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Abstract 


We examine geometric problems of reconfiguring molecules modeled by polygons and 

polygonal chains in two and three dimensions. The molecule can be continuously 

reconfigured as long as the edge lengths are maintained and the object does not 

self-intersect. 

We begin with a treatment of polygons in chapters 3 and 4. \Ve prove that in 

two dimensions all convex configurations of a given polygon are reachable from any 

other and provide an efficient algorithm for convexifying planar monotone polygons. 

We also describe an algorithm to convexify three-dimensional polygons with simple 

projections. 

\Ve further prove that the motions to bring a convex configuration to another can 

be accomplished in three-dimensions by a series of restrictive moves called pivots, 

which are widely used in the polymer physics community. A pivot is a motion by 

which a contiguous subchain of the polygon is rotated about the line through its 

endpoints. A particular type of pivot on a planar polygon, known as a deflation, 

splits the polygon into two linearly separable subchains and rotates one by 1800 (A• 

deflation can be thought of as the inverse of a flip as defined by Erdos [49].) Since a 

rotation of 1800 about a line is equivalent to a reflection, a planar polygon remains 

planar after the deflation. In 1993 [164], \Vegner conjectured that a planar polygon 

could admit only a finite number of deflations before self-intersecting. \Ve disprove 

this conjecture by exhibiting a counterexample. 
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In chapters 5 through 7, we consider only polygonal chains in three-dimensions. 

As is consistent with the conventions of the chemistry and physics communities, we 

augment our model by allowing only those motions which maintain the angles at the 

vertices of the chain (and which also maintain the edge lengths and do not cause 

self-intersection). The chain can be reconfigured by only altering the dihedral torsion 

angles, which better reflects the fixed bond angles of a molecule. 

\Ve discuss several computational problems on this model. First, we describe an 

algorithm to determine the feasibility of the simplest possible motion~~-the alteration 

of only one dihedral angle-called a dihedral rotation. Since molecular reconfiguration 

is a complex process, the motion of a chain would involve a vast number of dihedral 

rotations. \Ne prove lower bounds on the computational complexity of preprocessing 

a polygonal chain to determine the feasibility of multiple rotations. 

\Ve continue by demonstrating the intractability of several questions: (1) comput­

ing the maximum possible and minimum possible distance between the endpoints of 

the chain, (2) determining whether a chain can be reconfigured to certain canonical 

configurations, and (3) determining configurational chirality, that is, whether or not 

a chain can be reconfigured into its mirror image. This last problem has important 

implications for drug design, since the two mirror images of a molecule can have 

radically different properties. 



Resume 


Nous etudions les problemes geometriques lies a la reconfiguration de molecules 

modelees par des polygones et des chaInes polygonales en deux et trois dimensions. 

Une molecule peut etre reconfiguree de fa<;on continue si elle ne s'auto-intersecte pas 

et si les longueurs des arcs sont preservees. 

Nous commew;;ons par une etude sur les polygones dans les chapitres 3 et 4. Nous 

montrons qu'en deux dimensions toutes les configurations convexes d'un polygone 

sont accessibles depuis toutes autres et nous presentons un algorithme efficace pour 

convexifier tout polygone monotone planaire. Nous decrivons aussi un algorithme 

pour convexifier tout polygone tridimensionnel admettant une projection simple. 

Nous prouvons egalement que les mouvements pour passer d'une configuration 

convexe aune autre peuvent etre obtenus en trois dimensions par une serie de mou­

vements restraints appeles les pivots, qui sont employes dans la communaute de 

physique des polymeres. Un pivot est un mouvement consistant d'une rotation d'une 

sous-chaine contigue du. polygone autour de la droite definie par les extremites de 

cette sous-chaine. Un cas particulier de pivot sur un polygone planaire, appele une 

deflation, separe lineairement Ie polygone en deux sous-chaines et en pivote une de 

1800 (Cne defiation peut etre consideree comme l'inverse d'un flip selon Erdos [49].)• 

Parce qu'une rotation de 1800 autour d'une ligne est equivalente aune refiexion, un 

polygone planaire demeure planaire apres une deflation. En 1993 [164], Wegner a 

fait la conjecture que tout polygone planaire ne peut admettre qu'un nombre fini de 
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deflations avant de s'auto-intersecter. Nous refutons cette conjecture par un contre­

exemple. 

Du chapitre 5 au chapitre 7, nous considerons uniquement les chaines polygonales 

en trois dimensions. Selon les conventions des communautes de chimie et de physique, 

nous augmentons Ie modele en ne permettant que les mouvements qui preservent les 

angles aux nceuds de la chaine (et qui egalement maintiennent les longueurs des arcs 

et ne causent aucune autointersection). De cette maniere, la chaine ne peut etre 

reconfiguree qu'en alterant les angles diedres de torsion. Ce modele repn5sente plus 

fidelement les angles de liaisons fixes d'une molecule. 

Nous discutons plusieurs problemes algorithmiques lies it ce modele. Tout d'abord, 

nous decrivons un algorithme pour determiner la possibilite du mouvement Ie plus 

simple--le changement d'un seul angle diedre-appeIe une rotation diedre. Parce 

que la reconfiguration moleculaire est un processus complexe, Ie mouvement d'une 

chaine implique un nombre important de rotations diedres. Nous prouvons des 

bornes inferieures sur la complexite du pre-traitement d'une chaine polygonale pour 

determiner la faisabilite de rotations mUltiples. 

Nous continuons en mont rant l'intractabilite de plusieurs problemes: (1) calculer 

la distance la plus grande ou la plus petite entre les extremites de la chaine, (2) 

determiner si une chaine peut etre reconfiguree dans certaines configurations canon­

iques, et (3) determiner Ie chiralite d'une configuration, c'est it dire, si une chaine 

peut etre reconfiguree en son image miroir. Ce dernier probleme a des implications 

importantes pour la conception de medicaments car les deux configurations chirales 

d'une molecule peuvent avoir des fonctions bien differentes. 
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A Note on Stereograms 

Because the majority of this thesis deals with polygons and chains in three-dimensions, 

several of the figures herein are stereograms. A stereogram works by the principle 

illustrated in figure 1. By crossing one's eyes, the left eye and the right eye see 

different images. When the images overlap in the brain, one creates the illusion of 

depth by manipulating the distances between various components. In figure 1 the 

right protrusion will seem farther away than the left since one would have to relax 

the eyes slightly to bring it into focus, as would be consistent with looking at an 

object far away. 

Figure 2 provides a practice image. Begin to cross your eyes, and you'll see double. 

Four copies of the image will be visible, since you are seeing two with each eye. 

Continue to cross your eyes until two of the images overlap, resulting in three images. 

":', 

.... 
.,:~,.<.,:, :/. 

~:. "/-..-­

Figure 1: The principle behind stereograms. 

xx 



XXI A Note on Stereograms 

Figure 2: Stereogram: Three overlapping disks. 

The middle one is a composite image; your left eye is focusing on the right image of 

the stereogram and your right eye on the left image. If you can focus your eyes on 

the middle image of the three disks, they will appear to overlap one another. 

Seeing stereograms quickly and easily requires practice. Because many readers 

may have difficulty seeing stereograms, whenever a three-dimensional image can be 

implied by a standard drawing, it is drawn by a standard single image. In section 4.1, 

the drawings are so vital to understanding the motions involved that they have been 

illustrated by projections to different viewpoints as opposed to stereograms. 

Only in cases where the third dimension contains valuable information has a stere­

ogram been drawn, and in most cases a standard alternate image has been presented. 

Even if one cannot see the three-dimensional image in a stereogram, either of the 

images intended for each eye provides a two-dimensional projection. All stereograms 

are clearly marked with the label, "Stereogram," as in figure 2. 



Chapter 1 

Introduction 

Most objects of interest in the world can be manipulated and altered. Toys have 

moving parts; compasses can be flexed at their hinges to draw circles of various radii; 

this very book can be opened and closed by bending it at its spine. 

Suppose we constructed a physical model of a graph using stiff rods for edges 

and connecting them at the vertices with freely moving (ball-and-socket) joints. The 

graph could then be reconfigured, or moved, in any continuous manner from one con­

figuration, or embedding, to a second configuration, so long as no physical constraint 

of the structure were violated. In this case, we could insist that no joint was bro­

ken, that the lengths of the bars remained fixed, and that no two bars intersected 

throughout the motion. We refer to such a flexible structure as a linkage. Alluding 

to this physical example, we will often refer to the edges of the graph as links and the 

vertices as joints. One possible reconfiguration of a linkage is illustrated in figure 1.1. 

This thesis deals with reconfiguring objects from one position to another. We will 

begin by examining problems long studied by the geometry community, and move to 

problems of reconfiguration in physics and biochemistry. 

1 
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Figure 1.1: Reconfiguring a linkage by a rotation at the red joint. 

Figure 1.2: A chain linkage, a cyclic linkage, and a tree linkage. 

1.1 Reconfiguration in Geometry 

The geometry community has long considered the problem of determining if it is 

possible to reconfigure a linkage from one configuration (embedding) to another while 

maintaining the edge lengths and avoiding self-intersections during the motion. We 

can simplify this problem by instead asking if a linkage can be brought to some 

canonical form. Suppose a linkage can be brought from a configuration A to some 

canonical form C, and also can be brought from a configuration B to C. Because all 

the motions are reversible, it follows that the linkage can be continuously reconfigured 

from A to B. Thus the problem of unfolding linkages is born. In particular, this 

question is most often asked for the three classes 1 of linkages figure 1.2: 

• Given a chain linkage, can it be straightened? 

lThere is conflicting terminology over these classes in the geometry and engineering disciplines. 

We will use solely the terminology of the former. A chain, often referred to as an open chain in 

engineering, denotes a simple path with two endpoints. Likewise, we will use the terms cycle or 

polygon to denote what is often referred to as a closed chain in engineering. 
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• 	 Given a cyclic (polygon) linkage, can it be convexified (brought to a convex 

position)? 

• 	 Given a tree linkage, can it be flattened? 

The answers, of course, depend on the motions allowed (Le.) reconfiguration with 

respect to a specific set of operations) and the space in which the linkage lies. We 

briefly examine the history surrounding these problems. 

1.1.1 Unfolding linkages in the plane 

Augustin Cauchy appears to have been the first mathematician to consider the prob­

lem of straightening a chain linkage. As a lemma for his celebrated theorem regarding 

the rigidity of polyhedra, he attempted to prove the following in 1813. 

Lemma 1. (due to Cauchy [29]) If some joints of a convex chain are opened, the 

distance between the endpoints increases and the chain remains convex. 

We consider a joint to be opening if its angle approaches 7[, in other words, if the 

two edges incident to it approach a straight angle. Such a motion is illustrated in 

figure 1.3, where the red vertices have been opened. Cauchy's original proof was incor­

rect, although its flaw was unnoticed until 1934 when Steinitz and Rademacher [146] 

published a correction. Lyusternik [98] independently published a similar proof in 

1966, and a short, elegant proof was found by Schoenberg and Zaremba [142] in the 

following year. As a lemma in a paper on intersections of planes with polytopes, 

O'Rourke [116] has since further generalized Cauchy's lemma to include specific non­

convex configurations. The survey paper by Toussaint [156] provides Cauchy's proof 

and a short history of the problem. 

In the computer science community, reconfiguration of chain linkages first appeared 

in the context of modeling the possible motions of robot arms. John Hopcroft, Debo­

rah Joseph, and Sue Whitesides [78] considered the case where the linkage is permitted 
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Figure 1.3: Opening a convex chain linkage . 

Figure 1.4: Ruler Folding. 

to self-intersect, since the limbs of a robot arm can pass under one another. They 

designed algorithms for deciding whether two configurations are mutually accessible 

when the chain is in some bounded region. They further proved that determining 

whether a chain could be flattened onto a line segment of specified length, a problem 

known as Ruler Folding (illustrated in figure 1.4), is NP-complete. 

The question of whether a planar chain linkage can be straightened or a planar 

cyclic linkage can be convexified, without self-intersections, has arisen several times 

since. Robert Connelly, Erik Demaine, and Gunter Rote [37] researched the origins 

of the problem and found that it was independently posed by Stephen Schanuel 

in the early 1970's, by Ulf Grenander [67J in 1987, by William Lenhart and Sue 

vVhitesides [94, 95, 169] in 1991, and by Joseph Mitchell in 1992. Grenander, Chow, 

and Keenan [66] also considered a cyclic linkage whose angles are fixed but whose 

lengths are variable, and proved that any embedding could be reconfigured into any 

other. 

Biedl et al. [21J demonstrated that not all tree linkages can be unfolded by exhibit­

ing the locked (unable to be unfolded) tree of figure 1.5, but the question for chain 

linkages and cyclic linkages received a flurry of interest in the computational geom­
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Figure 1.5: The locked tree linkage of Biedl et al. 

etry community and remained open for several years. Its difficulty led researchers 

to consider special cases. In 1998, Everett, Lazard, Robbins, Schroder, and White­

sides [51] showed that all star-shaped polygons can be convexified by an expansive 

motion, and in the following year Biedl, Demaine, Lazard, Robbins, and Soss [22J pro­

vided an algorithm to convexify monotone polygons. (The latter result is described 

in section 3.2.) 

Attempts were made to construct chains that were believed to be locked [110], 

but unfolding motions were found for each example. The difficulty of these folding 

problems was further illustrated by Arkin, Fekete, Mitchell, and Skiena [9], who 

demonstrated the intractability of folding problems which stem from wire bending 

and sheet metal folding, and again recently by Arkin, Bender, Demaine, Demaine, 

Mitchell, Sethia, and Skiena [8]. 

Using tools in rigidity theory Connelly, Demaine, and Rote [37] were finally able 

to prove in January, 2000, that chains and cycles can be unfolded. However, de­

scribing their motions involves integrating vector fields, and thus their algorithm 

is not programmable ill conventional models of computation. Several months later, 
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Streinu [149] discovered a simpler method which computes O(n2 ) motions to convexify 

a polygon, although the complexity of computing each motion is still unclear. 

A general algorithm for motion planning, which can determine if an object can 

be brought from a starting configuration to a target configuration, was developed in 

1983 by Schwartz and Sharir [144], but the complexity is doubly exponential in the 

degrees of freedom. In the case of linkages, this is at least as large as the number 

of joints. This result complemented the proof by Reif [128] in 1979 that deciding 

if an arbitrary hinged object (which could include polyhedral segments) could be 

moved from a starting configuration to a target is PSPACE-complete. Clearly more 

specialized algorithms are necessary in the case of simple linkages. 

1.1.2 Convexifying polygons with flips and flipturns 

In 1935, Paul Erdos [49] posed the following problem. 

Given any simple polygon P which is not convex, draw the smallest convex 

polygon pI which contains P. This convex polygon pI will contain the area 

P and certain additional areas. Reflect each of these areas with respect 

to the corresponding added side, thus obtaining a new polygon Pl. If P l 

is not convex, repeat the process, obtaining a new polygon P2 . Prove that 

after a finite number of such steps a polygon Pn will be obtained which 

will be convex. 

This operation, which we will call a flip, is illustrated in figure 1.6. vVith the aid of 

modern geometric vocabulary, we can reword Erdos' problem statement to be more 

accessible. 

Given a nonconvex simple polygon, consider its convex hull (drawn in 

red). Subtracting the polygon from its convex hull yields several polygons 

called pockets (shaded). Reflect each of these pockets across its lid, that 
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Figure 1.6: Flipping all pockets of a polygon. 

/ //7?=====7::.,'i--'.......
k--___---/ 

Figure 1.7: Bela Nagy's polygon where flipping all pockets leads to nonsimplicity. 

is, the edge it shares with the convex hull. 'We call this operation a flip. 

Prove that after a finite number of flips the polygon will be convex. 

The first of many proofs of Erdos' conjecture was published four years later by 

Bela Nagy [111]. Nagy showed that flipping all pockets simultaneously might lead 

to a nonsimple polygon, as in figure 1.7, and modified the problem so that only one 

pocket is flipped at a time. 

This problem had since been independently discovered and solved by several math­

ematicians: in 1957 by Reshetnyak [131J and by Yusupov [172]; in 1959 by Kazarinoff 

and Bing [23, 87, 88]; in 1973 by Joss and Shannon [70]; in 1981 by Kaluza [86]; in 

1993 by Wegner [164]; and in 1999 by Biedl et al. [20]. The paper by Toussaint [157J 

provides a detailed account. 

Joss and Shannon [70] demonstrated that although finitely many flips suffice for 

convexification, the number required cannot be bounded by a function of the number 

of edges in the polygon. They presented the quadrilateral in figure 1.8. Note that 
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Figure 1.8: Joss and Shannon's quadrilateral which can require arbitrarily many flips. 

Figure 1.9: A deflation. 

there is only one flip possible at anyone time since there is at most one reflex vertex. 

For any integer k, one can make the smallest edge tiny enough as to require at least 

k flips to convexify the polygon. \Vegner [164] and Biedl et al. [20] also discovered 

the same quadrilateral. 

\Vegner [164] also posed the inverse problem. Select a line that passes through the 

polygon in exactly two vertices, and reflect one of the two subchains across this line. 

H the resulting polygon does not self-intersect, the operation is called a deflation. 

This is the inverse of the flip operation, since the reflected subchain is now a pocket 

of the convex hull of the resulting polygon and the original line is its lid. Alluding 

to the concept that convex polygons do not admit flips, \Vegner defined a deflated 

polygon as a polygon that does not admit any deflations. He conjectured that all 

polygons would be deflated after finitely many deflations. Figure 1.9 illustrates the 

deflation operation, and figure 1.10 illustrates a polygon which is deflated. We exhibit 

a counterexample to ·Wegner's conjecture in section 4.2. 

Joss and Shannon [70} also considered a variant of the flip operation. Instead of 

reflecting a pocket, one can also rotate the pocket by 180 degrees about the center of 

its lid, as illustrated in figure 1.11. We call this operation a fliptum. Note that after 

a flipturn, each edge is rotated by 180 degrees. Unlike in a flip, each edge retains 
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Figure 1.10: A deflated polygon. 

Figure 1.11: A fUpturn. 

its original slope. If we consider each edge as a vector, a flipturn has the effect of 

permuting the order of the edges. Since each flip turn increases the area of the polygon, 

we will never visit the same permutation twice. Therefore the polygon will be convex 

after at most (n - I)! flipturns, where n is the number of edges of the polygon. Joss 

and Shannon conjectured that n 2 / 4 flipturns would suffice. In 2000, Ahn et al. [2] 

proved that a polygon is convex after any sequence of [n( s - 1)/2]- s flipturns, where 

s is the number of distinct slopes of the edges. For arbitrary polygons, this value is 

(n2 3n)/2. In the special case of orthogonal polygons, Aichholzer et al. [4] proved 

that there always exists a convexifying sequence of 5(n 4)/6 fiipturns. 

1.1.3 Unfolding linkages in three dimensions 

The geometry of three-space is quite different from that of two-space, and indeed not 

all three-dimensional chains can be straightened. Cantarella and Johnston [27] and 

Biedl et al. [20] independently proved that the chain of figure 1.12 is locked. This 
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Figure 1.12: The locked knitting needles chain. 

Figure 1.13: The locked polygon of Biedl et al. 

chain is often referred to as knitting needles due to its resemblance to the tools of 

the same name. If the first and last links are long enough, the endpoints cannot be 

brought near the other four joints. One can then prove that the linkage behaves much 

like a trefoil knot. 

In the case of three-dimensional polygons, the goal is to place the polygon into 

a planar convex configuration. Clearly a knotted polygon cannot be convexified, 

but Biedl et aL [20] demonstrated a class of locked un knots by joining two knitting 

needles to form the polygon of figure 1.13. Cantarella and Johnston [27] also proved 

that there exist locked unknots and presented the class of locked unknotted hexagons 

illustrated in figure 1.14. They conjectured that the configuration space of unknotted 

hexagons had three classes: the convex hexagon and the left-handed and right-handed 

versions of their locked polygon. Toussaint [158] discovered the hexagon illustrated 

in figure 1.15, bringing the conjectured number of classes to five. 

Biedl et al. [20] have shown that planar polygons can be convexified by motions in 

three-space. They rediscovered the flip operation with the idea of rotating a pocket 
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Figure 1.14: The locked hexagon of Cantarella and Johnston. 

Figure 1.15: The locked hexagon of Toussaint. 

in three-space about its lid, illustrated in figure 1.16. Realizing that a polygon may 

require an unbounded number of flips with respect to its number of edges, they de­

scribed a linear-time algorithm to convexify a planar polygon using more complicated 

motions. Aronov, Goodman, and Pollack [10] generalized the result to include cross­

ing polygons several months later. (They considered a reconfiguration of a crossing 

polygon to be valid if it introduces no new crossings during the motion.) 

vVe can generalize the flip operation by selecting two points of a three-dimensional 

polygon and rotating OIle of the sub chains about the line through these two points. 

This operation was first used in 1945 by Choquet [33] in an application known as 

curve stretching. A curve c' is a stretched version of c if for every two points on c, 

the arc length between them is maintained and the Euclidean distance between them 

is either maintained or increased. One can imagine c as a rope, and c' as a position 

Figure 1.16: Performing a flip in three-space. 
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of the same rope, but "spread apart." A polygon which is convexified by flips is 

therefore a stretched version of the original polygon, since each flip either maintains 

or increases the pairwise distances behveen vertices. 

Sallee [140] proved that for every three-dimensional curve, there exists a stretched 

version which is planar and convex. Robertson and Wegner have also studied this 

operation (which they refer to as inflation) in the plane [135, 136, 164], and 'Wegner 

has explored stretching curves on the sphere [165, 166]. Millett [108] has also used 

similar motions in three dimensions to convexify knots, but for his purposes allowed 

the polygon to self-intersect during the motion. 

In 1999, Cocan and O'Rourke [35] proved that all chains, polygons, and trees can 

be unfolded in dimensions four and higher. 

1.1.4 Kinematics 

The study of kinematic linkages appears to have been first mathematically codified 

in 1874 by the engineer Franz Reuleaux in his work Theoretische Kinematik [132]. 

Kinematics is the study of motion, and in the context of linkages, is the study of how 

certain joints move in concert with the motion of other joints. 

Reuleaux defined a mechanism as "[aJ closed kinematic chain, of which one link is 

thus made stationary [132, p. 47]." A major component of his work is in describing 

the mathematical relationships between the curves drawn by each joint as one moves 

the linkage in a specified fashion. Even the simple four-bar linkage (134] shown in 

figure 1.17 was the subject of intense study in the nineteenth century. (This linkage 

was often called a three-bar linkage since there was no consensus at that time on 

whether to count the stationary edge as part of the structure.) Here one can easily 

compute the path traveled by the points p and q as the angle e is altered. 

Perhaps the most famous early linkage is Peaucellier's Inversor of figure 1.18, 

developed in 1864 by the French engineer of the same name. If the points a and bare 
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q 

p 

a 

Figure 1.17: A four-bar mechanism with the edge fixed. 

a b 

Figure 1.18: Peaucellier's Inversor. 

fixed in space such that distance between a and b is the same as that between band 

p, then as p moves along the red circle, q moves along the blue line. Thus the linkage 

inverts radial motion to linear motion and vice versa. 

The paper by Farouki [53] and the book by McCarthy (103] provide an in-depth 

historical background and further detail the connections between geometry and kine­

matics. 

1.1.5 Rigidity theory 

The field of rigidity theory, the mathematical study of flexibility of structural frame­

works, has seen a renaissance in recent years. This field is most concerned with de­
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termining the degrees of motion available in a graph whose edges behave as distance 

constraints. 

Whiteley [168J has performed much research in the field of applying rigidity the­

oretic tools to discover the degrees of freedom available in molecular models. Jacobs 

et aL [85], and Thorpe et aL [155] have further used such tools to determine rigid 

substructures in proteins. 

The scope of this thesis will be more algorithmic than topological, and thus we will 

not delve far into rigidity theory here. Books by Graver, Servatius, and Servatius [65] 

and by Thorpe and Duxbury [154] provide a thorough introduction to the field. 

1.2 Reconfiguration in Polymer Physics 

Flexible polymer molecules are long chains of atoms, often called monomers. These 

chains are held together by chemical bonds, about which a certain amount of rota­

tion is generally possible. In essence, the model is a long chain linkage. As with 

the linkages discussed above, the movements allowed give rise to numerous possible 

configurations, some highly elongated and some tightly coiled [17]. The enormous 

number of possibilities suggested a statistical approach to describe the possible con­

figurations of the chain. It was discovered that many physical properties of a polymer 

such as how it diffuses and scatters light can be related to statistical averages such 

as the mean squared distance between the endpoints of the chain. The first reference 

to this concept appears to be in a short letter by Henry Eyring [52] in 1932. 

In 1934, vVerner von Kuhn [90] proposed a model in which a long chain of unit 

length edges is allowed to assume any configuration, possibly self-intersecting. To 

obtain a random configuration, he chose each link to assume any orientation with 

uniform probability. Since this is equivalent to a random walk in three dimensions [31], 

Kuhn was able to show without great difficulty that the mean squared end-to-end 

distance is O(n£2), where eis the length of each link. 
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Figure 1.19; Range of orientations allowed with a fixed joint-angle. 

Unfortunately, Kuhn's model did not perform very well in predicting polymer 

properties. Benoit [17] and Taylor [151] independently corrected his model so that 

successive elements of the polymer chain were not randomly oriented. They recognized 

that not only should the lengths of the links relate to the lengths of the monomers, 

but the angles at the joints of the linkage should relate to the bond angles between 

monomers. Rather than allowing a link to assume any orientation, it was bound to 

those that preserve the bond angle with the previous link. This resulted in a range 

illustrated in figure 1.19. It seems that neither physicist was aware of Eyring's work, 

as his model is the same as theirs. 

In 1943, Kuhn and Kuhn [9:1.] recognized that the normal random-walk model was 

severely deficient, since it implied that the atoms could overlap. They realized that 

self-intersections, or even positions in which atoms are very close together, should not 

be allowed. Computing the mean squared distance between the endpoints under the 

restriction against two atoms occupying the same region of space is often referred to 

as the excluded volume problem. 

Subsequent attempts by Flory [57], Hermans [75], Grimley [69], and Bueche [25] to 

treat the excluded volume problem as a small perturbation of the normal random walk 

were not entirely successful. Other attempts, in which the distribution function was 
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sought [173] contained complicated functions, the evaluations of which were highly 

infeasible and did not provide an accurate model [163]. 

In 1961, Sykes [150] proposed modeling polymers as self-avoiding walks on a cubic 

lattice and began his work by counting the number of configurations for small numbers 

of links. His attempts to compute this number for large walks did not meet much 

success [45], and even today this well-known problem remains unsolved and a focus 

of mathematical research [10l]. It became evident that Monte Carlo methods would 

prove useful in finding an approximation to the mean squared end-to-end distance. 

Early methods of generating self-avoiding random walks took quite long to fin­

ish [137, 163]. The difficulty was due to the approach; a walk was generated by 

choosing a random direction at each step. If a self-intersection arose, the entire con­

figuration was discarded and the process begun anew. Note that it is not correct to 

simply remove the self-intersecting step and choose a new direction, as this would 

erroneously increase the likelihood of the portion of the configuration attained up to 

that point. 

In 1969, Peter Verdier [160] proposed a faster method of computing random walks. 

Rather than randomly walking on the lattice and hoping for a sequence of non­

intersecting steps, he began with a valid walk and performed a series of random 

reconfigurations. Any single joint could be moved to a vacant lattice point so long as 

the edges remained unit length and the chain did not self-intersect. These conditions 

imply that the only motions possible are those illustrated in figure 1.20. 

