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Abstract 

This thesis outlines the problem of outdoor autonomous robot localization. A com­

prehensive literature survey develops the place of the Kalman filtering in the general 

framework of the Bayesian recursive estimation algorithms and describes some of the 

successful industrial and research autonomous platforms to date. The test vehicles 

and their pertinent characteristics for the localization problem are discussed. The 

localization system design process is described showing the necessary compromises 

that were made in the choice of the platform sensor suit. The extended Kalman 

filter with measurement gaiting is implemented as a core of the Landmark Density 

Evaluator and is used to test various localization scenarios. The Evaluator is applied 

to analysis of combinations of experimental and simulated data. A sensor suite for 

outdoor robust localization is proposed and partially implemented. 



Cette these decrit le probleme de la localisation d'un robot autonome a l'exterieure. 

Une enquete complete de litterature discute les filtres Kalman par rapport au cadre 

general des algorithmes recursifs bayesiens et fourni le lecteur avec un resume de 

systemes industriels et academiques concernant ce sujet et celui de la localisation en 

general. Le processus de conception d'un systeme de localisation est decrit montrant 

les compromis necessaires qui ont ete faits dans le choix de capteurs. Le filtre etendu 

de Kalman avec la mesure ''gaiting" est applique a un algorithme qui evalue la densite 

de bornes et est utilise pour tester de divers scenarios de localisation. L'algorithme est 

applique a !'analyse des combinaisons des donnees experimentales et simulees. Une 

liste de capteurs pour la localisation exterieure robuste est proposee et partiellement 

mis en application. 
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CHAPTER 1 

Introduction 

1. Motivation 

Turf management in general and golf course maintenance in particular is time 

and labor intensive and therefore is an attractive area for introducing automation. 

Recent advances in robotics research and technology make it possible to automate 

routine golf course maintenance tasks such as daily grass mowing. Autonomous robot 

mowing may improve the quality and repeatability or variation, if desired, of the 

mowing patterns, increases the overall control of the operations on the golf course 

by, for example, gathering visual grass health information and associated location 

for timely spot-treatment and preventive care (part of The Toro Company's concept 

of precision turf management [105]), increases the availability of the golf courses by 

operating at night or at any convenient time, and reduces the operating costs in the 

long run. Almost all autonomous robotic applications depend on accurate localization 

for navigation, 1 control, and ultimately for the mission task accomplishment. Golf 

course mowers operate in an outdoor semi-structured environment where accurate 

localization is required for efficient area coverage, safety and control. A typical golf 

course is spread over fifty to two hundred thousand square meters of mildly cross­

country terrain: clear patches of fairways and greens surrounded by trees, lakes, 

1 Navigation subsumes all aspects of guiding robot through the environment 
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and rolling hills2
. Large and heterogeneous operating area presents the principal 

difficulty for reliable and accurate localization by a single localization modality and 

requires multisensor schemes. Commercial application of the system, on the other 

hand, implies reliability, low cost and integration with the existing infrastructure. A 

compromise solution that balances the localization system performance and cost has 

to be found. 

The obstacle detection and control algorithms and their implementation for the 

autonomous mower are presented in the publications of the project's Carnegie Mellon 

University collaborators [90, 89, 41]. 

2. Author's Contribution 

The purpose of this thesis is to investigate various possible solutions to the robust 

outdoor localization problem and apply conventional technologies to the proof of 

concept localization system. Issues related to sensor fusion in the Kalman filter 

framework and various sensor configurations are discussed. 

• A localization testbed Toby-2 (see Chapter 3) is instrumented with the 

localizztion sensors. 

• A Landmark Density Evaluator is developed (see Chapter 5 and Appendix 

B.) 

• Field testing of the various localization sensor suites is performed (see Chap­

ter 6.) 

• An outdoor localization system composed entirely of off the shelf compo­

nents is proposed (see Chapter 7.) 

3. Structure of the Thesis 

The thesis is organized as follows. 

Chapter 2 presents the problem of mobile robot localization. It develops the place 

of the Kalman filtering in the general framework of the Bayesian recursive estimation 

2The different terrain types are shown in Figure 1.1 

2 
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(b) Flat terrain 

(a) Bird's eye view 
(c) "No Go" areas 

(d) Hilly terrain (e) Tree cover overhead 

FIGURE 1.1. Golf course terrain types [21 , 22, 23] (a) The bird's eye view 
of the fairway and the green. (b) The fiat portion of the green bordered by 
trees. (c) T he part of the course with multiple obstructions: the brook, the 
pond, the large rock and the bridge itself. (d) The hilly part of the fairway 
with steeply banked sandtraps. (e) The portion the fairway with overhanging 
branches. 

3 
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algorithms and describes some of the successful industrial and research autonomous 

platforms to date. Chapter 3 discusses the mower platforms used in the experiments 

and their pertinent characteristics for localization. Chapter 4 describes the hardware 

and the extended Kalman filter implementation for localization data fusion. Chapter 

5 describes the Landmark Density Evaluator used for the evaluation of the sensor 

architectures. Chapter 6 shows the application of the Landmark Density Evaluator 

to the localization data analysis. Chapter 7 presents the conclusions and sensor suite 

design recommendations. 

4 



CHAPTER 2 

Literatttre Survey 

1. Localization 

Mobile robots are becoming a more significant segment of the field of robotics. 

An autonomous mobile robot needs the ability to estimate its pose (position and atti­

tude) in order to navigate and perform required tasks. Localization is the process by 

which the robot determines its pose on the basis of the sensory measurements. The 

desired minimum accuracy of localization is dictated by the application, while the 

attainable accuracy depends on a complex interaction of individual sensor accuracies, 

sensor types, system dynamics[52], localization algorithms[38], and even trajectories 

to be taken[57], among other factors. Accurate localization is a primary requirement 

for any autonomous system and the design of an adequate localization system in 

terms of accuracy, cost, and other design criteria is a nontrivial task. For the ter­

restrial navigation, however, the planar subset of the pose - the Cartesian position 

and orientation - is often sufficient for mobile robot localization. Localization sensing 

approaches can generally be subdivided into relative and absolute by the type of the 

sensor devices used. 

1.1. Relative Localization. Relative localization (RL), often called Dead 

Reckoning (DR), provides localization solution by integrating the available proprio­

ceptive measurements, usually obtained from quadrature wheel encoders, gyroscopes, 
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and accelerometers. The relative sensing is self-contained and allows high accuracy 

and high bandwidth for short-term localization. However, inherent dead reckoning 

signal integration results in an unbounded error accumulation, which precludes the 

use of relative sensing as a sole mean of localization for autonomous robots - there 

is no error recovery mechanism in dead reckoning 1
. Dead reckoning may also be 

viewed, in terms of control theory terminology, as an open loop (OL) localization. 

1.2. Absolute Localization. Absolute localization (AL), provides the local-

ization solution based on the exteroceptive sensing of current environmental features 

or landmarks and without using the previous sensor information. The measurements 

are taken in the absolute coordinate frame directly. In general, the localization prob­

lem is solved if every position in the environment could be marked in a distinct way. 

On the other hand the robot's position in an absolute frame can be deduced from sens­

ing a finite number of fixed environmental landmarks. The accuracy of the absolute 

localization is time-independent and is bounded by sensor accuracy and bandwidth; 

however it is sensitive to both the geometrical arrangement of the landmarks with re­

spect to the robot and the changes in the environment [74, 55, 101, 80] that degrade 

or prevent landmark sensing altogether. Any machine-recognizable element can play 

the role of the landmark, natural2 (the trees, boulders or other protruding (positive) 

movable and immovable obstacles on the ground[53, 63, 72], or stars in the sky[24]), 

or artificial (GPS or other navigational satellites, radio beacons, high visibility video 

or laser beacons and markers, magnetic markers, or a guide path 3) Absolute position 

of the landmarks may be known to the robot, in which case it "only" has to identify 
1 Deduced or dead reckoning is the process of estimating position using heading, speed, time and 
distance traveled. The unforgiving nature of this localization technique is illustrated by the saying 
"you're dead if you don't reckon right" which possibly gave it is popular name- dead reckoning. 
2There are two distinct natural landmark representations in the localization: dense sensor repre­
sentation, in which a feature is described by its raw sensor impression[71], and the topological 
representation, in which a feature is described by a simple geometrical shape extracted from the raw 
sensor data[84]. 
3 A mobile robot may resort to the use of a conventional visible, electromagnetic, or magnetic guide 
path if need be; the localization principle reappeared in the form of olfactory navigation of indoor 
robots [91], currently possible in almost "clean room" environments, in the along-the-edge-of-the­
crop navigation of the harvester [78], and in highway lane following by tracking dicrete embedded 
magnets [118]. 

6 
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the perceived markers and localize itself with respect to them. The more difficult 

problem is localization with respect to unsurveyed landmarks. Thus the robot has to 

localize the perceived landmarks first (i.e. to build the local map with the observable 

features) and simultaneously use it in its proper localization. This approach is called 

Simultaneous Localization And Map building (SLAM) [72, 30, 71, 84]. A robust 

SLAM solution is highly desirable since it would allow the use of unsurveyed landmark 

grid and could naturally accommodate any changes to it due to loss or addition of the 

landmarks [28]. Currently only localization techniques that rely on the known artifi­

cial landmarks provide sufficient accuracy and reliability for the commercial outdoor 

localization. 

2. Sensor fusion 

Both relative and absolute localization approaches can be used with an advantage 

if properly combined. High fidelity and bandwidth localization can be obtained by 

merging measurements from the high-bandwidth relative and low-bandwidth absolute 

sensors. The absolute localization observes, directly or indirectly, at least part of the 

robot's pose and therefore is used as a feedback that bounds the relative localization 

error. Combining the sensor measurements from the relative and absolute localization 

systems results in redundancy of at least some of the information. The process of 

extraction of the desired estimates from redundant measurements is called sensor 

fusion. The fusion process can be done in the time or frequency domains. Fusion in 

the time domain is a switching procedure between the redundant inputs, so that the 

most "trustworthy", according to some, possibly heuristic, criterion measurement is 

used in the localization solution[34]. Fusion can also be accomplished by classical 

7 
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frequency domain filtering 4 or recursive Bayesian estimation algorithms 5 which, 

in principle, can be considered as frequency domain filters. Some representative 

localization algorithms from the Bayesian estimation family are going to be briefly 

introduced in the following paragraphs. 

2.1. Bayesian Recursive (Sequential) Estimation applied to localiza-

tion. Raw sensor readings are often too noisy and inaccurate to be directly used 

for localization. Moreover, the sensors usually do not provide the information of in­

terest directly. However, prior knowledge about the process is usually available and 

the initial belief can be represented in terms of prior distributions of the unknown 

quantities. As the new data from measurements arrives, its likelihood function is 

combined with the prior probability density function according to Bayes' theorem 

[4, 9] and the posterior distribution is obtained. Motivation to use the recursive (or 

sequential) estimation methods is given by the time-sequential nature of observations 

that require increasing amount of storage space and processing time for batch esti­

mation. It is desirable to process the measurements on-line and shed the processed 

data immediately hence keeping the data storage and computational effort to min­

imum. The estimated quantity is obtained along with its estimation error measure 

in the form of full error probability distribution or its moments, depending on the 

algorithm. The system model in these algorithms infers the information that may be 

not directly measurable (but observable.) The general prediction-correction leitmotif 

is seen in all algorithms. Prediction phase: the process model estimates the system 

state open loop; Correction phase: the estimate is corrected by merging it with the 

measurement, thus closing the loop. As a result the recursive estimation algorithms 

4The classical frequency domain filtering can be applied [33], for example, the fusion of heading from 
a fluxgate compass (a low bandwidth absolute measurement reliable at low frequencies) and a rate 
gyro (a high bandwidth relative measurement reliable at moderately high frequency, butexhibiting 
a slow drift at low frequencies). A complimentary filter [9] can be designed to attenuate the compass 
at high frequencies while letting the more reliable gyro rate pass. 
5there exist many recursive estimation algorithms, but only Bayesian approach (nonlinear filtering) 
- to which extended Kalman filtering and Sequential Monte Carlo methods belong - offers a formal 
solution to the problem [67, 20]. 

8 
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distill raw measurements so that higher accuracy and reliability of information is 

attained. 

2.1.1. The Extended Kalman Filter. The extended Kalman filter (EKF) is a 

nonlinear generalization of a linear Kalman filter 6 [83, 9] . The EKF has been used 

for over four decades in such applications as missile tracking and guidance, marine 

and aeronautical navigation, as well as for the localization of the indoor and outdoor 

mobile robots [27]. The extended Kalman filter maintains the same compact error 

distribution representation as the linear Kalman filter and thus is computationally 

efficient. The first order7 linear KF framework requires that the Jacobians of the 

non-linear system and measurement equations be evaluated at the state estimate. It 

is assumed that the filter will maintain the estimate close to the true state so that the 

linearization will remain valid. The Jacobians substitute the system and measurement 

matrices in the KF algorithm. Since the assumption above is not guaranteed to hold 

and due to bias introduced by the nonlinearity of the system, EKF estimates can 

be suboptimal or even diverging [9] i.e. giving an unbounded estimation error. The 

filter error covariance8 as well as the covariance of the innovation sequence has to be 

constantly monitored to prevent unrecoverable divergence [10, 66, 65]. The error 

probability distribution9 is not limited to Gaussian, with no pretence on optimality. 

The filter however can only accurately model single-mode distributions due to its 

modest (mean and variance only) distribution representation vocabulary. The EKF 

6The Kalman filter [8:3, 9, 81, 3] (KF) is the optimal recursive linear minimum mean square 
error estimator that models the uncertainties of the estimated random variables by their means 
and variances. Such a compact representation of the state error probability distribution makes the 
algorithm computationally efficient. At the same time, since the noise variables are assumed to be 
zero mean Gaussian [4] , the above error representation models the distribution exactly[9]. 
7Second order KF makes use of the second term of the Taylor expansion and calls for calculation of 
Hessians in addition to Jacobians. 
8The terms covariance of the state and covariance of the estimation error are equivalent because 
the state estimate is a conditional mean. 
9 Gaussian error distribution is primarily used to model the spatial uncertainty for traditional wheel 
locomotion. "Maximum range" distribution can be used in the legged locomotion process modeling 
where an equal probability is assigned to all positions between the current and commanded positions 
and zero probability is assigned for all other positions. A "kidnapped robot" process is modeled by 
a uniform distribution with a spike at the last estimated position. The uniform portion represents 
the unknown position of the robot in case it is kidnapped, while the spike reflects the belief that the 
robot will not be kidnapped[38]. 

9 
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is widely used in mobile robotics to estimate the pose of the vehicle [42, 65, 17]. 

Multiple filters (filter banks) are required10 for multiple hypothesis testing. 

