A USER INTERFACE TO EDS
USING THE X WINDOW SYSTEM AND XT

by

Karam Michael Noujeim, BSEE

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements

for the degree of Master of Engineering

Department of Electrical Engineering
McGill University, Montréal
Québec, Canada
November, 1990

(c) Karam Noujeim

Abstract

A user interface to EDS (Electromagnetic Design System) is designed using the X
Window System and the X Toolkit. The grammar of expressions provided by the user is val-
idated using a boitom-up parser. Equations are converted to postfix/prefix notation, and later

displayed in binary tree representation inside pop-up widgets.

The interface allows the user to determine couation interdependencies, and to generate
flow graphs for different sets of equations within the .me application. Equations may be
added or deleted from any set of entered equations at any tin.». Flow graph nodes and links
may be queried for equation information. Retrieved information 1+ displayed inside pop-up

widgets.

Finally, the ground work for a user interface package that simplifies X Toolkit pro-
gramming is outlined. Rules and methods governing user interface components are intro-

duced.

Abstract ii

.

Résumé

Une interface usager graphique est congue pour le syst¢éme de conception électro-
magnétique EDS a 'aide du syst¢me de fenétres X, et du X-Toolkit. La grammaire des
expressions fournies par 'utilisateur est vérifiée par voie d’analyse grammaticale
ascendante. Les équations sont converties en notation suffixéc /préfixée, et leur représenta-

tion en arbre binaire est affichée dans des fenétres pop-up.

Linterface permet a I'utilisateur de déter: iner les relations entre équations, et de
représenter des ensembles d’équations en forme de réseaux. L'utilisateur peut ajouter ou
supprimer des expressions de n’importe quel ensemble d’équations. Les nodes et les

branches des réseaux d’équations peuvent étre interrogées. Les résultats sont affichés dans

des fenétres pop-up.

Enfin, des méthodes nouvelles pour simplifier la programmation en X-Toolkit sont
discutées. Des lois et des miéthodes gouvernant les différents objets constituant les inter-

faces usagers graphiques sont introduites.

Résumé i

Acknowledgements

I would like to thank my supervisor Professor D. A. Lowther for his help throughout the

course of mymaster'sresearch. His patience and concern helped me overcome numerous problems.

Special thanks 10 Peter Ashwood-Smith of Bell-Northern Research for his helpful comments
and suggestions, and to Carlos Saldanha whose master’s thesis provided a subject for my own. I
also would like to express my thanks to Bell-Northern Research for letting me use their computer
facilities after work hours, and on weekends. Many thanks to my fellow students in the CADLAB

for creating a great environment for friendship and research.

1 also would like to thank my parents Micha =l and Sonia for their support, and encour-

agement, and my sister and two brothers for their patience and caring.

Finally, I would like to express my thanks to Centre de Recherche Informatique de Montreal

for their financial suppont.

Acknowledgements iv

Table of Contents

Abstrac . i
Résumé idi
Acknowledgements iv
CHAPTER 1 Introduction 1
1.1 Introduction to EDS .1
1.2 Dissertation ODJECHVES ...ccicevrurerrssesaenrnsssnessmesssssnssnsasscsssssssasssssssesssssassssssnsssssssses 4
CHAPTER 2 Introduction to the X Window Systemccevneenressecnrenesensssnnsenes 7
2.1 The X Window System vessssasssassaas - .7
2.2 The Client-Server Model vesessesssssssanene vessssessasasastssrsassasares .7
2.3 Resources And Requests etsasnssnerainesesstsIn IR RS OaR R R R RSO RO b R B e rsaS TR RS 10
2.4 The WINdow Hi€Tarchy ..o eeessensnnesssisssssessssssssssssssesssssssssssssesans 11
2.5 Window Managementemscsimmmsssnsssmmnsassasssssssssssssssssssssssessssesssssss 12
2.6 The X COOTAinate SYSIEIMcceeereremrnnenneneesemisisnsssssssssssssssssssssssssasssssssssssssecs 13
2.7 Window Mapping and ViSiDilitycccuveeeerrinennrernnnneniirineeenisssesssecsscsessnsnns 14
2.8 Maintaining Window CONIENLScccemerreeecrnnisissinsescsenessssrssessessassssssssssssssess 15
2.8.1 BACKINE SLOTE ..covoeerrrinrvernssencnssnsrssssssessnsesssssssssssssnsssessssssssssssssasssensassssessosaes 15
2.8.2 SAVE-UNAETS ..o reverrirnrrnesesonssnisisinsesesressssssssssssssssssssssssssessasssssssssassassssssesses 15
2.9 EVENLS coeeiiiiniriinsesinrrnisiisecsnensniissssssssssrmsssssasssssesssusssssstssossssesssssasssssssssssasssssssasssns 16
2.10 Interfacing to X through Higher LIbIaries ... 16
CHAPTER 3 The X TOOIKILcuouirviirrcenierennnncnsesssessssssssssssssssssssasssssssssasssssssssssssssessasses 19

3.1 WIAREL CIASSES w.vovroomreeoooomoooosioossresooesosseesssseeoeeesssssoeeeeesooseeeeoosssoese oo 19

3.2 The Xt Intrinsics Programming FOrmatcccevenvnnninncnenscnicnnnunnsssnsssnsassesssnene 20
3.2.1 Creating and Managing Widgetscouunmensunssusmmsnncssssnssensessesssensensossiosses 22

3.2.2 Handling EVENtSciiencineieens e sessenssnsssnesssassssstossssssssssssssnssasssssoses 22
3.2.2.1 Event Handlers and Callback FUunctionsccceevnnerinecrsnesisssnenee 22

3.2.3 Xt Programming: A Brief Example e 23
CHAPTER 4 Interfacing to EDScccovinennoncnismeniesesssnsisissssses 27
4.1 Designing a User Interface for EDS ... 27
4.1.1 Pull-DOwn MENUSccininiennsssnsisminicsessmminenssussissssessassssssassessesssssaess 28

4.1.2 Dynamic Creation of PushButton Widgetscunccninnininnnas 29

4.1.3 Creating Pop-u\g] WIARELS it sissssesssirisssenes 30

4.2 The EDS Interface Widget TTeeiiniiiiniiinssnene: 30
4.3 SPECIfyiNg RESOUTCES woeceeevieerrressrsrisiirsissaesesnsissssssnsssssnssssissssssesssasesssesssssssses 33
CHAPTER § Parsing User INPULc.ccoeivmmnnncsniniesiissssisisosmsssiisssssssssssnies 38
5.1 Expression Grammar and Parse Treesccrcnensvsnnniscssninonsnens 38
5.2 Converting Infix Equations to Postfix/Prefix eeeesressensranasssesssanas 40
5.2.1 Precedence RUIEScoiecsimmmissenaeseiinissssssssmssnsssmsssssssnerssssssesssstsssssssns 41

5.3 Binary Tree Representation of EQUALIONSvicneminininisnnsimneisenes 43

’ 5.3.1 Drawing Parse TTEESviiviniincncniminniinsnisssssssssssssssessasssssssses 45

CHAPTER 6 Equation Sets and Equation Flow Graphscceeaeimnssssssinnns 47
6.1 Stora and Retrieval of Equation Information 47
6.1.1 acting Related Equations S0

6.1.2 Generatmg Flow Graphs 51

6.1.3 Retrieving Equation Information 54

6.1.4 Inclusion 1N @ POIYEOMc.vcecciienimnnmsansassssnsessasasisssssssesss mssssssssssassssssssansnes S5

6.2 Memory Managementcccccoverreecn. 57

6.3 Printing Flow Graphs and Parse Tre s S8
CHAPTER 7 Conclusions - 59
7.1 TheSiS SUIMIMNATY c.covvuimsrencsnmrssomsssrssssncsamsisssssenssasnsssessasssssnssssessssssssssssssssssssssssssses 59

7.2 Suggestions for FULUTe WOTKccccviiiinsisnscnnsimenssssnsmsasssssssessssssessasssasssesssses 61
7.2.1 Rules ar.d Methods ceresasssetis it ettt ss st RS S s R a bR s s e s e b iR EbOOS 77

7.2.2 Expanding the EDS Ulcomminrnnmmicsssmmnessasmmsssnssissmnsssssssssses 79
AppPeEndix A WidBet ClASSEScoccrsemissioscossmmmsisnsssssnaensusssessssssssnsssssscssssssrsnsssssnsasaassassens 80
Appendix B X Event Masksocsininissicsmmsensmsasssssissassmsimssssssssesssssssens 87
Appendix C Stack Procedures and Line Segmem AlGOrithmsuvccncicescasssnecinins 90
C.1 Line Segment INtETSECtioNccvccveiisiincessosacsnsssnesssssarssssssassssssersanssssasansasssarsnss 90
References........... ceesssasirsisResss s L eSS R RSO SRS SEA SO SO SRS AR RS RO AR ER AR OSSR SRS RSSO0 000 . 93

e

List of Figures

Figure 1.1 Conceptual algebraic model representation.csseccserissssssssssssssscssess 3

Figure 2.1 The client-server model. 9

Figure 2.2 A window tree hierarchy example. 12
Figure 2.3 Window tree for window hierarchy example. .. w 13
Figure 2.4 A conceptual view of the X Window System. . 17
Figure 3.1 The Xt Intrinsics programming chart. 21
Figure 4.1 The EDS interface widget tree . o 31
Figure 4.2 A snap shot of the EDS user interface.cceoeueemmmmesesnsenssssssssssssssnsasseencs 32
Figure 4.3 A typical example appliCation.cc.ccecmmesessonmmsmssassmrssmsssssssssssasessssssans 34
Figure 4.4 Widget tree for fIgure 3.1icccnnincnnccssnnmnsnssssssssnsissssmsssesssssssssenss 35
Figure 5.1 Parse tree for A * (B + C). ..ccccnnicnnnnccccccsans, versererenesasseeness 39
Figure 5.2 Parse tree for (A + B) * (C 4 D). cvrcccninnsisnnccnnnnssscnnnenscssossonsans 44
Figure 5.3 Drawing parse trees. et s s st a s ss s e RS e 46
Figure 6.1 Flow graph representation of V = IR and P = IR"2.concrvvecrrennases 49
Figure 6.2 Example flow graphs.ccooemecreresvsssennsencnecs e 53
Figure 6.3 Side effects Of POINtET EVENLS. ...iicucciinnnncniessirinmesssssasersmosonns . 55
Figure 6.4 Different point-inside-POlygON CaSEScerrirecrmnimnirssrenensssssnsssnsessasesenss 56
Figure 7.1 A typical four-equation flow graph.cerieeinssesvenssnnsnisnsssssssanss 63
Figure 7.2 Flow graph links queried for variables in common.cuvieennirsisens 64
Figure 7.3 Querying flow graph nodes. ... 65
Figure 7.4 Adding equations to the existing €qUAation Set.ceecesmsenmsrsesensesserencsens 66
Figure 7.5 PushButton widgets representing equations. ceessrsenssustrssnsasssnseases 67
Figure 7.6 Selecting an €QUAtiON.omcimmiesssnssesssssssssssesies 68
Figure 7.7 Binary tree representationin @ POP-UP.cuceeeeerummmminssesssssssssssssssssssnsessssssans 69
Figure 7.8 Forming a subset Of qUatiONs.simcnsenimisensiesssssssin 70
Figure 7.9 Flow graph of the subset formed in figure 6.8. ..., 71
Figure 7.10 Creating a second subset Of €qUAtIONS.cceeeriiinesesisneiessssinssssssssesnnns 72
Figure 7.11 Flow graph of the subset formed in figure 6.10.ceereeeiinviveiicinnnennns 73
Figure 7.12 Deleting equations from @ ZiVEN SEL.cceeeciiniensnnssnssssssssssessssssnnans 74
Figure 7.13 The result of deleting and adding €qQuations.eeeeemnsssisessnsennenns 75
Figure 7.14 A conceptual view of the layers leading 10 LiSP c.ccovvcunreriivmssscsninsnnas 71
Figure 7.15 Rules %gvernin§ ITIENU ETITIES. weovererrarissssrisesnessossasmossntsssssasenssrssssssasenessssssasess 78
Figure A.1 The X Widget class tree. .. snimnnesscncsnssnnssnssscssssasnss 80

CHAPTER 1

Introduction

This dissertation describes the user interfacs designed for the Electromagnetic Design

System (EDS). Before any dissertation objectives can be stated, EDS must first be introduced.

