
COMPRESSION-BASED ANOMAL Y DETECTION

FOR VIDEO SURVEILLANCE APPLICATIONS

CarmenE. Au

Department ofElectrical and Computer Engineering

McGill University, Montréal

February 2006

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Engineering

© Carmen E. Au, 2006

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24936-9
Our file Notre référence
ISBN: 978-0-494-24936-9

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

In light of increased demands for security, we propose a unique approach to

automated video surveillance using anomaly detection. The success of this approach is

dependent on the ability of the system to ascertain the novelty ofa given image acquired

by a video camera. We adopt a compression-based similarity measure to determine

similarity between images in a video sequence. Images that are sufficiently similar to

the previously-seen images are discarded; conversely, images that are sufficiently

dissimilar are stored for comparison with future incoming images.

The use of a compression-based technique inherently reduces the heavy

computational and storage demands that other video surveillance applications typically

have placed on the system. In order to further reduce the computational and storage

load, the anomaly detection algorithm is applied to edges and people, which are image

features that have been extracted from the images acquired by the camera.

Résumé

Afin de satisfaire la demande croissante en matière de sécurité, nous proposons

une approche unique de surveillance visuelle automatisée basée sur la détection

d'anomalies. Le succès de cette approche repose sur la capacité du système de détecter

une nouveauté dans une image donnée, acquise par caméra vidéo. Une méthode de

mesure de similitude, basée sur la compression, est utilisée pour déterminer la similarité

entre des images acquises lors d'une séquence vidéo. Les images qui sont suffisamment

semblables aux images précédemment observées sont rejetées. Contrairement, les

images qui sont suffisamment différentes sont sauvegardées pour être comparées aux

images qui seront prochainement acquises.

L'utilisation d'une technique basée sur la compression réduit les charges de

calcul et de mémoire, généralement requise par d'autres applications de surveillance

visuelle. Dans le but d'optimiser la réduction de ces charges, l'algorithme de détection

d'anomalies est appliqué sur deux charactéristiques des images acquises: les bords et les

personnes.

ii

Acknowledgements

First and foremost, 1 would like to express my sincerest gratitude to Prof James

J. Clark. He has guided and supported me throughout my graduate studies. Above aIl,

he has always treated me with kindness and respect. My time spent under his mentoring

has truly been enriching.

Danny Chouinard, Jan Binder, MarIene Grey, and Cynthia Davidson have been

incredibly supportive. They, together with aIl the members of CIM, prof essors, students

and staff alike, have made my graduate studies wonderfully enjoyable.

The Visual Motors Research Lab has been a great working environment. Sandra

Skaff has always been generous with her time and support, and Trevor Ahmedali was

the best officemate 1 could ask for. 1 have leamed a lot from both ofthem.

Many thanks belong to my army of support, Franco P., Sadok A., Usman K.,

Zahra A. and the rest of the "boys upstairs", for bolstering my confidence and keeping

me laughing. And special heartfelt thanks to PKC and the Ho Family for feeding me,

and my hilarious godbrothers for reminding me how to laugh at myself.

1 would also like to thank Elijah for sticking by me. His constant belief in me

sustained me during these past 2 years. 1 will forever be grateful to him.

FinaIly, 1 would like to thank my family, who mean everything to me. My

parents' and sister's continuai love and pride in me are more precious to me than any

accolade. 1 love themall dearly. 1 could not have imagined or prayed for a better

family.

iii

Table of Contents

Abstract ... i

Résumé ... il

Acknowledgements ... üi

List of Figures ... vi

Glossary ... ix

CHAPTER 1 Introduction ... 1

1.1 Automated Video Surveillance Using Anomaly Detection 2

1.2 Our Demonstration system .. 3

1.3 Our Approach ... 5

1.4 Thesis Overview ... 7

CHAPTER 2 Background ... 9

2.1 Video Surveillance Methods .. 9

2.1.1 Object (person) Detection: .. 9

2.1.2 Object Tracking 10

2.1.3 MovementlActivity Classification ... 11

2.2 Edge Detection Methods .. 11

2.3 Compression Methods .. 14

2.3.1 Entropy coding ... 15

2.3.2 Ziv-Lempel algorithms ... 19

2.3.3 JPEG compression ... 19

2.3.4 Other universal compression algorithms 20

CHAPTER 3 Anomaly Detection on Intensity Images .. 22

iv

3.1 bzip2 compression scheme ... 23

3.1.1 The Burrows-Wheeler Transform ... 23

3.1.2 Move-To-Front coding ... 25

3.1.3 Huffman coding ... 25

3.2 Our Anomaly Detection Algorithm ... 28

3.3 Results ... 30

CHAPTER 4 Anomaly Detection on Edge Images .. 40

4.1 Integrating the Canny Edge Detector .. 40

4.2 Results ... 42

CHAPTER 5 Anomaly Detection with Person Detection .. 50

5.1 The Nair and Clark Person Detector ... 50

5.2 Results ... 53

CHAPTER 6 Conclusion .. 62

6.1 Overall Limitations and Possible Improvements ... 62

6.2 Future Applications and Conclusion ... 64

References ... 66

v

List of Figures

Figure 1.1. Axis 200+ netcam .. 3

Figure 1.2. Corridor being monitored with our video surveillance system. 4

Figure 1.3. Block diagram for anomaly detection using similarity measure 6

Figure 1.4 Example images acquired from our demonstration system 7

Figure 1.5. Edge images ofthe example images from Figure 1.4 .. 7

Figure 1.6. Person detection applied to example images from Figure 1.4 7

Figure 2.1. Step edge with first and second order derivative .. 12

Figure 2.2. Canny edge detector algorithm ... 14

Figure 2.3. Block diagram for arithmetic coding .. 16

Figure 2.4. Table of probabilities and ranges ... 16

Figure 2.5. Arithmetic coding algorithm .. 17

Figure 2.6. Arithmetic coding for "abracadabra" ... 17

Figure 2.7. Huffman coding for "abracadabra" .. 18

Figure 2.8. Block diagram for JPEG compression techniques .. 20

Figure 3.1: BWT applied to "wheelerwheeler" .. 24

Figure 3.2. MTF for "wheelerwheeler" with 14 byte block-size 25

Figure 3.3. Huffman coding for "whee1erwheeler" with 14 byte block-size 26

Figure 3.4. BWT for "wheelerwheeler" with 9-byte block-size .. 27

Figure 3.5 Pseudocode for anomaly detection algorithm .. 29

Figure 3.6. Highest similarity measure for each intensity image processed over 2 days 31

Figure 3.7. Highest similarity measure for each intensity image processed over 1 day 32

vi

Figure 3.8. Number of novel images vs. number of intensity images processed over 6 weeks ... 34

Figure 3.9. Number ofnovel images vs. number ofintensity images processed over 1 day 35

Figure 3.10. Examples of similar (top) and dissimilar (bottom) image classification 36

Figure 3.11. Example of a false positive: two similar images classified as dissimilar 37

Figure 3.12. Processing time for each novel intensity image .. 39

Figure 3.13. Processing time for each novel image vs. total number of images processed 39

Figure 4.1. Pseudocode for anomaly detection on edge images41

Figure 4.2. Example of an intensity image and its corresponding edge image41

Figure 4.3. Highest similarity measure for each edge image .. .43

Figure 4.4. Number of novel images vs. number of edge images processed over 5 days44

Figure 4.5. Number of Novel Intensity and Edge images vs Number ofImages Processed45

Figure 4.6. Highest similarity measure for intensity and edge images45

Figure 4.7. Example images from Figure 3.11 classified correctIy due to edge detection46

Figure 4.8. Processing time for each nove1 edge image49

Figure 4.9. Processing time for each novel image vs. total number of images processed49

Figure 5.1. Background subtraction of example images .. 51

Figure 5.2. Scan window moving across image, classifier classifying each subimage as "person"
or "non-person" .. 51

Figure 5.3. The basic structure of the Nair and Clark person detector. [1] 52

Figure 5.4. Block diagram of anomaly detector with person detection 52

Figure 5.5. Highest similarity measure for each person image .. 53

Figure 5.6. Number ofPerson Images vs Number ofImages Processed 54

Figure 5.7. Number of Novel Images vs Total Number ofImages .. 54

Figure 5.8. Figure from location invariance test. .. 57

Figure 5.9. Cropped people from location invariance test. ... 57

Figure 5.10. Examples of false positives for the Nair and Clark person detector. 58

vii

Figure 5.11 Intensity, edge and person image sizes .. 59

Figure 5.12. Processing time for each novel person image ... 60

Figure 5.13. Time to process intensity, edge and person images ... 61

viii

Glossary

BWT

CGI

CPU

DMC

DVR

FSM

GDMC

GIF

HTTP

JPEG

LZ

PDAD

PPM

TIFF

URL

VSAM

Burrows-Wheeler Transform

Common Gateway Interface

Central Processing Unit

Dynamic Markov coding

Digital Video Recorder

Finite-state machine

Generalized dynamic Markov coding

Graphies Interface Formats

Hypertext Transfer Proto col

Joint Photographie Expert Group

Ziv-Lempel Compression Algorithms

Person detector with anomaly detection algorithm

Partial matching algorithm

Tagged Image File Format

Uniform Resource Locator

V ideo Surveillance and Monitoring

ix

CHAPTER 1

INTRODUCTION

The heightened need for security has increased the desire for fast, reliable, and

low-cost video surveillance. The objective ofvideo surveillance is to monitor an indoor

and/or outdoor environment; as well, to report any information about relevant and often

suspicious activity. Present surveillance systems consist of aptly placed cameras that

capture the activity of a given scene, and television screens that display the video

streams acquired by the camera. Security guards watch the te1evision screens to

determine if there is any activity that warrants a response. Given that these events

rarely occur, more often than not, it is the security guard who stares into a field of

monotonous scenes; vigilance is thus very difficult to maintain. In a slecurity system,

where vigilance is of utmost importance, the burden of detecting these anomalous

events cannot be left upon the security guard. Therefore, the goal of this work is to

remove the onus of detecting these anomalous events from the guard, and to place it on

the surveillance system.

In order to detect one of these events, the surveillance system must have the

ability to differentiate between regular, routine, and novel events. Lïk:e the security

guard, giving the surveillance system that ability is not a trivial task. The question we

are essentially posing the system is, "has this event been seen before"?

Anomaly detection is the process where a base1ine model of behaviour or

activity is established, and any deviation from this baseline triggers an alert. In

computer security applications, the computer system itself is monitored for deviating

behaviour [19, 45, 52, 71, 75, 80, 88]. In health-related applications, anomaly detection

is used to detect disease outbreaks [20, 79, 83-85]. In video surveillance, the activity

within a given environment is monitored for deviations.

1

1.1 Automated Video Surveillance Using Anomaly Detection

Our primary objective is to build an automated video surveillance system

capable of anomaly detection. The anomaly detection should be performed by the

system itself without any user input. In addition to this objective, there are certain

criteria desirable in a surveillance system which we used as a guideline:

1) Real-time processing: The system should be able to detect for anomalies in

real-time, or as close to real-time as possible.

2) Minimize the computationalload on the system: The effectiveness of the

surveillance system is highly incumbent on the speed of the algorithm, thus,

the computationalload on the system should be minimized.

3) Adaptability: The baseline of normal behaviour in the envilronment being

monitored should be adaptable to the changes often seen in the real-world.

For example, clothing changes from season to season and even from day to

day. Moreover, someone new should be able to be added to the system

without need for retraining. This last point is in congruence with the next

criterion.

4) Online training: The system should have very little to no manual training.

Manually training the system is tedious and time-consuming, and as a real

world application, this would be inefficient. Moreover, as aforementioned,

should there be new people or new activity that need to be introduced to the

baseline, online training would enable the system to integrate the new

information with the database without stopping the system.

5) Minimize the storage load on the system: Because the system requires a

store of past knowledge to determine the level of novelty of each image, a

large database will be required. In order to meet with the other requirement

of adaptability, this database must continue to grow, and in real-world

2

applications, storage space will become a concern. Thus, one criterion will

be to minimize the amount of storage needed.

6) Scalability: Since many surveillance systems use a network of cameras to

monitor multiple sites or a single site from different views, the system

should be able to introduce new cameras into the network with ease.

1.2 Our Demonstration system

For our demonstration system, we use a net cam, the Axis 200+, shown in Figure

1.2, to monitor the corridor in McGill University's Centre for Intelligent Machines. A

netcam is a video camera where the latest image acquired can be downloaded from the

World Wide Web. Our netcam has a built-in Hypertext Transfer Protocol (HTTP)

server where the images downloaded from the Internet are in Joint Photographie Expert

Group (JPEG) format.

Figure 1.1. Axis 200+ netcam

The camera server takes a snapshot every time an ht tp caU is made. The

uniform resource locator (URL) is in the following format:

http://<IP Address>/<snapshot type>. jpg? [<pararneter>=<value> ...]

3

Figure 1.2. Corridor being monitored with our video surveillance system.

