
COMPRESSION-BASED ANOMAL Y DETECTION 

FOR VIDEO SURVEILLANCE APPLICATIONS 

CarmenE. Au 

Department ofElectrical and Computer Engineering 

McGill University, Montréal 

February 2006 

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies 

in partial fulfillment of the requirements for the degree of 

Master of Engineering 

© Carmen E. Au, 2006 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell th es es 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-24936-9 
Our file Notre référence 
ISBN: 978-0-494-24936-9 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

In light of increased demands for security, we propose a unique approach to 

automated video surveillance using anomaly detection. The success of this approach is 

dependent on the ability of the system to ascertain the novelty ofa given image acquired 

by a video camera. We adopt a compression-based similarity measure to determine 

similarity between images in a video sequence. Images that are sufficiently similar to 

the previously-seen images are discarded; conversely, images that are sufficiently 

dissimilar are stored for comparison with future incoming images. 

The use of a compression-based technique inherently reduces the heavy 

computational and storage demands that other video surveillance applications typically 

have placed on the system. In order to further reduce the computational and storage 

load, the anomaly detection algorithm is applied to edges and people, which are image 

features that have been extracted from the images acquired by the camera. 



Résumé 

Afin de satisfaire la demande croissante en matière de sécurité, nous proposons 

une approche unique de surveillance visuelle automatisée basée sur la détection 

d'anomalies. Le succès de cette approche repose sur la capacité du système de détecter 

une nouveauté dans une image donnée, acquise par caméra vidéo. Une méthode de 

mesure de similitude, basée sur la compression, est utilisée pour déterminer la similarité 

entre des images acquises lors d'une séquence vidéo. Les images qui sont suffisamment 

semblables aux images précédemment observées sont rejetées. Contrairement, les 

images qui sont suffisamment différentes sont sauvegardées pour être comparées aux 

images qui seront prochainement acquises. 

L'utilisation d'une technique basée sur la compression réduit les charges de 

calcul et de mémoire, généralement requise par d'autres applications de surveillance 

visuelle. Dans le but d'optimiser la réduction de ces charges, l'algorithme de détection 

d'anomalies est appliqué sur deux charactéristiques des images acquises: les bords et les 

personnes. 
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CHAPTER 1 

INTRODUCTION 

The heightened need for security has increased the desire for fast, reliable, and 

low-cost video surveillance. The objective ofvideo surveillance is to monitor an indoor 

and/or outdoor environment; as well, to report any information about relevant and often 

suspicious activity. Present surveillance systems consist of aptly placed cameras that 

capture the activity of a given scene, and television screens that display the video 

streams acquired by the camera. Security guards watch the te1evision screens to 

determine if there is any activity that warrants a response. Given that these events 

rarely occur, more often than not, it is the security guard who stares into a field of 

monotonous scenes; vigilance is thus very difficult to maintain. In a slecurity system, 

where vigilance is of utmost importance, the burden of detecting these anomalous 

events cannot be left upon the security guard. Therefore, the goal of this work is to 

remove the onus of detecting these anomalous events from the guard, and to place it on 

the surveillance system. 

In order to detect one of these events, the surveillance system must have the 

ability to differentiate between regular, routine, and novel events. Lïk:e the security 

guard, giving the surveillance system that ability is not a trivial task. The question we 

are essentially posing the system is, "has this event been seen before"? 

Anomaly detection is the process where a base1ine model of behaviour or 

activity is established, and any deviation from this baseline triggers an alert. In 

computer security applications, the computer system itself is monitored for deviating 

behaviour [19, 45, 52, 71, 75, 80, 88]. In health-related applications, anomaly detection 

is used to detect disease outbreaks [20, 79, 83-85]. In video surveillance, the activity 

within a given environment is monitored for deviations. 
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1.1 Automated Video Surveillance Using Anomaly Detection 

Our primary objective is to build an automated video surveillance system 

capable of anomaly detection. The anomaly detection should be performed by the 

system itself without any user input. In addition to this objective, there are certain 

criteria desirable in a surveillance system which we used as a guideline: 

1) Real-time processing: The system should be able to detect for anomalies in 

real-time, or as close to real-time as possible. 

2) Minimize the computationalload on the system: The effectiveness of the 

surveillance system is highly incumbent on the speed of the algorithm, thus, 

the computationalload on the system should be minimized. 

3) Adaptability: The baseline of normal behaviour in the envilronment being 

monitored should be adaptable to the changes often seen in the real-world. 

For example, clothing changes from season to season and even from day to 

day. Moreover, someone new should be able to be added to the system 

without need for retraining. This last point is in congruence with the next 

criterion. 

4) Online training: The system should have very little to no manual training. 

Manually training the system is tedious and time-consuming, and as a real­

world application, this would be inefficient. Moreover, as aforementioned, 

should there be new people or new activity that need to be introduced to the 

baseline, online training would enable the system to integrate the new 

information with the database without stopping the system. 

5) Minimize the storage load on the system: Because the system requires a 

store of past knowledge to determine the level of novelty of each image, a 

large database will be required. In order to meet with the other requirement 

of adaptability, this database must continue to grow, and in real-world 
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applications, storage space will become a concern. Thus, one criterion will 

be to minimize the amount of storage needed. 

6) Scalability: Since many surveillance systems use a network of cameras to 

monitor multiple sites or a single site from different views, the system 

should be able to introduce new cameras into the network with ease. 

1.2 Our Demonstration system 

For our demonstration system, we use a net cam, the Axis 200+, shown in Figure 

1.2, to monitor the corridor in McGill University's Centre for Intelligent Machines. A 

netcam is a video camera where the latest image acquired can be downloaded from the 

World Wide Web. Our netcam has a built-in Hypertext Transfer Protocol (HTTP) 

server where the images downloaded from the Internet are in Joint Photographie Expert 

Group (JPEG) format. 

Figure 1.1. Axis 200+ netcam 

The camera server takes a snapshot every time an ht tp caU is made. The 

uniform resource locator (URL) is in the following format: 

http://<IP Address>/<snapshot type>. jpg? [<pararneter>=<value> ... ] 
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Figure 1.2. Corridor being monitored with our video surveillance system. 

The snapshot type and the common gateway interface (CGI) parameters can be 

specified. From the three snapshot types listed in Table 1.1, we see that there is an 

obvious tradeoff between size and time. While the largest image size would capture 

more details for the anomaly detection, at a rate of 18 seconds/frame, the acquisition 

time is far too long for a real-world surveillance system. The halfsize option, on the 

other hand, has the best rate of acquisition; however, it would be at the expense of 

image quality. Thus, we chose the fullsize image, which acquires images at 0.5 

seconds/frame. Unfortunately, this rate implies that the surveillance system is limited 

by that rate of acquisition, thus regardless of the speed of the algorithm, the maximum 

processing rate is roughly 2 frames/second. 

fullsize.jpg 352x288 0.5 seconds/snapshot 

halfsize.jpg 176x144 0.3 seconds/snapshot 

hugesize.jpg 704x576 18 seconds/snapshot 

Table 1.1 Three main snapshot types available for the Axis 200+ netcam. 
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The CGI parameters available for adjusting are listed in Table 1.2 with the 

values to which we set our demonstration camera in boldo The compression parameter 

specifies the quality of the image. Again, we have a tradeoff between quality and 

speed. Thus, we chose a "medium" compression, which is the default camera setting. 

compressIon [medium 1 high Ilow] 

color [normal 1 none] 

mlITor [on 1 off] 

clock [show 1 hide] 

rotation [normal 1 upsidedown 1 90deg 1 270deg] 

Table 1.2 Sorne COI pararneters and values for the Axis 200+ netcam. 

One major benefit of using a netcam is that adding cameras to the surveillance 

system is done by simply connecting the additional cameras to the Internet. The system 

can thus be distributed over several cameras that communicate over the Internet. 

Moreover, the physical distance between the cameras and the computer, which 

pro cesses the images, can be as large as the farthest distance between any two points on 

the network [58]. Finally, netcams are low-cost and easy to use. 

1.3 Our Approach 

Our video surveillance system applies a compression-based anomaly detection 

algorithm based on the technique described by Bennett et al. [5] to classify chain letters. 

They devised a similarity measure stemming from the notion that the compression of a 

data file pro vides a good measure of its information content. A compression algorithm 
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seeks to remove all redundancies within a data file in order to save storage space on the 

hard disk. When two files are compressed together, if the two files have no 

redundancies between them, then the compression of the joint files will be as big as the 

sum of the compression of the two individual files. However, if the two files contain 

redundancies, then the compression of the joint files will be smaller than the sum of the 

compression of the two individual files. Finally, with an ideal compressor, if the two 

files are identical, then the compression of the joint files will be as big as the size of the 

compression of one instance of the file. Thus, the size of the joint compressed files 

compared to the size of the individual compressed files combined, is a good measure of 

the files' similarity. 

c::::::> 
(1 image) 

c::::::> 
(1 image) 

Check 
for 

Similarity 

Figure 1.3. Block diagram for anomaly detection using similarity measure. 

Anomaly detection is achieved by comparing aIl images acquired from the 

surveillance system, and comparing them to a database of stored images. In Figure 1.4, 

examples of intensity images ofthe scene under surveillance are shown. We fIfSt apply 

the anomaly detection algorithm on the intensity images. Subsequently, we apply the 

algorithm to various features of the images, namely: edges and persons. Edge detection 

is the process, whereby, only the boundaries of the discontinuities that exist in image 

intensity are preserved, and the rest of the image is discarded. Figure 1.5 shows the 

example images from Figure 1.4 after an edge detector has been applied. 
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Figure 1.4 Example images acquired from our demonstration system. 

Figure 1.5. Edge images ofthe example images from Figure 1.4. 

Since, for the most part, video surveillance involves monitoring the activity of 

people, a person detector is [lfSt applied to the sequence of images. In computer vision, 

a person detector detects the number and location of persons, if any, in a given scene. 