1.1 Introduction to EDS

EDS (Electomagnetic Design System) is a knowledge-based expert system aimed ¢*
automating the computer-aided design of electromagnetic devices such as transformers,
actuators, and motors [9]. EDS allows expert designers to create knowledge-based models of
electromagnetic devices. The solution to a device design problem involves three categories

of knowledge [9][25]:

* A parameterized representation of the device. Device parameters are variables that

represent geometric, functional, performance, and design calibration information.

* A mathematical model in which device parameters are coupled through a set of

equations derived primarily from the underlying principles of electromagnetics.

* Design Logic. This consists of the mathematical model, and the expertise that adesigner

acquires through the years.

CHAPTER 1 1

- e

The algebraic model of a device is represented by parameters, equations, and constants
[9]. An algebraic model may be graphically represented as a constraint network [26), where
nodes represent equations, and links are the variables in the equations. An example of a

constraint network is shown in figure 1.1 [9].

EDS uses data structures known as frames and semantic networks to represent complete
constraint networks [9](27]. A frame is an item, and a list of item attributes. On the other
hand, semantic networks are graphs of relations between items. The frame-based language

used in EDS is Knowledge Craft [28][9], a super set of the programming language Lisp [29).

In Knowledge Craft, a frame is known as a schema.

EDS uses a simplifier to simplify expressions, and a symbolic solver to solve for a variable
inagiven equation [9]. The nule slot of an equation schema is populated by aninput expression,
only after this expression has been simplified. After the rule slot is filled, the input equation
is solved for each of the variables, and the resulting clauses are inserted into the clauses slot.
In cases where a solution is not found due to the lack of algebraic knowledge, the variables-
with-no-clause slot is filled with the corresponding variable. In such cases, the designer may

supply a clause to resolve the problem, or provide an alternate equation which is algebraically

solvable for the variable [9].

CHAPTER 1 2

b

a) A typical set of transformer equations.

El: WA = 17.6 * P1 * S / (FREQ * B)
E2: P2 = EFF * P1
E3. P2 = V2 *]2

b) The corresponding constraint network.

S B EFF 12

FREQ

Figure 1.1 A conceptual algebraic model representation [9)].

CHAPTER 1

{ <egquation name >

{ DESCRIPTION:
RULE
HAS-VARIABLES:}}

Figure 1.2 A generic equation schema [9].

{{ POWER-DISSIPATION
RULE: (EQUAL P (TIMES (EXPT12) R))
HAS-VARIABLES: PIR
CLAUSES: (EQUAL P (TIMES (EXPT12)R))

(EQUAL R (TIMES P (EXPT | i))l%
(EQUAL I (EXPT (QUOTIENT P R) -0.5))
VARIABLES-WITH-NO-CLAUSE: }}

Figure 1.3 The schema representation of P = /2* R [9].

Interactive sessions in EDS are command line driven, and consist of text input and output
only. EDS relies on a DECnet connection to access a Knowledge Craft shell running on a
remote computer (the remote computer is actually located at the Centre de Reckerche
Informatique de Montréal, and is accessed from the Computational Analysis and Design Lab-

oratory at McGill University).

1.2 Dissertation Objectives

At this stage, the objectives of this dissertation may be stated as follows:

1) Design a graphical user interface to the Electromagnetic Design System, capable of

running across networks.

2) Display algebraic knowledge in the form of graphical equation networks, thereby
providing electromagnetic device designers with a visual aid that helps them point out

related equations, and variables common to those equations.

CHAPTER 1 4

3) Provide a mechanism for performing set operations on equations. This includes
creating, and graphically representing sets/subsets of equations, and adding/deleting

equations from those sets/subsets.

The X Window System is used to accomplish the first objective. X is a multi-windowing,
and network-transparent window system based on a client-server model. It was chosen for
designing the EDS Ul mainly because it allows graphical applications (clients) to run across

networks. The next chapter introduces X concepts, and many of X’s features.

User interface components (scrollbars, pull-down menus, pop-up windows, ...) used to
design the EDS Ul are introduced in chapter three, preceded by a brief review of object-

oriented programming concepts.

The EDS Ul design is introduced in chapter four. The functionality of the components
selected for building the interface are discussed, followed by the EDS Ul widget tree. Chapter
four also discusses the resource manager which may be used by end users for modifying the

look of the EDS Ul to fit their own taste.

Expression grammar, parsing methods, and the approach adopted in this dissertation
to parse input expressions are presented in chapter five. Equations are converted into post-
fix/prefix notation. The derived prefix notation of an input equation is used to fill out the rule
slot of an EDS equation schema. Binary tree representations of equations are displayed in

pop-up windows. Drawing is done using graphics primitives from the Xlib library.

Chapter six discusses equation sets (represented as linked lists of structures in memory),

and the method used for generating graphical equation networks of different sets of equations.

CHAPTER 1 5

a0

Variables common to related equations are determined. Variables of an input equation are
extracted and are used to fill out the variables slot of an EDS equation schema. Storage and

retrieval of equation information, as well as memory management are also explained.

Finally, the results of this exercise are discussed, and suggestions for further work are
presented in chapter seven. Throughout the remainder of this dissertation, graphical equation

networks will be referred to as flow graphs.

CHAPTER 1 6

g

CHAPTER 2
Introduction to the X Window System

2.1 The X Window System

The X Window System is anindustry-standard software system that allows programmers
to develop portable graphical user interfaces [1]. X was developed at the Massachussets
Institute of Technology (MIT), with support from Digital Equipment Corporation (DEC).
The name, X, as well as some of the initial ideas originated from an earlier window system

named W, developed at Stanford University [1).

One of the most important features of X is its unique device-independent architecture.
This allows X-based applications to function in a heterogeneous environment consisting of
mainframes, workstations, and personal computers [1]. Unlike many other window systems,
X does not define any particular user interface style. It avoids dictating the look and feel of
user interface applications by providing a flexible set of primitive window operations. User
interface components such as button boxes and pull-down menus are therefore missing from
the basic X Window System, and applications rely on higher level libraries built on top of the
X protocol to provide these components [1]. The following chapter introduces one of these

libraries, the Xt Intrinsics, built on top of Xlib.

2.2 The Client-Server Model

The X Window System: architecture is based on a client-server model. A single process,

known as the server, controls all input and output devices [1]. The server acts as anintermediary

CHAPTER 2 7

o

]

between user programs, better known as clients. Clients communicate with the X serverviaa
network connection using an asynchronous byte-stream protocol. Network protocols sup-

ported by the X server include TCP/IP, DECnet, and Chaos. The following are the tasks
performed by the X server [2]:

. Controlling access to the display by multiple clients.
Interpreting network messages from various clients.

Forwarding user input to clients.

Drawing text and graphics.

Maintaining data structures, including windows, fonts, and graphics contexts, as

resources that can be shared by clients.

The X architecture makes it possible for any number of clients to connect to any number
of servers, provided that the X protocol is obeyed. Servers and clients can also run on separate
machineslocated anywhere on a network. This use of the network is better known as distributed
processing, and helps solve the problem of unbalanced system loads [2]. The user of an

overloaded machine can arrange for some of the prcgrams to run on other hosts.

CHAPTER 2 8

SUN 47110

HP 9888/300

Running X Running ¥
Clients Clients
£
\
R
Network (— —
Connection ¥ Server Process
Runmning on Renmote
Uorkstation
Ny S/

Y

Figure 2.1 The client-server model.

X is a windowing system for bitmapped graphics displays [2]. It supports color as well
as gray-scale and monochrome displays. While the terms display and screen are often used
interchangeably to refer to a CRT, X defines a display as a workstation with a keyboard, a

pointing device such as a mouse, and one or more screens. Normally, there is one display per

central processing unit (CPU).

CHAPTER 2

A

gt

Any client application wishing to communicate with the X server must open a connection
to this server using Xlib. Once this connection is established, the application can use any of
the screens controlled by the server to display text or graphics. At any time, a server can deny
client applications running on other hosts the right to connect to a display. This security
mechanism provided by the X Window System works on a per-host basis [1]. Using the setup
shown in figure 2.1, Knowledge Craft, and the X server may run on the remote workstation
(located at Centre de Recherche Informatique de Montréal), while EDS may run as a client

application on any of the host machines (located in the CADLab, at McGill) connected to the

remote workstation.

2.3 Resources And Requests

The X server maintains complex data structures, including windows, bitmaps, fonts,
cursors, and colors, as resources that can be shared between clients. Client programs access
these resources through resource identifiers, simply referred to as resource ID’s. Resources

may be created or destroyed by the server at the request of a client [1].

A client application wanting to use a facility provided by the X server, must issue a
request to this server. Arequest is a single block of data sent by one of the clients to the server.
Requests requiring replies from the server are known as round-trip requests [2}. Round-trip
requests must be .ninimized since they lower the overall performance, and cause network

delays. Typical client requests include querying the server about window attributes, or font

sizes.

Client requests are placed in a queue, waiting for the X server to process them. The

server and its clients run asynchronously with respect to each other, whichimproves the overall

CHAPTER 2 10

X

performance of X, and cuts down the round-trip requests over the network connection.
However, clients can ask the server to process requests synchronously. This causes poorer

performance, since each client request suffers a round-trip over the network connection [1].

2.4 The Window Hierarchy

An X window is a rectangular area on the screen, with no title bars, scrollbars, or other
window decorations. £xcept for the root window, every X window has a parent that is assigned
to it at the time of its creation. The root window is the first window created by the X server
as it starts up. In X, a window is contained within the limits of its parent. Window geometry
includes a window’s width, height, position, and stacking order. On the other hand, an X
window may be of class InputOutput or InputOnly, and has characteristics referred to as

depth and visual , which determine its color attributes.

Xwindows are organized in a hierarchy, better known as the window tree. The top window
in the window tree is the root window. The root window occupies an entire screen, and cannot
be resized, moved, or iconized. Figures 2.2 and 2.3 illusirate how a window hierarchy might

show on the screen and in schematic form respectively.

Windows A and G are children of the root window, while windows B, C, and D are
children of window A. Window G has windows H, J, and K as its children, and windows L and

M are children of J and K respectively. Similarly, windows E and F are children of C and D.

CHAPTER 2 1

2.5 Window Management

Client applications do not have direct control over window attributes such as window
size and location. Although they can suggest values for these attributes, the final decision is
made by a client program known as the window manager. The window manager allows the
user to perform such actions as modifying the location and size of windows on the screen,

reconfiguring the stacking order of windows on the screen, and starting new client applications

3].

Uindouw B
Root Uindow
l Window A
Window E
€
2
e Window F Uindow H
< c
Window C 1 Uindow G
o
€
G
Uindow L
Uindpu x|
Window X]

Figure 2.2 A window hierarchy example,

CHAPTER 2 12

(Root Uindow)

= &) (L) (n)

Figure 2.3 Window tree for window hierarchy example.

The window manager enforces a window layout policy which consists of a set of rules
governing the behavior and look of windows on the screen. The following are some of the
different public domain window managers that have been designed, mostly by companies:

The Siemens RTL tiled window manager, designed such that only transient windows are

allowed to overlap.

The real-estate-driven window manager, designed such that the input focus is active in

whichever window the pointer currently happens to be in.

The listener window manager. All keyboard input focus is assigned to a single window

after the window is selected with the pointer.

2.6 The X Coordinate System

The origin of every X window is located at the upper left corner of that window. The

x-coordinate increases toward the right, and the y-coordinate increases toward the bottom.

CHAPTER 2 13

The width, height, and location are expressed in pixels. Placing text, graphics, or subwindows
in an X window is made with respect to that window’s origin. As a window moves, its coordinate
system moves with it, permitting applications to place text or graphics without regard to the
window’s location. Each X window is assigned a unique ID, and routines wanting to access a

particular X window must refer to its ID.

2.7 Window Mapping and Visibility

A request to an X server by one of its client applications to create a window, does not
necessarily make the window visible on the screen. This is due to the fact that when an X
server creates a window, it allocates and initializes the data structures that represent the
window, but does not invoke the hardware-dependent routines that display the window on
the screen [1]. By issuing a map request, clients can ask the server to display a window on the
screen. However, the window still might not be visible for any of the following reasons [1):

* The window is completely covered by another window. The window becomes visible

only if the covering window is moved, or if the stacking order of the two windows is

reversed, making the covered window visible.