An interesting problem arose concerning this new method of generating walks. It 

is not obvious that there exists a sequence of reconfigurations by which any config­

uration can be brought to any other, and thus it is not obvious whether all valid 

configurations have a positive probability of being generated. In the physics com­

munity, if all configurations are attainable, the model is said to be ergodic. Not 

surprisingly, Verdier's model lacks ergodicity. In the plane, the chain in figure 1.21 
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Figure 1.20: The motions allowed in Verdier's model. 

Figure 1.21: A locked chain in Verdier's planar model. 

is locked; in three-dimensions, the chains in figure 1.22 are locked. Therefore neither 

could be generated by Verdier's simulations unless it was selected as the starting con­

figuration. Other simple methods such as removing the first link and replacing it on 

the other side [89, 162] (known as reptation due to its resemblance to the motion of 

a slithering snake) also suffered from locked configurations. 

Figure 1.22: Two locked chains in Verdier's three-dimensional model. 
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Figure 1.23: A pivot (of Lal's model) on the red edge. 

The same year as Verdier, Moti Lal [92] proposed a different operation for randomly 

reconfiguring a walk which yields an ergodic model. His method was to select an edge 

at random, defining two subchains, then to reflect one of these subchains across the 

line through the edge. This operation has been since called a pivot throughout the 

literature. If the resulting chain intersected itself, the pivot was rejected and a new 

edge was randomly chosen. Otherwise, the procedure was repeated from the new 

configuration. Lal defined his model on the hexagonal lattice, although the pivot 

operation works just as well in a variety of spaces. Figure 1.23 illustrates a pivot on 

the red edge, moving half of the chain to the position indicated in blue. 

This algorithm was independently reinvented in 1976 by Olaj and Pelinka [113] 

and again nine years later by MacDonald et al. [99]. The pivot algorithm remains, in 

the words of Madras and Sokal [102]' "the most efficient algorithm yet invented for 

estimating the mean squared end-to-end distance of a random walk on the lattice." 

Its efficiency has led it to be a major focus of study during the past fifteen years [28, 

99, 100, 101, 102, 129, 130], although expanded by an operation. In addition to Lal's 

original pivot, one may select two points on the chain and cut out the portion between 

them. The portion is then replaced, either reflected about a line through its cut points 

or rotated by 180 degrees, as in figure 1.24. As long as the resulting chain does not 

self-intersect and lies on the lattice, the pivot is accepted. This new operation easily 
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Figure 1.24: Examples of pivots on the planar lattice. 

generalizes to polygons and is remarkably similar to flips and flipturns. 

In order to demonstrate ergodicity, Madras and Sokal [102J proved that in any 

dimension all lattice chains can be straightened by pivots. Madras, Orlitsky, and 

Shepp [100J extended this result to include convexifying polygons. The physics com­

munity was proving that chains and polygons on the lattice could be unfolded with 

flips and flipturns! 

Many in the physics community were concerned that the restriction of the model to 

the lattice was too far removed from reality. So called off-lattice or continuum models 

were constructed. John Curro [41, 42J extended Lal's idea of a pivot to continuous 

space by selecting an edge of the chain and rotating one portion of the chain about 

a line through the edge. As in Lal's model, the joint-angle at the edge stays fixed, 

and if the result of the motion is not self-intersecting, it is accepted. This motion is 

often referred to as a dihedral rotation. This model has been used with success by 

several researchers since its introduction [41, 42, 60, 104, 147, 148J. Note that the 

range of possible configurations is nearly identical to that used by Benoit and Taylor! 

The model with fixed edge lengths and fixed joint-angles is once again brought to the 

forefront. It also arises in several other settings which we will soon describe. 
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Figure 1.25: Asymmetry of the carbon atom. 

1.3 Reconfiguration in Biochemistry 

The field of stereochemistry, the study of three-dimensional molecular geometry, was 

first explored by Louis Pasteur [118] in 1860. Chemists had observed since the early 

1800's that when polarized light passed through solutions of organic compounds, in 

some samples the light was diffracted to the right and in others to the left. Pasteur 

theorized that this was due to asymmetry in the molecule. Thirteen years later, 

Johannes vVislicenus [170] theorized that the difference between the two samples was 

due to a difference in the spatial arrangement of their atoms, and in the following 

year Joseph-Achilles Le Bel [15] and Jacobus van't Hoff [77] independently attributed 

this phenomenon to the asymmetry of the carbon atom. The carbon atom admits 

four bonds in a tetrahedral pat.tern. If the groups bonding with the carbon atom 

are distinct, there are two orientations possible, illustrated in figure 1.25. field 

of stereochemistry was not well received until Wislicenus [171] demonstrated that a 

variety of unknown relationships could be explained by this theory. 

Ever since, chemists have realized that the three-dimensional shapes of molecules 

determine how they interact with the ambient world. Drug design and discovery is 

becoming increasingly based on identifying molecular structure [12], as shape deter­

mines how molecules can dock with another molecule's receptive sites [54, 93]. In 

particular, the structure of a protein determines which molecules it can manipulate 

and therefore its biological function [80]. 
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Figure 1.26: Ball-and-stick model of a protein. Proteins are composed of a long chain 

called a backbone, drawn with white bonds, and various side chains, shaded. 

One popular molecular model is the ball-and-stick model of figure 1.26. With 

stiff bonds and rather rigid bond lengths and bond angles, the configuration2 of a 

molecule is essentially described by dihedral angles [64, 141, 143]. (Given a four­

vertex subchain (t, u, v, w), the dihedral angle atuv is the angle between the planes 

determined by Ltuv and Luvw.) In the case of a protein, the molecule is flexible at 

the dihedral angles cp and 'IjJ about the bonds adjacent to certain carbon atoms known 

as a-carbons [143]. As in the off-lattice model described in section 1.2, the bond 

lengths and bond angles are fixed, but the molecule is free to rotate about several of 

its bonds. Thus the only motions allowed are dihedral rotations. For example, the 

five rightmost atoms of the molecule in figure 1.26 are free to spin around the bond 

to their left, thereby changing the dihedral angle This model has been successful 

in solving a variety of problems in pharmacology [34] and biochemistry [141]. 

This model has been studied numerous times from a mathematical viewpoint [85, 

155]. One of the earlier studies was in 1987 by Richard Randell [127]. research 

provided topological explanations of chemical phenomena, such as demonstrating 

that the configuration space of cyclohexane, the six-atom carbon ring C6H12 , has two 

2In the chemistry community, the term "conformation" is often used in conjunction with "con­

figuration," where the two terms have slightly different meanings. In keeping with the terminology 

of the geometry community, we will exclusively use the latter. 
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Figure 1.27: The two possible configurations of cyclohexane. Only the carbon atoms 

are drawn; the hydrogen atoms are omitted. 

distinct path-connected components [126]. (Randell later discovered that the same 

calculations had been made from an algebraic viewpoint a century earlier [138].) 

Cyclohexane takes the shape of an equilateral hexagon with all bond angles fixed at 

about 109.5°. The boat configuration, on the left of figure 1.27, is flexible and can be 

reconfigured to other rotationally symmetric embeddings. The chair configuration on 

the right is rigid and cannot be moved. Randell also proves other interesting results, 

including that a carbon ring of fewer than 11 atoms must be unknotted. Emiris and 

Mourrain [48] have recently generalized some of Randell's work to larger molecules. 

1.3.1 Topological descriptions of molecular shape 

Molecular shape has also often been described from a topological viewpoint [106]. 

The most common approach is to determine if the molecular graph can be continu­

ously deformed from one embedding to another. If two graphs are not topologically 

equivalent, then certainly one embedding cannot be reconfigured to another when 

geometric and chemical constraints are added. This approach has led to the appli­

cation of knot theory to molecular structure [55, 56, 107, 161]. The results therein 

have direct implications in problems where the molecule in question is a ring, such as 

mitochondrial DNA [59]. Since we will deal mostly with chain molecules, topological 

approaches will not be as helpful. 
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1.3.2 Protein folding 

Proteins, like polymers, can be described as a linear chain, although of amino acids 

instead of monomers. As is evident in figure 1.26, the linear backbone of a protein 

(denoted by white bonds) has a greater contribution to its overall shape than the 

much smaller side chains (shaded). One of the remarkable properties of a protein is 

its ability to fold up into a low-energy resting shape, called its native configuration. 

Interestingly enough, a protein folds into the same shape every time. It has long been 

believed by many that the native configuration of a protein is its configuration of 

minimum energy [7]. Several models have been invented and since studied to describe 

the intramolecular forces that determine stable configurations [3, 30, 72, 73], but 

finding the minimum energy configuration of proteins in each model has been shown 

to be XP-hard [19, 38, 58, 159]. 

Determining how proteins fold would allow us to compute their shapes and bio­

logical functions from their amino acid sequence. The implications for biochemistry 

and pharmacology are enormous, and a great deal of research has focused on this 

very problem. The ability of proteins to quickly fold to their native configurations 

despite the intractability of the protein folding problem has come to be known as 

Levinthal's paradox [96]. Several theories have arisen to explain this, including that 

the native configuration is not in fact the minimum energy configuration but rather 

a local extremum. This approach places the focus of study onto the folding itself by 

seeking any stable structure rather than the globally minimum energy configuration. 

Attempts to simulate the folding process have had moderate success [145] although 

the running times are usually quite large. 

For brevity, we will not delve into the numerous details of protein folding. ~eu­

maier [112] has written a thorough survey which is accessible to those of a mathe­

matical background. 
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Figure 1.28: Left: {S)-thalidomide. Right: {R)-thalidomide. 

1.3.3 Chirality 

Molecules fold into a stable structure of low energy, but there may be several symmet­

ric low energy states. A molecule may be synthesized and fold into one configuration, 

but its mirror image is symmetric and therefore equally as stable. If the configuration 

of a molecule differs from its mirror image, the molecule is said to be chiral. 

The chirality of a molecule has profound effects on its interactions. The molecule 

on the right of figure 1.28, (R)-thalidomide, was prescribed to pregnant women in 

the 1960's as a cure for morning sickness. Due to its chirality, {R)-thalidomide and 

its mirror image, (S)-thalidomide, are equally stable configurations. During synthesis 

both forms were created with equal probability, resulting in a racemic (50:50) mix­

ture. While (R)-thalidomide is effective against morning sickness, (S)-thalidomide is 

responsible for causing horrific birth defects [153]. 

In contrast, the artificial sweetener saccharin is illustrated in figure 1.29. Note 

the horizontal plane of symmetry through the molecule. The saccharin molecule is 

identical to its mirror image, and is said to be achiral. The native configuration of 

saccharin is therefore unique, and there is no danger of an alternate but symmetric 

form. 

To underscore the importance of chirality studies, it suffices to realize that nearly 

half of today's synthetic pharmaceuticals are chiral. Ninety percent of these are sold 

as racemic mixtures due to the enormous cost of producing a pure substance [47]. 

Yet, determining the chirality of a rigid molecule is not sufficient to explain its 



25 Chapter 1. Introduction 

Figure 1.29: A saccharin molecule. 

properties. When a compound exists as two symmetric configurations that inter­

convert rapidly, these forms become equally populated [152]. Recent experiments 

have shown that even if (R)-thalidomide were taken in its pure form, the energy bar­

rier between the two forms is low enough that chemicals in the body would quickly 

reconfigure (R)-thalidomide into (S)-thalidomide [153]. 

Thus one is not only interested in detecting whether a rigid object is chiral, but also 

in determining whether a molecule can be continuously reconfigured into its mirror 

image. A wonderful example of this phenomenon is due to lVIislow and Bolstad [109], 

who in 1955 exhibited the molecule of figure 1.30. The rigid representation of their 

molecule is chiral but it can easily be reconfigured into its mirror image. The central 

bond is rigid, but if middle portion is rotated (pivoted, in fact) about the red bonds 

by 90 degrees, the mirror image is attained. It is rather interesting that despite this 

reconfiguration, the molecule cannot be brought to a configuration admitting a plane 

of symmetry! lVIislow and Bolstad called this type of molecule a rubber glove. One can 

turn a left-handed glove inside out to make a right-handed glove, but it is impossible 

to bring the glove to a symmetric configuration. 

We will examine computational problems concerning chirality and rubber gloves 

in chapter 7. 
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c a 
b V 

I 

Figure 1.30: Stereogram: Mislow and Bolstad's rubber glove. 

1.3.4 Prion diseases 

A survey of reconfiguration in biochemistry would be incomplete without a short 

discussion of prions. 

Several diseases, including a debilitating sheep ailment known as scrapie, its vari­

ant Bovine Spongiform Encephalopathy (also known as Mad Cow Disease), human 

Creutzfeldt-Jakob Disease, Cystic Fibrosis, and countless others had until recently 

been far beyond the understanding of biologists. 

After early experiments in the mid-1900's found scrapie to be transmissible among 

sheep [39] and goats [40, 119], the search began to find the infectious agent. Since 

all known pathogens at the time were micro-organisms, the community searched for 

a virus. Attempts to destroy the infectious properties of samples by radiation [5, 6], 

heat [83], and detergents [83, 84] all proved ineffective. It was discovered that a 

protein always accompanied the agent, and it was conjectured that the virus was 

somehow able to hide inside a thick protein membrane [63]. 

A mathematician named J. S. Griffith [68] theorized that the agent was a self­
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Figure 1.31: Left: Proposed structure of common protein Prpe [81, 82]. Right: 

Proposed structured of disease-causing prion Prpsc [82J. 

replicating protein, and he outlined three possible such mechanisms. This idea was 

completely novel, and since Griffith's work was purely theoretical and had no experi­

mental basis, it attracted little attention. Not for fifteen years did someone else arrive 

at the same conclusion, Stanley Prusiner [121, 122, 123] in 1982. Prusiner termed the 

agent a prion, for infectious protein. 

Prusiner's conjecture was that the infectious protein already existed inside healthy 

organisms, but with a different configuration. Illustrated on the left of figure 1.31 is a 

common protein normally produced by the body, Prpe. A proposed structure of the 

disease-causing agent, the prion Prpsc, is illustrated on the right [81, 82J. These two 

molecules have the same chemical makeup, differing solely in their foldings [13, 81]. 

The main difference between the two is the conversion of two a-helices to ,B-sheets [13, 

117], a structural change which greatly increases the stability of the configuration [36], 

which further explains its resistance to heat and radiation. 

Prpsc is not a living organism, so it cannot propagate by reproduction as can 

viruses or bacteria. When it comes into contact with the naturally occurring Prpe, it 

reconfigures the latter into its own configuration! The two disease-causing molecules 

contact two common molecules and create four, and so on, resulting in exponential 
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growth. The radical idea of a self-replicating protein gained acceptance when exper­

iments demonstrated that mice which were genetically engineered to lack the Prpc 

protein were impervious to the effects of Prpsc [26, 124, 139, 167]. 

A recent focus of research in biochemistry is to discover the mechanism by which 

Prpc folds into Prpsc . Such an understanding would bring great insight into how 

proteins fold and would have implications toward the treatment of prion diseases [125]. 

1.4 Geometry, Polymer Physics, or Chemistry? 

This scope of this thesis is to provide a geometric foundation for several computational 

problems mentioned above rather than serve as a treatise in chemistry or polymer 

physics. In the course of designing algorithms and proving lower bounds, we will often 

build chains and polygons which may not look like everyday run-of-the-mill molecules. 

As such, our models will be defined in geometric terms, and our discussions will tend 

toward geometric concerns rather than chemical ones. 

1.5 Overview 

Chapter 2 begins our discussion with an explanation of the notation and terminology 

used throughout the thesis. 

The topics are covered in the same order as introduced in this chapter. We deal 

with problems raised by the geometry community in chapters 3 and 4, and move to 

those of physics and chemistry in chapters 5 through 7. 

In chapter 3 we exhibit two algorithms for reconfiguring polygons in the plane. 

"Ve demonstrate that all convex configurations of a given polygon are reachable from 

any other and provide an efficient algorithm for convexifying monotone polygons. 

Chapter 4 begins our study of linkages in three dimensions. 'We prove that the 

motions used to bring a convex configuration to another can be accomplished through 
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the use of pivots, and disprove Wegner's conjecture that no polygon admits an infinite 

sequence of deflations. We further demonstrate that all polygons which admit simple 

orthogonal projections can be convexified. 

Starting with chapter 5, we focus on three-dimensional chains with fixed joint­

angles. 'vVe present algorithms to decide the feasibility of performing dihedral rota­

tions without self-intersection and demonstrate the impossibility of preprocessing a 

chain to compute such questions efficiently. 

In chapter 6 we study the problem of computing the distribution of possible end­

to-end distances of a chain where the joint-angles are fixed. In particular, we prove 

that finding the minimum and maximum of the distribution is NP-complete when 

the embedding of the chain is restricted to the plane. We also examine the hard­

ness of these questions when the chain is allowed to assume any three-dimensional 

configuration. 

vVe continue in the same chapter with the study of bringing such chains into a 

canonical form. Using earlier results, it is shown that determining whether a chain 

can be brought to a planar non-crossing position is NP-hard, as is the variant of 

bringing it into a planar monotone position. 

Results from throughout the the thesis are brought together in chapter 7, where 

we examine the problem of determining the chirality of a polygonal chain with fixed 

joint-angles and of determining whether an achiral chain is a rubber glove. 

Chapter 8 concludes the thesis and discusses future directions. 



Chapter 2 

Notation and Preliminaries 

We briefly summarize the models of computation used herein and provide a basic 

background in geometry. 

2.1 Models of Computation 

The model of computation assumed in the analysis and design of algorithms is the 

extended real RAM model. In this model, each memory location can hold a single real 

number, and the following operations can be performed in unit time. 

• Addition, subtraction, multiplication, or division of two real numbers 

• Computing the square root of a real number 

• Comparison of two real numbers 

• Indirect addressing of memory locations 

vVe also present a number of NP-hardness proofs in later chapters, and for these we 

need to restrict ourselves to a model consistent with the power of a Turing machine. 

For these proofs we are limited to rational numbers and simple arithmetic, and must 

consider that storing a large number N or a small number liN requires log N space. 

30 
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Readers who are not familiar with elementary complexity theory will be adequately 

prepared by either the introductory text of Hopcroft and Ullman [79] or that of Lewis 

and Papadimitriou [97]. 

2.2 Trigonometric Computations 

In the extended real RAM model, trigonometric functions such as sin x are not com­

putable. We must resort instead to approximations. 

Lemma 2. The functions sin x and cos x can be computed within an error ofc in time 

O(x + 10g(1/c)) for any E > O. Furthermore, the approximation can be guaranteed to 

be either greater or less than the true value. 

Pmoj. The functions sin x and cos x are expressed by the following MacLaurin 

expansions. 

3 7 x 9x x
sinx x--+ --+ + ... 

3! 5! 7! 9! 
x2 x6 X SX4 

cosx - 1 - 2! + 4f - 6! + 8T + ... 

The term Xk+2/ (k + 2)! is at most half of xk / k! for all k ~ V2x. Beyond this term, 

the remainder of the expansion is less than a geometric series where each term is less 

than half its predecessor. After computing the first V2x terms, we need compute 

only O(log(l/c)) additional terms to reach one smaller than c. The remainder of 

the expansion is less than c, and the sign of the first term determines whether the 

remainder is positive or negative. Each term is computable in constant time from 

its predecessor via a multiplication by x 2 /(i(i 1)), so the approximation can be 

computed in time O(x + log(l/c)). • 

Since this thesis relies heavily on trigonometric computation, it is necessary to 

realize that one cannot exactly compute either cosines or arccosines. For clarity 
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of notation, we use cos x to denote the approximate cosine of x computed by the 

technique of the above lemma, and cos x to represent the true value. (We will not 

use sines very often in this thesis, but computation of cosines is ubiquitous. Thus we 

restrict the remainder of this discussion to cosines.) 

We may wish to consider the error not just in terms of the discrepancy between 

cos x and cos x, but rather in the arccosines of these values. In other words, cos x 

is not truly cos x, but there is some value, such that cos(x + ,) = cos x, that is, 

x +, = arccos (cos x). We wish to bound the error ,. 

Lemma 3. For 0 ::; x ::; 7f, let cos x be an approximation which is less than cos x by 

at most f. Then arccos(cos x) - x ::; V'5i. 

Proof. By the MacLaurin series for cos x, we obtain the following. 

f - -­cos x cosx 


cos x - cos(x + ,) 

2

(1_x + X4 _ ... ) (1 _(x + ,)2 + (x + ,)4 _ ... ) 
2! 4! 2! 4! 

2(x + ,)2 - x (x + ,) 4 - x4 

2! 4! 
x2(x + ,)2 _ 

f > 
2,2 +x, 

f > 
2 

f > 


hE > , 


Therefore arccos ( cos x) is at most V'5i greater than x. • 

Recall that we can exactly obtain the sines and cosines of an angle of a triangle by 

computing the cross-product or dot-product of the adjacent sides. Errors enter the 
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computation only when we wish to convert measures of angles into their sines and 

cosines or vice versa. 

2.3 Elementary Geometry 

We denote points by lowercase letters, such as p and q. \\Then appropriate, the edge 

or line segment between two points is written as This is in contrast to the infinite 

line Pit that passes through p and q. The ray, or halfline, from p through q is the 

portion of a line with an endpoint at p and extending through q, and is written as 

N. We denote the distance between these points as Ipql. 
A chain is a path of line segments, or edges. vVe call a chain simple if it does not 

self-intersect (other than at the endpoints shared by adjacent edges). For brevity, we 

imply simplicity unless otherwise stated. vVe denote a chain of n - 1 edges by the 

vertices of the chain, (Vl, V2,'" , vn ), such that adjacent pairs of vertices share the 

edges ViVi+ 1, for 1 ::; i ::; n - 1. 

A polygon is a cycle of edges. VYe denote a polygon of n edges by the vertices of 

the chain, (VI, V2, ... ,Vn ), such that adjacent pairs of vertices share the edges VfVi+l 

for 1 ::; i ::; n. Because a polygon is a cycle, we consider all arithmetic on indices to 

be modulo n. Thus we also include the edge by the expression . We also 

imply simplicity when referring to polygons unless otherwise specified. 

In two dimensions a polygon divides the plane into two regions, its interior and 

its exterior. We call a polygon convex if for any two points in its interior, the line 

segment between them also lies inside. vVe also refer to vertices of the polygon as 

convex, straight, or reflex. A vertex of a polygon is convex if its internal angle is less 

than Jr, straight if its angle is equal to Jr, and reflex otherwise. In figure 2.1, the reflex 

vertices are indicated in red. We obtain an equivalent characterization of a convex 

polygon by defining it to be a simple polygon which has no reflex vertices. For the 

most part, we will ignore straight vertices of a polygon. If Vi is a straight vertex, we 
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Figure 2.1: A polygon and its reflex vertices. 

will often consider Vi-l Vi+l as a single edge. 

In three dimensions the notions of interior, exterior, and convexity are meaningless, 

since a polygon does not divide the space. VIe will use this terminology only if the 

polygon is planar, and consider in this case that the notions apply with respect to 

the plane in which the polygon lies. 

An embedding is a realization of an abstract graph in space which is consistent 

with given constraints. For the purposes of this thesis, we will consider an embed­

ding of a polygon to be any non-crossing polygon which maintains the edge lengths, 

their ordering, and when in two dimensions, their orientation (clockwise or coun­

terclockwise). Embeddings of chains are similarly defined, except that chaiIls have 

no orientations. In chapters 5 and later, we discuss chains and polygons with fixed 

vertex-angles. In this case we also require an embedding to preserve these angles. 

vVe also refer to embeddings as configurations, and the two may be used inter­

changeably. A polygon can be reconfigured, or moved, from one configuration to 

another in a continuous manner. continuous manner depends on the motion 

being discussed; we will study several throughout this discourse. In the analyses of 

algorithms, we consider a move to be a finitely described motion which alters each 

vertex monotonically, either always increasing or decreasing their angles. Some au­

thors use the term simple move or complex move to refer to moves which affect 0(1) 

joints or w{l) joints respectively. We will not use this terminology here but instead 

refer directly to the number of joints affected. 
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A more thorough introduction to terminology can be found in computational ge­

ometry texts. Books by O'Rourke [114], by de Berg, van Kreveld, Overmars, and 

Schwarzkopf [18], and by Preparata and Shamos [120] should provide a more than 

adequate coverage. The survey paper by O'Rourke [115] provides an introduction to 

problems of folding and unfolding. 



Chapter 3 

Reconfiguring Polygons in Two 

Dimensions 

vVe begin our discussion in section 3.1 with an algorithm to reconfigure convex poly­

gons. In the unfolding of polygons, convex polygons are often used as a canonical 

target configuration. Since all planar polygons can be convexified [37, 149], it would 

only remain to show that any convex polygon can be reconfigured into any other 

convex embedding to complete the proof that any planar polygon can be brought 

to any other of its embeddings. Lenhart and vVhitesides (95J proved this last fact 

for the case where the edges are allowed to cross. We prove this is also true when 

self-intersections are not permitted and also detail a much simpler motion to do so. 

The algorithms to convexify polygons by Connelly, Demaine, and Rote [37] and 

by Streinu [149J are highly complex. Much simpler algorithms exist for special cases, 

such as when the polygon is star-shaped [51J. In section 3.2, we detail a simple 

algorithm to convexify monotone polygons. 

36 




Chapter 3. Reconfiguring Polygons in Two Dimensions 37 

3.1 Reconfiguring Between Convex Configurations 

The general idea in the proof of Lenhart and Whitesides [95] is to show that every 

convex polygon can be reconfigured into another canonical state, a triangle. We 

describe an algorithm to move a convex polygon into any other convex embedding 

without the aid of an intermediate canonical form. In particular, each vertex-angle 

varies monotonically with time, either always increasing or decreasing. In this sense, 

the motion brings the polygon directly from the source configuration to the target. 

Our motion is of the simplest type possible; it can be decomposed into a linear 

number of moves which each change only four angles. In two dimensions, any move 

must change at least four angles, since three vertices define a triangle, which is rigid. 

Consider two convex configurations of a polygon, a source S and a target T. We 

label each angle of S with a + if it needs to expand to match the corresponding angle 

in T, with a - if it needs to shrink, and with a 0 if they already match. This labeling 

scheme is used by Cauchy [29] in his theorem about the rigidity of convex polyhedra. 

We will also require his key lemma about alternations between labelings of + and -. 

Lemma 4. (due to Cauchy [29]) In a +, -,0 labeling of two distinct convex config­

urations, there are at least four alternations between + and -, ignoring 0 'so 

Proof. Because the configurations are distinct, not all labels are O. Because a 

polygon is a cycle, the number of alternations between + and - is even. It cannot be 

zero, because the sum of the internal angles of a polygon remains constant. It cannot 

be two as there would be a chain of increasing angles and a chain of decreasing angles 

which share their endpoints. By lemma 1 the endpoints of the former chain would 

move further apart while the endpoints or the latter chain move closer together. • 

Our motion will flex quadrilaterals of vertices Vi, Vj, Vk, Vz labeled +, -, +, - as in 

figure 3.1. We move the pair of vertices marked - apart until one angle matches the 
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Vj 

VI 

Vi 

Figure 3.1: A quadrilateral of vertices labeled +, -, +, -. 

desired value in T. The motion is illustrated in figure 3.2. 

Lemma 5. Let VI, V2, V3, V4 be a convex quadrilateral. Moving VI away from V3 results 

in LVI and LV3 shrinking and in LVI and LV3 expanding, until one of the angles 

reaches 0 or Jr. 

Proof. By Euclid's proposition 1.251 , if VI and V3 move apart, the angles LV2 and 

LV4 must be increasing. Because no angle moves past 0 or Jr, we maintain a convex 

configuration. By lemma 4 there must be four alternations of + and - with respect 

to all future configurations visited by the motion. Thus VI and V3 must be shrinking. _ 

We prove two theorems in this section. The first states that there exists a motion 

between any two convex configurations, and the second computes it in linear time. 