The snapshot type and the common gateway interface (CGI) parameters can be

specified. From the three snapshot types listed in Table 1.1, we see that there is an

obvious tradeoff between size and time. While the largest image size would capture

more details for the anomaly detection, at a rate of 18 seconds/frame, the acquisition

time is far too long for a real-world surveillance system. The halfsize option, on the

other hand, has the best rate of acquisition; however, it would be at the expense of

image quality. Thus, we chose the fullsize image, which acquires images at 0.5

seconds/frame. Unfortunately, this rate implies that the surveillance system is limited

by that rate of acquisition, thus regardless of the speed of the algorithm, the maximum

processing rate is roughly 2 frames/second.

fullsize.jpg 352x288 0.5 seconds/snapshot

halfsize.jpg 176x144 0.3 seconds/snapshot

hugesize.jpg 704x576 18 seconds/snapshot

Table 1.1 Three main snapshot types available for the Axis 200+ netcam.

4

The CGI parameters available for adjusting are listed in Table 1.2 with the

values to which we set our demonstration camera in boldo The compression parameter

specifies the quality of the image. Again, we have a tradeoff between quality and

speed. Thus, we chose a "medium" compression, which is the default camera setting.

compressIon [medium 1 high Ilow]

color [normal 1 none]

mlITor [on 1 off]

clock [show 1 hide]

rotation [normal 1 upsidedown 1 90deg 1 270deg]

Table 1.2 Sorne COI pararneters and values for the Axis 200+ netcam.

One major benefit of using a netcam is that adding cameras to the surveillance

system is done by simply connecting the additional cameras to the Internet. The system

can thus be distributed over several cameras that communicate over the Internet.

Moreover, the physical distance between the cameras and the computer, which

pro cesses the images, can be as large as the farthest distance between any two points on

the network [58]. Finally, netcams are low-cost and easy to use.

1.3 Our Approach

Our video surveillance system applies a compression-based anomaly detection

algorithm based on the technique described by Bennett et al. [5] to classify chain letters.

They devised a similarity measure stemming from the notion that the compression of a

data file pro vides a good measure of its information content. A compression algorithm

5

seeks to remove all redundancies within a data file in order to save storage space on the

hard disk. When two files are compressed together, if the two files have no

redundancies between them, then the compression of the joint files will be as big as the

sum of the compression of the two individual files. However, if the two files contain

redundancies, then the compression of the joint files will be smaller than the sum of the

compression of the two individual files. Finally, with an ideal compressor, if the two

files are identical, then the compression of the joint files will be as big as the size of the

compression of one instance of the file. Thus, the size of the joint compressed files

compared to the size of the individual compressed files combined, is a good measure of

the files' similarity.

c::::::>
(1 image)

c::::::>
(1 image)

Check
for

Similarity

Figure 1.3. Block diagram for anomaly detection using similarity measure.

Anomaly detection is achieved by comparing aIl images acquired from the

surveillance system, and comparing them to a database of stored images. In Figure 1.4,

examples of intensity images ofthe scene under surveillance are shown. We fIfSt apply

the anomaly detection algorithm on the intensity images. Subsequently, we apply the

algorithm to various features of the images, namely: edges and persons. Edge detection

is the process, whereby, only the boundaries of the discontinuities that exist in image

intensity are preserved, and the rest of the image is discarded. Figure 1.5 shows the

example images from Figure 1.4 after an edge detector has been applied.

6

Figure 1.4 Example images acquired from our demonstration system.

Figure 1.5. Edge images ofthe example images from Figure 1.4.

Since, for the most part, video surveillance involves monitoring the activity of

people, a person detector is [lfSt applied to the sequence of images. In computer vision,

a person detector detects the number and location of persons, if any, in a given scene.

Their location is generally specified by drawing the smallest rectangular bounding box

that encompasses the person(s). The people detected from the intensity images in

Figure 1.4 are shown in Figure 1.6. It is the se bounding boxes that are input into the

anomaly detector.

Figure 1.6. Person detection applied to example images from Figure 1.4.

1.4 Thesis Overview

This thesis describes the anomaly detection algorithm we have developed for the

purpose of video surveillance. Chapter 2 begins by summarizing the main classes of

video surveillance techniques, including the person detector we implemented. The

7

different edge detection methods are then presented, followed by an explanation as to

why we chose the particular edge detector that we implemented. FinaIly, a brief

overview of different compression techniques is presented.

In chapter 3, the compression technique we employed, as weIl as the anomaly

detector that we implemented are explained in greater detail. We then present the

results of sorne tests that we ran on intensity images, which were acquired from our

demonstration system described in section 1.2. The focus of these tests was to

determine how c10sely our algorithm adhered to the criteria of a surveillance system

presented in chapter 1.

While our approach is successful in detecting anomalous intensity images, there

were certain shortcomings; namely, the algorithm was sensitive to illumination and

location changes. Thus, in chapter 4 and 5, we present the work that we did on applying

edge detection and person detection to the images respectively, in order to extract

features that would help overcome the limitations of the anomaly detector.

8

CHAPTER2

BACKGROUND

2.1 Video Surveillance Methods

Extensive research has been dedicated to developing video surveillance

techniques. Of the plethora of existing techniques, the main techniques can be divided

into three main tasks: object detection, object/region tracking, and activity/movement

classification, defined in Table 2.1. Many of the video surveillance methods perform at

least one of these tasks.

Object Detection

Object Tracking

Movement/ Activity
Classification

The location and often orientation of objects
of interest in a given scene are specified.

Objects of interest in a given scene are
detected and pursued during subsequent
frames . motion information.
Motion or the statistical sequences of
movements of objects of interest are
classified.

Table 2.1. Three main video surveillance tasks.

2.1.1 Object (person) Detection:
Object detection is the task of finding a specified object, if it exists, in a given

scene. For most surveillance systems, people are the target category of interest. In any

given scene, there could be zero, one or many persons. Person detection can be divided

into three main classes: model-based detection, motion-based detection and appearance

based detection. Model-based methods [25, 26, 44] find a pers on in an image using a

parts-based person model to detect body parts which are then assembled into a full

9

person. The benefit of this technique lies in the non-rigidity of the model; the persons

detected are not limited to one pose.

Because people are constantly moving, motion-based methods [22, 33, 72, 86]

use this movement as their primary source of information to detect for people. One

popular approach is the use of background subtraction, where a background model is

computed, and aIl subsequent images are compared against the background mode!. The

pixels which differ from the background model, by a predefined threshold, are

considered foreground, or people.

Appearance-based methods [27, 60, 61, 77] uses a two-class classifier to

distinguish cropped images of people from aIl other types ofimages. These methods do

not require a priori information about the human body's structure, but rather learn from

examples.

In our approach, we apply a person detector to the images before applying the

anomaly detector. A method that was consistent with the criteria which we set in

chapter 1 was needed. One such method was Nair and Clark's appearance-based person

detector [57, 58]. Their pers on detector employs a classifier that is learned online.

Training examples acquired directly from the camera are automatically labeled, and

these examples are used to train the classifier. Thus, the learning can be performed in

parallel with the detection, and the classifier is adapted over time. The Nair and Clark

person detector overcomes the limitations of manual labeling and offline training

present in other object/person detection with learned classifiers [60, 76, 77]. For this

reason, we chose to adopt their person detector for our anomaly detection scheme.

2.1.2 Object Tracking
Tracking techniques can he divided into two categories oftracking: recognition-

hased trac king [28, 50, 87] and motion-hased tracking [3, 7, 41, 55]. In recognition

based tracking, regions in a given scene that match a pre-defined object mode1 are

identified as objects of interest; these objects are then pursued. The main advantage of

10

this approach is that object tracking can be achieved in three dimensions, and the

objects ofinterest's rotation and translation can be estimated. The main disadvantage is

that a priori knowledge of the object model is required before tracking can be

performed. Motion-based tracking eliminates the need for the object model, by using

motion parameters to detect for objects. In this case, regardless of shape or size, the

objects can be tracked.

There is a fair amount of overlap between the work done on object detection and

that done on object tracking. For example, in [33], Haritaoglu et a.l proposed the vi'
system which detects, then tracks human heads, torsos, arms and legs of upright people

in real-time. In fact, the task of object tracking implies that object detection must [IfSt

occur.

2.1.3 MovementiActivity Classification
Movement or activity classification is the process of classifying and recognizing

observed motion or the statistical pattern of the observed motion. The VIEWS system,

developed by Corrall, attempts to describe activity in a scene using a model-based

approach [17]. The system required a large amount of a priori knowledge of the

camera models, ground plane representation, 3-D object models, and behavior models

[21]. VIEWS is one of the earliest attempts at activity classification. From this system,

the PASSWORD system was spawned, which is essentially a low cost parallel digital

signal processor version of VIEWS [6, 14]. Later work on movement or activity

classification, include the Video Surveillance and Monitoring (VS AM) systems created

by Carnegie Mellon University [42], MIT [40] and Texas Instruments [24]. Grimson et

al. also developed a system that achieves object and activity classification at a low level

[31].

2.2 Edge Detection Methods

Edges in images represent the discontinuities in the image intensity due to the

changes in structure. These discontinuities in image properties usually reflect important

11

events and changes in world properties. In computer vision, the purpose of edge

detection is to filter out a significant portion of the image, while preserving the

structural properties within it. These properties include the photometrical, geometrical,

and physical characteristics of objects which vary, in order to give the different grey

levels in images.

The main types of edges are step edges, line edges [2, 13, 30, 67, 70], and

junctions [46, 54, 59, 65]. Line edges are the local extrema of the grey level image.

They are use fuI in detecting roads and rivers in images. Junctions are regions in the

image where two edges meet, and are helpful in solving the correspondence problems in

computer vision. The edges that we are concemed with in this thesis are step edges,

which are step discontinuities within the image. In Figure 2.1 an ideal step edge with its

fIfst and second derivative is shown.

Edge

-4 -2 o 2 4

First

Â Derivative

-4 -2 0 2 4

Second

1 ,::Y Derivative

1 1

-4 -2 0 2 4

Figure 2.1. Step edge with first and second order derivative.

12

Based on the notion that edges occur at discontinuities in luminance in the

image, by taking the derivative of the intensity values across the image, the edges will

be at the point where the derivatives are maximum or minimum. Two types of edge

detectors were developed from this idea: the gradient method, which takes the first

derivative ofthe image, and the Laplacian method which takes the second derivative.

The gradient method detects edges by finding the maximum or minimum in the

derivative of the intensity values across the image. In this method, the intensity image

is convolved with a 3x3 mask, in order to approximate the flfst-order partial derivatives.

In order to detect both the horizontal and vertical edge component, the images are, in

fact, convolved with a mask along the rows and along the columns. The masks for the

Sobel [38, 43] and Prewitt [62] step edge detectors are:

[

-1 0 1 J
~x = -a 0 a

-1 0 1

-a

o
a

where ais 2 for Sobel and 1 for Prewitt edge detectors.

The Laplacian method finds zero crossings in the second derivative of the image

in order to locate the edges. A common mask for Laplacian edge detectors is:

[
0 1 0J

\7= 1 -4 1

010

The performance of these detectors deteriorates as the nOIse in the images

increase. Rosenfeld and Thurston [66] introduced the concept of smoothing to reduce

the noise in the image. In smoothing, a pixel intensity value is replaced by the average

of the neighbouring pixels. While the smoothing process reduces the amount of noise

in the image, it also causes a loss of information. Thus, many attempts have been made

to design an edge detector which balances this tradeoff [53, 68].

13

of:

The Canny edge detector [12] is a popular edge detector with the three-fold goal

1. Maximizing the signal to noise ratio for better edge detection

2. Achieving good localization to accurately mark edges, and

3. Minimizing the number ofresponses to a single edge. In other words, non

edges are not marked.

Because of it these characteristics, the Canny edge detector was thus selected, in

this thesis, as the edge detector applied to the images before anomaly detection. In

Figure 2.2, a brief outline of the Canny edge detector is listed. The way in which the

edge detector is integrated with our algorithm, is explained in chapter 3.

1: Smooth the image with a Gaussian filter
2: Compute the gradient magnitude and orientation
3: Apply nonmaxima suppression
~: Use double thresholding to detect and link edges

Figure 2.2. Canny edge detector algorithm.

2.3 Compression Methods

Data compression reduces the size of a file, which can lead to a reduction in

computing resources, transmission time, or storage resources. Compression techniques

can be reduced to two main types: lossy and lossless. In lossy type compression

schemes, the original file cannot be reproduced from the compressed file. On the other

hand, with lossless methods, no information is lost during the compression process and

the original can be reproduced.

Modem compression can be split into two stages: modeling and coding. In the

mode1ing stage, the similarities and regularities within the sequence to be compressed

are found. In the coding stage, these redundancies are eliminated. While sorne older

compression methods, such as the Ziv-Lempel algorithms [89, 90], are not split into the

14

two stages, for the most part, the two stage approach is the modern paradigm of

compression. In the next section, we will present the two main coding methods which

many of the compression algorithms use. In Section 2.3.2, we will discuss the c1assic

Ziv-Lempel algorithm, and subsequently, will present the more recent approaches to

compressIon.

2.3.1 Entropy coding
The second stage of compression, the coding stage, is where compression

actually takes place. In entropy coding, sequences are compressed based on a

probability distribution of occurrences of the alphabet symbols, which is determined in

the modeling stage. Based on the probability of a given character appearing in the

sequence, the character is assigned a code - whose length is proportional to the negative

logarithm of that probability. In other words, each character is assigned a code of

length:

IOgU}-IOg(P')

where Pi is the probability of occurrence of the character. Thus, the characters with the

highest probability of being in the sequence, the most common characters, use the

shortest codes. Two main entropy encoding algorithms are the arithmetic and Huffman

coding.

