
Dynamic behaviors for stealth game characters

by

Wael Al Enezi
School of Computer Science

McGill University, Montreal

Mar, 2024

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Doctor of Philosophy

Copyright © 2023 by Wael Al Enezi

Abstract

In video games, the significance of Non-Playable Character (NPC) behavior holds profound

implications as a fundamental aspect of crafting immersive and captivating virtual environ-

ments: NPC interactions play a pivotal role in shaping the overall player experience, be

it venturing on quests, trading resources, or engaging in combat. Within the domain of

stealth games, NPCs typically assume the role of guards, and their behavior acts as an in-

strumental factor that can either hinder or facilitate the player’s covert endeavors. In order

to accomplish this, NPCs must perform a number of complex tasks, including search, patrol,

interception, and even stealthy behavior.

The individual planning tasks of NPCs in stealth games are sufficiently complex that

behaviors are often scripted or hand-designed by expert game designers. One of the primary

concerns is striking the delicate balance between providing a satisfying level of difficulty

and ensuring the gameplay remains fair, enjoyable, and appropriately believable while being

computationally feasible in a real-time game environment. Guard patrol routes, for example,

should ensure sufficient coverage, and admit solutions at some level of difficulty, but must

also avoid becoming overly predictable to maintain an element of surprise and challenge for

players. Integrating guard patrol patterns seamlessly with level design is essential to offer

players strategic opportunities and compelling stealth experiences.

This thesis presents novel techniques for efficient, dynamic generation of dynamic guard

behaviors in stealth game contexts. We leverage the geometric properties of virtual environ-

ments, improving efficiency and believability by integrating the guards’ sensory data into

data structures that represent their coverage of the environment. We explore several design

i

variations, including the use of grids, straight skeleton roadmaps, and convex decomposition-

based approaches to enable effective dynamic patrol and search behaviors without requiring

intervention from game designers. We validate our designs quantitatively, but also through

user studies that attempt to evaluate the relative difficulty and appeal of our methods on

players. Our empirical experiments demonstrate that effective, dynamic NPC opponent be-

havior is feasible in real-time games, with different techniques generating patrol and search

patterns with distinct traits in relation to coverage, computational costs, and believability.

ii

Abrégé

Dans les jeux vidéo, le comportement des personnages non jouables (PNJ) a de profondes

implications en tant qu’aspect fondamental de la création d’environnements virtuels immer-

sifs et captivants : les interactions avec les PNJ jouent un rôle essentiel dans l’expérience

globale du joueur, qu’il s’agisse de s’aventurer dans des quêtes, d’échanger des ressources

ou de participer à des combats. Dans le domaine des jeux d’infiltration, les PNJ jouent

généralement le rôle de gardes surveillant une zone, et leur comportement constitue un fac-

teur déterminant qui peut soit entraver, soit faciliter les efforts de dissimulation du joueur.

Pour ce faire, les PNJ doivent effectuer plusieurs tâches complexes, telles que la recherche,

la patrouille, l’interception et même le comportement furtif.

Les tâches de planification individuelle des PNJ dans les jeux d’infiltration sont suffisam-

ment complexes pour que leur comportements soient souvent scénarisés ou conçus manuelle-

ment par des experts en conception de jeu. L’une des principales préoccupations est de

trouver le juste équilibre entre un niveau de difficulté satisfaisant et la garantie que le jeu

reste équitable, agréable et crédible, tout en étant réalisable sur le plan computationnel dans

un environnement de jeu en temps réel. Par exemple, les itinéraires de patrouille des gardes

doivent garantir une couverture de l’environnement suffisante et permettre des solutions à un

certain niveau de difficulté, mais ils doivent également éviter de devenir trop prévisibles afin

de maintenir un élément de surprise et de défi pour les joueurs. L’intégration harmonieuse

des schémas de patrouille des gardes dans la conception des niveaux est essentielle pour offrir

aux joueurs des opportunités stratégiques et des expériences d’infiltration captivantes.

iii

Cette thèse présente des techniques novatrices pour la génération efficace et dynamique de

comportements de gardes dans des contextes de jeux d’infiltration. Nous exploitons les pro-

priétés géométriques des environnements virtuels, améliorant ainsi l’efficacité et la crédibilité

en intégrant les données sensorielles des gardes dans des structures de données représentant

leur couverture de l’environnement. Nous explorons plusieurs variantes de conception, no-

tamment l’utilisation de grilles, de schémas de chemin de squelette droit et d’approches

basées sur la décomposition convexe, pour permettre des comportements dynamiques effi-

caces de patrouille et de recherche sans nécessiter l’intervention des concepteurs de jeux.

Nous validons nos conceptions de manière quantitative, mais aussi par le biais d’études

auprès des utilisateurs visant à évaluer la difficulté relative et l’attrait de nos méthodes

pour les joueurs. Nos expériences empiriques démontrent qu’un comportement efficace et

dynamique d’adversaires PNJ est faisable dans les jeux en temps réel, avec différentes tech-

niques générant des schémas de patrouille et de recherche présentant des caractéristiques

distinctes en termes de couverture, de coûts computationnels et de crédibilité.

iv

Acknowledgements

This journey proved challenging, yet it was made possible only through the invaluable sup-

port of numerous individuals for whom I hold profound gratitude.

To my advisor, Clark Verbrugge: Your guidance, patience, and insight have profoundly

influenced the course of my research and nurtured my intellectual development. I am forever

grateful for your support and wisdom.

To my labmates, Dipanjan, Ivan, Adrian, Quinn, and Quentin: It was a fortunate priv-

ilege to work alongside you in the lab. I will forever treasure our discussions; you brought

me more joy in being in the lab.

To my friends, Karim, Pranav, Marleen, Sara, Meray, Adel, and several others: Relocat-

ing to this city was a challenging endeavor, but you made me feel more at home. Thank you

for being there; your friendship means a lot to me.

To my family: Despite the physical distance, your constant faith and trust enabled me

to overcome the challenges in both my academic and personal journey. I owe a significant

part of my achievements to you, and I consider myself fortunate to be blessed with you.

v

Lastly, I want to express my gratitude to all those whose names might not be mentioned

but whose influence, whether small or large, has left a memorable mark on my journey.

Thank you all for being an integral part of this endeavor.

Wael Al Enezi

March 2024

vi

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

List of Figures . xxiii

List of Tables . xxvi

1 Introduction 1

1.1 Contributions . 3

1.1.1 Dynamic Guard Patrol . 4

1.1.2 Guard Search and Dialog . 4

1.1.3 Stealthy PathFinding . 5

1.2 Paper Contributions . 5

1.3 Outline . 6

2 Background 7

2.1 Games . 7

2.1.1 Combinatorial Games . 8

2.1.2 Video Games . 8

2.2 NPC . 11

2.3 Decision-making . 13

2.3.1 Reactive Behavior . 13

2.3.2 Goal-based Behavior . 17

vii

2.4 Path Planning . 27

2.4.1 Space Representation . 28

2.4.2 Pathfinding in Graphs . 31

2.5 Straight Skeleton . 41

2.6 Summary . 43

3 Guard Patrol Behavior 44

3.1 Scenario . 46

3.2 Grid-based . 48

3.2.1 Representation-Update . 48

3.2.2 Decision-Making . 49

3.3 Roadmap . 50

3.3.1 Representation-Update . 51

3.3.2 Decision-Making . 52

3.4 Space Decomposition (VisMesh) . 56

3.4.1 Representation-Update . 58

3.4.2 Decision-Making . 62

3.5 Weight Tuning . 63

3.5.1 Metric . 64

3.5.2 Grid-based . 64

3.5.3 Roadmap . 70

3.5.4 Visibility Mesh (VisMesh) . 75

3.6 Methods Performance . 80

3.6.1 Coverage Performance . 83

3.6.2 Computational Cost . 87

3.7 Summary . 90

4 Guard Patrol User Study 91

4.1 Study Scenario . 92

viii

4.2 Patrol Behaviors . 94

4.2.1 Visibility Mesh (VisMesh) . 95

4.2.2 Roadmap . 96

4.2.3 Random . 96

4.3 Experiment . 98

4.3.1 Game Level . 99

4.3.2 Guard Teams . 100

4.4 Results . 100

4.4.1 Participation . 101

4.4.2 Performance . 102

4.4.3 Enjoyment . 103

4.4.4 Difficulty . 108

4.4.5 Effectiveness . 110

4.5 Threats to Validity . 110

4.6 Summary . 111

5 Guard Search Behavior 112

5.1 Scenario . 114

5.2 Grid . 115

5.2.1 Representation-Update . 116

5.2.2 Decision-Making . 121

5.3 RoadMap . 122

5.3.1 Representation-Update . 122

5.3.2 Decision-Making . 125

5.4 Experiment . 129

5.4.1 Search Methods . 131

5.4.2 Intruder Methods . 132

5.5 Methods Performance . 133

5.5.1 Intruder Behavior . 134

ix

5.5.2 Grid . 134

5.5.3 RoadMap . 135

5.5.4 Method Comparison . 137

5.5.5 Computational Cost . 141

5.6 Summary . 143

6 Guard Search & Dialog User Study 144

6.1 Study Scenario . 146

6.2 Search Behavior . 148

6.2.1 Roadmap . 148

6.2.2 Cheating . 149

6.2.3 Random . 149

6.3 Dialog . 149

6.3.1 Abstract . 150

6.3.2 Contextual . 152

6.4 Experiment . 152

6.5 Results . 156

6.5.1 Participation . 156

6.5.2 Performance . 158

6.5.3 End-of-round Ratings . 158

6.5.4 End-of-study Ratings . 159

6.6 Threats to Validity . 165

6.7 Summary . 166

7 Stealthy PathFinding 167

7.1 Scenario . 169

7.2 Methodology . 170

7.2.1 Modelling Guard Motion . 171

7.2.2 Define the Intruder’s Risk . 175

x

7.2.3 Set the Path to Destination . 176

7.2.4 Hiding Spots Placement . 178

7.2.5 Ensuring Path Safety . 181

7.3 Weight Tuning . 182

7.4 Experiment . 186

7.4.1 Game-level Maps . 187

7.4.2 Intruder’s Behavior . 187

7.4.3 Guard Parameters . 188

7.5 Results . 189

7.5.1 Success Rate . 190

7.5.2 Map Modification . 192

7.5.3 Team Size . 193

7.5.4 Field of View (FOV) Range . 194

7.5.5 Human Comparison . 195

7.5.6 Computation Costs . 196

7.6 Summary . 197

8 Related Work 199

8.1 Guard Patrol Behavior . 199

8.2 Guard Search Behavior . 202

8.3 Player Perception . 204

8.4 Stealthy Path Finding . 206

9 Conclusions & Future Work 208

9.1 Conclusions . 208

9.1.1 Research Questions . 210

9.2 Future Work . 213

9.2.1 Guard Behavior . 213

9.2.2 Intruder Behavior . 214

xi

A Game Level Layouts 216

Glossary 223

xii

List of Figures

2.1 Screenshots from two stealth games. 10

2.2 The AI model as described by Millington in chapter 5: Decision making. [78] 12

2.3 A decision tree example of an enemy behavior in a combat game. 14

2.4 A finite state machine example for an enemy Artificial Intelligence (AI) in a

stealth game. 16

2.5 An example of Behavior Tree for the example in figure 2.3 17

2.6 An overview of MCTS. 19

2.7 An example of AI Goal-Oriented Action Planning (GOAP) system for an Non-

Playable Character (NPC) to warm itself in a cold environment by following

the steps to start a fire. 23

2.8 An overview of Hierarchical Task Network (HTN). 25

2.9 Top-down view of a map from Metal Gear Solid 1 28

2.10 An example of a triangulated map before and after using the Hertel-Mehlhorn

algorithm . 31

2.11 (a) A centroid navmesh path. (b) A navmesh path using the “simple stupid

funnel” algorithm. 34

2.12 An example of how the “Simple Stupid Funnel” algorithm works. 35

2.13 An example of hierarchical pathfinding in a simple game level. 37

2.14 Vertical or Horizontal pruning . 39

2.15 Diagonal pruning . 40

xiii

2.16 Examples of paths found by Jump Point Search (JPS). Dashed lines indicate

a sequence of interim node evaluations that reached a dead end. Strong lines

indicate eventual successor nodes. Adapted from [52] 40

2.17 Example of a straight skeleton (graph in red) of a polygon. 41

3.1 A screenshot demonstrating the prototype used in our study, as shown to

players. The walkable area is grey, the guards are navy blue dots, and their

corresponding Field of View (FOV) is the partial light blue disk. The game

level layout is from the game “Metal Gear Solid” [68], the Docks map. 47

3.2 Screenshots showing how the guard’s Field of View (FOV) affects the grid

cells. The guard is shown in navy blue, and the Field of View (FOV) is

shown in light blue. The darker the color of a cell, the higher its staleness.

This illustration depicts the shortcoming of discretizing the game level so that

areas are considered to be covered that are not covered since the center of

the corresponding cell was covered. This can be seen as a staircase effect on

diagonal grid cells. 49

3.3 A screenshot depicting the roadmap with segments separated for clarification

while their ends are connected in the implementation. The walkable area is

grey, and the segments are colored red. The game level is from the game

“Metal Gear Solid”, the Docks level [68]. 52

3.4 Screenshots showing how the guard’s Field of View (FOV) affects the roadmap

segments. 53

3.5 The guard moves through the walkable space expanding the covered region

with their Field of View (FOV). Taken from [3] 57

3.6 The green polygon represents the game level, and the blue polygon represents

the growing covered region as the guard moves. The uncovered region is

displayed as red polygons, obtained by geometrically subtracting the blue

polygon from the green. Taken from [3]. 58

xiv

3.7 Screenshots showing how the Visibility Mesh (VisMesh) calculation is done

based on the previous Visibility Mesh (VisMesh). 60

3.8 The game level layouts used in the weights tuning experiments. We designed

the warehouse layout as a game level with many junctions; the rest were from

commercial games. 64

3.9 The averages of coverage normalized time (y-axis) for each weight combi-

nation (x-axis). We omit the weight-combination labels for readability; see

tables 3.2, 3.3, and 3.4 for the top-performing combinations. Each item in

the x-axis is made up of the means of 20 120-second rounds run with the

corresponding weights. Each map has different properties that potentially

affected these results; to compare the map properties, see appendix A. . . . 66

3.10 The coverage averages normalized time (y-axis) grouped by the two cell sizes

we considered in this experiment (x-axis). The results belong to the Metal

Gear Solid: Docks map. 69

3.11 The coverage averages normalized time (y-axis) grouped by the wstaleness val-

ues we considered in this experiment (x-axis). The results belong to the

Among Us: Skeld map. 70

3.12 The averages of coverage normalized time (y-axis) for each weight combi-

nation (x-axis). We omit the weight-combination labels for readability; see

tables 3.6, 3.7, and 3.8 for the top-performing combinations. Each item in

the x-axis is made up of the means of 20 120-second rounds run with the

corresponding weights. 72

3.13 The coverage averages normalized time (y-axis) grouped by the two max

path lengths, 25%, and 100%, we considered in this experiment (x-axis). The

results belong to the Among Us: Skelt map. 75

xv

3.14 The averages of coverage normalized time (y-axis) for each weight combi-

nation (x-axis). We omit the weight-combination labels for readability; see

tables 3.10, 3.11, and 3.12 for the top-performing combinations. Each item

in the x-axis is made up of the means of 20 120-second rounds run with the

corresponding weights. 77

3.15 The coverage averages normalized time (y-axis) grouped by the max cover-

age percentage values we considered in this experiment (x-axis). The results

belong to the Metal Gear Solid:Dock map. 80

3.16 The game level layouts included in this experiment. 81

3.17 Violin charts for the patrol performance. Each violin represents the distribu-

tion of heat values at the end of a patrol scenario; higher heat values indicate

better uniform coverage. Each map represents the performance of a guard

team with a specific number, starting with three guards in the first row and

the last row for six guards. 85

3.18 The heatmaps for the Alien Isolation, Metal Gear Solid, and Warehouse game

levels for the patrol performance of a team of 4 guards. The brighter areas

reflect a higher frequency of coverage. 86

3.19 The heatmaps for the Dragon Age 2, Batman: Arkham Asylum, and Among

Us game levels for the patrol performance of a team of 4 guards. The brighter

areas reflect a higher frequency of coverage. 87

3.20 The computational performance for the three methods we defined for several

maps. The y-axis is the time the method takes in milliseconds; the range is

set in log scale. These results were gathered on an Intel® Core™ i5-7500 Pro-

cessor CPU @ 3.40GHz, 32GB RAM, AMD Radeon R9 200 Series, Windows

10 machine. 89

4.1 A screenshot of the game’s features presented to the user study participants. 93

xvi

4.2 Heat maps of a patrol shift where the guards adapted the Visibility Mesh

(VisMesh) patrol behavior. The brighter a location is, the more coverage it

got. We have already shown this heatmap in Section 3.6, but displayed here

on a larger scale for easier inspection. 95

4.3 Heat maps of a patrol shift where the guards adapted the Roadmap patrol

behavior. The brighter a location is, the more coverage it got. We have

already shown this heatmap in Section 3.6, we portray it here on a larger

scale for easier inspection. 96

4.4 Heat maps of a patrol shift where the guards adapted the random patrol

behavior. The brighter a location is, the more coverage it got. We have

already shown this heatmap in Section 3.6, but shown here on a larger scale

for easier inspection. 97

4.5 The questions asked after the end of each round. 99

4.6 Screenshots of the two questions in the game that pertain to identifying the

most entertaining team. We followed them with a similar inquiry about dif-

ficulty and effectiveness. 99

4.7 The Docks map from the commercial game Metal Gear Solid [68] 100

4.8 The numbers of players who participated in the study grouped by their re-

spective experience in video games. [6] . 101

4.9 The scores participants achieved in the study. The participants sorted them-

selves into one of four experience levels in video games. Each color represents

the round the score was achieved in. The error bars represent 95% confidence

intervals. 102

4.10 Players’ scores against the patrol method grouped by the round where they

encountered each behavior. The error bars represent 95% confidence inter-

vals. [6] . 103

4.11 Players’ rating of fun for different teams. The error bars represent a 95%

confidence interval. 104

xvii

4.12 The number of players rating patrol behaviors as most enjoyable is grouped

by the order in which the behavior appeared. The error bars represent a 95%

confidence interval. [6] . 106

4.13 The number of players rating patrol behaviors as most challenging. The error

bars represent a 95% confidence interval. [6] 108

4.14 The number of players rating patrol behaviors as most challenging is grouped

by the order in which the behavior appeared. The error bars represent a 95%

confidence interval. [6] . 109

5.1 A screenshot of the beginning of the search behavior scenario. The map shown

here is from Alien Isolation. 114

5.2 The steps of the grid propagation method. Once the intruder escapes the

guards, the algorithm expands the likelihood omnidirectionally through the

walkable space. 118

5.3 Illustration of the typical steps of the grid diffuse method, following Isla’s

approach. 120

5.4 Illustration of the typical steps of the roadmap propagation method. As the

intruder escapes, the likelihood flows through the roadmap matching their

movement speed. 124

5.5 Illustration of the typical steps of the roadmap diffuse method. Unlike the

propagation variation, the likelihood is diffused gradually through the roadmap.125

5.6 The game level layouts included in this experiment. 130

5.7 Possible hiding spots based on the angle of the corners of obstacles. 132

5.8 The overall percentage of time all search behaviors had the intruder under

detection for the different intruder behaviors. The error bars represent a 95%

confidence interval. 134

xviii

5.9 The alert time percentage for the variations of the Grid search method.

Each figure compares the effect of adjusting the guards’ team size or the

guards’ Field of View (FOV) range. The error bars represent a 95% confi-

dence interval. 136

5.10 The alert time percentage for the variations of the RoadMap search method.

The propagation variation outperformed the diffuse for all variations. The

error bars represent a 95% confidence interval. A is the diffuse method using

a path. B is the diffuse method choosing a segment. C, and D are for the

propagation variation using a path, and choosing a segment. 137

5.11 The alert time percentage for the variations of the RoadMap propagation

search method. Each figure compares the effect of adjusting the guards’ team

size or the guards’ Field of View (FOV) range, for both the path-building

and segment-choosing variations. The error bars represent a 95% confidence

interval. 138

5.12 The overall percentage of time at least two guards spent close to each other

within a distance of 1 meter during the scenario for the Roadmap propagation

variations. The error bars represent a 95% confidence interval. 139

5.13 The alert percentage for all methods over different guard team sizes for all

maps. All guards have a Field of View (FOV) of 10%. The error bars represent

a 95% confidence interval. 139

5.14 The alert percentage for all methods over different game level layouts. All

guards have a Field of View (FOV) of 10%, and the team consists of five

guards. The error bars represent a 95% confidence interval. 140

5.15 The computational performance for the Grid and Roadmap methods we de-

fined for several maps. The y-axis is the time the method takes in milliseconds,

and the range is set in the log scale. These results were gathered on an Intel®

Core™ i5-7500 Processor CPU @ 3.40GHz, 32GB RAM, AMD Radeon R9

200 Series, Windows 10 machine. 142

xix

6.1 A screenshot of the game the participants played. The player (black dot) is

in the “Lower Engine” room, while four guards are in the center area, each

with a cone-shaped, translucent Field of View (FOV). There is a coin in

the “Security” room, which represents the player’s goal. In addition, dialogue

lines are announced visually and verbally to players using the Text-To-Speech

function. 146

6.2 The Docks map from the commercial game Metal Gear Solid [68] 154

6.3 A screenshot of an end-of-round survey question. 155

6.4 The distribution of how players rated their experience in video games for both

experiments. The number of participants in the “Random” group, which con-

sisted of the participants comparing the heuristic and random guard behavior,

is 82, and the number for the other group is 72. [7] 157

6.5 The scores participants achieved in the study. The participants sorted them-

selves into one of four experience levels in video games. The error bars rep-

resent 95% confidence intervals. 157

6.6 The scores participants achieved by playing the game for the two study groups.

The error bars represent 95% confidence intervals. [7] 159

6.7 The end-of-round ratings for the participants allocated in the “Random”

group for the three aspects (enjoyment, difficulty, and naturalness). The

error bars represent 95% confidence intervals. [7] 160

6.8 The end-of-round ratings for the participants allocated in the “Cheating”

group for the three aspects (enjoyment, difficulty, and naturalness). The

error bars represent 95% confidence intervals. [7] 161

6.9 Participants’ votes for the most enjoyable teams. [7] 163

6.10 Participants’ votes for the most difficult teams. [7] 164

7.1 A screenshot of our prototype. The intruder (black dot) is tasked with reach-

ing the coin (yellow dot) without being discovered by the guards (blue dots). 169

xx

7.2 An example of how trajectories are laid out on the roadmap. Guards are in

blue, the roadmap is in yellow, and the red line segments represent possible

guard positions propagated along the graph. Each red node represents a

position along the roadmap with an associated risk value, shown in black and

white text. 175

7.3 Once nodes with high-risk values have been eliminated, the roadmap is tem-

porarily reduced. A* algorithm is then utilized to generate a secure path for

the intruder to reach the coin. The optimized path, denoted by the green

line, is obtained using the Navigation Mesh (NavMesh). 177

7.4 The green circles represent the search limits encountered during the A* search,

while the smaller yellow circles depict the possible hiding spots that the in-

truder can travel towards. 178

7.5 Black dots indicate the placement of the hiding spots, which are situated at

the corners of the walkable area. In the case of two spots within a threshold

distance, we removed them and placed one spot instead in the midpoint. This

step is done to reduce redundancy among hiding spots. 179

7.6 The green line represents a portion of the intruder’s intended path. Based

on the guard’s predicted trajectory, we anticipate possible interception points

along the intruder’s path, shown in yellow. These points are assigned a non-

zero risk value that indicates the probability of the guard spotting the intruder

at that location. Even though there are several possible interception points,

we only consider the possible interception point with the maximum risk value

per guard, which is shown in yellow with a risk value of 0.2. 182

7.7 Success rates categorized by the weights assigned to the safety threshold. The

error bars denote 95% confidence intervals. 184

7.8 Success rates by weights when the intruder was safe. 185

7.9 Success rates based on weight configurations when the intruder was in an

unsafe state. 186

xxi

7.10 The game-level maps we employed in our experiments: dr_slavers from Dragon

Age, a vectorized rendition of the map available in movingAI; Ascent from

Valorant; Metal Gear Solid: Docks, a map that has been previously used in

stealth pathing analysis [119]; Warehouse, which represents a location with

high occlusion but multiple path options; and Among Us and Alien Isolation,

adapted from the corresponding video games. 187

7.11 The success rate of the different intruder behaviors of reaching the destination

without being noticed against the different guard patrol behaviors where the

guard team size is four and their Field of View (FOV) range is 10%. 190

7.12 The success rate of the different intruder behaviors of reaching the destination

without being noticed against the different guard patrol behaviors where the

guard team size is four and their Field of View (FOV) range is 10%. 191

7.13 The maps are modified by connecting several dead-ends to create more cycles

on the map. Furthermore, we enhanced the occlusion in the “AmongUs” map

by adding obstacles in the open spaces. 193

7.14 Success rate against four guards with 10% for four maps; Alien Isolation,

Among Us, and their respective modified versions. 193

7.15 Success rate of our method against guards with 10% and different team sizes

in three maps. 194

7.16 Success rate of our method against guards with different Field of View (FOV)

ranges and a team size of four in three maps. 195

7.17 The success rate of the different intruder behaviors along with human players

of reaching the destination without being noticed against the different guard

patrol behaviors where the guard team size is four, and had a Field of View

(FOV) of range 10% for the “Among Us” game level. 196

A.1 The Docks map from the commercial game Metal Gear Solid [68] 217

A.2 A map that resembles a Warehouse layout. 218

A.3 The Skeld map from the commercial game Among Us [61] 219

xxii

A.4 San Cristobal Medical Facility from Alien Isolation [11] 219

A.5 The “dr_dungeon” map from Dragon Age 2 [15] 220

A.6 The “Ascent” map from the game Valorant [95] 221

A.7 The Arkham mansion map from the commercial game Batman: Arkham

Asylum [105] . 222

xxiii

List of Tables

3.1 The weight values for the grid-based approach and the possible value we used

in our experiments. 65

3.2 The top 10 parameter settings for the grid behavior for the Docks map, or-

dered by the mean coverage. 67

3.3 The top 10 parameter settings for the grid behavior for the Warehouse map,

ordered by the mean coverage. 67

3.4 The top 10 parameter settings for the grid behavior for the Among Us map,

ordered by the mean coverage. 68

3.5 The possible weight values for the Roadmap patrol behavior we consider in

the study. 71

3.6 The top 10 parameter settings for the roadmap behavior for the Docks map,

ordered by the mean. 73

3.7 The top 10 parameter settings for the roadmap behavior for the Warehouse

map, ordered by the mean. 73

3.8 The top 10 parameter settings for the roadmap behavior for the Among Us

map, ordered by the mean. 74

3.9 The possible weight values for the Visibility Mesh (VisMesh) patrol behavior

we consider in the study. 76

3.10 The top 10 parameter settings for the Visibility Mesh (VisMesh) behavior for

the Docks map, ordered by the mean coverage. 78

xxiv

3.11 The top 10 parameter settings for the Visibility Mesh (VisMesh) behavior for

the Warehouse map, ordered by the mean coverage. 78

3.12 The top 10 parameter settings for the Visibility Mesh (VisMesh) behavior for

the Among Us map, ordered by the mean coverage. 79

3.13 The values chosen for the grid method. 82

3.14 The values chosen for the roadmap method. 82

3.15 The values chosen for the Vismesh method. 83

4.1 The Chi-square goodness-of-fit test results of the players’ most enjoyable and

difficult behaviors. For α = 0.05 and degrees of freedom = 2, the critical

value is approximately 5.991. 104

5.1 The values chosen for the grid method. 131

5.2 The values chosen for the roadmap segment choice method. 131

5.3 The values chosen for the roadmap path building method. 132

6.1 Abstract lines a guard can use on spotting an intruder. 151

6.2 Abstract lines a guard can use to announce their intentions. 151

6.3 An example of two sets of filler abstract lines. The first row is a line initiated

by a guard, and the second is a set of replies a random guard can respond to. 152

6.4 Examples of lines for the different subgroups of contextual dialogs. 153

6.5 The guard team assigned search behavior and dialog type. Based on the par-

ticipant group, the basic search could be either the Random or the Cheating

search behavior, and the Heuristic search is the RoadMap. The order for each

participant is randomized. 154

6.6 The questions asked at the end of each round. 155

6.7 The chi-square goodness-of-fit test results of the players’ most enjoyable be-

haviors and dialogs. The sample size for comparing the cheating vs. heuristic

method is 72, and for the Random vs. heuristic is 82 participants. [7] 163

xxv

6.8 The chi-square goodness-of-fit test results of the players’ most challenging be-

haviors and dialogs. The sample size for comparing the cheating vs. heuristic

method is 72, and for the Random vs. heuristic is 82 participants. [7] 165

7.1 Average decision time for different game maps, along with the skeletal graph

edge and node count. The experiments were done on a CPU Intel(R) Core(TM)

i7-7700K CPU @ 4.20GHz with 16 GB RAM and NVIDIA GeForce GTX 1080

Ti. Dragon Age 2 dr_slavers map was imported from MovingAI. The original

map is stored as a grid of 260x315. 197

A.1 List of maps and their respective straight skeleton graph properties, accom-

panied by the grid dimensions for each map. 217

xxvi

Acronyms

AGP Art Gallery Problem

AI Artificial Intelligence

FOV Field of View

GOAP Goal-Oriented Action Planning

HTN Hierarchical Task Network

JPS Jump Point Search

NavMesh Navigation Mesh

NPC Non-Playable Character

RRT Rapidly-exploring Random Tree

VisMesh Visibility Mesh

WRP Watchmen Route Problem

xxvii

Chapter 1

Introduction

Sneaking past enemies unnoticed is common in popular game types like 3D action, first-

person shooters, and role-playing games. Games that focus on this sneaky behavior are

called stealth games. Stealth games are a genre of video games where players must avoid

detection and sneak past enemy guards to achieve their goals. Players control stealthy

characters and use tactics like hiding, silent takedowns, and disguises to complete missions

without getting caught. In the simplest form, the player is tasked with navigating from one

place to another in the game environment without being discovered by enemies.

Such games are exciting and immersive because they require careful planning and strategy

to avoid detection. Players mainly focus on finding safe paths by avoiding patrolling guards

and reaching a specific goal. Guard patrol is critical, adding depth, challenge, and realism

to the gameplay. The behavior of guards and their patrol routes directly affects the player’s

ability to stay hidden and complete objectives covertly. Game developers typically craft

guard patrol routes by placing waypoints the guards follow in a specific manner. This is a

non-trivial process as developers consider the game level design, determining the areas the

guards need to protect and the player needs to pass through. Playtesting is vital to fine-

tuning the guard patrol and observing player behaviors to ensure an engaging and satisfying

experience. The ultimate goal is to create guards challenging enough to test players’ stealth

skills but not overly frustrating, contributing to immersive and enjoyable gameplay.

1

This static approach of defining guard behaviors for each game level poses significant chal-

lenges when attempting to apply them to other levels. Each level’s unique layout, objectives,

and player interactions necessitate tailor-made guard behaviors, increasing development time

and resources for each level. Moreover, this approach proves unsuitable for procedurally gen-

erated or player-customized environments, where predefined guard behaviors might not align

with the dynamically changing layout of the game level.

Another drawback of this tailored approach is the potential oversimplification of guard

behavior. Due to performance restrictions and simplicity in design, developers may restrict

the guard patrol routines. This can reduce the game’s overall replayability value, as players

might quickly memorize guard patterns and lose the thrill of uncertainty in subsequent

playthroughs. Achieving a balance between predictability and adaptability is crucial to

maintaining an engaging and immersive stealth gameplay experience across various levels

and scenarios.

Additionally, players often have the opportunity to engage with an ally NPC, and they

naturally anticipate their ally to face similar conditions, such as being detected leads to

enemy alerts. However, creating realistic stealth actions for ally NPCs proves challenging,

as developers strive to avoid irritating players due to possibly unreliable comrades. The

prevalent technique in mainstream games involves rendering allies invisible to enemy sensors.

Although this approach lessens player annoyance from incompetent allies, it undermines

player immersion when they realize their comrade remains unseen by enemies even after

being spotted. A potential solution to address both concerns lies in enhancing the covert

pathfinding capabilities of allied NPCs, thereby providing a more immersive and enjoyable

stealth experience for players.

Implementing dynamic stealth behaviors offers several advantages, including reduced

development time and costs. Game developers can leverage this approach to craft engaging

and varied stealth-based behaviors, such as patrol patterns, search routines, and covert

pathfinding. Furthermore, dynamic stealth behaviors serve as valuable tools for prompt

2

testing during game level design, enabling developers to assess and fine-tune the challenges

presented to players, ensuring a satisfying and appropriately balanced gaming experience.

This thesis explores the feasibility of employing computational techniques to generate

dynamic behaviors in stealth game scenarios, eliminating the need for human intervention.

By employing diverse methods to abstract the game level layout, we introduce several ap-

proaches for dynamic patrol and search behavior for guards, leveraging the game level’s

structure. The effectiveness and appeal of these methods are evaluated through two user

studies, assessing their enjoyability and level of challenge. Furthermore, we explore poten-

tial techniques to enhance player satisfaction even with relatively simple behaviors. Lastly,

we develop and implement a novel stealthy path planning method, simulating the player’s

role in identifying a covert path while navigating the game level. This method can help in

creating more reliable Non-Playable Characters (NPCs) as companions and in testing the

difficulty of guard behavior.

1.1 Contributions

Within the realm of gaming, stealth covers a wide range of concepts. A common core

feature in stealth games is how the enemy patrols the space to challenge the player’s task

of remaining hidden. However, when the player is spotted, many games end the game with

failure, but most will result in an enemy chase. At that point, as the player hides, the enemy

starts searching to find them again. This search behavior is essential in providing the player

with another layer of challenge. On the other side, in many stealth games, players may

have companion NPC, and to improve their immersion and cooperation with them, they are

expected to be reasonably reliable in being hidden from the enemy.

In this thesis, we delve into three core features of stealth games. We investigate the

intricacies of crafting dynamic guard patrols, their search behavior after detecting the player,

and the art of stealthy pathfinding around guards with non-static patrol routes.

3

1.1.1 Dynamic Guard Patrol

Stealth games present the challenge of avoiding detection by patrolling guards who search

for intruders. Designing guard motion patterns is complex, especially for procedurally gen-

erated levels, where hard-coding routes can limit replayability and design flexibility. In our

work, we try to answer the following questions. What are the possible ways to pro-

duce real-time dynamic patrol behavior, and how different are they in terms of

efficiency and computational cost? Do these behaviors contribute to the over-

all enjoyment of the game?, and What general traits in patrol behavior affect

player enjoyment? Part of this work was published in two conference papers at Artificial

Intelligence and Interactive Digital Entertainment (AIIDE) 2020 and 2023 [3, 6].

1.1.2 Guard Search and Dialog

When spotted, players may have to avoid guards and hide, either to achieve game objectives

or to evade combat. After the player breaks the line of sight, guards start a search behavior,

often relying on simplistic strategies that can be perceived as unfair or unrealistic. Guards

may possess complete information about the player’s position despite hiding or exhibiting

artificial search patterns undermining their intelligence. To improve that, developers may

use simple techniques, like predefined dialog lines. The questions we aim to answer are: Is

it possible to create a feasible, credible, and interesting but still solvable dy-

namic guard search behavior? Can players distinguish complex search tactics,

and how does their perception of this relate to presentation components, like

simulated spoken interactions from the NPCs? This resulted in two conference pa-

pers at Conference on Games (CIG) 2021 [4], and at Artificial Intelligence and Interactive

Digital Entertainment (AIIDE) 2023 [7].

4

1.1.3 Stealthy PathFinding

Stealth or covert navigation is a common requirement in various action and role-playing

games, where players must traverse game levels while avoiding detection by enemy agents.

While this obligation mainly rests on the player, finding a computational solution becomes es-

sential for game design, testing, and enhancing the immersive experience provided by stealthy

companions or other non-playable characters (NPCs) that require an algorithmic approach.

Our work aims to answer the following questions. How can we create stealthy pathfind-

ing accommodating guards with non-deterministic patrol patterns? What are

the different aspects of the game level or guard team that can affect the success

of this method? The findings from this research were presented in a conference paper at

the ACM SIGGRAPH Conference on Motion, Interaction, and Games (MIG) [5].

1.2 Paper Contributions

This thesis resulted in five conference papers, where I was the primary author for each

paper, and my advisor, Clark Verbrugge, provided editorial and presentation assistance.

The following publications:

[3] Al Enezi, W., and Verbrugge, C. Dynamic guard patrol in stealth games. In Proceed-

ings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(2020), vol. 16, pp. 160–166.

[6] Al Enezi, W., and Verbrugge, C. Evaluating player experience in stealth games:

Dynamic guard patrol behavior study. In Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (2023), vol. 19.

[4] Al Enezi, W., and Verbrugge, C. Skeleton-based multi-agent opponent search. In

2021 IEEE Conference on Games (CoG) (2021), IEEE, pp. 1–8.

[7] Al Enezi, W., and Verbrugge, C. Investigating the influence of behaviors and dialogs

on player enjoyment in stealth games. In Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (2023), vol. 19.

5

[5] Al Enezi, W., and Verbrugge, C. Stealthy path planning against dynamic observers.

In Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games

(2022), pp. 1–9.

1.3 Outline

This thesis is constructed as follows. Chapter 2 reviews background material about games,

the main actors within games, their decision-making, and pathfinding techniques. Chapter 3

describes our work in creating and empirically evaluating dynamic patrol for multi-agent

scenarios. After that, in Chapter 4, we describe our user study in evaluating the user

experience in playing against these methods. In Chapter 5, we expand some of our methods

to cover multi-agent search for an adversary by utilizing the level layout to guide the search

efforts. As a follow-up, in Chapter 6, we further expand on that behavior by coupling it with

two dialogs, one with contextual information and one without. We describe our user study

to evaluate the impact of dialog type on the user experience when playing against the search

behaviors. After that, we focus on the other side of the stealth scenario. In Chapter 7, we

detail our method for planning stealth paths against guards with non-deterministic motion

in explored environments. In Chapter 8, we review the previous work relevant to this thesis

in literature. Finally, in Chapter 9, we describe our conclusions and outline future work.