Theorem 1. Given two convex configurations of a polygon, there is a motion between 

them that alters each vertex-angle monotonically and which involves at most n - 3 

1 "If two triangles have the two sides equal to two sides respectively, but have the base greater 

than the base, they will also have the one of the angles contained by the equal straight lines greater 

than the other." [74] 
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+ 

Figure 3.2: The motion of lemma 5. 

moves that each change only four angles at once. 

Pro oj. Consider two configurations Sand T, and label the vertices of S as de­

scribed. By lemma 4 there exists a convex quadrilateral of four vertices Vi, Vj, Vk, Vz in 

cyclic order around the polygon labeled +, -, +, -. Keeping all other vertex-angles 

fixed, we move the vertices marked - apart as per lemma 5 until one of the four 

angles matches its corresponding angle in T (which must occur before it reaches 0 or 

'if). We repeat this process until all angles match, resulting in a sequence of motions 

from S to T. Each motion changes the label of an angle from + or - to o. There 

cannot be fewer than four signed labels in two distinct configurations by lemma 4, 

thus n - 3 moves suffice. • 

Theorem 2. Computing the motion in theorem 1 can be done in linear time. 

Pro oj. We decompose the polygon into continuous blocks of vertices where the 

labels are either + or 0 and blocks where the labels are - or o. Let the blocks be 

as large as possible so that the polygon alternates between plus-blocks of all + or 0 

vertices and minus-blocks of all - or 0 vertices. 

We maintain four vertices Vi, Vj, Vk, VI as the first signed vertices of four adjacent 
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blocks. Thus they determine a quadrilateral whose vertices are labeled 

Each motion flexes the quadrilateral ViVjVkVt until one of the labels becomes O. (We 

can precisely qualify the stopping condition with a small number of trigonometric 

expressions; we delay this qualification until the proof of lemma 12 where we deal 

with a more general case.) We then alter the indices i,j,k,l so that Vi,Vj,Vk,VZ are 

again the first signed vertices of four adjacent blocks. 

If Vi becomes 0, we increment its index until Vi is a non-O vertex. If the new Vi 

is also labeled +, then the above rule again holds. If the new Vi is labeled then 

Vi and Vj are in the same block. We advance j, k, and 1 so that they are the first 

vertices of adjacent blocks. This is easily accomplished by setting j +- k and k +- l, 

and incrementing 1until Vt is a + vertex of the next block. 

If some other vertex, say Vj, becomes 0, we perform a similar operation. The 

difference is that if Vj becomes 0 in a block that only had one signed element, the 

blocks containing Vi, Vj, and Vk are of the same sign and are therefore merged. Vve 

set j +- 1 and increment k and l to find the beginning of the next two blocks. 

There are at most n - 3 motions on quadrilaterals, each of which can be performed 

in constant time. Thus the computation time is dominated by the incrementing of 

the indices. Assume that initially i = 1. Because i advances only when Vi is labeled 0, 

at any point all vertices VI, ... ,Vi-l must be marked O. No index can be incremented 

more than n times, since once it is brought to 1, it would be incremented until it 

reached i. This would imply there are fewer than four blocks, and thus by lemma 4 

the polygon would have reached its target. An index is incremented at most n times, 

so the algorithm runs in linear time. • 

3.2 Convexifying Monotone Polygons 

A polygon is monotone with respect to a line £ if the intersection of the interior of the 

polygon with every line perpendicular to £ is connected. In other words, each such 



41 Chapter 3. Reconfiguring Polygons in Two Dimensions 

Figure 3.3: Left: An x-monotone polygon. Right: A polygon that is not x-monotone. 

Figure 3.4: A monotone polygon decomposed into two chains. 

intersection is either a empty, a single point, or a line segment. A chain is monotone 

with respect to a line l if the intersection of the chain with every line perpendicular 

to l is connected. 

When £. is the x-axis, then the intersection of the chain or polygon with any vertical 

line is connected, and we call the polygon or chain x-monotone. For our purposes, we 

will consider all monotone objects to be x-monotone, since one can always rotate the 

object in question until it is monotone with respect to the x-axis. An x-monotone 

polygon is illustrated in figure 3.3. 

We may also consider a monotone polygon as being composed of two monotone 

chains, an upper chain and a lower chain. In figure 3.4, because the edge V9V1O is 

vertical, one may either label (VI, V2,'" ,'09) as the upper chain and (V9, VlO,'" ,vd 
as the lower, or (VI, V2,'" , V1O) as the upper chain and (V1O,'" ,vd as the lower. 

The following algorithm convexifies a monotone polygon. 
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Algorithm Convexify-Monotone 

• 	 Repeat until the polygon is convex: 

l. 	Label the rightmost reflex joint as VI. 

2. 	 If VI is on the lower chain, then 

(a) 	 Label the vertices of the polygon counterclockwise from VI' 

(b) Compute the largest index k such that V2,' .. ,Vk-I are below the line 

vnv{ (or to the right of the line, should it be vertical). (See figure 3.5.) 

(c) 	 Repeat until 'Un, VI, Vk-i, or Vk is straightened: 

1. 	 Fix the positions of joints 'Uk, Vk+l, ... ,Vn . 

ii. 	 Fix all joint angles except those at Vn , VI, Vk-b and Vk. 

iii. 	Rotate VI clockwise about Vn , which uniquely defines the mo­

tion of the angles at Vn )Vk-i, and Vk and the motion of the ver­

tices V2, .•. ,Vk-I' until either one of the above joints straightens 

or Vn , VI, Vk-I become collinear, whichever occurs first. (See fig­

ure 3.6.) 

iv. 	 Update the coordinates of VI and Vk-I. 

v. 	 If Vn, VI, and Vk-l have become collinear, then decrement k and 

update the coordinates of the new Vk-l. 

VI. 	 If a joint has straightened, delete the straightened vertex and fuse 

the two adjacent edges into one long edge. (From this point on, 

the two edges will move in concert as a single edge.) 

(d) Update the coordinates of any vertices that have moved. 

3. 	 If VI is on the upper chain, the procedure is similar, except replace "clock­

wise" with "counterclockwise" and "above" with "below." 
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Figure 3.5: The definition of k as per step 2b. 

Figure 3.6: The motion of step 2{c)iii. 
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Let us first prove that each step in the algorithm is well-defined. The concern here 

is to ensure that the value k always exists. 

Lemma 6. The value k of step 2b is well-defined and is at least 3. 

Proof. Because VI is reflex, the ray Vn vi must enter the interior of the polygon and 

cross it again at some other edge. This edge cannot be , so V2 must be below the 

line bnvt. Some chain (V2,'" ,Vk-r) is below bnvL so k 2': 3. • 

We now prove the correctness of the algorithm. Throughout the remainder of this 

section, we assume that VI is on the lower chain of the polygon. The arguments when 

VI is on the upper chain are symmetric. 

Lemma 7. At no point during the motion does any convex vertex become reflex or 

any reflex vertex become convex. 

Proof. All vertex-angles are fixed except Vn , VI, vk-J, and Vk. If any of these 

straighten, the motion is hal ted in step 2 ( c) iii. • 

Lemma 8. Vertices V2, •.. ,Vk-l are convex. 

Proof. Because Vn is either to the left or below VI, the ray Vn vi must cross the 

polygon directly above or to the right of VI. Because the polygon is monotone, the 

polygon cannot cross the vertical halfline below VI' Thus (V2,'" ,Vk-r) is either to 

the right of VI or directly below VI. If a vertex is directly below VI, due to monotonic­

ity and the fact that we ignore straight joints, it must be V2' Then V3 must be to the 

right of V2, and thus '/)2 is convex. Since all other vertices lie to the right of VI, the 

rightmost reflex vertex, '/)2, ... ,Vk-l are convex. • 

The following lemma is illustrated in figure 3.7. 
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Figure 3.7: Quadrilateral of lemma 9. 

Lemma 9. (due to Biedl et al. [20]) Let Vl'U2V3V4 (in counterclockwise order) be a 

simple quadrilateral with VI reflex. If the linkage is moved so that <h rotates clockwise 

about V4 with fixed, then the angle at VI decreases, and the angles at V2, V3, and 

V4 increase. In other words, all angles approach 1r. 

Note that VnVIVk-lVk forms a simple quadrilateral with VI reflex. We obtain the 

following result. 

Lemma 10. During the motion of step 2(c)iii, Vk-l rotates counterclockwise about 

Vk, and the angles at VI and Vk-l approach 1r. 

vVe now demonstrate that the line segment rotates counterclockwise. This 

can also be thought of as examining the motion of VI relative to the reference frame of 

Vk-l, determined by fixing the position of Vk-l and fixing the coordinate axes. We can 

visualize this by translating the linkage throughout the motion so that Vk-l always 

maintains its position. 

Lemma 11. Ve1'tex Vj rotates counterclockwise about Vk-lJ and Vk-l rotates counter­

clockwise about VI. 

Proof. Relative to the reference frame of Vk-l, Vk rotates counterclockwise about 

Vk-l' The angle LVIVk-lVk is increasing by lemma 10, so VI is also rotating counter­

clockwise about Vk-l' By symmetry Vk-l rotates counterclockwise about VI' • 
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We are now ready to prove the main theorem of this section. 

Theorem 3. Algorithm Convexify-Monotone correctly convexifies a monotone poly­

gon, and at all times the polygon remains simple and monotone. 

Proof "We first prove that the polygon remains simple throughout the motion. Since 

the subchain (Vk' Vk+l,'" ,vn ) remains fixed at all times, it cannot self-intersect. We 

first demonstrate that (Vn, VI, ... ,Vk) does not self-intersect and then prove that these 

two subchains do not intersect. 

To show that (vn, Vb'" ,Vk) does not self-intersect, consider the motions per­

formed in step 2(c)iii. \Ve treat VnVIVk-lVk as a quadrilateral, and move VI counter­

clockwise about vn . Note that (VI, V2,'" ,Vk) forms a convex chain, and that Vk-I 

is opening. Recall Cauchy's lemma (lemma 1) which states that if some joints of a 

convex chain are opened, the distance between the endpoints increases and the chain 

remains convex. Therefore the chain VI, •.• ,Vk remains convex and therefore simple. 

To prove that the edge is not involved in an intersection, note that the chain 

(V2, .. ' ,vk-d is rotating counterclockwise about VI by lemma 11. If any part of the 

chain (V2,'" ,Vk) were to strike , it would imply that at least one edge of this 

chain were above a contradiction on the definition of k. 

We now prove that (Vn, Vb ... ,Vk) does not intersect the rest of the polygon. Let W 

be the region in space bounded by the halftine extending directly downward from Vn , 

the line segment , and the ray The region may either be bounded should 

Vk+1Vk proceed to the left and intersect the halfline below Vn , or it may be unbounded 

should Vk+1 vk proceed to the right. The latter case is illustrated in figure 3.8. 

By lemma 11, V2, ..• ,Vk-l rotate counterclockwise about VI and therefore cannot 

cross the vertical halfline directly beneath this vertex. If VI were to touch the vertical 

halfline below Vn , VI would have become a convex vertex since V2 lies to its right. This 

is impossible by lemma 7, so VI cannot escape W through this boundary. Neither 

can V2,'" ,Vk-l since these points always lie to the right of VI. No point can cross 



47 Chapter 3. Reconfiguring Polygons in Two Dimensions 

Figure 3.8: The region W. 

the ray Vk+lVk because by convexity, the first such point would be 'Ok-I, causing 'Ok 

to straighten. Lastly, no point can touch the line t;;vk, since this would imply the 

existence of a reflex vertex between VI and 'Uk. 

Now that we have proven that the polygon remains simple, its monotonicity easily 

follows. The fixed subpolygon, ('Ok, 'Ok+b ... ,'On), has not moved and remains mono­

tone. Vertex VI is always to the right of 'On and to the left of V2, vertex Vk-l is to the 

right of Vk, and the rest of the polygon is convex. 

The only statement left to prove is that the algorithm ends with a convex polygon. 

After each iteration of the motion of step 2c either k is decremented or a vertex is 

straightened. Since k can be decremented at most n times, it follows that a vertex 

is straightened for every n iterations of this step. Once a vertex is straightened, 

it remains straight, so this can occur at most n - 3 times. Thus the polygon con­

sists of only convex and straight vertices after at most n( n - 3) iterations of step 2c.• 

We end this section with an analysis of the time complexity of the algorithm. 

Lemma 12. Each iteration of step 2c can be performed in 0(1) time. 

Proof. Steps 2(c)i and 2(c)ii involve no computation, and steps 2(c)iv and 2(c)v 
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d 

Figure 3.9: The definitions of a, b, c, d, and rn. 

involve updating 0(1) coordinate positions based on known edge lengths and vertex­

angles. The most work is performed in step 2(c)iii, where the computation involves 

calculating the halting event for the motion. The motion is stopped when the first 

of the following four events occur: Vn straightens, Vk-I straightens, Vk straightens, or 

Vn, VI, Vk-I become collinear. Note that we do not have to consider the case where VI 

straightens, since this is identical to Vn, VI, Vk-l becoming collinear when k 1 = 2. 

For brevity of notation, let a = IVnVll,b IVIVk-ll,c !Vk-IVkJ, and d = IVkVnl, as 

illustrated in figure 3.9. These quantities will remain fixed throughout the motion. 

Let rn IVkVI!, a quantity which increases during the motion. To discover which of 

the four halting events occur first, we compute the value of rn which would occur at 

each event. "Whichever occurs at the smallest value of rn halts the motion. 

"Working through the trigonometry yields the following descriptions of the events . 

• Vertex Vn straightens if Vn is convex and rn2 = a2 + d2 + 2ad cos L Vn-l Vn'iil . 

• Vertex Vk straightens if 

rn2 = (a cos 'Y cos 6 - a sin 'Y sin6? + (a cos 'Y sin 6 + a siIl'Y cos 6)2, 

where'Y = LVIVnVk-l and 6 = LVkVk-lVn at the moment when Vk is straightened. 

This configuration is illustrated in figure 3.10, where e denotes !VnVk-ll. These 
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Figure 3.10: The configuration when Vk straightens. 

variables can be computed by the following equations. 

e !(dCOSL.Vk+lVkVn + C)2 + (dsinL.vk+l vkvn)2 

cos, (a2 + e2 
- b2 )/2ae 

2cosb (c2 + e - d2 )/2ce 

2+d2 	 2• 	 Vertices vn, VI, Vk-l become collinear if rn2 = a - a( a +b) (a( c - d2)/ (a + 
b)). 

All of the above expressions can be computed in constant time. • 

Theorem 4. Algorithm Convexify-Monotone convexifies a monotone polygon using 

0(n2 ) motions, each of which open four joints at once. Furthermore, all 0(n2 ) mo­

tions can be computed in O(n 2 
) time. 

Proof. By lemma 12 each move can be computed in 0(1) time. Each such move 

either straightens a vertex or decrements k. Since k can be decremented at most n 

times for each vertex straightened, there are most 0(n2) moves which in total are 

computed in 0(n2 ) time. • 



Chapter 4 

Reconfiguring Polygons in Three 

Dimensions 

In the preceding chapter, we demonstrated how to reconfigure a planar convex polygon 

to any other of its planar convex embeddings. We begin chapter 4 by showing that 

the same result can be achieved by a series of simpler three-dimensional moves known 

as pivots. 

In section 4.2 we discuss a specialized type of pivot called a deflation. In particular, 

we disprove a conjecture of \Vegner by demonstrating a class of polygons that admit 

infinitely many such motions. 

Section 4.3 concludes the chapter with an algorithm to convexify a polygon in 

three dimensions that admits a simple orthogonal projection. 

4.1 Reconfiguring Convex Polygons with Pivots 

\Ve show that a convex polygon can be reconfigured to any other convex embedding 

by the use of pivots. Let Vi and Vj be two vertices of a polygon. In the polymer 

physics literature, a pivot on the diagonal ViVj is a motion where the portion of the 

50 
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Vj "\ 
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Vi Vi 

Figure 4.1: A pivot on ViVj. 
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Figure 4.2: The transformation illustrated in figure 3.2 but accomplished with three 

pivots, shown chronologically from left to right. Top row: Bird's eye view. Bottom 

row: Oblique view. 

polygon between Vi and Vj (denoted in this chapter as [Vi, Vj]) is rotated about 

An example of a pivot is illustrated in figure 4.1. 

We study the problem of reconfiguring convex polygons discussed in section 3.1 

via this restrictive move. A pivot is in some sense the simplest move possible in three 

dimensions as it affects only two joints at once. Figure 4.2 demonstrates reconfiguring 

a convex polygon with pivots by simulating the transformation performed in figure 3.2 

on page 39. 

In 1994, Millett [108J proved that any equilateral convex planar polygon can be 

reconfigured to any other convex embedding via pivots. We demonstrate that this 
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..... 
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V3 'J 


V4~V2 
VI 

Figure 4.3: Illustration of the pivots used in theorem 5. Top row: Bird's eye view. 

Bottom row: Oblique view. 

procedure also works for arbitrary convex polygons, although an unbounded number 

of pivots (as a function of the number of edges) may be required. 

Theorem 5. There is a sequence of pivots between any two planar convex configura­

tions of a polygon. 

Proof. We use similar logic as in the proof of theorem 1 in that we first locate 

a quadrangle VIV2V3V4 whose vertices can be labeled -, -, +, respectively. 'Ve 

simply need to show that the quadrangle motion of lemma .5 can be simulated by 

pivots. Suitable motions are described as follows and illustrated in figure 4.3. 

We first pivot on rotating the subchain containing V2 by 7r /2. Our polygon 

is now in the position of the second illustration of figure 4.3. We now bring the 

polygon into a "folded convex" position, where it lies in the union of two planes, 

folded along the crease determined by V2 and V4. We pivot the subchains [V4' VI] 

and [Vi, V2] into the plane determined by V4VIV2, and pivot the subchains [V2' V3] and 

[V3, V4] into the plane determined by WV3V4, This brings us to the third quadrangle 

of the figure. To prove that none of these four pivots cause a collision, first note that 

and [VI, V3] cannot collide because these chains remain on opposite sides of a 
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vertical plane through VI and V3. Furthermore, [V3, V4J and [V4, vd cannot collide by 

convexity because the sum of the angles of the two pivots is less than 7r. The case of 

[VI, V2] and [V2' V3] is symmetric. 

A final pivot along V2V4 brings the subchain [V2' V4] into the same plane as the rest 

of the polygon. Vile note that if it is desired to place the polygon in its original plane, 

then rather than pivoting [V4' VI] downward into the plane of V4Vl V2, we can instead 

pivot the rest of the polygon into the plane of [V4' VI]' 

vVe have shown that no collisions occur during these pivots, but it remains to show 

that any desired quadrangle can be achieved through the repetition of these motions. 

Consider again the first quadrangle of the top row of figure 4.3. Let x be the closest 

point from V2 on the line through VI and V3' By the law of cosines, the distance 

between V2 and V4 is given by 

After the first pivot (second quadrangle of the figure), LV2XV4 is 7r/2, so the last 

term is equal to zero. Therefore, after each series of pivots, V2 and V4 come closer, 

and their squared distance decreases by the original value of 12(V2X)(V4X) cos LV2XV41. 

Thus we always make considerable progress toward our target configuration and will 

eventually reach it, unless in our target either V2X, V4X, or cos LV2XV4 is zero. In 

each of these cases, we will show that either V2 or V4 is collinear with VI and V3. The 

target configuration cannot have both V2X and V4X equal to zero, because then the 

polygon would self-intersect. If only V2X (or V4X) is zero, then VI, V2 (or V4), and V3 

are collinear. If cos LV2:rv4 is zero, then VI, V4, and V3 are collinear because IS 

perpendicular to the line through VI and V3. 

Assume without loss of generality that if one of V2X, V4X, or cos LV2XV4 is zero, then 

VI, V2, and V3 are collinear. In this case, V2 is the only vertex between 111 and V3 by 

convexity of the target configuration. Let the distance from V4 tob! v~ be greater than 

E in the target. When VI, V2, and V3 are close enough to collinear (when IV2xl < E) 
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V2 

Figure 4.4: Two pivots performed to reconfigure a parallelogram that is not a rhom­

bus. 

a pivot about VIV3 of any angle, even 1T, will not cause any self-intersections. If we 

then pivot until V2V4 is the same distance as V4X, and perform the remaining pivots to 

restore planarity of the polygon, Vl V2V3 can be made collinear or as close to collinear 

as desired. • 

The geometric progression of the above proof hints at the notion that there may 

be some polygons for which the number of pivots required to move between any two 

arbitrary configurations may not be bounded by a function of the number of edges. 

Indeed we show this to be the case. Before a direct proof of this statement, we require 

the following lemma. Figure 4.4 serves as a useful visual aid during the course of the 

proof of lemma 13. 

Lemma 13. Let VI V2V3V4 be a planar conve.'X quadrangle. After two pivots, suppose 

the quadrangle is once again planar and convex, resulting in a configuration v~v~v~v~. 

Then LV~V~V~ will be at least the value of the expression !LV2VIV3 - LV4VIV3!. 

Proof. If both pivots are on the diagonal , then the angle at VI has not changed. 

We break the remaining possibilities into two cases: the case in which the pivot on 

~hV3 is the first pivot (or both), and the case in which it is preceded by a pivot on 
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If the first is on , then the pivot occurs on a planar polygon. (If both pivots are 

on VI V3, we can merge them into a single pivot and thus the argument is identical.) 

Ignoring intersections for the time being, let V2 rotate freely around the diagonal 

. The point V2 traces out a circle in space centered on VIV3; thus LV2Vl'U3 is 

constant. Because LV4Vl V3 does not vary during the pivot, the resulting Lv~vi v~ and 

thus L v~vfv~ are at least the difference of these two angles. 

If the pivot on occurs first, then the next pivot must occur on VIV3 to bring the 

quadrangle into a planar position. We can also visualize this as the triangle DVIV3V4 

rotating about VIV3 until it is coplanar with the triangle DVIV31h. In this case, the 

distance V2V4, which was constant during the previous pivot, is now increasing. By 

Euclid's proposition I.25, LV2Vl V4 must have increased. • 

The next theorem follows easily from lemma 13. 

Theorem 6. There exist polygons which require arbitrarily many pivots to achieve a 

goal configuration. 

Proof. Examine the leftmost parallelogram in figure 4.4, where VI is at an acute 

angle. Because this polygon is a parallelogram, its planar configurations are all con­

vex. These can be made as fiat as desired, i.e., in which LV2'VI V4 is arbitrarily close 

to zero. Furthermore, because the polygon is not a rhombus, LV2V1'V3 L'V4'V1'V3. By 

the law of sines, 

Since sin (] is a concave monotonic function passing through the origin for 0 ::; e ::; 
1r /2, it follows that k sin e < sin ke for all k < 1. Assume that 1'V2'V31 < 1'V3v41. 
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sin LV2VIV3 
I V2V31 .-1--1 smLv4vlv3 
V3 V4 

sin LV2Vl V3 < sin [IIV2V31
1
LV4Vl V3] 

V3 V4 

LV2VIV3 < I V2V 31 
--LV4VIV3 
I V3V 41 

Thus LV2Vl V4 approaches zero by a constant fraction each time. We can choose 

a goal configuration with a small enough LV2VIV4 to require any number of piv­

ots desired. (We note that although one cannot achieve a configuration in which 

LV2VIV4 0, this is not a valid configuration as the polygon would be flat and there­

fore self-intersecting.) vVhile this proves the theorem for the case in which every two 

pivots restores the polygon to a planar configuration, we have not directly proved the 

theorem for arbitrary pivots. This is easily remedied by considering each pivot as a 

pair of pivots on the same diagonal, the first to bring the quadrangle into a planar 

non-intersecting position and the second to produce the original pivot as desired. _ 

4.2 Deflations 

In 1993, Bernd vVegner [164] posed a problem concerning deflations, the inverse of 

the flip operation of Erdos. Recall that a deflation selects a line that passes through 

the polygon in exactly two vertices and reflects one of the two subchains across this 

line. Similar to the concept that convex polygons do not admit flips, \Vegner defined a 

deflated polygon as a polygon that does not admit any deflations. He conjectured that 
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Figure 4.5: A deflation. 

Figure 4.6: A deflated polygon. 

any polygon would be deflated after finitely many deflations. Figure 4.5 illustrates 

the deflation operation, and figure 4.6 illustrates a polygon which is deflated. vVe 

exhibit a counterexample to \Negner's conjecture and discuss its ramifications to a 

convexifying operation known as a mouth-flip. 

4.2.1 A counterexample to Wegner's conjecture 

Consider a quadrilateral abed such that labl + Icdl = ladl + Ibcl and that no two 

adjacent edges have the same length. We prove that such a quadrilateral can be 

deflated infinitely many times. 

Lemma 14. There is no self-intersecting embedding of quadrilateral abcd except when 

a, b, e, and d are collinear. 

Proof. Consider any self-intersecting embedding of abed. vVe assume without loss 

of generality that the edges ad and be cross. Let x be the point of intersection as illus­
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a~------~------~~d 

Figure 4.7: A self-intersecting embedding of abed. 

trated in figure 4.7. No two adjacent edges have the same length, so x is distinct from 

a, b, e, d. Because the vertices are not all collinear, at least one of Laxb or Lcxd is not 

a straight angle. Therefore (Iaxl + Ixbl) + (Iexl + Ixdl) > labl + Icdl. By regrouping 

the terms of this expression, we obtain (Iaxl + )+ (Iexl + Ixbl) > labl + ledl. Since 

a, x, and d are collinear, as are c, x, and b, this implies that ladl + Ibel > labl + ledl, 

a contradiction. • 

This lemma is sufficient to prove that the quadrilateral abed admits infinitely many 

deflations. 

Theorem 7. A quadrilateral where the sums of the lengths of the opposite edges are 

equal and where no two adjacent edges have the same length admits infinitely many 

deflations. 

Proof. By lemma 14 a deflation that causes a self-intersection would have to bring 

all vertices collinear. Since only one vertex moves for each deflation, the embedding 

prior to this deflation would need exactly three vertices to be collinear. This would 

be a self-intersecting embedding, which by lemma 14 does not exist. • 

In fact, all polygons that admit an infinite sequence of deflations have a similar 

subpolygon. We prove that in any polygon that admits infinitely many deflations, at 

some point in the reconfiguration, two vertices Vl and Vk (k even) are brought into a 
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Figure 4.8: The proof of lemma 15. 

position such that IVIV21 + IVSV41 + ... + IVk-IVkl IV2VsI + !V4V51 + ... + IVkVI!' 

The following terminology will facilitate our discussion. In a deflation in which a 

subchain (VI, V2,'" ,Vk) is reflected across the line ~, we refer to .~ as the line 

oj deflation and to VI and Vk as the anchors of the deflation. We also say that the 

vertices V2, ... ,Vk-I are moved by the deflation. Note that the anchors of a deflation 

are not moved by it. 

vVe first demonstrate that when a vertex is used as the anchor of a deflation, its 

angle tends toward 0 or 211'. 

Lemma 15. Let L.Vi denote the internal angle at some vertex Vi oj the polygon. Then 

any deflation oj the polygon oj which Vi is an anchor causes the value 111' L.vil to 

either increase or remain constant. 

Proof. Let the deflation occur on the line bivJ, flipping the subchain (Vi, Vi+l, ... ,Vj) 

as illustrated in figure 4.8. The only angles for which the value 111' - I can be 

changed by this operation are Vi and Vj; all others are either maintained or reflected. 

If Vi-l lies on bivJ, then 111' - L.vi 1does not change. If Vi-l and Vi+l are initially on 

opposite sides of the line, then after the reflection they are on the same side. Thus the 

distance IVi-lvi+ll must decrease, and by Euclid's Proposition 1.25 the value 111' - L.vil 

also decreases. • 

Lemma 16. Each deflation causes the area oj the convex hull oj the polygon to de­
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crease. 

