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Abstract

Breast cancer (BC) is the most common cancer in women worldwide, and current
detection technologies have limitations. MicroRNAs (miRNAs) are small 18-22 nucleotide
single-stranded RNAs and there is some evidence suggesting that miRNAs in blood samples
may be used as diagnostic biomarkers for BC. The Norwegian Women and Cancer
(NOWAC) is a large prospective study that has collected blood and tumor biopsy samples
from BC patients and healthy tissue from age-matched controls. Using the [llumina
microarray system, miRNA and messenger RNA (mRNA) expression profiles were
generated for 96 breast cancer cases with matched controls. We identified thirty-eight
miRNAs that discriminate between breast cancer and matched healthy controls, some of
which (miR-210, miR-335, miR-145, miR-15a/b) have been previously identified as
potential diagnostic markers in blood samples of breast cancer patients. Then, we applied
three different miRNA target prediction tools to look for potential gene targets based on a
simple negative association miRNA-target model. In our clustering analysis, the predicted
gene sets identified in the matched mRNA expression profile did not follow the classical
negative association miRNA-target model. Thus, inconsistent with the hypothesized model,
as also supported by previous studies. Functional analysis of identified miRNAs and their
predicted target genes identified some gene pathways involved in breast cancer, such as B
cell receptor signaling pathway, BRCA1 expression network, and p53 a common oncogenic
signal pathway. Although miRNAs show promising results as diagnostic markers in blood
samples of breast cancer patients, there is much work to be done in understanding the
relationship between miRNAs and their target genes in order to identify viable miRNA

biomarkers for breast cancer.



Resume

Le cancer du sein est le cancer le plus courant chez les femmes a travers le monde,
et les technologies de détection actuelles ont leurs limites. Les microARN (miARN) sont de
petits ARN monocaténaires de 18 a 22 nucléotides et certains éléments suggerent que les
miARN dans les échantillons de sang peuvent étre utilisés comme biomarqueurs
diagnostiques pour le cancer du sein. L’étude NOWAC sur les femmes norvégiennes et le
cancer est une grande étude prospective qui a recueilli des échantillons de sang et de
biopsies de tumeurs de patientes atteintes de cancer du sein et et de tissus sains provenant
des témoins appariés selon 1'age. En utilisant le systeme de microréseaux Illumina, des
profils d'expression de miRNA et d'ARN messager (ARNm) ont été générés pour 96 cas de
cancer du sein avec des témoins appariés. Nous avons identifié trente-huit miARN qui
discriminent entre le cancer du sein et les témoins sains appariés, dont certains (miR-210,
miR-335, miR-145, miR-15a/b) ont déja été identifiés comme marqueurs diagnostiques
potentiels dans des échantillons de sang de patientes atteintes de cancer du sein. Ensuite,
nous avons appliqué trois outils de prédiction de cible de miARN différents pour
rechercher des cibles de genes potentiels sur la base d'un simple modeéle d'association
miARN-cible négative. Dans notre analyse de regroupement, les ensembles de genes
prédits identifiés dans le profil d'expression d'’ARNm apparié ne suivaient pas le modele
classique d'association miARN-cible négative, réfutant ainsi le modele de miARN-cible
supposé, tel que soutenu également par certaines études précédentes. L'analyse
fonctionnelle des miARN identifiés et de leurs genes cibles a identifié des voies de génes
impliqués dans le cancer du sein, telles que la voie de signalisation du récepteur des
cellules B, le réseau d'expression BRCA1 et p53 une voie de signal oncogénique commune.
Bien que les miARN montrent des résultats prometteurs en tant que marqueurs de
diagnostic dans les échantillons de sang de patientes atteintes d'un cancer du sein, il reste
encore beaucoup a faire pour comprendre la relation entre les miARN et leurs génes cibles

afin d'identifier des biomarqueurs viables du miARN pour le cancer du sein.
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Chapter 1: Introduction

Introduction to Biomarkers

It is estimated that the human genome encodes approximately 19,000
protein-coding genes (Ezkurdia et al., 2014), about the same number as that for corn, but
about twice as many as that for the common fruit fly. These 19,000 genes are encoded in
about 1.5% of the genome. Some genes are expressed continuously, as they produce
proteins involved in basic metabolic functions; some genes are expressed as part of the
process of cell differentiation; and some genes are expressed as a result of cell
differentiation. Gene regulatory mechanisms such as transcription factors or DNA
methylation may control the rate of transcription by limiting the amount of mRNA that is
produced from the nucleotide sequence of a particular gene. Once transcribed there are
further opportunities for gene regulation, including regulation of mRNA decay and
regulation of the translation of mRNA into protein. These forms of regulation are known as
post-transcriptional regulation and play important roles in both normal physiology and
organismal development. In the early 2000s, a novel class of ~21-nucleotide-long RNAs,
known as microRNAs (miRNAs) emerged as key post-transcriptional regulators predicted
to control the activity of ~50% of all protein-coding genes in mammals as shown in Figure

1.1 (Karp S., 2009).



Figure 1.1. The Central Dogma and miRNA (Karp S, 2009).
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Figure 1.1. A microRNA gene is one-hundredth the length of a typical gene. The typical
gene codes for messenger RNA, which in turn directs the assembly of a protein. MicroRNA
genes can control this essential process, by coding for a microRNA strip that binds to the
messenger RNA, effectively turning off production of the protein via translational

repression or target degradation.

In 1993, Lee, Feinbaum and Ambros discovered that a nucleotide sequence in C.
elegans did not code for a protein but instead produced a pair of short RNA transcripts.
These RNA transcripts each regulated the timing of larval development by repressing the
translation of lin-14, which encodes a nuclear protein (Lee et al.,, 1993). This regulation is
due in part to sequence complementarity between lin-4 and unique repeats within a small
region of the lin-14 mRNA (Figure 1.2), suggesting that lin-4 regulates lin-14 translation via
an antisense RNA-RNA interaction. Loss-of-function of lin-4 results in the abnormal
differentiation of specific cell lineages and affects later stages of development, thus
providing the first evidence of miRNAs involved in cell differentiation and proliferation

(Lee etal., 1993).
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Figure 1.2. Complementarity between lin4 and lin-14 (Lee et al., 1993).
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Figure 1.2. Complementarity between lin-4 and seven copies of a repeated element in the
3’UTR of lin-14 RNA. Dots indicate absence of a nucleotide; dashes indicate one or more
non complementary nucleotides. Only lin-4:1lin-14 complementarity that is conserved

between C. elegans and C. briggsae is represented.

The second miRNA to be identified was let-7, expressed later in worm development
and complementary to a specific region of the chromosome that includes lin-14, lin-28,
lin-41, lin-42, and daf-12 blocking their expression (Reinhart et al., 2000). Since the
discovery of let-7, over 48,000 miRNAs have been identified in various organisms including
viruses, worms, and primates, and humans (Kozomara et al., 2019). miRNA identification is
done through two methods (i) random cloning and sequencing, like the let-7 or (ii) through
computational prediction which identifies putative miRNAs (Krek et al., 2005). MiRNAs are
commonly defined by the following criteria (Kim, 2005):

1. the final miRNA product is a single-stranded RNA of about 22-nucleotides;

2. the precursor forms a hairpin structure and the mature miRNA is present in one
arm of the hairpin;

3. both the mature and the precursor miRNAs are usually evolutionarily conserved;

4. the precursor miRNAs should be experimentally observed when DICER (an essential

miRNA processing enzyme) function is disturbed.
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Most miRNAs originate from non-coding regions of the genome; however,
miRNA-producing regions (called miRNA genes) have been found throughout the entire
genome. Up to 50% of mammalian miRNA loci are found in close proximity to other
miRNAs (Kim et al., 2009). This clustering suggests that miRNAs act together, as their close
proximity allows miRNAs to be transcribed together. MiRNAs add a layer of complexity to
gene regulation by base pairing with the target mRNAs, usually located in the 3’'UTR region.
This binding is often with a perfect complementary sequence, however many exceptions
have been found. For example, miRNAs can bind to a specific mRNA with a base pair
mismatch or a bulge (unpaired bases). The binding sequence of many miRNAs is composed
of base pairs (bp) numbered 2 through 7 in the 5’ region of the strand. This 6 bp segment is
termed the seed region. Since the seed region is very short and genomes tend to be millions
of base pairs long, there is a high chance for the complementary seed sequence to occur
more than once. Thus, one miRNA likely targets multiple sites on the same mRNA, or
multiple mRNAs (Friedman et al., 2009, Krek et al., 2005). It has been estimated that more
than one-third of human genes are directly targeted by miRNAs (Friedman et al., 2009).

Further, once base paired with a target gene, miRNAs control target gene expression
by either regulating mRNA degradation or mRNA translation (Huntzinger et al.,, 2011).
However, studies (Levine et al., 2007, Mukherji et al., 2011) have uncovered new
mechanisms that may be involved beyond the induction of mRNA degradation and the
inhibition of translation for which miRNAs are best known. For example, it has been
proposed that miRNAs counteract 'leaky' transcription by establishing thresholds in gene
expression levels and induce correlations in the expression of their targets (Mukherji et al,,
2011). Thus, although it is known that miRNAs bind to certain target genes, the
mechanisms behind the post-transcriptional regulation is being explored.

The biogenesis of miRNAs in animals is a complex, multi-step process starting in the
nucleus, passing through several post-transcriptional modifications, and ending in the
cytoplasm (Figure 1.3). The canonical pathway initiates at transcription by RNA
polymerase II to generate the primary transcripts (pri-miRNAs). The pri-miRNA is

characterized by a hairpin RNA structure recognized by the nuclear RNAse Il enzyme
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Drosha, and its cofactor DGCRS8 (Liu et al., 2009). Drosha and DGCRS8 bind to create a
complex, called the microprocessor complex, which cleaves the pri-miRNA to generate a
shorter hairpin of ~65-75 nucleotides, called the pre-miRNA (Du et al., 2005). The
pre-miRNA is then recognized by the nuclear export factor EXP5 responsible for exporting
it from the nucleus to the cytoplasm. After exportation from the nucleus, the cytoplasmic
RNase III DICER and other proteins TRBP and Argonaute catalyze the second processing
step (dicing) to produce miRNA duplexes (Du et al., 2005). Finally, one strand of the duplex
remains on the Argonaute protein as the mature miRNA, whereas the other strand is
degraded (Figure 1.3). The miRNA biogenesis pathway is well studied in comparison to
other small RNA pathways, although many questions remain unanswered. A more detailed
understanding of the mechanism awaits the structures of the complexes, including
Microprocessor, EXP5 and DICER -RISC in association with the substrate RNAs. Many
protein factors are implicated in miRNA biogenesis, but their biochemical roles remain

unknown (Kim et al.,, 2009).
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Figure 1.3. MiRNA Biogenesis (Huang et al., 2011).

miRNA genes

‘\....-"'I\...N

RNA 7
pol 11 /

/
Y pri-miRNA
—_— = i
mirtron

E— |

|

spliceosome | l
Y

lariat O_ 3
~

) Nucleus
deb: ing L N pre-miRNA

RNA pol 11 or 111

degradation

Exportin-5
TR?P‘\ degradation

Cytoplasm
|@®

Inr — @se

miRNAduplex /

translational repression mRNA degradation

/

Figure 1.3. The biogenesis of miRNA is a multi-step process starting in the nucleus, passing
through many post-transcriptional modifications, and ending in the cytoplasm. The
pathway initiates at transcription by RNA polymerase II, generating a primary miRNA. The
nuclear RNAse III enzyme Drosha, and its cofactor DGCR8 recognize the pri-miRNA, which
work within a complex of several proteins known as the microprocessor. It then cleaves the
pri-miRNA and exports it to the cytoplasm, where a second RNAse III enzyme, Dicer, makes
the pair of cuts that defines the other end of the miRNA, generating the miR/miR* duplex.
Finally, assembly of the mature, single stranded miRNA from the duplex into the

RNA-induced silencing complex (RISC) completes the miRNA biogenesis.
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Computational Identification of MiRNAs

As experimental approaches are often slow and costly, computational methods play
important roles in the identification of new miRNAs. Traditionally, certain significant
characteristics such as the hairpin-shaped stem loop structure, high evolutionary
conservation, and high minimal folding energy (the energy released as the base pairs fold
into its structure) were important features used by computational tools for the
identification of miRNAs (Lindow and Gorodkin, 2007). For example, when a miRNA base
pairs to a target mRNA, it forms an RNA duplex. This process of canonical base pair binding
releases energy. Generally, the lower the free energy, the more bases are paired, and the

more stable the RNA duplex is.