6

Chapter 2

Background

The research documented in this thesis spans various computer science domains, including

artificial intelligence, robotics, and planning—additionally, geometry from mathematics.

In this chapter, we begin with a brief overview of games, providing definitions of combina-

torial and video games, as discussed in Section 2.1. Following that, in Section 2.2, we present

the various types of virtual characters that inhabit games. Subsequently, we delve into two

fundamental aspects of these characters. Firstly, in Section 2.3, we explain the techniques

employed to enable characters to make decisions within games. Secondly, we describe the

mechanisms by which characters navigate the game environment, moving from one location

to another, as outlined in Section 2.4. Lastly, in Section 2.5, we clarify the straight skeleton,

which is the essential concept in geometry that serves as a foundation for our research.

2.1 Games

A game is an activity guided by principles or rules. It requires skill, knowledge, or luck

where one or more individuals compete or collaborate to achieve a particular objective [113].

Games have been extensively studied and analyzed in various aspects. Combinatorial games,

which are deterministic in nature, have received the most attention in literature [86]. In

7

contrast, video games are a relatively newer form of games that offer various designs and

play experiences.

2.1.1 Combinatorial Games

Combinatorial games are turn-based and perfect information games, where all players have

complete knowledge of the game state and all possible moves available. They also have

clear and well-defined rules and goals and are typically designed with balance and fairness.

Examples of combinatorial games include chess, checkers, Go, Nim, and Tic-Tac-Toe.

These games are commonly played between two-player games by sequentially taking

turns making actions until the game reaches a terminal state [50]. These games are typically

deterministic, which means the outcome depends solely on the current position of the game

and the moves made by the players, without any element of chance involved. Additionally,

combinatorial games typically have a finite number of states, and each state can be reached

by one or more exact sequences of actions taken by the players.

The structure of these games makes it possible to evaluate the possibility of a player win-

ning according to the game state. These games have been extensively studied in mathematics

and computer science, and researchers have developed various techniques and algorithms to

analyze their properties and strategies for optimal play [36].

2.1.2 Video Games

Video games differ from combinatorial games in several aspects. They are digital, interactive

experiences played on electronic devices, offering immersive graphics, typically real-time pre-

sentation, and various input methods. Video games provide dynamic interactivity, ranging

from simple to complex gameplay mechanics, often involving elements of chance or random-

ness.

In general, video games or computer games provide a means of amusement that permits

a user to engage with a simulated world through an electronic medium, such as a gaming

console or a personal computer. The users, generally called players, operate input to control

8

one or more entities in the virtual setting to achieve one or more objectives providing players

with entertainment and challenge [113].

Games can vary in the type of challenge presented to players, and therefore, they can

be classified into various genres. A game genre serves as a collective term for games that

share similar characteristics in terms of player perspective, limitations, or nature of the

challenge. For instance, games that test a player’s reaction time are categorized as action

games, whereas those that immerse the player in a storyline are known as adventure games.

Additionally, games can be classified according to the player’s perspective, such as first-

person games, which enable players to experience the game world through the eyes of the

entity they control [123]. On the other hand, games that provide a visual viewpoint rendered

from a fixed distance at the back and slightly above the controlled entity are referred to

as third-person games [37].

Defining and classifying various genres of computer games is an ongoing area of research.

This thesis, however, centers on the stealth genre. In stealth games, the player takes charge

of a character whose objective is to reach a specific location within an environment without

being detected by enemies. This constraint is an optional feature in several games, like

Tenchu [1], where the player takes the role of a ninja tasked with infiltration missions behind

enemy lines. Other games force players to adopt a stealthy approach like the game Vol-

ume [33]. Figure 2.1 shows a screenshot of these two games.

9

(a) Tenchu: Stealth Assassin [1]. The player character is shown hiding behind
a wall from a non-suspecting guard.

(b) Volume [33]. The player character (dark-colored) avoids the guards(white).
Their senses are modeled as a Field of View, represented in bright stripes.

Figure 2.1: Screenshots from two stealth games.

10

In game worlds, characters commonly engage with each other, and they can be broadly

classified into two categories: playable characters, controlled by a player, and NPCs con-

trolled by a form of Artificial Intelligence (AI). The interplay between these two types of

characters constitutes the fundamental gameplay of many games.

2.2 NPC

NPCs are characters that players cannot directly manipulate. They exhibit certain actions

that influence how players approach the game. Consequently, NPCs can be categorized into

three primary roles within a game [75]:

• Opponents: The most prevalent role of NPCs in games is to provide a direct challenge

to the player. For example, opponents in stealth games can be guards that the player

must avoid and hide from, or, in combat games, the characters the player must defeat.

• Allies: They are NPCs that can either aid players in attaining their objectives, such as

teammates in sports games, or present an indirect challenge, like a companion requiring

protection.

• Background characters: These NPCs are distributed throughout the game world, like

pedestrians, merchants, or villagers. These characters exhibit no inclination to support

or impede the player’s advancement toward their objective.

In general, NPCs exhibit specific behaviors intended to serve a particular purpose within

the game, such as attacking or aiding the player. Additionally, they may display neutral

actions that contribute to the player’s immersion and the appearance of their intelligence,

such as the ability to converse with each other or displaying natural-looking animations like

a guard smoking a cigarette or yawning. The behavior and interaction of NPCs with the

player is typically controlled by an AI.

The concept of game AI encompasses a wide range of functionalities that empower agents

to navigate the virtual world, execute specific animations, and primarily, make informed

11

decisions about which actions to take. Generally speaking, the AI model can be represented

and formalized as illustrated in figure 2.2.

Figure 2.2: The AI model as described by Millington in chapter 5: Decision making. [78]

In the game world, NPCs rely on the world interface to gather information about

their surroundings, such as their location and the player’s health status. This information is

then processed by the Execution management system. Game AI can be structured into

multiple levels, with each level controlling either a single NPC (Character AI) or a group

of NPCs (Group AI). The latter can develop a strategy for a group of NPCs to follow,

such as the “Commander AI” in Killzone 3 [104]. Character AI defines an individual NPC

behavior, or in the context of group AI focuses on lower-level actions, such as planning a

path for an NPC to reach a specific location on the game level. The decisions made by the

AI are then translated into animations or motions that adhere to the game world’s rules and

physics.

The primary objective of game AI is to enable NPCs to exhibit a semblance of intelli-

gence, thereby presenting players with an adequate level of challenge, immersion, and en-

12

tertainment [20]. To accomplish this goal, game developers employ various decision-making

systems.

2.3 Decision-making

Decision-making refers to selecting an action from a range of available options for an NPC,

which could involve attacking a character, seeking cover, searching, or performing an ani-

mation, among other things. The purpose of each action that an NPC performs should be

to achieve one or more objectives, such as challenging the player by attacking them, seeking

cover when under attack from the player, or using scripted animations to enhance the realism

of the NPCs.

Generally, decision-making or AI in video games have relatively unique objectives. It

should be sufficiently effective, so with prolonged interaction with the player, it can provide

a sense of intelligence. At the same time, it is expected to be efficient to run in real-time,

and finally, it should be easily tunable and debuggable.

The decision-making process in games can be broadly classified into two approaches: re-

active and goal-based. Reactive AI involves an agent responding to the environment by

following a predetermined set of rules. On the other hand, goal-based behavior involves the

agent seeking out the optimal action to achieve a specific objective and then determining the

sequence of actions required to accomplish that goal.

2.3.1 Reactive Behavior

In this behavior, the designer controls the agent’s actions to respond to specific environmental

stimuli [130]. The most basic version of this approach involves conditional statements, which

can be represented as decision trees.

13

Decision Trees

Decision trees involve an agent following a hierarchical structure to determine its actions

based on observations from the environment. At each internal node of the tree, a decision

is made based on the agent’s observation, directing the agent to one of its children nodes,

which can either be another decision node or an action to execute. The decision-making

process begins at the root of the tree and concludes at a leaf node, which represents an

action. For example, a simple enemy AI in a combat game can be modeled using a decision

tree as illustrated in figure 2.3. Depending on the enemy’s health status, their actions will

vary. If their health drops below 20%, they will attempt to heal themselves using a first

aid pack if one is accessible; otherwise, they will seek shelter for safety. Conversely, if their

health exceeds 20%, they will initiate an attack against the player.

Figure 2.3: A decision tree example of an enemy behavior in a combat game.

Decision trees are known for being quick, simple, and easy to read. They can also be

constructed incrementally, adding additional decisions as the agent is tested in the game.

The new decisions are nested under existing nodes as child nodes, and the corresponding

actions are linked to them.

14

State Machines

State machines are an alternative decision-making structure used in games, particularly for

designing AI where an agent maintains a specific action until a trigger or event causes a

change in behavior [46]. In the context of games, these state machines are commonly known

as Finite State Machines (FSMs).

Finite State Machine are usually depicted using directed graphs, where nodes represent

different states that contain information about specific tasks, such as attacking or patrolling.

The edges in the graph indicate transitions between these states. Transitions are determined

by specific conditions that, when fulfilled, cause the agent to transition to a new node. While

the agent is in a given state, it performs a sequence of actions specified for that state.

During execution, the agent’s current state is monitored, and potential transitions from

that state are continuously evaluated to determine whether any of them are triggered. The

agent immediately moves to the next state when a transition is triggered. For instance, in a

stealth game, we can use this method to create enemy AI. The enemy starts by patrolling the

area, and when they spot an intruder, they begin chasing them. If the intruder disappears

from sight, the enemy will search until they find them again and resume the chase. This

behavior is illustrated in figure 2.4. The black dot is the initial state the NPC starts from

at the beginning of the game.

Designers are often drawn to using FSMs for agents due to their simplicity in design,

implementation, and debugging. However, as the complexity of the behavior increases, the

FSM graph becomes more difficult to modify, particularly when managing a large number

of nodes and transitions. Another method can be used to model transitions between a finite

set of tasks using a tree hierarchy.

Behavior Trees

Behavior trees (BTs) offer a modular approach to designing AI in games, which makes it more

accessible for non-programmers to create agent behavior using a graphical user interface.

15

Figure 2.4: A finite state machine example for an enemy AI in a stealth game.

Unlike FSMs, BTs are composed of behaviors rather than states [130]. These building

blocks, called tasks, are organized into sub-trees to achieve more complex behaviors. Each

task has a designated result, typically success or failure.

In BTs, the leaves can be either conditions or actions. Conditions are nodes that evaluate

whether a condition is true in the game, such as the agent’s health being below a threshold or

an enemy being visible. Actions are nodes that impact the game state, such as animations,

pathfinding, or item usage. The internal nodes of BTs are composite nodes, which combine

the previous conditions and actions into sub-trees to form more complex behaviors. There

are two primary types of composite tasks: selector and sequence tasks. If we redesign the

example illustrated in figure 2.3 into the format of a behavior tree, we can modify it as shown

in figure 2.5. In general, every time a decision needs to be made, the execution starts from

the root node.

This sample demonstrates the various types of tasks and composite nodes in a behavior

tree. As can be observed, composite tasks always serve as the internal nodes of a behavior

tree, while actions and conditions are the leaves set up in a fixed order. The node repre-

sented by a circle with a question mark is a selector task, which executes the tasks under it

sequentially. If any of the underlying tasks are executed successfully, the selector returns a

16

Figure 2.5: An example of Behavior Tree for the example in figure 2.3

flag indicating successful execution. The sequence task, represented by a rectangle with a

horizontal arrow, requires all of its child tasks to be successfully executed for it to return a

success flag. If any of the child tasks fail, the sequence task will return a fail flag.

Behavior trees can be extended by adding more elements to increase their functionality.

However, since BTs do not possess state-based representation, implementing the agent to

respond to external events can be challenging. This complexity arises due to the need for

more nodes to enable the agent to be interrupted by external triggers.

While reactive behaviors focus on responding to stimuli conditions, they tend to neces-

sitate a complex model to enable the agent to reason and plan for achieving a long-term

objective. This issue is more effectively addressed through the use of goal-based behaviors.

2.3.2 Goal-based Behavior

Behavior that considers a particular goal or desired outcome is known as Goal-Oriented

Behavior. In this type of behavior, the agent is responsible for achieving a goal or a set of

goals by selecting from a range of available actions and executing the most promising one.

However, as game situations become more intricate, choosing an action from a set may not

lead to convincing or reasonable behavior. In such situations, there may be a need to devise

a sequence of actions that would reasonably enable the agent to achieve a goal or a set of

17

goals. In game design, tree search, Goal-Oriented Action Planning (GOAP) and Hierarchical

Task Network (HTN) have traditionally been utilized to tackle this issue [88].

Tree Search

Although a human can design an agent’s behavior, it is also feasible for the agent to au-

tonomously generate a broader range of possible states by using algorithms that consider

the current state of the world and the available actions.

This approach creates a tree-like structure in which each node represents a possible state,

and the edges represent the possible actions that can be taken. For instance, in a game of

chess, the positions of the pieces constitute a world state that serves as a node in the tree,

and the available actions represent the branches. As a result, the AI system becomes a search

problem where the agent must identify the most efficient sequence of actions to achieve a

desired state.

There are two types of search algorithms: uninformed and informed. In an uninformed

search, the algorithm lacks knowledge of the goal, and examples include depth-first search

and breadth-first search. On the other hand, an informed search involves an algorithm that

has an understanding of the goal state. One of the most popular informed search algorithms

is A* [53].

Although A* has demonstrated its usefulness as a search method, it becomes increasingly

exhaustive and demanding as the agent’s available actions expand, and the game states

become more complex. Consequently, this hinders the agent’s performance since it requires

significant time to search for the optimal plan. For example, in the game of Go, each state

has an average branching factor of 300, making it challenging for A* to be effective. To solve

this problem, a new search method called Monte Carlo Tree Search was developed, which

has significantly enhanced the agent’s performance in Go games [22].

Monte Carlo Tree Search The MCTS algorithm has proven to be effective in tackling

the issue of searching through games that have a high number of possible moves. Rather

18

than exploring all potential paths, it focuses on identifying and exploring the most promising

ones. To accomplish this, the algorithm employs a random gameplay strategy from a given

path to the game’s endpoint, keeping track of whether the result is a victory or a loss.

MCTS works by simulating multiple random playthroughs to estimate the value of dif-

ferent actions and guide the search toward promising branches. It builds a tree structure

representing the possible actions and their outcomes, expanding and updating the tree as the

search progresses. Through a combination of exploration and exploitation, MCTS focuses

on areas of the search space that have shown positive outcomes in previous simulations. By

iteratively expanding the tree, simulating random playthroughs, and updating the statis-

tics of visited nodes, MCTS gradually converges towards more informed decisions. The

algorithm balances exploring unexplored paths and exploiting promising actions, allowing it

to find good solutions in large and uncertain decision spaces. The algorithm functions by

repeatedly executing four key stages in a continuous loop, illustrated in figure 2.6.

Figure 2.6: An overview of MCTS.

1. Selection: An unexplored node is chosen and traversed from the root node until a leaf

node is reached. The selection of a path to an unexplored node is guided by the Upper

19

Confidence Bound 1 (UCB1) search heuristic, which is computed using formula 2.1 for

the node i.

wi

ni

± c ∗
√

ln Ni

ni

(2.1)

In this context, wi is the number of wins possible from node i, and ni signifies the

number of times node i has been visited; by using these two values, we get the win

rate of node i. c is a constant that can be tuned to encourage the selection to explore

new nodes or exploit promising nodes. Ni is the number of times the parent of the

node i is visited in previous iterations.

2. Expansion: Once a node has been chosen, it is marked for expansion, and the algo-

rithm randomly selects one of the available actions to create child nodes.

3. Simulation: Once a new node has been expanded, the simulation begins by randomly

executing actions until a terminal node is attained. The outcome is recorded for the

terminal node, so if it is a win, w will be +1; otherwise, if it is a loss, then it will be

−1.

4. Backpropagation: The results of the simulations are propagated up the tree to

update all parent nodes up to the root. This process involves recording the win rate

to inform future selection steps.

Although random rollout simulations offer an impartial estimation of the game state, the

algorithm may not always reach a terminal state within a reasonable timeframe. In such

situations, utilizing a state evaluation function with a restricted number of simulation steps

can prove useful.

MCTS has demonstrated its effectiveness, and its forward sampling feature has allowed

the agent to mimic human-like behavior by selecting the most promising lines of play. How-

ever, the method faces challenges when confronted with graphs with high branching factors

and depths, particularly in real-time video games that require a systematic approach for

20

incorporating knowledge to constrain the subtree to be explored [22]. Nonetheless, MCTS

has excelled in real-time video games with limited action sets, such as controlling the pro-

tagonist in Pac-Man, as evidenced by its first-place finish in the 2012 IEEE Conference on

Computational Intelligence and Games (CIG’12, Granada, Spain) [93]. As game complexity

increases, however, MCTS’s limitations become more apparent. For instance, in Real-Time

Strategy (RTS) games such as “StarCraft”, MCTS may underperform due to the game’s in-

tricate nature and MCTS’s reliance on randomness for rollouts to evaluate preferable future

states [26, 87].

Goal-Oriented Action Planning (GOAP)

Game AI has incorporated various techniques from the field of robotics to generate intelligent

behavior that appears realistic [24, 51, 126]. One such example of a technique derived from

robotics is GOAP, which is founded on the STRIPS planning architecture [43]. It enables

agents to create a sequence of actions on the fly to attain a goal.

GOAP involves an agent specifying a particular goal or set of goals it wishes to accom-

plish. The agent then searches through a set of actions to develop a plan using a planner,

which it subsequently executes to bring itself closer to its goal. The fundamental components

of GOAP are:

• World State: The state of the world is typically presented as a vector of values that

describe various components of the world’s condition, such as the distance to the goal

position or the enemy’s health.

• Goals: The central aspect of GOAP is a goal or a set of goals. They define the

high-level intentions or tasks the agent should plan and act upon. Goals are typically

represented as predicates in the world state.

• Actions: A set of actions is assigned to the agent, with each action containing pre-

conditions that indicate the conditions necessary for executing the action and effects

that determine how accomplishing an action will impact the state of the world. These

21

preconditions and effects are presented in relation to the world state. Additionally,

each action can have an evaluated cost, which the planner considers when selecting an

action. Each action with its preconditions and effects is encapsulated to ensure that

they are considered independently of other actions, making adding or removing actions

into this system simpler.

• The Planner: To generate a plan, the planner assesses the state of the world. This

state is represented as a vector that can be compared to the preconditions and effects

of the actions. The planner explores the actions to develop a plan that leads to the

desired goal state. In contrast, a brute-force search through the actions can be utilized;

employing a more targeted approach, such as A* is generally preferable. Using a

targeted search requires the creation of a reliable heuristic that directs the search

toward more promising states of the world.

• Plan Execution: Upon creating a plan, the agent commences its execution, request-

ing a new plan once the entire plan is executed or if one of its actions fails by failing

the preconditions check. If a plan fails, the planner records the present state of the

world as a vector and employs it as the root node to establish a new plan.

Figure 2.7 presents an illustration showcasing the structure of a GOAP. In this scenario,

an NPC’s current state is depicted, reflecting their feeling of coldness, while their desired

state is to feel warm. To accomplish this objective, the planner examines the available actions

and determines a sequence of actions that will lead to the desired state. Each action has its

own set of prerequisites and effects on the world state. These actions are independent of each

other, lacking any defined connections. The planner explores these actions to discover a plan

that enables the agent to change the world state to the goal state of attaining a warm body

temperature. The process begins with the agent selecting and picking up an axe, followed

by using it to chop down a tree. Subsequently, the agent retrieves the wood and utilizes it

to start a fire, ultimately resulting in the agent’s warmth.

22

(a) The start and goal states are in rectangles, and actions are shown in round rectangles.

(b) The planner found a plan. It is shown as a directed graph so the NPCs can follow the specified
sequence to reach the goal state.

Figure 2.7: An example of AI GOAP system for an NPC to warm itself in a cold environ-
ment by following the steps to start a fire.

23

As a result of the dynamic nature of the environment, frequent replanning is necessary

due to the continuous alteration of the world state. This leads to a greater computation

requirement when compared to BTs and FSMs. However, this approach results in an agent

behavior that is more realistic in its attempts to achieve its predetermined goals without

necessitating the creation of a complex BT or FSM. The modular structure of GOAP allows

for greater flexibility in employing various agent types with distinct attributes to attain a

goal with reduced development overhead. This is accomplished by defining a distinct set of

actions for each agent type. For instance, in an action game, all guards can attack or move,

but only the stronger guards can lift objects or obstacles. As such, stronger guards have

additional actions available to them.

Hierarchical Task Network (HTN)

GOAP generally utilizes A* search or brute-force approach to determine the set of actions

to be taken to achieve the goal. Due to the planner’s frequent re-execution of this search

process, the computational expense of maintaining the replanning task increases.

HTN employs a top-down forward-decomposition search to generate a plan, resulting in

a faster planning method. The hierarchical action structure facilitates this process.

24

Figure 2.8: An overview of HTN.

The main components of HTN are illustrated in figure 2.8. The agent is fed with data

from sensors to represent the world state. The planner then traverses the HTN Domain in

a depth-first search to create a sequence of tasks. To assign a task, its preconditions are

compared with a copy of the world state. The effects of the task are applied to that world

state copy. Finally, the planner runner executes the tasks.

• World State: The agent captures and interprets information from the environment

through its sensory architecture, which enables it to form a representation of the world

state. Similar to GOAP, the world state is expressed as a vector of properties.

• HTN Domain: The hierarchy of actions the agent can follow is represented by the

HTN Domain, which comprises compound and primitive tasks. Compound tasks re-

fer to a task that can be accomplished by different methods, each of which includes

preconditions and a list of sub-tasks. These sub-tasks may include either compound

tasks, primitive tasks, or a combination of the two. On the other hand, primitive tasks

pertain to a task with preconditions and effects on the world state once executed.

25

• The Planner: The planner’s objective is to generate a sequence of primitive tasks for

the agent to execute. When the agent initiates the planning process, it begins at the

root node. It performs a depth-first search to construct the plan, recursively choosing

composite tasks while ensuring their preconditions are met. The preconditions are

verified by comparing them with the encoded world state, and the expected world state

is updated based on the outcome of the set of primitive actions that each composite

action reduces to. Therefore, the expected world state is compared to the preconditions

of the next task. Several types of planners affect how a plan is constructed; the most

commonly used ones are SHOP [82] and SHOP2 [83].

• The Plan Runner: Once the plan is formalized, the plan runner executes the list of

tasks while checking that each task’s preconditions are still met. However, if an action

fails during execution, the planner is requested to replan, and the process starts again

from the root node of the HTN domain. If the agent does not reach the goal state

after executing the plan successfully, the planner creates a new plan to follow.

HTNs have improved planning performance over GOAP due to the efficient search en-

abled by the task hierarchy. However, the domain hierarchy for HTNs is built manually,

unlike GOAP, where the actions and goals are listed, and the planner searches for the opti-

mal plan. The hierarchical search for HTN allows the planner to create partial plans in the

event of frequent game state changes, where plans are scrapped. Instead, partial plans can

be executed, reducing the overhead in replanning and improving performance.

Utility Based System

Utility theory is not exclusive to games but is widely utilized across various fields, such

as game theory and economics. The fundamental idea behind utility theory is that every

feasible action or decision in a given model can be expressed numerically as a utility value,

which reflects the degree of desirability of the decision in a particular scenario. For instance,

when an enemy agent is low on health, they may assign a higher utility value to taking cover

26

rather than attacking the player to sustain themselves. Conversely, an enemy agent with full

health may prioritize attacking, assigning it a higher utility value, as they can afford to lose

more health [47].

Usually, the utility is normalized over the available options. This is to make it easier to

compare the utilities of these options. Generally, the action with the highest expected utility

is chosen. This is known as the principle of maximum expected utility [97].

Our work focuses on two primary structures: finite-state machines and utility-based

systems. These two are relatively simple and fulfill the planning criteria outlined in this

thesis. Finite state machines are useful for designing AI in which an agent remains in a

particular state until a trigger or event prompts a transition to a different state [46]. In

contrast, utility-based systems assign a numerical score to each available action at a given

moment and then select one of the actions with the highest score.

2.4 Path Planning

Path planning typically finds the shortest path to a position on the goal map while avoid-

ing collision with any obstacles; however, other restrictions can be enforced, like reducing

exposure to enemies in shooter games [21]. NPCs accomplish path planning in two main

steps. In the first step, they create a simplified graph of nodes and edges corresponding to

the game level. In the second step, they construct a path on that graph and translate it to

the game level.

The graph creation depends on how the traversable space is represented in the game.

In Section 2.4.1, we describe two of the most common space representation methods. After

abstracting the game level into a graph data structure, a search algorithm is applied to the

graph to generate a path for the NPCs to follow. Section 2.4.2 describes the major search

algorithms.

27

2.4.1 Space Representation

To effectively represent a game level for pathfinding, the map geometry, and the NPC’s

movement properties are encoded as vertices and edges of a graph. The process of associating

the graph with the game’s continuous world is known as localization [78]. The resulting graph

will be used for the NPC’s path planning. The main representation methods are as follows.

Grids

In this method, the game level is represented as a grid of nodes in 2D. Every node is assigned

to a position in the game level and connected to the adjacent nodes on the grid. However, as

game levels tend to include obstacles or holes, nodes that fall in these positions are considered

untraversable and have no edges connected to them. Figure 2.9 shows an example of a grid;

The hollow dots represent traversable nodes, while the black nodes are non-traversable.

Figure 2.9: Top-down view of a map from Metal Gear Solid 1

28

Grid graphs may simplify the space representation task, but this method has limitations.

The NPC’s movement model is restricted to be either vertical or horizontal, called Manhattan

movement, where it has 4-way movement [32]. Sometimes a diagonal movement is possible,

giving the agent an 8-way movement. Such models are called Chebyshev or, in case of having

different weights to diagonal movement, Octile movement. These models prevent the NPC

from planning a flexible, believable trajectory and reaching specific locations not localized on

the grid. However, it is possible to tune the grid to be more fine-grained to closely represent

real terrain and obstacles [74]. For example, in a coarse-grained grid, a large obstacle, such

as a boulder, may occupy only one cell, leading to imprecise planning. However, by tuning

the grid to be more fine-grained, the same obstacle can span multiple cells, accounting for

its actual shape and size, enabling the agent to plan more accurate and safer paths. Fine-

grained grids may improve NPCs’ mobility but will result in a larger graph, which can be

expensive to compute.

Navigation Meshes

The limitations of grids can be overcome by more accurate representations of the game

level. A method, initially used in robotics, created a graph free-space representation by

decomposing the world’s space into convex regions labeled as “meadow areas” [9]. This

method is more commonly known as “navigation meshes” in video games [102].

Navigation meshes (known as navmesh) represent the game level’s traversable space in

convex polygons. The reason for partitioning the space to convex polygons is that if two

points are on the same polygon, they can be connected by a straight line, so having these

polygons as the building blocks of a graph will simplify navigation. Each polygon represents

a node on the graph, and the nodes are connected if their corresponding polygons share

edges. Since edge-sharing determines the connectivity of a node, the maximum number of

connections a node has will depend on the number of edges in that polygon [78].

29

Navmesh Construction The process of setting up navmeshes is more complicated than

grids. Changes in them tend to be expensive and challenging to implement due to their de-

pendency on the world’s geometry. Alternatively, they could be hand-drawn by the designer

or automatically generated.

In the case of automatic navmesh generation, the initial step is to obtain a convex decom-

position of the walkable surfaces in a game world. Each convex region is the building block

of the navmesh. Eventually, a path can be built across these convex regions. A conceptually

simple approach to convex decomposition is partitioning the space into triangles. In the case

of 3D games, it is possible to obtain the walkable triangles from a given triangular mesh

representation of the space by filtering the triangles with their normals facing up. However,

if we only had the map’s geometry, we could use various polygon triangulation algorithms.

Perhaps the most straightforward approach is a brute force approach, repeatedly adding

internal edges “diagonals” as long as there are no edge intersections. However, a brute-force

approach with complexity O(n3) could be computationally expensive. More efficient methods

use polygonal properties, such as Meister’s ear-clipping algorithm [76], which takes advan-

tage of the fact that every simple polygon of more than three vertices has at least two “ears”.

An “ear” is the three adjacent vertices that form an interior triangle and do not contain

any other vertices. The complexity of this method is O(n2). More efficient solutions, such

as plane sweep, are possible but are significantly more complex [100]. Additionally, there is

even a more efficient triangulation algorithm presented with linear complexity, however, it

is more complex and only theoretical [27].

The number of convex polygons determines the complexity of path planning; the fewer

convex polygons there are, the simpler it is to plan a path. In the case of a triangulated

space, the resulting navmesh is usually suboptimal in the sense of being over-partitioned, and

the world could be represented by merging the triangles to form larger convex shapes. This

will require fewer polygons to represent the game space. A common method for merging

triangles is the Hertel-Mehlhorn algorithm [118]. Figure 2.10 shows an example of the

30

convex partitioning phases. The input is a triangulated navmesh, and after using the Hertel-

Mehlhorn algorithm, the polygon is partitioned into fewer polygons.

Figure 2.10: An example of a triangulated map before and after using the Hertel-Mehlhorn
algorithm

The algorithm iterates over the internal edges and removes “inessential” diagonals. An

inessential diagonal is an internal line between two vertices, which, if removed, the resulting

polygon will remain convex. Hertel-Mehlhorn runs in linear time and guarantees no more

than four times the number of optimal convex polygons.

After partitioning the space, each convex polygon is considered a node in a graph, and

its edges are the links to the adjacent polygons.

The NavMesh method provides a more accurate space representation since the NPC’s

movement is not restricted to two or three axes, like in grids. The resulting graph of this

representation is relatively sparse compared to grids. This gives a NavMesh approach a

performance boost in path planning, so we need less memory and computation power.

2.4.2 Pathfinding in Graphs

After translating the game level to a graph, it is possible to create a plan for the NPC to

follow to reach its goal. The process of associating an NPC’s position on the game level with

the graph is known as quantization. From a quantized starting point and goal location, an

algorithm is run to establish a path on the graph, and then it is translated back to the game

31

level coordinates for the NPC to follow. The main algorithms used for pathfinding are as

follows.

Dijkstra

This algorithm was originally used to solve the shortest path in graph theory [39]. This

algorithm aims to find the shortest paths from a starting node to every node on the graph.

Dijkstra’s algorithm search behavior starts from the initial node and spreads to the

neighboring nodes while keeping a record of the shortest paths to each visited node. Dijkstra’s

algorithm iterates on every node, adding the adjacent nodes to a list of “to-be-visited” nodes.

It updates the lowest cost from the starting node to each node. After updating all the

neighboring nodes, the current node is moved to the “visited” nodes list. A new current

node will be chosen, and the new current node is the one with the least cumulative cost from

the start node. As the algorithm expands the search through the nodes in the graph, the goal

nodes should be found, and the path to the goal is backtracked to the start node returning

the shortest path. This search will return the shortest path; however, it is computationally

expensive because it does not have an intuition to guide the search toward the goal. The

algorithm’s worst case is O(n log n + e), where n is the number of nodes and e is the number

of edges.

A*

Dijkstra’s algorithm may provide the shortest path to a node; however, it finds it by naively

expanding its search in the surrounding space. It lacks an “intuition” to guide the search to

nodes that are most likely to be on the path to the goal node. A* came up with a solution

to this shortcoming. It originally came from the project “Shakey the robot” [85].

In Dijkstra’s algorithm, the criteria for choosing the next current node is the cumulative

cost to that node. This makes the search unguided; however, A* provides a heuristic h(n)

to determine the direction of its search [54]. The algorithm’s performance relies on this

heuristic, which estimates how far the goal node is. Equation 2.2 shows the heuristic A*

32

uses to pick its next “current node”; g(n) is the cumulative cost to a specific node n, and

h(n) is the heuristic of the node. This heuristic represents the estimated distance to the goal

node. The most commonly used heuristic is the Euclidean distance to the goal node.

The complexity of the algorithm depends on the heuristic it uses. The heuristic will allow

it to limit the branching factor in a search to reach the goal. Given the path length is b, and

the maximum number of edges per node is d, the complexity would be O(db). A* guarantees

finding the optimal solution (i.e., the path with the lowest cost) if the heuristic function is

admissible (never overestimates the cost to reach the goal).

f(n) = g(n) + h(n) (2.2)

Pathfinding in Navmesh After abstracting the game level into a graph, given the source

and destination points, a path can be found using one of the graph search algorithms men-

tioned before. Each node maps to a polygon, and each pair of polygons in that path includes

a shared edge that marks the transition between them. The final path is then constructed by

ensuring a feasible, local path between each shared edge. A trivial approach to doing this is

to connect the midpoint of each shared edge to the centroid of each of the polygons sharing

that edge. As each polygon is convex, this connection is guaranteed to be obstacle-free,

and by connecting the start and endpoints to the first and last shared edges, respectively, a

complete path can be realized. Figure 2.11.a shows an example of a navmesh path through

centroids.

33

Figure 2.11: (a) A centroid navmesh path. (b) A navmesh path using the “simple stupid
funnel” algorithm.

More advanced methods reduce the jaggedness in the output path by avoiding the need

to connect the entry and exit of a polygon through the centroids while still ensuring obstacle

edges are not clipped. An example is the “simple stupid funnel” algorithm [79]. It is based

on the metaphor of pulling a piece of string internal to the polygon taught between the start

and destination points. It incrementally constructs a path, creating a “funnel” based on the

bounds given by the need for the string to pass through the next shared edge. Subsequently,

smaller shared edges reduce this window, contracting it to a single point when the path

necessarily goes around a corner. Figure 2.11.b shows the path generated for the previous

example.

To better understand how it works, Figure 2.12 shows how the path was constructed

using this algorithm in the context of triangulation. The funnel algorithm only considers

the vertices on the inner edges. The vertices of the first internal edge mark its funnel sides,

with the source point as the funnel’s apex, as seen in (b). First, it checks if the left and

right vertices are inside the funnel; if so, the left side is moved to the next vertex and then

rechecks if both sides are still inside the funnel, as shown in (c). If so, the right vertex is

moved to the next, and so on. However, if the next right vertex is to the right of the right

side, it skips that vertex. For example, in (c), the right side is on vertex H, and the next is

G, but G is to the right of the right side, so it skips to vertex F, which is on the left of the

34

right side. Once a vertex is detected outside the funnel, like in (d), the funnel arms cross

one another. The vertex on the other side is added as a node to the path and marked as the

new apex of the funnel. The vertices of the next internal edge are the sides of the funnel.

The algorithm repeats until the destination point is reached, as shown in (g).

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2.12: An example of how the “Simple Stupid Funnel” algorithm works.

35

Hierarchical Pathfinding (HPA*)

This method divides the world into levels of detail by grouping original graph nodes into

linked local clusters [19]. The world is represented in multiple levels of detail for the game’s

space. For example, an agent wants to go from one room inside a building to another in a

different city. First, the agent generates the overall plan of reaching the goal city and then

plans the path that satisfies the overall path on the higher-level graphs. After reaching the

goal city, it plans the path to the goal street and, finally, the goal building.

Figure 2.13 shows a top-down view of a game level with obstacles shown as black polygons.

The method starts a topological abstraction from the whole level by dividing it into clusters.

The grouping is done by dividing the world into rectangles; one rectangle is considered a

cluster. The cluster size can, of course, be adjusted. Next, it identifies the cluster connec-

tions. A cluster connection is specified in the common border of two adjacent clusters. As a

tile on the cluster border is selected, the symmetrical tile is linked to it on the other cluster.

Eventually, every connection tile should be on the cluster’s border and has a symmetrical,

obstacle-free tile connected to it from the adjacent cluster as shown in Figure 2.13.b.

36

(a) The game level is divided into clus-
ters.

(b) Game level with cluster connections
shown as grey rectangles.

(c) Top 3 clusters in the game level showing the cluster connections
as blue dots and the intra-edges as black lines connecting the dots.
To reduce clutter, not all intra-edges are shown.

Figure 2.13: An example of hierarchical pathfinding in a simple game level.

Figure 2.13.c shows the top left 3 clusters in this example. The blue nodes represent the

cluster connections. The entrances to each cluster are on its borders. Each obstacle-free

border segment has an entrance or two, depending on its length. The entrances are then

added as nodes along with the connection between them. Since these connections link two

clusters, they are referred to as inter-edges. The length of an inter-edge is considered to be

1. The connections inside the same cluster are referred to as intra-edges. Their length is

computed by the shortest path inside the cluster.

When an agent provides the start and goal nodes, they are inserted into the abstract

graph. So each node is linked to all entrances of its cluster. Then A* is used to find the

path between these points on the abstract graph. For cases where extra hierarchy levels

37

are required, multiple levels of clusters can be implemented to refine the graph further.

Although HPA* decreased computation in large and complex game spaces compared to A*,

it increased path jaggedness due to rerouting through cluster connections, resulting in less

efficient paths.

Pathfinding can be further optimized by making assumptions about the game space. Jump

Point Search (JPS) is such an approach, being one of the most efficient search algorithms.

However, it also brings some caveats regarding the game space.

Jump-Point Search (JPS)

This algorithm introduced a more optimized search performance than A*. However, it can

only be used in a limited world representation. JPS is restricted to work on grid-based game

spaces that have uniform-weight distance cost [52]. It considers symmetry and reduces the

search to more promising nodes and prunes nodes that are not part of the optimal path.

In general, instead of considering exploring the eight neighbor nodes like A* does, JPS

eliminates several of those nodes trivially to reduce the redundant exploration.

To understand how JPS prunes unnecessary nodes, we can simplify the possible movement

on the grid as either horizontal/vertical or diagonal. In the first case, Figure 2.14 shows

two possible horizontal expansion cases. The cell x is the current node, and p(x) is the

node’s parent. When considering which neighbors of x to expand, it pruned p(x) because it

previously expanded it. In the open space pruning, JPS also pruned nodes 1 and 7 because

they could be optimally reached through p(x). It also prunes 2 and 8 for the same reason;

they are optimally reached through p(x) instead of passing through p(x), x, and then either

of these nodes. Nodes 3 and 9 can be reached from p(x) through 2 and 8 at the same cost as

via x, so we also ignore that redundant path. This leaves node 6 as the next node to expand;

we refer to it as a natural neighbor. As for the case of an obstacle, Figure 2.14.b shows a

case of an obstacle above x. This forces us to consider node 3 since the cheapest route to

it necessarily passes through x, and it will be added for expansion later. In this case, node

38

3 is referred to as a forced neighbor. Other configurations of obstacles are handled on a

case-by-case basis.