Proof. The line of deflation separates the polygon into two subpolygons, 

(VI, 1)2, V3,'" ,Vk, vd on one side of the line and (Vk' Vk+l," . ,VI, Vk) on the other. 

After a deflation, the former is placed inside the latter. The area of the convex 

hull of the entire polygon is decreased by at least the area of the convex hull of 

-
Lemma 17. VI and Vk be the anchors for infinitely many deflations. Then the 

area of the convex hull of the subpolygon (VI, V2, V3,'" ,Vk) moved by the deflations 

must tend to zero as the TmmbeT of deflations grows to infinity. 

Proof. The lemma follows immediately from lemma 16. • 

Lemma 18. Let Vi be a vertex that is moved by deflation infinitely many times. Then 

Vi 'is the anchoT faT infinitely many deflation8, and the intemal angle at Vi approaches 

o and 2Jr; that is, the value IJr LVii approaches Jr. 

Proof. Each time the vertex Vi is moved by deflation, the triangle DVi-lViVi+l 

must be contained in the convex hull of the flipped subpolygon. This triangle has 

area HVi-l Vi Ilvivi+ll sin . Since the distances are fixed, the sine of the angle must 

be decreasing. A vertex cannot approach Jr by lemma 15, so IJr - LVii must be ap­

proaching 7r. A vertex-angle can change only if it is an anchor of a deflation. _ 

Lemma 19. For any infinite sequence of deflations on a polygon, there aTe at least 

two vertices that are moved by deflation only finitely many times. 

Proof. To achieve a contradiction, suppose there are fewer than two vertices that 

are moved by deflation infinitely many times. Then all internal angles of the polygon 
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other than at these vertices approach 0 or 27f. The sum of the internal angles of a 

polygon of n vertices is (n - 2)7f, which is 0 modulo 27f. Therefore, if there is only 

one vertex that moves finitely many times, its angle must also approach 0 or 27f. 

All edges of the flipped subpolygon become more and more parallel as the deflations 

continue. At some point in the infinite sequence of deflations all edges become nearly 

horizontal, and the convex hull becomes nearly a line segment. Assume without loss 

of generality that this line segment is horizontaL 

A line of deflation must separate the two edges incident to each of its anchors; 

otherwise it would not split the polygon into two subpolygons. Since all internal 

angles are close to 0 or 27f, only horizontal lines can separate two consecutive edges. 

Therefore all lines of deflation must be horizontaL 

Consider the leftmost and rightmost vertices of the polygon. These vertices cannot 

be moved by a horizontal line of deflation because they would moved vertically, and 

there is no subpolygon extending left or right enough to contain them. Therefore the 

leftmost and rightmost vertices cannot be moved. • 

Lemma 20. Let V2, V3, ... ,Vk-l be vertices that are moved infinitely many times such 

that Vj and Vk are moved only finitely many times. Then k is an even number. 

Furthermore, after the last deflation which moves VI or Vk, IVl v21 + IV3v41 + ... + 
!Vk-lVk! !V2V3! + !V4V5! + ... + !vk v ll· 

Proof. Since the internal angles at V2, V3, ... ,Vk-l approach 0 or 27f as the number 

of deflations grows, the edges will alternate between those that are directed toward Vk 

and those that are directed toward VI. The sum of the lengths of all edges directed to­

ward Vk minus those directed toward VI must equal the net distance traversed, IVI Vk I.• 
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Figure 4.9: Left: A mouth. Right: A mouth flip. 

Figure 4.10: A star-shaped polygon that admits no mouth-flips. 

4.2.2 Mouth flips 

The existence of polygons that admit infinitely many deflations has implications for a 

convexifying motion known as a mouth-flip. A mouth of a polygon is three consecutive 

vertices such that the triangle formed by them is empty and exterior to the polygon, 

such as in figure 4.9. In a mouth flip, the two edges of the mouth are reflected across 

the line through its first and third vertices. 

Millett [108] demonstrated that any equilateral star-shaped polygon can be con­

vexified with finitely many mouth-flips, and Toussaint [157] later pointed out that 

n! suffice. It is also known [43] that there exist non-equilateral star-shaped polygons 

that do not admit a single mouth-flip, such as in figure 4.10. 

We can also construct star-shaped polygons that cannot be convexified by mouth­

flips, even though they admit infinitely many. Consider the polygon abede of fig­

ure 4.11 where labl + ledl = ladl + Ibel, with band e in the pocket of the convex 

hull determined by ad. Then abed forms a quadrilateral that cannot be deflated. 

The polygon can be convexified only if band c can cross ad, which is impossible by 

theorem 7. 
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d 

Figure 4.11: A polygon that admits infinitely many mouth-flips. 

4.3 Convexifying Polygons with Simple Projections 

\Ve leave our discussion of pivots and planar polygons and turn to more general 

motions and polygons. In chapter 1, we demonstrated locked chains and polygons, 

illustrated in figures 1.12, 1.13, 1.14, and 1.15. We now prove that if a polygon admits 

a simple orthogonal projection to some plane, it can be convexified. An orthogonal 

projection of a polygon onto some plane P is the set of all points q E P for which 

some point of the polygon lies on the line through q orthogonal to P. Intuitively, 

one may think of the projection as the shadow the polygon would cast on the ground 

when a light source is infinitely high, as in figure 4.12. We call a projection simple if 

no two points of the polygon project to the same point on the plane. 

Theorem 8. A polygon which has a simple orthogonal projection can be reconfigured 

to a polygon with a convex orthogonal projection. 

Proof. Assume the polygon has a simple projection onto the xy-plane. By keep­

ing the z-coordinate of each vertex fixed, we can reconfigure the projection on the 

xy-plane by making the polygon in three-space track the motions as necessary. By 

Connelly, Demaine, and Rote [37] and Streinu [149], any planar polygon can be con­

vexified. If the projection does not self-intersect during the motion, surely the polygon 

does not self-intersect. Thus we can reconfigure any polygon with a simple orthogonal 

projection into a polygon with a convex orthogonal projection. • 
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Figure 4.12: A polygon with a simple orthogonal projection to the xy-plane. 

Our algorithm to convexify a polygon with a simple projection first reconfigures 

it into a polygon with a convex projection. (For brevity, we will often omit the word, 

"orthogonal," and write only, "simple projection.") The algorithm then repeatedly 

reconfigures the polygon while maintaining the convexity of its projection. The overall 

motion is a simple combination of basic primitives which are easy to compute and 

visualize. We now explain our first primitive motion, which straightens a monotonic 

polygonal chain lying on a single vertical plane. 

4.3.1 Springs 

Consider a polygonal chain which is entirely contained in a vertical plane, such as 

the one illustrated in figure 4.13. If we wish to straighten this series of edges, we 

need only to pull the rightmost vertex to the right, moving only the last two vertices 

and changing the angle at the third, as in figure 4.14. \V'hen the second vertex 

straightens, we freeze that joint permanently as straight, thereby effectively deleting 
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Figure 4.13: Coplanar edges whose projection is a single edge. 

Ao------. ---­
~--.----

Figure 4.14: A spring-unfolding of a planar chain. 

a vertex, resulting in a polygonal chain of one fewer vertex. At each step the two right 

edges move until straightened, at which point they are frozen to act henceforth as a 

single edge. This causes the three marked vertices to flex; the black vertices move 

and are opened while the white vertex opens but stays in position. The procedure 

is then repeated with the two rightmost edges (including the newly fused edge) until 

either the entire chain is straightened or the motion is stopped. It is vital to realize 

that the projection of the polygonal chain is, at all times, in the same vertical plane. 

Thus the projection is always a line segment, growing throughout the motion. 

As this motion resembles the straightening of a spring (as in figure 4.15), we refer 

to this straightening as a spring-unfolding of a polygonal chain. In keeping with this 

terminology, we define a spring as a consecutive sequence of at least two non-collinear 
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Figure 4.15: Pulling a spring until it straightens. 

edges whose simple orthogonal projection is a line segment. Thus the polygonal chain 

of figure 4.13 is a spring. 

It is a simple matter to compute when each vertex straightens given a RAM 

computer which can compute square roots (and therefore distances). Because only 

two edges move at once, each motion, which straightens a vertex, can be computed 

in constant time. Thus a spring of n vertices can be straightened in 0 (n) time. 

4.3.2 The Spring Algorithm 

Our algorithm requires that the convex projection be a triangle. Changing a polygon 

from one convex position to another is not difficult and can be accomplished in linear 

time as per our algorithm of section 3. L By keeping the z-coordinate of each vertex 

fixed, we can reconfigure the projection on the xy-plane while making the polygon in 

three-space track this motion. 

Once the projection is a triangle, all edges of the polygon lie along three vertical 

planes. Therefore the polygon is composed of three or fewer springs. We adopt the 

term k-spr'ing as a triangle which contains exactly k springs. For example, a polygon 

with a triangular projection 6abc that has only one edge projecting onto ab, but 

several edges projecting onto each ac and be, is a 2-spring. 

The Spring Algorithm works just as one would intuitively straighten a trian­

gle made of springs. From a high-level standpoint, we repeatedly pull on vertices, 

straightening a spring each time. For low-level details, it will become apparent that 

we can easily compute which vertices of a spring move and at which time since their 
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motions are uniquely linked to the high-level description of the springs. 

The following is our algorithm in a high-level form. 

The Spring Algorithm 

1. 	 \Vhile the polygon has more than four edges, 

(a) 	If the polygon is a 3-spring, reconfigure it into a 2-spring (as per fig­

ure 4.16). 

• 	 Fix the position of the spring abo Keeping the height of c fixed, pull e 

orthogonally away from ab until one of the springs (ae or be) straight­

ens. At any moment, each of the three springs remain in a single 

vertical plane, and thus the projection is always a triangle during this 

step. 

(b) 	 Else if the polygon is a 2-spring, reconfigure it into a I-spring (as per 

figure 4.17). 

• 	 Let ab be the non-spring edge; this edge remains fixed. Keeping the 

height of c fixed, pull e orthogonally away from ab until one of the 

springs (ae or be) straightens. As in the previous step, each of the 

three springs remains in a single vertical plane, so that the projection 

is always a triangle throughout this step. 

(c) 	 Else if the polygon is a I-spring, reconfigure it into a or 3-spring or a 

quadrilateral (as per figure 4.18). 

• Let ab, be be the non-spring edges, labeled such that the angle at c is 

acute. Fix in space the median1 vertex d of the spring ac. Keeping e at 

1Suppose the spring ae contains k vertices. By the phrase, "median vertex d of the edge ae," we 

mean a vertex d such that each ad and de contain roughly kj2 vertices. To be exact, the two chains 

ad and de would contain fk/2l and f(k + 1)/2l vertices, respectively. 
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b-----~e 

Figure 4.16: Step 1a. Reconfiguring a 3-spring into a 2-spring. 

a fixed height, rotate be to open the internal angle at b while unfolding 

the spring cd until one of the two following possibilities occurs. 

i. 	 If the edges and be achieve collinear projections, we attain a 

3-spring, unless and happen to be collinear in three-space, in 

which case we attain a 2-spring. 

n. 	 If the spring cd straightens, rotate cd to open the internal angle 

at c while keeping d at a fixed height and unfolding the spring 

ad until one of the three following conditions is satisfied. The 

edges be and cd could achieve collinear projections, resulting in a 

2-spring (or I-spring should b, c, and d be collinear). The edge ab 

and the spring ad could achieve collinear projections, resulting in 

a I-spring. Lastly, the spring ad could straighten, resulting in a 

three-dimensional quadrilateral. 

2. 	 If the polygon has four edges, label it abed. Rotate e about the diagonal bd 

until the quadrilateral is planar. Convexify the planar quadrilateral. 

3. 	 Return the convexified polygon. 

We first prove the correctness of the algorithm. Since each step involves the 

straightening of vertices until a triangle or quadrilateral is obtained, certainly the 

algorithm will finish. We now prove the hypotheses on which the algorithm is based, 

that the polygon never self-intersects and that the projection is a triangle or convex 
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Figure 4.17: Step lb. Reeonfiguring a 2-spring into a I-spring. 

c 

c 

b__----"c b 

d 

a d 

c 

b___----;­ b b 

a a a 

Figure 4.18: Step Ie. Reeonfiguring a I-spring. Top: Step l(e)i. Bottom: Step l(e)ii. 
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quadrilateral at all times. No spring can intersect itself, so intersections could only 

be between two springs, resulting in a non-convex projection. Note that during the 

execution of steps Ia and 1 b the projection is a triangle, so there is no possibility for 

a non-convex projection. During step Ic, the vertex c is rotated about b, causing the 

projection to be a quadrilateral. Consider the motion of c during this step. Because 

L.acb is acute, the quadrilateral will stay convex. (If c were obtuse, then the angle at 

d would initially become reflex.) From this point on, if any vertex of the projection 

straightens, it becomes a triangle. Therefore the projection is convex at all times. 

Each high-level motion (steps la, Ib, and Ic) is easily computable. "Ve sum the 

lengths of all edges in the springs to discover their length when straightened to see 

which spring straightens first. For the low-level description of the motions of individ­

ual vertices, we can determine the position of each during the spring-unfoldings since 

we know how the length of each spring increases over time. As noted in section 4.3.1, 

a spring-unfolding of a chain can be computed in time linear in the number of ver­

tices in the spring, and the spring-unfolding is determined solely by the motion of the 

endpoints of the spring. Therefore each high-level motion can be computed in time 

linear in the number of vertices of the polygon. 

During every two or three iterations of the while loop (step 1), the polygon will 

be in a I-spring configuration. If the polygon has n (unstraightened) vertices at this 

point in the algorithm, n 1 of these will be contained in the spring. During the 

execution of step Ie, the spring is separated into two nearly equal parts, each of 

which contains no less than vertices. After two or three more iterations of step 1, 

the polygon is again a I-spring, so at least one of these two springs of vertices 

must have been straightened. After at most every three iterations, the polygon's 

complexity, and thus the time complexity of each iteration, is approximately halved. 

By this geometric progression, the entire algorithm finishes in linear time. 

We further note that at no point in time are more than seven vertices opening or 
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closing. During step 1 only two adjacent edges of the projection are in motion at any 

one time. The three endpoints adjacent to these two edges are in motion, and for 

each of two edges in the projection corresponding to springs, two additional vertices 

on each are involved in the spring-unfoldings. Therefore the total number of vertices 

changing at anyone time is seven. 

Theorem 9. A polygon which admits a convex orthogonal projection can be convex­

ified in O(n) time with O(n) motions that each alter 0(1) vertices. 

We can apply theorem 9 to a variety of previous results on convexifying polygons 

in the plane, by first convexifying the projection and then applying the Spring Algo­

rithm. Building on Streinu's algorithm [149] to convexify a planar polygon, we obtain 

theorem 10. 

Theorem 10. A polygon which admits a simple orthogonal pmjection can be convex­

ified with 0(n2 ) motions. 

There are currently two classes of planar polygons which have special convexifying 

algorithms. We demonstrated how to convexify monotone polygons in section 3.2, and 

Everett, Lazard, Robbins, Schroder, and 'Whitesides [51] have designed an algorithm 

to convexify star-shaped polygons. Applying theorem 9 to these results yields the 

following two theorems. 

Theorem 11. A polygon which admits a monotonic orthogonal projection can be 

convexified in 0(n2 ) time with 0(n2) motions that each alter 0(1) vertices. 

Theorem 12. A polygon which admits a star-shaped orthogonal projection can be 

convexified in 0(n2 
) time with O(n) motions that each alter O(n) vertices. 

In light of the above, it is important to be able to determine if a polygon has an 

orthogonal projection or one of the mentioned special cases. Bose, Gomez, Ramos, 

and Toussaint [24] have an algorithm to determine whether a polygon has a simple 
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orthogonal projection in O(n4) time and another which determines whether it has a 

monotonic projection in O(n2 
) time. The former algorithm was also independently 

discovered by Barequet, Dickerson, and Eppstein [14}. No algorithm to determine 

whether a polygon admits a star-shaped projection has yet been published. 



Chapter 5 

Dihedral Rotations 

For the remainder of the thesis, we deal with chain linkages in three dimensions. Recall 

the molecular model of figure 5.1 used by the chemistry and physics communities. 

Proteins and other polymers consist of long backbones with short side chains, and 

their structures are often approximated by chain linkages. As in the model we have 

used in previous chapters, the chain can be reconfigured so long as it does not self­

intersect and the edge lengths are preserved, but we impose the additional restriction 

that the vertex-angles are maintained throughout the motion. Thus the range of 

motion permitted at a vertex of the chain is as illustrated in figure 5.2. 

Figure 5.1: Ball-and-stick model of a protein. Proteins are composed of a long chain 

called a backbone, drawn with white bonds, and various side chains, shaded. 

73 
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Figure 5.2: Range of motion allowed with a fixed joint-angle. 

The simplest reconfiguration of such a chain is a dihedral rotation, illustrated in 

figure 5.3 and in stereo in figure 5.4. Select some interior edge uv of the chain. This 

defines two subchains A. and B. We keep them individually rigid and, leaving A. 

fixed in space, rotate B around uv (while maintaining the fixed vertex-angle at v) by 

some angle 11. Due to the fixed vertex-angle at v, B spins about an axis of rotation 

collinear with the edge uv. The effect of such a motion is to change the dihedral 

angle atuv. Given a four-vertex subchain (t, u, v, w), the dihedral angle at uv is the 

angle between the planes determined by 6tuv and 6uvw. Thus we call the motion a 

dihedral rotation of angle ¢ at uv. Because the chain must remain simple during the 

motion, we call the rotation feasible if it can be performed without self-intersection. 

We consider a configuration of such a chain to be any embedding which does not 

self-intersect and preserves the lengths of the edges and the angles at the vertices. 

We begin our discussion with determining the feasibility of a dihedral rotation and 

continue with the matter of preprocessing a chain to perform such computations more 

quickly. 
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B 


Figure 5.3: A dihedral rotation of angle ¢ at uv. (Shown in stereo in figure 5.4.) 

u 

Figure 5.4: Stereogram: A dihedral rotation at uv. (The stationary part of the chain 

has been chosen to be planar in order to emphasize the three-dimensional motion; 

this is not a requirement of the dihedral rotation.) 
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5.1 	 Determining the Feasibility of Dihedral Rota­

tions 

We formalize the problem as follows. 

Dihedral Rotation: Given a three-dimensional chain; a selected edge UV, and an 

angle dJ, can a dihedral mtation of angle ¢ be periormed at 'uv without causing the 

chain to self-intersect? 

We sketch a quadratic-time algorithm to answer the above question and provide a 

lower bound on its complexity. 

Theorem 13. The Dihedral Rotation problem is solvable in O(n2 ) time and O(n) 

space, where n is the number of edges in the chain. 

Proof. The main idea is to spin one of the subchains around uv completely (by 

angle 21f), and examine all self-intersections which occur along the way. We compute 

the angle of rotation at which intersection occurs during the motion, and if none occur 

before angle <P is reached, the dihedral rotation can be performed. 

Consider any plane P incident to uv. Without considering intersections between 

the two subchains. rotate subchain A around uv and trace where the subchain would 

sweep through P during the motion. Perform the same for subchain E. Each line 

segment rotating about uv sweeps a pair of hyperbolic arcs1 in P, so we have two 

planar arrangements of O(n) hyperbolic arcs each. 

Rotating sub chain A is equivalent to rotating subchain E, modulo a rotation of 

the entire chain, because both are about the same axis. If executing a rotation of 27r 

1 Assume uv is on the x-axis and that P is the xy-plane. Rotating a point (x, y, z) about uv sweeps 

through P at (x, Vy2 + Z2,0) and (x, Vy2 + Z2,0). A line parametrized by (x,y,z) + t(a,b,c) 

sweeps out two curves (x + at, ±J(bt+ y)2 + (ct + z)2, 0), which asymptotically approach the lines 

(x + at, ±ty'b2 + c2 , 0). 
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causes an intersection, there will be an intersection of the two arrangements. We can 

compute if any arcs corresponding to A intersect an arc corresponding with B with 

brute force in O(n2 ) time. Faster yet, we can use the algorithm of Balaban [11]. This 

yields a time complexity of O( n logn + k), where k is the sum of the self-intersections 

in each arrangement and the intersections between arrangements. (Although k could 

be as large as 8(n2) in the worst case, it would prove faster in some instances than 

brute force.) Regardless of the method used to detect intersections, as each intersect­

ing pair of arcs is detected, we determine the angle of rotation required before such 

an intersection would occur during the dihedral rotation. Thus the entire algorithm 

finishes in O(n2 ) time. Furthermore, once we detect a pair of intersecting arcs and 

determine the angle of rotation required, we will never again need to examine that 

intersection. Therefore we do not need to store intersections already detected, so we 

require only linear space by using brute force or Balaban's algorithm. _ 

Rather than asking the Dihedral Rotation problem for an arbitrary <p, one may 

wish to know if a complete rotation (of angle 21f) can be performed. This special case 

can be handled much more efficiently. 

Theorem 14. For <p = 21f, the Dihedral Rotation problem is solvable in deterministic 

time o(n20«n) log2 n) and space O(n2a(n)) and in expected time O(n20«n) logn) and 

space O(n2o:(n)), where a(n) is the slow-growing, nearly constant, inverse Ackermann 

function. 

Proof. We repeat the technique used in the proof of theorem 13. However, for 

this choice of <p, we do not have to check to see which intersection occurs first in 

our arrangements. If any intersection at all exists between the arrangements, the 

dihedral rotation cannot be performed. Given two arrangements of hyperbolic arcs 

which pairwise intersect at most twice, we can detect an intersection between them 

in the stated deterministic time and space using algorithms of Agarwal and Sharir [1] 
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and of Guibas, Sharir, and Sifrony [71]. By replacing the latter with the algorithm of 

Chazelle, Edelsbrunner, Guibas, Sharir, and Snoeyink [32], we can achieve the stated 

expected time and space. • 

The Dihedral Rotation problem can thus be solved in quadratic time, and in 

expected time O(n2a (n) logn) for the special case where ¢ = 211. vVe now prove that 

any algorithm which solves this problem requires n(n log n) time in the worst case. 

Theorem 15. The time complexity of the Dihedral Rotation problem on a chain of 

n edges is n(nlogn) under the algebraic decision tree model of computation. 

Proof. We perform a reduction to Dihedral Rotation from Element Uniqueness. 

Element Uniqueness: Given a set S = {Sl,' .. ,sn}, is every element unique? In 

other wordB, does i j imply that .'Ii =1= Sj ? 

In 1983, Ben-Or [16] proved that the time complexity of the Element Uniqueness 

problem is known to have an n(n logn) lower bound under the algebraic decision 

tree model. Given a set S, we create a chain and select an edge in linear time such 

that answering the Dihedral Rotation problem also answers the Element Uniqueness 

problem on S. 

Let N be the number of elements in the set S. We consider all elements to be 

strictly positive. If this is not the case, we can add some suitable integer to each 

element in the set in linear time. 

As the chain we will build is difficult to visualize, it will be far easier first to 

explain how a tree can be constructed in the xz-plane to answer our query. We will 

not address the issue of constructing the tree but will later show how to construct a 

chain in linear time which behaves in an identical manner. 
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v V
'----------- u '---------4 U 

Figure 5.5: Left: The tree for a set with no repeated elements, {2, 1, 5, 8, 7, 6}. Right: 

The tree after a rotation of 7r. 

Construction of the tree 

We discuss the tree in three parts, the base and the left and right gadgets. The base 

and the left gadget will remain stationary while the right gadget spins about an edge 

on the base. If and only if element uniqueness holds, the two gadgets will not collide. 

We begin our construction by drawing the base, a four-vertex chain from (0,0,0) 

to (0,0, -1) to u = (N + ~,O, -1) to v = (N + ~,O, 0). 

For the left gadget, we first draw a vertical edge from (0,0,0) to (0,0, max{ S}). 

We call this edge the stem of the gadget. For each Si, we connect a new edge 

(0,0, si)(i, 0, Si) to the stem. In other words, from the stem we build an edge of 

length i extending to the right at height Si. If Si is not unique, we have two overlap­

ping edges, but for the sake of argument we allow the intersection. (We will avoid 

this problem later when we create the chain.) 

We create the right gadget similarly, except each edge has length N - i + 1. We 

first draw the stem from (N +~, 0, 0) to (N +~, 0, max{S}). For each Si, we connect a 

new edge (N + ~,O, si)(2N + ~ - i, 0, Si) to the stem. In other words, from the stem 

we build an edge of length N - i + 1 extending to the right at height Si. (Again, 

ignore the problems of self-intersection if Si is not unique.) 

Examples are shown in figures 5.5 and 5.6. 

We now perform a complete rotation (of angle 27r) at uv. Since the tree is orthog­

onal, every edge will stay at the same height during the motion. Therefore the only 
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V 
L-------'u 

Figure 5.6: Left: The tree for a set with a repeated element, {2, 1,5,8,7,5}. The 

endpoints of the overlapped edges are encircled. Right: the tree after a rotation of 'li. 

The bold segment indicates the collision. 

possibility of a collision is that two edges of the same height, and thus corresponding 

to elements of the same value, collide. Recall that the two stems are distance N + ~ 
apart. Therefore if and only if the lengths of two edges of the same height on opposite 

gadgets sum to at least N + ~ will there be a collision. Since the lengths of the two 

edges corresponding to the same element sum to N +1, we have a collision only if two 

edges corresponding to different elements collide. This will necessarily happen if two 

elements Si and Sj (i < j) have the same value. The left gadget edge corresponding 

to has length j, and the right gadget edge corresponding to Si has length N - i. 

Since i < j, the two edges have total length at least N + 2. If 8i = 8j, the edges 

would be at the same height and therefore collide. 

Construction of the chain 

We create a three-dimensional chain that does not self-intersect and behaves exactly 

like the tree. In fact, from the viewpoint of y = 00, the tree and the chain look 

identical. 

The base is the same, a four-vertex subchain from (0,0,0) to (0,0, -1) tou 

(N +~, 0, -1) to v = (N +~, 0, 0). For the left gadget, we create the first edge similarly 

to the tree by drawing an edge up from (0,0,0) to (0,0, sd and another horizontally 

to (1,0, sd. To avoid intersections in the chain we exploit the third dimension, y. We 

draw an edge back to a point just in front of the stem, at (0, 4~' 81)' Now we are 
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v 
u 

Figure 5.7: Oblique view of the base and left gadget for the set (2,1,5,8,7,5). There 

are two pairs of edges at height z = 5 corresponding to the repeated element. (Shown 

in stereo in figure 5.8.) 

free to draw a vertical edge from (0, - 4~' sd to (0, ,S2), which places us at height 

82 in preparation for the next two edges, to (2,0, S2) and back to (0, - 4~' 82). \lVe 

continue this pattern drawing edges to (0, -~~J, 8i), (i, 0, S'i), (0, - 4~' Si), and so on 

until the gadget is complete. We construct the right chain in the exact same fashion, 

except that we reverse the labeling of the elements from 81, ... ,Sn to Sn, . .. ,SI' 

An illustration of the left gadget and the base is in figure 5.7 and shown in stereo 

in figure 5.8; a bird's eye view of the whole chain is in figure 5.9. 

\lVe perform a complete rotation (of angle 27r) at uv. Since all edges are within 

radius N of their respective gadget stem, and the stems are N ~ apart, no part of 

either gadget will enter a cylinder of radius ~ around the stem of the opposite gadget. 

Because all the vertical edges are contained in a cylinder of radius ~ around the stems, 

only the horizontal edges corresponding to elements in the set S can collide. Thus the 

behavior of the chain exactly mimics that of the tree. The entire chain is illustrated 

in figure 5.10 and shown in stereo in figure 5.11. • 

As an aside, this also implies a lower bound for the computing the feasibility of a 
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v V 


u 7.l 


Figure 5.8: Stereogram: Oblique view of the base and left gadget for the set 

(2,1,5,8,7,5). 