2.1.2. Markov Localization. Markov localization (ML) methods estimate the 

robot's position by discretization of the space of the possible robot positions. The 

probability distribution of the robot position11 is approximated by assigning an" occu­

pancy" probability to every point of the discretization. The successive prediction grids 

are combined (by element-by-element multiplication, for example) with the measure­

ment grids using Bayes' rule[37, 38, 56]. Global search space of the ML algorithm 

makes it robust. At the same time global search space becomes prohibitive for large 

areas and/or small grid resolutions. 

2.1.3. Monte Carlo Localization. Monte Carlo localization [26] (MCL) or par-

ticle filtering family of algorithms represent the position probability distribution by 

a finite (on the order of tens to tens of thousands [38, 84], depending on localization 

system12 weighted samples. A general MCL algorithm consists of the following steps: 

Initialization, Importance Sampling, Selection, and Markov Transition. Particle fil­

ter is usually initialized to a uniform distribution (to reflect total initial localization 

uncertainty) with equal importance weight assigned to every particle. The sequen­

tial operation begins with the Importance Sampling step in which the particles are 

weighted according to the probability distribution of the measurement and then re­

sampled, so that the total particle weight is unity. In the Selection step the particles 

with large importance weight are multiplied while the particles with the low weight 

are discarded, so that the total number of particles remains the same. The sequence 

is closed by the Markov Transition step in which the particles are propagated accord­

ing to the process model (dead reckoning, for example). Any kind of distribution 

can be represented by MCL in its discrete model, making it robust, but is less com­

putationally intensive than ML. Moreover, the computational intensity remains the 

10The recently developed Combined Bayesian hypothesis testing and Kalman filtering [48] technique 
allows to do Multiple Hypothesis Tracking with a single EKF. 
11The multidimensional ML that includes heading or even the full pose is possible but is extremely 
computationally expensive(39]. 
12Here localization system denotes the interaction of sensors, system dynamics, and environment 

10 
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same irrespective of the localization area - only the particles with large emphimpor­

tance weight are maintained by the algorithm - making it suitable for the outdoor 

navigation. (56, 100, 37) 

2.1.4. The Distribution Approximation Filter. The Distribution Approxima-

tion Filter (DAF) [51] is another generalization of the Kalman Filter for nonlinear 

systems. The method combines the analytical KF and the numerical MC approaches 

to approximate the process and observation models. As opposed to the MCL, the 

DAF algorithm chooses the samples of the distributions deterministically. Nonlinear, 

instead of linear covariance transformation is performed that insures the unbiased 

and converging filter performance. 

2.1.5. Combined Markov Localization and EKF. Recently several hybrid meth­

ods, combining both EKF and ML were developed. Combined Bayesian hypothesis 

testing and Kalman filtering [48] and ML-EKF (38) allow Multiple Hypothesis Track­

ing (operate on multi-modal probability density functions) to be done, and thus it 

does not to discard even inconclusive landmark information13 until clarification be­

comes possible. The new framework also treats the absence of the new observations 

as information useful for elimination of weak hypothesis and thus keeping the overall 

number of hypothesis small. 

2.1.6. Localization Techniques Summary. The traditional EKF appears to be 

the most efficient and very precise, but at the same time the most sensitive to the 

sensor noise method. Sequential (recursive) Monte Carlo and Markov localization 

methods are more robust (since they model the whole probability distribution, and 

not just approximate it with a covariance matrix) but less accurate than EKF. With 

the development of the highly robust combined methods that improve the robustness 

of the EKF, these algorithms seem to be the most desirable. However they are 

only at the initial stages of development and are not efficient for high dimension 

13Inconclusive information is rejected by the uni-modal (presumably Gaussian) distribution assump­
tion in the regular KF framework. Bayesian hypothesis testing (ML) is applied to merge the KF 
displacement estimates with the discrete landmark measurements. Until recently multi-modal repre­
sentation in the realm of Kalman filtering was accomplished by using multiple Kalman filters (filter 
banks) operating simultaneously with a filter for each mode- computationally intensive. 

11 
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or for large area sensor fusion [39]. Thus Markov localization algorithms are not 

suitable for localization over large areas - a must for an outdoor robot leaving the 

tested arsenal of Kalman filtering techniques and relatively novel MCL approach. 

Overall the algorithms give comparable precision and require tuning for best results. 

It should be noted that filter robustness [10, 9, 66] only guarantees consistency of 

the filter state error estimates ( covariances for KF or probability distributions for 

MCL) under all realistic measurement conditions but does not affect the localization 

accuracy - the main goal of the mobile robot localization. The filter works on noisy 

and sometimes biased sensor measurements14 and signal processing algorithm cannot 

substitute for the quality of the raw sensor data, it can only make the best (in 

terms of some optimality criterion) out of the information it is supplied. Should the 

robot find itself with the localization estimate accuracy significantly below the desired 

limit and thus potentially not following the specified trajectory, the robustness of the 

low accuracy estimate so valuable from the theoretical point of view becomes 

of no avail from the practical, user's point of view. The localization system - the 

sensor suite and the measurement processing algorithm - should be designed in a 

such a way that the required pose estimation accuracy is maintained at all realistic 

operating conditions robustly. The explicitly distinguishable (cooperating) artificial 

landmarks approach[56] eliminate the complex data association problem and allow 

using relatively simple and computationally efficient algorithms, EKF for example. 

3. The Vehicles and Their Localization Systems 

Recently a few robotic systems have become commercially available or are rapidly 

approaching the requirements of a commercial product, in difference to being strictly 

research platforms. Some of the systems that can localize themselves, even roughly, 

will be considered in this section. Some of the representative contemporary appli­

cations and the research platforms are discussed. A necessity for the development 

of a robust absolute localization system for autonomous mobile robot navigation, as 

14The filter may also be working open loop (without exteroceptive observation) most of the time 
due to unavailability of landmarks. 
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well as the possibility of application-correlated simplifications is inferred from the 

discussion. 

3.1. Commercial Platforms. iMow manufactured by The Toro Company[l07] 

(see Figure 2.1) is a household autonomous mower based on a differential drive plat­

form. The removable 24-volt lead-acid battery pack positioned between the driving 

wheels is sufficient for over two hours of autonomous operation with the maximum 

speed 0.5 m/ s. iMow senses the magnetic field created by the perimeter wire with 

two Hall effect sensors located in the front of the mower and stays within the staked 

out area. The mowing starts by following the perimeter wire; once the perimeter 

is trimmed along, the rest of the lawn is covered in a zigzag pattern 15 changing the 

direction of motion every time the perimeter wire is sensed (see Figure 18.) The ab­

solute localization is limited to orientation sensing via the electronic compass, sensing 

the work area boundaries, and bumper tactile sensors while the relative localization is 

done by dead reckoning with hall effect wheel encoders. Manual control of the mower 

is possible with the operator control unit ( OCU) 16 (see Figure 2.1.) 

Intelecaddy manufactured by GolfPro International (USA) [70] (see Figure 2.2) 

is a robotic golf club toter that follows the golfer and avoids impassable and restricted 

(greens, for example) areas by comparing the GPS-derived position with the map of 

the environment. The caddy is equipped with a cemi-circular ultrasonic array that 

establishes the direction to the pager-sized ultrasonic beacon/OCU worn by the golfer. 

The pursuit behavior can be stopped and resumed from the OCU. The two absolute 

sensor modalities (ultrasonic sensors and GPS) available to the robot are exploited 

as follows 17
. The robot follows the golfer in a pure pursuit manner , that is it 

tracks the desired trajectory directly using the ultrasonic sensor array18 The robot 

15In order to use an area coverage scheme with less overlap iMow has to localize with precision 
higher than is achievable with the existing sensor suit. 
16The wired operator control unit is located in the docking port on top of the mower plastic shell. 
It can be removed from the dock for manual control of the mower. 
17The following is the author's opinion. Official information was unavailable at the time of publica­
tion. 
18Each of the ultrasonic sensors provides the range, while the signal strength distribution between 
the sensors in the array resolves the heading to the waypoint. 
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(a) Yard installation: 1- perimeter switch, 2 - perimeter wire, 
3 - iMow inside the perimeter 

(b) iMow (c) The operator control 
unit 

FIGURE 2.1. iMow design and functionality [107] 

tracks the cooperative waypoint (beacon) absolutely and requires fused DR (from the 

wheel encoders) and GPS position estimates only in order to discriminate between 

the allowed and restricted areas. GPS could also become useful for this "carrot 

following" navigation if the waypoint (the "carrot") had an independent G PS. The 

vector defined by the positions of the robot and its master would define the range and 

heading for the pure pursuit. The pursuit vector will be calculated in the virtually 

differential mode since similar absolute errors will be incurred by both receivers in 

close proximity to each other; the GPS position uncertainty, however , would have to 

be small with respect to the look-ahead distance chosen for the pursuit algorithm. 
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FIGURE 2.2 . Intelecaddy by GolfPro International [70] 

HelpMate [82] by Pyxis Corporation (USA) (see Figure 2.3 is a differentially 

driven robotic courier for the hospital environment. The robot is equipped with 

a rich sensor suite for navigation and interact ion with the manned and structured 

hospital environment. The human interface is composed of the LCD display with 

a telephone-style keypad, manual steering handles, three emergency stop buttons 

positioned for easy accessibility about the robot, and turn signals. The two forward­

directed infrared strobe lights and the contact bumper wrapped around the robot's 

base are used for obstacle detection and avoidance. The sensors that follow can all be 

used for localization/ navigation purposes. The ultrasonic sensors- eighteen primary, 

positioned on t he front and side panels of the robot, and six secondary transducers 

on the bumper - provide object detection in the front and to the sides of the robot. 

Wall following, as well as more sophisticated dense sensor matching localization or 

topological navigation (see section 1.2) can be achieved by the use of the sonar sensor. 

The video camera in the circular opening of the front of the robot is directed along 

the direction of motion and registers distant (over six feet away) obstacles 19 . The 

robot communicates with t he other robots and possibly with a master station via a 

wireless radio frequency (RF) Ethernet modem whose antenna placed on top of the 

robot. The Ethernet link is also used to control the hospital elevators. The strength 

19The obstacle identification is possibly clone by combining the angular measurements from video 
with the sonar range scans for the range overlap interval of the two sensor modalities. 
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of the RF signal received from an identifiable stationary Ethernet hub (hub's ID 

encoded in the message) can also be used as a measure of distance to the surveyed 

hub location [7] for subsequent trilateration20 . The infrared (IR) transmitter controls 

the automatic doors. It can also be used as a beacon to be localized in the stationary 

video cameras 21 positioned along the robot's workspace. 

FIGURE 2.3. HelpMate by Pyxis Corporation [82] 

AutoVacC 6 manufactured by ROBOSOFT (France) depicted on Figure 2.4 is 

an autonomous industrial vacuum cleaner [87] on a differentially steered platform 

that can be operated remotely (for dangerous areas or white room cleaning.) The 

desired path is taught by example via a joystick. Ultrasonic sensors positioned in the 

openings around the perimeter of the robot are used for dynamic obstacle avoidance 

22
, while the optical wheel encoders and the laser range finder are employed for the 

20Trilateration - the localization of an unknown point by calculations involving distance measure­
ments to distinguishable and localized landmarks. 
21 Infrared filters can be successfully used indoors, in the areas with no direct sun light, to simplify 
the image processing - the infrared diode/beacon is seen as a bright spot on the grayish ambient IR 
background. 
22The range of the ultrasonic sensors is insufficient for detection of walls or columns in the large 
indoor spaces, thus these sensors are used for the obstacle avoidance only. 
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relative (DR) and absolute localization respectively. The fused measurements result 

in robust localization in structured environments (airports, shopping centers) that 

allows efficient (with minimal overlaps) floor coverage. The maximum speed of the 

platform is 0. 75m / s. 

FIGURE 2.4. AutoVacC 6 by ROBOSOFT [87] 

The Automation Kit [86], by the same company (ROBOSOFT) allows to 

automate the mass-produced manned machines without alteration of the original 

design. Due to security and legal concerns the automated heavy equipment will 

remain human driven during the day, when the traffic in the work area is at its peak, 

demanding fail-safe (unrealistic, for the time being) obstacle avoidance system. The 

machines are operated in the autonomous mode during the night, in the minimally 

populated 23 environment (see Figure 25.) The different trajectories and phases of 

the work cycle are recorded when the platform is in the manual mode with the help 

of the joystick and programming console. The recorded trajectories are played back 

in the autonomous mode. The kit consists of the following modular components 

depicted on Figure 25: A - the programming console, B - tactile bumper (0.25 m 

extended beyond the frontal extremity of the vehicle), C - low-range (0.5 to 4 m) 

23"People are typical obstacles. Because they are difficult to label, they are detected by onboard 
sensors." [40] 
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laser rangefinder, D - programming joystick, E- sonar obstacle detection array (up 

to 0.5 m), F - side-mountable low-ranege laser rangefinder. The laser rangefinders 

require the use ofretro reflective markers (0.40 m wide and 0.12 m tall) approximately 

every 10 m. Five-centimeter accuracy is achieved in the structured indoor (smooth 

concrete floors) warehouse environment at the maximum speed of 0.55 m/ s. 

A B c 

(a) Day and Night operation. (b) Modules. 

FIGURE 2.5. The Automation Kit by ROBOSOFT [86] 

NY city Vehicle Integrated Navigation System developed by the Fibersense 

Technology Corporation integrates INS and GPS for bus localization in urban envi­

ronments. According to the Americans with Disabilities Act the location of the 

upcoming bus stop must be announced in city buses. In practice transit personnel 

are reluctant to alert the passengers. In order to improve the dependability of an­

nouncement service it was decided to develop an automatic passenger notification 

system. As a side benefit of automation the status of the buses is available at each 

bus stop [45]. The "urban canyon" environment of New York City is very challenging 

for GPS blockage and multipath. Unaided GPS is not suitable for the bus localization 

with the accuracy required for the error-free passenger notification. The GPS was 

augmented by the MEMS2
-l gyro and the vehicle odometer in the EKF framework. 

Filtering the raw GPS range and range rate measurements from the proprietary GPS 

24 Micro-Electro-Mechanical System 
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message and immediate rejection of the outlier data from individual satellites allows 

to improve localization accuracy to the desired 25 (unreported) accuracy. The authors 

emphasize that a moving platform can benefit from the intermittent GPS fixes, say 

at intersections, when the view of the sky improves in the direction transverse to the 

direction of motion. 

In 1999 Australian Centre for Field Robotics (ACFR) in partnership with 

Patrick Stevedores completed an automated straddle carrier for automated con­

tainer handling at seaports. The 65 ton carrier shown in Figure 2.6 and has a top 

operating speed of 30km/h. For increased robustness and automatic fault detection 

in the localization system it employs twin-redundant guidance using GPS/INS and 

MMWR26 /encoder system [99]. The project is wholly industry-funded and geared to­

wards commercialization by the world's largest straddle carrier manufacturer, Kalmar 

Industries of Finland. 

