
1 

Dating the Late Proterozoic Stratigraphic Record 1 
2 

Galen P. Halverson1,2 3 
Susannah M. Porter34 
Timothy M. Gibson1 5 

6 
7 

1. Department of Earth and Planetary Sciences, McGill University, 3450 University St., 8 
Montréal QC, H3A 0E8 Canada 9 

2. Earth Dynamics Research Group, ARC Centre of Excellence for Core to Crust Fluid Systems 10 
(CCFS) and The Institute for Geoscience Research (TIGeR), School of Earth and Planetary 11 
Sciences, Curtin University, GPO Box U1987, WA 6845, Australia 12 

3. Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 13 
93106, USA 14 

 15 
Abstract 16 
The Tonian and Cryogenian periods (1000–635.5 Ma) witnessed important biological and 17 

paleoclimatic events, including diversification of eukaryotes, the rise of alga as primary 18 

producers, the possible origin of Metazoa, and a pair of Snowball Earth glaciations. The Tonian 19 

and Cryogenian periods will also be the next in the geological time scale to be formally defined. 20 

Age-calibrating this interval is essential for properly ordering and interpreting these events and 21 

establishing and testing hypotheses for paleoenvironmental change. Here we briefly review the 22 

methods by which the Proterozoic time scale is dated and provide an up-to-date compilation of 23 

age constraints on key fossil first and last appearances, events, and horizons during the Tonian 24 

and Cryogenian periods. We also develop a new age model for a ca. 819–740 Ma composite 25 

section in Svalbard, which is unusually complete and contains a rich Tonian fossil archive. This 26 

model provides useful preliminary age estimates for the Tonian succession in Svalbard and 27 

distinct carbon isotope anomalies that can be globally correlated and used as an indirect dating 28 

tool.  29 
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Dating the geological record is essential for piecing together and interpreting the events and 36 

processes that shaped Earth over its 4.54 billion-year history. One way in which geologists tell 37 

time is through establishing the order in which events took place through application of the laws 38 

of superposition and cross-cutting relationships. These basic yet powerful tools for telling 39 

relative time, combined with biostratigraphy, enabled early geologists to formulate the 40 

framework of a geological time scale long before methods for determining precise ages had been 41 

developed1,2. However, accurate and precise ages are required to establish rates of processes and 42 

calibrate unique events in Earth’s history to absolute time3,4. 43 

 44 

Radiometric techniques have been applied to dating geological materials since the pioneering 45 

work of Arthur Holmes over a century ago5. These techniques exploit a series of different 46 

isotopic systems in which a radioactive parent isotope decays into a stable daughter isotope. 47 

Many different radiometric dating methods are now regularly employed on a variety of 48 

materials6, and their utility and precision are steadily improving with better constraints on decay 49 

constants7, modification of sample preparation procedures to diminish extrinsic sources of error 50 

(e.g., ref. 8–10), and development of increasingly sophisticated and highly spatially resolved in 51 

situ analytical approaches11. These radiometric methods, combined with biostratigraphy, 52 

magnetostratigraphy, astrochronology, and other tools for correlating rocks globally, have 53 

calibrated a highly functional chronostratigraphic geological time scale (GTS) for most of the 54 

Phanerozoic Eon (541 million years ago [Ma] to present)12.   55 

 56 

Despite the great progress in calibrating and refining the GTS, telling time in the Proterozoic Eon 57 

(2500–541 Ma) remains a formidable challenge4,13. The difficulty lies partly in the limited utility 58 

of biostratigraphy and magnetostratigraphy in rocks of this age, compounded by a fragmentary 59 

and typically deformed sedimentary record. Fortunately, a rapidly growing database of 60 

geologically well-constrained radiometric ages (Figure 1; SI), combined with chemostratigraphy, 61 

provides for an ever-improving geochronological framework for the Proterozoic Eon. 62 

Consequently, certain events in Proterozoic Earth history, such as the onset of the Great 63 

Oxidation Event (ca. 2420 Ma14) and the end of the second (Marinoan) Snowball glaciation (ca. 64 

635.5 Ma15–17) are reasonably well dated. Other important events, such as the first appearance of 65 

animals and the massive ca. 570 Ma Shuram negative carbon isotope anomaly in the middle 66 
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Ediacaran Period, remain poorly dated18–21. The aim of this contribution is to provide a brief 67 

review of the methods by which the Proterozoic sedimentary record is temporally calibrated, 68 

along with updated age constraints on key biological and geological events in the middle to late 69 

