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Abstract 

A user mterface to EDS (Electromagnetic Design System) is designed using the X 

Window System and the X Toolkit. The grammar of expressions pro\;ded by the user is val­

idated using a bottom-up parser. Equations are convened to postfix/prefix notation, and 1ater 

displayed in binary tree representation inside pop-up widgets. 

The interface allows the user to determine c~uation interdependencies, and to genera te 

flow graphs for düferent sets of equations within the .. 'me application. Equations may be 

added or deleted from any set of entered equations at any tirL. .... Flow graph nodes and links 

may be queried for equation information. Retrieved information l~ displayed imide pop-up 

widgets. 

Finally, the ground work for a user interface package tha~ simplifies X Toolkit pro­

gramming is outlined. Rules and methods governing user interface components are intro­

duced. 
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Résumé 

Une interface usager graphique est conçue pour le système de conception électro­

magnétique EDS à l'aide du système de fenêtres X, et du X-Toolkit. La grammaire des 

expressions fournies par l'utilisateur est vérifiée par voie d'analyse grammaticale 

ascendante. Les équations sont converties en notation suffixée/préfixée, et leur représenta­

tion en arbre binaire est affichée dans des fenêtres pop-up. 

L'interface permet à l'utilisateur de déter: iner les relations entre équations, et de 

représenter des ensembles d'équations en forme de réseaux. L'utilisateur peut ajouter ou 

supprimer des expressions de n'importe quel ensemble d'équations. Les nodes et les 

branches des réseaux d'équations peuvent être interrogées. Les résultats sont affichés dans 

des fenêtres pop-up. 

Enfin, des méthodes nouvelles pour simplifier la programmation en X-Toolkit sont 

discutées. Des lois et des méthodes gouvernant les différents objets constituant les inter­

faces usagers graphiques sont introduites. 
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CHAPTERI 

Introduction 

This dissertation describes the user interfac~ designed for the Electromagnetic Design 

System (EDS). Before any dissertation objectives can be stated, EDS must first be introduced. 

1.1 Introduction to EDS 

EDS (Electomagnetic Design System) is a knowledge-based expert system aimed ~. 

automating the computer-aided design of electromagnetie deviees su ch as transformers, 

actuators, and motors [9]. EDS allows expert designers to create knowledge-based models of 

electromagnetic devices. The solution to a device design problem involves three categories 

of knowledge [9][25]: 

• A parameterized representation of the device. Deviee parameters are variables that 

represent geometric, functional, performance, and design calibration information. 

• A mathematical model in which device parameters are eoupled through a set of 

equations derived primarily from the underlying principles of electromagnetics. 

• Design Logic. This eonsists of the mathematical model, and the expertise that a designer 

acquîres through the years. 
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The algebraic model of a device is represented by parameters. equations. and constants 

[9]. An algebraic mode! may be graphically represented as a constraint network [26], where 

nodes represent equations, and links are the variables in the equations. An example of a 

constraint network is shown in figure 1.1 [9]. 

EDS uses data structures known as frames and semantic networks to represent !:omplete 

constraint networks [91[27]. A frame is an item, and a list of item attributes. On the other 

hand, semantic networks are graphs of relations between items. The frame-based language 

used in EDS is Knowledge Craft [28][9], a super set of the programming language Lisp [29]. 

ln Knowledge Cran, a frame is known as a schema. 

EDS uses a ~implifier to simpIify expressions, and a syrnbolic solver to solve for a variable 

in a given equation [9]. The rule Slot of an equation schema is populated by an input expression, 

onJy after this expr~ssion bas been simplified. After the rule slot is fùled, the input equation 

is solved ior each of the variables, and the resulting clauses are inserted into the clauses slot. 

ln cases where a solution is not found due to the lack of algebraic knowledge, the variables­

witlz·no-c1ause slot is filled with the corresponding variable. In such cases, the designer may 

supplya clause to resolve the problem, or provide an altemate equation which is algebraically 

solvable for the variable [9]. 
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a) A typical set of transformer equations. 

El: WA == 17.6 ~ Pl ~ S / (FREQ ~ B) 
E2: P2 == EFF ~ Pl 
E3: P2 == V2 ~ 12 

b) The correspondïng constraint nelwork. 

s B EFF 12 

WA 
Pl P2 

FREQ 

Figure 1.1 A conceptual algebraic model representation [9]. 
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{{ <equation name > 
DESCRIPTION: 
RULE 
RAS-VARIABLES:} } 

Figure 1.2 A generic equation schema (9). 

{{ POWER-DISSIPATION 
RULE: (EQUAL P (TIMES (EXPT 12) R)) 
RAS-VARIABLES: PI R 
CLAUSES: (EQUAL P (TIMES (EXPT 12) R)) 

(EQUAL R (TIMES P (EXPT 1 -2))) 
(EQUAL 1 (EXPT (QUOTIENT P R) -0.5)) 

VARlABLES-WlTH-NO-CLAUSE: }} 

Figure 1.3 The schema representation of P s: /2. R [9]. 

Interactive sessions in EDS are cornrnand line driven, and consist oftext input and outpu t 

oruy. EDS relies on a DECnet connection to access a Knowledge Cran shell running on a 

remote computer (the remote computer is actually located at the Centre de Recherche 

lnfonnatique de Montréal, and is accessed from the Computational Analysis and Design Lab­

orarory at McGill University). 

1.2 Dissertation Objectives 

At this stage, the objectives of this dissertation may be stated as follows: 

1) Design a eraphical user interface to the Electromagnetic Design System, capable of 

TUnning across networks. 

2) Display algebraic knowledge in the form of graphical equation networks, thereby 

providing electromagnetic device designers with a visual aid that helps them point out 

related equations, and variables common to those equations. 
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3) Provide a mecbanism for performing set operations on equations. This includes 

creating, and grapbically representing sets/subsets of equations, and adding/deleting 

equations from those sets/subsets. 

The X Window System is used to accompli sb the lirst objective. X is a multi-windowing, 

and network-transparent window system based on a client-server model. 1t was chosen for 

designing the EDS UI mainly because it allows graphica} applications (clients) to run across 

networks. The next chapter introduces X concepts, and Many of X's features. 

User interface components (scrollbars, puU-down menus, pop-up windows, ... ) used to 

design the EDS UI are introduced in chapter tbree, preceded by a brief review of object­

oriented programming concepts. 

The EDS UI design is introduced in chapter four. The functionality of the components 

selected for building the interface are discussefi, followed by the EDS UI widget tree. Chapter 

four also discusses the resource manager wbich May be used by el~d users for modifying the 

look of the EDS VI to fit their own taste. 

Expression grammar, parsing methods, and the approach adopted in tbis dissertation 

to parse input expressions are presented in chapter five. Equations are converted into post­

fix/prefix notation. The derived prerlX notation of an input equation is used to fill out the rule 

slot of an EDS equation schema. Binary tree representations of equations are displayed in 

pop-up windows. Drawing is done using graphies primitives from the XIib library. 

Chapter six discusses equation sets (represented as linked lists of structures in memory), 

and the method used for generating graphical equation networles of different sets of equations. 

CHAPTER 1 5 

, 



Variables common to related equations are determined. Variables of an input equation are 

extracted and are used to fill out the variables slot of an EDS equation schema. Storage and 

retrieval of equation information, as well as memory management are also explained. 

Finally, the results of this exercise are discussed, and suggestions for further work are 

presented in chapter seven. Throughout the remainder of this dissertation, graphica] equation 

networles will be referred to as flow graphs. 
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CHAPTER2 

Introduction to the X Window System 

2.1 The X Window System 

The X Windaw System is an industry-standard software system tbat allows programmers 

to develop portable graphical user interfaces [1]. X was developed at the Massachussets 

Institute of Technology (MIT), with support from Digital Equipment Corporation (DEC). 

The name, X, as weIl as sorne of the initial ideas originated from an earlier window system 

named W, developed al Slanford University [1]. 

One of the most important features of X is its unique device-independent architecture. 

This allows X-based applications to function in a het~rogeneous environment consisting of 

mainframes, workstations, and personal computers [lJ. Unlike many other window systems, 

X does not define any particular user interface styIt. It avoids dictating the look and feel of 

user interface applications by providing a flexible set of primitive window operations. User 

interface components 5uch as button boxes and pull-down menus are therefore missing from 

the basic X Window System, and applications rely on higher levellibraries built on top of the 

X protocol to provide these components [1]. The following chapter introduces one of these 

libraries, the Xt Intrinsics, built on top of XIib. 

1.1 The Client·Server Model 

The X Window System architecture is based on a client-server model. A single process, 

~own as the server, controls aIl input and output devices [1 J. The server acts as an intermediary 
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between user programs, better known as clients. Clients communicate with the X server via a 

network connection using an asynchronous byte-stream protocol. Network protocols sup­

ported by the X server include Tep /IP, DECnet, and Chaos. The following are the tasks 

performed by the X server [2]: 

• 

• 

• 

• 

• 

Controlling access to the display by multiple clients. 

Interpreting network messages from various clients. 

Forwarding user input to clients. 

Drawing text and graphies. 

Maintaining data structures, including windows, fonts, and graphies contexts, as 

resources that can be shared by clients. 

The X architecture makes it possible for any n~lllber of clients to conne ct to any number 

of servers, provided that the X protocol is obeyed. Servers and clients can also run on separate 

machines located anywhere on a network. This use of the network is better known as distributed 

process;ng. and helps solve the problem of unbalanced system loads [2]. The user of an 

overloaded machine can arrange for sorne of the prcgrams to run on other hosts. 
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Figure 2.1 The c:lient-server mode). 
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X is a windowing system for bitmapped graphies displays [2]. It supports color as weB 

as gray-scale and monochrome displays. While the terms display and screen are often used 

interchangeably to refer to a CRT, X defines a display as a workstation with a keyboard, a 

pointing device such as a mouse, and one or more screens. Normally, there is one display per 

central processing unit (CPU). 
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Any client application wishing to communicate with the X server must open a connection 

to tbis server using Xlib. Once this connection is established, the application tan use any of 

the screens controlled by the server to display text or graphies. At any time, a server can deny 

client applications running on other hosts the right to connect to a display. This security 

mecbanism provided by the X Window System works on a per-bost basis (1). Using the setup 

shown in figure 2.1, Knowledge Cran, and the X server may run on the remote workstation 

(Iorated at Centre de Recherche Infonnatique de Montréal), while EDS May run as a client 

application on any of the host machines (located in the CADLab, al McGiIl) connected to the 

remote workstation. 