FIGURE 2.6. The autonomous straddle carrier: left - autonomous, right -
prior to automation, with the driver's cabin [28] 

The Centre has also developed other automated vehicles in the past, including 

the autonomous flatbed (See Figure 2.7) for cargo handling applications [42]. The 

25 As it is the case with the suboptimal estimation, extensive filter tuning and application of heuristic 
procedures was required to achieve the desired system performance. 
26 MilliMeter Wave Radar 
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unique millimeter wave radar that was developed for the project is the heart of this 

system, as well as the subsequent successful field implementations of the ACFR. The 

flatbed is 15 m long, 2.9 m wide, and 1.6 m high; it weights 17.5 tonnes and can 

carry a container load of 60 tonnes. The vehicle has front and rear steer geometry a 

diesel-hydraulic drive and steering systems. To maintain mechanical invariance for the 

forward and backward motion the vehicle was designed diagonally symmetric, with 

one driving and one encoder-instrumented wheel on each axis. GPS does not operate 

reliably in the container yard due to strong multipath from the large metal surfaces 

and complete satellite occlusion in the aisles. A MMWR was developed to sense 

trihedral markers with a physical area of 20 cm2 27 up to a distance of approximately 

200 m. The large operating range and the excellent detection rate (80%) allow for 

a relatively sparse marker placement and reliable range and bearing measurements. 

The localization is achieved in the Kalman filter framework by fusion of the radar 

absolute measurements with the model of the vehicle (DR) driven by odometry28 

input supplied by wheel encoders and steer encoders. Centimeter-level localization 

accuracy is consistently achieved by the system. 

The sensor suites of the aforementioned commercial robots always consisted of the 

relative (wheel encoders) and absolute (compass, GPS, Hall effect transducers, laser 

rangefinder, ultrasonic transducers, video camera) sensors. There are devices already 

present on the robots, but not presently used for localization- infrared transmitter, 

RF Ethernet modem - that could be incorporated into the localization sensor suite for 

greater sensing redundancy and thus increased reliability and accuracy of localization. 

HelpMate, Auto Vac, and Automation Kit contain the most typical sensors and attain 

the centimeter-level localization accuracy of the best academic research platforms 

discussed in the next section. 

27The apparent radar cross section of the 20 cm2 Retroreflective trihedral is 100 m 2 . A special 
polarizing grid on the trihedrals allows them to be distinguished from each other by the radar. 
Thus the return signal strength and ambiguity resolution are embedded in the design of this marker 
system. 
28Inertial sensors are not used on the vehicle. 
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FIGURE 2.7. The Autonomous Guided Vehicle [42] 

3.2. Research Platforms. S. Scheding et. al. describe the development and 

experimental validation of a guidance system for an autonomous Load, Haul and 

Dump truck (LHD) [95]. A typical articulated vehicle is shown on Figure 33. 

The localization sensor suite [96] is composed of the relative (proprioceptive) and 

absolute (exteroceptive) localization sensor groups. The relative sensors of the LHD 

are discussed below. The odometry group of sensors includes a potentiometer and 

wheel encoders. The articulation angle of the platform is directly measured by a 

potentiometer, and the encoders measure the wheel velocities- the cheapest way of 

obtaining the DR. The strap-down29 INS sensor suit is composed of sealed sensors, well 

suited for the dusty underground environment, and consists of a triaxial accelerometer 

and four gyroscopes. The gyroscopes are dissimilar; the more accurate units measure 

the critical, for terrestrial navigation, yaw rate, and the less accurate ones (with 

29The strap-down system is attached to the vehicle directly and follow its rotations. Thus the atti­
tude of the gyros and accelerometers changes continuously with respect to the navigation reference 
frame and a "software gimbal" - the algorithm that would maintain the orientation of the navigation 
reference frame- is required to determine the body's roll and pitch with respect to the gravity vector 
and to discriminate between the linear and angular accelerations. In difference to the strap-down 
system, the gimbaled system is actively stabilized so that its attitude remains constant with respect 
to the navigation reference frame. The gyros and accelerometers mounted in such a system will 
preserve their orientation irrespective of the rotations of the vehicle, which in turn simplifies the 
navigational calculations. The downside of such an arrangement is its complexity and resulting lower 
reliability. [9, 54] 
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higher drift) measure the roll and pitch. The initialization of the INS is accomplished 

when the platform is stationary by determining the pitch and roll of the vehicle with 

respect to the navigation reference frame by means of the accelerometers installed 

on the platform. Since the sensors drift with time, temperature and are affected by 

the engine-induced vibrations a calibration filter needs to be implemented to reduce 

the attitude errors. The proposed filtering scheme is similar to the complimentary 

filter [9] discussed in Section 2. Here the low-frequency attitude is obtained from the 

low-pass filtered accelerometer data, while the high frequency attitude is provided by 

the gyros. Shaping filter may be used to model and reject the low frequency errors in 

the gyro information [9.5). The absolute sensors of the LHD are discussed below. Two 

time-of-flight (TOF) range and bearing laser scanners: the rotating 360° Guidance 

Control Systems (GCS) laser 30 and two solid state SICK 180° -sweeping time-of-flight 

rangefinders arranged to cover 270 degrees with 90 degree overlap. The out-of-plane 

laser arrangement together with the forward motion results in a 3-D model of the 

environment, potentially useful for obstacle avoidance [96, 41] Two sets of ultrasonic 

sensors detect gross changes in the environment and can be used to detect side tunnels, 

for example. These sensors have short range and are suitable for wall following or 

obstacle detection at close range only (usually less than 10 meters). The data from 

each sensor is individually time stamped so that asynchronous measurements could 

be correctly fused in time by the extended Kalman filter. The experiments revealed 

that the no-slip assumption is not valid for the heavy underground vehicle and that 

a kinematic model that explicitly account for the slip by including an unobservable 

front and rear slip angles into the estimated state gives consistent results. The authors 

also note that the effective wheel radius is a variable parameter for the vehicle, that 

depends on the loading and tire wear 31 . The variation of the effective radius can 

also be attributed to slip. The dynamic evaluation of the unobservable slip angle and 

effective wheel radius results in overall improvement of localization accuracy. 

30Retroreftective tape markers are used in conjunction with the GCS laser scanner. 
31 Loading and tire wear are just some of the parameters affecting the effective wheel radius; soil 
sinkage, vehicle velocity, and attitude are other important factors. [47, 93, 58] 

22 



2.3 THE VEHICLES AND THEIR LOCALIZATION SYSTEMS 

(a) LHD used for the trials 

(b) A Typical LHD: Atlas Copco Wagner ST1510 

FIGURE 2.8. LHD and its sensor suit [96, 1 ] 

The Polar Bear [97] shown in Figure 2.9 on page 21 is an all-terrain spooler 

platform that employs visual and ultrasonic SONAR sensors to follow a person out­

doors at speeds of up to 5 km/ h. The robot determines the range and bearing to the 

person's distinctly coloured vest and SONAR beacon array. The system's behaviour 

is similar to that of Intellecady (see page 14) pursuer. 

The Navigation Test Vehicle (NTV) of the University of Florida [73] is a 

Kawasaki Mule ATV shown in Figure 2.10 on page 21. The accurate position and ori­

entation are obtained via a Kalman filter that integrates the INS (Honeywell MAPS) 

with the Differential Global Positioning System (Ashtec RTKGPS) (RTKGPS) 32
. 

The position data is accurate to within 6 cm ( 1 O") at a rate of 10 H z. The posi tional 

32T he localization system costs approximately US $130,000 in 2000. 
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FIGURE 2.9. The Polar Bear in pursuit [97] 

accuracy is maintained for a short period of time when the DGPS signal is lost due 

to satellite occlusion by a tree or a tall building. 

FIGURE 2.10. Navigation Test Vehicle, University of Florida [73] 

Jay A. Farrell describes a Magnetometer and DGPS aided INS system [113] 

for structured highway environment augmented by magnetic beacons. The robust 

lateral control of the vehicle is achieved in the Kalman filter framework using a strap­

down INS, DGPS, and Magnetometer. A series of 2.5 cm in diameter and 10 cm long 

ceramic magnetic bars were buried vertically at 1.2 m intervals in the field tests. The 

magnetic guide path tracking is robust and gives measurement error of less than 2 

cm at high speed cruising (up to 135 km/h). Since the beacons are laid along the 
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desired path, it is not necessary to know the exact location of each beacon. The error 

vector to the path is obtained form the magnetometer data and allows the correction 

of the heading of even angularly non-accelerating vehicle. It is noted that in the 

urban canyon environment the accuracy of GPS signal is non-uniform and strongly 

depends on the geometry of the visible sky window33 . For example, GPS position 

estimate uncertainty along the trajectory is low enough for the Kalman filter to weigh 

it so that the measurement complements the INS. At the same time GPS position 

estimate uncertainty transverse to the trajectory is high due to satellite occlusion by 

the buildings on both sides of the roadway and thus the measurement is weighted out 

by the filter. Due to localization system redundancy the author suggests that beacon 

density can be decreased:34 in the areas with the good GPS signal reception, while in 

the areas with unreliable or no GPS reception (in a tunnel, for example) the density 

should be increased back to the nominal value. 

Ulf Larson et. al. describe localization of an autonomous articulated CALMAN 

Lawn Mower[64] shown in Figure 2.11. The number of sensors is kept to an absolute 

minimum with no redundancy for neither relative nor absolute localization: the wheel 

encoders are used for the DR and the laser scanner supplies angle-only measurements 

to surveyed beacons. Centimeter-level accuracy is achieved at the speed of 0.3 m/ s. 

The reported tests are done on a parking lot, and therefore are not representative of 

the localization system performance on the soft turf [58, 93]. 

An autonomous harvester that uses vision to track the crop line is reported 

in the work of Ollis et.al.[78]. A vision based crop line tracking technique is demon­

strated on the example of the automated harvester in the work of Mark Ollis and 

Anthony Stentz. The boundary between the cut and uncut crop is detected by the 

vision system and is used as an absolute reference path. An end-of-row detector is 

used to trigger the dead reckoning controlled turning behavior of the harvester. The 

33This is in addition to usual ionospheric error, satellite geometry, and multipath errors. 
34It is important to be able to estimate the effect of the localization system configuration changes 
on the overall navigation accuracy. A localization system model can be used to this end. 
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FIGURE 2.11. The Autonomous Articulated Lawn Mower CALMAN [63] 

crop line tracking is resorted to during the GPS outages when no other absolute 

measurement is available to the harvester. 

---~-. ~ 

Tracking the crop line 

--- .~ 
-----~ 

Detected end of row 

-4 ------ --- - ---- . 

Turn bchavior { 

------ ----- ----... 

/ 

FIGURE 2.12 . The Autonomous Harvester: Crop Line Tracking [78] 
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2.4 SUMMARY 

4. Summary 

From the previous account of the sensors, localization techniques, and existing 

systems autonomous robot requires relative, as well as absolute sensing modalities 

in order to localize accurately, with bounded pose uncertainty, and at a frequency 

sufficiently high for control purposes. The relative localization can be realized using 

the odometry and INS, while the absolute localization - by an artificial landmark 

sensing setup. An extended Kalman filter can be designed to fuse the high frequency 

measurements from the INS with the low frequency measurements from the absolute 

localization system (GPS, for example.) 
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CHAPTER 3 

The Vehicles 

1. The Mowers in the Experiments 

Three Toro company mower platforms were used in the localization experiments: 

the Groundsmaster 3500-D1 (Hal), the Greensmaster 3250-D (Toby), and the Greens­

master 3200 (Toby-2)2 golf course mowers. The photograph of the Hal and Toby 

autonomous mowers and Toby-2 localization testbed is shown in Figure 3.1 on page 

24. 

The diesel-hydraulic powered Hal and Toby are 3-wheel drive (all wheel drive, in 

their case) platforms, while Toby-2 is a gasoline-hydraulic powered front wheel drive 

platform. The mowers have an inverted tricycle configuration. The back steering 

wheel (see Figure 3.2 on page 25) has no vertical offset3 and is driven by a hydraulic 

ram with a lock4 of ±45°. The vehicles have no suspension and rely on their pneu-

1"D" designates diesel powerplant. 
2Toby and Hal are the autonomous platforms developed by TORO and CMU, Toby-2 is a standard 
TORO platform outfitted with the localization sensor suit and a portable computer for data logging. 
3Zero vertical offset allows to turn the steering wheel in place without changing the orientation of 
the mower. 
4The vehicles transmission design does not impose limit on the maximum steering angle allowing 
virtually differential drive maneuverability. The 45° limit makes the rear wheel track within the 
radius of the front wheel while turning and prevents from accidentally dropping the rear wheel in a 
sand bunker that has been cleared by the front wheels. The Toro Company named this configuration 
the Perfect Triangle Wheel Stand [106]. 
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(a) Toby and Ha! autonomous mowers 

(b) Toby-2 the localization testbed 

F IGURE 3.1. The mower platforms used in the experiments. 
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FIGURE 3.2. The steering wheel and fork assembly [104] 

matic tires for shock absorption5 . The three platforms differ in size and power but 

can be viewed as scaled versions of the same mechanical design; in the following dis­

cussion no distinction will be made between them unless clarity is compromised. The 

hydrostat of the transmission is driven directly by the internal combustion engine. 

The flow to the hydraulic constant displacement direct-drive motors (see Figure 3.3) 

determines the speed and direction of rotation and is controlled by the operator6 

through the swash plate of the hydrostat. Equal torque is developed by both front 

RIM 

RIGHT 

FRONT 

/ 

FIGURE 3.3. Front wheel assembly drawing. [104] 

hydraulic motors regardless of the rotational speed owing to their parallel connection 

5The vehicles have sturdy steel frames, which, given the small size of the platforms will not contribute 
to smoothness of the ride. 
60perator input is replaced by the computer-controlled servo action in the autonomous versions. 
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and provides for turning without wheel slippage7 . T he rotational speed of the steer­

ing wheel (third) motor is equal to the average of the rotational speeds of the front 

motors due to its parallel connection8 to the front motors. This arrangement pro­

vides superior traction to the mower and results in virtually no wheel slippage even 

on wet grass9 . The schematic of the hydrostatic transmission of the Greensmaster 

3200 is shown in Figure 3.4 on page 26. The dimensions of the mowers relevant to 
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FIGURE 3.4. The hydrostatic transmission. [104] 

the kinematic analysis are given in the Table 3.1 on page 26 . The autonomous mower 

7Same effect is achieved in the gear differentials of mechanical transmissions. 
8Hence The Toro Company's Series/P a rallel hydrostatic transmission. 
9The mower operates at slow speed (2 m/ s) on the straight portions of the path and is slowed down 
on the turns. Therefore the side-slip is excluded from the further discussion. A no-slip nonholonomic 
model will be developed. 
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3.2 KINEMATIC MODEL 

11 Hal I Toby I Toby-2 I 

Wheel Thread, m 1.410 1.280 1.280 
Wheel Base, m 1.480 1.280 1.280 
Wheel Radius, m 0.250 0.210 0.210 

TABLE 3.1. The nommal mower d1menswns. 

low-level control is accomplished using The Toro Company's PID control boards and 

electro-mechanical servovalves, while the high-level control and obstacle avoidance 

software and supporting hardware were developed by the project's collaborators from 

CMU[12, 13, 14, 15, 41] in cooperation with The Toro Company. 

