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Abstract 

The linear stability of plane Couette flow is studied by using a symbolic com­

putation package (Mathematica). The power series method is used to obtain the 

solution of the Orr-Sommerfeld equation. This solution shows that plane Couette 

flow is unstable. 



Resume 

La stabilite lineaire du flux de Couette sur un plan est etudiee par l'intermediane 

d'un outil de caicul symbolic (Mathematica). La methods de serie de puissance est 

utilisee pour obtenir la solution de l'equation de Orr-Sommerfeld. Cette solution 

montre que Je flux de Couette sur un plan est instable. 
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Chapter 1 

Introduction 

1.1 Hydrodynamic stability 

There are two types of fluid motion: laminar motion and turbulent motion. We 

know that laminar motion occurs only when the Reynolds number is very small. If 

an infinitesimal disturbance is introduced in the laminar flow and it decays, the flow 

can maintain its laminar motion. However, if the disturbance grows, the main flow 

will be disturbed and turbulence may result. In this case we say the laminar motion 

is unstable. If the disturbance decays we say the flow is stable. 

The problem of determining if the laminar motion is stable or unstable with 

respect to the infinitesimal disturbance is a stability problem. The stability theory 

that uses the idea of infinitesimal disturbances and does not go beyond the first 

approximation is called the linear stability theory. 

We are, now, investigating in the laminar motion of the simplest form, the plane 

Couette flow. 

Viscosity plays an important role in the flow. Even very small viscosity can 

make fluid flow unstable. According to Yih [5], Case and Orr have proved that the 

inviscid plane Couette flow is stable. However, the stability or instability of viscous 

plane Couette flow has not been firmly established. 

Because of the infinite extent, it is impossible to investigate this kind of flow 

experimentally. However, by neglecting infinite extent, one can do the experiment 
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for the plane Couette flow in the laboratory, as L.S Tuckerman and D. Barkley [16], 

F. Daviaud et al [13], N. Tillmark and P.H. Alfredsson [12], Dauchot and Daviad [14] 

and S. Bottin et al [15J. However, without neglecting infinite extent, we can also 

still study the stability of the flow from a mathematical point of view. 

The analytical solution for the governing equation for the stability problem ( The 

Orr-Sommerfeld equation) for the plan Couette flow is known. The accompanying 

numerical computation for the solution of the problem is non-trivial. There are a 

number of numerical computations for this problem, such as G.B. Davis and A.G. 

Morris [19] and Southwell and Chitty [20] 

To study this problem, Deardorff [21J used a coupling finite difference methods 

with trial and error numerical method to study the stability of the plane Couette 

flow. In 1973, Davey used a "complete" orthonormalization with a parallel shooting 

procedure to investigate instability of the flow. Studies up to this date have not 

shown instability of the plane Couette flow but this has not been discounted. 

There is also analytical work for the special cases of instability of plane Couette 

flow for large values of a non-dimensional parameter in the problem. Hopf (17J used 

asymptotic methods of approximation to study the problem. His studies did not 

shown instability of the plane Couette flow. Wasow [18] showed in his work that 

for a given wave number the plane Couette flow is stable if the product of the wave 

number and the non-dimensional parameter is sufficiently large. 

In numerical works for studying the instability, we have to deal with parameters 

whose values range over a wide interval, which make the computation exceedingly 

intensive. Thus, symbolic computations may offer some benefits in solving such 

problems. With the availability of high performance personal computer in recent 

years, symbolic computations have facilitated the investigation of other types of 

flows; for example, Tam [22]. 

In this thesis, we will show that the plane Couette flow is unstable by using the 

power series solutions obtained from a symbolic computation. 
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1.2 The Plane Couette Flow 

From Rosenhead [1], the governing equations for incompressible viscous flow, 

with reference to a general Cartesian coordinate system x, y, z with the velocity 

field v (u, v, w) where u, v, ware the velocity components in x, y, z direction 

respectively, are 

ou au ou au lop 2 
+u-+v-+w- = ---+l/V u (1.1 ) at ax oy oz pox 

OV ov ov av lop 2 
-+u-+v-+w- = ---+vV v (1.2)at ox oy OZ poy 

ow ow ow ow 1 op ,,2
-+u-+v-+w-= +vv w. (1.3)at ox oy OZ p 

These are the Navier-Stokes equation and 

ou ov ow 
~+~+ 0, (1.4)
uX uy 

is the Continuity equation. 