Their location is generally specified by drawing the smallest rectangular bounding box 

that encompasses the person(s). The people detected from the intensity images in 

Figure 1.4 are shown in Figure 1.6. It is the se bounding boxes that are input into the 

anomaly detector. 

Figure 1.6. Person detection applied to example images from Figure 1.4. 

1.4 Thesis Overview 

This thesis describes the anomaly detection algorithm we have developed for the 

purpose of video surveillance. Chapter 2 begins by summarizing the main classes of 

video surveillance techniques, including the person detector we implemented. The 
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different edge detection methods are then presented, followed by an explanation as to 

why we chose the particular edge detector that we implemented. FinaIly, a brief 

overview of different compression techniques is presented. 

In chapter 3, the compression technique we employed, as weIl as the anomaly 

detector that we implemented are explained in greater detail. We then present the 

results of sorne tests that we ran on intensity images, which were acquired from our 

demonstration system described in section 1.2. The focus of these tests was to 

determine how c10sely our algorithm adhered to the criteria of a surveillance system 

presented in chapter 1. 

While our approach is successful in detecting anomalous intensity images, there 

were certain shortcomings; namely, the algorithm was sensitive to illumination and 

location changes. Thus, in chapter 4 and 5, we present the work that we did on applying 

edge detection and person detection to the images respectively, in order to extract 

features that would help overcome the limitations of the anomaly detector. 
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CHAPTER2 

BACKGROUND 

2.1 Video Surveillance Methods 

Extensive research has been dedicated to developing video surveillance 

techniques. Of the plethora of existing techniques, the main techniques can be divided 

into three main tasks: object detection, object/region tracking, and activity/movement 

classification, defined in Table 2.1. Many of the video surveillance methods perform at 

least one of these tasks. 

Object Detection 

Object Tracking 

Movement/ Activity 
Classification 

The location and often orientation of objects 
of interest in a given scene are specified. 

Objects of interest in a given scene are 
detected and pursued during subsequent 
frames . motion information. 
Motion or the statistical sequences of 
movements of objects of interest are 
classified. 

Table 2.1. Three main video surveillance tasks. 

2.1.1 Object (person) Detection: 
Object detection is the task of finding a specified object, if it exists, in a given 

scene. For most surveillance systems, people are the target category of interest. In any 

given scene, there could be zero, one or many persons. Person detection can be divided 

into three main classes: model-based detection, motion-based detection and appearance­

based detection. Model-based methods [25, 26, 44] find a pers on in an image using a 

parts-based person model to detect body parts which are then assembled into a full 
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person. The benefit of this technique lies in the non-rigidity of the model; the persons 

detected are not limited to one pose. 

Because people are constantly moving, motion-based methods [22, 33, 72, 86] 

use this movement as their primary source of information to detect for people. One 

popular approach is the use of background subtraction, where a background model is 

computed, and aIl subsequent images are compared against the background mode!. The 

pixels which differ from the background model, by a predefined threshold, are 

considered foreground, or people. 

Appearance-based methods [27, 60, 61, 77] uses a two-class classifier to 

distinguish cropped images of people from aIl other types ofimages. These methods do 

not require a priori information about the human body's structure, but rather learn from 

examples. 

In our approach, we apply a person detector to the images before applying the 

anomaly detector. A method that was consistent with the criteria which we set in 

chapter 1 was needed. One such method was Nair and Clark's appearance-based person 

detector [57, 58]. Their pers on detector employs a classifier that is learned online. 

Training examples acquired directly from the camera are automatically labeled, and 

these examples are used to train the classifier. Thus, the learning can be performed in 

parallel with the detection, and the classifier is adapted over time. The Nair and Clark 

person detector overcomes the limitations of manual labeling and offline training 

present in other object/person detection with learned classifiers [60, 76, 77]. For this 

reason, we chose to adopt their person detector for our anomaly detection scheme. 

2.1.2 Object Tracking 
Tracking techniques can he divided into two categories oftracking: recognition-

hased trac king [28, 50, 87] and motion-hased tracking [3, 7, 41, 55]. In recognition­

based tracking, regions in a given scene that match a pre-defined object mode1 are 

identified as objects of interest; these objects are then pursued. The main advantage of 

10 



this approach is that object tracking can be achieved in three dimensions, and the 

objects ofinterest's rotation and translation can be estimated. The main disadvantage is 

that a priori knowledge of the object model is required before tracking can be 

performed. Motion-based tracking eliminates the need for the object model, by using 

motion parameters to detect for objects. In this case, regardless of shape or size, the 

objects can be tracked. 

There is a fair amount of overlap between the work done on object detection and 

that done on object tracking. For example, in [33], Haritaoglu et a.l proposed the vi' 
system which detects, then tracks human heads, torsos, arms and legs of upright people 

in real-time. In fact, the task of object tracking implies that object detection must [IfSt 

occur. 

2.1.3 MovementiActivity Classification 
Movement or activity classification is the process of classifying and recognizing 

observed motion or the statistical pattern of the observed motion. The VIEWS system, 

developed by Corrall, attempts to describe activity in a scene using a model-based 

approach [17]. The system required a large amount of a priori knowledge of the 

camera models, ground plane representation, 3-D object models, and behavior models 

[21]. VIEWS is one of the earliest attempts at activity classification. From this system, 

the PASSWORD system was spawned, which is essentially a low cost parallel digital 

signal processor version of VIEWS [6, 14]. Later work on movement or activity 

classification, include the Video Surveillance and Monitoring (VS AM) systems created 

by Carnegie Mellon University [42], MIT [40] and Texas Instruments [24]. Grimson et 

al. also developed a system that achieves object and activity classification at a low level 

[31]. 

2.2 Edge Detection Methods 

Edges in images represent the discontinuities in the image intensity due to the 

changes in structure. These discontinuities in image properties usually reflect important 
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events and changes in world properties. In computer vision, the purpose of edge 

detection is to filter out a significant portion of the image, while preserving the 

structural properties within it. These properties include the photometrical, geometrical, 

and physical characteristics of objects which vary, in order to give the different grey 

levels in images. 

The main types of edges are step edges, line edges [2, 13, 30, 67, 70], and 

junctions [46, 54, 59, 65]. Line edges are the local extrema of the grey level image. 

They are use fuI in detecting roads and rivers in images. Junctions are regions in the 

image where two edges meet, and are helpful in solving the correspondence problems in 

computer vision. The edges that we are concemed with in this thesis are step edges, 

which are step discontinuities within the image. In Figure 2.1 an ideal step edge with its 

fIfst and second derivative is shown. 

Edge 

-4 -2 o 2 4 

First 

Â Derivative 

-4 -2 0 2 4 

Second 

1 ,::Y Derivative 

1 1 

-4 -2 0 2 4 

Figure 2.1. Step edge with first and second order derivative. 
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Based on the notion that edges occur at discontinuities in luminance in the 

image, by taking the derivative of the intensity values across the image, the edges will 

be at the point where the derivatives are maximum or minimum. Two types of edge 

detectors were developed from this idea: the gradient method, which takes the first 

derivative ofthe image, and the Laplacian method which takes the second derivative. 

The gradient method detects edges by finding the maximum or minimum in the 

derivative of the intensity values across the image. In this method, the intensity image 

is convolved with a 3x3 mask, in order to approximate the flfst-order partial derivatives. 

In order to detect both the horizontal and vertical edge component, the images are, in 

fact, convolved with a mask along the rows and along the columns. The masks for the 

Sobel [38, 43] and Prewitt [62] step edge detectors are: 

[

-1 0 1 J 
~x = -a 0 a 

-1 0 1 

-a 

o 
a 

where ais 2 for Sobel and 1 for Prewitt edge detectors. 

The Laplacian method finds zero crossings in the second derivative of the image 

in order to locate the edges. A common mask for Laplacian edge detectors is: 

[
0 1 0J 

\7= 1 -4 1 

010 

The performance of these detectors deteriorates as the nOIse in the images 

increase. Rosenfeld and Thurston [66] introduced the concept of smoothing to reduce 

the noise in the image. In smoothing, a pixel intensity value is replaced by the average 

of the neighbouring pixels. While the smoothing process reduces the amount of noise 

in the image, it also causes a loss of information. Thus, many attempts have been made 

to design an edge detector which balances this tradeoff [53, 68]. 
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of: 

The Canny edge detector [12] is a popular edge detector with the three-fold goal 

1. Maximizing the signal to noise ratio for better edge detection 

2. Achieving good localization to accurately mark edges, and 

3. Minimizing the number ofresponses to a single edge. In other words, non­

edges are not marked. 

Because of it these characteristics, the Canny edge detector was thus selected, in 

this thesis, as the edge detector applied to the images before anomaly detection. In 

Figure 2.2, a brief outline of the Canny edge detector is listed. The way in which the 

edge detector is integrated with our algorithm, is explained in chapter 3. 

1: Smooth the image with a Gaussian filter 
2: Compute the gradient magnitude and orientation 
3: Apply nonmaxima suppression 
~: Use double thresholding to detect and link edges 

Figure 2.2. Canny edge detector algorithm. 

2.3 Compression Methods 

Data compression reduces the size of a file, which can lead to a reduction in 

computing resources, transmission time, or storage resources. Compression techniques 

can be reduced to two main types: lossy and lossless. In lossy type compression 

schemes, the original file cannot be reproduced from the compressed file. On the other 

hand, with lossless methods, no information is lost during the compression process and 

the original can be reproduced. 

Modem compression can be split into two stages: modeling and coding. In the 

mode1ing stage, the similarities and regularities within the sequence to be compressed 

are found. In the coding stage, these redundancies are eliminated. While sorne older 

compression methods, such as the Ziv-Lempel algorithms [89, 90], are not split into the 

14 



two stages, for the most part, the two stage approach is the modern paradigm of 

compression. In the next section, we will present the two main coding methods which 

many of the compression algorithms use. In Section 2.3.2, we will discuss the c1assic 

Ziv-Lempel algorithm, and subsequently, will present the more recent approaches to 

compressIon. 