2. Kinematic Model 

There is no standard approach for choosing a vehicle model for a localization 

algorithm [51, G8]. Most of the mobile robot localization research to date uses 

kinematic modeling for low speed "non-dynamic" applications; dynamic models are 

used for highly dynamic high speed applications [51]. The more complete models are 

more accurate only if their parameters closely correspond to those of the vehicle[62] 

and these parameters may be difficult to estimate10 . Given low (2 m/ s) mowing speed 

of the vehicles and slower cornering speed (about 1 m/ s) at the end of each swath 

and complexity of modeling the hydraulic drive train [42], the dynamic effects are 

neglected. A kinematic model of the nonholonomic11 system represents the vehicle 

in the localization algorithm. The mower operates in flat, as well as in hilly, terrain. 

It was decided however, that a planar system (dead reckoning) model is adequate 

for precise localization in three dimensions. The updates from the absolute sensors 

1°Force or torque sensing may be required in addition to quadrature encoders sufficient for the 
kinematic approach. The pressure and flow measurements (by pressure transducers and turbine 
flow meters) in the hydraulic system are analogous to the voltage and current measurements in the 
electrical system. 
11The constraints to a motion of a mechanical system part can be categorized as geometrical and 
kinematic. Geometrical constraints restrict the possible configurations of a system (a hard stop in a 
robot joint, for example). Kinematic constraints restrict the velocities of the system parts, and are 
precipitated by the geometrical constraints (and system dynamics.) Yet kinematic constraints do 
not always impose geometric constraints, as in the rigid body rolling without sliding on a surface. 
Mathematically these constraints are characterized by their nonintegrability. Therefore, a mechanical 
system with nonintegrable kinematic constraints is called nonholonomic [49]. 
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allow to correct for the errors due to planar approximation of the three-dimensional 

terrain. Alternatively, the more complete three-dimensional dead reckoning requires 

full attitude sensing in real t ime and shows no significant accuracy improvement in 

comparison to the two-dimensional dead reckoning [32] 12 . The absolute latitude and 

longitude GPS estimate, for example, can be viewed as a projection of the 3D position 

onto a 2D map, in which the robot is localized. The robot is brought to the desired 

3D location by a tracking algorithm that operates in 2D and continuously corrects 

for the inaccuracy of the 2D DR modeling using the absolute (GPS) measurements. 

However, it is important to know the vehicle attitude in the navigation reference 

frame to compensate for the absolute sensor position (a high-mounted GPS antenna, 

for example, see Figure 3.5.) Since t he mid-track velocity of the mower is directly 

F IGURE 3.5. Three-dimensional localization using two-dimensional map. 
Point A is the platform reference point; the Line AB is vertical in the mower 
frame. If a GPS antenna is at point B, t he projection A 'B ' of the three­
dimensional line AB onto the plane is the correction that has to be applied 
to the GPS measurement of the 2D location of point A. Thus it is desir­
able to have magnitude of AB as small , as possible to reduce error due to 
inaccurate attitude estimation. 

available from the encoders, the mid-track point is chosen as a platform reference 

point for the vehicle motions. The vehicle is right-hand Cartesian coordinate system 

12The experiments on the hard concrete, sandy ground, and even hard incline showed no signif­
icant difference between the 2D and 3D estimates. On cratered sandy ground a 0.9% accuracy 
improvement was achieved by the 3D DRover 2D DR[32]. 
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is fixed at the mid-track with the x-axis pointing forward and they-axis pointing to 

the left13 . 

The mower's pose in a global planar Cartesian coordinate system is described by 

the coordinates ( x, y) of the platform reference point (front mid-axis) and its heading 

( 4;). The kinematic equations of motion are given by 

VA = VR+ VL 
2 

x VA · cos(<P) 

iJ = VA · sin(4;) 

. VR- VL <P = _...;_ __ 
b 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Where VR and VL are the right and left wheel velocities, and q; is the mower heading14. 

The mower kinematic diagram is shown in Figure 3.6. 

y 

FIGURE 3.6. The Mower Kinematic Diagram in the horizontal plane. b is 
the effective wheel thread, l is the wheel base. 

13This convention does not follow the usual navigational x forward and y -to the right convention. 
The present choice is deeply rooted in the project's history and is not known to the author. 
14The steering angle and steering wheel velocities are measured for the control purposes of the 
mower,but are not accurate enough for the localization and therefore are included neither in the 
above equations, nor in the following discussion. 
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The next section describes the localization system sensors and the sensor fusion 

algorithm. 
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CHAPTER 4 

The Localization System 

The relative (DR) and absolute sensors are used in the mower localization. The 

central localization data fusion algorithm is an extended Kalman filter [9, 81, 3, 19] 

that uses the sensor data to arrive at the vehicle's pose estimate. The process model 

describes the time evolution of the system and the measurement model provides the 

link between the measurements and the system state. 

1. Localization Sensors 

The sensors for the autonomous golf course mower must provide mower localiza­

tion within 10 cm in the direction transverse to the direction of motion 1 at a mowing 

speed of 2 m/ s, preferably in all weather and lighting conditions. 

1.1. Relative Sensors. Encoders, gyroscopes, and accelerometers were con-

sidered as possible candidates for the dead reckoning system of the mower. Barshan 

and Durrant-Whyte [16] determined that orientation information from the INS is far 

better than its position information. Thus it was decided to use the wheel encoders 

for the position estimation and not to use accelerometers. A single axis gyroscope 

would provide the heading rate either fused with the encoder-derived heading rate, 

or as a sole source of heading information. 

10scillations from the course larger than 5 cm become visually noticeable. On the other hand, 
positioning accuracy along the direction of motion is not critical; 10 - 15 cm will be sufficient since 
the edges of the field are mown during the initial perimeter cut. 



4.1 LOCALIZATIO SENSORS 

Two digital interface (Open Collector) DYNAHER CONTROLS Inc. DYNAPAR 

brand H20-series [29] (H2303001042032 ) quadrature encoders with unbreakable code 

disks are used to measure the rotary displacement of the front wheels. The encoder 

flanges are bolted to the spring-steel mounting brackets on the mower frame. Metal 

rims with molded rubber tires are held by set screws on t he encoder shafts and roll 

on the outer surfaces of the tires as shown in figure 4.1. 

FIGURE 4.1 . The encoder mounted on the mower in contact with the wheel. 

A strap-down open loop3 single axis4 fiber optical gyroscope (FOG) [50] KVH 

Industries, Inc E-Core RD2060 [61] is used to measure the yaw rate of t he platform. 

The unit costs US $2500.00 and has a maximum specified drift5 of 0.0012°/ s = 

0.072°/min = 4.32°/hr (see Table -Ll .) 

2Some of the information coded in the designation H23-0300-1-0-4-2-0-3: model - H23; pulses per 
revolution - 300; electrical (0) - 5-26 V DC in, 7406 Open Collector output; termination (3) - 7-pin 
side mount connector 
3open loop gyroscopes provide no feedback to a frequency or phase shifting element to cancel the 
rotationally induced Sagnac phase shift [50]. 
4It is desirable to have a three-axis gyroscope on an outdoor platform, however, the cost of such a 
device is prohibitive for the application. The E-Core RD2060, on the other hand, is insensitive to 
rotation and acceleration in other axes [60]. 
5Bias drift is a slowly changing error in the rate of rotation. Non-zero bias drift results in the 
non-zero angular rate reading by a stationary gyro. This is not related to the rotation of the Earth. 
The nonlinearity of the scale factor with respect to angular rate and nonlinearity of the scale factor 
with respect to temperature are secondary error sourses after the bias drift. No error compensation 
is provided in the unit; custom temperature compensation table for the gyro was provided by KVH 
at a later date; custom scale factor compensation with respect to rate tables (or empirical formulas) 
are not available from KVH. Nowadays, however, E-Core 2000 series gyroscopes can be purchased 
with both compensations built-in. 
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TABLE 4 .1. Technical specifications for the KVH E-Core RD2060 [ 61] 

Performance I RD2060 I 
Input Rate (max) ±o/s ±60 
Rate Resolution o/s 0.004 
Scale Factor 0 /bit 0.000183 
Nonlinearity % rms 4 
Full Temp. % rms 1 
Bias Stability 
Constant Temperature 0 Is 10" 0.0012 
Full Temperature o/sp-p 0.24 
Angle Random Walk 0 /hr/vHz 5 
Bandwidth Hz 100 

A proprietary elliptical polarization-maintaining optical fiber insures that in the 

absence of rotation the two counter-propagating beams follow identical paths and 

thus insures repeatability of light propagation speed through the fiber. Bias stability 

of 2°/ hr and bias driftof 5 - 10°/ hr are attained. The gyroscope (in short: "gyro") 

is mounted inside the electronics enclosure shown in Figure 4.6 on page 43. Thus the 

dead reckoning is provided by the combination of the two front wheel encoders and a 

single-axis strap-down gyroscope. 

1.2. Absolute Sensors. A Kalman filter for dead reckoning alone can sub-

stantially reduce the localization error, but since the actual position and heading are 

unobservable [11, 16, 79] the filter will inevitably diverge. The absolute measure­

ments are necessary to bind the dead reckoning localization error6 . 

A ground-mounted magnetic marker grid in conjunction with a magne­

tometer was initially considered, but rejected because of the short detection range 

of the magnetic markers. Circular (sprinkler head mountable) magnetic markers cut 

out of 3M's Magnetic Lateral Warning and Guidance Tape [2] and a mower-mounted 

Magnetic Guidance Sensor by Safety Technologies Inc. [92] were tested (see Fig­

ure 4.2.) The markers were detectable only within 0.15 m which is ample for the 

uninterrupted magnetic tape guidance, but is insufficient for the sparse a marker 

6Some of the causes of dead reckoning errors are the gyro drift, wheel slippage, tread wear, and 
improper tire inflation. 
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placement on the golf course. The required localization accuracy demands a marker 

density too high to be practical7 . On the other hand, golf courses are mostly open 

spaces with good GPS8 reception. 

(a) Safety Technologies Magnetic 
Guidance Sensor over 3M tape. 

(b) The Magnetic Guidance Sensor 
on Toby-2. 

FIGURE 4.2. Safety Technologies Magnetic Guidance Sensor [92] over 3M tape. 

A high-performance 2 cm accuracy NovAte! ProPack RTKGPS [76] 9 based 

localization system of Hal10 maintained 97% of the tracking error below the target 

value of 10 cm [89]. GPS provides a convenient way to initialize the localization 

algorithm and bind its error. The simulation in Section ?? suggests that a sub-meter 

accuracy DGPS can be used as an absolute sensor in the localization system capable 

of maintaining lateral error below 10 cm. A sub-meter CSI Wireless SX-I WAAS 

enabled DGPS [25] card (shown in Figure 4.3) was integrated into the navigation 

system as described in Appendix E. 

However, a GPS-only solution for t he absolute localization is unsatisfactory due 

possible GPS signal loss as a result of line of site obstruction by foliage, nearby 

buildings or due to unfavorable satellite configuration. 

7Sports field marking could be accomplished though by dense (in the order of 0.1 m) placement of 
the strong magnetic rods along the desired trajectory [113]. 
8See Appendix A for the description of various GPS modes (DGPS, RTKGPS) . 
9The RTK system cost is over US $21,000. 
10Hal's sensor suite includes the fiber-optic gyroscope, the wheel encoders, and the RTKGPS for 
localization. 
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(a) View from the back of the 
mounting frame. 

(b) View at the frontof the mount­
ing frame 

FIGURE 4.3. The CSI Wireless SX-I card with the custom interface board 
stacked on top and mounted on a frame. The GPS antenna connector and 
the serial connectors are bolted to the frame. 

Ground-based pseudo satellites (pseudolites) that transmit a regular 11-band 

GPS signal seem to be the immediate remedy to the GPS coverage problem since 

they can be positioned anywhere (even indoors) to augment the constellation directly 

[20]. However t hey cannot be readily integrated with the standard GPS receivers 

due to software and hardware incompatibilities. The pseudolites stay put on the 

surface of the earth, while the GPS satellites move along their elliptical trajectories in 

space. The GPS format was designed to describe the motion of navigation satellites in 

orbital parameters and is unsuitable for the description of the stationary ground-based 

objects. Since the pseudolite position is known before taking the measurement, the 

GPS receiver software has to be modified so that it accepts static pseudolite positions 

and disregards t he position information in the pseudolite's GPS message. Pseudolites 

also have to be added to the GPS almanac "manually" in order for a receiver to detect 

them. On the hardware side, it is common for GPS antennas to reject measurements 

with elevation angles less than 10 to 15 degrees to mitigate the ionospheric delay 

and multipath. The GPS antenna has to be redesigned or the pseudolites have to 

be positioned within the vision field of the antenna to be detected. The pseudolite 

signal in the near-field is also orders of magnitude stronger than the GPS signal and 
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can jam the receiver. Time Division Multiple Access (TDMA) communication has to 

be applied in the near field of the pseudolite[20, 109]. 

Still, DGPS does provide the desired absolute localization solution most of the 

time, but is expected to fail under tree cover or when less than six satellites are 

in its antenna's direct line of sight. It is proposed to fuse absolute heading sensor 

data with the rest of the sensory information to maintain the desired orientation at 

GPS blackouts. Maintaining the desired orientation is essential for staying within the 

lateral error margin. 

The Honeywell HMR3000 digital electronic compass with three orthogo­

nal Magnetoresistive (MR) [44, 43] sensors and a liquid filled two-axis tilt sensor11 

provides a tilt-compensated heading measurement. The sensor is shown in Figure 

4.4 on page 34. Changes in the sensors' resistance under the action of the Earth's 

magnetic field are converted to a digital NMEA 0813 formatted RS-232 signaL 

GPS can also be augmented by vision-based local positioning system (LPS): the 

Motion from Structure (MFS) [94] monocular visual navigation approach is used to 

extract the vehicle's motion from the images of known environmentally fixed dis­

tinctive landmarks. Since the appearance of a golf course cannot be modified, the 

landmarks for the vision system must be unobtrusive. The density of the visual 

marker grid depends on the effective camera range and quality of the dead reckoning 

system that has to maintain pose estimation accuracy until the external camera mea­

surements become available. Finding an optimal placement of a minimal number of 

markers is an open-ended problem in general [80], however a particular solution for a 

fixed marker grid geometry and regular mowing pattern is given in Section 5.2. It is 

shown that marker grid based on the existing sprinkler system does not provide suffi­

cient coverage to maintain the desired localization accuracy. Thus the visual marker 

has to meet the following requirements: it has to be self-contained so that it can be 

placed where additional coverage is most needed; it has to be flush with the ground 

11The sensor should neither be stored nor operated at an angle exceeding 75 degrees to avoid its 
temporary accuracy loss. The fluid in the bubble should remain approximately level most of the 
time. 

