivial.
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2.2 Examples

We are already familiar with the trivial principal bundle P = B × G which is

really just the local model motivating the definition. The next natural motivatinal

example, coming from vector bundles is:

1. The Frame bundle FM of a manifold M . Fibre-wise Fx M is defined as the

space of frames (i.e. bases) for the tangent space Tx M . Local triviality is inherited

from the corresponding structure on T M . This is a GLn-bundle over M where GLn

acts by conjugation/change of basis. Given a metric, one has2 the orthogonal frame

bundle OFM by restricting our attention to the space of orthogonal frames. This is a

subbundle of FM and is a principal On-bundle on M . This notion of subbundle and

reduction of structure group will be elaborated in more detail later.

Another method for creating principal bundles and extracting useful topological

information comes from the theory of homogeneous spaces.

2. Let G be a Lie group and H ≤ G a closed Lie subgroup so that the base B is

given as the homogeneous space G/H. Then the sequence H ,→ G
π
→ B defines a

principal H-bundle over B. There is, furthermore, a right action, Rg mapping fibres to

fibres

Notice that the total space in this particular instance of principal bundles is

always the group G. Let us put this construction to work and see what we can find.

a) Let G = SL2(C) which acts naturally on the left of C2 and define H ≤ G

as the stabilizer of the first standard basis vector e1 = (1,0) ∈ C2. Then ,

2 via an application of the Grahm-Schmidt process
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H = stabG(e1)∼= (C,+) via the identification




1 z

0 1



↔ z.

As per the theory of group actions and homogeneous spaces we find the base

manifold B ∼ G/H as the orbit

Oe1
= G · e1 = C2\{~0}.

Now, the principal H-bundle q : G→ G/H; g 7→ [g] = gH is trivial since

σ : B = C2\{~0} → G; (z, w)→





z −w̄/k

w z̄/k



 for k = |z|2 + |w|2

is a global section. Hence, we have a diffeomorphism

SL2(C)∼= G/H ×H = (C2\~0)×C= (S3 ×R)×R2 = S3 ×R3.

b) Let G be the Lorentz group L↑+ = {A∈ SO(1, 3) : A00 ≥ 1} which acts naturally

on Minkowski space E1,3. Define H as the stabilizing subgroup of the first

standard basis vector e0 = (1, 0,0, 0) ∈ E1,3. A simple computation shows that

H ∼= SO(3) via the identification

� 1 0 0 0
0
0
0

A

�

↔ A.

The base space G/H = Oe0
is found to be

{x ∈ E1,3 : η(x , x) = 1, x0 > 0} ∼= {(t, x , y, z) ∈ R4 : t > 0, t2−x2−y2−z2 = 1} ∼= R3
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where η =
�−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

�

is the Lorentzian “metric”. Hence, the principal SO(3)-

bundle L↑+ → R
3 is trivial since the base is contractible and we have the

diffeomorphism

L↑+
∼= R3 × SO(3)

which will soon reduce to R3 × S3/(Z/2) upon further investigation of SO(3).

2.2.1 The Hopf Fibration

In order to establish notation, as the mechanics found here will be of importance

later on, recall some

Facts about SU(2)

The compact, connected, 3-dimensional, real, linear algebraic group SU(2) is

diffeomorphic to S3 via the embedding of the unit-length quaternions into M2(C).

There is an obvious canonical action of SU(2) on C2, but also it acts naturally on R3

via the adjoint representation on its Lie algebra. Indeed,

Lie(SU(2)) = su2 = spanR{iσ1, iσ2, iσ3}

where

σ1 =
�

0 1
1 0

�

,σ2 =
�

0 −i
i 0

�

,σ3 =
�

1 0
0 −1

�

are known as the Pauli-spin matrices. Let us adjust this basis to e j := − i
2σ j.

In this basis, any non-zero X ∈ su2 can be expressed uniquely as X = − i
2α~n · ~σ

where α ∈ R+ and ~n ∈ S2 and ~n · ~σ =
∑3

i=1 niσi. The one-parameter subgroups of

SU(2) are now given as η(t) = exp(tX ).
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Note that (~n · ~σ)2 = I2 for all choices of ~n. So, in the power series expansion of

the one-parameter subgroups we find that

η(t) =
∞
∑

k=0

iα(~n · ~σ)k

k!
= I2 cos(tα) + i~n · ~σ sin(tα).

Furthermore, with this notation, the exponential map is easily seen to be surjective3 .

Lemma 2.2.1. The adjoint representation of SU(2) naturally defines a surjective 2:1

group homomorphism f : SU(2)→ SO(3).

Proof. The matrix f (A) ∈ M3(R) is obtained through the action of SU(2) on the

basis elements of su2 by conjugation. That is, column j of f (A) is obtained as the real

coefficients from

Aσ jA
∗ =

∑

i

f (A)i jσi.

3 For an arbitrary element of SU(2) can be expressed as A =
�

z −w̄
w z̄

�

with |z|2 +

|w|2 = 1, in real coordinates, writing z = a0 + ia3 and w = a1 + ia2 then decompos-
ing A as a0I2 + i(~a · ~σ). This suggests that if we choose α such that cos(α) = a0 and
~n= ~a/|~a|, then A= exp(iα(~n · ~σ)).
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One can easily verify that the conjugations AσiA
∗ where A =





z −w̄

w z̄



 ∈ SU(2) is

expressed in complex coordinates give rise to

f (A) =











ℜ(z2 − w̄2) ℑ(z2 + w̄2) 2ℜ(zw̄)

−ℑ(z2 − w̄2) ℜ(z2 + w̄2) −2ℑ(zw̄)

−2ℜ(zw) −2ℑ(zw) |z|2 − |w|2











.

Notice that Z/2 ⊆ ker( f ) since f (A) = f (−A) we would like to claim that this

is an equality. To check this, note that we seek to find all A for which AσiA
∗ = σi.

This is equivalent to solving [A,σi] = 0 for all i = 1, 2,3. The only matrices which

commute with all three of our Pauli matrices must be scalar. That is, we have boiled

the kernel down to A= λI2. However, the only scalar matrices in SU(2) are ±I2.

Thus, we have a short exact sequence of Lie groups

Z/2 ,→ SU(2)� SO(3).

With this out of the way, we see that SU(2) acts naturally on both C2 (by matrix

multiplication), but also on R3 via the adjoint representation. The Hopf map is a

quadratic map defined by

π : C2→ R3

χ = (z, w) 7→ ~r := χ∗ ~σχ = (zw̄+wz̄, i(zw̄−wz̄), |z|2 − |w|2)

and satisfies the following list of interesting properties.

Proposition 2.2.2. The Hopf map satisfies the following;
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(i) For arbitrary χ ∈ C2, the Hermitian matrix constructed by χχ∗ can be expressed

in terms of ~r = π(χ) as

χχ∗ =
1
2
(r I2 + ~r · ~σ)

where r := χ∗χ = |χ|2.

(ii) restriction of π to the 3-sphere of radius
p

r in C2 has the 2-sphere of radius r as

its image in R3.

(iii) π is an SU(2) equivariant map meaning that the following diagram commutes

C2 A //

π
��

C2

π
��

R3
f (A)
// R3.

(iv) π is surjective, which is simply a result of the transitivity of the action SU(2) on

S3 and the equivariance of π.
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Now, expressing π : S3 → S2 in terms of angular coordinates4 then

π(θ ,ϕ,ψ) = (θ ,ϕ) is just projection on the first two factors. Recall the conver-

sion z = cos(θ/2)e−
i
2 (ψ+ϕ), w= sin(θ/2)e−

i
2 (ψ−ϕ) so that

π(θ ,ϕ,ψ) = π(cos(θ2 )e
− i

2 (ψ+ϕ), sin(θ2 )e
− i

2 (ψ−ϕ))

=











cos(θ2 ) sin(
θ
2 )e

−iϕ + cos(θ2 ) sin(
θ
2 )e

iϕ

i
�

cos(θ2 ) sin(
θ
2 )e

−iϕ − cos(θ2 ) sin(
θ
2 )e

iϕ
�

cos(θ2 )
2 − sin(θ2 )

2











=











sinθ cosϕ

sinθ cosϕ

cosθ











= (θ ,ϕ)

With this, notice that ζ ∈ S3 is a (unit length) solution to the equation5

(~n · ~σ)ζ= ζ . Recall the identity, ζζ∗ = 1
2(I2 + ~n · ~σ) so then

(~n · ~σ)ζ= (2ζζ∗ − I2)ζ= 2ζ− ζ= ζ.

Furthermore, the set of all solutions is parameterized by e−iαζ as a similar computa-

tion will provide. Computing the fibres of the projection π : S3 → S2 is shown by the

4 that is, Euler angles (θ ,ϕ,ψ) for S3 and spherical coordinates (θ ,ϕ) for S2

5 where ~n = (x , y, z) ∈ S2, ~σ = (σx ,σy ,σz) and the product ~n · ~σ = xσx ,+yσy +
zσz denotes an arbitrary unit element in the Lie algebra of SU(2)
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transitivity of SU(2) on S3. Indeed,

π−1(~n) = {Bζ ∈ S3 : f (B) ∈ stabSO(3)(~n)}.

Recall that the stabilizer of ~n ∈ R3 is the set of rotations about the axis defined by ~n.

This is then a subgroup of SO(3) isomorphic to SO(2) ∼= S1. One can compute this

fibre explicitly by realizing that f (B) comes from some 1-parameter subgroup of B(t)

of SU(2). More particularly, this subgroup is

B(t)ζ= e−
i
2 t~n·~σζ=

�

cos t
2 I2 − i sin t

2 ~n · ~σ
�

ζ=
�

cos t
2 − i sin t

2

�

ζ= e−i t/2ζ= eiαζ.

In conclusion, we have realized a principal S1-bundle structure on S3 providing

an action of SU(2) on R3 with the orbit of any fixed element ~n ∈ S2 is S2 and

stabilizer is a closed Lie subgroup H = S1 ≤ S3. Hence, we find the principal S1

fibration of S3 over S2. As already discussed, through cohomology classes of the

corresponding spaces, this bundle is not trivial.

2.2.2 Pullback bundles

Definition 2.2.3. Given a smooth map f : A→ B and a principal G-bundle P over B,

then the pullback bundle

f ∗P := {(x , p) ∈ A× P : f (x) = π(p)}

is a principal G-bundle on A.
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2.2.3 Torus bundles on 2-spheres

We cover the sphere S2 by two unit disks U+, U− intersecting on S1 × I , for some

interval I , which is homotopy equivalent to S1. Hence, the transition functions for

a T -bundle on S2 are given by the homotopy class of a single map µ : S1 → T (For

example, a cocharacter of T).

2.3 The vertical tangent bundle

If we set g to denote the Lie algebra of G, then each vector ξ ∈ g determines

a 1-parameter subgroup of G, and also a vector field in any manifold on which G

acts. That is, the line, tξ, through the origin in g defines a morphism from R into the

diffeomorphisms of P by t 7→ exp(tξ) and the action of R on a point p ∈ P is given

by exp(tξ) · p and the fundamental vector field vξ on G is generated as

vξ(p) =
∂

∂ t

�

�

�

�

t=0

exp(tξ) · p = dρp(ξ)

Lemma 2.3.1. The fundamental vector field on a principal bundle enjoys the following

properties.

(i) For any ξ 6= 0, vξ is nowhere zero

(ii) If ξ1, . . . ,ξk ∈ g are linearly independent then the vξi
are independent vector

fields.

(iv) The map ξ 7→ vξ is G equivariant, meaning that

vξ(g · p) = vAdg ξ
(p)

for all g ∈ G and ξ ∈ g.
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We define the vertical tangent bundle V P ≤ T P of the tangent bundle for P as

the kernel, ker(dπ), of the differential of the projection π : P → B.

Our ‘properties’ lemma above ensures that a basis ξ1, . . . ,ξn for g will generate

a basis of sections {vξi
} for the V P. This is understood by a simple dimension count

(i.e. since dimg = dim G). Furthermore, this also holds a proof of the fact that V P

is a trivial bundle over P having constructed a global frame. That is, we have the

following tautological result:

Lemma 2.3.2. The vertical tangent bundle V P is isomorphic to the trivial vector bundle

P × g via vξ(p)↔ (p,ξ).

2.4 Associated Bundles

Given any linear representation ρ : G → GL(V ) of G on some n-dimensional

complex vector space V one can form the associated vector bundle

Eρ := P ×ρ V

which is the space of equivalence classes P × V/ ∼ with (g · p, v) ∼ (p,ρ(g)v) for all

g ∈ G.

Example 1.

1. The most common example of associated vector bundles is the adjoint bundle

adP := P ×ad g associated to the adjoint representation of G on its Lie algebra.

That is,

ad : G→ End(g); g 7→ adg := (v 7→ gvg−1)

2. The associated line bundles are classified by the group characters, X (G) = {ρ :

G → C∗}, of G. In particular, for matrix groups, the determinant is a canonical
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choice of character and the associated vector bundle is the familiar determinant

bundle constructed as the top exterior power.

More generally, these ideas can be extended. In fact, let X be any smooth G-

space and P some principal G bundle over B. The fact that there is a group action

ϕ : G × X → X ; (g, x) 7→ g · x gives a map ρ : G → Aut(X ) by ρ(g)(x) = ϕ(g, x) =

g · x . Then, in the same way associated vector bundles are constructed, we get

Pϕ[X ] = P ×ϕ X .

Pictorially, associated bundles are illustrated by the following diagram:

bB

P
p

G Pρ[X ]

B

X

It will be important to notice that, unlike the case of associated vector bundles,

these associated fibre bundles do not necessarily admit any special algebraic

structure. That is to say, an associated fibre bundle may not be anywhere near

principal. A great example of this is the G-fibre bundle HomG(P, P ′) of G-equivariant

maps τ : P → P ′ between principal bundles. We will be able to realize this as a

G-bundle associated to the principal G × G fibre product bundle P ×B P ′. However, it

is immediately apparent that this space does not admit a free action of G unless G is

abelian.
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Example 1. The G-fibration π : HomG(P, P ′)→ B can be defined as a set as the union

of fibres

HomG(P, P ′) =
⊔

b∈B

HomG(P, P ′)b =
⊔

b∈B

HomG(Pb, P ′b).

These fibres are equivalent to the space of G-equivariant bijections from G to G.

However, a more appropriate realization is found as the associated G-bundle to the fibre

product G × G-bundle P ×B P ′ via the group action

ϕ : (G × G)× G→ G; (g, h, x) 7→ g−1 xh.

Stated more precisely

Lemma 2.4.1. There is an isomorphism

HomG(P, P ′)↔ (P ×B P ′)×G×G G

given by the fiberwise correspondence between G-equivariant bijections from G to G and

the topological quotient (G × G × G)/(G × G) defined by the equivalence relation ϕ

above.

Proof. Indeed, given an element of the equivalence class (a, b, g−1 xh) ∼ (ga, hb, x),

define a G-equivariant bijection τ which sends a to g−1 xhb. Then certainly

τ(ga) = gτ(a) = xhb which would have come from the same element (ga, hb, x).

Conversely, given some G-equivariant bijection, fix a, b ∈ G and let g, h ∈ G

be arbitrary (also fixed). Then the unique element x := gτ(a)b−1h−1 would

satisfy that τ(a) = g−1 xhb so also τ(ga) = gτ(a) = xhb, corresponding to

the fact that this bijection maps uniquely to an element in the equivalence class

(a, b, g−1 xh) ∼ (ga, hb, x) for fixed a, b, x ∈ G and any g, h ∈ G. That is, we have
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verified the following;

HomG(P, P ′)↔ (P ×B P ′)×G×G G.

Notice that, although this is a fibration (with fibres isomorphic to G), we do not

have a well-defined, let alone free, action of G on the total space. The G-action can

only be well-defined for the central elements, Z(G), of G. Observe, for g ∈ G, and

fb ∈ HomG(P, P ′) if we wanted to have, say g · fb(x) = f g
b (x) := fb(g · x), then the G

equivariance would impose that for all h ∈ G

ghfb(x) = fb(ghx) = f g
b (hx) = hf g

b (x) = hfb(g x) = hg fb(x)

which holds if and only if gh= hg (i.e. g ∈ Z(G)).

This example will be important to keep in mind throughout the rest of this

document as it will reappear several times and will be the object of future definitions

(e.g. induced connections on associated bundles)

2.4.1 Sections of associated bundles

Recall that a section of π : P → B is a map σ : B → P such that π ◦ σ = 1B.

Now, if Pρ[X ] is any associated X -bundle then the sections Γ (Pρ[X ]), defined as

maps σ : B → Pρ[X ], are in correspondence with the space of G-equivariant maps

f : P → X . That is

Lemma 2.4.2.

Γ (Pρ[X ]) = C∞(P, X )G

whose elements satisfy f (g · p) = ρ(g) · f (p).
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Proof. A section σ : B → Pρ[X ] admits a natural lift to a G-equivariant map

σ̃ : P → P × X which, because π ◦σ = IdB, factors as IdP × f (i.e. σ̃(p) = (p, f (p))).

The G-equivariance of σ̃ is expressed as (g · p,ρ(g) · p) = σ(g · p) = σ(p) = (p, f (p))

which naturally implies the equivariance of f .

Conversely, any G-equivariant f : P → X when extended by the identity

to F = IdP × f : P → P × X remains equivariant and thus descends to a map

F̄ : B = P/G→ P ×G X = Pρ[X ].

2.4.2 The gauge group of P

Another very important example is the associated bundle AdP := P ×Ad G with

the adjoint action, g · x := g x g−1, of G on itself6 (by conjugation). This is not a

principal bundle, but merely a bundle of groups. The sections Γ (AdP) act on the

bundle P and this is the well-known gauge group, GP of P. In fact this gauge group of

P is in correspondence with the group of automorphisms of P which act trivially on

the base. That is

Lemma 2.4.3.

GP = Aut(P)

Proof. Given f ∈ GP = Γ (AdP) in the form f : P → G such that

f (g · p) = g f (p)g−1

6 notice the distinction here between our little ad which was the action of G on its
Lie algebra. In fact ad= d Ad is the differential.
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construct ψ : P → P by ψ(p) := f (p) · p. Now since

ψ(g · p) = f (g · p) · g · p = g f (p)g−1 gp = g f (p) · p = g ·ψ(p),

this is base preserving and G-equivariant meaning ψ ∈ Aut(P). Conversely, any

ψ ∈ Aut(P) uniquely defines a map f : P → G by the condition ψ(p) = f (p) · p which

satisfies (2.4.2) because of the equivariance of ψ.
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CHAPTER 3
Connections and Curvature

Here, we will briefly recall some ideas about connections on vector bundles in

order to motivate definitions and draw parallels. For more information and a longer

list of results see any standard text on differential, Riemannian or complex geometry.

A short list of references is [15, 17, 22, 28]. See also [43] for a similar notation and

train of thought.

3.1 On vector bundles

A connection on a complex vector bundle E→ M is a linear map

∇ : Γ (E)→ Ω1(E)

satisfying a Leibniz rule

∇( f ·σ) = d f ·σ+ f · ∇(σ), for f ∈ C∞(M ,C),σ ∈ Γ (E).

A connection is the vector bundle analogue of the differential of a function:

Example. Consider some multi-variable function f : Rn→ R, then the differential of

f (aka, its gradient) is given as

∇ f =
n
∑

i=1

∂ f
∂ x i

d x i =
n
∑

i=1

fid x i.

28



Notice that the image of the differential is a 1-form and has been set up exactly so

that the directional derivative D~u f = 〈∇ f , û〉 where the standard inner product here

is, more generally, the non-degenerate pairing between a vector space and its dual.

Thus, given a connection ∇ we define the covariant derivative of a section

σ ∈ Γ (E) along a tangent vector field X ∈ Γ (T M)

∇Xσ :=∇σ(X ) ∈ Γ (E).

3.1.1 The connection 1-form

Given an atlas {(Uα,ϕα)} of trivializing charts for E the connection can be

expressed locally on each Uα (with respect to a choice of trivializing frame) as

∇α =∇|Uα = d +ωα

where ωα is a matrix valued 1-form on Uα (i.e. ωα ∈ Ω1(Uα, End E)). Here we find

that the connection form transforms under on overlaps via g : Uα ∩ Uβ → GLn(C) as

ωβ = g−1
αβ
ωαgαβ − d gαβ g−1

αβ

and one can verify that any locally defined matrix-valued 1-form transforming in

this fashion gives rise to a well defined connection on E. That is

Proposition 3.1.1. A connection ∇ on E is equivalent to a family {(Uα,ϕα,ωα)}

satisfying

ωβ = g−1
αβ
ωαgαβ − d gαβ g−1

αβ

for each gαβ : Uα ∩ Uβ → GLn(C), where {(Uα,ϕα)} is an atlas of trivializing charts for

E and ωα ∈ Ω1(Uα, End(E)) is an End(E)-valued 1-form on each Uα.
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3.1.2 Parallel transport

Along with the notion of covariant differentiation comes a way of determining if

a vector field is covariantly constant. In fact, this particular realization of connection

is most directly related to the name connection for (as we will see) it provides a

tangible means of comparing the relative alignment between different fibres.

A section σ ∈ Γ (E) is said to be covariantly constant along a vector field X if

∇Xσ ≡ 0.

Example 2. A path γ : [0,1]→ B in the base is said to be geodesic if ∇γ̇γ̇ = 0 (where

we note that here, ∇ is a connection on the tangent bundle of M).

Suppose instead, we are given a curve γ : [0,1]→ B and a point e0 ∈ Eγ(0) rather

than a section. The parallel transport of e0 along γ is the point p1 ∈ Pγ(1) determined

by σ(γ(1)) where σ is the unique section of E (along γ) satisfying that

∇γ̇σ = 0

with the initial condition σ(γ(0)) = e0. Notice that solving for such a σ here is a

local problem so the parallel condition is expressed on a trivialization of E as

cotγ(σ) + A(γ̇)σ = 0

which is simply a first order ODE so the initial condition guarantees uniqueness.

3.2 On principal bundles

Here, I will give a brief account from several sources. We follow published

articles [13, 15] and [22] along with notes on the subject by K. Klonoff and M. L.

Wong.
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Definition 3.2.1. Let π : P → B be a principal G bundle and select p ∈ P so that

π(p) = b ∈ B. A connection on P can be defined as any of the following equivalent

objects:

1. A G-invariant horizontal distribution on P. That is, a G-invariant subbundle

HP ≤ T P which is transverse to the vertical tangent bundle V P.

2. A differential form ω ∈ Ω1(P)⊗ g satisfying that

(i) ωg·p(dρg(v)) = Adg(ωp(v)) for all p ∈ P, g ∈ G; and

(ii) ω(vξ) = ξ for all ξ ∈ g.

3. A G-equivariant splitting of the short exact sequence of vector bundles

0→ V P → T P → π∗T B→ 0.