2.3.1 Entropy coding 
The second stage of compression, the coding stage, is where compression 

actually takes place. In entropy coding, sequences are compressed based on a 

probability distribution of occurrences of the alphabet symbols, which is determined in 

the modeling stage. Based on the probability of a given character appearing in the 

sequence, the character is assigned a code - whose length is proportional to the negative 

logarithm of that probability. In other words, each character is assigned a code of 

length: 

IOgU}-IOg(P') 

where Pi is the probability of occurrence of the character. Thus, the characters with the 

highest probability of being in the sequence, the most common characters, use the 

shortest codes. Two main entropy encoding algorithms are the arithmetic and Huffman 

coding. 

2.3.1.1 Arithmetic coding 

Arithmetic coding [36, 47, 63, 64] is a form of entropy encoding which codes 

the entire input message into a single number that ranges from 0.1 to 1.0. The algorithm 

begins by computing the frequency of each character in an input sequence. Based on 

the characters' frequency, a probability table is created and a range between 0 and 1 is 

assigned to each input character. The range consists of a low value and a high value. 

The order of assigning these ranges is not important; however, both the encoder and 

decoder must follow the same order. And thus, the more frequent the characters, the 
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wider the range assigned to it. Once each instance of each character in the sequence is 

assigned a range, the encoding can begin. 

The encoding begins with a range between 0.0 and 1.0. The fIfst character in the 

input sequence constrains the output number with its corresponding range. The range of 

the next character will then further constrain the output. The output continues to be 

constrained as each character in the input sequence is processed. The greater the 

number of input characters in the sequence, the more precise the output number will be. 

TABLE OF 
"ABRACADABRA" --+ PROBABILITIES --+ 

AND RANGES 
CODING --+ OUTPUT NUMBER 

Figure 2.3. Block diagram for arithmetic coding. 

In Figure 2.3, the string "abracadabra" is input to the coding algorithm. The 

arithmetic encoder has two main steps: building the table of probabilities and ranges, 

and coding. In Figure 2.4, the probability of each character in "abracadabra" is 

determined and assigned the appropriate range. The range of each character has a low 

and high value, which we will refer to as CHAR_LOW and CHAR_HIGH respectively. 

PROBABILITY 

A 1
5
1 = 0.45455 

B 1; = 0.18182 

C 1\ = 0.09091 
D 111 = 0.09091 

R 1; = 0.18182 

CHARACTER RANGE 
[0,0.45455) 

[0.45455,0.63636) 

[0.63636,0.72727) 

[0.72727,0.81818) 

[0.81818, 1) 

Figure 2.4. Table ofprobabilities and ranges. 
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With this table, the co ding can begin. The encoding follows the brief algorithm 

listing in Figure 2.5, to encode the characters from "abracadabra" to 

0.278791 748370412, which is the final LOW value listed in Figure 2.6. Since there 

are 15 digits after the decimal place, if on average it takes log2(10) ::::: 3.32 bits to 

represent one digit, then it takes roughly 50 bits to represent aIl 15 digits. The final 

encoding of the string is a single number between 0.1 and 1.0. Having a single number 

to encode the string realizes a better compression size than other entropy encoders 

which make a codeword for each character. However, one disadvantage is that in 

arithmetic coding, the entire input sequence is needed before the coding can begin, and 

a single corrupt bit could potentially corrupt the entire codeword. 

A 
B 
R 
A 
C 
A 
D 
A 
B 
R 
A 

LOW = 0 
HIGH = 1 

while(not the end of input sequence) 
{ 

CHAR = next character in sequence 
RANGE = HIGH - LOW 
CHAR_LOW = low value of range assigned to CHAR 
CHAR_HIGH = high value of range assigned to CHAR 
LOW = LOW + RANGE * CHAR_LOW 
HIGH = LOW + RANGE * CHAR_HIGH 

} 

Code = LOW 

Figure 2.5. Arithmetic coding algorithm 

RANGE LOW HIGH 
0 1 

1.000000000000000000000 0.000000000000000 0.454550000000000 
0.454550000000000000000 0.206615702500000 0.289259090909091 
0.082643388409090900000 0.274233020289256 0.289259090909091 
0.015026070619834700000 0.274233020289256 0.281063120689502 
0.006830100400245840000 0.278579447816685 0.279200366034890 
0.000620918218204147000 0.278579447816685 0.278861686192770 
0.000282238376084709000 0.278784712090202 0.278810370124391 
0.000025658034189524100 0.278784712090202 0.278796374949642 
0.000011662859440875200 0.278790013442960 0.278792133909846 
0.000002120466885358050 0.278791748370412 0.278792133909846 
0.000000385539433711557 0.278791748370412 0.278791923617362 

Figure 2.6. Arithmetic coding for "abracadabra". 
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2.3.1.2 Huffman coding 

The Huffman coding is another entropy encoder. Unlike arithmetic coding, each 

instance of each character in the input sequence is assigned a code. As in arithmetic 

coding, the algorithm begins by assigning to each character its probability of appearing 

in the input sequence. Subsequently, the characters enter the coding stage. In this 

stage, a binary tree is formed by joining the two nodes with the lowest probability to 

form a new node, whose value becomes the sum of its two branches. In the case where 

there is more than one node with the same probability, any of these nodes can be 

chosen. The process continues until an the nodes are part of the tree and the root node 

has a probability of 1. 

PROBABILITY 
A 1

5
1 = 0.45455 

B 1~ = 0.18182 
C 111 = 0.09091 r=::::> 
D 1\ = 0.09091 
R 1~ = 0.18182 

BINARYTREE 
A 0.45455---------=,0 

o 11-:--:::::= B 0.18182-------=:,1 111.00000 
o 

R 0.18182 1 110.63636 

C 0.09091 0 110.36364 
D 0.09091 1 0.18182 

Figure 2.7. Huffman coding for "abracadabra" 

CODE 

A 0 
B 10 

r=::::> C 1110 
D 1111 
R 110 

In Figure 2.7, we show the Huffman co ding process for the string 

"abracadabra". From the probability table, the binary tree is built, and from that, 

the codeword for each character (A, B, C, D, and R) is determined. Using the codes, 

"abracadabra" is encoded to 23 bits: "01011001110011110101100", which is 

27 bits less than the arithmetic coder took. The compression scheme we adopted, the 

bzip2 compression scheme, employs Huffman coding. The way in which the bzip2 

algorithm integrates Huffman coding in its compression, is detailed in chapter 3. 

In the next section, the Ziv-Lempel algorithms are described. While it is an old 

compression scheme, it still remains popular. In fact, the Unix system's "compress" 

pro gram employs this technique, and it is still widely used for the Graphies Interface 

Formats (GIF) and often the Tagged Image File Format (TIFF). 
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2.3.2 Ziv-Lempel algorithms 
Ziv-Lempel (LZ) algorithms [89, 90] are dictionary methods. During 

compression, a dictionary is built from the components which have appeared in the past, 

to be used to reduce the sequence length, if that same component were to appear in the 

future. In other words, the compressor reads through the input data - subsequence by 

subsequence, constructs a dictionary of observed subsequences, and looks for 

redundancies as it goes. The first time a string is observed, the string is written to the 

output, however, any subsequent time it is encountered, a special code is then output. 

The output thus consists of one instance of each string, and references to these instances 

for the repetitions. 

Ziv and Lempel developed two versions of this highly popular compression 

algorithm: LZ77 [89] and LZ78 [90]. The LZ77 algorithm keeps a buffer of the most 

recently seen data, and compares the CUITent subsequence being encoded, with the past 

subsequences. The output of the compression is a sequence of triples, where the first 

element is the position in the buffer of where the mat ching subsequence starts, the 

second element is the length of the subsequence, and the final element is the character 

which follows the repeated subsequence. The LZ77 is the basis for many other LZ 

algorithms, for example, the LZSS by Storer and Szymanski [73], the LZFG by Fiala 

and Greene [23], and the LZRW by Williams [82]. Moreover, further improvements 

were made in later LZ algorithms [4, 32]. 

Unlike the LZ77 algorithm which works on past data, the LZ78 algorithm 

actually works on future data. This is done by forward-scanning the input buffer and 

matching it against values in a dictionary it maintains. Like the LZ77, the LZ78 also 

gave ri se to other versions [34, 56, 81]. 

2.3.3 JPEG compression 
The JPEG compression algorithms are a family of compression techniques for 

images standardized by the Joint Photographic Experts Group [51]. The block diagram 

for the JPEG compression technique is shown in Figure 2.8. The Forward Discrete 
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Cosine Transform (FDCT), or (DCT), is an algorithm that partitions the image into 8 x 

8 pixel blocks, and transforms these blocks into the spatial frequency. At this point, 

none of the data has been lost; it is the quantization stage which is lossy. In this stage, 

the DCT coefficients are divided by their corresponding quantization coefficients and 

rounded to the nearest integer. 

Figure 2.8. Block diagram for JPEG compression techniques. 

The quantization coefficients are not fixed, but rather, can vary with the desired 

quality level (Q factor). Lower Q factors pro duce better results; however, the closer to 

the original image, the larger the size of the compressed image, and thus the less 

effective a compressor. 

2.3.4 Other universal compression algorithms 
Since the Ziv-Lempel algorithms, other more recent compression algorithms 

have been introduced. The partial mat ching algorithm (PPM), the dynamic Markov 

co ding (DMC) algorithm, and the switching method, are just a few of the many 

compression schemes available which follow the modeling-coding paradigm. 

The PPM algorithm [16], developed by Cleary and Witten, predicts the 

probability of occurrence of the current symbol by using the frequencies of all the 

characters' occurrences in the past. This probability is then used to encode the symbol 

with the arithmetic coder described in Section 2.2.1.1. In addition to Cleary and 

Witten's algorithm, other PPM algorithms were deve10ped by Bunton [8-10] and 

Shkarin [69]. 