Figure 5.9: View of the chain from above (z = +00). Not to scale; the v-dimension 

is magnified for clarity. 
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Figure 5.10: Oblique view of the chain for the set (2,1,5,8,7,5). If a dihedral rota­

tion is performed atuv, the edges indicated at the arrows, which correspond to the 

repeated element 5, will collide. (Shown in ster-eo in figure 5.11.) 



84 Chapter 5. Dihedral Rotations 

Figure 5.11: Stereogram: Oblique view of the chain for the set (2,1, 8,7,5). 

pivot operation of section 4.1. We can easily convert the above chain into a polygon 

with the addition of a few edges to obtain the polygon of figure 5.12. Performing a 

pivot on the diagonal determined by the red vertices has the same effect as a dihedral 

rotation at the edge uv of the chain. Thus determining the feasibility of a pivot also 

requires O(n log n) time in the algebraic decision tree model. 

5.2 Preprocessing Chains for Dihedral Rotations 

The previous results apply to single motions, but the folding of a molecule is a com­

plex process. If it were modeled with dihedral rotations, one would expect at least 

hundreds or thousands of motions. In this section we study the complexity of deter­

mining the feasibility of a sequence of dihedral rotations. To compute each motion 

as if it were a separate problem seems inefficient as the chain always maintains its 

edge lengths and vertex-angles. An intuitive goal would be to preprocess the chain so 
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Figure 5.12: Stereogram: Converting the chain into a polygon. 

that the feasibility of each ensuing dihedral rotation could be determined in o(n log n) 

time. 

We show two problems concerning multiple dihedral rotations to be 3SUM-hard. 

A problem is 3SUM-hard if there is a subquadratic reduction from the following. 

3SUM: Given a set of integer's, do there exist three elements that sum to zero? 

3SUM-hardness was introduced by Gajentaan and Overmars [61] to provide evi­

dence in support of conjectured O(n2) lower bounds for several problems. The best 

known algorithm for the 3SUM problem on n integers runs in time 8(n2 ). Quadratic 

lower bounds have been proven in restricted models by Erickson [50], but the strongest 

lower bound yet proven in any general model of computation is n(n log n). 

In section 5.2.1, we consider the case where we wish to preprocess a chain such that 

we can quickly answer a single dihedral rotation query whose location (the edge on 
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which the rotation occurs) is not known in advance. We show that preprocessing the 

chain and answering n queries is 3SUM-hard. Thus O(n2
) preprocessing is almost 

certainly required to achieve sublinear query time. 

In section 5.2.2, we prove a much stronger result. If we wish to determine the 

feasibility of a sequence of dihedral rotations, then answering each query in sublinear 

time is impossible after any amount of preprocessing unless there exists a family of 

decision trees of subquadratic depth that solve the 3SUM problem. Since this seems 

unlikely in light of current research [50], answering a sequence of n queries is almost 

certainly 3SUM-hard regardless of the preprocessing. 

5.2.1 Single dihedral rotation queries 

Suppose we are given a chain and are asked to preprocess so that we can quickly 

determine if a dihedral rotation is feasible when given an edge and an angle <p. We 

are not interested in altering the chain but only in whether this one rotation could 

be performed. 

Single Dihedral Rotation Query: Preprocess a chain so that a single arbitrary 

dihedral rotation query can be answered efficiently. 

Vve are interested in both the preprocessing time and the time needed to answer 

a query. There is an inherent tradeoff between the two durations. \iVe could spend 

O( n2 log n) time computing the degrees of freedom for all possible dihedral rotations. 

If we store the results in a table, then any query could be answered simply by look­

ing up the result. On the other hand, with no preprocessing, each query requires 

O(nlogn) time. 

Our discussion provides strong evidence for the following conjecture, which demon­

strates the link between the time spent preprocessing and the time spent answering 

each query. 
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Conjecture. In any scheme to preprocess a chain of n edges to answer Single Dihe­

dral Rotation Queries, either 

• the prep1'Ocessing requires O(n2 ) time, or 

• each ensuing query requires O(n) time. 

In other words, we conjecture that unless quadratic time is spent preprocessing in 

the worst case, then the query time will be at least linear. \Ve support this by proving 

that the preprocessing and n queries is 3SUM-hard. Rather than reducing 3SUM 

to Single Dihedral Rotation Query (SDRQ), we instead reduce from the following 

problem, often referred to as 3SUM/. 

3SUM/: Given three sets of integers, do there exist three elements, one from each 

set, that sum to ze1'O? 

Although 3SUM is the more famous problem of the pair, 3SUM' will be easier 

to use in achieving our reduction to SDRQ. This poses no additional complication 

since the two problems are reducible to one another in linear time, only changing 

the complexity of the input by a constant factor [61]. Therefore a reduction from a 

3SUM problem on n integers is equivalent to a reduction from a 3SUM'problem on 

three sets of which the largest contains n integers. 

Because the time complexity of the 3SUM (or 3SUM') problem is unknown, we 

adopt the convention of using 3SUM(n) to denote the time complexity of the 3SUM 

problem on n integers. 

Theorem 16. In any scheme to preprocess a chain of n edges to answer Single Di­

hedral Rotation Queries, the preprocessing and n queries is 3SUM-hard. 

Proof. We reduce 3SUM' to SDRQ. In particular, given any 3SUM' problem, we 

create, in O( n log n) time, a chain such that O(n) dihedral rotations queries answer 
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A' B' C' 

Figure 5.13: Reducing 3SUM' to Single Dihedral Rotation Query. 

the 3SUM' problem. If time P is spent preprocessing and time Q is necessary per 

query, then P + nQ = D(3SUM(n)). 

We will need to transform the three sets A, B, and 0 for our reduction. Let m 

be the maximum absolute value of any element in AU B U C. We build three sets 

A', B', and C' as follows. We create A' by subtracting 2m from every element in A, 

B' by multiplying every element of B by -~, and C' by adding 2m to every element 

of C. Thus A' = {a - 2m : a E A}, B' = {-b/2 : b E B}, c' = {c + 2m : CEO}. 

If and only if some triplet (a E A) + (b E B) + (c E C) = 0, there is some triplet 

(a - 2m E A') - 2(b/2 E B') + (c + 2m EO') = a' - 2b' + c' = 0. Thus we have an 

equivalent 3SUM' problem on A', -2B', C'. 

We create a planar chain as illustrated in figure 5.13. (The explanation and illus­

tration of the chain are much easier under the assumption that the sets are sorted, 

although one can create a chain that does not require sorting by exploiting the third 

dimension.) The chain has a comb with teeth facing up on the left end, an axis­

parallel staircase in the middle, and a comb with teeth facing down on the right. For 

each element a' E A', we create a very slim upward tooth with x-coordinate a' on the 

left comb. We then create the orthogonal staircase such that a vertical edge exists 

with x-coordinate b' for every b' E B', and finally, for each element c' E C' we create 

a very slim downward tooth with x-coordinate c' on the right comb. 

We now ask O(n) queries; namely, can a dihedral rotation of angle 21f be performed 

at each vertical edge in the orthogonal staircase? Since the chain is planar, the only 

possibility for an intersection is when the rotation has reached 1f. At this point, one 

comb and part of the staircase have been reflected across the vertical edge, as in 
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Figure 5.14: An edge spin at the indicated vertical edge. 

C' 

Figure 5.15: Left: There exist no a' E A' and c' E C' such that a' - 2b' + c' O. 

Right: The 38UM' is solved, as a' 2b' + c' = O. 

figure 5.14. 

Because the rotation is performed at a vertical edge, no edge changes height. Thus 

the staircase cannot self-intersect. Each comb stays individually rigid, so neither 

comb can self-intersect. Furthermore, because each vertical edge in the staircase is at 

distance at most m from another staircase edge, but at distance at least 3m/2 from 

any edge of a comb, the dihedral rotation cannot cause a comb and the staircase to 

intersect. Therefore the only possible intersection during the rotation occurs between 

the two combs. Since the height of an edge is maintained throughout the motion, 

intersections are only possible at the teeth. 

Suppose two teeth with x-coordinates a' and c' intersect during a dihedral rotation 

at a staircase edge with x-coordinate b'. Since we have in essence performed a reflec­

tion across the line x = 1/, an intersection occurs if and only if the distance from the 

tooth at a' to the line x = b' is equal to the distance from the tooth at c' to the same 

line. This implies that b' - a' c' b', or differently stated, that a' - 2b' + c' O. 

Therefore, if and only if there exist some a' E A' and c' E C' such that a' - 2b' +c' 0, 

the chain self-intersects when we perform a dihedral rotation on the vertical edge at 

x-coordinate b'. Figure 5.15 illustrates two examples. 

We perform a query on each vertical edge of the staircase. If a dihedral rotation 
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of angle 27r is possible at every such edge, then there exist no a', b', c' for which 

a' - 2b' + c' 0. If one of the rotations is not possible, it must be due to a potential 

collision, which implies the existence of such a triplet a', b', c'. 

Since the preprocessing (of time complexity P) and O(n) queries (of time com­

plexity Q each) answer the 3SUM' question, P + nQ = rl(3SUM(n)). • 

5.2.2 Multiple dihedral rotation queries 

As mentioned earlier, we are often not interested in one motion but rather in a 

long sequence of motions. Instead of determining the feasibility of a single dihedral 

rotation, we would like to perform rotations and determine quickly if each is feasible. 

In other words, we might ask, "Can we perform a dihedral rotation at edge el by 

angle <PI, then at edge e2 by angle <P2) then at edge e3 by angle $3, and so on?" This 

leads us to the following problem. 

Multiple Dihedral Rotation Query: Preprocess a chain such that one can re­

peatedly determine the feasibility of dihedral rotations and perform them if feasible, 

thereby altering the chain after each query. 

Again, we are interested in both the preprocessing time and the time to answer 

each query. Vve demonstrate that there does not exist a scheme in which the time to 

answer a query is sub linear unless there exists a family of subquadratic decision trees 

to solve 3SUM. This seems unlikely in light of results by Erickson [50] which demon­

strate a quadratic bound on the size of such a tree, although in a restricted model 

of computation. Even if such a family of decision trees does exist, the preprocessing 

time would be at least the time required to construct the nth tree. 

The concept of using a family of decision trees to analyze complexity in this fashion 

was introduced by Meyer auf del' Heide [105], who proved that for the NP-complete 
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problem KNAPSACK of input length n there exists a linear search tree of depth 

O(n4Iogn) which solves it. However, this result is not easily exploitable by any 

general algorithm for KNAPSACK since there is no known polynomial algorithm to 

build each tree. To use such a scheme directly, one would have to construct the 

nth linear search tree, which requires exponential space. Because the algorithms are 

different for each input length, the family of decision trees is called a nonuniform 

algorithm. 

It may seem contradictory that a problem whose complexity is believed to be super­

polynomial (unless P NP) can be solved by a family of decision trees of polynomial 

depth. The difference lies in the fact that an algorithm that solves KNAPSACK must 

accept an input string of any length and output whether the input string satisfies the 

conditions of the problem. A nonuniform algorithm is a collection of trees such that 

for any fixed length there exists a tree which accepts an input string of that length 

and outputs whether the string satisfies the conditions of the problem. To even simu­

late a general algorithm with a nonuniform algorithm one would need infinitely many 

trees-or rather to build the appropriate tree after counting the length of the input. 

Thus the existence of an infinite family of sub quadratic-depth decision trees which 

solve 3SUM would not contradict the conjecture that 3SUM has a time complexity 

of S1(n2
). 

vVe now demonstrate the link between a subquadratic nonuniform algorithm for 

3SUM' and the Multiple Dihedral Rotation Query problem. If such a nonuniform 

algorithm exists, let 3SUMTREE(n) denote the time complexity of constructing the 

decision tree which solves 3SUM' where the largest set has at most n elements. 

Theorem 17. If 3SUM has quadratic time complexity, then in any scheme to pre­

process a chain of n edges to determine the feasibility of a sequence of dihedral rota­

tions, either 

• the preprocessing requires S1(3SUMTREE(n)) time, or 
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• answering a dihedral rotation query requires linear time in the worst case. 

Furthermore, if there does not exist a subquadratic nonuniform algorithm which 

solves 3SUM, then there does not exist a scheme to preprocess a chain of n edges 

such that each dihedral rotation que'ry can be an8wered in sublinear time. 

Proof. We reduce the construction of a subquadratic nouuniform algorithm for 

3SUM' on sets of size n to Multiple Dihedral Rotation Query with the following 

approach. Suppose we are given the number n and asked to construct an algorithm 

for the 3SUM' problem where each set has n elements. 'vVe create a chain whose 

structure is determined by the number n, and spend time P preprocessing it to 

answer multiple dihedral rotation queries. When the preprocessing has finished, the 

sets A, B, and C are revealed. \Ve perform O(n) dihedral rotations, each in time Q, to 

move the chain into a configuration similar to the one in figure 5.13 for the three sets. 

After O( n) additional rotations, as in the proof of theorem 16, the 3SUM' is solved. If 

nQ o(n2), then the 3SUM' on A, B, and C has been solved in sub quadratic time. 

Therefore constructing a subquadratic nonuniform algorithm for 3SUM' has been 

reduced to preprocessing the chain. If Q = o(n), P must be O(3SUMTREE(n)). If 

there exists no sub quadratic nonuniform algorithm for 3SUM1
, then Q must be of 

linear complexity. 

Vve build a planar chain for the given n. In figure 5.16 are the three basic building 

blocks, which we refer to as gadgets. On the left is the gadget used to construct 

the left comb. \Vith a dihedral rotation at UV, we can bring a~ and a; any distance 

apart as we choose, to a maximum of the length of the gadget when fully extended. 

Dihedral rotations at 0;1 and 0;2 bring al and a2 (and the rest of the chain) back into 

the original plane. Thus the only end result after the three rotations is to shrink the 

distance between the two teeth, leaving the rest of the chain unaffected except for 

a translation. The center gadget performs a similar function, allowing the distance 

between two steps in the staircase to be selected with a dihedral rotation at 
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a'1 a'2 v 

b'2 

0::1 U ~~ 

(31 U0::2 

c~ c'2V b~ 

Figure 5.16: Left: The gadget for setting the distance between two consecutive teeth 

on the left comb. Center: The gadget for consecutive elements of the staircase. Right: 

The gadget for consecutive elements of the right comb. 

f-l-j 1---3.5----j:5J 

Figure 5.17: The chain created in the proof of theorem 17. 

followed by rotations at PI and ,B2 to bring the remainder of the chain back to the 

same plane. The right gadget carries out the same function for the right comb. 

The full chain, constructed of these gadgets (and two long steps of length 3.5), is 

illustrated in figure 5.17. Vve now perform any preprocessing, of time P, to determine 

quickly the feasibility of a future sequence of dihedral rotations. Then we are given 

the three sets, A, B, and C, for which the 3SUM' is asked. 

Our reduction will be easier if we assume that all the sets A, B, and C each have 

the same number of elements. If some set has k fewer elements than another, then 

we can add elements {'i j4n}, for i E {I ... k}, to the smaller set without affecting the 

outcome of the 3SUM'. (Because the other elements of the sets are integers, no one, 

two, or three of these fractions can contribute to a triplet of elements which sum to 

zero). 

As in the proof of theorem 16, we transform the sets A, B, and C. Let m be the 

maximum absolute value of any element in Au B U C. We create A' by dividing 

each element in A by 2m and then subtracting 2.5; we create B' by multiplying every 



94 Chapter 5. Dihedral Rotations 

element of B by , and C' dividing each element in C by 2m and then adding 

Thus A' = {a/2m 2.5: a E A}, B' = {-b/4m: bE B}, and C f = {c/2m+2.5: c E 

C}. Note that if and only if some triplet (a E A) + (b E B) + (c E C) = 0, there is 

some triplet (a/2m-2.5 E A' )-2(b/4m E B' )+(c/2m+2.5 E C') = a' -2b'+c' O. 

We have now have an equivalent 3SUM' problem on A', -2B', C'. 

The sets A', B', and C' have the property that every element in A' is between 

and -3; every element in B' is between -:1 and i; every element of C' is between 2 

and 3. The teeth of the comb can be separated by up to distance 1, and the steps 

of the staircase by up to ~. Furthermore, the distance between the combs and the 

staircase can be made to be up to 3.5. Therefore the teeth of the left comb can be 

placed such that the x-coordinates of the teeth correspond to the elements of A'. The 

same applies for the vertical steps of the staircase (corresponding to B'), and the 

teeth of the right comb (corresponding to G'). 

\Ve sort the three sets, and place the leftmost tooth of the left comb at the mini­

mum value in A'. Then with three dihedral rotations, we bring the second tooth to 

the x-coordinate of the second value in A'. \Ve repeat this procedure until the left 

comb has teeth at all x-coordinates of A', We use the long triplet of edges (marked 

with length 3.5) to bring the first vertical edge of the staircase into position, and 

likewise bring all the stairs into position. We bring the right comb into position in 

the same manner. An example of the final configuration is in figure 5.18 and shown 

in stereo in figure 5.19. 

We can prove that the chain does not self-intersect during these dihedral rotations 

by examining the gadgets in figure 5.16. Note that our three motions perform a 

rotation at a1 (or ,,1) by an angle 1; in one direction, a rotation at uv by 21; 

in the other direction, and a rotation at a2 (or /32, f2) by 1; to bring the remainder 

of the chain back into its original plane. Since our sets are sorted, each successive 

tooth or stair proceeds to the right, thus e< 1['. Therefore the chain stays monotonic 
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c'4 C'5 

Figure 5.18: The chain, moved into position for the newly revealed AI, B I, and C'. 

(Shown in stereo in figure 5.19). 

in the x-direction (always proceeding either vertically or to the right), so it cannot 

self-intersect during any of these motions. 

Once the chain is set for AI, B I, and CI, we perform dihedral rotations of angle 21T 

at every vertical edge in the staircase which corresponds to an element of BI. Just as 

in the proof of theorem 16, the chain self-intersects if and only if there exists a triplet 

0.
1 2b' + c' 0, which answers the 3SUM' problem. 

\IVe spent time P preprocessing the chain before the sets were revealed, and 

8(nlogn) time sorting and time 10nQ for lOn dihedral rotations (9n to set the 

3n gadgets, then n to answer the 3SUM', each taking time Q) after the sets were 

revealed. If P n(3SUMTREE(n)), then nlogn + nQ n(3SUM(n)), and thus 

Q n(3SUM(n)jn). • 
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c~ C'5 
C'4 C'4 

C'3 C'3 

C'2 C~) 
C'1 c'1 

a~---====~ 
a4--====-... 

a~ --===::::...,. 
a~ -~===---, 

a~ -~==::::._ 

Figure 5.19: Stereogram: The chain, moved into position for the newly revealed A', 

E' , and C', 



Chapter 6 

Endpoint-to-Endpoint Distance 

and Canonical Configurations 

In section 1.2 we discussed how flexible polymers are often modeled as chains where 

the only motions permitted are dihedral rotations. The space of possible configu­

rations of such polymers is vast and has been researched by several physicists and 

statisticians. Its most often studied property is the mean squared distance between 

the endpoints of the chain!, which relates directly to many physical properties such 

as the extent to which the polymer diffuses and scatters light [17,52,151]. In 1948, 

the physicist William Taylor [151] discussed the need to describe the possible config­

urations. 

It is by now a familiar concept that long-chain molecules (in non-crystalline 

states) may assume more or less coiled and continuously variable config­

urations as the result of internal rotations or torsional motions about the 

individual bonds of the chain. As a result of this indefiniteness it becomes 

necessary to discuss the properties of such molecules on a statistical ba­

1Mean squared distance between endpoints has been studied in [17, 25, 42, 52, 57,60, 69, 75, 

90,91,92,99, 102, 104, 113, 129, 130, 147, 148, 151, 173]. 

97 
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sis. [151] 

During the same year as Taylor, Benoit [17] independently discovered the same 

results and explicitly made reference to the minimum and maximum possible distances 

between the endpoints of the chain. 

Dne telle molecule pourra done presenter un grand nombre de configura­

tions differentes que l'agitation thermique lui fera prendre par hasard. II 

en resulte que la distance entre les deux extremites de la molecule, lorsque 

celle-ci est par exemple en solution diluee, varier a continuellement entre 

deux valeurs, l'une minimum, obtenue quand les extremites se touchent, 

l'autre, maximum, obtenue quand la chaine est completement etiree2 . [17] 

The problems alluded to by Benoit, that of finding the configurations with min­

imum and maximum distances between the endpoints, is an underlying subproblem 

in any attempt to compute the distribution of the distance between the endpoints of 

the chain [173]. The model most often used in polymer physics restricts the chain to 

the lattice, where each link is thus of unit length and each vertex-angle either 0 or 

Yo /2. 
We consider the general case where the chain may assume any configuration which 

maintains its arbitrary edge lengths and vertex-angles. We begin by proving the 

problems to be NP-hard when the chain is restricted to two dimensions. In the 

sections following, we discuss the difficulty of finding the maximum and minimum 

distance between the endpoints over all three-dimensional configurations and present 

an algorithm which efficiently approximates the maximum possible distance. These 

2Such a molecule will therefore be able to exhihit a large number of different configurations which 

are randomly determined by thermal agitation. This causes the distance between the two endpoints 

of the molecule, when for example in diluted solution, to vary continuously between two values: 

the minimum, obtained when the endpoints touch, and the maximum, obtained when the chain is 

completely taut. 
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VI 

.. _.. _...... _.................-1 


Figure 6.1: Definitions of fi and ()i' 

results imply the difficulty of determining whether a chain can be brought into a 

planar configuration, a subject which we discuss in greater detail in section 6.5. 

6.1 Preliminaries 

To avoid the cumbersome phrase, "distance between the endpoints," we henceforth 

refer to the distance between the endpoints of a chain as its span. \Ve also use of a few 

conventions with regard describing the lengths of links and the angles between them. 

Let the chain be composed of n vertices and n 1 links. For brevity, we write the 

length IViVi+ll as fi (for 1 SiS n - 1). We write the turning angle at vertex Vi as (h 

(for 2 SiS n 1). The turning angle at Vi is the angle between the rays Vi-l'V~ and 

, and is equal torr - L Vi-l V{Vi+l. vVe refer to the turning angles in this chapter 

rather than the interior angles between consecutive links to simplify the mathematics 

used herein. The definitions of these quantities are illustrated in figure 6.1. 

In order to discuss computing the configuration space of the chains, we must decide 

how the chains are to be represented. We will remain consistent with earlier chapters 

where the chain is represented as a list of vertices, VI, V2, ... ,Vn . Therefore it is not 

possible to create a chain with specific turning angles, since this would require exact 

computations of trigonometric functions, except for special cases such as multiples of 

rr/2. In this chapter, if we create a chain, we will refer to the lengths of the edges 
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and the cosines of the turning angles, which can be exactly translated to and from 

the coordinates of the vertices (in a model which allows the computation of square 

roots). 

6.2 Span of Two-Dimensional Configurations 

We begin by considering the two-dimensional analogue of the problem, that of finding 

the maximum and minimum possible spans over all planar configurations of the chain. 

·While this is not the problem usually considered by the physics community, it provides 

insight into the difficulty of the three-dimensional version and will be the backdrop 

for results in section 6.5 and chapter 7. 

Maximum Planar Span: Given a polygonal chain and a number k, is there a 

(possibly self-crossing) planar configuration whose span is at least k? 

Minimum Planar Span: Given a polygonal chain and a number k, 2S there a 

(possibly Belf-crossing) planar configuration whose Bpan is at most k? 

vVe show these two decision problems to be NP-hard. For the time being, we 

ignore self-intersections of the chain. We will later demonstrate that the problems 

remain NP-hard even when the chain is restricted to be simple. 

Because the chain is planar, there are a finite number of configurations of the 

chain. As we traverse the chain from one endpoint to the other, at each vertex we 

have either a left turn or a right turn; due to the fixed vertex-angles there is no other 

freedom available. A non-deterministic algorithm needs only to select one of the 2n - 2 

configurations and calculate its span to determine if it is at least or at most k. Thus 

it would seem that the two problems are in NP, which begs the question of proving 

that they are NP-complete as opposed to just NP-hard. However, it is important to 
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realize that because square roots are not computable by a Turing machine, computing 

Euclidean distance is not possible within NP. 

To prove that the two problems are NP-hard, we perform a reduction from the 

problem Partition. 

Partition: Given a set of positive integers S, can it be partitioned into two disjoint 

sets Sa and Sb such that 1:(s : s E Sa) = 1:(s : 3 E So)? 

Although the reductions for the two problems both rely on Partition, the method 

of proof for each is quite different. vVe first consider Maximum Planar Span then 

Minimum Planar Span. 

\Ve require lemmas 2 and 3, which are proven on pages 31 and 32. 

Lemma 2. The functions sin x and cos x can be computed within an error of c in time 

O(x + log(1/c)) for any c > O. Furthermore, the approximation can be guaranteed to 

be either greater or less than the true value. 

Lemma 3. For 0 ::; ;/:: ::; 'IT) let cos x be an approximation which is less than cos x by 

at most c. Then arccos {cos x) x::; J'iE. 

We are now ready to prove the following theorem. 

Theorem 18. Maximum Planar' Span is NP-hard. 

Proof. Given a set of integers as the instance to a Partition problem, we create a 

chain C and compute a number k such that the Partition problem is equivalent to 

the question, "Is the maximum planar span of C at least kT' 

Let S = {31' 32, ... ,sn} be the n integers in the Partition problem, and let a be 

the sum 31 + 132 + ... + Sn. 

We first create a chain of n + 1 edges (and thus n 2 vertices), where each link is 

of less than unit length, such that the turning angles at the vertices V2, V3, ... ,'Un+l 

are proportional to the integers of S. Let fh = 131/a, (}3 = S2/a, et cetera. 
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We have chosen to represent the chain by lengths of edges and cosines of the 

turning angles rather than the measures of the angles themselves. Therefore we must 

compute the cosines of these angles. By lemma 2 we can approximate the cosines 

within an error of 1/(32n2a 2
) within time O(logn + log a). By lemma 3, the turning 

angles ()i will differ from si-da by at most 1/(4na). 

The total curvature of the chain is no more than 1+ 1/(4a) radians. Therefore the 

two extreme edges of the chain are within 1/(4a) radians of being parallel if and only 

if there exists a partition of the turning angles, such that the sum of the measures 

of the angles turning left is equal to the sum of the measures of those turning right 

(minus the possible accumulated error of 1/ (4a) ). If no partition exists, then the 

orientations of the two extreme edges must differ by at least angle 1/a minus the 

possible error, or 3/(4a). 

Now let us expand the two extreme links in the chain to some large length l. vVe 

now have a chain of one long link of length l, followed by n - 1 short links 

of length one, followed by another long link of length l. This situation is 

illustrated in figure 6.2. Note that since the total curvature of the chain is less than 

7r12, h lies strictly to the left of In+!' This implies that if the two extreme links 

differ in orientation by some angle </J, then by elementary trigonometry the difference 

in x-coordinates of the endpoints, and thus the span of the chain, must be at least 

l + l cos 4>. A visual proof is provided in figure 6.3. Also illustrated in the figure is the 

distance between the endpoints of the links in this position, 2lcos(()/2). Adding the 

n 1 short links could at most lengthen the span by the sum of their lengths. Thus 

the span of the chain can be no more than 2l cos(()/2) + n - 1. 

If 4> S; 1/(4a), then the span of the chain must be at least l + 1cos (1/ (4a) ). If 

there is no partition of the turning angles, then the extreme links must differ in 

orientation by at least 3/(4a) radians, and the span of the chain would be at most 

2l cos(3/(8a)) + n - 1. We wish to choose l carefully such that if the span is at least 
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:" ... '. 