Lee and Ambros (2001) were the first to apply a computational approach to identify
miRNAs. The took a comparative genomics approach by using bioinformatics tools with
cDNA cloning to identify potential C. elegans miRNAs. They searched for sequences
conserved (similar or identical base pairs) between the C. elegans and C. briggsae genomes
that had characteristic pre-miRNA features and secondary structures similar to lin-4 and
let-7, the first two miRNAs identified. Since then, several tools have been developed to
predict new miRNA genes based on either sequence and/or secondary structure similarity
to known miRNAs (Lim et al,, 2003; Wang et al., 2005). These methods described by Lim et
al. (2003) and Wang et al. (2005) are based on previous findings that miRNAs tend to be
evolutionary conserved (Krek et al.,, 2005) and filter out predicted hairpins that are not
evolutionarily conserved in related species. However, excluding miRNAs that are unique to
one organism may impair the identification of new miRNAs associated with that specific
organism (Bentwich et al., 2005). Thus, the limiting factor with these initial methods, is the

inability to discover new miRNAs.
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Machine Learning Based Methods

In order to circumvent the main limitation of methods based solely on comparative
genomics, machine learning based methods have been developed to predict ab initio
miRNAs. In general, a machine learning algorithm is used to make a prediction on unseen
data (test set), based on the features (attributes describing the data) it learns from an
initial (training) dataset. In our case, these algorithms take in a set of features describing
known miRNA sequences and structures, then classifies an unknown sequences as a
candidate miRNA or a non-miRNA. This is an example of a binary classification machine
learning task, a type of supervised machine learning. Common supervised machine
learning algorithms include Support Vector Machines (SVM), Neural Networks, Hidden
Markov Models (HMM), and Naive Bayes (Bishop, 2006), with SVM being the most popular
choice for miRNA classification. To characterize their performance, two statistical
parameters are commonly used: sensitivity and specificity. Sensitivity measures the
percentage of correctly predicted targets out of total correct ones, and specificity measures
the percentage of correctly predicted targets among overall predicted ones. Ideally, the
performance of a method must be of high sensitivity and high specificity with a fair balance

between them.

The seminal work of applying a machine learning based method to identify miRNAs
was by Sewer et al. (2005), who compiled 40 distinct sequence and structural “markers” to
describe a candidate pre-miRNA. The SVM classifier model was trained using 178 human
pre-miRNAs as positive examples and 5395 random sequences from tRNA, rRNA, and
mRNA genes as negative examples. They obtained a specificity of 91% and a sensitivity of
71% on the training set, then predicted 32 novel pre-miRNAs of pathogenic viruses, some
of which were further confirmed experimentally by the same group. This work set the
initial benchmark for pre-miRNA classification, after which many other machine learning
based tools were developed. For an online compendium of miRNA prediction tools, see

Lukasik et al. (2016).
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One of the key challenges of predicting species-wide miRNAs, is the limited amount
of annotated data per species. Thus, techniques that take into consideration the imbalance
of positive and negative examples are applied to combined datasets from different species.
One of the best performing methods is miRBoost (Tran et al., 2015), an ensemble method
that applies a boosting technique with the SVM algorithm to address training data
imbalance. It is trained on 187 novel and existing pre-miRNA features, with a positive data
set of 2540 pre-miRNAs and a negative data set of 15688 pre-miRNAs. Not only is it much
faster than most other methodes, it achieves a good balance between sensitivity (88%) and

specificity (91%) (Tran et al., 2015) in classifying pre-miRNAs.

In practice, machine learning based methods to identify de novo miRNAs face
challenges that affect both their sensitivity and specificity. First, they require an adequate
number of annotated miRNAs as training examples. However, the number of characterized
and validated miRNAs is still relatively small, thus negatively affecting the true positive
rate (sensitivity) of these methods. Second, these methods rely on genome annotations to
reduce the number of falsely predicted putative miRNAs and thus increase the true
negative rate (specificity). However, most sequenced genomes have not been well
annotated, and many of them have few experimentally characterized miRNAs. Third,
negative examples are crucial to train machine learning based tools since they affect both
the specificity and sensitivity of the results. The challenge lies in selecting negative
examples, which can effectively describe the complete negative space and define suitable
features to distinguish non-miRNAs from miRNAs. A common method for selecting
negative examples is randomly generating genome sequences, however this may not

guarantee proper feature representation of real miRNAs.

Sequencing Technologies

As sequencing technologies have improved, methods based on high throughput

experimental evidence have achieved great success in discovering novel miRNA genes.
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Next Generation Sequencing (NGS) is based on massively parallel sequencing of millions of
DNA or RNA molecule fragments, by fragmenting the genome into small pieces, randomly
sampling for a fragment, and sequencing it using one of the NGS technologies, such as
[llumina/Solexa, ABI/SOLiD, 454 /Roche. For example, the [llumina/Solexa technology uses
reversible fluorescent dye terminators as adapters that ligate to fragmented pieces of

DNA/RNA to generate base calls as illustrated in Figure 1.4.
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Figure 1.4. The [llumina sequencing workflow (Illumina Inc, 2008).
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Figure 1.4.

The Illumina/Solexa sequencing method is based on reversible dye-terminators technology
and engineered polymerases. First, the adapters are ligated to fragmented pieces of DNA.
Then after the DNA is attached to flow cells and amplified, clusters are generated and
sequencing primer is annealed. Finally, the process of extending the first base, reading and

deblocking is repeated to extend the strand and generate base calls.
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Further, these technologies have been adapted to sequence miRNAs and other small
RNAs. The short length of these RNAs however, give the researchers fewer options for
designing complementary sequences and the sequences often vary by as little as a single
nucleotide, thus miRNAs are hard to distinguish from other small RNAs or degradation
byproducts. To overcome this challenge, adapters are designed to capture small RNAs with
a 5’ phosphate group, for miRNA recognition. Computational tools are then used to analyze
and understand biological implications of the sequence reads. The general steps to
sequence data analysis involve read processing, annotating, and characterizing new
features. In the read processing stage, the adaptor sequences are identified and removed.
Then, the small RNA sequences are mapped back to reference genome sequences, and
known miRNAs can be characterized by comparing them with known annotated miRNAs.
In addition to measuring miRNA abundance levels from sequence reads, most computation
tools have the ability to discover novel miRNAs, determine differentially expressed miRNAs

and their associated mRNA gene targets.

miRDeep (Friedlander et al., 2008) and its variants miRDeep2 (Friedlander et al.,
2012), miRDeep-P (Yang et al.,, 2011), miRDeep* (An et al., 2013), was one of the first to
apply machine learning to NGS data for miRNA prediction. The core algorithm leverages
Bayesian statistics to score the fit of sequenced RNAs to the biological model of miRNA
biogenesis. The online pipeline tool predicts miRNAs from small RNA-seq data, provides a
target prediction for both known and novel miRNA expression profiles and has a graphical
interface to display RNA-seq reads and its predictions. miRDeep2 was tested on seven
animal species and reported a high specificity of about 99% across all species, and varying
sensitivity, from 71% on sea squirt data to 90% on anemone data (Friedlander et al., 2012).
Further, the tool predicted numerous novel miRNAs, many of which are high-confidence
candidates where the sequences were detected in at least two independent samples
(Friedlander et al., 2012). Since, many tools have been developed and compiled online
(Lukasik et al., 2016), including sSRNAbench (Barturen et al., 2014) and deepSOM

(Stegmayer et al., 2017). Chen et al., (2018) provide a comprehensive review of these tools.
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MiRNA Databases

As identifying and characterizing de novo miRNA efforts mature, there is an inherent
need to annotate and systemize these miRNAs. MiRBase (Kozomara et al,, 2010) is a
database with an online interface for access to miRNA sequence data, annotation and
predicted gene targets. This registry provides a centralized system for assigning names for
new miRNAs, thus providing a consistent naming system for miRNAs. Each entry in the
database represents a predicted hairpin portion of a miRNA transcript, with information on
the location and sequence of the mature miRNA sequence. In addition, it provides
experimental evidence for each miRNA, and links the miRNAs to its target genes predicted
by other tools. The latest miRBase release of 2018 has a total of 38,589 entries,
representing 48,860 mature miRNA products in 271 species, 2654 of which are from the

human genome (Kozomara et al., 2019).

Challenges persist with discovering and annotating de novo miRNAs. It is often
difficult to distinguish between functional small RNAs and non- functional ‘noise’, and is
reflected in the miRBase database. Even in commonly studied animal organisms, such as
human and mouse, there’s not enough information to support or refute the validity of 30%
to 70% miRNA annotations (Kozomara et al., 2019). Evolutionary conservation confers
compelling evidence for the functionality of predicted miRNAs, but these miRNAs will

eventually need to be experimentally validated to prove their functionality.
The MiRNA Target Model Hypothesis

The biology of miRNAs and their functionality is a fairly young field, and thus few
conclusions on how a miRNA targets a gene have been agreed upon. It has been
documented that miRNAs mainly recognize complementary sequences in the
3’-untranslated regions (UTRs) of their target mRNAs (Bartel, 2004). However, later
experiments have reported that they can also bind to their 5’UTR or the Open Reading
Frame (ORF) (Lytle et al., 2007; Moretti et al., 2010). Typically, this binding down-regulates

the expression of the gene by either blocking translation or attracting factors that degrade
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the mRNA (Huntzinger et al., 2011). Thus, the miRNA-target model related to predicting an
increase or decrease in expression has not been clearly defined. Most miRNA target
gene-prediction methods follow the original model that miRNAs bind to the 3’'UTR and
down-regulate the target miRNA, although some methods attempt to incorporate more

complexity such as allowing for multiple binding regions per target gene.

In early miRNA studies, investigators found that although target sites for miRNAs
could be computationally identified in both 3’'UTRs and 5’'UTRs, the miRNA-mRNA duplex
formation was far more pronounced in the 3’'UTR region (Lewis et al., 2005). Thus,
subsequent bioinformatic and experimental analysis has considered the 5’-end of the
miRNA (the seed site) to be most important for the binding to the mRNA. Further, the
target sites have been divided into three main classes, according to grade and localization
of sequence complementarity (Brennecke et al., 2005). The first class is the dominant seed
site targets, called the “5’ seed-only” site. The second is the 5’ dominant canonical seed site
targets, called the “5’ dominant” site, and the third is the 3’ complementary seed site targets
are called the “3’ canonical” site. Considering that there are various rules regulating the
interaction between a miRNA and its target mRNA4, it is not surprising that each miRNA has

the potential to target a large number of genes (Friedman et al., 2009).

Predicting Target Genes

Computational approaches play an important role in the identification of miRNA
targets of specific genes. Several approaches have been used to successfully identify
potential miRNA targets in mRNA sequences for experimental validation. The majority of
first-generation methods are based on three major assumptions; 1) miRNAs are perfectly
or near-perfectly complementary to their targets, 2) when the miRNA is bound to the
target, the RNA-RNA duplex has a higher negative folding free energy, and 3) mature
miRNAs are highly conserved from species to species (Yoon et al., 2006). First-generation

methods include TargetScan (Lewis et al., 2005; Agarwal et al,, 2015), DIANA-microT
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(Kiriakidou et al., 2004; Paraskevopoulou et al., 2013) and miRanda (Enright et al.,, 2003,
John et al,, 2004). These are followed by machine learning based methods such as
miRanda-miRSVR (Betel et al., 2010), PicTar (Krek et al., 2005) and HomoTarget (Ahmadi
et al,, 2013); and experimentally-driven tools such as PITA (Kertesz et al., 2007) and
miRWIP (Hammell et al., 2008). Further methodologies, such as BCmicrO (Yue etal., 2012)

and ComiR (Coronnello et al,, 2012) combine existing algorithms.

TargetScan

TargetScan (Lewis et al., 2005) was the first method to explicitly use the concept of
seed matches in predicting miRNA targets in vertebrates. The algorithm combines
thermodynamics modeling of RNA-RNA duplex interactions with comparative sequence
analysis to predict miRNA targets conserved across more than one genome. To accomplish
this, the following algorithm is iterated, with inputs A) a miRNA conserved across multiple

organisms and B) a set of orthologous 3'UTR sequences from these organisms:

For each 3'UTR region of each of the organisms whose comparative genomes are being
used in the study:
1) Search the UTRs in the organism for segments of perfect Watson-Crick
complementarity to bases 2-8 of the miRNA (the "miRNA seed"), the perfect
complementarity to the seed is called a "seed match".
2) Extend each seed match with additional bases to the miRNA, allowing G:U pairs.
The extension is in both the 3' and the 5' directions and stops when mismatches are
found.
3) Optimize base pairing of the remaining 3' portion of the miRNA to the 35 bases of
the UTR immediately 5' of each seed match using RNAfold, a secondary RNA
structure prediction program (Hofacker et al., 1994).
4) Assign a folding free energy G to each miRNA-target site interaction using
RNAeval, a free energy evaluator of RNA molecules with a fixed secondary structure
(Hofacker et al., 1994).

5) Assign a Z score to each UTR, with the following equation:
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where,
n is the number of seed matches in the 5'UTR region
G, is the calculated free energy (kcal/mol) of the interaction between the miRNA
and its target for the k™ target evaluated in the previous step
T is a parameter that influences the relative weighting of UTRs as a function of the
affinity and abundance of their target sites; T values are assigned by a

trial-and-error method involving training and test sets of miRNAs.

6) Sort the UTRs in this organism by Z score, and assign a rank R to each, get the
highest Z score

Until the Z score reaches a value higher than a predefined cut-off.

