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ABSTRACT

A comprehensive computer package for the calculation and simulation of charged-
pacticle dynamics in electromagnetic fields has been developed and tested. The program
provides a user-friendly and flexible interface for visualizing particle dynamics using
phase space diagrams, which are essential for complete understanding of a beam optics
system. The program performs an accurate finite difference computation of a user-defined
boundary value problem (in the form of a grid) followed by 2 high-order Runge-Kutta
numerical integration of the equations of motion to evaluate the particle dynamics within
the field. The program is unique in its combination of these flexible finite calculation
techniques with the parallel processing of particle ensembles in order to display phase
space diagrams.

After extensive testing, the program has been used to design a low emittance ion
source and an ion beam deccleration system for high-efficiency ion collection. The
program has also been used to analyzc a radiofrequency quadrupole collisional focusing
system using ion mobility concepts.

RESUME

Un logiciel compréhensif qui calcule et simule la dynamique des particules
chargées dans des champs €lectromagnétiques a ét€ développé et testé. Le programme
est facile A utiliser et trés utile pour évoquer les images de la dynamique des particules
en utilisant des diagrammes d’action, qui sont essentiels pour la compréhension complete
des systémes d’optiques ioniques. Le programme calcule une différence finie précise d’un
probléme aux valeurs limites définies par I'utilisateur (sur une grille), suivi par une
intégration numérique Runge-Kutta, d’ordre-élevé, des équations de mouvement pour
évaluer la dynamique des particules dans le champ. Le programme est unique dans la
maniére dont il intégre ces techniques flexibles de calcul finies avec le calcul paralile
de toute les trajectoires d’un ensemble de particules pour visualiser les diagrammes
d’action.

Aprés des tests consciencieux, le programme a été utilisé pour établir le plan d’une
source d'ions 2 base émittance et d’un systéme de décélération de faiscean d’ions pour
la collection d’ions avec haute efficacité. Le programme a aussi ét€ utilisé pour faire
I’analyse d'un systtme (avec un champ quadrupolaire oscillatoire A convergence par
collision) qui utilise des concepts de mobilité d’'ions.
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1. Introduction

1.1 Charged Particle Beam Optics

Many vudics and spplications of fundamental physics require the use of clectromagnetic
feldn for puxding charged particles. Perhaps the best known examples are particle
scccheratons and television picture tubes. Systems for guiding, or transporting, charged-
pertxic bcams can be quite complex, requiring detailed simulation for their realization.
Connvequently. techniques for such simulation have been significantly developed, generally
falling nto the category of “beam optics™.

A major appiication of beam optics is found in the field of nuclear physics using
notope scparator facilities. At such facilities, radioactive beams are produced by
bombarding a target with a high energy projectile. The radioisotopes are then jonized and
extracted from the target as a particle beam. As these facilities are quite rare and in very
high demand, they include a network of paths so that the beam may be transported to a
number of experimental stations. An example of an isotope separator facility, in this case
ISOLDE at CERN, is shown in figure 1.1. The area after the mass separator itself is
called the experimental switchyard. Various experimental programs (users) install
apparatus that is customized for part.cular types of measurements. The central beam line
is split into smaller beam lines using chambers containing electrostatic parallel plate
deflectors. At any give time, the beam is deflected along a certain path and ransported
to only one installation. In the straight sections of the beam lines there are quadrupole
focusing clements to keep the beam from diverging and being lost.

The positioning of these standard beam line elements is chosen using a certain
type of beam optics calculation methods, most of which fall under the category of transfer
matrix techniques. These are applied in cases where the effects of certain electrode
geometries on ion trajectories can be approximated analytically. The beam-line elements
have characteristic transfer matrices which are multiplied together with a beam profile



matrix. The desired focal point is specified and the overall matrix is inverted to
determine the element positions. An important figure of merit for a beam transport
system is the emittance of the beam which characterizes the beam quality using the spot
size and the divergence. Ermittance is derived from general phase space arguments which
will be developed in the following chapter. All transfer matrix beam transport
calculations are based on phase space considerations.

In the individual experimental areas, usually the electromagnetic optics are more
complicated as they are tailored to the particular experimental technique and it becomes
impossible to define characteristic and analytical elements as such. In these cases, the
particle dynamics must be evaluated by direct, numerical methods. In general, such
methods are comprised of two main features: an accurate determination of the
electromagnetic field, followed by an evaluation of the resultant dynamics of the particles
subjected to these fields. Again, several methods exist, generally known as finite
calculation techniques. Unlike transfer matrix methods, finite calculation methods tend
to treat dynamics on a particle-by-particle basis rather than using phase space
considerations. Thus, it becomes difficult to gauge the performance of apparatus in
conjunction with the particle beam and information that can be critical, is not displayed.

In any field of endeavour, it makes no sense to "re-invent the wheel”. When a
charged particle optics problem needs to be solved, one naturally looks for the tools that
are already available. In the next two sections, a brief review is given concerning both
transfer matrix and finite calculation techniques. From these should emerge the fact that
there is a lack of a tool providing the advantages of finite calculations with the
formulations and especially, display, of phase space considerations that come out of
transfer matrix approaches. The last section of this chapter will therefore outline the
contribution of this thesis in this regard.
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1.2 Transfer Matrix (Algebraic) Methods

There are many available programs that use transfer matrix methods for ion
trajectory simulations of accelerators and beam transport facilities. One of the first such
programs was Brown’s TRANSPORT program [BRCI]. It was developed through the
efforts of many people working at various laboratories around the world (CERN, SLAC,
and NAL) in the 1960’s and early 70's. The program was first written in a language
called BALGOL and was later translated into FORTRAN. The TRANSPORT program
was primarily intended for the design of static-magnetic beam transport systems.
Therefore, in its simplest form, the geometries that could be handled by this program
were limited to a sequence of paraxial magnetic elements and the spaces separating them.
However, the TRANSPORT program also allowed users to specify their own calculations
as elements in order to simulate other effects such as the presence of electric fields.

The TRANSPORT program is referred to as a first and second order matrix
multiplication program. For the first order calculation, each element along the beam line
has a first order transfer matrix assigned to it. The product of all those matrices yieids
the mapping of a collection of particles from the beginning to the end of a beam line in
six-dimensional phase space. (For cach of the three directions, the corresponding phase
space coordinate is represented by the two components of momentum versus
displacement. Chapter 2 provides details on phase space derivation.) Thus, the first order
transfer matrices are all 6 by 6. The second order correction is obtained by including
cross terms of the 6 dimensions of phase space in the analytical approximations. Overall,

the mapping can be represented mathematically as follows:
Xi= Y RX,+ %: T, XX, (1.1)
i

where X is the vector representing the 6D point in phase space, R is the first order

transfer matrix, and T is the second order transfer matrix that behaves like a tensor.
The TRANSPORT program was very popular in accelerator simulations because

it allowed for an entire phase space ellipse (see chapter 2) to be specified and mapped
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through a system of electrodes and magnets. The program was also able to fit the transfer
matrices (and hence the physical parameters related to them) in order to obtain a desired
beam. Unfortunately, TRANSPORT had a few drawbacks. It was not always very
accurate because it was limited to second order (the order of the approximation depends
on, and is limited by, the analytical solutions). The authors of the program even
suggested that if greater precision than what TRANSPORT calculations permit is required,
then ray-tracing programs that integrate the equations of motion should be used {BRCI].
Furthermore, TRANSPORT"s input and output was entirely text and not always easily
understood. Finally, TRANSPORT was usually only available on mainframes, making
it almost impossible to be used anywhere, anytime, and interactively.

Because of the popularity and usefulness of TRANSPORT, higher-order programs
such as MAFIA [KRWE], PARMELA [MCDO], MARYLIE and COSY INFINITY were
created. All these codes calculate the motion of charged particles in phase space by using
transfer maps combined with other techniques to render them more generally applicable.
MARYLIE [DFBW] and COSY INFINITY [BERZ] use special techniques which make
use of Lie polynomials or differential algebras.

MARYLIE is a third-order mapping program that was developed at the University
of Maryland in the early 1980's for the design of accelerators and storage rings [DFBW].
Like TRANSPORT, MARYLIE is specifically designed for magnetic beam line elements.
On the other hand, COSY INFINITY is a very general program (allowing electrostatic
sector fields and multipoles to be specified directly as elements in a beam line) which can
compute to an arbitrary order (as high as the user wishes) the maps for standard beam
line elements [BERZ]. In order to be able to compute maps 10 arbitrary order, COSY
INFINITY uses a numerical integration technique (a seventh order Runge-Kutta with
adaptive step size) to integrate the equations that arise from the differential algebraic
description [BERZ]. Given all their power, these codes are very computationally
extensive and not readily available on simple platforms such as personal computers.

