
A USER INTERFACE TO EDS

USING THE X WINDOW SYSTEM AND XT

by

Karam Michael Noujeim, BSEE

A the sis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements

for the degree of Master of Engineering

Department of Electrical Engineering

McGill University, Montréal

Québec, Canada

November, 1990

(c) Karam Noujeim

(

(

Abstract

A user mterface to EDS (Electromagnetic Design System) is designed using the X

Window System and the X Toolkit. The grammar of expressions pro\;ded by the user is val­

idated using a bottom-up parser. Equations are convened to postfix/prefix notation, and 1ater

displayed in binary tree representation inside pop-up widgets.

The interface allows the user to determine c~uation interdependencies, and to genera te

flow graphs for düferent sets of equations within the .. 'me application. Equations may be

added or deleted from any set of entered equations at any tirL. Flow graph nodes and links

may be queried for equation information. Retrieved information l~ displayed imide pop-up

widgets.

Finally, the ground work for a user interface package tha~ simplifies X Toolkit pro­

gramming is outlined. Rules and methods governing user interface components are intro­

duced.

Abslracl ü

T
:';.

Résumé

Une interface usager graphique est conçue pour le système de conception électro­

magnétique EDS à l'aide du système de fenêtres X, et du X-Toolkit. La grammaire des

expressions fournies par l'utilisateur est vérifiée par voie d'analyse grammaticale

ascendante. Les équations sont converties en notation suffixée/préfixée, et leur représenta­

tion en arbre binaire est affichée dans des fenêtres pop-up.

L'interface permet à l'utilisateur de déter: iner les relations entre équations, et de

représenter des ensembles d'équations en forme de réseaux. L'utilisateur peut ajouter ou

supprimer des expressions de n'importe quel ensemble d'équations. Les nodes et les

branches des réseaux d'équations peuvent être interrogées. Les résultats sont affichés dans

des fenêtres pop-up.

Enfin, des méthodes nouvelles pour simplifier la programmation en X-Toolkit sont

discutées. Des lois et des méthodes gouvernant les différents objets constituant les inter­

faces usagers graphiques sont introduites.

Résumé 111

(

(

(

Acknowledgements

1 would like to thank my supervisor Professor D. A. Lowther for his help throughout the

courseofmymasler's research. His patience and concem helped meovercome numerous problems.

Special thanks to Peter Ashwood-Smith of Bell-Northem Researchfor his helpful comments

and suggestions, and to Carlos Saldanha whose master's thesis provided a subject for my own. 1

a/so would like 10 express my Ihanks 10 Bell-Northem Research for letting me we their computer

facilities after work hours, and on weekends. Many thankJ to my fellow students in the CADLAB

for creating a greal environment for friendship and research.

1 also would like to tlzank my parents Miclza!1 and Sonia for their support, and encour­

agement, and my sister and two brothers for their patience and caring.

Finally, 1 would like to express my t/tanks to Centre de Recherche Infonnatique de Montreal

for tlzeir financial support.

Acknowledgements iv

Table of Contents

Abstract.. ü

R~sum~ ... ili

Acknowledgements ... iv

CH.AYI'E.R 1 Introduction ... 1
1.1 Introduction to EDS ... 1
1.2 Dissenation Objectives ... 4

CHAPTER 2 Introduction to the X Window System .. 7
2.1 The X Window System .. "...................................... 7
2.2 The Client-Server Model ... 7
2.3 Resources And Rcquests ... 10
2.4 The Window Hierarchy Il
2.5 Window Management ... 12
2.6 The X Coordinate System ... 13
2.7 Window Mapping and Visibility .. 14
2.8 Maintain.ing Window Contents .. 15

2.8.1 Backipg Store .. 15
2.8.2 Save-Unders ,. .. 15

2.9 Events .. 16
2.10 Interfacing to X through Higher Libraries .. 16

CHAPTER 3 The X Toolkit ... 19
3.1 Widget Classes ... 19
3.2 The Xt Intrinsics ProgrammingFormat ... 20

3.2.1 Creating and Managjng Widgets .. 22
3.2.2 Handling Events 22

3.2.2.1 Event Handlers and Callback Functions ... 22
3.2.3 Xt Programming: A Brief Example 23

CHAPTER 4 Interfacing to EDS ... 27
4.1 Designing a User Interface for EDS ... 27

4.1.1 Pull-Down Menus ... 28
4.1.2 Dynamic Creation of PushButton Widgets .. 29
4.1.3 Creating Pop-up Widgets .. 30

4.2 The EDS Interface Widget Tree ... 30
4.3 Specifying Resources ... 33

CHAPl"ER 5 Parsing User Input ... 38
5.1 Expression Grammar and Parse Trees .. 38
5.2 Converting Infix Equations to Postfix/Preflx .. 40

5.2.1 Precedence Rules ... 41
5.3 Binary Tree Representation of Equations ... 43

. 5.3.1 Drawing Parse Trees .. 45

v

CHAPTER 6 Equation Sets and Equation Flow Graphs .. 47
6.1 Storage and Retrieval of ~uation Information ... 47

6.1.1 Extrading Related Equatiom .. SO
6.1.2 Generating Flow Graphs•...........•.. 51
6.1.3 Retrievins Equation WOrDlation ... S4
6.1.4 Inclusion m a Polygon .. S5

6.2 Memory Management ...•..•.............. 57
6.3 Printing Flow Graphs and Parse Tre..!s ... 58

CHAPTER 7 Conclusions .. .
7.1 Thesis SummaJ'ï , ... "'
7.2 Suggestions for Future Work .. .

7 .2~ 1 Rules ar~d Methods .. .
7.2.2 Expanding the EDS VI ...

Appendix A Widget Classes

Appendix B X Event Masks

59
59
61
77
79

80

87

Appendix C Stack Procedures and Line Segment Algorithms 90
C.l Line Segment Intersection ... 90

References.. 93

vi

•

List of Figures

F~gure 1.1 Conceptual algebraic model representation ... 3
Flgtlre 2.1 The client-sciVer m.f')del ... 9
Figure 22 A window tree hierarchy example. ... 12
Figure 2.3 Window tree for window hierarchy example. .. 13
Figure 2.4 A conceptual view of the X Window System. ... 17
Figure 3.1 The Xt Intrinsics pro~amming chart .. 21
Figure 4.1 The EDS interface Wldget tree ... 3]
Figure 4.2 A snap shot of the EDS user interface. 32
Figure 4.3 A typlCal example application. ... 34
Figure 4.4 Widget tree for figure 3.1 ... 35
Figure 5.1 Parse tree for A • (B + C). .. 39
Figure 5.2 Parse tree for (A + B) • (C + D). ... 44
Figure 5.3 Drawing parse trees. ... 46
Figure 6.1 Flow graph representation of V = IR and P = mi'>2. 49
Figure 6.2 Example flow graphs. ... 53
Figure 6.3 Side effects of pOInter events .. 55
F~gure 6.4 Diffe~ent point.insid.e-polygon cases ... 56
FIgure 7.1 A typlcal four-equauon fIow gra{>h .. 63
Figure 7.2 Flow graph links queried for variables in common 64
Figure 7.3 Querying flow graph nodes .. 65
Figure 7.4 Adding equations to the existing equation set .. 66
Figure 7.5 PushButton widgets representing equations ... 67
Figure 7.6 Selecting an equation ... 68
Figure 7.7 Binary tree representationin a pop-up ... 69
Figure 7.8 Fornung a subset of equations .. 70
Figure 7.9 Flow graph of the subset formed in figure 6.8 .. 71
Figure 7.10 Creating a second subset of equations ... 72
Figure 7.11 Flow ~raph of the subset formed in figure 6.10 .. 73
Figure 7.12 Deletmg equations from a given set .. 74
Figure 7.13 The result of deleting and adding equations .. 75
Figure 7.14 A conceptual view of the layers leading to Lisp ... 77
Figure 7.15 Rules governing menu entrles ... 78
Figure A 1 The X Widget class tree .. 80

vii

------ ------1-
(

(

(

CHAPTERI

Introduction

This dissertation describes the user interfac~ designed for the Electromagnetic Design

System (EDS). Before any dissertation objectives can be stated, EDS must first be introduced.

1.1 Introduction to EDS

EDS (Electomagnetic Design System) is a knowledge-based expert system aimed ~.

automating the computer-aided design of electromagnetie deviees su ch as transformers,

actuators, and motors [9]. EDS allows expert designers to create knowledge-based models of

electromagnetic devices. The solution to a device design problem involves three categories

of knowledge [9][25]:

• A parameterized representation of the device. Deviee parameters are variables that

represent geometric, functional, performance, and design calibration information.

• A mathematical model in which device parameters are eoupled through a set of

equations derived primarily from the underlying principles of electromagnetics.

• Design Logic. This eonsists of the mathematical model, and the expertise that a designer

acquîres through the years.

CHAPTER 1 1

The algebraic model of a device is represented by parameters. equations. and constants

[9]. An algebraic mode! may be graphically represented as a constraint network [26], where

nodes represent equations, and links are the variables in the equations. An example of a

constraint network is shown in figure 1.1 [9].

EDS uses data structures known as frames and semantic networks to represent !:omplete

constraint networks [91[27]. A frame is an item, and a list of item attributes. On the other

hand, semantic networks are graphs of relations between items. The frame-based language

used in EDS is Knowledge Craft [28][9], a super set of the programming language Lisp [29].

ln Knowledge Cran, a frame is known as a schema.

EDS uses a ~implifier to simpIify expressions, and a syrnbolic solver to solve for a variable

in a given equation [9]. The rule Slot of an equation schema is populated by an input expression,

onJy after this expr~ssion bas been simplified. After the rule slot is fùled, the input equation

is solved ior each of the variables, and the resulting clauses are inserted into the clauses slot.

ln cases where a solution is not found due to the lack of algebraic knowledge, the variables­

witlz·no-c1ause slot is filled with the corresponding variable. In such cases, the designer may

supplya clause to resolve the problem, or provide an altemate equation which is algebraically

solvable for the variable [9].

CHAPTER 1 2

•

,{

a) A typical set of transformer equations.

El: WA == 17.6 ~ Pl ~ S / (FREQ ~ B)
E2: P2 == EFF ~ Pl
E3: P2 == V2 ~ 12

b) The correspondïng constraint nelwork.

s B EFF 12

WA
Pl P2

FREQ

Figure 1.1 A conceptual algebraic model representation [9].

CHAPTER 1 3

- V2

{{ <equation name >
DESCRIPTION:
RULE
RAS-VARIABLES:} }

Figure 1.2 A generic equation schema (9).

{{ POWER-DISSIPATION
RULE: (EQUAL P (TIMES (EXPT 12) R))
RAS-VARIABLES: PI R
CLAUSES: (EQUAL P (TIMES (EXPT 12) R))

(EQUAL R (TIMES P (EXPT 1 -2)))
(EQUAL 1 (EXPT (QUOTIENT P R) -0.5))

VARlABLES-WlTH-NO-CLAUSE: }}

Figure 1.3 The schema representation of P s: /2. R [9].

Interactive sessions in EDS are cornrnand line driven, and consist oftext input and outpu t

oruy. EDS relies on a DECnet connection to access a Knowledge Cran shell running on a

remote computer (the remote computer is actually located at the Centre de Recherche

lnfonnatique de Montréal, and is accessed from the Computational Analysis and Design Lab­

orarory at McGill University).

1.2 Dissertation Objectives

At this stage, the objectives of this dissertation may be stated as follows:

1) Design a eraphical user interface to the Electromagnetic Design System, capable of

TUnning across networks.

2) Display algebraic knowledge in the form of graphical equation networks, thereby

providing electromagnetic device designers with a visual aid that helps them point out

related equations, and variables common to those equations.