Following the publication of the TargetScan method, several improvements have
been made (Agarwal et al., 2015). First, new organisms are constantly added to the
working set, which improved the signal-to-noise ratios. Second, less conservative binding
interactions with less than perfect pairings and bulges (insertion or deletion of a
nucleotide), especially within a 5’ region of the miRNA, are also predicted in the newest
version of TargetScan. The conservation of seed regions among orthologous 3’'UTRs within
miRNA binding regions is important for the outcome score. The conservation level of the
targets can be defined by the user as broadly conserved (across vertebrates) or highly
conserved (across most mammals). The TargetScan research group (Friedman et al., 2009)
have found a pattern of consecutive GC-rich base pairs in a set of known miRNA binding
sites in C. elegans, and this pattern has been included in the scoring scheme of the
algorithm. TargetScan ranks the prediction by two parameters: Context score and

Probability of conserved targeting (Pct) (Lewis et al.,, 2005; Agarwal et al.,, 2015).
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DIANA-microT
The DIANA-microT miRNA-target predicting algorithm (Kiriakidou et al.,, 2004) uses

a 38 nucleotide-long frame that is moved along the 3’'UTR and measures the minimum
energy of potential miRNA binding sites (allowing for mismatches) after every shift. It
compares this energy with the energy of a perfect complementary sequence bound to the
3’'UTR region. The algorithm searches for sites with a canonical central bulge and it
requires 7, 8, or 9 nucleotide-long complementarity within the 5’ region of the miRNA. Both
conserved and nonconserved sites are considered. Finally, a signal-to-noise ratio is
computed for each miRNA; where the signal is the number of predicted targets of a single
miRNA and the number of predicted targets of an artificial miRNA with randomized
sequence in searched 3'UTR estimates the noise (Kiriakidou et al., 2004). The algorithm has
been since published on a web server incorporating the latest miRBase version

(Paraskevopoulou et al., 2013).

miRanda-miRSVR

The miRanda miRNA-target prediction algorithm was first developed using all
known miRNAs of D. melanogaster (Enright et al.,, 2003), and then the three-step algorithm
was extended to humans and other vertebrates (John et al., 2004). In the first step, the
miRNAs are matched against the 3’-UTR regions of all possible targets allowing for
wobbling (non-Watson-Crick base pairing), G:U base pairs and indels (insertions or
deletions). The second step computes the thermodynamic stability of the miRNA:target
duplex. The final step is a valuation of the evolutionary conservation of the miRNA:target
duplex across two additional species. In miRanda, miRNAs with multiple binding sites
within the 3’'UTR region are promoted, which contributes to the increase in specificity, but
it underestimates miRNAs with a single but perfect base pairing with their targets (John et
al., 2004). Further, the method was expanded to include a Support Vector Regression (SVR)
model, a variant of the SVM algorithm, to train on sequence and contextual features
extracted from miRanda predicted target sites (Betel et al.,, 2010). These features include
secondary structure accessibility of the site and conservation, without the need to define

seed subclasses. [t was trained on mRNA expression fold changes following miRNA
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transfections. The miRNA target sites are ranked by the downregulation score, named
mirSVR. This score is calibrated to correlate linearly with the extent of down regulation,
and can be interpreted as an empirical probability of down regulation. This algorithm has
identified a number of experimentally determined non-canonical and non-conservative
sites (Betel et al., 2010). Unless otherwise specified, this algorithm will be referred to as

miRanda for short.

PicTar

PicTar (Krek et al., 2005) is a machine learning algorithm that scans the alignments
of 3’ UTRs for near-perfect miRNA seed matches and filters the alignments according to
their thermodynamic stability. Each predicted target is scored using a Hidden Markov
Model (HMM - a simple example of a dynamic Bayesian network) maximum-likelihood fit
approach. Thus, synergistic effects of multiple binding sites of several miRNAs acting
together are accounted for in this model. PicTar utilizes miRNA sequence alignment to
mRNAs of eight vertebrate species and it scores the candidate genes of each species

separately to create a combined score for a gene (Krek et al., 2005).

HomoTarget

HomoTarget combines a Pattern Recognition Neural Network (PRNN) and Principal
Component Analysis (PCA) in an architecture to model the relationship between miRNAs
and their target mRNAs in humans (Ahmadi et al., 2013). This method incorporates twelve
structural, thermodynamic and positional features of miRNA-mRNA binding sites to select

target candidates.

PITA

Experimental studies suggest that target site accessibility is a critical factor for
effective target gene repression (Long et al., 2007), where a strong secondary structure is
formed by the 3’UTR of the target itself that prevents the binding of the miRNA. Kertesz et

al. (2007) systematically examined and confirmed the site accessibility effect in an in-vivo
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luciferase system and incorporated this effect into a thermodynamic model. They designed
the genome-wide target prediction algorithm called Probability of Interaction by Target
Accessibility (PITA), by combining this thermodynamic model with traditional seed-finding

procedures with Drosophila datasets (Kertesz et al., 2007).
MirWIpP

Experimental evidence of co-precipitation has also been included in predicting
miRNA targets. For example, in a study with C. elegans, 3404 mRNA transcripts were
recovered that specifically co-precipitated with miRNA-RISC complex proteins (Zhang L et
al., 2007). Following, Hammell et al. (2008) developed a method based on this large data
set of high-confidence miRNA-target interactions. This target prediction algorithm, MirWIP,
scored miRNA-target sites by weighting site characteristics in proportion to their
enrichment in the experimental data set. These important characteristics included
structural accessibility of target sequences, total free energy of miRNA-target
hybridization, and topology of base pairing to the 5’ seed region of the miRNA (Hammell et
al,, 2008).

BCmicrO

BCmicrO (Yue et al., 2012) combines the prediction of six algorithms (TargetScan,
miRanda, PicTar, mirTarget (Wang and Naga, 2008), PITA, and DIANA-microT) with a
Bayesian Network. It is trained on positive and negative miRNA-target pairs of all
algorithms and gives the probability of an mRNA being a target. BCmicrO was evaluated
using mammalian miRNA-target pairs and protein expression data, showing higher

sensitivity given the same specificity of each individual algorithm (Yue et al., 2012).
ComiR

ComiR (Coronnello et al., 2012) predicts whether a given mRNA is targeted by a set
of miRNA. It applies miRNA expression to four targeting models (miRanda, PITA,
TargetScan and mirSVR (Betel et al., 2010)) by identifying all binding sites of each miRNA
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in a given mRNA 3'UTR. Then, it additively combines the individual target scores using a
Support Vector Machine (SVM) trained on Drosophila Ago1 data. It gives a single
probabilistic score, higher scores correspond to higher probability of an mRNA being a

functional target of a particular set of miRNAs (Coronnello et al., 2012).

The seed hypothesis is an almost universally adopted early feature in miRNA-target
prediction methods and is widely used to control for false positives. It was experimentally
reinforced by a study that obtained the structure of an important component of the
silencing complex bound to a RNA guide-strand, and lays down the biochemical basis for
the role of seed sites (Wang et al., 2008). However, there have been certain experimentally
confirmed targets that violate the seed rule by including mismatches or wobble G:U pairs
(Lewis et al., 2005). Thus, the lack of consistent portrayal of miRNA targets is one of the
greatest obstacles not only to the development of better prediction methods, but also to

comparing and selecting a prediction tool.

It is clear that the growth of the quantity and quality of experimentally determined
miRNA genes and their targets will be the driving force for the next generation of
computational miRNA tools. New biological insights into the recognition between miRNA
and its targets will inspire computational biologists to create new algorithms based on
mechanistic understanding. Large-scale experiments will provide valuable data sets for

both initial training and follow-up evaluation of computational methods.
Introduction to Breast Cancer and Potential Implications

MiRNAs play a critical role in multiple biological processes, including cell cycle
control, cell growth, cell differentiation, apoptosis, and embryo development (Jiang et al.,
2009). Just as miRNAs are involved in regulating the normal functioning of eukaryotic cells,
deregulation of miRNA has also been associated with growth abnormality and disease. The
basic components of the miRNA-complex have been implicated in human disease, such as
Drosha enzyme, an essential miRNA biogenesis co-factor. This cofactor is encoded by the

human gene DGCR8, which maps to chromosomal region 22q11.2 and is commonly deleted
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in DiGeorge syndrome. This disorder affects one in 3,000 live births, and results in defects
including heart defects, immunodeficiency, schizophrenia, and others (Landthaler et al.,
2004).

The initial studies (Lee et al., 1993 ; Reinhart et al.,, 2000) showing evidence of
miRNAs involved in regulating cellular differentiation and proliferation encouraged
interest in studying miRNAs in cancers. The first study that associated miRNAs with cancer
investigated blood samples from chronic lymphocytic leukemia (CLL) patients (Calin et al.,
2002). CLL is a type of cancer in which the bone marrow makes too many lymphocytes. The
authors investigated whether a tumour suppressor genes could be found in the region of
chromosome 13q14, a genomic location that is lost in more than half of CLL patients.
Instead, two miRNAs genes, miR-15a and miR-16-1 were found to be absent or down
regulated in the majority (approximately 69%) of CLL patients when compared to normal
tissue counterparts.

Furthermore, to question the extent of miRNA effects on the cancer genome, Calin et
al. (2004) mapped all known miRNA genes on the human genome. They discovered that
many of them are located in chromosomal loci prone to deletions or amplifications, as was
found in many different human cancer types. In fact, further studies confirmed that
chromosomal regions encompassing miRNAs involved in the negative regulation of a
transcript encoding a known tumour suppressor gene are amplified in cancer development
(Sevignani et al,, 2007). This amplification results in the increased expression of miRNAs
and consequently silences the tumour suppressor gene. Equally, miRNAs repressing
oncogenes are often located in fragile loci, where deletions or mutations can occur and
result in reduced miRNA levels and overexpression of the target oncogene. Consequently,
alterations of miRNA expression are not rare occurrences, but rather very common in
human cancers. Since these initial findings, many studies have provided evidence of
miRNAs in various cancers, such as breast cancer (lorio et al., 2005 ; Zhang et al., 2011 ;
Kedmi et al.,, 2015 ; Yan et al,, 2016 ; Thakur et al., 2016), ovarian cancer (Taylor et al., 2008
; Hausler et al,, 2010 ; Jeong et al,, 2017), pancreatic cancer (Duell et al.,, 2017 ; Ho et al,,
2010 ; Zhang] et al., 2014), and bone cancer (Huang et al., 2018).
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Breast cancer biology

Breast cancer is the most common cancer for women across the world with an
estimated 2,100,000 new cancer cases and 533,600 deaths each year (GBD, 2015) . In
Canada, one in eight women are expected to be diagnosed with breast cancer in her
lifetime. In 2017, about 26,000 Canadian women were diagnosed with breast cancer, with a
mortality rate of about 5,000 the same year (Canadian Cancer Society, 2017). Like many
cancers, breast cancer is graded with the TNM system (Hortobagyi et al., 2017), where
stage 0 is the pre-cancerous or marker condition, and stage 4 is the metastatic cancer, with
varying degrees in between. Identifying cancers at stage 0 allows more time for treatment
and prevention of growth of the cancer, and thus may reduce the overall cancer mortality
rate.

There are several ways to classify breast cancers, some of which indicate high risk of
prognosis and treatment response. Breast cancer is usually classified by its histological
appearance. The most common type of BC in women originates from the epithelium lining
the ducts, and is known as ductal carcinoma (Eheman et al. 2009). There are two types of
ductal carcinoma: ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC).
DCIS is growth of pre-cancerous cells confined to the mammary ducts of the breast, and is
considered stage 0 cancer. Whereas IDC is abnormal proliferation of cancerous cells
invading the surrounding tissues, and is thus malignant.

At the cellular level, breast cancers are divided into three major categories, based on
their expression of specific receptors as assessed by immunohistochemistry (IHC).

(i) ER-positive tumours display elevated expression of the estrogen receptor (ER) in
approximately 80% of breast carcinomas, often in combination with overexpression of the
progesterone receptor (PR) in 70-80% of cases (Lakhani et al., 2012);

(i) HER2-positive tumours are characterized by amplification of the human
epidermal growth factor receptor (HER2) in about 15-20% of breast carcinomas
(Lakhani et al., 2012);

(iii) triple-negative tumours do not display increased expression of any of these

three markers, and is the most heterogeneous group histologically, and genetically.
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Furthermore, molecular classification of breast tumours have become possible
based on analysis of gene expression profiles of breast cancer sample cohorts. Two luminal
subtypes (A and B) exhibit ER positivity and have better survival than other subtypes.
Luminal B tumors are characterized by increased expression of proliferation-associated
genes and have a worse prognosis than luminal A tumors (Sorlie et al., 2003). The
molecular HER2+ subtype highly overlaps with the analogous classical subtype and is
characterized by proliferation genes. Finally, the basal-like subtypes is enriched for genes
expressed in basal epithelial cells (Sorlie et al., 2001), and there is approximately 60%
overlap between triple-negative and molecular basal and normal-like subtypes (Vuong et
al., 2014). Meta-analysis of gene expression studies suggest that the prognostic impact of
different signatures is related to the proliferation-associated genes (Wirapati et al., 2008).
Further studies have yielded other molecular subgroups, including a molecular
classification based on integrated genomic and transcriptomic profiling of 2,000 breast
tumors yielding 10 novel subtypes of breast cancer with distinct clinical outcomes (Curtis

etal, 2012; Ali etal., 2014).