2.3.1.1 Arithmetic coding

Arithmetic coding [36, 47, 63, 64] is a form of entropy encoding which codes

the entire input message into a single number that ranges from 0.1 to 1.0. The algorithm

begins by computing the frequency of each character in an input sequence. Based on

the characters' frequency, a probability table is created and a range between 0 and 1 is

assigned to each input character. The range consists of a low value and a high value.

The order of assigning these ranges is not important; however, both the encoder and

decoder must follow the same order. And thus, the more frequent the characters, the

15

wider the range assigned to it. Once each instance of each character in the sequence is

assigned a range, the encoding can begin.

The encoding begins with a range between 0.0 and 1.0. The fIfst character in the

input sequence constrains the output number with its corresponding range. The range of

the next character will then further constrain the output. The output continues to be

constrained as each character in the input sequence is processed. The greater the

number of input characters in the sequence, the more precise the output number will be.

TABLE OF
"ABRACADABRA" --+ PROBABILITIES --+

AND RANGES
CODING --+ OUTPUT NUMBER

Figure 2.3. Block diagram for arithmetic coding.

In Figure 2.3, the string "abracadabra" is input to the coding algorithm. The

arithmetic encoder has two main steps: building the table of probabilities and ranges,

and coding. In Figure 2.4, the probability of each character in "abracadabra" is

determined and assigned the appropriate range. The range of each character has a low

and high value, which we will refer to as CHAR_LOW and CHAR_HIGH respectively.

PROBABILITY

A 1
5
1 = 0.45455

B 1; = 0.18182

C 1\ = 0.09091
D 111 = 0.09091

R 1; = 0.18182

CHARACTER RANGE
[0,0.45455)

[0.45455,0.63636)

[0.63636,0.72727)

[0.72727,0.81818)

[0.81818, 1)

Figure 2.4. Table ofprobabilities and ranges.

16

With this table, the co ding can begin. The encoding follows the brief algorithm

listing in Figure 2.5, to encode the characters from "abracadabra" to

0.278791 748370412, which is the final LOW value listed in Figure 2.6. Since there

are 15 digits after the decimal place, if on average it takes log2(10) ::::: 3.32 bits to

represent one digit, then it takes roughly 50 bits to represent aIl 15 digits. The final

encoding of the string is a single number between 0.1 and 1.0. Having a single number

to encode the string realizes a better compression size than other entropy encoders

which make a codeword for each character. However, one disadvantage is that in

arithmetic coding, the entire input sequence is needed before the coding can begin, and

a single corrupt bit could potentially corrupt the entire codeword.

A
B
R
A
C
A
D
A
B
R
A

LOW = 0
HIGH = 1

while(not the end of input sequence)
{

CHAR = next character in sequence
RANGE = HIGH - LOW
CHAR_LOW = low value of range assigned to CHAR
CHAR_HIGH = high value of range assigned to CHAR
LOW = LOW + RANGE * CHAR_LOW
HIGH = LOW + RANGE * CHAR_HIGH

}

Code = LOW

Figure 2.5. Arithmetic coding algorithm

RANGE LOW HIGH
0 1

1.000000000000000000000 0.000000000000000 0.454550000000000
0.454550000000000000000 0.206615702500000 0.289259090909091
0.082643388409090900000 0.274233020289256 0.289259090909091
0.015026070619834700000 0.274233020289256 0.281063120689502
0.006830100400245840000 0.278579447816685 0.279200366034890
0.000620918218204147000 0.278579447816685 0.278861686192770
0.000282238376084709000 0.278784712090202 0.278810370124391
0.000025658034189524100 0.278784712090202 0.278796374949642
0.000011662859440875200 0.278790013442960 0.278792133909846
0.000002120466885358050 0.278791748370412 0.278792133909846
0.000000385539433711557 0.278791748370412 0.278791923617362

Figure 2.6. Arithmetic coding for "abracadabra".

17

2.3.1.2 Huffman coding

The Huffman coding is another entropy encoder. Unlike arithmetic coding, each

instance of each character in the input sequence is assigned a code. As in arithmetic

coding, the algorithm begins by assigning to each character its probability of appearing

in the input sequence. Subsequently, the characters enter the coding stage. In this

stage, a binary tree is formed by joining the two nodes with the lowest probability to

form a new node, whose value becomes the sum of its two branches. In the case where

there is more than one node with the same probability, any of these nodes can be

chosen. The process continues until an the nodes are part of the tree and the root node

has a probability of 1.

PROBABILITY
A 1

5
1 = 0.45455

B 1~ = 0.18182
C 111 = 0.09091 r=::::>
D 1\ = 0.09091
R 1~ = 0.18182

BINARYTREE
A 0.45455---------=,0

o 11-:--:::::= B 0.18182-------=:,1 111.00000
o

R 0.18182 1 110.63636

C 0.09091 0 110.36364
D 0.09091 1 0.18182

Figure 2.7. Huffman coding for "abracadabra"

CODE

A 0
B 10

r=::::> C 1110
D 1111
R 110

In Figure 2.7, we show the Huffman co ding process for the string

"abracadabra". From the probability table, the binary tree is built, and from that,

the codeword for each character (A, B, C, D, and R) is determined. Using the codes,

"abracadabra" is encoded to 23 bits: "01011001110011110101100", which is

27 bits less than the arithmetic coder took. The compression scheme we adopted, the

bzip2 compression scheme, employs Huffman coding. The way in which the bzip2

algorithm integrates Huffman coding in its compression, is detailed in chapter 3.

In the next section, the Ziv-Lempel algorithms are described. While it is an old

compression scheme, it still remains popular. In fact, the Unix system's "compress"

pro gram employs this technique, and it is still widely used for the Graphies Interface

Formats (GIF) and often the Tagged Image File Format (TIFF).

18

2.3.2 Ziv-Lempel algorithms
Ziv-Lempel (LZ) algorithms [89, 90] are dictionary methods. During

compression, a dictionary is built from the components which have appeared in the past,

to be used to reduce the sequence length, if that same component were to appear in the

future. In other words, the compressor reads through the input data - subsequence by

subsequence, constructs a dictionary of observed subsequences, and looks for

redundancies as it goes. The first time a string is observed, the string is written to the

output, however, any subsequent time it is encountered, a special code is then output.

The output thus consists of one instance of each string, and references to these instances

for the repetitions.

Ziv and Lempel developed two versions of this highly popular compression

algorithm: LZ77 [89] and LZ78 [90]. The LZ77 algorithm keeps a buffer of the most

recently seen data, and compares the CUITent subsequence being encoded, with the past

subsequences. The output of the compression is a sequence of triples, where the first

element is the position in the buffer of where the mat ching subsequence starts, the

second element is the length of the subsequence, and the final element is the character

which follows the repeated subsequence. The LZ77 is the basis for many other LZ

algorithms, for example, the LZSS by Storer and Szymanski [73], the LZFG by Fiala

and Greene [23], and the LZRW by Williams [82]. Moreover, further improvements

were made in later LZ algorithms [4, 32].

Unlike the LZ77 algorithm which works on past data, the LZ78 algorithm

actually works on future data. This is done by forward-scanning the input buffer and

matching it against values in a dictionary it maintains. Like the LZ77, the LZ78 also

gave ri se to other versions [34, 56, 81].

2.3.3 JPEG compression
The JPEG compression algorithms are a family of compression techniques for

images standardized by the Joint Photographic Experts Group [51]. The block diagram

for the JPEG compression technique is shown in Figure 2.8. The Forward Discrete

19

Cosine Transform (FDCT), or (DCT), is an algorithm that partitions the image into 8 x

8 pixel blocks, and transforms these blocks into the spatial frequency. At this point,

none of the data has been lost; it is the quantization stage which is lossy. In this stage,

the DCT coefficients are divided by their corresponding quantization coefficients and

rounded to the nearest integer.

Figure 2.8. Block diagram for JPEG compression techniques.

The quantization coefficients are not fixed, but rather, can vary with the desired

quality level (Q factor). Lower Q factors pro duce better results; however, the closer to

the original image, the larger the size of the compressed image, and thus the less

effective a compressor.

2.3.4 Other universal compression algorithms
Since the Ziv-Lempel algorithms, other more recent compression algorithms

have been introduced. The partial mat ching algorithm (PPM), the dynamic Markov

co ding (DMC) algorithm, and the switching method, are just a few of the many

compression schemes available which follow the modeling-coding paradigm.

The PPM algorithm [16], developed by Cleary and Witten, predicts the

probability of occurrence of the current symbol by using the frequencies of all the

characters' occurrences in the past. This probability is then used to encode the symbol

with the arithmetic coder described in Section 2.2.1.1. In addition to Cleary and

Witten's algorithm, other PPM algorithms were deve10ped by Bunton [8-10] and

Shkarin [69].

In the late 1980s, Cormack and Horspool developed the DMC algorithm [18,

35]. The DMC attempts to determine which Markov source has produced the input

20

sequence that is to be compressed. A Markov source is a finite state machine (FSM)

with a set of states and transitions. There can be, at most, k transitions from each state,

and aU ofthem are denoted with different symbols. At each transition, there is a certain

probability ofbeing chosen for each state. Further details of the algorithm can be found

in [18], and a detailed description of the generalized dynamic Markov coder (GDMC),

developed by Teuhola and Raita, can be found in [74].

The switching method, proposed by Volf and Willems [78], employs two

compression schemes (PPM, LZ77, DMC etc) in combination. In order to obtain the

best compression ratio, the switching algorithm decides which part of the input

sequence is to be compressed with which of the two compression schemes chosen.

In our anomaly detection algorithm, we employed the bzip2 compression

scheme, which is derived from the Burrows-Wheeler Transform (BWT) [11], a block

sorting lossless algorithm. The BWT processes the input file in blocks. A single block

is read, compressed, and written to the output before the next block is processed. The

benefits in using a block-sorting algorithm lies in its ability to find redundancies within

a block of data, thus, in our application, since we are looking for redundancies between

two images, comparing them in blocks is preferred. The details ofthe BWT, along with

a justification for using it, are presented in the foUowing chapter.

21

CHAPTER3

ANOMALY DETECTION ON INTENSITY IMAGES

The anomaly detection that we implemented is a compression-based similarity

metric based on the normalized compression distance (NCD) proposed by Li et al [48].

They proposed that the natural measure of the information content of a data file, is

given by the smallest size to which the file can be compressed. Compression programs

are designed to minimize the amount of storage resources required by a given file, by

removing any redundancies within the file, in order to produce a much smaller file from

which the original can still be reconstructed. Thus, given that two similar files will have

more redundancies between them than two dissimilar files, a compression pro gram can

be used to determine the level of (dis)similarity between two files. Li et al proposed a

compression distance which compares the compression size of the concatenation of two

files with the sum of the compression sizes ofthe individual files.

NCD(x,y) = C(xy)-min{C(x),C(y)} (3.1)

Unfortunately, the compression distance is skewed by the size of the files being

compared. For example, though intuition says that two larger files with only a small

fraction of redundancy is not as dissimilar as two smaller files with the same amount of

redundancy. Without normalization, however, the compression distance would deem

the two larger files as dissimilar as the two smaller ones. Thus, Li et al proposed a

normalized compression distance (NCD):

NCD(x,y) = C(xy)-min{C(x),C(y)} (3.2)

Our similarity metric is based on the NCD, however, as in Bennett et al's

technique [5], we compare the size of the compression of the concatenation of the two

files with the sum of the individual files' compression sizes:

22

(1 1) = size(C[lj])+size(C[12])-size(C[lj œ12])

p P 2 size(C[Ij]) + size(C[12])
(3.3)

where C[] indicates the compression operation, and œ indicates the concatenation of the

data sets. If h and h are completely different, then the concatenation of the two files

should be almost as big, if not as big as the two individual compressed files, and thus,

the similarity measure should be 0, or close to O. If Il and h are identical, then an ideal

compressor would yield a similarity measure of 0.5. In other words, files with greater

similarity have a higher similarity measure than those with greater dissimilarity, and the

range of the similarity measure is [0, 0.5].

The concatenation is performed using the UNIX command cat, where given two image

files h and h, cat(1l, h), would produce one continuous string, h2, which is simply h

appended to Il [15].

3.1 bzip2 compression scheme

Since the anomaly detection is based on a compression-based technique which

seeks to find (dis)similarities between images, an algorithm which compresses in blocks

is required. One such algorithm is the bzip2 algorithm [29], which is derived from the

Burrows-Wheeler transform (BWT) [11]. The BWT applies a reversible transformation

to the data, after which, the data undergoes a move-to-front (MTF) [11] encoding.

Finallya Huffman encoder [37] is applied to the data.

3.1.1 The Burrows-Wheeler Transform
The BWT does not pro cess the data sequentially, but rather, accepts as input

blocks of data in 100 to 900 KB block-sizes. The transform works by taking a string S

of length N, and forming an N-by-N rotation matrix M by performing N left cyclic

shifts. In other words, an the characters of the string are shifted left by one position,

and the frrst character is moved to the end of the string until N strings are formed. The

rows of the M matrix are then sorted lexicographically (or alphabetically) to form M,

and its last column forms the string L of length N. The purpose of the transformation is

23

to group the characters in such a way so that redundancies can be found. After the

transformation, the string L, as well as a primary index, !, which indicates the position

in the string L of the original first character of Sare stored.