The first and second are the most common among definitions and the second

being the version most used in practice since it can be handled locally.

3.2.1 The Maurer-Cartan form

An equivalent formulation of the second definition is given using the Maurer-

Cartan form, the canonical left invariant 1-form on G, defined by

ωG : Tg G→ g; v 7→ d Lg−1(v).

An alternate condition (ii) for the connection 1-form can be expressed in terms of the

Maurer-Cartan form as

(ρp)∗ω=ωG

which says that ω evaluates as the canonical left invariant 1-form on G when

restricted to any vertical subspace of P.
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Lemma 3.2.2 (Parallel transport). With a connection ∇ on a principal G-bundle

π : P → B, if γ : [0,1] → B is a smooth curve on B, then for any fixed p ∈ Pγ(0) =

π−1(γ(0)) there is a unique lift γ̃ : [0, 1]→ P satisfying that γ̃(0) = p, π ◦ γ̃ = γ, and

γ̃′(t) ∈ Hγ(t)P for all t ∈ [0,1].

Let us point out that this is the key motivation for connection. Indeed, such a

unique lift provides a G-equivariant diffeomorphism (i.e. it connects) between the

fibres over the endpoints of γ. In brief, define a map

Pγ : Pγ(0)→ Pγ(1)

by Pγ(p) = γ̃(1) ∈ Pγ(1) where γ̃ is the unique horizontal lift from the above lemma.

Ideas of this sort will come up later when we discuss the scattering map for singular

monopoles.

Lemma 3.2.3 (Local description of the connection form). If {(Uα,ψα)} is locally

trivializing atlas for P giving rise to sections σα : Uα→ P and gαβ : Uαβ → G represents

a transition function (so that sβ = gαβsα) then, for any connection form ω ∈ Ω1(P)⊗ g

we get local connection forms

ωα := s∗
α
ω ∈ Ω1(Uα)⊗ g

which are related on overlapping neighbourhoods as

ωβ = gαβωαg−1
αβ
− d gαβ g−1

αβ
. (3.1)

Conversely, any family of local g-valued 1-forms related by this type of transition

uniquely determine a connection on P.
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Summary

To briefly summarize the ideas so far would be to quickly review the equivalent

objects to a connection on P. That is, beginning with a connection form ω ∈

Ω1(P) ⊗ g we can construct a G-invariant horizontal distribution on P via HP =

ker(ω). This horizontal distribution comes equipped with a natural projection

πV : T P → V P and happens to be the G-equivariant splitting of the sequence

0→ V P → T P → π∗T B→ 0. Finally, a connection form ω is the form obtained from

the G-equivariant splitting ω′ as the triple composition ω := prg ◦ϕ ◦ω′.

3.3 On associated bundles

The purpose of this section will not be immediately apparent. Our aim here

is to provide formalism for overcomming the lack of tensor and other algebraic

product operations in the category of groups. The motivating example for this

section comes from the comparison between Hom(E, E) and HomG(P, P) which are

both bundles associated to the vector bundle E and principal bundle P. For vector

bundles one simply finds that Hom(E, E) is canonically equivalent to the tensor

product bundle E ⊗ E∗ where, as we have shown, HomG(P, P) isn’t necessarily a

principal bundle. In the case of tensor product bundles, the theory of connections is

a simple an application of linear algebra and requires almost no further investigation.

However, for Hom(P, P) we must first develop some means of realizing such a bundle

associated to P followed by a well-defined notion of induced connection.

Brief recollection of terms, notation and objects at hand

We will make use of the following objects

• B - A complex manifold or Riemann surface
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• G - A (typically compact or reductive) Lie group

• π : P → B a principal G-bundle over B with action map ρ : G × P → P.

• The bundle isomorphism ζ : P × g
∼
→ V P on the vertical tangent bundle

V P ,→ T P.

• X an arbitrary G-space with action map ϕ : G × X → X .

• The associated X bundle Pϕ = Pϕ[X ] = P ×ϕ X over B with projection denoted

by πϕ.

• A connection ∇ viewed as a linear surjective bundle map Π : T P → V P such

that1 Π2 = Π and satisfying equivariance resulting from the action of G.

• The connection 1-form ω ∈ Ω1(T P)⊗ g which is, essentially, related to ∇ by the

expression ∇= ζ ◦ωp.

3.3.1 Definition and Examples

Heuristically, a connection on Pϕ should be a linear projection of T Pϕ onto the

(associated) vertical V Pϕ. This will involve determining exactly what is meant by the

associated vertical and also some theory on the push-forward of our action maps.

3.3.2 The associated vertical and differential of the action map

Definition 3.3.1. The vertical tangent bundle V Pϕ to Pϕ is defined as the kernel

dπ : T Pϕ→ T B.

Proposition 3.3.2. [Interpreted from [27] ]

V Pϕ := ker(dπϕ)∼= P ×ϕ T X .

1 So to be a projection on each fibre and hence also, since the image is V P, re-
stricting to the identity on V P ,→ T P.
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Proof. The composition

Φ : P × X
ΠP→ P

π
→ B

is constant on equivalence classes defined by the diagonal action of G, so descends to

our projection πϕ : P ×ϕ X → B. If we denote by

ψ : G × P × X → P × X ; (g, p, x) 7→ (ρ(g, p),ϕ(g, x)),

the diagonal action of G on P × X , then its differential

dψ : T G × T P × T X → T P × T X

induces an action of T G on T P × T X which is elaborated upon immediately after this

proof.

Now, dπϕ is the map descended to from the T G-equivariant dΦ : T P× T X → T B

whose kernel is clearly

ker(dΦ) = V P × T X

so that

ker(dπϕ) = ker(dΦ)/T G ∼= (P × g)×T G T X ∼= (P × g× X )/(G × g)∼= P ×G T X

Definition 3.3.3. A connection on the X -bundle Pϕ[X ] associated to P by ϕ : G × X →

X is realized as an equivariant surjective vector bundle map

Π : T Pϕ[X ]→ V Pϕ
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such that Π2 = Π. Equivalently, the connection 1-form is expressed ω ∈ Ω1(Pϕ)⊗ V Pϕ.

Besides the immediately apparent resemblance to a connection in the principal

setting, the following short list of examples should also provide concrete evidence for

such a definition.

Example.

1. X = G and ϕ = ρ so that Pϕ[X ] = Pρ[G] = P ×ρ G ∼= P. Here, the associated

bundle is the original principal bundle and the definition above is exactly that

for a principal bundle.

2. X = {x} is a single point so that Pϕ[X ] = P ×ϕ {x} ∼= B. Here, every section is

necessarily constant, the vertical bundle will be zero and the connection is the

zero map.

3. X = V n an n-dimensional complex vector space, so that ϕ can be interpreted

as a linear representation and Pϕ = P ×ϕ V n = Eϕ an associated vector bundle.

Then

ω ∈ Ω1(Eϕ)⊗π∗(Eϕ)

which resembles the old fashioned connection 1-form on a vector bundle.

The associated bundle and induced connection of great concern for our purposes

will be that of Example 2 in Chapter 3. Recall that the bundle homG(P, P ′) of G-

equivariant maps between two principal bundles is realized as the associated bundle

Pϕ[G] = (P ×B P ′)×ϕ G where ϕ : G × G × X → X ; (g, h, x) 7→ g−1 xh.
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3.3.3 T G and its induced action on T P × T X

Determining exactly how this induced action of T G on T P × T X looks will play

a role in properly defining induced connections and also serves a purpose right here

for completeness of the previous proposition.

Remark 1. Before we begin, it is important to realize that T G ∼= G × g, as a group, is

commonly referred to as the group of 1-jets of G.

Given

ψ : G × P × X → P × X

the differential2 dψ is expressed, point-wise, by

d(g,p,x)ψ= dgψ
(p,x) + d(p,x)ψ

g

where

dgψ
(p,x) : T G→ T P × T X

is the G-differential of ψ(p,x) : G→ P × X ; g 7→ (ρ(g, p),ϕ(g, x)) (defined by holding

(p, x) fixed) and similarly for d(p,x)ψ
g . Since this is just a combination of the two

actions ρ and ϕ, we can write

d(p,x)ψ
g = dρg ⊕ dϕg

2 inspired by simply looking at a map f : X × Y → Z expressed as z = f (x , y) so
that, abusing notation dz = d f = ∂ f

∂ x d x + ∂ f
∂ y d y .
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acting separately on T P × T X . From this we see that

d(g,p,x)ψ(vg , vp, vx) = dgψ
(p,x)(vg) + (dρg(vp), dϕg(vx)) ∈ Tg·pP × Tg·x X (3.2)

and, provided maps are given explicitly, could be easily calculated in local charts

using standard techniques from multi-variable calculus. To see that this is indeed an

action of the group T G ∼= G × g (multiplicative in the G-factor and additive in g)

observe that

• the identity (e, 0) ∈ T G acts trivially;

d(e,p,x)ψ(0, vp, vx) = deψ
(p,x)(0) + (dρe(vp), dϕe(vx)) = (vp, vx) ∈ TpP × Tx X

• Given two elements vg ∈ Tg G, vh ∈ ThG, the group operation3 here is given by

vg � vh := dRh(vg) + d Lg(vh) ∈ TghG.

So, we wish to see that

dψ(vg , dψ(vh, vx)) = dψ(vg � vh, vx).

Note: For notational convenience and without loss of generality we are assum-

ing ψ is simply an action on X (an arbitrary G-space) which encompasses the

particular action we are dealing with.

3 Note that T G ∼= G × g is, in general, non-abelian (unless G is) so that vg � vh is
different from vh � vg where there are the same resulting vector, but one lies over the
point gh and the other at hg.
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By formal expansion and making use of the fact that ψ satisfies ψ(g,ψ(h, x)) =

ψ(gh, x) (being a group action), we see

dψ(vg , dψ(vh, vx)) = dψψ(h,x)(vg) + dψg (dψ
x(vh) + dψh(vx))

= dψψ(h,x)(vg) + dψg ◦ dψx(vh) + dψg ◦ dψh(vx)

= dψψ(h,x)(vg) + dψg ◦ dψx(vh) + dψgh(vx)

= d(ψx ◦ Rh)(vg) + d(ψx ◦ Lg)(vh) + dψgh(vx)

= dψx(dRh(vg) + d Lg(vh)) + dψgh(vx)

= dψ(vg � vh, vx)

where we have used that, ψψ(h,x) =ψx ◦ Rh and ψg ◦ψx =ψx ◦ Lg .

3.4 Curvature

The basic idea of curvature is to measure, for a given connection, ∇ (equiva-

lently a horizontal distribution HP ≤ T P), how far the horizontal distribution, HP, is

from being an integrable distribution4 . We already know that V P ∼= P×g is vacuously

integrable but what about HP?

More formally, given a principal bundle with connection (P,∇) along with a

corresponding connection 1-form ω ∈ Ω1(P;g), the curvature F∇ is defined in several

equivalent ways:

4 Here we resort to the Frobenius integrability saying that HP is integrable if for
X , Y ∈ Γ (HP) then [X , Y ] ∈ Γ (HP).
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1. For tangent vector fields X , Y ∈ Γ (T M), F∇(X , Y ) := dω((1 − ∇)(X ), (1 −

∇)(Y ));

Notice here that 1 − ∇ represents the horizontal projection of T P onto HP,

hence this map really acts like

F(X , Y ) = dω((1−∇)(X ), (1−∇)(Y ))

= dω(XH , YH)

= XH����ω(YH)
0 − YH����ω(XH)

0 −ω([XH , YH]) = −ω([XH , YH])

and is measuring how much of [XH , YH] lies in the vertical direction.

Note furthermore, that this definition of curvature is equivalent to to the

pullback by the horizontal projection F∇ = (1−∇)∗dω.

2. The curvature is viewed equivalently, as a g-valued 2-form on P as

Ω := dω+
1
2
[ω,ω] ∈ Ω2(P;g), (3.3)

where,
1
2
[ω,ω](X , Y ) := [ω(X ),ω(Y )].

To verify these are equivalent it suffices to show that

dω(XH , YH) = dω(X , Y ) + [ω(X ),ω(Y )].

Indeed, since everything here is bilinear, it suffices to verify for the cases

(i) X , Y are horizontal;

Here, X = XH , Y = YH and we are blessed with the fact that (1−∇)∗ω = 0, so

this is trivial.
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(ii) X , Y are vertical;

Say X = vµ and Y = vν are fundamental vector fields generated by µ,ν ∈ g,

then the left hand side is

dω(XH , YH) = dω(0,0) = 0

and evaluating the right hand side is

dω(X , Y ) + [ω(X ),ω(Y )] = Xω(Y )− Yω(X )−ω([X , Y ]) + [ω(X ),ω(Y )]

= X (ν)− Y (µ)−ω(v[µ,ν]) + [µ,ν]

= 0− 0− [µ,ν] + [µ,ν] = 0

(iii) X is horizontal and Y is vertical;

So X = XH and Y = vη, then the left hand side is

dω(X , 0) = 0

and the right is

dω(XH , vη) + [ω(XH),ω(vη)] = XHω(vη)− vηω(XH)−ω([XH , vη]) + [0,η]

= 0− 0−ω([XH , vη]) + 0

Now, we rely on the following lemma from [29])

Lemma 3.4.1. If X ∈ Γ (HP) is a horizontal vector field and Y = vη ∈ Γ (V P) is a

vertical vector field generated by η ∈ g, then [X , Y ] is horizontal.

We have now shown a few interesting details about our curvature tensor.

Lemma 3.4.2. The curvature form Ω for F defined in equation (3.3)
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(i) vanishes on V P × V P

(ii) vanishes if and only if HP is an integrable distribution.

(iii) is G-equivariant

Having clearly described the induced action of T G on T P × T X , lets get to our

main point of...

3.5 Induced Connections

For the purpose of a single example, namely HomG(P, P ′), required for the proof

of injectivity in the monopole correspondence (Proposition 7.1.11), we must develop

a notion of induced connections on associated bundles. Unlike the vector bundle

case, where associated bundles such as the dual, determinant, direct sum or tensor

product of vector bundles (where induced connections are very naturally described

via linear algebraic techniques), our task will be slightly more subtle. Here, I will

recall some relevant linear algebraic constructions directly related to the problem

at hand. I will also outline some of the thought process involved in the analogous

definition for principal bundles.

3.5.1 On vector bundles

Given two vector bundles (with connections) (E,∇E), (F,∇F) of ranks n, m

respectively. Then we have the following three important constructions:

1. The Tensor product bundle E ⊗ F with induced connection

∇ :=∇E ⊗ 1F + 1E ⊗∇F .
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Indeed, this is linear and satisfies the Leibniz rule. Observe, for sections sE, sF

of E and F respectively, then the induced connection is defined to act as

∇(sE ⊗ sF) =∇Ese ⊗ sF + sE ⊗∇F sF .

so to say that the connection 1-form is

A= AE ⊗ 1F + 1E ⊗ AF .

2. The Dual bundle E∗ has induced connection defined as follows: Let s ∈ Γ (E∗)

and t ∈ Γ (E) be sections of E∗ and E respectively. The application of s on

t is then a smooth function s(t) : B → C and hence has the usual exterior

derivative for a connection. Then, as in the tensor product case, we should

have

d(s(t)) = (∇∗s)(t) + s(∇(t)).

Locally, then, we have that A∗ = −ĀT .

3. The bundle-morphism bundle Hom(E, F) ∼= F ⊗ E∗ is just the combination of our

previous two. So, as we have seen

∇=∇F ⊗ 1E∗ + 1F ⊗∇E∗

and locally

A= AF ⊗ 1E∗ − 1F ⊗ AE
T
.

One then has the induced connection ∇ expressed in terms of ∇E,∇F as

∇F(τ(s)) = (∇τ)(s) +τ(∇Es)
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where, locally, τ is expressed as f ⊗ e∗ where f and e∗ are sections of F and E

respectively. This interpretation for a connection on on Hom(E, F) will lead to the

correct formalism in developing the analogous object for HomG(P, P ′). However, let

us first set aside this specific example and develop some general theory.

3.5.2 On associated bundles

Given connection ∇ : T P → V P on P, the induced connection ∇ϕ on the

associated bundle Pϕ[X ] is defined via the following quotient diagram;

T P × T X ∇×1 //

dψ
��

V P × T X

dψ
��

T P ×T G T X
∇ϕ // V P ×T G T X

where Proposition 3.3.2 implies that V P ×T G T X ∼= P ×ϕ T X = V Pϕ, so that

∇ϕ : T Pϕ→ V Pϕ.

Lemma 3.5.1. ∇ϕ is a well-defined connection on Pϕ.

Proof. We must first verify that ∇ × 1 is T G-equivariant so that ∇ϕ is a properly

defined map. For this, consider vg ∈ T G and (vp, vx) ∈ T P × T X and apply,

(∇× 1)(dψ(vg , vp, vx)) = (∇× 1)
�

dψ(p,x)(vg) + (dρg(vp), dϕg(vx)
�

= (∇× 1)dψ(p,x)(vg) + (∇dρg(vp), dϕg(vx))

= dψ(p,x)(vg) + (∇dρg(vp), dϕg(vx))

= dψ(vg , (∇× 1)(vp, vx))
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where from the second to third line, we have made the assumption that dψ(p,x)(vg) ∈

V P × T X , so to say that the image T G are vertical where ∇ acts as the identity.

Hence. ∇× 1 is T G-equivariant.

It remains to demonstrate that ∇2
ϕ
= ∇ϕ and is a surjective vector bundle map.

This is essentially trivial since (∇× 1)2 = ∇2 × 12 = ∇× 1, all maps involved in the

diagram above are linear and ∇ : T P → V P is surjective. So ∇ϕ is a well-defined

connection on Pϕ.

3.5.3 Local form of induced connections in associated fibre bundles

Recall that the local connection form for ∇ on P is given, by pullback with

respect to a choice of gauge. That is, for a local section σ : B→ P we have

ω= σ∗∇ ∈ Ω1(B)⊗ g.

Now, this form takes on values in g which can be pushed forward to T X via our

action map. That is,

ωϕ(b, x) := dϕx(ω(b)).

Furthermore, in the case that X is a Lie group, one can push forward by d Lx−1 (so to

land in the tangent space at the identity).

Example 3. For our purposes, our original principal bundle is the G × G (fibre product)

bundle P ×B P ′ and X = G, with the action map ϕ : G × G × G → G defined by

ϕ(g, h, x) = g−1 xh. The connection here is the direct product connection ∇⊕∇′ with

local expression given most conveniently by the block diagonal matrix, say (ξ,η) where

ξ is the connection form for ∇ on P and η for ∇′ on P ′.

So, the picture here will look something like
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Ω1(P ×B P ′)⊗ g⊕ g
σ∗×σ′∗
→ Ω1(B)⊗ g⊕ g

dϕx

→ Ω1(B)⊗ Tx G

∇×∇′ 7→ (ξ,η) 7→ dϕx(ξ,η)

Expanding,

dϕx(ξ,η) =
d
d t |t=0

�

e−tξ · x · etη
�

=
�

−ξe−tξ · x · etη + e−tξ · x ·ηetη
�

t=0

= −ξx + xη

by abuse of notation. Now, recognize that viewing g as the tangent space of G at the

identity, we have defined this map point wise and landed in the wrong fibre of T G. That

is, we have not recovered a lie algebra valued element.

Indeed,

dϕx : Tg G ⊕ ThG→ Tϕx (g,h)G

or in our case

dϕx : TeG ⊕ TeG→ Tϕx (e,e)G = Tx G.

Finally, applying d Lx−1 ,
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d Lx−1 ◦ dϕx(ξ,η) = d Lx−1(−ξx + xη)

=
d
d t |t=0

�

x−1 · et(−ξx+xη)
�

=
�

x−1(−ξx + xη) · et(−ξx+xη)
�

t=0

= x−1(−ξx + xη)

= η− adx−1(ξ)

The following illustration demonstrates how adjoint actions continue to make

unexpected appearances; Let X be a G-space with ξ ∈ Tx X and g ∈ G, then

•x

•g · xξ

ξ
•

•

(1+ εξ)x

g · (1+ εξ)x
= (1+ εgξg−1)g · x
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CHAPTER 4
Stability Theory on Riemann Surfaces

Stability, in algebraic geometry, is a term used when one is faced with the

action of a reductive group on a projective algebraic variety and seeks to construct

a ‘well-behaved’ quotient space. Taking the naive quotient by such an action often

results in topological spaces which are no longer algebraic, or even Hausdorff!

Fortunately, it is possible to achieve a quotient which falls within the realm of our

model by simply disregarding a small family of points (those which are unstable),

taking special consideration to the equivalence classes of those which are semi-stable

followed by taking the standard topological quotient of this remaining subspace.

These issues are of great importance to us here as moduli spaces of bundles are, first

and foremost, realized as a space of isomorphism classes generated by the action of

our gauge group. The development of this theory is due to D. Mumford [34], where

he describes the moduli space of vector bundles explicitly as an example.

4.1 Vector bundle stability

The notion of a stable vector bundle has been widely investigated (cf. [4, 16,

41] and many more) and goes back as far as Mumford’s book, [34], on Geometric

Invariant Theory (GIT) where vector bundle stability appears as a example towards

the end. The common working definition of vector bundle stability is given as a slope

comparison between a bundle and its subbundles.

We, thus, adopt the following definition:

48



Definition 4.1.1. A complex vector bundle E → X over a Riemann surface is stable

(semi-stable) if for all subbundles V ⊆ E we have

µ(V )< (≤)µ(E)

where µ is the slope of E defined in terms of the degree (δ) and rank (rk) as

µ(E) :=
δ(E)
rk(E)

.

At first glance, this definition might seem unmotivated and strange. However,

a geometric explanation of this appears in the work of [9] and [4]. They describe

the semi-stable bundles as those flowing to the minima under the Yang-Mills energy

functional on the moduli space of bundles. In particular, but not exclusively, the

Yang-Mills functional on the moduli space of holomorphic structures for a fixed

smooth isomorphism class of complex vector bundle yields the stable elements as

minima. Atiyah and Bott have provided a careful account of this statement in [4].

Along with the Harder-Narisimhan filtration theorem, the stability theory of vector

bundles over a Riemann surface boils down to examining the degree of special

subbundles of Hom(E, E). With this in mind, we can now formulate an equivalent

definition of stability that will easily adapt to principal bundles.

A choice of subbundle V of E allows one to write the exact sequence of bundles

0→ V ,→ E→ E/V → 0

which splits if and only if E = V ⊕ E/V and in the smooth category, provides a

decomposition of End(E) as follows:
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End(E, E) = E∗ ⊗ E = (V ∗ ⊗ V )⊕ ((E/V )∗ ⊗ V )⊕ (V ∗ ⊗ E/V )⊕ ((E/V )∗ ⊗ E/V ).

This can be pictured as the matrix decomposition




V ∗ ⊗ V (E/V )∗ ⊗ V

V ∗ ⊗ E/V (E/V )∗ ⊗ E/V



 .