(a) Open space pruning (b) Pruning with obstacle

Figure 2.14: Vertical or Horizontal pruning

As for the diagonal movement, similar simplifying assumptions are made. Figure 2.15

shows two examples of diagonal movements. In open space pruning, nodes 4 and 8 are

ignored because they can be reached optimally from p(x). The same applies to nodes 1 and

9 because they can be optimally reached without passing through x. This leaves nodes 2,

3, and 6 as natural neighbors. Here, node 6 will be expanded horizontally, 2 vertically, and

3 diagonally. The expansion is done vertically and horizontally, then diagonally. As for the

presence of obstacles, similarly to the horizontal movement, the neighbor of x next to the

obstacle, which is node 1, is added as a forced neighbor.

Figure 2.16 shows examples of how JPS considers the interesting nodes that can be part

of the optimal path to a goal. In (b), we can see that nodes x, k, and o are added as natural

neighbors since they are on the optimal path to the forced neighbors w and n. Natural

neighbors are the nodes that remain after the vertical and diagonal pruning. Generally, the

algorithm expands through a straight path, so at a specific node, it only considers those

nodes that can be optimally reached through that node. A diagonal node that can only be

optimally reached through a current node due to an obstacle is added as a jump-point. Jump-

points are thus those points where the search is recursively restarted.

39

(a) Open space pruning (b) Pruning with obstacle

Figure 2.15: Diagonal pruning

JPS starts a recursion horizontally until it finds a node that should be added as a jump-

point to search from, like the node y in figure 2.16.a. Node y is added as a jump-point since

z is optimally reached through it. Once the recursion fails to find the goal from the current

node, the search restarts from the added jump-point nodes.

(a) Horizontal case (b) Diagonal case

Figure 2.16: Examples of paths found by JPS. Dashed lines indicate a sequence of interim
node evaluations that reached a dead end. Strong lines indicate eventual successor nodes.
Adapted from [52]

JPS introduced some improvement over A* because it restricts the nodes considered

in the search. However, unlike A*, its application lies only in uniform-cost grid world

spaces [52].

40

2.5 Straight Skeleton

In games, geometry holds significance within the realm of video games. Our work incorpo-

rates a geometric concept called the straight skeleton. The straight skeleton is a geometric

concept that describes the evolving shape of an object as it undergoes a shrinking or eroding

process. It is obtained by continuously shrinking the original shape inward until it disap-

pears while tracing the boundaries of the successive offsets [16]. The straight skeleton has a

similar data structure called the medial axis. It has several distinctions, like using curves in

its presentation, etc [71].

The straight skeleton can be represented as a set of line segments that connect the

evolving corners of the original shape. These line segments trace the boundaries of the shape

as it shrinks, capturing the topological changes that occur during the process. Figure 2.17

shows an example of a straight skeleton of a simple polygon.

Figure 2.17: Example of a straight skeleton (graph in red) of a polygon.

Several methods can be used to draw straight skeletons [2, 28, 59]. This work uses a

method that discretizes the game world into a grid [84]. This method simplifies a polygon into

a binary image so that each pixel is flagged as walkable or un-walkable. The implementation

41

of this approach is relatively straightforward, facilitating its adoption in our work. Here is a

summary of the steps involved in this method:

1. Create Distance Transform: The distance transform calculates the distance of

each pixel in an image to the nearest boundary of a shape or object. This results in a

grayscale image where each pixel value corresponds to its distance from the boundary.

It resembles an elevation heatmap where the higher the distance transform of a cell,

the higher its elevation.

2. Find Skeleton Components: Using the distance transform values, it is possible to

find several essential points for constructing the skeleton, like local maximums, saddle

points, or humps. Local maximums represent groups of pixels with the highest dis-

tance transform. Saddle points are locations within the distance transform where the

distance values are neither minimal (close to the boundary) nor maximal (far from the

boundary). Instead, they are situated between the lowest and highest distance val-

ues. Saddle points often occur at points where two or more pixels in an image are close

to each other, creating a “saddle” or low point between them. They can be significant

in determining the connectivity and relationships between different points. Humps are

regions within the distance transform that exhibit elevated distance values. These re-

gions typically correspond to protrusions or outlying areas on the object’s boundary.

In the distance transform, humps represent areas where the distance from the object’s

boundary is relatively higher, indicating that these areas are farther from the center.

3. Connect Skeleton Components: The skeleton components are then modeled as

nodes and are connected by expanding towards other visible nodes. This creates a

rough skeleton shape. After that, the final skeleton structure can be obtained by

simplifying the resulting graph to essential nodes and edges.

The straight skeleton of a polygon is a two-dimensional graph that maintains the original

polygon’s connectivity and comprises straight line segments that link points on the polygon

42

or the edges of the straight skeleton itself. This structure finds various applications, such

as the design of buildings [107], road networks [125], and urban planning [58]. In general,

the straight skeleton of a polygon possesses numerous properties that render it useful for

geometric analysis.

2.6 Summary

In this chapter, we provided the background relevant to this dissertation. We formalized the

concept of games and described into the various types of NPCs that inhabit them. Following

that, we discuss the techniques involved in decision-making and path planning within games.

In the subsequent chapter, we explain our approach to formulating dynamic guard patrol

behavior in stealth games.

43

Chapter 3

Guard Patrol Behavior

In stealth games, a key challenge involves evading detection by guards, who typically patrol or

move through an area searching for intruders. Guard motion patterns are context-dependent

and difficult to design, particularly for procedurally generated game levels. While commer-

cial games often hard-code guard patrol routes, this approach can limit replayability and

design flexibility. Therefore, dynamically generating patrol routes is a desirable solution

that reduces design effort and allows for unique guard behavior in each playthrough.

Guard patrols serve as obstacles and challenges for players to overcome, adding a layer

of difficulty by introducing potential threats and raising the stakes. Players are required to

strategize and devise methods to navigate through or bypass patrols without being detected.

The patrol routes are composed of a sequence of waypoints or areas that guards traverse.

These routes are strategically designed to cover specific or significant areas within the game

level, aiming to challenge players and prevent them from passing through unnoticed.

To address the challenge of designing guard patrol routes in stealth games, we formalize

patrol route construction in terms of “staleness”. This involves partitioning the game level

into n regions or points and assigning a staleness value si to each region. The staleness value

increases over time and is reset when a patrolling guard observes the region. The objective is

to create a patrol route that minimizes overall staleness. This approach has been previously

44

used to measure patrol performance for robots [64]. By minimizing staleness, guards can

effectively cover the game level and increase the game’s difficulty for players.

In this chapter, we explore three distinct approaches to automating the construction

of patrol routes for multiple agents. Our design seeks to provide guard AI with various

representations of the game world, which can be achieved by modeling the relative staleness

of areas in the game level. This can be done using one of three approaches: a typical discrete

grid-based context, similar to the use of occupancy maps in exploration problems [24, 62,

81]; a straight skeleton graph-based approach that emphasizes the map’s primary structure;

or a mesh-based spatial decomposition. Each method has its own set of advantages and

disadvantages, such as differing levels of complexity, efficiency in creating patrol behavior,

and computational cost. By exploring these approaches, we aim to identify the most effective

solution for automating multi-agent patrol route construction in stealth games.

We conduct experiments to evaluate our approaches to automating patrol route con-

struction for multiple agents. We test various parameters that influence the decision-making

processes with the different world representations across multiple game levels created in

Unity3D. Our experimental results indicate that the approaches exhibit similar behavioral

characteristics but differ in terms of runtime performance. These results illustrate that in a

gaming context, the creation of efficient, dynamic patrols covering game levels can be realized

through various approaches for modeling the game environment. The primary contributions

of this chapter include:

• We describe three approaches to dynamic, runtime patrol route construction, us-

ing either a simple grid-based, a straight skeleton-based, or a more flexible space

decomposition-based model. Our techniques apply to both defining patrol routes for

good level coverage as well as for solving specific exploration problems.

• We empirically evaluate and compare these approaches using multiple game maps

inspired by commercial video games. Implementation within Unity3D shows that all

45

approaches are relatively effective, but two can be efficiently realized in a real-time

game environment.

This chapter is organized as follows: In Section 3.1, we introduce the standard scenario

that we use to assess the effectiveness of our patrol route construction methods and the

primary metric used to evaluate their performance. Next, in Sections 3.2, 3.3, and 3.4, we

provide a comprehensive description of the patrol methods that we developed. Afterward, we

outline our experimental setup. Section 3.5 involves setting the parameters for each method

and comparing the performance of the three methods against a basic, inexpensive baseline

patrol approach. Finally, in Section 3.6, we present the results of our experiments, including

the patrol performance metrics and the computational resources required by each method

when implemented in our system.

3.1 Scenario

To test our methods, we developed a test-bed prototype as a top-down stealth game. The

level is represented as a simple polygon with holes; the interior of this polygon defines the

walkable area. An arbitrary number of NPCs are spawned on the walkable area; we refer

to these NPCs as guards. Each guard has a visual sensory represented as a partial disk of a

fixed range and angle commonly referred to as Field of View (FOV).

The guards have a fixed movement and rotation speed to move around the game level.

The patrol behavior is defined by the way these guards move to secure the game level from

any unwanted entities that can pass through. Figure 3.1 shows a screenshot of our prototype

developed in Unity3D. The scenario begins with the guards spawning on the game level for a

set time and concludes when the designated time ends. Although there are many parameters

that can affect performance, we discuss them in later sections.

Researchers use the percentage of the area covered to evaluate exploration performance

in robotics [92]. Regarding patrol, previous work in robotics studied patrol performance. It

used the uniform coverage of the area as a heuristic, assuming that the more evenly robots

46

Figure 3.1: A screenshot demonstrating the prototype used in our study, as shown to play-
ers. The walkable area is grey, the guards are navy blue dots, and their corresponding FOV
is the partial light blue disk. The game level layout is from the game “Metal Gear Solid” [68],
the Docks map.

surveyed the area, the more effective their patrol behavior is [64]. We follow the same method

to assess the dynamic patrol performance quantitatively.

In the following sections, we introduce the three patrol methods we created. Each method

comprises two main steps, so during the game, the method iterates between these two steps

until the end of the scenario. The first step is representation-update: this is important to

reflect the changes in the world state so that as guards move, we have an up-to-date repre-

sentation of the game level that considers the previous actions. The second step, decision-

making, is where the guards decide to plan their paths in the game level based on the specific

representation of the game level.

47

3.2 Grid-based

This method relies on representing the game level in a grid to track how frequently guards

cover the corresponding area. To do that, we discretize the game level into a grid of cells

of fixed dimensions, where each cell is either walkable or non-walkable. To measure the

individual coverage of cells, we associate each cell with a numerical value that indicates the

time passed since it was last covered by a guard’s FOV; we refer to this value as staleness.

For simplicity, we considered a cell to be covered once its center point is in the FOV of a

guard. All guards always share the same data and use it to plan their subsequent patrol

trajectory.

3.2.1 Representation-Update

At every time timestep, we update the cells’ staleness according to algorithm 1. In general,

when a cell is in one of the guards’ FOV, we update the last time it is seen. Subsequently,

the staleness is the normalized duration a cell has gone unseen relative to other cells. This

results in a staleness value between 0 and 1, with 0 representing the most recently seen cell

(depicted in a bright color) and 1 indicating the cell unseen the longest (depicted in black).

Figure 3.2 shows an illustration of this representation.

Algorithm 1 Grid staleness update
Require: Nwalkable, the cells in the walkable area.

1: for each n ∈ Nwalkable do
2: if IsVisibileByGuard(n) then
3: n.lastSeenT ime← t
4: end if
5: end for
6: toldest ←Min(Nwalkable)
7: tnewest ←Max(Nwalkable)
8: for each n ∈ Nwalkable do
9: n.staleness← (n.lastSeenT ime− toldest)/(tnewest − toldest)

10: end for

48

(a) (b)

Figure 3.2: Screenshots showing how the guard’s FOV affects the grid cells. The guard
is shown in navy blue, and the FOV is shown in light blue. The darker the color of a cell,
the higher its staleness. This illustration depicts the shortcoming of discretizing the game
level so that areas are considered to be covered that are not covered since the center of the
corresponding cell was covered. This can be seen as a staircase effect on diagonal grid cells.

3.2.2 Decision-Making

After the grid representation is updated, each idle guard will choose a cell to cover. Once

a guard selects a specific cell, it uses the Navigation Mesh (NavMesh) to find the shortest

path toward that cell. As soon as the guard surveys the designated cell, it requests a new

target cell. The goal of the guards is to lower the overall staleness of the grid.

To consider other factors in choosing the suitable cell to cover other than its staleness,

each guard picks their target cell based on a numerical value; we call it fitness. The fitness

value is a weighted average of the corresponding cell properties, including its staleness value,

path distance from the guards, and path distance from the guard itself. Equation 3.1 shows

how the fitness of a cell n is calculated.

f(n) = n.staleness ∗ wstaleness + (1−NormalizedDistance(n, g)) ∗ wdistance

+DistanceClosestGuard(n, g) ∗ wseparation

(3.1)

49

The function NormalizedDistance(n, g) returns the shortest path distance between a

guard g and cell n. In addition, the distance is normalized by dividing by the game level

diameter. For efficiency, we precalculate the game level diameter by comparing the shortest

path distances between the interior corners of the game level, and then we choose the longest

path distance. Our calculation serves as an approximation to the longest shortest path be-

tween any two locations in the game level. DistanceClosestGuard(n, g) returns the shortest

normalized path distance of the closest guard to cell n, given that guard is not g. The path

distances are calculated using the NavMesh. As for wstaleness, wdistance and wseparation, each

is a value between 0 and 1. Each weight controls how influential a property is to the overall

fitness of a cell to a guard. These properties are:

• Cell staleness: The staler a cell, the more urgent it is for a guard to cover it. The

corresponding weight is wstaleness.

• Path distance (NormalizedDistance(n, g)): This property indicates if closer cells are

more desirable or vice versa. The corresponding weight is wdistance.

• Closest other guard distance (DistanceClosestGuard(n, g)): Improving coverage ef-

ficiency requires guards to increase the time they spend away from each other and

spread across the game level. Selecting cells farthest from other guards may offer

better separation and improved coverage. The corresponding weight is wseparation.

The weights serve as adjustable variables in the fitness equation and are set by the user.

In section 3.5, we examine the impact of modifying the weights on the coverage performance.

3.3 Roadmap

Maintaining a grid representation incurs costs as every cell must be updated at every time

step. The need for more cells increases with larger game levels, making it computationally

challenging and potentially infeasible. We introduce an alternative approach that requires

50

fewer units for updates by using a rough approximation of the game level rather than a

precise grid representation.

We simplify the game level into a planar graph representation, which we name the

roadmap, by using the straight skeleton of the game level, explained in section 2.5. This

abstraction allows us to reach any point on the walkable space on the game level. The intent

is that covering it with guard FOVs will likely cover a significant portion of the game level.

The coverage performance heavily relies on the range of the guard FOVs, and it is typical

for commercial video games to set the FOV to a limited range. For our experiment, we set

the guard FOVs to 10% of the longest side of the bounding box of the game level. Setting

the range of the FOV as a portion of the game level dimension rather than a fixed length

will scale the FOV’s range according to the size of the game level. We defined this value to

match the radius of guard FOV in commercial games like “Metal Gear Solid”. Future tests

can be done to measure the impact of how FOV’s range affects patrol performance.

We further discretize the roadmap by dividing its edges into shorter segments with a fixed

length so each segment can fit into a guard’s FOV. Then each segment is associated with a

numerical value that ranges from 0 to 1, which reflects its staleness. This reflects when a

guard last covered this segment. The discretization step allows us to separate the staleness

value between the different segments to better approximate the covered areas. Figure 3.3

shows an example of a game level with the roadmap rendered.

As with the grid representation, guards share the roadmap to help them decide their

future moves. Similarly, the main steps of this approach are updating the presentation and

making decisions for the guards.

3.3.1 Representation-Update

As the guards move throughout the game level, they aim to cover the roadmap segments,

reducing their staleness, a value between 0 and 1. As the guard approaches a segment, the

length of the non-visible portion of the segment decreases until it reaches 0, at which point

its staleness is reset to 0 and considered covered. At each time step, the staleness of the

51

Figure 3.3: A screenshot depicting the roadmap with segments separated for clarification
while their ends are connected in the implementation. The walkable area is grey, and the
segments are colored red. The game level is from the game “Metal Gear Solid”, the Docks
level [68].

segments is increased by a fixed rate, then normalized to preserve the relative difference

between them. Finally, the segments are adjusted if they intersect with or are contained

within the guards’ FOV. Figure 3.4 illustrates how a guard’s FOV affects the segments.

3.3.2 Decision-Making

Once the roadmap is updated, any inactive guard will request a plan for their next move.

In this representation, we have defined two types of plans. In the first one, the guard selects

a segment and finds the shortest route to it using the NavMesh. In the second, the guard

creates a complete path to cover a group of segments in sequence rather than just selecting

destination segments. The motivation for the latter is to consider the path taken instead

of a single segment. We first explain the first variation, where the guards simply choose a

destination to cover, and then we explain the other alternative of building a complete path.

52

(a) The guard is moving and covering
the segments with its FOV. As this is
happening, the segment that partially
falls in the FOV shrinks in length until
it is completely covered by the FOV.

(b) Once the segment is fully covered
by the FOVs, its staleness is set to
0. The screenshot shows those seg-
ments with non-zero staleness in red,
and those with 0 staleness are removed.

Figure 3.4: Screenshots showing how the guard’s FOV affects the roadmap segments.

Choosing a Destination

Similar to the grid representation, we evaluate the fitness of a segment by computing the

weighted average of its properties and assign the segment with the highest fitness to the next

available idle guard. Equation 3.2 shows how the fitness is calculated.

f(s) = s.staleness ∗ wstaleness + (1−NormalizedDistance(s, g)) ∗ wdistance

+DistanceClosestGuard(s, g) ∗ wseparation

(3.2)

These properties are similar to those described in section 3.2.2.

Building a Path

In this plan, the guards plan a complete path instead of just a destination segment. Upon

a guard determining a path, the relevant line segments are updated such that when other

guards plan their path, they select line segments with fewer or no guards traversing through

53

them. This is expected to promote the separation between guards not only at the destination

but along the whole path.

Algorithm 2 details how we achieve path construction for a guard. In summary, GetClos-

estSegmentOnRoadMap(g, S) returns the closest segment in the roadmap to guard g (line

9); It represents the start segment of the potential path to be built. After that, similar to

Dijkstra’s shortest path algorithm, we build a path by exploring the path with the highest

total utility by expanding out from the guard’s location. However, we stopped expanding

the search if the total distance reached the defined limit (lines 13-15). We expand the search

by iterating through the connected segments to the current segment and update the possible

highest total utility it can reach along with the total distance to reach it (lines 16-23). After

the search is over, we backtrack the path from the segment with the highest utility to the

start (lines 30-32).

As the acquired path follows the roadmap, we refine it by removing extra nodes and opti-

mizing going around corners using the NavMesh while keeping its overall abstract trajectory.

We explore the impact of setting the maximum search distance in section 3.5.

A guard will select a path for their next plan based on its overall utility, which is

the sum of individual utilities of the segments along that path. The utility of a segment

“GetUtility(s)” is the weighted average of its properties. This method relies on the values

of the following properties and global variables:

• MAX_DISTANCE: This is the max length of the constructed path. This is usually

set as a percentage of the game level diameter.

• Segment staleness: The staleness of a line segment refers to the duration since any of

the guards have covered it. A value of 1 denotes that it is the oldest line segment that

is yet to be covered, while a value of 0 signifies that it has just been covered.

• Guards portion: For every segment, we will save the count of guards that intend to

cross it. We standardize this count by dividing it by the number of guards in the game

level.

54

Algorithm 2 Roadmap decision making for a guard
1: function GetPath(S,g) where S is the group of segments in the roadmap, g is the

guard requesting a path.
2: open_list← {}
3: best_segment← null
4: for Every segment s in S do
5: s.path_utility ← 0
6: s.path_parent← null
7: s.total_distance← 0
8: end for
9: n← GetClosestSegmentOnRoadMap(g, S)

10: open_list.enqueue(n)
11: while open_list is not empty do
12: cs ← open_list.pop()
13: if cs.total_distance >= MAX_DISTANCE then
14: break
15: end if
16: for Every non-visited neighbour segment s of cs do
17: utility ← GetUtility(s)
18: total_utility ← utility + cs.path_utility
19: if total_utility > s.path_utility then
20: s.path_utility ← total_utility
21: s.path_parent← cs

22: s.total_distance← cs.total_distance + s.length
23: end if
24: open_list.enqueue(s)
25: end for
26: if best_segment.path_utility < cs.path_utility then
27: best_segment← cs

28: end if
29: end while
30: if best_segment is not null then
31: return GetSimplifiedPath(best_segment)
32: else
33: return null
34: end if
35: end function

55

• Connectivity: This represents the count of segments that are linked to a specific seg-

ment. This attribute may prioritize paths that traverse highly connected segments.

To standardize this value, we divide the number of connected segments by 10, which

we consider the maximum count of connections that a segment can have according to

our preliminary testing for the game levels we considered.

• Passing guards threshold: It’s a binary attribute that influences sguardP ortion. The first

option is “ACTUAL”, in which sguardP ortion holds its value as defined. The second

choice is “MAX”, where sguardP ortion is set to 1 when one or more guards pass through

and 0 when no guards are crossing the segment.

Equation 3.3 shows how the utility of a segment is calculated. The weights “w” for the

corresponding properties are values set between 0 and 1. We explore the impact of these

weights in section 3.5.

GetUtility(s) = sstaleness ∗ wstaleness + sguardP ortion ∗ wguardP ortion + sconnectivity ∗ wconnectivity

(3.3)

3.4 Space Decomposition (VisMesh)

The roadmap results in fewer units requiring updates compared to the grid representation.

This is by simplifying the game level into a simpler graph, meaning that covering the graph

may provide less coverage of the game level than with the grid representation. In this section,

we define a method that aims to achieve a low count of units to update while maintaining a

complete representation of the game level.

This method relies on utilizing the geometry of the game level and decomposing it into

smaller units that get covered as the guards move around. As the guards patrol, the space

is further decomposed to reflect the changes caused by their motion. To understand this

better, we explain the components of this approach:

56

• Game level region: The game level is represented as a simple polygon with holes.

Guards move inside the interior while aiming at covering the walkable space.

• Covered region: As guards move through space, we geometrically union the set of

polygons formed by their FOV. The covered region represents the exact area guards

have covered since a point in time. Figure 3.5 shows an example of a guard moving in

the game level and expanding the covered region as a result of this motion.

Figure 3.5: The guard moves through the walkable space expanding the covered region
with their FOV. Taken from [3]

• Uncovered region: If we geometrically subtract the covered region from the game level

region, we obtain the uncovered region. It represents the set of polygons the guards

did not cover yet. An illustration of how the covered region grows in a single-guard

scenario is depicted in Figure 3.6. The exploration of the game level is considered

complete when the covered region equals the game level region.

After that, we partition uncovered regions into a mesh of convex polygons. Any convex

decomposition algorithm can be used. For our implementation, we chose Hertel-Mehlhorn [55].

This method will likely produce a reasonable number of convex polygons for computational

efficiency. The resulting set of convex polygons within the uncovered region is referred to as

uncovered polygons and forms the Visibility Mesh (VisMesh). The convexity requirement

for VisMesh polygons simplifies the construction and decision-making process, but is not

strictly necessary. More details on that are in section 3.4.2.

57

Figure 3.6: The green polygon represents the game level, and the blue polygon represents
the growing covered region as the guard moves. The uncovered region is displayed as red
polygons, obtained by geometrically subtracting the blue polygon from the green. Taken
from [3].

In the VisMesh, every convex polygon is assigned a staleness value, which is a normalized

value between 0 and 1, representing the amount of time that has passed since a guard roughly

covered the area of the polygon. The guards use this information to guide their patrol motion.

Again, this representation must be constantly updated.

3.4.1 Representation-Update

One loop of updating the VisMesh goes as follows:

• At the beginning of the scenario, the covered region is empty. The region is then

initialized with the merged FOVs of the guards. In future iterations, the covered region

will increment until its area reaches a certain percentage of the game level’s area, which

we refer to as the coverage threshold. It is reset once the covered region area reaches

the coverage threshold. Higher coverage threshold will promote an exploration-like

behavior where guards are less likely to revisit areas they covered. Lower values, on

the other hand, enable guards to keep revisiting previously covered areas.

• The uncovered region is then calculated by geometrically subtracting the covered region

from the game level region. Then, this uncovered region is decomposed into a set of

convex polygons, which are the units the guards need to cover. The staleness value

58

of each polygon indicates the time the corresponding location of the polygon was last

covered. At the start of the scenario, the staleness of all uncovered polygons is set to

1. However, in subsequent iterations, the staleness of each polygon is updated in every

iteration, based on the staleness of polygons in VisMesh from the previous iteration.

• The decomposition will not generally result in identical polygons due to the constant

change in the uncovered region. As a result, we need to find a way to map the

staleness associated with the previous VisMesh onto the other. To determine the stal-

eness of VisMesh polygons, we require the VisMesh from the previous loop; figure 3.7

shows a brief explanation of the VisMesh construction. For each polygon in the cur-

rent VisMesh, we find the intersection areas of this polygon and polygons from the

previous VisMesh. Then, there are several subtle ways the staleness can be calculated:

– Assign the weighted staleness average of the area intersections of the polygons of

previous VisMesh that overlap with the polygon.

– Assign the staleness of the polygon with the highest staleness among the polygons

of previous VisMesh overlapping with the polygon.

– Assign the staleness of the polygon of previous VisMesh that has the largest

intersection area with the polygon.

For our implementation, we opted for the third variation for its simplicity. However,

further testing can be conducted to compare these variations as part of future work.

• After updating the VisMesh staleness values, we normalize them to rescale the staleness

values of the polygons.

Algorithm 3 summarizes the steps involved in constructing a VisMesh. First, we find the

total area of the covered region; if it measures higher than the COV ERAGE_THRESHOLD,

it is reset (lines 1-3). After that, the covered region is updated by merging it with the

guards’ FOVs, which gives us the uncovered region when we subtract from the game level

59

(a) Polygons in the VisMesh outlined in
green with the staleness value in the cen-
troid. Once an area is covered, it is removed
from the VisMeshs.

(b) As the guard moves, more area is carved
from the uncovered region. The covered area
is considered to have a staleness of 0.

(c) Once it is time to reset the covered re-
gion, we use the staleness of the polygons
in the previous VisMesh to calculate the
next VisMesh.

Figure 3.7: Screenshots showing how the VisMesh calculation is done based on the previ-
ous VisMesh.

polygons (lines 4,5). Following that, we decompose the uncovered region to a set of polygons

based on Hertel-Mehlhorn (line 6). After we obtain the set of the uncovered polygons, we

calculate their staleness by obtaining the staleness of the polygon with the highest over-

lap area from the previous VisMesh (lines 7-24). Lastly, we normalize the staleness of the

uncovered polygons, which gives us the current VisMesh (line 26).

Reconstructing the VisMesh at every time step is computationally expensive because it

requires triangulating the space and decomposing it into convex polygons. To handle that,

we update the VisMesh every fixed duration of time t. t should be small enough that guards

60

Algorithm 3 VisMesh Update
Require: G, the set of guards.
Require: GL, the polygons of the game level.
Require: covered_region, the set of polygons that represents the covered region.
Require: COV ERAGE_THRESHOLD, the area at which the covered_region will be

reset.
Require: Vprevious, the previous VisMesh.

1: if Area(covered_region) >= COV ERAGE_THRESHOLD then
2: covered_region← {}
3: end if
4: covered_region←Merge(covered_region, G)
5: uncovered_region← Subtract(GL, covered_region)
6: uncovered_polygons← HertelMelhorn(uncovered_region)
7: for each p ∈ uncovered_polygons do
8: p.staleness← 0
9: max_staleness← 0

10: largest_intersection_area← 0
11: empty_area← Area(p)
12: for each pp ∈ Vprevious do
13: if DoIntersect(p, pp) then
14: intersection← intersectArea(p, pp)
15: empty_area← empty_area− intersection
16: if largest_intersection_area < intersection then
17: largest_intersection_area← intersection
18: max_staleness← pp.staleness
19: end if
20: end if
21: end for
22: if largest_intersection_area > emtpy_area then
23: p.staleness← max_staleness
24: end if
25: end for
26: Vcurrent = NormalizeStaleness(uncovered_polygons)
27: return Vcurrent

61

will likely have an updated representation for making decisions and large enough not to slow

the game performance. After testing on multiple machines, we found a time of 0.5 seconds

to be an appropriate value to meet both conditions for our test environment.

3.4.2 Decision-Making

When a guard is idle, they iterate among the polygons in VisMesh to find a polygon they

want to cover. Once a polygon is chosen, the guard will use the NavMesh to find the shortest

path to its centroid. Then, the guard will cover the centroid of the polygon with the center

of their FOV. Being convex, it simplifies the task of choosing the centroid to cover. After

that, since in the representation-update that area will be added to the covered region, the

covered area will be subtracted, and new polygons will be formed as a result.

We determine the fitness value of each polygon and choose the polygon with the highest

fitness value as the target polygon for the guard. A weighted average of its properties

determines the fitness of a polygon. These properties are:

• Polygon staleness: A value between 0 and 1 indicates how much time has passed since

the corresponding area under a polygon is covered.

• Polygon area: The area of the polygon divided by the area of the game level region.

It represents the area portion of this polygon relative to the whole walkable area.

• Path distance (NormalizedDistance(v, g)): The normalized path distance from the

guard’s position to the polygon’s centroid v. We normalized this distance by dividing

it by the game level diameter.

• Closest other guard distance (DistanceClosestGuard(v, g)): This is the normalized

distance of the closest guard that is not g to the centroid of the polygon v.

These properties are used to determine the fitness of a polygon by using equation 3.4.

62

f(v) = v.staleness ∗ wstaleness + GetAreaPortion(v) ∗ warea

+(1−NormalizedDistance(v, g)) ∗ wdistance + DistanceClosestGuard(v, g) ∗ wseparation

(3.4)

Where w are the weights that determine the importance of a property in finding the fitness

of a polygon. In section 3.5, we explore the impact of these weights on patrol performance.

Generally, the main parameters that determine affect this behavior are:

• Max percentage of the covered region: This determines the maximum size of the cov-

ered region during the patrol. Higher values ensure exploring larger areas of the game

level.

• Area weight(warea): This affects the priority of choosing larger polygons over smaller

ones. Higher values motivate guards to prioritize polygons with smaller areas.

• Staleness weight (wstaleness): This affects how the staleness of the polygon is prioritized.

Higher values prioritize “staler” areas.

• Distance weight (wdistance): Higher value prioritizes polygons closer to the guard.

• Separation weight (wseparation): This weight determines how guards prioritize polygons

that are further away from other guards. Higher values encourage guards to separate

and cover areas that are more distant from other guards.

3.5 Weight Tuning

In this section, we evaluate how altering the weights impacts patrol performance. Initially,

we will establish the metrics we will employ to evaluate the performance by assessing how

effectively the behavior covers the game level on a regular basis. Then, we will investigate

the impact of weight modification on these metrics for the three previously defined methods.

63

3.5.1 Metric

To assess patrol behavior, we establish a criterion of it being “good” if it achieves uniform

coverage across the game level for a specified duration. To evaluate this behavior, we employ

a discrete data structure. The game level is divided into a grid with W columns and H rows.

The dimensions of each grid cell are set to 0.05m×0.05m, ensuring that the values of W and

H adapt to the size of the game level. This approach ensures that each cell is sufficiently

small to accurately measure coverage. We then measure the duration during which at least

one guard covers the center of each grid cell. Finally, we normalize the data for each cell to

relatively rescale the covered time for each cell.

We conduct 20 rounds for each parameter setting, and the duration of a round lasts for

120 seconds. A team of four guards with fixed properties, such as FOV radius and angle,

movement, and rotation speed, are placed on the game level. All guards follow the same

patrol behavior. To analyze the impact on game levels of different properties, we utilize three

game levels modeled on maps from commercial games, which are depicted in figure 3.8.

(a) Metal Gear Solid: Dock (b) Warehouse (c) Among Us : Skeld

Figure 3.8: The game level layouts used in the weights tuning experiments. We designed
the warehouse layout as a game level with many junctions; the rest were from commercial
games.

3.5.2 Grid-based

To begin with, we delve into the weight associated with the grid-based representation. We

examined various combinations of weights for the parameters discussed in section 3.2.2. The

64

potential values considered for each weight are listed in table 3.1. Additionally, we compared

two different sizes for the cell dimension of the grid: 0.75m× 0.75m and 1m× 1m.

Table 3.1: The weight values for the grid-based approach and the possible value we used
in our experiments.

Parameter Values
CellSize [0.75× 0.75, 1× 1]
wstaleness [0, 0.5, 1]
wdistance [0, 0.5, 1]

wseparation [0, 0.5, 1]

After each round, we calculate the average of the normalized covered time for cells, which

provides an estimate of the game level’s uniform coverage. The results of these simulations

are presented in figure 3.9; the x-axis represents each combination of the weights; we omitted

it for readability. However, for a more detailed analysis, we provide the top 10 weight

combinations, sorted by the mean coverage values, in tables 3.2, 3.3, and 3.4, corresponding

to each game level.

65

(a) Metal Gear Solid: Dock (b) Warehouse

(c) Among Us: Skeld

Figure 3.9: The averages of coverage normalized time (y-axis) for each weight combination
(x-axis). We omit the weight-combination labels for readability; see tables 3.2, 3.3, and 3.4
for the top-performing combinations. Each item in the x-axis is made up of the means of 20
120-second rounds run with the corresponding weights. Each map has different properties
that potentially affected these results; to compare the map properties, see appendix A.

66

Table 3.2: The top 10 parameter settings for the grid behavior for the
Docks map, ordered by the mean coverage. Each item is coded as follows
CellSize_wstaleness_wdistance_wseparation.

Rank Parameters Coverage Mean
1 0.75_1.0_0.5_0.0 0.42
2 0.75_1.0_0.0_1.0 0.42
3 0.75_1.0_0.0_0.5 0.42
4 0.75_0.5_0.0_0.5 0.41
5 0.75_1.0_1.0_0.0 0.41
6 0.75_0.5_0.5_0.0 0.41
7 0.75_1.0_0.5_1.0 0.41
8 0.75_0.5_0.0_1.0 0.40
9 0.75_1.0_0.5_0.5 0.40
10 0.75_0.5_0.5_0.5 0.39

Table 3.3: The top 10 parameter settings for the grid behavior for the Ware-
house map, ordered by the mean coverage. Each item is coded as follows
CellSize_wstaleness_wdistance_wseparation.

Rank Parameters Coverage Mean
1 0.75_0.5_1.0_0.0 0.38
2 0.75_0.5_1.0_0.5 0.36
3 0.75_0.5_0.5_0.0 0.36
4 0.75_1.0_0.5_0.0 0.34
5 0.75_1.0_0.5_1.0 0.34
6 0.75_1.0_0.5_0.5 0.34
7 0.75_0.5_0.5_0.5 0.33
8 0.75_1.0_1.0_1.0 0.33
9 0.75_1.0_1.0_0.5 0.33
10 0.75_1.0_1.0_0.0 0.32

67

Table 3.4: The top 10 parameter settings for the grid behavior for the
Among Us map, ordered by the mean coverage. Each item is coded as follows
CellSize_wstaleness_wdistance_wseparation.

Rank Parameters Coverage Mean
1 0.75_1.0_1.0_0.5 0.37
2 0.75_1.0_0.5_0.5 0.37
3 0.75_1.0_0.5_0.0 0.37
4 0.75_1.0_1.0_1.0 0.37
5 1.0_1.0_0.5_1.0 0.36
6 0.75_0.5_0.5_0.5 0.36
7 0.75_1.0_1.0_0.0 0.35
8 1.0_1.0_0.5_0.5 0.35
9 0.75_0.5_0.5_0.0 0.35
10 0.75_1.0_0.5_1.0 0.34

By studying the tables 3.2, 3.3, and 3.4, we found the following observations:

• A smaller cell size results in better overall coverage. When comparing the top param-

eters across various maps, a cell size of 0.75 × 0.75m2 demonstrated a higher average

coverage compared to 1 × 1m2. This improvement is attributed to the enhanced ac-

curacy achieved when the grid is divided into finer segments. Figure 3.10 displays a

bar chart that compares the different cell sizes investigated in our experiments. This

outcome was consistently observed across the other maps as well. Additional testing is

necessary to determine the optimal cell size at which the average coverage converges.

68

Figure 3.10: The coverage averages normalized time (y-axis) grouped by the two cell sizes
we considered in this experiment (x-axis). The results belong to the Metal Gear Solid: Docks
map.

• A non-zero value of wstaleness led to improved overall performance, assuming wdistance

and wseparation were not zero. The observation is supported by Figure 3.11, which

presents a bar chart illustrating the impact of different wstaleness values on coverage

during patrols.

69

Figure 3.11: The coverage averages normalized time (y-axis) grouped by the wstaleness

values we considered in this experiment (x-axis). The results belong to the Among Us:
Skeld map.

• Upon examining the top parameters, we believe that both wdistance and wseparation play

a role in fostering greater dispersion among the guards, resulting in a more uniform

coverage. However, there is no substantial disparity in how each weight affects the

behavior relative to the other.

3.5.3 Roadmap

In this section, we explore the impact of the weights on roadmap patrol behavior. As

outlined in section 3.3.2. We examine various values for each weight, as shown in table 3.5.

Furthermore, we explore parameter configurations for the three maps by conducting 20

rounds, each lasting 120 seconds, for every individual parameter.

70

Table 3.5: The possible weight values for the Roadmap patrol behavior we consider in the
study.