A transfer matrix program very similar to TRANSPORT that can calculate maps
up to third-order was developed for personal computers (IBM compatibles) in the
1980’s: GIOSP, which stands for General Ion Optical Systems on PC’s [PRZE]. The
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program was based on an earlier version, known simply as GIOS, from the 1970s that
ran on mainframes. Both programs were written in FORTRAN; GIOSP was more
specifically compiled on a PC with the Lahey FORTRAN-77 compiler.

GIOSP is particularly useful as it can be run on a PC. It also has an excellent
capability for displaying graphics of the reculting calculations. Not only is the beam
envelope displayed as it traverses the optics system, but the beam phase space profiles
can be displayed at any position. This gives the user critical information on how the
beam enters the apparatus (that is, the beam spot size and the energy spread).

All the transfer matrix programs mentioned make use of phase space concepts that
are essential for the accurate design of beam optics systems. The ﬁost recent codes also
provide graphical outputs for the computed beam profiles. Unfortunately, these programs
remain inflexible when electrode systems stray too far from the standard geometries for
which these programs were written. For such situations, finite calculation methods

become a valid alternative to transfer matrix maps.

1.3 Finite Calculation Methods

Finite calculation methods essentially solve the boundary value problem for the
potential which is defined by the electrode system geometry. The equations of motion
of the charged particle subjected to the electric field are then directly integrated by a
numerical algorithm to obtain the ion trajectories. Numerical methods approximating the
continuous solution of a potential distribution may be of integral or differential form
depending on the initial format of the equations used. A good review of solution methods
for electromagnetic problems is found in Lowther & Silvester {LOSI].

In the integral approach, the potential at a point inside a volume may be
determined directly from a knowledge of the source distribution by the application of
Green’s theorem. By dividing a region into small surface elements over which the

potential and its nommal derivative are known, a matrix of linear equations can be



constructed to calculate the potential at each of a set of specified points within the
volume. The potential at any point requires knowledge of only the boundary conditions
and the accuracy at any point is determined by the accuracy of the integration. Integral,
or charge density methods, can be very accurate but tend to become quite computationally
intensive for general cases. ELECTRA [ISMA] is an example of a program that uses
such techniques. MAFIA, which was mentioned earlier, also uses integration techniques.

Differential techniques, on the other hand, calculate the potential at a point via 2
connection matrix relating all the unknown potentials. There are two main differential
methods in widespread use at present: finite differences and finite elements. With these
methods, the problem area is sub-divided into a grid and the potential is determined for
the various grid points. The electric field can then be derived from the potential
distribution. The grids can be two- or three-dimensional, but for systems with
axisymmetric symmetry or systems that have a constant cross section, 2D grids are all
that are needed.

With the finite element method (FEM), the problem area is arbitrarily sub-divided
into small areas, or elements. The potential is then calculated on node points forming the
_elements (see figure 1.2). The FEM does not approximaie the differential equation
directly but rather minimizes 2 global function of the field and attempts to provide a best
fit to the entire field region. Elements can be made of 3 edges (triangles) or more, with
3 and 4 edged elements being the most common. By far the greatest advantage of FEM
is the ease with which a geometry may be discretized, or "meshed”. For this reason it
is often employed in designing magnetic or electronic devices and machines.
Furthermore, the global minimization procedure makes calculation of global quantities,
for example unit capacitance, quite straightforward. On the other hand, in axisymmetric
cases, there are often problems with the potential along the axis of symmetry which
deteriorate accuracy in this important region. Computing packages available using FEM
include MagNet, Tosca, PE2D, Ansoft and MSC. While they are targeted for design
applications in magnetics, some provide options for computing trajectories but only on

a particle by particle basis.



The finite difference method (FDM) is a computer implementation of an earlier
manual method known as "relaxation”. The approach is to produce a discrete form of the
potential equations in their differertial form. To do this, the area of interest enclosed by
the electrode geometry and other boundary conditions is divided into a grid of successive
nodes that is usually evenly spaced (see figure 1.3). The problem is solved by iteratively
calculating the potential at each node from its nearest neighbours until the residual after
each calculation becomes small enough. One widely used computer package using FDM
is SIMION which is a very accurate and user-friendly program nicely suited for custom
electrode geometries. SIMION uses a fourth-order finite difference technique to solve
Laplace’s equation for arbitrary planar symmetric and axisymmetric geometries. It
performs a bi-linear interpolation of the grid potential values to within half a gridstep in
all directions about the current particle position. Furthermore, it performs trajectory
calculations on a particle by particle basis. The only problem is that with trajectories
alone rather than full phase space diagrams, important information for detailed analysis
of the beam dynamics is missing.

While the FDM method can be somewhat inflexible for arbitrary geometries
(especially compared to FEM), it is extremely accurate and can compute highly
continuous potentials along the axis. This feature is extremely important for calculating
particle trajectories since the pofentials are only available at the node points whereas
particle trajectories will always pass through arbitrary points between nodes. Interpolating
between grid points to compute the field must be done very carefully and the potential
map must be as continuous as possible to avoid errors. A way of avoiding this is to
derive a field value for a point off axis using a high-order multipole expansion of the
potential values along the axis. The idea for using this technique came from the SLAC
electron trajectory program EGUN [HERR] which was designed for the calculation of
electron and ion trajectories in electron guns and lenses.

EGUN uses a variable (non-evenly spaced) grid to obtain highly continuous
potentials even near clectrodes. However, the high-order multivole expansion technique
is used only for calculating the magnetic field. The high-order mulitipole expansion
technique as applied to an electric field on an evenly spaced mesh is described in

8



chapter 2. Some comparisons between the interpolation and the expansion techniques are
also given in chapter 4.

One feature of the FDM is that it rernains open to wide variety of numerical
integration methods to calculate the particle trajectories. The three basic methods are:
Runge-Kutta, Richardson extrapolation, and predictor-corrector methods. Runge-Kutta
methods are the most widely used since their algorithm is relatively simple. Furthermore,
the Runge-Kutta method can be applied to wide variety of problems, even those where
the other two methods usually fail {PFTV]. The authors of Numerical recipes in C
[PFTV], recommend the Runge-Kutta integration method whenever it is not certain that
one of the other two methods will work better. In cases where the FDM is applied to
arbitrary problems, the Runge-Kutta numerical integration method is clearly the wisest

choice.
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1.4 Contribution of Thesis

It is clear that in the evolution of tools for the evaluation of charged particle optics
and dynamics, a dichotomy persists between those designing particle accelerators and
transport systems, and those designing more arbitrary and "custom” beam optics for
individual applications. The main problem is in the omission of phase space concepts in
the design and analysis processes using the more flexible and direct, finite calculation -
schemes. By simply looking at particle trajectories, important information is missing
concerning the velocity components of the particle motion. On the other hand, transfer
matrix methods which give a complete phase space analysis of the particle dynamics, are
not suitable for arbitrary electrode geometries.

The Foster Laboratory at McGill University is involved in two particular
collaborations for making precise determinations of atomic masses using the ISOLDE
radioactive beam facility at CERN. From this experimental program, the use of
quadrupole jon traps [MLRS] and mass filters [MGVZ] has become of paramount
importance for improving the apparatus performance and continuing in this field. When
this auxiliary development work was started, it became apparent that existing computer
packages were grossly inadequate for the detailed analysis needed. Not only was very
high accuracy required, but also a comprehensive phase space picture of the ion dynamics
and other features related to superimposed, time-varying fields and pulsed beams
[LWMO, LBMO].

The contribution of this thesis is therefore the creation and extensive testing of a
comprehensive computer package combining the power and flexibility of finite calculation
techniques with necessary calculation and display capabilities for phase space diagrams,
with a modular design and user-friendly interface, to perform high accuracy charge-
particle optics simulations. This computer package has the following general capabilities:

* User specification (or importation from another application) of an arbitrary

electrode geometry with corresponding boundary conditions.
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* An optimized finite difference calculation of the above geometry with user-
specified target residual (accuracy) that generates a grid of electric potential
values.

* Accurate and continuous computation of the resultant electsic fields using either
(1) a seventh-order muitipole expansion of the axial potentials or (2) a bi-linear
interpolation of the off-axis grid points.

* User specification of an arbitrary initial phase space distribution describing an
ensemble of charged particles (or initial characteristics of single particles).

« A fifth-order Runge-Kutta numerical integration with adaptive step size control
to completely determine the particle trajectories in phase space (or geometric
space) using paralle]l evaluation of all particles in the ensemble.

*» Specification of time-varying functions for the fields in question.

= Superposition of multiple potential maps.

* Superposition of magnetic fields.

= A fully interactive, graphic display capability for the phase space diagrams
and/or single particle trajectories.