CHAPTER 1 4

(

(

3) Provide a mecbanism for performing set operations on equations. This includes

creating, and grapbically representing sets/subsets of equations, and adding/deleting

equations from those sets/subsets.

The X Window System is used to accompli sb the lirst objective. X is a multi-windowing,

and network-transparent window system based on a client-server model. 1t was chosen for

designing the EDS UI mainly because it allows graphica} applications (clients) to run across

networks. The next chapter introduces X concepts, and Many of X's features.

User interface components (scrollbars, puU-down menus, pop-up windows, ...) used to

design the EDS UI are introduced in chapter tbree, preceded by a brief review of object­

oriented programming concepts.

The EDS UI design is introduced in chapter four. The functionality of the components

selected for building the interface are discussefi, followed by the EDS UI widget tree. Chapter

four also discusses the resource manager wbich May be used by el~d users for modifying the

look of the EDS VI to fit their own taste.

Expression grammar, parsing methods, and the approach adopted in tbis dissertation

to parse input expressions are presented in chapter five. Equations are converted into post­

fix/prefix notation. The derived prerlX notation of an input equation is used to fill out the rule

slot of an EDS equation schema. Binary tree representations of equations are displayed in

pop-up windows. Drawing is done using graphies primitives from the XIib library.

Chapter six discusses equation sets (represented as linked lists of structures in memory),

and the method used for generating graphical equation networles of different sets of equations.

CHAPTER 1 5

,

Variables common to related equations are determined. Variables of an input equation are

extracted and are used to fill out the variables slot of an EDS equation schema. Storage and

retrieval of equation information, as well as memory management are also explained.

Finally, the results of this exercise are discussed, and suggestions for further work are

presented in chapter seven. Throughout the remainder of this dissertation, graphica] equation

networles will be referred to as flow graphs.

CHAPTER 1 6

(

(

(

CHAPTER2

Introduction to the X Window System

2.1 The X Window System

The X Windaw System is an industry-standard software system tbat allows programmers

to develop portable graphical user interfaces [1]. X was developed at the Massachussets

Institute of Technology (MIT), with support from Digital Equipment Corporation (DEC).

The name, X, as weIl as sorne of the initial ideas originated from an earlier window system

named W, developed al Slanford University [1].

One of the most important features of X is its unique device-independent architecture.

This allows X-based applications to function in a het~rogeneous environment consisting of

mainframes, workstations, and personal computers [lJ. Unlike many other window systems,

X does not define any particular user interface styIt. It avoids dictating the look and feel of

user interface applications by providing a flexible set of primitive window operations. User

interface components 5uch as button boxes and pull-down menus are therefore missing from

the basic X Window System, and applications rely on higher levellibraries built on top of the

X protocol to provide these components [1]. The following chapter introduces one of these

libraries, the Xt Intrinsics, built on top of XIib.

1.1 The Client·Server Model

The X Window System architecture is based on a client-server model. A single process,

~own as the server, controls aIl input and output devices [1 J. The server acts as an intermediary

CHAPTER2 7

.'

between user programs, better known as clients. Clients communicate with the X server via a

network connection using an asynchronous byte-stream protocol. Network protocols sup­

ported by the X server include Tep /IP, DECnet, and Chaos. The following are the tasks

performed by the X server [2]:

•

•

•

•

•

Controlling access to the display by multiple clients.

Interpreting network messages from various clients.

Forwarding user input to clients.

Drawing text and graphies.

Maintaining data structures, including windows, fonts, and graphies contexts, as

resources that can be shared by clients.

The X architecture makes it possible for any n~lllber of clients to conne ct to any number

of servers, provided that the X protocol is obeyed. Servers and clients can also run on separate

machines located anywhere on a network. This use of the network is better known as distributed

process;ng. and helps solve the problem of unbalanced system loads [2]. The user of an

overloaded machine can arrange for sorne of the prcgrams to run on other hosts.

CHAPTER2 8

('

«

SUN 4"118

Running te

Clients

Het,work

Connection

1

Figure 2.1 The c:lient-server mode).

1

1

HP 98881'388

Runnlng H

Cliente

1

H Server Process

Running on ReMote

Uorkstation

X is a windowing system for bitmapped graphies displays [2]. It supports color as weB

as gray-scale and monochrome displays. While the terms display and screen are often used

interchangeably to refer to a CRT, X defines a display as a workstation with a keyboard, a

pointing device such as a mouse, and one or more screens. Normally, there is one display per

central processing unit (CPU).

CHAPTER 2 9

. '.

Any client application wishing to communicate with the X server must open a connection

to tbis server using Xlib. Once this connection is established, the application tan use any of

the screens controlled by the server to display text or graphies. At any time, a server can deny

client applications running on other hosts the right to connect to a display. This security

mecbanism provided by the X Window System works on a per-bost basis (1). Using the setup

shown in figure 2.1, Knowledge Cran, and the X server may run on the remote workstation

(Iorated at Centre de Recherche Infonnatique de Montréal), while EDS May run as a client

application on any of the host machines (located in the CADLab, al McGiIl) connected to the

remote workstation.

2.3 Resources And Requests

The X server maintains complex data structures, inc1uding windows, bitmaps, fonts,

cursors, and colors, as resources that can be shared between clients. Client programs access

these resources through resource identifiers, simply referred to as resource ID's. Resources

May be created or destroyed by the server at the request of a client [1].

A client application wanting to use a facility provided by the X server, must issue a

request to this server. Arequest is a single block of data sent by one of the clients to the server.

Requests requiring replies from the server are known as round-trip requests 12]. Round-trip

requests must be ,ninimized since they]ower the overall performance, and cause network

delays. Typical client requests include querying the server about window attributes, or font

sizes.

Client requests are placed in a queue, waiting for the X server to pro cess them. The

server and its clients run asynchronouslywith respect to each other, which improves the ove rail

CHAPTER2 10

----,

performance of X, and cuts down the round-trip requests over the network connection.

However, clients can ask the server to process requests synchronously. This causes poorer

performance, since eacb client request suffers a round-trip over the network connection [1].

2.4 The Window Hierarchy

An X window is a rectanguln area on the screen, with no title bars, scrollbars, or other

window decorations. Except for the root window, every X window bas a parent that is assigned

to il at the time of its creation. The root window is tbe first window created by tbe X server

as it st arts up.ln X, a window is contained within the limits of its parent. Window geometry

incJudes a window's width, height, position, and stacking order. On the other band, an X

window may be of class InputOutput or InputOnly, and has characteristics referred to as

deptlJ and visual , which determine its color attributes.

X windows are organized in a hierarchy, better known as the window tree. The top window

in the window tree is the root window. The root window occupies an entire screen, and cannot

be resized, moved, or iconized. Figures 2.2 and 2.3 illustrate how a window bierarehy might

show on the sereen and in sehematic form respeetively.

Windows A and Gare ehildren of the root window, while windows B, C, and D are

children of window A. Window G has windows H, J, and Kas its cbildren, and windows Land

Mare ehildren of J and K respeetively. Similarly, windows E and Fare ehildren of C and D.

CHAPTER2 11

2.S Window Management

Client applications do not have direct control over window attributes such as window

size and location. Although tbey tan suggest values for these attributes, the final decision is

made by a client program known 2S tbe window manager. The window manager allows the

user to perform sucb actions as modifying the location and size of windows on the screen,

reconfiguring the stacking order ofwindows on tbe screeo, and starting new client applications

[3].

Uindow B

Root Ulndow

Uindow A

Uindow E
c
:s
Q.

Uindow F 0 Uindow H E

'=' E:
Uindow C

.... Uindow G :1
~
CI
E

'"'
Uindow L

Uind10w n
Uindow Je

Figure 2.2 A window hierarchy example.

CHAPTER2 12

(

(

(

Figure 2.3 Window tree for window hierarchy example.

The window manager enforces a window layout policy which consists of a set of rules

governing the behavior and look of windows on the screen. The following are sorne of the

different public domain window managers that have been designed, mostly by compa::ries:

•

•

•

The Siemens RTL tiled window manager, designed sueh that only transient windows are

allowed to overlap.

The real·estate·driven window manager, de~igned sueh that the input foeus is active in

whichever window the pointer currently happens to be in.

The listener window manager. AlI keyboard input foeus is assigned to a single window

after the window is selected with the pointer.

2.6 The X Coordinate System

The origin of every X window is located at the upper left corner of that window. The

x-coordinate increases toward the right, and the y-eoordinate increases toward the bottom.

CHAPTER 2 13

-'

The width, height, and location are expressed in pixels. Plac:ing text, graphics. or subwindows

in an X window is made with respect to that windows origin. As a window moves, its eoordinate

system moves with il, permitting applications to place text or graphies without regard to the

window's location. Each X window is assigned a unique ID, and routines wanting to access a

particu1ar X window must refer to its ID.

2.7 Window Mappiilg and Visibility

A request to an X server by one of its client applications to ereate a window, does not

neeessarily make the window visible on the sere en. This is due to the fact that when an X

server creates a window, it allocates and initializes the data structures that represent the

window, but does not invoke the hardware-dependent routines that display the window on

the sere en (1). By issuing a map request, clients can ask the server to display a window on the

sereen. However, the window still might not be visible for any ofthe following reasons (1):

•

•

•

The window is completely covered by another window. The window becomes visible

only if the covering window is moved, or if the stacking order of the two windows is

reverse d, making the covered window visible.

An ancestor of the window was not mapped. The window becomes viewable only when

ail of its ancestors are mapped.

The window is completely clipped by one of its ancestors. The window becomes visible

once the ancestor is resized and inc1udes the window area. Another way is to move the

window inside the boundaries of a1l its ancestors.

CHAPTER 2 14

·1

(

(

l.8 Maintaining Window Contents

When two windows overlap, the contents of the covered window must be preserved, 50

that they CID be restored later. Windows using tbis technique to preserve their contents are

better known as retained raster windows. As the name suggests, window contents are saved as

a bitmap, or raster image.

2.8.1 Backing Store

X lays the responsibility of preserving a window's contents on the client using the window.

Sorne X server implernentations support retained raster, or backing store as it is referred to

in X. The backing store feature automatically preserves the contents of a window as it is

obscured. As the nurnber of windows increases, memory becomes a scarce resource. To

increase efficiency, the X server notifies a client when a window is exposed, and relies on the

client to redisplay the contents of the window [1].

2.8.2 Save-Unders

Many X servers also use a technique known as save-unders. A save-under controis

whether the contents of the screen under a certain window should be preserved before the

window is rnapped, and redisplayed after the window is unmapped. This technique is most

usefui for pop-up windows, which this dissertation relies on heaviIy to display different sets

of equations.

CHAPTER 2 15

2.9 Evelits

An X event is a packet of information that the X server generates wben certain direct

or indirect user actions occur. Events are sent to a client tbrough a queue, whicb the client

reads in a first-in. first-out fashion. The following are sorne exarnples of X events:

•

•

•

A key press on the keyboard.

Mouse rnovement.

A mouse click.

Since events board the queue in a random order, an event loop is used to wail for an

event to occur, respond to the event, and wait for the next one to happen. The code that forms

the event loop consists of an event-getting routine, followed by aC-language switch statement.

The X event loop is irnplemented as an infini te white loop [2].

2.10 Interfacing to X through Higher Libraries

Although the X server is built at the level of packets and byte-streams, libraries exist

that interface to the base window system. One standard interface to X is the C-language, Xlib

library. Xlib defines a set of functlons that provide the user with complete access and control

over the display, windows, and input devices. Identicallibraries also exist for LISP and ADA

[1].