Here, p is the density of the fluid, v = ;; is the kinematic viscosity; I.t is static 

viscosity, p is pressure, and V2 = ;2x + ;2y + We are interested in the flow 

called the Couette flow. 

Suppose that there are two parallel infinite plates filled in the gap between them 

with a viscous fluid (Figure 1.1). While we keep the lower plate stationary, we move 

the upper plate with a constant velocity U in the x-direction. The friction between 

the plate surface and the fluid will induce a fluid flow; and this flow is called the 

plane Couette flow. 

To find the velocity distribution for the laminar plane Couette flow, we suppose 

the flow is steady (independent oftime) and there is no velocity in the y, z direction, 

Le. fj (u, v, w) = (u, 0, 0). Then equations (1.1),(1.2) and (1.3) and equation (1.4), 

simplify to 
OU 1 op 02U 02u a2u 

·u~ = --~ + i/( ':)2 + ':)2 + >:'12 ) (1.5)
uX PuX u X u y u Z 

_~ op = 0 (1.6)poy 
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Figure 1.1: The Plane Couette flow. 

~ op = 0 (1.7) 
poz 

We can conclude from equation (1.6) and (1.7) that p = p(x). Moreover, since there 

is no pressure gradient in the Couette flow, we have 

(1.8) 

One can easily solve this ordinary differential equation, equation (1.8), to obtain 

u(y) = Ay + B 

where A, B are constant determined by the following conditions: 1. At y 0, 

u(y) = 0 and 2. At y = I, u(y) U. Finally we get the velocity distribution for the 

plane Couette flow to be 

u(y) = Uy. 

1.3 The hydrodynamic stability theory 

In this section we provide a brief introduction to the hydrodynamic stability 

theory in the case of viscous incompressible parallel laminar flow in the absence of 

external forces. 
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From Rosenhead [1], we can derive the formulation for the hydrodynamic stabil­

ity as follows. Let 

x denote the distance along the flow, 

y denote the distance between the plates and 


z denote the distance that is perpendicular to x and y. 


And (u, v, w)in direction of x, y, z, respectively. 

Introducing a characteristic length, L, and a characteristic velocity, Uo, and 

defining 

x y z 
x= - z= ­

L' y= L' L 

u v w 
u=­

U v = Uo' W= U 
o' O 

p Uot 
p-- T 

- pUo' L 

the Navier-Stokes equation and the continuity equation become: 

ou au au av,
- +u,-+v- +w­= 
OT ox ay az 

ap 1 2 
-­ + -v U, 

ax R 
(1.9) 

op 1 2
--+-Vv 

ay R 
(1.10) 

ow aw aw aw ap 1 2
-+u-+v-+w-=--+-v w (1.11)
aT ax ay OZ az R 

au ov ow _ 0 
(1.12)ax + oy + OZ - . 

Where, we define the Reynolds number, as R = !iff-. 
Suppose that there is a two-dimensional, steady solution of equation (1.9) ­

(1.12): 

U = U(y), v 0, W 0, pO = constant 

Let an infinitesimal perturbations (u' ,Vi, Wi, pi) be introduced. We then have: 

I 0 I 

u = U + u,'; v =v'; w w;p=p +p. (1.13) 

For which we set the direction of the flow to be along the x-axis. 
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Now, substitute equation (1.13) into equations (1.9) - (1.12) and linearize. We 

can obtain the linear equations: 

au' uau' ,au-+ -+v­aT ax ay 
ap' 1l"72'--+-v u ax R 

(1.14) 

av' +uav' 
aT ax 

ap' + ~\i'2v' 
ay R 

(1.15) 

aw' + uaw' = 
ax 

ap' + ~\i'2w' 
R 

(1.16) 

a I , , 

u av aw_ o+ a + a - .y z 
(1.17) 

We let the perturbation functions,u', v', w' and pI, take the form ei(ax+pz-acr), 

where, 

a is a real wave number along x direction, 

f3 is a real wave number along z direction, 

c is a complex number, C = Cr + iCi. 

We have 

1. If Ci > 0, the disturbance grows with time and the flow is unstable (amplified 

case). 

2. If Ci < 0, the disturbance decays with time and the flow is stable (damped 

case). 