Parameter Values
Max Path Length [25%, 100%] of the game level diameter

wstaleness [0, 0.5, 1]
wguardP ortion [0, 0.5, 1]
wconnectivety [0, 0.5, 1]

Passing guards threshold [Actual, Max]

After running the same number of rounds and settings in the previous method, we also

found consistent results between the game levels. Figure 3.12 is a bar chart that shows the

performance for weight combinations, and tables 3.6, 3.7, and 3.8 show the top 10 results of

these simulations.

71

(a) Metal Gear Solid: Dock (b) Warehouse

(c) Among Us: Skeld

Figure 3.12: The averages of coverage normalized time (y-axis) for each weight combination
(x-axis). We omit the weight-combination labels for readability; see tables 3.6, 3.7, and 3.8
for the top-performing combinations. Each item in the x-axis is made up of the means of 20
120-second rounds run with the corresponding weights.

72

Table 3.6: The top 10 parameter settings for the roadmap behavior for
the Docks map, ordered by the mean. Each item is coded as follows
MaxPathLength_wstaleness_wguardP ortion_wconnectivety_PassingGuardsThreshold.

Rank Parameters Coverage Mean
1 1.0_1.0_1.0_0.5_Max 0.41
2 1.0_1.0_1.0_1.0_Max 0.40
3 1.0_1.0_0.5_0.5_Max 0.40
4 1.0_0.5_0.5_1.0_Max 0.39
5 1.0_1.0_0.5_1.0_Actual 0.39
6 1.0_1.0_0.5_0.5_Actual 0.39
7 1.0_1.0_1.0_0.5_Actual 0.39
8 1.0_0.5_1.0_0.5_Max 0.39
9 1.0_1.0_0.5_1.0_Max 0.39
10 1.0_1.0_1.0_1.0_Actual 0.39

Table 3.7: The top 10 parameter settings for the roadmap behavior for
the Warehouse map, ordered by the mean. Each item is coded as follows
MaxPathLength_wstaleness_wguardP ortion_wconnectivety_PassingGuardsThreshold.

Rank Parameters Coverage Mean
1 1.0_1.0_0.5_1.0_Max 0.32
2 1.0_0.5_1.0_0.5_Max 0.31
3 1.0_0.5_0.5_0.5_Actual 0.31
4 1.0_0.5_1.0_1.0_Actual 0.30
5 1.0_1.0_1.0_1.0_Actual 0.30
6 1.0_1.0_1.0_0.5_Actual 0.30
7 1.0_1.0_0.5_1.0_Actual 0.30
8 1.0_0.5_0.5_0.5_Max 0.30
9 0.25_1.0_0.5_0.5_Max 0.30
10 1.0_0.5_0.5_1.0_Max 0.29

73

Table 3.8: The top 10 parameter settings for the roadmap behavior for
the Among Us map, ordered by the mean. Each item is coded as follows
MaxPathLength_wstaleness_wguardP ortion_wconnectivety_PassingGuardsThreshold.

Rank Parameters Coverage Mean
1 1.0_1.0_0.5_0.5_Max 0.31
2 1.0_0.5_1.0_0.5_Max 0.31
3 1.0_0.5_0.5_0.5_Max 0.30
4 1.0_1.0_1.0_0.5_Max 0.30
5 1.0_1.0_0.5_0.5_Actual 0.30
6 1.0_1.0_1.0_1.0_Max 0.30
7 1.0_0.5_1.0_1.0_Max 0.30
8 1.0_0.5_0.5_0.5_Actual 0.30
9 1.0_1.0_0.5_1.0_Actual 0.29
10 1.0_0.5_1.0_1.0_Actual 0.28

After a closer look at these results, we found the following:

• Elevating the value of “MAX_PATH_LENGTH” led to improved performance. The

bar chart supports this observation presented in Figure 3.13, which compares the effect

of maximum path length. Similarly, the remaining maps exhibited similar results,

further affirming our findings.

74

Figure 3.13: The coverage averages normalized time (y-axis) grouped by the two max path
lengths, 25%, and 100%, we considered in this experiment (x-axis). The results belong to
the Among Us: Skelt map.

• Assigning non-zero weights to wstaleness, wguardP ortion, and wconnectivity resulted in en-

hanced performance.

• The “Passing guards threshold” had no significant impact on the overall performance.

3.5.4 VisMesh

In this section, we examine the impact of weights on VisMesh patrol behavior, as detailed

in section 3.4.2. We explore different values for each weight, as outlined in table 3.9.

75

Table 3.9: The possible weight values for the VisMesh patrol behavior we consider in the
study.

Parameter Values
Max percentage of the covered region area [50%, 90%]

wstaleness [0, 0.5, 1]
warea [0, 0.5, 1]

wdistance [0, 0.5, 1]
wseparation [0, 0.5, 1]

Similar to the previous methods, we ran 20 rounds each lasting 120 seconds, for each

combination of the weights and got the coverage mean as an indicator of uniform cover-

age. Figure 3.14 shows a bar plot of the performance of each weight combination, and

tables 3.10, 3.11, and 3.12 show the top 10 combinations for each game level layout.

76

(a) Metal Gear Solid: Dock (b) Warehouse

(c) Among Us: Skeld

Figure 3.14: The averages of coverage normalized time (y-axis) for each weight combina-
tion (x-axis). We omit the weight-combination labels for readability; see tables 3.10, 3.11,
and 3.12 for the top-performing combinations. Each item in the x-axis is made up of the
means of 20 120-second rounds run with the corresponding weights.

77

Table 3.10: The top 10 parameter settings for the VisMesh behavior for the Docks
map, ordered by the mean coverage. Each item is coded as follows Max covered re-
gion_wstaleness_warea_wdistance_wseparation.

Rank Parameters Coverage Mean
1 0.9_0.5_0.5_0.5_0.5 0.42
2 0.9_0.0_0.0_0.5_1.0 0.42
3 0.9_0.5_1.0_0.5_1.0 0.42
4 0.9_1.0_0.0_1.0_1.0 0.41
5 0.9_1.0_1.0_1.0_1.0 0.41
6 0.9_1.0_0.0_0.5_1.0 0.41
7 0.9_1.0_1.0_0.5_0.5 0.41
8 0.9_0.0_0.0_0.0_0.5 0.41
9 0.9_0.5_0.0_0.5_1.0 0.41
10 0.9_1.0_0.5_0.5_0.5 0.41

Table 3.11: The top 10 parameter settings for the VisMesh behavior for the Ware-
house map, ordered by the mean coverage. Each item is coded as follows Max covered
region_wstaleness_warea_wdistance_wseparation.

Rank Parameters Coverage Mean
1 0.9_0.5_0.0_0.5_0.0 0.34
2 0.9_1.0_0.5_1.0_0.0 0.34
3 0.9_1.0_1.0_1.0_0.0 0.33
4 0.9_0.5_0.0_1.0_0.0 0.33
5 0.9_1.0_0.0_1.0_0.0 0.33
6 0.9_0.5_1.0_1.0_0.0 0.32
7 0.9_1.0_0.0_0.5_0.0 0.32
8 0.9_0.0_0.5_0.0_0.5 0.32
9 0.9_0.5_0.5_1.0_0.5 0.32
10 0.9_0.0_0.0_0.0_1.0 0.32

78

Table 3.12: The top 10 parameter settings for the VisMesh behavior for the Among
Us map, ordered by the mean coverage. Each item is coded as follows Max covered re-
gion_wstaleness_warea_wdistance_wseparation.

Rank Parameters Coverage Mean
1 0.9_1.0_1.0_0.5_0.5 0.39
2 0.9_0.5_0.0_1.0_1.0 0.39
3 0.9_0.5_0.5_0.5_0.5 0.39
4 0.9_0.5_0.5_1.0_1.0 0.38
5 0.9_0.0_0.5_0.5_1.0 0.38
6 0.9_1.0_1.0_1.0_0.5 0.38
7 0.9_0.5_1.0_0.5_0.5 0.38
8 0.9_0.0_1.0_0.5_1.0 0.37
9 0.9_0.0_1.0_0.5_0.5 0.37
10 0.9_0.0_0.0_0.5_1.0 0.37

From these results, we observe the following:

• Enhancing the maximum percentage of the covered region area led to improved uniform

coverage. As this value approaches 100%, guards are more inclined to cover the entire

game level to reset the coverage. Conversely, with smaller maximum percentages,

guards tend to revisit regions they have recently covered. The bar chart supports

this observation presented in Figure 3.15, which compares the impact of the maximum

coverage percentage on the coverage mean for the “Metal Gear Solid: Dock” map. The

patrol performance was notably better when the maximum coverage percentage was

set to 90%.

79

Figure 3.15: The coverage averages normalized time (y-axis) grouped by the max coverage
percentage values we considered in this experiment (x-axis). The results belong to the Metal
Gear Solid:Dock map.

• The weight value of wstaleness did not have a significant impact on patrol performance.

This could be because the staleness value for all polygons in the covered region was set

to the same value, so the order of coverage for these polygons cannot be determined

once the covered region is reset. This could be addressed by keeping track of when

certain areas are added to the covered region, so that after a reset, the staleness of

polygons will be more accurate instead of having the same staleness value on reset.

3.6 Methods Performance

In this section, we compare the results of the patrol methods based on their game level

coverage and computational cost for several setups. We ran several simulations with settings

of the following combinations of the following elements:

80

• Game level maps: We included maps from commercial games and Moving AI 2d

pathfinding benchmark maps [106]. Figure 3.16 shows screenshots of the maps we

chose in this experiment.

(a) Alien Isolation (b) Metal Gear Solid: Dock (c) Warehouse

(d) Dragon Age 2 Dungeon (e) Batman: Arkham Asy-
lum

(f) Among Us: Skeld

(g) Valorant: Ascent

Figure 3.16: The game level layouts included in this experiment.

• Number of guards: To know how the number of guards will affect the coverage of the

game level, we ran a round for each team size from three to six guards.

• Range of FOV: We defined a fixed range that is a percentage of the length of the longest

side of the bounding box that covers the game level. We defined it as a percentage to

allow the FOV to scale with the size of the map; this also simplifies the need to set

81

a specific FOVs range for each map. In our experiment, we set the range to be 10%

of the length of the longest side of the bounding box of the game level. Exploring the

impact of different ranges of FOVs can be done as part of future work.

We consider the following methods; using the parameters determined by the experiments

done in the previous section.

• Grid-based: This is the method defined in Section 3.2. Table 3.13 shows the values we

choose.

Table 3.13: The values chosen for the grid method.

Weight Value
Cell dimension 0.75m× 0.75m

wstaleness 1
wdistance 0.5

wseparation 0.5

• Roadmap: This is the method defined in Section 3.3. Table 3.14 shows our parameters.

Table 3.14: The values chosen for the roadmap method.

Weight Value
Max Path Length 1

wstaleness 1
wguardP ortion 0.5
wconnectivity 0.5

Passing guards threshold Max

• VisMesh: This is the method defined in Section 3.4. Table 3.15 shows the correspond-

ing parameters.

• Random: As a baseline for a cheap and simple patrol behavior, we included a random

patrol behavior where each guard samples a random position on the road map and

finds the shortest path toward it. Once the guard reaches it, it samples a new location,

and so on.

82

Table 3.15: The values chosen for the Vismesh method.

Weight Value
Max percentage of the covered region area 90%

wstaleness 1
warea 1

wdistance 1
wseparation 1

3.6.1 Coverage Performance

We used a heatmap representation to evaluate the coverage performance of the different

methods by calculating the total time guards covered each pixel’s center. After that, we

normalized the total covered time so a pixel of coverage time equals 1 is considered covered

the most, and 0 had the least coverage. Figure 3.17 on page 85 shows the violin charts of

the coverage performance for different team sizes and methods. Each violin graph is the

distribution of the coverage time of the pixels on the map. So if the game level had good

coverage, the violin graph would have a larger width on the upper area representing more

pixels with a higher coverage value.

This result shows that the Random method had the worst uniform coverage and did not

benefit greatly from adding more guards. This outcome is expected since no model represents

which areas are covered and which are not. Additionally, guards had no separation incentive

since they independently got their patrol planning. On the other side, the RoadMap method

had a better performance; however, we observed on several game level layouts that as the

size of the guard team increases, the resulting performance shows more variant coverage

values where most pixels of the heatmap are either well covered or the opposite. This could

suggest that guards get to cover the areas reachable by the straight skeleton more frequently

as the team size increases, but those not reachable by the graph are still neglected. Despite

that, the game level layouts with mostly narrow space observable from the straight skeleton

benefited more from the increase of guard count, like in the Warehouse and Dragon Age 2

game levels.

83

Each game level layout possesses distinct characteristics, such as area, diameter, and

more. To ascertain whether these properties have a notable influence on patrol performance,

we investigated the potential linear correlation between the layout properties and the cov-

erage mean per behavior. However, our analysis revealed no significant correlation between

them. For further information on the properties and their definitions, refer to appendix A.

Regarding the most efficient methods, regardless of the guard count, the grid and VisMesh

had the best overall coverage across the game level layouts. The heatmaps depicted in fig-

ures 3.18, and 3.19 on pages 86 and 87 confirm that these two methods covered more ground

than Random or RoadMap. This made the Grid and VisMesh more ideal for extensive patrol

tasks. The RoadMap showed decent coverage in the main passageway and corridors of the

game level layout, which can provide a lower coverage quality. Finally, Random provides

the least coverage, which becomes more evident as the size of the game level layout in-

creases. Furthermore, according to our observations, VisMesh showed an interesting pattern

of search-like behavior in covering the nearby regions, while RoadMap behavior guards had

a continuous movement along the main paths of the game level. In the next section, we

explore the impact of using these methods on the computational cost.

84

(a) Alien Isolation (b) Metal Gear Solid:
Dock

(c) Warehouse

(d) Dragon Age 2 Dun-
geon

(e) Batman: Arkham
Asylum

(f) Among Us: Skeld

Figure 3.17: Violin charts for the patrol performance. Each violin represents the distribu-
tion of heat values at the end of a patrol scenario; higher heat values indicate better uniform
coverage. Each map represents the performance of a guard team with a specific number,
starting with three guards in the first row and the last row for six guards.

85

Figure 3.18: The heatmaps for the Alien Isolation, Metal Gear Solid, and Warehouse game
levels for the patrol performance of a team of 4 guards. The brighter areas reflect a higher
frequency of coverage.

86

Figure 3.19: The heatmaps for the Dragon Age 2, Batman: Arkham Asylum, and Among
Us game levels for the patrol performance of a team of 4 guards. The brighter areas reflect
a higher frequency of coverage.

3.6.2 Computational Cost

It is important to assess the extent to which these methods are computationally practical

for real-time games. As we mentioned before, each method consists of two main steps:

representation update and decision-making. Figure 3.20 on page 89 shows the time the

methods take per iteration of these two steps for several maps. In general, we found the

87

RoadMap to be significantly the cheapest among the three methods, with an average time of

1.7 milliseconds for the update and 0.03 milliseconds for making decisions. This can be due

to the sparse representation and simple decision-making technique. After that, the VisMesh

proved to be the second most efficient patrol method with an average of 11 milliseconds for

the update and 4 milliseconds of the decision-making. The relatively longer update time can

be attributed to the recurring decomposition of space. The cost can be further reduced by

reducing the frequency of decomposing the space; however, this would have to be balanced

to ensure that guards will always have a timely updated VisMesh. Lastly, we found the

Grid representation to be the most demanding for most maps. The update step took an

average of 28 milliseconds and a much larger decision-making requirement with an average

of 667 milliseconds. The high required time for both steps is likely due to maintaining the

larger number of cells in the grid. However, we believe that optimizing grid performance can

be accomplished through the implementation of more sophisticated data structures, rather

than adhering to our current simplistic approach. To reduce the time needed, we can use a

coarser grid, which will sacrifice the coverage performance. Additionally, the cell size should

be relatively close to the NPC size, so more cells will still be required for larger game levels.

88

(a) Representation Update

(b) Decision Making

Figure 3.20: The computational performance for the three methods we defined for several
maps. The y-axis is the time the method takes in milliseconds; the range is set in log scale.
These results were gathered on an Intel® Core™ i5-7500 Processor CPU @ 3.40GHz, 32GB
RAM, AMD Radeon R9 200 Series, Windows 10 machine.

89

3.7 Summary

The objective of this chapter was to develop efficient and effective methods for enabling

dynamic guard patrol in stealth games. We introduced three primary variations of the patrol

route construction methods, each designed to suit different game level representations: the

grid-based, straight skeleton-based, and space-decomposition-based models. We found that

each method is capable of generating appropriate patrol behavior with unique features and

advantages. However, the VisMesh method produced better patrol results, particularly in

consistently covering the game level. Regarding computational efficiency, we observed that

the Grid-based representation is unsuitable for real-time applications for larger maps. On

the other hand, the other two methods offer significant memory efficiency advantages and are

thus more suitable for larger maps. In the next chapter, we investigate how patrol behaviors

affect the player experience in more detail.

90

Chapter 4

Guard Patrol User Study

In the preceding chapter, we presented and assessed several dynamic patrol behaviors that

can be used to create guard patrol behavior in stealth games. This chapter outlines the user

study we developed to evaluate how these patrol behavior techniques influence the player

experience.

Guard patrol behavior is a critical component of a stealth game, as it provides players

with a challenge to overcome. Therefore, it is essential to assess how the player perceives

this behavior through empirical studies since it is widely acknowledged that it can negatively

impact players’ experiences, irrespective of its efficiency [73, 124].

We present the contributions of our user study aimed at investigating players’ percep-

tion of guard patrol behavior in a non-trivial stealth scenario. The scenario requires the

player to navigate a space while avoiding detection by guards using specific AI behaviors for

patrol. Our previous experiments revealed that the included patrol behaviors have distinct

characteristics and efficiency. Thus, we aim to analyze how these traits impact the player

experience by assessing self-reported enjoyment and perceived difficulty.

The main contribution of this chapter is a user study to evaluate the effect of different

behaviors on player experience. The user study was based on playing with the prototype and

survey data. We consider three forms of patrol behavior; two methods are more heuristically

complex, and the third is a simple baseline method.

91

The structure of this chapter is as follows. In Section 4.1, we introduce the scenario that

served as a round in the user study. After that, Section 4.2 describes the patrol behaviors

that we tested in this study. Then, in Section 4.3, we provide details on the study’s setup.

After that, in Section 4.4, we present the results of the study, including both player game

data and survey responses. Finally, in Section 4.5, we list the possible limitations of this

study.

4.1 Study Scenario

Each participant played a game of three rounds. In each round, they competed against guards

with unique patrol behavior. To provide players with enough time to observe patterns in

guards movement, we set the round to last 120 seconds. In it, the participant controls a

character to move around a game level to increase their score by collecting randomly spawned

coins. Collecting each coin would increase the player’s score by a fixed amount, allowing them

to improve their score and incentivize them to navigate to various locations on the game

level. The game level is populated with four guards assigned with the same patrol behavior.

If the player character is spotted by one of the guards, their score will drop during the period

of observation. Note that being observed by guards does not terminate the game; to allow

players to focus on the patrol behavior, we programmed the guards to ignore the player’s

actions and continue their patrol as if nothing had happened. Furthermore, to ensure that

the player’s actions had an impact at all times in the round, they could have a negative

score. Figure 4.1 shows an illustration of the game elements.

We presented the game as a top-down real-time game, with the main elements being:

• Game level: The game level was presented as a polygon with holes. The walkable area

is grey, and the unwalkable area is colored with the color we assigned to the current

guard team. We framed the game to ensured that all walkable areas were always

observable to the player in the game so that they could observe the guards’ behavior

at all times.

92

Figure 4.1: A screenshot of the game’s features presented to the user study participants.

• Guards: The game level is loaded with four guards randomly positioned. We chose

this number of guards to provide players with a moderate challenge and to avoid

overwhelming them with many guards to track. The first guard was placed on a

randomly selected corner of the outer polygon of the game level. We defined a corner

as any vertex on the outer polygon of the game level. Subsequently, the next guard

was placed on the corner that is the furthest path distance from the previously placed

guards. This process was repeated until all four guards were in place.

• Coin: Like the guards, a coin appears on a random corner at the edge of the game

level. The coin serves as the target for the player to increase their score. Once the

player picks up the coin, it reappears on the corner that is farthest from their current

location. This rule of placement ensures a consistent level of difficulty for all players.

During the round, only one coin is available at a time.

93

• Intruder: The participant controls this character. The player’s primary objective is to

prevent their score from decreasing by avoiding detection by the guards, and second,

to increase their score by collecting coins. To maintain a uniform difficulty level for all

participants, the intruder starts at the corner farthest from the coin and guards.

• Time: The end of each round is marked by the passing of 120 seconds, which partici-

pants can monitor continuously as the remaining time is displayed on the screen.

Upon completing each round, the player was presented with multiple-choice questions

about their perceptions of the guards they had just faced. The order of the rounds was

randomly assigned to eliminate any biases. Additionally, each guard team was assigned a

random color to assist the player in distinguishing between them. The color was randomized

to prevent players from forming associations between the guards’ behavior and the color

assigned to them. The next section explains the three patrol behaviors we use for each

round.

4.2 Patrol Behaviors

Our main objective is to evaluate the player perception of the patrol methods we defined

in Chapter 3. In Sections 3.5 and 3.6, we assessed the effectiveness of the guard patrol

methods in covering the map to determine the optimal parameter values for these methods.

To compare these methods, we divided the map into a grid of WxH nodes and recorded

the time each node was within the FOV of a guard during the patrol shift. After the shift,

we normalized the coverage time for each node, resulting in values ranging from 0 (the

least coverage time) to 1 (the most coverage time). A higher coverage time for each node

indicates better patrol behavior, as guards could cover more areas during the patrol shift.

The behaviors we include in this study are VisMesh, Roadmap, and Random.

94

4.2.1 VisMesh

According to our results in Chapter 3, this is the best-performing patrol behavior. The VisMesh

method uses triangulation or convex decomposition to partition the area guards cover with

their FOVs.

After testing the combinations of parameters for VisMesh, we found the highest average

survey time to be 0.49 for the following values: Area weight: 0, staleness weight: 1, distance

weight: 1, and separation weight: 0.5. Figure 4.2 shows the heatmap for these parameters.

Figure 4.2: Heat maps of a patrol shift where the guards adapted the VisMesh patrol
behavior. The brighter a location is, the more coverage it got. We have already shown this
heatmap in Section 3.6, but displayed here on a larger scale for easier inspection.

95

4.2.2 Roadmap

The Roadmap patrol behavior was the second-best method in terms of coverage. It uses the

straight skeleton to plan patrol paths for a team of guards.

After preliminary testing, the best parameter combination yielded a staleness average of

0.33 for the following values: Max normalized path length: 0.5, staleness weight: 0.5, passing

guard weight: 0, connectivity weight: 0. Figure 4.3 shows the heatmap for these parameters

for a sample game level map.

Figure 4.3: Heat maps of a patrol shift where the guards adapted the Roadmap patrol
behavior. The brighter a location is, the more coverage it got. We have already shown this
heatmap in Section 3.6, we portray it here on a larger scale for easier inspection.

4.2.3 Random

To provide a baseline for comparison, we included a simple patrol behavior. Each guard

independently determined the shortest path to a randomly selected position on the level in

96

this method. Once they reach that position, they randomly choose another position to move

to, repeating the process. Figure 4.4 shows the heatmap for this behavior.

Figure 4.4: Heat maps of a patrol shift where the guards adapted the random patrol
behavior. The brighter a location is, the more coverage it got. We have already shown this
heatmap in Section 3.6, but shown here on a larger scale for easier inspection.

Prior testing between the three methods showed that Random guards surveyed less

ground, while RoadMap and VisMesh had better uniform coverage. Furthermore, it can

be seen that the VisMesh had more frequent coverage in the rooms on the map, while the

Roadmap had more coverage along the main passages. In the next section, we explain the

user study setup.

97

4.3 Experiment

To gather participants for our study, we utilized email correspondence to reach out to both

Undergraduate and Graduate students at McGill University. Our email included a compre-

hensive overview of the study and a link to an online portal hosting a web-based version

of our game. We collected our participants’ gameplay data and survey responses anony-

mously, and they had continuous access to the game through the web portal. The study

was completed in an average of 15 minutes.

At the beginning of the game, each participant was introduced to the study’s aim and

instructions on how to play the game. Afterward, they could play a tutorial level to become

acquainted with the game’s mechanics. Once the tutorial level had concluded, participants

could replay the tutorial or begin the actual game if ready, yet our results showed that

players rarely chose to replay the tutorial round.

During the main game, participants engaged in three rounds, each featuring a different

patrol behavior assigned to the guards. Each team was designated a unique color to assist

players in distinguishing between the guard teams. The pairing and order of the guard team

and color were randomized between study sessions to prevent potential biases. To encourage

participants to reflect on the guards’ behavior after each round, we asked them to evaluate

three characteristics of the guard’s behavior - enjoyability, difficulty, and efficiency. They

could rate each aspect on a Likert scale ranging from 0 to 5 to provide a means of reflection.

Figure 4.5 shows screenshots of the end-of-round questions.

After finishing all three rounds, participants were asked to specify the teams they found to

be the most enjoyable, challenging, and effective. Moreover, we allowed them to explain their

selections for each aspect via text input, as illustrated in Figure 4.6. The study concluded

at this point, and participants were free to replay the game.

98

(a) Enjoyment (b) Difficulty

(c) Efficiency

Figure 4.5: The questions asked after the end of each round.

(a) Most enjoyable team (b) Justification

Figure 4.6: Screenshots of the two questions in the game that pertain to identifying the
most entertaining team. We followed them with a similar inquiry about difficulty and effec-
tiveness.

4.3.1 Game Level

In the tutorial round, we employed a Metal Gear Solid map shown in figure 4.7. We chose

it for its relative simplicity to familiarize players with the game mechanics. In the primary

game, considering the anticipated limited sample size for this user study, we used a fixed

99

single map to enhance the possibility of obtaining statistically significant results. The map

was intentionally designed to resemble the Skeld map from the game “Among Us” [61],

offering a moderate challenge with multiple cycles and various enclosed spaces to facilitate

player hiding. Figure 4.1 presents the map layout.

Figure 4.7: The Docks map from the commercial game Metal Gear Solid [68]

4.3.2 Guard Teams

In the tutorial round, we kept the guard count to two to help participants grasp the movement

of guards within the game space and avoid overcrowding due to the relatively smaller game

level. In the primary game, we tested the guard team formations for several rounds and

decided to populate the game level with four guards. As for the assigned behaviors, we

assigned the tutorial team with the Random patrol behavior and the following three rounds

with the three behavior patterns we described in section 4.2 in random order. In this section,

we describe the results of this study.

4.4 Results

In this section, we describe the participation distribution in our study. Following this, we

present an evaluation of participant performance based on their gaming background and in

100

relation to patrol behaviors. Subsequently, we analyze and present the potential factors that

may influence player enjoyment and perception of difficulty concerning patrol behavior.

4.4.1 Participation

A total of 115 participants who completed the game were recruited for this study. As part

of our data collection, we asked the players to assess their self-perceived familiarity with

video games. The distribution of participants based on their experience with video games is

illustrated in the bar chart presented in Figure 4.8. Most participants identified themselves

as having Advanced or Intermediate experience with games. This distribution indicates that

our sample consists of individuals sufficiently familiar with video games, enabling them to

provide valuable insights.

Figure 4.8: The numbers of players who participated in the study grouped by their respec-
tive experience in video games. [6]

To verify whether participants of varying experience levels found our prototype reason-

ably easy to play, we conducted a comparison of the average scores attained by each group

101

across the three rounds of play. Figure 4.9 shows a bar chart of participants’ scores grouped

by their experience of video games. It shows that advanced and intermediate players had

consistent scores throughout the rounds. Additionally, these participants had a slight in-

crease in scores in later rounds, which could indicate that they became familiar with the

game as the rounds progressed. However, for the lower two experience levels, there was a

high variance and a small sample size that made it hard to determine a pattern.

Figure 4.9: The scores participants achieved in the study. The participants sorted them-
selves into one of four experience levels in video games. Each color represents the round the
score was achieved in. The error bars represent 95% confidence intervals.

4.4.2 Performance

To assess whether different guard teams had varying impacts on participant performance,

we conducted a comparison of their scores with respect to the round and the type of behav-

ior they faced. Figure 4.10 illustrates a bar chart depicting player scores against each guard

team, categorized by the round in which they encountered that particular team. Participants

achieved the highest scores when facing the RoadMap team, followed by the Random team,

and notably, the VisMesh team yielded the lowest scores. Regarding the influence of the

round order on the scores, participants appeared to perform slightly better when encounter-

102

ing the Random team in later rounds. This might be attributed to players becoming more

accustomed to the game with continued play. However, this same trend was not observed

with the Roadmap and Vismesh teams. RoadMap seemed to offer a level of ease that al-

lowed consistent scoring regardless of the round order, whereas Vismesh consistently posed

a greater challenge.

Figure 4.10: Players’ scores against the patrol method grouped by the round where they
encountered each behavior. The error bars represent 95% confidence intervals. [6]

In the next section, we describe participants’ reported enjoyment and analyze the factors

that could have affected it.

4.4.3 Enjoyment

After finishing each round, we asked participants to rate their enjoyment on a Likert scale

from 0 to 5. After that, when they played against all teams, we asked them to choose the

most enjoyable team and the option to insert a justification for their choice in free text.

Figure 4.11 shows bar charts of player rating of teams in terms of enjoyment. We observe

that players had no definite opinion of the enjoyability of a team after immediately playing

against them; however, when they competed against all teams, they found the Roadmap and

103

χ2 p
Enjoyment 5.46 0.06
Difficulty 55.76 <0.001

Table 4.1: The Chi-square goodness-of-fit test results of the players’ most enjoyable and
difficult behaviors. For α = 0.05 and degrees of freedom = 2, the critical value is approxi-
mately 5.991.

the Vismesh to be the most enjoyable, and fewer players chose random behavior. The End-

of-study result could be more reliable because the participants had the chance to compare

all teams and hence have a more concrete opinion of the teams. However, a Chi-square

goodness-of-fit test showed that a specific behavior was more preferred over other behaviors,

as shown in table 4.1.

(a) End-of-study [6] (b) End-of-round

Figure 4.11: Players’ rating of fun for different teams. The error bars represent a 95%
confidence interval.

To understand how participants enjoy playing against a specific behavior, we investigate

several factors that might have affected this aspect of the player’s experience. First, a Chi-

square goodness-of-fit showed no significant impact of the team’s color on player enjoyment.

Therefore, the other possible factors include:

104

Order

The sequence in which participants encounter specific behaviors can influence their enjoyment

of the team. For instance, playing against a difficult team followed by an easier one may

result in a different level of enjoyment compared to the reverse order. To ensure fairness,

we verified that the teams were assigned random orders for the study, and no particular

ordering was significantly favored over others.

In Figure 4.12, we present a bar chart indicating the patrol behavior participants found

most enjoyable, categorized by order of appearance. Generally, players tended to perceive

the last team they competed against as the most enjoyable. However, the RoadMap be-

havior seemed more enjoyable from the second round onwards, suggesting that participants

remembered it better. As for VisMesh, many players found it enjoyable regardless of achiev-

ing lower average scores against it, indicating an overall preference for VisMesh over Random

behavior.

Players may be more inclined to select the last team they played against as the most

enjoyable, possibly due to the recency effect [98]. Additionally, player enjoyment could have

been influenced by their performance scores. For instance, participants appeared to find

RoadMap behavior more enjoyable starting from the second round, potentially indicating a

relationship between higher scores and enjoyment.

Surprisingly, even though players generally achieved low scores against VisMesh, many

still chose it as their most enjoyable team. This suggests that factors beyond performance

scores might have influenced their enjoyment of these behaviors.

Despite these interesting observations, the data collected did not reveal any statistically

significant conclusions. Nevertheless, we believe conducting further tests with a larger sam-

ple size could increase confidence in the results and provide more insights into the factors

impacting players’ enjoyment.

105

Figure 4.12: The number of players rating patrol behaviors as most enjoyable is grouped
by the order in which the behavior appeared. The error bars represent a 95% confidence
interval. [6]

Challenge

Upon reviewing the participants’ textual justifications for their choice of the most enjoyable

team, we discovered that the primary criterion for many players was the level of challenge

presented by the guard team. Preferences among players varied, with some favoring easy

guards that allowed them to achieve higher scores. In contrast, others were drawn to the most

challenging guards because they found them motivating and saw them as an opportunity to

improve their gameplay.

Furthermore, we investigated whether players tended to select the team that enabled

them to score the highest. Our findings indicated that approximately 36% of the players

indeed chose the behavior that allowed them to achieve the best scores. Interestingly, some

players enjoyed the behavior simply because it was easy to tackle. However,80% of the

players justified their choices and 40% of them preferred the more challenging behaviors.

106

This observation leads us to believe that there are two main types of players: those who

prioritize easier gameplay for higher scores and those who derive enjoyment from the thrill

and motivation of facing challenging opponents.

Predictability

A number of players found less predictable guards to be a more enjoyable challenge. It

appeared that players derived satisfaction from encountering guards who exhibited more

spontaneous behaviors, as these behaviors indicated a certain degree of adaptability and

effectiveness. For instance, 20% of the players who provided justifications for their choices

expressed a preference for teams they considered unpredictable, with the majority of them

singling out the VisMesh guards as embodying this quality.

Effectiveness

A conisderable percentage of players tended to derive more enjoyment from facing a team

that appeared adept at their designated task. This inclination might be attributed to players

feeling a greater sense of accomplishment when competing against a competent AI adversary.

As a part of this study, we requested players to assess effectiveness, allowing us to examine

whether players selected the same team as both effective and enjoyable. Our findings revealed

that 37% of players regarded teams they deemed enjoyable as also effective. Furthermore,

20% of players characterized the team as well-distributed, while 5% described it as meticulous

or natural. Some comments from participants included: “It checked corners of the room it

entered, so if it trapped you, you suffered and couldn’t just escape unnoticed by hiding in

a corner”, “This team provides a significant challenge by covering a large amount of ground

and move in a more natural pattern, scoping the area more thoroughly with movements that

seem instinctive.”

107

4.4.4 Difficulty

Regarding the level of difficulty, participant responses at the end of each round did not reveal

any significant differences in perceived difficulty among the teams. However, in the end-of-

study responses, players unmistakably singled out a particular team as the most challenging.

Figure 4.13 illustrates the results of their responses, showing that participants predominantly

selected the VisMesh team as the most challenging, with an equal number of players divided

between choosing Roadmap and Random as the most difficult.

Figure 4.13: The number of players rating patrol behaviors as most challenging. The error
bars represent a 95% confidence interval. [6]

Figure 4.14 presents a bar chart depicting participant selections of the most challenging

team, organized by the sequence in which the teams were encountered during the study. Our

analysis did not reveal any substantial influence of the order on their choice. However, an

incremental pattern seemed to emerge with the VisMesh team, indicating that participants

were more inclined to consider it the most difficult when they encountered it later in the

study. It is important to note that these observations fall within the 95% confidence interval,

rendering this result statistically insignificant, and further testing would be necessary to

confirm its validity.

108

Figure 4.14: The number of players rating patrol behaviors as most challenging is grouped
by the order in which the behavior appeared. The error bars represent a 95% confidence
interval. [6]

Regarding the rationale behind their selection of the most challenging team, we identified

the primary characteristics that participants cited as:

Meticulousness

Half of the players indicated that they found a team challenging when the guards systemat-

ically checked rooms and meticulously examined the corners within these rooms, resembling

a thorough search. This behavior created an impression of the guards being highly consci-

entious in their patrol duties.

Collaboration

Participants pointed out that the team appeared to be well-dispersed, resulting in less overlap

and more comprehensive coverage of the game space. This characteristic, along with the

previously mentioned one, can be indicative of effective patrol behavior, declaring a potential

link between player perception of challenging and effective AI behavior in this study.

109

Upon comparing the correlation between players’ scores against the teams they consid-

ered challenging and effective, we identified a robust linear relationship (Pearson correlation

coefficient = 0.83, p-value < 0.05) between these attributes.

Unpredictability

Unpredictability emerged as a common attribute that players associated with a challenging

AI. Intriguingly, many of the players who made this observation also selected the same team

as the most enjoyable. This suggests that players indeed appreciate a certain degree of

unpredictability in their gaming experience.

4.4.5 Effectiveness

We asked the players how they rated the effectiveness of how well the guard covered the level,

and their choices aligned with their rating of the guards’ difficulty, which made Vismesh the

most effective among the three behaviors.

4.5 Threats to Validity

This study exhibits several constraints. Initially, the sample size was relatively modest, being

restricted to university students. Although the findings displayed distinct patterns in player

enjoyment, we emphasize the significance of a larger sample size.

Additionally, relying on self-reported measures for data collection might have introduced

response bias and recall errors, potentially compromising the accuracy and reliability of the

data. The brief duration of the study constrained the exploration of player adaptability to

guard behaviors over time. Furthermore, the absence of a static patrol baseline behavior

impeded our ability to assess the influence of these dynamic behaviors on replayability.

Finally, the investigation focused on a top-down game perspective, possibly neglecting the

varied effects induced by different viewpoints. Despite these limitations, the study imparts

110

valuable insights into dynamic patrol behavior, motivating further research to address these

drawbacks and provide deeper understanding of its influence on player enjoyment.

4.6 Summary

This chapter presented the results of our user study that aimed to assess the impact of various

patrol behaviors on player experience in a stealth game. According to the survey responses,

the participants showed varying levels of enjoyment when playing against different patrol

behaviors, with RoadMap and VisMesh being significantly more favored than Random patrol.

Additionally, players significantly found VisMesh to be the most effective and challenging

patrol behavior, exhibiting search-like behavior.

Several trends emerged from our study. Notably, many players derived enjoyment

from VisMesh despite their poor performance. Analyzing their feedback indicated that the

most difficult behaviors were the ones they found most motivating for enhancing their gam-

ing abilities. Furthermore, players noted that the game enjoyment was heightened by the

unpredictability of these behaviors, with VisMesh standing out as the most unpredictable pa-

trol behavior. The confirmation of these patterns’ significance warrants further exploration

through future testing.

At the start of the patrol scenario, guards possess no presumptions about the potential

presence or location of intruders. Nevertheless, in numerous games, once they detect an

intruder, they initiate an active pursuit. If the intruder manages to elude their line of sight,

the guard then adopts a search behavior, considering the last known location of the intruder.