Proterozoic (ca. 1050 to 635 Ma), which spans the proliferation of complex eukaryotes and a 70 

second Proterozoic oxygenation event22. A well-resolved time scale is essential to reconcile the 71 

processes responsible for the interconnected changes in the biosphere, oceans, atmosphere, 72 

paleogeography, and climate during this key interval in Earth’s history.   73 

 74 

The mineral zircon dated by the uranium-lead (U-Pb) method is the gold standard of radiometric 75 

dating techniques. This zirconium silicate mineral (ZrSiO4) crystallizes at high temperatures in 76 

felsic magmas and is an ideal geochronometer for multiple reasons. First, it incorporates uranium 77 

in trace amounts (100s to 1000s of ppm), but does not incorporate lead, the ultimate daughter 78 

product of uranium decay, thus minimizing the need to correct for initial lead in the mineral in 79 

age calculations. Second, zircon is a highly durable mineral that can withstand the abuses of 80 

volcanic eruptions and multiple weathering and erosion cycles while retaining an isotopic 81 

imprint of its origin. Finally, because two separate isotopes of uranium (235U and 238U) decay to 82 

two different isotopes of lead (207Pb and 206Pb, respectively), ages can be calculated from three 83 

distinct isotopic ratios (207Pb/206Pb, 207Pb/235U, 206Pb/238U), providing a powerful internal check 84 

on the reliability of the ages. Pre-screening (e.g., via imaging by secondary electron microscopy 85 

and cathodoluminescence) to select the highest quality zircons, chemical pre-treatment to remove 86 

mineral domains that are damaged and prone to lead loss8, and standardization of isotopic tracers 87 

and inter-laboratory calibrations, have led to great improvements in the precision and accuracy of 88 

U-Pb ages23.  89 

 90 

The U-Pb isotopic data used to calculate ages are typically acquired via one of three analytical 91 

approaches: isotope dilution thermal ionization mass spectrometry (ID-TIMS), secondary ion 92 

mass spectrometry (SIMS, which includes the sensitive high-resolution ion microprobe, or 93 

SHRIMP), or laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The 94 

latter two methods involve in situ analyses, which are rapid and can target different domains 95 

within individual zircons that may have grown at different times—and hence have different ages. 96 

These advantages make in situ methods powerful and highly applicable to a wide range of 97 
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geological problems. However, the precision of the ID-TIMS method, which entails dissolution 98 

and analysis of a population of individual zircons (now commonly pre-screened by LA-ICP-99 

MS), yields analytical uncertainties that are 1–2 orders of magnitude better—now as low as 100 

~0.01% or as low as ±100,000 years for zircons of late Proterozoic age23. The high precision 101 

attainable by the ID-TIMS method makes it the benchmark for calibrating the GTS and 102 

individual events in Earth’s history3.  103 

 104 

An important caveat in applying the U-Pb zircon method to date the sedimentary record is that it 105 

requires finding appropriate rock types: typically felsic to intermediate volcanic lava flows and 106 

air fall tuffs (i.e., resulting from explosive eruptions) intercalated with sedimentary strata. These 107 

volcanic rocks are not ubiquitous, for they are linked to specific tectonic settings, mainly 108 

continental arcs and rift basins. Many passive margin and intracratonic basins, which dominate 109 

the middle to late Proterozoic sedimentary record24, lack volcanic interbeds suitable for U-Pb 110 

zircon dating. And even where ostensibly appropriate volcanogenic beds do occur, there is no 111 

assurance that they will contain primary, dateable zircons.  112 

 113 

Detrital zircon geochronology entails dating a large number of zircons (typically through in situ 114 

analyses) that have been eroded from other sources and concentrated in sandstones and provides 115 

an alternative approach to refining the possible age of poorly dated sedimentary sequences by 116 

establishing the maximum possible age of a rock25. In some cases, these maximum ages, 117 

combined with minimum ages established by other dating techniques, provide valuable age 118 

constraints. Even when these data do not contribute meaningfully to dating stratigraphic 119 

sequences, they can be a powerful tool for studying sediment provenance and global tectonic 120 

cycles (e.g., 26, 27) and their possible links to global environmental change28 29. 121 