3. If Ci = 0, the disturbance neither grows nor decays (neutral case). 

Then we can write : 

(1.18) 

(1.19) 

W WI (y)ei{ax+f:lz-acr) (1.20) 

(1.21) 

Now, we substitute equation (1.18) - (1.21) into equation (1.14) - (1.17) and 

eliminate PI and obtain : 

(1.22) 
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i 2 2) (1.23)aR (D -" (fJUl 

(1.24) 

Where ,,2 = a 2 + fJ2, D = d~ and the boundary conditions for equation (1.22) 

are: 

- mV1 - dy oat y =0 and y = 1 


For the two-dimensional theory we have fJ = 0 and it is similar if we define: 


d</> 
(1.25)

dy' 

-ia</>, (1.26) 

which provides the stream function: 

Then equation (1.22) can be written as: 

The differential with respect to y is denoted by primes and iv. Equation (1.27) 

is called the Orr-Sommerfeld equation with the boundary conditions: 

</> = </>' = 0 at y = 0 and y = 1. 

1.3.1 Hydrodynamic stability for case of the Couette flow 

From section 2.1 , the velocity profile for the plane Couette flow is u(y) = Uy, 

it can be seen that the basic flow for the plane Couette flow is U y. Since 

~U 
0, 

then we can write the Orr-Summerfeld for a case of the plane Couette flow as 
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Now we ask what are the boundary conditions for this equation? Obviously, 

they must be homogenous. 

Because of the fact that we must have no perturbation velocity at the interface 

between the plates and a fluid, then at y 0 and y = 1 , u' and Vi have to vanish. 

From: 
d¢ 

dy 

and 

VI -ia¢ 

We can conclude that the boundary conditions for the Orr-Sommerfeld for the case 

of the plane Couette flow are 

¢(O) = 0, ¢'(O) = 0, 

¢(l) = 0, ¢'(l) = 0 

Then we have to solve the ordinary differential equation 

with boundary conditions: 

¢(O) = 0, 

¢(l) = 0, ¢'(1) = 0 

to investigate the hydrodynamic stability of the plane Couette flow. 

1.3.2 The analytical solution 

In this part we will solve the equation (1.27) analytically with the boundary 

conditions 

¢ = ¢' = °at y 0 and y = 1. 

First, change the variable y to x and then we write 
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Then from (1.27) and the above equation we can get: 

(D2 - ( 2)rp(x) = iaR((x - c)rp(x) (1.28) 

Then write 

2 

Y = ~ + i(aR)t(x - c)
(aR)'.i 

and then 

d 1 d - = i{aR)'.i­
dx dy' 

Equation (1.28) becomes: 

(1.29) 

This is the Airy equation which has the solution known as the Airy function 

Ai{y) and Bi{y). 

Then we can get the function ¢ as: 

~y ~Y (aR)lIoY a¢(y) Cle(aR)~ +C2 e (aR)1f + -- sin(--l (y t))[KIAi{t) + K 2Bi{t)]dt. 
a 0 (aR)'.i 

(1.30) 

This is the analytical solution of the case of the plane Couette flow. In principle, 

imposition of the boundary conditions on a linear combination of these four solutions 

will provide the characteristic equation with which to calculate the eigenvalues. 

However, the difficulty with computations involving integrals of the Airy functions 

makes this approach prohibitive. 
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Chapter 2 

The Computation 

2.1 Formulation and Solution 

For the plane Couette flow the basic flow is U = y where 0 < y < 1, We let the 

perturbation stream function be 

., ( ) A.(y)eia(X-CT)tj) X,y,T 'I' 

From the linear hydrodynamic stability theory (in the previous chapter) we have 

¢ governed by the Orr-Sommerfeld equation 

(y - c)(¢II - a2¢) = - a~ (¢iv - 2a2¢" + a 4¢) (2.1) 

Where, 

c = Cr + iCi is a complex parameter, 

a is a real parameter, 

and R is the Reynolds number based on the width between the plates and the 

maximum value of U 

For this equation we found that the appropriate boundary conditions at y = 0 

and y = 1 are 

<p <P' = 0 (2.2) 

Equation (2.1) has a set of four fundamental solutions satisfying the four initial 

conditions at y = 0: 

(<p, <p', <p1I, <Pili) = (1,0,0,0); 
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(1jJ,1jJ1,¢/',¢/fI) = (0,0,1,0); 

(1jJ, 1jJ1, 1jJ", 1jJ1II) = (0,0,0,1), 

respectively. 