41 



4.2 DATA LOGGING AND AUXILIARY DEVICES 

FIGURE 4.4. The Honeywell Magnetoresistive compass/ inclinometer 

and have a small footprint in order not to obstruct the view; it must be visible out of 

the grass enough to be detected by the mower camera(s); the marker must retract to 

avoid the mower blades. The design of a hiding visual beacon is outlined in Appendix 

F. Proof-of-concept visual marker LPS experiments were performed with two SONY 

DFW-VL500 IEEE1394 cameras mounted on the mower (Hal), one in the front and 

one in the back, as shown in Figure 6.1 on page 51. Red computer mouse pads were 

used as visual marker mock-ups. 

2. Data Logging and Auxiliary Devices 

The system architecture12 consists of three major components: a dead reckoning 

system, the absolute localization system, and a data-logging computer. The block 

12The architecture of Toby-2's localization sensor suit is given here. Sensors and hardware used 
in the experiments with Toby and Ha! are described in the subsequent sections along with the 
pertaining data analysis. 
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diagram of the system is shown in Figure 4.5. The dead reckoning system is 

composed of the DYNAPAR H230300104203 wheel encoders with Open Collector 

outputs and the E-Core RD2060 fiber-optic gyroscope with RS-232 serial output con­

nected to a TERN Aengine microprocessor [102] and PlOO expansion [103] boards 

stack, The absolute localization system consists of the HMR3000 Magnetoresis­

tive compass/inclinometer and SX-I WAAS DGPS board with custom built power 

and RS-232 interface13 . The data-logging computer is IBM 380ED Pentium 166 

MHz laptop running Linux14 and Windows 2000. Data logging and code development 

is done in Linux, while Windows-exclusive sensor calibration and testing programs 

provided by the hardware manufacturers are run in Windows 2000. Figure 4.5 on 

page 36 shows that the computer must accept three RS-232 connections while only 

one RS-232 port is available on the laptop; a Quatech QSP-100 PCMCIA to quad 

I DGPS I TTL 
Interface 

RS-232 

I I 

I 
I TTL 

I 

Encoders 
I QSP-100 

I 
I TERN RS-232 Four Port RS-232 PC M CIA 

RS-232 IBM380ED Gyroscope I Controller Serial PCMCIA card 
TTL 

I Magnetometer I 

I Compass I RS-232 

I 

FIGURE 4.5. Overall Localization System Hardware Architecture 

serial card 15 is used to provide the required connections. The actual implementation 

on the mower is shown in Figure 4. 7. 

13The details of SX-I integration are provided in Chapter E. 
14RedHat distribution 7.0 with kernel recompiled form sources to version 2.4.19. 
15The card is supported in the Linux kernel 2.4.19; no driver module is required. The card is also 
supported under Windows 2000 
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(a) The top view on the open elec­
tronics box. The SX-1 DGPS is in­
stalled. 

(c) Side view on the open electron­
ics box. The SX-1 DGPS is in­
stalled. 

(b) A view on the open eletronics 
box with the DGPS removed. 

(d) The back view on the electron­
ics box with the cover bolted on. 
The back cover bears the DGPS an­
tenna and serial connectiors. 

FIGURE 4. 6. The electronics box containing the TERN computer, SX-I with 
the interface board on top, and a RD2060 fiber opt ical gyroscope. 

3. The Localization Algorithm 

The most common use of linear filtering is for nonlinear analysis. 

- H.W.Sorenson (46] 
The main localization data fusion algorithm is a discrete extended Kalman filter 

(EKF)[9, 81 , 3] that uses the kinematics of the mower driven by the relative sensor 

observations 16 and observations from the absolute sensors to arrive at the vehicle's 
16If DR is unavailable, a motion model is assumed [35]; separate motion models are used[lO, 8] for 
quiescent and maneuvering sit uations - a model for straight flight, a model for coordinated turn, 
et cetera. The predictions from the models are combined[lll] or switched between[88] based on 
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FIGURE 4. 7. The screen support serves as the QSP-100 serial connectors holder. 

pose estimate17
. A total state space or direct formulation[81] of the filter was chosen 

(in difference to the error state space or indirect formulation[79]) so that all available 

information is weighted by the EKF-optimized time-varying gains. 

The computational flow for one cycle of a discrete extended Kalman filter is shown 

in a flowchart in Figure 4.8 on page .:!4. This representation of the EKF follows one 

given by Bar-Shalom [9] with the modifications appropriate for the system. It is 

assumed that the process noise v(k) , input noise 1 (k), and the measurement noise 

the target observation. Thus, even though the relative sensor measurements are subjected to drift 
in time, they provide valuable high bandwidth information about the vehicle motion that is more 
accurate than the information inferred from the infrequent absolute measurements. 
17EKF is chosen due to its proven track record in localization. 
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w(k + 1), are additive, zero mean, white, and mutually uncorrelated [9, 3]: 

E(v(k)) = 0 (4.1) 

E(T(k)) = 0 (4.2) 

E(w(k)) 0 (4.3) 

E(w(k)v(jf) = 0, Vk,j (4.4) 

E(v(k)1(j)T) = 0, Vk,j (4.5) 

E(w(k)'Y(jf) = O,Vk,j (4.6) 

E(v(k)v(j)T) = Q8kj, Vk,j (4.7) 

E(w(k)w(jf) R8ki, Vk,j (4.8) 

E( 1( k )'Y(j)T) rokj, Vk,j (4.9) 

Where Dkj is the Kronecker delta function. This section concentrates on the develop­

ment of the process and measurement models for the mowers. 

3.1. The Process Model. The process model plays a critical role in the 

localization system performance since the robot's localizations relies on it and the 

dead reckoning measurements entirely while absolute observations are not available. 

The following kinematic model [17, 108, 62] is found to be an adequate discretized 

version of the kinematic equations: 

fx(k) Xk+l = x(k) + 6.D(k) · cos(<P(k) + 6.~(k)) (4.10) 

fy(k) = Yk+l y(k) + 6.D(k) · sin(<P(k) + 6.~(k)) (4.11) 

/,p(k) = <P(k + 1) = <P(k) + 6.<P(k) (4.12) 

Where 6.D(k) is the distance travelled by the mid-axis point given the values that 

the right and the left wheels have traveled, 6.DR(k) and 6.DL(k) respectively (see 
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True system state Input State estimation State covariance computation 

I State at tk I I Input at tk I State estimate at tk ~ State cova.riance at tk 
x(k) u(k) + 7(k) x(klk) P(klk) 

• 

~ 

Evaluation of Jacobians 

A .. (k) = &frt](k) I [•,J] &x. - l.il (x(klk),u(k)) 

,.. -~1 B[i,j]- &u 
£il (x(k[k),u(k)) 

H . . (k + 1) = &hr,J(k+l) I 
[•,J] OX[jj 

(x(k+llkll 

~ 
State transition to tk+l State prediction State prediction covariance 

v(k) 
__:_:_,. x(k+I)= x(k+ Ilk)= _j P(k +Ilk) = A(k + l)P(k)A(k + I)T 

f(x(k), u(k)) + v(k) f(x(klk), u(k)) +B(k + 1)r(k)B(k +If+ Q(k) 

! ! 
I Measurement prediction Residual covariance 

z(k +Ilk)= S(k+1)=R(k+I) I 
h(x(k +Ilk)) +H(k + I)P(k + llk)H(k + l)T 

! ~ 
Measurement at tk+l Measurement residual Filter gain 

w( k+ 1) 
'------" z(k + 1) v(k + 1) z(k+l) K(k+ 1) = 

h(x(k+l))+w(k+l) -z(k +Ilk) P(k + llk)H(k + I)TS(k + I)- 1 

~ 
Updated state estimate 

1 

~ Updated state covariance 
x(k +Ilk+ 1) = x(k +Ilk) P(k +Ilk+ 1) = P(k +Ilk) 

+K(k + l)v(k + 1) ! -K(k + l)S(k + l)K(k + l)T 

FIGURE 4.8. The Extended Kalman Filter Computational Flow. The two 
parallel computations: the state estimation and the state covariance estima­
tion are shown in the parallel columns. 

Figure 4.9 on page 44: 

t:..D(k) (4.13) 

The incremental change in the orientation t:..<jJ(k),can be obtained from odometry 

given the effective width of the mower b: 

t::.cjJ(k) = t::.D- R(k)- t::.DL(k) 
b 

(4.14) 
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Thus the system state vector may be written as x(k) = [x(k) y(k) <P(k)JT, the input 

vector as u(k) = [~D(k) ~<j;(k)]T represents odometer and the gyroscope measure­

ments18, and the system function f(x) = [fx /y f.p]T where the function components 

are represented by the Equations 4.10-4.12. The system matrix (A(k)) and input 

gain matrix (B(k)) are represented by the following Jacobians: 

..!!.b._ of(x) ..!!.b._ 
ox(k) 8y(k) 84>(k) 

A(k) = ~ ~ ~ 
8x(k) 8y(k) a.p(k) 

.!!.!.L .!!.!.L .!!.!.L 
8x(k) 8y(k) 8<P(k) 

~ __!l.b_ 
8~D(k) {}~<f>(k) 

B(k) = __!!b_ __!!.b_ 
8~D(k) 8~4>(k) 

___Eh__ _2h_ 
8~D(k) M<;l>(k) x(k) 

y 

x(k) 

1 0 -~D(k) · sin(</;(k) + ~4>?)) 
0 1 ~D(k) · cos(<j;(k) + ~~(k)) 
0 0 

cos(<j;(k) + ~~(k)) 
sin(</;(k) + ~~(k)) 

0 

1 
x(k) 

-~~(k) sin(<j;(k) + ~~(k)) 
~~(k) cos(<P(k) + ~~(k)) 

1 

Y.-Y 
arc tan ('X;,- x ) 

X 

FIGURE 4.9. The system schematic (the bird's eye view.) The blocks rep­
resent the mower wheels and the concentric circles represent a marker. 

(4.15) 

( 4.16) 

x(k) 

18Heading rate b.<jJ(k)/ b.t from both the odometry and the gyroscope can be fused in the EKF. 
However the heading rate from the odometry is much less reliable for the outdoor platform than 
that from the gyroscope and is always outweighed by the later. 
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3.2. The Measurement Model. The azimuth o:i with respect to the mower 

x-axis and the elevation 1Ji with respect to the mower x-y plane (observed from the 

mid-axis point at the distance p, form the ground-plane) angles to the i-th marker 

are obtained by the absolute measurement system a time instant k (see Figure 4.9 

on page 44.) The measurement vector for a single marker measurement is defined as 

zi(k) [o:i(k) 1Ji(k)]T. The absolute measurement angles are related to the system 

state variables x( k) 1 y( k) 1 and <.P( k) by the followiing nonlinear measurement equation: 

( ( )) (
YBi y(k) 

o:i = hai x k = arctan (k))- <Pk 
XBi- X 

1Ji = h17i(x(k)) = - arctan(p,/di(x(k)) 

di(x(k)) = )(xBi- x(k))2 + (YBi- y(k)) 2 

(4.17) 

(4.18) 

and the measurement matrix H(k) is given by the Jakobian: 

ahai 
ax(k) 

ahai 
8y(k) 

ahai 

a<P( k) 

8hni 
ax(k) 

ah11i 

a<P( k) 

[
::r,;> ::tt}) :;t;;>] 
&h1}; 8hryi 8h1}; 
ox(k) oy(k) o<j;(k) x(k) 

YBi- y(k) 
(xBi- x(k)) 2 + (YBi y(k)) 2 

-xBi + x(k) 
(xBi- x(k))2 + (YBi- y(k)) 2 

P,(XBi X(k)) 

(4.19) 

(4.20) 

( 4.21) 

(4.22) 

x(k)) 2 + (YBi y(k))2 ) 

(4.23) 

J(xBi- x(k))2 + (YBi- y(k))2(p,2 + (xBi- x(k)) 2 + (YBi y(k)) 2 ) 

(4.24) 

0 (4.25) 
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4.3 THE LOCALIZATION ALGORITHM 

Multiple measurements are accommodated by stacking the Hi(k) matrices and 

corresponding measurement vectors Zi ( k) as follows: 

H(k) = [Hi(kf HHl(kf Hw2(kf ... HN(k)T]T, i = 1, 2, ... , N 

z(k) = [zi(kf ZHI(kf Zi+2(k)T ... ZN(kf]T, i = 1, 2, ... , N 

(4.26) 

(4.27) 

3.3. Time Propagation of Process Errors. The extended Kalman filter 

keeps track of its estimates accuracy by propagating the state error covariance ma­

trix19 in time based on the variances of the individual measurements it receives from 

the sensors. Such sensors as GPS receivers usually contain an internal Kalman filter 

and are able to report on the quality of the data they provide. Non-computerized 

sensors do not offer this facility and call for the measurement error estimation. It 

is assumed that the constant measurement biases are calibrated out, so that the er­

ror variances alone can be used to model the goodness of the measurements for the 

EKF. There exist different approaches20 to modeling the process noise covariances 

[:n, 42, 108, 57]. In the present EKF implementation the process noise is modeled 

is taken along the lines proposed by Chenavier and Crowley [~H]: 

Q(k) = 

Qu(k) 

0 

0 

(4.28) 

19This matrix is not a covariance, but rather a mean square error (MSE) matrix because the esti­
mated state is not the exact conditional mean for the EKF [9]. 
200ne of the popular approaches is a trial-and-error tuning of the process noise covariance values 
to achieve somewhat acceptable filter performance. Even though every system error modeling tech­
nique requires explicit assumptions to be made at some point of the algorithm, a methodology is 
helpful in the filter development. On the other hand, more accurate system state error propagation 
and resulting more optimal operation of the Kalman filter will not help improve the localization 
accuracy in the long run if the absolute sensors cannot provide sufficiently accurate and numer­
ous measurements for the fusion. (Moreover, Kalman Filters in general do not recover well from 
large errors[38] and therefore large state error operation is not acceptable from both practical and 
theoretical perspectives.) Thus a compromise- evidence-based heuristic and tuning- state error 
modeling technique should be adequate for our system. 
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4.3 THE LOCALIZATION ALGORJTHM 

The process errors are assumed to be uncorrelated so that the time-varying process 

noise matrix Q ( k) is diagonal with the following entries: 

Qu(k) = KssiLlDcosfl 

Q22(k) = KssiLlDsinfl 

Q33(k) = Ks<t>ILlDI + K<t><I>ILl</JI 

(4.29) 

(4.30) 

( 4.31) 

where Kss is the odometry drifting coefficient along the distance traveled with respect 

to incremental distance LlS; [K88 ] = m2/m, Ks</> is the odometry drifting coefficient 

along the heading with respect to incremental distance LlS; [Ks<t>l = rad2/m, and 

K<P<P is the odometry drifting coefficient along the heading with respect to incremen­

tal heading Llphi; [K<P<t>l rad2/rad The authors experimentally tuned the above 

coefficients for their mobile robot. 