2.3 Resources And Requests 

The X server maintains complex data structures, inc1uding windows, bitmaps, fonts, 

cursors, and colors, as resources that can be shared between clients. Client programs access 

these resources through resource identifiers, simply referred to as resource ID's. Resources 

May be created or destroyed by the server at the request of a client [1]. 

A client application wanting to use a facility provided by the X server, must issue a 

request to this server. Arequest is a single block of data sent by one of the clients to the server. 

Requests requiring replies from the server are known as round-trip requests 12]. Round-trip 

requests must be ,ninimized since they ]ower the overall performance, and cause network 

delays. Typical client requests include querying the server about window attributes, or font 

sizes. 

Client requests are placed in a queue, waiting for the X server to pro cess them. The 

server and its clients run asynchronouslywith respect to each other, which improves the ove rail 
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performance of X, and cuts down the round-trip requests over the network connection. 

However, clients can ask the server to process requests synchronously. This causes poorer 

performance, since eacb client request suffers a round-trip over the network connection [1]. 

2.4 The Window Hierarchy 

An X window is a rectanguln area on the screen, with no title bars, scrollbars, or other 

window decorations. Except for the root window, every X window bas a parent that is assigned 

to il at the time of its creation. The root window is tbe first window created by tbe X server 

as it st arts up.ln X, a window is contained within the limits of its parent. Window geometry 

incJudes a window's width, height, position, and stacking order. On the other band, an X 

window may be of class InputOutput or InputOnly, and has characteristics referred to as 

deptlJ and visual , which determine its color attributes. 

X windows are organized in a hierarchy, better known as the window tree. The top window 

in the window tree is the root window. The root window occupies an entire screen, and cannot 

be resized, moved, or iconized. Figures 2.2 and 2.3 illustrate how a window bierarehy might 

show on the sereen and in sehematic form respeetively. 

Windows A and Gare ehildren of the root window, while windows B, C, and D are 

children of window A. Window G has windows H, J, and Kas its cbildren, and windows Land 

Mare ehildren of J and K respeetively. Similarly, windows E and Fare ehildren of C and D. 

CHAPTER2 11 



2.S Window Management 

Client applications do not have direct control over window attributes such as window 

size and location. Although tbey tan suggest values for these attributes, the final decision is 

made by a client program known 2S tbe window manager. The window manager allows the 

user to perform sucb actions as modifying the location and size of windows on the screen, 

reconfiguring the stacking order ofwindows on tbe screeo, and starting new client applications 

[3]. 

Uindow B 

Root Ulndow 

Uindow A 

Uindow E 
c .... 
:s 
Q. 

Uindow F 0 Uindow H E 

'=' E: 
Uindow C 

.... Uindow G :1 
~ 
CI 
E 

'"' 
Uindow L 

Uind10w n 
Uindow Je 

Figure 2.2 A window hierarchy example. 
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Figure 2.3 Window tree for window hierarchy example. 

The window manager enforces a window layout policy which consists of a set of rules 

governing the behavior and look of windows on the screen. The following are sorne of the 

different public domain window managers that have been designed, mostly by compa::ries: 

• 

• 

• 

The Siemens RTL tiled window manager, designed sueh that only transient windows are 

allowed to overlap. 

The real·estate·driven window manager, de~igned sueh that the input foeus is active in 

whichever window the pointer currently happens to be in. 

The listener window manager. AlI keyboard input foeus is assigned to a single window 

after the window is selected with the pointer. 

2.6 The X Coordinate System 

The origin of every X window is located at the upper left corner of that window. The 

x-coordinate increases toward the right, and the y-eoordinate increases toward the bottom. 
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The width, height, and location are expressed in pixels. Plac:ing text, graphics. or subwindows 

in an X window is made with respect to that windows origin. As a window moves, its eoordinate 

system moves with il, permitting applications to place text or graphies without regard to the 

window's location. Each X window is assigned a unique ID, and routines wanting to access a 

particu1ar X window must refer to its ID. 

2.7 Window Mappiilg and Visibility 

A request to an X server by one of its client applications to ereate a window, does not 

neeessarily make the window visible on the sere en. This is due to the fact that when an X 

server creates a window, it allocates and initializes the data structures that represent the 

window, but does not invoke the hardware-dependent routines that display the window on 

the sere en (1). By issuing a map request, clients can ask the server to display a window on the 

sereen. However, the window still might not be visible for any ofthe following reasons (1): 

• 

• 

• 

The window is completely covered by another window. The window becomes visible 

only if the covering window is moved, or if the stacking order of the two windows is 

reverse d, making the covered window visible. 

An ancestor of the window was not mapped. The window becomes viewable only when 

ail of its ancestors are mapped. 

The window is completely clipped by one of its ancestors. The window becomes visible 

once the ancestor is resized and inc1udes the window area. Another way is to move the 

window inside the boundaries of a1l its ancestors. 
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l.8 Maintaining Window Contents 

When two windows overlap, the contents of the covered window must be preserved, 50 

that they CID be restored later. Windows using tbis technique to preserve their contents are 

better known as retained raster windows. As the name suggests, window contents are saved as 

a bitmap, or raster image. 

2.8.1 Backing Store 

X lays the responsibility of preserving a window's contents on the client using the window. 

Sorne X server implernentations support retained raster, or backing store as it is referred to 

in X. The backing store feature automatically preserves the contents of a window as it is 

obscured. As the nurnber of windows increases, memory becomes a scarce resource. To 

increase efficiency, the X server notifies a client when a window is exposed, and relies on the 

client to redisplay the contents of the window [1]. 

2.8.2 Save-Unders 

Many X servers also use a technique known as save-unders. A save-under controis 

whether the contents of the screen under a certain window should be preserved before the 

window is rnapped, and redisplayed after the window is unmapped. This technique is most 

usefui for pop-up windows, which this dissertation relies on heaviIy to display different sets 

of equations. 
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2.9 Evelits 

An X event is a packet of information that the X server generates wben certain direct 

or indirect user actions occur. Events are sent to a client tbrough a queue, whicb the client 

reads in a first-in. first-out fashion. The following are sorne exarnples of X events: 

• 

• 

• 

A key press on the keyboard. 

Mouse rnovement. 

A mouse click. 

Since events board the queue in a random order, an event loop is used to wail for an 

event to occur, respond to the event, and wait for the next one to happen. The code that forms 

the event loop consists of an event-getting routine, followed by aC-language switch statement. 

The X event loop is irnplemented as an infini te white loop [2]. 

2.10 Interfacing to X through Higher Libraries 

Although the X server is built at the level of packets and byte-streams, libraries exist 

that interface to the base window system. One standard interface to X is the C-language, Xlib 

library. Xlib defines a set of functlons that provide the user with complete access and control 

over the display, windows, and input devices. Identicallibraries also exist for LISP and ADA 

[1]. 

Application prograrnrners can use XIib to design user interfaces. However, this library 

can be difficult to use correctly. Just imagine that to display "hello world" in a window using 

XIib takes forty executable statements ! (8). In an effort to hide the details of programming 
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with X1ib, higher-Ievel too/kits have been designed. These toolkits include InterViews 

(Stanford University), Andrew (Carnegie-MeDon), Xray (Hewlett-Packard), and CLUE 

(Texas Instruments). ln designing the interface to EOS,I have used the Xt intrinsics, and the 

X Widget Set, Xw, contributed to the X community by Hewlett-Packard. 

the Progra .. er'. Application 

the H Uldget Set 

The Ht Intrln.ics 

--
The Hllb C-!.anguage Interface 

Network Conneclion 

~ The X Server J 

Figure 2.4 A conceptual view orthe X \Vindow System. 

Using the X Window System, EDS can run as a client application across a network of 

X host machines. X allows graphies applications to run across networks. An end user may run 

multiple client applications on different host machines, while graphically interacting with 

those clients from his/her own terminal. 
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Before describing the EDS VI, a brief introduction to the Xt and X w widge ts is presen te d 

in the following chapter. Both Xt and Xw are built on top of Xlib, and are smoothly integrated 

with it. This allows programmers to use the functions provided by XIib, in addition to using 

the higher levellibranes. The Xt Intrinsics and the X Widget Set are both written in C. 

CHAPTER2 18 



( 

( 

CHAPTER3 

The X Toolkit 

The Xt Intrinsics prov;des programmers with an extensible set of user interface corn­

ponents that indu de scrollban, menus, pushbunons, and dialog boxes. These components are 

better known as widgets. A widgct is a complex data structure tbat consists of an X window 

and a set of procedures that aet on that window [1]. At this stage, it is important to point out 

the difference between a widget programmer and an application programmer. A widget 

programmer is a producer of sclf-contained reusable components, while an application pro­

grammer is a consumer that uses these components to des;gn applications. 

3.1 Widget Classes 

The Xt Intrinsics use an object-oriented approach that organizes widgets into classes. A 

class is a set of objects that possess simil&r characteristics. On the other hand, an object is an 

abstraction that combines data and the actions (also referred to as methods) that can be 

performed on the data. Individual objects are instances of a given ,1;;.sS. For example, an 

object-oriented graphies program for drawing circles, polygons, cubes, etc .. , might define 

classes CIRCLE, POLYGON, CUBE, etc .. , for each of these different objects. This setup may 

be symbolically represented as follows: 

CI RCLE -= {x 3xLsaclrcle} 

POLYGON .. {y 3 Ylsapolygon} 
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CU BE· {z:. zisacube} 

The class GRAPHICSOBJECI' is the set of classes formed by combining the above three 

classes, and is also known as a super class. Bach of the given classes might also define such 

attributes as col or, position, and dimension of a graphical object. 