Now, we construct two linearly independent power series solutions to equation 

(2.1) in view of the condition (2.2). Let 1jJ1 and 1jJ2 satisfy the condition 

(2.3) 

and 

(2.4) 

at Y = 0 respectively. We set 
M 

IjJl(Y) = L bkyk; 
k=2 
M 

1jJ2(Y) = 	L dky\ 
k=3 

where bk and dk depend on the parameter obtained by using the symbolic calculation 

package. For IjJl(Y) the condition (2.3) gives b2 = ~ and b3 = O. Likewise, for 1jJ2(Y) 

the condition (2.4) we set d3 = ~. 

We consider first the neutral case where Ci = 0 

We want to use as many terms as possible because the accuracy of the results 

increases with increasing number of terms. But we also have to avoid crashing the 

PC. 

First, we calculate the solution 1jJt, 1jJ2 with as many terms as can be obtained on 

a personal computer with a Pentium II processor. After that we compute the value 

at Y 1 and plot a graph on 0 < y ::; 1 in doing this we try computing with a range 

of Reynolds number, from R=O to 300 a range of a from 0 to 30 and a range of Ct· 

from °to 1. We seek a suitable amount of terms that makes the function converge. 

However, we have to impose the boundary at Y 1 to obtain the characteristic 

equation, which is: 

(2.5) 
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In this operation, we have to multiply the functions and their first derivatives. 

Sometimes, the computer crashes if the number of terms used exceeds the compu­

tational capacity of the personal computer. 

We have found that if we use about 95 terms we can accomplish the convergence 

of the solutions obtained and at the same time the computational capacity of the 

personal computer is not exceeded. 

It is noted that the convergence of the solution means that the numerical outputs 

of the solutions converge to a certain value when a specific value of terms has been 

used. Even if the latter value is exceeded the numerical solution still converge. We do 

not want to convey the idea that the convergence is proven in the analytical way. For 

moderate R value (0-300) approximately 95 terms are required on numerical outputs 

convergence. For R greater than 300 more than 95 terms are needed on convergence 

of the numerical outputs. Because of this, we can use solutions obtained only for 

moderate Reynolds numbers. i.e. from 0 to 300. 

The following are examples of the value of the functions and their first derivatives 

at y = 1 for a = 5, R= 250 and a = 10, 200, respectively. We note that ¢h(l), 

¢~(1), ¢2(1) and ¢~(1) are complex numbers. 

Terms ¢l ¢~ 

80 139.171 - 950.443 I 25501.1 - 18102.2 I 

85 039.184 - 951.777 I 25502.1 18209.4 I 

90 139.219 - 951.847 I 25505.1 - 18215.4 I 

95 139.222 - 951.849 I 25505.4 - 18215.5 I 

100 139.222 - 951.849 I 25505.4 - 18215.5 I 

Table 2.1: A table of ¢1 and its first derivative at y = 1 as a= 5 and R = 250 
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Terms <P2 <P~ i 

80 83.5883 - 109.156 I 4453.89 501.896 r 
85 83.5316 - 109.073 1 4449.33 - 495.193 1 

90 83.5263 - 109.071 1 4448.88 - 494.98 1 

95 83.526 - 109.071 1 4448.85 - 494.981 1 I 

100 83.526 - 109.071 1 4448.85 - 494.981 1 i 

Table 2.2: A table of <P2 and its first derivative at y = 1 as a= 5 and R = 250 

Terms <PI <P~ 
I 80 269990. - 769201. I 3.02114 * 107 

- 2.00039 * 107 1 • 

85 260865. 685983. 1 2.94238 * 107 1.32526 * 107 1 
, 

90 256779. - 688113. 1 2.90769 * 107 
- 1.34451 * 107 I 

95 256906. - 687620. I 2.9089 * 107 
- 1.33997 * 107 1 

100 256900. - 687621. 1 2.90889 * 107 1.33998 * 107 1 i 

Table 2.3: A table of the <PI and its first derivative at y 1 as a= 10 and R = 200 

Terms <P2 <P~ 
80 9645.35 - 64408.8 I 2.21609 * 106 

- 1.76299 * 1061 

85 10048.5 - 62285.4 1 2.2436 * 106 
- 1.58442 * 1061 

90 9983.97 62927.9 I 2.23791 * 106 1.64017 *1061 

95 10061.3 - 62916.3 1 2.24494 *106 
- 1.63906 * 1061 

100 10061.0 - 62915.6 1 2.24482 *106 
- 1.6389 * 1061 

Table 2.4: A table of the <P2 and its first derivative at y = 1 as (x= 10 and R = 200 
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The functions ¢1, ¢2 have very very lengthly expressions. The following is ¢], ¢2 

stated in a Mat.hematica "Short" form : 

2 

¢l(Y) ~ + « 12663 », 

3 

¢2(Y) = ~ + « 12287 » . 