3.4. Measurement Gate. Real world measurements even from reliable and 

robust sensors such as Millimeter Wave Radar[42] contain fair amount of noise. The 

regular sensor noise is accounted for by the measurement error covariance matrix R. 

Meanwhile sporadic erroneous measurements are not described by the covariance­

only error model of the Kalman filter and the additional processing is called for in 

order not to allow them degrade the filter state estimate. Since INS measurements 

normally are not subjected to large measurement errors a measurement validation gate 

is applied to the absolute measurements only. Smaller validation gate values apply 

stricter acceptance criteria to measurements, while larger validation gate values accept 

measurements liberally. The compromise between high landmark detection rate and 

rejection of the erroneous measurements is made by tuning the gate value according 

to the overall uncertainty of the state estimation, so that smaller values of the gate 

are applied when the filter is confident in its estimate, while larger values will be 

applied when the localization is less certain and therefore greater tolerance should be 

exercised towards the nonconformist measurements that appear to be erroneous to 

the drifting model. Filter optimality follows from filter consistency, that is its ability 
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4.3 THE LOCALIZATION ALGORJTHM 

to maintain an unbiased state estimate along with its proper covariance21 value, and 

is preserved by introduction of a measurement gate. The actual consistency test is 

implemented as follows[9]. The normalized innovation squared (NIS) of a consistent 

filter 

( 4.32) 

has a chi-square distribution with the degrees of freedom equal to the dimension of 

the measurement. The higher and lower bounding values of the gate corresponding to 

the dimension of the measurement are read from the chi-square table. A measurement 

passes the test if its calculated Ev(k) value remains within the gate, otherwise it is 

discarded as erroneous. 

3.5. The treatment of asynchronous measurements. The EKF time 

step must not be fixed; the algorithm allows to process asynchronous data at different 

rates[18]. Thus the inertial navigation system steadily outputs measurements at 100 

Hz, the NovaTel RTKGPS at approximately 20Hz, the low-cost SX-I GPS- at 

1 H z, and the visual measurements are obtained with the frequency 0.5 to 2 H z. 

It is important to align arriving data in time, according to their time stamp for 

proper data fusion. For the real time operation this requires temporary storage of 

the INS measurements for a period of a typical absolute measurement delay, so that 

once the new, but already outdated absolute measurement arrives it is properly fused 

at the time of its time stamp with the INS data. Once the past measurement is 

incorporated, the state is propagated through the INS data buffer to the present. 

A timing schematic for the localization filter is shown in Figure 4.10. Present work 

does not take into the consideration the real-time issues; the real data is aligned for 

post-processing by the localization algorithm off-line. 

21 Wrong covariances produce wrong Kalman gain and suboptimal measurement weighting. 
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Encoders and Gyro 

t 

GPS 

FIGURE 4.10. Real Time Timing Sequence of the Localization Filter. The 
arrows represent measurements; they start at the measurement insant and 
extend their heads to the time of their availability to the filter. 
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CHAPTER 5 

The Landmark Density Evaluator 

The Landmark Density Evaluator (LDE) is developed in Matlab® environment and 

calculates and plots the characteristic localization statistics based on the odometer, 

gyroscope, and absolute sensor measurements. The desired landmark density and 

sensing noise are supplied to the estimator as parameters. The LDE can operate on 

the simulated, experimental or mixture of the simulated and experimental data in 

order to estimate the expected localization accuracy and precision with the given INS 

and absolute sensor parameters. The absolute sensing from distance and bearing, 

bearing only, and direct position observation (GPS-like) is accommodated for both 

simulated and actual data. A graphical user interface of the LDE shown in Figure 

5.1 allows to change the system error parameters, choose the sensing mode, load the 

optional data files, close the unwanted figures and stop the program execution on 

the flight, if desired. The schematic diagram of the LDE is shown on Figure 5.2 on 

page 46. The operation of LDE is covered in Appendix B on page 67. This section 

concentrates on the development of equations for the process noise matrix Q ( k) and 

optimized marker placement. 
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FIGURE 5.1. The Modes of the Landmark Density Evaluator 

1. The Process Noise 

The process noise for the extended Kalman filter is calculated as proposed by 

Chenavier and Crowley [31]: 

Q(k) -

Qn(k) 

0 

0 

0 0 

(5.1) 

55 



where 

5.1 THE PROCESS NOISE 

Actual pose 

FIGURE 5.2. The Schematic of the Landmark density Evaluator 

Qu(k) = Kssi~Dcosc/>1 

Q22(k) Kssi~Dsinc/>1 

Qaa(k) = Ks<t>I~DI + K<t><t>l~c/>1 

(5.2) 

(5.3) 

(5.4) 

However, instead of tuning the coefficients [ Kss] m2 /m, [Ks<t>] = rarP /m, and 

[K4>4>] rad? jrad outright, it is proposed to derive their values from the overall system 

[6] dead reckoning performance expressed in more physically meaningful quantities 

than the coefficients themselves. From Equations 5.2, 5.~1, and 5.4: 

2 
K ()"ss (5.5) ss= !~si 

2 
Kscf> 

()" slj> 
(5.6) 

!~si 
2 

()" 4>4> (5.7) Kq,<f> = 1~4>1 
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5.2 THE OPTIMIZED MARKER PLACEMENT 

Where a;8 , a;</> are the user-supplied distance and angular error variances obtained 

from the straight line runs of length ~s; a~</> is the angular error variance obtained 

from the circular unidirectional runs with the total travel angle ~cp. 

The noise contributions of the odometers ~av and the gyroscope ~a~ at each 

iteration are obtained as follows: 

(5.8) 

(5.9) 

(5.10) 
Wn 

~a</>= J(~aa</>)2 + (~a</></>) 2 (5.11) 

~a~ = 2 · ( ~</>) 
2 

(5.12) 

Where Vn is the nominal speed during the calibration runs, Wn is the nominal turning 

rate during the circular runs, and ~t is the nominal time step of the iteration. 

2. The Optimized Marker Placement 

The geometry of the marker placement affects the absolute position estimation 

accuracy. An optimal absolute marker placement is an open-ended problem in the 

general case, however few attempts to optimize marker placement for specific scenarios 

were done. Armingol et al. [55] described two approaches to marker positioning. The 

first approach uses an a priori marker placement with density high enough so that 

each path can be fully covered. Once a path is chosen, only the markers that are 

visible from the path remain, to reduce the infrastructure cost. The second approach 

selects a path through the regions of good marker coverage for a given marker map. 

Beacon patterns suitable for a given trajectory were considered by McGillem et al. 

[7 4], while Durrant-Whyte [42] found that a triangular grid provides the maximum 

accuracy and coverage. 
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5.2 THE OPTIMIZED MARKER PLACEMENT 

The following is an attempt to optimize the marker placement for a predefined 

path - mowing pattern - so that required overall localization accuracy (INS and ab­

solute positioning system combined) give the required localization accuracy with a 

minimum number of markers. A marker grid with triangular cells is oriented along the 

swaths (see Chapter 6, Section 2.2.1.) The marker placement consept is illustrated in 

Figure .5.3. The open loop (dead reckoning only) localization system precision is used 

• 

• 
• 

• 
• 

• 

FIGURE 5.3 . Optimized Marker Placement Concept. The dark filled circles 
in the triangular pattern represent the markers; the lighter filled circular 
segments show the marker visibility in the mower orientation shown; the ar­
rows in the front and back of the mower point in the directions of t he camera 
vision fields. The parameters a and b of the triangular cell are maximized 
so that the desired localization accuracy is achieved with a minimal number 
of markers. 

to estimate the parameters of the asymmetric triangular marker grid. The system's 

dead reckoning precision is determined experimentally on the straight line paths. The 
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5.2 THE OPTIMIZED MARKER PLACEMENT 

localization error covariance provided by the Kalman filter is also indicative of the 

estimation precision [75]. Marker visibility at the edges of the field ensures proper 

alignment of the mowing pattern. Absolute corrections at the beginning of the swath 

minimize the heading error incurred during the turn by the INS, while corrections at 

the end of the swath, prior to entering the turn, allow to minimize the absolute error 

by correcting the mower localization prior to entering the straight segment. 
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CHAPTER 6 

Localization Implementation and 

Validatio11 

This chapter describes the experimental results for the work conducted for this thesis. 

The localization experiments are performed in the open-loop mode on the Toby-2 

localization test bed and on the autonomous To by and Hal without the feedback to the 

control system. The localization error should be calculated with respect to the ground 

truth ( GT). One of the main difficulties in the validation of the localization outdoors 

is the absence of a ground truth for the vehicle motion. Comparing the estimated 

and actual GT positions in the fixed points on the trajectory is a representative but 

not reliable localization performance characteristic since dead reckoning (DR) error 

depends on the trajectory1
. The use of Nov Atel 2 cm accuracy real time kinematic 

GPS (RKTGPS) as the absolute sensor for the ground truth extended Kalman filter 

(EKF)2 allows to directly evaluate the performance of the vision-based localization 

system. 

10dometry errors virtually cancel over symmetric trajectories, for example a mowing pattern con­
sisting of an equal number of left and right turns and equal distances traveled in both directions 
[57]. Gyro drift depends not only on the temperature, but also on the turning rate, thus trajectories 
with many sharp turns result in higher gyro drift and worse localization than mostly straight line 
or slightly curved trajectories. At high turning rates gyro output becomes highly nonlinear and 
requires polynomial curve fitting for adequate measurement interpretation [77] 
2Use of Vulcan 3D laser-based precision Measurement System manufactured by Arc Second [5] as a 
ground truth for a 30 m by 60 m testing area was considered, but the system's cost was prohibitive. 



6.1 THE VISUAL MARKERS EXPERIMENT 

1. The Visual Markers Experiment 

The experimental setup is shown in Figure 6.1. Two DF\V-VL500 [98] digital 

camera modules are mounted on the mower, one in the front and the back. The 

markers are scat tered at about 10 m distance from each other. The GPS signal in 

the testing area provides 2 cm accuracy absolute localization, which is fused with the 

odometry in the localization extended Kalman fi lter of the mower gives high-quality 

ground truth position estimate. The accuracy and precision (error standard devi-

FIGURE 6.1. The experimental setup: the mower (foreground) is equipped 
with the cameras in the front and in the back; the markers are seen in the 
front and in the back of the mower. The mower is manually driven. 

ation) of t he cameras' measurements are obtained by comparison with the ground 

truth. The biases and st andard deviations are given in Table 6.1 and the correspond­

ing error distribut ions are shown in Figure 6.2 on page 52. The measurements are 

debiassecl prior to being used in the EKF. T he local marker approach is general, so the 

results of the experiments estimate t he localization accuracy obtainable by a marker­

based system irrespective of the actual hardware implementation. T he cardioidal and 

mowing pattern path experiments are described in this section. 

1.1. The Cardioidal Path. The cardioidal path is composed of a clockwise 

t urning maneuvers in a 40 m x 40 m area with marker positioned in a square pattern 

every 10 m . The localization quality based on the experimental data is summarized 

in Table 6.2. 
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-5 

TABLE 6. 1. The camera's biases and precision. 

I Front Camera I Back Camera I 
Azimuth 
Bias I 1.100 
Standard Deviation I 0.67° 
Elevation 
Bias I 0.15° 
Standard Deviation I 0.16° 

alpha (azimuth) error distribution 

- 4 

-0.8 -0.6 

-1 

eta (inclination) error distribution 

-0.4 -0.2 
error, deg 

0 

I -2.50° 

I 0.67° 

I -0.12° 

I 0.15° 

0.2 0.4 0.6 

FIGURE 6.2. The absolute measurement error distribution of visual measurements. 

TABLE 6.2 . The cardioidal path localization performance. 

I Transverse Error I Tangential Error I Heading Error I 
Expected -0.002 m 0.006 m 0.083° 
Maximum 0.233 m 0.866 m 1.894° 
Standard Deviation 0.089 m 0.202 m 0.430° 

In summary, the cardioidal localization transverse errors are below 10 cm with 

90% probability, the tangential errors are below 10 cm with 80% probability, and 

below 18 cm with 90% probability (see Figures 6.4 (a) and (b) on page 56.) 
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FIGURE 6.3. The cardioidal path and the zoom-in to a covariance ellipse of 
the localization uncertainty. 

1.2. The Mowing Pattern Path. A section of a regular mowing pattern 

with visual marker measurements is analyzed in this experiment. It is essential to 

maintain the localization accuracy on the straight sections of the pattern (Figure 6.5 

on page 57), while the accuracy on the curved "hairpin" U-turns is not as important. 

TABLE 6.3. The straight sections of the mowing pattern localization performance. 

I Transverse Error I Tangential Error I Heading Error I 
Expected 0.110 m 0.272 m -0.008° 
Ma."Ximum 0.220 m 0.540 m 0.884° 
Standard Deviation 0.064 m 0.157 m 0.101° 

In summary, the localization transverse errors are below 7 cm with 90% proba­

bility, the tangential errors are below 8 cm with 80% probability (see Figures 6.7 (a) 

and (b) on page 59.) 
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2. Simulated Localization 

The following localization scheme evaluation is performed on the Landmark Den­

sity Evaluator (LDE) based on the combined experimental and simulated data. 

2.1. Simulated Measurements and Experimental Trajectory. The ex­

perimental mower trajectory is combined with the simulated optimized triangular 

pattern marker placement and measurements. The marker sensor is assumed to be 

unbiased with the azimuth measurement error standard deviation ( std) of 1°, and the 

elevation measurement error std of 0.5°, in accordance with the precision characteris­

tics of the experimental camera measurements. The localization is evaluated for two 

marker sensing frequencies: 2 H z and 5 H z. 

TABLE 6.4. The simulated 2Hz and 5Hz measurements and experimental 
trajectory localization performance. 

I Transverse Error I Tangential Error I Heading Error I 
2 H z Absolute Measurements 

I 

Expected 0.117 m 0.243 m -0.066° 
Maximum 0.233 m 0.483 m 2.139° 
Standard Deviation 0.068 m 0.141 m 0.682° 

5 H z Absolute Measurements 
Expected 0.050 m 0.125 m -0.049° 
Maximum 0.099 m 0.249 m 2.091° 
Standard Deviation 0.029 m 0.073 m 0.583° 

In summary, the localization transverse errors for the 2 H z absolute measure­

ments are below 6.5 cm with 90% probability, the tangential errors are below 8.5 

cm with 90% probability (see Figures 6.8 (a) and (b) on page 60.) The 5Hz abso­

lute measurements are below 6.2 cm with 90% probability, the tangential errors are 

below 7.4 cm with 90% probability (see Figures 6.9 (a) and (b) on page 61.) The 

higher bandwidth (5Hz) absolute sensor provides the desired transverse localization 

accuracy for the system configuration considered here. 
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3. Summary 

The analysis of the experimental data of the visual absolute marker experiment 

showed that on the straight sections of the mowing pattern the localization trans­

verse errors are below 7 cm with 90% probability, the tangential errors are below 8 

cm with 80% probability, which is close to the desired 10 cm transverse accuracy. 

