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Abstract  

Breast cancer (BC) is the most common cancer in women worldwide, and current 

detection technologies have limitations. MicroRNAs (miRNAs) are small 18-22 nucleotide 

single-stranded RNAs and there is some evidence suggesting that miRNAs in blood samples 

may be used as diagnostic biomarkers for BC. The Norwegian Women and Cancer 

(NOWAC) is a large prospective study that has collected blood and tumor biopsy samples 

from BC patients and healthy tissue from age-matched controls. Using the Illumina 

microarray system, miRNA and messenger RNA (mRNA) expression profiles were 

generated for 96 breast cancer cases with matched controls. We identified thirty-eight 

miRNAs that discriminate between breast cancer and matched healthy controls, some of 

which (miR-210, miR-335, miR-145, miR-15a/b) have been previously identified as 

potential diagnostic markers in blood samples of breast cancer patients. Then, we applied 

three different miRNA target prediction tools to look for potential gene targets based on a 

simple negative association miRNA-target model. In our clustering analysis, the predicted 

gene sets identified in the matched mRNA expression profile did not follow the classical 

negative association miRNA-target model. Thus, inconsistent with the hypothesized model, 

as also supported by previous studies. Functional analysis of identified miRNAs and their 

predicted target genes identified some gene pathways involved in breast cancer, such as B 

cell receptor signaling pathway, BRCA1 expression network, and p53 a common oncogenic 

signal pathway. Although miRNAs show promising results as diagnostic markers in blood 

samples of breast cancer patients, there is much work to be done in understanding the 

relationship between miRNAs and their target genes in order to identify viable miRNA 

biomarkers for breast cancer.  
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 Resume 

Le cancer du sein est le cancer le plus courant chez les femmes à travers le monde, 

et les technologies de détection actuelles ont leurs limites. Les microARN (miARN) sont de 

petits ARN monocaténaires de 18 à 22 nucléotides et certains éléments suggèrent que les 

miARN dans les échantillons de sang peuvent être utilisés comme biomarqueurs 

diagnostiques pour le cancer du sein. L’étude NOWAC sur les femmes norvégiennes et le 

cancer est une grande étude prospective qui a recueilli des échantillons de sang et de 

biopsies de tumeurs de patientes atteintes de cancer du sein et et de tissus sains provenant 

des témoins appariés selon l'âge. En utilisant le système de microréseaux Illumina, des 

profils d'expression de miRNA et d'ARN messager (ARNm) ont été générés pour 96 cas de 

cancer du sein avec des témoins appariés. Nous avons identifié trente-huit miARN qui 

discriminent entre le cancer du sein et les témoins sains appariés, dont certains (miR-210, 

miR-335, miR-145, miR-15a/b) ont déjà été identifiés comme marqueurs diagnostiques 

potentiels dans des échantillons de sang de patientes atteintes de cancer du sein. Ensuite, 

nous avons appliqué trois outils de prédiction de cible de miARN différents pour 

rechercher des cibles de gènes potentiels sur la base d'un simple modèle d'association 

miARN-cible négative. Dans notre analyse de regroupement, les ensembles de gènes 

prédits identifiés dans le profil d'expression d'ARNm apparié ne suivaient pas le modèle 

classique d'association miARN-cible négative, réfutant ainsi le modèle de miARN-cible 

supposé, tel que soutenu également par certaines études précédentes. L'analyse 

fonctionnelle des miARN identifiés et de leurs gènes cibles a identifié des voies de gènes 

impliqués dans le cancer du sein, telles que la voie de signalisation du récepteur des 

cellules B, le réseau d'expression BRCA1 et p53 une voie de signal oncogénique commune. 

Bien que les miARN montrent des résultats prometteurs en tant que marqueurs de 

diagnostic dans les échantillons de sang de patientes atteintes d'un cancer du sein, il reste 

encore beaucoup à faire pour comprendre la relation entre les miARN et leurs gènes cibles 

afin d'identifier des biomarqueurs viables du miARN pour le cancer du sein. 
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Chapter 1: Introduction  

Introduction to Biomarkers 

It is estimated that the human genome encodes approximately 19,000          

protein-coding genes (Ezkurdia et al., 2014), about the same number as that for corn, but               

about twice as many as that for the common fruit fly. These 19,000 genes are encoded in                 

about 1.5% of the genome. Some genes are expressed continuously, as they produce             

proteins involved in basic metabolic functions; some genes are expressed as part of the              

process of cell differentiation; and some genes are expressed as a result of cell              

differentiation. Gene regulatory mechanisms such as transcription factors or DNA          

methylation may control the rate of transcription by limiting the amount of mRNA that is               

produced from the nucleotide sequence of a particular gene. Once transcribed there are             

further opportunities for gene regulation, including regulation of mRNA decay and           

regulation of the translation of mRNA into protein. These forms of regulation are known as               

post-transcriptional regulation and play important roles in both normal physiology and           

organismal development. In the early 2000s, a novel class of ~21-nucleotide-long RNAs,            

known as microRNAs (miRNAs) emerged as key post-transcriptional regulators predicted          

to control the activity of ~50% of all protein-coding genes in mammals as shown in Figure                

1.1 (Karp S., 2009). 
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Figure 1.1. The Central Dogma and miRNA (Karp S, 2009). 

 

 

Figure 1.1. A microRNA gene is one-hundredth the length of a typical gene. The typical 

gene codes for messenger RNA, which in turn directs the assembly of a protein. MicroRNA 

genes can control this essential process, by coding for a microRNA strip that binds to the 

messenger RNA, effectively turning off production of the protein via translational 

repression or target degradation. 

 

In 1993, Lee, Feinbaum and Ambros discovered that a nucleotide  sequence in C. 

elegans did not code for a protein but instead produced a pair of short RNA transcripts. 

These RNA transcripts each regulated the timing of larval development by repressing the 

translation of lin-14, which encodes a nuclear protein (Lee et al., 1993). This regulation is 

due in part to sequence complementarity between lin-4 and unique repeats within a small 

region of the lin-14 mRNA (Figure 1.2), suggesting that lin-4 regulates lin-14 translation via 

an antisense RNA-RNA interaction. Loss-of-function of lin-4 results in the abnormal 

differentiation of specific cell lineages and affects later stages of development, thus 

providing the first evidence of miRNAs involved in cell differentiation and proliferation 

(Lee et al., 1993).  
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Figure 1.2. Complementarity between lin4 and lin-14 (Lee et al., 1993).  

 

Figure 1.2. Complementarity between lin-4 and seven copies of a repeated element in the 

3’UTR of lin-14 RNA. Dots indicate absence of a nucleotide; dashes indicate one or more 

non complementary nucleotides. Only lin-4:lin-14 complementarity that is conserved 

between C. elegans and C. briggsae is represented.  

 

The second miRNA to be identified was let-7, expressed later in worm development 

and complementary to a specific region of the chromosome that includes lin-14, lin-28, 

lin-41, lin-42, and daf-12 blocking  their expression (Reinhart et al., 2000). Since the 

discovery of let-7, over 48,000 miRNAs have been identified in various organisms including 

viruses, worms, and primates, and humans (Kozomara et al., 2019). miRNA identification is 

done through two methods (i) random cloning and sequencing, like the let-7 or (ii) through 

computational prediction which identifies putative miRNAs (Krek et al., 2005). MiRNAs are 

commonly defined by the following criteria (Kim, 2005):  

1. the final miRNA product is a single-stranded RNA of about 22-nucleotides; 

2. the precursor forms a hairpin structure and the mature miRNA is present in one 

arm of the hairpin; 

3. both the mature and the precursor miRNAs are usually evolutionarily conserved; 

4. the precursor miRNAs should be experimentally observed when DICER (an essential 

miRNA processing enzyme) function is disturbed. 
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Most miRNAs originate from non-coding regions of the genome; however, 

miRNA-producing regions (called miRNA genes) have been found throughout the entire 

genome. Up to 50% of mammalian miRNA loci are found in close proximity to other 

miRNAs (Kim et al., 2009). This clustering suggests that miRNAs act together, as their close 

proximity allows miRNAs to be transcribed together. MiRNAs add a layer of complexity to 

gene regulation by base pairing with the target mRNAs, usually located in the 3’UTR region. 

This binding is often with a perfect complementary sequence, however many exceptions 

have been found. For example, miRNAs can bind to a specific mRNA with a base pair 

mismatch or a bulge (unpaired bases). The binding sequence of many miRNAs is composed 

of base pairs (bp) numbered 2 through 7 in the 5’ region of the strand. This 6 bp segment is 

termed the seed region. Since the seed region is very short and genomes tend to be millions 

of base pairs long, there is a high chance for the complementary seed sequence to occur 

more than once. Thus, one miRNA likely targets multiple sites on the same mRNA, or 

multiple mRNAs (Friedman et al., 2009, Krek et al., 2005).  It has been estimated that more 

than one-third of human genes are directly targeted by miRNAs (Friedman et al., 2009). 

Further, once base paired with a target gene, miRNAs control target gene expression 

by either regulating mRNA degradation or mRNA translation (Huntzinger et al., 2011). 

However, studies (Levine et al., 2007, Mukherji et al., 2011) have uncovered new 

mechanisms that may be involved beyond the induction of mRNA degradation and the 

inhibition of translation for which miRNAs are best known. For example, it has been 

proposed that miRNAs counteract 'leaky' transcription by establishing thresholds in gene 

expression levels and induce correlations in the expression of their targets (Mukherji et al., 

2011). Thus, although it is known that miRNAs bind to certain target genes, the 

mechanisms behind the post-transcriptional regulation is being explored.  

The biogenesis of miRNAs in animals is a complex, multi-step process starting in the 

nucleus, passing through several post-transcriptional modifications, and ending in the 

cytoplasm (Figure 1.3). The canonical pathway initiates at transcription by RNA 

polymerase II to generate the primary transcripts (pri-miRNAs). The pri-miRNA is 

characterized by a hairpin RNA structure recognized by the nuclear RNAse III enzyme 

12 
 



Drosha, and its cofactor DGCR8 (Liu et al., 2009). Drosha and DGCR8 bind to create a 

complex, called the microprocessor complex, which cleaves the pri-miRNA to generate a 

shorter hairpin of ~65-75 nucleotides, called the pre-miRNA (Du et al., 2005). The 

pre-miRNA is then recognized by the nuclear export factor EXP5 responsible for exporting 

it from the nucleus to the cytoplasm. After exportation from the nucleus, the cytoplasmic 

RNase III DICER and other proteins TRBP and Argonaute catalyze the second processing 

step (dicing) to produce miRNA duplexes (Du et al., 2005). Finally, one strand of the duplex 

remains on the Argonaute protein as the mature miRNA, whereas the other strand is 

degraded (Figure 1.3). The miRNA biogenesis pathway is well studied in comparison to 

other small RNA pathways, although many questions remain unanswered. A more detailed 

understanding of the mechanism awaits the structures of the complexes, including 

Microprocessor, EXP5 and DICER –RISC in association with the substrate RNAs. Many 

protein factors are implicated in miRNA biogenesis, but their biochemical roles remain 

unknown (Kim et al., 2009).  
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Figure 1.3. MiRNA Biogenesis (Huang et al., 2011). 

 

 

Figure 1.3. The biogenesis of miRNA is a multi-step process starting in the nucleus, passing 

through many post-transcriptional modifications, and ending in the cytoplasm. The 

pathway initiates at transcription by RNA polymerase II, generating a primary miRNA. The 

nuclear RNAse III enzyme Drosha, and its cofactor DGCR8 recognize the pri-miRNA, which 

work within a complex of several proteins known as the microprocessor. It then cleaves the 

pri-miRNA and exports it to the cytoplasm, where a second RNAse III enzyme, Dicer, makes 

the pair of cuts that defines the other end of the miRNA, generating the miR/miR* duplex. 

Finally, assembly of the mature, single stranded miRNA from the duplex into the 

RNA-induced silencing complex (RISC) completes the miRNA biogenesis. 
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Computational Identification of MiRNAs 

As experimental approaches are often slow and costly, computational methods play 

important roles in the identification of new miRNAs. Traditionally, certain significant 

characteristics such as the hairpin-shaped stem loop structure, high evolutionary 

conservation, and high minimal folding energy (the energy released as the base pairs fold 

into its structure) were important features used by computational tools for the 

identification of miRNAs (Lindow and Gorodkin, 2007). For example, when a miRNA base 

pairs to a target mRNA, it forms an RNA duplex. This process of canonical base pair binding 

releases energy. Generally, the lower the free energy, the more bases are paired, and the 

more stable the RNA duplex is.  