To illustrate how the BWT works, we now present an example where the string

"wheeler" is compared to itself. Thus, we would like to frnd the similarity metric

between a string and itself

(" hl"" hl") _sl_·ze--,(_C.!:...["_w_h_ee_le_r_";:::.D_+_s_ÎZ_e(o.....C[..:;.'_' w_h_e_el_er_"-",D_-_s_iz_e(.::....C-,,[_" w_h_e_el_erw_h_e_el_er_'='D) (3.4) p weeer,weeer =
size(C[" wheeler "] + size(C[" wheeler "D

As shown in the above equation, the largest string that will be compressed is the

concatenation of "wheeler" to itself. In Figure 3.1 the BWT is applied to

"wheelerwheeler". In this example, we assume that the block-size is at least 14

bytes, thus, the entire string can be compressed in one block. After cyclically shifting

and lexicographically sorting, L becomes "helhelwweeeerr" and the primary index,

! is 6, when the index begins at O. With this primary index, the transformation is

reversible.

Vot h e e 1 e r w h e e 1 e ~J h,(e,(e,(1 "8" r w h e e 1 e r
1 h e 1

r"
e e e r w e e r w h
e 1 e r w h e e 1 e r w h e

e e 1 e r w h e e 1 e r w h e r w h e e 1 e r w h e e 1
e 1 e r w h e e 1 e r w h e e e 1 e r w h e e 1 e r w h
1 e r w h e e 1 e r w h e e e 1 e r w h e e 1 e r w h e
e r w h e e 1 e r w h e e 1 e r w h e e 1 e r w h e e 1
r w h e e 1 e r w h e e 1 e h e e 1 e r w h e e 1 e r w ~+-1

w h e e 1 e r w h e e 1 e r h e e 1 e r w h e e 1 e r w
h e e 1 e r w h e e 1 e r w 1 e r w h e e 1 e r w h e e
e e 1 e r w h e e 1 e rw h 1 e r w h e e 1 e r w h e e
e 1 e r w h e e 1 e rw h e r w h e e 1 e r w h e e 1 e
1 e r w h e e 1 e r w h e e r w h e e 1 e r w h e e 1 e
e r w h e e 1 e r w h e e 1 w h e e 1 e r w h e e 1 e r
r w h e e 1 e r w h e e 1 e w h e e 1 e r w h e e 1 e r

'-'

M M' L.

Figure 3.1: BWT applied to "wheelerwheeler".

24

3.1.2 Move-To-Front coding
The string L is then coded, using move-to-front (MTF) coding, to form the

vector R, where each element in R is a code for each character in L. The code is derived

by assigning to R[i], where i = 1. . . N-I, the number of characters preceding L[i] in the

vector Y, which is initially made up of one instance of each character in L sorted

lexicographically. In Figure 3.2, the MTF coding is performed on the output of the

transformation of "wheelerwheeler". The MTF coder is given the strings L and Y

as input. R[O] is assigned the value of 1 since there is 1 character preceding L[O] in the

input Y, "ehlrw". A new Y is then formed by moving the 'h' to the front of the string,

thus forming "helrw". R[l] is then determined for the character L[l], and so on, until

the N-Iength code is determined to be "11222240200040".

L[] R[] Y

;;w H 1 E LR
E 1 Et:[Rw
L 2 ŒHRW
H 2 HLERW
E 2 EHLRW

"HELHEL\lVlNEEEERR" -+ L 2 LEHRW -+ "11222240200040"
W 4 WLEHR
W 0 WLEHR
E 2 EWLHR
E 0 EWLHR
E 0 EWLHR
E 0 EWLHR
R 4 REWLH
R 0 REWLH

Figure 3.2. MTF for "wheelerwheeler" with 14 byte block-size.

3.1.3 Hullman co ding
The final step for compression is to apply Huffman encoder to the vector R.

The probability of each element in R is determined. In Figure 3.3, the Huffman encoder

is applied to the output R code from the example in Figure 3.2. After building the tree,

based on the probabilities for each of the characters, each character in the R string is

encoded. For example, R[O]=1 is in the third level of the tree, and is reached by

25

following the branches 110. In other words, it took 3 characters to encode the character

'1'. Moreover, the characters '0', '2', and '4', take 1, 2, and 3 characters to encode

respectively. Thus, the total number of characters necessary to encode the R string is

27. In other words, the string "wheelerwheeler" was compressed to 27 bits.

PROBABILITY BINARYTREE CODE

0 1
5
4 = 0.35714 o 0.35714 0 o 0

1 1~ = 0.14286 2 0.35714 0 1 1.00000 1 110
1

2 1
5
4 = 0.35714 c=:::!> 1 0.14286 0

11°·64286 c=:::!> 2 10

4 1~ = 0.14286 4 0.14286 1 0.28517 4 111

Figure 3.3. Huffinan coding for "wheelerwheeler" with 14 byte block-size.

By default, the bzip2 compressor compresses files in 900 KB block-sizes. In

other words, if the size of the file to be compressed is greater than 900 KB, then the file

is split into 900 KB blocks before being compressed. Because the BWT works by

removing redundancies, in order for the metric not to be skewed, the largest file

compressed must be less than 900 KB. The large st file compressed with the similarity

metric shown in Equation 3.3, is the concatenation of the two files being compared.

Thus, the sum of the sizes of the files to be compared must be at most 900 KB. In the

previous example, the "wheelerwheeler" string was compressed assuming that the

block-size was large enough that the string did not need to be split. To demonstrate that

the metric is skewed, if the string needs to be split before compression, the example is

repeated, however this time with a 9-byte block-size. Thus, the string

"wheelerwheeler" must be compressed in two blocks: ''wheelerwh'' and

"eeler". From Figure 3.4, it can already be seen that by splitting the string, sorne of

the redundancies that was achieved with the 14-byte block-size, is not achieved here.

26

w h e e 1 e r w h
h e e 1 e r w h w
e e 1 e r w h w h
e 1 e r w h w h e
1 e r w h w h e e
e r w h w h e e 1

r w h w h e e 1 e
w h w h e e 1 e r
h w h e e 1 e r w

M1

e e 1

e 1 e
1 e r
e r e
r e e

M2

e r
r e
e e
e 1

1 e

eelerwhwh
elerwhwhe
erwhwheel
heelerwhw
h w h e e 1 e r w
lerwhwhee
rwhwheele

w h e e 1 e w h
whwhee er

M1' L1

Figure 3.4. BWT for "wheelerwheeler" with 9-byte block-size

:~!~~r
e r e e 1

e r e e
e e 1 e

M2' L2

From the 9-byte block-size example, LI and L2 are found to be "helwweehr"

and "relee" respectively. The L strings are encoded using MTF coding and then

Huffman coding. Since there are two strings being compressed, each string requires its

own binary tree for the Huffman coding. The [mal encoded string is

"010110110001000111110" for LI and "10010011" for L2, which are 21 and 8

bits respectively. Thus, the string "wheelerwheeler" was compressed to 29 bits

when using a 9-byte block-size, which is 2 more bits than when using a block-size that

did not require splitting the string.

Now, we consider the effects of splitting the string on the similarity metric. The

string "wheeler" is compressed following the same process that we used. Because it

is a 7-byte string, both the 9-byte and 14-byte b1ock-sizes compressed ''wheeler'' to

"001011010111110", which is 15 bits. Plugging this value, along with the

previously computed compression sizes into the similarity metric equation, yields:

= 15+15-27 =0 1
Pl4-byte 15+15 .

= 15+15-29 =0 33
P9-byte 15 + 15 .

Thus, the similarity measure between "wheeler" and itself, was found to be

more dissimilar when using a block-size that required the string to be split before

27

compression. In our implementation, we used the default block-size of900 KB. Thus,

the sum of the sizes of the two images being compared must be less than 900 KB. The

images from our demonstration system are aIl roughly 102 KB, thus the concatenation

of the two images are roughly 204 KB and far below the maximum size of900 KB.

In the next section, we present a brief listing of our algorithm for the anomaly

detection. Subsequently, we present the results of our demonstration system applied on

intensity images.

3.2 Our Anomaly Detection Algorithm

Figure 3.5 shows the basic algorithm foIlowed for the anomaly detection. When

the anomaly detection algorithm begins, an image is downloaded from the camera. As

explained in Chapter 1, the images acquired from the camera are in JPEG format.

Although this format is inherently its own compression scheme, we cannot compare the

JPEG image sizes. With JPEG compression, the images are manipulated in 8 x 8 pixel

block-sizes; however, we require a compression scheme that can fmd redundancies in

concatenated images. Thus, the input image, 10, is converted into bitmap (BMP) format

and then compressed using the bzip2 compression algorithm. If the input image is the

fIfst image to be processed, it is marked and saved as a novel image. Otherwise, 10 is

compared to aIl the images previously deemed novel by compressing the previously

stored image, lI, and concatenating 10 and h to form lOI. Using the similarity metric

defmed in Equation 3.3, the level of similarity between 10 and II is determined and

compared against an empirically chosen threshold. If the two images have a similarity

measure below the threshold, they are deemed dissimilar; conversely, if they have a

similarity measure above the threshold, they are deemed similar. In the case of the

former, the input image is then compared to the next image from the novel image list

until it has been compared to all the images on the list, or it is deemed similar to one of

the images on that list. If the image is dissimilar to aIl of the images on the list, then it

is considered novel and it is added to the novel image list. The compression of the

image is then saved. If the image is similar to one of the images on the list, then the

28

image can be discarded, since only one instance of the similar images is required for

future comparisons. In other words, the input image is only saved and compared

against new incoming images if it is deemed noveL Thus, rather than storing every

image processed by the system, by storing only the novel images, only the images with

useful information are kept, and storage resource requirements are reduced. Moreover,

when only the novel images are stored, computational resources are reduced as well,

since fewer comparisons are required for each incoming image.

Download an input image from the camera
Assign the input image to 10
Convert 10 to BMP format from JPG format
C [10] = Compress 10 us ing bzip2
if 10 == first image processed

e1se

novel_image_list. add (10)
Save C [10]

whi1e(!eof(novel_image list))

1:
2 :
3 :
.q:
5:
6:
7:
8:
9:
10 :
11:
12 :
13 :

Il = data from current position of novel_image_list
C [Il] = Compress Il
101 = concatenate (10, Il)
C [101] = Compress I 011.q:

(I 1)= ~zZ6(C[II])+~zZ6(C[I.])-~zZ6(C[I,fflI.]), Il p similarity
P l" ~zZ6(Cl[,]) +~;Z6(ClI.D

15 :
16:
17:

if p< threshold (T) Il dissimilar
go to step 10

e1se Il similar
19: increment Il.match count
18: Sort novel_image_list by match_count
19: break from loop;
20: if 10 dissimilar to aIl images in novel_image_list
21: novel_image_list.add(Io)
22: C [10] Compress 10
23: go to step 1.

Figure 3.5 Pseudocode for anomaly detection algorithm.

Since the input image is compared to the images from the novel image list until

a similar image is found, it is clear that fmding a match sooner reduces the number of

comparisons required and thus, reduces the computational load. Thus, the order in

which the comparisons are made is pivotaI. Step 18 of the algorithm listed in Figure 3.5

shows that the novel image list is sorted by the amount of times that they have been

deemed similar to the input, by the most often to the least. The reasoning is that an

input that will ultimately be determined to not be novel, will most likely be considered

29

similar to one of the images that have been seen most frequently in the past. For

example, if the video camera were surveying a corridor, then a lik:ely assumption would

be that an empty corridor would be the most frequently viewed scenario. Thus, it would

be advantageous to rule out this image fIfSt by comparing the input image to it fIfSt.

This approach to anomaly detection exploits geometric structure implicitly, in

that the comparisons are based on the image itself. Rather than describing each image

according to its geometric shape s, and comparing the descriptions, the entire images are

compared. While using the geometric structures in a more explicit way could provide a

more precise defmition of similarity, the tradeoff is between speed and precision. In

this way, we achieve a simple method for anomaly detection.

3.3 Results

Before the algorithm could be properly tested, an appropriate threshold needed to be

chosen for the similarity measure. The anomaly detection algorithm was run on a test

set of 100 images, and then, the similarity measure was empirically chosen by manually

sorting through aH the images, deciding which pairs of images should be considered

similar, and/or, which should be considered dissimilar. Although sorne manual training

was required here, the training time is minimal. Moreover, sorne user input ofwhat is

considered similar is beneficial, since it depends on the user's perspective. What was

noticed during this classification pro cess was that for sorne pairs of images that intuition

would deem similar, the similarity measure would be lower for these pairs of images

than for a pair of images that intuition would deem dissimilar. Moreover, for certain

pairs of images that intuition would deem dissimilar, the similarity measure would be

higher for these pairs of images than for pairs of images that intuition would deem

similar. The difficulty in choosing a threshold thus lies in determining where to place

the threshold, so that the greatest amount of dissimilar images were found without

triggering too many false positives; which are similar images being marked as novel. In

other words, when choosing a threshold, there is a tradeoff between faise positives and

false negatives. Ultimately, because the anomaly detection algorithm is for video

30

surveillance applications, we decided that it was more important to catch all the

anomalies while risking classifying too many images as dissimilar, than to risk missing

anyanomalies. With that in mind, a conservative threshold of 0.055 was chosen for the

test.