GR APH ICSOBJ ECT - {CI RCLE. POLYGON .CU BE} 

ln the Xt Intrinsics, instances of a given widget cIass may be created, and widget attributes 

(also referred to as widget resources) may be set. The Xt Intrinsics also supports inheritance, 

another useful object-oriented concept that allows a given c1ass to inherit sorne or aU of the 

characteristics of another class, or super c1ass. The different widget classes provided by the 

Xt Intrinsics and the X Widget Set are listed in appendix A 

3.2 The Xt Intrinsics Programming Format 

The majority of applications using the Xt Intrinsics follow the programming outline 

shown in figure 3.1. The first step consists of establishing a connection with the X server, and 

initializing the Xt Intrinsics. Next, widgets may be created and widget resources May be set. 

ln the third step, event hand/ers and callbacks May be defined. Finally, all created widgets are 

realized, and the application enters the event loop. 
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Figure 3.1 The Xl Intrinsics programming chart. 
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3.2.1 Creating and Managing Widgets 

Widgets are organized in a bierarchical structure referred to as a widget free. The root 

ofthe widget tree is known as the root window. After a widget is created, it must be managed 

bya parent widget. Basically, a widget's parent manages such attributes as the location of the 

widget, its size, and whether the widget has the input focus. A widget's appearance on the 

screen is controlled by a set of options and resources that May be specified by the end user. 

3.2.2 HandUng Events 

The Xt Intrinsics provides application programmers with a listener mechanism that waits 

for events to occur in a widget, and automaticaUy invokes event handling functions registered 

by the widget or the application itself for handling each of the events (1]. Finding the proper 

widget where an event takes place, and invoking the right event handler(s) is referred to as 

event dispatching . 

3.2.2.1 Event Handlers and Callback Functions 

An event handler is a function that gets invoked automatically by the Xt Intrinsics when 

an X event takes place within a widget. Applications can register multiple event handlers for 

the same event occurring in the same widget. However, the Xt Intrinsics does not define the 

order in wbich multiple event handlers are invoked wben the triggering event occurs. 

Callbacks are functions that get caUed when certain widget·specific conditions are met. 

Callbacks are different from event handlers in that tbey get invoked by widgets rather than 

the Intrinsics, and are not necessarily tied to any X event. 
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3.2.3 Xt Programming: A Briel Example 

How hard can it be to display "Hello World" in a window using Xt 1. Using Xlib, this 

takes forty executable statements [8]. The following example program answcrs the same 

question from the X Toolkit point of view. , ....................................................... . 
• hello.c: Disrlay "Hello World" in a StaticText window • ....................................................... , 
#lnclude < Xl1/Intrinsic.b > 
#lnclude < Xl1/StringDefs.b > 
#lnclude <Xw/Xw.b> 
#include < Xw/SText.h > 

maln(argc, argv) 
lnt argc; 
char • argv[]; 

{ 
Widget toplevcl, helloworld; 
Arg wargs[l]; 
lnt i; 

r 
1 Initialize the Xt Intrinsics. 
·1 

toplevel = Xtlnitialize(argv[O], "Hello", NULL, 0, 
&argc, argv); 

r 
1 

Create a StaticText widget and display "Hello World" 
inside it . 

. t 
1 = O· , 
XtSetArg(wargs[i), XtNstring, "Hello World"); i + + ; 
helloworld = XtCreateManagedWidget("hw", XwstatictextWidget 

Class,toplevel,wargs,i); r 
1 Realize the widgets and Joop for events. 
·1 

Xl ReaUze\\'idget( topleveJ)~ 
XIMainLoopO; 
) 
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The function 

XtlnltiaUze(name, class, options, noptions, &argc, argv) 

establishes a connection with the X server, and initializes a resource database used by the X 

resource manager. The name parameter is usually tbe Dame of the application, while the c1ass 

parameter indicates the general class the application belongs to. The third and fourth 

parameters specify how the Intrinsics should interpret application-specifie command·line 

arguments, while the last two parameters control common command-line arguments. Xtlni­

tialize() creates and returns a Topl..evelShell widget which serves as the root of all other 

widgets in the calling application [1]. 

The function 

XtCreateManagedWidget(name, c1ass, parent, args, nargs) 

creates a managed widget in one cali to the Xt Intrinsics. The name argument is an arbitrary 

name of the widget, and c1ass is the type of widget to be created. For an overview of the widget 

classes available in Xw, refer to appendix A. The parent argument specifies the widget parent 

of the widget to be created, while the last two arguments to XtCreateManagedWidgetO specify 

the resources used by the widget [1]. Since XtCreateManagedWidgetO simply allocates and 

initializes the widget data structures, a ca1l10 the function 

XtRealizeWidget(widget) 

must be made if the widget is to be physically displayed on the screen. The Xt Intrinsics for 

sp~cifying widget resources is done through the use of the function 

XtSetArg( arg, name, value) 
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where arg, name, and "alue represent an array element of type Ar&, the resouree name, and 

the value of the resource respectively. The fuoction XtSetArg() tan also be used ta set or 

retrieve widget resourees after a widget is created. 

The event-listening loop is the last statement in the example. It is implemeoted as an 

infinjte C-Janguage for Joop as follows: 

for ( ; ;) { 

} 

XEvent event; 

XtNextEvent( &event); 

XtDlspatchEvent( &event); 

The XINextEventO funetion extraets the next event from the event queue, and bands it in to 

XtDispatchEventO which invokes the appropriate event handler. Sinee tbis piece of code is 

always the same in ail Xt Intrinsics applications, the Intrinsics provides it as a function: 

XtMainLoopO 

As may be seen from the above example, the Xt Intrinsics hide the details of programming 

with Xlib by creating primitives that internally calI hundreds of Xlib functions. The Xt 

Intrinsics, and the X Widget Set provide application programmers witb a library of user 

interface components that simplifies the task of writing applications, while allowing them to 

access Xlib functions when necessary. 

The EDS UI architecture outlined in the next chapter follows the Xt programming 

format described previously. User interface components such as scrollbars, pull-down menus, 
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and icons are used to make user interaction with computers easier, and more productive. End 

users May modify the widget resources of BDS (widget colors, font sizes, ... ) by using the X 

Resource Manager introduced at the end of chaptcr four. 
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CHAPrER4 

Interfacing to EDS 

4.1 Designing a User Interface for EDS 

ln order to provide the end user with a way for supplying equations to EDS, as weil as 

equation information, TextEdit widgets are created. Bach of these widgets is modified to hold 

a one-line text field, and to adjust its width according to the font type specified in the resource 

database. Horizontal scrolling is enabled so as to allow the user to enter expressions wider 

than the width of each of the fields. TextEdit widgets support most EMACS editing commands, 

as weIl as text cutting and pasting. A TextEdit field is active when the pointer is inside it. 

When the user enters an equation in infix notation in the appropriate TextEdit field, a 

series of events takes place based on the syntax of the equation provided. If the equation 

provided has the wrong syntax, the following series of events is executed: 

• 

• 

• 

A StaticRaster widget is created, and a red cross-mark icon is displayed to suggest that 

user input cannot be accepted as entered. 

A StaticText widget reserved for error messages displays the error message related to 

the equation provided. 

The TextEdit widget cursor points at the location of the error, and enters a blinking 

state until the error is corrected. 

On the other hand, if the syntax of the provided equation is valid, a different series of events 

is executed: 
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A StatlcRaster widget is created, and a green check-mark icon is displayed to suggest 

that user input is aceepted. 

The equation entered is displayed inside a TextEdit widget that keeps a record of the 

entered equations. The TextEdit widget in this case is created as a child of a Scrolled­

Window widget. 

The pointer moves to the next TextEdit field in order to relieve the user from using the 

mouse to get the same effeet. 

As humans, our reflexes have been trained to accept green as the "go-ahead" color, and 

red as the "stop" col or. Based on this fact, green is used to color check-mark kons, and red to 

color cross-mark kons. 

ln order to label each of the TextEdit widgets, StatitText widgets are used. The color 

of a StaticTen widget is inverted when the corresponding TextEdit widget is active. This 

feature is added to help the user distinguish between active and non-active widgets. Widget 

labels may be set by the end user in the .Xdefaults file (explained at the end of this chapter). 

4.1.1 Pull·Down Menus 

To provide the user with the ability to display equation flow graphs and binary trees, 

delete and add equations, create equation subsets, retrieve equation information, and operate 

on different sets/subsets of equations, pull-down menus are created. By selecting the 

appropriate menu entry, any of the following actions may be executed: 

• Creating and deleting different sets of equations. A set of equations in this case is sim ply 

a group of equations supplied by the user. 
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• Generating Oow graphs of one or more sets of equatioDS. 

• Converting equations from infix to postfix/prefix. 

• Oenerating binary tree representation graphs of equations. 

• Ouerying flow graph nodes. 

• Ouerying flow graph links. 

• RefJ eshing any of the WorkSpace widgets. 

• Printing flow graphs and binary tree representation graphs. 

• Quitting the application through a dialog box. 

WorkSpace widgets are used to display equation flow graphs and binary tree repre­

sentation graphs. Each WorkSpace widget is created as a child of a Sc:rolledWindow widget. 

The vertical and horizontal scrollbars of the Sc:roUedWindow widget are enabled, allowing 

large graphs to be drawn into the WorkSpac:e. 