The number in the parentheses shows the number of terms that follow the first term. 

These terms are polynomial of a and R. 

In the next section we will show how the solution of the characteristic equation 

can be obtained graphically. 

2.2 Graphical solution of the characteristic equa­

tion 

The characteristic equation is obtained by imposing the condition at Y = 1 

(using equation (2.5)). Because the characteristic equation is in complex form the 

real part and the imaginary part of the characteristic equation have to be zero. We 

note that both of these parts of the characteristic equation are made up of many 

many terms. This can be observed in the "Short" form of Mathematica as following: 

The first 152 terms of real part of the characteristic equation are: 

1 a 2 67 R2 0;2 C R2 0;2 c2 R20;2 a 4 13 R2 a4 c R2 a4 c2 R2 a 4 

12 + 90 - 1814400 + 6720 - 6720 + 1260 2395008 + 45360 - 45360 + 

a 629 R4 a4 c R4 a4 c2 R4 a4 c3 R4 a4 c4 R4 a 4 67 R2 a 6 

23775897600 - 99066240 + 32288256 - 23950080 + 47900160 + 28350 - 194594400 + 

c R2 a 6 c2 R2 a 6 4211 R4 a6 23 c R4 a6 71 c2 R4 0;6 c3 R4 a 6 

712800 712800 + 22865620377600 - 14944849920 + 14944849920 - 155675520 + 
6 6c4 R4 a6 17707 R6 a 487 c R6 a 6 1699 c2 R6 a

311351040 - 2007144156745728000 + 4344467871744000 - 2896311914496000+ 
6 6 a837 c3 R6 a 6 227 c4 R6 a6 c5 R6 a c6 R6 a

22865620377600 91462481510400 + 498161664000 - 1494484992000 + 935550 
353 R2 a8 c R2 0;8 c2 R2 0;8 39649 R4 0;8 73 C R4 a8 

27243216000 + 18918900 - 18918900 + 3620389893120000 - 793945152000+ 
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113 c2 R4 as cf3 R4 as c4 R4 as 187043 R6 a 8 


396972576000 - 2594592000 + 5189184000 - 138492946815455232000+ 

181 c R6 as 30509 c2 R6 a 8 61 c3 R6 a 8 


10453875816384000 - 334524026124288000 + 241359326208000 

563 c4 R6 as c5 R6 as c6 R6 a8 


1448155957248000 + 3175780608000 - 9527341824000+ 

68055434065114701004800000 10002268381116211200000+ 
8 851832 R8 as 673 c3R8 a 5617 c4 R8 a
 