Breast cancer detection

Currently, mammography is the standardized breast cancer screening technology
used in clinical settings, with the aim to identify and treat breast tumours before they
become symptomatic using low-energy X-ray imaging. Mammographic screening has been
relatively successful, as it has increased early detection of breast cancer, and is believed to
have contributed to an increased survival rate of 15% in Denmark (Jorgensen et al., 2010),
20% in the UK (Marmot et al., 2013), and more recently 9% in Ireland (Hanley et al., 2017).
Unfortunately, systematic screening will result in some women receiving a cancer
diagnosis (false positives), even if their cancer would not have metastasized leading to a
poor prognosis. In Canada, a 25-year follow up study reported that up to 50% of
mammographically-detected invasive breast cancers represent examples of overdiagnosis
in women aged 40 to 59 (Miller et al., 2014). A review of seven trials that involved 600,000
women aged 39 to 74 reported biases in the studies and questioned the long-term effects of

overdiagnosis and overtreatment due to systematic mammographic screening (Ggtzsche et
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al,, 2013). The sensitivity of mammography to detect BC is inversely correlated with the
density of a woman’s breasts, since the opacity of dense breast tissue is difficult for X-rays
to traverse (Couzin, 2005). For this reason, mammography often fails to detect BC in young
women and older women using menopausal hormone therapy, which affects the density of
breast tissue. In some cases, mammography reports breast abnormalities that simply do
not exist upon further investigation using follow-up mammographic tests, MRI, ultrasound,
PET/CT scans, or needle/surgical biopsies (Orel et al., 1999). In addition, the risks
associated with some of these scans outweigh the possible benefits as these procedures
expose the patient to harmful radiation (Choosing Wisely, 2012), (Carlson et al., 2009), for
example, Jacobsen et al. (2015) showed cumulative risks ranging between 9% to 45% after
8 screens in different populations. Finally, the emotional and psychological stress caused
by such false positives is well-documented (Brodersen et al., 2013; Solbjgr et al.,, 2018).
Thus, despite the relative success of mammographic screening in reducing breast
cancer mortality, its limitations illustrate the need for more accurate detection tools to

identify a potential cancer early, such as biomarkers.

MiRNAs as potential biomarkers of breast cancer

When searching for biomarkers as an early detection tool, there are many things to
consider. First, the obvious being the accuracy (high specificity and sensitivity) and
robustness of the test. Then, there’s the practicalities of clinical and laboratory procedures,
such as availability of samples, types of samples (frozen samples vs formalin-fixed
paraffin-embedded (FFPE) tissues), and its clinical validity and utility (Harris et al., 2016).
Finally, the ideal biomarker should be detectable by minimally invasive sampling
procedures.

MiRNAs possess several features supporting their possible use as novel and robust
diagnostic biomarkers. Due to their small size, miRNA levels are remarkably stable in tissue
samples, serum and plasma. For example, Turchinovich et al. (2011) showed that
extracellular miRNA remains stable in blood plasma for at least one month. These miRNAs
are protected from RNase-dependent degradation by several mechanisms, including their

inclusion in microvesicles, exosomes, and apoptotic bodies, as well as through the
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formation of protein-miRNA complexes resistant to degradation (Chen et al., 2008). It has
been demonstrated that miRNAs can be efficiently extracted and evaluated from
formalin-fixed paraffin-embedded (FFPE) tissues. MiRNAs from FFPE showed improved
stability and maintained the same expression profiles when compared with those from

frozen samples (Xi et al., 2007).

In tumor tissue. Expressions of certain miRNAs are found to negatively correlate
with breast cancer tumor development: miR-335 affects the upstream BRCA1-regulatory
cascade (Heyn et al., 2011); miR-27a is associated with a reduced familial breast cancer
risk (Yang et al., 2010); and miR-98 is decreased in ductal carcinoma breast cancers (Farazi
et al.,, 2011). While other miRNAs are found to positively correlate with breast cancer
tumor development: miR-210 correlates with hypoxic gene expression (a consequence of
the growth of a malignant tumour) (Camps et al., 2008); miR-125b predicts poor survival
by depression of its target gene ETS1 (Zhang Y. et al,, 2011); miR-146a is linked to earlier
onset of breast cancer by targeting BRCA1 and BRCA2 (Pastrello et al,, 2010); and miR-21

is associated with advanced tumor stage (Yan et al., 2008).

In blood. Circulating miRNAs from blood samples are an especially attractive source
of biomarkers, because of their non-invasive nature, and early signs of tumor development
have been identified in blood; whereas tumour tissues require biopsies, and are not always
available for molecular analysis (Guttery et al., 2013). A note on nomenclature, although
most studies use circulating and blood-sourced miRNA interchangeably, technically
circulating miRNAs can be found in other surrogate tissues, such as urine and any other
body fluids. Blood-sourced miRNAs can also be extracted from whole blood cells, or plasma
(whole blood medium without the white and red blood cells), or serum (remaining medium
after clotting factors have been extracted). In one of the first blood-sourced RNA studies,
Heneghan et al. (2010) surveyed a panel of 7 candidate miRNAs in whole blood RNAs from
148 IDC breast cancer patients and 44 age-matched and disease free controls. They found
the expression of miR-195 to be significantly elevated in breast cancer patients, as

compared to the control samples. In addition, they observed a significant reduction in
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miR-195 in post-operative whole blood samples, compared to the pre-operative samples of
the same patients. Schrauder at al. (2012) found miR-335, among other miRNAs, to be
overexpressed in whole blood of early stage breast cancer patients compared to healthy
controls, and to be involved in regulating target genes in several oncogenic
signal-pathways, such as p53. Cuk et al. (2013) have found a panel of plasma microRNAs
(miR-127-3p, miR-148b, miR-409-3p, miR-652 and miR-801) that can detect early stage
BC. These studies suggest further inquiry into developing blood-sourced miRNA

biomarkers for early breast cancer detection is required.

There are limitations to using blood-based miRNA-profiling of BC. The
measurement of a miRNA profile represents a secondary response of blood cells during
tumorigenesis, thus the main concern is the reduction of the testing accuracy compared to
biopsy of breast tissue (Heneghan et al., 2010). However, Hausler et al. (2010) did indicate
that the changes in the miRNA profile of blood cells from BC patients did reflect
tumor-specific host-reactions, thus showing that tumor signals can be found and
measurable in whole blood. In running these experiments, the high protein content of
whole blood could be a problem for miRNA-extraction, thus many studies separate the sera
and plasma. There are also discrepancies in previous studies, with miRNAs showing
different expression directions and many associations are one-time studies without a
thorough follow-up. As an example, Heneghan et al. (2010) showed a significantly higher
expression of let-7a and miR-195 in whole blood cells of BC cases compared to controls,
whereas Schrauder et al. (2012) could not reproduce the results. Possible reasons for the

discrepancy are differences in sample handling, detection methods, and patient selection.

The need for an early detection biomarker is clear, but the limitations of
blood-sourced miRNA profiling lead us to search for a more comprehensive technique in
identifying early detection biomarkers for breast cancer. Thus, investigating biomarkers in
both tumor tissue and blood is the next natural approach.

Previously, a comparison of blood mRNA profiles of BC patients vs. their controls

across four NOWAC independent datasets identified a gene signature that reports the
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presence of breast cancer (Dumeaux et al,, 2015). The signature was specific to BC,
classifying women with other non-breast carcinoma as negative. Pathway and gene set
analysis revealed genes involved in immune processes, cell growth/proliferation, APP
pathway, and MYC target genes - all important in cancer development and growth. This

study shows that processes found deregulated in blood cells reflect a deficit in immune

functions of BC patients. Thus, peripheral blood cell gene expression can be used to detect

the presence of breast cancer.
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Chapter 2: Methods

Microarray Technologies

Microarrays are a high-throughput technology that can measure the expression
levels of large amount of DNA/RNA in parallel in a single experiment. The principle behind
this technology is based on nucleic acid hybridization between target molecules and their
corresponding complementary probes. Figure 2.1 illustrates a microarray experiment
quantifying miRNA expression, based on relative dye intensities corresponding to miRNAs
hybridized to the probes (Wei and Kangcheng, 2009). As fluorescently labeled miRNA
strands are hybridized with stationary probes on the array, only strongly paired strands
will remain after washing. Total strength of the fluorescent signal will depend on the
amount of target sample binding to the probes present. Microarrays use relative
quantization, in which the intensity of a feature is compared to the intensity of the same
feature under a different condition and the miRNA target of the feature is known by its

position.
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Figure 2.1. A miRNA microarray experiment (Wei and Kangcheng, 2009).
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Figure 2.1. A miRNA microarray experiment starts with attaching miRNA probes of a
linker and capture sequence to a glass plate. Then, the fluorescently labeled miRNA strands
are hybridized with the stationary probes. Finally, fluorescent labels can be detected using

the binding signals.

Experimental Data and Analysis

In this study, we analyze miRNA differential expression profiles from the NOWAC
population study, and assess their predicted target genes in mRNA expression profiles from
the same population. The Norwegian Women and Cancer (NOWAC) study is a national,
population-based cohort study among about 170,000 women 30-70 years old, with
questionnaire data on lifestyle and health collected at 4-6 year intervals (Dumeaux et al.,
2008). At the time of the study, it was a unique combination of a biobank, a description of
clinicopathological attributes, and outcomes for a large cohort of breast cancer patients and

age-matched controls in a homogeneous population. The biobank comprises blood samples
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collected both prior to, and at time of breast cancer diagnosis, with matched breast tissue
samples. RNA expression profiles derived from these tissue samples using Illumina
beadarray microarrays, were used in this study. We include data from an mRNA expression
profile in our analysis described by Dumeaux et al. (2015).

MiRNA profiles from blood samples of breast cancer patients (n=95) were
compared to profiles from healthy control samples (n=94). The [llumina humanRef-8
beadchip hybridized 12 samples per chip with probes targeting 1,145 human miRNAs
(>97% coverage of the miRNA database at the time). Standard processing and analysis of
miRNA expression profile was performed in R (v.2.12), an open-source programming
language and software environment, and its associated Bioconductor packages (v.2.09)
(Huber et al., 2015). For further information about the data processing, please refer to the
Technical Supplements section. Further, we investigated if the miRNAs differentially
expressed between breast cancer samples and normal samples. Class distinction was done
using Linear Models for Microarray Analysis (Ritchie et al.,, 2015) package from
BioConductor, following standard error adjusting methods (see Technical Supplements).
For our final list of differentially expressed miRNAs, see Table 1.

Further, we included data from an mRNA expression profile in our analysis
described by Dumeaux et al. (2015). In this study, we had both miRNA and mRNA
expression profiles arrayed from matching tissues, allowing us to evaluate target mRNA
expression levels. For each miRNA , we identified target genes in the predicted overlapping
set of genes (N=612) on the mRNA microarray. Then, a class discovery approach
(hierarchical clustering) was applied to these target genes to test if the genes group
according to tissue type - cancer and healthy. In combining miRNA and mRNA expression
profiles, we are assessing if the target mRNA expression follows the miRNA-target gene
model. As previously discussed, the recognized model is that the complementary pairing of
miRNAs to the mRNAs of protein-coding genes directs their post-transcriptional
repression. Array data suggests that cells with higher miRNA expression should have lower

target mRNA expression (Farh et al.,, 2005; Sood et al.,, 2006). Although discrepancies have
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been reported in the literature, we will be using this simple and most robust model in the
following analysis.

The miRNA-target model states that if a miRNA is highly expressed, then the
expression of its target gene is expected to be low. This hypothesis describes a negative
expression correlation relationship between a miRNA and its biological target gene. Using
this hypothesis, we explore the expression correlation relationship between our miRNAs
and their predicted targets. For each miRNA-predicted target pair, the correlation of their
expression intensity across all samples is calculated using Pearson correlation. Pearson
correlation is defined as the covariance of two variables divided by the product of their
standard deviations. The result is a correlation coefficient for each miRNA-predicted target

pair.

Measuring MiRNA Target Prediction Performance

There are studies that have compared the performance of a few methods with
experimental validation, a summary of which is found in Table 3 (Witkos et al., 2011).
Based on experimentally supported data sets, Sethupathy et al. (2006a) reported the
performance of five individual programs, TargetScan, DIANA-microT, miRanda, and PicTar,
and of various combinations of these programs. The specificity and sensitivity were
calculated based on a set of experimentally validated mammalian targets from TarBase, a
database of experimentally validated miRNA targets (Sethupathy et al., 2006b). They found
that miRanda, TargetScan and PicTar have the highest sensitivity, and the intersection of all
programs achieved the highest specificity but the lowest sensitivity. On the other hand, the
union of all programs achieved the highest sensitivity but the lowest specificity. Thus, none
of these three tools individually, nor a combination of, achieved a balance of high sensitivity
and specificity. This study (Sethupathy et al., 2006a) shows that there is still much
discrepancy between the different target prediction tools. Another comparative study by
Baek et al. (2008) applied a quantitative-mass-spectrometry-based approach. They studied
the average protein down-regulation of genes predicted by the algorithm to be miR-223

targets. The comparison between in vivo results and predictions in silico revealed that
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TargetScan context scores correlated with protein down-regulation, thus revealing the
prediction strength of TargetScan. Combining multiple methods has shown better
sensitivity given the same specificity of each individual algorithm (Yue et al,, 2012), and a
machine learning method that automatically weights the multiple features has shown high

specificity and sensitivity (Ahmadi et al., 2013).