4.1.2 Dynamic Creation of PushButton Widgets 

When a request is made to delete an equation from a given set of equations, or to form 

a new set of equations, a pop-up RowCol widget is created. This widget holds PushButton 

widgets whose labels represent equations previously entered by the user. These buttons are 

dynamically created since the number of equations is changing as the user enters or deletes 

equations. The number of PushButton widgets is dependent on the amount of heap space 

available. 
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A request made to dei ete a selected equation is not executed until the user confirms 

the action by selecting an "Enter" button. A "Cancel" button is also provided, and serves for 

a last-minute decision change. The same methodology is used when the user is picking 

equaticns to fonn an equation set. 

4.1.3 Creating Pop-up Widgets 

The first set of equations created by the user is displayed in a static WorkSpace widget. 

Additional equation sets are displayed in pop-up WorkSpace widgets that are created as 

children of ScrolledWindow widgets. Similarly, a request to generate the binary tree repre­

sentation of a selected equation causes a WorkSpace widget to be created as a child of a 

ScrolledWindow. AlI pop-up widgets inc1ude menu entries for ;efreshing these widgets, or for 

destroying them. Users may pan up, down, left, or right in ail WorkSpace widgets so as to 

bring a given flow graph, or binary tree area into focus. As stated previously, the number of 

pop-up widgets that can be created is totally dependent on the amount ofheap space available. 

4.2 The EDS Interface Widget Tree 

A Bulletin80ard widget is created as a child of the Topl.evelShell widget to hold aIl the 

non-pop-up widgets stated in the previous sections of this chapter. The widget tree is sum­

marized in figure 4.1, and the corresponding user interface is shown in figure 4.2. End users 

may easily modify many of the EDS interface resources (such as widget colors, font sizes, field 

labels, ... ) as explained in the following section. 
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Figure 4.1 The EDS interface "idget tree. 
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4.3 Specifying Resources 

Generally speaking, user interfaces are designeci to make user interaction with corn­

puters easier and more productive. However, no matter howwell the application programmer 

tries to anticipate the needs of the user, there is always someone who wishes to alter the 

behavior of a program [1]. Therefore, il is important that the user be able to cu'\tomize an 

application to his/her own needs and tastes. 

ln order to provide both the application programmer and the end user with the ability 

to customize applications, a resource manager facility known as tbe X Resource Manager was 

designed by the developers of the X Window System. 

To application programmers, X resources are data required by an application. !ngeneral, 

X resources are options that affect the behavior and look of an application. These include 

window IDs, colors, fonts, sizes, border widths, positions, etc ... The X Resource Manager 

aIJows the user to modify most of these resources. 

Every application and resource in X is expected to have a name and a class. A class 

indicates the genera] category to which a given entity belongs [1]. Consider the setup shown 

in figures 4.3 and 4.4. An end user can specify the foreground color of a toggle button named 

togglet by simply specifying the following line in his/her .XdeCaults file residing in the user's 

home thl'ectory: 

circuit.frame.work _ space.toggles.toggle 1.foreground: Green 

Specifying the foreground color for togglet consists of traversing the widget tree from 

top to bottom, and listing aIl the ancestors of togglet. However, this resource specification 

rule may be inconvenient when large widge~ trees are involved. Instead, the X resource 
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manager provides the user witb an asterisk '.' as a wild card characler for representing any 

Dumber of resource Dames or class Dames. Therefore, the foregrouDd color of toule1 may 

DOW he specified as follows: 

1 III II' 1. III 

:. 

:: 
.' 

: ~ 

:: .. 

Figure 4.3 A typical example application. 
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Figure 4.4 Widget tree for the example application of figure 4.3 

circuit*'ogglel: Green 

Resource specification rules may be generalized by using class names instead of widget 

names: 

*RowCol.foreground: Green 

The above specification implies that the foreground color of aIl widgets belonging to class 

RowCol should be green regardless of the app1ic~ tion. The rules governing widget resource 

specifications are listed below: 
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Entries in the .Xderaults file prefixed by a dot (':) are more specifie, and have preeedence 

over those prefixed with an asterisk ('.'). Therefore, 

*clreult.foreground: Green 

bas precedenee over 

*clrcuit*foreground: Red 

Resource names have precedence over dass names. Therefore, 

*toggle1.foreground: Green 

has precedence over 

*Toggle.foreground: Red 

Resource names or dass names have precedenee over asterisks. Therefore, 

*BulletinBoard*WorkSpace*Toggle*foreground: Green 

has precedenee over 

*BulletinBoard*WorkSpace*Coreground: Red 

Entries are evaluated left to right. Items encountered first have precedence over 

successive items. Therefore, 

circuit*BulletinBoard*Coreground: Green 

bas precedence over 

circuit*BulletinBoard*foreground: Red 
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This cbapter introduced tbe X Resource Manager through wbicb widget resources such 

as coJor, font type, and widget labels may be specified by end users. The EDS user interface 

architecture was pr~sented, alODg witb the different widget types that were used. The next 

cbapter discusses parsing of equations supplied by the user tbrough TextEdit widgets. 

Equations are converted to different notations, and their binary tree representations are 

generated. 
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CHAPTERS 

Parsing User Input 

Recognizing legal programs or expressions and decomposing them into forms suitable 

for further processing, is better known asparsing. Two generaI approaches are used for parsing, 

top-down and bottom-up. Top-down parsers look for a legal expression by first looking for 

parts of the legal expression, then looking for parts of parts, etc. until the pieces are sm aIl 

enough to match the input directly. Bottom-up parsers on the other hand, keep assembling 

pieces of the input in a structured way until a legal expression is constructed [10]. Top-down 

parsers are generally recursive, while bottom-up parsers are iterative. In this dissertation, 1 

have used a bottom-up parser to parse equations entered by the user in TextEdit fields. 

Although 1 could have used YACC/LEX (Unix facilities for building compilers) to achievc 

the same goal, 1 have chosen not ta, since the X Window System is being ported to PCs (mainly 

by Interactive Computers of California) running DOS, and where emulated Unix facilities 

might not be available. 

5.1 Expression Grammar and Parse Trees 

Before writing a parser program that parses inftx equations, infix grammar must be 

defined. A very small subset of infix grammar that involves addition and multiplication is 

defined below: 

[expression] = [tenn] 1 [temz] + [expression] 
[tenn] = /factor] 1 [factor] • [temz] 

[factor] = ([expression]) 1 v 
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The symbols (,), +, and • are known as terminal symbols. On the other band, {expression], 

(term), and (factor) are non-terminal symbols, and are internai to the grammar. The symbols 

., and 1 are known as metasymbols, wbile the symbol v stands for any letter or digit. "=" may 

be read as Mis a", and " 1" as "0"'. Therefore, the first line of the infix grammar translates to "an 

(expression) is a {tenn] or a (term] plus an (expression)" (10). 

The following example shows that the parse tree of A • ( B + C ) complies with the 

above grammar. 

'\ 
~er. 

\ 
\ 
c 

Figure 5.1 Parse tree for A • ( B + C). 
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A parser accepts strings that exist in the language described by the grammar, and discards the 

rest. Bottom-up parsers do this by starting with the string at the bottom of the parse tree until 

they reacb the nonterminal at the top. Top-down parsers do exact1y the opposite, starting al 

the nonterminal top, and finishing at the bottom of the parse tree [10]. 

5.2 Converting llÜax Equations to postrax/Prerax 

Although EDS converts infix expressions into prefIX internaUy using Lisp, an infix-to­

prefix C-routine generally does the conversion faster. The following section outlines an 

algorithm for converting infix equations to postflX/prefix. The sum of A and D is represented 

asA + D, whereA and B are known as the operands, and' +' as the ope rat or . This representation 

is referred to as inflX. The sum of A and B can also he represented as follows: 

+AB 
AB+ 

Prefix 
Postfix 

Prefix is known as Polish notation, while postfix is known as reverse Polish notation. The names 

are due to the inventor, the Polish mathematician Jan Lukasiewicz (1878-1956) [11]. Prefix 

notation can he thought of as a mirror image of postfix. Notice that in going from infix to 

postfix, parentheses are not required: 

(A+B)*C 
AD + C. 
A+(B*C) 
ADC·+ 

Infix 
Postfu 
Inru 
postra 

The order of tlle operands in the two previous expressions is the same. The first operand, 

A, of the infix expression A + B * C, can be immediately inserted into the postfix expression. 

the operator' +' cannot he inserted until after its second operand. Therefore, it must he stored 
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away untn its proper insertion position is available. When the operand B is encountered, it is 

insened directly after A. Now that two Ope rands bave been insened, t + t still cannot be 

retrieved. This is due to the '.' operator, whicb follows and has precedence over '+'. In the 

infix expression (A + B) • C bowever, the closing parenthesis indicates that the' +' operation 

abould be performed first [11]. 

5.2.1 Precedence Rules 

From the previous example, il is obvious that precedence rules govem the infix-to-postfix 

conversion. By defining a boolean function,ptal(opl, op2), where opl and op2 are characters 

representing operators, precedence rules can be set such that prcd('·', ' +') is true, while 

prcd(' + " '.') is false. Generalizingprecedence rules to inc1ude delimiters, and most arithmetic 

and unary operators, the following rules emerge: 

prcd('(',op2) = false for any op2. 

( , prcd(opl, '(') = faise for any apI other than ')'. 

prcd(opl, ')') = true for any opt other than '('. 

prcd(')', 'e) = undefined. 

prcd('·',op2) = true for any op2 E {' + ' , ' - ' , '*' , ' l'}. 

prcd(' /" op2) = true for any op2 E { , + ' , ' - ' , , * ' , ' l ' } . 

prcd(' +', op2) = true for any op2 E { , + ' • ' - '} • 

prcd('-',op2) = true for any op2 E {' + ' , '- '}. 

prcd(''''',op2) = true for any op2 other than 'A'. 

prcd(opl,op2) = true for any op2 other than ''''', and for 
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opl E { , si n ' • 'cos' • t tan' • 'cotan' • ' log' • ' 1 n ' • 'exp'}. 