In the late 1980s, Cormack and Horspool developed the DMC algorithm [18, 

35]. The DMC attempts to determine which Markov source has produced the input 
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sequence that is to be compressed. A Markov source is a finite state machine (FSM) 

with a set of states and transitions. There can be, at most, k transitions from each state, 

and aU ofthem are denoted with different symbols. At each transition, there is a certain 

probability ofbeing chosen for each state. Further details of the algorithm can be found 

in [18], and a detailed description of the generalized dynamic Markov coder (GDMC), 

developed by Teuhola and Raita, can be found in [74]. 

The switching method, proposed by Volf and Willems [78], employs two 

compression schemes (PPM, LZ77, DMC etc) in combination. In order to obtain the 

best compression ratio, the switching algorithm decides which part of the input 

sequence is to be compressed with which of the two compression schemes chosen. 

In our anomaly detection algorithm, we employed the bzip2 compression 

scheme, which is derived from the Burrows-Wheeler Transform (BWT) [11], a block­

sorting lossless algorithm. The BWT processes the input file in blocks. A single block 

is read, compressed, and written to the output before the next block is processed. The 

benefits in using a block-sorting algorithm lies in its ability to find redundancies within 

a block of data, thus, in our application, since we are looking for redundancies between 

two images, comparing them in blocks is preferred. The details ofthe BWT, along with 

a justification for using it, are presented in the foUowing chapter. 
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CHAPTER3 

ANOMALY DETECTION ON INTENSITY IMAGES 

The anomaly detection that we implemented is a compression-based similarity 

metric based on the normalized compression distance (NCD) proposed by Li et al [48]. 

They proposed that the natural measure of the information content of a data file, is 

given by the smallest size to which the file can be compressed. Compression programs 

are designed to minimize the amount of storage resources required by a given file, by 

removing any redundancies within the file, in order to produce a much smaller file from 

which the original can still be reconstructed. Thus, given that two similar files will have 

more redundancies between them than two dissimilar files, a compression pro gram can 

be used to determine the level of (dis )similarity between two files. Li et al proposed a 

compression distance which compares the compression size of the concatenation of two 

files with the sum of the compression sizes ofthe individual files. 

NCD(x,y) = C(xy)-min{C(x),C(y)} (3.1) 

Unfortunately, the compression distance is skewed by the size of the files being 

compared. For example, though intuition says that two larger files with only a small 

fraction of redundancy is not as dissimilar as two smaller files with the same amount of 

redundancy. Without normalization, however, the compression distance would deem 

the two larger files as dissimilar as the two smaller ones. Thus, Li et al proposed a 

normalized compression distance (NCD): 

NCD(x,y) = C(xy)-min{C(x),C(y)} (3.2) 

Our similarity metric is based on the NCD, however, as in Bennett et al's 

technique [5], we compare the size of the compression of the concatenation of the two 

files with the sum of the individual files' compression sizes: 
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(1 1 ) = size(C[lj])+size(C[12 ])-size(C[lj œ12 ]) 

p P 2 size( C[Ij]) + size( C[ 12 ]) 
(3.3) 

where C[] indicates the compression operation, and œ indicates the concatenation of the 

data sets. If h and h are completely different, then the concatenation of the two files 

should be almost as big, if not as big as the two individual compressed files, and thus, 

the similarity measure should be 0, or close to O. If Il and h are identical, then an ideal 

compressor would yield a similarity measure of 0.5. In other words, files with greater 

similarity have a higher similarity measure than those with greater dissimilarity, and the 

range of the similarity measure is [0, 0.5]. 

The concatenation is performed using the UNIX command cat, where given two image 

files h and h, cat(1l, h), would produce one continuous string, h2, which is simply h 

appended to Il [15]. 

3.1 bzip2 compression scheme 

Since the anomaly detection is based on a compression-based technique which 

seeks to find (dis )similarities between images, an algorithm which compresses in blocks 

is required. One such algorithm is the bzip2 algorithm [29], which is derived from the 

Burrows-Wheeler transform (BWT) [11]. The BWT applies a reversible transformation 

to the data, after which, the data undergoes a move-to-front (MTF) [11] encoding. 

Finallya Huffman encoder [37] is applied to the data. 

3.1.1 The Burrows-Wheeler Transform 
The BWT does not pro cess the data sequentially, but rather, accepts as input 

blocks of data in 100 to 900 KB block-sizes. The transform works by taking a string S 

of length N, and forming an N-by-N rotation matrix M by performing N left cyclic 

shifts. In other words, an the characters of the string are shifted left by one position, 

and the frrst character is moved to the end of the string until N strings are formed. The 

rows of the M matrix are then sorted lexicographically (or alphabetically) to form M, 

and its last column forms the string L of length N. The purpose of the transformation is 
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to group the characters in such a way so that redundancies can be found. After the 

transformation, the string L, as well as a primary index, !, which indicates the position 

in the string L of the original first character of Sare stored. 

To illustrate how the BWT works, we now present an example where the string 

"wheeler" is compared to itself. Thus, we would like to frnd the similarity metric 

between a string and itself 

(" hl"" hl") _sl_·ze--,(_C.!:...["_w_h_ee_le_r_";:::.D_+_s_ÎZ_e(o.....C[..:;.'_' w_h_e_el_er_"-",D_-_s_iz_e(.::....C-,,[_" w_h_e_el_erw_h_e_el_er_'='D) (3.4) p weeer,weeer = 
size( C[" wheeler "] + size( C[" wheeler "D 

As shown in the above equation, the largest string that will be compressed is the 

concatenation of "wheeler" to itself. In Figure 3.1 the BWT is applied to 

"wheelerwheeler". In this example, we assume that the block-size is at least 14 

bytes, thus, the entire string can be compressed in one block. After cyclically shifting 

and lexicographically sorting, L becomes "helhelwweeeerr" and the primary index, 

! is 6, when the index begins at O. With this primary index, the transformation is 

reversible. 

Vot h e e 1 e r w h e e 1 e ~J h,(e,(e,(1 "8" r w h e e 1 e r 
1 h e 1 

r" 
e e e r w e e r w h 
e 1 e r w h e e 1 e r w h e 

e e 1 e r w h e e 1 e r w h e r w h e e 1 e r w h e e 1 
e 1 e r w h e e 1 e r w h e e e 1 e r w h e e 1 e r w h 
1 e r w h e e 1 e r w h e e e 1 e r w h e e 1 e r w h e 
e r w h e e 1 e r w h e e 1 e r w h e e 1 e r w h e e 1 
r w h e e 1 e r w h e e 1 e h e e 1 e r w h e e 1 e r w ~+-1 

w h e e 1 e r w h e e 1 e r h e e 1 e r w h e e 1 e r w 
h e e 1 e r w h e e 1 e r w 1 e r w h e e 1 e r w h e e 
e e 1 e r w h e e 1 e rw h 1 e r w h e e 1 e r w h e e 
e 1 e r w h e e 1 e rw h e r w h e e 1 e r w h e e 1 e 
1 e r w h e e 1 e r w h e e r w h e e 1 e r w h e e 1 e 
e r w h e e 1 e r w h e e 1 w h e e 1 e r w h e e 1 e r 
r w h e e 1 e r w h e e 1 e w h e e 1 e r w h e e 1 e r 

'-' 

M M' L. 

Figure 3.1: BWT applied to "wheelerwheeler". 

24 



3.1.2 Move-To-Front coding 
The string L is then coded, using move-to-front (MTF) coding, to form the 

vector R, where each element in R is a code for each character in L. The code is derived 

by assigning to R[i], where i = 1. . . N-I, the number of characters preceding L[i] in the 

vector Y, which is initially made up of one instance of each character in L sorted 

lexicographically. In Figure 3.2, the MTF coding is performed on the output of the 

transformation of "wheelerwheeler". The MTF coder is given the strings L and Y 

as input. R[O] is assigned the value of 1 since there is 1 character preceding L[O] in the 

input Y, "ehlrw". A new Y is then formed by moving the 'h' to the front of the string, 

thus forming "helrw". R[l] is then determined for the character L[l], and so on, until 

the N-Iength code is determined to be "11222240200040". 

L[] R[] Y 

;;w H 1 E LR 
E 1 Et:[Rw 
L 2 ŒHRW 
H 2 HLERW 
E 2 EHLRW 

"HELHEL\lVlNEEEERR" -+ L 2 LEHRW -+ "11222240200040" 
W 4 WLEHR 
W 0 WLEHR 
E 2 EWLHR 
E 0 EWLHR 
E 0 EWLHR 
E 0 EWLHR 
R 4 REWLH 
R 0 REWLH 

Figure 3.2. MTF for "wheelerwheeler" with 14 byte block-size. 

3.1.3 Hullman co ding 
The final step for compression is to apply Huffman encoder to the vector R. 

The probability of each element in R is determined. In Figure 3.3, the Huffman encoder 

is applied to the output R code from the example in Figure 3.2. After building the tree, 

based on the probabilities for each of the characters, each character in the R string is 

encoded. For example, R[O]=1 is in the third level of the tree, and is reached by 
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following the branches 110. In other words, it took 3 characters to encode the character 

'1'. Moreover, the characters '0', '2', and '4', take 1, 2, and 3 characters to encode 

respectively. Thus, the total number of characters necessary to encode the R string is 

27. In other words, the string "wheelerwheeler" was compressed to 27 bits. 

PROBABILITY BINARYTREE CODE 

0 1
5
4 = 0.35714 o 0.35714 0 o 0 

1 1~ = 0.14286 2 0.35714 0 1 1.00000 1 110 
1 

2 1
5
4 = 0.35714 c=:::!> 1 0.14286 0 

11°·64286 c=:::!> 2 10 

4 1~ = 0.14286 4 0.14286 1 0.28517 4 111 

Figure 3.3. Huffinan coding for "wheelerwheeler" with 14 byte block-size. 