Lee and Ambros (2001) were the first to apply a computational approach to identify 

miRNAs. The took a comparative genomics approach by using bioinformatics tools with 

cDNA cloning to identify potential C. elegans miRNAs. They searched for sequences 

conserved (similar or identical base pairs) between the C. elegans and C. briggsae genomes 

that had characteristic pre-miRNA features and secondary structures similar to lin-4 and 

let-7, the first two miRNAs identified. Since then, several tools have been developed to 

predict new miRNA genes based on either sequence and/or secondary structure similarity 

to known miRNAs (Lim et al., 2003; Wang et al., 2005). These methods described by Lim et 

al. (2003) and Wang et al. (2005) are based on previous findings that miRNAs tend to be 

evolutionary conserved (Krek et al., 2005) and  filter out predicted hairpins that are not 

evolutionarily conserved in related species. However, excluding miRNAs that are unique to 

one organism may impair the identification of new miRNAs associated with that specific 

organism (Bentwich et al., 2005). Thus, the limiting factor with these initial methods, is the 

inability to discover new miRNAs.  
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Machine Learning Based Methods 
 

In order to circumvent the main limitation of methods based solely on comparative 

genomics, machine learning based methods have been developed to predict ab initio 

miRNAs. In general, a machine learning algorithm is used to make a prediction on unseen 

data (test set), based on the features (attributes describing the data) it learns from an 

initial (training) dataset. In our case, these algorithms take in a set of features describing 

known miRNA sequences and structures, then classifies an unknown sequences as a 

candidate miRNA or a non-miRNA. This is an example of a binary classification machine 

learning task, a type of supervised machine learning.  Common supervised machine 

learning algorithms include Support Vector Machines (SVM), Neural Networks, Hidden 

Markov Models (HMM), and Naive Bayes (Bishop, 2006), with SVM being the most popular 

choice for miRNA classification. To characterize their performance, two statistical 

parameters are commonly used: sensitivity and specificity. Sensitivity measures the 

percentage of correctly predicted targets out of total correct ones, and specificity measures 

the percentage of correctly predicted targets among overall predicted ones. Ideally, the 

performance of a method must be of high sensitivity and high specificity with a fair balance 

between them. 

The seminal work of applying a machine learning based method to identify miRNAs 

was by Sewer et al. (2005), who compiled 40 distinct sequence and structural ‘‘markers’’ to 

describe a candidate pre-miRNA. The SVM classifier model was trained using 178 human 

pre-miRNAs as positive examples and 5395 random sequences from tRNA, rRNA, and 

mRNA genes as negative examples. They obtained a specificity of 91% and a sensitivity of 

71% on the training set, then predicted 32 novel pre-miRNAs of pathogenic viruses, some 

of which were further confirmed experimentally by the same group. This work set the 

initial benchmark for pre-miRNA classification, after which many other machine learning 

based tools were developed. For an online compendium of miRNA prediction tools, see 

Lukasik et al. (2016).  
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One of the key challenges of predicting species-wide miRNAs, is the limited amount 

of annotated data per species. Thus, techniques that take into consideration the imbalance 

of positive and negative examples are applied to combined datasets from different species. 

One of the best performing methods is miRBoost (Tran et al., 2015), an ensemble method 

that applies a boosting technique with the SVM algorithm to address training data 

imbalance. It is trained on 187 novel and existing pre-miRNA features, with a positive data 

set of 2540 pre-miRNAs and a negative data set of 15688 pre-miRNAs.  Not only is it much 

faster than most other methods, it achieves a good balance between sensitivity (88%) and 

specificity (91%) (Tran et al., 2015) in classifying pre-miRNAs. 

In practice, machine learning based methods to identify de novo miRNAs face 

challenges that affect both their sensitivity and specificity. First, they require an adequate 

number of annotated miRNAs as training examples. However, the number of characterized 

and validated miRNAs is still relatively small, thus negatively affecting the true positive 

rate (sensitivity) of these methods. Second, these methods rely on genome annotations to 

reduce the number of falsely predicted putative miRNAs and thus increase the true 

negative rate (specificity). However, most sequenced genomes have not been well 

annotated, and many of them have few experimentally characterized miRNAs. Third, 

negative examples are crucial to train machine learning based tools since they affect both 

the specificity and sensitivity of the results.  The challenge lies in selecting negative 

examples, which can effectively describe the complete negative space and define suitable 

features to distinguish non-miRNAs from miRNAs. A common method for selecting 

negative examples is randomly generating genome sequences, however this may not 

guarantee proper feature representation of real miRNAs.  

Sequencing Technologies 
 

As sequencing technologies have improved, methods based on high throughput 

experimental evidence have achieved great success in discovering novel miRNA genes. 
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Next Generation Sequencing (NGS) is based on massively parallel sequencing of millions of 

DNA or RNA molecule fragments, by fragmenting the genome into small pieces, randomly 

sampling for a fragment, and sequencing it using one of the NGS technologies, such as 

Illumina/Solexa, ABI/SOLiD, 454/Roche. For example, the Illumina/Solexa technology uses 

reversible fluorescent dye terminators as adapters that ligate to fragmented pieces of 

DNA/RNA to generate base calls as illustrated in Figure 1.4.  
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Figure 1.4. The Illumina sequencing workflow (Illumina Inc, 2008). 

 

Figure 1.4. 

The Illumina/Solexa sequencing method is based on reversible dye-terminators technology 

and engineered polymerases. First, the adapters are ligated to fragmented pieces of DNA. 

Then after the DNA is attached to flow cells and amplified, clusters are generated and 

sequencing primer is annealed. Finally, the process of extending the first base, reading and 

deblocking is repeated to extend the strand and generate base calls.  
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Further, these technologies have been adapted to sequence miRNAs and other small 

RNAs. The short length of these RNAs however, give the researchers fewer options for 

designing complementary sequences and the sequences often vary by as little as a single 

nucleotide, thus miRNAs are hard to distinguish from other small RNAs or degradation 

byproducts. To overcome this challenge, adapters are designed to capture small RNAs with 

a 5’ phosphate group, for miRNA recognition. Computational tools are then used to analyze 

and understand biological implications of the sequence reads. The general steps to 

sequence data analysis involve read processing, annotating, and characterizing new 

features. In the read processing stage, the adaptor sequences are identified and removed. 

Then, the small RNA sequences are mapped back to reference genome sequences, and 

known miRNAs can be characterized by comparing them with known annotated miRNAs. 

In addition to measuring miRNA abundance levels from sequence reads, most computation 

tools have the ability to discover novel miRNAs, determine differentially expressed miRNAs 

and their associated mRNA gene targets.  

miRDeep (Friedlander et al., 2008) and its variants miRDeep2 (Friedlander et al., 

2012), miRDeep-P (Yang et al., 2011), miRDeep* (An et al., 2013), was one of the first to 

apply machine learning to NGS data for miRNA prediction. The core algorithm leverages 

Bayesian statistics to score the fit of sequenced RNAs to the biological model of miRNA 

biogenesis. The online pipeline tool predicts miRNAs from small RNA-seq data, provides a 

target prediction for both known and novel miRNA expression profiles and has a graphical 

interface to display RNA-seq reads and its predictions. miRDeep2 was tested on seven 

animal species and reported a high specificity of about 99% across all species, and varying 

sensitivity, from 71% on sea squirt data to 90% on anemone data (Friedlander et al., 2012). 

Further, the tool predicted numerous novel miRNAs,  many of which are high-confidence 

candidates where the sequences were detected in at least two independent samples 

(Friedlander et al., 2012). Since, many tools have been developed and compiled online 

(Lukasik et al., 2016), including sRNAbench (Barturen et al., 2014) and deepSOM 

(Stegmayer et al., 2017). Chen et al., (2018) provide a comprehensive review of these tools. 

20 
 



MiRNA Databases 

As identifying and characterizing de novo miRNA efforts mature, there is an inherent 

need to annotate and systemize these miRNAs. MiRBase (Kozomara et al., 2010) is a 

database with an online interface for access to miRNA sequence data, annotation and 

predicted gene targets. This registry provides a centralized system for assigning names for 

new miRNAs, thus providing a consistent naming system for miRNAs. Each entry in the 

database represents a predicted hairpin portion of a miRNA transcript, with information on 

the location and sequence of the mature miRNA sequence. In addition, it provides 

experimental evidence for each miRNA, and links the miRNAs to its target genes predicted 

by other tools. The latest miRBase release of 2018 has a total of 38,589 entries, 

representing 48,860 mature miRNA products in 271 species, 2654 of which are from the 

human genome (Kozomara et al., 2019). 

Challenges persist with discovering and annotating de novo miRNAs. It is often 

difficult to distinguish between functional small RNAs and non- functional ‘noise’, and is 

reflected in the miRBase database. Even in commonly studied animal organisms, such as 

human and mouse, there’s not enough information to support or refute the validity of 30% 

to 70% miRNA annotations (Kozomara et al., 2019). Evolutionary conservation confers 

compelling evidence for the functionality of predicted miRNAs, but these miRNAs will 

eventually need to be experimentally validated to prove their functionality.  

The MiRNA Target Model Hypothesis 

The biology of miRNAs and their functionality is a fairly young field, and thus few 

conclusions on how a miRNA targets a gene have been agreed upon. It has been 

documented that miRNAs mainly recognize complementary sequences in the 

3’-untranslated regions (UTRs) of their target mRNAs (Bartel, 2004). However, later 

experiments have reported that they can also bind to their 5’UTR or the Open Reading 

Frame (ORF) (Lytle et al., 2007; Moretti et al., 2010). Typically, this binding down-regulates 

the expression of the gene by either blocking translation or attracting factors that degrade 
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the mRNA (Huntzinger et al., 2011). Thus, the miRNA-target model related to predicting an 

increase or decrease in expression has not been clearly defined. Most miRNA target 

gene-prediction methods follow the original model that miRNAs bind to the 3’UTR and 

down-regulate the target miRNA, although some methods attempt to incorporate more 

complexity such as allowing for multiple binding regions per target gene. 

In early miRNA studies, investigators found that although target sites for miRNAs 

could be computationally identified in both 3’UTRs and 5’UTRs, the miRNA-mRNA duplex 

formation was far more pronounced in the 3’UTR region (Lewis et al., 2005). Thus, 

subsequent bioinformatic and experimental analysis has considered the 5’-end of the 

miRNA (the seed site) to be most important for the binding to the mRNA. Further, the 

target sites have been divided into three main classes, according to grade and localization 

of sequence complementarity (Brennecke et al., 2005). The first class is the dominant seed 

site targets, called the “5’ seed-only” site. The second is the 5’ dominant canonical seed site 

targets, called the “5’ dominant” site, and the third is the 3’ complementary seed site targets 

are called the “3’ canonical” site. Considering that there are various rules regulating the 

interaction between a miRNA and its target mRNA, it is not surprising that each miRNA has 

the potential to target a large number of genes (Friedman et al., 2009). 

 

Predicting Target Genes  

Computational approaches play an important role in the identification of miRNA 

targets of specific genes. Several approaches have been used to successfully identify 

potential miRNA targets in mRNA sequences for experimental validation. The majority of 

first-generation methods are based on three major assumptions; 1) miRNAs are perfectly 

or near-perfectly complementary to their targets, 2) when the miRNA is bound to the 

target, the RNA-RNA duplex has a higher negative folding free energy, and 3) mature 

miRNAs are highly conserved from species to species (Yoon et al., 2006).  First-generation 

methods include TargetScan (Lewis et al., 2005; Agarwal et al., 2015), DIANA-microT 
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(Kiriakidou et al., 2004; Paraskevopoulou et al., 2013) and miRanda (Enright et al., 2003, 

John et al., 2004). These are followed by machine learning based methods such as 

miRanda-miRSVR (Betel et al., 2010), PicTar (Krek et al., 2005) and HomoTarget (Ahmadi 

et al., 2013); and experimentally-driven tools such as PITA (Kertesz et al., 2007) and 

miRWIP (Hammell et al., 2008). Further methodologies, such as BCmicrO (Yue et al., 2012) 

and ComiR (Coronnello et al., 2012) combine existing algorithms. 

TargetScan 
 

TargetScan (Lewis et al., 2005) was the first method to explicitly use the concept of 

seed matches in predicting miRNA targets in vertebrates. The algorithm combines 

thermodynamics modeling of RNA-RNA duplex interactions with comparative sequence 

analysis to predict miRNA targets conserved across more than one genome. To accomplish 

this, the following algorithm is iterated, with inputs A) a miRNA conserved across multiple 

organisms and B) a set of orthologous 3'UTR sequences from these organisms : 

For each 3'UTR region of each of the organisms whose comparative genomes are being 

used in the study:  

1) Search the UTRs in the organism for segments of perfect Watson-Crick 

complementarity to bases 2-8 of the miRNA (the "miRNA seed"),  the perfect 

complementarity to the seed is called a "seed match". 

2) Extend each seed match with additional bases to the miRNA, allowing G:U pairs. 

The extension is in both the 3' and the 5' directions and stops when mismatches are 

found.  

3) Optimize base pairing of the remaining 3' portion of the miRNA to the 35 bases of 

the UTR immediately 5' of each seed match using RNAfold, a secondary RNA 

structure prediction program (Hofacker et al., 1994). 

4) Assign a folding free energy G to each miRNA-target site interaction using 

RNAeval, a free energy evaluator of RNA molecules with a fixed secondary structure 

(Hofacker et al., 1994). 

5) Assign a Z score to each UTR, with the following equation: 

23 
 



 

where, 

n is the number of seed matches in the 5'UTR region 

Gk is the calculated free energy (kcal/mol) of the interaction between the miRNA 

and its target for the kth target evaluated in the previous step 

T is a parameter that influences the relative weighting of UTRs as a function of the 

affinity and abundance of their target sites; T values are assigned by a 

trial-and-error method involving training and test sets of miRNAs. 

 

6) Sort the UTRs in this organism by Z score, and assign a rank R to each, get the 

highest Z score 

Until the Z score reaches a value higher than a predefined cut-off.  