In the following chapter, we investigate this scenario and develop dynamic search behavior

that factors in the layout of the game level.

111

Chapter 5

Guard Search Behavior

In the previous chapter, we explored how player experience is affected by the dynamic patrol

behaviors we introduced. In this chapter, we extend the work of dynamic behavior to include

how guards search for an intruder after being spotted.

Game mechanics often incorporate variations on hide-and-seek or pursuit/evasion, partic-

ularly in action and stealth genres. Players may need to evade observation by enemy NPCs

as part of a game objective or to avoid combat; the latter is common even outside of pure

stealth contexts. However, enemy NPCs subsequent pursuit and search behavior is often

based on simplistic strategies: enemies may possess complete information about the player’s

position despite occlusion, which is perceived as unfair, or they may exhibit unrealistic search

behavior, such as moving or looking randomly or only in pre-determined locations, which

could potentially undermine the challenge.

This chapter proposes new strategies for enemy agent searching behavior. Our approach

aims to develop a method that gives enemy agents an appearance of searching based on prior

observation and spatial knowledge while ensuring a practical implementation efficient in real-

time game context. Our designs are based on a geometric decomposition approach that takes

advantage of the game level layout by dividing it into a grid or using reachability properties

of a structured straight skeleton to facilitate efficient propagation of probable player loca-

tions. Each approach shows advantages and disadvantages concerning the search efficiency

112

in finding an adversary, the computational efficiency, and the implementation complexity.

The grid-based approach is inspired by the commercial game “Third Eye Crime” [63]. That

game modeled search behavior for NPCs using an occupancy maps structure. Occupancy

maps are graphical representations used to model the occupancy or presence of objects or

obstacles within a given environment, often used in fields such as robotics and computer

vision [41]. Our roadmap approach is intended to overcome the limitations of grid-based

methods, such as discretization artifacts and scaling issues. It ensures that the search be-

havior follows the overall shape of the space, resulting in better-guided location probabilities

compared to random sampling approaches. Moreover, this method allows for effective sep-

aration heuristics, enabling multiple enemy agents to independently search while avoiding

overlap, thus covering a space more efficiently. Another advantage of this method is that it

can be applied to robotic contexts with tracking systems, as demonstrated in prior work [49].

In our study, we conducted experiments to evaluate the effectiveness of our proposed

methods. We compared various parameter settings and our approach to an existing probability-

based search model in multiple game levels created using Unity3D. Our findings indicate that

the roadmap-based method had an acceptable performance in most maps for multi-agent sce-

narios. Additionally, we demonstrated that our method can be executed in real-time and

thus can be deployed in real-time systems.

This chapter’s significant contributions include:

• We present grid-based, and roadmap-based approaches for tracking the whereabouts

of an adversary, which has potential applications in commercial video games.

• We empirically evaluated the method’s performance on several maps modeled from

currently existing commercial games.

The organization of this chapter is as follows. Initially, in Section 5.1, we explain the

scenario employed for testing our methods. Subsequently, Sections 5.2 and 5.3 describe the

search behaviors, namely grid-based and roadmap-based. Following that, in Section 5.4, we

113

outline our experimental setup to evaluate these methods. Lastly, in Section 5.5, we present

and analyze our findings.

5.1 Scenario

To assess the effectiveness of our techniques, we modified the prototype, to begin with the

intruder positioned in front of one of the guards so its initial location is known to all guards.

This is to remove the lead time and randomness of a guard finding the intruder for the

first time. To focus on the search behavior, we gave the intruder a velocity that was 1.5

times greater than that of the guards, enabling the intruder to quickly move out of the

guards’ FOV. An illustration of the starting point of the scenario is presented in figure 5.1.

Figure 5.1: A screenshot of the beginning of the search behavior scenario. The map shown
here is from Alien Isolation.

Once the guards lose sight of the intruder, they aim to locate the intruder again by

searching the game level. Upon spotting the intruder again, all guards will become aware

114

of their location and take the shortest path to reach them in a simple chase behavior. The

search behavior will restart if the intruder manages to evade the guards again, and so on.

There are multiple possible performance metrics for the search task: for example, the

number of times the intruder is discovered after the first time. This provides the frequency

of the intruder spotted by the guards; however, this is prone to inaccurately report search

efficiency, such as in cases where the intruder goes around a corner while chased by a guard

to be rediscovered again. To quantify the efficiency of the search behavior, we use the total

time the guards are able to maintain visual contact with the intruder. Thus, if the guards

successfully locate the intruder after it escapes their FOV, they will have more time to keep

it in sight. This metric is referred to as the “alert time”. This metric provides a continuous

measure that overcomes the limitation of the discovery frequency.

The following sections will provide a detailed explanation of the methods we developed

for search behavior. First, we will introduce a basic grid approach which is a variation of a

technique used in a commercial game [63]. Then, we will describe how the roadmap structure

can generate search behavior.

5.2 Grid

This method is inspired by occupancy maps, with the difference that instead of assigning to

a cell a probability value representing the likelihood of the cell being occupied by an object

or obstacle, it assigns the probability of an intruder being near that cell. Specifically, the

game environment is divided into a fixed-size grid comprising cells categorized as walkable or

non-walkable. Each cell is attributed a numerical value that denotes the probability of the

intruder’s presence in its proximity, referred to as the “likelihood”. Guards can access this

information and employ it to formulate their search strategy. The method encompasses two

principal phases that alternate between each other: the representation-update phase, which

updates the likelihood values of the grid to mirror the current state of the world, and the

decision-making phase, where the guards plan their search actions to locate the intruder.

115

5.2.1 Representation-Update

While the intruder is in the FOV of at least one guard, all guards navigate to the intruder’s

position. However, when the intruder leaves the FOV of all guards, we assign a value of 1

to the cell closest to the intruder’s last known position to indicate the likelihood of their

presence in that particular location. The likelihood value is then spread to neighboring cells

to account for the intruder’s potential movement. We introduce two methods that determine

the nature of likelihood spread.

Propagation

The suggested method propagates the likelihood to adjacent cells at a rate corresponding to

the intruder’s maximum velocity. This velocity-based adjustment guarantees that only the

cells that are potentially accessible to the intruder are considered during the search, while

those outside this range are excluded. Furthermore, the likelihood values of the remaining

cells are gradually increased to reflect the time since they were last searched. Finally, to

scale the likelihood values, we normalize them. The specific details of the propagation

technique are described in algorithm 4, and figure 5.2 depicts an illustration of the likelihood

propagation process.

This algorithm is executed per frame. It mainly spreads the likelihood omnidirectionally

through the grid until it covers the whole grid. Then it slowly increments the likelihood

value once the whole grid is propagated. First, it loops through each cell that has not been

propagated and increments its neighbors’ likelihood by a specific rate (line 8). Once its

neighbors reach a likelihood of 1, that cell is considered to be propagated (line 15) and will

be incremented by a much smaller rate instead (line 18). Finally, they are all normalized to

restrict the likelihood values between 0 and 1 (line 24). This results in a domino-like effect

of the likelihood of incrementing through the grid from the last position the intruder was

last seen.

116

Algorithm 4 Grid propagation update
Require: Nwalkable, the cells in the walkable area.
Require: IS, the intruder’s max speed.
Require: k, increment coefficient equals 0.001.

1: for each n ∈ Nwalkable do
2: if ¬n.is_propagated then
3: all_neighbors_expanded← True
4: for each neighbor ∈ n.neigbors do
5: if neighbor.is_incremented then
6: continue
7: end if
8: neighbor.likelihood← neighbor.likelihood + IS ∗ time_lastframe
9: if neighbor.likelihood < 1 then

10: all_neighbors_expanded← False
11: end if
12: neighbor.is_incremented← True
13: end for
14: if all_neighbors_expanded then
15: n.is_propagated← True
16: end if
17: else
18: neighbor.likelihood← neighbor.likelihood + IS ∗ k ∗ time_lastframe
19: end if
20: end for
21: NormalizeLikelihoods(Nwalkable)

Diffuse

The second variation is inspired by Isla’s implementation of occupancy maps in their com-

mercial game “Third Eye Crime” [63]. At every time step, the likelihood is diffused to the

neighboring cells using

Pt+1(n) = (1− λ)Pt(n) + λ

|Adj(n)|
∑

n′∈Adj(n)
Pt(n′) (5.1)

where Pt+1(n) is the likehood of cell n after time step t+1, λ ∈ [0, 1] is the diffuse factor,

Adj(n) are the neighboring cells to n. Figure 5.3 shows a scenario of how the likelihood is

diffused. After diffusing the likelihoods, they are normalized over the grid.

117

(a) The intruder, shown in black, starts
in the center of one of the guard’s FOV.
The guards are the blue dots, and color
of their FOV changes to red when they
see the intruder.

(b) They move out of the guard’s sight.
The closest cell is set with a likelihood
of 1, it start propagating to neighboring
cells.

(c) Cells with non-zero likelihood are
marked with red, and the higher the
value the darker color.

(d) Each guard starts searching by
choosing a specific cell and find
the shortest path to cover it with
their FOV. By covering a cell, its like-
lihood is reset to zero. The cell se-
lection depends on the decision-making
settings of the algorithm.

Figure 5.2: The steps of the grid propagation method. Once the intruder escapes the
guards, the algorithm expands the likelihood omnidirectionally through the walkable space.

In a simplified explication, the primary difference between the two variations is how

likelihood is moved. In the propagation variation, likelihood is spread across the grid in

alignment with the speed of the intruder. This process approximates all possible positions

118

they could potentially inhabit. In contrast, the diffuse variation disperse the likelihood. This

results in the immediate cell containing the highest likelihood, a value which subsequently

diminishes as one moves towards cells more distant.

119

(a) The intruder (black dot) moves
away from the guards (blue dots). Then
the cell closest to the last known posi-
tion is set with a likelihood of 1. Cells
with a stronger tint of red have higher
likelihood values.

(b) Being out of sight, the likelihood is
diffused according to equation 5.1.

(c) This prioritizes the cells that are
closer to the last place the intruder was
seen. As depicted, the likelihood is
highest in the dead-end where the in-
truder disappeared from the guards, as
they had already covered the upper area
where the intruder had moved.

(d) Once the guard covered the dead-
end, the normalization rescale the likeli-
hood other areas have higher likelihood
and thus guards move toward it.

Figure 5.3: Illustration of the typical steps of the grid diffuse method, following Isla’s
approach.

120

5.2.2 Decision-Making

Similar to the decision-making process outlined in section 3.2.2, a cell to search is chosen for

each unoccupied guard. Using the NavMesh, the guard determines the shortest path to the

selected cell. After arriving at the target cell, the guard requests a new target. Typically, the

guards aim to search the cell with the highest probability of being located near the intruder.

Each guard chooses their next target cell based on its fitness value. The fitness value is a

weighted average of the corresponding cell properties. Equation 5.2 shows how the fitness of

a cell n is calculated.

f(n) = n.likelihood ∗ wlikelihood + (1−NormalizedDistance(n, g)) ∗ wdistance

+DistanceClosestGuard(n, g) ∗ wseparation

(5.2)

The function NormalizedDistance(n, g) computes the shortest path distance between a

guard g and cell n. Additionally, the distance is normalized by dividing it by the game level

diameter, which represents the shortest path distance between the two furthest points in

the game level. The function DistanceClosestGuard(n, g) returns the shortest normalized

distance of the closest guard to cell n, provided that the guard is not g. The path distances

are computed using NavMesh.

Furthermore, each weight (wlikelihood, wdistance, and wseparation) has a value between 0 and

1, and each one determines the relative influence of a specific property on the overall fitness

of a cell to a guard. These properties include:

• Cell likelihood: The higher the value, the more probable the intruder is near the cell

or has passed through it. The corresponding weight is wlikelihood.

• Path distance (NormalizedDistance(n, g)): To decide if closer cells are more desirable

or vice versa. The corresponding weight is wdistance.

• Closest other guard distance (DistanceClosestGuard(n, g)): Improving coverage effi-

ciency requires guards to reduce the time gathering. Selecting cells farthest from other

121

guards may offer better separation and improved coverage. The corresponding weight

is wseparation.

5.3 RoadMap

Using a grid-based representation for the game level provides extensive coverage for locating

the intruder, but it can be computationally demanding, especially for larger game levels with

numerous cells. To overcome this drawback, an alternative approach involves implementing a

roadmap similar to the one detailed in section 3.3. However, unlike the method described in

that section, where all line segments have a uniform value for guards to search, the roadmap

implementation assigns likelihood values based on the intruder’s last known position, which

then propagates through the roadmap accordingly.

5.3.1 Representation-Update

After the intruder moves out of guards’ FOV, the closest node on the straight skeleton graph

to the intruder is selected, and its connected segments are assigned a likelihood value of 1.

After that, this representation is updated during the search in two potential variations.

Propagation

In this variation, the likelihood spreads through the roadmap segments at a speed slightly

faster than the intruder’s maximum speed. This is necessary to account for the structure

of the roadmap since the NPCs use the NavMesh for pathfinding, which finds more efficient

paths. One way to visualize the propagation of the likelihood through the roadmap is to

think of it as a fluid flowing through a series of interconnected pipes. The likelihood flows

through the network to indicate the potential locations the intruder could occupy. The

propagation method is detailed in algorithm 5.

Each time the algorithm runs, it iterates through the segments; if the segment is expanded

for its specified length on the roadmap, it propagates its likelihood value to the neighboring

122

Algorithm 5 RoadMap propagation update
Require: R, the segments in the roadmap.
Require: IMaxSpeed, the intruder’s max speed.
Require: k, increment coefficient equals 0.001.

1: for each r ∈ R do
2: if r.is_expanded then
3: if ¬r.is_propagated_neighbors then
4: for each n ∈ r.neighbors do
5: n.likelihood← r.likelihood
6: end for
7: r.is_propagated_neighbors← True
8: end if
9: else

10: Expand(r, IMaxSpeed)
11: end if
12: end for
13: r.likelihood← r.likelihood + time_since_lastframe ∗ k
14: NormalizeLikelihoods(R)

segments (lines 4-6). After that, if it is covered again by the guards, it will expand again till

it reaches its maximum length. The Expand(r, IMaxSpeed) function extends the segment to

either match or exceed the intruder’s maximum speed. Once a segment is fully expanded, if

a guard sees part of it at any time, it will expand much slower. This is to make it easy for

the guard to cover a whole segment, and the expansion speed matters little after the initial

expansion. The likelihood will also increment slowly to keep track of the time a segment

was covered (line 13). Lastly, the segment likelihoods are normalized. Figure 5.4 shows an

example of the propagation variation.

123

(a) The intruder starts in the center of
one of the guard’s FOV.

(b) Once the intruder is out of sight,
the nearby segment is set with a likeli-
hood of 1. The line segment with non-
zero likelihood is shown in red.

(c) The likelihood flows in the
roadmap, and as guards move, any part
of the segment falls into their FOV is
cut (to reflect that that part is seen)
until completely covered, and their like-
lihood will be reset.

(d) The likelihood value is propagated
through the roadmap, and so on.

Figure 5.4: Illustration of the typical steps of the roadmap propagation method. As the
intruder escapes, the likelihood flows through the roadmap matching their movement speed.

Diffuse

For diffusion, we took inspiration from Isla’s implementation of occupancy maps in their

commercial game “Third Eye Crime” [63]. In our implementation, instead of diffusing the

likelihood in a grid, we accommodate the diffusion in the roadmap. So the likelihood will be

diffused between the segments of the roadmap. At every time step, the likelihood is diffused

to the neighboring segments using

124

Pt+1(r) = (1− λ)Pt(r) + λ

|Connections(r)|
∑

r′∈Connections(r)
Pt(r′) (5.3)

where Pt+1(r) is the likehood of segment r after time step t + 1, λ ∈ [0, 1] is the diffuse

factor, Connections(r) are the directly connected segments to r. Figure 5.5 shows a scenario

of how the likelihood is diffused. After diffusing the likelihoods, they are normalized over

the roadmap segments.

(a) The intruder moves away from the
guards.

(b) Being out of sight, the likelihood is
diffused according to equation 5.3.

(c) The segments will diffuse so the
closest to the intruder’s last location
will have a higher likelihood.

(d) Once the guard cover the cells,
the normalization rescale the likelihood
so neighboring cells will have a higher
value.

Figure 5.5: Illustration of the typical steps of the roadmap diffuse method. Unlike the
propagation variation, the likelihood is diffused gradually through the roadmap.

5.3.2 Decision-Making

Every inactive guard will request a new action plan following the roadmap update. The

representation permits two types of plans. The first plan entails selecting a segment and

125

determining its shortest path via the NavMesh as previously described. The second plan

involves the guard creating a comprehensive route to cover a series of segments in sequence

instead of only selecting a destination segment. The purpose of the latter plan is to consider

the path taken by the guard rather than solely focusing on a single segment. Taking into

account the entire path leverages the fact that the guard covers multiple segments along

the way, thereby enhancing search performance by incorporating these segments into the

planning process.

Choosing a Segment

Similar to the grid representation, we evaluate the fitness of a segment by computing the

weighted average of its properties and assign the segment with the highest fitness to the next

available idle guard. Equation 5.4 shows how the fitness is calculated.

f(s) = s.likelihood ∗ wlikelihood + (1−NormalizedDistance(s, g)) ∗ wdistance

+DistanceClosestGuard(s, g) ∗ wseparation

(5.4)

These properties are similar to those described in section 3.3.2.

Building a Path

Following a similar approach for patrolling in roadmaps, which we described in section 3.3.2,

the guards plan a complete path instead of just a destination segment. Upon a guard

determining a path, the relevant line segments are updated such that when other guards

plan their path, they select line segments with fewer or no guards traversing through them.

This could promote the separation between guards at the destination and the whole path.

Algorithm 6 details how we achieve path construction for a guard.

In summary, GetClosestSegmentOnRoadMap(g, S) returns the closest segment in the

roadmap to guard g (line 9); It represents the start segment of the potential path to be

built. After that, similarly to the Dijkstra algorithm, we build a path by exploring the

126

Algorithm 6 Roadmap decision making for a guard
1: function GetPath(S,g) where S is the group of segments in the roadmap, g is the

guard requesting a path.
2: open_list← {}
3: best_segment← null
4: for Every segment s in S do
5: s.path_utility ← 0
6: s.path_parent← null
7: s.total_distance← 0
8: end for
9: n← GetClosestSegmentOnRoadMap(g, S)

10: open_list.enqueue(n)
11: while open_list is not empty do
12: cs ← open_list.pop()
13: if cs.total_distance >= MAX_DISTANCE then
14: break
15: end if
16: for Every non-visited segment s of cs do
17: utility ← GetUtility(s)
18: total_utility ← utility + cs.path_utility
19: if total_utility > s.path_utility then
20: s.path_utility ← total_utility
21: s.path_parent← cs

22: s.total_distance← cs.total_distance + s.length
23: end if
24: open_list.enqueue(s)
25: end for
26: if best_segment.path_utility < cs.path_utility then
27: best_segment← cs

28: end if
29: end while
30: if best_segment is not null then
31: return GetSimplifiedPath(best_segment)
32: end if
33: end function

127

path with the highest total utility. However, we stopped expanding the search if the total

distance reached the defined limit (lines 13-15). We expand the search by iterating through

the connected segments to the current segment and update the possible highest total utility

it can reach along with the total distance to reach it (lines 16-23). After the search, we

backtrack the path from the segment with the highest utility to the start (lines 30-32). The

acquired path follows the roadmap, and we refine it utilizing the NavMesh by simplifying

the path and navigating around corners while keeping its overall abstract trajectory.

Just like the corresponding method in section 3.3, a guard will select a path for their next

plan based on its overall utility, which is the sum of individual utilities of the segments along

that path. The utility of a segment “GetUtility(s)” is the weighted average of its properties.

These properties are:

• MAX_DISTANCE: This is the max length of the constructed path. This is usually

set as a percentage of the game level diameter.

• Segment likelihood: The likelihood of a line segment represents how likely the intruder

is to be near it. A value of 1 indicates a high likelihood, while a value of 0 means the

opposite.

• Portion of guards planning to pass through this segment: Each segment will store the

number of guards planning to pass through it. We normalize the number by dividing

it by the count of guards in the game level.

• Connectivity: This represents the count of segments linked to a specific segment. This

attribute may prioritize paths that traverse highly connected segments. To normalize

this value, we divide the number of connected segments by 10, which is determined as

the maximum count of connections that a segment can have based on our preliminary

testing of the considered game levels. Nevertheless, it is possible to compute this value

at the beginning of the scenario for each game level.

128

• Passing guards threshold: This binary attribute impacts the value of sguardP ortion. In

the first option, “ACTUAL”, sguardP ortion retains its originally defined value. In the

second, “MAX”, sguardP ortion is set to 1 when one or more guards pass through the

segment and 0 when no guards cross it.

Equation 5.5 shows how the utility of a segment is calculated. The weights “w” for the

corresponding properties are values set between 0 and 1.

GetUtility(s) = sstaleness ∗ wstaleness + sguardP ortion ∗ wguardP ortion + sconnectivity ∗ wconnectivity

(5.5)

5.4 Experiment

This section outlines our method for evaluating and comparing search techniques based

on their ability to track intruders and computational requirements. To achieve this, we

conducted several rounds of the scenario described in section 5.1, varying the settings by

combining the following elements:

• Game level maps: We incorporated the same maps used in section 3.6, and we show

them in figure 5.6, to assess the impact of game levels on search performance. Ap-

pendix A provides additional information on their layout.

129

(a) Alien Isolation (b) Metal Gear Solid: Dock (c) Warehouse

(d) Dragon Age 2 Dungeon (e) Valorant: Ascent (f) Among Us: Skeld

(g) Arkham Asylum

Figure 5.6: The game level layouts included in this experiment.

• Number of guards: To examine the effect of the number of guards on search behavior,

we considered each formation of guard teams consisting of three to six guards.

• Search method: We specify the included search methods and their settings in sec-

tion 5.4.1.

• Intruder methods: The effectiveness of the search methods is influenced by the in-

truder’s ability to avoid being detected. To explore this, we examine several intruder

behaviors in section 5.4.2.

130

5.4.1 Search Methods

This section outlines the search methods and the parameter values assigned to them. We

have utilized the parameters identified in section 3.5 as we believe that successful searching

depends on effective area coverage. The search methods employed in our experiments are:

• Grid-based: This is method we defined in Section 5.2 with both of its variations of

likelihood spread; the propagation and diffuse. We defined its parameters in table 5.1.

Table 5.1: The values chosen for the grid method.

Weight Value
Cell dimensions 0.5m× 0.5m

wlikelihood 1
wdistance 0.5

wseparation 0.5

• Roadmap: This is method we defined in Section 5.3 with both of its variations of

likelihood spread; the propagation and diffuse. In addition, we include two variations

of decision-making; segment-choosing and path-building. We set the parameters for

the segment choice as in table 5.2. As for the path-building variation, the parameters

are set according to table 5.3.

Table 5.2: The values chosen for the roadmap segment choice method.

Weight Value
wlikelihood 1
wdistance 0.5

wseparation 0.5

• Random: For this experiment, we include two baseline methods representing two spec-

trum ends. The first is where the guards have no heuristic of the likely intruder

locations. So each guard samples a random position on the road map and finds the

shortest path toward it. Once the guard reaches it, it samples a new location, and so

on.

131

Table 5.3: The values chosen for the roadmap path building method.

Weight Value
Max Path Length 1

wlikelihood 1
wguardP ortion 0.5
wconnectivity 0.5

Passing guards threshold Max

• Cheating: The second baseline method involves guards always being aware of the

intruder’s location. In response, guards take the shortest path toward the intruder,

even if not within sight.

5.4.2 Intruder Methods

To evaluate our method, we need to test it against various intruder behaviors. For this, we

simplified the problem by having the intruder choose a hiding spot from a predetermined

set of positions on the map. We generated the set of hiding spots by assigning one spot on

the bisector of a convex interior angle with a fixed distance angle and two hiding spots on

the sides of an interior reflex angle with a small, fixed offset. Figure 5.7 displays the two

scenarios.

(a) Reflex Angle (b) Convex Angle

Figure 5.7: Possible hiding spots based on the angle of the corners of obstacles.

132

Establishing effective hiding heuristics remains a research challenge in its own right [25,

101]. As such, we established three basic behavior patterns as a baseline for the intruder to

choose their hiding spot:

• Heuristic: The intruder is conscious of the guards’ locations and selects a hiding spot

that has the highest path distance from the other guards. The intruder remains in

that position until they are detected. Once spotted, they relocate and choose a new

spot to hide.

• Heuristic with Movement: Rather than selecting one hiding spot and remaining

there until discovered, this method enables the intruder to exhibit more complex be-

havior. Once reaching a hiding spot, the intruder waits for a random interval before

relocating to another position, using the same heuristic regardless of detection status.

• Random with Movement: This behavior continually moves between hiding spots,

waiting for a random time between moves. Rather than selecting the next hiding spot

using the heuristic, the intruder randomly chooses the next location.

5.5 Methods Performance

To evaluate the search performance, we ran 20 episodes, each 99 seconds long, for different

guard setups chasing an intruder for each combination of the search behavior, intruder

behavior, and maps. We measure performance in relative “alert time”, the proportion of

time the intruder is observed versus staying hidden successfully. A lower alert time indicates

an undesirable search performance.

This section aims to determine the optimal intruder behavior against all search methods,

identify the most effective variations of the Grid and Roadmap search methods, analyze the

performance of these methods in comparison to the baselines, and evaluate their computa-

tional efficiency.

133

5.5.1 Intruder Behavior

The effectiveness of search operations is considerably influenced by the intruder’s ability to

conceal themselves. A bar chart presented in figure 5.8 compares various intruder behaviors

against all search behaviors. The chart suggests that intruders in motion were the easiest

to find among all search behaviors, as they likely crossed paths with one of the guards.

Conversely, intruders who remained stationary were more challenging to locate, as they had

more opportunities to remain concealed. Consequently, our subsequent analysis primarily

concentrates on static intruder behavior, given its substantial impact on search behaviors.

In the next section, we explore the performance of the Grid method and its variations.

Figure 5.8: The overall percentage of time all search behaviors had the intruder under
detection for the different intruder behaviors. The error bars represent a 95% confidence
interval.

5.5.2 Grid

The bar charts depicted in Figure 5.9 illustrate the performance of the Grid method vari-

ations for all game level layouts. Our findings indicate that the “Propagation” variation

134

outperformed the “Diffuse” variation in all settings. This is primarily because the propaga-

tion method ensured a more uniform likelihood spread across the game level. In contrast,

the diffuse method concentrated the likelihood in specific locations with a lower spread rate.

Guards covered the search grounds in a breadth-first search by slowly extending the search

radius, which resulted in guards grouping instead of spreading their search, negatively af-

fecting overall performance.

By increasing the range of the FOV, the alert time significantly improved, making it more

challenging for the intruder to hide. However, when we compared the impact of increasing

the number of guards, we observed a slight but regular increment in the alert time for each

added guard. Thus, while both can be used to adjust difficulty, regulating the number of

guards seems to be a more precise way to adjust the difficulty level of the intruder’s task

rather than extending the guards’ FOV.

5.5.3 RoadMap

As for the RoadMap search method variations, the diffuse and propagation results are con-

sistent with the Grid method. Figure 5.10 presents a bar chart to compare the RoadMap

variations, it shows that the propagation variation outperformed the other variant. Addi-

tionally, we compared the form of the plan created on the search performance. Figure 5.11

shows a bar chart of the search performance for the two plan variations. In general, planning

a complete path yielded better and more consistent performance. This is more noticeable as

the size of the guard team increases and could be explained by the fact that the path-building

plan considers the complete path rather than just the destination.

Building the complete path led to significantly more separation between the guards,

which the results confirm in figure 5.12 that shows a bar chart of the total time guards spent

within a distance of 1 meter of each other. In the next section, we compare all the search

methods.

135

(a) FOV Range

(b) Guard Team size

Figure 5.9: The alert time percentage for the variations of the Grid search method. Each
figure compares the effect of adjusting the guards’ team size or the guards’ FOV range. The
error bars represent a 95% confidence interval.

136

Figure 5.10: The alert time percentage for the variations of the RoadMap search method.
The propagation variation outperformed the diffuse for all variations. The error bars rep-
resent a 95% confidence interval. A is the diffuse method using a path. B is the diffuse
method choosing a segment. C, and D are for the propagation variation using a path, and
choosing a segment.

5.5.4 Method Comparison

We compare the best-performing variations of the Grid and Roadmap methods with the

two baseline search methods, Cheating and Random. We choose the propagation variation

for the Grid method, and for the Roadmap, we choose the propagation and path-building

variation. Figure 5.13 shows a bar chart of the alert percentage for the four methods over

several team sizes with a FOV of 10%. We chose this FOV range because it highlighted the

most difference in performance between the methods; as we extended the FOV, all methods

converged to the same performance.

137

(a) FOV Range

(b) Guard team size

Figure 5.11: The alert time percentage for the variations of the RoadMap propagation
search method. Each figure compares the effect of adjusting the guards’ team size or the
guards’ FOV range, for both the path-building and segment-choosing variations. The error
bars represent a 95% confidence interval.

The results demonstrate that the “Cheating” guards initially performed best. However,

as the size of the guard team increased to 4-5 guards, the Grid method matched their

performance. Furthermore, for six guards, the Roadmap method also achieved similar results

to the cheating guards. In contrast, the two baseline methods did not exhibit a significant

advantage when the team size was increased. Interestingly, the Roadmap method displayed

the most significant improvement in performance with each additional guard. Compared to

cheating, we believe that the primary reason for the efficient performance of the Grid and

Roadmap methods is the effective dispersion of guards. Even if the guards took longer to

search for the intruder, their dispersion allowed them to detect the intruder.

138

Figure 5.12: The overall percentage of time at least two guards spent close to each other
within a distance of 1 meter during the scenario for the Roadmap propagation variations.
The error bars represent a 95% confidence interval.

Figure 5.13: The alert percentage for all methods over different guard team sizes for all
maps. All guards have a FOV of 10%. The error bars represent a 95% confidence interval.

To better understand how the map impacts performance, we examined the performance

of guards with a 10% FOV on a team of five guards. We chose a team of this size as it fell

within the middle range of our tests. Figure 5.14 presents a bar chart of the alert percentage

for each method across different game level layouts. The results remained consistent across

all game level layouts, with the Grid method performing almost as well as the Cheating

guards, followed by the Roadmap method. However, the overall performance varied among

139

different game level layouts, possibly due to several factors, such as the game level’s size,

number of intersections, or map’s complexity.

Additionally, the openness of the game levels could have impacted the search performance.

As shown in Figure 5.14, the RoadMap exhibited lower performance in comparison to the

Grid approach in “Arkham Asylum”, “Metal Gear Solid”, and “Valorant: Ascent”. These

specific game levels possess larger open spaces compared to the other levels. While multiple

possible factors exist, our interpretation suggests that this contrast could be attributed

to RoadMap’s lack of adequate coverage within open areas. Consequently, guards were

more likely to overlook the intruder when using the RoadMap, in contrast to the more

inclusive coverage offered by the Grid approach. Addressing this issue can be a future

research direction as it may necessitate the development of a more sophisticated roadmap

designed to address these open areas.

Figure 5.14: The alert percentage for all methods over different game level layouts. All
guards have a FOV of 10%, and the team consists of five guards. The error bars represent
a 95% confidence interval.

Results showed that the Grid propagation variation proved superior to the Roadmap

performance. Still, for this method to be practically deployed in commercial video games,

it must fit into the limited computational budget. In the next section, we compare the

computational cost to compare the tradeoff between the Grid and Roadmap.

140

5.5.5 Computational Cost

It is crucial to evaluate the computational feasibility of these methods. As mentioned ear-

lier, each method consists of two main steps: representation-update and decision-making.

Figure 5.15 illustrates the time the methods take per iteration of these two steps for various

maps. Our findings indicate that the RoadMap method is significantly less expensive than

the Grid method, with an average update time of 2 milliseconds and a decision-making time

of 0.3 milliseconds. This may be attributed to the sparse representation and straightforward

decision-making technique employed by the RoadMap method. Conversely, we discovered

that the Grid representation was the most demanding for all maps. The update step took an

average of 70 milliseconds, and there was a much larger decision-making requirement with

an average of 155 milliseconds. The high required time for both steps is likely due to the

Grid method’s maintenance of a larger number of cells in the Grid. One possible approach

to reduce computation time is to utilize a coarser Grid. However, this may come at the ex-

pense of search performance, as we showed how a slightly coarser Grid affected the coverage

performance of guards in section 3.5. Additionally, the cell size should be relatively close to

the size of the NPC, which means larger game levels may still require more cells.

141

(a) Representation-update

(b) Decision-making

Figure 5.15: The computational performance for the Grid and Roadmap methods we
defined for several maps. The y-axis is the time the method takes in milliseconds, and
the range is set in the log scale. These results were gathered on an Intel® Core™ i5-7500
Processor CPU @ 3.40GHz, 32GB RAM, AMD Radeon R9 200 Series, Windows 10 machine.

142

5.6 Summary

In games, players tend to find NPCs that exhibit rational and intuitive behavior more in-

teresting to play against. In this chapter, we presented a method that enables guards to

demonstrate real-time search behavior for an intruder that more effectively utilizes aware-

ness of the game level’s geometry. We could propagate the probability of potential opponent

locations using a skeletal graph representation. It demonstrated intriguing behavior for

multi-guard searches for an intruder in several maps from existing commercial games. Our

grid variation outperformed this method but matched it in relatively occluded contexts. The

skeletal graph closely approximates the level shape and can be adjusted through various pa-

rameterizations, such as the extent of the guard’s FOV. More importantly, it proved to be

feasible to run in real-time scenarios making it more efficient in CPU time for larger maps.

In the next chapter, we will introduce a user study designed to assess player perceptions

of dynamic search behaviors and explore how pre-defined verbal cues or “barks” announced

by guards can influence these perceptions.

143

Chapter 6

Guard Search & Dialog User Study

In the preceding chapter, we presented a dynamic search behavior designed for guards to

locate intruders once detected and managed to escape. In this chapter, we conduct a user

study to assess player perception of the search behaviors and investigate the impact of

employing various spoken dialogs by guards.

In the realm of gaming, it is well-established that designing an opponent AI that is

exceptionally efficient or unbeatable does not always lead to enhanced player enjoyment [73,

124]. However, players do find pleasure in interacting with NPCs that exhibit intelligent or

human-like behavior [103]. Therefore, it is desirable to incorporate elements of intelligent

decision-making. Typically, game developers achieve this by either crafting intricate NPC

behaviors that naturally indicate intelligence, while maintaining computational efficiency, or

by artificially highlighting NPC decisions through visual or verbal cues, like having NPCs

engage in dialogue that aligns with their perceptions or the game state [94]. This chapter

dives into the relationship between these two approaches and their impact on the player

experience. In essence, it seeks to determine whether it is more beneficial to invest in

complex NPC behavior through algorithmic sophistication, which tends to require increased

computation time, or if a simpler behavior can be augmented with dialogs to create the

illusion of intelligence.

144

Our research is centered on a user study conducted within the context of a stealth-based

video game scenario. In this scenario, players are tasked with exploring an environment while

evading capture by opponent NPCs. The success of this endeavor relies on NPC intelligence,

as they must effectively search the area and utilize their previous observations of the player’s

movements to apprehend them. This setup presents an engaging challenge for players, with

the level of difficulty and the sense of fairness or realism hinging on how convincingly and

naturally NPCs conduct their search.

One straightforward approach is to employ hard-coded search paths or “cheating” mech-

anisms, where NPCs possess knowledge of the player’s exact location. While these methods

are easy to implement, they can often come across as artificial. On the other hand, em-

ploying more intricate NPC AI that utilizes dynamic, localized information implies a greater

investment in design and implementation effort, but this sophistication may not always be

evident to the player. Both of these approaches can be enhanced by incorporating relevant

NPC dialog that creates the illusion of intelligence.

We conducted a user study to evaluate the effect of NPC behaviors and dialog lines on

player perception. The user study was based on playing the game we modified and survey

data. We consider three forms of NPC behavior for searching for an intruder and two forms

of dialog lines with different levels of contextual information. We divide the users of this

study into two groups; each group compares a baseline search behavior against a heuristic

and more effective behavior based on a relatively novel, geometry-aware path prediction from

section 5.3.

The structure of this chapter is as follows. Section 6.1 provides a detailed account of the

scenario in which players interacted with the search behaviors and dialogs. Subsequently,

in Sections 6.2 and 6.3, we describe the search behaviors and dialogs themselves. Following

that, Section 6.4 outlines the experimental setup employed to conduct the user study. Then,

in Section 6.5, we present our results, analyze player responses and performance, and draw

conclusions based on these findings. Finally, we describe the possible limitations of this

study in Section 6.6.

145

6.1 Study Scenario

Each participant plays a four-round game, facing a unique team of guards distinguished by a

specific color. We modeled each round similarly to our setup in section 5.1. Each guard team

consists of four guards, each with a FOV that represents the scope of their visual senses.

The round lasts for 99 seconds, during which the player controls a character to move around

a game level. The guards’ goal is to keep the player within their FOV, while the player’s

objective is to maintain their score by staying out of the guards’ FOV. However, if at least

one guard spots the player, all guards will chase them by taking the shortest path to their

location. In addition, the player can increase their score by collecting randomly spawned

coins located throughout the game level. Figure 6.1 shows a screenshot of what players see

while playing the game.

Figure 6.1: A screenshot of the game the participants played. The player (black dot) is in
the “Lower Engine” room, while four guards are in the center area, each with a cone-shaped,
translucent FOV. There is a coin in the “Security” room, which represents the player’s goal.
In addition, dialogue lines are announced visually and verbally to players using the Text-To-
Speech function.

146

The scenario is similar to the one in chapter 5 with additional features and settings. The

main elements are:

• Game level: The game level was a polygon with holes, where the walkable area was

shaded in grey, and the unwalkable areas were colored with the same color assigned

to the current team of guards. To ensure players can observe the guards’ motion,

we rescaled the level to allow the player to view the walkable area in a single frame,

ensuring they had complete information on the game elements.