 122 

Another radiometric technique that has gained traction for dating the late Proterozoic record is 123 

the rhenium-osmium (Re-Os) isotope system (187Re-187Os) applied to organic-rich rocks. 124 

Rhenium and osmium are platinum group elements that occur in low abundance in the 125 

continental crust but are relatively enriched in oxygenated seawater. Rhenium and osmium are 126 

also organophilic and so hydrogenous phases of both elements occupy chelating sites on organic 127 

complexes and are concentrated in organic-rich sediments during deposition and early 128 
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diagenesis, typically in anoxic settings30–33. Selective leaching approaches that liberate only the 129 

hydrogenous Re-Os fraction in sediments34,35, along with normalized isotopic spikes, and 130 

analytical techniques that allow measurement of increasingly minute quantities of Re and 131 

Os10,36,37, have greatly improved the reliability of this technique. Importantly, closed system 132 

behavior of sedimentary rhenium and osmium has been shown to endure hydrocarbon 133 

maturation, demonstrating that the Re-Os geochronometer is impervious to temperature and 134 

pressure conditions up to greenschist facies38.  135 

 136 

Although the precision in Re-Os ages (~1%) is much lower than that achievable with U-Pb, a 137 

series of recent studies have shown that the technique yields consistent ages10,36,37. A striking 138 

result of the application of Re-Os geochronology to the Proterozoic fossil record was a major 139 

revision to the age of the fossil red alga Bangiomorpha pubescens in Arctic Canada, the oldest 140 

taxonomically resolvable eukaryote39 and hence a key calibration point in molecular clock 141 

analyses of early eukaryotic evolution40–42. Whereas earlier estimates based variably on 142 

geological considerations and less robust radiometric dating methods implied an age close to 143 

1200 Ma for B. pubescens, a pair of Re-Os ages bracketing its occurrence in the Bylot 144 

Supergroup, Baffin Island, constrain its age to 1045 ±15 Ma, with important implications for the 145 

timing of primary plastid endosymbiosis43.   146 

 147 

A flurry of recent U-Pb and Re-Os ages from key stratigraphic sections globally that span the ca. 148 

720–635 Ma Cryogenian period (which will soon be formally defined as the oldest period in the 149 

GTS behind the ca. 635–540 Ma Ediacaran Period44) have demonstrated remarkable consistency 150 

in the age of two Cryogenian (Sturtian and Marinoan) snowball glaciations globally (Fig. 1; 151 

Supplementary Information). For example, the onset of the Sturtian glaciation is now tightly 152 

constrained to have begun between 717.5 and 716.5 Ma based on U-Pb zircon ID-TIMS ages 153 

acquired on volcanic rocks just below and just above the basal glacial contact in the Ogilvie 154 

Mountains, Yukon50,51. Similarly, U-Pb zircon ages from the Marinoan glacial deposits15 and 155 

overlying cap carbonates deposited in the immediate aftermath of Snowball glaciation16 date the 156 

boundary between the Cryogenian and Ediacaran periods to 636.6 to 634.2 Ma. This boundary—157 

a so-called xenoconformity marking an abrupt global shift in environment52— is placed at the 158 

base of the cap carbonate and widely considered to be globally synchronous. Because it is an 159 
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easily identifiable contact and occurs widely (it is known from every continent but Antarctica53), 160 

this boundary is a unique calibration point in the geological record54.  161 

 162 

Importantly, the radiometric ages bracketing the beginning and end of the Cryogenian glaciations 163 

(see Table S1) provide a positive test for one of the key predictions of the Snowball Earth 164 

hypothesis—long duration (millions of years) and synchronous onset and end to 165 

glaciation49,55.These ages also serve to calibrate the Cryogenian non-glacial interlude (i.e., ca. 166 

660–640 Ma) between the Sturtian and Marinoan cryochrons (Fig. 1), a critical interval in 167 