Following the publication of the TargetScan method, several improvements have 

been made (Agarwal et al., 2015). First, new organisms are constantly added to the 

working set, which improved the signal-to-noise ratios. Second, less conservative binding 

interactions with less than perfect pairings and bulges (insertion or deletion of a 

nucleotide), especially within a 5’ region of the miRNA, are also predicted in the newest 

version of TargetScan. The conservation of seed regions among orthologous 3’UTRs within 

miRNA binding regions is important for the outcome score. The conservation level of the 

targets can be defined by the user as broadly conserved (across vertebrates) or highly 

conserved (across most mammals). The TargetScan research group (Friedman et al., 2009) 

have found a pattern of consecutive GC-rich base pairs in a set of known miRNA binding 

sites in C. elegans, and this pattern has been included in the scoring scheme of the 

algorithm. TargetScan ranks the prediction by two parameters: Context score and 

Probability of conserved targeting (Pct) (Lewis et al., 2005; Agarwal et al., 2015). 
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DIANA-microT 

The DIANA-microT miRNA-target predicting algorithm (Kiriakidou et al., 2004) uses 

a 38 nucleotide-long frame that is moved along the 3’UTR and measures the minimum 

energy of potential miRNA binding sites (allowing for mismatches) after every shift. It 

compares this energy with the energy of a perfect complementary sequence bound to the 

3’UTR region. The algorithm searches for sites with a canonical central bulge and it 

requires 7, 8, or 9 nucleotide-long complementarity within the 5’ region of the miRNA. Both 

conserved and nonconserved sites are considered. Finally, a signal-to-noise ratio is 

computed for each miRNA; where the signal is the number of predicted targets of a single 

miRNA and the number of predicted targets of an artificial miRNA with randomized 

sequence in searched 3’UTR estimates the noise (Kiriakidou et al., 2004). The algorithm has 

been since published on a web server incorporating the latest miRBase version 

(Paraskevopoulou et al., 2013). 

miRanda-miRSVR 

The miRanda miRNA-target prediction algorithm was first developed using all 

known miRNAs of D. melanogaster (Enright et al., 2003), and then the three-step algorithm 

was extended to humans and other vertebrates (John et al., 2004). In the first step, the 

miRNAs are matched against the 3’-UTR regions of all possible targets allowing for 

wobbling (non-Watson-Crick base pairing), G:U  base pairs and indels (insertions or 

deletions). The second step computes the thermodynamic stability of the miRNA:target 

duplex. The final step is a valuation of the evolutionary conservation of the miRNA:target 

duplex across two additional species. In miRanda, miRNAs with multiple binding sites 

within the 3’UTR region are promoted, which contributes to the increase in specificity, but 

it underestimates miRNAs with a single but perfect base pairing with their targets (John et 

al., 2004). Further, the method was expanded to include a Support Vector Regression (SVR) 

model, a variant of the SVM algorithm, to train on sequence and contextual features 

extracted from miRanda predicted target sites (Betel et al., 2010). These features include 

secondary structure accessibility of the site and conservation, without the need to define 

seed subclasses. It was trained on mRNA expression fold changes following miRNA 
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transfections. The miRNA target sites are ranked by the downregulation score, named 

mirSVR. This score is calibrated to correlate linearly with the extent of down regulation, 

and can be interpreted as an empirical probability of down regulation. This algorithm has 

identified a number of experimentally determined non-canonical and non-conservative 

sites (Betel et al., 2010). Unless otherwise specified, this algorithm will be referred to as 

miRanda for short. 

PicTar 

PicTar (Krek et al., 2005) is a machine learning algorithm that scans the alignments 

of 3’ UTRs for near-perfect miRNA seed matches and filters the alignments according to 

their thermodynamic stability. Each predicted target is scored using a Hidden Markov 

Model (HMM – a simple example of a dynamic Bayesian network) maximum-likelihood fit 

approach. Thus, synergistic effects of multiple binding sites of several miRNAs acting 

together are accounted for in this model. PicTar utilizes miRNA sequence alignment to 

mRNAs of eight vertebrate species and it scores the candidate genes of each species 

separately to create a combined score for a gene (Krek et al., 2005). 

HomoTarget 

HomoTarget combines a Pattern Recognition Neural Network (PRNN) and Principal 

Component Analysis (PCA) in an architecture to model the relationship between miRNAs 

and their target mRNAs in humans (Ahmadi et al., 2013). This method incorporates twelve 

structural, thermodynamic and positional features of miRNA-mRNA binding sites to select 

target candidates. 

PITA 

Experimental studies suggest that target site accessibility is a critical factor for 

effective target gene repression (Long et al., 2007), where a strong secondary structure is 

formed by the 3’UTR of the target itself that prevents the binding of the miRNA. Kertesz et 

al. (2007) systematically examined and confirmed the site accessibility effect in an in-vivo 
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luciferase system and incorporated this effect into a thermodynamic model. They designed 

the genome-wide target prediction algorithm called Probability of Interaction by Target 

Accessibility (PITA), by combining this thermodynamic model with traditional seed-finding 

procedures with Drosophila datasets (Kertesz et al., 2007). 

MirWIP 

Experimental evidence of co-precipitation has also been included in predicting 

miRNA targets. For example, in a study with C. elegans, 3404 mRNA transcripts were 

recovered that specifically co-precipitated with miRNA-RISC complex proteins (Zhang L et 

al., 2007). Following, Hammell et al. (2008) developed a method based on this large data 

set of high-confidence miRNA-target interactions. This target prediction algorithm, MirWIP, 

scored miRNA-target sites by weighting site characteristics in proportion to their 

enrichment in the experimental data set. These important characteristics included 

structural accessibility of target sequences, total free energy of miRNA-target 

hybridization, and topology of base pairing to the 5’ seed region of the miRNA (Hammell et 

al., 2008).  

BCmicrO 

BCmicrO (Yue et al., 2012) combines the prediction of six algorithms (TargetScan, 

miRanda, PicTar, mirTarget (Wang and Naga, 2008), PITA, and DIANA-microT) with a 

Bayesian Network. It is trained on positive and negative miRNA-target pairs of all 

algorithms and gives the probability of an mRNA being a target. BCmicrO was evaluated 

using mammalian miRNA-target pairs and protein expression data, showing higher 

sensitivity given the same specificity of each individual algorithm (Yue et al., 2012).  

ComiR  

ComiR (Coronnello et al., 2012) predicts whether a given mRNA is targeted by a set 

of miRNA. It applies miRNA expression to four targeting models (miRanda, PITA, 

TargetScan and mirSVR (Betel et al., 2010)) by identifying all binding sites of each miRNA 
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in a given mRNA 3’UTR. Then, it additively combines the individual target scores using a 

Support Vector Machine (SVM) trained on Drosophila Ago1 data. It gives a single 

probabilistic score, higher scores correspond to higher probability of an mRNA being a 

functional target of a particular set of miRNAs (Coronnello et al., 2012). 

The seed hypothesis is an almost universally adopted early feature in miRNA-target 

prediction methods and is widely used to control for false positives. It was experimentally 

reinforced by a study that obtained the structure of an important component of the 

silencing complex bound to a RNA guide-strand, and lays down the biochemical basis for 

the role of seed sites (Wang et al., 2008). However, there have been certain experimentally 

confirmed targets that violate the seed rule by including mismatches or wobble G:U pairs 

(Lewis et al., 2005). Thus, the lack of consistent portrayal of miRNA targets is one of the 

greatest obstacles not only to the development of better prediction methods, but also to 

comparing and selecting a prediction tool.  

It is clear that the growth of the quantity and quality of experimentally determined 

miRNA genes and their targets will be the driving force for the next generation of 

computational miRNA tools. New biological insights into the recognition between miRNA 

and its targets will inspire computational biologists to create new algorithms based on 

mechanistic understanding. Large-scale experiments will provide valuable data sets for 

both initial training and follow-up evaluation of computational methods.  

Introduction to Breast Cancer and Potential Implications 

MiRNAs play a critical role in multiple biological processes, including cell cycle 

control, cell growth, cell differentiation, apoptosis, and embryo development (Jiang et al., 

2009). Just as miRNAs are involved in regulating the normal functioning of eukaryotic cells, 

deregulation of miRNA has also been associated with growth abnormality and disease. The 

basic components of the miRNA-complex have been implicated in human disease, such as 

Drosha enzyme, an essential miRNA biogenesis co-factor. This cofactor is encoded by the 

human gene DGCR8, which maps to chromosomal region 22q11.2 and is commonly deleted 
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in DiGeorge syndrome. This disorder affects one in 3,000 live births, and results in defects 

including heart defects, immunodeficiency, schizophrenia, and others (Landthaler et al., 

2004).  

The initial studies (Lee et al., 1993 ; Reinhart et al., 2000) showing evidence of 

miRNAs involved in regulating cellular differentiation and proliferation encouraged 

interest in studying miRNAs in cancers. The first study that associated miRNAs with cancer 

investigated blood samples from chronic lymphocytic leukemia (CLL) patients (Calin et al., 

2002). CLL is a type of cancer in which the bone marrow makes too many lymphocytes. The 

authors investigated whether a tumour suppressor genes could be found in the region of 

chromosome 13q14, a genomic location that is lost in more than half of CLL patients. 

Instead, two miRNAs genes, miR-15a and miR-16-1 were found to be absent or down 

regulated in the majority (approximately 69%) of CLL patients when compared to normal 

tissue counterparts. 

Furthermore, to question the extent of miRNA effects on the cancer genome, Calin et 

al. (2004) mapped all known miRNA genes on the human genome. They discovered that 

many of them are located in chromosomal loci prone to deletions or amplifications, as was 

found in many different human cancer types. In fact, further studies confirmed that 

chromosomal regions encompassing miRNAs involved in the negative regulation of a 

transcript encoding a known tumour suppressor gene are amplified in cancer development 

(Sevignani et al., 2007). This amplification results in the increased expression of miRNAs 

and consequently silences the tumour suppressor gene. Equally, miRNAs repressing 

oncogenes are often located in fragile loci, where deletions or mutations can occur and 

result in reduced miRNA levels and overexpression of the target oncogene. Consequently, 

alterations of miRNA expression are not rare occurrences, but rather very common in 

human cancers. Since these initial findings, many studies have provided evidence of 

miRNAs in various cancers, such as breast cancer (Iorio et al., 2005 ; Zhang et al., 2011 ; 

Kedmi et al., 2015 ; Yan et al., 2016 ; Thakur et al., 2016), ovarian cancer (Taylor et al., 2008 

; Hausler et al., 2010 ; Jeong et al., 2017), pancreatic cancer (Duell et al., 2017 ; Ho et al., 

2010 ; Zhang J et al., 2014), and bone cancer (Huang et al., 2018). 
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Breast cancer biology 

Breast cancer is the most common cancer for women across the world with an 

estimated 2,100,000 new cancer cases and 533,600 deaths each year (GBD, 2015) . In 

Canada, one in eight women are expected to be diagnosed with breast cancer in her 

lifetime. In 2017, about 26,000 Canadian women were diagnosed with breast cancer, with a 

mortality rate of about 5,000 the same year (Canadian Cancer Society, 2017). Like many 

cancers, breast cancer is graded with the TNM system (Hortobagyi et al., 2017), where 

stage 0 is the pre-cancerous or marker condition, and stage 4 is the metastatic cancer, with 

varying degrees in between. Identifying cancers at stage 0 allows more time for treatment 

and prevention of growth of the cancer, and thus may reduce the overall cancer mortality 

rate.  

There are several ways to classify breast cancers, some of which indicate high risk of 

prognosis and treatment response. Breast cancer is usually classified by its histological 

appearance. The most common type of BC in women originates from the epithelium lining 

the ducts, and is known as ductal carcinoma (Eheman et al. 2009). There are two types of 

ductal carcinoma: ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). 

DCIS is growth of pre-cancerous cells confined to the mammary ducts of the breast, and is 

considered stage 0 cancer. Whereas IDC is abnormal proliferation of cancerous cells 

invading the surrounding tissues, and is thus malignant.  

At the cellular level, breast cancers are divided into three major categories, based on 

their expression of specific receptors as assessed by immunohistochemistry (IHC).  

(i) ER-positive tumours display elevated expression of the estrogen receptor (ER) in 

approximately 80% of breast carcinomas, often in combination with overexpression of the 

progesterone receptor (PR) in 70-80% of cases (Lakhani et al., 2012); 

(ii) HER2-positive tumours are characterized by amplification of the human 

epidermal growth factor receptor (HER2) in about 15-20% of breast carcinomas  

(Lakhani et al., 2012); 

(iii) triple-negative tumours do not display increased expression of any of these 

three markers, and is the most heterogeneous group histologically, and genetically. 
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Furthermore, molecular classification of breast tumours have become possible 

based on analysis of gene expression profiles of breast cancer sample cohorts. Two luminal 

subtypes (A and B) exhibit ER positivity and have better survival than other subtypes. 

Luminal B tumors are characterized by increased expression of proliferation-associated 

genes and have a worse prognosis than luminal A tumors (Sorlie et al., 2003). The 

molecular HER2+ subtype highly overlaps with the analogous classical subtype and is 

characterized by proliferation genes. Finally, the basal-like subtypes is enriched for genes 

expressed in basal epithelial cells (Sorlie et al., 2001), and there is approximately 60% 

overlap between triple-negative and molecular basal and normal-like subtypes (Vuong et 

al., 2014). Meta-analysis of gene expression studies suggest that the prognostic impact of 

different signatures is related to the proliferation-associated genes (Wirapati et al., 2008). 

Further studies have yielded other molecular subgroups, including a molecular 

classification based on integrated genomic and transcriptomic profiling of 2,000 breast 

tumors yielding 10 novel subtypes of breast cancer with distinct clinical outcomes (Curtis 

et al., 2012; Ali et al., 2014). 

Breast cancer detection 

Currently, mammography is the standardized breast cancer screening technology 

used in clinical settings, with the aim to identify and treat breast tumours before they 

become symptomatic using low-energy X-ray imaging.  Mammographic screening has been 

relatively successful, as it has increased early detection of breast cancer, and is believed to 

have contributed to an increased survival rate of 15% in Denmark (Jorgensen et al., 2010), 

20% in the UK (Marmot et al., 2013), and more recently 9% in Ireland (Hanley et al., 2017). 