• Guards: Similar to our setups in the previous chapters, we chose a group of four

guards with a 90◦ FOV and a limited range. These guards were randomly placed on

the game level at the beginning of each round. Their primary objective was to pursue

the intruder once they were detected in the FOV of any of the guards. The guards

were all controlled by a central behavior manager. When the intruder is out of sight,

the guards follow one of the search behaviors defined in section 6.2.

Moreover, the guards were programmed to occasionally announce dialogue lines de-

scribed in section 6.3. In a preliminary study, we found players to significantly en-

joy playing against guards with simple barks rather than silent guards; hence in this

study, we are interested in understanding how different dialog types would impact

player experience. Each team of guards had a unique search behavior and a specific

type of dialogue variation. To help players distinguish between the teams, we assigned

a different color to each team. However, to eliminate any potential color biases, we

randomized the color assignments for each session and the order of rounds.

• Intruder: This is the character the player controls, represented as a black circle. To

give an advantage to players, we set the intruder’s movement speed to be 1.5 times the

speed of a guard. To reduce variation, the intruder is always randomly placed in front

of a guard at the start of an round. To motivate players to move around the game

level, we tasked the intruder with escaping and subsequently avoiding the guards while

147

also collecting coins spawned on the map. The intruder has a score, which increases

when a coin is picked up, and gradually decreases when any of the guards spot them.

• Coins: After the player moves out of the guards’ FOV, a coin is generated at the

furthest corner from the player’s current position. The player’s score increases upon

collecting the coin, and a new coin spawns in the same manner. If any of the guards

spots the player, the spawned coin disappears and reappears only when the player

moves out of sight. We defined this distance constraint to create a uniform challenge

among the players and reduce randomness.

• Time: We set the duration of each round to 99 seconds, which we deemed sufficient

for players to observe and form ideas of the guard behavior without exhausting their

attention over multiple game-plays in our study. Additionally, we established a goal

for players by allowing the game to finish once they attained a score of 100. Achieving

this score remains challenging since players must collect at least five coins to reach it

without being spotted.

In this study, we aim to evaluate the influence of two factors in guard behavior on player

perception. The first factor is the search behavior that the guards employ to find an intruder,

while the second factor is the level of information presented in the guard dialog.

6.2 Search Behavior

We have studied three search behaviors, each of which is adopted by a specific team of

guards. These behaviors include a more advanced heuristic search approach and two simpler

baseline behaviors.

6.2.1 Roadmap

This behavior represents a more advanced heuristic search method, which we explained in

detail in 5.3. It uses the straight skeleton to project the possible generic paths the intruder

148

might take. Among the method’s variations, we choose the propagation defined in 5.3.1 for

the representation, and for the decision-making component, we choose individual segment

search, which we described in 5.3.2. We chose this variation since it was the only one we

developed at the time of this study.

6.2.2 Cheating

This is a baseline behavior where guards cheat by having the intruder’s location at all times.

All guards would take the shortest path to the intruder’s current location. This method is

considered cheating because knowing the player’s location is not justified to players. This

behavior is relatively common in commercial video games. For example, in the “Metal Gear

Solid” series, guards will have information about the player’s whereabouts shortly after being

spotted, even after losing sight of the player.

6.2.3 Random

This represents the second baseline method, where guards follow a random movement pattern

by uniformly sampling a random location to search. Each guard independently requests a

random position within the walkable area and then takes the shortest path towards it using

the VisMesh. This approach completely lacks knowledge of the player’s whereabouts, making

it distinctly different from cheating behavior.

6.3 Dialog

As a second factor of NPCs behavior, we aim to examine the impact of the level of informa-

tion communicated by the guards through spoken dialogs that reveal their knowledge and

intentions. In commercial games, NPCs often use spoken dialog lines for various purposes,

such as drawing the player’s attention to important events, adding a human-like element to

characters, or enhancing storytelling. Our focus is on the dialog lines that NPCs use to an-

nounce their intentions to overtly reveal the decisions and reasoning made by the NPCs. In a

149

small preliminary study, we found that players significantly enjoyed when guards spoke with

dialogs. Therefore, we believe that the mere existence of dialog gives players a stronger sense

of NPC intelligence. Additionally, dialog lines can be particularly valuable in this case since

the decision-making process of guards can be opaque to players. It simplifies this aspect, as

players do not always have enough time to establish a cause for the guards’ decisions.

During the chase or search for the player, guards in our game shout out dialog lines

chosen from a set of lines appropriate for the current context. Our implementation is based

on similar systems found in games such as “The Last of Us” and “Left4Dead” [48,96]. These

lines are used to indicate when guards have spotted the player, lost sight of the player, or

when they intend to search a particular area.

For our study, we defined two main variations differentiated by how much information

they convey to players. Different levels of information suggest different guard reasoning

and may thus affect how intelligent a guard appears, impacting a player’s performance or

enjoyment. The dialog variations are described below.

6.3.1 Abstract

Our abstract form is a moderately neutral form of dialog that conveys a guard’s observations

and plans without explicitly mentioning locations in the game level. Each spoken line has

a set of preconditions that must be satisfied before announcing. These preconditions can

be the guard’s current state, the last timestamp the intruder’s location was known, and the

speaker’s planned path distance. According to these preconditions, a dialog can be classified

into these subcategories:

Spotting the Intruder

This is when a guard spots the intruder; based on how long they have been searching for

the intruder, they would choose a line that reflects how long it has been. Table 6.1 shows

several examples of these lines. To avoid repeating the same line in the same situation, we

150

Table 6.1: Abstract lines a guard can use on spotting an intruder.

Precondition
time_since_intruder_seen (t) Lines

0 ≤ t ≤ 40

Over there!
Here they are!
Through here!
Enemy sighted!
Here!
On me!
I see them!

t > 40 seconds I finally see them! Come here!
They are still here! Everyone come here!

included several lines so guards could rotate between them. Each time we search for a line,

we search among the list in descending order according to the number of preconditions.

Announcing Intentions

Guards can announce their next move; however, for the abstract dialog type, lines are generic

and do not reflect concrete plans. Table 6.2 shows examples of these lines.

Table 6.2: Abstract lines a guard can use to announce their intentions.

Preconditions
speaker_path_distance (p)
search_elapsed_time (t)

Lines

p > 30% of the game level diameter
and
t < 2.5 seconds

I’ll go around from the other end!
I’ll ambush them!
I’ll take the longer path

p < 20% of the game level diameter

I will search around!
They must be nearby!
I still need to check the nearby
I need to check this corridor!
I’ll check this hall!

Filler Lines

As guards search for the intruder, they announce lines that may add more human-like fea-

tures. They do not announce clear intentions but observations or opinions that the player

151

might already know. Additionally, guards can reply to each other by replying with a line

from a set of lines grouped as a reply for the announced line. Table 6.3 shows an example

of a group of lines and the group of corresponding replies.

Table 6.3: An example of two sets of filler abstract lines. The first row is a line initiated
by a guard, and the second is a set of replies a random guard can respond to.

Preconditions
search_elapsed_time (t) Lines

t > 40 seconds

I still can’t find them
They’re good!
I’m tired of searching!
It’s like they vanished!

Replies

Yeah! but we have to find them!
You can say that again!
Yeah! We need to do better!
I’m sure they’re still here!

6.3.2 Contextual

The second list of dialogs conveys more contextual information to players; the main difference

is that the lines are associated with specific locations on the game level. In our study, rooms

in the game level are labeled with names, like “Cafeteria”, “Storage”, etc. All rooms can be

seen in the screenshot from the game in figure 6.1. This dialog group has the same subset

of lines as the abstract dialog group. Table 6.4 shows a small set of contextual lines.

6.4 Experiment

To enroll individuals in this study, we established an online portal that offered a web-based

version of our game. The majority of participants were recruited through a mass email sent

to McGill University undergraduate and graduate students. We collected anonymous survey

responses for participants’ perceptions of the game along with their gameplay data.

The primary objective of this investigation is to assess whether participants can distin-

guish between a basic behavior and a more complex one, as well as identify factors that

152

Table 6.4: Examples of lines for the different subgroups of contextual dialogs.

Type of lines Lines

Spotting the intruder

They are in {intruder_last_seen_room}!
On me in {intruder_last_seen_room}!
Through {intruder_last_seen_room}!
In {intruder_last_seen_room}!
Come to {intruder_last_seen_room}!
Alert in {intruder_last_seen_room}!

Announcing intentions

I need to clear out {speaker_goal_room}!
They might be hiding in {speaker_goal_room}!
I will keep looking in {speaker_goal_room}!
I’ll keep looking in {speaker_goal_room}!

Filler lines
I‘m checking {speaker_goal_room}! You?
{speaker_goal_room}! And you?
In {speaker_goal_room}... you?

Filler lines - Response
Ok! I’m going to check {speaker_goal_room}!
I’m going {speaker_goal_room}!
Good! I’m going to {speaker_goal_room}!

might impact their perception. To accomplish this, we assigned participants randomly to

two separate groups. The first group compared guards utilizing the Random and RoadMap

search behaviors, while the second group compared guards using the Cheating and RoadMap

search behaviors.

At the beginning of each session, participants were given a choice to play a tutorial

round featuring two guards utilizing Random search behavior. The game map was modeled

after one in the Metal Gear Solid video game, as depicted in figure 6.2. To keep things

simple, guards had no dialogue at this level. This tutorial round aimed to help participants

become comfortable with the game’s mechanics. Before beginning the actual study session,

participants could replay the tutorial level as often as desired. However, our results showed

that players rarely chose to replay the tutorial level.

To limit the study time and avoid overwhelming the players, we focus on making them

compare a complex behavior and a simple behavior with the different dialog types. Players

always compare a complex behavior and a simple one to see if they can recognize the more

advanced behavior. Thus, after the tutorial round, each participant had to play four rounds.

153

Figure 6.2: The Docks map from the commercial game Metal Gear Solid [68]

In each round, they played against a team of guards with a unique combination of one search

behavior and one type of dialog group. Table 6.5 shows the format of each guard team of the

four rounds. To get more representative results, the order of these rounds is randomized. We

allocated a unique color to each guard team to aid participants in identifying them. These

colors were randomly assigned to avoid any prejudice associated with colors or behaviors.

Table 6.5: The guard team assigned search behavior and dialog type. Based on the partic-
ipant group, the basic search could be either the Random or the Cheating search behavior,
and the Heuristic search is the RoadMap. The order for each participant is randomized.

Round
Basic search & Contextual dialog

Heuristic search & Contextual dialog
Basic search & Abstract dialog

Heuristic search & Abstract dialog

Regarding the game-level layout, it must present a certain level of difficulty to both

participants and guards. A high degree of connectivity, with numerous pathways between

different locations on the map, can make it easier for participants to elude the guards by

maneuvering around barriers. Conversely, an excessive number of dead-ends can make it

challenging for participants to escape. To address this, we opted to utilize the “skeld”

map from the game Among Us. This map possesses several beneficial features, as it does

not disproportionately favor one structure over another. It has a limited number of major

cycles, allowing participants to access any location through multiple pathways. However, it

is arranged as a series of rooms, most of which are dead-ends, providing additional difficulty

154

for participants. To improve the map’s recognizability, we labeled specific locations with

names to allow participants to associate them with particular regions. Additionally, to

ensure participants could observe guard movements at all times, we fitted the entire map

into a single frame, which is visible in figure 6.1.

To assess the participants’ initial impressions, we posed the questions displayed in ta-

ble 6.6 following each round. For each query, respondents could select a discrete answer

from a predetermined list of options. We utilized a basic Likert scale consisting of three re-

sponses; the goal of using a small Likert scale is to simplify the rating task for participants.

A screenshot of the question presentation can be viewed in figure 6.3. After the participants

played all four rounds, we asked them to choose the team they enjoyed playing against the

most and the team they found to be the most difficult.

Figure 6.3: A screenshot of an end-of-round survey question.

Table 6.6: The questions asked at the end of each round.

Question
How much did you enjoy playing against {team color}?
How hard was it to play against {team color}?
How natural the {team color} team’s behavior was?

155

6.5 Results

This section describes the study findings and discusses the impact of guard behavior and

dialog type on the participants’ experience. We organize this section by describing the

participation statistics and the effect of experience level on the scores. We also investigate if

participants performed better at later rounds to reduce the possibility of an evident learning

curve. After that, we examine the impact of the guard search behavior and dialog type.

6.5.1 Participation

Our study involved 154 participants who completed all aspects of the study. Each partici-

pant engaged in a series of four rounds, each round featuring a unique combination of two

dialogue variations and two distinct guard behaviors. To focus on the comparison between a

complex and a simple behavior, one of the guard behaviors was set as the heuristic approach,

while the second behavior was randomly selected from either cheating or random behaviors.

This allocation effectively split the participants into two distinct groups. In the first group,

consisting of 72 participants, individuals compared the heuristic guard behavior with the

cheating guard behavior. The second group, comprised of 82 participants, focused on com-

paring the heuristic guard behavior with the random guard behavior. These participants

contributed gameplay data and survey responses regarding each comparison.

As per our previous study in chapter 4, we requested participants to assess their famil-

iarity with video games at the start of the study. The rating distribution of participants’

self-perceived video game skills is presented in Figure 6.4. Notably, approximately 70–80%

of the participants considered themselves to possess either advanced or intermediate profi-

ciency in playing video games. This suggests that their findings may offer valuable insights

into player perception.

Despite the simple design of our game, we wondered if the participants’ familiarity with

video games could impact their performance, thus giving advanced players an edge over

the other groups. Figure 6.5 shows no significant differences in the scores between the

156

(a) “Random” behavior group (b) “Cheating” behavior group

Figure 6.4: The distribution of how players rated their experience in video games for both
experiments. The number of participants in the “Random” group, which consisted of the
participants comparing the heuristic and random guard behavior, is 82, and the number for
the other group is 72. [7]

different experience levels. Additionally, by comparing the scores over rounds in a preliminary

result, we found that the scores remained somewhat consistent as participants progressed

through the rounds. However, the low participant count can mainly explain the high variance

observed in the lowest two experience levels (no experience and beginner). In general, we

can deduce that the game had a low complexity making it possible for participants to learn

the game mechanics in the early rounds.

(a) “Random” behavior group (b) “Cheating” behavior group

Figure 6.5: The scores participants achieved in the study. The participants sorted them-
selves into one of four experience levels in video games. The error bars represent 95%
confidence intervals.

157

6.5.2 Performance

The way guards move is determined by the search behavior assigned to them. Participants

could see how guards moved at all times of the game. Figure 6.6 shows that participants in

the “Random” behavior group scored better when they played against the heuristic method.

In contrast, the other group participants had similar scores between the “Cheating” and the

heuristic behavior. Multiple causes can explain these results; even though randomly moving

guards had no belief of the intruder’s whereabouts, they were hard to predict and had more

dispersion in the game level, while heuristic guards were relatively more predictable, which

was easier to score against. As for the “Cheating” guards, even though the cheating guards

had the intruder’s location at all times, participants reported that they could use the cycles

in the game level to their advantage by going around the guards in a circle while collecting

the coins.

As for the dialog types, both types express guards’ beliefs or intentions in the game;

however, the main difference between the two types of dialog is the level of the conveyed

contextual information related to places in the game level. To check if there was an impact

on participant performance caused by the dialog types, we compared the scores they got in

the rounds. Figure 6.6 showed no significant difference in score for both participant groups.

However, contextual dialogs seemed to help participants score more than abstract in the

“Random” group. This group competed against the more unpredictable guard behavior,

so contextual dialog could have helped participants improve their performance against the

guards by understanding the guards’ plans.

6.5.3 End-of-round Ratings

As for the immediate responses the participants had after playing each round, we found them

to enjoy the randomly behaving guards with abstract dialogs, but no significant differences

in their opinions comparing the random and heuristic behavior in terms of difficulty and

naturalness. On the other hand, participants had strong opinions regarding the natural-

158

(a) “Random” (b) “Cheating”

Figure 6.6: The scores participants achieved by playing the game for the two study groups.
The error bars represent 95% confidence intervals. [7]

ness between cheating and heuristic behaviors. Figures 6.7 and 6.8 show the participants’

responses after each round they played. They found the cheating to be unnatural, while

heuristic to be very natural. This difference is much less evident when compared to random

behavior. This shows that participants could understand the underlying behavior of cheating

guards during the round; however, fewer participants seemed to dislike the random behavior

over the heuristic in the other group.

In the “Random” group, participants enjoyed the contextual dialogs. While in the

“Cheating” group, figure 6.8 shows that the contextual dialog interestingly gave partici-

pants a sense of difficulty compared to the abstract dialog. This observation coincides with

their end-of-study ratings showing that cheating guards with abstract dialog were perceived

as easy, although guards with contextual dialog conveyed more concrete information. We

need further investigation to confirm this observation.

6.5.4 End-of-study Ratings

The participant responses after each round could have facilitated their reflection on the teams

they encountered in that round. However, due to the fact that participants did not compete

against all teams, there was a considerable variance in their responses. To address this, after

159

(a) Enjoyment (b) Difficulty

(c) Naturalness

Figure 6.7: The end-of-round ratings for the participants allocated in the “Random” group
for the three aspects (enjoyment, difficulty, and naturalness). The error bars represent 95%
confidence intervals. [7]

playing against all teams, we requested them to rate the most enjoyable and challenging

team they faced. First, we analyze player responses regarding their most enjoyable guard

behavior and dialog type.

160

(a) Enjoyment (b) Difficulty

(c) Naturalness

Figure 6.8: The end-of-round ratings for the participants allocated in the “Cheating” group
for the three aspects (enjoyment, difficulty, and naturalness). The error bars represent 95%
confidence intervals. [7]

Enjoyment

Figure 6.9 presents the ratings provided by both participant groups. Within the “Cheating”

group, a majority of players expressed a preference for playing against the heuristic method

rather than the cheating guards. We believe this outcome is influenced by the way in which

the cheating guards simply converged towards the players, allowing players to exploit the

161

cyclical nature of the game level to evade the guards effectively. In contrast, the heuristic

guards exhibited a greater variety in their search patterns, compelling players to employ

diverse strategies. This observation is further corroborated by a Chi-Square goodness-of-fit

test, which established that the guard behavior significantly influenced player enjoyment

(χ2(1, 72) = [22.22], p < 0.001). The corresponding values for the Chi-Square goodness-of-

fit concerning guard behaviors and dialog types, in relation to player choices of their most

enjoyable teams, are detailed in Table 6.7.

As for the impact of dialog type, there was no discernible significant effect on player

enjoyment when comparing player ratings of their most enjoyable teams. We suspect that

this result stems from players readily distinguishing between the behaviors that had the most

substantial impact on their overall experience.

Regarding the participants in the “Random” group, it is evident that the type of dialog

significantly influenced their enjoyment, as indicated in Table 6.7. When we compare both

guard behaviors with the abstract dialog type, players favor the heuristic method. This

observation could be attributed to two potential reasons. First, the heuristic method po-

tentially allowed players to achieve higher scores, leading to a more enjoyable experience.

Second, the heuristic method might have exhibited more engaging behavior compared to the

random behavior.

However, when the dialog type was switched to contextual, player enjoyment improved to

match the rating for the heuristic method. This outcome can be interpreted in several ways,

two of which are as follows. First, when combined with contextual dialog, guard decisions

became more transparent. This meant that even with random movement, players achieved

higher scores by concretely understanding guards’ intentions. Which resulted in increasing

their enjoyment of that team. The second possible interpretation is that the inclusion of

contextual dialog by the guards gave them more lines to announce, which contributed to

making them more interesting to players.

162

(a) “Cheating” behavior group (b) “Random” behavior group

Figure 6.9: Participants’ votes for the most enjoyable teams. [7]

Table 6.7: The chi-square goodness-of-fit test results of the players’ most enjoyable behav-
iors and dialogs. The sample size for comparing the cheating vs. heuristic method is 72, and
for the Random vs. heuristic is 82 participants. [7]

vs Random vs Cheating
χ2 p χ2 p

Behavior 1.21 0.26 22.22 <0.001
Dialog 1.21 0.01 0.5 0.47

Difficulty

Figure 6.10 presents a bar chart displaying player preferences for the most challenging team

they encountered during the study. In the “Cheating” group, although player scores exhibited

no significant differences among the various teams, a greater number of players perceived

cheating guards with contextual dialog as the most difficult, in comparison to those with

abstract dialog. This outcome can be attributed to the fact that guards explicitly announced

the name of the room where the player was located, revealing a clear indication that the

guards were aware of the player’s position. This overt display of knowledge confirmed a

sense of an unfair advantage held by the guards, consequently leading players to perceive

this team as more challenging. Furthermore, in the heuristic method group, players were

163

evenly distributed in their selection of the most challenging team, indicating that dialog

types did not have an impact on the perceived difficulty.

Comparing the previous result with how players voted for the most challenging team in

the “Random” group, we noted that the dialog type influenced the perceived difficulty of

the heuristic team. We attribute this variance in player opinions between the two groups

to the ease with which players could distinguish between cheating and heuristic behaviors

compared to random and heuristic behaviors.

In the “Random” group, the abstract dialog appeared to make the heuristic method

seem more challenging to players. This could be explained by the fact that guards were

more transparent in their decision-making when employing contextual dialogs, so players

could better anticipate their future actions.

(a) “Cheating” behavior group (b) “Random” behavior group

Figure 6.10: Participants’ votes for the most difficult teams. [7]

To confirm the significance of this result, table 6.8 shows the Chi-Square goodness-of-fit

for the guard behaviors and dialogs for player choices of their most enjoyable teams. The

results show no statistical significance; however, we believe that further testing with a larger

sample size may give more insight.

164

Table 6.8: The chi-square goodness-of-fit test results of the players’ most challenging be-
haviors and dialogs. The sample size for comparing the cheating vs. heuristic method is 72,
and for the Random vs. heuristic is 82 participants. [7]

vs Random vs Cheating
χ2 p χ2 p

Behavior 2.39 0.12 0.22 0.63
Dialog 1.21 0.2 0.88 0.34

6.6 Threats to Validity

Although this study yielded intriguing findings, its validity may be impacted by several

limitations. Firstly, the sample size was insufficient to yield statistically significant results;

however, observed trends suggest that a larger sample size could offer more conclusive in-

sights.

The primary method for data collection involved participants using an online prototype

and completing a multiple-choice questionnaire. The absence of direct observation prevented

the capture of qualitative data on player reactions. Moreover, the use of multiple-choice

surveys restricted participants from providing additional justifications for their responses.

Concerning the study’s duration, we recognize the challenge of assessing whether players

could differentiate behaviors like Random and Heuristic after interacting with them briefly.

We believe that is essential to create a user study allowing players more extended interactions

with the AI, resembling a typical gaming session.

Despite these limitations, the study unveiled suggestive results regarding player enjoy-

ment in the context of different search behaviors and the impact of pairing various dialog

types with NPCs. It also points towards future directions for further evaluation and confir-

mation of the identified trends.

165

6.7 Summary

Developing sophisticated game AI can be a challenging task, representing a continuous re-

search effort. Intelligent decision-making in games, however, serves more as a mechanism

than an ultimate goal and can be substituted with simpler, cost-effective methods when

players cannot sense a noticeable difference. Our investigation of a user study within the

context of a stealth game revealed that players are capable of differentiating between search

behaviors when they are distinctive. This holds true, especially when the behavior appears

unjustified based on the local knowledge that NPCs should logically possess. This distinc-

tion remains noticeable even if NPCs employ the illusion of intelligence through contextually

appropriate dialogs. Conversely, other straightforward approaches like randomization can

effectively complement detailed contextual dialogs, resulting in an overall positive gaming

experience that rivals or even surpasses that achieved by using more intelligent opponents.

In the upcoming chapter, we shift our focus to the other aspect of the stealth equation.

Here, we will be developing a pathfinding method for stealthy NPCs that must navigate

through a game environment while avoiding guards with non-deterministic patrol patterns.

166

Chapter 7

Stealthy PathFinding

In the previous chapters, we focused on creating a dynamic behavior for the guards to

patrol or search for an intruder. This chapter focuses on creating intruder behavior against

adversaries with non-deterministic patrol behaviors.

In many action and role-playing games, achieving stealth-oriented or discreet pathfinding

stands as a common requisite. This involves players traversing game levels while ensuring

their invisibility to adversarial agents. While this responsibility mostly lies with the player,

the pursuit of computational solutions holds significance within the domains of game de-

sign, testing, and the enhancement of immersive interactions involving stealthy allies or

other NPCs, necessitating an algorithmic approach.

When the movement of adversaries adheres to a predictable design, the issue can be

simplified into dynamic pathfinding, a realm where various heuristic solutions have been

recommended in prior research [119]. However, in a multitude of gaming situations, the

opponents might exhibit non-deterministic behavior, such as investigating a sound or in-

corporating an element of randomness into their patrol patterns. In principle, predicting

adversary routes can be beneficial to stealthy pathfinding; however, recent methods lean

towards a conservative stance, predominantly evaluating the probabilistic trajectories of ad-

versaries through past training data, all the while overlooking the spatial characteristics

inherent to the game level [57].

167

Within this chapter, we present a proposition for achieving stealth-oriented pathfinding

that relies on a derived level roadmap constructed from the game environment itself, thus

reducing the necessity of leaning on prior observations of adversary actions. This roadmap

assumes the role of abstraction, simplifying predictive modeling of adversary movements

and more precise allocation of the probabilities of their future positions. Our proposed

strategy’s effectiveness is highlighted through empirical examination, showcasing its capacity

to enhance pathfinding in scenarios characterized by non-deterministic stealth challenges.

Additionally, we explore diverse parameters intrinsic to our approach, which impacts its

efficacy. This exploration shed light on how various elements can be used to modulate the

level of difficulty posed by the stealth scenarios.

The specific contributions of this work are as follows:

• We present a new approach for moving stealthily within a defined area against ad-

versaries whose patrol patterns are non-deterministic. This method addresses a con-

siderable limitation in existing solutions that usually assume guards have fixed patrol

behaviors.

• We conduct empirical experiments to evaluate the method’s efficacy across multiple

maps from available commercial games. This evaluation involves comparing our results

to baseline techniques, revealing the influence of variables on performance beyond the

factors of the adversary’s speed and vision. These additional factors include the count

of adversaries, map characteristics, and the initial spawn position.

The structure of this chapter is as follows. Initially, Section 7.1 presents the standard

scenario employed to evaluate the effectiveness of the stealthy pathfinding method. Subse-

quently, a thorough explanation of our method is provided in Section 7.2. Following that, in

Sections 7.3 and 7.4, we outline the experimental setup, encompassing the parameterization

of the method and a performance comparison of the stealthy pathfinding approach. Fi-

nally, in Section 7.5, we present the results obtained from our experiments, including covert

performance metrics and the computational resources utilized by the method in our system.

168

7.1 Scenario

There are numerous prospects for covert motion planning, each with significant distinctions

based on factors such as whether guards move in a deterministic manner, the properties

of their FOV, and whether the intruder possesses complete or partial information of the

surroundings and guard locations. In this study, we reuse the prototype we developed in

previous chapters, which models game levels as 2D polygons with holes (representing obsta-

cles) viewed from a top-down perspective. Figure 7.1 shows a screenshot of the game, and

the elements are:

Figure 7.1: A screenshot of our prototype. The intruder (black dot) is tasked with reaching
the coin (yellow dot) without being discovered by the guards (blue dots).

• Game level: The game level is a polygon with holes. The walkable area is colored grey,

and the unwalkable area is red.

• Guards: At the game’s start, a predetermined number of guards are distributed across

random locations. The initial guard is positioned near a randomly chosen vertex of the

outer polygon. Subsequently, each additional guard is placed at the furthest vertex,

169

determined by path distance from the previously positioned guards. This procedure

is iterated until all guards are appropriately positioned. It is important to note that

the guard movements are not deterministic, and each guard has a limited FOV with a

fixed radius and range.

• The intruder: The central aim of the intruder is to reach the destination while evading

detection by the guards. We position the intruder’s starting point at the corner furthest

from the coin and the guards. In our study, we equip the intruder with comprehensive

knowledge of the guard positions, velocities, and orientations, to improve decision-

making. Moreover, we provide the intruder with complete information about the game

level, eliminating the need for exploration and enabling them to focus exclusively on

the intricate task of stealthy path planning.

• Coin: A coin appears at the most distant corner from the intruder, serving as the

primary destination for their objective.

• Time: The intruder has a predetermined time window to achieve their goal. Specifi-

cally, we set the scenario time to 120 seconds. The scenario concludes with either a

successful outcome, denoted by the intruder reaching the coin within the given time-

frame, or a failure if they are unable to reach it in time or are detected by the guards.

7.2 Methodology

This section outlines our approach to planning paths that avoid detection from guards with

non-deterministic movements. As a general strategy, the intruder utilizes the positions and

velocities of the guards to make predictions about their future trajectories. Based on these

predictions, the intruder devises a secure path that bypasses crossing the guards’ paths while

still reaching the primary goal. Nevertheless, if no such path is available, the intruder seeks

out reachable locations on the map. These locations may either bring them closer to the

170

primary destination or offer a safer position if there is a risk of being spotted by a guard.

Algorithm 7 provides a high-level pseudo-code version of our method.

Firstly, we use our knowledge of the current location and velocity of the set of guards G

to predict their potential trajectories on the roadmap N (Line 2). An abstract representation

of the game level mainly guides these predictions, as described in section 7.2.1. By modeling

the guards’ motion, we can estimate the “risk” of the current intruder’s location i, which

we explain in section 7.2.2 (Line 3). Depending on this value, if the intruder is in a safe

spot, it tries to get closer to the goal destination by checking if there are any safe paths to

the goal or other locations within the game level. We depict the path construction process

in section 7.2.3. If there is no safe path to the goal, we search for sub-goal locations that

can heuristically bring the intruder closer. We specify how we identify these sub-goals in

section 7.2.4 (line 6). In contrast, if the intruder is at risk of being spotted, it focuses on

finding a safer spot. Once a safe and reachable location is identified, we follow it as our path,

continuously evaluating its safety and discarding it if it fails, as detailed in section 7.2.5. In

such a scenario, we recalculate a new path to the goal or a sub-goal using the same approach.

The intruder i uses a roadmap defined as a set of nodes N ′ to plan and avoid the patrolling

guards G to reach a goal destination d. This method uses a list of dynamically generated

hiding spots (H), with H ′ being a selected subset of H; section 7.2.3 shows the selection

process. r is the risk value assigned to the intruder’s current location.

7.2.1 Modelling Guard Motion

Our method’s initial phase involves predicting the future locations of the guards. To ac-

complish this, we begin by constructing a simplified abstraction or roadmap of the game

level. We then utilize this abstraction, along with the current positions and velocities of the

guards, to generate potential trajectories of their movement. By incorporating the roadmap

structure, we limit and guide the range of potential guard trajectories.

171

Algorithm 7 Stealthy Path Planning Algorithm
Require: H, the set of hiding spots.
Require: G, the set of guards.
Require: N , the roadmap.
Require: i, the intruder.
Require: d, the main goal.

1: function StealthyPathFinding(H,G,N ,i,d)
2: N ′ = ModifyRoadMap(G,N) ▷ By using the guard data, modify the roadmap.
3: r = GetCurrentRisk(N ′,i)
4: SetPathDestination(N ′,i,r,d) ▷ Try to find a safe path to main goal
5: if not i.has_Path then ▷ Check if there is a path to the main goal
6: H ′ = GetHidingSpots(N ′,H) ▷ Get a list of possible hiding spots
7: end if
8: while not i.has_Path and H ′ not empty do
9: AssessHidingSpots(H ′) ▷ Update the heuristic values of the hiding spots

10: h′ = GetBestHidingSpot(H ′)
11: SetShortestSafePath(i,h′)
12: if not i.has_Path then
13: Remove(h′,H ′)
14: end if
15: end while
16: if not PathSafe(i,r) then
17: CancelPath(i)
18: end if
19: end function

Representing the Environment

Since guards have non-deterministic motion, they may change direction arbitrarily while

patrolling or moving through a game level. However, assuming human-like behavior, they

tend to adhere to the overall level geometry. To take advantage of this expectation, we

require an abstract representation of the game level that captures its overall geometry. As a

roadmap, we again utilize the straight skeleton graph to accomplish this because it captures

the main features of a polygon, especially in the more “maze-like” environments typical of

stealth games [45]. Since the goal of using the roadmap is to provide a general representation

of the possible paths guards may take through the game level, we removed “extra” edges that

connected the graph to corners, as illustrated by the yellow lines in figure 7.2. Importantly,

this graph is only used for the intruder’s estimation and planning, and the intruder’s motion

172

utilizes the game’s standard pathfinding mechanism NavMesh, which is not constrained by

the roadmap. Moreover, this graph can be created just once, and the resulting data structure

can be stored in a file, thus diminishing the computational time required for subsequent

executions on the identical map.

Marking Guard Trajectories

In order to indicate potential future positions of a guard, we initiate the process by pro-

jecting their location onto the nearest point along the roadmap. This projection serves to

approximate their current position within the game level. Subsequently, we can extend the

projected point along the roadmap in alignment with the guard’s velocity, effectively enabling

the assignment of likelihoods regarding the guard’s potential presence at specific locations

along the roadmap’s nodes. It’s important to note that our trajectory plotting hinges on the

presumption that guards adopt exploratory movement patterns to prevent retracing their

steps. Given that the Euclidean distance between nodes in the roadmap might be large,

we introduce interim nodes temporarily to enable a more detailed estimation. These trajec-

tories take the form of simple geometric projections onto the roadmap, highlighted in red

in Figure 7.2. Algorithm 8 describes how the propagation is done for a guard. The total

propagation distance is limited depending on the guards’ speed and their FOV radius.

The approach described in algorithm 8 involves identifying the edge of the roadmap to

which the guard’s position has been mapped and incorporating a starting node l into the

graph at that location. Assuming l corresponds to the roadmap edge (p, n) (where p and n

represent nodes in the roadmap), and n is in the direction of the guard’s forward velocity,

we insert temporary nodes into the graph at fixed intervals of s up to a total distance of d

from the starting point l. d is the projection distance to reflect the guard’s trajectory. It

is crucial to choose a value that guarantees a representative distance of the guard’s future

motion.

Along the propagated trajectory, the inserted nodes in the roadmap represent possible

future positions. Each node is also associated with a numerical value that indicates the

173

Algorithm 8 Adding the possible trajectories of a guard on the roadmap.
1: function AddGuardNode(p,l,n,d,s) ▷ Add a node at a step s from position l on the

edge p to n
2: if d > s then ▷ Make sure the step size is less than the remaining distance
3: d′ = d− s
4: s′ = s
5: else
6: d′ = 0
7: s′ = d
8: end if
9: if Distance(l,n) > s′ then ▷ Place a node if the step is less than the Euclidian

distance to the next node.
10: n′ = InsertNodeOnEdge(p,l,n,s′)
11: AddGuardNode(n′,n′,n,d′,s) ▷ Recursively place another node on the same edge

n′ to n
12: else
13: for each c in n.connections do
14: if c is not p then
15: AddGuardNode(n,n,c,d′,s) ▷ Recursively place another node on the

connecting edge n to c
16: end if
17: end for
18: end if
19: end function

likelihood of the guard observing that future point, which we call the “risk” value. Figure 7.2

shows an example of how the trajectories of the guard are modeled in our system.

Risk values are heuristic, range between 0 (safe) and 1 (currently in the guard’s FOV),

and are otherwise scaled according to the path distance of the node from the guard’s starting

position. To calculate the risk value for a node n and a guard g, we use the equation

r(n) = 1− Distance(n, g)
g.FovRadius ∗ (g.Speed + 1) (7.1)

where Distance(n, g) is the path distance between node n and guard g. The denominator

is the normalizing factor, which is the projection distance d in algorithm 8. In the case of

overlapping FOV from multiple guards, the maximum risk value is considered.

174

Figure 7.2: An example of how trajectories are laid out on the roadmap. Guards are in
blue, the roadmap is in yellow, and the red line segments represent possible guard positions
propagated along the graph. Each red node represents a position along the roadmap with
an associated risk value, shown in black and white text.

7.2.2 Define the Intruder’s Risk

Once we have marked the potential future positions of the guards on the roadmap, our next

step is to strategize the intruder’s next move. Typically, the intruder wants to reach the

goal destination by avoiding the guard trajectories. However, sometimes guards might be

in positions that pose a larger threat to the intruder’s current position. One strategy is to

avoid the guards and relocate to a more secure spot. To do this, we need to evaluate the

level of risk associated with the intruder’s present position before selecting an appropriate

action. If the intruder’s current position is risky, the top priority is to relocate to a safer

location. On the other hand, if the intruder is currently in a secure location, then identifying

a safe path toward the goal takes precedence.

175

Calculating the Risk of a Position

To assess the level of risk, we consider the risk value of the node that has the highest

risk within a specific range from the intruder’s current position. This range corresponds to

the radius of the guard’s FOV. By using this approach, we can obtain an upper limit for

approximating the risk value of being imminently detected.

The risk associated with a particular position aids in determining the intruder’s situation.

When the risk value is below a given threshold, it implies that the intruder is secure. However,

if the risk value exceeds the threshold, it indicates that the intruder is at risk of being

detected. Consequently, the intruder selects an appropriate action based on their safety

status.

7.2.3 Set the Path to Destination

The intruder devises a plan for movement, which hinges on three potential scenarios. These

scenarios depend on the intruder’s current safety status and whether they can identify a path

to their destination. These scenarios are: safe with a clear path to the goal, safe without a

clear path to the goal, and unsafe. As outlined in section 7.2.2, the intruder’s safety status

is determined by comparing their risk value to the risk threshold.

When the intruder is safe, it prioritizes planning a safe path to the goal.

The first step involves utilizing A* on the roadmap to locate a feasible path to the goal.

To enhance the chances of generating a safe path, nodes on the graph with a risk value

higher than a predetermined threshold are omitted. This measure improves the likelihood

of avoiding detection by the guards and navigating through secure locations in the game

level. Figure 7.3 provides an instance of a path obtained after removing these segments. In

section 7.2.3, we examine the effect of varying the threshold levels on the performance.