An ancestor of the window was not mapped. The window becomes viewable only when

all of its ancestors are mapped.

The window is completely clipped by one of its ancestors. The window becomes visible
once the ancestor is resized and includes the window area. Another way is to move the

window inside the boundaries of all its ancestors.

CHAPTER 2 14

2.8 Maintaining Window Contents

When two windows overlap, the contents of the covered window must be preserved, so
that they can be restored later. Windows using this technique to preserve their contents are
better known as retained raster windows. As the name suggests, window contents are saved as

a bitmap, or raster image.

2.8.1 Backing Store

X lays the responsibility of preserving awindow’s contents on the client using the window.
Some X server implementations support retained raster, or backing store as it is referred to
in X. The backing store feature automatically preserves the contents of a window as it is
obscured. As the number of windows increases, memory becomes a scarce resource. To
increase efficiency, the X server notifies a client when a window is exposed, and relies on the

client to redisplay the contents of the window [1].

2.8.2 Save-Unders

Many X servers also use a technique known as save-unders. A save-under controls
whether the contents of the screen under a certain window should be preserved before the
window is mapped, and redisplayed after the window is unmapped. This technique is most
useful for pop-up windows, which this dissertation relies on heavily to display different sets

of equations.

CHAPTER 2 15

2.9 Eveiits

An X event is a packet of information that the X server generates when certain direct
or indirect user actions occur. Events are sent to a client through a queue, which the client
reads in a first-in, first-out fashion. The following are some examples of X events:

A key press on the keyboard.
Mouse movement.

A mouse click.

Since events board the queue in a random order, an event loop is used to wait for an
event to occur, respond to the event, and wait for the next one to happen. The code that forms
the event loop consists of an event-getting routine, followed by a C-language switch statement.

The X event loop is implemented as an infinite while loop [2].

2.10 Interfacing to X through Higher Libraries

Although the X server is built at the level of packets and byte-streams, libraries exist
that interface to the base window system. One standard interface to X is the C-language, Xlib
library. Xlib defines a set of functions that provide the user with complete access and control

over the display, windows, and input devices. Identical libraries also exist for LISP and ADA

[1].

Application programmers can use Xlib to design user interfaces. However, this library
can be difficult to use correctly. Just imagine that to display "hello world" in a window using

Xlib takes forty executable statements ! [8]. In an effort to hide the details of programming

CHAPTER 2 16

e

with Xlib, higher-level toolkits have been designed. These toolkits include InterViews
(Stanford University), Andrew (Carnegie-Mellon), Xray (Hewlett-Packard), and CLUE
(Texas Instruments). In designing the interface to EDS, I have used the Xt Intrinsics, and the

X Widget Set, Xw, contributed to the X community by Hewlett-Packard.

The Programmer’s Application

The X Uidget Set

The Xt Intrinsics

The X1ib C-Language Interface

Network Connection

The X Server

Figure 2.4 A conceptual view of the X Window System.

Using the X Window System, EDS can run as a client application across a network of
X host machines. X allows graphics applications to run across networks. An end user may run
multiple client applications on different host machines, while graphically interacting with

those clients from his/her own terminal.

CHAPTER 2 17

Before describing the EDS Ul, a brief introduction to the Xtand Xw widgetsis presented
in the following chapter. Both Xt and Xw are built on top of Xlib, and are smoothly integrated
with it. This allows programmers to use the functions provided by Xlib, in addition to using

the higher level libraries. The Xt Intrinsics and the X Widget Set are both written in C.

CHAPTER 2 18

CHAPTER 3
The X Toolkit

The Xt Intrinsics provides programmers with an extensible set of user interface com-
ponents that include scrollbars, menus, pushbuttons, and dialog boxes. These components are
better known as widgets. A widget is a complex data structure that consists of an X window
and a set of procedures that act on that window [1]. At this stage, it is important to point out
the difference between a widget programmer and an application programmer. A widget
programmer is a producer of self-contained reusable components, while an application pro-

grammer is a consumer that uses these components to design applications.

3.1 Widget Classes

The Xt Intrinsics use an object-oriented approach that organizes widgets into classes. A
class is a set of objects that possess similar characteristics. On the other hand, an object is an
abstraction that combines data and the actions (also referred to as methods) that can be
performed on the data. Individual objects are instances of a given c'iss. For example, an
object-oriented graphics program for drawing circles, polygons, cubes, etc.., might define
classes CIRCLE, POLYGON, CUBE, etc.., for each of these different objects. This setup may

be symbolically represented as follows:

CIRCLE = {x3xtsacircle)

POLYGON ={y3yisapolygon}

CHAPTER 3 19

s

50

CUBE = {z3zisacube)

The class GRAPHICSOBJECT is the set of classes formed by combining the above three
classes, and is also known as a super class. Each of the given classes might also define such

attributes as color, position, and dimension of a graphical object.

GRAPHICSOBJECT ={CIRCLE ,POLYGON ,CUBEF})

Inthe Xt Intrinsics, instances of a given widget class may be created, and widget attributes
(also referred to as widget resources) may be set. The Xt Intrinsics also supports inheritance,
another useful object-oriented concept that allows a given class to inherit some or all of the

characteristics of another class, or super class. The different widget classes provided by the

Xt Intrinsics and the X Widget Set are listed in appendix A.

3.2 The Xt Intrinsics Programming Format

The majority of applications using the Xt Intrinsics follow the programming outline
shown in figure 3.1. The first step consists of establishing a connection with the X server, and
initializing the Xt Intrinsics. Next, widgets may be created and widget resources may be set.
In the third step, event handlers and callbacks may be defined. Finally, all created widgets are

realized, and the application enters the event loop.

CHAPTER 3 20

s uw:{q

Initializs the Xt Intrinsics

NN/

[-Create Uidgets and Set Uidget Resources J

L

Add Callbacks and Evant Handlers J

-

Realize Created Uidgets

Loop for Events

Figure 3.1 The Xt Intrinsics programming chart.

CHAPTER 3

21

"

o ™

3.2.1 Creating and Managing Widgets

Widgets are organized in a hierarchical structure referred to as a widget tree. The root
of the widget tree is known as the root window. After a widget is created, it must be managed
by a parent widget. Basically, a widget’s parent manages such attributes as the location of the
widget, its size, and whether the widget has the input focus. A widget's appearance on the

screen is controlled by a set of options and resources that may be specified by the end user.,

3.2.2 Handling Events

The Xt Intrinsics provides application programmers with a listener mechanism that waits
for events to occur in a widget, and automatically invokes event handling functions registered
by the widget or the application itself for handling each of the events [1}. Finding the proper

widget where an event takes place, and invoking the right event handler(s) is referred to as

event dispatching.

3.2.2.1 Event Handlers and Callback Functions

An event handler is a function that gets invoked automatically by the Xt Intrinsics when
an X event takes place within a widget. Applications can register multiple event handlers for
the same event occurring in the same widget. However, the Xt intrinsics does not define the

order in which multiple event handlers are invoked when the triggering event occurs.

Callbacks are functions that get called when certain widget-specific conditions are met.
Callbacks are different from event handlers in that they get invoked by widgets rather than

the Intrinsics, and are not necessarily tied to any X event.

CHAPTER 3 22

L.,L;a

3.2.3 Xt Programming: A Brief Example

How hard can it be to display "Hello World" in a window using Xt ?, Using Xlib, this
takes forty executable statements [8). The following example program answers the same
question from the X Toolkit point of view.

* hello.c: Display "Hello World" in a StaticText window *

(IXTRAERL R N} OC‘...ll.l..l'l"“l.l‘..l..‘Oll...l‘.'.l'l!/
#include <X11/Intrinsic.h>

#include <X11/StringDefs.h >

#include < Xw/Xw.h>

#include < Xw/SText.h>

main(argc, argv)
int argc;
char *argv[];

Widget toplevel, helloworld;
iArg _wargs[1];
nt i

| Initialize the Xt Intrinsics.
]

/
toplevel = Xtlnitialize(argv([0], "Hello", NULL, 0,
] &argc, argv);

Create a StaticText widget and display "Hello World"
inside it.

i=0;

XtSetArg(wargs[i], XtNstring, "Hello World"); i+ +;

helloworld = XtCreateManagedWidget("hw", XwstatictextWidget
Class,toplevel,wargs,i);

l Realize the widgets and loop for events.

XtRealizeWidget(toplevel),
}XtMainboop();

CHAPTER 3 23

The function
XtInitialize(name, class, options, noptions, &argc, argv)

establishes a connection with the X server, and initializes a resource database used by the X
resource manager. The name parameter is usually the name of the application, while the class
parameter indicates the general class the application belongs to. The third and fourth
parameters specify how the Intrinsics should interpret application-specific command-line
arguments, while the last two parameters control common command-line arguments. Xtlni-
tialize() creates and returns a TopLevelShell widget which serves as the root of all other
widgets in the calling application [1].

The function

XtCreateManagedWidget(name, class, parent, args, nargs)

creates a managed widget in one call to the Xt Intrinsics. The name argument is an arbitrary
name of the widget, and class is the type of widget to be created. For an overview of the widget
classes available in Xw, refer to appendix A. The parent argument specifies the widget parent
ofthe widgetto be created, while the last two arguments to XtCreateManagedWidget () specify
the resources used by the widget [1]. Since XtCreateManagedWidget() simply allocates and

initializes the widget data structures, a call to the function
XtRealizeWidget(widget)

must be made if the widget is to be physically displayed on the screen. The Xt Intrinsics for

spacifying widget resources is done through the use of the function

XtSetArg(arg, name, value)

CHAPTER 3 24

where arg, name, and value represent an array element of type Arg, the resource name, and
the value of the resource respectively. The function XtSetArg() can also be used to set or

retrieve widget resources after a widget is created.

The event-listening loop is the last statement in the example. It is implemented as an

infinite C-language for loop as follows:

for (;;){

XEvent event;
XtNextEvent(&event);
XtDispatchEvent(&event);

}

The XtNextEvent () function extracts the next event from the event queue, and hands it in to
XtDispatchEvent() which invokes the appropriate event handler. Since this piece of code is

always the same in all Xt Intrinsics applications, the Intrinsics provides it as a function:
XtMainLoop()

Asmaybe seen from the above example, the Xt Intrinsics hide the details of programming
with Xlib by creating primitives that internally call hundreds of Xlib functions. The Xt
Intrinsics, and the X Widget Set provide application programmers with a library of user
interface components that simplifies the task of writing applications, while allowing them to

access Xlib functions when necessary.

The EDS Ul architecture outlined in the next chapter follows the Xt programming

format described previously. User interface components such as scrollbars, pull-down menus,

CHAPTER 3 25

and icons are used to make user interaction with computers easier, and more productive. End

™ users may modify the widget resources of EDS (widget colors, font sizes, ...) by using the X
- Resource Manager introduced at the end of chapter four,

e

P

CHAPTER 3 26

-

CHAPTER 4
Interfacing to EDS

4.1 Designing a User Interface for EDS

In order to provide the end user with a way for supplying equations to EDS, as well as
equation information, TextEdit widgets are created. Each of these widgets is modified to hold
a one-line text field, and to adjust its width according to the font type specified in the resource
database. Horizontal scrolling is enabled so as to allow the user to enter expressions wider
than the width of each of the fields. TextEdit widgets support most EMACS editing commands,

as well as text cutting and pasting. A TextEdit field is active when the pointer is inside it.

When the user enters an equation in infix notation in the appropriate TextEdit field, a
series of events takes place based on the syntax of the equation provided. If the equation

provided has the wrong syntax, the following series of events is executed:

* A StaticRaster widget is created, and a red cross-mark icon is displayed to suggest that

user input cannot be accepted as entered.

* A StaticText widget reserved for error messages displays the error message related to

the equation provided.

The TextEdit widget cursor points at the location of the error, and enters a blinking

state until the error is corrected.

On the other hand, if the syntax of the provided equation is valid, a different series of events

is executed:

CHAPTER 4 27

%

)

A StaticRaster widget is created, and a green check-mark icon is displayed to suggest

that user input is accepted.