Unfortunately, systematic screening will result in some women receiving a cancer 

diagnosis (false positives), even if their cancer would not have metastasized leading to a 

poor prognosis. In Canada, a 25-year follow up study reported that up to 50% of 

mammographically-detected invasive breast cancers represent examples of overdiagnosis 

in women aged 40 to 59 (Miller et al., 2014). A review of seven trials that involved 600,000 

women aged 39 to 74 reported biases in the studies and questioned the long-term effects of 

overdiagnosis and overtreatment due to systematic mammographic screening (Gøtzsche et 
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al., 2013). The sensitivity of mammography to detect BC is inversely correlated with the 

density of a woman’s breasts, since the opacity of dense breast tissue is difficult for X-rays 

to traverse (Couzin, 2005). For this reason, mammography often fails to detect BC in young 

women and older women using menopausal hormone therapy, which affects the density of 

breast tissue. In some cases, mammography reports breast abnormalities that simply do 

not exist upon further investigation using follow-up mammographic tests, MRI, ultrasound, 

PET/CT scans, or needle/surgical biopsies (Orel et al., 1999). In addition, the risks 

associated with some of these scans outweigh the possible benefits as these procedures 

expose the patient to harmful radiation (Choosing Wisely, 2012), (Carlson et al., 2009), for 

example, Jacobsen et al. (2015) showed cumulative risks ranging between 9% to 45% after 

8 screens in different populations. Finally, the emotional and psychological stress caused 

by such false positives is well-documented (Brodersen et al., 2013; Solbjør et al., 2018). 

Thus, despite the relative success of mammographic screening in reducing breast 

cancer mortality, its limitations illustrate the need for more accurate detection tools to 

identify a potential cancer early, such as biomarkers.  

MiRNAs as potential biomarkers of breast cancer 

When searching for biomarkers as an early detection tool, there are many things to 

consider. First, the obvious being the accuracy (high specificity and sensitivity) and 

robustness of the test. Then, there’s the practicalities of clinical and laboratory procedures, 

such as availability of samples, types of samples (frozen samples vs formalin-fixed 

paraffin-embedded (FFPE) tissues), and its clinical validity and utility (Harris et al., 2016). 

Finally, the ideal biomarker should be detectable by minimally invasive sampling 

procedures.  

MiRNAs possess several features supporting their possible use as novel and robust 

diagnostic biomarkers. Due to their small size, miRNA levels are remarkably stable in tissue 

samples, serum and plasma.  For example, Turchinovich et al. (2011) showed that 

extracellular miRNA remains stable in blood plasma for at least one month. These miRNAs 

are protected from RNase-dependent degradation by several mechanisms, including their 

inclusion in microvesicles, exosomes, and apoptotic bodies, as well as through the 
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formation of protein-miRNA complexes resistant to degradation (Chen et al., 2008). It has 

been demonstrated that miRNAs can be efficiently extracted and evaluated from 

formalin-fixed paraffin-embedded (FFPE) tissues. MiRNAs from FFPE showed improved 

stability and maintained the same expression profiles when compared with those from 

frozen samples (Xi et al., 2007).  

In tumor tissue. Expressions of certain miRNAs are found to negatively correlate 

with breast cancer tumor development: miR-335 affects the upstream BRCA1-regulatory 

cascade (Heyn et al., 2011); miR-27a is associated with a reduced familial breast cancer 

risk (Yang et al., 2010); and miR-98 is decreased in ductal carcinoma breast cancers (Farazi 

et al., 2011). While other miRNAs are found to positively correlate with breast cancer 

tumor development: miR-210 correlates with hypoxic gene expression (a consequence of 

the growth of a malignant tumour) (Camps et al., 2008); miR-125b predicts poor survival 

by depression of its target gene ETS1 (Zhang Y. et al., 2011); miR-146a is linked to earlier 

onset of breast cancer by targeting BRCA1 and BRCA2 (Pastrello et al., 2010); and miR-21 

is associated with advanced tumor stage (Yan et al., 2008). 

In blood.  Circulating miRNAs from blood samples are an especially attractive source 

of biomarkers, because of their non-invasive nature, and early signs of tumor development 

have been identified in blood; whereas tumour tissues require biopsies, and are not always 

available for molecular analysis (Guttery et al., 2013). A note on nomenclature, although 

most studies use circulating and blood-sourced miRNA interchangeably, technically 

circulating miRNAs can be found in other surrogate tissues, such as urine and any other 

body fluids. Blood-sourced miRNAs can also be extracted from whole blood cells, or plasma 

(whole blood medium without the white and red blood cells), or serum (remaining medium 

after clotting factors have been extracted). In one of the first blood-sourced RNA studies, 

Heneghan et al. (2010) surveyed a panel of 7 candidate miRNAs in whole blood RNAs from 

148 IDC breast cancer patients and 44 age-matched and disease free controls. They found 

the expression of miR-195 to be significantly elevated in breast cancer patients, as 

compared to the control samples. In addition, they observed a significant reduction in 
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miR-195 in post-operative whole blood samples, compared to the pre-operative samples of 

the same patients. Schrauder at al. (2012) found miR-335, among other miRNAs, to be 

overexpressed in whole blood of early stage breast cancer patients compared to healthy 

controls, and to be involved in regulating target genes in several oncogenic 

signal-pathways, such as p53. Cuk et al. (2013) have found a panel of plasma microRNAs 

(miR-127-3p, miR-148b, miR-409-3p, miR-652 and miR-801) that can detect early stage 

BC. These studies suggest further inquiry into developing blood-sourced miRNA 

biomarkers for early breast cancer detection is required.  

There are limitations to using blood-based miRNA-profiling of BC. The 

measurement of a miRNA profile represents a secondary response of blood cells during 

tumorigenesis, thus the main concern is the reduction of the testing accuracy compared to 

biopsy of breast tissue (Heneghan et al., 2010). However, Hausler et al. (2010) did indicate 

that the changes in the miRNA profile of blood cells from BC patients did reflect 

tumor-specific host-reactions, thus showing that tumor signals can be found and 

measurable in whole blood. In running these experiments, the high protein content of 

whole blood could be a problem for miRNA-extraction, thus many studies separate the sera 

and plasma. There are also discrepancies in previous studies, with miRNAs showing 

different expression directions and many associations are one-time studies without a 

thorough follow-up. As an example, Heneghan et al. (2010) showed a significantly higher 

expression of let-7a and miR-195 in whole blood cells of BC cases compared to controls, 

whereas Schrauder et al. (2012) could not reproduce the results. Possible reasons for the 

discrepancy are differences in sample handling, detection methods, and patient selection.  

The need for an early detection biomarker is clear, but the limitations of 

blood-sourced miRNA profiling lead us to search for a more comprehensive technique in 

identifying early detection biomarkers for breast cancer. Thus, investigating biomarkers in 

both tumor tissue and blood is the next natural approach.  

Previously, a comparison of blood mRNA profiles of BC patients vs. their controls 

across four NOWAC independent datasets identified a gene signature that reports the 
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presence of breast cancer (Dumeaux et al., 2015). The signature was specific to BC, 

classifying women with other non-breast carcinoma as negative. Pathway and gene set 

analysis revealed genes involved in immune processes, cell growth/proliferation, APP 

pathway, and MYC target genes - all important in cancer development and growth. This 

study shows that processes found deregulated in blood cells reflect a deficit in immune 

functions of BC patients. Thus, peripheral blood cell gene expression can be used to detect 

the presence of breast cancer. 
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Chapter 2: Methods 

Microarray Technologies 

Microarrays are a high-throughput technology that can measure the expression 

levels of large amount of DNA/RNA in parallel in a single experiment. The principle behind 

this technology is based on nucleic acid hybridization between target molecules and their 

corresponding complementary probes. Figure 2.1 illustrates a microarray experiment 

quantifying miRNA expression, based on relative dye intensities corresponding to miRNAs 

hybridized to the probes (Wei and Kangcheng, 2009). As fluorescently labeled miRNA 

strands are hybridized with stationary probes on the array, only strongly paired strands 

will remain after washing. Total strength of the fluorescent signal will depend on the 

amount of target sample binding to the probes present. Microarrays use relative 

quantization, in which the intensity of a feature is compared to the intensity of the same 

feature under a different condition and the miRNA target of the feature is known by its 

position.  
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Figure 2.1. A miRNA microarray experiment (Wei and Kangcheng, 2009). 

 

 

 

Figure 2.1. A miRNA microarray experiment starts with attaching miRNA probes of a 

linker and capture sequence to a glass plate. Then, the fluorescently labeled miRNA strands 

are hybridized with the stationary probes.  Finally, fluorescent labels can be detected using 

the binding signals.  

 

Experimental Data and Analysis 

In this study, we analyze miRNA differential expression profiles from the NOWAC 

population study, and assess their predicted target genes in mRNA expression profiles from 

the same population. The Norwegian Women and Cancer (NOWAC) study is a national, 

population-based cohort study among about 170,000 women 30-70 years old, with 

questionnaire data on lifestyle and health collected at 4-6 year intervals (Dumeaux et al., 

2008). At the time of the study, it was a unique combination of a biobank, a description of 

clinicopathological attributes, and outcomes for a large cohort of breast cancer patients and 

age-matched controls in a homogeneous population. The biobank comprises blood samples 
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collected both prior to, and at time of breast cancer diagnosis, with matched breast tissue 

samples. RNA expression profiles derived from these tissue samples using Illumina 

beadarray microarrays, were used in this study. We include data from an mRNA expression 

profile in our analysis described by Dumeaux et al. (2015). 

MiRNA profiles from blood samples of breast cancer patients (n=95) were 

compared to profiles from healthy control samples (n=94). The Illumina humanRef-8 

beadchip hybridized 12 samples per chip with probes targeting 1,145 human miRNAs 

(>97% coverage of the miRNA database at the time). Standard processing and analysis of 

miRNA expression profile was performed in R (v.2.12), an open-source programming 

language and software environment, and its associated Bioconductor packages (v.2.09) 

(Huber et al., 2015). For further information about the data processing, please refer to the 

Technical Supplements section. Further, we investigated if the miRNAs differentially 

expressed between breast cancer samples and normal samples. Class distinction was done 

using Linear Models for Microarray Analysis (Ritchie et al., 2015) package from 

BioConductor, following standard error adjusting methods (see Technical Supplements). 

For our final list of differentially expressed miRNAs, see Table 1. 

Further, we included data from an mRNA expression profile in our analysis 

described by Dumeaux et al. (2015). In this study, we had both miRNA and mRNA 

expression profiles arrayed from matching tissues, allowing us to evaluate target mRNA 

expression levels. For each miRNA , we identified target genes in the predicted overlapping 

set of genes (N=612) on the mRNA microarray. Then, a class discovery approach 

(hierarchical clustering) was applied to these target genes to test if the genes group 

according to tissue type – cancer and healthy. In combining miRNA and mRNA expression 

profiles, we are assessing if the target mRNA expression follows the miRNA-target gene 

model. As previously discussed, the recognized model is that the complementary pairing of 

miRNAs to the mRNAs of protein-coding genes directs their post-transcriptional 

repression. Array data suggests that cells with higher miRNA expression should have lower 

target mRNA expression (Farh et al., 2005; Sood et al., 2006). Although discrepancies have 
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been reported in the literature, we will be using this simple and most robust model in the 

following analysis. 

The miRNA-target model states that if a miRNA is highly expressed, then the 

expression of its target gene is expected to be low. This hypothesis describes a negative 

expression correlation relationship between a miRNA and its biological target gene. Using 

this hypothesis, we explore the expression correlation relationship between our miRNAs 

and their predicted targets. For each miRNA-predicted target pair, the correlation of their 

expression intensity across all samples is calculated using Pearson correlation. Pearson 

correlation is defined as the covariance of two variables divided by the product of their 

standard deviations. The result is a correlation coefficient for each miRNA-predicted target 

pair.  

 

Measuring MiRNA Target Prediction Performance 

There are studies that have compared the performance of a few methods with 

experimental validation, a summary of which is found in Table 3 (Witkos et al., 2011). 

Based on experimentally supported data sets, Sethupathy et al. (2006a) reported the 

performance of five individual programs, TargetScan, DIANA-microT, miRanda, and PicTar, 

and of various combinations of these programs. The specificity and sensitivity were 

calculated based on a set of experimentally validated mammalian targets from TarBase, a 

database of experimentally validated miRNA targets (Sethupathy et al., 2006b). They found 

that miRanda, TargetScan and PicTar have the highest sensitivity, and the intersection of all 

programs achieved the highest specificity but the lowest sensitivity. On the other hand, the 

union of all programs achieved the highest sensitivity but the lowest specificity. Thus, none 

of these three tools individually, nor a combination of, achieved a balance of high sensitivity 

and specificity. This study (Sethupathy et al., 2006a) shows that there is still much 

discrepancy between the different target prediction tools. Another comparative study by 

Baek et al. (2008) applied a quantitative-mass-spectrometry-based approach. They studied 

the average protein down-regulation of genes predicted by the algorithm to be miR-223 

targets. The comparison between in vivo results and predictions in silico revealed that 
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TargetScan context scores correlated with protein down-regulation, thus revealing the 

prediction strength of TargetScan. Combining multiple methods has shown better 

sensitivity given the same specificity of each individual algorithm (Yue et al., 2012), and a 

machine learning method that automatically weights the multiple features has shown high 

specificity and sensitivity (Ahmadi et al., 2013). 