If the intruder fails to find a safe route to the goal, it can move towards a series

of procedurally generated positions within the walkable space. These positions are known

as hiding spots, and a comprehensive explanation of how they are determined is presented

176

Figure 7.3: Once nodes with high-risk values have been eliminated, the roadmap is
temporarily reduced. A* algorithm is then utilized to generate a secure path for the in-
truder to reach the coin. The optimized path, denoted by the green line, is obtained using
the NavMesh.

in section 7.2.4. Given a range of possible hiding spots, the task is to identify a subset of

feasible spots as sub-goals. To accomplish this, we select spots situated near the dead-ends

that arose during the failed A* path search. Hiding spots will surround each of these regions,

and each hiding spot can serve as an intermediate goal, bringing the intruder closer to their

ultimate destination.

To minimize the computation time, we limit the scope of potential hiding spots to a

nearby “neighborhood” surrounding the dead-ends. This area comprises a set of spots with

an unobstructed line of sight between them. Figure 7.4 illustrates an example of this scenario.

After obtaining a set of potential hiding spots, we employ two primary factors to deter-

mine the optimal option. These factors are the risk value and the path distance to the goal.

The position with the least risk and the shortest distance to the goal will be favored. More-

over, the degree of emphasis placed on these two criteria can be modified to give preference

to either more conservative or daring choices.

177

Figure 7.4: The green circles represent the search limits encountered during the A* search,
while the smaller yellow circles depict the possible hiding spots that the intruder can travel
towards.

On the other hand, if the intruder is no longer safe, it gives precedence to

relocating to a secure location instead of advancing towards the goal. As avoiding

detection is paramount, the intruder prioritizes identifying nearby hiding spots and utilizes

Dijkstra’s search algorithm with a fixed search radius on the roadmap instead of A*. We

switch the search algorithm here to find all paths from a point to have more options. The

neighborhood encompassing the closest hiding spot to each terminal node in the search is

included in the set of potential hiding spots. Subsequently, we can determine the safest

hiding spot using the lowest risk as the primary criterion and the highest fitness for hiding

as the secondary criterion. In section 7.2.4, we provide details of various strategies that can

be used to prioritize the potential hiding spots.

7.2.4 Hiding Spots Placement

The intruder can use these intermediate spots to move undetected. Although hiding spots

could be located anywhere less likely to be observed, we have chosen a specific subset for

178

efficiency. Our design places these spots procedurally at the corners of the game level, with

one spot in a convex corner and two on either side of a reflex corner. Figure 7.5 shows the

process for generating these spots. To determine the ranking of each spot, we calculate its

utilities using equation 7.2, with the main criterion being the level of risk and fitness as a

secondary factor.

Figure 7.5: Black dots indicate the placement of the hiding spots, which are situated at
the corners of the walkable area. In the case of two spots within a threshold distance, we
removed them and placed one spot instead in the midpoint. This step is done to reduce
redundancy among hiding spots.

Utilities

To determine the fitness of a hiding spot, we consider four spot properties: goal utility, guard

proximity utility, occlusion utility, and cover utility. A range of numerical values from 0 to

1 was assigned to each hiding spot, which includes:

• Risk Utility: This is the value of the highest risk value of a node within a distance

that equals the radius of the FOV of the guard. This value reflects the likelihood of

the guard detecting that spot, so the higher it is, the riskier the spot is considered.

179

• Goal Utility: The normalized path distance from the hiding spot to the goal is

calculated by dividing the actual path distance by the game level diameter to normalize

the result. This value indicates the distance between the spot and the goal.

• Proximity Utility: The distance from the hiding spot to the nearest guard is calcu-

lated and normalized by dividing it by the game level diameter. The higher this value,

the further away the spot is from the closest guard.

• Occlusion Utility: This value represents the number of guards with a direct line of

sight to the hiding spot, normalized by dividing the number of such guards by the

total number of guards in the game level. A 0 indicates that no guards have a line of

sight to the spot, while a 1 implies that all guards do.

• Cover Utility: This value reflects the level of concealment of the hiding spot from the

walkable area in the game level. It is computed by dividing the area of the visibility

polygon from the spot by the total area of the walkable space. We then subtract the

result from 1. Thus, a higher value indicates a more hidden spot.

Equation 7.2 illustrates how the fitness of a spot is calculated.

f(x) = wg ∗ (1−Goal(x)) + wp ∗mingϵG(Proximity(g, x))+

wo ∗ (1−Occlusion(x)) + wc ∗ (1− Cover(x))
(7.2)

In equation 7.2, x represents a hiding spot, and wg, wo, wc, and wp are fixed weights that

range from 0 to 1, used to adjust the goal, occlusion, cover, and proximity utility values.

The higher the computed fitness level, the more suitable the spot is for hiding. Once the

optimal spot is identified, the intruder plans a safe path to it. To simplify the design and

accommodate the possibility that different situations require different weights, we defined

two settings of these weights; the first is when the intruder is safe, and the second is when

it is considered unsafe. We explore the impact of these weights in section 7.3.

180

7.2.5 Ensuring Path Safety

Since the intruder does not know the guard’s plans, it needs constant confirmation of the

path’s safety. Once that path is compromised, we discard it and request a new path. First,

we identify the riskiest intersection points of the guards’ paths. We project the guards’

predicted trajectories on the intruder’s route. If a projected point is within the FOV of that

guard it is considered as a possible interception point. At each interception point, we identify

its risk value. We do that similarly to how we calculated it for the intruder’s position in

section 7.2.2. Furthermore, we focus only on the highest risk point. Figure 7.6 shows an

example of an interception point projected on the intruder’s planned route.

Once we have determined the most unsafe interception point, we establish two primary

variations to determine whether a path is too dangerous to pursue and should be disregarded:

• Simple Risk Comparison: The primary objective of this approach is to prevent

the intruder from being placed in a more unsafe location than their current one. We

perform a straightforward comparison of risk values. If the maximum risk associated

with an interception point is lower than the intruder’s current risk value, the path is

deemed safe for the intruder to pursue.

• Distance Calculation: In this step, the intruder estimates the time required to

reach the potential interception point and compares it to the time it would take for

the associated guard to detect the point. If the guard’s FOV reaches the interception

point before the intruder, the path is considered dangerous and is eliminated.

This check is done at every time step; however, it can be executed every n frames to

reduce the required computation. Next, we must determine the values to be assigned to the

weights in our method.

181

Figure 7.6: The green line represents a portion of the intruder’s intended path. Based on the
guard’s predicted trajectory, we anticipate possible interception points along the intruder’s
path, shown in yellow. These points are assigned a non-zero risk value that indicates the
probability of the guard spotting the intruder at that location. Even though there are
several possible interception points, we only consider the possible interception point with
the maximum risk value per guard, which is shown in yellow with a risk value of 0.2.

7.3 Weight Tuning

Our method contains various parameters that can influence its performance. To evaluate it,

we must initially establish the parameter values that maximize the intruder’s success rate in

reaching a goal undetected. These parameters include:

1. Safety Threshold: This value plays a role in determining when the intruder is classi-

fied as safe or not. When the risk value surpasses the safety threshold, the intruder is

regarded as being in an unsafe situation. This threshold serves as a means to fine-tune

182

the level of caution the intruder should exercise in assessing specific scenarios as risky

or not. The value for this threshold ranges from 0 to 1, with 0 indicating the highest

degree of prudence and 1 representing the lowest. In our investigation, we examine

two distinct values for this threshold: 0 and 0.5.

2. Utility Weights: If the intruder encounters a situation where an immediate safe

path to the goal is unavailable, it will seek out a temporary hiding spot as a strategic

move to subsequently approach the goal. As clarified in section 7.2.4, the choice of the

hiding spot relies on an overall utility calculation. Each weight within this calculation

carries a value that ranges from 0 to 1, signifying its influence on the overall utility.

We outlined two distinct weight setups: one applicable when the intruder is in a safe

state and another when it is deemed unsafe. These dual settings allow the intruder to

prioritize hiding spots based on their safety condition. For each weight in equation 7.2,

we’ve considered two values, simplifying the possibilities to 0 or 1. Consequently, this

results in eight variables, each possessing two potential values.

In order to evaluate the most effective combinations of these weight settings, we conducted

a series of 15 rounds for each combination. We then compared the success rate of the intruder

reaching the goal destination within a time limit of 120 seconds. To simplify testing, we

selected a single map, “Among Us”, due to its well-balanced mix of maze-like structures and

open areas.

Following the execution of all possible combinations, our findings indicated that a more

cautious approach by the intruder resulted in an improved success rate, as illustrated in

Figure 7.7. This figure presents a bar chart depicting the influence of the risk threshold on

the success rate.

183

Figure 7.7: Success rates categorized by the weights assigned to the safety threshold. The
error bars denote 95% confidence intervals.

Concerning the weights applied when the intruder is in a safe state, Figure 7.8 illustrates

the influence of each weight on the success rate. Predictably, opting for hiding spots in closer

proximity to the goal led to a higher rate of success, as seen in Figure 7.8.a. Furthermore,

selecting well-concealed hiding spots also positively impacted the success rate. However,

intriguingly, neglecting the presence of guards near a hiding spot appeared to enhance the

success rate.

Regarding the weights used when the intruder is in an unsafe condition, Figure 7.9

demonstrates an interesting observation: the goal weight exhibited no influence on success.

This observation aligns with logic, as in such circumstances, the intruder prioritizes securing

a safe hiding spot, irrespective of its proximity to the goal, to avert potential failure.

Based on our analysis outcomes, we established the following parameters: we configured

the risk threshold to 0.5. When the intruder is in a safe state, we assign weight values of 1,

0, 0, and 0 to the goal, proximity, occlusion, and cover, respectively. Conversely, when the

intruder is considered unsafe, the corresponding weights were adjusted to 0, 0, 0, and 1.

184

(a) Goal (b) Proximity

(c) Occlusion (d) Cover

Figure 7.8: Success rates by weights when the intruder was safe.

Discovering the optimal weight configuration for our methods constitutes an intriguing

direction for further research. We believe that more efficient approaches, such as using

Reinforcement Learning techniques, could potentially bring about significant enhancements

to our method [111]. This could facilitate the creation of more dynamic weight settings,

defined based on various inputs, including factors like the layout of the game level or the

number of patrolling guards. However, within the scope of this thesis, our primary objective

is to introduce and implement this method. In the following section, we will provide a

description of the experimental setup employed to assess our method.

185

(a) Goal (b) Proximity

(c) Occlusion (d) Cover

Figure 7.9: Success rates based on weight configurations when the intruder was in an unsafe
state.

7.4 Experiment

This section outlines the elements we have established for our experiments to test this

methodology. We will conduct 200 rounds of testing, each consisting of a game-level map, an

intruder, and a group of guards assigned to patrol the walkable area. The primary objective

of the intruder is to navigate to a specific target location while evading detection from any of

the guards, all within a fixed time limit. For each round, we define a map, intruder behavior,

and guard parameters.

186

7.4.1 Game-level Maps

Similar to our experiments in this thesis, we incorporated numerous maps that drew inspi-

ration from commercial video games and benchmark maps available in movingAI [106]. For

reference, these maps are depicted in figure 7.10.

(a) Dragon Age dr_slavers (b) Valorant: Ascent (c) Metal Gear Solid: Docks

(d) Warehouse (e) Among Us (f) Alien Isolation

Figure 7.10: The game-level maps we employed in our experiments: dr_slavers from
Dragon Age, a vectorized rendition of the map available in movingAI; Ascent from Valo-
rant; Metal Gear Solid: Docks, a map that has been previously used in stealth pathing
analysis [119]; Warehouse, which represents a location with high occlusion but multiple path
options; and Among Us and Alien Isolation, adapted from the corresponding video games.

7.4.2 Intruder’s Behavior

In order to evaluate our approach, we contrasted its performance against that of two sim-

plistic baseline behaviors for an intruder:

1. Shortest Path: The intruder uses the NavMesh algorithm to determine the shortest

path towards the objective without considering the presence of guards. This behavior

187

represents the quickest feasible solution for the intruder and therefore serves as the

upper boundary baseline.

2. Simple: The intruder waits for a random interval ranging between 5 to 20 seconds.

It then identifies the farthest hiding place from all the guards and takes the shortest

path toward it, regardless of safety concerns. The primary objective of this behavior

is to remain concealed, with less emphasis placed on reaching the goal. This behavior

represents the other side of the baseline, where the intruder favors safety more.

7.4.3 Guard Parameters

As for the guards, we consider several parameters that can affect this scenario:

Patrol Behavior

The ability to reach a location undetected is largely influenced by how well the guards

perform their patrol duties. We examine three primary guard patrol strategies to investigate

the impact of different patrol behaviors on the intruder’s objective.

1. Random: This represents a basic approach to guard behavior. In this method, each

guard autonomously selects a random destination to reach. After reaching the desig-

nated spot, they then pick a new one and repeat the process. This generates a dynamic

patrol behavior that achieves reasonable map coverage. However, it still provides a

non-trivial challenge since it is hard to predict due to the lack of an observable pattern.

2. RoadMap: We explained this method in section 3.3. Our findings in section 3.6.1

indicate that this behavior resulted in superior coverage than Random, as it prioritized

covering the critical areas of the game level. Moreover, in section 4.4, it was noted

that this approach was the most appealing to human players.

3. VisMesh: In section 3.4, we provided an explanation of this approach. Our analysis

in section 3.6.1 suggests that this behavior resulted in the highest degree of coverage

188

compared to the other patrol methods. Consequently, as described in section 4.4, it

was the most challenging for human players to navigate.

Guard Placement

The initial arrangement of guards concerning the intruder (as well as each other) may influ-

ence the outcome of the experiment. Consequently, we outline three primary styles of guard

placement.

1. Random: We randomly place each guard on the map, which may result in some

guards being located close to one another.

2. Separation: By spreading the guards, we may reduce their overlap and thus provide

a good start position for the guards to patrol. To place the guards, we start by

randomly situating the first guard on the map. Next, we sample a predetermined

number of random positions and select the location farthest away from the previously

placed guard. We repeat this process for each subsequent guard.

3. Goal Position: To make reaching the goal more difficult, we can situate all guards

at the goal position.

7.5 Results

To assess performance, we conducted 200 rounds for every combination of intruder behavior,

guard placement, team size, patrol strategy, and map. Each iteration was timed at a constant

duration of 120 seconds. The evaluation of intruder performance is categorized primarily

through a key metric: the intruder reaching the destination undetected.

First, we compare how well the intruder behaviors did against the different guard behav-

iors. Then, we closely examine the effect of the game level layout on the performance of the

intruder behaviors. After that, we quantify the effect of modifying the game level layout on

our method’s performance. We also look into the effect of adjusting the guard’s team size

189

and FOV range on performance. Then, we compare how human players did on this task for

one game level and compare it with the intruder methods we defined. Lastly, we report the

CPU times our method requires per map.

7.5.1 Success Rate

The main goal of the intruder in our scenario is to reach their destination unnoticed. Fig-

ure 7.11 shows a bar chart of the success rate of the different intruder behaviors achieved

against the different guard patrol behaviors over all maps we tested. In our previous results,

section 3.6 showed that VisMesh had the best coverage out of the three methods; in addition,

our human study further confirmed this result in section 4.4.4. The same pattern can be

found in this result, where none of the intruder methods could exceed 30% of the success

rate against it. Our method achieved around 40% against the other patrol behaviors, which

is around 50% better than the intruder who found the shortest path to the destination.

However, our method and the shortest path behavior achieved a similar success rate against

the VisMesh of 28-29%. In order to better understand the possible causes of this result, we

look at the individual results of each map over all patrol behaviors.

Figure 7.11: The success rate of the different intruder behaviors of reaching the destination
without being noticed against the different guard patrol behaviors where the guard team size
is four and their FOV range is 10%.

190

Figure 7.12 shows a bar chart of the success rate for the intruder behaviors against

all guard behaviors according to maps. Our method outperformed the baseline methods;

however, there was a similar performance between our method and the shortest path method

in two levels. The first is “Warehouse”, a large map with many intersections. The high count

of intersections could have made it more probable for a simple agent to succeed in stealthily

reaching the destination. As for the second game level, “Metal Gear Solid” is a smaller

level, and in this case, the fixed projection distance of the future trajectories of the guards

could have made the intruder in our method more hesitant and stayed stationary longer, and

this caused them to be more likely to be detected. As for “Alien Isolation” and “Arkham

Asylum”, both maps had limited unique paths the intruder could take, making it harder for

the intruder to pass unnoticed. We can explore the different projected trajectory properties

in future work.

Figure 7.12: The success rate of the different intruder behaviors of reaching the destination
without being noticed against the different guard patrol behaviors where the guard team size
is four and their FOV range is 10%.

The intruder’s task becomes easier for larger game levels, given that we fix the number of

guards. For example, in “Valorant” and “Warehouse” maps, four guards were much easier to

avoid compared to the smaller levels. Increasing the guard team size might reduce the success

rate. Additionally, we observe the difference between the performance of the shortest path

191

behavior and our method to be more distinct in the “Valorant” map than the “Warehouse”.

This could be explained by the larger intersection count in the latter map, which gave the

guards more routes to take for patrol. This motivates us to understand how changing the

game level would affect the intruder’s performance.

7.5.2 Map Modification

Our focus lies in examining the map features that influence the effectiveness of stealthy

pathfinding. We investigate two primary modification methods. The initial one involves

reducing dead-ends and adding cycles on the map, directly impacting the intruder’s path

options toward their objective. To test this, we choose the “Alien Isolation” map for its low

cycle count. The second feature under consideration involves the presence of open spaces

within the map. When these open spaces are filled, the map’s topology aligns more closely

with the corresponding roadmap. This adjustment has the potential to enhance the overall

performance of our method. We chose the “Among Us” map as the second map for our

testing. Figure 7.13 shows how we modified the two maps.

We ran the same number of rounds against the four guards with 10% FOV. Figure 7.14

shows a bar chart of the success rate between the four maps. The modifications made clear

improvements to the success ratio of our method, evidently having more impact than the

shortest path behavior. This result shows that such modifications can alter the difficulty of

stealth navigation in a specific scenario. Compared to the baseline methods, the diversity of

success ratio shows that our method takes advantage of such modifications for more successful

stealth navigation. Upon evaluating the performance, we noticed that our method demon-

strated a certain degree of “hesitation” due to its safety-first approach. Consequently, we

believe conducting further tests with different setups is imperative to enhance the method’s

performance and fully leverage the benefits derived from map modifications. Further, we

explore the effect of simply adjusting the guard’s team size or the range of their FOV.

192

(a) Among Us (b) Alien Isolation

(c) Modified Among Us (d) Modified Alien Isolation

Figure 7.13: The maps are modified by connecting several dead-ends to create more cycles
on the map. Furthermore, we enhanced the occlusion in the “AmongUs” map by adding
obstacles in the open spaces.

Figure 7.14: Success rate against four guards with 10% for four maps; Alien Isolation,
Among Us, and their respective modified versions.

7.5.3 Team Size

The number of guards available significantly impacts the success of stealthy navigation.

Given a patrol behavior that efficiently separates the guard routes, more guards usually

193

result in a difficult task for the intruder. To study the effect of adjusting the team size, we

chose three maps of different sizes and layouts. Figure 7.15 shows a bar chart of the success

rate of an intruder against guards of different team sizes. Across all maps, we found that the

success rate of our method drops at a varied rate. The drop varies depending on the map

layout and the previous and current team size. A significant drop rate could be an indicator

of a certain difficulty level. For example, in the map “Among Us”, the drop rate between

four guards and five is larger than the one between five and six guards. We could use this to

categorize different difficulty levels based on the drop rate of the success ratio between the

different sizes of guard teams.

Figure 7.15: Success rate of our method against guards with 10% and different team sizes
in three maps.

7.5.4 FOV Range

The FOV range determines how far the guard can “see”. Hence, it is also likely to impact

the intruder’s success in reaching their goal undetected. Figure 7.16 shows a bar chart of

the success ratio of our method against guards with a team of four. Increasing the range of

the FOV had a more significant impact on the success ratio than increasing the guard count

194

for a shorter FOV. There are several explanations for this result; one, longer FOV meant

a longer projection distance on the roadmap the intruder uses, and this removed more line

segments from the roadmap the intruder uses to find a safe path, so it remained more hesitant

and stationery. The second reason is that guards with longer FOV cover more than guards

with shorter FOV, and shorter FOV are easier to avoid because they need time to reach a

position in the distance while a longer FOV can do it instantly.

Figure 7.16: Success rate of our method against guards with different FOV ranges and a
team size of four in three maps.

7.5.5 Human Comparison

As another benchmark, we compare the human performance in this task from the user study

we held in chapter 4. Figure 7.17 shows a bar chart of the success rates against a team of

four guards and each team with different patrol behavior in the “Among Us” map. Human

players had the highest success against the Roadmap patrol method with a 70% rate, while

our method achieved around 30%. The Vismesh was the hardest for all intruders, and

against the Random, our method performed the closest to human players’ success. Over all

the patrol methods, our method had 35% less success than human players. Results show that

195

human players still significantly outperform our method. Exploring how we can enhance our

method’s performance by learning from the strategies employed by human players represents

an intriguing avenue for future research in this study.

Figure 7.17: The success rate of the different intruder behaviors along with human players
of reaching the destination without being noticed against the different guard patrol behaviors
where the guard team size is four, and had a FOV of range 10% for the “Among Us” game
level.

7.5.6 Computation Costs

While the preliminary skeletal graph is precalculated, our approach demands ongoing changes

to the graph structure along with repeated pathfinding operations. Consequently, we mea-

sured performance by quantifying the duration it took to implement our algorithm within a

single iteration of the game loop. The tabulated outcomes presented in Table 7.1 are mean

values derived from numerous iterations conducted during 120-second trial runs, all within

the context of a scenario involving four guards.

196

Name Time (ms) Area (m2) Edge Count Node Count
Dragon Age dr_slavers 5 361.8 43 41
Metal Gear Solid: Docks 6 236.3 45 41
Alien Isolation 10 347.6 71 69
Modified Alien Isolation 10 634.2 64 60
Warehouse 12.5 504.3 79 63
Valorant: Ascent 13 552.7 81 71
Among Us 13 437.1 88 87
Modified Among Us 18 432.4 97 90

Table 7.1: Average decision time for different game maps, along with the skeletal graph edge
and node count. The experiments were done on a CPU Intel(R) Core(TM) i7-7700K CPU @
4.20GHz with 16 GB RAM and NVIDIA GeForce GTX 1080 Ti. Dragon Age 2 dr_slavers
map was imported from MovingAI. The original map is stored as a grid of 260x315.

The findings demonstrate that our initial implementation is reasonably feasible and adept

at providing consistent performance. This is particularly noticeable considering that game

AI behavior is commonly executed at a frame rate significantly lower than graphics. Notably,

the incurred cost depends on the amount of edges present in the skeletal graph.

7.6 Summary

Implementing a practical approach to stealthy pathfinding can yield improvements in level

design, testing, and player engagement. For this, it is important to recognize the impact of

various elements on the complexity of covert pathfinding in stealth scenarios. Better stealth

pathfinding makes it possible to automate tests for stealth scenarios, rather than relying

solely on human playtesting. Additionally, allied NPCs, who require stealthy navigation

alongside a player, will be better at preserving player immersion while avoiding potential

frustration arising from inferior stealth planning.

Our developed method introduces a versatile real-time methodology capable of manag-

ing scenarios characterized by non-deterministic conditions, where observers’ movements are

not restricted to predetermined patrol paths. This encompasses instances of stealth game-

play wherein enemies can modify their trajectories dynamically, for instance, responding to

197

alarms. It also pertains to the extensive domain of procedurally generated game environ-

ments that produce varied gameplay encounters. Through a thorough analysis of various

factors, we shed light on the influence exerted by tuning different parameters. We observe

that the inclusion of additional guards consistently leads to a decrease in success rates, albeit

within reasonable thresholds.

198

Chapter 8

Related Work

In this chapter, we discuss and present the related work touching the different subjects pre-

sented in this thesis under the umbrella of stealth game AI and player experience. Firstly, in

Section 8.1, we investigate topics concerning agent exploration and patrol behavior. Then,

in Section 8.2, we explore previous research on how agents can track an opponent’s move-

ments in virtual environments. Additionally, in Section 8.3, we delve into the literature on

measuring player experience and the impact that NPCs can have on the experience. Finally,

in Section 8.4, we review prior work on creating stealthy paths for agents in both robotics

and video games.

8.1 Guard Patrol Behavior

The issue of designing patrol routes is primarily concerned with achieving complete coverage

of an area. While this problem has been studied in the context of robotics and algorithmic

complexity, it has not received much attention in the realm of games. The most well-known

theoretical work on area coverage is the Art Gallery Problem (AGP) [89], where Chvátal

demonstrated that in a simple polygon with n vertices, ⌊n/3⌋ cameras with 360◦ infinite field

of view are sufficient and sometimes necessary to cover the entire area [31]. Mobile guards are

an extension of this problem, known as the Watchmen Route Problem (WRP). The objective

199

is to determine the shortest path within a polygon that guarantees complete coverage from

any point on that path. While solving this problem optimally is NP-hard [29], a solution

with a time complexity of O(n5) exists for the general case where the polygon can be entered

from any point [112]. Optimizing guard routes to cover an area can be conceptualized as

a set cover problem. Yet, this approach necessitates the division of the game space into

discrete units, a process that depends on manual intervention from developers [14].

The literature also presents various multi-agent scenarios related to the coverage problem,

such as those discussed in Laguna-Bercero et al. [69] and Ashok et al. [10]. In these studies,

guards are assumed to have an unlimited range of vision and a 360◦ view angle, which

may not be practical for most games where agents have limited FOV. A more relevant

set of problems for games is the class of “lawnmower problems”, which assumes a more

limited FOV [8]. These problems approach coverage as a task similar to finding the shortest

path for a lawnmower to mow tall grass in a field. Guards with a restricted field of view can

be viewed as similar to lawnmowers in this context. However, the efficient solutions to these

problems tend to result in dense, zigzag patterns [42]. While these patterns are suitable for

achieving complete coverage, they do not reflect realistic human observation behavior, even

with a limited FOV.

In robotics research, a widely used method for coverage is a grid-based world repre-

sentation, which involves dividing the space into a grid of evenly spaced nodes [80]. This

approach enables coverage by visiting all accessible nodes, either deterministically or prob-

abilistically [40]. However, the effectiveness of grid-based approaches depends on the grid’s

resolution, and their completeness is linked to the granularity of the grid. Although it is one

of the most straightforward techniques for problems related to space partitioning, it becomes

computationally expensive for larger spaces [115].

Using grid-based representation in robotics has facilitated the development of a stan-

dard algorithm for exploring an environment [81]. An example of such an algorithm is

the occupancy map technique, which employs the grid representation of the environment by

assigning each node a likelihood of being occupied or possessing other characteristics, such

200

as explored or traversable [80]. Incorporating occupancy maps in AI has extended beyond

robotics research and has been utilized in commercial gaming. An example is the game Third

Eye Crime, which employs occupancy maps to enhance knowledge representation and cre-

ate more realistic pursuit and search behavior in stealth scenarios [63]. The game utilizes

a probability distribution that diffuses to nearby locations after the intruder is discovered

and line of sight is lost, representing the likelihood of the intruder’s presence in those loca-

tions [62]. This approach results in intelligent guard behavior, but it is only implemented

after the intruder is detected. Before that, guards followed pre-scripted patterns, and their

patrol logic did not possess intelligent coverage of the game level.

Occupancy maps have also been applied to create dynamic, exploratory behavior for NPCs

in video games. For instance, in the turn-based roguelike game NetHack, a grid-based al-

gorithm utilizing occupancy maps has been proposed to direct exploration towards unseen

areas, employing a straightforward greedy approach, leveraging the game’s pre-existing grid-

based representation [24]. Another grid-based approach to exploration was used in an open

real-time strategy (RTS) game that took the fog of war into account, where the NPC was

guided through potential fields [51]. While occupancy maps and related systems offer a sim-

ple and robust architecture for coverage and patrol tasks, a significant drawback is their

reliance on simplistic discretizations of the game level. In larger and obstacle-rich game

worlds, finer-grained grids are required to provide movement flexibility and better conform

to the level geometry, which can be computationally expensive. This calls for more effective

data structures capable of balancing extensive coverage and computational costs, meeting

the real-time demands of modern games.

A limited number of other research works have focused on generating guard patrols in

games. One study aimed to create guard movement and patrol patterns by using a gen-

erated roadmap at the game level and incorporating a grammar-based route and behavior

construction [127]. The approach generated visually interesting results, but the guard paths

were relatively simple and short, with no effort to ensure comprehensive coverage. Another

approach by the same research group tackled the problem of exhaustive exploration, a related

201

issue to patrol, by constructing a tour of camera locations generated through the solution of

the AGP [30]. Nonetheless, this approach is unsuited for agents with a limited FOV. Another

recent study by Seiref heuristically tackled the WRP on grid-based environments [99]. How-

ever, this study did not address real-time scenarios, typically necessary for most commercial

games.

8.2 Guard Search Behavior

The problem of locating an opponent in a game is contingent on the capacity to track and

forecast their position once they have moved out of sight. This issue has been tackled in

various domains, including military surveillance for tracking enemy positions [18], monitor-

ing human movement trajectories in robotics [12], using reinforcement learning for robot

search planning [72], and enabling NPC to display human-like motion in First-Person Shoot-

ers [57]. Additionally, prior research has utilized a Turing “hide-and-seek” test to assess the

performance of agents playing such a game in a room [25].

Opponent tracking is a central feature of the gameplay in Third Eye Crime, a well-

known game that used a modified version of occupancy maps as its core mechanic [62, 63].

The game map is overlaid with a grid, and each grid node has a numerical variable that

represents the probability of an opponent occupying that node. In a typical game scenario,

when the opponent is detected by a guard’s FOV, all guards take the shortest path to the

opponent’s position. However, once the opponent is out of sight, the node corresponding

to the position they were last seen has a probability of 1. The update function uniformly

diffuses the probability across neighboring nodes and normalizes them as time passes. Guard

roles are to cover the node with the highest probability, and once a guard sees a node, its

probability is reset to zero. While this method results in interesting guard behavior, the

accuracy of tracking an opponent’s position depends on the granularity of the grid used,

with lower resolution grids leading to less accurate tracking and higher resolution grids

increasing computation and memory costs [35].

202

The shortcomings of occupancy maps were addressed by using particle filters, a technique

originally developed in robotics [116]. By using this method, there is no need to discretize

the space into a grid, like in occupancy maps [13]. In general, this method works by sampling

a finite set of weighted particles that represent the possible positions of the opponent. The

weight of each particle corresponds to the probability the opponent is in that position. Once

a particle is seen, it is removed, and unseen particles are resampled. After that, the new

particles are updated by a random walk by choosing a direction; then, it is moved in that

direction at max speed for a one-time step. The memory requirement for using particle

filters is, unlike occupancy maps, independent of the size of the map. Alternatively, the

computational expense relies on the number of particles sampled; a high number of particles

results in high accuracy in exchange for performance, and a low particle count will result in

lower accuracy.

Particle filters and occupancy maps have different computational and memory require-

ments, with particle filters typically requiring less. However, both methods have a common

weakness: they assign equal weights to unlikely opponent positions. This trait is due to

the randomness of particle filters and the omnidirectional probability diffusion in occupancy

maps. Essentially, neither method takes advantage of the game level’s layout to improve the

accuracy of position weighting. To address this limitation, a motion model known as “sim-

ulacra” was developed [35]. Simulacra defines particles based on a navigation graph used

for NPC pathfinding and uses restricted sampling to create particles that more accurately

reflect NPC movements on the graph.

While the simulacrum approach has been algorithmically described, there has been lim-

ited research to evaluate its characteristics or determine the effects of relying solely on a

navigation graph for both NPC movement and probability propagation. Our design employs

a similar approach but with some enhancements. Specifically, we use a separate graph that

captures the map properties independent of the NPCs’ pathfinding system. Additionally, we

develop a multi-agent framework for this problem.

203

8.3 Player Perception

Studies have shown that players tend to enjoy playing against NPCs that exhibit more

human-like behavior [103]. Consequently, there have been multiple efforts to assess player

perception of AI behavior. For example, competitions have been organized to test human-

like opponents [117], which can be seen as a type of “Turing test” for game NPCs [121]. The

2K BotPrize Contest was one such competition, which evaluated bots for the First-Person

shooter game Unreal Tournament 2004. In this contest, human players were asked to judge

whether they were playing against a human or a bot. Although none of the bots passed the

test, some of them managed to confuse humans in their judgment by exhibiting a certain

degree of error and randomness [56].

In another study, researchers took a different approach to this problem. They asked

bots and human players to predict player positions on a simplified top-down presentation of

Counter-strike. The study used a particle filter and hidden semi-Markov models, and the

results showed that both players and bots made similar numbers of correct and incorrect

judgments [57]. This suggests that it may be possible to create more human-like behavior

in bots. However, a survey of video game professionals revealed concerns that players might

not perceive the increased complexity of NPCs or understand their behavior easily. This

phenomenon is known as “the black hole of AI” [66], underscoring the need to evaluate the

limits of this phenomenon.

Several studies have explored different aspects of NPC behavior in modern commercial

games that could impact player enjoyment. Lankoski & Björk propose various design pat-

terns that enhance the believability of NPCs. These patterns, such as the indication of

intentionality, are examined by scrutinizing a single character from the game Oblivion [70].

Meanwhile, Warpefelt & Strååt tackle the same matter by analyzing the behavior of NPCs

in several role-playing and first-person shooter games [122]. They discovered that immersion

is compromised when NPC knowledge is not adequately constrained, and environmental

awareness is not properly considered.

204

Various studies have attempted to focus on player enjoyment directly. For instance,

certain studies have investigated the prospect of refining games by creating mathematical

models that determine the advancement of a game. The purpose of this is to establish a

progress model that can adjust player satisfaction by “accelerating” game progress in sports

and board games [60, 109, 110]. In addition, player enjoyment has been examined in NPC

AI for various game genres, such as turn-based strategy games [124], board games [60], and

first-person shooters [56, 103].

In contrast, some studies have endeavored to employ learning NPCs to anticipate player

satisfaction by defining an “interest” value based on a collection of metrics. In this ap-

proach, player enjoyment is evaluated by asking players about their experience after playing

each NPC behavior variation [129]. Although there is limited research on player enjoyment

in stealth games, they also explored a similar issue in the form of a predator/prey scenario,

which shares certain characteristics with our studies [128]. Their research centered on an

adapted variation of the identical problem within a narrower context, similar to Pac-Man.

The objective was to assess the precision of quantitative assessments linked to enjoyable

attributes. They attempted to formulate a quantitative gauge for enjoyment; nonetheless,

they didn’t explore whether particular elements or blends of AI techniques and design held

a significantly greater appeal to players.

Even though NPC behavior directly influences player experience, several other elements

can also impact that experience. For instance, dialogue lines or “barks” are frequently uti-

lized in commercial games to enhance the overall game experience [94]. These dialogue

lines usually consist of a pre-scripted set of lines that are played to players in specific situa-

tions. Despite several studies exploring the possibility of generating dialogue using natural

language generation [23,67], the existing literature lacks research that examines the relation-

ship between the content conveyed in the dialogue, NPC behavior and how these two factors

collectively affect the game experience. In our study, we delve into the influence of various

types of “barks” on player enjoyment in response to diverse enemy behaviors.

205

8.4 Stealthy Path Finding

The issue of covert pathfinding has been previously addressed in the context of robotics,

with numerous initial approaches relying on discretization. Marzouqi and Jarvis, for in-

stance, discretize the walkable space into a grid, where each cell is assigned a numerical

value that denotes its visibility from the standpoint of other cells [74]. This representa-

tion allows a robot to devise a covert path by traversing the least visible cells, although

this approach fails to consider the existence of dynamic observers. Dealing with the latter

challenge involves solving the computationally complex problem of optimizing a time and

space-constrained motion problem [114], which can be resolved through adequate approxi-

mation and parallelization but is impractical for real-time game contexts.

Many variations of the problem exist, depending on the assumptions of how much of

the state must be observed or inferred vs. assumed. Sukhatme and Mataric, for instance,

incorporated the existence of a stationary observer, while stealthy robots shared the same

environment representation [108]. Johansson and Dell’Acqua assume a more realistic context

in which the observer’s position is unknown, and an agent must use their observations to build

a probability distribution of the observer’s position [65]. Their method was computationally

expensive, with each update requiring nearly a second to lay out a stealthy path. This means

this method is inapplicable for real-time games with a limited time budget of milliseconds.

One method focused on real-time strategy (RTS) game applications involves defining safe

paths using influence maps to avoid and ambush adversaries [34]. Hladky and Bulitko

introduced a method that used a particle filter approach to predict opponent positions in

partially observable environments [57]. This method can potentially augment an additional

feature to avoid these opponents; however, this method requires historical data.

Discretization based on a grid has the drawback of being relatively memory intensive.

A more efficient method is to use natural space decomposition. For instance, Mendonça

attempted to find a covert path using a custom NavMesh and assigning a weight to each

polygon based on its proximity to cover [77]. Brewer also utilizes NavMeshes to allocate tacti-

cal waypoints, including cover points [21]. To reduce the use of many specialized pathfinding

206

methods, our work avoids modifying the NavMesh for the purpose of the covert agent. Other

studies have exploited the level’s geometry by staying in the safe, occluded region of the ob-

server’s current FOV, assuming known future observer positions, thereby creating interesting

stealthy behavior [101].

Another approach to creating stealth path planning against multiple stationary observers

involves using corridor maps for navigation, as suggested by previous research [90]. This

method alters the cost value of an edge in a graph depending on the extent to which it

is occluded from the observers’ field of view [44]. Our work builds upon this graph-based

approach, adapting it to accommodate mobile observers.

Suppose the patrol pattern of a moving observer is static and known. In that case, the

easiest way to handle them is through using A* or a more efficient heuristic search technique

like Rapidly-exploring Random Tree (RRT) to search the future, time-extruded state-space

and find a path that avoids both obstacles and observer observation [119]. Further work has

extended this approach to incorporate combat and level analysis [120], body-hiding [38], and

the use of distractions [17]. Other variations of the problem, such as interception, have also

been studied in the field of robotics [91]. However, the deterministic nature of the observer

behavior limits the application of these methods to less structured contexts, such as games

that rely on randomization for replayability or those that use procedural generation.

207

Chapter 9

Conclusions & Future Work

Finding possible methods to capture relevant features about the game level can enhance the

effectiveness of NPC AI. This dissertation suggested several methods to present space to

create novel NPC behaviors for stealth game scenarios. Additionally, we evaluated the user

experience when playing against these methods. This chapter describes the main findings

from our empirical experiments and user studies and the possible future work in this field.