1875425321459289600000 - 57705394506439680000 + 184657262420606976000 

~~~ 7~~~ 2~~ 

19912144412160000 + 136540418826240000 - 33790305669120000+ 
cSR8 a 8 alO R2 alO c R2 alO c2 R2 a 10 

135161222676480000 + 42567525 - 3031426944 + 742996800 742996800 + 
lO181 CR4 a 11 c2R4 alO 

53219731428864000 57597111936000 + 1129355136000 
lOc3 R4 alO c4 R4 a 2527387 R6 alO 

75785673600 + 151571347200 - 32734696520016691200000+ 
27823 c Rfi a 10 29411 c2 R6 alO 37 c3 R6 alO 

27978373094031360000 - 5595674618806272000 + 2534272925184000 
c4 R6 alO c5 R6 alO c6 Rfi alO 161981 R8 alO 

44460928512000 + 54854392320000 164563176960000 + 48932419534421313945600000 
35641 c R8 a 10 3317 c2 RS alO 2003 c3 RS alO 

618685764228315463680000 + 7661743210257776640000 1091156550667223040000+ 
20971 c4 RS alO 89 cD R8 a10 c6 RB a lO 

4364626202668892160000 - 11191349237612544000 + 122981859753984000 
SRS lO lOc7 R8 alO c a 13276927 RlO a 

212878925715456000 + 851515702861824000 599092530518677233862862438400000+ 
23581 c RlO alO 25567 c2RIO alO 


48540960178145943434035200000 - 5393440019793993714892800000+ 

3649 c3 RIO alO 216851 c4 RlO a 10 


134564153719658613350400000 - 2153026459514537813606400000+ 

349 CO RIO alO 1451 c6RIO alO 


1374857253840701030400000 - 3299657409217682472960000+ 
79 c7 RlO alO cS RIO a10 c9 RIO a lO 

152761917093411225600000 2530218088503705600000+5640440015756722176000 
clO RlO a 10 a 12 559 R2 a 12 c R2 a 12 c2 R2 a12 

28202200078783610880000+ 2554051500 91380033360000 + 40078962000 40078962000 + 
12 c R4 a 12 31 c2 R4 a 12283 R4 a

33232230484992000 - 13956223276800 + 139562232768000 3322910304000 + 

18 



c4 R4 0:12 432961 R 6 0:12 23407 C R6 0:12 


6645820608000 175336046542437580800000 + 734432293718323200000 

41299 c2 R6 0:12 53 c3 R6 0:12 43 c4 R6 0:12 


244810764572774400000 + 112989583648972800 - 59468201920512000+ 

c5 R6 0:12 C6 R6 0:12 

1705760622720000 - 5117281868160000+ 

3441107 R8 0:12 222329 C R8 0:12 


-18-6-69-6-0-00-68517670551552000000 69007258317773647-8-7-20-0-00-0-0 + 

6706223 c2 R8 0:12 331 c3 R8 0:12 

276029033271094591488000000 - 3204795463498137600000+ 
1469 c4 R8 0:12 157 c5 R8 0:12 241 c6 R8 0:12 

5423500015150694400000 - 349729663675392000000 + 524594495513088000000 
c7 R8 0:12 C8 R8 0: 12 

3766319454965760000 + 15065277819863040000 
100031573 RlO 0:12 

29032945709751281333354102784000000+ 
61338689 c RiO 0:12 982759 c2 RiO 0:12 

806470714159757814815391744000000 1316686880260829085412884480000+ 

176167 c3 RiO 0:12 1313371 c4 RlO 0:12 


41073120150738875213414400000 - 82146240301477750426828800000+ 


321712159989620736000000 4718445013181104128000000+ 
367 c7 RiO a 12 1123 c8 RiO 0:12 

4441846512408418713600000 17767386049633674854400000+ 
c9 RIO 0:12 CIG RIO 0:12 

35252750098479513600000 - 176263750492397568000000+ 
361486819 R12 a12 

31839850900970035212662777441157120000000 
6175381 c R12 0:12 

20410160833955150777347934257152000000+ 
49767163 c2 R12 0:12 769999 c3 R12 a 12 

13606773889303433851565289504768000000 29032945709751281333354102784000000+ 
14922773 c4 R12 0:12 2356643 d's R12 0:12 

116131782839005125333416411136000000 5376471427731718765435944960000000+ 
995063 c6 R12 0:12 3709 c7 R12 0:12 


921680816182580359789019136000000 - 1916745607034480843292672000000+ 

337 c8 R12 a 12 53 c9 R12 0:12 


134508463651542515318784000000 - 23186438794771945684992000000+ 
647 ciG R12 0:12 ell R12 a 12 

463728775895438913699840000000 1954412465459704233984000000+ 
C12 R12 ",12 

, u 46005 -0 
11726474792758225403904000000+ « »- , 
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and the first 117 terms of the imaginary part of the characteristic equation are: 

3 3RaeR a R a 3 c R a 3 R3 a 3 7 c R3 a c2 R3 a c3 R3 a 3 R a 5 

360 - 180 + 2520 1260 - 3742200 + 4276800 - 302400 + 453600 + 37800 

c R a 5 29 R3 as 269 c R3 a 5 c2 R3 a 5 c3 R3 a 5 307 R5 as 

18900 - 726485760 + 1089728640 1995840 + 2993760 + 80029671321600 
5 5 5 5 5 R 5 5643cR5 a 29c2 R 5 a 89c3R 5 a R 5 a c a Ra7 

16005934264320+ 174356582400 261534873600 + 2905943040 7264857600 + 935550 
cRa7 19R3a 7 59cR3a7 c?R3 a7 c3R3 a 7 

467775 - 7783776000 + 3891888000 - 32432400 + 48648600+ 
7 7 7 7 4 R5 7317 R 5a 1117 cR5a 7 c2 R5a 151 c3 R5 a c a

543058483968000 181019494656000+272209766400 2858202547200+18681062400 
c5 R5 a7 10723 R7 a7 13 c R7 a 7 41 c2 R7 a7 