Assessment of MiRNA Target Gene Predictions

Previous evidence has shown that there is no obvious one best choice of target
prediction tools, and it is not clear if it is more effective to take the union or intersection of
targets at the cost of not reaching an optimal balance between sensitivity and specificity
(Sethupathy et al., 2006a). Many tools vary greatly in the selected features applied to
predict targets, and thus a lack of overlapping predictions is not surprising. Therefore, in
order to exhaustively cover the potentially significant features of target prediction, a set of
methods should be selected with complementary features. For example, TargetScan and
PicTar have been found to have a larger overlap of predicted targets because they both
focus on strict seed matching and conservation, and thus may not be the best combination
of methods. In addition, there are practical aspects of choosing a methodology to predict
target genes. First, is relevancy judged by modernity and popularity - the search for miRNA
targets field is young and fast moving, thus tools and methodologies must keep up with the
sea of recent findings to stay relevant. Some of the earliest tools created in the early 2000s
have been shortly abandoned, while some of the more recent ones are not yet widely
accepted by the community. For example, TargetScan was first developed in 2005 and was
version 7.2 was released in March 2018, in contrast, the last update for PicTar was in 2007.
The second practical aspect is access to source code. Most target prediction tools have a
web browser where the user can enter a miRNA and the tool outputs a list of predicted
target genes. This user-interface is sufficient when studying a specific miRNA, but is not

practical for high-throughput studies that may involve many miRNAs.
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In summary, the following three criteria were applied in choosing miRNA target

prediction tools for this study:

1) Complementary features
2) Up-to-date and maintained

3) Accessible source code

From many available target prediction tools described above three have been selected:
TargetScan, miRanda and PITA. TargetScan emphasizes seed matching and sequence
context; miRanda emphasizes looser complementarity and free energy binding; and PITA
emphasizes target site accessibility energy. Cross-species conservation varies across the
three methods. During the time of this experiment, TargetScan version 6.1 was used,
released in March 2012, miRanda was last updated in August 2010, and PITA in August
2008. Lastly, these tools are easily accessible by downloading executable code - with

TargetScan and PITA both written in Perl script.

TargetScan, miRanda, and PITA target prediction tools were applied to our list of 38
miRNAs differentially expressed between breast cancer and controls (Table 2) without any
thresholds, cutoffs or any stringent criteria applied. Prediction agreement between tools
was assessed using a hypergeometric test. The hypergeometric test is a test to see ifa
random variable follows the hypergeometric distribution, which is a discrete probability
distribution describing the probability of success in a number of draws from a finite
population containing the successes without replacement. First, the raw results of
TargetScan, miRanda, and PITA target prediction tools will be assessed, followed by an
investigation into tool-specific thresholds with the objective to reduce the number of false

positives and thus identify viable miRNA target genes.
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Benchmarking Against Curated Targets

There are two collections of experimentally validated miRNA targets. TarBase
(Papadopoulos et al., 2009) is a database which houses a manually curated collection of
experimentally supported miRNA targets in several animal species, plants and viruses. At
the time of this experiment, we used TarBase version 5.0, which included about 1300
experimentally supported targets. MiRecords (Xiao et al., 2009) is a database of
experimentally validated miRNA targets resulting from meticulously curated literature.
MiRecords hosts 2286 records of interactions between 548 miRNAs and 1579 target genes
in nine animal species. For further analysis, the scores of predicted targets of each tool
were compared to the scores of curated targets. The two databases were merged, and the
curated targets of the 38 miRNAs were extracted for comparison.

The results of each target prediction method are assessed individually to reduce the
number of false positive target predictions. For each method, we plot the target score
distributions of all predicted targets. This distribution is then compared to the target score
distribution of targets from a curated miRNA-target gene database. If a predicted target is a
true target, it is expected to have a score distribution similar to experimentally validated
target genes found in curated databases.

The TargetScan method employs two measures for predicting target site efficacy:
Context score and Pct. Context score, ranging between -0.6 and 0.2, is the sum of
contributions of the following four features: site-type, 3’ pairing, local AU and position
contributions. The developers of TargetScan modeled the context score to be negatively
correlated with target efficacy (Lewis et al., 2005). Thus, the lower the context score, the
higher the effectiveness of the targeting. Pct is the probability of conserved targeting
ranging between 0 and 1. [t reflects the Bayesian estimate of the probability that a site is
conserved due to selective maintenance of miRNA targeting rather than by chance. The
developers of TargetScan have shown that Pct correlates with the effectiveness of
targeting, measured by mRNA amount (Lewis et al., 2005).

The miRanda method incorporates the mirSVR score for predicting target efficacy

(Betel et al., 2010). MiRanda uses a support vector regression model to train on mRNA
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expression changes given various features, such as secondary structure accessibility of the
site. MirSVR score, ranging between -1.5 and 0, measures the likelihood of target mRNA
down-regulation. The score does not incorporate target conservation, and thus miRanda
may identify non-conserved target sites. The developers of miRanda have shown that the
lower the mirSVR score, the higher the effectiveness of the targeting (Betel et al., 2010).
The PITA method ranks the predicted miRNA targets by their free energy score
(Kertesz et al., 2007). PITA is based on a thermodynamic model that incorporates measures
of accessibility of target sites. The free energy score is the measured change of free energy
between unbound 3'UTR of the mRNA and the hybridized state of the miRNA-mRNA
duplex. If a given UTR has more than one target sites predicted, then the free energies are
summed up together. The score ranges between -35 and 0, and since it is a measure of free
energy, the lower the value, the stronger the binding of the miRNA to the given target site is

expected to be (Kertesz et al., 2007).

Functional Analysis of Predicted Targets

Several tools are employed to assess the biological functionality of miRNAs and their
target genes, such as GSEA and KEGG. Gene Set Expression Analysis (GSEA) is a
computational method that determines whether an a priori defined set of genes shows
statistically significant concordant differences between two biological states (Subramanian
etal,, 2005). Gene sets are defined based on prior biological knowledge, e.g. published
information about biochemical pathways or co-expression in previous experiments.
Currently, GSEA employs the MSigDB - a molecular signatures database with 3,272 curated
gene sets. Gene sets are collected from various sources such as online pathway databases,
publications in PubMed, and knowledge of domain experts. The objective of GSEA is to
determine whether members of a gene set tend to occur toward the top (or bottom) of the
given ranked gene list, in which case the gene set is correlated with the phenotypic class
distinction. This over-representation at the extremes of the ranked gene list is reflected by

an enrichment score, which corresponds to a weighted Kolmogorov-Smirnov-like statistic
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(Hollander and Wolfe, 1999). GSEA has become a standard in the field to evaluate gene lists
from a systems biology perspective.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of online
databases of genomes, enzymatic pathways, and biological chemicals (Kanehisa et al,,
2006), and is a major resource for pathway analysis. KEGG computerizes data and
knowledge on protein interaction networks and chemical reactions that are responsible for
various cellular processes. Then, it reconstructs protein interaction networks for all
organisms whose genomes are completely sequenced. Lastly, it is utilized as reference
knowledge for functional genomics and proteomics experiments. Both resources will be
used to assess the biology of our predicted target gene lists.

Further, we explore the biological significance of negatively correlated target genes.
For each miRNA-predicted target pair, the Pearson correlation of their expression intensity
across all samples is calculated. Then, the targets are ranked according to their correlation
coefficient, with the most negative target on the top of the list. This list is assessed by KEGG

and GSEA to test for over-representation of gene sets.
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Chapter 3: Results

MiRNA Expression Profiles

In our study, we have identified 38 experimentally supported and annotated
miRNAs that are differentially expressed in blood samples of breast cancer patients
compared to controls (Table 1). Evidence from other studies (Table 1) show that many of
these miRNAs are differentially expressed between blood or tumor samples from cancer
patients and healthy controls. While it's not a complete list, we focus on comparative
studies (blood or tumor samples vs controls) with high-throughput data. Associations with
these miRNAs may have been reported in non-cancer contexts, but they are not considered
here.

Many of these miRNAs have been found in multiple cancers such as: lung (Chen et
al,, 2008), esophageal (Zhang C. et al,, 2010), pancreatic (Duell et al,, 2017; Zhang J. et al,,
2014; Ho et al,, 2010), osteosarcoma (Huang et al., 2018), ovarian (Jeong et al., 2017; Taylor
et al.,, 2008), and prostate (Moltzahn et al., 2011). For example, miR-223 has been identified
in lung cancer sera (Chen et al,, 2008), esophageal sera (Zhang C. et al,, 2010) and prostate
sera (Moltzahn et al., 2011). Some miRNAs seem to be specific to breast cancer only, such
as miR-145 (Kodahl et al., 2014; Mar-Aguilar et al., 2013; Thakur et al.,, 2016) and miR-335
(Schrauder et al., 2012; Heyn et al,, 2011). Interestingly, only one miRNA, miR-210 is
identified in breast cancers (Thakur et al., 2016; Ng et al.,, 2013) and other cancers,
specifically pancreatic (Ho et al., 2010) and lymphoma (Lawrie et al., 2008). See Table 1 for
a complete list.

Supported by previous BC studies, a total of eight miRNAs identified are
differentially expressed between BC patients and healthy controls; four of which are
upregulated in cancer samples (miR-15b, miR-335, miR-503, miR-637), and four are
downregulated in cancer samples (miR-145, miR-210, miR-302c, miR-510) (Table 1).
Previous studies support the upregulation of miR-15b in cancer samples, as its upregulated
in invasive ductal carcinoma breast tissue (Sakurai et al.,, 2015); and the downregulation of

miR-145, as its downregulated in primary breast carcinoma (lorio et al., 2005). Otherwise
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the results are inconsistent, or no evidence has been identified. Further, three of these
miRNAs have been confirmed in previous blood-based studies. Of the upregulated miRNAs,
miR-335 is previously identified in blood (Schrauder et al., 2012) and in serum (Wang et
al,, 2010). Of the downregulated miRNAs, miR-145 is previously identified in serum
(Kodahl et al., 2014; Thakur et al., 2016), and plasma (Ng et al., 2013); and miR-210 is
previously identified in serum (Thakur et al., 2016) and plasma (Ng et al., 2013).

Target Prediction Results

On average, Miranda predicted the most number of targets (an average of 8,140
targets per miRNA), followed by TargetScan (an average of 4,660), then PITA (an average
of 1,694). The overlap between TargetScan and PITA is 632, P(632 < overlap) > 0.999. The
overlap between TargetScan and miRanda is 2,516, P(2,516 < overlap) > 0.999. The overlap
between miRanda and PITA is 821 P(821 < overlap) = 0.99. The overlap between all three
methods is similarly not very large at 612 P(612<x) = 99% (Figure 3.1). Thus, we conclude

that each method produces very different target prediction results for each miRNA.
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Figure 3.1. Venn diagram of predictions by TargetScan, miRanda and PITA.
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Figure 3.1. There is an overlap between miRNA target predictions by TargetScan, miRanda
and PITA. The overlap between all three is 612 compared to each prediction of 4,660
(TargetScan), 8,140 (miRanda), and 1,694 (PITA). A hypergeometric test confirms that the
overlap by the three tools is not significant P (612<x) = 99%.

MiRNA-Target Expression Correlations

To visualize the miRNA-target gene relationship, a heatmap of target genes is
generated for each miRNA. We show two examples in Figure 3.2, miRNA-335 (Figure 3.2A)
and miRNA-210 (Figure 3.2B). Previous studies have shown miR-335 to be over-expressed
in cancer samples, and under-expressed in healthy samples (Schrauder at al., 2012). Thus, a
significant proportion of its targets (N=81) are expected to be over-expressed in healthy
samples and under-expressed in cancer samples. Figure 3.2A however does not illustrate

this relationship. In contrast, mir-210 has been shown to be over-expressed in healthy
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samples, and under-expressed in cancer samples (Camps et al.,, 2008, Thakur et al., 2016).
Thus, it is expected that a significant proportion of its targets (N=123) to be over-expressed
in cancer samples, and under-expressed in healthy samples. Figure 3.2B does not display
this expression pattern either. Other miRNAs don’t follow the negative association model,
or any association for that matter as none of the target heatmaps we produced illustrate
any grouping by disease-control status. Thus, we conclude that in our dataset, the miRNA
target genes predicted by the three prediction methods are not found in the matching

mRNA expression profiles.

Figure 3.2. Class distinction of target genes of miR-335 (A) and miR-210 (B).
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Figure 3.2.B.
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Figure 3.2. The target genes of miR-335 (A) and miR-210 (B) clustered based on the
sample types: breast cancer and control samples. Heatmap colors represent mean centered
fold change expression in log-space. Sample characteristics are represented in the boxes
below each sample. The breast cancer samples are red, and control samples are in green.
RNA concentration and expression mean is represented by a grey-red scale, where grey is

low and red is high. All samples were hybridized on the same date and same slide.

Furthermore, we assess the density plots for a score threshold of each prediction
method, as a quality control measure. If a good threshold is identified, we tested the results

against the miRNA-target gene model, as previously described. We plotted the context
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score density of all predicted targets by TargetScan with the context score density of
curated targets from the databases described above (Figure 3.3). These density plots show
that on average, curated targets have lower context scores than all predicted targets as
expected. Figure 3.3 illustrates that no specific miRNA has significantly lower context
scores than average and no particular miRNA follows the distribution of curated targets.
Therefore, context score density plots do not illustrate any well-defined context score

threshold to decrease the false positive target predictions.
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Figure 3.3. Density graph for context scores of targets predicted by TargetScan.
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Figure 3.3. Density graph of TargetScan context scores, a metric for predicting target site
efficacy. The context score densities of individual miRNAs are of various colors. The black
thick line is the context score density of all miRNA-target pairs. The brown thick line is the

context score density of curated miRNA-target pairs.
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Further, we plotted the Pct score density of all predicted targets by TargetScan with
the Pct density of curated targets (Figure 3.4). These density plots show that on average,
curated targets have higher Pct scores than all targets, as expected. The density of curated
targets increases significantly at a Pct of more than 0.6 - indicating it to be a candidate Pct
threshold. Figure 3.4 illustrates a high percentage of targets to have a probability of
conserved targeting of approximately 0, suggesting that most TargetScan predicted targets

are not well conserved.
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Figure 3.4. Density graph for Pct scores of targets predicted by TargetScan.
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Figure 3.4. Density graph of TargetScan Pct scores, a metric for predicting target site
efficacy. The Pct score densities of individual miRNAs are of various colors. The black thick
line is the Pct score density of all miRNA-target pairs. The brown thick line is the Pct score

density of curated miRNA-target pairs.
We noticed that the targets of two miRNAs have noticeably higher than average Pct

scores: miR-30e and miR-208b. However, neither of these miRNAs has been previously

implicated in cancer studies (Table 1). To further test the proposition that applying a Pct
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threshold is significant in reducing the number of false positive predicted targets, we
assess if the target expression profile follows the miRNA-target model described
previously. Hierarchical clustering is applied to predicted targets with a Pct score of more
than 0.6 to test if these genes group by tissue type. A negative expression correlation is
expected as per the model - in samples where a miRNA is over-expressed, its targets should
be under-expressed and vice-versa. To visualize this relationship, a heatmap of target
genes is generated for each miRNA. For example, miR-30e is over-expressed in cancer
samples, and under-expressed in healthy samples (Figure 3.5).