More generally, for a flag of subbundles 0 = V0⊂V1⊂V2⊂ . . .⊂Vr = E with

Di := Vi/Vi−1, we can again decompose the endomorphisms in the smooth category to

obtain,

End(E) =
⊕

i< j

End(Di, Dj) =
⊕

i< j

D∗i ⊗ Dj.

The following technical lemma allows us to form and equivalent definition for

vector bundle stability and will prove helpful in bridging the gap between vector and

principal bundle stability.

Lemma 4.1.2. If V ,→ E is a vector subbundle, then

δ((E/V )∗ ⊗ V ) = rk(E)δ(V )− rk(V )δ(E). (4.1)

Proof. It suffices, by the splitting principle, to verify this claim under the assumption

that E is a direct sum of line bundles. With E =
⊕n

i=1 Li, any proper subbundle V

corresponds to a proper subset S⊂{1,2, . . . , n} in the sense that V =
⊕

j∈S L j having

rank rk(V ) = |S|. Computing the Chern character of each V and E/V ∗ separately

gives

ch(V ) =
∑

j∈S

(1+ li) and ch((E/V )∗) =
∑

j /∈S

(1− l j)
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where li := c1(Li) is the degree of the corresponding line bundle in E. The ben-

efit of using the Chern character is to take advantage of the fact that it is a ring

homomorphism, so that

ch((E/V )∗ ⊗ V ) = ch((E/V )∗) · ch(V )

=
∑

j /∈S

(1− l j) ·
∑

j∈S

(1+ li)

= (rk(E)− rk(V )−
∑

j /∈S

l j)(rk(V ) +
∑

j∈S

l j)

= (rk(E)− rk(V )−δ(E/V )) · (rk(V )−δ(V ))

= (rk(E)− rk(V )) · rk(V ) + rk(E)δ(V )− rk(V )(δ(E/V ) +δ(V ))−δ(V )δ(E/V )

= (rk(E)− rk(V )) · rk(V ) + rk(E)δ(V )− rk(V )δ(E)−δ(V )δ(E/V )

and we have identified the Chern character, via Newton’s identities, as being

expressed in terms of Chern classes by

ch(F) = rk(F) + c1(F) +
1
2

�

c1(F)
2 − 2c2(F)

�

+ · · ·

implying that

rk((E/V )∗ ⊗ V ) = (rk(E)− rk(V )) · rk(V )

and

δ((E/V )∗ ⊗ V ) = rk(E)δ(V )− rk(V )δ(E)
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Equation (4.1) allows us to immediately see that the stability of E is equivalently

stated as

Definition 4.1.3. A complex vector bundle E → X over a Riemann surface is stable

(semi-stable) if for all subbundles V ⊆ E we have

δ((E/V )∗ ⊗ V )< (≤)0.

Example 4. For the sake of simplicity, suppose that δ(E) = 0 so that a subbundle

V ≤ E is destabilizing precisely when V has positive degree. That is δ(V ) > 0 implies

µ(V ) > 0 = µ(E). Equation (4.1) now implies δ((E/V )∗ ⊗ V ) = rk(E) ·δ(V ) which has

the same signature as δ(V ).

That is to say, the stability of a bundle (at least in the degree zero setting) implies

the non-existence of holomorphic sections of det(Hom(E/V, V )). It is in this way that a

working definition for stable principal bundles is constructed.

4.2 Principal bundle stability

For a principal Gc bundle P → X , it is important to keep in mind the analogous

vector bundle scenario for consistent definitions. The following construction of stable

principal bundle should be compared with the standard notion of vector bundle

stability outlined above in 4.1.

Remark 2. Note that viewing Gc as a subgroup of GLn(C) for some n which is always

possible1 since Gc is the complexification of a compact connected real Lie group (which

1 since compact groups admit faithful unitary representations so naturally the
complexification can be represented faithfully in GLn = UCn
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always admit faithful unitary representations). In this way, the embeddings extend to

parabolic subgroups, their Levi subgroups and their unipotent radicals. That is, at least

in the case of maximal parabolic subgroups H where only two blocks are required,

L ≤





GLk 0

0 GLn−k



 and U ≤





Ik Mk,n−k

0 In−k





whose Lie algebras are correspondingly of the form

l=





l1 0

0 l2



≤





Mk 0

0 Mn−k



 and u=





0 u

0 0



≤





0 Mk,n−k

0 0



 .

These results, serving only for illustrative purposes, follow directly from a corre-

spondence involving the simple roots of Gc. The important lemma here (found in [14]

pp. 147) being about a correspondence between parabolic subgroups (containing a

fixed Borel) and subsets of positive simple roots. Overall, the idea is that given any

faithful representation Gc ,→ GLn then the image of a parabolic subgroup in Gc will be

a subgroup of a parabolic subgroup in GLn. This winds up being due to the fact that a

parabolic subgroup H of Gc can be viewed as the exponential image of its Lie algebra h

which decomposes into the direct sum h = b⊕ (
⊕

α∈S hα) where S ⊂ ∆ is a collection

of positive roots and each hα is the root subspace of g corresponding to α. With these

ideas in mind, it suffices to acknowledge that root systems are preserved under faithful

representation.

The Levi-decomposition of a maximal parabolic subgroup H ≤ Gc is a semi-direct

product H = L n U .
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An important representation to consider comes from the adjoint action of H on

the unipotent Lie algebra u. Using the 2-block case for illustration, observe that an

element h=





A X

0 B



 of H acts on u as

Ad : H → GL(u)

Adh(u) = huh−1 =





A X

0 B









0 U

0 0









A−1 −A−1X B

0 B−1



=





0 AUB−1

0 0



 .

Perhaps more importantly, its derivative

ad := d Ad |H : h→ End(u)

Notice immediately (even before differentiation) that the U component of H

acts trivially on u, so to say that U ∼= kerAdu
H and the associated vector bundle of

interest PH(u) := PH ×AdH
u is isomorphic to just PL(u) (in the case of 2-blocks).

Recall, the adjoint representation of G on its Lie algebra is a canonical choice of

faithful representation and gives rise to the following associated vector bundle

Ad(P) := P ×G g.

This vector bundle, the adjoint bundle of P, represents precisely the endomorphism

bundle of some complex vector bundle, E with structure group Ad(G) = GL(g).

From this perspective, a consistent notion of degree (first Chern class) and

stability for principal bundles arises. Indeed, note that a fixed vector subbundle V

of E corresponds, in P, to a reduction of structure group PH ,→ P whose fibres, H,

are a maximal parabolic subgroup of G defined as the point-wise stabilizer, in G, of
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the subspace. This reduction of structure group forms the bundle whose sections are

those of Ad(P) leaving invariant the corresponding sub(vector)bundle.

Remark 3. More generally, a flag of subbundles 0 = V0⊂V1⊂V2⊂ . . .⊂Vr = E

corresponds to a reduction of structure group where the parabolic subgroup H is no

longer required to be maximal.

The Lie algebra h of H splits into the direct sum of its unipotent part, u, along

with its Levi subalgebra l= l1 ⊕ l2 to form a decomposition

u ,→ h→ l.

More importantly, this gives rise to the exact sequence of Lie algebras

0→ u ,→ h ,→ g→ g/h→ 0.

Now, as in the vector bundle scenario, we may view the decomposition of g as

g=





l1 u

g/h l2



 .

where it should be noted that g/h∼= u∗.

With this decomposition and the definition following Lemma 4.1.2, we may

define a notion of stability for a principal G-bundle which is consistent with the

definition provided by Ramanathan in [38].

Definition 4.2.1. If G is a reductive Lie group, then a holomorphic principal Gc-bundle

P over a Riemann surface is stable (semi-stable) if for every reduction to a maximal

parabolic subgroup H in Gc with unipotent lie algebra u, the associated vector bundle
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PH ×H u has negative (non-positive) degree. That is,

δ(PH ×H u)< (≤)0.

Remark 4. 1. Overall, from the perspective of stability for vector bundles, one should

be thinking of PH ×H u as being isomorphic to the tensor product of vector bundles

(E/V )∗ ⊗ V where V ,→ E is the vector sub bundle of E stabilized by the maximal

parabolic subgroup H of G.

2. Equivalently, (P,∇) is defined to be stable if for the character, χ = det◦AdH
u

of

H, the degree of the induced S1-bundle PH(χ) is negative. That is,

δχ(P,∇) := δ(PH(χ))< 0. (4.2)

The degree of a circle bundle here is the integer corresponding to the Euler-class (known

to be the same as the first Chern-class natural associated complex line bundle).

4.2.1 The Stability of Hermitian-Einstein bundles

The following result has been adapted from [32] and re-expressed in the

language of principal bundles.

Theorem 4.2.2 (Lübke & Teleman). Hermitian-Einstein G-bundles over Σ are

polystable.

Proof. Suppose that a Hermitian-Einstein G-bundle (P,∇) admits a holomorphic

reduction PH⊂P to a maximal parabolic subgroup H ≤ G. The decomposition of g

induced by h allows us to decompose the connection form ω (in a unitary gauge) of

∇ into

ω=ω1 +ω2 +F ∗ +F ∈ g⊗Ω1(Σ)
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where g= l1 ⊕ l2 ⊕ u⊕ g/h

F :=∇|T PH
−∇H ∈A 1,0(g/h)

is referred to as the second fundamental form of ∇ and visualized matrically as

F =





0 0

f 0



 .

Having this expression for the connection form, the curvature is then decom-

posed similarly according to g= l1 ⊕ l2 ⊕ u⊕ g/h as

ΩP = dωP +ωP ∧ωP = ΩL1
+ΩL2

+F ∧F ∗
︸ ︷︷ ︸

∈(l1⊕l2)⊗Ω2(Σ)

+Æ

whereÆ denotes all terms in u⊕ g/h will be neglected since characters are evaluated

on maximal tori. Thus, upon projection to l= l1 ⊕ l2, this is simply expressed

πL ◦ΩP = ΩL +F ∧F ∗

which globally reads as

FπL(∇) = πL ◦ F∇ −F ∧F ∗.

The Hermitian-Einstein condition on F∇ allows us to write F∇ = iC ·ωΣ and

evaluation of the character χ = AdH
u

on H and will be denoted accordingly as

trχ := dχ : t→ C.
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The Chern-form, cχ1 (FπL(∇)), associated to χ is defined by the map

cχ1 :l⊗Ω2(Σ)→ C⊗Ω2(Σ)

FπL(∇) 7→
i

2π trχ(FπL(∇))

and we find that

i
2π trχ(FπL(∇)) =

i
2π trχ(F∇ −F ∧F ∗)

= i
2π trχ(iC)ωΣ −

i
2π trχ(F ∧F ∗)

= − rk(G)||F ||2
χ
·ωΣ

Note that trχ(iC) = 0 since the centre of the Lie algebra is contained in the kernel of

the adjoint representation.

So then

δ(PL(χ)) :=

∫

Σ

cχ1 (FL) = − rk(G)||F ||2
χ

∫

Σ

ωΣ = − rk(G)||F ||2
χ
· VolΣ ≤ 0

and equality holds if and only if F = 0 which, furthermore, implies the existence of a

reduction to the Levi subgroup of H.
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Part II

Application to Monopoles
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CHAPTER 5
Background and basic objects

Throughout this section, we will be working with a complex reductive Lie group

Gc of rank n, its maximal compact subgroup G, a Riemann surface Σ with Hermitian

metric, a circle S1 of circumference τ with standard metric and we shall impose the

product metric on the manifold S1 ×Σ.

5.1 Bogomolny equations and generalizations

Let P be a principal G-bundle on

Y := S1 ×Σ\{p1, . . . , pN}

where each pi has coordinates (t i, zi) ∈ S1 × Σ and, for the sake of convenience,

the t i ’s and zi ’s are assumed to be distinct. The restriction of P to sufficiently small

spheres about each pi comes with a reduction to the torus. The bundle on this sphere

is defined by some cocharacter µi : S1→ T of the maximal real torus T ⊂ G. Suppose

that P admits a reduction to G with a G-connection ∇ and a section of the g-adjoint

bundle

Φ ∈ H0(Y, ad(P)),

called a Higgs field. The triple (P,∇,Φ) satisfies the Bogomolny equation if

F∇ = ∗d∇Φ. (5.1)
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This is a first order partial differential equation. In fact, this equation is a reduction

of the anti self-dual (ASD) equations1 over S1 × Y . This reduction and many other

simple facts in this preliminary section can be found in [5]. As the purpose here is

to extend the main result of [5] from the vector bundle setting to principal bundles

with reductive structure group G, the reader is referred to our main source for many

technicalities.

Unfortunately equation 5.1 imposes unnecessarily strong constraints on the first

Chern classes (i.e. that they average to zero in a suitable sense) so the following,

slightly weaker, form will be considered here to allow for solutions with arbitrary

degree. That is to say, the triple (P,∇,Φ) is said to satisfy the Hermitian-Einstein-

Bogomolny (HEB) equation if

F∇ − iC ·ωΣ = ∗d∇Φ (5.2)

where C is in the center, Z (g), of g, ωΣ ∈ Ω2(Σ) represents the Kähler form of our

Riemann surface and the only difference here is an extra term which allows for

non-zero global central curvature.

Remark 5. Note that central elements of g are invariant under conjugation and thus

may be equivalently viewed as sections of ad(P).

Now, since the base is essentially a product manifold, equation (5.2) splits

naturally into components and this is the content of the following lemma.

1 A connection A on a bundle over a 4-manifold is anti-self-dual if ∗FA = −FA
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Lemma 5.1.1. The HEB-equation (5.2) can be re-expressed as the following three

equations;

FΣ −∇tΦ= iC , (5.3)

[∇0,1
Σ ,∇t − iΦ] = 0 (5.4)

and

[∇1,0
Σ ,∇t + iΦ] = 0 (5.5)

where FΣ is the surface component of the curvature tensor (i.e. F = FΣω + · · · ) and

∇ = ∇0,1
Σ dz̄ +∇1,0

Σ dz +∇t d t.. Note that the third equation is merely the dual of the

second.

Proof. This is shown by breaking equation (5.2) into components and remembering

that it is “unitary” (in the G-sense). There is the surface component, Σ = 〈x , y〉, and

the time component, 〈t〉. Extracting the surface component of (5.2) gives

FΣ − iC =∇tΦ

where we note that the Hodge-star on the right hand side of (5.2) takes surface

components to time components and vice-versa. Equation (5.3) is known as the

variational constraint.

For the equation (5.4), extract components 〈x , t〉, 〈y, t〉 and combine them. On

the left hand side, the 〈x , t〉 component of curvature is realized as the commutator

[∇x ,∇t] which gives the equation

[∇x ,∇t]− 0= −∇yΦ= −[∇y ,Φ]
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where the negative is recognized as coming from the Hodge-star operator on the

ordered basis {x , y, t}. Similarly, the 〈y, t〉 component gives

[∇y ,∇t] =∇xΦ= [∇x ,Φ].

Multiplying the second equation by i and adding these two together gives

[∇x + i∇y ,∇t] = [−∇y + i∇x ,Φ] = [∇x + i∇y , iΦ]

and simplification of this is precisely equation (5.4).

5.2 The µ-Dirac monopole

This section is based on standard knowledge about complex line bundles

on S2. The Dirac monopole shall be referred to frequently and built upon within

this document, so we provide the necessary formulae here for easy reference.

Throughout this section and the remainder of this article, let µ ∈ X∗(T c) be a

cocharacter of a fixed complexified maximal torus T c⊂Gc.

Definition 5.2.1. For any real compact torus T , a µ-Dirac monopole is a principal

T -bundle over R3\{0} of degree µ, equipped with a connection ∇ and Higgs field φ

satisfying the Hermitian-Einstein-Bogomolny equation (5.2), defined as follows:

On R3, one has spherical coordinates related to Euclidean by

(t, x , y) = (R cosθ , R cosψ sinθ , R sinψ sinθ )

and volume form

dV = R2 sinθdRdθdψ= −r2drd(cosθdψ).
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For any µ ∈ X∗(T ), the cocharacters Hom(S1, T ), define the principal T -bundle

Lµ over R3\{0} by the transition function g± = µ from the neighbourhood where

U+ = R3\{t ≥ 0} to U− = R3\{t ≤ 0}. Any section on this bundle may be expressed by

maps

σ+ :
�

R3\{t ≥ 0}
	

→ T

σ− :
�

R3\{t ≤ 0}
	

→ T

satisfying σ− = g±σ+.

Now, consider a connection defined locally by the Lie-algebra-valued 1-forms

A+ =
iµ∗
2
(1+ cosθ )dψ, A− =

iµ∗
2
(−1+ cosθ )dψ

where µ∗ ∈ Lie(T ) is the differential of µ evaluated at 0 and the Higgs field φ = iµ∗
2R . It

is clear that

∇φ = dφ + [A,φ] = dφ = −
iµ∗
2R2

dR= ∗
�

iµ∗
2

d(cosθdψ)
�

= ∗F∇,

so that the pair (∇,φ) satisfies the Bogomolny equation (5.1).

If U± represents the open cover of R3\{0} obtained by removing the posi-

tive/negative z-axes, the overlap U+ ∩ U− is homotopy-equivalent to a circle and so

the transition functions defining such a bundle can be given, up to homotopy, by a

cocharacter µ ∈ X∗(T ) and sections σ are uniquely expressed as maps σ± : U± → T

satisfying σ+ = χ ·σ−.

Following this idea one has

Lemma 5.2.2. The µ-Dirac monopoles are all induced from the standard S1-Dirac

monopole by the cocharacter µ ∈ X∗(T ).
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Proof. First note that, as for any bundle over a sphere, the smooth isomorphism class

of any torus bundle is determined by the homotopy classes of maps [S1, T] for which

we may choose a cocharacter µ ∈ X∗(T ) as a representative. Thus this torus bundle

is isomorphic to the T -bundle induced by µ from the line bundle, L1 of charge 1 over

R3\{0}. That is, we may consider bundles of the form

L1(µ) := L1 ×S1 T

where the diagonal action on L1 is as usual and via µ on T .

Having that any T -bundle on R3\{0} realized as L1(µ) for some cocharacter

µ ∈ X∗(T ), it is natural to choose the necessary connection and Higgs field to be

obtained through µ as well. Indeed, with connection form defined locally on the

open cover U± := R3\{∓z ≥ 0} as

ω± = µ∗(A±)

and Higgs field

Φ := µ∗(φ)

where A and φ are the connection and Higgs field for the model Dirac monopole of

charge 1, defined in [5]. It is then tautological to verify that (L1(χ),ω,Φ) satisfies

the monopole equation.

With this identification, there is no need to pursue the structure of the µ-Dirac

monopole any further. Calculations for the change between holomorphic and unitary

gauges are the same as for vector bundles (see [5]) and provided here as follows;
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Some calculations for the U(1) Dirac monopole

We compute the ∂̄ operator ∇0,1 = 1
2(∇x + i∇y) and the change of gauge from

unitary to holomorphic gauge. That is, a non-unitary trivialization by a section σ

such that ∇0,1σ = 0. Using the fact that cosθ = t/R and dψ = xd y−yd x
r2 (where

R2 = t2+ r2) between spherical and Euclidean and also that z = x+ i y and z̄ = x− i y

between real and complex coordinates; the connection may be expressed as

A+ =
ik
2
(1+ t/R)

xd y − yd x
r2

=
k(1+ t/R)

4r2
(z̄dz − zdz̄)

which has (0, 1) component

A0,1
+ = −

k(1+ t/R)
4r2

zdz̄ = −
k(t +

p
t2 + zz̄)

4zz̄
p

t2 + zz̄
(zdz̄).

Now consider the radial (in r) form

−
k(t +

p
t2 + r2)

4r2
p

t2 + r2
(2rdr)

which has the same (0, 1)-term (provided one recognizes r =
p

zz̄ so that 2rdr =

zdz̄ + z̄dz).

One can change the trivialization to eliminate the (0, 1) part by applying a

change g0 which solves

∂

∂ r
ln(g+) = −

k
2
(t +
p

t2 + r2)

r
p

t2 + r2
.

This equation is solved by

g+ = (R− t)−
k
2
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and this transforms the connection, via A 7→ A− (d g)g−1 into

−(k/2R)d t + (k(R+ t)/2r2R)z̄dz.

Now, in this trivialization, we have ∇0,1 = ∂ 0,1 and ∇t − iφ = ∂t . In this holomorphic

gauge, the metric is given by

(g∗+g+)
−1 = (R− t)k.

Similarly, for the second chart where θ 6= π, the change of trivialization is given

by g− = (R+ t)k/2, the connection transforms to

−(k/2R)d t − (k(R− t)/2r2R)z̄dz

and again we have ∇0,1 = ∂ 0,1,∇t − iφ = ∂t with holomorphic metric given by

(g∗−g−)−1 = (R+ t)−k. These new trivializations are related by2

g−g∓g−1
+ = zk.

2 This is subtle but can be verified; Hint: g−g∓g−1
+ = (R+ t)k/2eikψ(R− t)k/2, draw a

picture and recall that R2 = t2 + x2 + y2.
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CHAPTER 6
Singular G-monopoles, holomorphic structures and meromorphic pairs

This chapter introduces and elaborates on all of the essential analytic and

topological details involving both singular G-monopoles on S1 ×Σ and their eventual

algebraic equivalent, meromorphic bundle pairs. The stability of both is discussed in

depth including motivation and consistency arguments from the standard theory.

We then define the map,H , from monopoles to bundle pairs and provide

justification that its image lies in the space of stable pairs. Similar proofs of this

flavour are found in [17, 32, 28] and heavily rely on the fact that, loosely stated, the

curvature in holomorphic subbundles decreases. This is the essential idea used in

the proof of the Kobayashi-Hitchin correspondence, but here we will have to adapt

the argument for meromorphic Chern forms. On compact complex manifolds, where

integration and Chern classes are well-defined, one can further use this to show

stability of irreducible Hermitian-Einstein bundles.

The general phenomenon of reduced curvature happens to carry over to a wider

class of holomorphic fibrations and can be applied here in the setting of principal

bundles. A proof of this reduced curvature in holomorphic subbundles was given for

singular Hermitian-Einstein (unitary gauge) monopoles in [5]. However, their proof

relies on an inductive argument on the rank of the group and does not carry over to

arbitrary reductive gauge since, for example, the exceptional Lie group G2 does not
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admit an inductive system. Because of this, it will be of priority to provide proof of

stability without the use of induction.

6.1 Definitions

Singular G-monopoles

For a point p in a three manifold Y , let R represent the geodesic distance to p

and use a normal coordinate system (t, x , y) centered at p for which the metric in

these coordinates is represented by I + O (R) as R→ 0. Let (θ ,ψ) represent angular

coordinates, as above, for the µ-Dirac monopole on the sphere of constant radius

R= c and denote the open ball defined by R< c by B3.