Transverse to the direction of motion localization errors in excess of 10 cm occur with 

a probability of 8% with a maximum error of 22 cm. The larger errors are due to 

insufficient marker coverage of the test area at the U-turns where a large localization 

uncertainty is accumulated. With the extended absolute measurement coverage and 

optimized marker positioning in the Landmark Density Evaluator the localization 

errors transverse to the direction of motion reduced to below 6.2 cm with 90 % prob­

ability. The errors tangential to the direction of motion reduced to 7.4 cm with 90% 

probability. The innovation sequence generally remains within the one-sigma bound 

and is unbiased. It is concluded that the filter is consistent, that is its covariances 

correspond to the inaccessible covariances of the actual process. The behavior of the 

innovation sequence indicates that this is the case. 
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FIGURE 6.4. The visual representations of the cardioidal experiment data. 66 
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FIGURE 6.5 . The two swaths path. 
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FIGURE 6.6 . The visual representations of the two swaths segment data. 68 
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FIGURE 6.7. The visual representations of the two swaths segment data. 69 



T r&ntVerse po$itlon ojjfference diSIIitlution 18-NoY-2002 09:34: 15 

X Trantvcmedifterence. m 

(a) Transverse error distribution. 

(c) Transverse and tangential errors. 

rime, sec 

(e) Values of the main diagonal of P. 

6.3 SUMMARY 

(b) Tangential error distribution. 

Trace ollhe state error oovarlance matm: P 18-Nov-2002 09:34:15 

(d) Trace of P and number of visible 
markers. 

Az:knuth Innovations wi1h One Sigma Bot.m. 18-NoY-2002 09:34:15 

tme.sec 

(f) Azimuth innovation and its 1 a 
bound. 

FIGURE 6 .8. The visual representations of the 2 Hz simulated measure- 70 
ments and experimental trajectory data. 



6.3 SUMMARY 

05 0.6 

1[2::< • 1~·~~ I 
0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 

X Transverse ditferenoe. m 

(a) Transverse error distribution. 

Tra~ po$ition ddle«~nce 18-Nov-2002 09:34 :15 
0.15,---~-~~-~~-~~-~---, 

-0.15 

-o.2o:---:20:c--,-o:-o -60=--=60 -~100--:::;120:---;7,1.,:---"7.!:160~160 

(c) Transverse and tangential errors. 

(e) Values of the main diagonal of P. 

X Tengential dilfereoce. m 

(b) Tangential error distribution. 

··~ -0.02 

0.015 

0.01 

0.005 

~ 20 " 60 60 ~ m ~ ~ ~ 

(d) Trace of P and number of visible 
markers. 

Azimuth IIY'IOY&tions with One Slgme Bound. 16-Nov-2002 09:34:15 

20 " 60 60 ~ m ~ ~ ~ 
time, sec 

(f) Azimuth innovation and its 1 u 
bound. 

FIGURE 6. 9. The visual representations of the 5 H z simulated measure- 71 
ments and experimental trajectory data. 



CHAPTER 7 

Conclusions 

This thesis outlines the problem of outdoor autonomous robot localization. The 

Kalman filtering methodology is used in conjunction with the chi-square gaiting tech­

nique for a robust localization using real as well as simulated measurements. The test 

results showed that the set goal of lateral position error is attainable, but requires 

additional investigation and sensor development. As in the numerous examples of 

terrestrial localization this system requires both the dead reckoning and the absolute 

localization in real time. It is suggested that the fusion of dead reckoning, low-cost (1 

m precision) DGPS and another relatively low-cost absolute sensor -the electronic 

compass - will solve the absolute measurement starvation problem encountered in 

INS and GPS-only systems when the navigation satellites are occluded. The mag­

netic compass, being an absolute sensor, will supply the most important information 

for terrestrial navigation: the absolute heading. The current localization system 

relying on the sensors described above attains up to 8 cm accuracy overall in the di­

rection perpendicular to the direction of motion. The parallel error stayed within 15 

cm, which is acceptable for the application. The availability of affordable, compact 

sensors, computing and communications equipment allows application of the new 

technologies in the environments previously inaccessible. (Low-cost 1 m precision 

DGPS, Wave LAN, fast computers available for image processing, for example.) 



CHAPTER 7. CONCLUSIONS 

Future Work. The future work would include integration of the additional 

sensors (wave LAN radio modem, for example) to further increase the redundancy of 

the measurements and thus the robustness of the system. Monte-Carlo localization 

(MCL) and combined KF /MCL techniques could be implemented to improve the 

robustness of the localization with the noisy sensors and uncertain initial conditions. 

The robust and accurate integrated navigation system could be implemented on a 

vehicle. 
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APPENDIX A 

The Global Positioning System 

The Global Positioning System (GPS) consists of the space-based1 and the ground­

based parts. space-based part of the GPS constellation consists of 24 satellites 

(21 + 3 spares) on six elliptical orbital planes. The satellites transmit on two L­

band carrier frequencies: L1 = 1227.6 MHz, and L2 = 1575.42 MHz. Since the 

ionospheric time delay is proportional to the square of the transmitter frequency, 

dual Ll and L2 band receivers (military grade) can calculate the delay directly and 

compensate for it. Single Ll band consumer GPS compensate for up to 50% of 

the ionospheric time delay in software. The ground-based part of the GPS system 

consists of four monitor stations that invert the navigation solution to track the 

satellites. Since the introduction of GPS[H9] service in the beginning of eighties it 

has been used for military marine, air and land navigation, land surveying followed 

by civilian navigation, Geographic Information Systems (GIS), vehicle tracking and 

agriculture field guidance2. In the mid-1990s, Russia added the Glonass positioning 
1Ground-based navigational aids like Loran, and Omega [54] use low frequency modulation for 
their signals so that they reflect from the ionosphere and provide broader coverage. Unfortunately, 
low frequency carrier waves can be modulated with little navigation information, which results in 
inaccurate localization about 7 400 m 20' for Omega, for example. The high frequency signals, on 
the other hand will penetrate the ionosphere and can only be used in the direct line of sight coverage 
area from the transmitter. A dense antenna tower grid (one antenna for about 150 km2 ) would be 
required for worldwide coverage. Placing the high frequency transmitter high in space solves both 
the area coverage and signal modulation problems. 
2Transit the first satellite navigation (satnav) system -introduced in 1973 was used for global 
satellite navigation before the GPS era. Transit is still operational, but it is unlikely that the dying 
satellites will be replaced, because of the system's significantly lower accuracy (about 457 m, 10') 



A.2 SPACE-BASED AUGMENTATION SYSTEM 

system that can be exploited in combination with GPS3
. By the year 2007, Europe's 

civilian (in contrast to the military-run GPS and Glonass) Galileo positioning system, 

fully compatible with GPS will be operational, providing additional redundancy for 

the safety-critical services. [69, 45] The weak GPS signals require direct line of sight 

(LOS) for reception. Four to five satellites have to be visible to obtain a low-accuracy 

three-dimensional position estimate; six to eight satellites in view give good GPS 

position. 

1. Differential GPS 

Differential GPS (DGPS) uses a correction signal from a beacon-receiver po­

sitioned at a known location in the operating region. Ground-based (radiobeacon 

stations) or space-based (satellites) networks providing the differential corrections 

are called augmentation systems. Temporary loss of the base correction ( differen­

tial) signal leads to rapid degradation of position accuracy and to termination of the 

differential mode. 

2. Space-Based Augmentation System 

There exist three fully compatible Space-Based Augmentation Systems (SBAS) 

that provide subscription-free differential correction signal: WAAS (USA), EGNOS 

(Europe), MSAS (Japan). North America is covered by the WAAS system that 

comprises a grid of 25 ground reference stations in the USA. Two master stations 

on each coast process the data from all the slave stations and generate a correction 

(differential) signal broadcast through one of the two geostationary satellites. The 

satellite transmitters allow use of the unmodified GPS message structure for the 

correction signal, standard GPS antennas and receivers with WAAS-enabled software. 

and measurement update rate (once every 1.5 hours or so) [6H] than, progressively more affordable, 
GPS. 
3Due to principal differences between GPS and Glonass (polar vs. Cartesian space representations, 
elliptical vs. circular satellite orbits, for example) merging the two systems is a nontrivial task; a 
typical dual receiver is the Ashtec GG24. 
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A.3 REAL TIME KINEMATIC GPS 

3. Real Time Kinematic GPS 

Real Time Kinematic GPS (RTKGPS) is a DGPS in which a rover station is ini­

tialized at a surveyed position. RTK mode requires continuous GPS lock maintained[69]. 
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APPENDIX B 

Auxiliary Derivations 

1. The Dynamic Model (Lagrangian Approach) 

The Lagrangian approach was used to derive the equations of motion of the 

tricycle platform: 

M(q)q + V(q, q) = E(q)r- AT .X (B.l) 

where M(q) is the inertia matrix , V(q, q) is the vector of position and velocity 

dependent forces, E is the input transformation matrix, r is the input vector, A is 

the constraint matrix , and .X is the vector of Lagrange multipliers [36, 85]. For the 

three-wheel platform of the mower the following state vector was chosen: 

(B.2) 

where x, y are the Cartesian coordinates of the point of interest, and 4> is the ori­

entation of the platform; 05 , BL, BR are the wheel axial rotation angles- S-steering 

wheel, L-left, R-right wheel\ "Y is the steering angle. The driving ( Tw) and steering 

( T1 ) torques compose the input vector: 

(B.3) 

1 Kinetic energies of the wheels were taken into account 



B.l THE DYNAMIC MODEL (LAGRANGIAN APPROACH) 

The Lagrangian is calculated assuming negligible changes in the altitude, so that po­

tential energy is constant and set to zero. M(q) and V(q, q) are obtained from the 

Lagrangian by taking the acceleration coefficients and the rest of the terms respec-

tively. 

M(q) 

V(q,q) 

(B.4) 

mp+3mw 0 (f(mp + 2mw)- 2mwc)sinr/> 0 0 0 0 

0 mp+3mw -(f(mp + 2mw)- 2mwc)cosrj; 0 0 0 0 

0 0 Jp+3Jv+ J2mp+~mw(b2 +4(c+ !)2 0 Jv 0 0 

0 0 0 Ja 0 0 0 

0 0 Jv 0 Jv 0 0 

0 0 0 0 0 Ja 0 

0 0 0 0 0 0 Ja 

(B.5) 

= [~2 (f(mp+2mw)-2mwc)cosrj; ~2 (f(mp+2mw)-2mwc)sinrj; 0 0 0 0 O]T 

where mp is the platform mass, mw is the wheel mass, Jp is the platform's moment 

of inertia about the vertical axis ( z - axis), Jv and Ja are the moments of inertia of 

the wheel about the vertical axis and about its own axis; the dimensions b, c,and f 
are shown in Figure B.l on page 69. 3.6. There are five independent nonholonomic 

constraints (three for the front wheels and two for the steering wheel) arising from no 

free-spinning and no side-sliding conditions. These conditions written in the matrix 

form for the state vector of the system become: 

Aq 0 (B.6) 
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B.l THE DYNAMIC MODEL (LAGRANGIAN APPROACH) 

y 

A= 

\ 

', ............ ·' F 
' ~---·' 

G .• ·····•, ·' ', 
' ' 

FIGURE B.l. Schematic of the mower platform 

coscp sincp -b/2 0 0 -r 

coscp sincp b/2 0 0 0 

sincp -coscp d 0 0 0 

cos( c/Y+!') sin( c/Y+!') 0 -r 0 0 

sin( c/Y+!') -cos(c/Y+!') 0 0 0 0 

X 

0 

-r 

0 (B.7) 

0 

0 

The Null Space(S-matrix) of the constraint matrix A can be used to avoid cal-

culation of the Lagrange multipliers: 

STAT = 0 (B.8) 

S transforms the vector of independent velocities into the vector of the generalized 

velocities and was obtained as follows: 

ql 

A5x74 = 0 ---+ [ Al5x3 A25x2 Aa5x2] <'!2 = 0 (B.9) 

<la 
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B.l THE DYNAMIC MODEL (LAGRANGIAN APPROACH) 

ill = [ x iJ phi] T (B.10) 

ii2 = [e~ -r]T (B.ll) 

4a = [e~ e~]T (B.12) 

A1<it+ A2<i2 + As<is ~ 0 ~ [A1 As] [ :: l ~ -A2<i2 (B.l3) 

[::] ~-[A. Asr A2<b (B14) 

(B.15) 

r · cos( <P+'"Y) 0 

r · sin( <P+'"Y) 0 

r · sin('"Y)/d 0 

S =- [A1 
] -1 

A3 A2= 1 0 (B.16) 

0 1 

COS"(- (b · sin"()j(2d) 0 

COS"f+(b · siwy)j(2d) 0 

Premultiplication of Equation B.l by the S-matrix makes the term containing the 

Lagrange multipliers vanish: 

sT[M(q)<i + V(q,q) = E(q)T- AT .A] 

sTM(q)<i + sTV(q, 4) = sTE(q)T- sT AT .A 

sTM( q)<i + sTv( q, q) = sTE( q)T 

(B.17) 

(B.18) 

(B.19) 
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B.2 THE ADAPTATION OF THE ZHANG TRACKER 

Using the 8-matrix Equation B.l6 to rewrite the equations of motion in terms of the 

independent coordinates: 

V Q2 

<i2 Sv ---+ q = Sv + Sv 

sTM(q)Sv + sTM(q)Sv + sTV(q, <i) = sTE(q)r 

STM(q)Sv + ST(M(q)Sv + V(q, <i)) = sTE(q)r 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

Thus for the implementation the last equation is written in the following form: 

v = (STM(q)S)T[r- ST(M(q)Sv + V(q, q)] 

v = [B~ if 

(B.24) 

(B.25) 

Steering angle and the drive speed are obtained from the control law and con­

verted to the required torque inputs (see Equation B.3) by a PD controller. 

2. The Adaptation of the Zhang Tracker 

This chapter describes the adaptation of the tracking algorithm for differentially 

driven platforms developed by Y.L. Zhang et.al. [114] for tricycle platforms. 