Thus, it is expected that a significant proportion of its predicted targets with the Pct
threshold of >0.6 (N=469) to be over-expressed in healthy samples and under-expressed
in cancer samples. Figure 3.5 illustrates this not to be the case. In contrast, miR-210 is
over-expressed in healthy samples, and under-expressed in cancer samples (Figure 3.2).
Thus, it is expected a significant proportion of its targets with the Pct threshold of >0.6 to
be over-expressed in cancer samples, and under-expressed in healthy samples. However,
none of its targets have a Pct threshold of >0.6. The other miRNAs follow this lack of

agreement with the miRNA-target gene model.
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Figure 3.5. Class distinction of miR-30e target genes predicted by TargetScan.
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Figure 3.5. The miRNA target genes predicted by TargetScan with Pct cutoff >0.6 clustered
based on the sample types: breast cancer and control samples. Heatmap colors represent
mean centered fold change expression in log-space. The breast cancer samples are red, and

control samples are in green.

We plotted the mirSVR score density of all predicted targets by miRanda with the
mirSVR density of curated targets (Figure 3.6). These density plots show that the curated
targets do not have a bias towards a lower or higher score, and are evenly distributed. In
contrast, the average score hovers around 0, and thus is not significant. The mirSVR density
plots do not illustrate any well-defined mirSVR score threshold to decrease the false

positive target predictions.
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Figure 3.6. Density graph for MirSVR scores of targets predicted by miRanda.
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Figure 3.6. Density graph for miRanda MirSVR scores, a metric for predicting target site
efficacy. The MirSVR score densities of individual miRNAs are of various colors. The black
thick line is the MirSVR score density of all miRNA-target pairs. The brown thick line is the

MirSVR score density of curated miRNA-target pairs.
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We plotted the free energy score density of all predicted targets by PITA with the
free energy score density of curated targets (Figure 3.7). These density plots show bimodal
distributions, with peaks near the free energy scores of -5 and -10. One interpretation of
these results is that the first peak represents actual targets, whereas the second peak with
the higher free energy scores centered at -5 represents a large number of false positives. In
support of this hypothesis, the developers of PITA suggest applying a threshold of -10 when
filtering for functional targets. If, this were the case, then we would expect to see a
significant portion of curated targets with scores of -10 or less. The density plot illustrates
this to be the case, as the -10 peak is more than twice as high as the -5 peak. Therefore, -10
may be a viable threshold to reduce the number of predicted false positives. To test if
applying a PITA score threshold is significant to reduce the number of false positive
predicted targets, we assess if the target expression profile follows the miRNA-target
model. Hierarchical clustering is applied to predicted targets with a PITA score of less than
-10 to test if these genes group by tissue type. A negative correlation is expected as per the
model; in samples where a miRNA is over-expressed, its targets should be under-expressed
and vice-versa. To visualize this relationship, a heatmap of target genes is generated for

each miRNA.
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Figure 3.7. Density graph for PITA scores of targets predicted by PITA.
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Figure 3.7. Density graph of PITA scores, a metric for predicting target site efficacy with a
measure of the free energy. The PITA score densities of individual miRNAs are of various
colors. The black thick line is the PITA score density of all miRNA-target pairs. The brown

thick line is the PITA score density of curated miRNA-target pairs.
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For example, miR-30e is over-expressed in cancer samples, and under-expressed in
healthy samples (Figure 32). Thus, it is expected a significant proportion of its predicted
targets with the PITA score threshold of <-10 (N=243) to be over-expressed in healthy
samples and under-expressed in cancer samples. Figure 3.8A illustrates this not to be the
case. In contrast, miR-210 is over-expressed in healthy samples, and under-expressed in
cancer samples (Figure 3.2). Thus, it is expected a significant proportion of its targets with
the PITA score threshold of < -10 (N=513) to be over-expressed in cancer samples, and
under-expressed in healthy samples. Figure 3.8B does not display an expression pattern
either. In addition, none of the predicted targets for the rest of the miRNAs within the

threshold illustrate positive results.
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Figure 3.8. Class distinction of miR-30e (A) and miR-210 (B) target genes predicted

by PITA.
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Figure 3.8.B.
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Figure 3.8. The PITA predicted target genes of miR-30e (A) and miR-210 (B), with a score
cutoff < -10, clustered based on the sample types: breast cancer and control samples.
Heatmap colors represent mean centered fold change expression in log-space. The breast

cancer samples are red, and control samples are in green.
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In conclusion to an effort to reduce false positives in the large target gene set
predicted by TargetScan, PITA and miRanda, identifying a target prediction tool score
cutoff, we have not identified a viable option. TargetScan’s Pct score and PITA’s score plots
illustrated potential cutoffs, however the genes within those cutoffs did not fit the
miRNA-target model described. To further explore the relationship between a miRNA and
its target genes, we decided to employ the predicted targets of TargetScan for further
analysis.

The correlation coefficients of 38 miRNAs were plotted against their density (Figure
3.9). The resulting correlation distributions fall into two categories: an approximately
normal distribution centered on a correlation coefficient of 0, and a bi-modal distribution
centered near -0.5 and 0.5. A normal distribution describes the coefficients being equally
positive and negative, thus not supporting the correlation hypothesis. A bi-modal
distribution also describes equal weight on both sides. Finally, none of the miRNAs

illustrate a strong negative correlation with its predicted targets.
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Figure 3.9. Density graph for correlation coefficients of the 38 miRNAs.
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Figure 3.9. Density graph for MiRNA-Target expression correlation coefficients. The

correlation coefficients densities of individual miRNAs are of various colors. The black

thick line is the correlation coefficients density of all miRNA-target pairs. The brown thick

line is the correlation coefficients density of curated miRNA-target pairs.
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To further assess the negative correlation relationship between the miRNA and its
predicted targets, a selected cutoff of < -0.5 is applied to the correlation coefficient.
Hierarchical clustering is applied to predicted targets with correlation coefficient < -0.5 to
test if these genes group by tissue type. To visualize the negative correlation relationship, a
heatmap of target genes is generated for each miRNA. For example, miR-30e is
over-expressed in cancer samples, and under-expressed in healthy samples (Figure 3.2).
Thus, it is expected a significant proportion of its predicted targets with the correlation
coefficient of < -0.5 (N=213) to be over-expressed in healthy samples and under-expressed
in cancer samples. Figure 3.10A illustrates this not to be the case. In contrast, miR-210 is
over-expressed in healthy samples, and under-expressed in cancer samples (Figure 3.2).
Thus, it is expected a significant proportion of its targets with the correlation coefficient of
>-0.5 (N=42) to be over-expressed in cancer samples, and under-expressed in healthy
samples. Figure 3.10B does not support this hypothesis either. The same method was

applied to other miRNAs, and the same observations were made.
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Figure 3.10. Class distinction of predicted target genes of miR-30e (A) and miR-210
(B).
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Figure 3.10.B.
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Figure 3.10. The predicted target genes of miR-30e (A) and miR-210 (B), with a
correlation cutoff < -0.5, clustered based on the sample types: breast cancer and control
samples. Heatmap colors represent mean centered fold change expression in log-space. The

breast cancer samples are red, and control samples are in green.

After assessing the expression correlation between a miRNA and its predicted

targets from a macro perspective, the results do not illustrate a strong interdependent
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relationship. Considering all miRNAs, there is not a strong negative correlation with their
predicted targets, and thus this data does not support the miRNA-target model

hypothesized.

Biological Relevance of Predicted Targets

Further, we explored the biological relevance of miR-210 and its predicted target
genes. miR-210 is over-expressed in normal samples, and its targets are expected to be
under-expressed in normal samples. TargetScan predicted 233 targets for which we have
gene expression for, and these targets are ranked according to their intensity.

Table 3 illustrates the KEGG terms over-represented in the negative correlation
gene list targeted by miR-210 (p-value <0.05). One of the KEGG terms identified is
important in breast cancer pathways. B cell receptor signaling pathway is a vital
component of adaptive immunity; it controls the proliferation and differentiation of early B
cells, which may lead to tumorigenesis (Jumma et al., 2005). Previously, miR-210 has been
reported to be induced by Oct-2, a key transcriptional mediator of B cell activation, thus it
has an inhibitory mechanism for the control of B cells and autoantibody production (Mok et
al,, 2013).

Table 4 illustrates GSEA gene sets over-represented at the top of the negative
correlation gene list targeted by miR-210 (FDR <0.1). One gene set is identified as
important in breast cancer pathways: genes constituting the
PUJANA_BRCA1_PCC_NETWORK of transcripts are positively correlated with the
expression of BRCA1 across a compendium of normal tissues (Pujana et al., 2007).
Supporting this association, Volinia et al.(2012) found miR-210 up-regulated in invasive
ductal carcinoma transition and identified BRCA1 as a protein coding gene inversely
related to miR-210. This is consistent with our data, as in our study, miR-210 is up
regulated in normal tissues and is expected to knock down targets in normal tissue.

Table 5 illustrates GSEA gene sets over-represented at the bottom of the positive
correlation gene list targeted by miR-210 (FDR<0.1), and so is positively correlated with

miR-210 expression. Two of the three gene sets identified are important in breast cancer
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pathways. First, genes in the GOZGIT_ESR1_TARGETS_DN set are down regulated in ER+
breast-cancer cells (Gozgit et al., 2007). This gene set is consistent with our results, since
these genes are expected to be up-regulated in normal cells when comparing to breast
cancer cells which is what our data shows. Second, the p53 (PEREZ_TP53_TARGETS)
pathway is commonly found across various cancers. Schrauder at al. (2012) identified
miRNAs overexpressed in whole blood of breast cancer patients to be involved in
regulating the p53 oncogenic signal-pathway. Thus, supporting our findings.

Finally, GSEA leading edge analysis identifies core genes that are over-represented
between gene sets — genes that are most common within a set of gene sets. Thirty-three
genes are identified to overlap between 3 or more gene sets. Figure 3.11 illustrates where
these core genes are ranked among the rest of the miR-210 target genes. The plot is gene
intensity vs. target gene rank, and a significant number of core genes are at the bottom of
the gene rank with high-intensity. This result is surprising, because if these genes were true
targets of miR-210, then their gene intensity is expected to be lower, thus showing

inconsistencies in findings.
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Figure 3.11. Intensity plot of core genes of miR-210 target gene sets.
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Chapter 4: Discussion

In this study, we identified differentially expressed miRNAs in blood samples of
breast cancer patients compared to controls. There is experimental evidence that some of
these miRNAs are associated with tumorigenesis in various cancers (Table 1). Although our
results show that these miRNAs and their predicted target genes may be involved in cancer
pathways, we conclude that there is not sufficient statistical power in this study to draw
any conclusions.

First, we followed standard miRNA expression analysis procedures to identify 38
miRNAs (Table 1) that were differentially expressed between cancer cases and control
cases. Then, we reviewed and compared different miRNA target methods in order to select
the best tools to predict the target genes of our differentially expressed miRNAs. Three
target prediction methods were selected, TargetScan (Agarwal et al., 2015), miRanda (Betel
etal,, 2010), and PITA (Kertesz et al., 2007). Further, we applied these tools to our list of
miRNAs to predict a list of target genes. Each tool however, produced different results with
little overlapping target genes. From a purely statistical perspective we are uncertain about
the significance of these predictions.

Second, in comparing the overlapping target gene list with our mRNA dataset, we
found that the target genes predicted by these methods are not found in the matching
expression profiles. Although we experimented with attempts to reduce the false positive
rate of the target predictions, benchmarking the predicted list against a curated database
did not identify significant target prediction score thresholds.

Thirdly, we selected the predicted target genelist from TargetScan only for further
functional analysis of the genelist. We found that the miRNA-mRNA expression profiles of
this genelist did not identify a negative correlation pattern between the miRNA expression
levels and their predicted target genes. Thus, we conclude that our datasets do not support
the standard model we used in this study - the miRNAs down-regulating target genes

hypothesis.
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Lastly, for biological analysis, we selected the miR-210 target genes and found 233
targets for which we have the gene expression for. KEGG and GSEA analysis have shown
that these genes may be involved in breast cancer related pathways, such as the B cell
receptor signalling pathway (related to the immune system), BRCA1 (a breast cancer gene),

and p53 (a common oncogene).