Similarity Measure
0.095 ,.------r-----.-----...,.----,.-------,,------..,-----,

0.09

0.085

0.08

~
~ 0.075
'" Q)

:2
.:::- 0.07
.::::
~
'E 0.065
i:?i

0.06

0.055

0.05

0.5 1.5 2 2.5 3 3.5
Image Number)(105

Figure 3.6. Highest similarity measure for each intensity image processed over 2 days

31

Similarity Measure - One Day
0.085

0.08

0.075

~
0.07

::>

'" CI> 0.065 ID
::2
»

.1: 0.06 ..'!'
ï~
i::7.i 0.055

0.05

0.045

0.04
7.8

Image Number x 105

Figure 3.7. Highest similarity measure for each intensity image processed over 1 day

The anomaly detection algorithm was run over a six week period. In Figure 3.6,

the highest similarity measure for each of the fIfst 2 days of the test was plotted, which

is 350,000 images. The points below 0.055 are the highest similarity measures for novel

images. The plot shows that there is only the occasional sharp dip, meaning that

novelty is rare. Figure 3.7 shows the plot for just one day of activity. Here, we notice

that the majority of the novel images are found in the fIfSt quarter of the plot, which

corresponds to the fIfSt 6 hours of the work day.

In Figure 3.8, the number of novel images detected was plotted over the total

number of intensity images processed over the six week period. In total, over 6 million

images were acquired from the demonstration system. Of these images, 967 novel

images were detected. In the fIfSt week, nearly 400 novel images were detected;

however, after another 5 weeks, the number of novel images only increased by fewer

than 600 images. Therefore, as the cubic curve in Figure 3.8 shows, the rate ofnovelty

is decreasing with time, which is not surprising, since we expect that as with a security

guard, initially, the system leams a lot; however, over time, it establishes a baseline of

normal behaviour.

32

The plot in Figure 3.8 also shows several steep rises followed by plateaus. We

notice that the beginning of the steep rises correspond to the beginning of a new work

day, whereas, the fiat lines correspond to the inactivity overnight. In fact, in Figure 3.9,

we zoomed in on the events of 16/05/05 from Figure 3.8. The plot shows that the

majority ofthe activity occurs in the morning, starting just before 9 AM. Over the day,

not only does much of the activity taper off, but the activity that does occur is often

similar to an event captured earlier in the day. For example, if a person were to walk

down the hallway in the morning, during the course of the day, if the person were to

walk down the hallway several times, the system would not deem these events as novel,

since it has already captured images of a similar event in the moming.

33

Number Novel Images vs Number of Images Processed
1000

900 Novel Images
Best Fit Cutve

800

00 700 ID
Ol
ro
E 600
ID p7 >
0 500 z
'-
0
'-

400 ID
.0

E
~

z 300

200

100

O'
0 1 5 7

Number of Images Processed)(106

Date and Time
t"') !,Q ~ N

""" = ~ ~ ~ '!l: ~ ~ ~
cc = = t.O = 0= = t.O Q C Q Q Q Q

It') Il') Il') Il') Il') Il') Il') It')

~ ~ ~ ~ ~ ~ ~ ~
Il') Il') Il') Il') Il') !,Q !,Q t.O

~ ~ ~ ~ ~ ~ ~ ~
t"') !,Q Q ~ Q !,Q t"') N N t"') Q N

Figure 3.8. Number of novel images vs. number of intensity images processed over 6 weeks.

34

180

170

'" Q)

"" '" E 160
a;
:>
0
Z 150 '-
0
~

Q)

..0
E

140 '" z

130

120

7

Number Novel Images vs Number of Images - One Day

,.--

)

.8 8 .2 8.4 8.6 8.8
Number of Images

16105105 16105105 16105105 Dale and Tlme
08:46 13:51 15:15

9 9.2 9.4

-

-

-

-

-

-
9.

~1

171051115
08:57

Figure 3.9. Nwnber ofnovel images vs. nwnber ofintensity images processed over 1 day.

Referring again to Figure 3.8, we note that during the weekend, (13/05/05 -

15/05/05) there was bare1y any activity in the research center, and thus, very few novel

images were detected. The lack of activity because of the weekend can be further

confrrmed by the following weekend's (20/05/05 - 23/05/05) inactivity. The second

weekend was actuallya long weekend, since Monday was a statutory holiday. We note

that the lack of activity also carried through that Monday holiday. The steep ascent of

novel images only begins the following day, on the Tuesday (24/05/05).

In Figure 3.10, examples of similar and dissimilar image classification are

shown. When compared, the top two images were deemed similar, thus only one

instance of the two images was added to the nove1 image list. However, the bottom

image was deemed dissimilar from either of the top two images, and thus, it was added

to the novel image list. It is difficult to provide an intuitive description of what makes

images (dis)similar. By observing the example images though, we see that the people in

the similar images have similar grey level clothing, and are a similar size in the image,

35

whereas, the person in the bottom image is donning different clothing and is smaller

than the people in the similar images.

Out of the 6,032,556 images examine d, 55 were classified as novel when

intuition would say that they were not novel, which is a 9.1xlO-6 false positive rate. The

majority of these false classifications can be attributed to the anomaly detector's

sensitivity to illumination changes. For example, in Figure 3.11, the two images were

both saved as novel images; however, with the exception of the difference in

illumination, one could say that the two images are similar. The advantage to our

system is that regardless of the illumination changes, the system adapts, since it leams

online. Thus, the wrongly classified novel images are simply added to the list of novel

images, and any subsequent input images that resemble this image will not be nove!.

However, in spite of the adaptability of the system, the algorithm's sensitivity to

illumination is still an issue, since false positives trigger false alarms which can be

costly in real-world applications. We will thus address the issue of false positives in

chapter 4.

Figure 3.10. Examples ofsimilar (top) and dissimilar (bottom) image classification.

36

Figure 3.11. Example of a faise positive: two similar images classified as dissimilar.

Because of the difficulty of intuitively describing similarity, the exact

description for false negatives is difficult to calculate; of course, since it is highly

dependent on what we consider similar. What we did notice, however, was that at this

high-Ievel of comparison, images containing two different people with similar c10thing

and similar appearances could be considered similar. Thus, in chapter 5, we crop out

the regions of the images containing people, and apply the anomaly detector on these

Images.

In spite of sorting the novel images in order of like1ihood to be matched to the

input image, the number of novel images continues to grow, implying that the amount

of storage resource required will also continue to increase with time. As

aforementioned, each image is roughly 102 KB. Which me ans that at 967 novel

images, approximately 96 MB of the hard disk is required. Now, the intensity images

compress to anywhere between 18-21KB. Thus, by storing the compressed version

instead, the storage resources required have been reduced by around 80%. After around

6 weeks of video surveillance, only 19 MB of images are stored. In the following two

chapters, the issue of storage resources is further addressed.

In order to act as an effective video surveillance system, the time the system

requires to ascertain the nove1ty of each frame is very important. To simulate a realistic

37

real-world situation, the anomaly detection was performed on a Unix machine which

had other pro cesses running in the background. Although assigning a high priority to

our process might ensure that it would receive most of the quanta (time slices assigned

to pro cesses) on the Central Processing Unit (CPU), and thereby improving the

processing time of each frame, our system was not assigned a high priority, because a

dedicated machine may not always be available in real-world applications.

A stripped-down version of the anomaly detection algorithm was run for 24

hours, where 157993 images were processed. We found that, on average, each frame

takes 0.547 seconds to process. Given that the maximum frame rate of the netcam is 2

frames/sec, as specified in Chapter 1, a frame rate of 1.829 frames/sec is not

unreasonable. We recaU that the anomaly detector works by comparing the input

images to the previously-seen novel images until either a match is found, or the input

has been compared to aU of the stored images. Since the novel image list is sorted by

the likelihood that the input will be similar to it, the processing time of images that are

eventually deemed similar, does not increase much with time. The majority of the time,

a match will be found within the frrst two comparisons, and thus, the majority of the

time, a match is made in less than a second. However, in the case of the novel images,

the processing time is directly proportional to the number of novel images stored. In

Figure 3.12 we see that the processing time for novel images grows linearly with the

number of novel images. At around 170 novel images, the processing time is 9

seconds/frame. In Figure 3.13, the processing time for each novel image is plotted

against the total number of images processed. The 9 second worst-case time occurs

near the 160,000 image. In chapter 4, we will discuss how, by frrst applying an edge

detector on the images, the speed of the algorithm is improved.

38

The Processing Time for Each NOl/ellntensity Image
10

9

8

7

ID

E 6
i=
"" c: 5 '00
(J)

ID
'-'

4 0

ct
3

2

OL-__ -L __ ~ ____ ~ __ -L ____ L-__ _L __ ~~ __ ~ __ ~

o 20 40 60 80 100 120 140 160 180
Number of NOl/el Images

Figure 3,12. Processing time for each nove! intensity image.

Time to Process a NOl/el Image I/S Total Number of Images
10

9

8

7

ID
E 6
i=
"" c: 5 '00
(J)

ID
'-'

4 e
0...

3

2

OL-__ ~ ____ -L ____ L-__ ~~ __ -L ____ ~ ____ ~ __ ~

o 2 4 6 8 10 12 14
Number of Images

Figure 3.13. Processing time for each novel image vs. total number of images processed.

39

CHAPTER4

ANOMALY DETECTION ON EOGE IMAGES

As discussed in Chapter 3, the major disadvantage to applying the anomaly

detector to the intensity images was that the algorithm was sensitive to changes in

illumination. In fact, the intensity images contained information regarding illumination

changes and other information that could, otherwise, be discarded to speed up

computation and also save on storage resources. In computer vision, an edge detector

removes this information while maintaining the structural properties of the image. As

we would like to reduce or remove the algorithm's sensitivity to illumination changes,

we thus apply an edge detector on the images before applying the anomaly detector.

In this chapter, we begin by presenting the edge detector we applied and how it

IS integrated with our anomaly detection algorithm. Subsequently, we present the

results of the tests which we ran on our demonstration system, with the edge detector in

place. And fmally, we compare the results of the edge detector in terms of accuracy,

storage resources and speed.

4.1 Integrating the Canny Edge Detector

The Canny edge detector is applied to the images before being compressed and

checked for novelty. In Figure 4.1 the anomaly detection algorithm with the Canny

edge detection is listed. Essentially, the algorithm remains the same as in Section 3,

however, in this case, an edge detector is applied to the images before they are

processed (see step 4).

40

1: Download an input image from the camera
2: Assign the input image to 10
3: Convert 10 to BHP format from JPG format
4: 10 = edge detector applied to 10
5: C [10] = Compress 10
6: if 10 == first image processed
7: novel_image_list.add(Io)
8: Save C [10]
9: else
10: while (! eof (novel_image_list))
11: Il = data from current position of novel_image_list
12 : C [Il] = Compress Il
13 : 101 = concatenate (10, Il)
14: C[I01] = Compress 101
15: (l l)= .,ge(C[I,]) +.,ge (C[I,])- .,ge(C[I, el,]) Il p = s imilar i t Y

p ", • ,ge(CLI,]) +.ize(CLI,]l

16: if p< threshold (T) Il dissimilar
17:
18: else

go to step 10

19: increment Il.match count
19: Sort novel_image_list
20: break from loop;

Il similar

21: if 10 dissimilar to all images in novel image_list
22: novel_image_list. add (10)
23: C [10] Compress 10
24: go to step 1.

Figure 4.1. Pseudocode for anomaly detection on edge images

In Figure 4.2, the resulting edge image of a given intensity image is shown. The

edge image is a binary image with the edges represented by white pixels.

Figure 4.2. Examp1e of an intensity image and its corresponding edge image.

In the following section, we will present the results of the test which we ran on

the anomaly detection, on edge images acquired from the camera. Subsequently, we

41

will compare the results of the edge images to the intensity images. In particular, we

will address the issue of the algorithm's sensitivity to illumination changes and how the

edge images eliminate this issue.

4.2 Results

We ran the anomaly detector on our demonstration system over 5 days. After

applying an edge detector, only a small portion of the image pixels become relevant, the

remainder of the pixels is set to black. We can see from the example image, in Figure

4.2, that the majority of the edge image is black, and thus, a higher level ofsimilarity is

found between two edge images, and a larger threshold is required. We found that a

threshold of 0.17 was a good threshold. In Figure 4.3, the highest similarity measure

for each edge image was plotted. The spike which occurs near image 2.8x105
, is the

result of the camera going temporarily omine. The algorithm detected and noted the

anomaly, and then recovered. In real-world applications, we would expect the camera

to occasionally go offline for any number of reasons, thus, it is imperative that the

system can recover from such occurrences. After 8000 images, we can see from Figure

4.3 that the band of similarity measures shift down. This shift is likely to be caused by

the camera being moved. In chapter 5, we will address the issue of the algorithm's

sens itivity to slight changes in the camera position. The occasional sharp dips again

confrrm that novelty is rare.