The infix-to"postfix conversion routine is presented below. opstk is the operator stack, 

and is initially empty. Procedures push() and popO store and retrieve operators from the 

operator stac1e, wbile procedures empty() and opndO check if the operator stack is empty. or 

if a token is an operand, respectively. Finally procedure popandte.stO pops an element {rom 

the operator staeke and uses the boolean variable und to indicate wbetber stack underflow 

has occurred [11]. 

begin {procedure postfix} 
topsymb : = + '; 
opstk.top : = 0; {start with an empty stack} 
position : = 1; 
outlen := 0; 
{scan symbols until encountering a blank} 
symb : = infix[~ositionl; 
while symb < > ' 
do begin 
if opnd(syrnb) 
then begin {operand is found} 
outlen : = outlen + 1; 
out[outlen] : = symb; 

end 
else begin {if an operator is found} 

popandtest( opstk, topsymb, und) 
wbile(not und) and (prcd(topsymb. symb» 

CHAPT ER 5 

do begin 
outlen : = outlen + 1; 
out[outlen] . = topsymb; 
popandtest( opstk, topsymb, und) 

end 
Ifnot und 
tben push( opstk, tORsymb) 

if und or (symb < > )') 
tben push( opstk, symb) 

else topsymb : = pop(opstk) 
end 
if position < maxcols 
tben begin 
position: = position + 1; 
symb : = infix[position]; 

end 
else symb:= " 
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end 
whlle Dot empty(opstk) 
do beain 
outlen :- outlen + 1; 
out[outlen : - pop(opstk) 

end 
end 

When an opening parenthesis is encountered, it is pushed onto the operator stack. This 

guarantees that an operator appearing after a left parentbesis is pushed onto the stack. On 

the other hand, when a right parenthesis is encountered, al1 operators since the opening 

parenthesis must be popped from the operator staele, and inserted into the postflX expression 

[11]. The next section discusses parse tree construction. 

5.3 Binary Tree Representation of Equations 

Given an equation in postflx notation, the corresponding binary tree representation, 

a]so known as the parse tree, may be constructed. The ru]es for constructing parse trees comist 

of p]acing the operator at the root of the tree, and the trees corresponding to the first and 

second operands at the left and right of the tree. As an example, consider the infix expression 

(A + B) • ( C + D ). In postfix notation, this expression is written as A B + CD + ., and 

the corresponding parse tree is shown in figure 5.2. 

The routine used for constructing such trees from a postflX expression is listed below. 

Every tree node has a left and a right link to other nodes. For an ope rand encountered while 

scanning a postfix expression, anode is created using the primitive new. An operand node has 

nulllinks. On the other band, a unary operator such as log, is represented as anode with one 

nulllink (10]. 
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Figure 5.2 Parse 'cee for ( A + B ) • ( C + 0 ). 

type link = I\node; 
node = record info: char; l, r : link end; 

var x, z : link; 
c: char; 

begin 
stackinit; 
new(z); zl\.1 : = z; zl\.r : = z; 
repeat 
repeat read(c) until c< >"; 
new(x); xl\.info : = c; 
if(c = '.') or (c = '+') or (c = '-') or (c = 'l') 
then begin x"'.r : = pop; x"'.1 : = pop end 
el se if (c = 'log') or (c = 'sin') or ..... 
'hen begin x"'.r = pop; x'''.l : = zend 
else begin x"'.r : = z; xl\.1 : = zend; 

push(x) 
until eoln; 
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The proceduresstackinit,push, andpop initialize, push elements onto the stacJe, and pop 

elements from the stade. They are defined in appendix C. The next section describes how 

(, parse trees are drawn into WorkSpace widgets. 

5.3.1 Drawing Parse Trees 

Once the parse tree of an equation is constructed, it can be drawn into a WorkSpace 

widget. The procedure used to draw a parse tree consists of traversing tbe postrlX tree in Ievel 

order, where tree nodes are read down from top to bottom, and from left to righl. The sequence 

., +, +, ~ B, C, D refers to the level order traversaI ofthe parse tree shown in figure 5.2 [ID). 

When a tree node is read, caUs to the Xlib primitives XDrawArc() and XDrawStringO are 

made to draw a tirde and a string centered inside it respectively. The string drawn simply 

represents the contents of a node. At the same time, the 1eft and right links of the node are 

drawn (assuming that the next level nodes connected to the current links are not null) using 

the Xlib primitive XDrawLineO. The end points of the segments are determined from the 
,1 
t faet that as one moves from one level of the tree to the next, the number of null and non-null 

f 
" 

nodes increases by a factor of 2 n, where n is the level number. 

The next chapter discusses equation sets, and the methods used to store and retrieve 

equation information graphically from flow graphs representing these sets. Dynamic gener­

ation of flow graphs representing user chosen equation sets are also discussed. 
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Figure 5.3 Dra\\ing parse trees. 
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CHAPI'ER6 

Equation Sets and Equation Flow Graphs 

Afler user supplied equations are parsed, they are used to populate linked Iists of data 

structures that hold detailed information about these equations. Data can then be retrieved 

from the data structures, and used to generate eouation flow graphs representing stored 

equations. In addition to providing the userwith the a"'Ilty to generate flow graphs for different 

sets of equations, the package also allows the user to add or delete elements from these sets 

of equations. The addition or deI et ion of equations is graphically reflected in the WorkSpace 

widgets where equation flow graphs are drawn. 

6.1 Storage and Retrieval of Equation Information 

After the syntax of a supplied equation is validated through the parser, the equation is 

stored in a C-language data structure. Af, more equations are entered, a linked list of data 

structures is formed that represents the se equations. When a request to draw the flow graph 

of a given set of equations is made, the linked list is copied into a dynamically allocated array 

of structures that has the following format: 

typedef struet Eqt { 
int x; 
int y; 
int mflen; 
int postlen; 
int preflen; 
int varlen; 
char aeqlside; 
char aeqrside; 
char aeqname; 
char a .irifix; 
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char "postfix; 
char • ·prefix; 
char "var; 
struet Tiedto ·tiedto; 

} Eqt; 

typeder struet Tiedto { 
char *eqlside; 
struet Vars ·vars; 
struet Tiedto *next; 
struet Tiedto ·previous; 

} Tiedto; 

typeder struct Vars { 
char ·vamame; 
struct Vars *next; 
struct Vars ·previous; 

} Vars; 

,. equation in postfix fonn. ï ze equation in prefix form. • ze variables in equation. * / r Equations tbat may be related to 
tbis equation. • / 

r Left side of equation. *' 
1* variables in common.-/ r link to next equation. -/ r link to previous equation. • / 

r variable. ~ / 
/* link to next variable. * / r link to previous variable. * / 

Before describing the above structures, the model used to represent equations must be 

defined. Consider the following equations: 

v = I*R (Ohm' s Law) 

(Power DlSSlpatLOn) 

These equations may be graphically represented as two circ1es (equation nodes), and a line 

segment (link) connecting them. The setup is shown in figure 6.1. 

CHAPTER6 48 



Figure 6.1 Flow graph representation of V .. J * Rand P _/2* R. 

Since 1 and Rare common to both equations, a Iink is drawn between the nodes representing 

these equations. A node in this case is simply a circle whose inside holds an equation string. 

On the other hand, a link shows that a relationship exists between two given equations. The 

variables common to the two given equations are shown next to the link. The combination of 

nodes and links is known as aflowgraph. 

Going back to the data structures presented earlier, x and y of structure Eqt represent 

the coordinates of the center of an equation node, while Innen, postlen, and prenen represent 

the number of tokens in the infix, postfIx, and prefIx equations respectively. The number of 

variables in the equation is stored in varlen. The left side, right side, and name of the infix 

equation are poimed at by the structure members eqlside, eqrslde, and eqname respectively. 

The infix tokens, postfix tokens, prefix tokens, and variables making up the equation are stored 
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in arrays of strings pointed at by the structure members inOx, postlix, prelix, and var 

respectively. Finally, the tiedto member forms a linked list of equations tied to the current 

equation. Variables common to two given equations are stored in the Vars linked list. 

6.1.1 Extracting Related Equations 

When the user requests that a flow graph of a given set of equations be generated, a 

se arch through the array of structures representing the set of equations must be conducted 

internally in order to single out related equations. The se arch consists of a pattern matching 

algorithm that tries to match every variable of a given equation with the variables of the 

remaining equations in the set. Every two equations are compared only once. The se arch 

continues until aIl equations have been scanned. For a set of n equations, the number of 

equation comparisons performed is given by: 

(n- 1)+(n-2)+ ... + 1-(n 2 -n)/2 

To illustrate this algorithm, consider the example equations presented in the previous section. 

Assume that the set of equations consists of: 

The algorithm starts by picking the first variable (1) of the first equation (V) in the set, 

and scans equation P in search for the same string. Since 1 is also a variable of equation P, 

the search is successful and the Eqt structure member tiedto is now initialized to P. Next, 

variable (R) of the first equation is picked, and a similar se arch is conducted. After variables 
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of the first equation are scanne d, the searcb is complete. By DOW, the data Structures have 

been filled, and in panicular, the structure tledto contains information equivalent to the 

following: 

Vnp-{/.R} 

The prer.x member of the Eqt data structure presented earlier is used to fill out the rule 

slot of an equation schema in EDS. On the other hand, the vars structure member is used to 

fill out the has-variables equation schema slot. At tbis stage, EDS solves for all variables in 

the input equation, and stores the corresponding clauses in the clauses equation schema siot 

(assuming that the symbolic solver finds a solution to each of the variables in the input 

equation) (9). 

6.1.2 Generating Flow Graphs 

The centers of the equation nodes shown in figure 6.1 occupY the ends of a line segment. 

( For an equation set consisting of three equations, node centers occupY the vertices of a triangle. 