« QOutput of results to a file for subsequent analysis.

No other program, at least documented in the literature, exists with these capabilities. It
has been used extensively in the McGill Foster group for analysis of ion sources
[GDMV], a quadrupole ion trap collection system [MGDP], an ion beam collisional
focusing studies using quadrupole rods at high pressure [KIMT), and a deceleration
system for ion collection in a Penning Trap [ZHAO).

Chapter 2 presents the theory relevant for a description of ion dynamics using
phase space considerations and brief mathematical descriptions of the finite calculation
techniques as well as the high-order multipole expansion. Chapter 3 gives a detailed
description of the computer package and chapter 4, a description of the program testing
as well as the results obtained for some of the above applications.
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2. Theory

2.1 Phase Space

The state of motion of a particle at time, t is completely specified if two quantities:
displacement, x(t) and velocity, x(t) are known. These quantities are considered to be the
two coordinates of a point in phase space, (x.x). For an ion beam with three degrees of
freedom, the phase space is, therefore, six dimensional. For different initiai conditions,
the motion is described in time by different phase paths. The totality of all possible phase:
paths constitutes the phase space volume.

The concept of phase space is nicely derived from the equations of Hamiltonian

mechanics (shown here in canonical form):

. _H

q; a_m’ (2.1)
_

Pi= g 22)

where g is the generalized position, p the generalized momentum and H the Hamiltonian,
or total energy of the collectior of particles, i = 1,2,3.... If, at a ziven instant of time, the
initial positions and momentums of all the particles in a collection are known, then the
subsequent motion of the collection is completely determined (e.g., Goldstein) [GOLD].

Taking as an example a harmonic oscillator, we can define (as functions of time)
the position x(f) and momentum p(f) of a mass m, oscillating with amplitude A, at
frequency , as:

x(r) = Acosax , 2.3)
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p() = mi(f) = -mAsiner . 24
Eliminating r from these equations gives:

2
. Pk 2.5)

A7 miapA?

This equation represents a family of ellipses which constitute the phase space of the
oscillator as shown in figure 2.1 [MOOR]. This area is the projection of the entire phase
space volume in one direction. The angular motion around each ellipse, at frequency o,
is clockwise because when x < O the velocity is always increasing (and vice versa) as
shown by equations (2.3) and (2.4). No two phase paths of the diagram can cross as the
solution of the governing differential equation is unique for given initial conditions. The
combined generalized coordinates of position and momentum can be considered to have
the dimension of action. For thig reason, phase space diagrams (projections of the phase
space volume in one direction) are sometimes called action diagrams.

The total phase space volume S can be defined as the product of the phase space

area in each dimension:

§=5S58, = fdxdp_f dydp, Idzdp, . (2.6)
From beam optics comes the important quantity of emirtance, €, which is defined as:

g, = [0du, @7

where 6 is the angle of the beam with the corresponding axis, or beam divergence and
. u is the corresponding spatial coordinate. Emittance is usually described by three
components: two transverse and one longitudinal. An emirtance diagram is generally
used to characterize the components of the beam. The emittance is plotted as u Versus
u so the emittance is the area represented by this phase space diagram. The emittance
is related to the transverse phase space components by:

14



sx =Po§x ’ Sy =po§y ’ (2'8)

where p, is the central momentum of the beam.

For complex collections of numerous particles, such as an ion beam, it is clearly
a practical impossibility to determine the initial conditions for each constituent ion. Since
we cannot identify any particular point in phase space as representing the actual
conditions at any given time, we must turn to the field of sratistical mechanics and
introduce the representation of the ion collection by an ensemble of systems (e.g., Landan
and Lifshitz) [LALI].

The phase space is a coflection of points where each point represents a particular
system of the ensemble. Each system in an ensemble is comprised of any number of
constituents e.g., particles. The ensemble has a phase space density that determines the
number of points inside an infinitesimal hypervolume element of the six-dimensional
phase space. An important result from Hamiltonian mechanics is that the phase space
density of the ensemble remains constant as it moves through phase space in time. This
result is known as Liouville'’s theorem [GOLD, LALI].

The geometrical consequence of Liouville’s theorem is that the phase space
volume will behave like an incompressible liquid drop that, squeezed one way, will bulge
out the other conserving both the density and the volume. Furthermore, for linear forces
(forces which do not couple the different motions) acting on the ensemble, each projection
of the phase space volume, (p, vs x, p, vs ¥, p, vs z) will also behave as an
incompressible area. (For non-linear forces, coupling can occur between dimeansions
resulting in the projections changing area.) It is interesting to note that a similar theorem
does not exist for three-dimensional configuration space.

An example of Liouville’s theorem at work is illustrated by figure 2.2 [MOOR].
A phase space diagram representing a beam in the transverse direction is shown at
position 1. As the beam drifts to position 2 at a constant momentum spread, the
displacement spread increases but the overall phase space area is the same. When the

beam goes through the lens, the phase space diagram is transformed at position 3 resulting

15



in an increased momentum spread for the same displacement spread but the area is stitl
the same. When the beam reaches the focus at position 4, it has the same momentum
spread as position 3 but the beam width is dramatically reduced so as to conserve the
overall area. This figure illustrates how a tight geometric focus can only come at the
expense of a large spread in momentum because of Liouville'’s theorem.

As previously mentioned, the product of generalized position and momentum,
coordinates said to be canonically conjugate, has the dimension of action. Such a

dimension is also described by energy x time. Using these coordinates, the phase space
area can be rewritten as:

S, = ApAx = mAvvAr = AEAr . (2.9)

Using these coordinates, a particularly useful onit for phase space is the eV-ps which
equals about 1.6 x 10 kg-m?/s. The eV-yis is more manageable and better lends itself
to phase space representation. Lenses and voltage pedestals ars always controlled by
voltage and puised system operation is always controlled by time so the eV-ps is a more
intuitive unit. The corresponding unit for momentum in this system is the eV-ps/mm

from the relation p = 2E/wa.
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Figure 2.1: Family of ellipses constituting the phase space of a simple harmonic oscillator.

Figure 2.2: Geometric and transverse phase space representation of the focusing of a
beam by a lens. A detailed description of each step is given the text.



2.2 The Finite Difference Method

The second order partial derivatives of the differential form of Laplace’s equation
(VPu = 0) may be approximated by using the first few terms of a Taylor series expansion
of u. In most problems, u will only depend on two variables, such as the cylindrical

coordinate variables r and z in axisymmetric geometries which will reduce Laplace’s
equation to:

32u+32u+13_u

—_—t e =0. 2.10
oz or* ror 10

Using the evenly spaced grid shown in figure 2.3 with a grid step size of 4 and the first
three terms of the Taylor series expansion of u about u,, the partial derivatives of u from

equation (2.10) can be rewritten to give:

- - - -
u, 2"o*“3+u4 2u,*u, LT

" % Tl @D
where r = jh. Equation (2.11) can be simplified to give:
Qu = u + i+ U+ (- u M) . (2.12)
. 4 ﬂ
I ‘
—9-
—9-
—-

z=ih

Figure 2.3: The evenly spaced grid used by finite difference methods.
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Equation (2.12) forms the basis of the four-point relaxation method for
axisymmetric systems. The value of « at any grid node can be approximated by using
the values of its four nearest neighbours. Those grid points which correspord to
boundary conditions are fixed to an inijtial value if they represent Dirichiet boundaries or
set to some function of the nearest grid points if they represent Neumann boundaries. In
axisymmetric geometries, the axis of symmetry (usually chosen to be along z) is special
kind of Neumann boundary for which equation (2.12) needs to be modified. Due to the
symmetry about the z-axis, the point below the axis must have the same value as the point
above (i.e., u, = u,). By taking the limit of equation (2.10) as r approaches 0O and by
using Hopital’s rule on the first partial derivative term, equation {2.10) becomes:

CAN AR e
az% .o ort |,

By using u, = u, at r = 0, equation (2.13) is further reduced to:

Gu, = du +u,+u, . (2.14)

The basic algorithm of the finite difference method (FDM), as applied to
axisymmetric systems, is therefore to assign all the Dirichlet boundary conditions to the
appropriate grid nodes and then approximate the value of u at each grid node by using
either equation (2.12) or (2.14). In the simplest form of the FDM, this is done by
continuously iterating through tbe 2D array of values for # and replacing them by the
approximations of the current iteration. Eventually the difference between new and old
values of u—referred to as the residual, E—will become very small and a solution for
Laplace’s equation will be obtained. The residual is actually defined as follows:

E=uewmruyru+ (- u)2)-4u, 5 j#0,

(2.15)
E=du+u+u-6u ; j=0.