From Figure 4.4, we see that out of 567,840 images processed, 420 novel

images were found. Though far more novel images were found after 5 days, in this

case, than when the anomaly detector was applied to intensity images for 5 days (see

Figure 3.8), we cannot use this as an indication that the algorithm fmd more novel

images with edge images. Several factors affect the number of novel images found.

Firstly, the threshold chosen affects the results. A threshold of 0.17 may have been

more conservative than the threshold of 0.055 for the intensity images. Moreover, there

may have simply been more activity in the corridor on the days where the anomaly

detector was applied to the edge images.

42

Similarity Measure
0.5.------,.------.------,,------~------~------_,

0.45

0.4

0.35
ID
~ 0.3

'" ID

2:
::-. 0.25 • =
'"
E 0.2

0.15

0.1

0.05

O~------~------~------~------~~------~------~ o 2 3 4 5
Image Number

Figure 4.3. Highest similarity measure for each edge image.

In Figure 4.5 and Figure 4.6, we present the plots of another test, where the

anomaly detector was applied to the same set of images for both the intensity and the

edge images. In this test, we see that there were more intensity than edge novel images

found. Here, we see that the distinction between the highest similarity measure for

similar and dissimilar images is much more c1early defmed for edge images than for

intensity images.

43

Number of Novel Images vs Number of Images Processed
800

700

,.-
600 -

(J)
ID
0)
(Il

500 E
ID

/
==-0 400 z

'+-
0 ...
ID

..0 300 E
:J /

Z

200

100
--'

0 .r
1 2 3 i. 5 6

Number of

Date and T

Images Processed)(1 .1
Ime

= ~ M ~ Ln ~
9- If'l If'l ~ ~ ~
f'-o Cl:) f'-o Cl:) "'" Cl:) = = = ~ ~ ~ ~ t,C ~

~ ~ !;2 ~ !;2 ~
N N N N N N
~ ~ !;2 ~ !;2 ~ M ~ ~ ~ Ln

Figure 4.4. Number ofnovel images vs. number ofedge images processed over 5 days.

44

(/)
ID
Cl

'" E
a:;
:>-
0 z
0
~

ID
-<>
E
::l
Z

Number of Novel Images vs Number of Images Processed
400.---.---.---~---.--~--~r---.---'---~--~

- - - intensity images
350 - edge images

300

250 ~..,.....---_.--------

200

150

100

2 3 4 5 6 7 8
Number of Images Processed

J
1

(
)

.f
/'

9

Figure 4.5. Number of Novel Intensity and Edge images vs Number ofImages Processed

Similarity Measure
0.22

ID
:;
(/)

'" ID

2
!:' .;::

.!.!! 0.18
'E
i:ïi novel images

0.16
0 100 200 300 400 500 600 700 800

Simila ty Mea ure
Image Number

0.11

~ 0.1 ::l
(/)

~ 1n '" ID 0.09

.~~I
2
!:' 0.08 f~~rvJI r~ ~'Y\ ~
'E

0.07 i:ïi
\

0.06
0 100 200 300 400 500 600 700 800

Image Number

Figure 4.6. Highest similarity measure for intensity and edge images

45

In chapter 3, we presented the issue of sensitivity to illumination changes. For

the most part, applying an edge detector removed this sensitivity. In Figure 4.7, the

example images from Figure 3.11 are shown after having an edge detector applied to

them. It can be observed that most of the illumination information was removed during

the edge detection process. Thus, when the two images were compared, a great deal of

similarity was found between them, and the anomaly detector correctly deemed these

two images as similar. Because of a measure of illumination, invariance was achieved

with the edge images; the number of false positives due to illumination changes that

occurred with the intensity images, did not occur here.

Figure 4.7. Example images from Figure 3.11 c1assified correctly due to edge detection.

Unfortunately, along with much of the extraneous information discarded with

the edge detection, sorne of the details of each person is also discarded. Thus, edge

images containing people with similar sizes and aspect ratios were deemed similar.

Discarding aIl information between edges, removed sorne key identifiable features of

the people in the images, such as skin tone. In chapter 5, we present an alternative to

edge images. We still look to discard extraneous information; however, instead, we

crop out only the regions of interest and discard the rest of the image. In video

surveillance applications, the majority ofthe time the regions of interest are the portions

of the image containing people. Thus, we apply a pers on detector on the images before

inputting them to the anomaly detector.

46

After an edge detector is applied on an intensity image, the edge images remain

as large as the original intensity images, which is approximately 102 KB. However,

because so much of the information is lost in the edge detection process, and

redundancies in edges are much higher, the edge detector achieved much higher

compression ratios with the edge images. In fact, the edge images could be compressed

to a range of 2.8-5.4 KB, with a mode and mean of 4 KB. In other words, the

compressed edge images are roughly 80% smaller than the compressed intensity

images. This improvement in compression ratio proves to be a significant reduction in

the storage load. Although the rate of novelty decreases with time, even if we were to

assume that it did not decrease, but rather stayed constant, then we would expect

roughly 420 novel images every 5 days. Ifthat were the case, at 4 KB per stored image,

before filling up a 20 GB hard disk, which is a standard hard disk size, the algorithm

could potentially run for over 170 years!

In order to test the speed ofthe algorithm with edge images, as with the intensity

images, the anomaly detector was run again for 24 hours, where the only measure saved

was the time to process each image. This time, 154,769 images were processed, which

means that on average, each frame took approximately 0.558 seconds to process.

Although, on average, the edge images took more time to process, and in 24 hours,

fewer edge images were processed than intensity images, this is not an accurate gauge

of computational speed. Firstly, with the edge images, more than double the novel

images were found, and since the processing time of a novel image is longer and

increases with the number of novel images found, it is to be expected that the edge

images processed fewer images. In Figure 4.8, we observe that over 400 novel images

were found during the 24 hours. We note that in Figure 3.12, after 170 novel intensity

images, the anomaly detection algorithm required approximately 9 seconds to process

an intensity image. In this case, after 170 novel edge images required only 5.1 seconds

of processing time, which is roughly 44% less time than the processing time of the

intensity images. A runtime profiler, gprof, was used to determine that 95% of the total

time was spent applying the edge detector on images. In Figure 4.9, the worst-case time

47

ofnearly 12 seconds occurs near image 160,000. This time is actually 3 seconds longer

than the 9 second time of the 160,000th intensity image from Figure 3.13. However, we

note that if95% of the total time is spent in edge detection, then that means less than 0.5

seconds are spent in the actual anomaly detection. In chapter 6, we suggest ways to

improve the processing time of the edge detector.

48

~
Q)

E
i=
0)

c:
'00

'" Q)
u e

CL

~
Q)

E
i=
0)

c:
'00

'" Q)

u
0

0:

Ihe Processing lime for Each Novel Edge Image
12

10

8

6

Number of Novel Images

Figure 4,8, Processing time for each novel edge image.

lime to Process a Novel Image vs lotal Number of Images Processed
12.---~-----r----~----'-----~---.r---~----~

10

8

6

4

2

0
0 2 4 6 8 10 12 14 16

Number of Images)(104

Figure 4.9. Processing time for each novel image vs. total number of images processed.

49

CHAPTER 5

ANOMALY DETECTION WITH PERSON DETECTION

Although the edge images already filter out a lot of information, both the

intensity images and the edge images, still contain a lot of extraneous information that is

not pertinent in the determination of novelty. More specifically, based on the

observation that the area of interest in the image occupies less than a quarter ofthe total

image area, we wanted to fmd a way of extracting only the areas of interest. Moreover,

both the intensity and edge images are sensitive to slight changes in camera positions.

For example, if the camera were knocked slightly out of place, then in the case where

the anomaly detector is applied to either the intensity or the edge images, similar images

would be deemed dissimilar, and the system would experience somewhat of a reset.

In this chapter, we present the person detector we applied to the acquired

images. In section 5.2, we present the results of the tests which we ran on the

demonstration system. Finally, we discuss these results in relation to the results from

the tests which were run on the algorithm with intensity and edge images.

5.1 The Nair and Clark Person Detector

In our implementation, we adopt Nair and Clark's appearance-based person

detector [1, 57]. In Figure 5.3, the basic structure of the person detection algorithm is

shown. The input video frames are fed into the automatic labeler, which uses

background subtraction to find the foreground pixels. In Figure 5.1, the resulting images

from the background subtraction of the example images from Figure 1.4 are shown.

50

Figure 5.1. Background subtraction of example images ..

The foreground pixels, which are the white pixels from the example images in

Figure 5.1, are then grouped into what Nair describes as "blobs". The automatic labeler

then labels the ''true'' label of these "blobs" as either "person" - if and only if the

bounding box around it is the correct aspect ratio of a person, and at least the minimum

size requirement. Otherwise, it is labeled a "non-person". After the automatic labeler

labels the regions, the classifier performs the pers on detection by scanning a window of

interest across the image.

Figure 5.2. Scan window moving across image, classifier classifying each subimage as "person" or "non
person"

The algorithm computes the features within each subimage contained in the scan

window, and if it matches the features aIready saved in the classifier, then it outputs a

"predicted" label of "person". However, if the "true" label differs from the "predicted"

label, then the labels and the computed classifier values are sent to the Winnow learning

algorithm [49] which updates the classifier. If, after aIl the subimages are evaluated, the

51

"predicted" label was at any point labeled as "person", then the location of the person

detected is output.

... Peillon ...-_-Z.._--. .. Images

Automatic
Labeller

Learned
Classifier

Online
Learner

(Winnow) '--___ Non-Palllon
... Images '-------'

Figure 5.3. The basic structure of the Nair and Clark person detector. [1]

Once the person detector detects a person, the location of this person, specified

by a bounding box around the person detected, is output. The subimage contained in

the bounding box is then cropped and scaled. It is important that the person images are

aU scaled to an equal size in order to not skew the similarity measure. The size to which

they are scaled is equaIly important. If they are scaled down, then sorne information is

lost. Thus, it is more appropriate to scale aIl the images to the size of the largest person

image. The dimensions of the images attained from the camera are 352x288 pixels.

Thus, the maximum height the person image can be is 288. However, in order for the

pers on image to exceed 200 pixels in height, the person would have to be over 7 feet taU

thus, we chose the scale of 200xl18 pixels. In Figure 5.4 the block diagram of the

system is shown from person detection to anomaly detection.

____ _""1I200X118 pixel Anomaly
r-----~ Detection'f" Persoll .Ii--...... _--. Detection

Output Image Anomaly Output Person
Detection ==:> crop/scale ==:> Detection ==:>

Figure 5.4. Block diagram of anomaly detector with person detection.

52

5.2 Results

For the purpose of clarity, we will refer to the system which applies an anomaly

detector to the output of the person detector as PDAD. The PDAD was ron over a 4 day

period. During this time, over 3x105 images were acquired from the camera and

processed. In Figure 5.5, the highest similarity measure for each person image is

plotted. The threshold in this case was placed at 0.09. In Figure 5.6 the number of

person images versus the total number of images processed by the pers on detector is

plotted. We observe that only 121 persons were detected. In Figure 5.7 we note that of

these 121 person images, only 51 novel images were found.

Similarity Measure
0.13 .------.,.----,-------.------,---.,-----,-------,

0.12

0.11

~
:::l 0.1
(f)
(1;l
Q)

::§:
::0-. 0.09

...... • =
(1;l

ï~~
Cf) 0.08

0.07

0.06

0.05 '--__ ...1..-__ -'--__ -I... __ ----' ___ -'---__ ...I.-__J

o 20 40 60 80 100 120 140
Number of Images

Figure 5.5. Highest similarity measure for each person image

53

Number of Person Images vs. Total Number of Images
140,-----.-----,,-----,-----.------.-----.-----~

120

'" 100
al
Cl

'" E
<:: 80 0

'" ID
0...
'+- 60 0

ID
~

E
::>

Z 40

20

OL-____ L-____ ~ ____ J_ ____ ~ ____ _L ____ -L ____ ~

o 0.5 1.5 2 2.5 3 3.5
Number of Images x 105

Figure 5.6. Number ofPerson Images vs Number ofImages Processed

Number Novel Images vs Number of Person Images
60,-----,-----,-----,-----,,-----r-----,-----,

50

'" ~ 40
'" E

Qi

E;
z 30
'+o

al
~

~ 20
z

10

OL-----~----~----~----~------~----~----~
o 20 40 60 80 100 120 140

Number of Persan Images

Figure 5.7. Number of Novel Images vs Total Number ofImages

54

There are many advantages to applying the person detector to the images before

applying the anomaly detector, namely: location invariance and reduction in st orage

resources. The anomaly detection algorithm is sensitive to changes in location with

both the intensity and edge images. For example, in Figure 5.8 the two images, imgA

and imgB, shown in a) and b) are presented again in c) and d) respectively but with the

camera moved to the right. The similarity metric was applied on these images. In

theory, imgA and imgA _ moved should have a large amount of similarity between them.

Likewise, imgB and imgB _ moved should be deemed similar. However, in

Table 5.1 we present the similarity measures of pairs of images. Given that the

threshold for intensity images is 0.055, we note that the imgA and imgA_moved, has a

similarity measure below the threshold, and thus, is considered dissimilar. Similarly,

imgB and imgB _ moved are considered dissimilar. What is surprising is that imgA is

more similar to imgB than it is to itself moved.

imgA_moved imgB_moved imgA

imgA 0.037572 0.037449 -

imgB 0.038105 0.038807 0.057810

imgA_moved - 0.050081 -

Table 5.1. Similarity Measure for images from Figure 5.8.