Definition 6.1.1. A solution (P,∇,Φ) to the HEB equation (5.2) on Y \{p} has a

singularity of µ-Dirac type at p if:

• locally, on B3\{p}, P admits a reduction of structure group to T which is G-

isomorphic (replacing unitarily isomorphic) to the bundle of a µ-Dirac monopole

Tµ, and

• under this isomorphism, in the two open sets, U±, trivializing P on B3 induced

by standard trivializations of the Tµ (so that the P-trivializations have transition

function given by µ), one has, in both trivializations, that1

Φ=
dµ
2R
+O (1) and ∇(RΦ) = O (1)

1 Note here that χ∗(0) =
dχ
dψ |ψ=0 is intended to mimic the formulation in GLn which

reads

i diag(k1, . . . , kn) =
d

dψ
|ψ=0 diag(eik1ψ, . . . , eiknψ)

69



Furthermore, a solution to equation (5.2) with singularities {p j}Nj=1 of µ j-Dirac type a is

called a singular G-monopole (of Dirac-type).

Remark 6. The first part of this definition says that a solution with singularity of

Dirac type is locally (in a neighbourhood of a singular point) comparable to a µ-Dirac

monopole. From the perspective of bundle construction via sheaf cohomology, any

section σ ∈ Γ (P) locally takes values in the maximal torus T of G.

The second part of the definition ensures, first that the Higgs field respects the

local decomposition of P into Dirac monopoles and the second constraint, via equation

(5.2), implies that the curvature is O (R−2) and hence integrable in neighbourhoods of

singularities. Indeed,

O (1) =∇(RΦ) = dR∧Φ+ R · d∇Φ= dR∧Φ+ R · (∗F∇ − ∗iC In ·ωΣ)

implying

∗F∇ =
1
R
(O (1)− dR∧Φ) + ∗iC ·ωΣ =

O (1) +O (R−1)
O (R)

+O (1) = O (R−2)

as R→∞.

Definition 6.1.2. The moduli space of irreducible singular G-monopoles2 on S1 ×Σ

having Dirac singularities of type µ j at p j = (t j, z j) for j = 1, . . . , N will, from now on,

be denoted as

M ir r
k0
(G, S1 ×Σ, {(p j,µ j)}Nj=1) (6.1)

2 defined here simply as a set
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and any triple denoted by (P,∇,Φ) will be an element of this space.

Holomorphic structures and scattering

A holomorphic structure on Y , will be an intermediary object, realized through

complexification of P, when passing from monopoles to meromorphic pairs. How-

ever, holomorphic structures on Y can be defined independently from the informa-

tion provided above.

Definition 6.1.3. A holomorphic structure on a Gc-bundle P c over Y is defined by two

commuting, covariant differential operators

∇0,1
Σ : Γ (P)→ Γ (P)⊗ (TΣ0,1)∗ and ∇c

t : Γ (P)→ Γ (P)

expressed locally as

(∂̄z + A0,1
Σ )dz̄ and ∂t − iϕ

such that near singularities there exists a reduction to G and ∇c
t has the asymptotics of

a Dirac-singularity.

This definition allows us to understand the meaning of a holomorphic section

over our odd-dimensional base manifold.

Definition 6.1.4. A section σ ∈ Γ (P c) is holomorphic if it is parallel with respect to

both ∇0,1
Σ and ∇c

t . That is, σ is holomorphic in the usual sense when restricted to any

complex slice Σt , and satisfies ∇c
tσ = 0 (i.e. respecting the commutative nature of the

operators).

One sees, via Equation (5.4) in Lemma 5.1.1, that the complexification of a

monopole (P,∇,Φ) admits a holomorphic structure. To state things more clearly, that

is
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Proposition 6.1.5. There exists a forgetful map from monopoles to holomorphic

structures on Y given by

(P,∇,Φ) 7→ (P c,∇0,1
Σ ,∇c)

where ∇0,1
Σ =∇

0,1
|{0}×Σ and ∇c =∇t − iΦ.

To holomorphic structures, we may apply the following scattering technique.

The scattering operator is the second differential operator, ∇c, of a holomorphic

structure (also, found as the second term in the commutator from equation (5.4)).

This is a first order (linear) differential equation in the S1-direction of S1 × Σ and

amounts to a complex parallel transport3 operator. That is, setting P c := P×G Gc (i.e.

the complexification of P) let parallel sections σ ∈ Γ (P c) satisfy

∇cσ = 0.

As usual, this provides a smooth, fibre-wise isomorphism (at least whenever the

curve [t, t ′]× {z} contain no singularities)

ρt,t ′ : P c
(t,z)→ P c

(t ′,z)

defined more precisely as follows:

For each p ∈ P c
(t,z), let γ be the unique solution to ∇cγ = 0 with γ(t) = p. Then

ρt,t ′(g) = γ(t ′).

3 Indeed, when the Higgs field is zero, this is exactly the parallel transport in the
t-direction.
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For intervals [t, t ′] containing no singularities, integration of the scattering

operator defines an isomorphism between P{t}×Σ and P{t ′}×Σ′ . When there is a

singularity at some time t i ∈ (t, t ′) consider, for simplicity, the singularity at the

origin of a chart for Σ with time considerations as −1 < 0 < 1. The result ([5]

Proposition 2.5) is that

Proposition 6.1.6. In holomorphic trivializations at t = ±1 the scattering map ρ−1,1 is

locally expressed in the form

h(z)µ(z)g(z)

with h, g : U ⊂ C→ G holomorphic and µ : C∗ → T c is a map into a maximal torus of

G. Note that the coordinate z has been chosen so that the singularity is at 0.

We say that a map ρ : U → G admitting this type of local decomposition is

encoded by µ at z.

To see the result in the principal bundle setting, note that by [5], it holds in any

representation of G.

Meromorphic pairs

For us, a meromorphic bundle is a pair (P ,ρ) where P is a holomorphic

principal G-bundle over a Riemann surface Σ and ρ ∈ M (Aut(P)) is a section of

Aut(P) which is meromorphic over Σ. More concretely,

Definition 6.1.7. A meromorphic pair of type (~µ, ~z) = {(µ1, z1), . . . , (µN , zN )} is a

pair (P,ρ) where P is a holomorphic principal G-bundle on Σ and ρ ∈ M (Aut(P)) is

a meromorphic automorphism of P whose singular data is encoded by the cocharacter

µ j at z j ∈ Σ. So, in fact, ρ : P → P is an automorphism of P on the Zariski-open

Σ\{z1, . . . , zN}.
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An example of such objects is achieved when considering the forgetful map

which takes the holomorphic structure of a singular G-monopole (P,∇,Φ) to

(P c
t ,ρt,t+τ) where P c

t := P c
|{t}×Σ is the restriction of the complexified bundle P c

on S1×Σ to time t ∈ S1 and ρt,t+τ the monodromy obtained from scattering along S1

with ∇c = ∇t − iΦ . In fact, it was for this particular example that the definition has

been formed. More concretely, let us state that

Proposition 6.1.8. Every holomorphic structure (P c,∇0,1
Σ ,∇c) on Y gives rise to a

meromorphic pair (P ,ρ) by restriction of P c to any non-singular slice {t} ×Σ and the

monodromy obtained by integrating the scattering operator ∇c around the circle.

With this, it will be convenient to denote the space of meromorphic pairs as

follows,

Definition 6.1.9. The moduli space of meromorphic bundle pairs over Σ of singular

type K= {(µ j, z j)}Nj=1 will be denoted by

M (Σ,K) (6.2)

From monopole to stable pairs

In summary, now that the objects of importance are well-defined and famil-

iar, we define the forgetful map as the composition of maps from monopoles to

holomorphic structures and finally to meromorphic pairs

H :M ir r
k0
(G, S1 ×Σ, {(pi,~ki)}Ni=1)→M (Σ,K)

as

H (P,∇,Φ) := (P c
|{0}×Σ,ρ0,τ)
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where P c
|{0}×Σ is the restriction of the complexification P c → Y to the slice {0} × Σ

(note t = 0 is assumed to be a non-singular time) and ρ0,τ is the meromorphic

automorphism of P0 resulting from the monodromy by scattering all the way around

the circumference S1.

Remark 7. The restriction to any non-singular time t ∈ [0,τ] would provide an

equivalent correspondence. For this purpose, one may wish to denote the function more

precisely asHt(P,∇,Φ) := (Pt ,ρt,t+τ). However, we will stick with denotingH0 byH .

We first note that the P c
|{0}×Σ component in the image ofH is a holomorphic

principal G-bundle over Σ. This follows because the slice {0} ×Σ of S1 ×Σ has been

conveniently chosen not to contain any singular points. Since P c
|{0}×Σ is the restriction

of a monopole, it is furthermore already equipped with the holomorphic differential

∇0,1
Σ (seen first in 5.4).

6.2 The topology and degree of a G-bundle on Y

Recall the topological classification for principal G-bundles over a fixed base

manifold Y is given by homotopy classes of maps [Y ; BG] where BG is the classifying

space of G. In our case, the base manifold Y = (S1 ×Σ)\{pi}Ni=1 is the complement

of a finite collection of points in a compact 3-manifold. Thus Y deformation retracts

(i.e. is homotopic) to some 2-dimensional CW-complex with (N + 1) cells in

dimension 2. Namely Y ' Y 1 ∪ Y 2 is the skeletal decomposition where Y 2 =

Σ∪
�⋃N

i=1 S2
i

�

. In fact, since there are N punctures in Y , the integer second homology

is H2(Y ;Z)∼= ZN+1.

With G, a compact, connected real algebraic group one finds

0= π0(G) = π1(BG)
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implying that

π1(G) = π2(BG)∼= H2(BG)

where the last equivalence is due to Hurewicz Theorem since π1(BG) = 1. Thus,

classification of G-bundles on Y amounts to the classification of the bundles on a

bouquet of (N + 1) 2-spheres since the 1-skeleton contracts to a point after mapping

to BG.

Let us consider the characteristic classes obtained by pullback from H2(BG). We

have (by the Universal coefficient theorem and Hurewicz theorem respectively) that

H2(BG,R)∼= H2(BG;R)∗ ∼= H2(BG;Z)⊗R∼= π1(G)⊗R.

Following some results involving the theory of Lie groups found in [14] (Chapter

3) we have the exact sequence

Z (G) ,→ G� Ad(G)

after applying the fundamental group functor implies that

π1(Z (G))→ π1(G)� π1 Ad(G).

Now, π1(Ad(G)) is finite which implies that, after removing torsion,

π1(G)⊗R∼= π1(Z (G))⊗R.

We will construct characteristic classes for our bundles from the curvature tensor

F∇ ∈ g ⊗ Ω2(Y ) through a contraction by a character χ : G → S1. Notice that
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characters of G factor through the commutator subgroup

[G, G] = {aba−1 b−1 ∈ G : a, b ∈ G}

(since S1 is abelian) and, as a result, is actually well-defined on the quotient

G/[G, G]. This quotient group is discretely equivalent to the center, Z (G), of G

in the sense that the right side of the following diagram is a finite covering;

Z (G) ,→ G� G/[G, G].

However, on the level of Lie algebras, this induces an exact sequence

Z (g) ,→ g→ g/[g,g]

and hence an isomorphism Z (g) ∼= g/[g,g]. Thus, then the derivative of a character

dχ : g → iR corresponds to a well-defined map dχ : Z (g) → iR. Also, including

exponential maps to the diagram, we see that

Z (G)
χ
// S1

exp−1(1) �
� // Z (g)

dχ
//

exp

OO

iR

exp

OO

where exp−1(1) is canonically isomorphic to π1(Z (G)).

In short, to measure the ‘degree’ of a monopole (at least, modulo torsion) is to

integrate a specific form along surfaces in S1 ×Σ. These forms are analogous to the

first Chern class from complex geometry.
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The first most natural associated circle bundles to a principal G-bundle P arise

from extending a group homomorphism χ : G → C∗ across the fibers of P. That is,

given any character χ ∈ X (G) there is an S1 bundle P(χ) := P ×χ C to which we have

a valid notion of measuring topological degree. The characters of G, however, do not

provide us with a means of comparing degrees of P with any of its sub-objects. This

will be considered later in the discussion on stability.

Given a singular G monopole (P∇,Φ) on Y , i.e. a bundle-connection-Higgs field

solution to

F∇ = iC ·ωΣ + ∗d∇Φ

we seek to develop

6.2.1 The Chern-form of a monopole

One has a well-defined curvature tensor F∇ given as a section of Ω2(ad(P)) =

ad(P)⊗
∧2 T ∗Y . In order to obtain a first Chern form (i.e. an element of H2(Y,C)),

one must ‘trace-out’ the Lie algebra portion of this curvature to obtain a gauge-

invariant section in Ω2(Y ). The degree is then measured as an integral of this form

over Y . More concretely, to a basis {ei}ki=1 of characters for G, we get Chern forms

{ωi} and so degree maps δi : H2(Y ) → R which can be adjusted to take integer

values as usual.

Let us take a quick peek at some of the group theory involved with the choice of

representation alluded to above.

Groups, representations and characters of importance

Since the Chern form, alluded to above, is (at least locally) a Lie algebra valued

function whose integral will be of geometric relevance in two somewhat distinct
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cases, it will be of importance to first study the representation and character theory

associated to reductive groups and their parabolic subgroups.

In brief, and in analogy with vector subbundles we will be concerned with

a maximal parabolic subgroup H ≤ G along with a corresponding Lie algebra

decomposition

g=





l1 u

g/h l2





where h= l1 ⊕ l2 ⊕ u is according to the Levi decomposition

L ,→ H → U .

Remark 8. One important property about this character that is worth mentioning is

that the center Z (G) of G lies in the kernel of this adjoint representation so that the

constant scalar portion of our curvature tensor does not affect the 2-form we aim to

construct.

In summary, these characters will serve geometrically relevant in two cases:

1. When χ ∈ X ∗(G) is any character of G. This is used to determine the degree of

a monopole and is analogous to complex vector bundles when χ = det (the

only non-trivial character of GLn whose derivative at the identity is the usual

tr : Mn→ C)

2. When χ = |Adu
L | ∈ X ∗(L) is the unique character of L (the Levi-subgroup of

a maximal parabolic subgroup H of G) determined as the top exterior power

of the adjoint representation of L on u (the corresponding unipotent sub Lie

algebra of h). This will be used to measure the stability of a monopole.
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Finally,

Definition 6.2.1. The Chern-form associated to a character χ ∈ X ∗(G) of a G bundle P

will be defined as

cχ1 (P,∇,Φ) :=
i

2π
trχ(F∇) ∈ Ω2(Y )

where trχ = dχ(0) sometimes denoted χ∗ is the derivative of the character χ : G → C∗

at the identity.

With this, then given our monopole with singularities at ~t

Definition 6.2.2. For any character χ ∈ X∗(G), the (χ,~t)-degree, δχ : H2(Y )→ Z, of

a monopole (P,∇,Φ) (eventually to be referred to as the (χ,~t)-degree of a bundle pair)

is the integral of the Chern-form

δχ(P,∇,Φ) :=
1
τ

∫

Y

cχ1 (P,∇,Φ)∧ d t.

Note: Geometrically, this represents the average (along S1) of the usual χ-degrees along

each holomorphic slice P{t}×Σ. We note that the degree of a bundle can be evaluated on

any two cycle of Y (i.e. H2(S1 ×Σ\{pi}Ni=1) is large), but that a particular choice has

been made here (namely, a weighted sum over all 2-cells in the deformation retraction of

Y as a 2-complex).

Let us now examine the actual integration of the curvature tensor over Y .

Integration on S1 ×Σ

Now, for the purpose of integration, write Yε := Y \
⋃N

j=1 Dε(p j) to denote a

closed subspace of Y . This Yε limits topologically to Y as a nested family of closed

subspaces so that integration on Y is the limit (as ε tends to 0) of integration on Yε.
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Stokes’ theorem4 will be of use as

∂
�

[t − ε, t + ε]×Σ\Dε/2(p j)
�

= Σ+ −Σ− − S2
ε/2(p j) (6.3)

corresponding to the following diagram

where Σ± denotes the surface {t ± ε} ×Σ upon restriction to times t ± ε. Also, even

more handy will be the fact that

∂ (S1 × Dε(z j)\Bε/2(p j)) = S1 × ∂ Dε(z j)− S2
ε/2

corresponding to a cylindrical neighbourhood of radius ε about z j in the illustration

above along all of S1 (rather than being restricted to the subinterval [t, t ′]).

To measure the degree of a bundle, one usually resorts to a well-chosen associ-

ated line bundle (the determinant or top exterior power bundle). Given a character

χ ∈ X ∗(G) of G, define the real valued function f χ : S1\{t1, . . . , tN} → R as the

integral of the χ-Chern form cχ(P,∇,Φ) upon restriction of P to {t} × Σ for each

4 The Fundamental Theorem of Calculus
∫

∂M
ω=

∫

M
dω
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t ∈ S1\{t1, . . . , tN}. More concretely, f χ(t) is expressed as

f χ(t) =
i

2π

∫

{t}×Σ
cχ1 (P,∇,Φ).

It is clear (from standard theory of Chern classes) that f χ is, in fact, an integer

valued function. Furthermore, the following lemma describes all of its important

properties:

Lemma 6.2.3. The function f χt defined above is an integer-valued, piecewise constant

function on S1\{t i}Ni=1 satisfying that for all sufficiently small ε > 0 and singular time

t = t j (for some j)

f χt+ε(P,∇) = f χt−ε(P,∇) + (χ ◦µ j)∗.

Note that if no singular time occurs on the interval [t, t ′], then the boundary

∂ ([t, t ′]×Σ) = Σt ′ −Σt and

f χt ′ (P,∇) = f χt (P,∇)

which says that f χt is a piecewise constant function on S1 whose discontinuities are

achieved at the singular times.
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Pictorially we have the graph of f χ given as

z

f

Proof. That this is integer valued follows directly from the fact that the Chern-form,

upon restriction to {t} × Σ, is an integer cohomology class. Piecewise constancy

follows from the fact that the scattering map ρt,t ′ for times t i < t < t ′ < t i+1 between

singularities defines an isomorphism Pt
∼= Pt ′ . Thus, cχ1 (Pt ,∇,Φ) = cχ1 (Pt ′ ,∇,Φ) and

certainly then f χt = f χt ′ .

Now, on the level of homology in Y = (S1 × Σ)\{p1, . . . , pN} where for any

non-singular time t,

Σt := {t} ×Σ ∈ H2(Y )

represents the fundamental homology class for the subcurve {t} ×Σ ⊂ Y . We thus

have, with respect to the orientation’s prescribed signature in Equation (6.3) and

Stokes’ theorem

f χt+ε(ξ) :=

∫

Σt+ε

ξ= f χt−ε(ξ) +

∫

S2
ε

ξ+

∫

Y

dξ
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for any ξ ∈ H2(Y ). Luckily here, ξ= cχ1 (F∇) = trχ F∇ so

dξ= d ◦ trχ F∇ = trχ ◦dF∇ = trχ(d∇F∇ − [∇, F∇]) = − trχ[∇, F∇] = 0

where we have made use of the Bianchi identity (that d∇F∇ = 0) and that [g,g] ≤

ker trχ . So, we have thus far demonstrated

f χt+ε(P,∇) = f χt−ε(P,∇) +
∫

S2
ε/2

trχ(F∇).

It remains to evaluate the integral 1
2π

∫

S2
ε

trχ(F∇). This easily evaluates as

1
2π

∫

S2
ε

trχ(F∇) = (χ ◦µ j)∗.

since χ defines an associated line bundle for the T -bundle given by µ so the compu-

tation follows from the asymptotic form of the curvature tensor about p j.

Lemma 6.2.3 allows us to define and breakdown the χ-degree of a monopole

δχ(P,∇,Φ) into the integral of this piecewise constant function f χt as

Corollary 6.2.4. This integration reduces to discrete inputs5 , and evaluates as

δχ(P,∇,φ) = χ∗ ◦ C · VolΣ+
1
τ

N
∑

j=1

(τ− t j)(χ ◦µ j)∗

for characters χ ∈ X ∗(G).

5 according the the singularity data of the Higgs-field, volume of domain, rank of
fibre and constant scalar factor of curvature
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Proof.

δχ(P,∇,Φ) =

∫

Y

cχ1 (P,∇,Φ)∧ d t =

∫

S1\{t i}Ni=1

f χt d t

=
N
∑

i=0

(t i+1 − t i) f
χ

t∗i

=
N
∑

i=0

(t i+1 − t i)

�

f χ0 +
i
∑

j=1

trχ(µ j)

�

= χ∗ ◦ C ·τ · VolΣ+
N
∑

i=0

(t i+1 − t i)
i
∑

j=1

trχ(µ j)

= χ∗ ◦ C ·τ · VolΣ+
N
∑

j=0

(τ− t j) tr
χ(µ j)

where t∗i ∈ (t i, t i+1) represents any point between the i th singular interval and the

first line makes use of the fact that an integral over a codimension 0 submanifold of

Y will have the same value.

This now looks very much like the formula provided for the average and ~t-

degree given in [5] and will be the definition of stability for bundle pairs (P ,ρ) of

the next section.

6.3 Stability theory of monopoles and pairs

Definition 6.3.1. A holomorphic structure (P c,∇0,1,∇c) is stable if for every maximal

parabolic subgroup H ≤ Gc such that there is an H-invariant holomorphic reduction to

PH⊂P c,

δχ(PL)< 0
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where χ = det◦Adu
L is the unique character of L (coming from the Levi-decomposition

H = L n U) whose derivative is the sum of the roots of U.

Proposition 6.3.2. Let (P,∇,Φ) be a singular G monopole, then the holomorphic

structure (P c,∇0,1
Σ ,∇c) obtained from the monopole satisfies that if H is a maximal

parabolic subgroup of Gc such that P c = P ×G Gc admits a holomorphic reduction to PH ,

then

δχ(PH ,∇,φ) = −
∫

Y

||F ||2
χ
·ωΣ ∧ d t, χ = det◦Adu

L ∈ X ∗(L).

Hence, the holomorphic structure is stable.

Proof. Since P c = P ×G Gc admits a holomorphic reduction to PH , it then projects to

an L-bundle PL = πL ◦ PH . On the level of adjoint bundles, with the Levi-subalgebra

l ≤ h according to the proof in Section 4.2.1, its curvature satisfies the following

relation with the total curvature and its second fundamental form F

FπL(∇) = πL ◦ F∇ −F ∧F ∗.