Earth’s history, which includes the first biomarker evidence for sponges56 and putative fossil 168 

evidence for predatory Rhizaria57 (Table 1). In increase in the abundance of the C27, C28, and C30 169 

steranes and sterane/hopane ratios during this interlude also indicate the rise to dominance of 170 

eukaryotic algae as primary producers68.  171 

 172 

Due to the vagaries of the geological record, certain sedimentary successions and time intervals 173 

are especially well dated, such as the latest Tonian to early Cryogenian of northwestern Canada, 174 

the southwestern USA, and South China (Table S1). Others are not. The Tonian period (1000 to 175 

ca. 720 Ma as currently defined44) overall is poorly calibrated radiometrically. Furthermore, the 176 

Tonian sedimentary succession in Svalbard, perhaps the best preserved and most complete in the 177 

world for this time period69,70 and a critical archive of important fossil39,60,62,71–73 and 178 

geochemical69,74–78 data has not been directly dated. In the absence of direct radiometric ages, 179 

easily identified GTS boundaries or biostratigraphic zonation (e.g., ref. 63,76), other approaches 180 

are required to tell time in this and other successions for this time interval.  181 

 182 

Chemostratigraphic correlation is one such tool with great utility in the Neoproterozoic Era79. 183 

Chemostratigraphy relies on sedimentary materials, such as carbonate minerals or organic 184 

carbon, that can be treated as dependable proxies for the isotopic composition of the seawater in 185 

which they form. Using chemostratigraphy for correlation requires the additional assumptions 186 

that the isotope system of interest is globally uniform in seawater (i.e., that it is has a long 187 

residence time relative to the mixing time of the ocean) and can be reliably preserved in the rock 188 

record. Commonly applied chemostratigraphic proxies for the Proterozoic Eon include carbon 189 

(𝛿13C), sulfur (𝛿34S), and strontium (87Sr/86Sr) isotope ratios. Carbon isotope ratios are 190 
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particularly useful in the Neoproterozoic because of the high amplitude and low frequency 191 

fluctuations that characterize this time period (Fig. 1) and the abundance of well-preserved 192 

carbonate successions. Although the Neoproterozoic Era was a time of generally high average 193 

𝛿13C values (+5‰), a series of deep negative 𝛿13C anomalies punctuates this record (Fig. 1). 194 

Some of these anomalies are temporally and causally closely associated with Neoproterozoic 195 

glaciations69,79, whereas others are not. For example, the so-called Bitter Springs Anomaly 196 

(BSA; Figs. 1, 2), named after the eponymous formation in the Amadeus basin of central 197 

Australia, is well defined in early–middle Neoproterozoic basins globally65,69,81,82, where it can 198 

be confidently linked to the same global seawater perturbation based on broad age constraints, 199 

other chemostratigraphic data (namely 87Sr/86Sr75), and its uniquely symmetric beginning and 200 

end (Fig. 2). In the Fifteenmile Group of northwestern Canada, a U-Pb zircon date on a volcanic 201 

tuff50 and a Re-Os date on organic-rich rocks46 provide maximum age constraints on the onset of 202 

the BSA of 811.51±0.25 Ma and 815.29±5.2 Ma, respectively. U-Pb ages zircon dates of 203 

815.29±0.32 Ma and 778.72±0.24 Ma on tuffs above and below the BSA in the Tambien Group 204 

of Ethiopia65 are consistent with those from NW Canada and provide additional control on the 205 

duration of the anomaly. These ages can be used to tell time indirectly in other, undated 206 

successions, such as the Akademikerbreen Group in Svalbard, through chemostratigraphic 207 

correlation (Fig. 2).  208 

 209 

A second Tonian negative carbon isotope anomaly occurs in the upper Russøya Member of 210 

Svalbard, above the Akademikerbreen Group and just below the Cryogenian (Sturtian) 211 

Petrovbreen Member glacial deposits (Fig. 2). Whereas this negative carbon isotope anomaly had 212 

previously been linked to the onset of Cryogenian glaciation80, new Re-Os age determinations 213 

bracketing the likely correlative negative 𝛿13C anomaly in northwestern Canada (the Coppercap 214 

anomaly36,66) imply that it precedes the onset of Cryogenian glaciation by >15 m.y. (Fig. 1). 215 