By default, the bzip2 compressor compresses files in 900 KB block-sizes. In 

other words, if the size of the file to be compressed is greater than 900 KB, then the file 

is split into 900 KB blocks before being compressed. Because the BWT works by 

removing redundancies, in order for the metric not to be skewed, the largest file 

compressed must be less than 900 KB. The large st file compressed with the similarity 

metric shown in Equation 3.3, is the concatenation of the two files being compared. 

Thus, the sum of the sizes of the files to be compared must be at most 900 KB. In the 

previous example, the "wheelerwheeler" string was compressed assuming that the 

block-size was large enough that the string did not need to be split. To demonstrate that 

the metric is skewed, if the string needs to be split before compression, the example is 

repeated, however this time with a 9-byte block-size. Thus, the string 

"wheelerwheeler" must be compressed in two blocks: ''wheelerwh'' and 

"eeler". From Figure 3.4, it can already be seen that by splitting the string, sorne of 

the redundancies that was achieved with the 14-byte block-size, is not achieved here. 
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w h e e 1 e r w h 
h e e 1 e r w h w 
e e 1 e r w h w h 
e 1 e r w h w h e 
1 e r w h w h e e 
e r w h w h e e 1 

r w h w h e e 1 e 
w h w h e e 1 e r 
h w h e e 1 e r w 

M1 

e e 1 

e 1 e 
1 e r 
e r e 
r e e 

M2 

e r 
r e 
e e 
e 1 

1 e 

eelerwhwh 
elerwhwhe 
erwhwheel 
heelerwhw 
h w h e e 1 e r w 
lerwhwhee 
rwhwheele 

w h e e 1 e w h 
whwhee er 

M1' L1 

Figure 3.4. BWT for "wheelerwheeler" with 9-byte block-size 

:~!~~r 
e r e e 1 

e r e e 
e e 1 e 

M2' L2 

From the 9-byte block-size example, LI and L2 are found to be "helwweehr" 

and "relee" respectively. The L strings are encoded using MTF coding and then 

Huffman coding. Since there are two strings being compressed, each string requires its 

own binary tree for the Huffman coding. The [mal encoded string is 

"010110110001000111110" for LI and "10010011" for L2, which are 21 and 8 

bits respectively. Thus, the string "wheelerwheeler" was compressed to 29 bits 

when using a 9-byte block-size, which is 2 more bits than when using a block-size that 

did not require splitting the string. 

Now, we consider the effects of splitting the string on the similarity metric. The 

string "wheeler" is compressed following the same process that we used. Because it 

is a 7-byte string, both the 9-byte and 14-byte b1ock-sizes compressed ''wheeler'' to 

"001011010111110", which is 15 bits. Plugging this value, along with the 

previously computed compression sizes into the similarity metric equation, yields: 

= 15+15-27 =0 1 
Pl4-byte 15+15 . 

= 15+15-29 =0 33 
P9-byte 15 + 15 . 

Thus, the similarity measure between "wheeler" and itself, was found to be 

more dissimilar when using a block-size that required the string to be split before 

27 



compression. In our implementation, we used the default block-size of900 KB. Thus, 

the sum of the sizes of the two images being compared must be less than 900 KB. The 

images from our demonstration system are aIl roughly 102 KB, thus the concatenation 

of the two images are roughly 204 KB and far below the maximum size of900 KB. 

In the next section, we present a brief listing of our algorithm for the anomaly 

detection. Subsequently, we present the results of our demonstration system applied on 

intensity images. 

3.2 Our Anomaly Detection Algorithm 

Figure 3.5 shows the basic algorithm foIlowed for the anomaly detection. When 

the anomaly detection algorithm begins, an image is downloaded from the camera. As 

explained in Chapter 1, the images acquired from the camera are in JPEG format. 

Although this format is inherently its own compression scheme, we cannot compare the 

JPEG image sizes. With JPEG compression, the images are manipulated in 8 x 8 pixel 

block-sizes; however, we require a compression scheme that can fmd redundancies in 

concatenated images. Thus, the input image, 10, is converted into bitmap (BMP) format 

and then compressed using the bzip2 compression algorithm. If the input image is the 

fIfst image to be processed, it is marked and saved as a novel image. Otherwise, 10 is 

compared to aIl the images previously deemed novel by compressing the previously 

stored image, lI, and concatenating 10 and h to form lOI. Using the similarity metric 

defmed in Equation 3.3, the level of similarity between 10 and II is determined and 

compared against an empirically chosen threshold. If the two images have a similarity 

measure below the threshold, they are deemed dissimilar; conversely, if they have a 

similarity measure above the threshold, they are deemed similar. In the case of the 

former, the input image is then compared to the next image from the novel image list 

until it has been compared to all the images on the list, or it is deemed similar to one of 

the images on that list. If the image is dissimilar to aIl of the images on the list, then it 

is considered novel and it is added to the novel image list. The compression of the 

image is then saved. If the image is similar to one of the images on the list, then the 
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image can be discarded, since only one instance of the similar images is required for 

future comparisons. In other words, the input image is only saved and compared 

against new incoming images if it is deemed noveL Thus, rather than storing every 

image processed by the system, by storing only the novel images, only the images with 

useful information are kept, and storage resource requirements are reduced. Moreover, 

when only the novel images are stored, computational resources are reduced as well, 

since fewer comparisons are required for each incoming image. 

Download an input image from the camera 
Assign the input image to 10 
Convert 10 to BMP format from JPG format 
C [10] = Compress 10 us ing bzip2 
if 10 == first image processed 

e1se 

novel_image_list. add (10) 
Save C [10] 

whi1e(!eof(novel_image list)) 

1: 
2 : 
3 : 
.q: 
5: 
6: 
7: 
8: 
9: 
10 : 
11: 
12 : 
13 : 

Il = data from current position of novel_image_list 
C [Il] = Compress Il 
101 = concatenate (10, Il) 
C [101] = Compress I 011.q: 

(I 1 )= ~zZ6(C[II])+~zZ6(C[I.])-~zZ6(C[I,fflI.]), Il p similarity 
P l" ~zZ6( Cl[,]) +~;Z6( ClI.D 

15 : 
16: 
17: 

if p< threshold (T) Il dissimilar 
go to step 10 

e1se Il similar 
19: increment Il.match count 
18: Sort novel_image_list by match_count 
19: break from loop; 
20: if 10 dissimilar to aIl images in novel_image_list 
21: novel_image_list.add(Io) 
22: C [10] Compress 10 
23: go to step 1. 

Figure 3.5 Pseudocode for anomaly detection algorithm. 

Since the input image is compared to the images from the novel image list until 

a similar image is found, it is clear that fmding a match sooner reduces the number of 

comparisons required and thus, reduces the computational load. Thus, the order in 

which the comparisons are made is pivotaI. Step 18 of the algorithm listed in Figure 3.5 

shows that the novel image list is sorted by the amount of times that they have been 

deemed similar to the input, by the most often to the least. The reasoning is that an 

input that will ultimately be determined to not be novel, will most likely be considered 
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similar to one of the images that have been seen most frequently in the past. For 

example, if the video camera were surveying a corridor, then a lik:ely assumption would 

be that an empty corridor would be the most frequently viewed scenario. Thus, it would 

be advantageous to rule out this image fIfSt by comparing the input image to it fIfSt. 

This approach to anomaly detection exploits geometric structure implicitly, in 

that the comparisons are based on the image itself. Rather than describing each image 

according to its geometric shape s, and comparing the descriptions, the entire images are 

compared. While using the geometric structures in a more explicit way could provide a 

more precise defmition of similarity, the tradeoff is between speed and precision. In 

this way, we achieve a simple method for anomaly detection. 

3.3 Results 

Before the algorithm could be properly tested, an appropriate threshold needed to be 

chosen for the similarity measure. The anomaly detection algorithm was run on a test 

set of 100 images, and then, the similarity measure was empirically chosen by manually 

sorting through aH the images, deciding which pairs of images should be considered 

similar, and/or, which should be considered dissimilar. Although sorne manual training 

was required here, the training time is minimal. Moreover, sorne user input ofwhat is 

considered similar is beneficial, since it depends on the user's perspective. What was 

noticed during this classification pro cess was that for sorne pairs of images that intuition 

would deem similar, the similarity measure would be lower for these pairs of images 

than for a pair of images that intuition would deem dissimilar. Moreover, for certain 

pairs of images that intuition would deem dissimilar, the similarity measure would be 

higher for these pairs of images than for pairs of images that intuition would deem 

similar. The difficulty in choosing a threshold thus lies in determining where to place 

the threshold, so that the greatest amount of dissimilar images were found without 

triggering too many false positives; which are similar images being marked as novel. In 

other words, when choosing a threshold, there is a tradeoff between faise positives and 

false negatives. Ultimately, because the anomaly detection algorithm is for video 
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surveillance applications, we decided that it was more important to catch all the 

anomalies while risking classifying too many images as dissimilar, than to risk missing 

anyanomalies. With that in mind, a conservative threshold of 0.055 was chosen for the 

test. 
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Figure 3.6. Highest similarity measure for each intensity image processed over 2 days 
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Figure 3.7. Highest similarity measure for each intensity image processed over 1 day 

The anomaly detection algorithm was run over a six week period. In Figure 3.6, 

the highest similarity measure for each of the fIfst 2 days of the test was plotted, which 

is 350,000 images. The points below 0.055 are the highest similarity measures for novel 

images. The plot shows that there is only the occasional sharp dip, meaning that 

novelty is rare. Figure 3.7 shows the plot for just one day of activity. Here, we notice 

that the majority of the novel images are found in the fIfSt quarter of the plot, which 

corresponds to the fIfSt 6 hours of the work day. 