 

Assessment of MiRNA Target Gene Predictions  

Previous evidence has shown that there is no obvious one best choice of target 

prediction tools, and it is not clear if it is more effective to take the union or intersection of 

targets at the cost of not reaching an optimal balance between sensitivity and specificity 

(Sethupathy et al., 2006a). Many tools vary greatly in the selected features applied to 

predict targets, and thus a lack of overlapping predictions is not surprising. Therefore, in 

order to exhaustively cover the potentially significant features of target prediction, a set of 

methods should be selected with complementary features.  For example, TargetScan and 

PicTar have been found to have a larger overlap of predicted targets because they both 

focus on strict seed matching and conservation, and thus may not be the best combination 

of methods. In addition, there are practical aspects of choosing a methodology to predict 

target genes. First, is relevancy judged by modernity and popularity – the search for miRNA 

targets field is young and fast moving, thus tools and methodologies must keep up with the 

sea of recent findings to stay relevant. Some of the earliest tools created in the early 2000s 

have been shortly abandoned, while some of the more recent ones are not yet widely 

accepted by the community. For example, TargetScan was first developed in 2005 and was 

version 7.2 was released in March 2018, in contrast, the last update for PicTar was in 2007. 

The second practical aspect is access to source code. Most target prediction tools have a 

web browser where the user can enter a miRNA and the tool outputs a list of predicted 

target genes. This user-interface is sufficient when studying a specific miRNA, but is not 

practical for high-throughput studies that may involve many miRNAs.  

40 
 



In summary, the following three criteria were applied in choosing miRNA target 

prediction tools for this study: 

1) Complementary features 

2) Up-to-date and maintained  

3) Accessible source code 

From many available target prediction tools described above three have been selected: 

TargetScan, miRanda and PITA. TargetScan emphasizes seed matching and sequence 

context; miRanda emphasizes looser complementarity and free energy binding; and PITA 

emphasizes target site accessibility energy. Cross-species conservation varies across the 

three methods. During the time of this experiment, TargetScan version 6.1 was used, 

released in March 2012, miRanda was last updated in  August 2010, and PITA in August 

2008. Lastly, these tools are easily accessible by downloading executable code – with 

TargetScan and PITA both written in Perl script.  

TargetScan, miRanda, and PITA target prediction tools were applied to our list of 38 

miRNAs differentially expressed between breast cancer and controls (Table 2) without any 

thresholds, cutoffs or any stringent criteria applied. Prediction agreement between tools 

was assessed using a hypergeometric test. The hypergeometric test is a test to see if a 

random variable follows the hypergeometric distribution, which is a discrete probability 

distribution describing the probability of  success in a number of draws from a finite 

population containing the successes without replacement. First, the raw results of 

TargetScan, miRanda, and PITA target prediction tools will be assessed, followed by an 

investigation into tool-specific thresholds with the objective to reduce the number of false 

positives and thus identify viable miRNA target genes.  
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Benchmarking Against Curated Targets 

 There are two collections of experimentally validated miRNA targets. TarBase 

(Papadopoulos et al., 2009) is a database which houses a manually curated collection of 

experimentally supported miRNA targets in several animal species, plants and viruses. At 

the time of this experiment, we used TarBase version 5.0, which included about 1300 

experimentally supported targets. MiRecords (Xiao et al., 2009) is a database of 

experimentally validated miRNA targets resulting from meticulously curated literature. 

MiRecords hosts 2286 records of interactions between 548 miRNAs and 1579 target genes 

in nine animal species. For further analysis, the scores of predicted targets of each tool 

were compared to the scores of curated targets. The two databases were merged, and the 

curated targets of the 38 miRNAs were extracted for comparison.  

The results of each target prediction method are assessed individually to reduce the 

number of false positive target predictions. For each method, we plot the target score 

distributions of all predicted targets. This distribution is then compared to the target score 

distribution of targets from a curated miRNA-target gene database. If a predicted target is a 

true target, it is expected to have a score distribution similar to experimentally validated 

target genes found in curated databases. 

The TargetScan method employs two measures for predicting target site efficacy: 

Context score and Pct. Context score, ranging between -0.6 and 0.2, is the sum of 

contributions of the following four features: site-type, 3’ pairing, local AU and position 

contributions. The developers of TargetScan modeled the context score to be negatively 

correlated with target efficacy (Lewis et al., 2005). Thus, the lower the context score, the 

higher the effectiveness of the targeting. Pct is the probability of conserved targeting 

ranging between 0 and 1. It reflects the Bayesian estimate of the probability that a site is 

conserved due to selective maintenance of miRNA targeting rather than by chance. The 

developers of TargetScan have shown that Pct correlates with the effectiveness of 

targeting, measured by mRNA amount (Lewis et al., 2005).  

The miRanda method incorporates the mirSVR score for predicting target efficacy 

(Betel et al., 2010). MiRanda uses a support vector regression model to train on mRNA 
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expression changes given various features, such as secondary structure accessibility of the 

site. MirSVR score, ranging between -1.5 and 0, measures the likelihood of target mRNA 

down-regulation. The score does not incorporate target conservation, and thus miRanda 

may identify non-conserved target sites. The developers of miRanda have shown that the 

lower the mirSVR score, the higher the effectiveness of the targeting (Betel et al., 2010). 

The PITA method ranks the predicted miRNA targets by their free energy score 

(Kertesz et al., 2007). PITA is based on a thermodynamic model that incorporates measures 

of accessibility of target sites. The free energy score is the measured change of free energy 

between unbound 3’UTR of the mRNA and the hybridized state of the miRNA-mRNA 

duplex. If a given UTR has more than one target sites predicted, then the free energies are 

summed up together. The score ranges between -35 and 0, and since it is a measure of free 

energy, the lower the value, the stronger the binding of the miRNA to the given target site is 

expected to be (Kertesz et al., 2007). 

 

Functional Analysis of Predicted Targets 

Several tools are employed to assess the biological functionality of miRNAs and their 

target genes, such as GSEA and KEGG. Gene Set Expression Analysis (GSEA) is a 

computational method that determines whether an a priori defined set of genes shows 

statistically significant concordant differences between two biological states (Subramanian 

et al., 2005). Gene sets are defined based on prior biological knowledge, e.g. published 

information about biochemical pathways or co-expression in previous experiments. 

Currently, GSEA employs the MSigDB  - a molecular signatures database with 3,272 curated 

gene sets. Gene sets are collected from various sources such as online pathway databases, 

publications in PubMed, and knowledge of domain experts. The objective of GSEA is to 

determine whether members of a gene set tend to occur toward the top (or bottom) of the 

given ranked gene list, in which case the gene set is correlated with the phenotypic class 

distinction. This over-representation at the extremes of the ranked gene list is reflected by 

an enrichment score, which corresponds to a weighted Kolmogorov-Smirnov-like statistic 

43 
 



(Hollander and Wolfe, 1999). GSEA has become a standard in the field to evaluate gene lists 

from a systems biology perspective.  

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of online 

databases of genomes, enzymatic pathways, and biological chemicals (Kanehisa et al., 

2006), and is a major resource for pathway analysis. KEGG computerizes data and 

knowledge on protein interaction networks and chemical reactions that are responsible for 

various cellular processes. Then, it reconstructs protein interaction networks for all 

organisms whose genomes are completely sequenced. Lastly, it is utilized as reference 

knowledge for functional genomics and proteomics experiments. Both resources will be 

used to assess the biology of our predicted target gene lists.  

Further, we explore the biological significance of negatively correlated target genes. 

For each miRNA-predicted target pair, the Pearson correlation of their expression intensity 

across all samples is calculated. Then, the targets are ranked according to their correlation 

coefficient, with the most negative target on the top of the list. This list is assessed by KEGG 

and GSEA to test for over-representation of gene sets.  
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Chapter 3: Results 

MiRNA Expression Profiles 

In our study, we have identified 38 experimentally supported and annotated 

miRNAs that are differentially expressed in blood samples of breast cancer patients 

compared to controls (Table 1). Evidence from other studies (Table 1) show that many of 

these miRNAs are differentially expressed between blood or tumor samples from cancer 

patients and healthy controls. While it's not a complete list, we focus on comparative 

studies (blood or tumor samples vs controls) with high-throughput data. Associations with 

these miRNAs may have been reported in non-cancer contexts, but they are not considered 

here.  

Many of these miRNAs have been found in multiple cancers such as: lung (Chen et 

al., 2008), esophageal (Zhang C. et al., 2010), pancreatic (Duell et al., 2017; Zhang J. et al., 

2014; Ho et al., 2010), osteosarcoma (Huang et al., 2018), ovarian (Jeong et al., 2017; Taylor 

et al., 2008), and prostate (Moltzahn et al., 2011). For example, miR-223 has been identified 

in lung cancer sera (Chen et al., 2008), esophageal sera (Zhang C. et al., 2010) and prostate 

sera (Moltzahn et al., 2011). Some miRNAs seem to be specific to breast cancer only, such 

as miR-145 (Kodahl et al., 2014; Mar-Aguilar et al., 2013; Thakur et al., 2016) and miR-335 

(Schrauder et al., 2012; Heyn et al., 2011). Interestingly, only one miRNA, miR-210 is 

identified in breast cancers (Thakur et al., 2016; Ng et al., 2013) and other cancers, 

specifically pancreatic (Ho et al., 2010) and lymphoma (Lawrie et al., 2008). See Table 1 for 

a complete list. 

Supported by previous BC studies, a total of eight miRNAs identified are 

differentially expressed between BC patients and healthy controls; four of which are 

upregulated in cancer samples (miR-15b, miR-335, miR-503, miR-637), and four are 

downregulated in cancer samples (miR-145, miR-210, miR-302c, miR-510) (Table 1). 

Previous studies support the upregulation of miR-15b in cancer samples, as its upregulated 

in invasive ductal carcinoma breast tissue (Sakurai et al., 2015); and the downregulation of 

miR-145, as its downregulated in primary breast carcinoma (Iorio et al., 2005). Otherwise 
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the results are inconsistent, or no evidence has been identified. Further, three of these 

miRNAs have been confirmed in previous blood-based studies. Of the upregulated miRNAs, 

miR-335 is previously identified in blood (Schrauder et al., 2012) and in serum (Wang et 

al., 2010). Of the downregulated miRNAs, miR-145 is previously identified in serum 

(Kodahl et al., 2014; Thakur et al., 2016), and plasma (Ng et al., 2013); and miR-210 is 

previously identified in serum (Thakur et al., 2016) and plasma (Ng et al., 2013). 

 

Target Prediction Results  

On average, Miranda predicted the most number of targets (an average of 8,140 

targets per miRNA), followed by TargetScan (an average of 4,660), then PITA (an average 

of 1,694). The overlap between TargetScan and PITA is 632, P(632 < overlap) > 0.999. The 

overlap between TargetScan and miRanda is 2,516, P(2,516 < overlap) > 0.999. The overlap 

between miRanda and PITA is 821 P(821 < overlap) = 0.99. The overlap between all three 

methods is similarly not very large at 612 P(612<x) = 99% (Figure 3.1). Thus, we conclude 

that each method produces very different target prediction results for each miRNA. 
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Figure 3.1. Venn diagram of predictions by TargetScan, miRanda and PITA.  

 

 
Figure 3.1. There is an overlap between miRNA target predictions by TargetScan, miRanda 

and PITA. The overlap between all three is 612 compared to each prediction of 4,660 

(TargetScan), 8,140 (miRanda), and 1,694 (PITA).  A hypergeometric test confirms that the 

overlap by the three tools is not significant P (612<x) = 99%. 

 

MiRNA-Target Expression Correlations 

To visualize the miRNA-target gene relationship, a heatmap of target genes is 

generated for each miRNA. We show two examples in Figure 3.2, miRNA-335 (Figure 3.2A) 

and miRNA-210 (Figure 3.2B). Previous studies have shown miR-335 to be over-expressed 

in cancer samples, and under-expressed in healthy samples (Schrauder at al., 2012). Thus, a 

significant proportion of its targets (N=81) are expected to be over-expressed in healthy 

samples and under-expressed in cancer samples. Figure 3.2A however does not illustrate 

this relationship. In contrast, mir-210 has been shown to be over-expressed in healthy 
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samples, and under-expressed in cancer samples (Camps et al., 2008, Thakur et al., 2016). 

Thus, it is expected that a significant proportion of its targets (N=123) to be over-expressed 

in cancer samples, and under-expressed in healthy samples.  Figure 3.2B does not display 

this expression pattern either. Other miRNAs don’t follow the negative association model, 

or any association for that matter as none of the target heatmaps we produced illustrate 

any grouping by disease-control status. Thus, we conclude that in our dataset, the miRNA 

target genes predicted by the three prediction methods are not found in the matching 

mRNA expression profiles.  

 

 

Figure 3.2. Class distinction of target genes of miR-335 (A) and miR-210 (B). 
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Figure 3.2.B. 

 

 

 

Figure 3.2.  The target genes of miR-335 (A) and miR-210 (B) clustered based on the 

sample types: breast cancer and control samples. Heatmap colors represent mean centered 

fold change expression in log-space. Sample characteristics are represented in the boxes 

below each sample. The breast cancer samples are red, and control samples are in green. 

RNA concentration and expression mean is represented by a grey-red scale, where grey is 

low and red is high. All samples were hybridized on the same date and same slide.  

 

Furthermore, we assess the density plots for a score threshold of each prediction 

method, as a quality control measure. If a good threshold is identified, we tested the results 

against the miRNA-target gene model, as previously described. We plotted the context 
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score density of all predicted targets by TargetScan with the context score density of 

curated targets from the databases described above (Figure 3.3). These density plots show 

that on average, curated targets have lower context scores than all predicted targets as 

expected. Figure 3.3 illustrates that no specific miRNA has significantly lower context 

scores than average and no particular miRNA follows the distribution of curated targets. 