Application prograrnrners can use XIib to design user interfaces. However, this library

can be difficult to use correctly. Just imagine that to display "hello world" in a window using

XIib takes forty executable statements ! (8). In an effort to hide the details of programming

CHAPTER2 16

(

f

with X1ib, higher-Ievel too/kits have been designed. These toolkits include InterViews

(Stanford University), Andrew (Carnegie-MeDon), Xray (Hewlett-Packard), and CLUE

(Texas Instruments). ln designing the interface to EOS,I have used the Xt intrinsics, and the

X Widget Set, Xw, contributed to the X community by Hewlett-Packard.

the Progra .. er'. Application

the H Uldget Set

The Ht Intrln.ics

--
The Hllb C-!.anguage Interface

Network Conneclion

~ The X Server J

Figure 2.4 A conceptual view orthe X \Vindow System.

Using the X Window System, EDS can run as a client application across a network of

X host machines. X allows graphies applications to run across networks. An end user may run

multiple client applications on different host machines, while graphically interacting with

those clients from his/her own terminal.

CHAPTER 2 17

Before describing the EDS VI, a brief introduction to the Xt and X w widge ts is presen te d

in the following chapter. Both Xt and Xw are built on top of Xlib, and are smoothly integrated

with it. This allows programmers to use the functions provided by XIib, in addition to using

the higher levellibranes. The Xt Intrinsics and the X Widget Set are both written in C.

CHAPTER2 18

(

(

CHAPTER3

The X Toolkit

The Xt Intrinsics prov;des programmers with an extensible set of user interface corn­

ponents that indu de scrollban, menus, pushbunons, and dialog boxes. These components are

better known as widgets. A widgct is a complex data structure tbat consists of an X window

and a set of procedures that aet on that window [1]. At this stage, it is important to point out

the difference between a widget programmer and an application programmer. A widget

programmer is a producer of sclf-contained reusable components, while an application pro­

grammer is a consumer that uses these components to des;gn applications.

3.1 Widget Classes

The Xt Intrinsics use an object-oriented approach that organizes widgets into classes. A

class is a set of objects that possess simil&r characteristics. On the other hand, an object is an

abstraction that combines data and the actions (also referred to as methods) that can be

performed on the data. Individual objects are instances of a given ,1;;.sS. For example, an

object-oriented graphies program for drawing circles, polygons, cubes, etc .. , might define

classes CIRCLE, POLYGON, CUBE, etc .. , for each of these different objects. This setup may

be symbolically represented as follows:

CI RCLE -= {x 3xLsaclrcle}

POLYGON .. {y 3 Ylsapolygon}

CHAPTER3 19

CU BE· {z:. zisacube}

The class GRAPHICSOBJECI' is the set of classes formed by combining the above three

classes, and is also known as a super class. Bach of the given classes might also define such

attributes as col or, position, and dimension of a graphical object.

GR APH ICSOBJ ECT - {CI RCLE. POLYGON .CU BE}

ln the Xt Intrinsics, instances of a given widget cIass may be created, and widget attributes

(also referred to as widget resources) may be set. The Xt Intrinsics also supports inheritance,

another useful object-oriented concept that allows a given c1ass to inherit sorne or aU of the

characteristics of another class, or super c1ass. The different widget classes provided by the

Xt Intrinsics and the X Widget Set are listed in appendix A

3.2 The Xt Intrinsics Programming Format

The majority of applications using the Xt Intrinsics follow the programming outline

shown in figure 3.1. The first step consists of establishing a connection with the X server, and

initializing the Xt Intrinsics. Next, widgets may be created and widget resources May be set.

ln the third step, event hand/ers and callbacks May be defined. Finally, all created widgets are

realized, and the application enters the event loop.

CHAPTER3 20

•

(Initl.II •• ~he Mt In~rh,.lc. J

-, Il
(c t. Uldgeta .nd Set U Idget IIeaourc •• J

-, 1/

(Add Callbacks and Ewant HancUers J
, 1/

(Real ize Cr.ated Uidget. J

f ... " 1/

(Loop rar Events J

Figure 3.1 The Xl Intrinsics programming chart.

CHAPTER 3 21

,,".

.;'

3.2.1 Creating and Managing Widgets

Widgets are organized in a bierarchical structure referred to as a widget free. The root

ofthe widget tree is known as the root window. After a widget is created, it must be managed

bya parent widget. Basically, a widget's parent manages such attributes as the location of the

widget, its size, and whether the widget has the input focus. A widget's appearance on the

screen is controlled by a set of options and resources that May be specified by the end user.

3.2.2 HandUng Events

The Xt Intrinsics provides application programmers with a listener mechanism that waits

for events to occur in a widget, and automaticaUy invokes event handling functions registered

by the widget or the application itself for handling each of the events (1]. Finding the proper

widget where an event takes place, and invoking the right event handler(s) is referred to as

event dispatching .

3.2.2.1 Event Handlers and Callback Functions

An event handler is a function that gets invoked automatically by the Xt Intrinsics when

an X event takes place within a widget. Applications can register multiple event handlers for

the same event occurring in the same widget. However, the Xt Intrinsics does not define the

order in wbich multiple event handlers are invoked wben the triggering event occurs.

Callbacks are functions that get caUed when certain widget·specific conditions are met.

Callbacks are different from event handlers in that tbey get invoked by widgets rather than

the Intrinsics, and are not necessarily tied to any X event.

CHAPTER3 22

(

f
J

3.2.3 Xt Programming: A Briel Example

How hard can it be to display "Hello World" in a window using Xt 1. Using Xlib, this

takes forty executable statements [8]. The following example program answcrs the same

question from the X Toolkit point of view. ,
• hello.c: Disrlay "Hello World" in a StaticText window • ... ,
#lnclude < Xl1/Intrinsic.b >
#lnclude < Xl1/StringDefs.b >
#lnclude <Xw/Xw.b>
#include < Xw/SText.h >

maln(argc, argv)
lnt argc;
char • argv[];

{
Widget toplevcl, helloworld;
Arg wargs[l];
lnt i;

r
1 Initialize the Xt Intrinsics.
·1

toplevel = Xtlnitialize(argv[O], "Hello", NULL, 0,
&argc, argv);

r
1

Create a StaticText widget and display "Hello World"
inside it .

. t
1 = O· ,
XtSetArg(wargs[i), XtNstring, "Hello World"); i + + ;
helloworld = XtCreateManagedWidget("hw", XwstatictextWidget

Class,toplevel,wargs,i); r
1 Realize the widgets and Joop for events.
·1

Xl ReaUze\\'idget(topleveJ)~
XIMainLoopO;
)

CHAPT ER 3 23

The function

XtlnltiaUze(name, class, options, noptions, &argc, argv)

establishes a connection with the X server, and initializes a resource database used by the X

resource manager. The name parameter is usually tbe Dame of the application, while the c1ass

parameter indicates the general class the application belongs to. The third and fourth

parameters specify how the Intrinsics should interpret application-specifie command·line

arguments, while the last two parameters control common command-line arguments. Xtlni­

tialize() creates and returns a Topl..evelShell widget which serves as the root of all other

widgets in the calling application [1].

The function

XtCreateManagedWidget(name, c1ass, parent, args, nargs)

creates a managed widget in one cali to the Xt Intrinsics. The name argument is an arbitrary

name of the widget, and c1ass is the type of widget to be created. For an overview of the widget

classes available in Xw, refer to appendix A. The parent argument specifies the widget parent

of the widget to be created, while the last two arguments to XtCreateManagedWidgetO specify

the resources used by the widget [1]. Since XtCreateManagedWidgetO simply allocates and

initializes the widget data structures, a ca1l10 the function

XtRealizeWidget(widget)

must be made if the widget is to be physically displayed on the screen. The Xt Intrinsics for

sp~cifying widget resources is done through the use of the function

XtSetArg(arg, name, value)

CHAPTER3 24

(

(.

where arg, name, and "alue represent an array element of type Ar&, the resouree name, and

the value of the resource respectively. The fuoction XtSetArg() tan also be used ta set or

retrieve widget resourees after a widget is created.

The event-listening loop is the last statement in the example. It is implemeoted as an

infinjte C-Janguage for Joop as follows:

for (; ;) {

}

XEvent event;

XtNextEvent(&event);

XtDlspatchEvent(&event);

The XINextEventO funetion extraets the next event from the event queue, and bands it in to

XtDispatchEventO which invokes the appropriate event handler. Sinee tbis piece of code is

always the same in ail Xt Intrinsics applications, the Intrinsics provides it as a function:

XtMainLoopO

As may be seen from the above example, the Xt Intrinsics hide the details of programming

with Xlib by creating primitives that internally calI hundreds of Xlib functions. The Xt

Intrinsics, and the X Widget Set provide application programmers witb a library of user

interface components that simplifies the task of writing applications, while allowing them to

access Xlib functions when necessary.

The EDS UI architecture outlined in the next chapter follows the Xt programming

format described previously. User interface components such as scrollbars, pull-down menus,

CHAPTER3 25

and icons are used to make user interaction with computers easier, and more productive. End

users May modify the widget resources of BDS (widget colors, font sizes, ...) by using the X

Resource Manager introduced at the end of chaptcr four.

CHAPTER3 26

•

{

-(

CHAPrER4

Interfacing to EDS

4.1 Designing a User Interface for EDS

ln order to provide the end user with a way for supplying equations to EDS, as weil as

equation information, TextEdit widgets are created. Bach of these widgets is modified to hold

a one-line text field, and to adjust its width according to the font type specified in the resource

database. Horizontal scrolling is enabled so as to allow the user to enter expressions wider

than the width of each of the fields. TextEdit widgets support most EMACS editing commands,

as weIl as text cutting and pasting. A TextEdit field is active when the pointer is inside it.

When the user enters an equation in infix notation in the appropriate TextEdit field, a

series of events takes place based on the syntax of the equation provided. If the equation

provided has the wrong syntax, the following series of events is executed:

•

•

•

A StaticRaster widget is created, and a red cross-mark icon is displayed to suggest that

user input cannot be accepted as entered.

A StaticText widget reserved for error messages displays the error message related to

the equation provided.

The TextEdit widget cursor points at the location of the error, and enters a blinking

state until the error is corrected.

On the other hand, if the syntax of the provided equation is valid, a different series of events

is executed:

CHAPTER4 27

•

•

•

A StatlcRaster widget is created, and a green check-mark icon is displayed to suggest

that user input is aceepted.

The equation entered is displayed inside a TextEdit widget that keeps a record of the

entered equations. The TextEdit widget in this case is created as a child of a Scrolled­

Window widget.

The pointer moves to the next TextEdit field in order to relieve the user from using the

mouse to get the same effeet.

As humans, our reflexes have been trained to accept green as the "go-ahead" color, and

red as the "stop" col or. Based on this fact, green is used to color check-mark kons, and red to

color cross-mark kons.

ln order to label each of the TextEdit widgets, StatitText widgets are used. The color

of a StaticTen widget is inverted when the corresponding TextEdit widget is active. This

feature is added to help the user distinguish between active and non-active widgets. Widget

labels may be set by the end user in the .Xdefaults file (explained at the end of this chapter).

4.1.1 Pull·Down Menus

To provide the user with the ability to display equation flow graphs and binary trees,

delete and add equations, create equation subsets, retrieve equation information, and operate

on different sets/subsets of equations, pull-down menus are created. By selecting the

appropriate menu entry, any of the following actions may be executed:

• Creating and deleting different sets of equations. A set of equations in this case is sim ply

a group of equations supplied by the user.

CHAPTER4 28

"" fl

• Generating Oow graphs of one or more sets of equatioDS.

• Converting equations from infix to postfix/prefix.

• Oenerating binary tree representation graphs of equations.

• Ouerying flow graph nodes.

• Ouerying flow graph links.

• RefJ eshing any of the WorkSpace widgets.