Through a combination of sequence stratigraphic and chemostratigraphic correlation, these ages 216 

can be applied to the late Tonian strata in Svalbard70 (Fig. 2). In an analogous way, data from 217 

other successions of overlapping age and completeness, can be mapped onto this composite 218 

stratigraphic column and used to calibrate Tonian time.  219 

220 
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These and other correlated ages can further be used to develop a height-age model for the Tonian 221 

stratigraphic succession in Svalbard. Where viable, subsidence models, which invoke the 222 

tectonic mechanism for the generation of sedimentary basins, provide more geologically realistic 223 

and accurate age-height relationships than simple linear interpolation between known (or 224 

assumed) ages. When plotted against composite stratigraphic height, the Svalbard ages fall on an 225 

exponentially decreasing curve (Fig. 3). This height-age relationship is predicted for thermally 226 

subsiding basins whose subsidence is the result of cooling of lithosphere previously stretched by 227 

extension83. Sediment-loaded thermal subsidence curves can be calculated as a function of a 228 

stretching factor (𝛽) based on the solution to the heat flow equation, using physical parameters 229 

for the lithosphere, such as its thickness, density, and thermal conductivity. An assumption is 230 

also required for where in the stratigraphic column thermal subsidence begins. Although the 231 

tectonic context for the origin of the Neoproterozoic basin in Svalbard is not well understood70, 232 

the contact between siliciclastic sediments of the Veteranen Group below and platformal 233 

carbonates of the Akademikerbreen Group above is a reasonable approximation for the rift–drift 234 

transition in Svalbard84 and is borne out by a systematic relationship between age and 235 

stratigraphic height (Fig. 3). The best-fit subsidence curve for these data yields 𝛽 = 1.263 and t0 236 

= 819.3 Ma for the onset of rifting (i.e., the Veteranen–Akademikerbreen contact).  237 

 238 

This subsidence age model estimates the timing of key stratigraphic horizons within the Svalbard 239 

stratigraphic succession such as the onset (810 Ma) and end (802 Ma) of the Bitter Springs 240 

Anomaly and the boundary between the Akademikerbreen and Polarisbreen groups (752 Ma). It 241 

also provides age estimates for the local first appearance datum (FAD) and last appearance 242 

datum (LAD) and of the possible index fossils Trachyshystrichosphaera aimika (805–795 Ma) 243 

and Cerebrosphaera globosa (802–782 Ma), respectively (Table 1). The oldest putative 244 

chlorophytes Proterocladus and Palaeastrum dyptocranum60, the possible stramenopile 245 

Jacutianema solubila72, and the oldest amoebozoans59,62,54,86 all also occur in the Tonian strata of 246 

Svalbard and can be assigned model ages (Table 1; Fig. 2). Dates for other important Tonian–247 

Cryogenian body fossil and molecular fossil first occurrences—such as apatite scale 248 

microfossils46, possible Rhizaria57 and ciliates64, and the 24-isopropylcholestane sponge 249 

biomarker56—are also estimated based on available radiometric ages on the successions in which 250 

the fossils were found or easily correlated equivalents (Table 1).  251 
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 252 

These age assignments should not be treated as validation of the taxonomic interpretation of 253 

these fossils. Rather, they should be combined with complementary approaches to querying and 254 

quantifying the biostratigraphic record.  Constrained optimization (CONOP) was recently 255 

applied to estimating Tonian–Cryogenian species richness73, highlighting that the record is now 256 

sufficiently resolved to apply biochronological and other statistical approaches. Indeed, 257 

radiometric dating techniques alone are insufficient for precise calibration of the GTS87. Whereas 258 

linear interpolation and spline-fitting techniques have traditionally been used for estimating ages 259 

of GTS boundaries in the Phanerozoic record12, this approach is being superseded by Bayesian 260 

statistical modelling, which is well suited to incorporating the many uncertainties intrinsic to 261 

dating the stratigraphic record87,88. The Proterozoic record presents unique challenges to applying 262 

these approaches, but an important first step is to construct composite stratigraphic sections onto 263 

which available chronostratigraphic data can be mapped89, such as the Tonian–Cryogenian 264 

section of Svalbard (Fig. 2). In this way, the Proterozoic GTS will gradually be filled in and 265 

provide the chronological framework within which we may interpret the extraordinary events 266 

that ushered in habitable Phanerozoic world.  267 

268 

 269 

Figure 1. (A) The Geological Time Scale (GTS) spanning the Neoproterozoic Era (modified 270 

from ref. 12), along with a compilation of the carbonate Neoproterozoic d13C record (modified 271 

from ref. 45), with negative carbon isotope anomalies particularly useful for chemostratigraphic 272 

correlations noted (BSA = Bitter Springs Anomaly; CA = Coppercap anomaly; TA = Trezona 273 