Therefore, context score density plots do not illustrate any well-defined context score 

threshold to decrease the false positive target predictions.  
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Figure 3.3. Density graph for context scores of targets predicted by TargetScan.

 

 

Figure 3.3. Density graph of TargetScan context scores, a metric for predicting target site 

efficacy. The context score densities of individual miRNAs are of various colors. The black 

thick line is the context score density of all miRNA-target pairs. The brown thick line is the 

context score density of curated miRNA-target pairs.  
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Further, we plotted the Pct score density of all predicted targets by TargetScan with 

the Pct density of curated targets (Figure 3.4). These density plots show that on average, 

curated targets have higher Pct scores than all targets, as expected. The density of curated 

targets increases significantly at a Pct of more than 0.6 – indicating it to be a candidate Pct 

threshold. Figure 3.4 illustrates a high percentage of targets to have a probability of 

conserved targeting of approximately 0, suggesting that most TargetScan predicted targets 

are not well conserved.  
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Figure 3.4. Density graph for Pct scores of targets predicted by TargetScan. 

 

Figure 3.4. Density graph of TargetScan Pct scores, a metric for predicting target site 

efficacy. The Pct score densities of individual miRNAs are of various colors. The black thick 

line is the Pct score density of all miRNA-target pairs. The brown thick line is the Pct score 

density of curated miRNA-target pairs.  

 

We noticed that the targets of two miRNAs have noticeably higher than average Pct 

scores: miR-30e and miR-208b. However, neither of these miRNAs has been previously 

implicated in cancer studies (Table 1). To further test the proposition that applying a Pct 
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threshold is significant in reducing the number of false positive predicted targets, we 

assess if the target expression profile follows the miRNA–target model described 

previously. Hierarchical clustering is applied to predicted targets with a Pct score of more 

than 0.6 to test if these genes group by tissue type. A negative expression correlation is 

expected as per the model - in samples where a miRNA is over-expressed, its targets should 

be under-expressed and vice-versa. To visualize this relationship, a heatmap of target 

genes is generated for each miRNA. For example, miR-30e is over-expressed in cancer 

samples, and under-expressed in healthy samples (Figure 3.5).  

Thus, it is expected that a significant proportion of its predicted targets with the Pct 

threshold of  >0.6 (N=469) to be over-expressed in healthy samples and under-expressed 

in cancer samples. Figure 3.5 illustrates this not to be the case. In contrast, miR-210 is 

over-expressed in healthy samples, and under-expressed in cancer samples (Figure 3.2). 

Thus, it is expected a significant proportion of its targets with the Pct threshold of >0.6 to 

be over-expressed in cancer samples, and under-expressed in healthy samples. However, 

none of its targets have a Pct threshold of >0.6. The other miRNAs follow this lack of 

agreement with the miRNA-target gene model. 
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Figure 3.5. Class distinction of miR-30e target genes predicted by TargetScan. 

 

 

 

Figure 3.5. The miRNA target genes predicted by TargetScan with Pct cutoff >0.6 clustered 

based on the sample types: breast cancer and control samples. Heatmap colors represent 

mean centered fold change expression in log-space. The breast cancer samples are red, and 

control samples are in green.  

 

We plotted the mirSVR score density of all predicted targets by miRanda with the 

mirSVR density of curated targets (Figure 3.6). These density plots show that the curated 

targets do not have a bias towards a lower or higher score, and are evenly distributed. In 

contrast, the average score hovers around 0, and thus is not significant. The mirSVR density 

plots do not illustrate any well-defined mirSVR score threshold to decrease the false 

positive target predictions. 
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Figure 3.6. Density graph for MirSVR scores of targets predicted by miRanda. 

 

 

Figure 3.6. Density graph for miRanda MirSVR scores, a metric for predicting target site 

efficacy. The MirSVR score densities of individual miRNAs are of various colors. The black 

thick line is the MirSVR score density of all miRNA-target pairs. The brown thick line is the 

MirSVR score density of curated miRNA-target pairs.  
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We plotted the free energy score density of all predicted targets by PITA with the 

free energy score density of curated targets (Figure 3.7). These density plots show bimodal 

distributions, with peaks near the free energy scores of -5 and -10. One interpretation of 

these results is that the first peak represents actual targets, whereas the second peak with 

the higher free energy scores centered at -5 represents a large number of false positives. In 

support of this hypothesis, the developers of PITA suggest applying a threshold of -10 when 

filtering for functional targets. If, this were the case, then we would expect to see a 

significant portion of curated targets with scores of -10 or less. The density plot illustrates 

this to be the case, as the -10 peak is more than twice as high as the -5 peak. Therefore, -10 

may be a viable threshold to reduce the number of predicted false positives. To test if 

applying a PITA score threshold is significant to reduce the number of false positive 

predicted targets, we assess if the target expression profile follows the miRNA–target 

model. Hierarchical clustering is applied to predicted targets with a PITA score of less than 

-10 to test if these genes group by tissue type. A negative correlation is expected as per the 

model; in samples where a miRNA is over-expressed, its targets should be under-expressed 

and vice-versa. To visualize this relationship, a heatmap of target genes is generated for 

each miRNA.  
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Figure 3.7. Density graph for PITA scores of targets predicted by PITA. 

 

 

Figure 3.7. Density graph of PITA scores, a metric for predicting target site efficacy with a 

measure of the free energy. The PITA score densities of individual miRNAs are of various 

colors. The black thick line is the PITA score density of all miRNA-target pairs. The brown 

thick line is the PITA score density of curated miRNA-target pairs. 

 

 

 

58 
 



For example, miR-30e is over-expressed in cancer samples, and under-expressed in 

healthy samples (Figure 32). Thus, it is expected a significant proportion of its predicted 

targets with the PITA score threshold of < -10 (N=243) to be over-expressed in healthy 

samples and under-expressed in cancer samples. Figure 3.8A illustrates this not to be the 

case. In contrast, miR-210 is over-expressed in healthy samples, and under-expressed in 

cancer samples (Figure 3.2). Thus, it is expected a significant proportion of its targets with 

the PITA score threshold of < -10 (N=513) to be over-expressed in cancer samples, and 

under-expressed in healthy samples.  Figure 3.8B does not display an expression pattern 

either. In addition, none of the predicted targets for the rest of the miRNAs within the 

threshold illustrate positive results. 
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Figure 3.8. Class distinction of miR-30e (A) and miR-210 (B) target genes predicted 

by PITA. 
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Figure 3.8.B. 

 

 

 

Figure 3.8. The PITA predicted target genes of miR-30e (A) and miR-210 (B), with a score 

cutoff < -10, clustered based on the sample types: breast cancer and control samples. 

Heatmap colors represent mean centered fold change expression in log-space. The breast 

cancer samples are red, and control samples are in green.  

 

61 
 



In conclusion to an effort to reduce false positives in the large target gene set 

predicted by TargetScan, PITA and miRanda, identifying a target prediction tool score 

cutoff, we have not identified a viable option. TargetScan’s Pct score and PITA’s score plots 

illustrated potential cutoffs, however the genes within those cutoffs did not fit the 

miRNA-target model described. To further explore the relationship between a miRNA and 

its target genes, we decided to employ the predicted targets of TargetScan for further 

analysis. 

The correlation coefficients of 38 miRNAs were plotted against their density (Figure 

3.9).  The resulting correlation distributions fall into two categories: an approximately 

normal distribution centered on a correlation coefficient of 0, and a bi-modal distribution 

centered near -0.5 and 0.5. A normal distribution describes the coefficients being equally 

positive and negative, thus not supporting the correlation hypothesis. A bi-modal 

distribution also describes equal weight on both sides. Finally, none of the miRNAs 

illustrate a strong negative correlation with its predicted targets.  
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Figure 3.9. Density graph for correlation coefficients of the 38 miRNAs.  

 

 

 

Figure 3.9. Density graph for MiRNA-Target expression correlation coefficients. The 

correlation coefficients densities of individual miRNAs are of various colors. The black 

thick line is the correlation coefficients density of all miRNA-target pairs. The brown thick 

line is the correlation coefficients density of curated miRNA-target pairs.  
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To further assess the negative correlation relationship between the miRNA and its 

predicted targets, a selected cutoff of < -0.5 is applied to the correlation coefficient. 

Hierarchical clustering is applied to predicted targets with correlation coefficient < -0.5 to 

test if these genes group by tissue type. To visualize the negative correlation relationship, a 

heatmap of target genes is generated for each miRNA. For example, miR-30e is 

over-expressed in cancer samples, and under-expressed in healthy samples (Figure 3.2). 

Thus, it is expected a significant proportion of its predicted targets with the correlation 

coefficient of < -0.5 (N=213) to be over-expressed in healthy samples and under-expressed 

in cancer samples. Figure 3.10A illustrates this not to be the case. In contrast, miR-210 is 

over-expressed in healthy samples, and under-expressed in cancer samples (Figure 3.2). 

Thus, it is expected a significant proportion of its targets with the correlation coefficient of 

> -0.5 (N=42) to be over-expressed in cancer samples, and under-expressed in healthy 

samples.  Figure 3.10B does not support this hypothesis either. The same method was 

applied to other miRNAs, and the same observations were made. 
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Figure 3.10.  Class distinction of predicted target genes of miR-30e (A) and miR-210 

(B). 
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Figure 3.10.B.  

 

 

 

Figure 3.10. The predicted target genes of miR-30e (A) and miR-210 (B), with a 

correlation cutoff < -0.5, clustered based on the sample types: breast cancer and control 

samples. Heatmap colors represent mean centered fold change expression in log-space. The 

breast cancer samples are red, and control samples are in green. 

 

 

After assessing the expression correlation between a miRNA and its predicted 

targets from a macro perspective, the results do not illustrate a strong interdependent 
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relationship. Considering all miRNAs, there is not a strong negative correlation with their 

predicted targets, and thus this data does not support the miRNA-target model 

hypothesized.  

 

Biological Relevance of Predicted Targets 

Further, we explored the biological relevance of miR-210 and its predicted target 

genes. miR-210 is over-expressed in normal samples, and its targets are expected to be 

under-expressed in normal samples. TargetScan predicted 233 targets for which we have 

gene expression for, and these targets are ranked according to their intensity.  

Table 3 illustrates the KEGG terms over-represented in the negative correlation 

gene list targeted by miR-210 (p-value <0.05). One of the KEGG terms identified is 

important in breast cancer pathways. B cell receptor signaling pathway is a vital 

component of adaptive immunity; it controls the proliferation and differentiation of early B 

cells, which may lead to tumorigenesis (Jumma et al., 2005). Previously, miR-210 has been 

reported to be induced by Oct-2, a key transcriptional mediator of B cell activation, thus it 

has an inhibitory mechanism for the control of B cells and autoantibody production (Mok et 

al., 2013).  

Table 4 illustrates GSEA gene sets over-represented at the top of the negative 

correlation gene list targeted by miR-210 (FDR <0.1). One gene set is identified as 

important in breast cancer pathways: genes constituting the 

PUJANA_BRCA1_PCC_NETWORK of transcripts are positively correlated with the 

expression of BRCA1 across a compendium of normal tissues (Pujana et al., 2007). 

Supporting this association, Volinia et al.(2012) found miR-210 up-regulated in invasive 

ductal carcinoma transition and identified BRCA1 as a protein coding gene inversely 

related to miR-210. This is consistent with our data, as in our study, miR-210 is up 

regulated in normal tissues and is expected to knock down targets in normal tissue.  

Table 5 illustrates GSEA gene sets over-represented at the bottom of the positive 

correlation gene list targeted by miR-210 (FDR<0.1), and so is positively correlated with 

miR-210 expression. Two of the three gene sets identified are important in breast cancer 
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pathways. First, genes in the GOZGIT_ESR1_TARGETS_DN set are down regulated in ER+ 

breast-cancer cells (Gozgit et al., 2007). This gene set is consistent with our results, since 

these genes are expected to be up-regulated in normal cells when comparing to breast 

cancer cells which is what our data shows. Second, the p53 (PEREZ_TP53_TARGETS) 

pathway is commonly found across various cancers. Schrauder at al. (2012) identified 

miRNAs overexpressed in whole blood of breast cancer patients to be involved in 

regulating the p53 oncogenic signal-pathway. Thus, supporting our findings.  

Finally, GSEA leading edge analysis identifies core genes that are over-represented 

between gene sets – genes that are most common within a set of gene sets. Thirty-three 

genes are identified to overlap between 3 or more gene sets. Figure 3.11 illustrates where 

these core genes are ranked among the rest of the miR-210 target genes. The plot is gene 

intensity vs. target gene rank, and a significant number of core genes are at the bottom of 

the gene rank with high-intensity. This result is surprising, because if these genes were true 

targets of miR-210, then their gene intensity is expected to be lower, thus showing 

inconsistencies in findings. 
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Figure 3.11.  Intensity plot of core genes of miR-210 target gene sets.  

 

 

 

Figure 3.11.  Gene intensity plotted against miR-210 target gene rank. The gene intensities 

are of various colors.  
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Chapter 4: Discussion 

In this study, we identified differentially expressed miRNAs in blood samples of 

breast cancer patients compared to controls. There is experimental evidence that some of 

these miRNAs are associated with tumorigenesis in various cancers (Table 1). Although our 

results show that these miRNAs and their predicted target genes may be involved in cancer 

pathways, we conclude that there is not sufficient statistical power in this study to draw 

any conclusions.  