• Printing flow graphs and binary tree representation graphs.

• Quitting the application through a dialog box.

WorkSpace widgets are used to display equation flow graphs and binary tree repre­

sentation graphs. Each WorkSpace widget is created as a child of a Sc:rolledWindow widget.

The vertical and horizontal scrollbars of the Sc:roUedWindow widget are enabled, allowing

large graphs to be drawn into the WorkSpac:e.

4.1.2 Dynamic Creation of PushButton Widgets

When a request is made to delete an equation from a given set of equations, or to form

a new set of equations, a pop-up RowCol widget is created. This widget holds PushButton

widgets whose labels represent equations previously entered by the user. These buttons are

dynamically created since the number of equations is changing as the user enters or deletes

equations. The number of PushButton widgets is dependent on the amount of heap space

available.

CHAPTER4 29

A request made to dei ete a selected equation is not executed until the user confirms

the action by selecting an "Enter" button. A "Cancel" button is also provided, and serves for

a last-minute decision change. The same methodology is used when the user is picking

equaticns to fonn an equation set.

4.1.3 Creating Pop-up Widgets

The first set of equations created by the user is displayed in a static WorkSpace widget.

Additional equation sets are displayed in pop-up WorkSpace widgets that are created as

children of ScrolledWindow widgets. Similarly, a request to generate the binary tree repre­

sentation of a selected equation causes a WorkSpace widget to be created as a child of a

ScrolledWindow. AlI pop-up widgets inc1ude menu entries for ;efreshing these widgets, or for

destroying them. Users may pan up, down, left, or right in ail WorkSpace widgets so as to

bring a given flow graph, or binary tree area into focus. As stated previously, the number of

pop-up widgets that can be created is totally dependent on the amount ofheap space available.

4.2 The EDS Interface Widget Tree

A Bulletin80ard widget is created as a child of the Topl.evelShell widget to hold aIl the

non-pop-up widgets stated in the previous sections of this chapter. The widget tree is sum­

marized in figure 4.1, and the corresponding user interface is shown in figure 4.2. End users

may easily modify many of the EDS interface resources (such as widget colors, font sizes, field

labels, ...) as explained in the following section.

CHAPTER4 30

(

(

--& -

lhell - 'opu""" -1"'11 - Ca.cad. t n. ... Iu'twn

llenuBut'tOn

tIe"""'twn

hl. -Popupngr -8_11 - Caac.de ~ tlenulutton

n.nuluUon

tlenulutton

tlenuButton

Sil. 1 1 - 'opupttgr - .1Ie11 - Ca.cade t llenulu't'tan

ItenuBuUan

llenuluUan

Sh.lI - PapupMgr - SM 11 - Caacade - IlenuButt.on

ScralledlHndaw -lextEdlt
ScralledUlndaw - UarkSpace

StatlcText
StatlcT.xt

St.tlcText

StatlcT.xt

St.tlct.xt

St.tlcText

St.tlct.xt

St.tlcText

lextEdlt

lextEdit

lextEdl't

Figure 4.1 The EDS interface "idget tree.

CHAPTER4 31

tl
-e
~

a -il •
!

'1 .1 -..
1
• • Il
."

~ ., ..
!
~
~

CHAPTER4 32

(

(

4.3 Specifying Resources

Generally speaking, user interfaces are designeci to make user interaction with corn­

puters easier and more productive. However, no matter howwell the application programmer

tries to anticipate the needs of the user, there is always someone who wishes to alter the

behavior of a program [1]. Therefore, il is important that the user be able to cu'\tomize an

application to his/her own needs and tastes.

ln order to provide both the application programmer and the end user with the ability

to customize applications, a resource manager facility known as tbe X Resource Manager was

designed by the developers of the X Window System.

To application programmers, X resources are data required by an application. !ngeneral,

X resources are options that affect the behavior and look of an application. These include

window IDs, colors, fonts, sizes, border widths, positions, etc ... The X Resource Manager

aIJows the user to modify most of these resources.

Every application and resource in X is expected to have a name and a class. A class

indicates the genera] category to which a given entity belongs [1]. Consider the setup shown

in figures 4.3 and 4.4. An end user can specify the foreground color of a toggle button named

togglet by simply specifying the following line in his/her .XdeCaults file residing in the user's

home thl'ectory:

circuit.frame.work _ space.toggles.toggle 1.foreground: Green

Specifying the foreground color for togglet consists of traversing the widget tree from

top to bottom, and listing aIl the ancestors of togglet. However, this resource specification

rule may be inconvenient when large widge~ trees are involved. Instead, the X resource

CHAPTER4 33

f ,_.
manager provides the user witb an asterisk '.' as a wild card characler for representing any

Dumber of resource Dames or class Dames. Therefore, the foregrouDd color of toule1 may

DOW he specified as follows:

1 III II' 1. III

:.

::
.'

: ~

:: ..

Figure 4.3 A typical example application.

CHAPTER4 34

1

(

(

clrcul~

no,JAveIShe 1 U

1
Ir ...

Clull.tl)

~I~
~tton. MOr._area tot,I ••

(RowCoU (UorJcS,ace> (RowCoU

/I~ /I~
hu~œnl but.ton2 butt.on3 ~glel ~gle2 tosrgle3

(Button) (Button) (Butto") (Toggle) (Ioggle) (Toggle)

Figure 4.4 Widget tree for the example application of figure 4.3

circuit*'ogglel: Green

Resource specification rules may be generalized by using class names instead of widget

names:

*RowCol.foreground: Green

The above specification implies that the foreground color of aIl widgets belonging to class

RowCol should be green regardless of the app1ic~ tion. The rules governing widget resource

specifications are listed below:

CHAPTER4 3S

"

.,

•

•

•

•

Entries in the .Xderaults file prefixed by a dot (':) are more specifie, and have preeedence

over those prefixed with an asterisk ('.'). Therefore,

*clreult.foreground: Green

bas precedenee over

*clrcuit*foreground: Red

Resource names have precedence over dass names. Therefore,

*toggle1.foreground: Green

has precedence over

*Toggle.foreground: Red

Resource names or dass names have precedenee over asterisks. Therefore,

*BulletinBoard*WorkSpace*Toggle*foreground: Green

has precedenee over

*BulletinBoard*WorkSpace*Coreground: Red

Entries are evaluated left to right. Items encountered first have precedence over

successive items. Therefore,

circuit*BulletinBoard*Coreground: Green

bas precedence over

circuit*BulletinBoard*foreground: Red

CHAPTER4 36

\

(

(

(

This cbapter introduced tbe X Resource Manager through wbicb widget resources such

as coJor, font type, and widget labels may be specified by end users. The EDS user interface

architecture was pr~sented, alODg witb the different widget types that were used. The next

cbapter discusses parsing of equations supplied by the user tbrough TextEdit widgets.

Equations are converted to different notations, and their binary tree representations are

generated.

CHAPTER 4 37

CHAPTERS

Parsing User Input

Recognizing legal programs or expressions and decomposing them into forms suitable

for further processing, is better known asparsing. Two generaI approaches are used for parsing,

top-down and bottom-up. Top-down parsers look for a legal expression by first looking for

parts of the legal expression, then looking for parts of parts, etc. until the pieces are sm aIl

enough to match the input directly. Bottom-up parsers on the other hand, keep assembling

pieces of the input in a structured way until a legal expression is constructed [10]. Top-down

parsers are generally recursive, while bottom-up parsers are iterative. In this dissertation, 1

have used a bottom-up parser to parse equations entered by the user in TextEdit fields.

Although 1 could have used YACC/LEX (Unix facilities for building compilers) to achievc

the same goal, 1 have chosen not ta, since the X Window System is being ported to PCs (mainly

by Interactive Computers of California) running DOS, and where emulated Unix facilities

might not be available.

5.1 Expression Grammar and Parse Trees

Before writing a parser program that parses inftx equations, infix grammar must be

defined. A very small subset of infix grammar that involves addition and multiplication is

defined below:

[expression] = [tenn] 1 [temz] + [expression]
[tenn] = /factor] 1 [factor] • [temz]

[factor] = ([expression]) 1 v

CHAPTERS 38

1

\
".

The symbols (,), +, and • are known as terminal symbols. On the other band, {expression],

(term), and (factor) are non-terminal symbols, and are internai to the grammar. The symbols

., and 1 are known as metasymbols, wbile the symbol v stands for any letter or digit. "=" may

be read as Mis a", and " 1" as "0"'. Therefore, the first line of the infix grammar translates to "an

(expression) is a {tenn] or a (term] plus an (expression)" (10).

The following example shows that the parse tree of A • (B + C) complies with the

above grammar.

'\
~er.

\
\
c

Figure 5.1 Parse tree for A • (B + C).

CHAPTERS 39

A parser accepts strings that exist in the language described by the grammar, and discards the

rest. Bottom-up parsers do this by starting with the string at the bottom of the parse tree until

they reacb the nonterminal at the top. Top-down parsers do exact1y the opposite, starting al

the nonterminal top, and finishing at the bottom of the parse tree [10].

5.2 Converting llÜax Equations to postrax/Prerax

Although EDS converts infix expressions into prefIX internaUy using Lisp, an infix-to­

prefix C-routine generally does the conversion faster. The following section outlines an

algorithm for converting infix equations to postflX/prefix. The sum of A and D is represented

asA + D, whereA and B are known as the operands, and' +' as the ope rat or . This representation

is referred to as inflX. The sum of A and B can also he represented as follows:

+AB
AB+

Prefix
Postfix

Prefix is known as Polish notation, while postfix is known as reverse Polish notation. The names

are due to the inventor, the Polish mathematician Jan Lukasiewicz (1878-1956) [11]. Prefix

notation can he thought of as a mirror image of postfix. Notice that in going from infix to

postfix, parentheses are not required:

(A+B)*C
AD + C.
A+(B*C)
ADC·+

Infix
Postfu
Inru
postra

The order of tlle operands in the two previous expressions is the same. The first operand,

A, of the infix expression A + B * C, can be immediately inserted into the postfix expression.

the operator' +' cannot he inserted until after its second operand. Therefore, it must he stored

CHAPTERS 40

•

(

away untn its proper insertion position is available. When the operand B is encountered, it is

insened directly after A. Now that two Ope rands bave been insened, t + t still cannot be

retrieved. This is due to the '.' operator, whicb follows and has precedence over '+'. In the

infix expression (A + B) • C bowever, the closing parenthesis indicates that the' +' operation

abould be performed first [11].

5.2.1 Precedence Rules

From the previous example, il is obvious that precedence rules govem the infix-to-postfix

conversion. By defining a boolean function,ptal(opl, op2), where opl and op2 are characters

representing operators, precedence rules can be set such that prcd('·', ' +') is true, while

prcd(' + " '.') is false. Generalizingprecedence rules to inc1ude delimiters, and most arithmetic

and unary operators, the following rules emerge:

prcd('(',op2) = false for any op2.

(, prcd(opl, '(') = faise for any apI other than ')'.

prcd(opl, ')') = true for any opt other than '('.

prcd(')', 'e) = undefined.

prcd('·',op2) = true for any op2 E {' + ' , ' - ' , '*' , ' l'}.

prcd(' /" op2) = true for any op2 E { , + ' , ' - ' , , * ' , ' l ' } .

prcd(' +', op2) = true for any op2 E { , + ' • ' - '} •

prcd('-',op2) = true for any op2 E {' + ' , '- '}.

prcd(''''',op2) = true for any op2 other than 'A'.

prcd(opl,op2) = true for any op2 other than ''''', and for

CHAPTERS 41

opl E { , si n ' • 'cos' • t tan' • 'cotan' • ' log' • ' 1 n ' • 'exp'}.