Figure 6.2: The chain constructed in the proof of theorem 18. 

cos(O/2) 

l + 1co:') () 


Figure 6.3: Two links of length l differing in orientation by O. 
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l + l cos(1/(4O')) then the two extreme links must be within 1/(40') of paralleL 

For reasons to be made clearer in chapter 7, we select l such that even if the span 

is l + l cos( 1 / (40')) - 1, the extreme links must be within 1/(40') of parallel. This is 

obtained if l > n/[cos(lj(4O')) - cos(3j(8O'))]. 

n 
l > 

cos(lj(4O')) - cos(3/(8O')) 
l[cos(1/(4O')) - cos(3j(8O'))] > n 

l cos(lj(4O')) > l cos(3j(8O')) + n 

l + l cos(1/(4O')) > 1+ l cos(3j(8O')) + n 

l + l cos(1j(4O')) > 2l cos(3/(8O')) + n 

l+lcos(lj(4O')) 1 > 2lcos(3j(8O'))+n-1 

Because we cannot compute differences of cosines on a Turing machine, we instead 

compute an lower bound. 

cos ( 1 j (40') ) 
1 1 

+ 4!(44)O'4 ­
1 

6!(46 )O'6 

cos ( 1/(40') ) > 1- 2! 
1 

= 1 ­
1 

320'2 

cos(3j(8O')) 1 
2! 

32 34 

+ 4!(84)oA 

36 

- 6!(86 )0-6 + ... 

cos(3j(8O')) < 1 
9

1--­
2560'2 

cos(lj(4O')) - cos(3j(8O')) > 

Substituting this expression into the earlier inequality for I, we obtain that if 

256nO'2, that the two links are wi thin 1/(40') of parallel if and only if the span of 

the chain is at least l[2 - 1/(320'2)]. We can bound this expression by 
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Figure 6.4: Triangle l:::.abc embedded between two planes. 

If the two links are not parallel, then the span is at most (512na 2 
) - (8In) - l. 

The question, "Is the maximum planar span of the chain at least (512na2 ) - (8I n)7" 

is equivalent to the question, "Can the chain be laid in the plane such that the two 

extreme edges lie almost parallel?" This last question is itself equivalent to the Par­

tition problem on S. Clearly the chain can be constructed in polynomial time since 

the number of vertices is polynomial in n, and all values are polynomial in a. Thus 

Maximum Planar Span is NP-hard. • 

We can generalize the above theorem to prove the hardness of finding the maximum 

span of a three-dimensional chain when it is constrained to lie between two close 

parallel planes. The intractability of this problem will be a vital lemma in chapter 7. 

Maximum Span Between Two Planes: Given a polygonal chain, a number k, 

and a number w, is there a (possibly self-crossing) configuration which lies between 

two parallel planes distance w apart, and whose span is at least k? 

Our reduction will use the same chain as that for the proof of theorem 18. Recall 

that all turning angles in that chain are less than one radian. We now prove a lemma 

about triangles embedded between two planes, illustrated in figure 6.4, where one of 

the turning angles of the triangle is less than one radian (and thus the vertex-angle 

is greater than 7f - 1). 
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:r:' ••-------------..... y' 
I" ~ 

Figure 6.5: The distance Ix'Y'1 in relation to Ixyl. 

Lemma 21. Let 6.abc be a triangle where Tt - 1 ::; Labe ::; Tt. Suppose 6.abe is 

embedded between two horizontal planes separated by a distance w, where w is small 

enough such that w ::; labl/2, w ::; Ibcl/2, and w ::; V'labllbel . Let 6.a'b'c' be the or­

thogonal projection of 6.abc onto the horizontal plane. Then Labc-wV2/ V'labllbel ::; 
La'b'e' ::; Labc wV2/V'labllbcl. 

Proof Let xy be any line segment between the two planes. Then the length of the 

edge x'y' the projection is at least V'lxyl2 - w 2 . Figure 6.5 provides a visual proof. 

Consider the lengths la'b'l, We'l, and la'e'l. 

V'labl 2 
- w2 

::; la'b'l::; labl 

V'lbel 2 
- w2 

::; We'l::; Ibcl 

V'lael 2 - w2 ~ lale'l ~ lacl 

By the law of cosines, la'c'1 2 la'b'1 2 + Ib'c'12- 2la'b'llb'c'1 cos La'b'c'. We obtain the 

following bounds for cos La'b'c' . Since Labc > Tt - 1, 

w2Since V'lael2 - ::; la'e'l and w2 < labllbcl, we know that cos La'b'e' is negative. 
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1a'b'12 1b'c' 12 - 1a'C/12
cos L.a'b'c' ­

21a'b'IWc' 1 
2 2(labl2- w ) + (lbcl2- w ) - lacl2 

cos L.a'b' c' > 
21abllbcl 

labl 2 + Ibcl2- lacl 2 
- 2W2 

cos L.a'b'c' > -'---'-----'--'----,-,-'---'----­
21abllbcl 

w2 


cos L.a'b'c' 
 > cosL.abc - labllbcl 

We prove an upper bound in a similar fashion. 

2labl2+ Ibcl 2 
- (lacl 2 

- w )
cos L.a'b'c' < 

2J(labl2 
- w2)(lbcI 2 

- w2) 

2labl 2 + Ibcl2 
- lacl2 + w )

cos L.a'b'c' < - ~2-J'i'77(I===Oab=i=;;12=;=::/2~)(::;::::1b~c12::=7/2:::=;::)"""":'" 
'ui 

cos L.a'b'c' < cos L.abc + labllbcl 

Thus cosL.a'b'c' differs from cos La'b'c by at most w2 /(labllbcl). Because both angles 

are between 0 and 7f, by lemma 3 if cos L.a'b'c' < cos L.abc, then L.a'b'c' S L.abc + 

wV2) Jlabllbcl. If cos La'b'e' > cos L.abe, then La'b'c' S Labc wV2/ Jlabllbel. _ 

Vve are ready to prove the following. 

Theorem 19. Maximum Span Between Two Planes is NP-hard. 

Proof. Let S = {81' 82, ... ,8n } be the n integers of a Partition problem, and let cr 

be the sum 81 + 82 + ... + Sn. 

As in the proof of theorem 18, we create a chain of n + 1 edges (and thus n + 2 

vertices), where each link is of less than unit length, such that the turning angles 

at the vertices '02, '03, . . . ,'On+1are proportional to the integers of S. Let O2 8~/cr, 

03 = S2 / cr, et cetera. 
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Let W, the separation between the two planes, be less than 1/(16v'2na). Consider 

the orthogonal projection of the chain onto a horizontal plane. If the two end links 

are within an angle 1/(4a) of parallel in three-space, then surely they must also be 

within 1/ (4a) of parallel in the projection. 

The angles of the chain in the projection are identical to the angles of the chain 

in three-space, plus or minus an error of at most wv'2 divided by the length of the 

shortest link. The tightest upper bound we require on the length of the short links of 

the chain is that each such edge is at most unit length. If we make each such link at 

least length 1/2, then by lemma 21 the difference between any angle of the chain in 

three-space and its corresponding angle in the projection is at most 2wv'2 1/(8na). 

Thus the two end links of projection are parallel if and only if there exists a 

partition of the angles of the chain, plus or minus an accumulated error of 1/ (8a). 

In the proof of theorem 18, we approximated cosines within an error of 1/(32n2a 2 ) 

and thus the turning angles ei of the chain differed from si-da by at most 1/(4na). 

Here we approximate the cosines within an error of 1/(128n2a 2 
) so that the turning 

angles differ from si-da by at most 1/(8na). 

Thus the difference between the turning angles of the chain in the projection and 

si-da differ by at most 1/(8na) + 1/(8na) = 1/(4na). This is now the same problem 

as handled in the proof of t,heorem 18, and thus the Partition question is equivalent 

to, "Is the maximum span of the chain between two planes separated by 1/(16v'2na) 

at least 512na2 
- (8/n)?" • 

Vie now return to the Minimum Planar Span problem. 

Theorem 20. Minimum Planar Span is NP-hard. 

Proof. Given a set of integers as the instance to a Partition problem, we create a 

chain C such that the set has a partition if and only if the minimum planar span of C 

is less than one. Starting at one endpoint of the chain, we place an edge of length Sl, 
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-+82 ~·-+I--.---- 83 ----..f--- 84 --l-~- 85 

Figure 6.6: The chain created in the proof of theorem 20. 

Figure 6.7: A chain for which the minimum planar span is less than one. 

followed by an orthogonal short edge of length lin, followed by an orthogonal edge 

of length 82, followed by an orthogonal short edge of length lin, and so on, until the 

edge of length .'In. A chain generated by a five-element set is illustrated in figure 6.6. 

(The chain and the reduction in this proof are similar to those used by Hopcroft, 

Joseph, and Whitesides [78] to prove that Ruler Folding is NP-complete.) 

In any planar configuration of the chain, all edges of length 1 In lie parallel to each 

other and orthogonal to the edges corresponding to elements of the set S. Without 

loss of generality, assume that the edges of length lin lie vertically (parallel to the 

y-axis); thus the longer edges corresponding to elements of the set S lie horizontally 

(parallel to the x-axis). 

If we add an orientation to the chain from one endpoint to the other, then the 

edges corresponding to elements of the set S will either point left or point right. If 

both endpoints have the same x-coordinate, then the sum of the lengths of all edges 

pointing left must equal the sum of the lengths of all edges pointing right. In other 

words, there must exist a partition of the lengths of the edges, which exists if and only 

if there is a partition of the integers in S. A chain with such a partition is illustrated 

in figure 6.7. 

If the two endpoints have the same x-coordinate, then the span of the chain is 

determined solely by the difference in y-coordinate. Since the sum of the lengths of 
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Figure 6.8: A chain which has no planar span less than one. 

all vertical edges is (n lin), the span of the chain is at most this value, which is less 

than one. Likewise, if there does not exist a partition of S, then the two endpoints 

must differ in x-coordinate. Since the set S is composed of integers, the difference in 

x-coordinates of the endpoints, and thus the minimum planar span, must be at least 

one. An example of such a chain is illustrated in figure 6.8. 

Therefore, the question, "Does the chain have a minimum planar span which is 

less than one?" is equivalent to the question, "Does there exist a partition for S?" 

Clearly the chain can be constructed in polynomial time; thus the Minimum Planar 

Span problem is NP-hard. _ 

In the chain created in the proof of theorem 18, the turning angles sum to one 

radian, so the chain is monotone and cannot self-intersect. In the chain created in 

the proof of theorem 20, if there exists a configuration whose span is less than one, 

then it also has a similar configuration which proceeds monotonically upward as in 

figures 6.7 and 6.8. Therefore the following variants of the problems are also NP-hard. 

Simple Maximum Planar Span: Given a polygonal chain and a number k, is 

there a simple (non-crossing) planar configuration whose span is at least k? 

Simple Minimum Planar Span: Given a polygonal chain and a number k, zs 

there a simple (non-crossing) planar configuration whose span is at most k? 
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Figure 6.9: Stereogram: A chain whose maximum span occurs at a non planar config­

uration. 

6.3 Span of Three-Dimensional Configurations 

When considering the three-dimensional version of a problem, naturally one first 

wonders if the solution is identical to the two-dimensional case. In other words, is 

the maximum span of the polygonal chain in three dimensions the same as when it 

is confined to the plane? 

'Vhile a positive answer would directly imply the hardness of the three-dimensional 

problem, it turns out that the configuration which yields the maximum or minimum 

span of a chain is not necessarily planar. An example of a five-vertex chain whose 

maximum span occurs when it is not planar is illustrated in figure 6.9. Since the 

distances between the first and third vertices and the third and fifth vertices are fixed 

(by the second and fourth vertex-angles), the chain achieves its maximum span when 

these three vertices are collinear. The maximum planar span of this chain is shown 

in figure 6.10. 

Let us phrase the Maximum Span problem as follows. 

Maximum Span: Given a polygonal chain, find the maximum span over all three­

dimensional (possibly self-crossing) configurations. 

Assume VI is at the origin. Given any configuration of the chain, it can always 
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Figure 6.10: The maximum planar span of the chain in figure 6.9. 

be rigidly rotated about the origin such that Vn lies on the x-axis. Thus finding the 

configuration in which Vn is farthest from VI is equivalent to finding the configuration 

in which Vn has the largest x-coordinate. The x-coordinate of Vn is the sum of the 

horizontal components of the edges of the chain, so we can construct a program to 

compute such a maximum. 

We can characterize the horizontal component of each edge ViVi+l (the x-coordinate 

of Vi+l minus that of vd by the angle made by the ray ViVi+i and the positive x-axis, 

which we denote by (Pi- Thus the horizontal component of edge ViVi+l is fi cos (/>i. 

Since the lengths of the edges are fixed, the only variables are the ¢/s. 

To maximize the x-coordinate of V n , we maximize the sum of all components 

ti cos ¢i while respecting the constraints of the chain. The first link of the chain may 

assume any orientation in space, but due to the fixed turning angles each successive 

¢i is restricted by the previous ¢i-l and the turning angle Oi. Figure 6.11 explains the 

relationship between these values, which leads directly to the program of figure 6.12. 

There is no known general algorithm for maximizing over a nonlinear objective 

function over linear constraints, especially when the function is not concave separable 

(able to be expressed as the sum of concave functions). However, in the special case 

where each Oi :::; 7r /2, the objective function is maximized when all ¢i ~ 7r /2. (Given 

any sequence of ¢i'S, one could replace all ¢i which are less than 7r /2 with ¢i = 7r /2 and 

respect the constraints.) For ¢i ~ 7r/2, the objective function is concave separable. 
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Figure 6.11: Relationship between ¢i, ¢i-l, and fh· 

MAXIMIZE: 


.£1 COS ¢1 +.£2 COS ¢2 + ... + f n - 1 cos ¢n-l 


SUBJECT To: 

o:; ¢l :; 7r 


Vi : ¢i ::::: ¢i-l - {Ji 


'Iii : ¢i ::::: {Ji - ¢i-l 


Vi : ¢i :; ¢i-l + (Ji 


Vi : ¢l :; 27r - ¢i-l - (Ji 


Figure 6.12: Program to compute the maximum span. 
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Hochbaum and Shanthikumar [76] have devised an algorithm which can approximate 

the maximum of such a function, within an error of liE, in time polynomial in the 

input and log E. We will later describe an algorithm to approximate the maximum 

span of all chains, without restriction on the turning angles, in section 6.4. 

vVe will not focus on the problem of computing the minimum span of a chain, 

except to note that this problem is at least as hard the finding the ma..ximum span. 

Minimum Span: Given a polygonal chain and a number k, is there a (possibly 

self-crossing) three-dimensional configuration whose span is at most k? 

Theorem 21. Minimum Span is at least as hard as Maximum Span. 

Proof. Suppose we have a chain C = (VI, V2,'" ,vn ), with edge lengths .e1 , ... , 

for which we wish to find the maximum span. We create a three-edge chain with the 

vertices:r = (O,O,O),y (l,O,O),z = (l,O,L:.ei),Vl = (O,O,L:.e i ). Now we attach 

the chain C, such that the vertices VI match at (0,0, L: .ei ) and that the vertex-angle 

at VI is 7r /2. Let us call this new chain of n + 3 vertices as chain D, We desire now to 

compute the minimum span of D, which corresponds to the configuration in which 

Vn and x are closest together. 

It is always possible to perform an edge spin on VI v2 such that VI and Vn lie in 

a plane perpendicular to ZVl, a further edge spin on ZVl such that x, y, Z, VI, and Vn 

are coplanar, and thus x, VI, and Vn are collinear. In a sense the chain D mimics the 

hanging of C from a gallows as shown in figure 6.13. In this position, x and Vn are 

as close together as possible; therefore, for any fixed configuration of C, the smallest 

span possible for D is XVn XV! - VI vn . Thus the minimum span of D is equal to 

L:.ei minus the maximum span of C. • 

http:O,O,L:.ei
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Figure 6.13: The chain D of the proof of theorem 21. 

6.4 Approximating the Maximum Span 

Since finding the maximum span is a difficult problem, we present an algorithm to 

compute an approximation. We can estimate the maximum span by allowing the 

turning angles to assume only values of the discrete space {J, 3], ... ,Tt - J} for some 

small 'Y which evenly divides Tt. Since the possible choices of ¢i are dependent solely 

on constants (Oi) and the previous angle , finding the maximum span under this 

quantized configuration space can be solved by dynamic programming. 

We create a series of arrays xd¢] for the discrete value of ¢ E {J, 3] , ... ,Tt 

such that xd¢] is the maximum possible x-coordinate of Vi+l when ¢i = ¢. Step 3 

computes the maximum possible x-coordinate of V2 given ¢l, and step 4a computes 

each array Xi[] given Xi-l []. At the completion of the algorithm, the largest value of 

x n - [] is the largest possible x-coordinate for Vn . 

Maximum Span Approximation 

1. 	 Compute the cosine for ¢ E {~'~)'" ,7r ~}, such that each value is less than 

the true cos ¢ by at most ,. Place the values in an array 6OS[¢]. 

2. 	 Initialize a two-dimensional array Xi[¢] of reals, indexed for i E {I, ... ,n - I} 
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4. For each i E {2, ... ,n I}, 

(a) For each ¢i E {~, 3], ... ,1f - H, let Xi[¢i] be ficos[¢i] plus the maximum 

value of xi~d¢i-l] over all ¢i-l which satisfy: 

5. Return the largest value of Xn-l[] as the maximum span. 

vVe now prove that the algorithm correctly computes an approximation of the 

maximum span of the chain. 

Lemma 22. For any fixed ¢i-l E { ~, ... , IT ~} and any ()i :; IT, there exists a 

feasible choice of ¢i E { 3; , . _. ,IT - ~}. 

Proof. We show that for any ()i the constraints of step 4a can be respected. 

If Oi :::; ¢i-l :::; IT - Oi, then dJi +- ¢i-l is a valid assignment. 

If ¢i-l :; ()i and ¢i-l +()i :; IT, then ¢i is determined by constraints 4(a)ii and 4( a)iii, 

which state that ()i - ¢i-l :; ¢i :; ¢'i-l + ()i. Since ¢i-l 2 ~) the interval ()i 

~ < ¢i :; ()i + ~ also respects the constraints. This interval must contain one of 

{ 1. 31' 1.}2'2'''' ,1f- 2 . 

If <!Ji-l :; ()i and ¢i-l +Oi 2 1f, then <l>i is determined by constraints 4(a)ii and 4(a)iv, 

which state that Oi - dJi-l :; <l>i :::; 21f ¢i-l ()i- Since ()i < IT, it follows that 

¢i +- (IT - ¢i-l) is a valid assignment. 
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If <Pi-l ~ ()i and ¢>i-l +()i ~ x, then <Pi is determined by constraints 4(a)i and 4(a)iv, 

which state that <Pi-l ()i::; <Pi ::; 211' <Pi-I - ()i' Since ¢>i-l ::; x ~, the interval 

11' - ~ - ()i ::; ::; 11' + ~ - ()i also respects the constraints. This interval must contain 

one of {~, , . .. , x - ~}. • 

Lemma 23. For each sequence of arbitr'ary values (¢>i, ¢;, ... , ¢;t-l) which satisfies 

the constraints of the continuous Maximum Span program, there exists a valid sequence 

(<Pl,¢>2,'" ,<Pn-l) such that for all i, ¢>i E {~, 3;1, ... ,X -~} and (<Pi ill < ¢>i < 

(¢>i + ir)· 

Proof. VVe prove the lemma by induction. Vve first note that there is a valid choice 

of <PI within,/2 of <Pi. Now assume the existence of a valid selection ¢>1, ... , <Pi which 

respects the conditions of the lemma. Then ¢>i is within ir of <Pi. Consider the con­

straints of step 4a. The possible values for <pi+1 given <Pi differ from the values of 

the those for <PHI given <Pi by at most ir by our inductive hypothesis. Thus for any 

valid choice of <pi+1' there is a value v which differs by only ir and which respects the 

constraints of step 4a for <PHI' Of the subset of valid choices {~, , ... ,11' - ~} for 

¢i+1, which is non empty by lemma 22, one value lies within, of v. Therefore there 

is a valid choice of <PHI which lies within (i + 1)r of ¢i+l' • 

Lemma 24. Let 0::; <p* ::; x and 0::;,::; x/2. Then min{cos¢: (¢* ,)::; ¢::; 

(¢* + ,)} ~ cos ¢* - v'2 sill'r' 

Proof. The function cos <P has only one local minimum (at 11') from 0 ::; <P ::; 311'/2, 

and in this domain cos (<p* +,) ::; cos ( <p* ,), Therefore if ¢* +, ::; x, min { cos <p} = 
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cos ( ¢ * + ,); otherwise min { cos </>} = cos 1r 1. We consider the first case. 

cos </>* cos "'f - sin ¢* sin, 

if cos </>* ~ a : 

cos(¢* + ,) > cos </>*(1 sin ,) - sin </>* sin, 

cos(</>* + ,) > cos </>* (cos </>* + sin </>*) sin, 

cos(</>*+,) > cos </> * - h sin, 

if cos </> * < a : 
cos(¢* + ,) > cos ¢* sin </>* sin, 

cos(</>*+,) > cos sin, 

cos(</>*+,) > cos </>* - h sin, 

We have proven the case when </>* + '"'f :::; 1r, where min{cos</>} cos(</>* + ,). 

Now suppose </>* ,> 1r, and therefore min {cos ¢} = cos 1r. Then by the first 

case, min{cos</>} ~ cos</>* - J2sin(1r </>*). Since, > 1r </>*, and therefore 

sin, > sin (1r - ¢l), it follows that min { cos </>} ~ cos </>* - J2 sin _ 

Theorem 22. Maximum Span Approximation computes the maximum span of a 

chain, minus an error of at most J2n, I: €i' 

Proof. Let the configuration M with the maximum span have the sequence 

( A,* '* 
If'l' ¢2' ... , ). By lemma 23 the dynamic program will find some approximation 

at least as large as a configuration A with the sequence (</>1, </>2,'" )</>n-l), where 

(¢i - if) < ¢i < (</>i + if) for all i. The span of A is calculated according to the 



119 Chapter 6. Endpoint-to-Endpoint Distance and Canonical Configurations 

following equation. 

n-l 


span(A) = L £iCOS[1>i] 

i=l 

n-l 


span(A) > L £i(COS 1>i - ,) 

i=l 

n-l 


span(A) > 	 L £i (min { cos 1>i : (1): - 'if) ::; 1>i ::; (1): + 'if)} - ,) 
i=l 
n-l 

span(A) > 	 L £i(COS 1>: - V2 sin 'if - ,) 

i=l 

n-l 


span(A) > 	 L £i(COS 1>: - V2'if - ,) 

i=l 

n-l 


span(A) > 	 L£i(cos1>: - V2(i + 1)r) 

i=l 


span(A) > 

n-l 


span(A) > span(M) - V2n'L £i 

i=l 


Since in step 1 the values cos[1>] are computed to be less than the true values cos 1>, 

we are assured that span(M) - v'2n, L- £i ::; span(A) ::; span(M). 	 • 

Having analyzed the accuracy of the algorithm, we now analyze its complexity. 

Since the algorithm spends the most time in step 4, we first focus on the computation 

of each array xdl given its predecessor, Xi- Ill· 

Lemma 25. 	Step 4a, the computation of the values of xdJ, can be performed in 

0(1/,) time. 

Proof. Given the array xi-d] and a value Oi, we wish to compute for each Xd1>i], 

the maximum value of xi-d1>i-l] under the constraints of step 4a. (We also wish to 

add £i cos 1>i to each, but this can be done afterward.) 
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Instead of considering which ePi-l are valid for each ePil let us consider the valid 

values of ePi for each ePi-l according to the constraints. 

< e·z then e· k_l < '/'Ztf,. <(c) If7r e <_ A-'_ l _ ~ - '+'2 _ _t '+'t 

Vie consider the computation of Xi[] when case 1 holds; the argument is similar 

should case 2 be true. The maximum possible value of each Xi[ePi] is determined by 

the maximum value over all xi-dePi-l] for which ePi is in the intervals of subcases la, 

1 b, and 1c. Thus we can word the problem of finding the maximum possible value of 

each XdePiJ as follows. 

Let Aa be a set of weighted intervals where for each ePi-1 ::::; ei , there is an interval 

A = [(Oi - ePi-d, (¢i-1 + OdJ with weight W;.. Xi-l [¢i-l]' 

Let Ab be a set of weighted intervals where for each 

interval A [(¢i-l - Oi), (27r - ePi-l - ed] with weight w).. = xi-d¢i-d· 

Let Ac be a set of weighted intervals where for each e'i ::::; ePi-l ::::; 7r - eil there is an 

interval A = [(ePi-l Oi), (ePi-l + edJ with weight w).. = xi-dePi-I]. 

Then xdePil is determined by max{ w).. : ePi E A; A E Aa U Ab U Ac}. 

Computing max{ w).. : ¢i E )..;).. E Aa} 
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We first solve the problem of computing max{ w\ : <Pi E A; A E Aa}. The set Aa is 

composed of a series of intervals A = [(Oi (Pi-I), (<Pi-l + Oi)] with w). = xi-d<pi-l]' 

Thus for any <Pi < Oi, max{ w,\ : ¢i E A; A E Aa} is equivalent to max{xi-d¢i-l] : <Pi ::; 

Oi <pi-d· This leads to the following method which runs in O(OJ,) time and space. 

1. 	 Let 0- be the largest value of 0:, 32", ••• } less than or equal to Oi. 

2. 	 Initialize an array md<pi] to store max{ w,,\ : ¢i E A; A E Aa} for each value of 

cb, E { -" , ... ,20- + 
, t 2 ' 

3. 	 MAX ~-oo 

4. 	 For each ¢i-l E {O-, 0- ,,()- 2" ... , ~}, 

5. 	 Since the intervals of Aa are symmetric about Oi, reflect the array to compute 

md<pil for <Pi > (k 

(a) Let ()+ be the smallest value of {~, ¥, ... } greater than or equal to Oi' 

The problem of computing max{w). : ¢i E A; A E Ab } is slightly more complicated. 

Let ()+ be the smallest value of {~, 3; l' •• } greater than or equal to Oil and let 0- be 

the largest value of {',!, 2" ... } less than or equal to Oi' Then Ab is the set of intervals 

{[(O+ -0-), (0+ +()-)], [(8+ -0- +,), (0+ +()- +,)], ... ,[(7r ()+ -()-), (7r 0+ +O-)]}. 
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We compute max{w>.. : cPi E A; A E Ab } by first removing all redundant intervals. 

Vve sayan interval A of weight w>.. is redundant if there exist two intervals AL (lying left 

of A) and AR (lying right of A) whose weights are at least as large than w>.. and which 

cover A. We say that two intervals AL (lying left of A) and AR cover A if all values of 

{i, 32" 7l' - ~} in A are also in AL U AR. This is similar to saying that A C AL U AR but 

refers only the possible values of ct> in its discrete domain. An interval can clearly not 

determine max{ w>.. : cPi E A; A E Ab } for any value of ¢i if it is redundant. Likewise, 

it must determine at least one such value if it is not redundant. 

The notion of redundancy is ill-defined if we have a long series of intervals with 

identical weights, since it becomes unclear which of the intervals is redundant. To 

resolve the ambiguity we force the weight of AR to be strictly larger than that of A, 

and thus an interval is redundant if W>"L > W A and WAR> w>... 