First, we followed standard miRNA expression analysis procedures to identify 38 

miRNAs (Table 1) that were differentially expressed between cancer cases and control 

cases. Then, we reviewed and compared different miRNA target methods in order to select 

the best tools to predict the target genes of our differentially expressed miRNAs. Three 

target prediction methods were selected, TargetScan (Agarwal et al., 2015), miRanda (Betel 

et al., 2010), and PITA (Kertesz et al., 2007). Further, we applied these tools to our list of 

miRNAs to predict a list of target genes. Each tool however, produced different results with 

little overlapping target genes. From a purely statistical perspective we are uncertain about 

the significance of these predictions.  

Second, in comparing the overlapping target gene list with our mRNA dataset, we 

found that the target genes predicted by these methods are not found in the matching 

expression profiles. Although we experimented with attempts to reduce the false positive 

rate of the target predictions, benchmarking the predicted list against a curated database 

did not identify significant target prediction score thresholds.  

Thirdly, we selected the predicted target genelist from TargetScan only for further 

functional analysis of the genelist. We found that the miRNA-mRNA expression profiles of 

this genelist did not identify a negative correlation pattern between the miRNA expression 

levels and their predicted target genes. Thus, we conclude that our datasets do not support 

the standard model we used in this study - the miRNAs down-regulating target genes 

hypothesis.  
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Lastly, for biological analysis, we selected the miR-210 target genes and found 233 

targets for which we have the gene expression for. KEGG and GSEA analysis have shown 

that these genes may be involved in breast cancer related pathways, such as the B cell 

receptor signalling pathway (related to the immune system), BRCA1 (a breast cancer gene), 

and p53 (a common oncogene).  

Differentially Expressed MiRNAs are Not Breast Cancer Specific  

Although the list of 38 miRNAs (Table 1) differentially expressed between breast 

cancers and controls in our dataset, there is not sufficient supporting evidence from 

previous studies to consider the complete list as a BC biomarker. Some miRNAs have been 

previously found to be differentially expressed in multiple cancers: miR-136 in breast 

carcinoma tissue (Iorio et al., 2005) and ovarian cancer (Jeong et al., 2017), miR-194 in 

pancreatic carcinoma  (Zhang J. et al., 2014), and miR-223 in lung cancer sera (Chen et al., 

2008); whereas miR-335 (Wang et al., 2010; Shrauder et al., 2012) and miR-145 (Kodahl et 

al., 2014; Thakur et al., 2016) are breast cancer specific; and others (miR-1303, miR-339, 

miR-517b for examples) have no previous evidence. The literature search suggests that all 

38 miRNAs together are not breast cancer specific.  

A Panel of Diagnostic MiRNAs Show Little Consistency in Directionality  

Further, we consider a small panel of miRNAs to be a candidate biomarker to test 

together specifically for early-stage breast cancer diagnosis. A panel of four miRNAs 

(miR-145, miR-210, miR-335 and miR-15a/b) were identified to have sufficient previous 

evidence to be considered as diagnostic of breast cancer in serum samples. Although eight 

miRNAs have been previously associated with breast cancers, only four of them have 

previous evidence from blood-sourced studies. This evidence suggests that there may be a 

breast cancer signal from blood samples, and thus can be applied for early diagnosis. 

Regarding the directionality however, little consistency in how these miRNAs affect 

their target genes has been found in previous studies. Of the three miRNAs confirmed with 

previous blood BC studies, only miR-145 is consistent in its expression direction: it’s 
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downregulated in our cancer expression profiles, and downregulated in BC serum (Kodahl 

et al., 2014; Thakur et al., 2016) and breast tumors (Iorio et al., 2005; Hu et al., 2015; 

Sempere et al., 2007; Sun et al., 2014). Thus, consistently shown to act as a tumor 

suppressor in breast cancers. As another miRNA to show consistency in expression 

direction, miR-15b is upregulated in our expression profiles of cancers, upregulated in 

invasive ductal carcinoma of breast tissues (Sakurai et al., 2015), and targets a tumor 

suppressor gene, MTSS1 (Kedmi et al., 2015). Thus, consistently shown to act as an 

oncogene in breast cancers. Although there is a lack of evidence of miR-15b in blood tissues 

specifically, its family member miR-15a has been previously found to be upregulated in BC 

serum (Kodahl et al., 2014). Since the family miRNA sequences are related, miR-15b is a 

potential oncogenetic biomarker in BC serum as well. Whereas miR-145 shows consistency 

in direction with our expression profiles, miR-210 and miR-335 don’t. In our cancer 

expression profiles, miR-210 is downregulated, however the literature illustrates that 

miR-210 is consistently upregulated in BC serum and tumors; in serum (Thakur et al., 

2016), in plasma (Madhavan et al., 2012; Jung et al., 2012; Ng et al., 2013) and in breast 

tumors (Foekens et al., 2008). These multiple studies suggests that miR-210 is oncogenic, 

as supported by it being identified as a hypoxic marker in BC (Camps et al., 2008), thus 

inconsistent with our data. In contrast, there is no strong evidence for a consistent 

expression direction of miR-335. In our cancer expression profiles, miR-335 is upregulated. 

Previously, it has been shown to be upregulated in whole blood (Schrauder et al., 2012) 

and downregulated in serum (Wang et al., 2010) from breast cancer patients. In further 

research, we recommend experimentally validating miR-145, miR-15a/b, miR-335, and 

miR-210, with PCR for example, to better understand their function and biological effects in 

blood samples from breast cancer patients.   

The inconsistencies in the regulation direction in our data as compared to other 

studies, suggest that more data and better methods are needed for this type of work. We 

have previously showed concern over the quality of our data, and the need for 

standardized methods for collecting and analyzing miRNA data sets.  
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MiRNAs May be Predictive of Cancer Progression 

 

The miRNAs’ involvement in cancer progression exert a causal role at different steps 

of the tumorigenic process, some associated with several hallmarks of cancer (Goh et al., 

2016). Our panel of diagnostic miRNAs (miR-210, miR-145, miR-335, and miR-15b) are 

involved in cancer progression pathways, and thus are suggested to be predictive of cancer 

progression. 

In our analysis, TargetScan predicts miRNA-210 targets 233 genes that are also 

highly expressed in the mRNA expression profiles, some of which belong to the 

GOZGIT_ESR1_TARGETS_DN gene set shown to be downregulated in ER+ breast-cancer 

cells (Gozgit et al., 2007). In breast cancer cell lines, miR-210 inversely regulates FBXO31, a 

gene involved in DNA damage response and tumorigenesis (Tan et al., 2018); and in MCF-7 

and T47D cell lines, it supports cancer migration (Liu et al., 2016), thus promoting cancer 

progression. Rothe et al. (2011) showed that the expression of miR-210 is related to tumor 

proliferation and poor prognosis. As a hypoxic marker (Camps et al., 2008), 

over-expression of miR-210 results in an increased hypoxic conditions which are 

associated with metastasis, leading to poor patient prognosis. These results are confirmed 

by a systematic review by Tang et al. (2015). Further, miR-335 has been shown to be 

involved in the regulatory networks of the breast cancer susceptibility gene BRCA1 (Heyn 

et al., 2011), by regulating the BRCA1 activators ERa, IGF1R, SP1 and the repressor ID4. 

This dual function of promoting and repressing a BC gene may explain the lack of 

consistency in the expression direction seen earlier in our miRNA expression profile. 

Lastly, miR-15b upregulates a BC gene, MTSS1, in breast tumors (Kedmi et al., 2015) 

directly impacting the tumor microenvironment. This may lead to regulation of cancer 

progression, as miR-15b is identified in invasive ductal carcinoma breast tissue (Sakurai et 

al., 2015).  

In contrast to the above, miR-145 seems to have protective function - it significantly 

reduces BC cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal 
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transition (Zhao et al., 2016), and regulating TGF-β1 protein expression which contributes 

to tumor formation (Ding et al., 2017). Thus,  miR-145 has tumor suppressor activity, 

inhibiting metastasis and thus cancer progression.  

In conclusion, the evidence of tumor progression suggests that in addition to 

potential diagnostic biomarkers, miR-210, miR-335 and miR-15b are potential prognostic 

biomarkers of BC as well.  

 

 

MiRNA Target Prediction is Challenging  

The review of various target prediction methods and their results, suggest that 

miRNA target prediction is a challenging problem. The various miRNA target prediction 

methods have been trained on different miRNA features, assumptions, and evidence of 

miRNA-target interactions. Some methods are mainly miRNA seed-focused (Agarwal et al., 

2015; Krek et al., 2005), and others are target site access focused (Kertesz et al., 2007). The 

MiRanda (Betel et al., 2010) method however takes into consideration both the miRNA 

seed features and the secondary structure thus accessibility of the target site, while 

measuring the thermodynamic stability of the duplex complex (the energetic likelihood of 

the miRNA-target interactions).  

 

Further, some groups consider sequence conservation to be an important aspect of 

defining miRNAs and their targets (Agarwal et al., 2015; Betel et al., 2010), while others 

focus on experimentally derived evidence, such as mRNA/miRNA protein complex 

co-precipitation (Hammell et al., 2008). Evidence of co-precipitation suggests that there 

may be both functional and non-functional miRNA-target pairs, where the functional pairs 

manifest in co-precipitation experiments, but the non-functional pairs are dormant until a 

biological signal triggers functionality. The miRSVR scoring model correctly identified 

functional but poorly conserved target sites (Betel et al., 2010). The Betel group showed 

that imposing a miRNA-target interaction filter results in a reduced detection rate of true 

targets. This suggests that a true target does not need to interact with the miRNA and thus 
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does not need to be functional at the time of the experiment. This separates the concepts of 

a miRNA target definition and miRNA functionality. 

 

These findings are significant because it impacts how we study miRNAs and their 

targets. It’s important to note that some of the earlier target prediction methods were 

based on little experimental support and thus a lot of theoretical models and hypotheses. 

With time, as the public miRNA database grew, some groups kept improving their tools, 

while others quickly became outdated. Initially, many methods were miRNA-seed focused 

with a heavy weight on sequence conservation, because target prediction purely from 

conservation is fast and can be done in parallel. However, going through the methodical 

experiments to show co-precipitation takes a lot of time and more resources. Thus, 

currently there’s an imbalance of information available regarding theoretically potential 

miRNA targets that can be functional or non-functional, versus the experimentally derived 

functional miRNA targets. These differences may explain the lack of overlapping genes 

predicted from our differentially expressed miRNAs. 

More recently developed prediction tools, such as HomoTarget (Ahmadi et al., 

2013), have shown better results combining twelve different features. Thus, for tools to 

have higher specificity and sensitivity, future efforts should focus on combining the various 

experimentally validated features of both the miRNA and its target, such as the seed 

sequence, secondary structures, thermodynamic stability, conservation, and co-expression. 

For example, we can automatically derive the weighted combinations of these features, 

with Neural Network algorithms, as done by Ahmadi et al. (2013). 

Conclusion 

In summary, we analysed a small data set of matched miRNA-mRNA expression 

profiles from breast cancer patients and controls from a large population-based cohort 

study to explore a diagnostic biomarker. We identified 38 differentially expressed miRNAs 

with previous supporting evidence in breast cancer and other cancers. Only a small panel 

of miRNAs are breast cancer specific, however they showed little consistency in 
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directionality and their biological effects. Although some predicted target genes of these 

miRNAs are associated with tumorigenesis and cancer progression, we conclude that there 

is not enough statistical power to draw any strong conclusions.  

One of the main limitations of this study is the small data set, thus does not have 

enough statistical power to provide strong results with such high-dimension data. In 

addition, more modern technologies may provide stronger results. For example, Next 

Generation Sequencing has been shown to be more accurate than microarray studies, 

especially for small RNAs. Further, miRNA microarray expression processing and analysis 

techniques used in this study are similar to standard techniques applied to mRNA 

expression data. However, as miRNAs are smaller and require higher sensitivity than 

mRNA, new methods are being explored to process and analyze miRNA expression levels.  

Overall, we found that there is little consistency between studies, and a general lack 

of cohesiveness in the field of miRNA research. As the MiRBase database has grown, and 

more miRNAs are being annotated and curated, it is difficult to rely on early evidence and 

hypotheses from the time miRNAs were first identified. As previously noted, many 

discrepancies in the database have been found, and its difficult to differentiate between 

small RNAs and non-functional noise from one-time experiments. Fromm et al. (2015) 

published a review discussing these concerns and presented a uniform system for 

annotating miRNAs. They showed that less than a third of the 1900 human miRNAs in 

MiRBase are robustly supported as mature and curated miRNAs, and established a new 

open access database - MirGeneDB (Fromm et al., 2015). Further, the inconsistencies in 

miRNA annotation make it difficult to build a comprehensive target prediction tools. Our 

review found that because different miRNA features were used to train the target 

prediction tools, its difficult to compare them and the quality of the prediction results.  

In this study we investigated miRNAs as potential biomarkers for early diagnosis of 

breast cancer. Using various computational tools and methods, we explored if 

blood-sourced miRNAs discriminate between breast cancer and matched healthy controls. 

Our results show that although some miRNAs are differentially expressed between cancer 

samples and controls, they are not breast cancer specific and show little consistency in 
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their biological effect. However, a panel of miRNAs have been previously identified as 

potential biomarkers of breast cancer, and may be predictive of cancer progression.  

We conclude that statistically speaking, there is little evidence in this study that 

blood-sourced miRNAs are diagnostic of breast cancer. However, the study of miRNAs 

come with natural limitations as listed above. In the future, further insight into the 

biogenesis of miRNAs and their relationship with target genes and gene networks will 

provide a stronger foundation for the development of an early diagnostic breast cancer 

biomarker. 
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Tables 

 
Table 1. Differentially expressed miRNAs and their biological significance.  