The infix-to"postfix conversion routine is presented below. opstk is the operator stack,

and is initially empty. Procedures push() and popO store and retrieve operators from the

operator stac1e, wbile procedures empty() and opndO check if the operator stack is empty. or

if a token is an operand, respectively. Finally procedure popandte.stO pops an element {rom

the operator staeke and uses the boolean variable und to indicate wbetber stack underflow

has occurred [11].

begin {procedure postfix}
topsymb : = + ';
opstk.top : = 0; {start with an empty stack}
position : = 1;
outlen := 0;
{scan symbols until encountering a blank}
symb : = infix[~ositionl;
while symb < > '
do begin
if opnd(syrnb)
then begin {operand is found}
outlen : = outlen + 1;
out[outlen] : = symb;

end
else begin {if an operator is found}

popandtest(opstk, topsymb, und)
wbile(not und) and (prcd(topsymb. symb»

CHAPT ER 5

do begin
outlen : = outlen + 1;
out[outlen] . = topsymb;
popandtest(opstk, topsymb, und)

end
Ifnot und
tben push(opstk, tORsymb)

if und or (symb < >)')
tben push(opstk, symb)

else topsymb : = pop(opstk)
end
if position < maxcols
tben begin
position: = position + 1;
symb : = infix[position];

end
else symb:= "

42

end
whlle Dot empty(opstk)
do beain
outlen :- outlen + 1;
out[outlen : - pop(opstk)

end
end

When an opening parenthesis is encountered, it is pushed onto the operator stack. This

guarantees that an operator appearing after a left parentbesis is pushed onto the stack. On

the other hand, when a right parenthesis is encountered, al1 operators since the opening

parenthesis must be popped from the operator staele, and inserted into the postflX expression

[11]. The next section discusses parse tree construction.

5.3 Binary Tree Representation of Equations

Given an equation in postflx notation, the corresponding binary tree representation,

a]so known as the parse tree, may be constructed. The ru]es for constructing parse trees comist

of p]acing the operator at the root of the tree, and the trees corresponding to the first and

second operands at the left and right of the tree. As an example, consider the infix expression

(A + B) • (C + D). In postfix notation, this expression is written as A B + CD + ., and

the corresponding parse tree is shown in figure 5.2.

The routine used for constructing such trees from a postflX expression is listed below.

Every tree node has a left and a right link to other nodes. For an ope rand encountered while

scanning a postfix expression, anode is created using the primitive new. An operand node has

nulllinks. On the other band, a unary operator such as log, is represented as anode with one

nulllink (10].

CHAPTERS 43

Figure 5.2 Parse 'cee for (A + B) • (C + 0).

type link = I\node;
node = record info: char; l, r : link end;

var x, z : link;
c: char;

begin
stackinit;
new(z); zl\.1 : = z; zl\.r : = z;
repeat
repeat read(c) until c< >";
new(x); xl\.info : = c;
if(c = '.') or (c = '+') or (c = '-') or (c = 'l')
then begin x"'.r : = pop; x"'.1 : = pop end
el se if (c = 'log') or (c = 'sin') or
'hen begin x"'.r = pop; x'''.l : = zend
else begin x"'.r : = z; xl\.1 : = zend;

push(x)
until eoln;

CHAPTERS 44

"

The proceduresstackinit,push, andpop initialize, push elements onto the stacJe, and pop

elements from the stade. They are defined in appendix C. The next section describes how

(, parse trees are drawn into WorkSpace widgets.

5.3.1 Drawing Parse Trees

Once the parse tree of an equation is constructed, it can be drawn into a WorkSpace

widget. The procedure used to draw a parse tree consists of traversing tbe postrlX tree in Ievel

order, where tree nodes are read down from top to bottom, and from left to righl. The sequence

., +, +, ~ B, C, D refers to the level order traversaI ofthe parse tree shown in figure 5.2 [ID).

When a tree node is read, caUs to the Xlib primitives XDrawArc() and XDrawStringO are

made to draw a tirde and a string centered inside it respectively. The string drawn simply

represents the contents of a node. At the same time, the 1eft and right links of the node are

drawn (assuming that the next level nodes connected to the current links are not null) using

the Xlib primitive XDrawLineO. The end points of the segments are determined from the
,1
t faet that as one moves from one level of the tree to the next, the number of null and non-null

f
"

nodes increases by a factor of 2 n, where n is the level number.

The next chapter discusses equation sets, and the methods used to store and retrieve

equation information graphically from flow graphs representing these sets. Dynamic gener­

ation of flow graphs representing user chosen equation sets are also discussed.

CHAPTER 5 45

1
laYel 1 (n = 1)

T
Jt

l Level 1 (ft = 1)

i
h

l t.Ht1 2 (n = Z)

the ftuMber of nul' and non-nul' nodes at Any Jeyel ,.

given by Zn.

Figure 5.3 Dra\\ing parse trees.

CHAPTER5 46

,
"

CHAPI'ER6

Equation Sets and Equation Flow Graphs

Afler user supplied equations are parsed, they are used to populate linked Iists of data

structures that hold detailed information about these equations. Data can then be retrieved

from the data structures, and used to generate eouation flow graphs representing stored

equations. In addition to providing the userwith the a"'Ilty to generate flow graphs for different

sets of equations, the package also allows the user to add or delete elements from these sets

of equations. The addition or deI et ion of equations is graphically reflected in the WorkSpace

widgets where equation flow graphs are drawn.

6.1 Storage and Retrieval of Equation Information

After the syntax of a supplied equation is validated through the parser, the equation is

stored in a C-language data structure. Af, more equations are entered, a linked list of data

structures is formed that represents the se equations. When a request to draw the flow graph

of a given set of equations is made, the linked list is copied into a dynamically allocated array

of structures that has the following format:

typedef struet Eqt {
int x;
int y;
int mflen;
int postlen;
int preflen;
int varlen;
char aeqlside;
char aeqrside;
char aeqname;
char a .irifix;

CHAPT ER 6

r x-coordinate of equation node. a/ r y-coordinate of equation node. a/ r number of tokens in infix eqn. a / r number of tokens in postnx eqn. a/, r number of tokens in prefix eqn. • r number of variables 10 equatlon. a / r left side of equation. a / r right side of e'luation. a / r name of equatlon (optional). a / r equation in infix form. • /

47

char "postfix;
char • ·prefix;
char "var;
struet Tiedto ·tiedto;

} Eqt;

typeder struet Tiedto {
char *eqlside;
struet Vars ·vars;
struet Tiedto *next;
struet Tiedto ·previous;

} Tiedto;

typeder struct Vars {
char ·vamame;
struct Vars *next;
struct Vars ·previous;

} Vars;

,. equation in postfix fonn. ï ze equation in prefix form. • ze variables in equation. * / r Equations tbat may be related to
tbis equation. • /

r Left side of equation. *'
1* variables in common.-/ r link to next equation. -/ r link to previous equation. • /

r variable. ~ /
/* link to next variable. * / r link to previous variable. * /

Before describing the above structures, the model used to represent equations must be

defined. Consider the following equations:

v = I*R (Ohm' s Law)

(Power DlSSlpatLOn)

These equations may be graphically represented as two circ1es (equation nodes), and a line

segment (link) connecting them. The setup is shown in figure 6.1.

CHAPTER6 48

Figure 6.1 Flow graph representation of V .. J * Rand P _/2* R.

Since 1 and Rare common to both equations, a Iink is drawn between the nodes representing

these equations. A node in this case is simply a circle whose inside holds an equation string.

On the other hand, a link shows that a relationship exists between two given equations. The

variables common to the two given equations are shown next to the link. The combination of

nodes and links is known as aflowgraph.

Going back to the data structures presented earlier, x and y of structure Eqt represent

the coordinates of the center of an equation node, while Innen, postlen, and prenen represent

the number of tokens in the infix, postfIx, and prefIx equations respectively. The number of

variables in the equation is stored in varlen. The left side, right side, and name of the infix

equation are poimed at by the structure members eqlside, eqrslde, and eqname respectively.

The infix tokens, postfix tokens, prefix tokens, and variables making up the equation are stored

CHAPTER 6 49

in arrays of strings pointed at by the structure members inOx, postlix, prelix, and var

respectively. Finally, the tiedto member forms a linked list of equations tied to the current

equation. Variables common to two given equations are stored in the Vars linked list.

6.1.1 Extracting Related Equations

When the user requests that a flow graph of a given set of equations be generated, a

se arch through the array of structures representing the set of equations must be conducted

internally in order to single out related equations. The se arch consists of a pattern matching

algorithm that tries to match every variable of a given equation with the variables of the

remaining equations in the set. Every two equations are compared only once. The se arch

continues until aIl equations have been scanned. For a set of n equations, the number of

equation comparisons performed is given by:

(n- 1)+(n-2)+ ... + 1-(n 2 -n)/2

To illustrate this algorithm, consider the example equations presented in the previous section.

Assume that the set of equations consists of:

The algorithm starts by picking the first variable (1) of the first equation (V) in the set,

and scans equation P in search for the same string. Since 1 is also a variable of equation P,

the search is successful and the Eqt structure member tiedto is now initialized to P. Next,

variable (R) of the first equation is picked, and a similar se arch is conducted. After variables

CHAPTER 6 50

of the first equation are scanne d, the searcb is complete. By DOW, the data Structures have

been filled, and in panicular, the structure tledto contains information equivalent to the

following:

Vnp-{/.R}

The prer.x member of the Eqt data structure presented earlier is used to fill out the rule

slot of an equation schema in EDS. On the other hand, the vars structure member is used to

fill out the has-variables equation schema slot. At tbis stage, EDS solves for all variables in

the input equation, and stores the corresponding clauses in the clauses equation schema siot

(assuming that the symbolic solver finds a solution to each of the variables in the input

equation) (9).

6.1.2 Generating Flow Graphs

The centers of the equation nodes shown in figure 6.1 occupY the ends of a line segment.

(For an equation set consisting of three equations, node centers occupY the vertices of a triangle.

(

A four-equation set has ils node centers located at the vertices of a square etc .. The algorithm

for generating the equation node centers is outlined below:

Pl = 3.141593;

angle = 2.0 • Pl / number _of_equations;

begin i: = 1 to number _ of _ equations do

xli] = x_center + radius ·cos(i • angle);

yli] = y_center + radius • sin(i • angle);

end;

CHAPTER6 51

. '

.....

The node centers lie on a circle of center (x_cellier, y _center), and of radius radius, and

divide the circle perime ter into number _01_ equDlions equal arcs. Each of these arcs bas angle

as its angle, taken from the center of the circle .

The algorithm used for generating equation Oow graphs consists of scanning the array

of Eqt structures, and of drawing nodes at specified x and y member coordinates. At tbe same

ÛJDe, tbe algorithm checks the structure member tiedto to determine if the current equation

is related to other equations. Links are drawn between related equations.

Equationflow graphs are drawn inside WorkSpacewidgets. The Xlib graphies primitives

XDrawStringO, XDrawLineO, and XDrawArc() for drawing text, lines, and arcs are used. The

contents of WorkSpace widgets are maintained by drawing graphies both inside WorkSpace

widgets, and into pixmaps. An X pixmap is simply an area of memory similar to a rectangular

region on the sereen, exeept that it is stored in off-screen memory, and is not visible to the

user [1]. Like a screen, a pixmap has a width, height, and depth. The funetion

XCreatePixmap(display, drawable, width, height, depth)

creates a pixrnap of width by Izeiglzt pixels, having deptlz number of planes.

CHAPTER6 S2

..
~ .,

El = a. la. c

J:2 = log(c) • •

E3 = .In(a •• ,

MY.ber of Equation. = 3

E4 = a • fJ - 'Y

ES = exp(a • "1) - ô

Huaber of Equ.~lon. = ..