The finite difference method achieves much better results when modified to
include Successive Over-Relaxation (SOR) combined with Chebyshev acceleration
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[PFTV]. With the SOR algorithm, an over-relaxation parameter, @ is introduced to make
an over-correction to the new grid node values of u. If the new value of u is éivcn by
u™* and the old value of  is given by 4™ then the SOR algorithm’s approximation is
given by:

u“"=u°“’+m% 1 j®0,
(2.16)

u““"=u°‘°+m£ 1Jj=0.

The SOR algorithm converges to a solution only if the over-relaxation parameter satisfies
the condition: 0 < @ < 2. In its simplest form, the value for the over-relaxation parameter
is determined from a value known as the spectral radius, p, and remains static through-
out the relaxation. It suffices to say that the spectral radius is a value between 0 and 1
(exclusively) which depends on the density of the grid and gives a measure as to how fast
the relaxation algorithm will converge to a solution. The greater the grid node density,
the closer p, gets to 1 and the longer the relaxation algorithm takes to converge.

The Cebyshev acceleration algorithm sets the initial value for & to 1 and then
recalculates the value of @ at the end of each sweep through the grid. Furthermore, each
sweep through the grid is actually taken as a half-sweep, once for the odd points (i+j odd)
then once for the even points. The result is that at the end of each half step, & gets
updated and closer to the optimal value. If @' represents the initial value of @ and &7
represents the value of © at the end of the first half-sweep, then the Cebyshev

acceleration algorithm can be written as:

B9 = 1,
o = 1/(1 - p212), (2.17)
G = 1/(1-piE™/4),  n=1/2,1,32,...

The only parameter left is the spectral radius which for most applications will involve fine

grids and therefore have a value usually very close to 1.
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2.3 The Runge-Kutta Numerical Integration

Trajectories are computed using successive numerical integrations of the Lorentz

equation for 2 mass m of charge e, in an electric field E and/or magnetic field B:

- dr .
F=m—_ =e[vyxB+E], (2.18)
ar
in order to obtain a new particle position, r. Such a second order ordinary differential
equation can be rewritten as two first order differential equations for each of the three
cartesian coordinate variables, x, y, and z. Each of these sets of two equations will have

the form:

= uff) ,
(2.19)

B & 8B

= fn) - g)u(o) ,

where u, f, and g are some function of the vector components of v, B, and E. The
problem of integrating equation (2.18) is therefore reduced to integrating 6 first order
differential equations.

The most commonly used algorithm for integrating a set of N coupled first order

differential equations of the form:
dy, _
— =f@yed) = LN (2:20)

(which includes equations (2.19)) is the fourth-order Runge-Kunta [PFTV]. The fourth-
order Runge-Kutta is based on the very simple Euler method. To improve on the Euler
method, the fourth-order Runge-Kutta takes four intermediate steps within the full
integration step, i to correct itself. If y, is the current value of y at x, and y,,, is the
value of y to be calculated at x_ + h, then the fourth-order Runge-Kutta is given by the

following set of equations:
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k, = hf'(x_ .y,
h k
h Y +t),
k, = hf'(x, 2y,*fz)

h k, , (2.21)
= h -,y +_2),
k, = hf'(x, 5" 2)
k, = hf'(x +h,y,+k),
ke &k k k
=y + o+ 2+ 2+ 1+ 0O(hY,
yml yn 6 3 3 * 6 + ( )

where O(4®) implies that the procedure is fourth-order.

The fourth-order Runge-Kutta can be made accurate to fifth-order by using a
technique known as adaptive stepsize control, This technique evaluates y,,, from
equations (2.21) twice by first taking the full integration step k, and then by taking two
half-steps to x,,,. I y, is the solution for the full integration step and y, is the solution
for the two half-steps, then the fifth-order approximation to y,,, is given by:

Voi = Wa* -% + O(h®), 2.22)

where A = y, - y,. What gives this technique its name is that the quantity, A can be used
to control the stepsize, h. When the integration is having no problems due to smooth
derivatives, the quantity A will be very small and the stepsize can be increased until some
threshold value of A is reached. The effect of this technique is to speed up calculations
in areas of the geometry where very little is happening. Likewise, if A goes beyond a
certain threshold at some point in the integration, the stepsize can be decreased and that
same integration step redone until A goes below the desired threshold. Overall, adaptive
stepsize control allows the integration process to be self-checking.



2.4 High-Order Multipole Expansion of Axial Potentials

In order to express the multipole expansion of the electric field in terms of partial
derivatives along the axis of symmetry, some properties of the electric field and its
potential must be used. In axisymmetric systems the potential has no azimuthal
dependence—that s, in the spherical coordinates r, @, 6, the potential is independent of
¢. The potential, ¢ also satisfies Laplace’s equation, V?¢ = 0, when charge densities are
neglected. The complete axisymmetric solution in spherical coordinates for Laplace’s
equation is given by

o(r.8) = ij[A,r' B lp (cosd) (2.23)

%0 r!—.l

where the P, are the Legendre polynomials and the A, and B, are constants. Since source
charges have been neglected, the main constraint to equation (2.23) is that ¢ be finite at
the origin (r = 0). To satisfy that constraint, the B, must all be equal to zero, reducing
equation (2.23) to

0(r,0) = f: Ar'P(cosd). (2.24)
1=Q

Next, the z-axis is defined to be the axis of symmetry and the first partial
derivative of the potential with respect to z can be derived. The relationships between
cylindrical and spherical coordinates with no azimuthal component are expressed as

follows:

z = rcos® , p = rsin® ,

r=(ptez)2, @ =tan'2,
Z

(2.25)

from which the following partial derivatives are obtained:



or _

F Z =cosB .

z r

3 _ _p _ _sinb (2.26)
9z 2 ra

By the chain rule, the following equation for .he first partial derivative of the potential
with respect to z is obtained:

N _ cosp 90 _ 5in® 3 2.27)

dz or r 98

Since ¢ is given by equation (2.24), the first part of equation (2.27) simply gives

cose.gi’. =Y 1A,r"cosBP,(cosO) . (2.28)

r it

In order to obtain the second part of equation (2.27), two properties of the Legendre
polynomials have to be used, notably

Pyw) = 1,
(2.29)
dP (u)
a - u?)_= = nP,_ («) - nuP (u) .
du
Furthermore, the following relationship is also needed:
dP (cosB) - sind dP,(cosb ) (2.30)

RL) d(cos®)

By combining equations (2.29) and (2.30), the second part of equation (2.27) gives

_Sin8 30 _ ¥ 4 ngipng FIC0)
r 8 ! d{cos6) (2.31)

= i IAr'"' (P, ,(cosB) - cosBP,(cos ) -

1e]
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Finally, by inserting equations (2.28) and (2.31) into equation (2.27), the following is
obtained:

-

X =5 14, P, (cosB)
z = (2.32)

= i [+DA,,]r'P(cosB) .
I=0

Since equation (2.32) is of the same form as equation (2.24), it is possible to
derive an expression for partial derivatives of the potential with respect to z to any order.
First, the following notation is introduced:

AP = (I+DA,, .
AP = U+D(U+D)A,, , (2.33)

AP = (I+1D)-(+n)A

lens

where [ and n are integers such that [ 2 0 and n 2 1. By repeatedly taking the partial
derivative of equation (2.24) with respect to z and by using the above notation, the

following useful resuit is derived:

A i AP (cosB) . (2.34)
aiz" 0

It follows directly from the above equation that
X =aP=ma .
dz" (2.35)

Equations (2.35) allow for the potential to be expressed entirely in terms of partial
derivatives with respect to z evaluated along the axis of symmetry. For the program
developed at McGill, the Taylor series expansion is always expressed in the local
coordinates about the axial grid point nearest to a given particle. That means that a
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solution for the potential of the exact form of equation (2.24) is used for every axial grid
point, in local coordinates. Therefore, each axial grid point will have its own set of
coefficients, A, and hence, its own set of partial derivatives with respect to z. By noting
that E, is simply the negative of the first partial derivative of the potential with respect
to z and by introducing the following notation:

D = E. . (2.36)
n azu
equations (2.35) give
A = Dn-l
L (2.37)
A =E .

Equation (2.24) can now be expanded in local cylindrical coordinates to provide
the desired results. In the McGill program, the expansion of the potential is done up to
the seventh order. First, the Legendre polynomials from P, to P, are given here as
follows:

Pyw) = 1, P(u) = %(35:;‘ - 30u? + 3),

P ) = u, P,(u) = %(63:1’ - T0u? + 15u),

P,(w) = .;(3u2- 1), Pg(w) = —(231u° - 3154* + 1054* - 5),
P,(u) = %(5:43 -3u), P, = %(42956’ - 693u® + 3154> - 35u).