( 

A four-equation set has ils node centers located at the vertices of a square etc .. The algorithm 

for generating the equation node centers is outlined below: 

Pl = 3.141593; 

angle = 2.0 • Pl / number _of_equations; 

begin i: = 1 to number _ of _ equations do 

xli] = x_center + radius ·cos(i • angle); 

yli] = y_center + radius • sin(i • angle); 

end; 
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The node centers lie on a circle of center (x_cellier, y _center), and of radius radius, and 

divide the circle perime ter into number _01_ equDlions equal arcs. Each of these arcs bas angle 

as its angle, taken from the center of the circle . 

The algorithm used for generating equation Oow graphs consists of scanning the array 

of Eqt structures, and of drawing nodes at specified x and y member coordinates. At tbe same 

ÛJDe, tbe algorithm checks the structure member tiedto to determine if the current equation 

is related to other equations. Links are drawn between related equations. 

Equationflow graphs are drawn inside WorkSpacewidgets. The Xlib graphies primitives 

XDrawStringO, XDrawLineO, and XDrawArc() for drawing text, lines, and arcs are used. The 

contents of WorkSpace widgets are maintained by drawing graphies both inside WorkSpace 

widgets, and into pixmaps. An X pixmap is simply an area of memory similar to a rectangular 

region on the sereen, exeept that it is stored in off-screen memory, and is not visible to the 

user [1]. Like a screen, a pixmap has a width, height, and depth. The funetion 

XCreatePixmap(display, drawable, width, height, depth) 

creates a pixrnap of width by Izeiglzt pixels, having deptlz number of planes. 
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El = a. la. c 

J:2 = log( c) • • 

E3 = .In(a •• , 

MY.ber of Equation. = 3 

E4 = a • fJ - 'Y 

ES = exp( a • "1) - ô 

Huaber of Equ.~lon. = .. 

(b) 

Figure 6.2 Example no\\' graphs. 

For a large set of equations where each equation is related to all of its counterparts in 

the set, the flowgraph becomes crowded with intersecting Dode links. This problem is soIved 

by generating flowgraphs for subsets of the original equations set. Flowgraphs of equation 

subsets are displayed in pop-up widgets. 
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6.1.3 Retrieving Equation Information 

At any time, the user can query a tlow graph for equation information. One lcvel of 

hypertext is provided; a pointer event inside any of the flow graph nodes causes a Statlc:Text 

pop-up widget to appear. This widget bolds detailed information about the node equation. 

The information displayed includes: 

• The name of the equation. 

• The equation in inflX form. 

• The equation in postfix form. 

• The variables that form the equation. 

• Equations that this equation is related to. 

• Variables common to this, and each of the related equations. 

The location of every pointer event taking place inside a WorkSpac:e widget is checked 

to determine if the event happened inside one of the tlow graph nodes. A routine that scans 

the Eqt structure array is used to determine if the distance from the point where the event 

occurs, to the center of each of the equation nodes, is less than the radius of cach of the nodes. 

Pointerevents occurringnear a link cause a StaticText textwidget pop-up to be displayed. 

The pop-up widget displays the variables common to the two equations whose nodes are 

connected through the link. The following section describes the procedure used for deter­

mining whether a pointer event occurs inside any of the th in rectangles surrounding equation 

links. 
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Figure 6.3 Side efTects of pointer events. 

6.1.4 Inclusion in a Polygon 

Given a pointer location and a polygon (in tbis case a rectangle) surrounding a flow 

graph link, a search must be conducted to detennine if the pointer location is inside or outside 

the polygon. A solution to this natura] problem consists of drawing a long line segment from 

the pointer location in any direction, such that the endpoint of the segment is guaranteed to 
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be outside the polygon. If the number of intersections of the polygon with the tine segment is 

t odd. the pointer location must be inside the polygon. If it is even, tbe pointer location is outside 
:N 

' ..... 

the polygon. 

(a) (b) (c) 

Figure 6.4 DitTerent point-in-polygon cases. 

However, the situation is not so simple because sorne intersections might occur al the 

vertices of the polygon as shown in figure 6.4 (b). The line segment might also align with one 

of the edges of the polygon as shown in figure 6.4 (c). Therefore, the need to handle all these 

cases must be addressed. 

An algorithrn that covers a11 the particular cases stated above consists of traveling around 

the 'polygon, and incrernenting an intersection counter whenever the test line is crossed from 

one side ta the other. Points that fall on the test line are ignored [10]. 
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tunctlon inside( t:point ):boolean; 
"ar count,ij:lnteger; 

1t,lp:line; 
bepn 
count: -O;J': -0; 
p[O]:-p[N ; p[N+1]: =p[I]; 
Il.pl:-t; Il.p2:-t; lt.p2.x:-maxint; 
ror i: -1 to N do 

begin 
Ip.pl:=p[I]; Ip.p2:=p[l]; 
Irnot intersect(lp,lt) then 

begln 
Ip.'p2: =pU); j: = i; 
Ir mtersect(lp,lt) tben count: =count + 1; 
end; 

end 
inside: - « count mod 2) = 1); 
end; 

Polygon vertices are stored in the p[l .. NJ array. The inteneet function simply checks if 

two line segments intersect, and is listed in appendix C. The variable j is maintained as the 

index of the last point on the polygon known not to lie on the test line. The algorithm assumes 

that pl J J is the point with the smallest x-coordinate among all the points with the smallest 

y-coordinate [10]. 

6.2 l\lemory Management 

At any time, equations May be added or deleted from any set of equations already 

entered. Flow graphs are informed of the changes in equation sets through Callbacks. 

Therefore, flow graphs always reflect these changes. When adding new equations, heap space 

must be allocated to accomodate the newly formed data structures. This ;s done using the 

C-Ianguage library caUs callocO, and maliocO. When an equation, or a whole set of equations 

is deleted, the associated heap space must be freed. AIso, when a pop-up widget is destroyed, 
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il must be fuSl removed from the linked list of pop-up widgets, and then freed. Routines for 

freeing the structures outlined at the beginning of this chapter are designed to search for all 

the allocated heap space inside these structures, and to release it. 

6.3 Printing Flow Graphs and Parse Trees 

Using the xwd client application provided with the X Window System core distribution, 

a snap shot of any window on the screen may be taken. The output of the command consists 

of a bitmap representing a selected window, and may be directed to a file. Using the xwd 

picture format, picture files are converted to the following formats: 

• HP Laser Jet Series II. 

• HP Paint Jet. 

• QMS Postscript. 

The converted files can then be queued to any of the above printers. Sample pictures of the 

interface were generated on an HP Paint Jet printer, and are shawn in chapter seven. 

In this chapter, the data structures used in the interface program were presented, and 

a method for generating flow graphs of equations was deveJoped. Subsets of equations rnay 

be created, and their corresponding flow graphs may be shown in pop·up widgets. Equations 

may be added or deleted from any set of equations. The nex. cnapter presents a slImm3ry of 

the work do ne in this dissertation. Conclusions, as weIl as suggestions for further enhancements 

are also inc1uded. 
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CHAPTER7 

Conclusions 

7.1 Thesis Summary 

The EDS user interface provides users witb a mechanism for graphica11y representing 

algebraic models in tenns of flow graphs. Flow graphs of different sets of equations May be 

generated, and equations may be added to, or deleted from equation sets. An equation set is 

represented by a pop-up widget that con tains a flow graph depicting the set. The number of 

equation sets that May be created is limited by the amount of beap space available on the 

host machine, sin ce pop-up widgets are created dynamically. 

The EDS user interface supports one level of hypertext; users May query flow graph 

links in search of information about variables common to related equations. Similarly, flow 

graph nodes May be queried for equation relationships, variables in the equations, as weIl as 

different equation notations. Querying is triggered by clicking on the flow graph object in 

question (node or link). Object information is displayed inside pop-up widgets. 

As the number of related equations in a set increases, the flow graph representing the 

given set becomes densely populated with equation links. Flow graphs of subsets of the given 

equation set may therefore be generated. 

Figure 7.1 is a picture of the EDS user interface in which four mutually related equations 

are entered through the TextEdit widget fields. The flow graph of all four equations is displayed 

in the WorkSpace widget area below the pull-down menus. Equation links are shown in red, 

while equation nodes are drawn in green. Figure 7.2 shows pop-up widgets holding variables 
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common to equatioDS connected by each of the links. Equation information is aiso displayed 

in pop-up widgets as shown in figure 7.3. Popup widgets holding link or node information may 

be collapsed '>y simply clic:king inside them. 

In figure 7.4, aIl pop-up widgets are collapsed, and new equations are added to the main 

equation set. In figures 7.S and 7.6, an equation is selected from the main set of equations, 

and a request to generate the binaI')' tree is made. The resulting binary tree for the selected 

equation is displayed in a pop-up widget as shown in figure 7.7. 

As the number of equations increases, a 'crowding' of equation links takes place, 

especially when equations in a given set are densely interrelated. This may be obvious from 

figure 7.4. In this case, equation subsets may be formed as shown in figures 7.8 tllrough 7.11. 

Equation subsets are displayed in pop-up WorkSpace widgets. 

Equations may be added or deleted from a given set of equations, as shown in figures 

7.12 and 7.13, where equationS is deleted from the main set of equations, and replaced by 

equation9. 

Text cutting and pasting may be used between the different TextEdit widget fields thal 

the interface uses. Vertical and horizontal scrolling is implemented in all WorkSpacewidgets, 

allowing for top, bottom, left, and right panning. Additional input and output TextEdit widget 

fields can be easily added to the interface data structures, therefore allowing it to display more 

equation irformation when needed. 

The actua] interfacing of EDS to the EDS VI was not possible, due to the fact that the 

Knowledge Cran shell that EDS uses to run is no longer available (Centre de Recherche 

ln/onnatigue de Montréal sold its copy of KC which EDS has been accessing from the Mcgill 

CADLab). 
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The EDS user interface is portable, and ruus on a variety of Xll.R2 platforms. Il was 

tested on Apollo and Sun workstations running SRIO.l and SunOS 4.0 respectively. After all, 

portability is one of the major advantages of using the X Window System. It is interesting to 

note bowever, that simple graphical operations sucb as panning in WorkSpace widgets, or 

moving up or down within pull·down menus cause extensive paging (memory to bard disk 

mapping) on most workstations running X, and lead to slow performing applications. This is 

a major drawback of X, especially when applications are run across networks tbat are subject 

to frequent deJays. 