So, for the character χ = |Adu
L | of L, by definition, we have

δχ(PL) = lim
ε→0

∫

Yε

cχ1 (FπL(∇))∧ d t.
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Upon substituting the HEB equation (5.2) for F∇, this evaluates as

lim
ε→0

i
2π

∫

Yε/2

trχ(iC ·ωΣ + ∗d∇Φ−F ∧F ∗)∧ d t

= −
∫

Y

||F ||2
χ
·ωΣ ∧ d t + lim

ε→0

i
2π

∫

Yε

∂tΦ
χd t ∧ωΣ

< lim
ε→0

i
2π

∫

Yε

∂tΦ
χd t ∧ωΣ

since Z (gC) ⊂ kerχ (implying that trχ(C) = 0) and, although non-constant, ||F ||2
χ

is

strictly negative (when our monopole is irreducible). We now want to demonstrate

that the remaining term to vanishes.

Notice immediately that the remaining term is reduced to

lim
ε→0

1
2π

N
∑

j=1

∫

S1×Dε(z j)\Bε/2(p j)

∂t iΦ
χ ·ωΣ ∧ d t

because away from any nonsingular circle (S1 × {z j}) this amounts to

∫

S1

∂t iΦ
χd t = 0

being the integral of the derivative over a closed interval.

Now, writing ∂t iΦ
χd t ∧ ωΣ = d (iΦχωΣ) as an exact form and by Stokes’

theorem, each

∫

S1×Dε(z j)\Bε/2(p j)

∂t iΦ
χ ·ωΣ ∧ d t =

∫

S1×S1
ε

iΦχ ·ωΣ −
∫

S2
ε/2

iΦχ ·ωΣ
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The first term here vanishes in the limit as ε → 0 and the second term is rein-

terpreted in a different coordinate system. Currently, there are two local coordinate

systems under consideration. Namely, the connection and Higgs field have been

expressed in terms of the spherical coordinates {dR, dθ , dψ} whereas the form of

integration is in terms of ‘holomorphic-Euclidean’ coordinates {dz, dz, d t}. A happy

medium for choice of coordinates here will be to choose a cylinder inscribed in the

ε/2-ball whose dimensions are chosen to be radius ε/2
p

2 and height ε/
p

2 (These

are homotopy equivalent in Y and hence have the same values upon integration).

pi

ε
2

ε

2
p

2

Upon recognizing changing the domain of integration to the cylinder, the second

term is then realized as being bounded above by supCε(iΦ
χ) · 2 · VolDε which is of

order O (ε2) according to the volume of the caps on the cylinder and thus limits to

zero. That is to say,

lim
ε→0

1
2π

N
∑

j=1

∫

S1×Dε(z j)\Bε/2(p j)

∂t iΦ
χ ·ωΣ ∧ d t = 0

as required.
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Consistency with vector bundles

Our above discussion verifies consistency of the stability definition with both

monopoles and vector spaces. Indeed, examining this in the language of associated

vector bundles amounts to the following;

δ~t(PH ×H u) := δ~t((E/V )
∗ ⊗ V )

=
N
∑

i=0

(t i+1 − t i)

�

c1((E/V )
∗ ⊗ V )) +

∑

l≤i

�

n
∑

j∈S

kl
j −m

n
∑

j=1

kl
j

��

= τ(nc1(V )−mc1(E)) +
N
∑

i=1

(τ− t i)

�

n
∑

j∈S

ki
j −m

n
∑

j=1

ki
j

�

= τ(nc1(V )−mc1(E)) +τ











n ·
N
∑

i=1

∑

j∈S

ki
j

︸ ︷︷ ︸

=0

−m ·
N
∑

i=1

n
∑

j=1

ki
j

︸ ︷︷ ︸

=0











−
N
∑

i=1

�

n
∑

j∈S

ki
j −m

n
∑

j=1

ki
j

�

t i

= τ(nc1(V )−mc1(E))−
N
∑

i=1

�

n
∑

j∈S

ki
j −m

n
∑

j=1

ki
j

�

t i

which is ≤ 0 if and only if

1
m

�

τc1(V )−
N
∑

i=1

∑

j∈S

ki
j t i

�

≤
1
n

�

τc1(E)−
n
∑

j=1

ki
j t i

�

.

That is to say, V was initially chosen as a ~t-stable subbundle of E in the sense of

[5]. Note that, here V is meant to represent the vector subbundle of the associated

vector bundle E to P (via some faithful complex representation) corresponding to

the choice of parabolic subgroup.
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The ~t-degree and stability of a bundle pair

The approach taken in [5] to define the proper notion of stability for the data

contained in a bundle pair (P ,ρ) is to examine the average degree of a monopole

(P,∇,Φ) defined over Y = (S1×Σ)\{pi}Ni=1 and ‘massage’ this definition until it can be

computed using only the information contained in the image (P ,ρ) = H (P,∇,Φ).

That is to say, taking what was initially the integral
∫

Y
cχ1 (P,∇,Φ) ∧ d t of the first

Chern form over the 3-manifold Y and discretizing it as a finite sum of only the

information contained in the holomorphic bundle P and the singularity data

contained in ρ. We have already developed some useful tools for integrating the

Chern form of a singular G-monopole so now we may provide definitions without

further verification.

We are now able to state two definitions.

Definition 6.3.3. Let (P ,ρ) be a meromorphic pair

1. The (χ,~t)-degree of a bundle pair (P ,ρ) is defined as

δ
χ

~t
(P ,ρ) =

N
∑

i=0

(t i+1 − t i)

�

δχ(P ) +
i
∑

j=1

(χ ◦µ j)∗(0)

�

where δχ(P ) is previously defined in Equation (4.2).

2. A bundle pair (P ,ρ) is ~t-stable if for every ρ-invariant holomorphic reduction

to PH ⊂ P where H ≤ Gc is a maximal parabolic subgroup of G one has

δ|Adu
L |(PH ,ρ)< 0.

Note that |Adu
L | (as a character of H) is the determinant of the adjoint representa-

tion of L on u, where H = L n U is its Levi-decomposition and u= Lie(U).

90



Now, adopting notation from the previous defined space of meromorphic pairs,

Definition 6.3.4. The moduli space of ~t-stable meromorphic bundle pairs over Σ of

singular type K= {(µ j, z j)}Nj=1 will be denoted by

M~ts(Σ,K) (6.4)

and the lack of subscript ~ts here will denote the larger space of just meromorphic pairs

discussed earlier.

We thus define that a holomorphic structure is ~t-stable if its associated pair is

and we have shown (through discretizing the integration - Lemma 6.2.3) that the

holomorphic structure associated to an irreducible singular monopole is ~t-stable. In

more appropriate terminology, that is the following statement.

Proposition 6.3.5. If (P,∇,Φ) ∈M ir r
k0
(G, S1 ×Σ, {(pi,~ki)}Ni=1) then its image (P0,ρ0,τ)

underH is ~t-stable.

Proof. Everything for this proof has already been set up and only requires a small

argument. Suppose (P ,ρ) =H (P,∇,Φ) and let H be a maximal parabolic subgroup

of Gc corresponding to a holomorphic, ρ-invariant reduction PH of P . We need

that δ
|Adu

L |
~t
(PL) is negative, which has already been verified and is the result of

Proposition 6.3.2.
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CHAPTER 7
Correspondence Theorem

Now that the objects of interest are well-defined and the stability theory

has been taken care of, this chapter is focused solely on the proof of the bijective

correspondence theorem stated below. The surjectivity ofH (defined in the previous

chapter) is quite analytic and heavily relies on the proof found in [5]. The injectivity

ofH also, somewhat, follows their techniques but depends more on the theory

of induced connections on associated principal bundles (developed at the end of

Chapter 3).

7.1 Equivalence between stable pairs and monopoles

In this section, the bijective equivalence is stated slightly differently from the

main Theorem 1.0.1 but is still equivalent. The theorem is merely restated with

respect to the notation and language developed thus far.

Theorem 7.1.1. If {pi}Ni=1 is a finite subset of S1 × Σ which projects to N different

points on Σ then the map

H :M ir r
k0
(S1 ×Σ, {pi,µi}Ni=1)→M~ts(Σ, k0,K)

(P,∇,Φ)→ (P0,ρ0,τ)
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is a bijection. 1

The proof demonstrated throughout the following two propositions 7.1.2 for

surjectivity and 7.1.11 for injectivity. To get to the heart of the proof, let us first

recall the objects at hand. The moduli spaceM ir r
k0
(S1 × Σ, {pi,µi}Ni=1) (on the

left) represents equivalences classes of triples (P,∇,Φ) satisfying Equation (5.2)

and having µ-Dirac singularities of type µi at each pi ∈ S1 × Σ and topological

type k0 along {t0} × Σ. For notational simplicity alone, assume that within the set

{pi = (t i, zi)}Ni=1, none of the t i ’s or zi ’s coincide. Each triplet (P,∇,Φ) consists of

a principal G-bundle on S1 × Σ\{p1, . . . , pN}, a connection ∇ ∈ Ω1(ad(P)) and a

meromorphic Higgs field Φ ∈M (ad(P)).

The moduli spaceM~ts(Σ, k0,K) (on the right) consists of equivalence classes of

~t-stable pairs (P,ρ) where P is a holomorphic principal G-bundle on Σ of topological

type k0 and ρ ∈ M (Aut(P)) is a meromorphic automorphism with singularities

prescribed by the (µi, zi) ∈ K.

Surjectivity

Proposition 7.1.2. For any ~t-stable pair (P ,ρ) on Σ of type K= ((µ1, z1), . . . , (µN , zN ))

with singular time data 0 < t1 ≤ t2 ≤ · · · ≤ tn < τ, there is a singular G-

monopole on S1 × Σ with Dirac singularities of weight µ j at p j = (t j, z j) for which

H (P,∇,φ) = (P ,ρ).

1 The statement when irreducibility is removed is between poly-stable pairs.

93



Proof. This proof is structured almost exactly as in our main source of reference [5]

which makes use of Pauly’s application, [37], of the Hopf fibration and Simpson’s

heat flow on the space of metrics [42] . Some images are provided here to aid in

understanding and the necessary generalizations to adapt the proof for general G

are elaborated upon. The reader is encouraged to compare the proofs. Let us briefly

summarize the four main steps of this proof;

• ρ is used to extend P to a bundle P on Y := (S1 ×Σ)\{p1, . . . , pN} having the

correct twisting around spheres about the p j ’s and a holomorphic structure.

Thus it will be holomorphic on all Σt and will lift to a holomorphic bundle P̄

on the (open) complex manifold X = S1 × Y (subset of X = S1 × S1 × Σ).

Furthermore, P̄ is invariant under the action of S1 on the left factor.

• Since P̄ has a holomorphic structure, for any Hermitian metric (i.e. any

reduction of P to G, i.e. a section of P(Gc/G)), there is a unique metric

connection2 which is compatible with the holomorphic structure. Choose a

Hermitian metric on P̄ whose induced connection around the j th singularity is

that of a µ-Dirac monopole of weight µ j.

• This metric serves as an initial metric for the heat flow of Simpson’s paper [42].

Taking the limit as time tends to infinity produces a principal-HE connection

on P̄ which is invariant under the S1 action and so, descends to a bundle

over Y . This will be our singular G-monopole, however one further analytic

technicality remains.

2 this is the Chern connection in the case of a Un⊂GLn(C) gauge.
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• Simpson’s theorem does not immediately provide the necessary regularity at

the singular points. To see they are indeed of Dirac type (in the limit), the

proof is finished by lifting locally on 3-balls using the Hopf map B4→ B3.

Step 1: The bundle P on Y will be the top left most portion of the following diagram

of bundles:

ãπ∗(P )

��

π∗(P )
q̃oo //

��

P

��
Y Ỹ

qoo π // Σ

where π : Ỹ → Σ is the natural projection of a ‘doubled-up’ version3

Ỹ = ((−τ,τ)×Σ)\ ∪ j

�

(−τ, t j −τ)∪ (t j,τ)
�

× {z j}

of Y (shown in Figure 1)

eY

π
−→

q
←−

ΣΣS1 ×Σ

z1

z2

...

zN

t1 t2 · · · τtNt1 −τ t2 −τ· · ·−τ tN −τ

Figure 1

3 recall that τ here refers to the circumference of S1 in our domain
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and q : Ỹ → Y is generically a double cover defined by the identification4

(t, z) ∼ (t + τ, z) (i.e. so that in the pre-image q−1(t, z) = {(t, z), (t + τ, z)}).

Essentially, q wraps Ỹ around itself so, after gluing, to produce the S1 part of Y from

intervals.

The pull-back bundle π∗(P ) is always well-defined and the fact that ρ is locally

represented (cf. Proposition 6.1.6) around the singularities z j as h j(z) · µ j(z) · g j(z)

will indeed restrict to the Dirac monopole bundle Tµ j
in a punctured neighbourhood

of p j.

The quotient of this pull-back bundle P :=ãπ∗(P ) is given by the equivalence

relation (t, z, v) ∼ (t + τ, z,ρ(z)v) with t ∈ (−τ, 0), z ∈ Σ and v ∈ Pz (the fibre

of P at z). Finally, P is trivially lifted via the pull-back projection π2 : X → Y to

an S1-invariant holomorphic principal G-bundle on the open complex 4-manifold

X = S1 × Y . In terms of the diagram of bundles, this is appended to the left hand side

as follows:

P̄ := π∗2(P)

��

// P

��

π∗(P )
q̃oo //

��

P

��
X

π2 // Y Ỹ
qoo π // Σ

This completes the first step.

Step 2: As briefly described above, this involves choosing an appropriate Hermitian

metric (i.e. a reduction to G - recall that Gc/G is contractible) so that the induced

4 Note the implied use of additive modular arithmetic on the interval [−τ,τ] here.
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”Chern” connection has the proper singular data to represent the Dirac singularities

in neighbourhoods of the points pi. The metric is constructed by choosing a finite

open cover of Y (by 2N + 2 open sets), specifying the metric on each piece and

pasting it all together via a partition of unity. Alternatively, or equivalently the

bundle can be constructed by specifying transition functions on the overlaps of this

special open cover from which a natural choice of Hermitian metric will arise. In

either case, it will be necessary to specify the open cover first and then describe how

this works from both perspectives.

To define the cover, choose sufficiently small (disjoint) open disks D1, . . . , DN

in Σ about each of the zi ’s as well as an extra, entirely disjoint, disk D0. The last

disk will be where the initial curvature is concentrated so to accommodate for the

first Chern class of bundle P (of degree k0) initially chosen for our stable pair.

One should recognize from the choice of cover that we are going to prescribe that

the metric is altered when we move forward in time and reach singular points.

At these points, a Dirac metric is glued in accordingly to each disk about the sin-

gularities. Thus, let Ci for i = 1, . . . , N be another family of disks about each zi

which are properly contained in the Di ’s. Furthermore, let ε be chosen such that

4ε <min(t1, t2 − t1, . . . , tN − tN−1,τ− tN ). Our cover is then defined as
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U0 = ((−2ε, tN + 2ε)×Σ)\
�

∪ j(t j − ε, tN + 2ε)× C j

�

UN+1 = (tN + ε,τ− ε)×Σ

U j− =
�

(t j − 2ε, t j + 2ε)× Dj

�

\
�

(t j, t j + 2ε)× {z j}
�

U j+ =
�

(t j − 2ε, t j + 2ε)× Dj

�

\
�

(t j + 2ε, t j)× {z j}
�

for j = 1, . . . , N and an image of this open cover is provided in Figure 2.

U0 :
Σ

z1

z2

...
zN

0 t1 t2 · · · tN τ

·

·

. . .

·

τ− 2ε UN+1:

0 tN + ε τ− ε

Σ

U j+:
Σ

t j

z j ·

U j− :
Σ

t j

z j ·

Figure 2.

On this cover, transition functions are specified as

ϕ0, j− = g j, ϕ j−, j+ = µ j, ϕ0, j+ = g j ·µ j, ϕ j+,N+1 = h j
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and

ϕ0,N+1 =











ρ−1, t ∈ (tN + ε, tN + 2ε)

1, t ∈ (τ− 2ε,τ− ε)
.

Now, the bundle and its transition functions reflect those of µ-Dirac monopoles on

U j±. Choose the hermitian metrics µ j(R− t) on U j− and µ j(R+ t) on U j+. These are

compatible with each other under change of basis and are patched together, along

with the metric lifted from P on U0, UN+1, via a partition of unity

This metric k can be lifted to a metric k̄ on P subject to the following properties:

Lemma 7.1.3. The pair (P, k̄) above satisfies

• P̄ is invariant under the S1 action on the left factor of X

• k̄ is S1 invariant.

• In neighbourhoods of inverse image of the p j ’s the pair (P̄, k̄) corresponds to an

S1-invariant instanton of charge specified by µ j .

• (P̄, k̄) satisfies a bound |ΛFk̄| ≤ c <∞

This completes the second step.

Step 3: Taking the metric k̄ in Gc/G constructed in step 2 as the starting point for

Simpson’s heat flow

H−1 dH
du
= −iΛF⊥H

H0 = K
(7.1)

Let us remark that this equation remains valid in Gc/G as the left and right hand

side both take values in i · g.
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Now, the asymptotic behaviour of this heat flow is governed by the following

result of C.T. Simpson;

Theorem 7.1.4 (Simpson [42], Theorem 1). Let (X ,ω) satisfy conditions in Lemma

7.1.5 and suppose E is an S1-invariant bundle on X with S1-invariant metric K

satisfying that sup |ΛFK | < c. If E is stable in the sense that it arises from a stable pair

on Σ, then there is an S1-invariant metric H with det(H) = det(K), H and K mutually

bounded ∂̄ (K−1H) ∈ L2 and such that ΛF⊥H = 0. Additionally, [5], if R is the geodesic

distance to one of the singularities, R · d(K−1H) is bounded by a constant.

Note that, as demonstrated in [5], our notion of stability coincides with Simp-

son’s notion of stability here although they are presented in a slightly different

fashion.

Lemma 7.1.5. Our manifold X = S1 × ((S1 × Σ)\{p1, . . . , pN}) satisfies the three

necessary conditions for Simpson’s Theorem

1. X is Kähler and of finite volume;

2. There exists a ≥ 0 exhaustion function with bounded Laplacian on X ;

3. There is an increasing a : [0,∞)→ [0,∞) such that a(0) = 0 and a(x) = x for

all x > 1 so that if f is a bounded positive function on X with ∆( f )≤ B, then

sup
X
| f | ≤ C(B)a

�∫

X

| f |
�

and furthermore, if ∆( f )≤ 0 then ∆( f ) = 0.

Proof. See [5] and [37].

Step 4:
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Remark 9. Let us first heuristically describe the following process of determining the

regularity of our solutions about the singular points. We restrict our initial metric, H0,

to a neighbourhood of p (diffeomorphic to B3\{p} and desingularize by extending the

pullback of our Hopf map π∗ : Ω(B3 × S1)→ Ω(B4). This process of desingularization

was brought to light by Kronheimer [31] and studied in more depth by Pauly [37].

After all differential forms of interest are pulled back and appropriately scaled, we apply

Simpson’s heat flow (with Dirichlet boundary conditions) to the HEB equation which is

known to correspond to an S1-invariant instanton equation. A new Hermitian metric is

achieved in the limit of the heat flow and then pushed back down to a metric describing

a Dirac monopole and, because of the Dirichlet boundary condition, glues right back

into the global picture. Finally, due to uniqueness of the solutions to Simpson’s heat

flow, this “alternate” solution is found to coincide with the previous and thus the

previous metric satisfies the required regularity at the singularities.

Please note that all proofs of technical lemmas found in the step which do not

contribute to the development of notation are left to the end of the chapter.

If the metric K is chosen as constructed above in this proof and limits the H∞ as

in Theorem 7.1.4, this gives a solution to HE monopole equations on Y = S1 × X . It

remains to see why these solutions have desired µ-Dirac monopole-type singularities.

For this, we resort to the local construction, described earlier, involving the Hopf

fibration used by both Kronheimer [31] and Pauly [37].

Recall, the Hopf map from section 2.2. defines a lift. Adding the variable s to B3

to expand to S1 × B3 allows us to write the HEB equations (5.2) for (∇,φ) as the HE
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equations (5.1) for ∇̃=∇+φds. Defining that

π∗ds = ξ=
1
i
(w1dw̄1 − w̄1dw1 −w2dw̄2 + w̄2dw2)

makes the pull-back of π into a map π∗ : Ω(S1 × B3)→ Ω(B4), although π is merely a

map from B4 to B3 and surely does not extend to have range S1 × B3 (since the Hopf

bundle is non-trivial). The process of Kronheimer and Pauly to smooth out the Dirac

singularity then associates to (∇,φ) the unwound connection

∇̂= π∗∇̃= π∗∇+π∗φξ.

Lemma 7.1.6. The curvatures here are related by

F∇̂ = π
∗F∇̃ +π

∗φdξ.

For a singular G-monopole on B3 there is an equation giving by declaring that

after its lift to S1 × B3 the projection onto the self-dual 2-forms (with kernel the

anti-self-dual forms) takes the specific value C ·ωΣ.

Examining the lifts of the 1-forms under π∗ : Ω1(S1 × B3)→ Ω1(B4) one sees

Lemma 7.1.7. In complex coordinates, the bi-type of each differential form is preserved.

Proof. Indeed, with dz = d x + id y and d t − ids as our basis for the (1,0)-forms on

B3 × S1, these lifts are given by

dz = 2(w1dw2 +w2dw1) d t − ids = 2(w̄1dw1 − w̄2dw2)

dz̄ = 2(w̄1dw̄2 + w̄2dw̄1) d t + ids = 2(w1dw̄1 +w2dw̄2)
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Now, examining the pullbacks of (1,1)-forms; the Kähler form

π∗(Ω) =
iα
2

dz ∧ dz̄ − d t ∧ ξ

= 2i
�

(α|w1|2 + |w2|2)dw1 ∧ dw̄1 + (α|w2|2 + |w1|2)dw2 ∧ dw̄2

+(α− 1)(w2w̄1dw1 ∧ dw̄2 +w1w̄2dw2 ∧ dw̄1)]

and the other 3, anti-self-dual, (1,1)-forms

ε1 =
1
4
(dz ∧ dz̄ −α(d t − iξ)∧ (d t + iξ))

= (|w2|2 − |w1|2)(dw1 ∧ dw̄1 − dw2 ∧ dw̄2)

+ (1−α)(|w1|2dw1 ∧ dw̄1 + |w2|2dw2 ∧ dw̄2)

+ (1+α)(w2w̄1dw1 ∧ dw̄2 +w1w̄2dw2 ∧ dw̄1),

ε2 =
1
4
(dz ∧ (d t + iξ))

= w1w2(dw1 ∧ dw̄1 − dw2 ∧ dw̄2)−w2
2dw1 ∧ dw̄2 +w2

1dw2 ∧ dw̄1

ε3 =
1
4
(dz̄ ∧ (d t − iξ))

= w̄1w̄2(dw1 ∧ dw̄1 − dw2 ∧ dw̄2)−w2
1dw1 ∧ dw̄2 +w2

2dw2 ∧ dw̄1

Remark 10. Note that the Kähler form on S1 × B3 has been chosen with an opposite

orientation than usual. That is, the volume form (expressed in real coordinates) is
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obtained by

dV = Ω∧Ω

=
�

αi
2

dz ∧ dz̄ − d t ∧ ds
�

∧
�

αi
2

dz ∧ dz̄ − d t ∧ ds
�

= −α(d xd yd tds+ d tdsd xd y)

= −2αd xd yd tds

= 2αd xd y dsd t
︸︷︷︸

where the roles of ds and d t have been reversed. It is this subtle choice which corre-

spondingly reverses the roles of self-dual and anti-self-dual 2-forms.