(2.38)

By using equations (2.37) and (2.38) in equation (2.24), the expansion of the potential in
cylindrical coordinates gives equation (2.39) below.

The next step is to take the appropriate partial derivatives of the potential to obtain
the expansions of E, and E,. Those expansions are also given below as equations (2.40)
and (2.41) respectively. With the change of variable p — r and with the terms in the
parenthesis fully expanded, equations (2.40) and (2.41) are identical to the multipole

expansions given in section 3.5.
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Finally, the partial derivatives, D, are calculated directly from the potentials of
each axial grid point. The next section describes in detail how those partial derivatives

are extracted from the axial potential.
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2.5 Extraction of Partial Derivatives from the Axial Potentials

In order to use the multipole expansions of the electric field (¢quations (2.40) and
(2.41)) for the Runge-Kutta numerical integration, the partial derivatives, D, need to be
extracted from the axial potentials. The axial potentials are obtained from the finite
difference algorithm on an equally-spaced grid. To evaluate the D, at a specific grid
point, Taylor series expansions about that point can be used {KOME]. If the notation
S, = Rxgtnh) is used (where h is the grid’s stepsize, n is any integer, and x, is the grid

point about which a Taylor series is expanded), then the Taylor series expansions can be

oy () )
=5 § _I!'Tx'l,,,.' (2.42)

In order to calculate numerically derivatives up to the m™ order from the Taylor series,

written as;

m+1 grid points (including x,) are needed—that is, m Taylor series expansions to the m™
order, to m grid points about x,.

Since equations (2.40) and (2.41) need to have all the D, up to n = 6 calculated,
the partial derivatives must be calculated numerically up to the seventh order. At least
8 grid points are needed to do so. However, the McGill program always uses 9 grid
points, usually 4 on either side of x; (plus x). That allows the accuracy to be improved.
slightly and a certain symmetry to be maintained when calculating derivatives about most
points. (The program always makes sure that the relaxation grid has at least 9 grid points
on axis.)

When x, is near the ends of the axis, more grid points must be used on one side
than on the other. For example, if x, is 2 grid steps away from the beginning of the axis,
then the only 2 grid points available to the left of x, plus the 6 grid points to the right of
x, will be used. If x, is the very first or last grid point on the axis, then all 8 grid points
used will be on one side. That implies that the Taylor series expansions required can be
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up to 8 grid steps away from x,. All 16 possible Taylor series expansions up the eighth

order are given here:

]
h? h? B . RS
S
h’ .
“) vii) viii)
720ﬂ o0 40320Jﬁ -
4 s
fo = fx20f + 20 "% f_h_f’”q- Z_h_f(iﬂz%f(v)
4h \q) Sh vii) 2h vm)
AT AR AR
2 4
S = fix3hf + 9;1 '+ 9;1 £+ 278h fg 8‘:‘(}; £
81AS ., 243K7 . 729h
+ f(w)t f( )+ fivm)
80 560
3 4
fz‘ =_foi4hf,+8h2f”: 323h f{f 32h f(h) 12185'h f"")
255h6 1024}1-‘T . S12A%
SARE fO o D20 pwii)
45 315 315 (2.43)
25h 125 K7 625},4 62545 r
f::S _-ﬂ)iShf, f’t > g f” f(w) ~ f(
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where all the derivatives are evaluated at x = x,. By taking various linear combinations
of the above expansions to the desired grid points, any derivative (up to the eighth) of the
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potential can be extracted. The McGill program has all the possible formulae—for the
first to seventh derivatives of the potential-—that can be extracted from the above
expansions coded-in; that is, the program does not invert any matrix that arises from the
linear combinations of the expansions (2.43).

For example, the formulae for the first to seventh derivatives of the axial potentials

for grid points that have four neighbours on either side are coded-in as follows:

hf' = _Z;_O(f_‘—f‘) -T‘g(f_g'f;) "'%(f.z_fz) - %(f-l-fl) *
B = - o)+ U ) - L) + f) - 2,
R R AR A AR N ARS (AR
R4 = %(f;"f;) __'-;_(f_a...f;) +% thy) -_'l_z:_ L) +% s .44
B = %(f_‘-f;) -%(f_,-f,) *'—: g '-2;9-(f-|'f1) ’
B = -L(Ff) + 30520 - BULAH) + () - 24, .
BRI = __%_(f_‘_f‘) - 3(f_3-f;) =1 ,-f) + 7= -

All the other appropriate formulae, such as for two neighbours on one side and six on the

other, are also coded-in.

30



3. The Code

3.1 Choice of System and Language

Having done an overview of most of the common programs available, it became evident
that a new program would have to be written in order to display action diagrams
dynamically. For this new implementation, two questions had to be asked: what
programming language to use, and what computer system to use. Mocst of the programs
available were coded in FORTRAN for use on mainframes or Intel™ based personal
computers (IBM™ PCs and compatibles). When implementation of thc code was started
over five years ago, it was chosen to go against the above standard.

For the computer system it was necessary to have readily available and accessible
systems for personal computing—at an affordable price—to allow use of the program by
anyone who has limited knowledge of computers. This ruled out the use of mainframes
at the time. As for IBM PCs and compatibles, the 640 kilobyte memory barrier, under
DOS, was considered a serious Limitation—as mentioned earlier for SIMION. The use
of so-called DOS-extenders, or even Microsoft™ Windows™, would merely add to the
cost and complexity of implementing the code. Apple Computer’s line of Macintosh™
computers seemed like the appropriate choice due to its user-friendly interface and
extensive programming support. Furthermore the Macintosk operating system is not
limited to a 640 kilobyte memory barrier, which made the Macintosh™ line of computers
the ideal choice for implementing large user-friendly projects.

For the choice of programming language, it was necessary to have a language =
was at once structured, had an extensive library of mathematical functions, and was
popular enough to be easily leamed and used on any system. These were necessary
considerations since the code was expected to evolve with time and become increasingly
complex. This limited our choice—at the time the programming began—to either
FORTRAN-77, PASCAL, BASIC, or C (all other languages being less popular).
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FORTRAN-77 is a very cumbersome language due to certain limiting characteristics such
as identifier (variable name) lengths of no more than eight characters, and poor support
for structured programming. Furthermore, with FORTRAN-77, as a program evolves and
its code becomes increasingly more complex, it becomes more difficult for programmers
to sce the general flow of the code and be able to debug it. This makes upgrades to
existing FORTRAN-77 source code very time-consuming. In other words, FORTRAN-77
lacks the necessary modularity of a truly structured language. Even with the recent
arrival of FORTRAN-90 (which includes C-like functions), the language remains
impractical for implementing large projects. On the other hand, PASCAL supports
structured programming but is primarily intended for instructional purposes and, in most
cases, has a poor library of mathematical functions. Finally, BASIC lacks the modularity
and the extensive support for various data types that PASCAL has. Despite its popularity,
these shortcomings of BASIC make it impractical for the implementation of very large
programs. The only language at the time that seemed to meet all the above criteria was
C, and therefore was initially chosen for the implementation of the code.

The C language has several additional virtues. It allows for high level
programming with its extensive mathematical and input/output libraries, as well as for low
level assembly-like programming for machine-dependent code. In fact, the C language
can make the amazing claim of having had the bulk of its first compiler compiled in its
own language [BOOC]. Furthermore, the C language eventually expanded to include
object-oriented extensions and evolved into a new language: C++, of which standard C
remained a subset.

It is claimed that the object-oriented programming approach—as opposed to the
structured programming approach—allows for better organization of the inherent
complexity of large programs [BOOC]. An object-oriented approach would ease upgrades
of the code since it would cut down on the time necessary for programmers to become
familiar with the entire structure and purpose of a program. On the other hand, structured
programs tend to become ever more complicated and difficult to decipher as they grew.
Furthermore, it is claimed that structured programming "appears to fall apart” when
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source code exceeds 100 000 lines [BOOC]. Since our program was expected to become
increasingly more complex, an object-oriented language seemed a more logical choice.

Many object-oriented languages were available but C (with object-oriented
extensions and now also C++) remained 2 valid choice. Both C with objects and C++
had the advantage of allowing for a smooth transition from a structured design to an
object-oriented design, since both design approaches are supported in the same language
(C being a subset of C++ and its other object-oriented extended languages). Therefore,
for the final implementation of the code on the Macintosh, 2 C compiler with
object-oriented extensions was chosen: SYMANTEC™ THINK C (versions 4 and 5) since
they provided the most affcrdable C compilers (with object-oriented support) for the
Macintosh at the time.

Finally, in the Summer of 1993, a newer version of the above compiler (version 6)
that includes a C4++ compiler was purchased. it is hoped that eventually the current
object-oriented program will be fully implemented in an X-Windows based system using
the C++ language.