In Figure 3.8, the number of novel images detected was plotted over the total 

number of intensity images processed over the six week period. In total, over 6 million 

images were acquired from the demonstration system. Of these images, 967 novel 

images were detected. In the fIfSt week, nearly 400 novel images were detected; 

however, after another 5 weeks, the number of novel images only increased by fewer 

than 600 images. Therefore, as the cubic curve in Figure 3.8 shows, the rate ofnovelty 

is decreasing with time, which is not surprising, since we expect that as with a security 

guard, initially, the system leams a lot; however, over time, it establishes a baseline of 

normal behaviour. 
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The plot in Figure 3.8 also shows several steep rises followed by plateaus. We 

notice that the beginning of the steep rises correspond to the beginning of a new work 

day, whereas, the fiat lines correspond to the inactivity overnight. In fact, in Figure 3.9, 

we zoomed in on the events of 16/05/05 from Figure 3.8. The plot shows that the 

majority ofthe activity occurs in the morning, starting just before 9 AM. Over the day, 

not only does much of the activity taper off, but the activity that does occur is often 

similar to an event captured earlier in the day. For example, if a person were to walk 

down the hallway in the morning, during the course of the day, if the person were to 

walk down the hallway several times, the system would not deem these events as novel, 

since it has already captured images of a similar event in the moming. 
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Figure 3.8. Number of novel images vs. number of intensity images processed over 6 weeks. 
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Figure 3.9. Nwnber ofnovel images vs. nwnber ofintensity images processed over 1 day. 

Referring again to Figure 3.8, we note that during the weekend, (13/05/05 -

15/05/05) there was bare1y any activity in the research center, and thus, very few novel 

images were detected. The lack of activity because of the weekend can be further 

confrrmed by the following weekend's (20/05/05 - 23/05/05) inactivity. The second 

weekend was actuallya long weekend, since Monday was a statutory holiday. We note 

that the lack of activity also carried through that Monday holiday. The steep ascent of 

novel images only begins the following day, on the Tuesday (24/05/05). 

In Figure 3.10, examples of similar and dissimilar image classification are 

shown. When compared, the top two images were deemed similar, thus only one 

instance of the two images was added to the nove1 image list. However, the bottom 

image was deemed dissimilar from either of the top two images, and thus, it was added 

to the novel image list. It is difficult to provide an intuitive description of what makes 

images (dis)similar. By observing the example images though, we see that the people in 

the similar images have similar grey level clothing, and are a similar size in the image, 
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whereas, the person in the bottom image is donning different clothing and is smaller 

than the people in the similar images. 

Out of the 6,032,556 images examine d, 55 were classified as novel when 

intuition would say that they were not novel, which is a 9.1xlO-6 false positive rate. The 

majority of these false classifications can be attributed to the anomaly detector's 

sensitivity to illumination changes. For example, in Figure 3.11, the two images were 

both saved as novel images; however, with the exception of the difference in 

illumination, one could say that the two images are similar. The advantage to our 

system is that regardless of the illumination changes, the system adapts, since it leams 

online. Thus, the wrongly classified novel images are simply added to the list of novel 

images, and any subsequent input images that resemble this image will not be nove!. 

However, in spite of the adaptability of the system, the algorithm's sensitivity to 

illumination is still an issue, since false positives trigger false alarms which can be 

costly in real-world applications. We will thus address the issue of false positives in 

chapter 4. 

Figure 3.10. Examples ofsimilar (top) and dissimilar (bottom) image classification. 
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Figure 3.11. Example of a faise positive: two similar images classified as dissimilar. 

Because of the difficulty of intuitively describing similarity, the exact 

description for false negatives is difficult to calculate; of course, since it is highly 

dependent on what we consider similar. What we did notice, however, was that at this 

high-Ievel of comparison, images containing two different people with similar c10thing 

and similar appearances could be considered similar. Thus, in chapter 5, we crop out 

the regions of the images containing people, and apply the anomaly detector on these 

Images. 

In spite of sorting the novel images in order of like1ihood to be matched to the 

input image, the number of novel images continues to grow, implying that the amount 

of storage resource required will also continue to increase with time. As 

aforementioned, each image is roughly 102 KB. Which me ans that at 967 novel 

images, approximately 96 MB of the hard disk is required. Now, the intensity images 

compress to anywhere between 18-21KB. Thus, by storing the compressed version 

instead, the storage resources required have been reduced by around 80%. After around 

6 weeks of video surveillance, only 19 MB of images are stored. In the following two 

chapters, the issue of storage resources is further addressed. 

In order to act as an effective video surveillance system, the time the system 

requires to ascertain the nove1ty of each frame is very important. To simulate a realistic 
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real-world situation, the anomaly detection was performed on a Unix machine which 

had other pro cesses running in the background. Although assigning a high priority to 

our process might ensure that it would receive most of the quanta (time slices assigned 

to pro cesses) on the Central Processing Unit (CPU), and thereby improving the 

processing time of each frame, our system was not assigned a high priority, because a 

dedicated machine may not always be available in real-world applications. 

A stripped-down version of the anomaly detection algorithm was run for 24 

hours, where 157993 images were processed. We found that, on average, each frame 

takes 0.547 seconds to process. Given that the maximum frame rate of the netcam is 2 

frames/sec, as specified in Chapter 1, a frame rate of 1.829 frames/sec is not 

unreasonable. We recaU that the anomaly detector works by comparing the input 

images to the previously-seen novel images until either a match is found, or the input 

has been compared to aU of the stored images. Since the novel image list is sorted by 

the likelihood that the input will be similar to it, the processing time of images that are 

eventually deemed similar, does not increase much with time. The majority of the time, 

a match will be found within the frrst two comparisons, and thus, the majority of the 

time, a match is made in less than a second. However, in the case of the novel images, 

the processing time is directly proportional to the number of novel images stored. In 

Figure 3.12 we see that the processing time for novel images grows linearly with the 

number of novel images. At around 170 novel images, the processing time is 9 

seconds/frame. In Figure 3.13, the processing time for each novel image is plotted 

against the total number of images processed. The 9 second worst-case time occurs 

near the 160,000 image. In chapter 4, we will discuss how, by frrst applying an edge 

detector on the images, the speed of the algorithm is improved. 
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Figure 3,12. Processing time for each nove! intensity image. 
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CHAPTER4 

ANOMALY DETECTION ON EOGE IMAGES 

As discussed in Chapter 3, the major disadvantage to applying the anomaly 

detector to the intensity images was that the algorithm was sensitive to changes in 

illumination. In fact, the intensity images contained information regarding illumination 

changes and other information that could, otherwise, be discarded to speed up 

computation and also save on storage resources. In computer vision, an edge detector 

removes this information while maintaining the structural properties of the image. As 

we would like to reduce or remove the algorithm's sensitivity to illumination changes, 

we thus apply an edge detector on the images before applying the anomaly detector. 

In this chapter, we begin by presenting the edge detector we applied and how it 

IS integrated with our anomaly detection algorithm. Subsequently, we present the 

results of the tests which we ran on our demonstration system, with the edge detector in 

place. And fmally, we compare the results of the edge detector in terms of accuracy, 

storage resources and speed. 

4.1 Integrating the Canny Edge Detector 

The Canny edge detector is applied to the images before being compressed and 

checked for novelty. In Figure 4.1 the anomaly detection algorithm with the Canny 

edge detection is listed. Essentially, the algorithm remains the same as in Section 3, 

however, in this case, an edge detector is applied to the images before they are 

processed (see step 4). 
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1: Download an input image from the camera 
2: Assign the input image to 10 
3: Convert 10 to BHP format from JPG format 
4: 10 = edge detector applied to 10 
5: C [ 10] = Compress 10 
6: if 10 == first image processed 
7: novel_image_list.add(Io) 
8: Save C [ 10] 
9: else 
10: while ( ! eof (novel_image_list) ) 
11: Il = data from current position of novel_image_list 
12 : C [Il] = Compress Il 
13 : 101 = concatenate ( 10, Il) 
14: C[I01] = Compress 101 
15: (l l )= .,ge(C[I,]) +.,ge (C[I,])- .,ge(C[I, el,]) Il p = s imilar i t Y 

p ", • ,ge( CLI,]) +.ize( CLI,]l 

16: if p< threshold (T) Il dissimilar 
17: 
18: else 

go to step 10 

19: increment Il.match count 
19: Sort novel_image_list 
20: break from loop; 

Il similar 

21: if 10 dissimilar to all images in novel image_list 
22: novel_image_list. add (10) 
23: C [10] Compress 10 
24: go to step 1. 

Figure 4.1. Pseudocode for anomaly detection on edge images 

In Figure 4.2, the resulting edge image of a given intensity image is shown. The 

edge image is a binary image with the edges represented by white pixels. 

Figure 4.2. Examp1e of an intensity image and its corresponding edge image. 

In the following section, we will present the results of the test which we ran on 

the anomaly detection, on edge images acquired from the camera. Subsequently, we 
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will compare the results of the edge images to the intensity images. In particular, we 

will address the issue of the algorithm's sensitivity to illumination changes and how the 

edge images eliminate this issue. 

4.2 Results 

We ran the anomaly detector on our demonstration system over 5 days. After 

applying an edge detector, only a small portion of the image pixels become relevant, the 

remainder of the pixels is set to black. We can see from the example image, in Figure 

4.2, that the majority of the edge image is black, and thus, a higher level ofsimilarity is 

found between two edge images, and a larger threshold is required. We found that a 

threshold of 0.17 was a good threshold. In Figure 4.3, the highest similarity measure 

for each edge image was plotted. The spike which occurs near image 2.8x105
, is the 

result of the camera going temporarily omine. The algorithm detected and noted the 

anomaly, and then recovered. In real-world applications, we would expect the camera 

to occasionally go offline for any number of reasons, thus, it is imperative that the 

system can recover from such occurrences. After 8000 images, we can see from Figure 

4.3 that the band of similarity measures shift down. This shift is likely to be caused by 

the camera being moved. In chapter 5, we will address the issue of the algorithm's 

sens itivity to slight changes in the camera position. The occasional sharp dips again 

confrrm that novelty is rare. 

From Figure 4.4, we see that out of 567,840 images processed, 420 novel 

images were found. Though far more novel images were found after 5 days, in this 

case, than when the anomaly detector was applied to intensity images for 5 days (see 

Figure 3.8), we cannot use this as an indication that the algorithm fmd more novel 

images with edge images. Several factors affect the number of novel images found. 