Anomaly; SA = Shuram Anomaly). Fossil cartoons indicate (from bottom to top), first 274 

appearance of algae39,43, apatite scale microfossils46, the large ornamented Ediacaran 275 

microfossils47, and the Ediacaran biota48. Note that only the Ediacaran Period is formally defined 276 

chronostratigraphically, but the Cryogenian period will soon be formalized and the 277 

chronometrically defined Tonian period will likely be revised and subdivided 278 

chronostratigraphically44. GSSP refers to formally defined global stratotype section and point 279 

period boundaries. (B) The Sturtian and Marinoan (M) cryochrons (Snowball Earth events) 280 

during the Cryogenian period with positions (open boxes) of the radiometric dates that constraint 281 

their durations and appear to confirm their synchronous onsets and terminations (see also ref. 282 
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49). Black squares are zircon and baddeleyite ID-TIMS dates, grey squares are in situ (SHRIMP 283 

and SIMS) dates, and purple squares are Re-Os dates. See Table 1 for age estimates for the onset 284 

and end of the cryochrons based on these dates and SI Table 1 for a compilation of all of the 285 

dates, including their errors and literature sources.  286 

 287 

Figure 2. A composite stratigraphic column through the Akademikerbreen Group and lower 288 

Polarisbreen Group (Russøya Member) of the Hecla Hoek Series of northeastern Svalbard 289 

(modified from ref. 70). Grey circles represent all available carbonate carbon isotope data for the 290 

succession mapped onto the composite stratigraphic column (from refs. 69,70,80 and previously 291 

unpublished data), and the solid line a LOESS smoothing fit to these data. Approximate 292 

stratigraphic position of radiometric ages (in Ma) that can be confidently correlated into the 293 

Akademikerbreen–Russøya section are shown in arrows (see SI Table 1 for sources of data), 294 

along with subsidence model ages (in Ma) for important stratigraphic heights, including the base 295 

of the Akademikerbreen Group, the onset and end of the Bitter Springs 𝛿13C anomaly, and the 296 

Akademikerbreen-Polarisbreen contact. Stratigraphic LAD and FAD are for key fossil 297 

occurrences in Svalbard. See Table 1 for references and additional ages. Note that the LAD of 298 

the VSM is only loosely constrained to be within the Russøya Mb.  299 

 300 

Figure 3. One dimensional McKenzie-type83 sediment-loaded thermal subsidence models for the 301 

long-term evolution of the East Svalbard basin (e.g., ref. 69) using the stratigraphic record of the 302 

Akademikerbreen Group and Russøya Member and correlated ages (open squares with age and 303 

approximate stratigraphic uncertainties). The key assumptions in the model are that thermal 304 

subsidence began with the base of the Akademikerbreen Group, which corresponds to the onset 305 

of nearly continuous carbonate deposition84, there was no major erosional unconformity in the 306 

succession, and that carbonate cementation occurred shortly after sedimentation (additional 307 

details on the application of this type of model to carbonate platforms can be found in ref. 85). 308 

The unconstrained parameters are the stretching factor (𝛽) and the timing of onset of thermal 309 

subsidence (open diamond; t0); these were optimized using a chi-squared test. The resulting best 310 

fit (t0 = 819.3; 𝛽 = 1.263; p > 0.999) was then used to generate an age model for the entire 311 

Akademikerbreen Group and Russøya Member. Additional subsidence curves for 𝛽 = 1.25 and 312 

1.30 shown for comparison.   313 
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 314 

Table 1. Summary of key events, horizons, and biostratigraphic ranges, and first and last 315 

appearance data for the latest Mesoproterozoic to Cryogenian geological record that can be 316 

reliably estimated based on available radiometric ages and/or the subsidence-age model (Fig. 3) 317 

for the latter Tonian stratigraphic succession in Svalbard. See Table S2 for additional ages for 318 

stratigraphic heights and formation and member boundaries in Svalbard.  319 

 320 
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Event, FAD,  LAD, or stratigraphic range Date Method References
Rhodophyta (Bangiomorpha pubescens ) (FAD) 1045 ± 15 Ma Re-Os 39, 43, 58