By applying a person detector on the images prior to applying the anomaly

detector however, a level oflocation invariance is achieved. In Figure 5.9, the outputs

of the person detector are shown. The people from the images in Figure 5.8 were

detected, cropped, and scaled to equal sizes. The similarity measure between the pairs

of images is shown in Table 5.2. For the pers on images, a threshold of 0.09 was used,

and thus we note that aIl the images were correctly deemed similar regardless of the

location and size of the person within the image.

55

imgA_moved imgB_moved imgA

imgA 0.169971 0.132567 -

imgB 0.134277 0.138150 0.139931

imgA_moved - 0.133806 -

Table 5.2 Similarity measure for images from Figure 5.9.

56

a) imgA

b) imgB

Figure 5.8. Figure from location invariance test.

b) imgB d) imgB_moved

Figure 5.9. Cropped people from location invariance test.

57

The accuracy of the anomaly detector is dependent on the accuracy of the pers on

detector. There were two main types of false positives with the person detector, shown

in Figure 5.10. Firstly, the bounding box around the person could appear slightly off

center. The source ofthis error cornes from the fact that the scan window of the person

detector scans at fixed positions, and it retums its location once a positive result is

detected. Thus, in sorne cases, multiple boxes can be drawn for the same person,

depending on the classifier, or just one box which is slightly off center. The second

type of false positives is when "non-person" instances are incorrectly classified (image

on the right). Our aigorithm adapts to these false positives by simply saving a copy of

the "non-person" images and storing it so future false positives are not deemed nove!.

In chapter 6, we suggest a method that will decrease the faise positive rate of the person

detector.

Figure 5.10. Examples off aise positives for the Nair and Clark person detector.

As to be expected, applying a person detector on the images significantly

reduces the size of the images that are input into the anomaly detector. As a result, the

sizes of the images to be stored are smaller than the intensity images. From Figure

5.11, we see that person images are 69.5 KB, which is 30% Iess than the size of an

intensity image. Moreover, the person image compresses to 5-13 KB, with the majority

of the compressed images being around 8 KB. Thus the compressed person images are

roughly 60% smaller than the compressed intensity images.

58

Images sizes

120

100

80

m
::.:::
CIl
N 60 iii
CIl
t»
CIl

.5
40

20

o
Image type

Figure 5.11 futensity, edge and person image sizes.

59

In the PDAD system, the person detector algorithm is the one that caUs the

anomaly detector algorithm. In Figure 5.12, the processing time for each novel image

detected within a 24 hour time period is plotted. The 'total time' is the total time it took

to apply the person detector on the images acquired from the camera in order to make

the person images, and then to apply the anomaly detector on the people images to

determine novelty. The "anomaly detection time" is the time it took to apply the

anomaly detector on the person images. From the plot, we see that once again, the

"anomaly detection time" increased steadily with the number of novel images detected.

On the other hand, while initially, the "person detection time" was erratic due to

learning, it stabilized after time, and with the exception of the occasional peak, stayed at

approximately 0.5 seconds/frame. These peaks are the result of the "true" label

differing from the "predicted" label and therefore requiring that the classifier be

updated. In Figure 5.13, we note that the time to pro cess the person images is

comparable to the time to process the intensity images. This closeness in processing

times can be attributed to the fact that the portions which are cropped out are the

portions containing the majority of the information of the image. Thus, in terms of

computational resources, the edge images fared the best.

18

16

~ 14
!E..,
al

E 12
i-=

'" .~ 10
CI)
Q)

ë 8
D..

6

4

2

The Processing Time for Each Novel Person Image

- lolallime
- anomaly deleclion lime
- - - person deleclion lime

O~~_~_~_-L_~_~_~_L-_L-~

o E ~ 00 00 100 lE 1~ 100 100 EO
Number of Images

Figure 5.12. Processing time for each nove1 person image

60

---.
.!!!....
al

E
1-
C)
c
00
00
al
u
2

0...

Time to Process a Novel Imaqe vs Total Number of Imaqes Processed
14~--~----~--~----~--~----~--~----~--~

12

10

8

6

4

2

intensity images
edge images
persan images

o~--~----~----~--~----~----~--~----~--~ o 20 40 60 80 100 120 140 160 180
Number of Images

Figure 5.13. Time to process intensity, edge and person images.

In Chapter 6, further limitations of the system will be presented, as well as

possible improvements to the system that could overcome the system's present

shortcomings. Moreover, sorne future applications for this work will be summarized.

61

CHAPTER6

CONCLUSION

In this thesis we have described our anomaly detection algorithm. We applied

the anomaly detection on intensity, edge, and person images. In the next section, we

will present sorne limitations of the algorithm and possible ways of improving it.

Finally, we will summarize the results presented in the previous chapters and suggest

sorne possible future applications for our compression-based anomaly detector.

6.1 Ove rail Limitations and Possible Improvements

In ehapter 4 we discussed that it could potentially take over 170 years to fill up a

20 GB hard disk with compressed edge images. Although storage does not seem to be

an issue, by reducing the number of novel images stored, we eould potentially speed up

the algorithm - since the time to proeess a novel image is directly proportional to the

number of novel images. Thus, one possible improvement would be to limit the number

of novel images stored. For example, a list of only the 500 most frequently matched

novel images could be maintained. In this way, the processing time of a novel image

has a ceiling time that it cannot exceed.

In addition to placing a cap on the worst-case processing time, it is also desirable

to simply reduce the processing time of the novel-images, since even at 500 novel

images, it would take 26 seconds to pro cess an intensity image. Hardware

implementation of certain tasks is one possible way of improving the processing time.

For example, in chapter 4, we noticed that the task of edge detection took up over 95%

of the total ron time. Integrating a dedicated hardware implementation of edge

detection would remove the onus of edge deteetion from the processor running the

anomaly detector, which will free it up to foeus on the task of anomaly detection. In

addition, hardware implementations can be used for compressing and decompressing

62

the files, which could potentially also free up the processor. A camera with a higher

resolution and a faster frame rate would also speed up the algorithm.

Given that the frames are processed one at a time, and the algorithm waits for

one frame to be fmished processing before acquiring a new image from the camera, a

slow processing time for the novel images bottlenecks the process. One possible

solution would be to implement a parallel pro cess - where one process continues to

acquire images from the camera, while the other process determines novelty. In this

way, the gap between the times successive frames are acquired is not too wide. The

parallel pro cess could also be implemented in such a way, so that if one pro cess was

tied down checking the novelty of a novel image, the other could continue detecting for

anomalies. With the person images, the algorithm could also benefit from parallel

processmg. Since the outcome of the person detector does not rely on the output of the

anomaly detector, and the processing time of the person detector is much faster of the

processing time of the anomaly detection portion, the two algorithms could fUn in

parallel.

Another drawback of our implementation is the need to manually set the

threshold level. Implementing an adaptive threshold method could greatly benefit the

algorithm. The training time would be minimized, since regardless of the threshold

chosen initially, the algorithm would adjust it until it was correct. Moreover, it would

solve the issue of illumination sensitivity with the intensity images.

In [1], Ahmedali presented a multi-camera collaboration for person detection. In

his approach, he used the information gathered from multiple cameras to reduce the

false positive rates seen in Nair and Clark's system. A more accurate person detector

would lead to an improvement in accuracy and speed of our algorithm, since false

positives increase the number of comparisons.

63

6.2 Future Applications and Conclusion

We have presented a method for anomaly detection for video surveillance

applications. In our approach, we used a compression-based similarity measure which

compared the compression sizes oftwo images for the purpose of determining the level

of similarity between them. Input images dissimilar from all the previously-stored

images, were considered novel, and these images were then stored for comparison to

future incoming images. In our attempt to make a reliable real-world application, we

focused on the issues of st orage and computational resources, in addition to accuracy,

low-cost, adaptability, and scalability. The compression-based method inherently led to

reductions in storage loads. In order to improve the speed and sensitivity of the

algorithm, we applied the anomaly detector to two image features, edges and people.

An edge detector was applied on an input images. The edge detector was faster and

required less storage space than the intensity images. However, it also discarded much

information about the regions of interest, namely, the persons in the images. Thus, we

looked at the effects of applying a pers on detector to the images, which focused only on

these regions of interest. By homing in on only these regions of interest, the person

detector effectively increased the level of accuracy by removing a lot of the algorithm's

sensitivity to location. However, because regions of interest contained most of the

image' s pertinent information, and because the person detection process was an extra

step required, then the overall processing time of a novel image was not improved from

the processing time of a novel intensity image. Thus, in the previous section, we

suggested ways in which the speed ofthis algorithm could be improved.

As shown in this thesis, the compression-based anomaly detection algorithm

was an effective method of determining novelty in three types of images: intensity,

edges, and persons. This approach can also be extended to face images. While with

person images, much of the extraneous information is already discarded, they still

contain varying information which can skew the results of the anomaly detector.

Clothing changes from day to day and season to season. In fact, winter apparel can

64

even change the aspect ratio of the person, as people tend to wear thicker clothes and

extra layers. Moreover, people are often not walking empty-handed, and the objects

which they are holding can also lead to variations which can skew results. The head has

four degrees of freedom within the neck. Thus, the face, in relation to the body also

affects the result. Faces also have numerous variations, such as beards, glasses, and

facial expressions; however, by eliminating the rest of the body from the image, much

of the variance is eliminated. In addition, with multi-camera collaborations, the viewing

angle of the camera is less important, as the face can be captured from multiple angles,

and the image with the best face image can be output to the anomaly detector. In other

words, no matter which way the head is turned, with a multi-camera system, the best

viewing angle for the face image can be captured. Thus, Ahmedali's multi-camera

person detector [1] could be adapted to output the portions of the images containing

faces rather than people.

One interesting potential application for our anomaly detection algorithm, is re

run detection for digital video recorders (DVR), such as TiVo [39]. A DVR is a device

which allows a user to record television programs to its internaI hard disk for future

viewing. By storing the fIfSt few frames of an the shows viewed by the user, the DVR

could use our anomaly detector to compare the frames of programs scheduled for

recording, and only record the shows the user has not already watched.

65

References

[1] T. Ahmedali. "Co llaborative multi-camera surveillance using automated person

detection." Thesis, McGill University,

[2] C. Arcelli and G. S. Di Baja. "Thinning Aigorithm Based on Prominence

Detection". Pattern Recognition, vol. 13, pp. 225-235, 1981.

[3] P. Aswani, K. K. Wong, and M. N. Chong, "Tracking ofdeformable objects." in

Proceedings ofSPIE - The International Society for Optical Engineering, 2001,

pp. 476-485.

[4] T. Bell and D. Kulp. "Longest-match string searching for Ziv-Lempel

Compression". Software - Practice and Experience, vol. 23, pp. 757-772, 1993.

[5] C. H. Bennett, M. Li, and B. Ma. "Chain Letters and Evolutionary Histories".

Scientific American, vol. 288, pp. 79-81,2003.

[6] M. Bogaert, N. Chleq, P. Cornez, C. S. Regazzoni, A. Teschioni, and M.

Thonnat, "The PASSWORDS proj e ct. " in IEEE International Conference on

Image Processing, 1996, pp. 675-678.

[7] N. Bouaynaya and D. Schonfeld, "A complete system for head tracking using

motion-based particle filter and randomly perturbed active contour." in

Proceedings of SPIE - The International Society for Optical Engineering, 2005,

pp. 864-873.

66

[8] S. Bunton, "Structure ofDMC." in Proceedings of Data Compression

Conference, 1995, pp. 72-81.

[9] S. Bunton, "Generalization and improvement to PPM's 'blending'." in

Proceedings from Data Compression Conference, 1997, pp. 426.

[10] S. Bunton, "Baye sian state combining for context models." in Proceedings of the

Data Compression Conference, 1998, pp. 329-338.

[11] M. Burrows and D. J. Wheeler. "A block-sorting Lossless Data Compression

Aigorithm". SRC Research Report, 1994.

[12] J. Canny. "Computational Approach to Edge Detection". IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1986.

[13] R. T. Chin, H.-K. Wan, D. L. Stover, and R. D. Iverson. "One-pass Thinning

Aigorithm and its Parallel Implementation". Computer Vision, Graphies, and

Image Processing, vol. 40, pp. 30-40, 1987.

[14] N. Chleq and M. Thonnat, "Realtime image sequence interpretation for video

surveillance applications." in IEEE International Conference on Image

Processing, 1996, pp. 801-804.

[15] Christias, P., "UNIX man pages: cat," [Online document], Available at:

http://unixhelp.ed.ac.uk/CGIIman-cgi?cat, 1994

[16] J. Cleary and 1. Witten. "Data Compression Using Adaptive Coding and Partial

String Matching". IEEE Transactions on Communications, vo1. 32, pp. 396-402,

1984.

67

[17] D. CoraIl, "VIEWS: Computer Vision for surveillance applications," in IEEE

Colloquium on Active and Passive Techniques for 3D Vision, vol. 8. London,

1991.