(b)

Figure 6.2 Example no\\' graphs.

For a large set of equations where each equation is related to all of its counterparts in

the set, the flowgraph becomes crowded with intersecting Dode links. This problem is soIved

by generating flowgraphs for subsets of the original equations set. Flowgraphs of equation

subsets are displayed in pop-up widgets.

CHAPT ER 6 S3

6.1.3 Retrieving Equation Information

At any time, the user can query a tlow graph for equation information. One lcvel of

hypertext is provided; a pointer event inside any of the flow graph nodes causes a Statlc:Text

pop-up widget to appear. This widget bolds detailed information about the node equation.

The information displayed includes:

• The name of the equation.

• The equation in inflX form.

• The equation in postfix form.

• The variables that form the equation.

• Equations that this equation is related to.

• Variables common to this, and each of the related equations.

The location of every pointer event taking place inside a WorkSpac:e widget is checked

to determine if the event happened inside one of the tlow graph nodes. A routine that scans

the Eqt structure array is used to determine if the distance from the point where the event

occurs, to the center of each of the equation nodes, is less than the radius of cach of the nodes.

Pointerevents occurringnear a link cause a StaticText textwidget pop-up to be displayed.

The pop-up widget displays the variables common to the two equations whose nodes are

connected through the link. The following section describes the procedure used for deter­

mining whether a pointer event occurs inside any of the th in rectangles surrounding equation

links.

CHAPTER6 54

+
Lf'--- 'olnter Event Occurrlno Outal .. 1104.

/"

Pointer EWIIIY Occw-rlng 1 .. ld. Ihln Rec­
ung •• Iurrou lng LlnIe; Iid. Ureet.:

== ------;==--.:0 1· nu = (• , 1) 1
Llnk MOde

Pointer Event lnalde Nad. Cau.l", • SutleT.xt Uldget
Pop-up to ~ppear :

Equation : OhM'. l.aw.

InFbc 1'0 ... U = 1 • R

Pœtr lx Fo ... : 1 R • u=

Ua .. 1 .. 1 •• 1 ••

Related To •
Un. (1 • JI)

Figure 6.3 Side efTects of pointer events.

6.1.4 Inclusion in a Polygon

Given a pointer location and a polygon (in tbis case a rectangle) surrounding a flow

graph link, a search must be conducted to detennine if the pointer location is inside or outside

the polygon. A solution to this natura] problem consists of drawing a long line segment from

the pointer location in any direction, such that the endpoint of the segment is guaranteed to

CHAPTER 6 ss

be outside the polygon. If the number of intersections of the polygon with the tine segment is

t odd. the pointer location must be inside the polygon. If it is even, tbe pointer location is outside
:N

'

the polygon.

(a) (b) (c)

Figure 6.4 DitTerent point-in-polygon cases.

However, the situation is not so simple because sorne intersections might occur al the

vertices of the polygon as shown in figure 6.4 (b). The line segment might also align with one

of the edges of the polygon as shown in figure 6.4 (c). Therefore, the need to handle all these

cases must be addressed.

An algorithrn that covers a11 the particular cases stated above consists of traveling around

the 'polygon, and incrernenting an intersection counter whenever the test line is crossed from

one side ta the other. Points that fall on the test line are ignored [10].

CHAPTER6 56

(

(

(

tunctlon inside(t:point):boolean;
"ar count,ij:lnteger;

1t,lp:line;
bepn
count: -O;J': -0;
p[O]:-p[N ; p[N+1]: =p[I];
Il.pl:-t; Il.p2:-t; lt.p2.x:-maxint;
ror i: -1 to N do

begin
Ip.pl:=p[I]; Ip.p2:=p[l];
Irnot intersect(lp,lt) then

begln
Ip.'p2: =pU); j: = i;
Ir mtersect(lp,lt) tben count: =count + 1;
end;

end
inside: - « count mod 2) = 1);
end;

Polygon vertices are stored in the p[l .. NJ array. The inteneet function simply checks if

two line segments intersect, and is listed in appendix C. The variable j is maintained as the

index of the last point on the polygon known not to lie on the test line. The algorithm assumes

that pl J J is the point with the smallest x-coordinate among all the points with the smallest

y-coordinate [10].

6.2 l\lemory Management

At any time, equations May be added or deleted from any set of equations already

entered. Flow graphs are informed of the changes in equation sets through Callbacks.

Therefore, flow graphs always reflect these changes. When adding new equations, heap space

must be allocated to accomodate the newly formed data structures. This ;s done using the

C-Ianguage library caUs callocO, and maliocO. When an equation, or a whole set of equations

is deleted, the associated heap space must be freed. AIso, when a pop-up widget is destroyed,

CHAPTER6 57

1

,'If

....

il must be fuSl removed from the linked list of pop-up widgets, and then freed. Routines for

freeing the structures outlined at the beginning of this chapter are designed to search for all

the allocated heap space inside these structures, and to release it.

6.3 Printing Flow Graphs and Parse Trees

Using the xwd client application provided with the X Window System core distribution,

a snap shot of any window on the screen may be taken. The output of the command consists

of a bitmap representing a selected window, and may be directed to a file. Using the xwd

picture format, picture files are converted to the following formats:

• HP Laser Jet Series II.

• HP Paint Jet.

• QMS Postscript.

The converted files can then be queued to any of the above printers. Sample pictures of the

interface were generated on an HP Paint Jet printer, and are shawn in chapter seven.

In this chapter, the data structures used in the interface program were presented, and

a method for generating flow graphs of equations was deveJoped. Subsets of equations rnay

be created, and their corresponding flow graphs may be shown in pop·up widgets. Equations

may be added or deleted from any set of equations. The nex. cnapter presents a slImm3ry of

the work do ne in this dissertation. Conclusions, as weIl as suggestions for further enhancements

are also inc1uded.

CHAPTER6 58

{

(,

(

CHAPTER7

Conclusions

7.1 Thesis Summary

The EDS user interface provides users witb a mechanism for graphica11y representing

algebraic models in tenns of flow graphs. Flow graphs of different sets of equations May be

generated, and equations may be added to, or deleted from equation sets. An equation set is

represented by a pop-up widget that con tains a flow graph depicting the set. The number of

equation sets that May be created is limited by the amount of beap space available on the

host machine, sin ce pop-up widgets are created dynamically.

The EDS user interface supports one level of hypertext; users May query flow graph

links in search of information about variables common to related equations. Similarly, flow

graph nodes May be queried for equation relationships, variables in the equations, as weIl as

different equation notations. Querying is triggered by clicking on the flow graph object in

question (node or link). Object information is displayed inside pop-up widgets.

As the number of related equations in a set increases, the flow graph representing the

given set becomes densely populated with equation links. Flow graphs of subsets of the given

equation set may therefore be generated.

Figure 7.1 is a picture of the EDS user interface in which four mutually related equations

are entered through the TextEdit widget fields. The flow graph of all four equations is displayed

in the WorkSpace widget area below the pull-down menus. Equation links are shown in red,

while equation nodes are drawn in green. Figure 7.2 shows pop-up widgets holding variables

CHAPTER 7 59

common to equatioDS connected by each of the links. Equation information is aiso displayed

in pop-up widgets as shown in figure 7.3. Popup widgets holding link or node information may

be collapsed '>y simply clic:king inside them.

In figure 7.4, aIl pop-up widgets are collapsed, and new equations are added to the main

equation set. In figures 7.S and 7.6, an equation is selected from the main set of equations,

and a request to generate the binaI')' tree is made. The resulting binary tree for the selected

equation is displayed in a pop-up widget as shown in figure 7.7.

As the number of equations increases, a 'crowding' of equation links takes place,

especially when equations in a given set are densely interrelated. This may be obvious from

figure 7.4. In this case, equation subsets may be formed as shown in figures 7.8 tllrough 7.11.

Equation subsets are displayed in pop-up WorkSpace widgets.

Equations may be added or deleted from a given set of equations, as shown in figures

7.12 and 7.13, where equationS is deleted from the main set of equations, and replaced by

equation9.

Text cutting and pasting may be used between the different TextEdit widget fields thal

the interface uses. Vertical and horizontal scrolling is implemented in all WorkSpacewidgets,

allowing for top, bottom, left, and right panning. Additional input and output TextEdit widget

fields can be easily added to the interface data structures, therefore allowing it to display more

equation irformation when needed.

The actua] interfacing of EDS to the EDS VI was not possible, due to the fact that the

Knowledge Cran shell that EDS uses to run is no longer available (Centre de Recherche

ln/onnatigue de Montréal sold its copy of KC which EDS has been accessing from the Mcgill

CADLab).

CHAPTER7 60

(

The EDS user interface is portable, and ruus on a variety of Xll.R2 platforms. Il was

tested on Apollo and Sun workstations running SRIO.l and SunOS 4.0 respectively. After all,

portability is one of the major advantages of using the X Window System. It is interesting to

note bowever, that simple graphical operations sucb as panning in WorkSpace widgets, or

moving up or down within pull·down menus cause extensive paging (memory to bard disk

mapping) on most workstations running X, and lead to slow performing applications. This is

a major drawback of X, especially when applications are run across networks tbat are subject

to frequent deJays.

Another advantage of using the X Window System is the user-controlled, X Resource

Manager. Colors, menu labels, as well as other widget resources may be easily customized by

end users (.Xderaults file in the user's home directory). The software written for tbis disser­

tation is available as public domain, and is located in directory tlaesis on nou­

jeim@dwiglat.ee.mcgilLca.

(7.2 Suggestions for Future Work

Although the X Toolkit provides application programmers with a higher levellibrary

built on top of XIib, it still involves a fair amount of detail. A programming tool that hides

many of these details, without restricting access to the Xlib library, is bound to increase the

productivity of application programmers.

A well-suited language that simplifies X Toolkit programming considerably is Lisp

(although Smalltalk might be another potential candidate). By creating Lisp functions that

internally interface to X Toolkit routines, higher-level abstractions are created that simplify

CHAPTER 7 61

the development task, and increase programming effic:iency. Consider the following lines of

code that create a StaticText widget, set its location, size, and border color by directly using

the X Toollcit:

.
Arg wargs[S);
Widget toplevel, w;
lnt i = 0;

toplevel = Xtlnltiallze(argv[Ol, "Ex ample", NULI... 0,
&argc, argv);

,- Set the StaticText widget attributes. e/
xtsetAralwargs il' XtNx, 1(0); i+ +;
XtSetArg wargs i , XtNy, 200); i + + ;
XtSetArg wargs i , XtNwidth, 120); i + +;
XtSetArg wargs i , XtNheight,IS0); i + + ;
XtSetArg wargsl il, XtNborderCoJor, "Red"); i + + ;
W = XtCreateManagedWidget("static", XwstaticTextWidgetClass,

toplevel, wargs, i);

The equivalent code implemented in Lisp might look as follows:

(setq shell (initializeXt "Examfle"»
(createStaticTextWidget shell 'static" 100 200120150 "Red")

Every Lisp function used to create a widget contains the class name of the widget,

preceded by the word 'create'. Therefore, the function createStaticTextWidget simply creates

a StaticText widget. StaticText widget resources are specified as arguments to the createS­

taticTextWidget function. The parent id argument is specified first, followed by the name of

the widget, ils location, size, col or, etc ... The X Window System convention of first specifying

the location of a window, followed by its size, and of specifying x-coordinates before

y-coordinates is maintained.

CHAPTER 7 62

63

.,

64

.!

65

66

(

67

~,<, .. ", ... ,- ---.,..~ ...

~

......

4p'~,!.p It'~ v'

~sn~~,Ld~ v'

.4q,'t:~i~;am v

~, . l ,,1 • lit 1 ;c., .. 1

. .'