Firstly, the threshold chosen affects the results. A threshold of 0.17 may have been 

more conservative than the threshold of 0.055 for the intensity images. Moreover, there 

may have simply been more activity in the corridor on the days where the anomaly 

detector was applied to the edge images. 

42 



Similarity Measure 
0.5.------,.------.------,,------~------~------_, 

0.45 

0.4 

0.35 
ID .... 
~ 0.3 

'" ID 

2: 
::-. 0.25 ...... • = 
'" 
E 0.2 

0.15 

0.1 

0.05 

O~------~------~------~------~~------~------~ o 2 3 4 5 
Image Number 

Figure 4.3. Highest similarity measure for each edge image. 

In Figure 4.5 and Figure 4.6, we present the plots of another test, where the 

anomaly detector was applied to the same set of images for both the intensity and the 

edge images. In this test, we see that there were more intensity than edge novel images 

found. Here, we see that the distinction between the highest similarity measure for 

similar and dissimilar images is much more c1early defmed for edge images than for 

intensity images. 
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Number of Novel Images vs Number of Images Processed 
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Figure 4.4. Number ofnovel images vs. number ofedge images processed over 5 days. 
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In chapter 3, we presented the issue of sensitivity to illumination changes. For 

the most part, applying an edge detector removed this sensitivity. In Figure 4.7, the 

example images from Figure 3.11 are shown after having an edge detector applied to 

them. It can be observed that most of the illumination information was removed during 

the edge detection process. Thus, when the two images were compared, a great deal of 

similarity was found between them, and the anomaly detector correctly deemed these 

two images as similar. Because of a measure of illumination, invariance was achieved 

with the edge images; the number of false positives due to illumination changes that 

occurred with the intensity images, did not occur here. 

Figure 4.7. Example images from Figure 3.11 c1assified correctly due to edge detection. 

Unfortunately, along with much of the extraneous information discarded with 

the edge detection, sorne of the details of each person is also discarded. Thus, edge 

images containing people with similar sizes and aspect ratios were deemed similar. 

Discarding aIl information between edges, removed sorne key identifiable features of 

the people in the images, such as skin tone. In chapter 5, we present an alternative to 

edge images. We still look to discard extraneous information; however, instead, we 

crop out only the regions of interest and discard the rest of the image. In video 

surveillance applications, the majority ofthe time the regions of interest are the portions 

of the image containing people. Thus, we apply a pers on detector on the images before 

inputting them to the anomaly detector. 
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After an edge detector is applied on an intensity image, the edge images remain 

as large as the original intensity images, which is approximately 102 KB. However, 

because so much of the information is lost in the edge detection process, and 

redundancies in edges are much higher, the edge detector achieved much higher 

compression ratios with the edge images. In fact, the edge images could be compressed 

to a range of 2.8-5.4 KB, with a mode and mean of 4 KB. In other words, the 

compressed edge images are roughly 80% smaller than the compressed intensity 

images. This improvement in compression ratio proves to be a significant reduction in 

the storage load. Although the rate of novelty decreases with time, even if we were to 

assume that it did not decrease, but rather stayed constant, then we would expect 

roughly 420 novel images every 5 days. Ifthat were the case, at 4 KB per stored image, 

before filling up a 20 GB hard disk, which is a standard hard disk size, the algorithm 

could potentially run for over 170 years! 

In order to test the speed ofthe algorithm with edge images, as with the intensity 

images, the anomaly detector was run again for 24 hours, where the only measure saved 

was the time to process each image. This time, 154,769 images were processed, which 

means that on average, each frame took approximately 0.558 seconds to process. 

Although, on average, the edge images took more time to process, and in 24 hours, 

fewer edge images were processed than intensity images, this is not an accurate gauge 

of computational speed. Firstly, with the edge images, more than double the novel 

images were found, and since the processing time of a novel image is longer and 

increases with the number of novel images found, it is to be expected that the edge 

images processed fewer images. In Figure 4.8, we observe that over 400 novel images 

were found during the 24 hours. We note that in Figure 3.12, after 170 novel intensity 

images, the anomaly detection algorithm required approximately 9 seconds to process 

an intensity image. In this case, after 170 novel edge images required only 5.1 seconds 

of processing time, which is roughly 44% less time than the processing time of the 

intensity images. A runtime profiler, gprof, was used to determine that 95% of the total 

time was spent applying the edge detector on images. In Figure 4.9, the worst-case time 
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ofnearly 12 seconds occurs near image 160,000. This time is actually 3 seconds longer 

than the 9 second time of the 160,000th intensity image from Figure 3.13. However, we 

note that if95% of the total time is spent in edge detection, then that means less than 0.5 

seconds are spent in the actual anomaly detection. In chapter 6, we suggest ways to 

improve the processing time of the edge detector. 
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CHAPTER 5 

ANOMALY DETECTION WITH PERSON DETECTION 

Although the edge images already filter out a lot of information, both the 

intensity images and the edge images, still contain a lot of extraneous information that is 

not pertinent in the determination of novelty. More specifically, based on the 

observation that the area of interest in the image occupies less than a quarter ofthe total 

image area, we wanted to fmd a way of extracting only the areas of interest. Moreover, 

both the intensity and edge images are sensitive to slight changes in camera positions. 

For example, if the camera were knocked slightly out of place, then in the case where 

the anomaly detector is applied to either the intensity or the edge images, similar images 

would be deemed dissimilar, and the system would experience somewhat of a reset. 

In this chapter, we present the person detector we applied to the acquired 

images. In section 5.2, we present the results of the tests which we ran on the 

demonstration system. Finally, we discuss these results in relation to the results from 

the tests which were run on the algorithm with intensity and edge images. 

5.1 The Nair and Clark Person Detector 

In our implementation, we adopt Nair and Clark's appearance-based person 

detector [1, 57]. In Figure 5.3, the basic structure of the person detection algorithm is 

shown. The input video frames are fed into the automatic labeler, which uses 

background subtraction to find the foreground pixels. In Figure 5.1, the resulting images 

from the background subtraction of the example images from Figure 1.4 are shown. 
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Figure 5.1. Background subtraction of example images .. 

The foreground pixels, which are the white pixels from the example images in 

Figure 5.1, are then grouped into what Nair describes as "blobs". The automatic labeler 

then labels the ''true'' label of these "blobs" as either "person" - if and only if the 

bounding box around it is the correct aspect ratio of a person, and at least the minimum 

size requirement. Otherwise, it is labeled a "non-person". After the automatic labeler 

labels the regions, the classifier performs the pers on detection by scanning a window of 

interest across the image. 

Figure 5.2. Scan window moving across image, classifier classifying each subimage as "person" or "non­
person" 

The algorithm computes the features within each subimage contained in the scan 

window, and if it matches the features aIready saved in the classifier, then it outputs a 

"predicted" label of "person". However, if the "true" label differs from the "predicted" 

label, then the labels and the computed classifier values are sent to the Winnow learning 

algorithm [49] which updates the classifier. If, after aIl the subimages are evaluated, the 
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"predicted" label was at any point labeled as "person", then the location of the person 

detected is output. 

... Peillon ...-_-Z.._--. .. Images 

Automatic 
Labeller 

Learned 
Classifier 

Online 
Learner 

(Winnow) '--___ ......... Non-Palllon 
... Images '-------' 

Figure 5.3. The basic structure of the Nair and Clark person detector. [1] 

Once the person detector detects a person, the location of this person, specified 

by a bounding box around the person detected, is output. The subimage contained in 

the bounding box is then cropped and scaled. It is important that the person images are 

aU scaled to an equal size in order to not skew the similarity measure. The size to which 

they are scaled is equaIly important. If they are scaled down, then sorne information is 

lost. Thus, it is more appropriate to scale aIl the images to the size of the largest person 

image. The dimensions of the images attained from the camera are 352x288 pixels. 

Thus, the maximum height the person image can be is 288. However, in order for the 

pers on image to exceed 200 pixels in height, the person would have to be over 7 feet taU 

thus, we chose the scale of 200xl18 pixels. In Figure 5.4 the block diagram of the 

system is shown from person detection to anomaly detection. 

____ ...... _""1I200X118 pixel Anomaly 
r-----~ Detection'f" Persoll .Ii--...... _--. Detection 

Output Image Anomaly Output Person 
Detection ==:> crop/scale ==:> Detection ==:> 

Figure 5.4. Block diagram of anomaly detector with person detection. 
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5.2 Results 

For the purpose of clarity, we will refer to the system which applies an anomaly 

detector to the output of the person detector as PDAD. The PDAD was ron over a 4 day 

period. During this time, over 3x105 images were acquired from the camera and 

processed. In Figure 5.5, the highest similarity measure for each person image is 

plotted. The threshold in this case was placed at 0.09. In Figure 5.6 the number of 

person images versus the total number of images processed by the pers on detector is 

plotted. We observe that only 121 persons were detected. In Figure 5.7 we note that of 

these 121 person images, only 51 novel images were found. 
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Figure 5.5. Highest similarity measure for each person image 
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Number of Person Images vs. Total Number of Images 
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Figure 5.6. Number ofPerson Images vs Number ofImages Processed 
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Figure 5.7. Number of Novel Images vs Total Number ofImages 
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There are many advantages to applying the person detector to the images before 

applying the anomaly detector, namely: location invariance and reduction in st orage 

resources. The anomaly detection algorithm is sensitive to changes in location with 

both the intensity and edge images. For example, in Figure 5.8 the two images, imgA 

and imgB, shown in a) and b) are presented again in c) and d) respectively but with the 

camera moved to the right. The similarity metric was applied on these images. In 

theory, imgA and imgA _ moved should have a large amount of similarity between them. 