[18] G. V. Cormack and R. N. S. Horspool. "Data compression using dynamic

Markov modeIling". The Computer Journal, vol. 30, pp. 541-550, 1987.

[19] O. Depren, M. TopaIlar, E. Anarim, and M. K. Ciliz. "An intelligent intrusion

detection system (IDS) for anomaly and misuse detection in computer

networks". Expert Systems with Applications, vol. 29, pp. 713-722,2005.

[20] A. Deruyver, Y. Hode, and L. Souftlet, "Segmentation technique for cerebral

NMR images." in IEEE International Conference on Image Processing, 1994,

pp. 716-720.

[21] C. P. Diehl. "Toward Efficient Collaborative Classification for Distributed

Video Surveillance." Ph.D. Thesis, Carnegie Mellon University,

[22] A. M. Elgammal, D. Harwood, and L. S. Davis, "Non-parametric model for

background subtraction." in Proceedings of 6th European Conference on

Computer Vision (ECCV 2000), 2000, pp.

[23] E. R. Fiala and D. H. Greene. "Data compression with finite windows".

Communications of the A CM, vol. 32, pp. 490-505, 1989.

[24] B. E. Flinchbaugh and T. J. OIson, "Autonomous video surveillance." in

Proceedings of SPIE - The International Society for Optical Engineering, 1997,

pp. 144-151.

[25] D. A. Forsyth and M. M. Fleck. "Automatic detection ofhuman nudes".

International Journal of Computer Vision, 1999.

68

[26] T. Frank, M. Haag, H. Kollnig, and H. H. Nagel, "Tracking of occluded vehicles

in traffic scenes." in Proceedings of 4th European Conference on Computer

Vision (ECCV 1996), 1996, pp. 485-494.

[27] Y. Freund and R. E. Schapire, "Experiments with a new boosting algorithm," in

Proceedings of 13th International Conference in Machine Learning. Bari, Italy,

JuI. 3-6 1996.

[28] D. B. Gennery. "Visual tracking ofknown three-dirnensional objects".

International Journal of Computer Vision, vol. 7, pp. 243-270, 1992.

[29] 1. Gilchrist, "Parallel data compression with bzip2." in Proceedings of the

IASTED International Conference on ParaUel and Distributed Computing and

Systems, 2004, pp.

[30] G. Giraudon, "Edge Detection from Negative Maximum of Second Derivative."

in Proceedings oflEEE International Conference on Computer Vision and

Pattern Recognition, 1985, pp. 643-645.

[31] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee, "Using adaptive tracking

to cIassify and monitor activities in a site." in, 1998, pp. 22-29.

[32] P. C. Gutmann and T. C. Bell, "Hybrid approach to text compresion." in

Proceedings oflEEE Data Compression Conference, 1994, pp. 225-233.

[33] 1. Haritaoglu, D. Harwood, and L. S. Davis, "W: Who? When? Where? What?

A real time system for detecting and tracking people." in Proceedings of 3rd

IEEE International Conference on Automatic Face and Gesture Recognition,

1998, pp. 222-227.

69

[34] D. T. Hoang, P. M. Long, and J. S. Vitter. "Dictionary selection using partial

matching". Information Sciences, vol. 119, pp. 57-72, 1999.

[35] R. N. Horspool and G. V. Cormack, "Dynamic Markov modelling - A prediction

technique." in Proceedings 0 f the Hawaii International Conference on System

Science, 1986, pp. 700-707.

[36] P. G. Howard and J. S. Vitter. "Arithmetic coding for data compression".

Proceedings of the IEEE, vol. 82, pp. 857-865, 1994.

[37] D. A. Huffman, "A Method for Construction ofMinimum-Redundancy codes."

in Proceedings of the Institute of Radio Engineers, September, 1952, pp. 1095-

1101.

[38] A. lannino and S. D. Shapiro, "Iterative Generalization of the Sobel Edge

Detection Operator." in Proceedings - IEEE Computer Society Conference on

Pattern Recognition and Image Processing, 1979, pp. 130-137.

[39] TiVo Inc., "The TiVo Homepage," [Online document], Available at:

http://www.tivo.comlO.O.asp. 1998-2006 [February 182006].

[40] Y. A. Ivanov and A. F. Bobick, "Recognition ofmulti-agent interaction in video

surveillance." in Proceedings of the IEEE International Conference on Computer

Vision, 1999, pp. 169-176.

[41] S. Jahangir, N. Tanveer, M. Ahmad, and S. A. Khan, "Networked surveillance

system using object-centric motion-based tracking and classification." in Student

Conference on Engineering Sciences and Technology, SCONEST 2004, 2004,

pp. 106-111.

70

[42] T. Kanade, R. T. Collins, A. J. Lipton, P. Burt, and L. Wixson, "Advances in

cooperative multi-sensor video surveillance." in Proceedings, DARP A Image

Understanding Workshop, 1998, pp. 3-24.

[43] N. Kanopoulos, N. Vasanthavada, and R. L. Baker. "Design ofan Image Edge

Detection Filture Using the Sobel Operator". IEEE Journal of Solid-State

Circuits, vol. 23, pp. 358-367, 1988.

[44] D. Koller, K. Daniilidis, and H. H. Nagel. "Model-based object tracking in

monocular image sequences ofroad traffic scenes". International Journal of

Computer Vision, 1993257-281.

[45] C. Kruegel and G. Vigna, "Anomaly detection ofWeb-based attacks." in

Proceedings of the ACM Conference on Computer and Communications

Security, 2003, pp. 251-261.

[46] R. Laganiere and R. Elias, "The detection of junction features in images." in

Proceedings ofIEEE International Conference on Acoustics, Speech and Signal

Processing, 2004, pp. 573-576.

[47] G. G. Langdon. "An introduction to arithmetic coding". IBM Journal of

Research and Development, vol. 28, pp. 135-149, March 1984.

[48] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitanyi. "The similarity metric".

IEEE Transactions on Iriformation Theory, 2004.

[49] N. Littlestone. "Learning quickly when irrelevant attributes abound: a new

linear-threshold algorithm". Machine Learning, vol. 2, pp. 285-318, 1988.

71

[50] D. G. Lowe. "Robust model-based motion tracking through the integration of

search and estimation". International Journal of Computer Vision, vol. 8, pp.

113-122, 1992.

[51] Elysium Ltd. and 2KAN, "JPEG Homepage," [Online document], Available at:

http://www.jpeg.org/jpeg/index.html, 2004 [February 2nd 2006].

[52] M. Mandjes, 1. Saniee, and A. L. Stolyar. "Load characterization and anomaly

detection for voice over IP traffic". IEEE Transactions on Neural Networks, vol.

16, pp. 1019-1026,2005.

[53] D. Marr and E. C. Hildreth. "Theory ofEdge Detection". Proceedings of the

Royal Society of London, vol. B207, pp. 187-217,1980.

[54] R. Mehrotra and S. Nichani. "Corner detection". Pattern Recognition Letters,

vol. 23, pp. 1223-1233, 1990.

[55] F. G. Meyer and P. Bouthemy. "Region-based tracking using affme motion

models in long image sequences". Computer Vision Graphies, Image Proc.:

Image Understanding, vol. 60, pp. 119-140, 1994.

[56] V. S. Miller and M. N. Wegman. "Variations on a theme by Ziv and Lempel".

Combinatorial Algorithms on Words, vol. 12, pp. 131-140, 1985.

[57] V. Nair and J. J. Clark, "An unsupervised, online learning framework for

moving object detection." in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004, pp. 317-324.

[58] V. Nair and J. J. Clark, "Automated Visual Surveillance Using Hidden Markov

Models." in Proceedgins of the 15th Vision Interface Conference, May 2002, pp.

72

[59] 1. A. Noble. "Finding Corners". Image and Vision Computing, vol. 6, pp. 121-

128, 1988.

[60] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, "Pedestrian

detection using wavelet templates." in Proceedings ofIEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR 1997), 1997,

pp 192-199., pp.

[61] C. Papageorgiou and T. Poggio, "Pattern classification approach to dynamical

object detection." in Proceedings of the IEEE International Conference on

Computer Vision, 1999, pp.

[62] 1. M. S. Prewitt. "Object Enhancement and Extraction". In Picture Processing

and Psychopictorics, pp. 75-149, 1970.

[63] 1. Rissanen. "Generalized Kraft inequality and arithmetic coding." IBM Journal

ofResearch and Development, vol. 20, pp. 198-203, 1976.

[64] 1. Rissanen and G. G. Langdon. "Arithmetic coding". IBM Journal of Research

and Development, vol. 23, pp. 149-162, 1979.

[65] K. Rohr. "Recognizing corners by fitting parametric models". International

Journal of Computer Vision, vol. 9, pp. 213-230, 1992.

[66] A. Rosenfeld and M. Thurston. "Edge and Curve Detectio nfor visual Scene

Analysis." IEEE Transactions on Computer, vol. 20, pp. 562-569, 1971.

[67] E. Salari and P. Siy. "Ridge-seeing Method for Obtaining the Skeleton of Digital

Images". IEEE Transactions Systems, man and cybernetics, vol. 14, pp. 524-

528, 1984.

73

[68] K. S. Shanmugam, F. M. Dickey, and J. A. Green. "Optimal Frequency Domain

Filter for Edge Detection in Digital Pictures". IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 1, pp. 37-49, 1979.

[69] D. Shkarin, "PPM: one step to practicality." in Proceedings ofthe IEEE Data

Compression Conference, 2002, pp. 202-211.

[70] R. W. Smith. "Computer Processing ofLine Images: A Survey". Pattern

Recognition, vol. 20, pp. 7-15, 1987.

[71] A. S. Sodiya, H. O. D. Longe, and A. T. Akinwale. "Maintaining privacy in

anomaly-based intrusion detection systems". Information Management and

Computer Security, vol. 13, pp. 72-80, 2005.

[72] C. Stauffer and W. E. L. Grimson, "Adaptive background mixture models for

real-time tracking." in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 1999, pp. 246-252.

[73] J. A. Storer and T. G. Szymanski. "Data compression via textual substitution".

Journal of the A CM, vol. 29, pp. 928-951, 1982.

[74] J. Teuhola and T. Raita. "Application of a fmite-state model to text

compression". The Computer Journal, vol. 36, pp. 607-614,1993.

[75] M. Thottan and J. Chuanyi. "Anomaly detection in IP networks". IEEE

Transactions on Signal Processing, vol. 51, pp. 2191-2204, 2003.

[76] P. Viola and M. J. Jones. "Robust Real-Time Face Detection". International

Journal of Computer Vision, 2004.

74

[77] P. Viola, M. J. Jones, and D. Snow, "Detecting pedestrians using patterns of

motion and appearance," Proceedings of the IEEE International Conference on

Computer Vision. Nice, France, 2003.

[78] P. A. J. Volfand F. M. J. Willems, "Switching between two universal source

coding algorithms." in Proceedings of the IEEE Data Compression Conference,

1998, pp. 491-500.

[79] L. Wang, M. F. Ramoni, K. D. Mandl, and P. Sebastiani. "Factors affecting

automated syndromic surveillance". Artificial Intelligence in Medicine, vol. 34,

pp. 269-278, 2005.

[80] F. Wei, M. Miller, S. J. Stolfo, L. Wenke, and P. K. Chan, "Using artificial

anomalies to detect unknown and known network intrusions." in Proceedings of

IEEE International Conference on Data Mining, 2001, pp. 123-130.

[81] T. A. Welch. "A technique for high-performance data compression". IEEE

Computer, vol. 17, pp. 8-18, 1984.

[82] R. N. Williams, "An extremely fast Ziv-Lempel data compression algorithm." in

Proceedings of the IEEE Data Compression Conference, 1991, pp. 362-371.

[83] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner, "Rule-based anomaly

pattern detection for detecting disease outbreaks." in Proceedings ofthe National

Conference on Artificial Intelligence, 2002, pp. 217-223.

[84] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner, "Bayesian Network

Anomaly Pattern Detection for Disease Outbreaks." in Proceedings on

Twentieth International Conference on Machine Learning, 2003, pp. 808-815.

75

[85] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner. "What's Strange About

Recent Events (WSARE): An algorithm for the early detection of disease

outbreaks". Journal of Machine Learning Research, vo1. 6, pp. 1961-1998,

2005.

[86] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. "Pfrnder: real-time

tracking of the human body". IEEE Transactions on Pattern Analysis and

Machine Intelligence, 1997.

[87] Y. Wu, T. S. Huang, and K. Toyama, "Self-supervised learning for object

recognition based on kernel discriminant-EM algorithm." in Proceedings of the

IEEE International Conference on Computer Vision, 2001, pp. 275-280.

[88] Y. Yang and F. Ma, "An Unsupervised Anomaly Detection Patterns Learning

Algorithm." in International Conference on Communication Technology

Proceedings, ICCT, 2003, pp. 400-402.

[89] 1. Ziv and A. Lempe1. "Universal algorithm for sequential data compression".

IEEE Transactions on Information Theory, vol. IT-23, pp. 337-343, 1977.

[90] 1. Ziv and A. Lempe1. "Compression of individual sequences via variable-rate

coding". IEEE Transactions on Iriformation Theory, vo1. IT-24, pp. 530, 1978.

76