Divide the lift of the Kähler form by 4(|w1|2 + |w2|2) and get

Ω̃=
i
2
(dw1 ∧ dw̄1 + dw2 ∧ dw̄2)

+
i(α− 1)

2(|w1|2 + |w2|2)
(|w1|2dw2 ∧ dw̄2 + |w2|2dw1 ∧ dw̄1 +w2w̄1dw1 ∧ dw̄2 +w1w̄2dw2 ∧ dw̄1)

=ω+ (α− 1)(Q/R2)

where ω is the standard Kähler form in the Euclidean metric on B4, R2 = |w1|2+ |w2|2

is the radial distance from the singularity and Q is some quadratic expression in

wi, w̄i.

Lemma 7.1.8. These lifted (1,1) forms {Ω̃,ε1,ε2,ε3} miraculously form an orthogonal

basis of Λ1,1(B4) with respect to the usual Euclidean inner product and for that, we find

|Ω̃|2 = α2 + 1.
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Hence, with these calculations in mind, the orthogonal projection onto the

linear subspace spanned by Ω̃ is given by

PΩ̃(F) =
〈F, Ω̃〉
〈Ω̃, Ω̃〉

Ω̃.

One checks that

PΩ̃(F) =
〈F,ω〉

2
ω+

(α− 1)
(α2 + 1)

�

〈F,Q〉ω+ 〈F,ω〉Q
R2

+ (α− 1)
〈F,Q〉

R4
Q−

(α+ 1)
2
〈F,ω〉ω

�

Let pk represent a homogeneous polynomial of degree k and p∞ a smooth

function (in the variables wi, w̄i). In this notation, the above then reads more simply

as

PΩ̃(F) = p∞ + p∞
p6

R2
+ p∞

p12

R4

so the coefficients of the projectors are in C3.

So the equation for the HE connection on S1 × B3 (below) is

PΩ(F∇̃) = C ·Ω

and lifting this becomes

PΩ̃(F∇̂ −π∗φdξ) = π∗(C ·Ω).

If α ≡ 1 (Euclidean case) then Λ(dξ) = Pω(dξ) = 0; but for α = 1+ ww̄ f (w, w̄),

Λ(dξ) = PΩ̃(dξ) is a bounded quartic near the origin.

We are interested in the Hermitian connection obtained from the limit of

the metric solved for by the heat equation. Note that since the coefficients of the

projectors are C3 the initial condition space for the connection will be C3. That is
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to say ∇̃ coming from ∇̃0 are both Chern connections. This is done by keeping the

same (0,1) part and modifying the (1,0) part so that ∇̃ is the Chern connection for

the new metric H∞ = H0h. According to Simpson ([42], Lemma 3.1), the connection

changes by

A0,1 = A0,1
0 , A1,0 = A1,0

0 + h−1∇1,0
0 h.

Hence,

Lemma 7.1.9. Given the change in metric as H∞ = H0h, the Higgs field then changes

as

φ = φ0 −
i
2

h−1(∇0,t + iφ0)h

and the curvature of the Hermitian connection ∇̃ transforms as

F∇̃ = F∇̃0
+ ∇̃0(h

−1∇̃1,0
0 h) +

1
2
[h−1∇̃1,0

0 h, h−1∇̃1,0
0 h].

From this, we can read the (1,1) part of the curvature as

F1,1
∇̃
= F1,1

∇̃0
+∇0,1

0 (h
−1∇1,0

0 h).

Lemma 7.1.10. Upon lifting to B4, the curvature becomes

F∇̂ −π∗φdξ= F∇̂0
−π∗φ0dξ+ ∇̂0,1

0 (π
∗h−1∇̂1,0

0 π
∗h) +π∗h−1[π∗φ∂ ξ,π∗h].

Proof. See appendix on various tedious formulas in gauge theory.

The original connection ∇̂0 has zero curvature about the monopole (being a

direct sum of flat connections) so locally this equation reduces to

F∇̂ −π∗φdξ= −π∗φ0dξ+ ∇̂0,1
0 (π

∗h−1∇̂1,0
0 π

∗h) +π∗h−1[π∗φ∂ ξ,π∗h]
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If α is uniformly 1, the forms dξ and ∂̄ ξ are anti-self-dual and these equations

reduce to

D̂(h)≡∆h− 2iΛ∇̂0,1
0 hh−1∇̂1,0

0 h= 0.

When α is not uniformly 1, this is an elliptic equation D̂(h) = 0, a deformation

of the one above whose coefficients are C1 (taking into account the poles of φ0 and

the behaviour of Λ(−π∗φ0dξ)).

Now, h was obtained as the limit to infinity of a heat flow hu and is smooth away

from singularities. Upstairs (on B4) hu solves the heat equation ∂uhu = D̂(hu). Take

a four-ball about the singular point (which maps to a 3-ball downstairs) with initial

conditions for the heat flow (given by our solution at the previous step) ∂uĥu = D̂(ĥu)

ĥ0 = h0 = 1 and as a boundary for the Dirichlet condition ĥ = h (hence, same

boundary and same initial conditions will imply same result). Applying the work

of Donaldson, or simply again the result of Simpson, we get a C1 solution ĥu which

is S1 invariant as the initial boundary conditions are and which satisfies the same

boundary conditions and initial conditions as h(t). Again, one has a limit ĥ = ĥ∞

solution to D̂(ĥ) = 0.

Both h and ĥ descend to the 3-ball and solve the HEB equations there. One

can refer to the lemma of Simpson saying that one has uniqueness if solutions are

bounded, which they are. Thus ĥ = h which means the global h given by Simpson’s

result has the required smoothness at the singular points (since ĥ does) to ensure the

Higgs field and its covariant derivative have the correct Dirac type singularities.

107



Injectvity

Please note, the change in notation for τ below as we are no longer in need of

this to denote circumference.

Proposition 7.1.11. If two singular G-monopoles (P,∇,Φ) and (P ′,∇′,Φ′) yield

isomorphic holomorphic data, then they are isomorphic (i.e. H is injective).

In order to justify this claim, we must first provide a proper formal description of

what it means for monopoles to be isomorphic. These notions will, as usual, heavily

rely on the analogous vector bundle scenario so I will discuss both in parallel to

solidify understanding and justify our constructions.

Let us first examine the statement and proof of this result from [5] for the vector

bundle analogue. The statement is more or less word for word, with the principal

bundles replaced by vector bundles and reads something like

”Two singular HE-monopoles with isomorphic holomorphic data are isomorphic.”

Remark 11. The main source of technical difficulty lies with the lack of a tensor product

operation for principal bundles. If this were not an issue, one could imagine a natural

way of inducing a monopole structure on some algebraically combined version of the

two monopoles (i.e. one whose sections are the bundle maps P → P ′) and proceed in

showing that the sections here as well as the induced Higgs field are covariantly constant

with respect to the induced connection.

Now, with the proof for vector bundles in mind (c.f. [5]), we have already

developed the required tools and examples to proceed. We recall that HomG(P, P ′)

is realized as the associated G-fibre bundle (P ×B P ′)×ϕ G where ϕ is the action of

G × G on G defined as (g, h) · x := g−1 xh= Lg−1 ◦ Rh(x).
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So now,

Proof. If (P,∇,φ) and (P ′,∇′,φ′) are singular G monopoles such thatH (P,∇,φ) =

(P ,ρ) ∼= (P ′,ρ′) = H (P ′,∇′,φ′), then P ∼= P ′ are isomorphic as holomorphic

principal bundles via some G-equivariant bundle map τ : P → P ′ which further-

more satisfies τ ◦ ρ = ρ′ ◦ τ. This holds more generally for each Pt and P ′t (as a

result of scattering and intertwining with meromorphic data) meaning that τ aligns

the invariant fibres of ρ and ρ′ and so extends to an isomorphism τ̂ between P and

P ′ over S1 × Σ. This isomorphism τ̂ is viewed as a section of the G-fibre bundle

HomG(P, P ′) which is equipped with the induced connection ∇̂ = (∇×∇′)×ϕ 1, a

Higgs field φ̂ = φ′ ⊗ I− I⊗φ and furthermore τ̂∗ ∈ ker(∇̂0,1
Σ )∩ ker(∇̂t − iφ̂). Using

the identities

∇̂1,0
Σ ∇̂

0,1
Σ = (∆Σ + i F̂Σ)ω

(∇̂t + iφ̂)(∇̂t − iφ̂) = ∇̂2
t + φ̂

2 − i∇̂tφ̂,
(7.2)

(doing the integration by parts performed in a representation of G) one finds

0= −
∫

S1×Σ
〈τ̂∗, (∇̂t + iφ̂)(∇̂t − iφ̂)τ̂+ω−1∇̂1,0

Σ ∇̂
0,1
Σ τ̂∗〉dν

=

∫

S1×Σ
〈τ̂∗, (−φ̂2 − ∇̂2

t − ∆̂Σ)τ̂∗〉dν

=

∫

S1×Σ
|φ̂τ̂∗|2 + |∇̂tτ̂∗|2 + |∇̂Στ̂∗|2dν.

Hence, τ̂ is covaritantly constant and as a map E → E′ it intertwines the two Higgs

fields (That is, φ̂ ◦ τ̂ = 0 is equivalent to φ′ ◦ τ̂ − τ̂ ◦ φ = 0). Therefore, the two

monopoles are isomorphic.

109



7.1.1 Remaining proofs of technical Lemmas from Proposition 7.1.2

7.1.6 Proof. At first glance, this might appear to be a typo. However, the extra term

is coming from the fact that ξ= π∗ds is no longer a closed form. Indeed,

F∇̂ = dÂ+ Â∧ Â

= d(π∗A+π∗φξ) + (π∗A+π∗φξ)∧ (π∗A+π∗φξ)

= d(π∗A) + dπ∗φ ∧ ξ+π∗φdξ+ (π∗A+π∗φξ)∧ (π∗A+π∗φξ)

= π∗[d(A+φds) + (A+φds)∧ (A+φds)] +π∗φdξ

= π∗F∇̃ +π
∗φdξ

7.1.8 Proof. Note here that these basis vectors have been expressed in terms of the

basis β = {dwi ∧ dw̄ j : i, j ∈ {1,2}} which is different from the real Euclidean

metric under consideration here. This is first translated into real coordinates

as;

dwi = d x i + id yi dw̄i = d x i − id yi

So then the norms of these are all 2. The inner product inherited on the exte-

rior algebra remains orthonormal on any basis induced from an orthonormal
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basis, so expressing our forms in complex coordinates reveals

dw1 ∧ dw̄1 = (d x1 + id y1)∧ (d x1 − id y1) = −2id x1 ∧ d y1 =





−2i
0
0
0
0
0





dw1 ∧ dw̄2 = d x1 ∧ d x2 − id x1 ∧ d y2 + id y1 ∧ d x2 + d y1 ∧ d y2 =





0
1
−i
i
1
0





dw2 ∧ dw̄1 = −d x1 ∧ d x2 − id x1 ∧ d y2 + id y1 ∧ d x2 − d y1 ∧ d y2 =





0
−1
−i
i
−1
0





dw2 ∧ dw̄2 = −2id x2 ∧ d y2 =





0
0
0
0
0
−2i





and now it is clear that this basis is orthogonal but all vectors have norm 2. For

example, observe that (in the standard complex basis β for (1,1)-forms) we

can express ε2 = (w1w2,−w2
2,−w2

1, w1w2) and ε3 = (−w̄1w̄2,−w̄2
1, w̄2

2, w̄1w̄2) so

that

〈ε2,ε3〉= 4(−w2
1w2

2 −w2
1w2

2 +w2
1w2

2 +w2
1w2

2) = 0
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and

||Ω̃||2 =
1
4



ω+
α− 1

R2
Q,ω+

α− 1
R2

·

=
1
4

�

||ω||2 +
α− 1

R2
(〈ω,Q〉+ 〈Q,ω〉) +

�

α− 1
R2

�2

||Q||2
�

=
1
4

�

4+ 4+
α− 1

R2
(4R2 + 4R2) +

�

α− 1
2

�2

4R4

�

= 2+ 2(α− 1) + (α− 1)2

= α2 + 1

7.1.9 Proof. First, for φ, recall that this is the ds-term in the connection Ã,

Ã= Ãzdz + Ãz̄dz̄ + Ãudu+ Ãūdū

= Ãzdz + Ãz̄dz̄ + Ãu(d t − ids) + Ãū(d t + ids)

= Ãzdz + Ãz̄dz̄ + (Ãu + Ãū)d t + i(Ãū − Ãu)ds)

while

Ã= Ã0 + h−1∇̃1,0
0 h

Extracting the ds-terms from both then reveals our claim.
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Now, for curvature,

F∇̃ = dÃ+
1
2
[Ã, Ã]

= d(Ã0 + h−1∇̃1,0
0 h) +

1
2
[Ã0 + h−1∇̃1,0

0 h, Ã0 + h−1∇̃1,0
0 h]

= (dÃ0 +
1
2
[Ã0, Ã0]) + d(h−1∇̃1,0

0 h) + [Ã0, h−1∇̃1,0
0 h] +

1
2
[h−1∇̃1,0

0 h, h−1∇̃1,0
0 h]

= F∇̃0
+ ∇̃0(h

−1∇̃1,0
0 h) +

1
2
[h−1∇̃1,0

0 h, h−1∇̃1,0
0 h].

7.1.10 Recall, what we are dealing with is a pair (∇,Φ) on B3 (satisfying the

Hermitian-Einstein-Bogomolny equations) which, by construction, corre-

sponds to a Hermitian-Einstein connection ∇̃ = ∇ + Φds on B3 × S1. This is

further lifted via the Hopf map π : B4 → B3 by simply declaring that π∗ds = ξ,

so that

∇̂= π∗∇̃= π∗∇+π∗Φξ.

One relevant formula is an expression for the curvature tensor upstairs in terms

of the lifted data from downstairs. This can be done in two ways (on R3 or

R3 × S1), however it will be most cleanly expressed on R3 × S1 in terms of ∇̃.

So we shall proceed with these computations first.

Formulas upstairs expressed on R3 × S1 Indeed,
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F̂ = dÂ+ Â∧ Â

= d(π∗A+π∗φξ) + (π∗A+π∗φξ)∧ (π∗A+π∗φξ)

= d(π∗A) + dπ∗φ ∧ ξ+π∗φdξ+ (π∗A+π∗φξ)∧ (π∗A+π∗φξ)

= π∗[d(A+φds) + (A+φds)∧ (A+φds)] +π∗φdξ

= π∗ F̃ +π∗φdξ.

That is,

F̂ = π∗ F̃ +π∗Φdξ. (7.3)

and this holds in any gauge.

To change the metric (via the heat flow equation) while remaining within a

holomorphic gauge, it is a result of Simpson [42], Lemma 3.1 that when the

new metric H∞ is expressed as the product H0h where h is positive definite

and self-adjoint (generalized to h ∈ Γ (Gc/G)) then locally, the connection

matrices change as follows

Ã0,1 = Ã0,1
0 , Ã1,0 = Ã1,0

0 + h−1∇̃1,0
0 h

or equivalently,

Ã= Ã0 + h−1∇̃1,0
0 h.
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The change in curvature is computed locally as

F̃ = dÃ+ 1
2[Ã, Ã]

= d(Ã0 + h−1∇̃1,0
0 h) + 1

2[Ã0 + h−1∇̃1,0
0 h, Ã0 + h−1∇̃1,0

0 h]

= dÃ0 +
1
2[Ã0, Ã0] + dh−1∇̃1,0

0 h+ [Ã0, h−1∇̃1,0
0 h] + 1

2[h
−1∇̃1,0

0 h, h−1∇̃1,0
0 h]

= F̃0 + ∇̃0(h
−1∇̃1,0

0 h) + 1
2[h

−1∇̃1,0
0 h, h−1∇̃1,0

0 h]

and thus, the (1,1) part is simply

F̃1,1 = F̃1,1
0 + ∇̃0,1

0 (h
−1∇̃1,0

0 h) (7.4)

Lifting, equation (7.4) and recalling the relation provided in equation (7.3)

gives says that

F̂1,1 −π∗Φdξ= F̂1,1
0 −π

∗Φ0dξ+π∗∇̃0,1
0 (h

−1∇̃1,0
0 h)

where it remains to compute the lift π∗∇̃0,1
0 (h

−1∇̃1,0
0 h).

Note that although we have that π∗∇̃ = ∇̂, it does not follow that π∗(∇̃ ◦ ∇̃) is

equal to ∇̂ ◦ ∇̂. That is to say that the pull-back π∗ does not simply distribute

itself over all terms. In fact, we have already encountered this in equation

(7.3). In essence, we are dealing with the fact that d and π∗ do not commute

as usual and this is due to the fact that π∗ds = ξ which is no longer closed.

Lemma 7.1.12. [Technical lemma] For α,β ∈ Γ (Gc/G) we have,

π∗∇̃(α∇̃β) = ∇̂(π∗α∇̂π∗β) +π∗α[π∗Φdξ,π∗β].
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Furthermore, also

π∗∇̃0,1(α∇̃β) = ∇̂0,1(π∗α∇̂π∗β) +π∗α[π∗Φ∂̄ ξ,π∗β]

and for our purposes

π∗∇̃0,1(α∇̃1,0β) = ∇̂0,1(π∗α∇̂1,0π∗β) +π∗α[π∗Φ∂̄ ξ,π∗β].

Proof.

π∗∇̃(α∇̃β) = π∗
�

∇̃(α)∧ ∇̃(β) +α∇̃(∇̃(β))
�

= ∇̂(π∗α)∧ ∇̂(π∗β) +π∗απ∗ F̃(β)

= ∇̂(π∗α)∧ ∇̂(π∗β) +
�

π∗α(F̂ −π∗Φdξ)(π∗β)
�

= ∇̂(π∗α)∧ ∇̂(π∗β) +π∗α∇̂(∇̂(π∗β))− [π∗Φdξ,π∗β]

= ∇̂(π∗α∇̂π∗β)− [π∗Φdξ,π∗β]

The other two identities (involving holomorphic and anti-holomorphic

projections of ∇̃) follow essentially the same calculation, but use the fact that

π∗∂̄ Ã= ∂̄ π∗Ã−π∗Φ∂̄ ξ

rather than just

π∗dÃ= dπ∗Ã−π∗Φdξ

which is the core identity behind these formulas and is recognized as coming

from equation (7.3). Notice also, that the last term remains unchanged
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between the second and third equations provided in this lemma. This is due to

the fact that it is only the second application of covariant differentiation that

introduces the extra term and has nothing to do with the first.

Substituting the third formula from Lemma 7.1.12 into the relation following

equation (7.4) gives a relation between the curvature tensors upstairs upon

changing metrics. That is,

F̂1,1−π∗Φdξ= F̂1,1
0 −π

∗Φ0dξ+∇̂0,1
0 (π

∗h−1∇̂1,0
0 π

∗h)+π∗h−1[π∗Φ∂̄ ξ,π∗h] (7.5)
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CHAPTER 8
Spectral curves and abelianization of meromorphic pairs

In this section and the next, we briefly consider two venues for furthur investiga-

tion. This first is the abelianization of our stable meromorphic pairs, which gives rise

to another corresponding family of geometric objects.

In the case of vector bundles our meromorphic pair (E ,ρ) can be transformed

into an n-sheeted ramified cover Sρ of Σ recording the spectrum of the automor-

phism ρ and a sheaf L which is (generically) a line bundle on the spectral cover Sρ,

corresponding to the eigenvectors of ρ. More generally, for reductive G-fibrations, a

similar process will yield pairs (Sρ,Q) where Sρ → Σ is a |W (G, T )|-sheeted ramified

cover of Σ (called a cameral cover) and Q is a T -bundle over Sρ.

An inverse for these constructions are provided in several places throughout the

literature with varying levels of abstraction and difficulty (cf. [7, 8, 22, 20, 21, 39,

40] for lots of information regarding these ideas)

8.1 Spectral data associated to a bundle pair

Consider the bundle pair (E ,ρ) where E is a holomorphic vector bundle over a

Riemann surface Σ and ρ is a meromorphic automorphism of E . To elaborate a bit

further, we may express this as an automorphism away from {z1, z2, . . . , zn} with ρ

expressed locally as ρ(z) = g(z)diag
�

(z − z j)k1 , . . . , (z − z j)kn
�

h(z) near z j (i.e. it is

meromorphic in the sense that it has poles and zeros at some points). This bundle
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pair actually arises as the monodromy information for a singular U(n)-monopole, but

this will not be relevant for our construction.

Analogously, a principal bundle pair (P ,ρ) will be a principal G-bundle over

Σ and ρ ∈ M (AdP) a meromorphic section of AdP = P ⊗G G (where G acts by

conjugation). The procedure developed here is referred to as the abelianization of

the bundle pair.

8.1.1 Vector bundles

Given a vector bundle pair (E ,ρ), we can define a spectral curve Sρ as the

compactification of

S0
ρ
= {(z,λ) ∈ Σ×C∗ : det(ρ(z)−λ · In) = 0}.

That is, Sρ is a projective subvariety of Σ × CP1. This is generically an n-fold

branched cover, which we denote by π, of Σ whose fiber at z ∈ Σ consists of the

eigenvalues of ρ(z). Note also that the intersection of Sρ with Σ× {0,∞} encodes

the singular information of ρ at the {z j}′s.

Considering the pullback

π∗E //

��

E

��
Sρ

π

n:1
// Σ

allows us to define the co-kernel of

π∗E ⊗O (−1)
ρ(z)−λ·In //

%%

π∗E

}}

// L

Sρ
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which is generically a line bundle L over Sρ whose fiber at (z,λ) is isomorphic to

the eigenspace

Eλ(ρ(z)) = ker(ρ(z)−λ · In).

The pair (Sρ,L ) is called the spectral data of our bundle pair and it can be

shown that this information encodes the bundle pair (E ,ρ) : the holomorphic bundle

E can be reconstructed from (Sρ
π
→ Σ,L ) as the push-forward π∗(L ); similarly,

ρ ∈M (Aut(E )) is reconstructed as the push-forward π∗(µλ) of multiplication by λ.

8.1.2 Principal bundles

Given a meromorphic principal pair (P ,ρ), we wish to construct a pair (Sρ,Q)

that analogously encodes the “eigen data”.