3.2 Brief History of the Code

Implementation of the McGill FDC/RKI program began over five years ago by
Professor R. B. Moore and Dr. M. David N. Lunney, then a doctoral student of Professor
Moore’s. As described, a standard four-point relaxation algorithm was used to calculate
the scalar potential from Laplace’s equation and a fifth order Runge-Kutta with adaptive
step-size control to calculate the equations of motion. The actual electric field used by
the Runge-Kutta was calculated using a local multipole expansion of the potential about
the axis (see later sections for details).

In its very first form, the program was only able to solve for a single geometry
at a time that had to be coded into the program. Furthermore, the finite differences and
Runge-Kutta were actually separate programs with the Jatter using as input the output of
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the former. This meant that any user of the programs would have to modify both. each
time a new geometry would have to be solved. The program was however, unique in its
ability to display action diagrams dynamically. This allowed to save considerable time
during the early designing stages of the ion trap systems and later for determining the
properties of built systems.

Unfortunately, the code did not have as yet the necessary user-friendly interface
for boundary condition input and display. Furthermore, certain errors had to be corrected,
especially in the Runge-Kutta, to render the code both more accurate and more effective.
Finally, few actual tests were conducted to determine the accuracy of the program in its
use of local multipole expansions. Hence there was a dire need for the code to be
upgraded.

In the late Spring of 199Z, when this thesis work began, it was decided to upgrade
the C code to include object-oriented extensions. The developers of THINK C, at that
time, had not come up with a true C++ compiler for the Macintosh but had implemented
object-oriented extensions into their compiler. The inherent complexity of a graphical,
user-friendly interface with its pop-up menus, dialogue boxes, and multiple windows
seemed to require an object-oriented approach. Furthermore, the developers of the
THINK C package had implemented several such objects which would greatly facilitate
the implementation of a user-friendly interface. That would also greatly facilitate the
implementation of an interface for general boundary condition inputs.

In this new implementation, the relaxation and the Runge-Kutta each became
separate objects of the same program rather than remaining two separate programs.
Furthermore, with the help of Rui Lopes, an undergraduate summer student in 1992, the
program truly became capable of general boundary inputs with the boundary conditions
being a single object in itself. By the time actual calculations were carried out with the
new code, the author of this thesis had corrected the problems with the Runge-Kutta’s use
of a local multipole expansion; implemented a user-friendly interface for boundary
condition input (heavily based on one of the demonstration objcct-o:icr;tcd codes that
were available with the THINK C development environment); and carried out several tests

of accuracy in comparison with SEMION on single geometries.
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Finally, during the summer of 1993, another summer student, Debbie Reynolds,
helped on making the program more object oriented by using the latest release of THINK
C (version 6), which includes a C++ translator. Further modifications include the
capability of using muitiple overlapping geometries for ion trajectory calculations as well
as an enhanced user-friendly interface. From this point on, it is hoped that the code will
be fully implemented in C++ and made to be portable to the now far more affordable

work-stations.

3.3 Boundary Conditions

As mentioned earlier, the original programs lacked a necessary feature: the ability
to interpret general boundary conditions. When work for this thesis was started, the first
step was to implement a user-friendly interface for boundary condition input. Some
programs, like SIMION, relied on a graphical interface for specifying boundary
conditions. This had the advantage that the same grid could be used for the relaxation.
However, in the case of SIMION, the user is forced to enter the boundary conditions
directly on 2 grid. This had the disadvantage of forcing the user to do all the mapping
calculations from the actual geometry of the electrodes to the grid. It was felt that being
able to enter the actual dimensions of boundaries and have the program interpret the input
would have far more advantages. Two such advantages would be having a reduced time
required for boundary inputs and having 2 computer record of the actual geometry.

In order to allow the user to enter the actual dimensions of boundaries, a
spreadsheet-like interface was implemented. The SYMANTEC THINK C version 5
package contained a demonstration program that had all the necessary objects set up for
a dummy spreadsheet (one whose table cells did not have any memory associated with
them to allow for the storage of information). All the necessary functions associated with
a spreadsheet (such as insertion and deletion of rows and columns) were included as part
of those table objects.
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For the purposes of our implementation, each row of the table is a segment of the
boundary and each column refers to a specific property of a boundary segment. Each row
is stored in memory as a record (or st-ucture in the C syntax). Each record contains six
fields {each associated with a table column) which together fully define a boundary
segment. The six fields are as follows: a description or comment ficld ignored by the
program and included solely for the user’s convenience, a functional form field used to
describe the shape of a boundary segment (line or curve), a Az field for the projection of
the length of the segment along the axis of symmetry, a Ar ficld for the projection of the
length of the segment perpendicular to the axis of symmetry, a boundary type field to
describe Dirichlet or Neumann boundary conditions, and finally a potential field to assign
a fixed value to a Dirichlet boundary. To access a field a user needs only to double-click
on the associated table cell.

The entire boundary itself must form a completely enclosed internal contour of the
geometry with each segment defined in order, starting from the first point on the axis of
symmetry (taken as the coordinate z=0, r=0). The axis of symmetry itself must be part
of the contour. Since only axisymmetric geometries are allowed, this contour is exactly
half the internal outline of the longitudinal cross-sectional cut of the geometry including
the axis of symmetry. Figure 3.1 shows a cross-sectional view of a typical geometry used
to test our program—that of an ion gun—as well as the associated internal outline (which
is used for the boundary conditions) while figure 3.2 shows a screen capture of how the
actual boundary condition table would look like.

The description field allows the user to input a string of up to thirty-two characters
to describe the boundary segment. This field has no effect or any calculations and is
ignored by the rest of the program. Its sole purpose’is to serve as a comment for users.

The functional form field is used to tell the program whether the boundary
segment is a line or a curve. Lines can be either be parallel, perpendicular or diagonal
at any angle to the axis of symmetry. As for curves, only 90 degree arcs of circles (the
quarter of a circles curve) are allowed. Figure 3.3 shows the only four such arcs allowed.
Sincc most geometrical shapes can be approximated by 2 series of lines, the arc functions

are sufficient for our needs for the time being. However, provisions have been made in
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the code to allow for the definition of special functional forms by users who are willing
to code.

The length of a boundary segment is stored in the two fields Az and Ar. While
reading in the boundary segments, the program assumes that each segment comes
immediately after the previous one, with the first segment starting at the coordinate z=0,
r=0. This permits the use of differentials for lengths. For example, Az is the difference
between the z value of the end point and the z value of the starting point. Since the
differentials can be either negative or positive, the program can easily tell whether the end
point of a segment is located above or below and before or after the starting point. To
appropriately define a 90 degree arc boundary, the magnitudes of Az and Ar are set equal
to each other. Furthermore, the use of differentials facilitates later modifications to the
geometry such as changing the axial length of an electrode. If absolute coordinates had
been used (specifying the starting and ending coordinates of every segment instead of
using differentials), this later modification would have required a change of the
coordinates of the endpoints of every segment. With the use of differentials only the Az
of the electrode in question and of the z-axis would need to be changed. As the program
scans through the boundary segment definitions, it sums up the differentials to keep track
of the coordinates (z, r), ensure that 720, and to verify that the boundary is enclosed.
Figure 3.4 shows all the eight possible combinations for Az and Ar and how they would
be interpreted.

The fifth field, that of the boundary condition type, is used to specify whether the
boundary segment is to be considered a Dirichlet or a Neumann boundary condition. Two
types of Dirichlet boundary conditions can be defined. The first, labelled as Constant,
fixes the potential of the boundary segment to the value specified in the sixth field. This
type is usually used on eiectrode surfaces and can be combined with any functional form
specified in the second field. The second, labelled as Dirichlet, fixes the potential along
the boundary segment by doing a linear interpolation between two Constant boundary
segments. This type ignores the sixth field and is limited to lines perpendicular or
parallel to the z-axis (that is, no diagonals or arcs). The Dirichler condition can be used
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instead of a Neumann boundary condition in a place where the potential is expected to
vary linearly between electrodes. Likewise, a Neumann boundary condition is defined
by a single label, Neumann, and is limited to lines perpendicular or parallel to the z-axis.
This type also ignores the sixth field, setting d¢/dz =0 or d¢/or =0 for lines
perpendicular or parallel to the axis of symmetry respectively (where ¢ is the scalar
potential). Finally, since the z-axis is also the axis of symmetry, a separate Neumann
boundary condition, labelled z-axis, is used to emrhasize that fact.