The equation entered is displayed inside a TextEdit widget that keeps a record of the

entered equations. The TextEdit widget in this case is created as a child of a Scrolled-

Window widget.

The pointer moves to the next TextEdit field in order to relieve the user from using the

mouse to get the same effect.

As humans, our reflexes have been trained to accept green as the "go-ahead" color, and

red as the "stop" color. Based on this fact, green is used to color check-mark icons, and red to

color cross-mark icons.

In order to label each of the TextEdit widgets, StaticText widgets are used. The color
of a StaticText widget is inverted when the corresponding TextEdit widget is active. This
feature is added to help the user distinguish between active and non-active widgets. Widget

labels may be set by the end user in the Xdefaults file (explained at the end of this chapter).

4.1.1 Pull-Down Menus

To provide the user with the ability to display equation flow graphs and binary trees,
delete and add equations, create equation subsets, retrieve equation information, and operate
on different sets/subsets of equations, pull-down menus are created. By selecting the
appropriate menu entry, any of the following actions may be executed:

* Creatingand deleting different sets of equations. A set of equations in this case is simply

a group of equations supplied by the user.

CHAPTER 4 28

#ca

By

gt

* Generating flow graphs of one or more sets of equations.

* Converting equations from infix to postfix/prefix.

* Generating binary tree representation graphs of equations.
* Querying flow graph nodes.

®* Querying flow graph links.

* Refieshing any of the WorkSpace widgets.

* Printing flow graphs and binary tree representation graphs.
* Quitting the application through a dialog box.

WorkSpace widgets are used to display equation flow graphs and binary tree repre-
sentation graphs. Each WorkSpace widget is created as a child of a ScrolledWindow widget.
The vertical and horizontal scrollbars of the ScroliedWindow widget are enabled, allowing

large graphs to be drawn into the WorkSpace.

4.1.2 Dynamic Creation of PushButton Widgets

When a request is made to delete an equation from a given set of equations, or to form
a new set of equations, a pop-up RowCol widget is created. This widget holds PushButton
widgets whose labels represent equations previously entered by the user. These buttons are
dynamically created since the number of equations is changing as the user enters or deletes
equations. The number of PushButton widgets is dependent on the amount of heap space

available.

CHAPTER 4 2

P, e ot

A request made to delete a selected equation is not executed until the user confirms
the action by selecting an "Enter” button. A "Cancel" button is also provided, and serves for
a last-minute decision change. The same methodology is used when the user is picking

equaticns to form an equation set.

4.1.3 Creating Pop-up Widgets

The first set of equations created by the user is displayed in a static WorkSpace widget.
Additional equation sets are displayed in pop-up WorkSpace widgets that are created as
children of ScrolledWindow widgets. Similarly, a request to generate the binary tree repre-
sentation of a selected equation causes a WorkSpace widget to be created as a child of a
ScrolledWindow. All pop-up widgets include menu entries for refreshing these widgets, or for
destroying them. Users may pan up, down, left, or right in all WorkSpace widgets so as to
bring a given flow graph, or binary tree area into focus. As stated previously, the number of

pop-up widgets that can be created is totally dependent on the amount of heap space available.

4.2 The EDS Interface Widget Tree

A BulletinBoard widget is created as a child of the Topl.evelShell widget to hold all the
non-pop-up widgets stated in the previous sections of this chapter. The widget tree is sum-
marized in figure 4.1, and the corresponding user interface is shown in figure 4.2. End users
may easily modify many of the EDS interface resources (such as widget colors, font sizes, field

labels, ...) as explained in the following section.

CHAPTER 4 30

i

Figure 4.1 The EDS interface widget tree.

CHAPTER 4

ToplevelShell

BulletinBoard

—
— StaticText
L StaticText
— StaticText
— StaticText
— StaticText
— StaticText
— StaticText
— StaticText
r— TextEdit

— TextEdit

— TextEdit

— Shell — Popupligr — Shell — Cascade

- Shell — Popupligr — Shell — Cascade

— Shell -- Popupligr — Shell — Cascade

3

~ MenuButton
~ flanuButton
= MenuButton
~ MenuButton
=~ NMenuButton
— MenuButton
L. MenuButton
— HenuButton
~ MenuButton

— MenuButton

— Shell — Popupligr — Shell — Cascade — HenuButton

— ScrolledUindow — TextEdit
ScrolledlUindow — UorkSpace

~adejiajuy Jasa SAT) Jo sogs dusus ¥ T andyy

IELHETATIA L

AR]

Jer uotienb
| ' uoT3ENR3
T Ry
uorienby
uoTIENb3

" ; R U
H.mcma _ aweN . WoTienhs
+Q 'k gniDI hdgiloTienb]

TN

s¢mw:‘

k3

4

4.3 Specifying Resources

Generally speaking, user interfaces are designed to make user interaction with com-
puters easier and more productive. However, no matter how well the application programmer
tries to anticipate the needs of the user, there is always someone who wishes to alter the
behavior of a program [1). Therefore, it is important that the user be able to customize an

application to his/her own needs and tastes.

In order to provide both the application programmer and the end user with the ability
to customize applications, a resource manager facility known as the X Resource Manager was

designed by the developers of the X Window System.

To application programmers, X resources are datarequired by an application. Ingeneral,
X resources are options that affect the behavior and look of an application. These include
window IDs, colors, fonts, sizes, border widths, positions, etc.. . The X Resource Manager

allows the user to modify most of these resources.

Every application and resource in X is expected to have a name and a class. A class
indicates the general category to which a given entity belongs [1]. Consider the setup shown
in figures 4.3 and 4.4. An end user can specify the foreground color of a toggle button named
togglel by simply specifying the following line in his/her .Xdefaults file residing in the user’s

home directory:
circuit.frame.work_space.toggles.togglel.foreground: Green

Specifying the foreground color for togglel consists of traversing the widget tree from
top to bottom, and listing all the ancestors of togglel. However, this resource specification

rule may be inconvenient when large widget trees are involved. Instead, the X resource

CHAPTER 4 3

manager provides the user with an asterisk **’ as & wild card character for representing any
number of resource names or class names. Therefore, the foreground color of togglel may

now be specified as follows:

«!r '

‘n-i u%“
mlx H
1,

}:nl)i‘

EAURT |hi| nn‘nxx.nl X

,,,,,

: i
FREE ATE6 0o g0 A0§1 NERt ¢
MR IR
Fret frer s oue g ewar
T T ORI TN
;
kI8 N B
! + -
1| Toggle2 | -T
-—
lxll |
I}
3 oo umnaaiEody
M [EREENE] 1ot
3 UL |I|| nn [RET) ll | e
1 LT e
S Y
R H
b3 L
i4ul Toggle3d |
. L .
(MRt
w
b nr t 1 a1 on
TR T
x.ll',n,n PVrs reaa g0 1 .
R NTY
By ey et T P AT Ty
E L R LI

Figure 4.3 A typical example application.

CHAPTER 4

€

circuit
(TopLevelShell)
frane
CBulletinBoard)
buttons work_area toggles
(RowCol) {UorkSpace) CRowCol)
buttonl buttonZ button3 togglel <toggleZ toggle3
(Button) (Button) (Button) (Toggle) (Toggle) (Togglm)

Figure 4.4 Widget tree for the example application of figure 4.3
circuit*togglel: Green

Resource specification rules may be generalized by using class names instead of widget

names:
*RowCol.foreground: Green

The above specification implies that the foreground color of all widgets belonging to class
RowCol should be green regardiess of the appiicztion. The rules governing widget resource

specifications are listed below:

CHAPTER 4 35

]

* Entriesinthe.Xdefaults file prefixed by adot (*.") are more specific, and have precedence

over those prefixed with an asterisk ("*’). Therefore,

$circuit.foreground: Green

has precedence over
*circuit*foreground: Red

Resource names have precedence over class names. Therefore,
*togglel.foreground: Green

has precedence over
*Toggle.foreground: Red

Resource names or class names have precedence over asterisks. Therefore,
*BulletinBoard*WorkSpace*Toggle*foreground: Green

has precedence over
*BulletinBoard*WorkSpace*foreground: Red

Entries are evaluated left to right. Items encountered first have precedence over

successive items. Therefore,
circuit*BulletinBoard*foreground: Green
has precedence over

circuit*BulletinBoard*foreground: Red

CHAPTER 4 3

This chapter introduced the X Resource Manager through which widget resources such

——

(as color, font type, and widget labels may be specified by end users. The EDS user interface
architecture was presented, along with the different widget types that were used. The next
chapter discusses parsing of equations supplied by the user through TextEdit widgets.
Equations are converted to different notations, and their binary tree representations are

generated.

CHAPTER 4 37

g

-

CHAPTER §
Parsing User Input

Recognizing legal programs or expressions and decomposing them into forms suitable
for further processing, is better known as parsing. Two general approaches are used for parsing,
top-down and bottom-up. Top-down parsers look for a legal expression by first looking for
parts of the legal expression, then lookirg for parts of parts, etc. until the pieces are small
enough to match the input directly. Bottom-up parsers on the other hand, keep assembling
pieces of the input in a structured way until a legal expression is constructed [10). Top-down
parsers are generally recursive, while bottom-up parsers are iterative. In this dissertation, 1
have used a bottom-up parser to parse equations entered by the user in TextEdit fields.
Although I could have used YACC/LEX (Unix facilities for building compilers) to achieve
the same goal, I have chosen not to, since the X Window System is being ported to PCs (mainly

by Interactive Computers of California) running DOS, and where emulated Unix facilities

might not be available.

5.1 Expression Grammar and Parse Trees

Before writing a parser program that parses infix equations, infix grammar must be
defined. A very small subset of infix grammar that involves addition and multiplication is

defined below:

[expression] = [term] | [term] + [expression]
[term] = [factor] | [factor] * [term]
[factor] = ([expression]) | v

CHAPTER 5 38

.o~ 4

The symbols (,), +, and * are known as terminal symbols. On the other hand, [expression],
[term], and [factor] are non-terminal symbols, and are internal to the grammar. The symbols
=, and | are known as metasymbols, while the symbol v stands for any letter or digit. " =" may
be read as "is a", and "|" as "or". Therefore, the first line of the infix grammar translates to “"an

[expression] is a [term] or a [term] plus an [expression]" [10].

The following example shows that the parse tree of A * (B + C) complies with the

above grammar.

expression
/
term
YN
factor o tera
N
R factor

{ expression)

N

’//::in . expression
factor term
e \
B
factor
c

Figure 5.1 Parse tree for A* (B + C).

CHAPTER 5 39

M

A parser accepts strings that exist in the language described by the grammar, and discards the
rest. Bottom-up parsers do this by starting with the string at the bottom of the parse tree until
they reach the nonterminal at the top. Top-down parsers do exactly the opposite, starting at

the nonterminal top, and finishing at the bottom of the parse tree [10].

5.2 Converting Infix Equations to Postfix/Prefix

Although EDS converts infix expressions into prefix internally using Lisp, an infix-to-
prefix C-routine generally does the conversion faster. The following section outlines an
algorithm for converting infix equations to postfix/prefix. The sum of A and B is represented
asA + B,where A and Bare knownas the operands, and’ +’ as the operator. This representation

is referred to as infix. The sum of A and B can also be represented as follows:

+AB Prefix
AB + Postfix

Prefix is known as Polish notation, while postfix is known as reverse Polish notation. The names
are due to the inventor, the Polish mathematician Jan Lukasiewicz (1878-1956) [11]. Prefix

notation can be thought of as a mirror image of postfix. Notice that in going from infix to

postfix, parentheses are not required:

(A+B)*C Infix
AB+C* Postfix
A+(B*C) Infix
ABC* + Postfix

The order of e operands in the two previous expressions is the same. The first operand,
A, of the infix expression A + B *# C, can be immediately inserted into the postfix expression.

the operator’+’ cannot be inserted until after its second operand. Therefore, it must be stored

CHAPTER 5 40

away until its proper insertion position is available. When the operand B is encountered, it is

(inserted directly after A. Now that two operands have been inserted, *+’ still cannot be
retrieved. This is due to the "*’ operator, which follows and has precedence over ’+’. In the
infix expression (A + B) * C however, the closing parenthesis indicates that the '+’ operation
should be performed first [11).