Differentially Expressed MiRNAs are Not Breast Cancer Specific

Although the list of 38 miRNAs (Table 1) differentially expressed between breast
cancers and controls in our dataset, there is not sufficient supporting evidence from
previous studies to consider the complete list as a BC biomarker. Some miRNAs have been
previously found to be differentially expressed in multiple cancers: miR-136 in breast
carcinoma tissue (lorio et al.,, 2005) and ovarian cancer (Jeong et al., 2017), miR-194 in
pancreatic carcinoma (Zhang]J. etal., 2014), and miR-223 in lung cancer sera (Chen et al,,
2008); whereas miR-335 (Wang et al., 2010; Shrauder et al.,, 2012) and miR-145 (Kodahl et
al,, 2014; Thakur et al,, 2016) are breast cancer specific; and others (miR-1303, miR-339,
miR-517b for examples) have no previous evidence. The literature search suggests that all

38 miRNAs together are not breast cancer specific.

A Panel of Diagnostic MiRNAs Show Little Consistency in Directionality

Further, we consider a small panel of miRNAs to be a candidate biomarker to test
together specifically for early-stage breast cancer diagnosis. A panel of four miRNAs
(miR-145, miR-210, miR-335 and miR-15a/b) were identified to have sufficient previous
evidence to be considered as diagnostic of breast cancer in serum samples. Although eight
miRNAs have been previously associated with breast cancers, only four of them have
previous evidence from blood-sourced studies. This evidence suggests that there may be a
breast cancer signal from blood samples, and thus can be applied for early diagnosis.

Regarding the directionality however, little consistency in how these miRNAs affect
their target genes has been found in previous studies. Of the three miRNAs confirmed with

previous blood BC studies, only miR-145 is consistent in its expression direction: it’s
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downregulated in our cancer expression profiles, and downregulated in BC serum (Kodahl
et al.,, 2014; Thakur et al., 2016) and breast tumors (lorio et al., 2005; Hu et al., 2015;
Sempere et al., 2007; Sun et al., 2014). Thus, consistently shown to act as a tumor
suppressor in breast cancers. As another miRNA to show consistency in expression
direction, miR-15b is upregulated in our expression profiles of cancers, upregulated in
invasive ductal carcinoma of breast tissues (Sakurai et al., 2015), and targets a tumor
suppressor gene, MTSS1 (Kedmi et al., 2015). Thus, consistently shown to act as an
oncogene in breast cancers. Although there is a lack of evidence of miR-15b in blood tissues
specifically, its family member miR-15a has been previously found to be upregulated in BC
serum (Kodahl et al., 2014). Since the family miRNA sequences are related, miR-15b is a
potential oncogenetic biomarker in BC serum as well. Whereas miR-145 shows consistency
in direction with our expression profiles, miR-210 and miR-335 don’t. In our cancer
expression profiles, miR-210 is downregulated, however the literature illustrates that
miR-210 is consistently upregulated in BC serum and tumors; in serum (Thakur et al,,
2016), in plasma (Madhavan et al., 2012; Jung et al.,, 2012; Ng et al,, 2013) and in breast
tumors (Foekens et al., 2008). These multiple studies suggests that miR-210 is oncogenic,
as supported by it being identified as a hypoxic marker in BC (Camps et al., 2008), thus
inconsistent with our data. In contrast, there is no strong evidence for a consistent
expression direction of miR-335. In our cancer expression profiles, miR-335 is upregulated.
Previously, it has been shown to be upregulated in whole blood (Schrauder et al., 2012)
and downregulated in serum (Wang et al., 2010) from breast cancer patients. In further
research, we recommend experimentally validating miR-145, miR-15a/b, miR-335, and
miR-210, with PCR for example, to better understand their function and biological effects in
blood samples from breast cancer patients.

The inconsistencies in the regulation direction in our data as compared to other
studies, suggest that more data and better methods are needed for this type of work. We
have previously showed concern over the quality of our data, and the need for

standardized methods for collecting and analyzing miRNA data sets.
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MiRNAs May be Predictive of Cancer Progression

The miRNAs’ involvement in cancer progression exert a causal role at different steps
of the tumorigenic process, some associated with several hallmarks of cancer (Goh etal,
2016). Our panel of diagnostic miRNAs (miR-210, miR-145, miR-335, and miR-15b) are
involved in cancer progression pathways, and thus are suggested to be predictive of cancer
progression.

In our analysis, TargetScan predicts miRNA-210 targets 233 genes that are also
highly expressed in the mRNA expression profiles, some of which belong to the
GOZGIT_ESR1_TARGETS_DN gene set shown to be downregulated in ER+ breast-cancer
cells (Gozgit et al.,, 2007). In breast cancer cell lines, miR-210 inversely regulates FBX031, a
gene involved in DNA damage response and tumorigenesis (Tan et al,, 2018); and in MCF-7
and T47D cell lines, it supports cancer migration (Liu et al., 2016), thus promoting cancer
progression. Rothe et al. (2011) showed that the expression of miR-210 is related to tumor
proliferation and poor prognosis. As a hypoxic marker (Camps et al., 2008),
over-expression of miR-210 results in an increased hypoxic conditions which are
associated with metastasis, leading to poor patient prognosis. These results are confirmed
by a systematic review by Tang et al. (2015). Further, miR-335 has been shown to be
involved in the regulatory networks of the breast cancer susceptibility gene BRCA1 (Heyn
etal, 2011), by regulating the BRCA1 activators ERa, IGF1R, SP1 and the repressor ID4.
This dual function of promoting and repressing a BC gene may explain the lack of
consistency in the expression direction seen earlier in our miRNA expression profile.
Lastly, miR-15b upregulates a BC gene, MTSS1, in breast tumors (Kedmi et al., 2015)
directly impacting the tumor microenvironment. This may lead to regulation of cancer
progression, as miR-15b is identified in invasive ductal carcinoma breast tissue (Sakurai et
al,, 2015).

In contrast to the above, miR-145 seems to have protective function - it significantly

reduces BC cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal
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transition (Zhao et al., 2016), and regulating TGF- 3 1 protein expression which contributes
to tumor formation (Ding et al., 2017). Thus, miR-145 has tumor suppressor activity,
inhibiting metastasis and thus cancer progression.

In conclusion, the evidence of tumor progression suggests that in addition to
potential diagnostic biomarkers, miR-210, miR-335 and miR-15b are potential prognostic

biomarkers of BC as well.

MiRNA Target Prediction is Challenging

The review of various target prediction methods and their results, suggest that
miRNA target prediction is a challenging problem. The various miRNA target prediction
methods have been trained on different miRNA features, assumptions, and evidence of
miRNA-target interactions. Some methods are mainly miRNA seed-focused (Agarwal et al,,
2015; Krek et al,, 2005), and others are target site access focused (Kertesz et al., 2007). The
MiRanda (Betel et al., 2010) method however takes into consideration both the miRNA
seed features and the secondary structure thus accessibility of the target site, while
measuring the thermodynamic stability of the duplex complex (the energetic likelihood of

the miRNA-target interactions).

Further, some groups consider sequence conservation to be an important aspect of
defining miRNAs and their targets (Agarwal et al., 2015; Betel et al., 2010), while others
focus on experimentally derived evidence, such as mRNA/miRNA protein complex
co-precipitation (Hammell et al., 2008). Evidence of co-precipitation suggests that there
may be both functional and non-functional miRNA-target pairs, where the functional pairs
manifest in co-precipitation experiments, but the non-functional pairs are dormant until a
biological signal triggers functionality. The miRSVR scoring model correctly identified
functional but poorly conserved target sites (Betel et al,, 2010). The Betel group showed
that imposing a miRNA-target interaction filter results in a reduced detection rate of true

targets. This suggests that a true target does not need to interact with the miRNA and thus
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does not need to be functional at the time of the experiment. This separates the concepts of

a miRNA target definition and miRNA functionality.

These findings are significant because it impacts how we study miRNAs and their
targets. It's important to note that some of the earlier target prediction methods were
based on little experimental support and thus a lot of theoretical models and hypotheses.
With time, as the public miRNA database grew, some groups kept improving their tools,
while others quickly became outdated. Initially, many methods were miRNA-seed focused
with a heavy weight on sequence conservation, because target prediction purely from
conservation is fast and can be done in parallel. However, going through the methodical
experiments to show co-precipitation takes a lot of time and more resources. Thus,
currently there’s an imbalance of information available regarding theoretically potential
miRNA targets that can be functional or non-functional, versus the experimentally derived
functional miRNA targets. These differences may explain the lack of overlapping genes
predicted from our differentially expressed miRNAs.

More recently developed prediction tools, such as HomoTarget (Ahmadi et al.,
2013), have shown better results combining twelve different features. Thus, for tools to
have higher specificity and sensitivity, future efforts should focus on combining the various
experimentally validated features of both the miRNA and its target, such as the seed
sequence, secondary structures, thermodynamic stability, conservation, and co-expression.
For example, we can automatically derive the weighted combinations of these features,

with Neural Network algorithms, as done by Ahmadi et al. (2013).

Conclusion

In summary, we analysed a small data set of matched miRNA-mRNA expression
profiles from breast cancer patients and controls from a large population-based cohort
study to explore a diagnostic biomarker. We identified 38 differentially expressed miRNAs
with previous supporting evidence in breast cancer and other cancers. Only a small panel

of miRNAs are breast cancer specific, however they showed little consistency in
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directionality and their biological effects. Although some predicted target genes of these
miRNAs are associated with tumorigenesis and cancer progression, we conclude that there
is not enough statistical power to draw any strong conclusions.

One of the main limitations of this study is the small data set, thus does not have
enough statistical power to provide strong results with such high-dimension data. In
addition, more modern technologies may provide stronger results. For example, Next
Generation Sequencing has been shown to be more accurate than microarray studies,
especially for small RNAs. Further, miRNA microarray expression processing and analysis
techniques used in this study are similar to standard techniques applied to mRNA
expression data. However, as miRNAs are smaller and require higher sensitivity than
mRNA, new methods are being explored to process and analyze miRNA expression levels.

Overall, we found that there is little consistency between studies, and a general lack
of cohesiveness in the field of miRNA research. As the MiRBase database has grown, and
more miRNAs are being annotated and curated, it is difficult to rely on early evidence and
hypotheses from the time miRNAs were first identified. As previously noted, many
discrepancies in the database have been found, and its difficult to differentiate between
small RNAs and non-functional noise from one-time experiments. Fromm et al. (2015)
published a review discussing these concerns and presented a uniform system for
annotating miRNAs. They showed that less than a third of the 1900 human miRNAs in
MiRBase are robustly supported as mature and curated miRNAs, and established a new
open access database - MirGeneDB (Fromm et al., 2015). Further, the inconsistencies in
miRNA annotation make it difficult to build a comprehensive target prediction tools. Our
review found that because different miRNA features were used to train the target

prediction tools, its difficult to compare them and the quality of the prediction results.

In this study we investigated miRNAs as potential biomarkers for early diagnosis of
breast cancer. Using various computational tools and methods, we explored if
blood-sourced miRNAs discriminate between breast cancer and matched healthy controls.
Our results show that although some miRNAs are differentially expressed between cancer

samples and controls, they are not breast cancer specific and show little consistency in
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their biological effect. However, a panel of miRNAs have been previously identified as

potential biomarkers of breast cancer, and may be predictive of cancer progression.

We conclude that statistically speaking, there is little evidence in this study that
blood-sourced miRNAs are diagnostic of breast cancer. However, the study of miRNAs
come with natural limitations as listed above. In the future, further insight into the
biogenesis of miRNAs and their relationship with target genes and gene networks will
provide a stronger foundation for the development of an early diagnostic breast cancer

biomarker.
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Tables

Table 1. Differentially expressed miRNAs and their biological significance.

List of 38 experimentally supported and annotated miRNAs, and previous evidence

showcasing their biological significance. Red miRNAs are upregulated in case samples and

thus downregulated in controls, whereas the black miRNAs are downregulated in case

samples and thus upregulated in controls.