4- ~ .. ~U<i ~~n~~· ~e . ~.Q

E Cl '. c:=l ': ..: :. r
E a ' ë1 t ~ :: ,-, .~ ~. El

E:OL..3L,.::n
E:qua':.!.c~ !'-, a /", '?

[Ol..ia:lc r

Eq.JEl:1C n ~ 1 :?l'rE'

,
Equa:l'J"'1
::: - '- ~ ~ ~ =- ""'"' ~ I~" ~

'~
E:: ~ ~J5 Q,. r- .. d .. E' /f f . -
ec.uat ~orS

. ,
, .

"
,

~ ~~ ~
" , 1 'Ç'''~'Î-- ::: Q +-~ ' E'

'. ~ f ;
... __ 'i '-'

'-

e:;~3:~Or'2 .~
't

\
. ' . . .

E:~'17 ::: 3 8 .. J' ...g r
eC1l.;3~lo:-,7 • !t~ J ~,

" ..

k
.:

E'~TrJg =~~ .. tJ .. g • ~ . ,
e] '.' a" l ~ ,- -=

Figure 7.6 Highlighll •• is used to show .lected equatloa. la a TIlt ., ..aIR to be
perfonaed on a selected equalle.(I) .1ISt be c In&, , ... set of
PushBullOilI tin Ile displayed of .atiou s,.. aner
the user picked the sub-menu _., '81.ary Tree'(not • ~ ... ct. 'Vari­
ables' p.II-cIown menu.

'-'-""'~

'-

(

(..

r <, t 1 • >, h

Figure 7.7 The binary tree representatlon oleq.aUon5. Bina., 1,... .. 1110". la pop-up
WorkSpace widgets.

(

(1 .

70

.1

1
s
•
I~ :1
Sc
li.2
li .1
III",
c:" =­-. --=~ 8'., --c: 0_

i!a
~. :a­.... . -....
C:.!
-",
E ~

it

(
., ,

Utl 1 t

Figure 7.9 The nOW Jl'ap" representatlon orahe equatlon subMt III 7.1. Flow
graphs or equaUon subsets ore dlspl.yed ln pop-up Workl,... ,...... ..

11

,
. '

72

.il c:
.2 -• :1

B' -c

j
::1
VI ..
~ -g
• r --5

(

(

figure 7.11 The no" p'aph representatlon of.1Ie equalloa flaure 7.10.

73

,l,

74

t ..
1

1 e
J -1
i -~
'=
.!
c -III c:
C .­-ca = Z' .. c -i
~

.------ ---.

The Lisp function InitializeXt establishes a connection with the X server. The first

argument to InitializeXt is the name of tbe SheD widget. Arguments that affect command line

parsing may also be specified following the widget name.

By 'loading' the previous Usp statements at the Usp-interpener prompt, a SlaticText

\\idget is c:reated at location (100,200), having a size of 12Ox150 pixels, and a red border color.

To application programmers, this example implies tbat:

• X Toolkit programming details are reduced to a bare minimum.

• Lisp code interpeted at the Lisp-prompt produces graphies instantaneously on the

screen. This is a great advantage since X-Toolkit C programs had to be compiled before they

could be run.

• It takes only a few lines of Lisp code to create a sophisticated looking user interface.

A disadvantage of Lisp is that the newly created layer sitting on top of the existing Xt

Intrinsics and the X Widget Set layers, leads to slow-performing applications. However,

performance may be improved by compiling Lisp programs.

CHAPTER 7 76

'rogra_r' _ ApplicaUon

LI.p

LI •• - C llaunclarv

TIIe K Uldget Set

The Mt rntrlnalc.

The Mlib C-I.&nguage Interface

Hetwork Connect Ion 1

1
The)(Seryer

1

Figure 7.14 A conceptual view orthe layers leading to Lisp.

7.2.1 Rules and Methods

lt is important that application programmers be provided with fUies that control user

interface components such as menus, buttons, and scrollbars. A rule is simply a condition

imposed on an interface component. As an example, consider the pull-down menu shown in

figure 7.15. The second menu entry in the pull-down menu is disabled when aIl other menu

entries are active.

CHAPTER 7 77

Pull - Down Pull - Down
Ita. 1 and It •• 3 ara

l'tell_l / - -
t-!--.. --:-:: _:,. __ . -i... anocttl.Ye .. hen 1't __ 2 a.

.:1=* 2-.

l'te. 3

IteM 2 ,. actlye "hen Ite. 1 and he .. 3 - --
are net.

Figure 7.15 Rules goveming menu entries.

In programming terms, the second entry is created and rule-governed as follows:

.
(createMenuButtonWidget RowCoI "Pull-Down" "item 2"
'(ActiveOthersNot))

The rule is outlined at the end of the Li!'p function. It simply states that item _2 must be active

when item_l, and item_3 are not, and vice-versa. Therefore, the activation status of menu

entries is completely controlled by rules that application programmers can specify.

CHAPTER 7 78

..

User interface compone nt rules cao aIso he combined using logical operations as out­

lined in tbe following exarnpIes:

(rolel " rule2 & ruIe3 ...)

(rolel 1 roIe2 1 rule3 ...)

(-rule 1 & rule2 & rule3 ...)

(rolel 1 -ruIe2 1 rule3 ...)

The '&' operator performs an 'anding' operation on a set of user interface component rules,

white the '1' operator 'ors' a set of rules inclusiveIy. The' -' operator is used for rule negation.

7.2.2 Expanding the EDS VI

The EDS user interface supports one level of hypertext only. A multi-Ievel hypertext

mechanism for querying equation nodes and links is necessary as EDS is interfaced to a

. , package that uses intervai mathematics to impose bounds on variables [9][30]. This allows the

user to move between different Ievels of equation information ranging from variable names

to bounds imposed on each of those variables.

The EDS user interface needs to be expanded so as to access a package for tool inte­

gration. The package uses a black box architecture [31] to gatber information about different

design tools (EDS, finite-element-based field simulation tools [32]), and to trigger those lools

based on a schedule determilled from the information gathered.

CHAPTER 7 79

AppendixA

Widget Classes

This appendix briefly lists the X widget class tree, and serves as a quick reference to the

Xt Intrinsics and the X Widget Set widget classes.

Core

TopLeyelShell

SheII~r.ft.l .. tSholl

C"PO.lt.~ "'rrIO.Sholl

Prhlltlve

Conc1.ral nt - r1anager

UorkSpace

Arrow

Ualuato~TOggle
Button MenuButton

StatlcHaster PuahButton

StaticText

Figure A.I The X \\'idget c1ass tree [1].

The Core Intrjnsics \\'jd2et Classes

AppendixA 80

Bu 11e1.1 nBoard

ROIlCoI

UPa.dU 1 MOII
.----l1enuPane - Casc.de

nenuMgr ~p pt1 opu gr
ScrolledUindow Liat

Scrollbar

{

COMPOSITE
Class:
Class Name:
Superclasses:

con\poslteWidgetClass
Composite
Core

The Composite widget class is a meta-class used as a container of other widgets.

CONSTRAINT
Class:
Class Name:
Superclasses:

constralntWidgetClass
Constralnt
Core, Composite

The Constralnt widget is a meta-class defined by tbe Xt Intrinsics. It attaches additional
resources to ilS children, and uses these constraints to manage the geometry of its children.

CORE
Class:
Class Name:
Superclasses:
Callback List:

WidgetClass
Core
None
XtNdestroy

The Core widget class is an Xt Intrinsics widget class. Il is never instantiated as a widget,
and its sole purpose is simply a supporting super class to other widget classes. It provides
resources required by all wldgets.

SHELL
Class:
Class Name:
Superclasses:

shell\\TidgetClass
Shell
Core, Composite

The Shell widget c1ass is defined by the Xt Intrinsics. Il provides an interface between
applications and the window manager.

The X "'idEet Set Classes

ARRO\V
Class:
Class Name:
Superclasses:
Cal1back List:

Appendix A

XwarrowWidgetClass
Arrow
Cor~, Primitive
XtNselect, XtNrelease
XtNenter, XtNleave
XtNselect, XtNunselect

81

\ ..

The Arrow widJet supports drawing of an arrow within the bounds of its window. The
arrow cao be drawn m the up, down, left, and right directions.

BULLETINBOARD
Class:
Class Name:
Super classes:

XwBulletlnWidgetClass
BulletinBoard
Core, Composite, Con5tralnt,
Manager

The BulletlnBoard widget is a composite widget that does not enforce anx ordering on
its children. Applications must specify the location of BulletlnBoard widget children.

BUTrON
Class:
Class Name:
Superclasses:

XwbuttonWidgetClass
Bulton
Core, Primitive

The Bulton widget is an X Widget meta-class. It is never instantiated as a widget, and
provides a set of resources needed by other widgets (XwtoggleWidgetClass and Xwpush­
ButtonWidgetClass).

CASCADE
Class:
Class Name:
Superclasses:
Callback List:

XwcascadeWidgetClass
Cascade
MenuPane
XtNselect, XtNleave
XtNvisible, XtNunmap

The Cascade widget is a composite widget that application prngrarnrners use for creating
menus. It al ways displays its children in a single colu~ and attempts ta resize itself ta the
smallest possible size.

FORM
Class:
Class Name:
Superclasses:

X"form\\'idgetClass
Form
Core, Composite, Constraint,
Manager

The Form widget is a constraint widget based manager that establishes spatial rela­
tionships between its children.

LIST
Class:
Class Name:

AppendixA

Xwlist\\'idgetClass
List

82

i

Superclasses:

Callback List:

Core, Composite, Constraint,
Manager, ScroliedWindow
XtNselect, XtNdoubleClick

The List widget allows a two-dimensional set ofwidgets to be displayed in a row / column
fashion. It provides management and layout functions for its elements.

MANAGER
Class:
Class Name:
Superclasses:

X~anager~dgetClass
Manager
Core, Composite, Constralnt

The Manager cl2ss is an X Widget meta class. It is never instantiated as a widget. It is
mairuy used as a supporting superclass for other widget classes.

MENU
Class:
ClassName:
Superclasses:

XwmenumgrWldgetClass
MenuMgr
Core, Composite, Constraint,
Manager

The Menu Manager class is an X Widget met a class. It is never instantiated as a widget.
Its main purpose is to serve as a supporting superclass for other menu manager classes.

ME~ruBUTfON
Class:
ClassName:
Su perclasses:
Callback List:

XwmenubuttonWidgetClass
MenuButton
Core, Primitive, Button
XtNseJect, XtNcascadeSelect,
XtNcascadeUnselect

The Menu Button widget is cornrnonly used with Menu Pane and Menu Managerwidgets
to build menus.

MENUPANE
Class:
Class Name:
Superc1asses:

XwmenupaneWidgetClass
MenuPane
Core, Composite, Constraint,
Manager, MenuMgr

The Menu Pane class is ~n X Widget meta class. It is neveT instantiated as a widget, and
its main purpose is to serve as a supporting superc1ass for other Menu Pane widget classes.

AppendixA 83

POPUP MENU MANAGER
Class: XwpopupmarWidgetClass
Class Name: PopupMgr
Superclasses: Core, Composite, Constralnt,

~anage~~enuMgr

The Popup Menu Manager widget is a composite widget that manages a collection of
Menu Pane widgets.

PRIMITIVE
Class:
Class Name:
Superclasses:

XwprimitiveWidgetClass
Primitive
Core

The Primitive class is an X Widget metaclass. It is oever instantiated as a widget, and
it is mainly used as a supporting class for other widget classes.

PUSHBUTfON
Class:
Class Name:
Superclasses:
Ca1lback List:

XwpushButtonWidgetClass
PushButton
Core, Primitive, Button
XtNselect, XtNrelease

The Push Button widget consists of a text label surrounded by a button border. By
default, the interior of the button is inverted when the button is in the down state. The interior
of the button is reinverted when the button is released.