5.2.1 Precedence Rules

Fromthe previous example, it is obvious that precedence rules govern the infix-to-postfix
conversion. By defining a boolean function, prcd(op1, op2), where op1 and op2 are characters
representing operators, precedence rules can be set such that pred(’*, ’+’) is true, while
pred(’+','*’) is false. Generalizing precedence rules to include delimiters, and most arithmetic

and unary operators, the following rules emerge:

prcd(’(’, op2) = false for any op2.

(* pred(opl, °(’) = false for any opl other than).
prcd(opl,’)’) = true for any opl other than ’(’.
prcd(’)’, ’(’) = undefined.
pred(’™, op2) = true for anyop2e (*+','=",'*',"/"'}.
prcd(’/’, op2) = true for anyop2e {*+','=",'*',"/"}.
pred(’+’, op2) = true for anyop2e {*+',’-").
prcd(’, op2) = true for anyop2e {'+',’-").

Ay

pred(’™, op2) = true for any op2 other than """,

pred(opl, op2) = true for any op2 other than ", and for

CHAPTER 5 41

ople{'sin’,’cos’,'tan’, 'cotan’,'log’,'In’',’exp"’).

The infix-to-postfix conversion routine is presented below. opstk is the operator stack,
and is initially empty. Procedures push() and pop() store and retrieve operators from the
operator stack, while procedures empty() and opnd() check if the operator stack is empty, or
if a token is an operand, respectively. Finally procedure popandtest() pops an element from

the operator stack, and uses the boolean variable und to indicate whether stack underflow

has occurred [11].

begin {procedure postﬁx}
topsymb :="+’;
opstk.top := 0; {start with an empty stack}
position := 1;
outlen :=0;
{scan symbols until encountering a blank}
symb := infix[position];
while symb <>’

d;)r begig(b)
opnd(sym
then begin {operand is found}
outlen :=outlen + 1;
out[outlen] : = symb;
end

else begin {if an operator is found}
popandtest(opstk, topsymb, und)
while(not und) and (prcd(topsymb, symb))
do begin
outlen := outlen + 1;
out{outlen] - = topsymb;
gopandtest(opstk, topsymb, und)
en
if not undh(L b)
then push(opstk, tops
if und or (symb <> %’{m
then push(opstk, symb)
else topsymb := pop(opstk)
end
if position < maxcols
then begin
position : = position + 1;
symb := infix[position];
end
else symb :="’

CHAPTER 5 42

Fiaunadt

end
while not empty(opstk)
do begin
outlen := outlen + 1;
out[outlen : = pop(opstk)
end
end

When an opening parenthesis is encountered, it is pushed onto the operator stack. This
guarantees that an operator appearing after a left parenthesis is pushed onto the stack. On
the other hand, when a right parenthesis is encountered, all operators since the opening
parenthesis must be popped from the operator stack, and inserted into the postfix expression

{11]. The next section discusses parse tree construction.

5.3 Binary Tree Representation of Equations

Given an equation in postfix notation, the corresponding binary tree representation,
also known as the parse tree, may be constructed. The rules for constructing parse trees consist
of placing the operator at the root of the tree, and the trees corresponding to the first and
second operands at the left and right of the tree. As an example, consider the infix expression
(A + B)* (C + D). In postfix notation, this expression is written asAB + C D + #*, and

the corresponding parse tree is shown in figure 5.2.

The routine used for constructing such trees from a postfix expression is listed below.
Every tree node has a left and a right link to other nodes. For an operand encountered while
scanning a postfix expression, a node is created using the primitive new. An operand node has

null links. On the other hand, a unary operator such as log, is represented as a node with one

null link [10).

CHAPTER § 43

Figure 52 Parse \reefor (A+ B)*(C+ D).

type link = “node;
node = record info: char;], r: link end;
varx, z: link;
¢: char;
begin
stackinit;
new(z); 2"1:= z;2"r:= z;
repeat
repeat read(c) until c< >’ "}
new(x); x".info : = ¢;
if(c="")or(c ="+)or(c="")or(c="/")
then begin x".r : = pop; x".| : = pop end
else if (¢ = ’log’) or (¢ = ’sin’) or
then begin x".r = pop; x™.l := z end
else begin x".r:= z;x".1 : = z end;
push(x)
until eoln;

CHAPTER 5 4

-

ponlieg

The procedures stackinit, push, and pop initialize, push elements onto the stack, and pop
elements from the stack. They are defined in appendix C. The next section describes how

parse trees are drawn into WorkSpace widgets.

5.3.1 Drawing Parse Trees

Once the parse tree of an equation is constructed, it can be drawn into a WorkSpace
widget. The procedure used to draw a parse tree consists of traversing the postfix tree in level
order, where tree nodes are read down from top to bottom, and from left to right. The sequence
* +, +,A, B, C, D refers to the level order traversal of the parse tree shown in figure 5.2 [10].
When a tree node is read, calls to the Xlib primitives XDrawArc() and XDrawString() are
made to draw a circle and a string centered inside it respectively. The string drawn simply
represents the contents of a node. At the same time, the left and right links of the node are
drawn (assuming that the next level nodes connected to the current links are not null) using
the Xlib primitive XDrawLine(). The end points of the segments are determined from the
fact that as one moves from one level of the tree to the next, the number of null and non-null

nodes increases by a factor of 2", where n is the level number.

The next chapter discusses equation sets, and the methods used to store and retrieve
equation information graphically from flow graphs representing these sets. Dynamic gener-

ation of flow graphs representing user chosen equation sets are also discussed.

CHAPTER 5 45

level 1 (n = 1)

|

h

,

l,l..wlZ(n:Z)

The number of null and non-null nodes at any level is

given by 2" .
%
R Figure 5.3 Drawing parse trees.
CHAPTER 5 46
N
A

L

CHAPTER 6
Equation Sets and Equation Flow Graphs

After user supplied equations are parsed, they are used to populate linked lists of data
structures that hold detailed information about these equations. Data can then be retrieved
from the data structures, and used to generate eaguation flow graphs representing stored
equations. In addition to providing the user with the ahility to generate flow graphs for different
sets of equations, the package also allows the user to add or delete elements from these sets
of equations. The addition or deletion of equations is graphically reflected in the WorkSpace

widgets where equation flow graphs are drawn.

6.1 Storage and Retrieval of Equation Information

After the syntax of a supplied equation is validated through the parser, the equation is
stored in a C-language data structure. As more equations are entered, a linked list of data
structures is formed that represents these equations. When a request to draw the flow graph
of a given set of equations is made, the linked list is copied into a dynamically allocated array

of structures that has the following format:

typedef struct Eqt {
int X; /* x-coordinate of equation node. */
int Y: /* y-coordinate of equation node. *
int infien; /* number of tokens in infix eqn. *
int postien; /* number of tokens in postfix eqn. */
int preflen; /* number of tokens in prefix egn. *
int varlen; /* number of variables in equation. */
char *eqlside; /*® left side of equation. */
char *eqrside; /* right side of equation. */
char *eqname; /* name of equation (optional). */
char * *infix; /* equation in infix form. */

CHAPTER 6 47

char **postfix;
char **prefix;
char ®%var;
struct Tiedto *tiedto;
} Eq;
typedef struct Tiedto {
char *eqlside;

struct Vars Svars;
struct Tiedto *next;
struct Tiedto *previous;

} Tiedto;
typedef struct Vars {
char *varname;

struct Vars “*next,
struct Vars *previous;
} Vars;

Before describing the above structures, the model used to represent equations must be

/* equation in postfix form. *

/* equation in prefix form. *

/* variables in equation. */

/* Equations that may be related to
this equation. */

/* Left side of equation. */
/* variables in common. */
/* link to next equation. */
/* link to previous equation. */

/*® variable. */
/* link to next variable, */
/* link to previous variable. */

defined. Consider the following equations:

V=I*R (Ohm’slaw)

P=12*R

These equations may be graphically represented as two circles (equation nodes), and a line

(Power Dissipation)

segment (link) connecting them. The setup is shown in figure 6.1.

CHAPTER 6

Figure 6.1 Flow graph representation ofV = / *Rand P = | 2*R,

Since I and R are common to both equations, a link is drawn between the nodes representing
these equations. A node in this case is simply a circle whose inside holds an equation string.
On the other hand, a link shows that a relationship exists between two given equations. The
variables common to the two given equations are shown next to the link. The combination of

nodes and links is known as a flowgraph.

Going back to the data structures presented earlier, x and y of structure Eqt represent
the coordinates of the center of an equation node, while inflen, postlen, and preflen represent
the number of tokens in the infix, postfix, and prefix equations respectively. The number of
variables in the equation is stored in varlen. The left side, right side, and name of the infix
equation are poinied at by the structure members eqlside, eqrside, and eqname respectively.

The infix tokens, postfix tokens, prefix tokens, and variables making up the equation are stored

CHAPTER 6 49

—

-

il

in arrays of strings pointed at by the structure members infix, postfix, prefix, and var
respectively. Finally, the tiedto member forms a linked list of equations tied to the current

equation. Variables common to two given equations are stored in the Vars linked list.

6.1.1 Extracting Related Equations

When the user requests that a flow graph of a given set of equations be generated, a
search through the array of structures representing the set of equations must be conducted
internally in order to single out related equations. The search consists of a pattern matching
algorithm that tries to match every variable of a given equation with the variables of the
remaining equations in the set. Every two equations are compared only once. The search
continues until all equations have been scanned. For a set of n equations, the number of

equation comparisons performed is given by:
(n=1)+(n=2)+...+1=(n?-n)/2

To illustrate this algorithm, consider the example equations presented in the previous section.

Assume that the set of equations consists of:
{(V=1I*R, P=I°*R})

The algorithm starts by picking the first variable (I) of the first equation (V) in the set,
and scans equation P in search for the same string. Since 1 is also a variable of equation P,
the search is successful and the Eqt structure member tiedto is now initialized to P. Next,

variable (R) of the first equation is picked, and a similar search is conducted. After variables

CHAPTER 6 50

of the first equation are scanned, the search is complete. By now, the data structures have
been filled, and in particular, the structure tiedto contains information equivalent to the

following:
VAP=(],R)

The prefix member of the Eqt data structure presented earlier is used to fill out the rule
slot of an equation schema in EDS. On the other hand, the vars structure member is used to
fill out the has-variables equation schema slot. At this stage, EDS solves for all variables in
the input equation, and stores the corresponding clauses in the clauses equation schema slot
(assuming that the symbolic solver finds a solution to each of the variables in the input

equation) [9].

6.1.2 Generating Flow Graphs

The centers of the equation nodes shown in figure 6.1 occupy the ends of a line segment.
For anequation set consisting of three equations, node centers occupy the vertices of a triangle.
A four-equation set has iis node centers located at the vertices of a square etc.. The algorithm

for generating the equation node centers is outlined below:

Pl = 3.141593;

angle = 2.0 * Pl / number_of equations;
begin i:=1 to number_of equations do
x[i] = x_center + radius * cos(i * angle);
y[i] =y_center + radius * sin(i * angle);

end;

CHAPTER 6 S1

]

The node centers lie on a circle of center (x_certter, y_center), and of radius radius, and

divide the circle perimeter into number_of equations equal arcs. Each of these arcs has angle

as its angle, taken from the center of the circle.

The algorithm used for generating equation flow graphs consists of scanning the array

of Eqt structures, and of drawing nodes at specified x and y member coordinates. At the same

time, the algorithm checks the structure member tiedto to determine if the current equation

is related to other equations. Links are drawn between related equations.

Equationflow graphs are drawn inside WorkSpace widgets. The Xlib graphics primitives
XDrawString(), XDrawLine(), and XDrawArc() for drawing text, lines, and arcs are used. The
contents of WorkSpace widgets are maintained by drawing graphics both inside WorkSpace
widgets, and into pixmaps. An X pixmap is simply an area of memory similar to a rectangular
region on the screen, except that it is stored in off-screen memory, and is not visible to the

user [1). Like a screen, a pixmap has a width, height, and depth. The function
XCreatePixmap(display, drawable, width, height, depth)

creates a pixmap of width by height pixels, having depth number of planes.

CHAPTER 6 52

P aal

g D

E2
a)
E4
E6
(b)

Figure 6.2 Example flow graphs.

E?