Because all intervals are the same size, our set Ab has the property that if some 

interval A is redundant, then there must be a choice of AL and AR which are nonre­

dundant. Suppose that AL and AR, whose weights are larger than W)" cover A, but 

that AL is itself also redundant. Then there are two intervals which cover AL, an 

interval Xi to the left of AL, and an interval At to the right, both of whose weights 

are greater than AL (and thus greater than that of A). If At is between AL and A, 

then At and AR cover A. If At is to the right of A, then Xi and At cover all intervals 

in between, including A. Thus if we remove redundant intervals one by one, there is 

no possibility that a redundant interval will become nonredundant. 

This leads to the following algorithm to remove redundant intervals of Ab . 

1. Let e+ be the smallest value of H" 32" ••• } greater than or equal to ei · 

2. Let e- be the largest value of {" 2" ... } less than or equal to ei . 

3. Initialize a stack of intervals. 

4. For each i E {O, 1, ... , }, 
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(a) 	 A +- [(0+ 0- +i"t)' (0+ + O~ + h)] 

(b) 	w>. +- x'i-dO+ + 

(c) 	 If S has at least two elements, then 

i. t +- top element of the stack 

n. 	 'U +- element directly beneath t 

lll. 	While S has at least two elements, Wu ;::: Wt, W>. > l1lt, and t is covered 

by A and u, 

A. 	 mark t a.s redundant and pop it off the stack. 

B. 	 t +-u (thE) new top element of the stack) 

C. 	 u +- element directly beneath t if it exists 

(d) 	 Push A on the stack. 

It is clear by step 4( c )iii that only redundant intervals are so marked, so to 

prove correctness we must demonstrate that all redundant intervals are marked as 

such. Suppose the algorithm leaves a contiguous section of redundant intervals 

AI, A2, ... )Ak in between two nonredundant intervals of greater weight, AL (to the 

left) and AR (to the right). Since AI, A2, ... ,Ak are covered by AL and AR) it fol­

lows that the union of any two of AI, A2,' .. ,Ak cover the intervals in between. Thus 

W>'l 2:: 11)>'2 ;::: ••• ;::: W>'k_l ;::: W>'k' or else one of these intervals would have been popped 

from the stack. \Vhen AR is considered in step 4(c)iii, W>'R > W>'k' and W>'k_l ;::: W>'k' If 

Ak is covered by AL and AR, then certainly Ak is covered by Ak-l U AR. The redundant 

Ak is popped from the stack, a contradiction. 

Once all redundant intervals are removed, we begin popping intervals off the stack 

and computing an array 'm2[¢i] = max{w>. : ¢i E A; A E Ab } from ¢i = 7f - ~ down to 

¢i = ~. Each interval determines at least one value of'm2[]' Therefore we only need 

to examine the top intervals on the stack, since if an interval were skipped it would 

be redundant. 
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This leads to the following algorithm to compute max{ w)., : ¢i E A; A E nonredun­

dant intervals of Ab}. 

1. 	 Initialize an array m2[¢i] to store max{ w)., : ¢i E A; A E Ab} for each value of 

A.. {"i 3"i -Y}'Pi 	E '2) 2""' . .. )7T - '2 . 

2. 	 t -4- top element of the stack (preserved from the previous algorithm) 

3. 	 1L -4- element directly beneath t (if it exists) 

4. 	 For each ¢i E {7T - ~) 7T ­

(a) If (¢i f'/:. t) or (¢i E t n 1L and Wu > Wt) then 

1. 	 Pop t off the stack. 

ii. 	t -4- 1L (the new top element of the stack) 

iii. 	 1L -4- element directly beneath t (if it exists) 

Both algorithms above run in time O(IAb/), or 0(7T 20d,). 

Computing max{w)., : ¢i E A; A E Ac} 

The problem of computing max{ w)., : ¢i E A; A E Ac} is symmetric to the that of 

Aa and can be solved analogously in time O(Od,). 

Merging the three subproblems to compute max{ w)., : ¢i E A; A E Aa U Ab U Ac} 

The three arrays mdL m2[], m3[] can thus be computed in total time 0(1/,) and 

then merged to find max{w)., : ¢i E A; A E A}. Adding £i cos ¢i to each value yields 

the array Xi fl. • 

'Vith an efficient method of performing step 4a, we are ready to prove the final 

theorem of this chapter. 
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Theorem 23. The maximum span of a chain of n vertices can be computed within 

an error of r:: L ii, for any r:: > 0, in 0(n2 /r::) time and O(n/r::) space. 

Proof. Let, be r:: / n. 

The array $s[l in step 1 has 0(1/,) = O(n/r::) entries, and therefore uses a like 

amount of space. Computing the cosine of each value within an error of at most, 

can be performed in time O(log(l/,)) = O(1og(n/r::)) by lemma 2. Thus the entire 

array can be built in O((n/r::) log(n/c:)) time and O(n/t:) space. 

Each iteration of step 4a can be performed in time 0(1/,) by lemma 25. Since 

the algorithm is dominated by n iterations, the algorithm finishes in time O(n/~/), or 

0(n2 /t:). By theorem 22, the algorithm computes the maximum span within an error 

of at most V2w'/ L ii, or V2r:: L ii. 

The Maximum Span Approximation algorithm was described using n 1 arrays 

.T,dl of size (1T / ~/) each for the sake of simplicity. However, at any iteration of step 4a, 

only the arrays Xi- III and xdl are necessary; the arrays Xl [], X2 [], ... ,Xi-2 [l are never 

used again and can be discarded. Thus the algorithm requires only two arrays of size 

(1T/,) each, for a total space constraint of 0(1/,) O(n/t:). • 

6.5 Flattening 

The overall goal of most computational studies of linkages is to determine whether one 

can reconfigure a linkage from a given configuration to a certain target configuration. 

As discussed in section 1.1, the most often used approach is to ask if both can be 

reconfigured into some canonical configuration. If so, then because the motions are 

reversible, one can reconfigure the chain from the given configuration to the canonical 

configuration, and then from the canonical configuration to the target. \Vhen the 

angles between edges are free to change, the canonical configuration for chains is a 

line segment. Obviously this is not achievable for chains with fixed vertex-angles 
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between links. Instead of reconfiguring the chain into a one-dimensional segment, we 

ask if one can reconfigure such a chain to assume a two-dimensional configuration, 

that is, to lie in the plane without self-intersections. 

Unlike the case of reconfiguring a linkage from a given configuration to a target 

via a straight segment, moving two configurations of a chain into the plane does not 

guarantee that one can reconfigure between the two. Rather, one must also determine 

whether a chain can be reconfigured between any two of its planar configurations. This 

remains an open problem that we will discuss in chapter 8. 

vVe say a chain with fixed vertex-angles can be flattened if it can be moved into a 

planar configuration. There exist, of course, chains which cannot be flattened, such 

as the knitting needles chain of figure 1.12 (on page 10). This leads us to the following 

problem. 

Flattening: Given a polygonal chain with fixed vertex-angles in three dimensions, 

is there a sequence of motions which place the chain into a non-crossing planar con­

figuration? 

'While an algorithm for Flattening would be an invaluable tool for computing a 

motion between two configurations, we demonstrate it to be an NP-hard problem 

using a method similar to the NP-hardness proof for Minimum Planar Span. 

Theorem 24. Flattening is NP-hard. 

Proof. Given a set S = {81, 82, ... ,8n } of positive integers, we show that in 

polynomial time we can create a chain which can be reconfigured into the plane if 

and only if the set has a partition. 

We begin by creating, in the plane, either of the sub chains in figure 6.14, where a 

is the sum of the elements of S. An enumeration will show that these are the only 

planar configurations of this chain. 

We continue the chain from vertex a by building a subchain similar to the one 



127 Chapter 6. Endpoint-to-Endpoint Distance and Canonical Configurations 

, 'J .... 

Figure 6.14: The two possible planar configurations of the starting subchain con­

structed in the proof of theorem 24. 

a----~--~----------~----~-----

Figure 6.15: The sub chain starting at vertex a. 

in the proof of theorem 20, but in a vertical plane (orthogonal to the sub chain of 

figure 6.14). \Ve start at vertex a, and for every element Si E S, place an edge moving 

upward of length lin, followed by a horizontal edge of length Si, and repeat. We 

finish with an edge of length 5 extending upward. The sub chain from a is illustrated 

in figure 6.15; the entire chain is illustrated in figure 6.16. 

Now we flatten the chain into the plane. If the configuration is to be non-crossing, 

the only place for the edge of length 5 is inside the shaded triangle of figure 6.14, 

resulting in the configuration of figure 6.17. Therefore this edge must have the same 

Figure 6.16: The entire chain constructed in the proof of theorem 24. 
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Figure 6.17: An instance that can be flattened. 

x-coordinate as vertex a. As in the proof of theorem 20, this implies a partition of 

the edges which correspond to the elements of the set S. • 

Because Flattening is NP-hard, one might wonder if would be easier to answer 

more restrictive versions of the problem. Instead of seeking an arbitrary planar con­

figuration, we may also wish to consider whether a chain has a monotone planar 

configuration. Recall the definition of monotonicity from chapter 3 on page 41. A 

chain is monotone with respect to a line £ if the intersection of the chain with every 

line perpendicular to £ is connected. When R. is the x-axis, then the intersection of the 

chain with any vertical line is connected, and we call the chain x-monotone. For our 

purposes, we consider all monotone chains to be x-monotone, since one can always 

rotate it until it is monotone with respect to the x-axis. 

In other words, as one traverses an x-monotone chain edge by edge, the chain 

always progresses to the right. Examples of a monotone chain and a non-monotone 

chain are shown in figure 6.18. 

Monotone Flattening: Given a polygonal chain with fixed vertex-angles in three 

dimensions, is there a sequence of motions which place the chain into a non-crossing 

planar monotone configuration? 
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Figure 6.18: Left: An x-monotone chain. Right: A chain that is not x-monotone. 

Figure 6.19: A chain with a monotone planar configuration. 

Despite its apparent simplicity, this problem is also NP-hard. We proved Flat­

tening to be NP-hard via the same reduction as used for Minimum Planar Span; we 

now prove Monotone Flattening to be NP-hard via the same reduction as used for 

Maximum Planar Span. 

Theorem 25. Monotone Flattening is NP-hard. 

Proof. Suppose we have a Partition problem on some set S = {81, 82, ... ,8n }. We 

create a chain similar to the one used in the proof of theorem 18, where the turning 

angles 0i+l are equal to sda, where a is the sum of the elements of S. 

Instead of extending the extreme links to some large length, we add three links 

to each to obtain the chain of figure 6.19. The first is 1/2a radians within being 

perpendicular to the end link (in blue), followed by two links 1/2a within being 

parallel to the first (plus or minus trigonometric errors of less than 1/12a). 

The sets of three links at the end of the chain can lie monotonic with respect to 

the horizontal if and only if the blue links lie within 1/4a of being parallel, which 
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indicates a partition of the angles. (In the figure, ()4 ()2 + ()3 + ()5') • 



Chapter 7 

Chirality 

The most general problem in reconfiguring chains is to determine whether it is possible 

to move from a starting configuration to an arbitrary target. In this chapter we 

prove the difficulty of this problem by demonstrating that a more specific question is 

intractable. 

In section 1.3.3 we introduced the notion of chirality and discussed its importance 

in biology and pharmacology. An object is chiml if it cannot be superimposed on 

its mirror image. For rigid objects, this determination is quite simple; one needs 

only to compute the mirror image and check whether it is identical to the original 

object. A number of algorithms for finding symmetries already exist; a survey paper 

by Eades [46] provides a thorough coverage. However, from a chemical point of view, 

it is far more important to discover whether an object can be reconfigured into its 

mirror image. This is the problem we seek to answer in this chapter. 

Recall that an object is chiral if it is not possible to reconfigure the chain to 

its mirror image, and is achiral if it is possible. To avoid the confusing situation 

of determining chirality and answering yes when reconfiguration is not possible, we 

phrase the question as the Achirality problem. 

Achirality: Given a polygonal chain in three dimensions, can it be reconfigured to 

131 
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its mirror image while maintaining its vertex-angles? 

In the first chapter, we also presented an example of the achiral molecule syn­

thesized by Mislow and Bolstad [109], shown in figure 1.30 on page 26. The rigid 

representation of their molecule is chiral but it can easily be reconfigured into its 

mirror image. The central bond is rigid, but if middle portion is rotated about the 

red bonds by 90 degrees, the mirror image is attained. It is rather interesting that 

despite this reconfiguration, the molecule cannot be brought to a single configuration 

which, when regarded as a rigid object, is achiral. Mislow and Bolstad called this 

type of molecule a rubber glove. One can turn a left-handed glove inside out to make 

a right-handed glove, but at no time is the glove in a symmetric configuration. 

Like many of the problems we have encountered in the past two chapters, deter­

mining whether a chain is a rubber glove is intractable. vVe call a chain of n vertices 

a palindrome if its ith edge length and bond angle is the same as the n - i + 1st . A 

chain which is not a palindrome can be in a symmetric configuration only if it lies in 

the plane. This leads us to the following lemma. 

Lemma 26. A chain which is not a palindrome can be a rubber glove only if 'it cannot 

be flattened. 

The chain in figure 7.1, the one used in the reduction for proving Flattening to 

be NP-hard, is achiral. Since determining whether this chain can be flattened is NP­

hard, determining whether the chain cannot be flattened is co-NP-hard1
• Thus we 

have proven theorem 26. 

1 A problem is co-NP-hard if its negation is NP-hard. Unsatisfiability, Graph- Uncolorability, and 

determining if there does not exist a Hamiltonian Path in a given graph are all examples of problems 

which are in co-NP. NP is the class of problems for which the certificate of a yes instance (a solution) 

can verified in polynomial time; co-NP is the class of problems whose certificate of a no instance 

(a counter-example) can be verified in polynomial time. The textbooks by Garey and Johnson [62], 

Hopcroft and Ullman [79], and Lewis and Papadimitriou [97J provide a thorough coverage. 
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Figure 7.1: A rubber glove. 

Theorem 26. Determining whether a chain is a rubber' glove is co-NP-hard. 

The remainder of this chapter is dedicated to proving that Achirality is NP-hard 

by a reduction from Partition. (This in turn would imply that Chirality is co-NP­

hard.) Because the chain built in the reduction is highly complex, we first describe 

the structure as a general gadget using planes, polyhedra, and vertices of high degree. 

\Ve then show how to approximate the gadget using a single chain. 

The gadget is illustrated in figures 7.2 and 7.3. In the center of the object are 

two blue planes which are very close together, which we will call a double spatula. 

The double spatula is connected to two auxiliary chains. The right auxiliary chain is 

connected to the top small blue triangle, and the left auxiliary chain is connected to 

the bottom blue triangle. Therefore, to bring the object to its mirror image, the two 

auxiliary chains must switch places. The small blue triangles prevent the chains from 

switching places by rotating around the outside of the double spatula, so if the chains 

are to switch places, they must pass between the two large blue triangles. Since the 

double spatula is very narrow, the auxiliary chains must be in a configuration close 
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double spatula 

,~a 11 -------"f---left auxiliary chain 

right auxiliary chain --.....'" 

Figure 7.2: The gadget to decide Achirality. 

to planar, that is, constrained by two close planes, before passing through. 

The caveat is that the cap is a tetrahedron and cannot be flattened. If an auxiliary 

chain passes through the double spatula, its cap must stretch around the endpoints 

marked in red. The cap can extend past the endpoints if and only if there exists a 

configuration of the chain, while it is constrained by two close planes of the double 

spatula, whose span is long enough. If we make the auxiliary chain the same chain 

that we built to prove that Maximum Span Between Two Planes is NP-hard, then 

determining if the two auxiliary chains can switch sides is NP-hard. 

The remainder of this chapter explains how we can build the object of figure 7.2 

using a single chain. We first define a characteristic of a chain, quasi-rigidity, that 

describes the amount of freedom available in a chain's configuration. vVe then describe 

the numerous gadgets that will be used in the reduction before completing the proof 

in section 7.4. 
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Figure 7.3: Stereog

mm


: Side view of the gadget to decide Achirality. (Not to scale.) 



136 Chapter 7. Chirality 

Figure 7.4: A staple and hook. 

;r 
(I -----+-----"7 h 

Figure 7.5: A linked staple and hook. 

7.1 Quasi-rigidity 

Consider the two chains in figure 7.4. We refer to the red chain as a staple, and the 

green as a hook. This pair of chains has the property that if they are positioned as 

in figure 7.5, they cannot be separated. We refer to this special configuration of the 

two chains as a linked staple and hook. 

Lemma 27. The linked staple and hook cannot be separated. 

Proof. Consider the labeling of the vertices in figure 7.5. We assume without loss 

of generality that the edges ab and be are fixed in space, since any motion of these 

two edges can be realized by moving the rest of the chains. 

We first discuss the properties of the hook. The vertex d of the hook is as close as 

possible to the edge ab when the hook is planar, so moving d only serves to increase the 

distance between d and abo Due to the sharp angle at d, both c and e are considerably 
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farther from ab than is d. 

The staple is wrapped around ab at x, and around d at y. Because the distance 

between x and y is fixed, the staple places an upper bound on the distance allowed 

between d and abo Because c and e are farther from ab than is d, one cannot move y 

down away from d without moving y farther from ab the downward direction (as 

defined by the figure). This implies that x must move downward, but x is obstructed 

by abo Similarly one cannot move x away or along ab without moving y upward 

through d. 

Since y cannot be moved away from d except for an arbitrarily small amount, d 

cannot be moved by any more than an arbitrarily small amount. The hook cannot 

be reconfigured until the staple is removed, and the staple cannot be removed until 

the hook is reconfigured. Thus neither is possible. _ 

The linked staple and hook can be used to make a variety of locked geometric 

shapes. For example, consider the triangle-like chain in figure 7.6, which we call a 

staple-and-hook triangle. With a linked staple and hook, the four vertices abed behave 

like a rigid triangular cycle. 

vVe wish to claim that although there is some freedom in the structure, it is 

more or less locked. To formalize this notion, we define a distance metric between 

configurations of a chain so that it is possible to discuss how close together or far 

apart they are. This will allow us, for example, to claim that the chain in figure 7.6 

is locked because it can only be moved to nearby configurations. 

Let X and X' be two configurations of some chain C. We define the discrepancy in 

position of any point p in X to be the distance between p and its corresponding point pi 

in X'. We define the discrepancy in position of the two configurations to be the largest 

distance between the position of any point in X and the position of its corresponding 

point in X'. This scheme is illustrated in figure 7.7, where the dotted line indicates the 
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b --------------1 
c 

Figure 7.6: A staple-and-hook triangle. 

discrepancy. A useful property of this definition is that the largest distance between 

any two points of a configuration always occurs between corresponding vertices. 

Lemma 28. The largest discrepancy between two configurations is determined by the 

positions of the venices of the chain. 

Proof. Let corresponding points p and pi have the largest discrepancy in position, 

and suppose they each lie interior to an edge. Let 0,0' and q, ql be two pairs of cor­

responding points on the same edges, such that p lies between 0 and q (and thus p' 

lies between 0' and ql). If 100'1 IpP'l, then the endpoints of the edges have the same 

discrepancy in position as p and pl. Because edges are linear segments, if /00'1 < Ipp'l 
then Ippll < Iqqll, a contradiction. ­

To obtain a distance metric which is invariant to affine motions of a configura­

tion, we define the distance between two configurations of the chain to be minimum 

discrepancy in position modulo rigid rotations and translations. Given two config­

urations, we rotate and translate one of them until the largest discrepancy in the 
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a' 

b' 

c' 

d d' 
x x' 

Figure 7.7: The discrepancy in position of the two configurations is the largest dis­

crepancy in position of any point, the distance between d and d'. 

position of any point is minimized. This discrepancy is the distance between the two 

configurations, as demonstrated in figure 7.8. 

This metric gives us the power to describe formally the amount of freedom in 

a given configuration. We will prove that the chain in figure 7.6 is locked because 

it cannot be moved into any distant configuration. We can further quantify this 

statement by defining a parameter of any configuration which we shall call the allowed 

perturbation. For any configuration x, its allowed perturbation is the largest distance 

from X to any other reachable configuration. 

All the complex structures in this chapter exploit linked staples and hooks. We 

define a structure as quasi-rigid if the allowed perturbation of the chain approaches 

zero as the length of the staple-and-hook edges also approaches zero (while the re­

maining lengths of the chain remain fixed). In some structures, we add the constraint 

that the vertex-angles of the staples approach Jr. 

For example, we would say that the staple-and-hook triangle of figure 7.6 is quasi­

rigid since as the staple and hook are made smaller and smaller, the chain becomes 

more and more locked as in figure 7.9. We prove this formally in the following lemma. 
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v 
x 

Figure 7.8: The distance between X and X' is the largest discrepancy in position of 

any point on the chain, minimized over all global rotations and translations. From 

its position in figure 7.7, X' has been rotated through the third dimension (about the 

edge be in figure 7.7), rotated slightly clockwise, then translated onto X. 

b -----------1 
Figure 7.9: A tightly locked staple-and-hook triangle. 
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Lemma 29. In a staple-and-hook triangle, the allowed perturbation is at most twice 

the total length of the staple and hook. 

Proof. X be the configuration of the staple-and-hook triangle as shown in 

figure 7.6, and let X' be any configuration reachable from x. Because the distance 

metric is invariant of global rotation and translation, we can assume without loss of 

generality that the vertices a, b, and c are coincident in both X and X'. Thus the 

distance between the two configurations is at the discrepancy in position of the other 

points on the chain by lemma 28. Except for band c, all vertices of the chain are 

part of the staple or the hook. 

Let K be the total lengths of the staple-and-hook edges. Since the staple and 

hook are not separable, no vertex therein can be more than distance K away from a 

in either X or X'. Because a is coincident in X and X') all vertices other than band c 

are within a sphere of diameter 2K around a. _ 

Thus the staple-and-hook triangle is quasi-rigid, since the allowed perturbation is 

at most twice the total length of the staple-and-hook edges. Another interpretation, 

more useful for our purposes, is that for any desired allowed perturbation c, it suffices 

for the total size of the staple-and-hook edges to be less than E/2. Since the sufficient 

total length is polynomial in the desired allowed perturbation, we say the structure is 

polynomialty quasi-rigid. In our NP-hardness proof for Achirality, it will be important 

that all edges are only polynomially small to achieve the desired quasi-rigidity. We 

cannot afford to use arbitrarily large space to describe the size of the edges if we hope 

to obtain a polynomial-time reduction. 

The bulk of the NP-hardness proof for Achirality consists of using a single chain 

to build complex structures which mimic the function of the gadget of figure 7.2. We 

then show that their allowed perturbations are polynomially small with respect to 

the size of an instance of Partition. In this way we will be able to build the rigid 
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components of the gadget such as the double spatula but with a single chain. 

If we prove that the structures are polynomially quasi-rigid, then we are part of 

the way toward proving that the allowed perturbation can be made polynomially 

small with respect to the size of the Partition instance. If a function is polynomial, it 

implies that its asymptotic behavior is polynomial. In other words, if a structure is 

polynomially quasi-rigid, then there exists some E > 0 such that for all total lengths 

K of the staple-and-hook edges less than E, the allowed perturbation is polynomial in 

K. For a polynomial reduction, we will also require that the space required to store 

the value E is polynomial in the size of the Partition instance. For our proof, it will 

suffice to show that E is polynomial in the length of the longest edge of the structure. 

7.2 Fundamental Quasi-rigid Structures 

We will build the components of the gadget out of four fundamental structures, grad­

uated rulers, planar nets, caps, and staple-edges. 

Graduated rulers 

In everyday use, a ruler is a straight line segment marked with graduations at regular 

intervals. The graduated ruler we design below is an object with hooks at regular 

intervals, used for a similar purpose. 

Consider the structure of figure 7.10. We begin with the uppermost drawing, a 

horizontal edge connecting two hooks. Building from the right hook, we draw a long 

edge back to the left hook and connect it with a staple. In the final drawing, we 

continue the chain to the right, alternating between short edges and hooks, until we 

connect the chain to the rightmost hook with a staple. 

If the lengths of the short edges (drawn in the bottom image of figure 7.10) add 

up to the length of the middle edge (drawn in the middle image), then as the staple­
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Figure 7.10: Step-by-step construction of a graduated ruler. 

Figure 7.11: A graduated ruler with smaller staple-and-hook edges. 

and-hook edges get smaller and smaller, the chain becomes more and more rigid as 

in figure 7.11. 

Lemma 30. The graduated ruler is polynomially quasi-rigid. 

Proof. vVe consider the labeling indicated in figure 7.12. Assume the edge cd 

is fixed in space. Let /'Ci be the total length of the edges of the ith hook (or staple 

and hook) as indicated. vVe demonstrate that as the sum J( /'Co + /'CI + ... + /'Cn 

approaches zero, the allowed perturbation is O( VK), and thus that J( is quadratic 

in the desired allowed perturbation. 

We assume J( to be smaller than ledl. This will allow us to prove that no point 

on the graduated ruler can be displaced more than a small distance. 

f;~ !i 

en 

c 
b 

Figure 7.12: Labeling of the chain in the proof of lemma 30. 
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c 

Figure 7.13: Illustration of x and h. 

Let x be a point of the chain not on cd, as shown in figure 7.13. Then x must be 

on a path which connects the first and last hooks, which are distance Icdl apart. Let 

let dx be the total arc length of the chain from the left staple and hook to x, and ex 
be the total arc length of the chain from the right staple and hook to x. Then x must 

be within spheres of radius dx around d and of radius ex around e. 

Since the sum of the lengths of the edges ei equals Icdl, the total arc length 

dx + ex :; ledl + K. On the line connecting the centers of the spheres, eand d, 

the overlap of the two spheres can therefore be at most K. \Ve now compute how far 

x can lie from the edge cd, indicated in the figure by the distance h and the position 

of x. If we follow the path from c to x to d, the chain traverses a total horizontal 

distance ledl, and a total vertical distance 2h. By the Pythagorean theorem, this path 

has total length at least vlcdl2 + (2h)2, which must be less than ledl + K. 

vlcdl2 + (2h)2 < ledl + K 

Icdl2 + 4h2 < Icdl 2 + 21cdiK + K2 

4h2 < 21cdiK + K2 
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o~________~~________~__________ ________~ ~ 

Figure 7.14: Legend for graduated rulers. 

« 

Figure 7.15: Building the frame of the planar net. 

We assumed that K :s; ledl, so 4h2 :s; 3jcdiK and thus h :s; y'3lcdlK/2. The in­

tersection of the spheres has width K along the edge cd, and width y'3IedIK/2 

perpendicular to cd. Thus the total possible discrepancy in position for any point x 

is at most 2K y'3jcdlK for K < ledl as per our original assumption. • 

The graduated ruler will be the building block to create more complex quasi-rigid 

structures. To simply future diagrams, we will draw graduated rulers as shown in 

figure 7.14. Circles will be drawn to signify staples or hooks. When more than 

one line meets at a circle, it is to signify linked staples and hooks. For example, in 

figure 7.15, the three graduated rulers are linked at their endpoints. 

Planar nets 

A planar net is a flat grid-like mesh, much like the seat of a wicker chair or a shelf of 

a refrigerator. We begin by building an isoceles right triangle with three graduated 

rulers linked at their endpoints, with hooks at regular intervals, as in figure 7.15. We 

refer to this structure as the frame of the planar net. 
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e 

a 

Figure 7.16: Labeling used in the proof of lemma 31. 

Lemma 31. The frame of the planar net is polynomially quasi-rigid. 

Proof. Let X be the configuration of the frame as described, and let X' be a 

configuration reachable from X. 

Let a, b, e be the three corners of the triangle (endpoints of the graduated rulers) 

in the configuration X as illustrated in figure 7.16, where b is at the right angle. (Since 

the triangle is isoceles, this implies that labl = Ibel.) Let a', b', c' be the corresponding 

points in X'. Let IT be the largest allowed perturbation of any of the individual 

graduated rulers. Since graduated rulers are polynomially rigid by lemma 30, the 

lemma is proven if we demonstrate the allowed perturbation of the frame to be a 

multiple of IT. 