The tracking algorithm translates the difference between the desired and actual 

positions of the point of interest of the differentially driven platform into the desired 

platform wheel velocities: 

(B.26) 

where [lhdes OR.des]T is the vector of desired angular speeds, [x yjT is the sensed 

position of the platform, and [±ref YreJ]T is the refrence position on the trajectory. 
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B.2 THE ADAPTATION OF THE ZHANG TRACKER 

The proportional gain matrix Kp is chosen to be diagonal2: 

(B.27) 

The Jacobian G transforming the rotational wheel velocities into the Cartesian ve­

locities is: 

r [ 2d · sin1J+b · cos1J -2d · sin1J+b · cos4J] 
G = 2b -2d. cos1J+b · sin1J 2d · cos1J+b · sin1J 

(B.28) 

(B.29) 

Due to non-homogeneity of the kinematic state vector [lis "}' J T of a steered vehicle 

it is not possible to obtain a Jacobian similar to Gin the Equation B.29 . However, 

the steering angle and steering wheel velocity can be expressed in terms of the front 

wheel velocities so that the control law of the Equation B.26 can be used [59]. 

Referring to Figure 1 on page 69 the following geometrical relations take place: 

VL VR Vs · 
IIOLII = IIORII = IIOSII = -1J 

(B.30) 

.... l .... l 
11 0811 = -· IIOAII =-siwy' taw; 

(B.31) 

IIOLII = IIOAII + b/2; IIORII = IIOAII - b/2; (B.32) 

The velocities of the front wheels can be related to the velocity, orientation of the 

steering wheel and platform geometry as follows: 

v. = IIORIIv. 
R IIOSII s 

_l b/2 ( tan'Y 
-.~- Vs = cos1 
stn'Y 

b · siwy) V. 
2l s (B.33) 

2The K values are tuned. Zhang et.al suggest kx = ky = 3. Values in the range of 2 to 24 give 
good tracknig depending on the trajectory curvature. Gain scheduling allows to change the gains 
depending on the tracking error. For x or y tracking error in excess of 0.8m gain of 2 is used, for 
0.5m-+ 7, for 0.15m-+ 20, and 24 otherwise. 
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B.2 THE ADAPTATION OF THE ZHANG TRACKER 

Similarly the relation for the left wheel velocity is: 

( 
b ·sin{) 

VL = cos7 + 2l Vs (B.34) 

From the Equations B.33 and B.34 the expression for the steering angle and steering 

wheel linear speed are obtained in terms of the front wheel linear speeds: 

(
VL- VR 2l) 

1 = arctan VL + VR · b 

Vs= VL + VR 
2COS1 

(B.35) 

(B.36) 

Assuming identical wheel radii for all wheels the Equation B.36 can be written in 

term of the angular velocities: 

(
(h- OR 2[) 

1 = arctan . . · -b 
fh + ()R 

Os = iJL + iJR 
2cOS{ 

(B.37) 

(B.38) 

The performance of the modified tracker is comparable to that of the pure pursuit 

tracker [90]. The pure pursuit tracker will be used in the simulator due to its relative 

simplicity and robustness. 
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APPENDIX C 

Other Absolute Localization Modalities 

A development of a reliable, accurate and inexpensive local positioning system (LPS) 

for the areas with no or poor GPS coverage for forest, urban canyon, underground, 

or capacious indoor environments is still an open research problem. The use of the 

infrared identification tags (IRID) attempted in the nineties did not lead to a develop­

ment of a robust LPS [112, 110]. The first promising LPS for the autonomous robot 

localization use custom hardware: the range and bearing MilliMeter Wave Radar 

(MMWR)[42] and the range only radar [56]. The radio frequency (RF) navigation 

aids are desirable for the absolute localization since they operate robustly around the 

clock and at various atmospheric conditions [54]. 

RADAR absolute Local Positioning System (LPS) localization system presented 

by Paramvir Bahl and Venkata N. Padmanabhan[7] is outstanding by its use of 

common off the shelf hardware only - the Radio Frequency (RF) wireless Digital 

RoamAbout™WaveLAN cards (based on Lucent's WaveLAN™). The positioning 

and dynamic tracking is done by triangulation on the basis of the LAN card antenna 

signal strength. Four computers : three base stations running FreeBSD 3.0 and 

a Pentium-based Windows laptop all equipped with the wireless Network Interface 

Card (NIC) were used in the experiments. WaveLan NIC makes available the signal 

strength (SS) and the signal-to-noise ratio (SNR). FreeBSD WaveLAN driver extracts 



APPENDIX C. OTHER ABSOLUTE LOCALIZATION MODALITIES 

the SS and SNR information every time a packet of information is received. The infor­

mation is subsequently processed by a localization algorithm. The system was tested 

indoors and accuracies of lm and 3.5m were obtained for static and dynamic localiza­

tion respectively. Outdoor experiments would reveal how well the system can localize 

in the line-of-site environment. Use of regular wireless cards for the localization adds 

value to such a network and makes a fuller use of its capabilities. 
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APPENDIX D 

Image Processing at CMU 

The image processing was done at Carnegie Mellon University (CMU), by Parag 

Batavia and Jeff Mishler. The following account is included here for completeness of 

the visual absolute marker experimet description. Figure D.1 shows a typical camera 

FIGURE D . l. A typical frame taken by the on-board camera. The colors of 
the circles are indicated in the figure. 

image collected by a Sony DFW-VL500 [98] FireWire CCD camera mounted on the 

mower. 

The mower was driven on a spiral pattern on a field with 28 markers placed at 

roughly six meter intervals. During the motion 181 image points were extracted and 



APPENDIX D. IMAGE PROCESSING AT CMU 

181 sets of angles are produced using the estimated pose, extracted image points, 

camera intrinsic and extrinsic parameters, and the marker map. 

• The image name, camera ID, and time stamp are written to a text file as 

images are obtained and time stamped. 

• The position information is logged with a time stamp as well, but the im­

age and position time stamps are not identical. To associate the position 

information with the image, the first position time stamp which is greater 

or equal to the image time stamp is taken. This gives a reasonable ap­

proximation because the position data is obtained more frequently (about 

100Hz versus 0.5Hz) than the image data. 

• The images are run through a segmentation process to obtain the observed 

marker positions, which correspond to the white circles in the images. They 

should always line up with the marker in the image, but depend on the qual­

ity of the segmentation and may include false positives or missed targets. 

• The identity of the markers observed in the image is established. To identify 

the markers and determine where the target should appear in the given im­

age the information about the vehicle's location, the marker locations, and 

the camera locations is used. This involves projecting the 3D marker posi­

tion onto the camera's image plane, and corresponds to the yellow circles 

in the images. If all the data were perfect (segmentation, vehicle position, 

marker location, camera extrinsic and intrinsic parameters) the yellow cir­

cle would be inside the white circle. Our data is not perfect, so the yellow 

circles do not fall exactly on the white circles. The marker ID of the clos­

est yellow circle (that is less than 64 pixels away from the white circle) is 

associated with this image observation. (This step can be eliminated if we 

have barcodes or other means of performing this data association.) 

• If there is a successful match, the angles to this marker are computed and 

stored along with the time stamp in the "Marker angles" file. 
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APPENDIX E 

SX-1 Interface 

CSI SX-1 DGPS card requires TTL to RS-232 level conversion, 3.3 V for DGPS 

circuitry, 12 V for the antenna, and 3.3 V backup power. To meet these requirements 

in a compact package a plug-in interface was designed to fit directly over the DGPS 

card. The board scematic and the printed circuit board layout are shown in Figures 

E.l, E.2 The interface board parts and their prices as of October 2002 are given in 

Table E.l. The interface board has the same physical size as the DGPS card and is 

stacked on top of it and secured by four bolts as shown in Figure E.3 on page 82. 
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APPENDIX E. SX-1 INTERFACE 

TABLE E.l. Bill of Materials for the SX-I interface. 

SX-I interface board components 
Description DigiKey PN Unit price Quantity Total 

1 TIA/EIA-232-F (RS232) D/ R 296-13086-1-ND 3.38 1 3.38 
2 Cl-C4 (0.1 mF) bypass cap. 399-1439-ND 0.45 4 1.80 
3 switching regulator (3.3V 2A) 78ST233H C-ND 18.42 1 18.42 
4 tantalum cap. Cl (1 mF) 399-1337-ND 0.41 1 0.41 
5 tantalum cap. C2 (100 mF) 399-1475-ND 4.14 1 4.14 
6 Fuse block ( 2 A) F1224CT-ND 1.89 1 1.89 
7 FFSD-series 34-pin connector FLE-l17-0l-G-DV 13.32 1 13.32 
8 MCX antenna connector 919-103P-51AX 32.00 1 32.00 
9 Coin cell battery holder 103K-ND 1.91 1 1.91 

10 Coin Liht ium battery 20 mm Pl86-ND 2.29 1 2.29 
ll Silicon Zener diod (12V, 5vV) 1N5349BMSCT-ND 0.80 1 0.80 
12 10-pin 2.54 x 2.54 header MHBlOK-ND 1.33 2 2.66 
12 Term. block 5.08 mm Header ED2427-ND 1.10 1 1.10 
12 Term. block 5.08 mm Plug ED1717-ND 1.05 2 2.10 
15 interface PCB SX-1 INTERFACE 71.30 1 71.30 

Total per board (CAD) 1157.52 I 

F IGURE E.2 . Printed Circuit Board Layout of the interface card. 
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APPENDIX E. SX-1 INTERFACE 

(a) The side view 

(b) The top view 

FIGURE E.3 . The CSI SX-I and the interface board with connections. 
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APPENDIX F 

Hiding Visual Beacon 

The visual beacon mentioned in Subsection 1.2 of Chapter 4 has to meet the following 

requirements: 

• it has to be flush with the ground and have a small footprint in order not 

to obstruct the view when not in use; 

• it must be visible out of the grass to be detected by the mower camera(s); 

• the beacon must hide from the mower blades. 

The proposed beacon can be enclosed in an emptied sprinkler head housing. The 

beacons can be remotely commanded to extract out of their housings at the beginning 

of the mowingn the grass) once the mower approaches the beacon and the beacon is 

no longer in the field of view of the mower, the beacon retracts to avoid the mower 

blades. The retraction occurs as a response to an elevated noise level near the mower: 

the beacon would have a noise-sensor calibrated to the noise level at 2-3 m from the 

mower. The retraction speed should be approximately: tmin=(2 m)/(6 m/s)=O.ll 

s (minimal hiding time); for height up to 15 cm = 0.15 m the servo max. velocity 

should be (0.15 m)/(0.11 s)=1.36 m/s; the retraction can be performed faster if a 

recoil spring is used and the servo motor only raises the marker. Raising speed is not 

a critical factor, though the faster the marker reappears in the camera vision field, 

the better the localization will be. 



APPENDIX G 

Data Sheets 



P GPS Sensor Specifications 
Receiver Type: ll. CIA code, with carrier phase 

Channels: 

WAAS Tracking: 
Update Rate: 
Horizontal Accuracy: 

Cold Start: 
Warm Start I: 
Warm Start 2: 
Hot Start: 

Reacquisition: 
Maximum Speed: 
Maximum Altitude: 

~ Communications 
Serial ports: 
Baud Rates: 
Correction 110 Protocol: 
Data 110 Protocol: 
Timing Output: 

Event Marker Input: 

I! Environmental 
Operating Temperature: 
Storage Temperature: 
HumiiJlty: 
Shock: 
Vibration: 

~ Power 
Input Voltage: 
POwer Consumption: 
Current Consumption: 
Antenna Voltage Input: 
Antenna Short Circuit 
Protection: 
Antenna Gain Input Range: 
Antenna Input Impedance: 

smoothing 
12-channel. parallel tracking 
(10-channel when traddngWMS) 
1-channel. parallel tracking 
5 Hzmax 
<I m 95 confidence (DGPS'} 
< 5 m rms confidence~ (no $A) 
60 s (no almanac or RTCj 
45 s (valid almanac. no RTCl 
35 s (valid almanac and JITC) 
20 s (valid almanac. IITC, and 
< 2 hours since last fix): 
<Is 
1607 kph (999 MPH) 
18.288 m (60,000 ft) 

2 full duplex RS-232 
4800, 9600, 19200 
RTCMSC-104 
NMEA 0183, SLX binary 
I PPS (HCMOS, active low, rising 
edze tync, I 0 kU, 1 0 pF load) 
HCMOS, acdve low. falling edge 
sync.IO kn. 10 pF load 

.Jo•c to + 7o•c 
-40•c to +ss·c 
95% non-condensing 
EP 455 
EP 455 

3.3VDC +- 5% 
700 mW nominal 
21 0 mA nominal 
IS VDC maximum 

Yes 
IOto 40 dB 
sou 

APPENDIX G. DATA SHEETS 

P Mechanical 
Dimensions: 

Weight: 
Status Indication: 

Power/Data Connector: 
Antenna Connector: 

t Pin-out 

<71.1 mm L x <40.6 mrnW x <llrrm H 
(<2.8" LX <L6"W X <0.5" H) 
<113 g (<4 oz) 
4 surface-mount LED's indicating 
power. GPS lock. Differential 
lock. and DGPS position 
3-4-pin male header, 0.05" pitch 
MCX. female. straight (right angle 
available) 

Pin I Power in (3.3VDC +-5%) Pin 2 Power in (3.3VDC +-5%) 
Pin 3 Antenna power ISVDC max' Pin 4 Backup POwer' 
Pin S Do not connect Pin 6 Do noc comea 
Pin 7 Ground Pin 8 Ground 
Pin 9 TXD Port A' Pin 10 RX PortA' 
Pin 11 TXD Port B' Pin 12 RX Port B' 
Pin 13 TXD Port C' Pin 14 RX Port C' 
P"111 IS I PPS outpUt Pin 16 Manual mark input' 
Pin 17 GPS lock indicator' Pin 18 Differential lock indicator' 
Pin 19 DGPS position in<kator' Pin 20 ARM boot select 
Pin 21 Do not connect Pin 22 Do noc connect 
Pin 23 Do not comecc Pin 24 Do not connect 
Pin 2S DSP boot select Pin 26 Do not connect 
Pin 27 Ground Pin 28 Ground 
Pin 29 Do 110( comecc Pin 30 Do 110( comecc 
Pin ll Do not comect Pin 32 Do not connect 
Pin ll Do not comect Pin 34 Do not connect 

Not.. I. 100 mA""" 
2. 17ro5\1X.IOuAc~nonilal 
1 Tf1ll!lllland...:...,r~1l>lher<ceM:!r 

4, lmAI1\lX,~'""""'"buf~ 

'SI/t..,S.HOOfl<l.P.TCMSC·IM~dufrolnllk.lllllfl'llqUIH'I(f~~tbonbat!M..J111:11ow 

I'MJlilpah-~ 

·~111)01'1 ~ aaMI)'andi'I'UGf*h 
.. it.....,. clock 

-e-Copr!'W1tjlr'Jaf"'l!IOl,CSl~lnLAII!\fU~~~ltodlal\lfWlt ........ IIOUC•. 

CSI~•.tt.C\IW*-" ••l!dCOAST'" ncrtdM"'Irb of C~Wnlm.fnt, f't:ldt IIIC:.udl. 

FIGURE G.l. CSI Wireless SX-I WAAS DGPS data sheet [25]. Note: The 
correctness of the pinout in the above data sheet was verified; there exist 
versions of SX-I data sheet with a different pinout. 
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