Ei=-ae¢bec

logle) ¢ @

sin(a ¢ @)

MNunber of Equations = 3

E4a=a + 8 - v
ES=exptt + ¥) -6
E6z0 -0 « &

E7:=0 + K v ys2

Number of Equations = 4

For a large set of equations where each equation is related to all of its counterparts in
the set, the flowgraph becomes crowded with intersecting node links. This problem is solved
by generating flowgraphs for subsets of the original equations set. Flowgraphs of equation

subsets are displayed in pop-up widgets.

CHAPTER 6 53

P

]

6.1.3 Retrieving Equation Information

At any time, the user can query a flow graph for equation information. One level of
hypertext is provided; a pointer event inside any of the flow graph nodes causes a StaticText

pop-up widget to appear. This widget holds detailed information about the node equation.
The information displayed includes:

The name of the equation,

The equation in infix form.

The equation in postfix form.

The variables that form the equation.

Equations that this equation is related to.

Variables common to this, and each of the related equations.

The location of every pointer event taking place inside a WorkSpace widget is checked
to determine if the event happened inside one of the flow graph nodes. A routine that scans
the Eqt structure array is used to determine if the distance from the point where the event

occurs, to the center of each of the equation nodes, is less than the radius of each of the nodes.

Pointerevents occurringnear alink cause a StaticText text widget pop-up tobe displayed.
The pop-up widget displays the variables common to the two equations whose nodes are
connected through the link. The following section describes the procedure used for deter-

mining whether a pointer event occurs inside any of the thin rectangles surrounding equation

links.

CHAPTER 6 54

4

|/— Pointer Event Occurring Outside Node

+ Pointer Events Occurring inside Thin Rec-
/— tangle Surrounding Link: Side Effects:

PNV=LR,1)

Node

Pointer Event inside Node Causing a StaticText Uidget
Pop-up to Appear:

Equation Name: Ohw's Law.
Infix Form : V=] wQR
Postfix Form: I R» Y =
Varfables : I, R
Related To : P

VAP : €1, R)

Figure 6.3 Side efTects of pointer events.

6.1.4 Inclusion in a Polygon

Given a pointer location and a polygon (in this case a rectangle) surrounding a flow
graph link, a search must be conducted to determine if the pointer location is inside or outside
the polygon. A solution to this natural problem consists of drawing a long line segment from

the pointer location in any direction, such that the endpoint of the segment is guaranteed to

CHAPTER 6 55

be outside the polygon. If the number of intersections of the polygon with the line segment is

odd, the pointer location must be inside the polygon. If it is even, the pointer location is outside
the polygon.

(a) (b} (c)

Figure 6.4 Different point-in-polygon cases.

However, the situation is not so simple because some intersections might occur at the
vertices of the polygon as shown in figure 6.4 (b). The line segment might also align with one

of the edges of the polygon as shown in figure 6.4 (c). Therefore, the need to handle all these

cases must be addressed.

An algorithm that covers all the particular cases stated above consists of traveling around
the polygon, and incrementing an intersection counter whenever the test line is crossed from

one side to the other. Points that fall on the test line are ignored [10).

CHAPTER 6 56

g -

function inside(t:point):boolean;
var count,i,j:integer;
It,lp:line;
begin
count =(),

pl: b [N+11 =pl1;
1:=t; lt =t, It.p2.x: = maxint;
forn =]1to
begin

Ip.p1:=p[i]; Ip.p2: =pl[i];
if not intersect(lp,it) then
begin
Ip.p2:=p[j]; j: =i;
if xgtcrsect(lp,lt) then count: =count+1;
en
end
inside: = ((count mod 2)=1);
end;

Polygon vertices are stored in the p/1..N] array. The intersect function simply checks if
two line segments intersect, and is listed in appendix C. The variable j is maintained as the
index of the last point on thie polygon known not to lie on the test line. The algorithm assumes
that p[1] is the point with the smallest x-coordinate among all the points with the smallest

y-coordinate [10].

6.2 Memory Management

At any time, equations may be added or deleted from any set of equations already
entered. Flow graphs are informed of the changes in equation sets through Callbacks.
Therefore, flow graphs always reflect these changes. When adding new equations, heap space
must be allocated to accomodate the newly formed data structures. This is done using the
C-language library calls calloc(), and malloc(). When an equation, or a whole set of equations

is deleted, the associated heap space must be freed. Also, when a pop-up widget is destroyed,

CHAPTER 6 57

4

it must be first removed from the linked list of pop-up widgets, and then freed. Routines for
freeing the structures outlined at the beginning of this chapter are designed to search for all

the allocated heap space inside these structures, and to release it.

6.3 Printing Flow Graphs and Parse Trees

Using the xwd client application provided with the X Window System core distribution,
a snap shot of any window on the screen may be taken. The output of the command consists
of a bitmap representing a selected window, and may be directed to a file. Using the xwd

picture format, picture files are converted to the following formats:
* HP Laser Jet Series I1.
* HP Paint Jet.

* QMS Postscript.

The converted files can then be queued to any of the above printers. Sample pictures of the

interface were generated on an HP Paint Jet printer, and are shown in chapter seven.

In this chapter, the data structures used in the interface program were presented, and
a method for generating flow graphs of equations was developed. Subsets of equations may
be created, and their corresponding flow graphs may be shown in pop-up widgets. Equations
may be added or deleted from any set of equations. The nex. cnapter presents a summary of
the work done in this dissertation. Conclusions, as well as suggestions for further enhancements

are also included.

CHAPTER 6 58

R

Y

kg

CHAPTER 7

Conclusions

7.1 Thesis Summary

The EDS user interface provides users with a mechanism for graphically representing
algebraic models in terms of flow graphs. Flow graphs of different sets of equations may be
generated, and equations may be added to, or deleted from equation sets. An equation set is
represented by a pop-up widget that contains a flow graph depicting the set. The number of
equation sets that may be created is limited by the amount of heap space available on the

host machine, since pop-up widgets are created dynamically.

The EDS user interface supports one level of hypertext; users may query flow graph
links in search of information about variables common to related equations. Similarly, flow
graph nodes may be queried for equation relationships, variables in the equations, as well as
different equation notations. Querying is triggered by clicking on the flow graph object in

question (node or link). Object information is displayed inside pop-up widgets.

As the number of related equations in a set increases, the flow graph representing the
given set becomes densely populated with equation links. Flow graphs of subsets of the given

equation set may therefore be generated.

Figure 7.1is a picture of the EDS user interface in which four mutually related equations
are entered through the TextEdit widget fields. The flow graph of all four equations is displayed
in the WorkSpace widget area below the pull-down menus. Equation links are shown in red,

while equation nodes are drawn in green. Figure 7.2 shows pop-up widgets holding variables

CHAPTER 7 59

&
)
2
a
E

common to equations connected by each of the links. Equation information is also displayed
in pop-up widgets as shown in figure 7.3. Popup widgets holding link or node information may
be collapsed by simply clicking inside them.

In figure 7.4, all pop-up widgets are collapsed, and new equations are added to the main
equation set. In figures 7.5 and 7.6, an equation is selected from the main set of equations,
and a request to generate the binary tree is made. The resulting binary tree for the selected

equation is displayed in a pop-up widget as shown in figure 7.7.

As the number of equations increases, a 'crowding’ of equation links takes place,
especially when equations in a given set are densely interrelated. This may be obvious from
figure 7.4. In this case, equation subsets may be formed as shown in figures 7.8 through 7.11.

Equation subsets are displayed in pop-up WorkSpace widgets.

Equations may be added or deleted from a given set of equations, as shown in figures

7.12 and 7.13, where equations is deleted from the main set of equations, and replaced by

equation9.

Text cutting and pasting may be used between the different TextEdit widget fields that
the interface uses. Vertical and horizontal scrolling is implemented in all WorkSpace widgets,
allowing for top, bottom, left, and right panning. Additional input and output TextEdit widget
fields can be easily added to the interface data structures, therefore allowing it to display more

equation irformation when needed.

The actual interfacing of EDS to the EDS UI was not possible, due to the fact that the
Knowledge Craft shell that EDS uses to run is no longer available (Centre de Recherche

Informatique de Montréal sold its copy of KC which EDS has been accessing from the Mcgill
CADLab).

CHAFPTER 7 60

A -

The EDS user interface is portable, and runs on a variety of X11.R2 platforms. It was
tested on Apollo and Sun workstations running SR10.1 and SunOS 4.0 respectively. After all,
portability is one of the major advantages of using the X Window System. It is interesting to
note however, that simple graphical operations such as panning in WorkSpace widgets, or
moving up or down within pull-down menus cause extensive paging (memory to hard disk
mapping) on most workstations running X, and lead to slow performing applications. This is
a major drawback of X, especially when applications are run across networks that are subject

to frequent delays.

Another advantage of using the X Window System is the user-controlled, X Resource
Manager. Colors, menu labels, as well as other widget resources may be easily customized by
end users (.Xdefaults file in the user’s home directory). The software written for this disser-
tation is available as public domain, and is located in directory thesis on nou-

jeim@dwight.ee.mcgill.ca.

7.2 Suggestions for Future Work

Although the X Toolkit provides application programmers with a higher level library
built on top of Xlib, it still involves a fair amount of detail. A programming tool that hides
many of these details, without restricting access to the Xlib library, is bound to increase the

productivity of application programmers.

A well-suited language that simplifies X Toolkit programming considerably is Lisp
(although Smalltalk might be another potential candidate). By creating Lisp functions that

internally interface to X Toolkit routines, higher-level abstractions are created that simplify

CHAPTER 7 61

WM

o

the development task, and increase programming efficiency. Consider the following lines of

code that create a StaticText widget, set its location, size, and border color by directly using
the X Toolkit:

Arg wargs[S];
Widget toplevel, w;
int 1=0;
toplevel = XtInitialize(argv[0], "Example”, NULL, 0,
&argc, argv);
* Set the StaticText widget attributes. */
tSetArg(wargs[i], XtNx, 100); i++;
XtSetArg(wargs|i], XtNy, 200); i++;
XtSetArg(wargs|i], XtNwidth, 120;; i++;
XtSetArg(wargs|i], XtNheight,150); i++;
XtSetArg(wargs|i], XtNborderColor, "Red"); i+ +;

w = XtCreateManagedWidget("static", XwstaticTextWidgetClass,
toplevel, wargs, i);

The equivalent code implemented in Lisp might look as follows:

gsetq shell (initializeXt "Example"))
createStaticTextWidget shell "static” 100 200 120 150 "Red")

Every Lisp function used to create a widget contains the class name of the widget,
preceded by the word ’create’. Therefore, the function createStaticTextWidget simply creates
a StaticText widget. StaticText widget resources are specified as arguments to the createS-
taticTextWidget function. The parent id argument is specified first, followed by the name of
the widget, its location, size, color, etc.. . The X Window System convention of first specifying
the location of a window, followed by its size, and of specifying x-coordinates before

y-coordinates is maintained.