ROWCOL
Class:
ClassName:
Superclasses:

X "TowColWidgetClass
RowCol
Core, Composite, Constraint,
Manager

A Row Column widget arranges its children into rows and columns.

SCROLLBAR
Class:
Class Name:
Superclasses:

Callback List:

AppendixA

XwscrollbarWidgetClass
ScroliBar
Core, Composite, Constraint,
Manager
XtNareaSelected, XtNsliderMoved
XtNgranularity

84

(

(

" ,~

The Sc:roUbar widget combines the Valuator and Arro" widgets to fonn a horizontal or
a vertical scrollbar.

SCROLLED WlNDOW
Class:
ClassName:
Superc1asses:

Callback tist:

XwswindowWidaetClass
Sc:rolledWlndow
Core, Composite, Constraint,
Manager, Sc:rolledWIndow
XtNvSc:roIlEvent, XtNhSc:rollEvent

The Sc:rolled Window widget combines the ScroUbar and Bulletin Board widgets to
implement a visible window onto a larger data display.

STATIC RASTER
Class:
ClassName:
Superc1asses:

STATICTEXT
Class:
ClassName:
Superc1asses:
Callback List:

XwstatlcrasterWidgetClass
StatlcRaster
Core, Primitive

XwstatictextWidgetClass
StaticText
Core, Primitive
XtNseltet, XtNrelease

The Stalic Raster widget displays an uneditable raster image. By default, the image is
placed in a window that has the exact size of the raster.

TEXTEDIT
Class:
Class Name:
Superc1asses:
Callback List:

XwtexteditWidgetClass
TextEdit
Core, Primitive
XtNmotionVerification,
XtNmodifyVerification,
XtNleaveVerification,
XtNexteute

The Text Edit widget provides a mutli-Iine text editor which bas a customizable user
interface.

VALUATOR
Class:
Class Name:
Superc1asses:

AppendixA

XwvaluatorWidgetClass
Valuator
Core, Primitive

85

!
r

The Valuatorwidget implements a horizontal or vertical scrolling widget as a rectangular
bar containing a sliding box.

VERTICAL PANED WINDOW
Class: XwvPanedWidgetClass
Class Name: VPaneclWindow
Superclasses: Core, Composite, Constraint,

Manager

The Vertical Paned Manager is a composite widget which lays out its children in a
vertically tiled format.

WORKSPACE
Class:
Class Name:
Superclasses:
Callback Ust:

XwworkspaceWidgetClass
WorkSpac:e
Core, Primitive
XtNexpose
XtNresize
XtNkeyDown

The WorkSpace widget provides the application programmer with an empty primitive
widget, that can be used for drawing graphies.

AppendixA 86

(

Appendix B

X Event Masks

The following is a listing of X Event masles and the associated event types [2]:

Eyent Mask

ButtonMotionMask

Button1 MotionMask

Button2MotionMask

Button3MotionMask

Button4MotionMask

ButtonSMotionMask

ButtonPressMask

ButtonReleaseMask

ColormapChangeMask

EnterWindowMask

Leave Window Mask

ExposureMask

GCGraphicsExposures

FocusChangeMask

Ke:yrnapStateMask

KeyPressMask

Appendix B

Event'lJ'.pe

MotionNotify

MotionNotify

MotionNotify

MotionNotify

MotionNotify

MotionNotify

ButtonPress

ButtonRelease

ColormapNotify

EnterNotify

LeaveNotify

Expose

GraphicsExpose

NoExpose

Focusln

FocusOut

KeymapNotify

KeyPress

87

\
KeyReleaseMask KeyRelease

OwnerGrabButtonMask Not Applicable
... PointerMotionMask MotionNotify

PointerMotionHintMask Not Applicable

PropretyCbangeMask PropretyNotify

ResizeRedirectMask ResizeRequest

StructureNotify Mask CirculateNotify

ConfigureNotify

DestroyNotify

GravityN otify

MapNotify

ReparentNotify

UnmapNotify

SubstructureNotify Mask CirculateNotify

ConfigureN otify

Crea teN otify

DestroyNotify

GravityNotify

MapNotify

ReparentNotify

UnmapNotify

SubstructureRedirectMask CirculateRequest

ConfigureRequest

MapRequest

Appendix B 88

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

VisibilityChangeMask

Appendix B

CüentMessage

MappingNotify

SelectionNotify

SelectionClear

SelectionRequest

VisibilityNotify

89

{

AppendixC

Stack Procedures and Line Segment Aigorithms

The following procedures are for initializing a stade, pushing clements onto a stack, and

popping elements from a stack:

type link c "node;
Dode 1: record key: integer; next : link end;

var head, z : Iink;
procedure stackinit;
begln
new(head); new(z);
head".next : = z; z".next: = z
end;

procedure push(v : integer);
var t : link;
begin
new(t);
t".key : = v; r".next : = head'''.next;
head"'.next : = t
end

function pop: integer;
var t ~ link;
begin
t : = head" .next;
pop: = t".key;
head".next : = t".next;
dispose(t)
end;

function stackempty : boolean;
begin stackempty:= (head".next = z) end;

C.I Line Segment Intersection

Given two line segments, a straight forward way to determine if tbey intersect consists

of finding the intersection point of the lines defined by the segments, and then checking

AppendixC 90

wh ether tbis intersection point falls between the endpoints ofboth segments. An easier method

is based on the following. Given three points A, B, and C, a check is made to determine if A,

B, and C are store~ in clockwise or counterclockwise direction (Assuming that we travel from

A to B to C). The procedure outlined below checks for tbis property.

function ccw(pO,pl,p2):lnteger;
var dxl,dx2,ay1,dy2:integer
begin
dx1: =pl.x-pO.x; dyl: =p1.y-pO.y;
dx2: =D2.x-pO.x; dy2: =p2.y-pO.y;
if dxl 'dy2 > dyl'dx2 tben ccw: = 1;
'fdxl'dy2<dy1'dx2 tben ccw: =-1;
'fdx1'dy2=dy1'dx2 tben

begin
Ir(dxl'dx2<O) or (dyl*dy2<:0) then ccw:=-l else
lr(dxl'dx1 +dyl'dyl» = (dx2'dx2+ dy2'dy2) tben ccw: =0 else ccw:=-l;
end;

end;

First, suppose that the quantities dxl, dx2, dyl, C:y2 are positive. Theo, the slope of the

!ine connectingpO to pl is dy l/dxl, and the slope ;:onnectingpO and p2 is dy2/dx2. If the slope

of the second line is greater than that of the fust, a counterclockwise turn is required to go

frorn pO to pl to p2. If the ~Iope is Iess, a clockwise turn is required. However, if the three

points align, the following rules are used to set the value of ccw:

, ccw = 1 if pl is between pO and p2.

'ccw = 0 if p2 is between pO and pl.

• ccw = -1 ifpO is betweenpl andp2.

This irnmediately suggests a solution to the two-segment intersection problem. If both

endpoints of each line segment are on different sides (different ccw values) of the other, then

the li ne segments must intersect [10]:

AppendixC 91

;-,
!

lunctlon intersect(ll.12:line): booleanj
begln
intersect: • « ccw(ll.p 1,Il.p2,12.p 1)·

ccw(ll.pl,11.p2,12.p2»< -=0) and
«CCW(12r.1,I2.p2,Il.pl)·
ccw(12.p ,12.p2,Il.p2» < = 0);

end;

Appendix C 92

(

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

References

y oun~ D. A., "X Window Systems Programming and Applications with Xt",
Prentlce-Hall, Inc., 1989.

Nye A, "The XIib Programming Manual", O'Reilly & Associates, Inc .• 1988.

Nye A, "The XIib Reference Manual", O'Reilly anJ Associates, Inc., 1988.

O'Reil!y T., "The Toolkits (and Polides) of X Windows", Unix World, vo1.6, no.2, pp.
66-73, February 1989.

McCormack J., Asente P., "Using the X Toolkit or How to Write a Widget", Proceedings
of the Summer, 19d8 USENIX Conference, pp. 1-13.

McCormack J., Asente P., "An Overview of the X Toolkit", Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software, pp. 46-55, October 1988.

Rosenthal D. S., "Going for Baroque", UNIX Review, vol 6, no. 6, pp. 71-79.

Rosenthal D. S., "A Simple XII Client Program, or, How Hard can it ReaUy Be to
Write 'Hello World' 1", Proceedings of the Winter, 1988 USENIX Conference, pp.
229-235.

Saldanha C., "Electromagnetic Design System", Master's Thesis, McGill University,
1987, pp. 1-31,78-81.

Sedgewick R., "Algorithms", 2nd edition, Addison-Wesley Publishing Company, 1988.

Tenenbaum A., Augenstein M., "Data Structures Using Pascal", 2nd edition,
Prentice-Hall, 1984.

Schiefler R., Gettys J., 'The X Window System", ACM Transactions on Graphies, vol.S,
no. 2, pp. 79-109, April 1986.

Schiefler R., Gettys J., Newman R., "X Window System", DEC Press, 1988.

[i-4] Shneiderman B., "Designing the User Interface", Addison-Wesley Publishing Com­
pany, 1987.

References 93

(

(

[15] Smith W., "Using Computer Color Effecdvely", Prentice-Hall, 1989.

[16] Mayer B., "Object-Oriented Software Construction", Prentice-Hall, 1988.

[17]

[18]

(19)

[20]

[21]

[22]

[23]

Foley J. D., Van Dam A., "Fundamentals of Interactive Computer Graphies",
Addlson-Wesley P'Jolishing Company, 1983.

KerrJghan B. W., Ritchie D. M., ''The C Programming Language", Prentice·Hall, 1978.

Rochk.ind M., "Advanced Unix Programming", Prentice-Hall, 1985.

Schildt H., tIC: the Complete Reference", McGraw-Hill, 1987.

Anderson P., Anderson G., " Advanced C: Tips and Techniques", Howard Sams
Publishing Company, 1988.

Knuth D. E., "n~ Art of Computer Pro~ramming. Volume 3: Sorting and Searching",
second printing, Addison-Wesley, Readmg, MA, 1975.

Knuth D. E., "The Art of Computer Programming. Volume 1: Fundemental Algo­
rithms,", second edition, Addison-Wesley, Reading, MA, 1973.

[24] OSF /Motif User's Guide, PTentice-Hall, Englewood Cliffs, NJ, 1990

[25]

[26]

[27]

[28]

[29]

[~O]

Holstein, D., 'Decision Tables: A Technique for Minirnizing Routine, Repetitive
Design', Machine Design, August 1962, pp. 76-79.

Davis, E., 'Constraint Propagation with Interval Labels', Arti fi ci al Intelligence, volume
32, 1987, pp. 281-331.

Preiss, K., 'Data Frame Model for the Engineering Design Process', Design Studies,
volume l, no. 5, Apri11980.

'Knowledge Craft Reference Manual', Carnegie Group Ine, Pittsburgh, Pennsylvania,
1986.

Steele Jr., G. L., 'Common Lisp: The Language', Digital Press, Hanover, Massachus­
setts, 1984.

Brett, C., 'An Interval Mathematies Package For Cornputer-Aided Design In Elee­
tromagnetics', Master's Thesis, MeGill University, 1990.

References 94

t [31]

[32]

Sassine, R., Lowther D. A, 'Integrating Computer Based Eler.tromagnetic Deviee
Design Tools To Solve Coupled Problems', To afpear in the 8th Conference on the
Computation of Electromagnetic Fields, July 7-1 , 1991 Sorrento-Italy.

l..owther, D. A, and Silvester, P. P., 'Computer-Aided Design in Magnetics·.
Springer-Verlag. New York, 1985.

References 95