Another advantage of using the X Window System is the user-controlled, X Resource 

Manager. Colors, menu labels, as well as other widget resources may be easily customized by 

end users (.Xderaults file in the user's home directory). The software written for tbis disser­

tation is available as public domain, and is located in directory tlaesis on nou­

jeim@dwiglat.ee.mcgilLca. 

( 7.2 Suggestions for Future Work 

Although the X Toolkit provides application programmers with a higher levellibrary 

built on top of XIib, it still involves a fair amount of detail. A programming tool that hides 

many of these details, without restricting access to the Xlib library, is bound to increase the 

productivity of application programmers. 

A well-suited language that simplifies X Toolkit programming considerably is Lisp 

(although Smalltalk might be another potential candidate). By creating Lisp functions that 

internally interface to X Toolkit routines, higher-level abstractions are created that simplify 
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the development task, and increase programming effic:iency. Consider the following lines of 

code that create a StaticText widget, set its location, size, and border color by directly using 

the X Toollcit: 

. 
Arg wargs[S); 
Widget toplevel, w; 
lnt i = 0; 

toplevel = Xtlnltiallze(argv[Ol, "Ex ample", NULI... 0, 
&argc, argv); 

,- Set the StaticText widget attributes. e/ 
xtsetAralwargs il' XtNx, 1(0); i+ +; 
XtSetArg wargs i , XtNy, 200); i + + ; 
XtSetArg wargs i , XtNwidth, 120); i + +; 
XtSetArg wargs i , XtNheight,IS0); i + + ; 
XtSetArg wargsl il, XtNborderCoJor, "Red"); i + + ; 
W = XtCreateManagedWidget("static", XwstaticTextWidgetClass, 

toplevel, wargs, i); 

The equivalent code implemented in Lisp might look as follows: 

(setq shell (initializeXt "Examfle"» 
(createStaticTextWidget shell 'static" 100 200120150 "Red") 

Every Lisp function used to create a widget contains the class name of the widget, 

preceded by the word 'create'. Therefore, the function createStaticTextWidget simply creates 

a StaticText widget. StaticText widget resources are specified as arguments to the createS­

taticTextWidget function. The parent id argument is specified first, followed by the name of 

the widget, ils location, size, col or, etc ... The X Window System convention of first specifying 

the location of a window, followed by its size, and of specifying x-coordinates before 

y-coordinates is maintained. 
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.------ -------------------------------------------. 

The Lisp function InitializeXt establishes a connection with the X server. The first 

argument to InitializeXt is the name of tbe SheD widget. Arguments that affect command line 

parsing may also be specified following the widget name. 

By 'loading' the previous Usp statements at the Usp-interpener prompt, a SlaticText 

\\idget is c:reated at location (100,200), having a size of 12Ox150 pixels, and a red border color. 

To application programmers, this example implies tbat: 

• X Toolkit programming details are reduced to a bare minimum. 

• Lisp code interpeted at the Lisp-prompt produces graphies instantaneously on the 

screen. This is a great advantage since X-Toolkit C programs had to be compiled before they 

could be run. 

• It takes only a few lines of Lisp code to create a sophisticated looking user interface. 

A disadvantage of Lisp is that the newly created layer sitting on top of the existing Xt 

Intrinsics and the X Widget Set layers, leads to slow-performing applications. However, 

performance may be improved by compiling Lisp programs. 
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Figure 7.14 A conceptual view orthe layers leading to Lisp. 

7.2.1 Rules and Methods 

lt is important that application programmers be provided with fUies that control user 

interface components such as menus, buttons, and scrollbars. A rule is simply a condition 

imposed on an interface component. As an example, consider the pull-down menu shown in 

figure 7.15. The second menu entry in the pull-down menu is disabled when aIl other menu 

entries are active. 
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Figure 7.15 Rules goveming menu entries. 

In programming terms, the second entry is created and rule-governed as follows: 

. 
(createMenuButtonWidget RowCoI "Pull-Down" "item 2" 
'(ActiveOthersNot) ) 

The rule is outlined at the end of the Li!'p function. It simply states that item _2 must be active 

when item_l, and item_3 are not, and vice-versa. Therefore, the activation status of menu 

entries is completely controlled by rules that application programmers can specify. 
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User interface compone nt rules cao aIso he combined using logical operations as out­

lined in tbe following exarnpIes: 

(rolel " rule2 & ruIe3 ... ) 

(rolel 1 roIe2 1 rule3 ... ) 

(-rule 1 & rule2 & rule3 ... ) 

(rolel 1 -ruIe2 1 rule3 ... ) 

The '&' operator performs an 'anding' operation on a set of user interface component rules, 

white the '1' operator 'ors' a set of rules inclusiveIy. The' -' operator is used for rule negation. 

7.2.2 Expanding the EDS VI 

The EDS user interface supports one level of hypertext only. A multi-Ievel hypertext 

mechanism for querying equation nodes and links is necessary as EDS is interfaced to a 

. , package that uses intervai mathematics to impose bounds on variables [9][30]. This allows the 

user to move between different Ievels of equation information ranging from variable names 

to bounds imposed on each of those variables. 

The EDS user interface needs to be expanded so as to access a package for tool inte­

gration. The package uses a black box architecture [31] to gatber information about different 

design tools (EDS, finite-element-based field simulation tools [32]), and to trigger those lools 

based on a schedule determilled from the information gathered. 
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AppendixA 

Widget Classes 

This appendix briefly lists the X widget class tree, and serves as a quick reference to the 

Xt Intrinsics and the X Widget Set widget classes. 

Core 

TopLeyelShell 

SheII~r.ft.l .. tSholl 

C"PO.lt.~ "'rrIO.Sholl 

Prhlltlve 

Conc1.ral nt - r1anager 

UorkSpace 

Arrow 

Ualuato~TOggle 
Button MenuButton 

StatlcHaster PuahButton 

StaticText 

Figure A.I The X \\'idget c1ass tree [1]. 

The Core Intrjnsics \\'jd2et Classes 

AppendixA 80 

Bu 11e1.1 nBoard 

ROIlCoI 

UPa.dU 1 MOII 
.----l1enuPane - Casc.de 

nenuMgr ~p pt1 opu gr 
ScrolledUindow Liat 

Scrollbar 



{ 

COMPOSITE 
Class: 
Class Name: 
Superclasses: 

con\poslteWidgetClass 
Composite 
Core 

The Composite widget class is a meta-class used as a container of other widgets. 

CONSTRAINT 
Class: 
Class Name: 
Superclasses: 

constralntWidgetClass 
Constralnt 
Core, Composite 

The Constralnt widget is a meta-class defined by tbe Xt Intrinsics. It attaches additional 
resources to ilS children, and uses these constraints to manage the geometry of its children. 

CORE 
Class: 
Class Name: 
Superclasses: 
Callback List: 

WidgetClass 
Core 
None 
XtNdestroy 

The Core widget class is an Xt Intrinsics widget class. Il is never instantiated as a widget, 
and its sole purpose is simply a supporting super class to other widget classes. It provides 
resources required by all wldgets. 

SHELL 
Class: 
Class Name: 
Superclasses: 

shell\\TidgetClass 
Shell 
Core, Composite 

The Shell widget c1ass is defined by the Xt Intrinsics. Il provides an interface between 
applications and the window manager. 

The X "'idEet Set Classes 

ARRO\V 
Class: 
Class Name: 
Superclasses: 
Cal1back List: 

Appendix A 

XwarrowWidgetClass 
Arrow 
Cor~, Primitive 
XtNselect, XtNrelease 
XtNenter, XtNleave 
XtNselect, XtNunselect 
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The Arrow widJet supports drawing of an arrow within the bounds of its window. The 
arrow cao be drawn m the up, down, left, and right directions. 

BULLETINBOARD 
Class: 
Class Name: 
Super classes: 

XwBulletlnWidgetClass 
BulletinBoard 
Core, Composite, Con5tralnt, 
Manager 

The BulletlnBoard widget is a composite widget that does not enforce anx ordering on 
its children. Applications must specify the location of BulletlnBoard widget children. 

BUTrON 
Class: 
Class Name: 
Superclasses: 

XwbuttonWidgetClass 
Bulton 
Core, Primitive 

The Bulton widget is an X Widget meta-class. It is never instantiated as a widget, and 
provides a set of resources needed by other widgets (XwtoggleWidgetClass and Xwpush­
ButtonWidgetClass). 

CASCADE 
Class: 
Class Name: 
Superclasses: 
Callback List: 

XwcascadeWidgetClass 
Cascade 
MenuPane 
XtNselect, XtNleave 
XtNvisible, XtNunmap 

The Cascade widget is a composite widget that application prngrarnrners use for creating 
menus. It al ways displays its children in a single colu~ and attempts ta resize itself ta the 
smallest possible size. 

FORM 
Class: 
Class Name: 
Superclasses: 

X"form\\'idgetClass 
Form 
Core, Composite, Constraint, 
Manager 

The Form widget is a constraint widget based manager that establishes spatial rela­
tionships between its children. 

LIST 
Class: 
Class Name: 
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Xwlist\\'idgetClass 
List 
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Superclasses: 

Callback List: 

Core, Composite, Constraint, 
Manager, ScroliedWindow 
XtNselect, XtNdoubleClick 

The List widget allows a two-dimensional set ofwidgets to be displayed in a row / column 
fashion. It provides management and layout functions for its elements. 

MANAGER 
Class: 
Class Name: 
Superclasses: 

X~anager~dgetClass 
Manager 
Core, Composite, Constralnt 

The Manager cl2ss is an X Widget meta class. It is never instantiated as a widget. It is 
mairuy used as a supporting superclass for other widget classes. 