CHAPTER 7 62

20Uy Jeer ST M) 4q paresauad ydea8 moy uonjenba-znog jsdlyy oL 3andig

S.eN LCTiendy
~>73€enb3

32, wOTaeND]
T LENL]
EwEr| UdTLENDT

wITLieNnDy

(u«HijM

LT LT

-

o uds|p 31¢ suejtenbe PejwIal 0] UOWIWIOD SIQELITA “SHU!] ydess moy Supaand) 7L andig

s133pim 1xae)s da-dod uy

w
w
A
!
b4

o - Ak

1

Eadaic

sl

o IN

-2

e

pUCTIETDS
5 = pNi33

cuoTienns

usTienby
wCTIeNnng
7\
uetierny
LoTLie by

LIT3IEND]

;Cﬁavmﬁcw

VISR EN - aal el
LTTLerr T

psoppn P
-x3], dn-dod wy palejdsyp 5] HOHSWIGWY wojyenby ‘sapou ydwad moy Imlsand €L andiy

L

PhiCd ENLD3 , C, reieTax

F S&TIRTUBY,

E(OL. /awumOQ
Cl F3ieT3~

t

S3TLETUBA

]

e

L)
+
{

SR YT E LR~ AL

L B PP B AN T L R R

f e R e W L el Sl et en g e -

T > .
+
0
+

En

«

tad o]

- Juipmesa, Yyt 81 36831OU| UE suoys ydead moy Sugpuodsas
...8!..—. .u._o..c.-vo.w.._.l spayswy o¢ papuedxd s 1°, undy Jo 1s uopenba ayy vL andiy

D]

A b

1. s
¢ e
% b
4 Z
" €

GN.C3

LA

suopngusng Suipioy sydpia om0y 58 pajudwd|duif 18)38 uonenby “10s
u_.o-.-a.h oﬂ.-_ ...".-ane._._.-_avo oy} Jo yeo Bujpvesaudas $)8pIM uoNNGYSRg JO IS YV S°L ndiyg

S LEr foaumjom
LoTIEeND:

Soiv

4

A
4

Sa . XN

BT DaUBIUTSFoEUYH fBUS] enD Y- X RIee N

A Bwese by

VL - (o 10 P RRH:L 4

A ROTE Y 8

R RS S T BT RS e e A T Y S YR O R i >] PR e % - s By AR et

67

[t S S Crnmy

R EI FRCH b X) £ 0O i AR i NN L PN w5 3 o, 221

LAY TNl T

. OTrA Ay -

™

PR

'»5 s -lpup‘ -

-

Faua<tinn
T

7
5
I
;
2
£

Figure 7.6 Highlighting is used to show selected equations in a set. The eperation to be
performed on a selected equation(s) must be chosen first, bofore any set of

PushButtons can be displayed. The set of equations showa wie after
the user picked the sub-menu entry "Binary Tree’(not shown), frem Vari-
ables’ pull-down menu.

iy

AR NA LT BInafY T S RBp oSttt ST I D W

R

[}
oy

. bl
LR Y AT

I
b

.

™7

S gl Sy

T r——s
A Aerecsti; .. 4

.

e iy

Figure 7.7 The binary tree representation of equationS. Binary trees #r¢ shown ia pop-up
WorkSpace widgets.

ﬁ}|\ S

*s)2s uojisnba pajejarrajuy a3asq uf SuIpmosd
xs—ri..__!l-l-gan..e_.asvﬂ.a..s.c..eu._a.&a.:c Sujwiog ¢ 3andiy

o1 Lk

BNLCE

1.e~ba
Y -~
- %A —

’

i

n

e

AR Y ReuBPTE ND T30 4 1R gy

U

(o

ey

=x - gt S
= ALY

SRR TS 1 pin 3 brapHt Re presen talid 6o s

Fodg rec iy

Ay ey
3 B0l v arei

Fope g
Ja.3l. B8

b i

Taesd

Syt D5

T e
. 1" P]
[Rtasfea O L it T e

-

Figure 7.9 The flow fnph representation of the equation subset formed i figrre 7.8, Flow
graphs of equation subsets are displayed in pop-up WorkSpuss widgets.

n

suojyenba jo jasqns 1dyjous Jupeas) Q1°L undiy

C T 2T 2 u:lpx_ .

!
5
A
1]

LENDT

-

Lenby

ucTierpbsy
ucTiendy

«CT73enny
ul

an Al a ke draandnil

™

Figure 7.11

B SR ToN Braph-Re prede t ateorii w2

2%, P
G

It

b gt > Tu o W
a.-:nuu.‘.h}l

T

™

T3y L)

,_,,,,
PRy
S

\

AN
- - s \\/\\

N
GL‘TM) }‘" i B {FUU(’)
/ N

A,

[R AN N

AN

- \

(&unu)
\ - -

o

s/

%

-
4‘15!!&‘: b
——

ook

Falped

The flow graph representation of the equation subsut forsed fa figure 7.10.

. *Swogiuahe JO 198 JALIND Y WOJ PP 3q 0} suolienbad BupNPS T1°L andiy

EURE {2

.'lﬁ\..pm »,Ana, ?M.ﬁl.

TLENDS

auoitLentbs

| %.! D = ﬂkznﬁou &

v

lguersénoa
w 2.=.6NL03

.
.
.
.

.
.
.
»

WITLENDT
uor3enb3

LoTIENDy
woTienby
uoTLerby
uCTIenLy
Joryerdy
uoTienb3

T4

u be J0 e Lus woyy PP Jo ‘o) pappu 3q Kew suolienby “guon
-sabd M.— ﬂ_u.ao.u_t‘ccu »e !ﬁnﬂou JUALIND 3Yy) UI0J) PIAOWIAI St Suopienby €1°L andyy

coﬂ;mjom_
TN
mcoaumgum
=, m::.ou.

s
:

..mgn ncoﬁpmjam‘ aweyN codum:ou
“5. £ ="¢NICT "¢ ‘ucTIeNLI
PRl RPN IR SRR N
~2T3eNHa !, SuwE) uCTIEND]
=‘cwim3 ¢ T LoTLenby

R I TN ol LR St)

Y IR

. bummw. ’ Rt <

75

The Lisp function initializeXt establishes a connection with the X server. The first
argument to initializeXt is the name of the Shell widget. Arguments that affect command line

parsing may also be specified following the widget name.

By ’loading’ the previous Lisp statements at the Lisp-interperter prompt, a StaticText
widget is created at location (100, 200), having a size of 120x150 pixels, and a red border color.
To application programmers, this example implies that:

* X Toolkit programming details are reduced to a bare minimum.

* Lisp code interpeted at the Lisp-prompt produces graphics instantaneously on the

screen. This is a great advantage since X-Toolkit C programs had to be compiled before they

could be run.

* Ittakes only a few lines of Lisp code to create a sophisticated looking user interface.

A disadvantage of Lisp is that the newly created layer sitting on top of the existing Xt
Intrinsics and the X Widget Set layers, leads to slow-performing applications. However,

performance may be improved by compiling Lisp programs.

CHAPTER 7 76

PR

Programmer’s Application

Lisp

Lisp - C Boundary

The X Uidget Set

The Nt Intrinsics

The XKlib C-Language Interface

Netuwork Connection

The X Server

Figure 7.14 A conceptual view of the layers leading to Lisp.

7.2.1 Rules and Methods

It is important that application programmers be provided with rules that control user
interface components such as menus, buttons, and scrollbars. A rule is simply a condition
imposed on an interface component. As an example, consider the pull-down menu shown in

figure 7.15. The second menu entry in the pull-down menu is disabled when all other menu

entries are active.

CHAPTER 7 77

Pull - Doun

Item_1 and Iten_3 are ™

— / active when Iten_ 2 is — _L}t"‘:} .
odvem2 ot -

Item 3 L—) f : !ten_b

Item_2 is active when Item_ 1 and Item_ 3

are not.

Figure 7.15 Rules governing menu entries.

In programming terms, the second entry is created and rule-governed as follows:

.(createMenuButtonWidget RowCol "Pull-Down" "item 2"
’(ActiveOthersNot))

The rule is outlined at the end of the Lisp function. It simply states that item_2 must be active
when item_1, and item_3 are not, and vice-versa. Therefore, the activation status of menu

entries is completely controlled by rules that application programmers can specify.

CHAPTER 7 78

e
Py

User interface component rules can also be combined using logical operations as out-

lined in the following examples:
(rulel & rule2 & rule3..)
(rulel | rule2 | rule3..)
(~rulel & rule2 & rule3..)
(rulel | ~rule2 | rule3..)

The '&’ operator performs an 'anding’ operation on a set of user interface component rules,

while the’ |’ operator ors’ a set of rules inclusively. The *~’ operator is used for rule negation.

7.2.2 Expanding the EDS Ul

The EDS user interface supports one level of hypertext only. A multi-level hypertext
mechanism for guerying equation nodes and links is necessary as EDS is interfaced to a
package that uses interval mathematics to impose bounds on variables [9][30]. This allows the
user to move between different levels of equation information ranging from variable names

to bounds imposed on each of those variables.

The EDS user interface needs to be expanded so as to access a package for tool inte-
gration. The package uses a black box architecture [31] to gather information about different
design tools (EDS, finite-element-based field simulation tools [32]), and to trigger those tools

based on a schedule determined from the information gathered.

CHAPTER 7 79

Appendix A

Widget Classes

This appendix briefly lists the X widget class tree, and serves as a quick reference to the

Xt Intrinsics and the X Widget Set widget classes.

TopLevelShell

Shell <l‘ ransientShell
Compos ite<

OverrideShell

Constraint — Hanager

Core

TextEdit
UorkSpace

Arrow

Primitive—Valuator Toggle

Buttnn<ﬂenu8utton
StaticRaster ~PushButton
StaticText

Figure A.1 The X Widget class tree [1}.

Appendix A 80

Form

BulletinBoard

RouCol

VPanedUindow HenuPane — Cascade
Henufigr <Popu phgr
ScrolledUindow —————— L {st
Scrollbar

P}

COMPOSITE

Class: compositeWidgetClass
Class Name: Composite
Superclasses: Core

The Composite widget class is a meta-class used as a container of other widgets.

CONSTRAINT
Class: constraintWidgetClass
Class Name: Constraint
Superclasses: Core, Composite

The Constraint widget is a meta-class defined by the Xt Intrinsics. It attaches additional
resources to its children, and uses these constraints to manage the geometry of its children.

CORE
Class: WidgetClass
Class Name: Core
Superclasses: None
Callback List: XtNdestroy

The Core widget class is an Xt Intrinsics widget class. It is never instantiated as awidget,
and its sole purpose is simply a supporting super class to other widget classes. It provides
resources required by all widgets.

SHELL
Class: shellWidgetClass
Class Name: Shell
Superclasses: Core, Composite

The Shell widget class is defined by the Xt Intrinsics. It provides an interface between
applications and the window manager.

The X Widget Set Classes

ARROW
Class: XwarrowWidgetClass
Class Name: Arrow
Superclasses: Core, Primitive
Callback List: XtNselect, XtNrelease

XtNenter, XtNleave
XtNselect, XtNunselect

Appendix A 81

77%

The Arrow widget supports drawing of an arrow within the bounds of its window. The
arrow can be drawn in the up, down, left, and right directions.

BULLETINBOARD
Class: XwBulletinWidgetClass
Class Name: BulletinBoard
Superclasses: Core, Composite, Constraint,

Manager

. The BulletinBoard widget is a composite widget that does not enforce any ordering on
its children. Applications must specify the location of BulletinBoard widget children.

BUTTON
Class: XwbuttonWidgetClass
Class Name: Button
Superclasses: Core, Primitive

The Button widget is an X Widget meta-class. It is never instantiated as a widget, and

Brovides a set of resources needed by other widgets (XwtoggleWidgetClass and Xwpush-
uttonWidgetClass).

CASCADE
Class: XwecascadeWidgetClass
Class Name: Cascade
Superclasses: MenuPane
Callback List: XtNselect, XtNleave

XtNvisible, XtNunmap

The Cascade widget is a composite widget that application prrgrammers use for creating

menus. It always displays its children in a single column, and attempts to resize itself to the
smallest possible size.

FORM
Class: XwformWidgetClass
Class Name: Form
Superclasses: Core, Composite, Constraint,

Manager

The Form widget is a constraint widget based manager that establishes spatial rela-
tionships between its children.

LIST

Class: XwlistWidgetClass
Class Name: List

Appendix A 82

pﬁi’ﬁ',‘

PR

i *""}*

Superclasses: Core, Composite, Constraint,
Manager, ScrolledWindow
Callback List: XtNselect, XtNdoubleClick

The List widget allows a two-dimensional set of widgets to be displayed in a row/column
fashion. It provides management and layout functions for its elements.

MANAGER
Class: XwmanagerWidgetClass
Class Name: Manager
Superclasses: Core, Composite, Constraint

The Manager class is an X Widget meta class. It is never instantiated as a widget. It is
mainly used as a supporting superclass for other widget classes.

MENU
Class: XwmenumgrWidgetClass
Class Name: MenuMgr
Superclasses: Core, Composite, Constraint,

Manager

The Menu Manager class is an X Widget meta class. It is never instantiated as a widget.
Its main purpose is to serve as a supporting superclass for other menu manager classes.

MENUBUTTON
Class: XwmenubuttonWidgetClass
Class Name: MenuButton
Superclasses: Core, Primitive, Button
Callback List: XtNselect, XtNcascadeSelect,

XtNcascadeUnselect

The Menu Button widget is commonly used with Menu Pane and Menu Manager widgets
to build menus.