List of 38 experimentally supported and annotated miRNAs, and previous evidence 

showcasing their biological significance. Red miRNAs are upregulated in case samples and 

thus downregulated in controls, whereas the black miRNAs are downregulated in case 

samples and thus upregulated in controls.  

 
 MirbaseID Previous studies 

1 hsa-miR-10a 
Diagnostic in esophageal serum (Zhang et al., 2010), diagnostic for Coronary Artery 
Disease (Luo et al., 2016), diagnostic in plasma pancreatic cancer (Duell et al., 2017) 

2 hsa-miR-124 
Epigenetic inactivation in mammary carcinoma (Lehmann et al., 2007), 
tumor-suppressive in osteosarcoma (Huang et al., 2018) 

3 hsa-miR-1258 Suppresses breast cancer brain metastasis (Zhang et al., 2011) 

4 hsa-miR-1287 Diagnostic in ovarian whole-blood (Hausler et al., 2010) 

5 hsa-miR-1298 Inhibits tumor growth (Zhou et al., 2016) 

6 hsa-miR-1303  

7 hsa-miR-1307  

8 hsa-miR-136 
Suppresses tumor metastasis in triple-negative breast cancer (Yan et al., 2016), 
inhibits cancer stem cell activity in ovarian cancer (Jeong et al., 2017) 

9 hsa-miR-145 
Downregulated in primary breast carcinoma tissue (Iorio et al., 2005), 
downregulated in serum BC (Kodahl et al., 2014), (Thakur et al., 2016) 

10 hsa-miR-15b 
Targets MTSS1 gene in breast (Kedmi et al., 2015), and found in plasma BC 
(Kumar et al., 2013) 

11 hsa-miR-194 
Contributes to tumor growth in renal cell carcinoma (Khella et al., 2013), 
pancreatic carcinoma (Zhang J et al., 2014) 

12 hsa-miR-200b 
Implicated in tumour metastasis (Gregory et al., 2008), Diagnostic of ovarian cancer 
sera samples (Taylor et al., 2008) 

13 hsa-miR-208b  

14 hsa-miR-210 

Upregulated in serum of BC (Thakur et al., 2016), and breast tumours (Foekens et al., 
2008), a hypoxia marker in breast (Camps et al., 2008), and in pancreatic cancer serum 
(Ho et al., 2010), diagnostic in B-cell Lymphoma sera samples (Lawrie et al., 2008) 

15 hsa-miR-223 
Diagnostic in sera lung cancer (Chen et al., 2008), diagnostic in esophageal serum 
(Zhang et al., 2010) and prostate serum (Moltzahn et al., 2011) 

16 hsa-miR-24 
Diagnostic in oral carcinoma plasma (Lin et al., 2010) diagnostic in prostate serum 
(Moltzahn et al., 2011) 

17 hsa-miR-301b Hypoxia-responsive oncomiR in prostate cancer (Wang W et al., 2016) 

18 hsa-miR-302c Receptor status predictor in BC tissue (Lowery et al., 2009) 

19 hsa-miR-30e  

20 hsa-miR-335 
Diagnostic in BC serum (Wang et al., 2010) diagnostic in BC whole blood (Schrauder et 
al., 2012), regulates BRCA1 gene (Heyn et al., 2011) 

21 hsa-miR-339  
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22 hsa-miR-346  

23 hsa-miR-363  

24 hsa-miR-421  

25 hsa-miR-5006  

26 hsa-miR-503 Tumor suppressor in BC pathogenesis (Gong et al., 2014) 

27 hsa-miR-510 Associated with invasive BC cells (Findlay et al., 2008) 

28 hsa-miR-517a  

29 hsa-miR-517b 

 
 
 

30 hsa-miR-518f  

31 hsa-miR-523 Increased in plasma of leukemia patients (Madhavan et al., 2013) 

32 hsa-miR-526b 
Oncogenic in breast cancer by EP4 activation (Majumder et al., 2015), suppresses 
lung cancer (Zhang et al., 2015) 

33 hsa-miR-548i  

34 hsa-miR-548y  

35 hsa-miR-570 Found in peripheral blood of gallbladder cancer (Li and Pu, 2015) 

36 hsa-miR-637 Inhibits HER2 signaling (Leivonen et al., 2014) 

37 hsa-miR-664  

38 hsa-miR-935 Promotes liver cancer cell proliferation (Liu et al., 2017) 
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Table 2. Summary of target prediction methods (Witkos et al., 2011). 

Witkos et al. (2011) reviewed and assessed the performance of miRNA target prediction 

tools and methods. Tools include miRanda, Targetscan and its derivative TargetScanS, 

PicTar, Diana-MicroT, PITA and RNA22 with their features list and performance against 

experimentally validated miRNAs.
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Table 3. Gene to KEGG test for over-representation in gene list targeted by miR-210. 

KEGG terms of gene lists that are predicted to be targeted by miRNA-210, with a p-value < 

0.05. The list represented over-representation of genes involved in specific metabolic 

pathways. KEGG terms identified include the B cell receptor signaling pathways, an 

important component of adaptive immunity, also involved in the breast cancer pathways. 

 

 

 

 

Table 4.  GSEA test applied to the negative correlated gene list targeted by miR-210.  

GSEA test results of gene lists that are predicted to be negatively targeted by miRNA-210, 

with an FDR < 0.1. The list represented over-representation of genes involved in specific 

metabolic pathways. GSEA terms identified include the BRCA1 gene network of transcripts 

which are important in breast cancer pathways. 
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Table 5. GSEA test applied to the positive correlated gene list targeted by miR-210, 

with an FDR < 0.1.  

GSEA test results of gene lists that are predicted to be positively by miRNA-210, with an 

FDR < 0.1. The list represented over-representation of genes involved in specific metabolic 

pathways. GSEA terms identified include the ESR1 targets affected in ER+ breast-cancer 

cells. 
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Technical Supplements 

Data Processing 

First, the miRNA microarray data was pre-processed with background correction 

(subtracting background noise signal) (Quackenbush, 2002). In the sample quality control 

step, samples with missing values, those with a negative mean correlation, and samples 

below an RNA quality threshold (RIN score < 7) were removed. Next, the quality of probes 

was examined via the Signal-to-Noise ratio (SNR), where probes with consistently low SNR 

(<2) across all samples were removed.  Then, Principal Component Analysis (PCA) 

identified some samples found to be outliers with very low raw intensity correlation, and 

they were excluded. Finally, in order to compare the intensity levels between samples, they 

were quantile normalized to make the intensity distributions identical. After preprocessing, 

we identified a major confounding effect via histogram clustering - most patient samples 

were hybridized on one day and controls on another day. Thus, for expression analysis we 

continued with 4 patient samples and 5 control samples.  

 

Technical Methodology 

The standard errors were moderated using an empirical Bayes model adjusting high 

variability genes down and low variability genes up (Smyth, 2004). Using a p-value 

threshold of 0.1 adjusted for multiple tests, fifty-five miRNAs were differentially expressed 

between breast cancer and control samples. The heatmap in Figure 2.2 illustrates the 

grouping of samples according to disease status based on differentially expressed miRNAs.  
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Figure 2.2. Class distinction of differentially expressed miRNAs.  

 

 

Figure 2.2. The differentially expressed miRNAs clustered based on the sample types: 

breast cancer and control samples. Heatmap colors represent mean centered fold change 

expression in log-space with Z-scores, meaning that red colored miRNAs are significantly 

differentially expressed higher in their sample types. Sample characteristics are 

represented in the boxes below each sample. The breast cancer samples are red, and 

control samples are in green. RNA concentration and expression mean is represented by a 

grey-red scale, where grey is low and red is high. All samples were hybridized on the same 

date and same slide.  
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MiRNA Annotation 

Sixteen of the fifty-five miRNAs were not annotated in miRBase (Table 1), some of 

which were de novo miRNAs - newly discovered miRNAs that are not yet fully annotated 

nor validated by the scientific community. Thus, the “solexa-####-###” miRNA annotation 

in Table 1 is from Illumina’s own sequencing efforts and the “HS_###” annotation is from 

sequencing efforts by Berezikov et al. (2006), which have not been validated. The 

sequences of the 16 unannotated miRNA were matched against the miRBase database, and 

only two of them were identified to be annotated miRNAs – hsa-miR-5006 and 

hsa-miR-548y. 

To test the hypothesis that the rest of the 14 unannotated miRNAs are true miRNAs, 

we used the BLAT (Kent et al., 2002a) search tool on the USCS Genome Browser (Kent, 

2002b) to locate the oligonucleotide sequence in the genome in order to inspect if their 

sequence characteristics follow the defining traits of a miRNA. BLAT is a pairwise sequence 

alignment tool for DNA/RNA. None of these unannotated miRNAs are conserved within 

mammals, nor did the secondary structure prediction method in BLAT identify the specific 

stem loop structure that defines precursor miRNAs. Figure 2.3 presents an example of 

differences observed between a true miRNA, miR-15b, and our hypothetical candidate 

miRNA, HS_128.  Since there was no clear evidence that these 14 miRNAs are true miRNAs; 

they were excluded from further analysis, thus leaving us with 38 (of 49) (Table 2). 
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Figure 2.3. Sequence characteristics of HS_128 (A) and miR-15b (B). 
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Figure 2.3B. 

 

Figure 2.3. Sequence alignment of HS_128 (A) and miR-15b (B) against a database of 

animal genomes, miRBase, SNPs, etc. to inspect the sequence characteristics and test of 

they follow the defining traits of a miRNA. The miR-15b (B) sequence is found to be 

conserved, as per the Multiz alignments of 47 Vertebrates, and placental mammal basewise 

conservation by Phylop. The sequence has been annotated as has-miR-15b from the 

miRBase database, and was predicted to have a RNA secondary structure, which follows 
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the definition of a miRNA. Conversely, the sequence HS_128 (A) is not conserved at all, and 

has no annotation, and lacks an RNA secondary structure. Thus, it is concluded that this 

sequence is not a miRNA. 

 

MiRNAs and the Importance of Conservation  

As per the definition of what is a miRNA, the sequence must be conserved across 

multiple species. However, we found inconsistencies in our study, as there are many 

inconsistencies on other studies, making miRNAs challenging to study. In our case, we use 

HS_128 and miR-15b as examples to illustrate this point. For example, the sequence 

alignment of HS_128 (A) and miR-15b (B) against a curated database of animal genomes, 

miRBase, SNPs, etc. showed that HS_128 is not a real miRNA. The miR-15b (B) sequence is 

found to be conserved, as per the Multiz alignments of 47 Vertebrates, and placental 

mammal basewise conservation by Phylop. Also, the sequence has been annotated as 

has-miR-15b from the miRBase database, and the EvoFold Prediction was able to predict 

RNA secondary structure. All these characteristics follow the definition of a miRNA. 

Conversely, the sequence HS_128 (A) is not conserved at all, and has no annotation, and 

lacks an RNA secondary structure. Thus, it is concluded that this sequence is not a miRNA.  

 

Differentially Expressed MiRNAs 

List of differentially expressed miRNAs with their matching mirbaseIDs. Not all miRNAs 

were identified in the mirbase database of annotated and experimentally curated miRNAs.  

 

 Name MirbaseID  

1 HS_128  

2 HS_201 hsa-miR-5006 

3 HS_203  

4 HS_217  

5 HS_221  

6 HS_232  
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7 HS_47  

8 HS_63  

9 HS_69  

10 HS_97  

11 solexa-2683-338  

12 solexa-7111-145 hsa-miR-548y 

13 hsa-miR-10a hsa-miR-10a 

14 hsa-miR-124 hsa-miR-124 

15 hsa-miR-1258 hsa-miR-1258 

16 hsa-miR-1287 hsa-miR-1287 

17 hsa-miR-1298 hsa-miR-1298 

18 hsa-miR-1303 hsa-miR-1303 

19 hsa-miR-1307 hsa-miR-1307 

20 hsa-miR-136* hsa-miR-136 

21 hsa-miR-145 hsa-miR-145 

22 hsa-miR-1537 hsa-miR-1537 

23 hsa-miR-15b hsa-miR-15b 

24 hsa-miR-189 hsa-miR-24 

25 hsa-miR-194 hsa-miR-194 

26 hsa-miR-200b* hsa-miR-200b 

27 hsa-miR-200b  

28 hsa-miR-208b hsa-miR-208b 

29 hsa-miR-210 hsa-miR-210 

30 hsa-miR-223 hsa-miR-223 

31 hsa-miR-301b hsa-miR-301b 

32 hsa-miR-302c hsa-miR-302c 

33 hsa-miR-30e* hsa-miR-30e 

34 hsa-miR-335 hsa-miR-335 
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35 hsa-miR-339 hsa-miR-339 

36 hsa-miR-346 hsa-miR-346 

37 hsa-miR-363 hsa-miR-363 

38 hsa-miR-421 hsa-miR-421 

39 hsa-miR-503 hsa-miR-503 

40 hsa-miR-510 hsa-miR-510 

41 hsa-miR-517a hsa-miR-517a 

42 hsa-miR-518f hsa-miR-518f 

43 hsa-miR-523 hsa-miR-523 

44 hsa-miR-526b* hsa-miR-526b 

45 hsa-miR-548i hsa-miR-548i 

46 hsa-miR-570 hsa-miR-570 

47 hsa-miR-637 hsa-miR-637 

48 hsa-miR-664 hsa-miR-664 

49 hsa-miR-935 hsa-miR-935 
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