MENU 
Class: 
ClassName: 
Superclasses: 

XwmenumgrWldgetClass 
MenuMgr 
Core, Composite, Constraint, 
Manager 

The Menu Manager class is an X Widget met a class. It is never instantiated as a widget. 
Its main purpose is to serve as a supporting superclass for other menu manager classes. 

ME~ruBUTfON 
Class: 
ClassName: 
Su perclasses: 
Callback List: 

XwmenubuttonWidgetClass 
MenuButton 
Core, Primitive, Button 
XtNseJect, XtNcascadeSelect, 
XtNcascadeUnselect 

The Menu Button widget is cornrnonly used with Menu Pane and Menu Managerwidgets 
to build menus. 

MENUPANE 
Class: 
Class Name: 
Superc1asses: 

XwmenupaneWidgetClass 
MenuPane 
Core, Composite, Constraint, 
Manager, MenuMgr 

The Menu Pane class is ~n X Widget meta class. It is neveT instantiated as a widget, and 
its main purpose is to serve as a supporting superc1ass for other Menu Pane widget classes. 

AppendixA 83 



POPUP MENU MANAGER 
Class: XwpopupmarWidgetClass 
Class Name: PopupMgr 
Superclasses: Core, Composite, Constralnt, 

~anage~~enuMgr 

The Popup Menu Manager widget is a composite widget that manages a collection of 
Menu Pane widgets. 

PRIMITIVE 
Class: 
Class Name: 
Superclasses: 

XwprimitiveWidgetClass 
Primitive 
Core 

The Primitive class is an X Widget metaclass. It is oever instantiated as a widget, and 
it is mainly used as a supporting class for other widget classes. 

PUSHBUTfON 
Class: 
Class Name: 
Superclasses: 
Ca1lback List: 

XwpushButtonWidgetClass 
PushButton 
Core, Primitive, Button 
XtNselect, XtNrelease 

The Push Button widget consists of a text label surrounded by a button border. By 
default, the interior of the button is inverted when the button is in the down state. The interior 
of the button is reinverted when the button is released. 

ROWCOL 
Class: 
ClassName: 
Superclasses: 

X "TowColWidgetClass 
RowCol 
Core, Composite, Constraint, 
Manager 

A Row Column widget arranges its children into rows and columns. 

SCROLLBAR 
Class: 
Class Name: 
Superclasses: 

Callback List: 

AppendixA 

XwscrollbarWidgetClass 
ScroliBar 
Core, Composite, Constraint, 
Manager 
XtNareaSelected, XtNsliderMoved 
XtNgranularity 
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The Sc:roUbar widget combines the Valuator and Arro" widgets to fonn a horizontal or 
a vertical scrollbar. 

SCROLLED WlNDOW 
Class: 
ClassName: 
Superc1asses: 

Callback tist: 

XwswindowWidaetClass 
Sc:rolledWlndow 
Core, Composite, Constraint, 
Manager, Sc:rolledWIndow 
XtNvSc:roIlEvent, XtNhSc:rollEvent 

The Sc:rolled Window widget combines the ScroUbar and Bulletin Board widgets to 
implement a visible window onto a larger data display. 

STATIC RASTER 
Class: 
ClassName: 
Superc1asses: 

STATICTEXT 
Class: 
ClassName: 
Superc1asses: 
Callback List: 

XwstatlcrasterWidgetClass 
StatlcRaster 
Core, Primitive 

XwstatictextWidgetClass 
StaticText 
Core, Primitive 
XtNseltet, XtNrelease 

The Stalic Raster widget displays an uneditable raster image. By default, the image is 
placed in a window that has the exact size of the raster. 

TEXTEDIT 
Class: 
Class Name: 
Superc1asses: 
Callback List: 

XwtexteditWidgetClass 
TextEdit 
Core, Primitive 
XtNmotionVerification, 
XtNmodifyVerification, 
XtNleaveVerification, 
XtNexteute 

The Text Edit widget provides a mutli-Iine text editor which bas a customizable user 
interface. 

VALUATOR 
Class: 
Class Name: 
Superc1asses: 
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XwvaluatorWidgetClass 
Valuator 
Core, Primitive 
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The Valuatorwidget implements a horizontal or vertical scrolling widget as a rectangular 
bar containing a sliding box. 

VERTICAL PANED WINDOW 
Class: XwvPanedWidgetClass 
Class Name: VPaneclWindow 
Superclasses: Core, Composite, Constraint, 

Manager 

The Vertical Paned Manager is a composite widget which lays out its children in a 
vertically tiled format. 

WORKSPACE 
Class: 
Class Name: 
Superclasses: 
Callback Ust: 

XwworkspaceWidgetClass 
WorkSpac:e 
Core, Primitive 
XtNexpose 
XtNresize 
XtNkeyDown 

The WorkSpace widget provides the application programmer with an empty primitive 
widget, that can be used for drawing graphies. 
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Appendix B 

X Event Masks 

The following is a listing of X Event masles and the associated event types [2]: 

Eyent Mask 

ButtonMotionMask 

Button1 MotionMask 

Button2MotionMask 

Button3MotionMask 

Button4MotionMask 

ButtonSMotionMask 

ButtonPressMask 

ButtonReleaseMask 

ColormapChangeMask 

EnterWindowMask 

Leave Window Mask 

ExposureMask 

GCGraphicsExposures 

FocusChangeMask 

Ke:yrnapStateMask 

KeyPressMask 
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Event'lJ'.pe 

MotionNotify 

MotionNotify 

MotionNotify 

MotionNotify 

MotionNotify 

MotionNotify 

ButtonPress 

ButtonRelease 

ColormapNotify 

EnterNotify 

LeaveNotify 

Expose 

GraphicsExpose 

NoExpose 

Focusln 

FocusOut 

KeymapNotify 

KeyPress 
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KeyReleaseMask KeyRelease 

OwnerGrabButtonMask Not Applicable 
... PointerMotionMask MotionNotify 

PointerMotionHintMask Not Applicable 

PropretyCbangeMask PropretyNotify 

ResizeRedirectMask ResizeRequest 

StructureNotify Mask CirculateNotify 

ConfigureNotify 

DestroyNotify 

GravityN otify 

MapNotify 

ReparentNotify 

UnmapNotify 

SubstructureNotify Mask CirculateNotify 

ConfigureN otify 

Crea teN otify 

DestroyNotify 

GravityNotify 

MapNotify 

ReparentNotify 

UnmapNotify 

SubstructureRedirectMask CirculateRequest 

ConfigureRequest 

MapRequest 
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Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

Not Applicable 

VisibilityChangeMask 

Appendix B 

CüentMessage 

MappingNotify 

SelectionNotify 

SelectionClear 

SelectionRequest 

VisibilityNotify 
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AppendixC 

Stack Procedures and Line Segment Aigorithms 

The following procedures are for initializing a stade, pushing clements onto a stack, and 

popping elements from a stack: 

type link c "node; 
Dode 1: record key: integer; next : link end; 

var head, z : Iink; 
procedure stackinit; 
begln 
new(head); new(z); 
head".next : = z; z".next: = z 
end; 

procedure push(v : integer); 
var t : link; 
begin 
new(t); 
t".key : = v; r".next : = head'''.next; 
head"'.next : = t 
end 

function pop: integer; 
var t ~ link; 
begin 
t : = head" .next; 
pop: = t".key; 
head".next : = t".next; 
dispose(t) 
end; 

function stackempty : boolean; 
begin stackempty:= (head".next = z) end; 

C.I Line Segment Intersection 

Given two line segments, a straight forward way to determine if tbey intersect consists 

of finding the intersection point of the lines defined by the segments, and then checking 
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wh ether tbis intersection point falls between the endpoints ofboth segments. An easier method 

is based on the following. Given three points A, B, and C, a check is made to determine if A, 

B, and C are store~ in clockwise or counterclockwise direction (Assuming that we travel from 

A to B to C). The procedure outlined below checks for tbis property. 

function ccw(pO,pl,p2):lnteger; 
var dxl,dx2,ay1,dy2:integer 
begin 
dx1: =pl.x-pO.x; dyl: =p1.y-pO.y; 
dx2: =D2.x-pO.x; dy2: =p2.y-pO.y; 
if dxl 'dy2 > dyl'dx2 tben ccw: = 1; 
'fdxl'dy2<dy1'dx2 tben ccw: =-1; 
'fdx1'dy2=dy1'dx2 tben 

begin 
Ir(dxl'dx2<O) or (dyl*dy2<:0) then ccw:=-l else 
lr(dxl'dx1 +dyl'dyl» = (dx2'dx2+ dy2'dy2) tben ccw: =0 else ccw:=-l; 
end; 

end; 

First, suppose that the quantities dxl, dx2, dyl, C:y2 are positive. Theo, the slope of the 

!ine connectingpO to pl is dy l/dxl, and the slope ;:onnectingpO and p2 is dy2/dx2. If the slope 

of the second line is greater than that of the fust, a counterclockwise turn is required to go 

frorn pO to pl to p2. If the ~Iope is Iess, a clockwise turn is required. However, if the three 

points align, the following rules are used to set the value of ccw: 

, ccw = 1 if pl is between pO and p2. 

'ccw = 0 if p2 is between pO and pl. 

• ccw = -1 ifpO is betweenpl andp2. 

This irnmediately suggests a solution to the two-segment intersection problem. If both 

endpoints of each line segment are on different sides (different ccw values) of the other, then 

the li ne segments must intersect [10]: 
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lunctlon intersect(ll.12:line): booleanj 
begln 
intersect: • « ccw(ll.p 1,Il.p2,12.p 1)· 

ccw(ll.pl,11.p2,12.p2»< -=0) and 
«CCW(12r.1,I2.p2,Il.pl)· 
ccw(12.p ,12.p2,Il.p2» < = 0); 

end; 
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