Likewise, imgB and imgB _ moved should be deemed similar. However, in 

Table 5.1 we present the similarity measures of pairs of images. Given that the 

threshold for intensity images is 0.055, we note that the imgA and imgA_moved, has a 

similarity measure below the threshold, and thus, is considered dissimilar. Similarly, 

imgB and imgB _ moved are considered dissimilar. What is surprising is that imgA is 

more similar to imgB than it is to itself moved. 

imgA_moved imgB_moved imgA 

imgA 0.037572 0.037449 -

imgB 0.038105 0.038807 0.057810 

imgA_moved - 0.050081 -

Table 5.1. Similarity Measure for images from Figure 5.8. 

By applying a person detector on the images prior to applying the anomaly 

detector however, a level oflocation invariance is achieved. In Figure 5.9, the outputs 

of the person detector are shown. The people from the images in Figure 5.8 were 

detected, cropped, and scaled to equal sizes. The similarity measure between the pairs 

of images is shown in Table 5.2. For the pers on images, a threshold of 0.09 was used, 

and thus we note that aIl the images were correctly deemed similar regardless of the 

location and size of the person within the image. 
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imgA_moved imgB_moved imgA 

imgA 0.169971 0.132567 -

imgB 0.134277 0.138150 0.139931 

imgA_moved - 0.133806 -

Table 5.2 Similarity measure for images from Figure 5.9. 
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a) imgA 

b) imgB 

Figure 5.8. Figure from location invariance test. 

b) imgB d) imgB_moved 

Figure 5.9. Cropped people from location invariance test. 
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The accuracy of the anomaly detector is dependent on the accuracy of the pers on 

detector. There were two main types of false positives with the person detector, shown 

in Figure 5.10. Firstly, the bounding box around the person could appear slightly off­

center. The source ofthis error cornes from the fact that the scan window of the person 

detector scans at fixed positions, and it retums its location once a positive result is 

detected. Thus, in sorne cases, multiple boxes can be drawn for the same person, 

depending on the classifier, or just one box which is slightly off center. The second 

type of false positives is when "non-person" instances are incorrectly classified (image 

on the right). Our aigorithm adapts to these false positives by simply saving a copy of 

the "non-person" images and storing it so future false positives are not deemed nove!. 

In chapter 6, we suggest a method that will decrease the faise positive rate of the person 

detector. 

Figure 5.10. Examples off aise positives for the Nair and Clark person detector. 

As to be expected, applying a person detector on the images significantly 

reduces the size of the images that are input into the anomaly detector. As a result, the 

sizes of the images to be stored are smaller than the intensity images. From Figure 

5.11, we see that person images are 69.5 KB, which is 30% Iess than the size of an 

intensity image. Moreover, the person image compresses to 5-13 KB, with the majority 

of the compressed images being around 8 KB. Thus the compressed person images are 

roughly 60% smaller than the compressed intensity images. 
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Figure 5.11 futensity, edge and person image sizes. 
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In the PDAD system, the person detector algorithm is the one that caUs the 

anomaly detector algorithm. In Figure 5.12, the processing time for each novel image 

detected within a 24 hour time period is plotted. The 'total time' is the total time it took 

to apply the person detector on the images acquired from the camera in order to make 

the person images, and then to apply the anomaly detector on the people images to 

determine novelty. The "anomaly detection time" is the time it took to apply the 

anomaly detector on the person images. From the plot, we see that once again, the 

"anomaly detection time" increased steadily with the number of novel images detected. 

On the other hand, while initially, the "person detection time" was erratic due to 

learning, it stabilized after time, and with the exception of the occasional peak, stayed at 

approximately 0.5 seconds/frame. These peaks are the result of the "true" label 

differing from the "predicted" label and therefore requiring that the classifier be 

updated. In Figure 5.13, we note that the time to pro cess the person images is 

comparable to the time to process the intensity images. This closeness in processing 

times can be attributed to the fact that the portions which are cropped out are the 

portions containing the majority of the information of the image. Thus, in terms of 

computational resources, the edge images fared the best. 
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Figure 5.12. Processing time for each nove1 person image 
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Figure 5.13. Time to process intensity, edge and person images. 

In Chapter 6, further limitations of the system will be presented, as well as 

possible improvements to the system that could overcome the system's present 

shortcomings. Moreover, sorne future applications for this work will be summarized. 
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CHAPTER6 

CONCLUSION 

In this thesis we have described our anomaly detection algorithm. We applied 

the anomaly detection on intensity, edge, and person images. In the next section, we 

will present sorne limitations of the algorithm and possible ways of improving it. 

Finally, we will summarize the results presented in the previous chapters and suggest 

sorne possible future applications for our compression-based anomaly detector. 

6.1 Ove rail Limitations and Possible Improvements 

In ehapter 4 we discussed that it could potentially take over 170 years to fill up a 

20 GB hard disk with compressed edge images. Although storage does not seem to be 

an issue, by reducing the number of novel images stored, we eould potentially speed up 

the algorithm - since the time to proeess a novel image is directly proportional to the 

number of novel images. Thus, one possible improvement would be to limit the number 

of novel images stored. For example, a list of only the 500 most frequently matched 

novel images could be maintained. In this way, the processing time of a novel image 

has a ceiling time that it cannot exceed. 

In addition to placing a cap on the worst-case processing time, it is also desirable 

to simply reduce the processing time of the novel-images, since even at 500 novel 

images, it would take 26 seconds to pro cess an intensity image. Hardware 

implementation of certain tasks is one possible way of improving the processing time. 

For example, in chapter 4, we noticed that the task of edge detection took up over 95% 

of the total ron time. Integrating a dedicated hardware implementation of edge 

detection would remove the onus of edge deteetion from the processor running the 

anomaly detector, which will free it up to foeus on the task of anomaly detection. In 

addition, hardware implementations can be used for compressing and decompressing 
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the files, which could potentially also free up the processor. A camera with a higher 

resolution and a faster frame rate would also speed up the algorithm. 

Given that the frames are processed one at a time, and the algorithm waits for 

one frame to be fmished processing before acquiring a new image from the camera, a 

slow processing time for the novel images bottlenecks the process. One possible 

solution would be to implement a parallel pro cess - where one process continues to 

acquire images from the camera, while the other process determines novelty. In this 

way, the gap between the times successive frames are acquired is not too wide. The 

parallel pro cess could also be implemented in such a way, so that if one pro cess was 

tied down checking the novelty of a novel image, the other could continue detecting for 

anomalies. With the person images, the algorithm could also benefit from parallel 

processmg. Since the outcome of the person detector does not rely on the output of the 

anomaly detector, and the processing time of the person detector is much faster of the 

processing time of the anomaly detection portion, the two algorithms could fUn in 

parallel. 

Another drawback of our implementation is the need to manually set the 

threshold level. Implementing an adaptive threshold method could greatly benefit the 

algorithm. The training time would be minimized, since regardless of the threshold 

chosen initially, the algorithm would adjust it until it was correct. Moreover, it would 

solve the issue of illumination sensitivity with the intensity images. 

In [1], Ahmedali presented a multi-camera collaboration for person detection. In 

his approach, he used the information gathered from multiple cameras to reduce the 

false positive rates seen in Nair and Clark's system. A more accurate person detector 

would lead to an improvement in accuracy and speed of our algorithm, since false 

positives increase the number of comparisons. 
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6.2 Future Applications and Conclusion 

We have presented a method for anomaly detection for video surveillance 

applications. In our approach, we used a compression-based similarity measure which 

compared the compression sizes oftwo images for the purpose of determining the level 

of similarity between them. Input images dissimilar from all the previously-stored 

images, were considered novel, and these images were then stored for comparison to 

future incoming images. In our attempt to make a reliable real-world application, we 

focused on the issues of st orage and computational resources, in addition to accuracy, 

low-cost, adaptability, and scalability. The compression-based method inherently led to 

reductions in storage loads. In order to improve the speed and sensitivity of the 

algorithm, we applied the anomaly detector to two image features, edges and people. 

An edge detector was applied on an input images. The edge detector was faster and 

required less storage space than the intensity images. However, it also discarded much 

information about the regions of interest, namely, the persons in the images. Thus, we 

looked at the effects of applying a pers on detector to the images, which focused only on 

these regions of interest. By homing in on only these regions of interest, the person 

detector effectively increased the level of accuracy by removing a lot of the algorithm's 

sensitivity to location. However, because regions of interest contained most of the 

image' s pertinent information, and because the person detection process was an extra 

step required, then the overall processing time of a novel image was not improved from 

the processing time of a novel intensity image. Thus, in the previous section, we 

suggested ways in which the speed ofthis algorithm could be improved. 

As shown in this thesis, the compression-based anomaly detection algorithm 

was an effective method of determining novelty in three types of images: intensity, 

edges, and persons. This approach can also be extended to face images. While with 

person images, much of the extraneous information is already discarded, they still 

contain varying information which can skew the results of the anomaly detector. 

Clothing changes from day to day and season to season. In fact, winter apparel can 
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even change the aspect ratio of the person, as people tend to wear thicker clothes and 

extra layers. Moreover, people are often not walking empty-handed, and the objects 

which they are holding can also lead to variations which can skew results. The head has 

four degrees of freedom within the neck. Thus, the face, in relation to the body also 

affects the result. Faces also have numerous variations, such as beards, glasses, and 

facial expressions; however, by eliminating the rest of the body from the image, much 

of the variance is eliminated. In addition, with multi-camera collaborations, the viewing 

angle of the camera is less important, as the face can be captured from multiple angles, 

and the image with the best face image can be output to the anomaly detector. In other 

words, no matter which way the head is turned, with a multi-camera system, the best 

viewing angle for the face image can be captured. Thus, Ahmedali's multi-camera 

person detector [1] could be adapted to output the portions of the images containing 

faces rather than people. 

One interesting potential application for our anomaly detection algorithm, is re­

run detection for digital video recorders (DVR), such as TiVo [39]. A DVR is a device 

which allows a user to record television programs to its internaI hard disk for future 

viewing. By storing the fIfSt few frames of an the shows viewed by the user, the DVR 

could use our anomaly detector to compare the frames of programs scheduled for 

recording, and only record the shows the user has not already watched. 
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