MENUPANE
Class: XwmenupaneWidgetClass
Class Name: MenuPane
Superclasses: Core, Composite, Constraint,

Manager, MenuMgr

. The Menu Pane class is an X Widget meta class. It is never instantiated as a widget, and
its main purpose is to serve as a supporting superclass for other Menu Pane widget classes.

Appendix A 83

POPUP MENU MANAGER

Class: XwpopupmgrWidgetClass

Class Name: PopupMgr g

Superclasses: Core, Composite, Constraint,
Manager, MenuMgr

The Popup Menu Manager widget is a composite widget that manages a collection of
Menu Pane widgets.

PRIMITIVE
Class: XwprimitiveWidgetClass
Class Name: Primitive
Superclasses: Core

. The Primitive class is an X Wid%et metaclass. It is never instantiated as a widget, and
it is mainly used as a supporting class for other widget classes.

PUSH BUTTON
Class: XwpushButtonWidgetClass
Class Name: PushButton
Superclasses: Core, Primitive, Button
Callback List: XtNselect, XtNrelease

The Push Button widget consists of a text label surrounded by a button border. By
default, the interior of the button is inverted when the button is in the down state. The interior
of the button is reinverted when the button is released.

ROWCOL
Class: XwrowColWidgetClass
Class Name: RowCol
Superclasses: Core, Composite, Constraint,

Manager

A Row Column widget arranges its children into rows and columns.

SCROLL BAR
Class: XwscrollbarWidgetClass
Class Name: ScroliBar
Superclasses: Core, Composite, Constraint,
Manager
Callback List: XtNareaSelected, XtNsliderMoved
XtNgranularity

Appendix A 84

=

The Scrollbar widget combines the Valuator and Arrow widgets to form a horizontal or

a vertical scrollbar.

SCROLLED WINDOW
Class:
Class Name:
Superclasses:

Callback List:

XwswindowWidgetClass
ScrolledWindow

Core, Composite, Constraint,
Manager, ScrolledWindow
XtNvScrollEvent, XtNhScrollEvent

The Scrolled Window widget combines the Scrollbar and Bulletin Board widgets to
implement a visible window onto a larger data display.

STATIC RASTER
Class:
Class Name:
Superclasses:

STATIC TEXT
Class:
Class Name:

Superclasses:
Callback List:

XwstaticrasterWidgetClass
StaticRaster
Core, Primitive

XwstatictextWidgetClass
StaticText

Core, Primitive
XtNselect, XtNrelease

The Static Raster widget displays an uneditable raster image. By default, the image is
placed in a window that has the exact size of the raster.

TEXT EDIT
Class:
Class Name:

Superclasses:
Callback List:

XwtexteditWidgetClass
TextEdit

Core, Primitive
XtNmotionVerification,
XtNmodifyVerification,
XtNleaveVerification,
XtNexecute

The Text Edit widget provides a mutli-line text editor which has a customizable user

interface.
VALUATOR
Class:
Class Name:
Superclasses:

Appendix A

XwvaluatorWidgetClass
Valuator
Core, Primitive

85

e

The Valuator widgetimplements a horizontal or vertical scrolling widget as arectangular
bar containing a sliding box.

VERTICAL PANED WINDOW
Class: XwvPanedWidgetClass
Class Name: VPanedWindow
Superclasses: Core, Composite, Constraint,
Manager

The Vertical Paned Manager is a composite widget which lays out its children in a
vertically tiled format.

WORKSPACE
Class: XwworkspaceWidgetClass
Class Name: WorkSpace
Superclasses: Core, Primitive
Callback List: XtNexpose
XtNresize
XtNkeyDown

The WorkSpace widget provides the application programmer with an empty primitive
widget, that can be used for drawing graphics.

Appendix A 86

Appendix B
X Event Masks

The following is a listing of X Event masks and the associated event types [2]:

Event Mask

ButtonMotionMask
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
ButtonSMotionMask
ButtonPressMask

{ ButtonReleaseMask

| ColormapChangeMask
EnterWindowMask
LeaveWindowMask
ExposureMask
GCGraphicsExposures

FocusChangeMask

KcymapStateMask
KeyPressMask

Appendix B

R Z o

Event Type

MotionNotify
MotionNotify
MotionNotify
MotionNotify
MotionNotify
MotionNotify
ButtonPress
ButtonRelease
ColormapNotify
EnterNotify
LeaveNotify
Expose
GraphicsExpose
NoExpose
FocusIn
FocusOut
KeymapNotify
KeyPress

87

KeyReleaseMask
OwnerGrabButtonMask
- PointerMotionMask
PointerMotionHintMask
PropretyChangeMask
ResizeRedirectMask
StructureNotifyMask

SubstructureNotifyMask

SubstructureRedirectMask

Appendix B

KeyRelease

Not Applicable
MotionNotify
Not Applicable
PropretyNotify
ResizeRequest
CirculateNotify
ConfigureNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateNotify
ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateRequest
ConfigureRequest
MapRequest

Not Applicable
Not Applicable
Not Applicable
Not Applicable
Not Applicable
VisibilityChangeMask

Appendix B

ClientMessage
MappingNotify
SelectionNotify
SelectionClear
SelectionRequest
VisibilityNotify

89

gy

Appendix C
Stack Procedures and Line Segment Algorithms

The following procedures are for initializing a stack, pushing elements onto a stack, and

popping elements from a stack:

type link = “node;
node = record key: integer; next : link end;
var head, z : link;
procedure stackinit;
begin
new(head); new(z);
head”.next := z;2".next:=z
end;
procedure push(v : integer);
var t : link;
begin
new(t);
t".key := v; t".next : = head”.next;
head®.next:=t
end
function pop : integer;
vart : link;
begin
t := head”.next;
gop := t"key;
ead”.next : = t".next;
disgose(t)
end;

function stackempty : boolean;
begin stackempty := (head”.next = z) end;

C.1 Line Segment Intersection

Given two line segments, a straight forward way to determine if they intersect consists

o_f finding the intersection point of the lines defined by the segments, and then checking

Appendix C 90

‘4*

whether this intersectionpoint falls between the endpoints ofboth segments. An easier method

is based on the following. Given three points A, B, and C, a check is made to determine if A,

B, and C are stored in clockwise or counterclockwise direction (Assuming that we travel from

A to Bto C). The procedure outlined below checks for this property.

function ccw(p0,p1,p2):integer;
var dx1,dx2,dy1,dy2:integer
ﬁi" 1x-p0.x; dyl:=ply-p0
+=p1x-pl.x, dyl: =ply-pu.y;
dx2:= PZ.x-pO.x; dy2: = p2y-p0O.y;
if dx1*dy2>dy1*dx2 then cow: =1;
if dx1*dy2 <dy1*dx2 then ccw: =-1;
if&:l‘dy2= dy1*dx2 then
gin
ifédxl‘dx2 <90) or (dy1*dy2 <0) then ccw:=-1 else
if gxl'dxl +dyl*dy1)> =(dx2*dx2 + dy2*dy2) then ccw: =0 else cew:=-1;
end;
end;

First, suppose that the quantities dxl, dx2, dyl, dy2 are positive. Then, the slope of the
line connecting p0 to pl isdyl/dxl, and the slope connecting p0 and p2 is dy2/dx2. If the slope
of the second line is greater than that of the first, a counterclockwise turn is required to go
from p0 to pl to p2. If the slope is less, a clockwise turn is required. However, if the three

points align, the following rules are used to set the value of ccw:
*ccw = 1if pl isbetween p0 and p2.
*ccw = 0if p2 is between p0 and pl.
*ccw = -1if p0 is between pl and p2.

This immediately suggests a solution to the two-segment intersection problem. If both
endpoints of each line segment are on different sides (different ccw values) of the other, then

the line segments must intersect [10]:

Appendix C 91

o

,.’»m:‘

rd

function intersect(11,12:line):boolean;

ll’:tgelrsects (ccwgll p111.p2,12p1)*
cew(l1pl,il 2|2 2))<=0)and

S:(cfurcaé pflz p‘f 1211;1,;» <=0);

end;

Appendix C 92

(1]

2]
3]
[4]

(5]

(6]

7]

(8]

(9]

[10]

[11]

(12)

[13]

[14]

References

Young D. A, "X Window Systems Programming and Applications with Xt",
Prentice-Hall, Inc., 1989,

Nye A., "The Xlib Programming Manual", O'Reilly & Associates, Inc., 1988,
Nye A., "The Xlib Reference Manual", O’Reilly anJ Associates, Inc., 1988.

O’Reilly T., "The Toolkits (and Politics) of X Windows", Unix World, vcl.6, no.2, pp.
66-73, February 1989.

McCormack]J., Asente P., "Using the X Toolkit or How to Write a Widget", Proceedings
of the Summer, 1938 USENIX Conference, pp. 1-13.

McCormack J., Asente P, "An Overview of the X Toolkit", Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software, pp. 46-55, October 1988.

Rosenthal D. ., "Going for Baroque", UNIX Review, vol 6, no. 6, pp. 71-79.

Rosenthal D. S., "A Simple X11 Client Program, or, How Hard can it Really Be to

;Nrgitfz”sl-lello World’ 7", Proceedings of the Winter, 1988 USENIX Conference, pp.
29-23S.

Saldanha C,, "Electromagnetic Design System", Master’s Thesis, McGill University,
1987, pp. 1-31, 78-81.

Sedgewick R, "Algorithms", 2nd edition, Addison-Wesley Publishing Company, 1988.

Tenenbaum A., Augenstein M., "Data Structures Using Pascal”, 2nd edition,
Prentice-Hall, 1984,

Schiefler R., Gettys J., "The X Window System", ACM Transactions on Graphics, vol .5,
no. 2, pp. 79-109, April 1986.

Schiefler R,, Gettys J., Newman R., "X Window System", DEC Press, 1988.

Shneiderman B., "Designing the User Interface", Addison-Wesley Publishing Com-
pany, 1987.

References 93

[15]
[16]

[17)

(18)
(19]
(20]

[21]
[22)
[23)

[24]

[25]
[26)
[27]
(28]
(29]

(30]

Smith W., "Using Computer Color Effectvely”, Prentice-Hall, 1989.
Mayer B., "Object-Oriented Software Construction”, Prentice-Hall, 1988.

Foley J. D, Van Dam A, "Fundamentals of Interactive Computer Graphics",
Addison-Wesley Pubiishing Company, 1983.

Kernighan B. W,, Ritchie D. M., "The C Programming Language", Prentice-Hall, 1978,
Rochkind M., "Advanced Unix Programming”, Prentice-Hall, 198S.
Schildt H,, "C: the Complete Reference", McGraw-Hill, 1987.

Anderson P., Anderson G., " Advanced C: Tips and Techniques’, Howard Sams
Publishing Company, 1988.

KnuthD. E., "Tb > Art of Computer Programrming. Volume 3: Sorting and Searching’,
second printing, Addison-Wesley, Reading, MA, 1975.

Knuth D. E, "The Art of Computer Programming. Volume 1: Fundemental Algo-
rithms,", second edition, Addison-Wesley, Reading, MA, 1973.

OSF /Motif User’s Guide, Prentice-Hall, Englewood Cliffs, NJ, 1990

Holstein, D., 'Decision Tables: A Technique for Minimizing Routine, Repetitive
Design’, Machine Design, August 1962, pp. 76-79.

Davis, E., "Constraint Propagation with Interval Labels’, Artificial Intelligence, volume
32, 1987, pp. 281-331.

Preiss, K., 'Data Frame Model for the Engineering Design Process’, Design Studies,
volume 1, no. 5, April 1980.

’119{r81r6)wledge Craft Reference Manual’, Carnegie Group Inc, Pittsburgh, Pennsylvania,

Steele Jr., G. L., "Common Lisp: The Language’, Digital Press, Hanover, Massachus-
setts, 1984.

Brett, C., ’An Interval Mathematics Package For Computer-Aided Design In Elec-
tromagnetics’, Master’s Thesis, McGill University, 1990.

References 94

[31] Sassine, R, Lowther D. A, 'Integrating Computer Based Electromagnetic Device
Design Tools To Solve Coupled Problems’, To appear in the 8th Conference on the
Computation of Electromagnetic Fields, July 7-11, 1991 Sorrento-Italy.

{32] Lowther, D. A, and Silvester, P. P., 'Computer-Aided Design in Magnetics’,
Springer-Verlag, New York, 1985.

References 95