The spectral information (Cameral cover)

From ([24] section 6.2), given the data (P ,ρ), the meromorphic endomor-

phism ρ ∈M (Aut(P)) has a notion of spectrum given by examining its orbits under

conjugation by G as follows:

Fix a maximal torus T (analogous to diagonal matrices) and to each z ∈ Σ,

associate to ρ|Pz
, the Weyl group orbit in T of the closure of the G-orbit (under

conjugation) of the second coordinate in the equivalence class ρ(pz) = [pz,ψ(z)] =

{(g · pz, gψ(z)g−1) : g ∈ G}. That is,

S0
ρ

:= {(z,α) ∈ Σ× T : α ∈ OG(ψ(z))∩ T} (8.1)

where OG(ψ(z)) = {gψ(z)g−1 : g ∈ G} is the conjugacy class of ψ(z) in G.

Now, at first glance, since our torus here will be T ∼= (C∗)n where n = rank G, a

first natural assumption might be that a compactification should be simply given by
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including the points {0,∞} for each copy of C∗. However, in most cases, this naive

approach will not yield the desired Weyl-invariant compactification. Assuming (to

be discussed below) for a second that such an invariant compactification was at our

fingertips, then Sρ := S0
ρ

W
defines a (generically) |W (G, T )|-fold branched cover of

the Riemann surface, denoted by q : Sρ → Σ. This Sρ is a projective subvariety of

Σ× T
W

.

Remark 12. Let us elaborate, for a minute, the case G = GLn and relate the spectral

curve for vector bundles (an n-fold cover over the base) to this generalization which

is n!-fold. This map q is related to the case above via a projection map onto the first

coordinate of diagonal matrices. That is, q = pr1 ◦ π from above. Recall, π is an

n-fold cover and projection on to the first coordinate of such a cover is (n− 1)!-sheeted.

Pictorially, for vector bundles, we have

S̃ρ
pr1

(n−1)!
//

q

n!
##

Sρ
π
n
// Σ

as simply

(λ1(z),λ2(z), . . . ,λn(z)) 7→ λ1(z) 7→ z

and this S̃ρ here represents the generalization for G-bundles.

A maximal torus bundle on the cameral cover

Next, returning to the case of a general group G, with the spectral information

in hand and as above, we pullback P via q:
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q∗P //

��

P

��
Sρ

q

|W |:1
// Σ

Fixing some Borel subgroup B ≤ G containing T (the analogue for G of the

upper triangular matrices in GLn(C)), it is known (by the Lie-Kolchin Theorem) that

any group element may be conjugated into B. However, there is no canonical choice

for doing so. Having now separated the different possible semi-simple components in

the G-orbit of ρ, this lifted bundle q∗P should now admit a canonical reduction to a

principal B-bundle over Sρ.

Indeed, writing B as the semi-direct product T n U , define

PB = {p(z,α) ∈ q∗P : q∗ρ(p) = [p,α · u], for some u ∈ U} ⊂ q∗P.

That is to say PB is the family for frames for which P is of the form α · u. Then,

appealing to the fact that Borel subgroups are self-normalizing (i.e. NG(B) = B), one

find that the condition

(p,α · u)∼ (h · p, hα · uh−1) = (h · p,α · u′)

for some u′ ∈ U holds if and only if h ∈ B. Hence PB is a reduction of the pullback

q∗P over Sρ to B. Furthermore, the lifted map q∗ρ is naturally found as a section of

the associated reduction Aut(PB) = AdPB
.

Now, through the isomorphism B ∼= T n U , which gives the exact sequence

U ,→ B
π
� T,
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the reduced B-bundle PB as an element of the non-abelian sheaf cohomology group

H1(Sρ; B) naturally also defines an element π ◦ PB ∈ H1(Sρ; T ) which we denote by

Q. This Q is the desired T -bundle over Sρ alluded to above for which we would like

to consider the pair (Sρ,Q) as the abelianization of (P ,ρ).

Note that, furthermore the unipotent information UQ is realized as the pre-

image π−1(Q) ∈ H1(Sρ, UQ) where, say at (z,α) ∈ §ρ, U(z,α) = π−1(α) = {b ∈ B : ∃u ∈

U , b = α · u}.

Remark 13. A reversal of this procedure, at least in the generic setting, is outlined in

[22] section 2. By generic, one means that the logarithm of the cameral cover (so to

take values in t rather than T) crosses walls of the Weyl-chamber transversally and

never more than one at a time. This implies that the stabilizers at branch points are

isomorphic to Z/2 and there exists a choice of gauge for which ρ’s orbit contains an

element appearing, in matrix form, as








λ1 0

...
a 1
0 a

...
0 λn−2









with distinct λ1, . . . ,λn−2.

For the group SU(3) an image of such a cameral cover would look like;
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8.1.3 Weyl-invariant compactifications of maximal tori

Now, as mentioned, we should take a look at the process in which the Weyl-

invariant compactification of maximal tori is accomplished.

In the standard case, when G = GLn, one simply compactifies its maximal torus

(C∗)n to (CP1)n by the natural extension of the two point ({0,∞}) compactification

of C∗. Any point here is invariant under permutation (i.e. the Weyl-group of GLn).

Notice that SLn has the same Weyl-group as GLn, but the maximal torus is only

(n− 1)-dimensional. Of course then, since algebraic groups admit an embedding into

GLN (for some N), we can expect to realize the compactification of their maximal tori

as compact subvarieties of (C∗)N . In fact, given a complex reductive Lie group G of

rank k, the visual procedure is as follows;

Consider maximal T ⊂ G (isomorphic to (C∗)k) along with the embedding

ι : G ,→ GLN . Compactify the torus to T ∼= (CP1)k and find its image under ι as a

k-dimensional subvariety in TGLN
∼= (CP1)N .

Example 5. We can provide a sketch of some low-dimensional cases

1. G = SL3(C) = {A ∈ GL3 : det A = 1} has rank 2. A natural choice of maximal

torus is already embedded in TGL3
subvariety {(x , y, z) ∈ (C∗)3 : x yz = 1}
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(this may require desingularization at∞. Notice immediately that certain

combinations of zeros and infinities in (CP1)3 are not compatible with the

constraint x yz = 1. It suffices to check the image of (CP1)2 in (CP1)3 under the

map (x , y) 7→ (x , y, (x y)−1). Upon doing so, one finds the hexagon (indicated

in red) as the image of TSL3
inside of the cube (a real sketch of TGL3

) illustrated

below.

000

001

010

011

100

101

110

111

2. G = Sp2(C) = {A ∈ GL4 : AJA∗ = J} has rank 2. A natural choice of maximal

torus is embedded in TGL4
as {(x , y, z, w) : xz = 1, yw = 1} and verifying the

image of zeros and infinities through the map (x , y) 7→ (x , y, x−1, y−1) reveals

the following quadrilateral (in red) as a codimension 2 subvariety in the real

illustration of (CP1)4 as a 4-cube below.
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CHAPTER 9
Monopoles on Sasakian manifolds

A second avenue of future research, given the results on G-monopoles over a

trivial S1-fibration on Σ, is to consider an analogous classification theorem for some

non-trivial S1-bundles on a Riemann surface. If they are positive, they can be given a

Sasakian structure which will allow us to extend some of our methods to this case.

Given the analysis involved for singular G monopoles on S1 ×Σ, these compact

Sasakian 3-manifolds are, in some ways, merely a (literal) twist away. Thus, a

brief summary of this new geometry and a few appropriately adjusted definitions

immediately suggests a classification theorem for monopoles of this type.

It will then be of interest to investigate the spectral data corresponding to these

twisted objects.

9.1 Singular monopoles on Sasaki manifolds

A natural extension of this project, initiated in [1], would be to examine the

moduli spaces over a less trivial domain. That is to say S1 ×Σ is the trivial S1-bundle

over Σ, but what about having non-trivial circle bundles over Σ as our monopole’s

domain? This type of problem was briefly alluded to at the end of [5] where they

considered their domain X to be a flat S1-bundle on Σ. These bundles correspond

to 1-dimensional representations of the fundamental group of Σ. This quickly

reveals the problem of monopole moduli spaces on certain flat S1-bundles over Σ to

π1(Σ)-invariant objects on finite covering spaces of Σ.
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Taking this slightly further, one has that any positive S1-bundle on Σ can be

given a Sasakian structure. This allows us to broaden our horizons to bundles which

admit curvature. With the mechanics of Sasakian geometry under control, the theory

developed thus far should translate. However, now the appropriate metric is no

longer simply the product metric on S1 × Σ. Thus, let us first explain the basics of

Sasakian geometry

9.1.1 Sasakian Manifolds

Sasakian geometry is informally referred to as “odd-dimensional Kähler”

geometry. It merges the theory of Riemannian, symplectic and complex manifold

theory and a Saskian 3-manifold is nested nicely between two well-known Kähler

structures (one being on its positive cone and the other being the quotient of its Reeb

foliation).

Definition 9.1.1. A Sasaki 3-manifold is a triple (X ,α, g) where α ∈ Γ (T ∗X )

is a normalized contact form making X into a contact manifold and g is a metric

compatible with α in the following sense; the contact structure α defines a unit Reeb

vector field ξ which is perpendicular to the contact planes and acts on X as a Killing

vector field.

We shall suppose the orbits of ξ are compact and take the quotient of X by S1

action generated by the flow of ξ. Since X is a 3-manifold, this quotient reveals a

projection π : X → Σ which is a surface orbifold. If the action of S1 is, furthermore,

assumed to be free, then this projection is that of a circle bundle on Σ.

A first example of such a manifold is the 3-sphere S3 which is realized (via the

Hopf map) as a non-trivial principal S1-bundle over S2.
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A Sasakian structure on X is equivalent to the cone C(X ) := R+ × X with metric

dr2 + r2 g being Kähler with form given by

Ω= r2dα− 2rα∧ dr.

Recalling that, [2], there is a quotient surface π : X → Σ at hand allowing us

to decompose the metric g = π∗h+ α⊗ α where h is a Hermitian metric on Σ. If we

write ω for the Kähler form on Σ which, recall, is the orthogonal complement of ξ,

then dα= π∗ω and we may rewrite the form on C(X ) as

Ω= r2π∗ω− 2rα∧ dr.

The volume form Ω2 on X upon contraction by the radial vector is conveniently

expressed as VX = dα∧α and the Kähler form on Σ pulled back to X is given as

ω= dα.

Locally, we write

iµ(z, z̄)dz ∧ dz̄ = 2µ(z, z̄)d x ∧ d y.

On the cone C(X ), there is a basis of vector fields (of constant norm in r)

{ξ/r,∂r , vz/r, vz̄/r} where the first two are mutually orthonormal and orthogonal to

the other two.

Thus, we can see that these Sasaki manifolds lie quite nicely between two

related complex structures. The first is J on Σ and the second is the extension of J to

C(X ) by the definition J(ξ/r) := ∂r . With this, we find
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T1,0M = span{ξ/r − i∂r , vz/r}(= i − eigen space of J)

T ∗1,0M = span{rα+ id r, rdz}

Ω1,1M = span{rα∧ dr, r2dα,σ3,σ4}

where

σ3 = (rα+ id r)∧ dz̄

σ4 = (rα− id r)∧ dz

The wedge product is then found to be

Ω∧Ω= −4r3dα∧α∧ dr.

Adjusting Ω̃ := 1
r2Ω = dα− 2α ∧ d t where t = log r moves us from the cone to the

product X × S1 and here we have the following ∂ ∂̄ -Lemma

Lemma 9.1.2.

∂ ∂̄
�

1/r2
�

=
−i
r2
(dα+ 2α∧ dr).

implying that

∂ ∂̄

�

1
r2
Ω

�

= ∂ ∂̄ (1/r2)∧Ω= 0.

Thus, Ω̃ defines an S1-invariant Gauduchon metric on C(X ) which then descends to a

quotient manifold N = X × S1. An important pair of operators on 4-manifolds like M

are given as

L : ∧p,qM →∧p+1,q+1M ;η 7→ η∧ Ω̃

and its formal adjoint Λ= L† (under g̃).
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For any η ∈ ∧p,qM we find,

[L,Λ]η= (p+ q− 2)η

and using this in the case η is a 2-form gives

L2Λ(η) = LΛLη= 2Lη

so

Λ(η)Ω̃∧ Ω̃= 2η∧ Ω̃.

Hence, as will be required in the discussion of monopoles, the projection of any

2-form onto the Gauduchon (rather than Kähler) component is,

Λ(δdα+ β(α∧ d t) + γσ3 + εσ4) = δ− β/2.

With basis of 1-forms α, dz, dz̄ for X , g(α,α) = 1/2, g(dz, dz̄) = µ−1, the volume

form VX as above and the Hodge dual coming from g(a, b)VX = a ∧ ∗b the Laplacian

on functions f ∈ C∞(X ;C) is computed as

∆( f ) =
1
2
ξ2 f +µ−1 [vz̄ ◦ vz( f ) + vz ◦ vz̄( f )] .

To summarize, our Sasakian 3-manifolds admit a non-trivial S1-fibration over Σ

so fit into the exact sequence

S1 ,→ X � Σ

and N := S1 × X admits a Gauduchon metric and in particular admits the structure of

an elliptic fibration over Σ.
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Having all of this rich structure at hand suggests that a theory of singular

monopoles and a classification theorem analogous to Theorem 1.0.1 is entirely

plausible.

We now exhibit the Sasaki structure for the Hopf fibration.

9.1.2 Contact structure for Hopf-fibration

Consider the 3-sphere S3 as embedded in C2 with standard Hermitian inner

product as follows;

S3 =
�

~z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1
	

⊂ C2

Define a complex line (real plane) at a point ~z ∈ S3 by

L~z = {~w ∈ C2 : 〈~z, ~w〉= 0}.

This L~z as a real subspace of T~zS
3 is a tangent plane. We may equivalently view this

tangent plane as the kernel of the exterior form

α= z1dz̄1 + z2dz̄2 ∈ T ∗
~z C

2.

Notice that the action of S1, given by

eiθ · (z1, z2) := (eiθz1, eiθz2),

generates a flow (the derivative at θ = 0) (iz1, iz2) which is tangent to S3 and

orthogonal to the hyperplane L~z thus verifying α as a contact structure on S3.
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After normalization the contact structure becomes

α̂=
z1dz̄1 + z2dz̄2

|z1|2 + |z2|2
=
α

r2

and for future calculations it will be worthwhile to compute

dα̂= d
�

1
r2
·α
�

= −2r−3dr ∧α+
1
r2

dα=
1
r2

dα+
2
r3
α∧ dr.

Now, following the general construction above, the Kähler form on the cone

C(S3) is given in terms of the contact form as

Ω= r2dα̂− 2rα̂∧ dr

= r2
�

1
r2

dα+
2
r3
α∧ dr

�

− 2rα̂∧ dr

= dα+
2
r
α∧ dr −

2r
r2
α∧ dr

= dα

= dz1 ∧ dz̄1 + dz2 ∧ dz̄2

So the (1,1)-form associated to the Gauduchon metric on the Hopf surface

H = S3 × S1 (realized as the quotient of the cone) is then

Ω̃=
1
r2
Ω=

dα
r2
=

dz1 ∧ dz̄1 + dz2 ∧ dz̄2

|z1|2 + |z2|2

which agrees (although unnormalized) entirely with the form provided in [3].
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9.1.3 Singular G-monopoles on Sasaki manifolds

Given a G-bundle on N := X × S1, equip it with a G-connection ∇. In our

notation this connection is expressed as

∇vz
dz +∇vz̄

dz̄ +∇ξα+∇ ∂
∂ t

d t = (vz + Az)dz + (vz̄ + Az̄)dz̄ + (ξ+ Aξ)α+
�

∂
∂ t +ϕ

�

d t

where z is the coordinate on Σ.

Lie brackets on X are [vz, vz̄] = −iµ(z, z̄)ξ (since α([vz, vz̄]) = −dα(vz, vz̄)) ,

and [ξ, vz] = [ξ, vz̄] = 0 (since ξ is Killing), and on N [ ∂∂ t ,ξ] = 0. This allows us to

compute the curvature tensor as

F =
�

iµ−1(z, z̄)[∇vz
,∇vz̄
] +∇ξ

�

dα+ [∇ξ,∇ ∂
∂ t
]α∧ d t

+ [∇σ,∇vz
]α∧ dz + [∇σ,∇vz̄

]α∧ dz̄ + [∇ ∂
∂ t

,∇vz
]d t ∧ dz + [∇ ∂

∂ t
,∇vz̄
]d t ∧ dz̄

= FΣdα+ Fαα∧ d t + · · ·

Remark 14. We note that the only peculiar term in the curvature above is the dα-term

and it may not be immediately apparent where the ∇ξ has come from. Note that our

basis vz, vz̄,α consists of a form, α, which is not closed and so remains after the exterior

differentiation d(Aξα) = Aξdα.

In the case where the connection is t-invariant (i.e. when lifting monopoles on

X to t-invariant connections on N) the commutator [∇ξ,∇ ∂
∂ t
], hence Fα, is simply

∇ξ(ϕ).

Now, as in the case for monopoles on S1 × Σ, we fix a finite collection of

points A = {a1, . . . , aN} ⊂ X whose projection, via π : X → Σ, we denote by
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B = {b j = π(a j)}Nj=1 ⊂ Σ. We also fix a collection of cocharacters {µ j}Nj=1 ⊂ X∗(G)

associated to each of the a j which encode singular information. Now,

Definition 9.1.3. A singular G-monopole with constant c ∈ Z (g) on our Sasaki

manifold X of type (A, ~µ) is a G-bundle, G-connection, g-endomorphism triple (P,∇,Φ)

defined over X\A satisfying that;

• when lifted to N (inserting Φ for the d t-component), the resulting connection ∇̃ is

not only metric compatible, but compatible with the complex structure in the sense

that

F0,2
∇̃
= [∇vz̄

,∇ξ − iΦ] = 0

and by conjugation

F2,0
∇̃
= [∇vz

,∇ξ + iΦ] = 0

• the contraction by the Gauduchon form Ω̃ should be central. That is

Λ(F̃) = iC .

More explicitly, this reads

FΣ −
Fα
2
=

2
�

iµ−1(z, z̄)[∇vz
,∇vz̄
] +∇ξ

�

−∇ξΦ
2

= iC

• the singularities of Φ should be of the µ j-Dirac type at each a j as defined in

section 6.1.

9.1.4 Holomorphic and meromorphic structure on monopoles

Here, as before, we have holomorphic information for P over X which is

prescribed by the commuting operators ∇0,1
Σ = ∇vz̄

and ∇c
ξ
= ∇ξ − iΦ. This implies
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that for all open subsets U⊂Σ and sections ψ : U → X then the restriction Pψ of the

holomorphic section of P to ψ(U) is then holomorphic in the usual sense.

Now, given two sections ψ,ϕ : U → X , ∇c
ξ

can be used to parallel transport ρψ,ϕ

between Pψ and Pϕ defining a (almost everywhere) holomorphic isomorphism (cf.

the scattering operator 6.1.6) except for possibly when the singular points p j lie in

between. A monodromy is locally defined in the same fashion, by scattering one full

cycle around the fibres of X and these will be denoted mϕ : Pϕ → Pϕ for a section

ϕ : U → X . Now, with this in mind we define

Definition 9.1.4. A section of P → X is holomorphic if it is parallel with respect to

both ∇0,1
Σ and ∇ξ − iΦ and, thus, the triple (P,∇,Φ) on X is referred to a holomorphic

structure.

A meromorphic structure associated to a monopole (P,∇,Φ) on X will be con-

structed in the same fashion as before with the exception of having a globally defined

holomorphic bundle over Σ along with a meromorphic bundle automorphism.

This time, due to the non-trivial nature of X as an S1-bundle, everything must be

constructed locally and patched together via the transition functions.

So, a meromorphic structure on P → X with poles at Z (of type µ j) is simply a

holomorphic structure (∇0,1,∇c) on the restriction of P c to the complement X\Z .

With this structure we employ the following parallel transport construction; for local

sections ϕ,ψ of X → Σ defined on open U ⊂ Σ having disjoint images, let Vϕ,ψ be

defined formally and pictorially as a subset of P as follows;

Vϕ,ψ = {p ∈ P : ∃θ < θ ′ ∈ (0, 2π), a ∈ ϕ(U), a′ ∈ψ(U), s(θ , a) = p, s(θ ′, a) = a′}
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the transition maps ρϕ,ψ : Pψ → Pϕ obtained by integrating along ∇c
ξ

are

required to be holomorphic isomorphisms when Z ∩ Vϕ,ψ = φ occurring in the

following cases;

(i) away from points in Z , and

(ii) when the paths of integration along fibers over points in Z do not contain

singularities.

In all the cases when zi ∈ Vϕ,ψ, ρϕψ are required to be meromorphic and take the

local form

ρϕ,ψ = F(z)µi(z − zi)G(z)

with F, G holomorphic and invertible.

9.1.5 Holomorphic data on the curve Σ

Given a holomorphic structure, (P,∇,Φ), on a Sasaki manifold X → Σ, we cover

Σ by carefully chosen charts {Uα} so that sections ϕα : Uα → X can be given to have

disjoint images. That is, if pi, p j live in the same orbit (over q ∈ Σ), there is a ϕα so

that ϕα(q) lies in the positive path (along S1) from pi to p j. Let Q = {qi}Ni=1 ⊂ Σ be

the points at which π−1(qi) admits singularities and X0 := X\Q. Define bundles Pα
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over Uα as the restriction of P → X to the image of ϕα in X (i.e. Pα = P|ϕα(Uα)) along

with monodromies

mα : Pα→ Pα

which are isomorphisms on X0 ∩ Uα and singular on Q ∩ Uα. If pi is alone on S1-orbit,

then the singular type of mα at qi is of type µi (as usual). There are also transition

maps ραβ : Pβ → Pα on the overlap Uα ∩ Uβ providing a twisted cocycle condition

ραβρβα = mα

ραβρβγ =











ραγ

ραγmγ

.

depending on whether Uα, Uβ , Uγ are ordered cyclically or not as one is always

moving in the positive direction along the circle. The collection {Uα,ϕα, Pα, mα,ραβ}

constructed from any holomorphic structure (P,∇,Φ) are referred to as twisted

bundles over Σ.