The description of the boundary is complete only when the last segment’s end
points coincide with r=0, z=0—the initial starting coordinates. The boundary file can then
be saved and will be stored on disk as a binary file to save space. The relaxation

segment will automatically quit the entire program if forced to read a boundary file that
is not completely enclosed.
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Figure 3.1: Cross-sectional view of the ion gun (left) and its internal outline
used for the setting of boundary conditions. The dotted lines in
the outline represent Dirichlet boundaries with a potential that

varies linearly between electrodes. The solid lines are electrodes
with a constant potential.
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An example of a boundary condition table for the finite
difference calculations.
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3.4 Finite Difference Calculation

Once the boundary conditions have been defined, the program calculates the
potential field at the internal points. Our program uses the Successive Over-Relaxation
(SOR) method in cylindrical coordinates to calculate this field. The algorithm is
presented in chapter 2, section 2 and is based upon the algorithm given in Numerical
Recipes in C, Section 17.5 [PFTV] with the necessary modifications.

The relaxation segment of the program starts by prompting the user for two
scaling factors: one for scaling the actual geometry onto a finite grid in mm/(gridstep);
and one for the scaling of the potentials. The scaling of the geometry is limited by the
amount of memory required to store the grid—svhich can be set at compile time. To
reduce memory requirements and to increase the speed of the calculations, the relaxation
is done using long integers instead of double precision reals, hence the need to scale
potentials as well.

For the scaling on the grid, the program reads in the boundary file which contains
the description of the internal outline of the original geometry. The internal outline forms
the boundaries on the grid on which the field will be determined, scaled according to the
value given by the user. The prograin then determines which points on the grid are
internal and which are external to the boundary. Only the points marked as internal will
be used to calculate the field, all external points being ignored. The algorithms used to
do the scaling of the geometry onto a grid are sirailar to those used by the Macintosh
toolbox routines to map lines and circles on the screen—with the exception that the
mapping is done on the two dimensional array which is used for the relaxation and is not
displayed on screen.

The program then scales the potentials on the boundary points. It takes the Jargest
potential it read from the boundary file (which is stored as a real number) and scales this
potential to the long integer value specified by the user, with all other boundary potentials
scaled accordingly. This scaling value can be any integer from 10 000 to 1 000 000 000,
giving a one-part-per-billion accuracy at best (i.e., for a maximutn potential of 1 volt the
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best possible error if a scaling of 1x10° is used is = 1x10?). The reasons for using long
integers are simple. Long integers take up only 4 bytes of memory while double
precision reals take up 10 bytes on a Macintosh. This is more than twice the amount of
memory required by long integers and this translates into more than twice the
computational time required for long integers. On the other hand, single precision reals
which are also only 4 bytes would not provide the same degree of precision as long
integers since 4 byte reals have only 6 significant figures.

Once all the scaling is done the program sets all internal points to 0 or some other
potential chosen by the user (like the average of all the potentials for example). The
relaxation is then carried out and can only be terminated by the user. To aid the user in
deciding on termination, the program displays the residuals of the calculations on the axis
of symmetry. Figure 3.5 shows a screen display of the residuals. These residuals are
displayed in scaled values (long integers from O to 1x10%) with the maximum axial
resadual written on the bottom right. The user would stop the calculations when the
displayed residuals no longer have a pattern to them (they appear to behave as noise) and
the maximum residuval is suitably low (usually below 10 units). The final maximum
resadual gives the best possible error in scaled units. Figure 3.6 shows what is meant by
the resaduals appearing to behave like noise.

Once the calculations are stopped the potentials can be displayed along any
horzontal (parallel 1o z-axis, fixed r value) or vertical (perpendicular to z-axis, fixed z
value) ine. This allows the user to determine if the potentials are smooth enough, if the
cakculations should be resumed, and if a different scaling should be used. When selecting
a bne along which to plot the potentials, the program requires the user to input all values
@ actual gnd locations (0 enable the user 1o test the scaling algorithms as well. Once
wutsfied with the calculations, the potential ficld map can be saved.

The potential ficld map is saved as a binary file to save space. The file has the
potentials saved as 4 byte loog integers and also contains all the scaling information
soocwary 10 convert the potentials to their real values. The program first stores the
maaram real potential and the maximum scaled potential in the file. These are followed

by e gr * wcp size in mmf{gridstep), the first boundary point on the z-axis in grid steps
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(which can be non-zero for geometries like an ion trap), the last boundary point on the
z-axis in grid steps (which can be less that the total length for geometries like the trap),
and the total map length (parallel to z-axis) in grid steps. The program then stores the
potentials on the axis alone which range from the first boundary point on the axis to the
last boundary point on the axis for each grid point. This i1s immediately followed by the
total map height (perpendicular to z-axis) in grid steps and the full potential map (from
z=0 to z=maxz, for /=0 to r=maxr). This may seem redundant but will be made clear in
the Runge-Kutta where the algorithm we use requires only the potentials on axis. The
full potential map is saved only for those rare cases where a different algorithm is desired

or t0 enable to store an incomplete relaxation for later completion.
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3.5 Runge-Kutta Integration

The third and final segment of the program actually calculates the trajectories of
ions, and displays the phase space projections of the ion beam as the calculations are
being carried out. The fourth-order Runge-Kutta algorithm with fifth order extrapolation
by adaptive step size control (as shown in chapter 2 section 3) is used to calculate the
velocities and accelerations of the ions. This is fairly common, but what makes our
program unique is the way the electric field is extracted from the potential map.
Programs that use finite difference methods usually calculate the field at a grid point by
taking two or three point derivatives of the potential at that point. Our program uses only
the axial potentials to extract the higher order partial derivatives, with respect to z, of the
electric field on the axis of symmetry.

These partial derivatives can then be used to calculate the electric field anywhere
within the boundaries of a given geometry. This is achieved by a local Taylor series
expansion of the electric field about any point along the axis of symmetry. By using the
inherent sf;mmetries of the electric field due to axisymmetric geometries, all the partial
derivatives in the Taylor series expansion can be expressed solely in termns of the
extracted partial derivatives on the axis. If we let D, be the n* partial derivative, with
respect to z, of the axial component of the electric field, E, along the axis of symmetry,
then this Taylor series expansion gives, to sixth order, the formulae on the next page
(where E, is the radial field, E, is the axial field, r is the distance form the z-axis, and z
is the displacement from the grid point at which the derivatives were calculated—see
chapter 2 section 4 for the derivation of equation (3.1)). Each grid point on the axis has
its own set of the derivatives D,. These derivatives are extracted from the axial potential
by a "nine-point derivative methou” which uses the potential values at the axial grid point
itself and at the eight nearest axial grid points (usvally four on either side). The
procedure (described in detail in chapter 2 section 5) involves doing a Taylor series
expansion up to the 8® derivative of the potential about 2 given point with intervals of 1
gridstep, 2 gridsteps, and so on. Since the potentials at each grid point are known, the
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result is 8 equations with 8 unknowns (the 1* to 8" derivatives of the potential). From
these equations it then becomes possible to generate formulae to extract up to the 8®
derivative of the potential—that is up to the 7® derivative of electric field.
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The dertvatives D, for each axial grid point are calculated only once at the time
the Runge-Kutta is initialized. During initialization the program reads in the axial
potentials only. To reduce disk access time, the potential map files are saved by the
relaxation segment so that all the information needed by the Runge-Kutta is at the
beginning of the file. Once the required information (scaling factors, potentials) is read
in and the required derivatives calculated, the program reads in a parameter file which can
be created by the user or the program itself. The parameter file contains the initial
conditions for the particles which can have variable masses, charges, starting positions,
and energies. It also contains other information related to the display functions and the
maximum allowed time step. During the final step of the initialization procedure, the user
is allowed to change the information that was read in from the parameter file. When the
trajectory calculation is started the new parameters are used.

As the program calculates the ion trajectories, it finds for each particle—at each
Runge-Kutta step—the nearest axial grid point. The program then uses the derivatives
at each of these grid points to calculate the electric fields at the respective particle
positions. Since the equation of motion that is integrated by the Runge-Kutta—for each
particle—is simply given by F(z,r) = gE(z,r) = ma(z,r), the program has to simuitaneously
integrate the accelerations to get the velocities, and the velocities to get the displacements.
For each particle the position, velocity and acceleratior is stored in arrays. This allows
the program to access the necessary information to display updated trajectory profiles,
phase space projections, or energy diagrams. The maximum allowed time step serves as
the plot time interval for these displays. The program can be stopped at any time by the
user to change the plot time interval or even terminate the calculations.

An additional feature of the Runge-Kutta integration segment is that it can
terminate trajectory calculations at a specific point along the axis of symmetry (the
z-axis). The program includes an algorithm which uses simple kinematics to interpolate
a particle’s position back to the xy plane chosen by the user. This has to be done since
the integration in time does not guarantee that a particle will land on a surface exactly
within an integration step. If no plane is chosen, the end of the geometry is used. At this
point the program saves in a file the positions, momentums, energies, and time of flights
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for every particle. This data can then be used to display any of the action diagrams
desired by the user at the specified distance z.