46702656000 692464734077276160000+56070018953625600 27877002177024000 + 
23c4 R7 a7 47c5R7 a 7 

167262013062144000 2172233935872000 + 3620389893120000 
c6 R7 a 7 c7 R7 a 7 Ra9 cRa9 29R3a 9 

114328101888000 + 400148356608000 + 34054020 - 17027010 - 333456963840+ 
41cR3 a 9 c2 R3 a 9 c3 R3 a 9 541 R 5a 9 

75785673600 - 908107200 + 1362160800 + 15929715529728000 
3 R5 a 9 4 R5 913cR5 a 9 c? R5 a 9 281 c c a 

36040080384000 + 663075072000 90509747328000 + 317578060800 
c5 R5a 9 4289 R7 a 9 25903 c R7 a 9 

793945152000 - 1800408308600918016000 + 720163323440367206400 
7067 c? R7 a 9 7421 c3 R7 a9 

30776210403434496000 + 9232863121030348800 133809610449715200+ 
137 c5 R7 a 9 c6 R7 a 9 c7 R7 a 9 

66904805224857600 - 724077978624000 + 2534272925184000+ 
142019 R9 0:9 347639 C R9 a 9 

5920822763664978987417600000 - 740102845458122373427200000+ 
2293 c2 R9 a9 273289 c3 R9 a 9 

567128617209289175040000 - 13611086813022940200960000+ 
9761 c4 R9 a 9 587 c5 R9 a9 67 c6 R9 a 

12002722057339453440000 - 4445452613829427200000 + 369314524841213952000 
41 c7 R9 a 9 c8 R9 a 9 

258520167388849766400 + 12488896975306752000 56200036388880384000+ 
RaIl cRall R3 all c R3 all c2 R3 all 

1702701000 851350500 479975932800 + 77138989200 37892836800 + 
c3 R3 all 82139 R5all 17483 c R 5all c2 R 5 all 

56839255200 + 73443229371832320000 1468864587436646400+20067772032000 
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683 c 3 R5 all c 4 R5 all c 5 R 5 all 69211 R7 all 

6652466428608000 + 9599518656000 23998796640000 515571470190262886400000+ 
2099533 c R7 all 7907 c2 R7 all 11351 c3 R7 all 

1031142940380525772800000 606198083704012800000+247990125151641600000 
e4 R7 all 409 c5 R7 all c6 R7 all 

10518185373696000 + 3497296636753920000 - 12671364625920000+ 
c7 R7 all 66173 R9 all 

44349776190720000 + 17798352065320179259146240000 
9791387 c R9 all 16279 c2 R9 all 

133487640489901344443596800000 + 25631267375173069209600000 
1705601 c3 R9 all 109 c4 R9 all 


538256614878634453401600000 + 10854136214531850240000 

43249 c5 R9 all c6 R9 all 193 e7 R9 all 


2062285880761051545600000 + 34639890497372160000 76380958546765~6~12~8~00-0-0+ 
e8 R9 all c9 R9 all 

78339444663287808000 352527500984795136000 
3244009 Rll all 4144967 eRll all 

188714147113383328666801668096000000+9932323532283333087726403584000000 
15923833 c2 Rll all 8847907 e3 Rll all 

3494706428025617197533364224000000 + 299546265259338616931431219200000 
44969 Rll all 66629 c 5 Rll all 

355967041306403585182924800000 + 177983520653201792591462400000 
563 c6 Rll all 29207 c 7 Rll all 

717675486504845937868800000 + 25118642027669607825408000000 
c8 Rll all 281 c9 Rll all 

836869632772600627200000 + 346464027967856659660800000 
e lO Rll all ell Rll all R a 13 

-3055238341868224512000000 + 16803810880275234816000000 + 111648537000 
c R a 13 73 R3 a 13 227 c R3 a 13 c2 R3 a 13 

55824268500 2010360733920000 + 1005180366960000 - 2175715080000+ 
13 13 13 c2 R5a 13c3 R3 a 1283 R5 a 2927 c R5 a 

3263572620000+ 52459449551308800000 11241310618137600000+917123243904000 
c3 R5 a l3 4 R5 a 13 c5 R5a 13 13c 247777 R7 a 

445074515424000+ 438624160128000 1096560400320000 59149078558091698176000000+ 
1198307 c R7 a l3 1543 c2 R7 a 13 8131 R7 a 13 

18820161359392813056000000 3777080367694233600000+5665620551541350400000 
313 c4 R7 a 13 107 c5 R7 a 13 c6 R7 a 13 

104918899102617600000 + 29144138639616000000 - 403534227317760000+ 
c7 R7 a 13 78698749 R9 a 13 

1412369795612160000 + 384033673409408483245424640000000 
1344551889 c R9 a 13 62723 c2 R9 a 

10972390668840242378440704000000+ 1778057149382635290624000000+ < < 46010 >>= o. 
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The graphical solution of the characteristic equation is accomplished by using 

the special package of Mathematica called "Implicit Plot" . This will give a contour 

plot of the implicit function provided. The solutions are found as follows: Because 

we know that Cr should lie between zero and one, we fix a value for a, then solve the 

real and imaginary parts of the characteristic equation to obtain the corresponding 

values of Cr and R. These are the points where the curves cross. To obtain a better 

view of the crossing curves, we divide the range of Cr and R into many intervals. 

To determine the presence of crossing curves, we first plot the curve of the real 

part of the equation, and then we plot the curve of the imaginary part. Then, we 