Apatite scale microfossils (FAD) 810.7 ±5.8 Ma Re-Os 46
Trachyhystrichosphaera aimika* ca. 805–795 Ma Subsidence model age 59, 60
Cerebrosphaera globosa* ca. 802–782 Ma Subsidence model age 60
?Chlorophyta (Palaeastrum, Proterocladus)*  (FAD) ca. 795 Ma Subsidence model age 60
Amoebozoa* ca. 787 Ma Subsidence model age 61, 62
?Rhizaria (FAD) ca. 660 Ma U-Pb CA-TIMS + correlation 57, 63
?Tintinnids (FAD) ca. 660 Ma U-Pb CA-TIMS + correlation 63, 64
Sponge biomarkers 660–639 Ma U-Pb CA-TIMS + correlation 56, 63

Base of Akademikerbreen Group ca. 819 Ma Subsidence model age
Onset of Bitter Springs Anomaly ca. 810 Ma U-Pb, Re-Os, subsidence model age 46, 50, 65

End of Bitter Springs Anomaly ca. 802 Ma Subsidence model age
Coppercap d13C anomaly minimum ca. 738 Ma Re-Os, subsidence model age 66
Onset Sturtian glaciation ca. 717 Ma U-Pb 50, 51
End Sturtian glaciation ca. 660 ma U-Pb, Re-Os 63
Onset Marinoan glaciation ca. 640 Ma U-Pb 67
End Maronian glaciation/base Ediacaran Period ca. 635.5 Ma U-Pb 15–17

*In Svalbard



Table S1.  
Summary of age constraints on the begin and end of the Cryogenian glaciations and the Bitter 
Springs anomaly.  

Table S2.  
Ages for stratigraphic heights and formation/member boundaries generated using the thermal 
subsidence model for the Akademikerbreen–Russøya succession.  
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Event Age Error Technique Max/Min Location Reference
815.29 ±0.32 U-Pb zircon CA-ID-TIMS max Ethiopia Swanson-Hysell et al. (2015)
811.51 ±0.25 U-Pb zircon CA-ID-TIMS max Yukon, Canada Macdonald et al. (2010)

810.7 ±6.3 Re-Os max Yukon, Canada Cohen et al. (2018)
778.72 ±0.24 U-Pb zircon CA-ID-TIMS min Ethiopia Swanson-Hysell et al. (2015)
777.38 ±0.14 U-Pb zircon CA-ID-TIMS min Ethiopia Swanson-Hysell et al. (2015)

732.2 ±3.9 Re-Os max NWT, Canada Rooney et al. (2014)
729 ±0.9 U-Pb zircon CA-ID-TIMS max SW USA Rooney et al. (2018)

725.0 ±10 U-Pb zircon SHRIMP max South China Xu et al. (2009)
725.0 ±10 U-Pb zircon SHRIMP max South China Zhang et al. (2008)
724.0 ±3.0 U-Pb zircon ID-TIMS max Viriginia, USA Tollo and Aleinikoff (1996)

719.47 ±0.29 U-Pb zircon CA-ID-TIMS max Alaska, USA Cox et al. (2015)
718.1 ±0.3 U-Pb zircon CA-ID-TIMS max Yukon, Canada Macdonald et al. (2018)
718.1 ±0.2 U-Pb zircon CA-ID-TIMS max Yukon, Canada Macdonald et al. (2018)
717.8 ±0.2 U-Pb zircon CA-ID-TIMS max Yukon, Canada Macdonald et al. (2018)
717.7 ±0.3 U-Pb zircon CA-ID-TIMS max Yukon, Canada Macdonald et al. (2018)

717.43 ±0.14 U-Pb zircon CA-ID-TIMS max Yukon, Canada Macdonald et al. (2010)
717.0 ±4.0 U-Pb zircon SHRIMP max Idaho, USA Fanning & Link (2004)
716.9 ±0.4 U-Pb zircon CA-ID-TIMS min Yukon, Canada Macdonald et al. (2018)