MirbaselD Previous studies
. Diagnostic in esophageal serum (Zhang et al., 2010), diagnostic for Coronary Artery
1 hsa-miR-10a Disease (Luo et al., 2016), diagnostic in plasma pancreatic cancer (Duell et al., 2017)
. Epigenetic inactivation in mammary carcinoma (Lehmann et al,, 2007),
2 hsa-miR-124 tumor-suppressive in osteosarcoma (Huang et al., 2018)
3 hsa-miR-1258 Suppresses breast cancer brain metastasis (Zhang et al., 2011)
4 hsa-miR-1287 Diagnostic in ovarian whole-blood (Hausler et al., 2010)
5 hsa-miR-1298 Inhibits tumor growth (Zhou et al., 2016)
6 hsa-miR-1303
7 hsa-miR-1307
. Suppresses tumor metastasis in triple-negative breast cancer (Yan et al., 2016),
8 hsa-miR-136 inhibits cancer stem cell activity in ovarian cancer (Jeong et al., 2017)
. Downregulated in primary breast carcinoma tissue (lorio et al., 2005),
9 hsa-miR-145 downregulated in serum BC (Kodahl et al., 2014), (Thakur et al., 2016)
. Targets MTSS1 gene in breast (Kedmi et al,, 2015), and found in plasma BC
10 | hsa-miR-15b (Kumar et al,, 2013)
. Contributes to tumor growth in renal cell carcinoma (Khella et al., 2013),
11 | hsa-miR-194 pancreatic carcinoma (Zhang ] et al.,, 2014)
. Implicated in tumour metastasis (Gregory et al., 2008), Diagnostic of ovarian cancer
12 | hsa-miR-200b sera samples (Taylor et al., 2008)
13 | hsa-miR-208b
Upregulated in serum of BC (Thakur et al., 2016), and breast tumours (Foekens et al.,
. 2008), a hypoxia marker in breast (Camps et al., 2008), and in pancreatic cancer serum
14 | hsa-miR-210 (Ho et al., 2010), diagnostic in B-cell Lymphoma sera samples (Lawrie et al., 2008)
i Diagnostic in sera lung cancer (Chen et al., 2008), diagnostic in esophageal serum
15 | hsa-miR-223 (zhang et al., 2010) and prostate serum (Moltzahn et al., 2011)
. Diagnostic in oral carcinoma plasma (Lin et al., 2010) diagnostic in prostate serum
16 | hsa-miR-24 (Moltzahn et al., 2011)
17 | hsa-miR-301b Hypoxia-responsive oncomiR in prostate cancer (Wang W et al., 2016)
18 | hsa-miR-302c Receptor status predictor in BC tissue (Lowery et al., 2009)
19 | hsa-miR-30e
. Diagnostic in BC serum (Wang et al., 2010) diagnostic in BC whole blood (Schrauder et
20 | hsa-miR-335 al., 2012), regulates BRCA1 gene (Heyn et al., 2011)
21 | hsa-miR-339

78



22 | hsa-miR-346

23 | hsa-miR-363

24 | hsa-miR-421

25 | hsa-miR-5006

26 | hsa-miR-503 Tumor suppressor in BC pathogenesis (Gong et al., 2014)

27 | hsa-miR-510 Associated with invasive BC cells (Findlay et al., 2008)

28 | hsa-miR-517a

29 | hsa-miR-517b

30 | hsa-miR-518f

31 [ hsa-miR-523 Increased in plasma of leukemia patients (Madhavan et al,, 2013)
Oncogenic in breast cancer by EP4 activation (Majumder et al., 2015), suppresses

32 | hsa-miR-526b lung cancer (Zhang et al., 2015)

33 | hsa-miR-548i

34 | hsa-miR-548y

35 | hsa-miR-570 Found in peripheral blood of gallbladder cancer (Li and Pu, 2015)

36 | hsa-miR-637 Inhibits HER2 signaling (Leivonen et al., 2014)

37 | hsa-miR-664

38 | hsa-miR-935 Promotes liver cancer cell proliferation (Liu et al., 2017)
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Table 2. Summary of target prediction methods (Witkos et al.,, 2011).

Witkos et al. (2011) reviewed and assessed the performance of miRNA target prediction

tools and methods. Tools include miRanda, Targetscan and its derivative TargetScansS,

PicTar, Diana-MicroT, PITA and RNA22 with their features list and performance against

tally validated miRNAs.
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Table 3. Gene to KEGG test for over-representation in gene list targeted by miR-210.

KEGG terms of gene lists that are predicted to be targeted by miRNA-210, with a p-value <

0.05. The list represented over-representation of genes involved in specific metabolic

pathways. KEGG terms identified include the B cell receptor signaling pathways, an

important component of adaptive immunity, also involved in the breast cancer pathways.

Gene to KEGG test for over-representation

650  0.006 20.875 0
4960  0.011 14.887 0
4662  0.014 6.704 1
5414  0.039 7.144 0
4971 0.046 B.466 0

L L

KEGGID Pvalue OddsBatio ExpCount Count Size Jerm
12 Butanoate metabolism

16 Aldosterone-regulated sodium reabsarption

518 cell receptor signaling pathway
31 Dilated cardiomyopathy
34 Gastric acid secretion

Table 4. GSEA test applied to the negative correlated gene list targeted by miR-210.

GSEA test results of gene lists that are predicted to be negatively targeted by miRNA-210,

with an FDR < 0.1. The list represented over-representation of genes involved in specific

metabolic pathways. GSEA terms identified include the BRCA1 gene network of transcripts

which are important in breast cancer pathways.

GSEA UPREGULATED
GS DETAILS
YAGI_AML_WITH_T_8_21_TRANSLOCATION
GEORGES_TARGETS_OF_MIR192_AND_MIR215
MULLIGHAN_MLL_SIGNATURE_2_UP
PUJANA_ATM_PCC_NETWORK
THUM_SYSTOLIC_HEART_FAILURE_UP

SATO_SILENCED_BY_METHYLATION_IN_PANCREATIC_C
ANCER_1

TIEN_INTESTINE_PROBIOTICS_24HR_UP
LOPEZ_MBD_TARGETS

NUYTTEN_NIPP1_TARGETS_DN
FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_LPS
_up

PUJANA_BRCA1_PCC_NETWORK

ES

8
9
5

NES

0.55
0.51
0.64
0.43
0.61

0.62
0.62
0.5
0.4

0.61
0.42

1.83
179
1.79
1.77
1.77

1.7
1.69
1.67
1.65

1.63
1.53

NOM p-val FDR g-val

0.009
0.011
0.016
0.017
0.015

0.018
0.028
0.036
0.034

0.032
0.057

FWER p-val

0.605
0.375

0.26
0.218
0.176

0.203
0.189
0.182
0.184

0.184
0.268

0.391
0.456
0.467
0.499
0.501

0.628
0.659
0.693
0.732

0.76
0.901

RANK AT MAX LEADING EDGE

37
42
38
62
27

40
21
53
42

41
62
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Table 5. GSEA test applied to the positive correlated gene list targeted by miR-210,
with an FDR < 0.1.

GSEA test results of gene lists that are predicted to be positively by miRNA-210, with an
FDR < 0.1. The list represented over-representation of genes involved in specific metabolic

pathways. GSEA terms identified include the ESR1 targets affected in ER+ breast-cancer

cells.

GSEA DOWNREGULATED

G5 DETAILS ES NES NOM p-\'al FDR q-l.ral F\WER p-'-lal RANK AT MAX LEADING EDGE
GOZGIT_ESRL_TARGETS_DN 5 -059 -1.64 0os3 0B0z 0rFar 45
PEREZ TP33_[ARGETS 9 -4 -1.5F LoBs 563 B3z 3T
HORIUCHI_WTAP TARGETS UF 5 -053 -1.43 JOBS ey 958 51
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Technical Supplements

Data Processing

First, the miRNA microarray data was pre-processed with background correction
(subtracting background noise signal) (Quackenbush, 2002). In the sample quality control
step, samples with missing values, those with a negative mean correlation, and samples
below an RNA quality threshold (RIN score < 7) were removed. Next, the quality of probes
was examined via the Signal-to-Noise ratio (SNR), where probes with consistently low SNR
(<2) across all samples were removed. Then, Principal Component Analysis (PCA)
identified some samples found to be outliers with very low raw intensity correlation, and
they were excluded. Finally, in order to compare the intensity levels between samples, they
were quantile normalized to make the intensity distributions identical. After preprocessing,
we identified a major confounding effect via histogram clustering - most patient samples
were hybridized on one day and controls on another day. Thus, for expression analysis we

continued with 4 patient samples and 5 control samples.

Technical Methodology

The standard errors were moderated using an empirical Bayes model adjusting high
variability genes down and low variability genes up (Smyth, 2004). Using a p-value
threshold of 0.1 adjusted for multiple tests, fifty-five miRNAs were differentially expressed
between breast cancer and control samples. The heatmap in Figure 2.2 illustrates the

grouping of samples according to disease status based on differentially expressed miRNAs.
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Figure 2.2. Class distinction of differentially expressed miRNAs.
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Figure 2.2. The differentially expressed miRNAs clustered based on the sample types:
breast cancer and control samples. Heatmap colors represent mean centered fold change
expression in log-space with Z-scores, meaning that red colored miRNAs are significantly
differentially expressed higher in their sample types. Sample characteristics are
represented in the boxes below each sample. The breast cancer samples are red, and
control samples are in green. RNA concentration and expression mean is represented by a
grey-red scale, where grey is low and red is high. All samples were hybridized on the same

date and same slide.
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MiRNA Annotation

Sixteen of the fifty-five miRNAs were not annotated in miRBase (Table 1), some of
which were de novo miRNAs - newly discovered miRNAs that are not yet fully annotated
nor validated by the scientific community. Thus, the “solexa-####-###" miRNA annotation
in Table 1 is from Illumina’s own sequencing efforts and the “HS_###" annotation is from
sequencing efforts by Berezikov et al. (2006), which have not been validated. The
sequences of the 16 unannotated miRNA were matched against the miRBase database, and
only two of them were identified to be annotated miRNAs - hsa-miR-5006 and
hsa-miR-548y.

To test the hypothesis that the rest of the 14 unannotated miRNAs are true miRNAs,
we used the BLAT (Kent et al.,, 2002a) search tool on the USCS Genome Browser (Kent,
2002b) to locate the oligonucleotide sequence in the genome in order to inspect if their
sequence characteristics follow the defining traits of a miRNA. BLAT is a pairwise sequence
alignment tool for DNA/RNA. None of these unannotated miRNAs are conserved within
mammals, nor did the secondary structure prediction method in BLAT identify the specific
stem loop structure that defines precursor miRNAs. Figure 2.3 presents an example of
differences observed between a true miRNA, miR-15b, and our hypothetical candidate
miRNA, HS_128. Since there was no clear evidence that these 14 miRNAs are true miRNAs;

they were excluded from further analysis, thus leaving us with 38 (of 49) (Table 2).
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Figure 2.3. Sequence characteristics of HS_128 (A) and miR-15b (B).
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Figure 2.3. Sequence alignment of HS_128 (A) and miR-15b (B) against a database of

animal genomes, miRBase, SNPs, etc. to inspect the sequence characteristics and test of

they follow the defining traits of a miRNA. The miR-15b (B) sequence is found to be

conserved, as per the Multiz alignments of 47 Vertebrates, and placental mammal basewise

conservation by Phylop. The sequence has been annotated as has-miR-15b from the

miRBase database, and was predicted to have a RNA secondary structure, which follows
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the definition of a miRNA. Conversely, the sequence HS_128 (A) is not conserved at all, and
has no annotation, and lacks an RNA secondary structure. Thus, it is concluded that this

sequence is not a miRNA.

MiRNAs and the Importance of Conservation

As per the definition of what is a miRNA, the sequence must be conserved across
multiple species. However, we found inconsistencies in our study, as there are many
inconsistencies on other studies, making miRNAs challenging to study. In our case, we use
HS_128 and miR-15b as examples to illustrate this point. For example, the sequence
alignment of HS_128 (A) and miR-15b (B) against a curated database of animal genomes,
miRBase, SNPs, etc. showed that HS_128 is not a real miRNA. The miR-15b (B) sequence is
found to be conserved, as per the Multiz alignments of 47 Vertebrates, and placental
mammal basewise conservation by Phylop. Also, the sequence has been annotated as
has-miR-15b from the miRBase database, and the EvoFold Prediction was able to predict
RNA secondary structure. All these characteristics follow the definition of a miRNA.
Conversely, the sequence HS_128 (A) is not conserved at all, and has no annotation, and

lacks an RNA secondary structure. Thus, it is concluded that this sequence is not a miRNA.

Differentially Expressed MiRNAs
List of differentially expressed miRNAs with their matching mirbaselDs. Not all miRNAs

were identified in the mirbase database of annotated and experimentally curated miRNAs.

Name MirbaselD

HS 128
HS 201 hsa-miR-5006

HS_203

HS_217

HS_221
HS_232

| v B W N =

111



7 HS_47

8 HS_63

9 HS_69

10 | HS_97

11 | solexa-2683-338

12 | solexa-7111-145 hsa-miR-548y
13 | hsa-miR-10a hsa-miR-10a
14 | hsa-miR-124 hsa-miR-124
15 | hsa-miR-1258 hsa-miR-1258
16 | hsa-miR-1287 hsa-miR-1287
17 | hsa-miR-1298 hsa-miR-1298
18 | hsa-miR-1303 hsa-miR-1303
19 | hsa-miR-1307 hsa-miR-1307
20 | hsa-miR-136* hsa-miR-136
21 | hsa-miR-145 hsa-miR-145
22 | hsa-miR-1537 hsa-miR-1537
23 | hsa-miR-15b hsa-miR-15b
24 | hsa-miR-189 hsa-miR-24
25 | hsa-miR-194 hsa-miR-194
26 | hsa-miR-200b* hsa-miR-200b
27 | hsa-miR-200b

28 | hsa-miR-208b hsa-miR-208b
29 | hsa-miR-210 hsa-miR-210
30 [ hsa-miR-223 hsa-miR-223
31 | hsa-miR-301b hsa-miR-301b
32 | hsa-miR-302c hsa-miR-302c
33 | hsa-miR-30e* hsa-miR-30e
34 | hsa-miR-335 hsa-miR-335
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35 | hsa-miR-339 hsa-miR-339
36 | hsa-miR-346 hsa-miR-346
37 | hsa-miR-363 hsa-miR-363
38 | hsa-miR-421 hsa-miR-421
39 | hsa-miR-503 hsa-miR-503
40 | hsa-miR-510 hsa-miR-510
41 | hsa-miR-517a hsa-miR-517a
42 | hsa-miR-518f hsa-miR-518f
43 | hsa-miR-523 hsa-miR-523
44 | hsa-miR-526b* hsa-miR-526b
45 | hsa-miR-548i hsa-miR-548i
46 | hsa-miR-570 hsa-miR-570
47 | hsa-miR-637 hsa-miR-637
48 | hsa-miR-664 hsa-miR-664
49 | hsa-miR-935 hsa-miR-935
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