combine them on the same scale, and examine them for the presence or absence of 

an intersection. 

Any crossing curves observed are magnified to obtain a more accurate solution. 

These processes are shown in figures 2.1- 2.4 (the figures shown are obtained with 

0: = 16, the vertical axis is C and the horizontal axis is R). 

3 

". 2 

0. l~ 

R , 1 ." ~ ,. '(l:ID 

Figure 2.1: Crossing curves. 
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Figure 2.2: The first magnification. 

Figure 2.3: The second magnification. 
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Figure 2.4: A better view of a graphical solution. 

We repeat this process using CY. increasing by 1 from 0 to 30. The result of 

this calculation is presented in Figure 2.5. We can see the loop structure showing 

instability of the plane Couette flow. 

Now, we consider the case of a damped solution; We compute the program again 

with CY. = 9,10 and Ci 1O~0 and solve the eigenvalue problem again to find that 

there are solutions shown in Figures 2.6 and 2.8. 

We also consider a case of amplified solution; we run the program again with 

CY. = 9, 10 and Ci = 1O~0' The solutions are presented in Figures 2.7 and 2.9. 

The case of amplified, damped and neutral ca..<;es are combined when CY. 9, 10 

and are represented in Figure 2.10. 

We note that the symbolic computation when Ci =f. 0 becomes much more difficult 

and very time consuming. Thus, we have to set the value of a first before doing the 

calculations, or the program will terminate before the specific number of terms are 

obtained. Since our objective is to show that the plane Couette flow is unstable, 

we have performed computation for a non-zero Cj only for the two values above. If 

we examine Figure 2.10, in conjuction with Figure 2.5, we see that a disturbance 

with wave number CY. = 10 admits a damped solution with Ci = - 10
1
00 at R = 250; a 

neutral solution at R = 252; and an amplified solution at R = 253 with Ci = 10
1
00' 
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Thus, the disturbance behaves differently at different Reynolds numbers. The same 

pattern is repeated around R = 274. 
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Figure 2.6: The graph for the damped case when {X, 9. 
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Figure 2.7: The graph for the amplified case when a = 9. 
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Figure 2.8: The graph for the damped case when a == 10. 
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Figure 2.9: The graph for the amplified case when a = 10. 
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Figure 2.10: The graph for damped, neutral and amplified cases when a 9 and 10 



Chapter 3 

Conclusion and Summary 

3.1 Discussion 

We have studied the stability of the plane Couette flow by using the Compu­

tational approaches. Having analytic coefficients, the Orr-Sommerfeld equation has 

the power series solutions that converge to the analytical solutions (See [6]). To 

obtain the high accuracy power series solution, we have to use as many terms as 

possible. Moreover, in doing the computation, we do not use floating point opera­

tion (Le. change the rational number to a floating-point number and then do the 

computation) that means we do not have a round off error. So the solutions obtained 

have very high accuracy. Using a very high performance computer with very large 

amount of RAM, more terms can be obtained. 

3.2 Conclusion 

The calculation has been done on personal computer with Pentium II 350 MHz 

CPU and 128 Megabytes of RAM. From the results obtained, we can conclude that 

the Plane Couette flow is unstable (we can see the loop structure in Figure 2.5, 

in which we have joined points to form a continuous curve. We have only done 

this for a few curves so as not t.o make the figure too crowded). More precisely, 

from Figure 2.10 we can see the region in which the flow is damped, neutral and 
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then amplified. The result obtained is in agreement with experimental work from 

Tillmark and Alfredson and F. Daviand et at. From their experimental results, they 

have found that there is turbulence in plane Coutte flow when the Reynolds number 

is about 350 or greater. 
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