716.47 ±0.24 U-Pb zircon CA-ID-TIMS min Yukon, Canada Macdonald et al. (2010)
716.1 ±3.4 U-Pb zircon SIMS max South China Lan et al. (2014)
715.9 ±2.8 U-Pb zircon SIMS max South China Lan et al. (2014)
714.6 ±5.2 U-Pb zircon LA-ICPMS max South China Song et al. (2017)
714.0 ±8.0 U-Pb zircon SHRIMP max South China Lan et al. (2015)

711.52 ±0.2 U-Pb zircon CA-ID-TIMS min Oman Bowring et al. (2007)
711.3 ±0.3 U-Pb zircon CA-ID-TIMS min NWT, Canada Baldwin et al. (2016)

696.2 ±0.2 U-Pb zircon CA-ID-TIMS max Northern BC Eyster et al. (2018)
691 ±12 U-Pb zircon SIMS max South China Lan et al. (2015b)

690.1 ±0.2 U-Pb zircon CA-ID-TIMS max Northern BC Eyster et al. (2018)
685 ±7 U-Pb zircon SHRIMP max Central Idaho Lund et al. (2003, 2010)
684 ±4 U-Pb zircon SHRIMP max Central Idaho Lund et al. (2003, 2010)

663.03 ±0.11 U-Pb zircon CA-ID-TIMS max South Australia Cox et al. (2018)
662.9 ±4.3 U-Pb zircon SHRIMP min South China Zhou et al. (2004)
662.7 ±6.2 U-Pb zircon LA-ICMPS min South China Yu et al. (2017)
662.4 ±4.3 Re-Os min NWT, Canada Rooney et al. (2014)

659 ±4.5 Re-Os min Tuva, Mongolia Rooney et al. (2015)
657.2 ±6.9 Re-Os min Australia Kendall et al. (2006)

654.5 ±3.8 U-Pb zircon SHRIMP max South China Zhang et al. (2005)
640.7 ±5.7 Re-Os max Tasmania, Australia Kendall et al. (2009)

639.29 ±0.26 U-Pb zircon CA-ID-TIMS min Northern Namibia Prave et al. (2016)

636.3 ±4.9 U-Pb zircon SHRIMP max South China Zhang et al. (2005)
635.5 ±1.1 U-Pb zircon CA-ID-TIMS max Central Namibia Hoffmann et al. (2004), recalculated by Schmitz et al. (2012)
636.4 ±0.5 U-Pb zircon CA-ID-TIMS min Tasmania, Australia Calver et al. (2013)

635.26 ±1.1 U-Pb zircon CA-ID-TIMS min South China Condon et al. (2004), recalculated by Schmitz et al. (2012)
632.3 ±5.9 Re-Os min NWT, Canada Rooney et al. (2015)

*Age constraints are entirely below onset of Bitter Springs anomaly after end of the anomaly

Onset Sturtian 
glaciation

Onset Marinoan 
glaciation

End Marinoan 
glaciation

Onset/End Bitter 
Springs Anomaly*

End Sturtian 
glaciation



m age Formation Member height base (m) age base (Ma)
2140 736.9 Petrovbreen Mb. 2130 737.8
2100 740.6 Russøya Mb. 1961 751.9
2050 745.0 Kinnvika Mb. 1894.1 756.5
2000 749.0 Backlundtoppen Fm. (lower) 1439.6 780.0
1950 752.7 Draken Fm. 1126 791.6
1900 756.1 Upper Limestone member 1059.6 793.7
1850 759.3 Upper Algal Dolomite member 947.1 797.1
1800 762.4 Lower Limestone member 780.2 801.8
1750 765.2 Lower Dolomite member 660 804.9
1700 767.9 Upper Grusdievbreen member 462 809.7
1650 770.5 Lower Grusdievbreen member 0 819.3
1600 772.9
1550 775.3
1500 777.5
1450 779.6
1400 781.7
1350 783.6
1300 785.5
1250 787.3
1200 789.1
1150 790.8
1100 792.4
1050 794.0
1000 795.6
950 797.1
900 798.5
850 799.9
800 801.3
750 802.6
700 803.9
650 805.2
600 806.4
550 807.6
500 808.8
450 810.0
400 811.1
350 812.2
300 813.3
250 814.3
200 815.4
150 816.4
100 817.4
50 818.3
0 819.3

Svanberg-
fjellet Fm.

Grusdiev-
breen Fm.

Backlund-
toppen Fm.

lower Elbo-
breen Fm.