Vve need only show that the discrepancy in position of the three endpoints a, b, c 

is a multiple of IT. Because the remainder of the vertices belong to graduated rulers, 

their discrepancy could be at most IT more than that of the endpoints. We now show 

the allowed perturbation of the frame to be at most (1 + V65)IT. 

Because the distance metric is invariant to global rotation and translation of X 

and X', we assume the points a and a' to be coincident in the two configurations. 

Furthermore, we rotate the two configuration such that a, b, b' are collinear on the 

y-axis and that a', b', c' lie in the same plane as a, b, c. We assume this plane to be 

the horizontal xy-plane. 

The distance between a and a' is zero, and the distance between band b' is at 
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most IT since they both lie on the y-axis. We compute the maximum possible distance 

between e and c' by considering the triangle f::::.a' b' e'. Because the frame is constructed 

of graduated rulers, we know that 

labl - IT ~ la'b'l ~ labl + IT, (7.1) 

lael- IT ~ la'e'l ~ lael + IT, and (7.2) 

Ibel IT ~ Ib'e'l ~ Ibel + IT. (7.3) 

\Ve assume that IT is smaller than any of the graduated rulers, so that the above 

values are all positive. 

Let ifJ be the angle Laib'e'. By the law of cosines, we can express ¢ by 

la'b'I2+ Ib'e' 1 
2- la'e'I2 

(7.4)cos ¢ = 2la'b'lIb'c'1 . 

Substituting the values of inequalities 7.1, 7.2, and 7.3 into equation 7.4 yields the 

range of possible values for ¢. vVe first compute a lower bound, which we will see is 

negative. Because the denominator of equation 7.4 is a positive product of distances, 

our lower bound will be achieved by finding the minimum possible value for the 

numerator, and the minimum possible value for the denominator. 

(Iabl - IT)2 + (Ibel - II)2 - (Iacl + II)2
cos¢ > 

2(labl - II)(lbel - IT) 
labl2+ Ibel 2 

- lacl 2 + 2II(lael - labl - Ibel) + 3II2 
cosifJ > 

2(labllbcl - IT(labl + Ibel) + II2) 

Because f::::.abc is a right triangle, labl 2 + Ibcl 2 
- lael2 = O. We can further simply the 

inequality to 

2II(lacl - labl - Ibcl) + 3IT2 

cos ¢ 2: 2(labllbel IT(labl + Ibel) + II2)' 
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Since labl = Ibel, we know that lael- labl Ibel ~ -Iabl by the triangle inequality. 

We further note that IT2 is necessarily a positive value. Thus we obtain 

-2ITlabl 
cos cP ~ 21abl2 4ITlabi + 2IT2' 

Since we are interested in the allowed perturbation when IT approaches zero, we may 

assume that IT ::; labl/4. Then 4I1labl is at most labl 2 , so 

-2nlabl 
cos cP ~ 21abl2 _ labl2 + 2I12' 

Since 2I12 is necessarily a positive value, cos cP ~ -21T /Iabl. 

We find an upper bound for cos cP with a similar argument. 

(Iabi + I1)2 + (Ibel + I1)2 - (Iael - I1)2 
cos cP < 

2(labl - IT)(lbel - I1) 
labl 2 + Ibel2 lael2+ 2I1(1abl + Ibel lael) + 3IT2 

cos cP < 
2(labllbel I1(1abl + Ibel) + I12) 

2I1(labl + Ibel lael) + 3I12 
cos cP < 

2(labllbel - I1(labj + jbel) + I12) 
2nlabl + 3I12 

cos cP < 2labllbel-labllbel 
2I1jabj + I1jabj 

cos cP < 
labl 2 

3I1 

coscP < Iabl 


Therefore, we have that 

-2IT -2IT ,3IT 3IT 
~ = ~ ::; cos cp::; labl = Ibel' 

Now we compute the maximum distance between c and c'. If we assume that 

a = at is at the origin of the plane, and that a and b' lie on the y-axis, then the 
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v-coordinate of e' is lab'l + We'l coscP. This expression is bounded from below by the 

following. 

lab'l Ib' e'l cos cP > labl- IT (Ibel + IT)(2IT/lbel) 


lab'l + Ib'e'l cos cP > labl IT - (2IbeJ)(2IT/lbel) 


lab'l + Ib' e'l cos cP > labl - IT - 4IT 


lab'l + We'l cos cP > labl- 5IT 


The v-coordinate of c' is likewise bounded from above as follows. 

lab'l + Jb'e'l coscP < labl IT (Ibel + IT)(3IT/lbel) 


lab'l + We'l coscP < labl + IT + (2Ibel)(3IT/lbcl) 


lab'l + Ib'e'l cos cP < labl + IT + 6IT 


lab'l + Ib'e'l coscP < labl 7IT 


Thus the v-coordinates of e and of e' differ by at most 7Il. 

The x-coordinate of c' is We'l sin cP. Because sin2 cP + cos2 cP = 1, we obtain that 

I sin cPl ;:: 1 - I cos cPl, and thus that sin cP ;:: 1 - 3Il/lbel. The x-coordinate of e is 

bounded from below by the following. 

Jb' e' I sin cP > (Ibel - IT)(l - 3Il/lbel) 


We' I sin cP > Ibel - IT - (Ibel IT)(3IT/lbel) 


Ib' e'l sin cP > Ibel - IT - (Ibel)(3IT/lbel) 


Ib'e'l sin cP > Ibel- IT 3IT 


Ib'e'l sin cP > Ibel - 4IT 
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...................~ 


Figure 7.17: A spacer. 

The x-coordinate is maximized at Ibel + II, when ¢> is 1f/2. Thus the x-coordinates 

of c and of c' differ by at most 4II. Since we assumed that abc and a'b'c' lie in the 

same horizontal plane, the discrepancy in position between the c and c' is at most 

(y'72 + 42)II V65II. 

Thus the maximum discrepancy in any of the three endpoints is at most V65II. 

Since all other points in the frame belong to graduated rulers whose allowed per­

turbations are at most II, the allowed perturbation of the entire frame is at most 

(1 V65)II. • 

Now that we have proven that the frame of the planar net is polynomially quasi­

rigid, we add bars to the frame of the net. \Ve use a structure which we call a spacer, 

shown in figure 7.17. A spacer is simply a bar with two staples at the ends. (We will 

always draw spacers in blue, and will often abbreviate them by leaving off the red 

staples such as in figure 7.19.) By linking the staples of the spacer with the hooks of 

graduated rulers, the spacer forms a distance constraint as performed in figure 7.18. 

As an example, we demonstrate how one could create the structure in the figure using 

a single chain by connecting the components together by the dotted brown line. It is 

not difficult to connect two or more simple structures by simply joining the endpoints. 

If both structures are meant to be rigid, adding edges between them can only serve 

as additional constraints to possible motions. We will adopt the convention of using 

dotted brown lines to connect fundamental structures throughout the remainder of 

this chapter. 

vVe connect the opposing hooks of the planar net frame with spacers as shown in 
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Figure 7.18: Two rulers joined by three spacers. 

b 

a c 

Figure 7.19: Stapling the spacers to complete the planar net. 

figure 7.19 to obtain a structure similar to a fiat plane. Because the hooks are at 

regular intervals, we join the bottom hooks of both ab and be, a short spacer to get 

to the second hook, then a spacer joining the second hooks of and be, and so on. 

We can make the net out of a single chain by a short edge connecting the frame to 

the first spacer and short edges connecting each spacer. 

Since each vertex of the spacers is adjacent to a staple, and each staple is connected 

to a hook on the frame, the total allowed perturbation of the planar net is only the 

allowed perturbation of the frame plus the total length of the staples. This proves 

the following lemma. 
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d 

e e 

a~------------__~ a~----------__~, b 

Figure 7.20: Stereogram: A cap. 

Lemma 32. A planar net is polynomially quasi-rigid. 

Caps 

Unlike graduated rulers and planar nets, the cap is not fiat but rather is a tetrahedral 

frame as illustrated in figure 7.20. To simplify the proof that a cap is polynomially 

quasi-rigid, we assume that abc and ade are congruent planar nets (of which band d 

are right angles), and that bd is a spacer. 

Lemma 33. A cap is polynomially quasi-rigid. 

Proof. Let X be the configuration of the cap where the following hold: (1) abc lies 

in the horizontal xv-plane, (2) ade lies in the vertical xz-plane, and (3) the two nets 

are in congruent configurations, differing only by a rotation about tt. 

Let X' be a configuration (with points a', b', e', d') reachable from X. We assume 

that a and a' are coincident, that a, e, c' lie on the x-axis, and that d' lies in the 

xz-plane with aed. Let II be the maximum allowed perturbation of the two planar 

nets and of the spacer. Then a and a' are distance zero apart, e and e' are at most 

distance II apart, and d and d' are at most distance II apart. We must therefore only 

demonstrate that band b' are apart by a distance polynomial in II to show the cap to 

be polynomially quasi-rigid. Since the planar net abc is polynomially rigid, we need 

to prove that the z-coordinate of b' is polynomial in II. 
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________________~~~~______~y_7L(______~ 

Figure 7.21: A staple-edge. 

a".------------------='-b·--·...~--------~·..L7------~S..······~Z----------------

Figure 7.22: Labeling of the staple-edge in the proof of lemma 34. 

Let e be a point on the graduated ruler ac such that Lbed forms a right angle. 

Because e is on both planar nets, the distance Ibel = Idel. The distance between e 

and e' is at most IT, so in essence bed is the frame of a planar net, since the three 

distances are rigid, each within an allowed perturbation of IT. Thus, as in the proof 

of lemma 30, (-2IT/lbel) :::; cos Lbed :::; (3IT/lbel). 

Thus the z-coordinate of b' is bounded between -2IT and 3IT. • 

Staple-edges 

A staple-edge is simply a long straight edge which contains one or more staples, 

shown in figure 7.21. For simplicity, we assume that all vertex-angles of the chain 

are congruent. We first prove that the staple-edge is polynomially quasi-rigid, and 

then discuss its purpose. All of our proofs to date have been based on the size of the 

staple-and-hook edges approaching zero; here we also require that the vertex-angles 

of the chain approach Jr. This will ensure that the staple-edge approaches a line 

segment. 

Lemma 34. The staple-edge is polynomially quasi-rigid. 

Proof. We show that the staple-edge approaches a line segment as the vertex-angles 

of the staples approach Jr, which implies that the black edges approach collinearity. 

Let ab be the first edge of the staple-edge, and cd be the second non-staple edge, as 

shown in figure 7.22. 
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Assume that at points in the direction of the positive x-axis. Let 1r () be the 

measure of each vertex-angle of the chain. Then the second edge of the chain, that of 

the staple, is at an orientation of 1r - () with respect to the positive x-axis. The orien­

tation for the third edge lies in the range given by the constraints of the optimization 

program of figure 6.12 on page 113, and so the edge must lie at an angle between 0 

and 20 from the positive x-axis. The same argument holds for the next two edges, 

and thus cd lies at an orientation at most 4(} from the positive x-axis. If there are 

k staples in the staple-edge, then the first and last edges differ in orientation by at 

most 4k(}. 

Suppose the total length of the black edges is t, that the total length of the staples 

is K, and that 4k(} < 1r. The angle that each black edge makes with the x-axis is at 

most 4k(}, so the x-coordinate of the right endpoint of the chain is at least /! cos 4k(} 

minus the length of the staples, K. This value is at least /![1- (4k(})2] K, which tends 

to t quadratically with () and linearly with K. Likewise, the maximum x-coordinate 

is at most than the total length of the chain, l + K, which also tends polynomially to 

f!. The right endpoint can also be a distance I! sin 4k() + K from the positive x-axis, 

which is less than 41!k(} + K. Thus the right endpoint has discrepancy polynomial in 

K and (). This implies that every point on the staple-edge has discrepancy polynomial 

in K and (), since cutting the chain at any vertex produces a smaller staple-edge with 

an identical () and smaller I! and K. • 

Since the sum of the turning angles in the chain is 4K(), we have also proven the 

following. 

Lemma 35. The two extreme edges of the staple-edge differ in or'ientation by at most 

the sum of its turning angles. 

The use of a staple-edge is to form an edge which is attached to the hooks of one 

or more graduated rulers as in figure 7.23. (\Ve can build both the staple-edge and 
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Figure 7.23: A staple-edge (magenta) attached to two hooks of a graduated ruler. 

the ruler out of a single chain by connecting them with the dotted brown line.) In 

a sense, a staple-edge is like a set of spacers with the added feature that the spacers 

are collinear. 

7.3 Complex Quasi-rigid Structures 

Using the above fundamental structures we can begin building the complex chains of 

the gadget. The first such structure is a spatula, which is half of the double spatula 

of figure 7.2. 

Spatulas 

A spatula is a combination of a staple-edge and a planar net, shown in figure 7.24. 

The two are bound together by the linking of two staples of the staple-edge and two 

hooks of the planar net. We can create the spatula out of a single chain by connecting 

the end of the staple-edge to the planar net as indicated by the dotted brown line. 

Lemma 36. The spatula is polynomially quasi-rigid. 

Proof. Both the planar net and the staple-edge are polynomially quasi-rigid. Let 

II be the maximum allowed perturbation of either. Assume that the planar net is 

fixed in space, with c and d on the x-axis, modulo the allowed perturbation of II. 

Then c and d can differ from their positions by at most II. Consider figure 7.25. The 

staple-edge is connected to cand d, which are at least Icdl - 2II apart and are each 

at most distance II from the x-axis. 



156 Chapter 7. Chirality 

a 

Figure 7.24: A spatula formed by a planar net and a staple-edge. 

staple-edge 

2fI 

---------------------------1 

Icdl-- 2rI 

Figure 7.25: The maximum slope of the staple-edge. 
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Figure 7.26: A double spatula. 

Figure 7.27: Simplified drawing of a double spatula. 

Therefore the slope of the staple-edge with respect to the x-axis, is 2I1/ (Icdl- 2I1), 

so the maximum distance of either endpoint to the x-axis is 2£I1/(lcdl - 2I1), where 

£ is the length of the staple-edge. 

The x-coordinates of the endpoints of the staple-edge are displaced by at most 

2I1/(lcdl 2I1) due to the perturbation in slope, and an additional 2I1 due to the 

allowed perturbations of the planar net and the staple-edge. Thus the allowed per­

turbation of the spatula is polynomial with respect to .e and I1. • 

Double spatulas 

Consider two spatulas joined together as in figure 7.26. If the angle at the leftmost 

vertex is very sharp, the two planar nets are brought very close together. This creates 

the double spatula portion of the gadget of figure 7.2. A simplified drawing of the 

double spatula is shown in figure 7.27. 

Each half of the double spatula is polynomially quasi-rigid, but our construction 

leaves the possibility that one of the planar nets may rotate about the axis of the 

staple edge as the other stays fixed, as shown in the first two images of figure 7.28. 
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Figure 7.28: A double spatula with one planar net rotated. 

This will not be a problem in our proof as long as the planes cannot pass through 

each other. 

Assume the bottom plane is horizontal, and that the top plane is rotated through 

it as seen in the right image of figure 7.28. We can limit the extent to which the 

two planes pass through each other by placing a spacer at approximately distance 1 

from the base of each net, as in the left image of figure 7.29. This creates the shaded 

region, a strip of width 1 between the frame of the planar net and the spacer. 

If the two planes are close together, then the two staple-edges of the double spatula 

are nearly parallel. This means that the two planar nets rotate about near parallel 

axes. Consider the center image of figure 7.29. \Vhen the top planar net rotates 

through the bottom net, the lower left vertex of the top net must pass through the 

shaded region. A portion of the top net can only pass through the strip as long as its 

width does not exceed 1. Since planar nets are isoceles triangles, only the red right 

triangles in the figure, with leg lengths 1, can pass through. Therefore the two planes 

cannot pass through one another with the exception of a small piece of constant 

size. If the two staple-edges of the spatula are separated by a distance h, then the 

two planar nets can be separated by at most distance 2h (excepting the small red 

triangles), as indicated in the right image of the figure. 

Thus if we wish the planar nets to be within a distance h apart (except for small 

pieces of size 1 at the ends of the nets)) we simply need to make the staple-edges of 

the double spatula distance h/2 apart. 



159 Chapter 7. Chirality 

2h 

Figure 7.29: Computing the maximum distance between the two nets when one is 

rotated. 

c 

a'V"=-----!---.oL· b 

Figure 7.30: Stereogram: A capped edge. 

Capped edges 

A capped edge is a staple-edge with a cap at the end, like in figure 7.30. Its use will 

be to place caps at the end of the auxiliary chains. The proof that a capped edge is 

polynomially quasi-rigid is identical to that of lemma 36 for the spatula. 

Lemma 37. A capped edge is polynomiaily quasi-rigid. 

http:a'V"=-----!---.oL
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Figure 7.31: The auxiliary chain and cap. 

A uxiliary chains 

The auxiliary chain of the gadget will be identical to that of the chain used in the 

proof of theorem 19 for Maximum Span Between Two Planes, with the exception that 

the chain ends in a cap. 

We will be reducing Partition to Achirality. Let S {81' 82, ... ,sn} be the n 

integers of a Partition problem, and let (J be the sum 81 82 + ... + 8n . \Ve begin with 

the auxiliary chain with an edge of length 256n(J2, followed by n - 1 edges (and thus 

n vertices) of length between 1/2 and 1, such that the turning angles at the vertices 

V2, V3, ... ,Vn +! are proportional to the integers of S. Let (h = 3d(J, e3 = sd(J, et 

cetera. We then finish with a capped edge, where the length of the edge is 256n(J2 

plus the length of the cap. 

7.4 Achirality is NP-hard 

We connect the auxiliary chain to the double spatula as shown in figures 7.32 and 

7.33. An additional planar net (the small blue triangle) has been placed above the 

auxiliary chain to prevent it from moving above the double spatula construct. The 
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Figure 7.32: The connection of the top half of the double spatula and one auxiliary 

chain. (Not to scale.) 

chain is forced underneath by connecting a graduated ruler (in magenta) to one of 

the staples under the small planar net. The only way to move it to the other side of 

the double spatula is to pass it through the middle. 

Since the cap will not fit inside the double spatula, it must pass outside the red 

vertices of figure 7.33. If the auxiliary chain is to pass through the double spatula, 

it must have a configuration with a long enough span. \Ve refer to the distance from 

one endpoint of the auxiliary chain to the beginning of the cap as its span. 

vVe know from chapter 6 that determining the maximum possible span of the 

auxiliary chain when constrained by two parallel planes is NP-hard. By the proof of 

theorem 19, if there exists a partition of the elements of the set S, then there exists 

a configuration constrained by two parallel planes distance 1/(16V2na) apart whose 

span of at least 512na2 (Sin). If such a partition does not exist, then the largest 

span possible is at most 512na2 (Sin) -1. If the span is greater than 512na2 - (Sin), 

then the two long links of the auxiliary chain must be within an angle 1 Ia of parallel 

with each other. 

Let the distance from the attached endpoint of the auxiliary chain to the red 

endpoints of the double spatula be 512na2 - (8In) - (1/2) as in figure 7.33. Consider 
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span ()f 

Figure 7.33: The double spatula connected to one auxiliary chain. (Not to scale.) 
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Figure 7.34: View from above of the long staple-edge of the double spatula and one 

auxiliary chain. The planar nets of the double spatula are not shown. 

the moment the cap passes beyond the red endpoints. The long links of the auxiliary 

chain must be within 1/a of parallel. This situation is illustrated in figure 7.34, which 

shows the view of figure 7.33 from directly above without the planar nets of the double 

spatula. 

If the two long links of the auxiliary chain are within 1/a of parallel, then the 

angle between the first link of the auxiliary chain and the double spatula must be less 

than 1/(J. This constrains the short edges of the chain to lie within the region shaded 

in brown. 

Our goal is to ensure that when the cap passes the red endpoints of the double 

spatula, the short edges of the chain are constrained to lie between the planar nets 

of the double spatula. Let the spacers of the double spatula be placed at intervals of 
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Figure 7.35: Placement of the spacers of the double spatula. 

at most 1/8, covering the entire brown region as in figure 7.35. 

Assume the double spatula lies along the positive x-axis as in the figure. Since 

the total curvature of the auxiliary chain is at most 1 radian, when the short links 

are within the brown region, each short link makes an angle of at most 1 + (1/a ) 

radians with the double spatula. Since the short links are of length between 1/2 and 

1, the difference in x-coordinates of the endpoints of each link is least than 1/4. If 

the spacers are 1/8 apart, then each short link is below at least two spacers of the 

upper planar net and above at least two spacers in the lower planar net, as illustrated 

in figure 7.36. Thus at least a quarter of each such link is trapped by the spacers and 

so lies between the two planar nets. Suppose the two nets of the double spatula are 

separated by a small distance y. If three-quarters of each link can lie outside the two 

planes, then the links lie up to 3y outside the two planes. Then each link is effectively 

trapped between two planes separated by 7y. 

Let the planar nets of the double spatula be positioned such that they can be 

opened to at most a distance 1/224V2na apart, except for the small portions within 

distance 1 of the extremities of the net as discussed section 7.3. (These small por­

tions are accounted for in figure 7.35.) If its allowed perturbation is also 1/224V2na, 

then the farthest that the two planes could be separated is 1/112V2na. The auxiliary 
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Figure 7.36: Each link of the central chain is trapped from above by at least two 

spacers of the double spatula. 

chain will then be constrained to lie between two planes distance 1/16V2na apart. 

vVe now determine the size of the brown region. Its leftmost point is at distance 

256na2 cos{l/a) from the attachment of the auxiliary chain; its rightmost point is at 

distance 256na2 + n from the attachment, as shown in figure 7.35. As long as the 

length of the spacers is at least 512na2 sin(l/a) + 2, the brown region is covered. \Ve 

can bound these trigonometric expressions as follows. 

256na2 cos{l/a) > 256na2 (1 -
1 

256na2 cos{l/a) > 256na2 
- 128n 

512na2 sin(1/a) + 2 < 512na2(1/a) + 2 

512na2 sin(l/a) + 2 < 512na + 2 

Therefore the region is contained within a rectangle of width 128n and length 
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512na + 2. If we place each spacer of the two planar nets at intervals of 1/16 instead 

of at 1/8, we require 2048n spacers, each of length about 512na + 2. If the allowed 

perturbation of each planar net is less than 1/16, then we are guaranteed to have one 

spacer every distance 1/8 as desired. 

At the moment the cap passes beyond the red endpoints, the short links are be­

tween the planar nets, and the two long links must also pass through the double 

spatula. Thus the entire auxiliary chain is bounded between the two close planes. 

The span of the auxiliary chain will be at least 512na2 
- (8In) if it can pass through, 

and at most 512na2 - (8In) - 1 if it cannot. Thus if the allowed perturbation of the 

chain is less than 114, perturbations will not affect the possibility of the auxiliary 

chain's passage. 

We now prove that the reduction can be performed in polynomial complexity. 

First, note that we have proven all substructures are polynomially quasi-rigid. Since 

we require quasi-rigidity only up to 1/(224V2na), we need only polynomial precision 

in computing the tiny sizes of staples, hooks, and vertex-angles. Thus no coordinate 

value of any vertex requires more than polynomially many significant digits \vith 

respect to the input size of the Partition instance. Furthermore, no edge of the 

structure is longer than about 512na2 , so no coordinate value of any vertex is larger 

than polynomial in the values of the Partition instance. 

In total, the structure contains a double spatula containing two staple edges with 

0(1) edges and two planar nets with O(n) edges, and an auxiliary chain containing 

O(n) edges. Thus the complexity of the chain is polynomial. Therefore it is NP-hard 

to decide whether the auxiliary chain can pass through the double spatula. 

vVe are at last ready to prove the following theorem. 

Theorem 27. Achirality is NP-hard. 

Proof. \lve connect the double spatula to two identical auxiliary chains as in 

ure 7.37. The chain can be divided exactly in half by cutting it at the brown vertex 
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Figure 7.37: The chain constructed to prove that Achirality is NP-hard. (Not to 

scale. ) 

at the bottom of the double spatula. If one creates the chain as a palindrome and 

builds the top half in the mirror image of the bottom half, the chain is achiral if and 

only if the two auxiliary chains can switch places! This can be performed only if the 

cap can fit outside the endpoints of the spatula, and determining if this is possible is 

NP-hard. _ 



Chapter 8 


Conclusion 


vVe began our research by convexifying polygons in two and three dimensions. vVe 

proved that in the plane, all convex configurations of a given polygon are reachable 

from any other. We duplicated this result using pivots and disproved a conjecture 

by Wegner concerning the number of deflations admissible by a planar polygon. We 

further provided efficient algorithms for convexifying planar monotone polygons and 

three-dimensional polygons that admit simple projections. 

In chapters 5 through 7, we considered a model of a molecule often used by the 

chemistry and physics communities, that of a polygonal chain with fixed vertex-angles. 

We described an algorithm to determine the feasibility of a single dihedral rotation 

and proved lower bounds on the computational complexity of preprocessing a chain 

to determine the feasibility of multiple rotations. \Ve continued by proving the in­

tractability of several questions: (1) computing the maximum possible and minimum 

possible distance between the endpoints of the chain, (2) determining whether cer­

tain canonical configurations are in any given component of the configuration space, 

and (3) determining achirality, whether a chain can be reconfigured into its mirror 

image. This last problem also implies the intractability of the most general problem 

of reconfiguring chains with fixed vertex-angles, that of determining whether a chain 
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can be moved from a starting configuration to a target. 

'rVe have only touched the surface of the numerous applications of geometry in this 

vast field. Several questions remain unanswered, and we conclude with a list of open 

problems suggested by this discussion. 

Open Problem 1. The algorithm for Dihedral Rotation presented in section 5.1 has 

a worst-case performance of 8(n2) time, but the lower bound provided is Q(n log n). 

Close the gap, either with a stronger lower bound or a more efficient algorithm. 

Open Problem 2. Design an approximation algorithm for the Minimum Span prob­

lem. 

We proved the intractability of determining if a chain with fixed vertex-angles could 

be flattened in chapter 6. Consider two configurations A and B of a chain. If both 

could be flattened, then it would not directly follow that A could be reconfigured 

into B. It would remain to show that one can reconfigure a chain from a planar 

configuration to any other. Even small chains such as in figure 8.1 do not admit 

simple motions between any two of its configurations. In the two configurations 

shown, moving from one to the other could be achieved by simultaneous dihedral 

rotations at each of the red edges. However, neither rotation can be completed before 

the other starts; otherwise the chain would self-intersect. Thus we begin to have a 

more complex motion planning problem than it originally seems. Alternatively, one 

could start by moving half of the chain with a rotation at the bottom edge as in 

figure 8.2, but here we introduce a non-local maneuver for such a minor difference in 

configuration. 

It can be shown that if all turning angles of the chain are at most 7r /2, or if 

they are equal, then the chain can be reconfigured between any two of its planar 

configurations, but the general case remains open. 

Open Problem 3. Can all chains be reconfigured between any two of their planar 

configurations? 
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Figure 8.1: A chain and two planar configurations. 

Figure 8.2: Moving between the two configurations. 

Open Problem 4. Consider only those chains with unit-length links and/or uniform 

vertex-angles. Are the problems of chapters 6 and 7 still intractable in this restricted 

domain? 

Where fixed vertex-angles are concerned, we have dealt solely with chains. Intro­

ducing a cycle in such a structure creates complex constraints on the possible motions, 

as demonstrated by the regular hexagons of figure 1.27 on page 22. 

Open Problem 5. Explore the above problems for polygons or geometric graphs with 

fixed angles between adjacent edges. 
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