As an example, the open sets, Uα can be chosen explicitly depending on the

degree, say k, of X as an S1-bundle over Σ. Indeed, it is clear that X → Σ is trivial

over the complement of any point and is topologically classified by an integer k (in

fact this is computed by integrating dα over Σ). Thinking of Σ by its polygon model

(i.e. a 4g-gon), U0 is defined as the complement of a fixed point p and U1, . . . , Uk are

defined as an ε-neighbourhood of the angular sector
�

2π s−1
k+1 , 2π s

k+1

�

which look like

pizza slices as illustrated below for the case k = 4 on a genus 2 Riemann surface;
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9.2 Twisted spectral data

A singular G monopole (P,∇,φ) on Sasakian X
π
→ Σ gives rise to the data,

{Uα,ϕα, Pα, mα,ραβ}, of a twisted G-bundle over Σ. The monodromies (taking

the place of meromorphic automorphism ρ from the S1 × Σ case) are related by

conjugation on overlapping neighbourhoods Uα ∩ Uβ as depicted in the following

commutative diagram;

Pα
mα // Pα

Pβ mβ
//

ραβ

OO

Pβ

ραβ

OO

This allows us to define (for a fixed maximal torus and Borel T ⊂ B ⊂ G)

local cameral covers Sα
qα→ Uα in the same fashion as (8.1). A particularly nice, yet

tautological, result of the monodromies {mα} being related by conjugation is that

for z ∈ Uα ∩ Uβ , the conjugacy classes of mα(z) and mβ(z) coincide to define a

global cover S
q
→ Σ as the topological quotient identifying points on overlapping

neighbourhoods of the base. Again, after the proper compactification of T this

cameral cover is a Weyl-invariant, projective curve in Σ × T̄ W which is thus a

|W |-sheeted branched cover of Σ.

Now, since we are dealing with twisted bundles over Σ, we cannot simply

pull-back to the global cover via q, but must locally consider pullbacks q∗
α
(Pα)→ Sα.
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Each of this pullbacks admit a reduction to B (denoted PαB ) and project naturally via

π : B → T to give a family of T -bundles over each Sα. Furthermore, as before, the

lifts of the monodromies q∗
α
(mα) are realized as a sections of the associated reduction

Aut(PαB ) = AdPαB
. Patching these torus bundles together on overlaps Sα ∩ Sβ is

achieved via the transition functions ταβ = π ◦ q∗
α
◦ραβ and thus we have constructed

a shifted T -torsor over S consisting of the following data

T = {π(PαB ),ταβ}.

That is to say, that the pair (T , S) is the analogous information required in the

abelianization of a singular G monopole over a Sasakian 3-manifold and that this

process is reversible.
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CHAPTER 10
Conclusion

The originality of the results found here hinge greatly on the generalization

structure group under consideration. Many generalizations of this type have evolved

mainly over choice of domains (e.g. from algebraic curves to arbitrary compact

complex manifolds) but often consider only the case of complex vector bundles. The

greatest obstacle here lies within the deeper understanding of the structure theory of

complex algebraic groups while keeping in mind their relationship with the general

linear group. Four major differences encountered here and worth summarizing are:

1. The notion of degree of a G-monopole,

2. local decomposition for meromorphic maps into Gc

3. our notion of stability (inspired by Ramanathan) which, after much comparison

with the usual vector-bundle analogue, has been reevaluated and brought

back closer to its original orbit-theoretical roots. That is, we have backed away

from the slope-condition (a comparison made between a vector bundle and its

subbundles) and described a stability measurement more intrinsic to the nature

of principal bundles.

4. Also, the concrete description of HomG(P, P ′) of G-equivariant maps between

bundles as a naturally associated bundle to the fibre-product of P ×B P ′ which

allowed for a description of induced connections so to determine relevant

information such as covariant constancy of its sections.
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Future investigations in this realm will undoubtedly reveal more of the subtle

intricacies and structural differences between fibre-type. This is already apparent

from the abelianization procedure outlined in chapter 8 (c.f. spectral curves and

cameral covers). Furthermore, with all of this theory in order, we are also in place

to start working with more exotic domains (e.g. Sasaki manifolds) which appear to

reveal similar, yet twisted, classification results.
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Part III

Appendices
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Appendix A - Metrics on a principal bundle

Having worked out the details of the Cartan Decomposition for GLn(C), it would

make sense to consider, first, the related example.

Example 6 (G = U2). Consider the standard metric on the group of 2 × 2 positive

definite Hermitian matrices defined by the line element Tr(H−1δH)2. This is easy to

evaluate on the subgroup of positive diagonal elements. Indeed, if D =





λ 0

0 µ



 with

λ,µ > 0, then our line element becomes

Tr(D−1δD)2 = Tr









1/λ 0

0 1/µ









dλ 0

0 dµ









2

= Tr





dλ2

λ2 0

0 dµ2

µ2



=
dλ2

λ2
+

dµ2

µ2
.

With this, the Christoffel symbols can be computed using the standard formula

Γ k
i j =

1
2

n
∑

l=1

gkl

�

∂ gil

∂ x j
+
∂ g jl

∂ x i
−
∂ gi j

∂ x l

�

where gi j is the (i, j) entry of the symmetric matrix obtained from the quadratic form

ds2 and g i j denotes the (i, j) entry of its inverse. That is, with g =





λ 0

0 µ



 and we find

Γ 1 = 1
2 x2

� −2
x3 0
0 0

�

=
� −1

x 0
0 0

�

and Γ 2 = 1
2 y2

� 0 0

0
−2
y3

�

=
� 0 0

0
−1
y

�

.

Plugging this into Euler-Lagrange/geodesic equations (for the case n= 2)

d2 x k

d t2
+

n
∑

i, j=1

Γ k
i j

d x i

d t
d x j

d t
= 0, 1≤ i ≤ n (10.1)
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says that the minimal path γ(t) = (x(t), y(t)) between two points here must satisfy

that
d2 x
d t2
− x = 0 and

d2 y
d t2
− y = 0.

This is solved with the path x(t) = Asinh(t) + B cosh(t) and y(t) = C sinh(t) +

D cosh(t) and setting

γ(0) =





1 0

0 1



 and γ(1) =





λ 0

0 µ





gives that A = C = 1, B = λ−cosh(1)
sinh(1) and D = µ−cosh(1)

sinh(1) . Then the arc length of γ(t) is

computed as

L (γ) =
∫ 1

0

Æ

g(γ̇(t), γ̇(t))d t =

∫ 1

0

√

√ ẋ(t)2

x(t)2
+

ẏ(t)2

y(t)2
d t

and upon substitution becomes the definite integral appearing in the statement of the

problem.

The left hand side is is the Euclidean norm of the logarithm of D =





λ 0

0 µ



 (which

makes sense here because of the following section on the Cartan decomposition). It

is known that the exponential map from diagonal hermitian matrices is an isometric

diffeomorphism and imposes a linearized metric on the group, so that the arc length of

the geodesic between the points specified by γ(t) above is in fact the Euclidian norm of

the vector (ln(λ), ln(µ)).

The general statement for Un (found in both [12, 26]) is that if h, k are

positive definite n× n Hermitian matrices with d(h, k) denoting the geodesic distance
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from h to k with respect to the standard metric on GLn(C) given by Tr(H−1δH)2 and

σ(h, k) := tr(h−1k) + tr(k−1h)− 2n

then, there exist positive constants c1, c2 such that

c1σ(h, k)≤ d2(h, k)≤ c2σ(h, k).

Here we have carefully examined the inequality on the right more concretely by

spelling out these functions where as the left inequality. I previously stated that our

bounds are actually tighter. This is because

σ(1, D) =
n
∑

i=1

(λi +λ
−1
i − 2)

=
n
∑

i=1

(elnλi + e− lnλi − 2)

= 2
n
∑

i=1

[cosh(lnλi)− 1]

= 2 ·
n
∑

i=1

�

∑

k≥1

(lnλi)2k

(2k)!

�

≥ 2
n
∑

i=1

(lnλi)
2

implying that the constant c2 =
1
2 .

The point of having such a measurement, is that σ acts as a “semi-norm” in

the sense that σ(h, k) ≥ 0 with equality if and only if h = k. Furthermore, with

d2(h, k) ≤ C ·σ(h, k) then any notion of analytical convergence found using σ will

imply the desired convergence in the actual metric! This allows us to determine
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convergence results about the Yang-Mills-Higgs flow for the monopole problem (see

Simpson [42]).

The general Cartan decomposition for Gc allows us to analogously view

the space of positive metrics on P as the sections of the Gc/G bundle P c/G :=

(P ×G Gc)/G. The function σ here used to determine convergence is defined via a

faithful unitary representation φ of G so that for two metrics h, k ∈ Γ (P c/G),

σφ(h, k) := tr(φ(h−1k)) + tr(φ(k−1h))− 2 dimφ.
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Appendix B - The Yang-Mills-Higgs flow

The Yang-Mills-Higgs action is an energy functional defined appropriately on

the space of Higgs bundles. That is, a total energy for a pair (A,Φ) which restricts to

the Yang-Mills action in the case that the Higgs field Φ vanishes. This functional is

denoted by Y MH and defined as

Y MH(A,Φ) := ||FA||2 + ||dAΦ||2.

First variation of Y MH

Proposition 10.0.1. The first variations for the Yang-Mills-Higgs functional are

(i) ∂ A
∂ ε = d∗AFA+ [dAΦ,Φ] and

(ii) ∂Φ
∂ ε = d∗AdAΦ.

Proof. For arbitrary forms η ∈ g⊗Ω1(B),µ ∈ g⊗Ω0(M), we can vary A,Φ, as

Aε = A+ εη and Φε = Φ+ εµ
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so that

FAε = dAε + Aε ∧ Aε

= dA+ εdη+ A∧ A+ ε(A∧η+η∧ A) + ε2η∧η

= FA+ εdAη+ ε
2η∧η,

dAεΦ= dAΦ+ ε[η,Φ],

and

dAΦε = dAΦ+ εdAµ.

For the variation in the A direction

||FAε ||2 =
∫

B

FAε ∧ ∗FAε

=

∫

B

(FA+ εdAη+ ε
2η∧η)∧ ∗(FA+ εdAη+ ε

2η∧η)

= ||FA||2 + 2ε〈FA, dAη〉2 + ε2 (||dAη||2 + 2〈FA,η∧η〉2) + 2ε3〈dAη,η∧η〉2

and similarly,

||dAεΦ||2 = ||dAΦ||2 + 2ε〈dAΦ, [η,Φ]〉+ ε2||[η,Φ]||2.

Hence,
∂ Y MH(Aε,Φ)

∂ ε
|ε=0 = 〈FA, dAη〉+ 〈dAΦ, [η,Φ]〉.

Similarly, using that

||dAΦε||2 = ||dAΦ||2 + 2ε〈dAΦ, dAµ〉+ ε2||daµ||2
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we find
∂ Y MH(A,Φε)

∂ ε
|ε=0 = 〈dAΦ, dAµ〉.

This remainder of this result makes use of the technical result involving inner

products in Lemma (10.0.2) below.

Before stating the next technical result required to complete the previous

Proposition, recall that for linear algebraic groups, we will use 〈A, B〉 := Tr(AB∗) as

the inner product on the Lie algebra, between elements A, B ∈ g. Alternatively, one

might wish to use the Killing form 〈a, b〉g := Tr R(a)R(b) where R : g→ GL(g) is the

regular representation of g.

Lemma 10.0.2. If α,β ∈ g⊗Λ1(V ) and γ ∈ g is self-adjoint, then

〈α, [β ,γ]〉= 〈[α,γ],β〉.
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Proof. As above, write α=
∑

i αi vi,β =
∑

i βi vi. Then

〈α, [β ,γ]〉=
∑

i, j

〈αi vi, [β j,γ]v j〉

=
∑

i j

Tr(αi[β j,γ]
∗) · 〈vi, v j〉

=
∑

i j

Tr(αiγ
∗β∗j −αiβ

∗
j γ
∗) · 〈vi, v j〉

=
∑

i j

Tr(αiγβ
∗
j − γαiβ

∗
j ) · 〈vi, v j〉

=
∑

i j

Tr([αi,γ]β
∗
j ) · 〈vi, v j〉

=
∑

i j

〈[αi,γ]β
∗
j 〉g · 〈vi, v j〉

= 〈[α,γ],β〉

Where we note that, here, we didn’t need to make use of the inner product on Λk(V )

and so, have not discussed it.

Here, we wish to describe the flow in terms of complex gauge transformations,

g ∈ Γ (P c) on pairs (A,Φ). Parameterize a family gs of transformations with g0 = I

and write (As,Φs) = gs(A0,Φ0)

Recall, the equation (dropping the subscript s on g).

As = A0−∂̄ A0
z g·g−1dz̄+(g∗)−1∂ A0

z g∗dz+1
2

�

(−∂ A0
t + iΦ0)g · g−1 + (g∗)−1(∂ A0

t + iΦ0)g
∗
�

d t

In this notation, the first variations are expressed (according to S. Jarvis [26]) as

(i) ∂ As
∂ s = −∂̄

A0
z ξdz̄ + ∂ A0

z ξ
∗dz + 1

2 (∂t(ξ∗ − ξ) + i[Φ0,ξ+ ξ∗]) d t and

(ii) ∂Φs
∂ s =

1
2i

�

∂
A0
t (ξ

∗ + ξ) + i[Φ0,ξ∗ − ξ]
�
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where ξ= ∂ g
∂ s g−1.

The next, unverified claim here is that if (A0,Φ0) satisfies two-thirds (namely

equations (??)) part the Bogomolny equation, then so will every pair in the se-

quence. Luckily, this easily seen by expanding [∂ As
t − iΦs, ∂̄

As
z ] in terms of the

holomorphic gauge h and (A0,Φ0).

Proposition 10.0.3 (Jarvis, [26] Proposition 8). If (A0,Φ0) satisfy the integrability

condition (5.3) and gs is a smooth sequence of gauge transformations satisfying

∂ g
∂ s

g−1 = −iBt

where B = ∗FAs
− dAs

Φs and Bt is the d t component, then (As,Φs) will be a solution to

the Yang-Mills-Higgs flow.

Furthermore, the corresponding flow of metrics HS is

∂ Hs

∂ s
= −2iHsB(Hs),

with B(Hs) = B(gs · (A0,Φ0)).

The solution to the Yang-Mills-Higgs flow is recovered from the Hs as follows: A

sequence gs such that Hs = H0 g∗s gs (where adjoint is taken with respect to H0) gives a

sequence of pairs gs · (A0,Φ0) that is gauge equivalent to a solution of the flow. If we

demand further that

g−1∂ g
∂ s
= 1

2 H−1∂ H
∂ s

,

then this solution will be exact.
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Recall, as stated originally in [12], σ : Γ (P c/P) × Γ (P c/P) → Z defined as

σ(h, k) := tr(h−1k) + tr(k−1h) − 2n gives a measurement on the space of metrics,

P c/P, for P which is commensurate with the geodesic norm.

Proposition 10.0.4 (Jarvis, [26] Proposition 9). If H1, H2 satisfy

∂ H i

∂ t
= −2iH iB(H i)

then
�

∂

∂ t
+∆

�

σ(H1, H2)≤ 0.

Lemma 10.0.5 (Jarvis, [26] Lemma 10). If (As,Φs) is a solution to the YMH-flow

coming form a flow of metrics Hs, then

(i)
�

∂

∂ s
+∆A+Φ

∗Φ

�

B = 0

(ii)
�

∂

∂ s
+∆

�

|B|2 = −2
�

|d∗AFA− [dAΦ,Φ]|2 + |d∗AdAΦ|2
�

(iii) when |B| 6= 0,
�

∂

∂ s
+∆

�

|B| ≤ 0

The proof of this makes use of the Weitzenbock formula for 1-forms α

�

d∗AdA+ dAd∗A
�

α=∇∗A∇Aα− ∗[∗FA∧α]. (10.2)

and Kato’s inequality

|∇AB|2 > |d|B||2. (10.3)
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Appendix C - Some gauge theory

Throughout this paper, we are working almost exclusively with a connection

∇ = d + A and a Higgs field Φ on a principal bundle π : P → B. The base space here

is the very particular 3-manifold, S1 ×Σg to be viewed locally as R×C

Gauge transformations g ∈ G c act on the principal bundle, or any vector

or matrix representation of it, by multiplication or conjugation. A vector v ∈ Eϕ

transforms as g x , the connection form A by gAg−1 − g−1d g. As an operator, the

connection ∇A becomes g ◦ ∇A ◦ g−1 and a metric H (represented by a self-adjoint

matrix) transforms as (g∗)−1H g−1. An endomorphism d ∈ End(Eϕ) such as the Higgs

field is transformed by gd g−1 and its adjoint with respect to a given metric H is the

endomorphism d†, defined uniquely by 〈x , d y〉 = 〈d† x , y〉. In terms of matrices, this

is d† = H−1d∗H and applying the standard gauge transformation to endomorphisms

transforms the adjoint as usual gd† g−1.

Unitary versus holomorphic gauge

Given a “complex” chart in the base manifold (i.e. a local neighbourhood of the

form R×C), there are two useful types of trivialization we may consider: A unitary

gauge, where the metric H = I is the identity and a holomorphic gauge for which

A0,1 = 0 or ∂̄ A
z = 0.

Unitary gauge Here, the condition that ∇A be unitary implies that the connection

form A is skew-Hermitian (i.e. that A = −A∗) in such a gauge. Then also A1,0 =

−(A0,1)∗ so that ∂ A
z is derived easily from ∂̄ A

z .
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Holomorphic gauge The metric here is a self-adjoint matrix H. There is a gauge

transformation g , taking the holomorphic gauge to a unitary one; g can be taken

to be any Gc-valued function satisfying that H = g∗g. In the holomorphic gauge the

connection takes the form ∇A = ∂ A + ∂̄ (since A0,1 = 0) transforms in the unitary

gauge to g ◦∇A ◦ g−1. Hence, A0,1 = −g−1∂̄ g in the new unitary gauge.

Taking adjoints, we find that A1,0 = d g∗(g∗)−1, which must hold even without

any prior information about A1,0 in the holomorphic gauge. So, in the new unitary

gauge we have

∇A = g ◦ ∂̄ ◦ g−1 + (g∗)−1 ◦ ∂ ◦ g∗.

Applying the inverse gauge transformation g−1 to return to the holomorphic gauge

gives

∂ A = g−1(g∗)−1 ◦ ∂ ◦ g∗g = H−1 ◦ ∂ H.

Combining this with that fact that A0,1 = 0 in this gauge implies the connection

1-form is expressed purely in terms of the metric as

A= H−1∂ H.

Multiple structures A choice of gauge allows us to compare the connection ∇ to

the usual exterior derivative d whose difference is the connection 1-form A. Will be

working with a convergence on the space of metrics of a measurement depending

on A relative to a particular metric, so it will make sense to have some means of

comparison or relationship between two connection forms relative to different

choices of metric.
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Identifying holomorphic structures: If A1, A2 are two connections which are

consistent with the same holomorphic structure (so that ∂̄ A1 = ∂̄ A2). Then, in a

holomorphic gauge where A0,1
1 = A0,1

2 = 0 then Ai = H−1
i ∂ Hi and the metrics are

related by H1 = H0h for some endomorphism h= H−1
0 H1. Computing h−1∂ A0

z h,

H−1
1 H0

�

∂z(H
−1
0 H1) +H−1

0 (∂zH0)H
−1
0 H1

�

= H−1
1 ∂zH1.

So in a gauge where both connections are holomorphic,

dA1 = dA0 + h−1∂ A0h. (10.4)

Identifying unitary structures: In this common unitary gauge, connections take

the form

dAi = gi ◦ ∂̄ ◦ g−1
i + (g

∗
i )
−1 ◦ ∂ ◦ g∗i .

Put g = g1 g−1
0 , then

dA1 = g ◦ ∂̄ A0 ◦ g−1 + (g†)−1 ◦ ∂ A0 ◦ g†. (10.5)

In the initial unitary gauge, g† = g∗, but if it is defined with respect to H0 this

holds in any gauge and g† g = H−1
0 g∗H0 g = H−1

0 H1 = h.

Equation (10.5) can be thought of as defining an action of G c on the space of

connections as in [13] section 6.1.1. This is not the usual action, but coincides on G

when g = g∗. Also, the usual gauge action of g on d g(A) := g◦∂̄ A0◦g−1+(g†)−1◦∂ A0◦g†

recovers

g−1 ◦ d g(A) ◦ g = dA0 + h−1∂ A0h

from equation (10.4).
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Bogomolny equations

The equivalent of a holomorphic gauge is a choice of gauge q ∈ Γ (P c) where

the operators ∂̄ A
z = ∂̄z and ∂ A

t − iΦ = ∂t . Such a gauge can be found by solving

some ordinary differential equations provided the operators commute (part of the

Bogomolny equation). We can transform this gauge into a unitary gauge with a

gauge transformation g so that q = pg with p ∈ Γ (P). Here ∂̄ A
z = g ◦ ∂̄z ◦ g−1 and

∂ A
t − iΦ = g ◦ ∂t ◦ g−1. The connection form is now unitary, so we can take adjoints

to find ∂ A
z = (g

∗)−1 ◦ ∂z ◦ g∗ and ∂ A
t + iΦ = (g∗)−1 ◦ ∂t ◦ g∗. These will be put together

below to deduce required equations from [26].
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Index

(χ,~t)-degree, 80
~t-stable, 90

abelianization, 119, 123
adjoint bundle, 22, 54
adjoint representation, 54
anti-self-dual, 61
associated vector bundle, 22

Bogomolny equation, 60
bundle-morphism bundle, 43

cameral cover, 118
Chern-form, 80
Christoffel symbols, 144
connection, 28, 31, 34
connection 1-form, 34
contact form, 128
covariant derivative, 29
covariantly constant, 30
curvature, 39

determinant, 22
determinant bundle, 23
does not, 115
Dual bundle, 43

elliptic fibration, 131
Euler angles, 19
Euler-Lagrange/geodesic equations, 144

fibre product bundle, 23
Frame bundle, 13
fundamental vector field vξ on G, 21

Gauduchon, 130
gauge group, 26
geodesic, 30

Harder-Narisimhan filtration theorem,
49

Hermitian-Einstein-Bogomolny (HEB)
equation, 61

holomorphic principal G-bundle, 75
holomorphic structure, 71, 136
homogeneous spaces, 13
Hopf map, 17
Hopf surface, 133
horizontal projection, 40

integrable distribution, 39

Killing form, 150

Leibniz rule, 28
Levi subalgebra, 55
local cameral covers, 139
Lorentz group, 14

meromorphic pair, 73
meromorphic structure, 136
Minkowski space, 14
moduli space of ~t-stable meromorphic

bundle pairs, 91
moduli space of irreducible singular

G-monopoles, 70
moduli space of meromorphic bundle

pairs, 74

orthogonal frame bundle, 13
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parallel transport, 30
Pauli-spin matrices, 15
principal G-bundle, 11
pullback bundle, 20

reduction of structure group, 13
regular representation, 150

Sasaki 3-manifold, 128
scattering map, 32
scattering operator, 72
second fundamental form, 57, 86
section, 12
singular G-monopole, 70
singularity of µ-Dirac type, 69
slope, 49
spectral curve, 119
spectral data, 120
spherical coordinates, 19
stable, 56, 85
stable (semi-stable), 49, 52, 55
subbundle, 13

Tensor product bundle, 42
twisted bundles over, 138

vertical tangent bundle, 22, 34

Weyl-invariant compactification, 121, 124
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