9.1 Conclusions

Designing stealth games has its unique set of challenges to overcome, and introducing com-

putational methods that can reduce the time and effort required can be beneficial. In this

thesis, we introduced and tested several applied techniques that reduced the need for design

efforts in stealth games.

Guard patrol patterns form mobile obstacles players aim to avoid. Game designers usually

craft these patterns by placing static waypoints on the game level so guards cyclically follow

them. We introduced several methods that create dynamic guard patrol behavior in games

without hard-coded waypoints. We believe that this will offer numerous benefits that enhance

gameplay and immersion.

208

By allowing guards to adapt their patrol routes based on the game level, the AI becomes

more realistic and less predictable. This leads to a more immersive and challenging experience

for players facing adaptive and responsive enemies. With guards taking different paths and

responding differently, players cannot rely on memorizing guard patterns. This forces them

to think on their feet and adapt their strategies, introducing complexity and variety to the

gameplay. Moreover, the lack of fixed waypoints increases the replayability of the game. Each

playthrough becomes a unique experience as guard behavior changes, offering new challenges

and encounters. This replayability keeps players engaged and motivated to explore different

approaches in subsequent sessions. By avoiding hard-coded waypoints, game developers can

future-proof their design. Instead of manually scripting every guard patrol route, they can

create rules and parameters that guide the AI’s decision-making. This allows for easier

content updates and level modifications without extensive reprogramming.

As an extension of our work, we explored dynamic search behavior for guards searching

for a player they discovered earlier. This is a crucial mechanic in several stealth games. We

expanded this work in our user study by investigating the impact of dialog lines on player

experience. Our results hold significant implications for game design.

Game developers can consider incorporating contextual dialogs to enhance player engage-

ment and enjoyment, even in scenarios with simpler enemy behaviors. Moreover, the study

highlighted the role of contextual dialogs in enhancing player enjoyment of the game. The

presence of contextual dialogues might also inspire further advancements in the field of AI

for games. Game developers could explore ways to implement such dialogues and behaviors,

crafting more dynamic and believable AI opponents. Another notable outcome of the study

is the potential efficiency in game development. If players derive similar enjoyment from

simpler guard behaviors with contextual dialogs, developers could focus more on crafting

engaging narrative elements and allocate fewer resources to complex AI behaviors without

sacrificing player satisfaction.

While the role of stealthy path planning is typically taken by players, creating an NPC

capable of playing stealth games can have far-reaching benefits and applications. For exam-

209

ple, game developers can use such NPCs to evaluate the balance, challenge, and level design

of their games. They can provide valuable feedback on potential exploits, game-breaking

strategies, or overly difficult sections, leading to more refined and enjoyable gaming ex-

periences. Additionally, stealthy friendly NPCs can benefit gameplay since making them

completely invisible to enemies can lead to immersion-breaking situations. Our work can

assist in improving their stealth path planning so they might use cover effectively without

rendering them completely invisible to enemies. Having more reliable stealthy allies can

improve player immersion and enjoyment.

9.1.1 Research Questions

In response to the research questions we posed in Section 1.1, we summarize our findings as

follows:

Dynamic Guard Patrol

1. What are the possible ways to produce real-time dynamic patrol behavior?

We presented three primary dynamic patrol behaviors, each associated with a dis-

tinct game level representation. These approaches are a grid-based model, a straight

skeleton-based model (RoadMap), and a space-decomposition-based (VisMesh) model.

2. How different are they in terms of efficiency and computational cost?

We discovered that each approach is capable of generating dynamic patrol behavior,

each accompanied by its distinct features and advantages. However, the VisMesh

method outperformed others, particularly in its consistent coverage of the game level.

In terms of computational efficiency, we noted that the grid-based representation proves

impractical for real-time applications, especially in larger map scenarios. Contrarily,

the remaining two methods present notable memory efficiency advantages, rendering

them better-suited options for larger maps.

3. Do these behaviors contribute to the overall enjoyment of the game?

210

Players exhibited differing degrees of enjoyment when engaging with various patrol

behaviors, favoring RoadMap and VisMesh over Random patrol. Furthermore, play-

ers perceived VisMesh as the most effective and difficult patrol behavior, displaying

characteristics similar to search-like behavior.

4. What general traits in patrol behavior affect player enjoyment?

We observed that many players found enjoyment in engaging with the VisMesh be-

havior, even if their in-game performance was least compared to the other behaviors.

A deeper examination of their feedback revealed that the most challenging behaviors

were the most motivating for them to enhance their gaming skills. Additionally, play-

ers highlighted that the unpredictability of these behaviors heightened their overall

game enjoyment, with VisMesh being singled out as the most unpredictable. These

trends suggest the need for further investigation through additional testing.

Guard Search and Dialog

1. Is it possible to create a feasible, credible, and interesting but still solvable

dynamic guard search behavior?

We introduced an innovative approach that allows guards to exhibit real-time search

behavior for intruders while effectively utilizing their awareness of the level’s geometry.

This method involved the utilization of a skeletal graph representation to propagate

the probability of potential opponent locations. In our experimentation across various

maps from existing commercial games, we observed intriguing behavior patterns in

multi-guard searches for intruders. While our grid-based variation outperformed this

method overall, it demonstrated comparable performance in situations with relatively

high levels of occlusion. Additionally, it was proven to be suitable for real-time im-

plementation, resulting in better CPU time efficiency, especially in the case of larger

maps.

211

2. Can players distinguish complex search tactics, and how does their per-

ception of this relate to presentation components, like simulated spoken

interactions from the NPCs?

Our exploration through a user study of a stealth game revealed that players can detect

variations in search behaviors, particularly when these behaviors stand out as unique.

This phenomenon becomes even more pronounced when the behavior seems inconsis-

tent with the expected knowledge that NPCs should logically possess within the game

world. Notably, this observable distinction persists even when NPCs employ “barks”

that create the illusion of intelligence that fits the context. On the contrary, simpler

strategies like randomization can effectively complement well-crafted contextual barks,

resulting in an overall positive gaming experience that can rival or even surpass the

engagement achieved by deploying more sophisticated NPC behaviors.

Stealthy PathFinding

1. How can we create stealthy pathfinding accommodating guards with non-

deterministic patrol patterns?

We developed a method that introduces a versatile real-time stealthy navigation ca-

pable of managing scenarios characterized by non-deterministic guard movements and

not restricted to predetermined patrol paths. This encompasses instances of stealth

gameplay wherein guards can modify their trajectories dynamically, for instance, by re-

sponding to alarms. It also pertains to the extensive domain of procedurally generated

game environments that produce varied gameplay encounters.

2. What are the different aspects of the game level or guard team that can

affect the success of this method?

By conducting a comprehensive examination of several variables, we reveal how ad-

justing different parameters can impact the performance of our method. Our find-

ings indicate that, compared to modifying the guard’s FOV, consistently adding extra

212

guards results in a finer reduction in success rates. When it comes to the game level,

increasing the number of available routes and eliminating dead ends had a more signif-

icant positive effect on our method’s success rate compared to obscuring open spaces

within the game level.

9.2 Future Work

This thesis introduced several improvements to dynmaic NPC behaviors in stealth or action

games. However, the domain of this topic is too large for this thesis to cover. In this section,

we explore the possible future directions we can take to expand on this work.

9.2.1 Guard Behavior

In our exploration of guard motion in stealth and action games, we have identified several

areas to expand our work. One direction involves utilizing reinforcement learning to control

the weights that determine the search and patrol behaviors of guards. By incorporating the

game level properties, the number of guards, and the FOV radius as inputs, the model can

adjust the weights based on these parameters, optimizing guard performance.

Numerous current games depict character motion in a 2D fashion, even though they are

visually presented in a 3D environment. Nonetheless, certain games offer players additional

choices for movement, enabling vertical actions such as climbing, using grappling hooks, or

executing jumps. Adapting our model to accommodate the verticality of 3D game environ-

ments poses a challenge. While expanding it to a 3D setting is possible, addressing the issues

related to verticality is non-trivial. To create interesting search and patrol behaviors that

consider the vertical dimension, we can explore approaches such as creating multiple layers

of 2D presentation or modifying the existing structure by adding a depth dimension.

Performance optimization is another area of interest for us. Although our method has

demonstrated efficient real-time capabilities on average-sized game maps, we believe there is

room for improvement through parameter fine-tuning. This includes optimizing the roadmap

213

structure, segment size, graph density, and update rate based on the specific map’s char-

acteristics. Additionally, for tasks like patrol, calculating patrol routes using one of our

methods and having guards follow these routes repeatedly can enhance performance without

relying on the defined structure.

Based on user studies conducted on guard patrol, participant feedback highlighted posi-

tive aspects of different components belonging to various patrol methods. To address these

favorable traits, we propose combining the structure we use to create such behavior. For

instance, employing the roadmap in the main parts of the game level and implementing a

partial VisMesh system for deadends can provide guards with better separation in the main

areas while exhibiting meticulous search behavior in rooms, which players appreciate.

Lastly, we are interested in exploring techniques that minimize intelligence requirements

while maintaining a seamless and realistic impression of NPC actions. This may involve

modeling player attention in relation to the impact of NPC behavior, which could uncover

opportunities to reduce development efforts. Analyzing and examining techniques employed

in practical games would contribute to a deeper understanding of the effectiveness and im-

plementation of such approaches.

9.2.2 Intruder Behavior

Developing efficient and viable covert behavior remains an ongoing area of research. There

are multiple paths for expanding our work in the future. To improve the adaptability of

our method to various conditions, we propose using reinforcement learning techniques and

training the intruder on multiple game level layouts and guard setups. Considering several

parameters, including map properties, this approach can result in more efficient and engaging

behavior.

Exploring different and more efficiently conforming map abstractions would also be valu-

able. Although we employed the skeletal axis transformation for its simplicity and effective-

ness in creating a roadmap, the success of our approach depends on how well the graph covers

the actual movement space. Formalizing this property and designing extended abstractions

214

that ensure good conformance could enhance success rates and enable more efficient propa-

gation without the need for intermediate temporary node construction.

Moreover, evaluating the perception of these methods by human players is crucial. Con-

ducting user studies that involve human players collaborating with stealthy AI companions

would provide deeper insights into how the performance of the stealthy AI affects the overall

player experience.

215

Appendix A

Game Level Layouts

In this appendix, we illustrate the maps we used in this thesis. Additionally, we quantify

the properties of each map according to the following measures:

• Number of edges: This is the number of edges that belong to the corresponding straight

skeleton of the game level.

• Area: This is the area of the walkable space of the game level.

• Radius: This is the minimum among all the maximum distances between nodes of

the corresponding straight skeleton of the game level to all other nodes. The radius

represents the size or reach of the graph from the perspective of a single node.

• Diameter: This is the longest distance that needs to be traversed to go from one node

to another in the corresponding straight skeleton. The diameter can provide a sense

of the longest distance that needs to be taken to travel from one point to another on

the game level.

Table A.1 shows the properties of the game maps we included.

216

Table A.1: List of maps and their respective straight skeleton graph properties, accompa-
nied by the grid dimensions for each map.

Name Edges Area Radius Diameter Grid Dimensions
Metal Gear Solid 45 236 32 68 60× 32
Alien Isolation 67 246 44 101 78× 52

Dragon Age 2 dungeon 44 362 50 105 84× 70
Among Us 88 437 50 101 84× 48
Warehouse 79 504 50 97 72× 50

Arkham Asylum 87 620 64 127 113× 68
Valorant 78 1020 60 116 104× 88

Figure A.1: The Docks map from the commercial game Metal Gear Solid [68]

217

Figure A.2: A map that resembles a Warehouse layout.

218

Figure A.3: The Skeld map from the commercial game Among Us [61]

Figure A.4: San Cristobal Medical Facility from Alien Isolation [11]

219

Figure A.5: The “dr_dungeon” map from Dragon Age 2 [15]

220

Figure A.6: The “Ascent” map from the game Valorant [95]

221

Figure A.7: The Arkham mansion map from the commercial game Batman: Arkham
Asylum [105]

222

Glossary

coverage threshold The threshold to reset a covered region in the VisMesh implementa-

tion. Page: 58

covered region A polygon that represents the area guards covered with their FOV over a

period of a time. Pages: xiii, 57, 58, 63, 76, 78–80, 83

game level diameter The longest shortest path distance between two points in the game

level. This is used as denominator to normalize distances used in heuristics. Pages:

50, 54, 62, 71, 121, 128, 151, 179

straight skeleton A geometric construct derived from a polygon that captures the evolu-

tion of the polygon’s shape as its edges move inwards at a constant speed, eroding the

polygon. Pages: 51, 83, 112, 122, 171, 215

Unity3D A commercial game engine used to create computer games. Page: 46

223

Bibliography

[1] Activision. Tenchu: Stealth assassin, 1998.

[2] Aichholzer, O., Aurenhammer, F., Alberts, D., and Gärtner, B. A novel

type of skeleton for polygons. Springer, 1996.

[3] Al Enezi, W., and Verbrugge, C. Dynamic guard patrol in stealth games. In

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (2020), vol. 16, pp. 160–166.

[4] Al Enezi, W., and Verbrugge, C. Skeleton-based multi-agent opponent search.

In 2021 IEEE Conference on Games (CoG) (2021), IEEE, pp. 1–8.

[5] Al Enezi, W., and Verbrugge, C. Stealthy path planning against dynamic

observers. In Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Inter-

action and Games (2022), pp. 1–9.

[6] Al Enezi, W., and Verbrugge, C. Evaluating player experience in stealth games:

Dynamic guard patrol behavior study. In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment (2023), vol. 19.

[7] Al Enezi, W., and Verbrugge, C. Investigating the influence of behaviors and

dialogs on player enjoyment in stealth games. In Proceedings of the AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment (2023), vol. 19.

[8] Arkin, E. M., Fekete, S. P., and Mitchell, J. S. Approximation algorithms

for lawn mowing and milling. Computational Geometry 17, 1-2 (2000), 25–50.

224

[9] Arkin, R. C. Path planning for a vision-based autonomous robot. In Mobile Robots

I (1987), vol. 727, International Society for Optics and Photonics, pp. 240–250.

[10] Ashok, P., and Reddy, M. M. Efficient guarding of polygons and terrains. In

International Workshop on Frontiers in Algorithmics (2019), Springer, pp. 26–37.

[11] Assembly, C. Alien isolation, 2014.

[12] Bennewitz, M., Burgard, W., Cielniak, G., and Thurun, S. Learning motion

patterns of people for compliant motion. International Journal of Robotics Research

(2004).

[13] Bererton, C. State estimation for game ai using particle filters. In AAAI workshop

on challenges in game AI (2004).

[14] Berger, B., Rompel, J., and Shor, P. W. Efficient nc algorithms for set cover

with applications to learning and geometry. Journal of Computer and System Sciences

49, 3 (1994), 454–477.

[15] BioWare. Dragon age 2, 2011.

[16] Blum, H. A transformation for extracting new descriptions of shape. Models for the

perception of speech and visual form (1967), 362–380.

[17] Borodovski, A., and Verbrugge, C. Analyzing stealth games with distractions.

In Twelfth Annual AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment (AIIDE 2016) (October 2016), AAAI, pp. 129–135.

[18] Borovies, D. A. Particle filter based tracking in a detection sparse discrete event sim-

ulation environment. Tech. rep., NAVAL POSTGRADUATE SCHOOL MONTEREY

CA, 2007.

[19] Botea, A., Müller, M., and Schaeffer, J. Near optimal hierarchical path-

finding. Journal of game development 1, 1 (2004), 7–28.

225

[20] Bourg, D. M., and Seemann, G. AI for game developers. ” O’Reilly Media, Inc.”,

2004.

[21] Brewer, D. Tactical pathfinding on a navmesh. In Game AI Pro 360. CRC Press,

2019, pp. 25–32.

[22] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I.,

Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S.

A survey of Monte-Carlo tree search methods. IEEE Transactions on Computational

Intelligence and AI in Games 4, 1 (March 2012), 1–43.

[23] Brusk, J., Lager, T., Hjalmarsson, A., and Wik, P. DEAL: Dialogue manage-

ment in SCXML for believable game characters. In Proceedings of the 2007 conference

on Future Play (2007), pp. 137–144.

[24] Campbell, J., and Verbrugge, C. Exploration in NetHack with secret discovery.

IEEE Transactions on Games 11, 4 (2019), 363–373.

[25] Cenkner, A., Bulitko, V., Spetch, M., Legge, E., Anderson, C. G., and

Brown, M. Passing a hide-and-seek third-person turing test. IEEE Transactions on

Computational Intelligence and AI in Games 6, 1 (2013), 18–30.

[26] Čertickỳ, M., Churchill, D., Kim, K.-J., Čertickỳ, M., and Kelly, R.

Starcraft ai competitions, bots, and tournament manager software. IEEE Transactions

on Games 11, 3 (2018), 227–237.

[27] Chazelle, B. Triangulating a simple polygon in linear time. Discrete & Computa-

tional Geometry 6, 3 (1991), 485–524.

[28] Cheng, S.-W., Mencel, L., and Vigneron, A. A faster algorithm for computing

straight skeletons. ACM Transactions on Algorithms (TALG) 12, 3 (2016), 1–21.

[29] Chin, W.-p., and Ntafos, S. Optimum watchman routes. In Proceedings of the

second annual symposium on Computational geometry (1986), pp. 24–33.

226

[30] Chowdhury, M., and Verbrugge, C. Exhaustive exploration strategies for NPCs.

In Proceedings of the 1st International Joint Conference of DiGRA and FDG: 7th

Workshop on Procedural Content Generation (2016).

[31] Chvátal, V. A combinatorial theorem in plane geometry. Combin. Theory Ser. B

18 (1975), 39–41.

[32] Craw, S. Manhattan distance. Encyclopedia of Machine Learning and Data Mining

(2017), 790–791.

[33] Crecente, B. Volume is a pure stealth game with a slick aesthetic. https://www.

polygon.com/2015/6/25/8845833/volume. Accessed: 2022-10-12.

[34] Critch, L., and Churchill, D. Sneak-attacks in starcraft using influence maps

with heuristic search. In 2021 IEEE Conference on Games (CoG) (2021), IEEE,

pp. 1–8.

[35] Darken, C., and Anderegg, B. Particle filters and simulacra for more realistic

opponent tracking. In AI Game Programming Wisdom (2008), vol. 4, Charles River

Media, pp. 419–428.

[36] Demaine, E. D. Playing games with algorithms: Algorithmic combinatorial game

theory. In Mathematical Foundations of Computer Science 2001: 26th International

Symposium, MFCS 2001 Mariánské Lázne, Czech Republic, August 27–31, 2001 Pro-

ceedings 26 (2001), Springer, pp. 18–33.

[37] Denisova, A., and Cairns, P. First person vs. third person perspective in digital

games: do player preferences affect immersion? In Proceedings of the 33rd annual

ACM conference on human factors in computing systems (2015), pp. 145–148.

[38] Díaz, J. M., and Verbrugge, C. Solving the take-down and body-hiding problems.

In Experimental AI in Games: An AIIDE 2019 Workshop (Atlanta, Georgia, 2019),

pp. 1–7.

227

https://www.polygon.com/2015/6/25/8845833/volume
https://www.polygon.com/2015/6/25/8845833/volume

[39] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische

mathematik 1, 1 (1959), 269–271.

[40] Elfes, A. Sonar-based real-world mapping and navigation. IEEE Journal on Robotics

and Automation 3, 3 (1987), 249–265.

[41] Elfes, A. Using occupancy grids for mobile robot perception and navigation. Com-

puter 22, 6 (1989), 46–57.

[42] Falaki, P. M. M., Padman, A., Nair, V. G., and Guruprasad, K. Simultane-

ous exploration and coverage by a mobile robot. In Control Instrumentation Systems.

Springer, 2020, pp. 33–41.

[43] Fikes, R. E., and Nilsson, N. J. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial intelligence 2, 3-4 (1971), 189–208.

[44] Geraerts, R., and Schager, E. Stealth-based path planning using corridor maps.

In Computer Animation and Social Agents (2010).

[45] Giesen, J., Miklos, B., Pauly, M., and Wormser, C. The scale axis trans-

form. In Proceedings of the twenty-fifth annual symposium on Computational geometry

(2009), pp. 106–115.

[46] Gill, A. Introduction to the theory of finite-state machines. McGraw-Hill (1962),

6–12.

[47] Graham, D. �. An introduction to utility theory. In Game AI Pro 360: Guide to

Architecture. CRC Press, 2014, pp. 67–80.

[48] Gregory, J. A context-aware character dialog system - game developer’s conference.

https://www.gdcvault.com/play/1020386/A-Context-Aware-Character-Dialog,

2014.

228

https://www.gdcvault.com/play/1020386/A-Context-Aware-Character-Dialog

[49] Guerrero-Higueras, Á. M., Álvarez-Aparicio, C., Calvo Olivera, M. C.,

Rodríguez-Lera, F. J., Fernández-Llamas, C., Rico, F. M., and Matellán,

V. Tracking people in a mobile robot from 2d lidar scans using full convolutional neural

networks for security in cluttered environments. Frontiers in neurorobotics 12 (2019),

85.

[50] Guy, R. K. Combinatorial games, vol. 43. American Mathematical Soc., 2000.

[51] Hagelback, J., and Johansson, S. J. Dealing with fog of war in a real time

strategy game environment. In 2008 IEEE Symposium On Computational Intelligence

and Games (2008), pp. 55–62.

[52] Harabor, D. D., and Grastien, A. Online graph pruning for pathfinding on grid

maps. In Twenty-Fifth AAAI Conference on Artificial Intelligence (2011), pp. 1114–

1119.

[53] Hart, P., Nilsson, N., and Raphael, B. A formal basis for the heuristic determi-

nation of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics

4, 2 (1968), 100–107.

[54] Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics 4, 2 (1968), 100–107.

[55] Hertel, S., and Mehlhorn, K. Fast triangulation of the plane with respect to

simple polygons. Information and control 64, 1-3 (1985), 52–76.

[56] Hingston, P. A Turing test for computer game bots. IEEE Transactions on Com-

putational Intelligence and AI in Games 1, 3 (2009), 169–186.

[57] Hladky, S., and Bulitko, V. An evaluation of models for predicting opponent

positions in first-person shooter video games. In 2008 IEEE Symposium On Compu-

tational Intelligence and Games (2008), IEEE, pp. 39–46.

229

[58] Hou, Q., Zhang, S., Chen, S., Nan, Z., and Zheng, N. Straight skeleton

based automatic generation of hierarchical topological map in indoor environment.

In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC)

(2021), IEEE, pp. 2229–2236.

[59] Huber, S., and Held, M. Computing straight skeletons of planar straight-line

graphs based on motorcycle graphs. In CCCG (2010), Citeseer, pp. 187–190.

[60] Iida, H., Takeshita, N., and Yoshimura, J. A metric for entertainment of

boardgames: its implication for evolution of chess variants. In Entertainment Com-

puting. Springer, 2003, pp. 65–72.

[61] Innersloth. Among us, 2018.

[62] Isla, D. Probabilistic target tracking and search using occupancy maps. AI Game

Programming Wisdom 3 (2006), 379–388.

[63] Isla, D. Third Eye Crime: Building a stealth game around occupancy maps. In Ninth

Artificial Intelligence and Interactive Digital Entertainment Conference (2013).

[64] Jana, M., Vachhani, L., and Sinha, A. A deep reinforcement learning approach

for multi-agent mobile robot patrolling. International Journal of Intelligent Robotics

and Applications 6, 4 (2022), 724–745.

[65] Johansson, A., and Dell’Acqua, P. Knowledge-based probability maps for

covert pathfinding. In International Conference on Motion in Games (2010), Springer,

pp. 339–350.

[66] Johansson, M., Eladhari, M. P., and Verhagen, H. Complexity at the cost of

control in game design. In Proceedings of the 5th Annual International Conference on

Computer Games and Allied Technology (CGAT 2012). Global Science & Technology

Forum (2012), Citeseer, pp. 22–29.

230

[67] Kacmarcik, G. Using natural language to manage NPC dialog. In Proceedings of

the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(2006), vol. 2, pp. 115–117.

[68] Konami. Metal gear solid, 1998.

[69] Laguna, G. J., and Bhattacharya, S. Adaptive target tracking with a mixed

team of static and mobile guards: deployment and activation strategies. Autonomous

Robots (2019), 1–13.

[70] Lankoski, P., and Björk, S. Gameplay design patterns for believable non-player

characters. In DiGRA Conference (2007), pp. 416–423.

[71] Lee, D.-T. Medial axis transformation of a planar shape. IEEE Transactions on

pattern analysis and machine intelligence, 4 (1982), 363–369.

[72] Liu, Y., Chen, Z., Li, Y., Lu, M., Chen, C., and Zhang, X. Robot search

path planning method based on prioritized deep reinforcement learning. International

Journal of Control, Automation and Systems 20, 8 (2022), 2669–2680.

[73] Livingstone, D. Turing’s test and believable AI in games. Computers in Entertain-

ment (CIE) 4, 1 (2006), 6–es.

[74] Marzouqi, M., and Jarvis, R. A. Covert path planning for autonomous robot

navigation in known environments. In Proc. Australasian Conference on Robotics and

Automation, Brisbane (2003), pp. 1–10.

[75] McGee, K., and Abraham, A. T. Real-time team-mate ai in games: A defini-

tion, survey, & critique. In proceedings of the Fifth International Conference on the

Foundations of Digital Games (2010), pp. 124–131.

[76] Meisters, G. H. Polygons have ears. The American Mathematical Monthly 82, 6

(1975), 648–651.

231

[77] Mendonça, M. R., Bernardino, H. S., and Neto, R. F. Stealthy path plan-

ning using navigation meshes. In 2015 Brazilian Conference on Intelligent Systems

(BRACIS) (2015), IEEE, pp. 31–36.

[78] Millington, I., and Funge, J. Artificial intelligence for games. CRC Press, 2018.

[79] Mononen, M. Simple stupid funnel algorithm. http://digestingduck.blogspot.

com/2010/03/simple-stupid-funnel-algorithm.html. Accessed: 2019-07-20.

[80] Moravec, H., and Elfes, A. High resolution maps from wide angle sonar. In

Proceedings. 1985 IEEE International Conference on Robotics and Automation (1985),

vol. 2, pp. 116–121.

[81] Moravec, H. P. Sensor fusion in certainty grids for mobile robots. In Sensor devices

and systems for robotics. Springer, 1989, pp. 253–276.

[82] Nau, D., Cao, Y., Lotem, A., and Munoz-Avila, H. Shop: Simple hierarchical

ordered planner. In Proceedings of the 16th international joint conference on Artificial

intelligence-Volume 2 (1999), pp. 968–973.

[83] Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D.,

and Yaman, F. Shop2: An htn planning system. Journal of artificial intelligence

research 20 (2003), 379–404.

[84] Niblack, C. W., Gibbons, P. B., and Capson, D. W. Generating skeletons

and centerlines from the distance transform. CVGIP: Graphical Models and image

processing 54, 5 (1992), 420–437.

[85] Nilsson, N. J. Shakey the robot. Tech. rep., SRI INTERNATIONAL MENLO

PARK CA, 1984.

[86] Nowakowski, R. J. Games of no chance, vol. 29. Cambridge University Press, 1998.

232

http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html

[87] Ontanón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., and

Preuss, M. A survey of real-time strategy game AI research and competition in

starcraft. IEEE Transactions on Computational Intelligence and AI in games 5, 4

(2013), 293–311.

[88] Orkin, J. Three states and a plan: the AI of fear. In Game Developers Conference

(2006), vol. 2006, pp. 1–18.

[89] O’rourke, J. Art gallery theorems and algorithms, vol. 57. Oxford University Press

Oxford, 1987.

[90] Overmars, M., Karamouzas, I., and Geraerts, R. Flexible path planning using

corridor maps. In European Symposium on Algorithms (2008), Springer, pp. 1–12.

[91] Park, J.-H., Choi, J.-S., Kim, J., and Lee, B.-H. Roadmap-based stealth

navigation for intercepting an invader. In 2009 IEEE International Conference on

Robotics and Automation (2009), IEEE, pp. 442–447.

[92] Paull, L., Seto, M., Leonard, J. J., and Li, H. Probabilistic cooperative

mobile robot area coverage and its application to autonomous seabed mapping. The

International Journal of Robotics Research 37, 1 (2018), 21–45.

[93] Pepels, T., Winands, M. H., and Lanctot, M. Real-time Monte-Carlo tree

search in ms pac-man. IEEE Transactions on Computational Intelligence and AI in

games 6, 3 (2014), 245–257.

[94] Redding, P. Aarf! arf arf arf: Talking to the player with barks. https://www.

gdcvault.com/play/1308/Aarf-Arf-Arf-Arf-Talking, 2009.

[95] Riot Games. Valorant, 2020.

[96] Ruskin, E. AI-driven dynamic dialog through fuzzy pattern matching. empower your

writers! - game developer’s conference. https://www.gdcvault.com/play/1015317/

AI-driven-Dynamic-Dialog-through, 2012.

233

https://www.gdcvault.com/play/1308/Aarf-Arf-Arf-Arf-Talking
https://www.gdcvault.com/play/1308/Aarf-Arf-Arf-Arf-Talking
https://www.gdcvault.com/play/1015317/AI-driven-Dynamic-Dialog-through
https://www.gdcvault.com/play/1015317/AI-driven-Dynamic-Dialog-through

[97] Russell, S., and Norvig, P. Artificial intelligence a modern approach. MA:

Prentice Hall, 2009.

[98] Sabet, S. S., Griwodz, C., and Möller, S. Influence of primacy, recency and

peak effects on the game experience questionnaire. In Proceedings of the 11th ACM

Workshop on Immersive Mixed and Virtual Environment Systems (2019), pp. 22–27.

[99] Seiref, S., Jaffey, T., Lopatin, M., and Felner, A. Solving the watchman

route problem on a grid with heuristic search. In Proceedings of the International

Conference on Automated Planning and Scheduling (2020), vol. 30, pp. 249–257.

[100] Shute, G. M., Deneen, L. L., and Thomborson, C. D. An O(nlogn) plane-

sweep algorithm for L1 and L∞ delaunay triangulations. Algorithmica 6, 1-6 (1991),

207–221.

[101] Singh, N., and Verbrugge, C. Staying hidden: An analysis of hiding strategies

in a 2d level with occlusions. In Twelfth Artificial Intelligence and Interactive Digital

Entertainment Conference (2016), pp. 72–78.

[102] Snook, G. Simplified 3D movement and pathfinding using navigation meshes. In

Game Programming Gems, M. DeLoura, Ed. Charles River Media, 2000, pp. 288–304.

[103] Soni, B., and Hingston, P. Bots trained to play like a human are more fun. In

2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress

on Computational Intelligence) (2008), pp. 363–369.

[104] Straatman, R., Verweij, T., Champandard, A., Morcus, R., and Kleve,

H. Hierarchical ai for multiplayer bots in killzone 3. In Game AI Pro 360. CRC Press,

2019, pp. 41–54.

[105] Studios, R. Batman: Arkham asylum, 2009.

[106] Sturtevant, N. Benchmarks for grid-based pathfinding. Transactions on Computa-

tional Intelligence and AI in Games 4, 2 (2012), 144 – 148.

234

[107] Sugihara, K. Straight skeleton computation optimized for roof model generation. In

WSCG (2019), vol. 27, pp. 101–109.

[108] Sukhatme, A. T. G. S., and Mataric, M. J. A multi-robot approach to stealthy

navigation in the presence of an observer. In IEEE International Conference on

Robotics and Automation, New Orleans, LA (2004), pp. 2379–2385.

[109] Sutiono, A. P., Purwarianti, A., and Iida, H. A mathematical model of game

refinement. In International Conference on Intelligent Technologies for Interactive

Entertainment (2014), Springer, pp. 148–151.

[110] Sutiono, A. P., Ramadan, R., Jarukasetporn, P., Takeuchi, J., Purwari-

anti, A., and Iida, H. Amathematical model of game refinement and its applications

to sports games. EAI Endorsed Transactions on Creative Technologies 2, 5 (10 2015).

[111] Sutton, R. S., and Barto, A. G. Introduction to reinforcement learning, vol. 2.

MIT press Cambridge, 1998.

[112] Tan, X. Fast computation of shortest watchman routes in simple polygons. Informa-

tion Processing Letters 77, 1 (2001), 27–33.

[113] Tekinbas, K. S., and Zimmerman, E. Rules of play: Game design fundamentals.

MIT press, 2003.

[114] Teng, Y., DeMenthon, D., and Davis, L. Stealth terrain navigation. IEEE

Transactions on Systems, Man, and Cybernetics 23, 1 (1993), 96–110.

[115] Thrun, S. Learning metric-topological maps for indoor mobile robot navigation.

Artificial Intelligence 99, 1 (1998), 21–71.

[116] Thrun, S. Particle filters in robotics. In Uncertainty in artificial intelligence (2002),

vol. 2, pp. 511–518.

235

[117] Togelius, J. How to run a successful game-based AI competition. IEEE Transactions

on Computational Intelligence and AI in Games 8, 1 (2014), 95–100.

[118] Tozour, P. Building a near-optimal navigation mesh. In AI Game Programming

Wisdom 1. Charles River Media, 2002, pp. 171–185.

[119] Tremblay, J., Torres, P. A., Rikovitch, N., and Verbrugge, C. An ex-

ploration tool for predicting stealthy behaviour. In Ninth Artificial Intelligence and

Interactive Digital Entertainment Conference (2013), pp. 34–40.

[120] Tremblay, J., Torres, P. A., and Verbrugge, C. An algorithmic approach

to analyzing combat and stealth games. In 2014 IEEE Conference on Computational

Intelligence and Games (CIG) (August 2014), pp. 1–8.

[121] Turing, A. M. Computing machinery and intelligence. In Parsing the turing test.

Springer, 2009, pp. 23–65.

[122] Warpefelt, H., and Strååt, B. Breaking immersion by creating social unbeliev-

abilty. In Proceedings of AISB 2013 Convention. Social Coordination: Principles,

Artefacts and Theories (SOCIAL. PATH) (2013), pp. 92–100.

[123] Weber, R., Behr, K.-M., Tamborini, R., Ritterfeld, U., and Mathiak,

K. What Do We Really Know about First-Person-Shooter Games? an Event-Related,

High-Resolution Content Analysis. Journal of Computer-Mediated Communication 14,

4 (07 2009), 1016–1037.

[124] Wetzel, B., and Anderson, K. What you see is not what you get. In Game AI

Pro 3: Collected Wisdom of Game AI Professionals. CRC Press, 2017, pp. 31–47.

[125] Widyaningrum, E., and Lindenbergh, R. C. Skeleton-based automatic road

network extraction from an orthophoto colored point cloud. The 40th Asian onference

on Remote Sensing (ACRS 2019), Daejeon, Korea (2019), 526–535.

236

[126] Woof, W., and Chen, K. Learning to play general video-games via an object

embedding network. In 2018 IEEE Conference on Computational Intelligence and

Games (CIG) (2018), IEEE, pp. 1–8.

[127] Xu, Q., Tremblay, J., and Verbrugge, C. Generative methods for guard and

camera placement in stealth games. In Tenth Artificial Intelligence and Interactive

Digital Entertainment Conference (2014), pp. 87–93.

[128] Yannakakis, G. N., and Hallam, J. Capturing player enjoyment in computer

games. In Advanced Intelligent Paradigms in Computer Games. Springer, 2007,

pp. 175–201.

[129] Yannakakis, G. N., and Hallam, J. Towards optimizing entertainment in com-

puter games. Applied Artificial Intelligence 21, 10 (2007), 933–971.

[130] Yannakakis, G. N., and Togelius, J. Artificial intelligence and games, vol. 2.

Springer, 2018.

237

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contributions
	Dynamic Guard Patrol
	Guard Search and Dialog
	Stealthy PathFinding

	Paper Contributions
	Outline

	Background
	Games
	Combinatorial Games
	Video Games

	NPC
	Decision-making
	Reactive Behavior
	Goal-based Behavior

	Path Planning
	Space Representation
	Pathfinding in Graphs

	Straight Skeleton
	Summary

	Guard Patrol Behavior
	Scenario
	Grid-based
	Representation-Update
	Decision-Making

	Roadmap
	Representation-Update
	Decision-Making

	Space Decomposition (VisMesh)
	Representation-Update
	Decision-Making

	Weight Tuning
	Metric
	Grid-based
	Roadmap
	VisMesh

	Methods Performance
	Coverage Performance
	Computational Cost

	Summary

	Guard Patrol User Study
	Study Scenario
	Patrol Behaviors
	VisMesh
	Roadmap
	Random

	Experiment
	Game Level
	Guard Teams

	Results
	Participation
	Performance
	Enjoyment
	Difficulty
	Effectiveness

	Threats to Validity
	Summary

	Guard Search Behavior
	Scenario
	Grid
	Representation-Update
	Decision-Making

	RoadMap
	Representation-Update
	Decision-Making

	Experiment
	Search Methods
	Intruder Methods

	Methods Performance
	Intruder Behavior
	Grid
	RoadMap
	Method Comparison
	Computational Cost

	Summary

	Guard Search & Dialog User Study
	Study Scenario
	Search Behavior
	Roadmap
	Cheating
	Random

	Dialog
	Abstract
	Contextual

	Experiment
	Results
	Participation
	Performance
	End-of-round Ratings
	End-of-study Ratings

	Threats to Validity
	Summary

	Stealthy PathFinding
	Scenario
	Methodology
	Modelling Guard Motion
	Define the Intruder's Risk
	Set the Path to Destination
	Hiding Spots Placement
	Ensuring Path Safety

	Weight Tuning
	Experiment
	Game-level Maps
	Intruder's Behavior
	Guard Parameters

	Results
	Success Rate
	Map Modification
	Team Size
	FOV Range
	Human Comparison
	Computation Costs

	Summary

	Related Work
	Guard Patrol Behavior
	Guard Search Behavior
	Player Perception
	Stealthy Path Finding

	Conclusions & Future Work
	Conclusions
	Research Questions

	Future Work
	Guard Behavior
	Intruder Behavior

	Game Level Layouts
	Glossary