Furthermore, the Runge-Kutta segment of the program also includes the ability to
overlap multiple potential field maps (up to 8). It further allows for these field maps to
be specified as time varying. Therefore, it is possible to solve for the scalar potential of
a geometry by solving for each electrode of the geometry separately and then overlapping
them. Each of these electrodes could then be specified as either time varying or static.

Two basic types of time varying functions are implemented: sinusoidal or radio-
frequency; and pulsed ramps. For the radiofrequency time variation the user can specify
the amplitude, frequency, and phase shift of a sinusoidal wave as well as a DC offset
voltage. In the case of the pulsed ramp, the user can specify the time when the first pulse
arrives, the maximum amplitude, the rise time, the decay time, the duration time of the
pulse, and the interval between pulses. For the last two cases, it is possible to specify a
single pulse that remains turned on indefinitely, or that is turned on initially and gets
turned off for certain time intervals that can be indefinite.

Finally, the program allows for a very simple ion mobility calculation where the
user can specify the homogeneous temperature and pressure of the system as well as the
reduced mobility, K, value for the ions being tracked. If ion mobility calculations are
turned on, an additional drag term is added to the equation of motion which acquires the

form:
F =gE-bv, (3.2)

where b is some function of the reduced mobility, temperature, pressure and electric
charge of the particle.
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3.6 List of Program Capabilities

Below is a comprehensive list of the program’s capabilities. First, is a list of all
of the program’s capabilities that does not require recompiling the source code:

Set boundary conditions using actual dimensions independent of the grid size.
Set two types of Dirichlet boundary conditions (constant or linear).

Set the grid step size desired for the relaxation array (up to 1000 by 200 poinis).
Set the scaling factor (up to 1¢9 for max. potential) for 32-bit integer relaxation.
Set other relaxation parameters (spectral radius an< the initial grid values).
Reset scaling factor at will.

Reset grid step size at will.

Plot potentials along an axial or radial cut at any time during the relaxation.
Display residuals from the relaxation calculations.

Save the full potential map when the relaxation is completed to user’s liking.
Read in the axial potentials alone for up to 8 field maps.

Calculate all the derivatives required for the local multipole expension algorithm
for each field map.

Set the desired order of the local multipole expansion (from the zeroth to sixth
derivative of the electric fieid).

Read in all the potentials for up to 8 field maps.

Calculate the radial and axial components of the electric field for a bi-linear
interpolation algorithm.

Overlap the desired fields for up to 8 field maps.

Save all the derivatives for the local multipole expansion in a special file.
Save the off-axis potentials predicted from the above derivatives.

Save the electric field components predicted by the above derivatives.
Simultaneously track up to 441 particles.

Perform all tracking with 80-bit floating point numbers.
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Specify initial coordinates in phase space for all particles using momentums or
divergencies.

Specify the masses and charges of all particles, as well as initial times.
Interpolate positions of particles to the point where they left the field region.
Save all the interpolated particle positions.

Save all particle trajectories in phase space at selected time steps.

Display phase space projections in (p.x), (2,¥), (Pn2), (Poy), and (xy) in
normalized units (¢V-us/mm x mm) at selected time steps.

Display phase space projections in (p,x;, (P,.y), (p,p,) and using beam
divergences at selected time steps.

Display transverse beam profiles in (x,2), (¥,2), and (r,2) at selected time steps.
Display transverse plots for (r.f), (z,t), and (E,1).

Turn on 2 constant magnetic field in the axial direction for the entire map.
Turn on ion mobility calculations (simplistic drag force term) for tracking.
Save any graphical display on screen to a PICT file.

Furthermore, here is a list of all of the program’s capabilities that does require

recompiling the source code:

Change the maximum grid size for the relaxation up to any value limited by the
amount of memory available (change only two constants in one header file).
Change the maximum number field maps allowed (change only one constant in
one header file).

Change the maximum number of particles allowed (change only one constant
in one header file).

Calculate the derivatives for the local multipole expansion using two-point
derivatives instead of nine-point derivatives (Set :0 0 one compiler directive in
one file).
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4, Program Evaluvation and Results

Several computations and comparisons have been performed in order to test the program
and to evaluate its performance. A preliminary test problem, consisting of a simple set
a parallel plates, was run to ensure that both the finite difference calculation (FDC) of the
electric potentials and the Runge-Kutta integration (RKI) of the particle trajectories were
correctly performed. Next, the resuits of the FDC and RKI algorithms were compared
to the results of the SIMION program. For this test, the phase space diagrams of ions
traversing a simple Einzel lens were compared. The program was also tested for
conservation of particle kinetic energy. Finally, designs for a ion deceleration system and
an ion source were evaluated using the McGill FDC/RKI program and using SIMION as
a check. In addition to the following section describing these tests and their results,
a second section of this chapter presents the results of some further analysis using
the program with added options for thermodynamic distributions and ion mobility.

SIMION was run on an IBM i’SI‘Z model 55 SX (a 386SX 16MHz chip) and a
436DX 33MHz clone. The McGill program ran on a Macintosh Quadra 700 (68040 with
a 20MHz clock speed). Overall speed comparisons would be unfair due to the different
machines involved but in most cases the Quadra was only slightly faster than the 486
clone for all calculations. Another aside is the ambiguity with which SIMION defines
its error checking parameter, called "accuracy level”. Its actual implementation in the
SIMION code is not discussed in the documentation. The results for the conservation of
energy are given in terms of the best possible "accuracy level” that was found on a trial

and error basis.
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4.1 Tests
4.1.1 Parallel Plate Test Problem

The axisymmetric geometry used for this problem is shown in figure 4.1. Two
trivial tests were made using this model: (1) a comparison of the calculated potentials to '
the analytic linear potentials across the centre at r = 0; and (2) a comparison of the
calculated final position of a particle trajectory to the analytic case. In the first case, the
potentials obtained from the finite difference calculation along the axis were all within
107 of the analytical value for a grid spacing of 0.5mm/gridstep (a 20 x 200 array).
When the axial component of the electric field was compared with the analytical value
of 10 000 V/m, a difference of at most 0.83% below the analytical value was obtained
15 gridsteps off-axis (this error drops to 0.06% for 10 gridsteps off-axis and to 10°
percent along the axis)

For the second test, a single **Cs* ion was positioned Smm (10 gridsteps) off-axis
and 1mm (2 gridsteps) away from the 50 Volts electrode. For such an ion, their will be
a resulting acceleration along z due to the electric field of 10 V/mm (10 000 V/m). Itis
easy to show that the theoretical time of flight for the ion to travel the 9mm distance is,
to 9 significant digits, given by 1.57518947us. The reason for so many significant figures
is that the program predicts 2 value of 1.57518945ys, again a difference of less than 107
percent. Furthermore, if the ion is given on initial velocity towards the axis of 20mm/us
it will hit the right plate about 26.504mm below the axis. Again, the program agrees
within 10 percent.

The real test of the high-order multipole expansion is when the ion is placed far
off-axis, such as 50mm off-axis (100 gridsteps). The full high-order multipole expansion
(up to Dy, see equations (2.40) and (2.41), section 2.4) fails c;Jmpletely in this case. The
order of the multipole expansion has to be lowered to 3™ order in the electric field (up
to D,) before meaningful results can be obtained. For this stringent case, the 3™ order
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multipole expansion gives errors within 107 percent. At higher orders the errors range
from 5% to 600%.

These later results do not invalidate the multipole expansion since most problems
deal with paraxiul beams (near axis). These results only indicate that the order of the
multipole expansion can 2nd has to be controlled depending on the problem at hand. For
the following comparison tests with SIMION, all particles were usually within 20
gridsteps from the axis. Furthermore, the multipole expansion was set to 5 order in the
electric field (up to Dy).



ww 00l

The parallel plate test problem with its axial potentials.

Figure 4.1:



4.12 Einzel Lens Trajectories

The Einzel lens geometry used for these tests is shown in figure 4.2. For both
SIMION and the McGill program, the grid step size chosen was lmm/gridstep. The
whole geometry was 398mm long along z, and 37mm wide along r. Before looking at
the trajectories and making comparisons with SIMION, an evaluation of the off-axis
multipole expansicon algorithm was made. Shown in figure 4.2 are the off-axis potentials
generated directly by the FDC and those generated by the high order multipole expansion
scheme (outlined in chapter 2) at (a) r = 5 grid steps and (b) r = 10 grid steps as well as
the percentage differences between the two methods. Very close to the edges, the
differences can be greater than 10%. However this is also a region where the potential is
zero. In the central elecrode region, the differences are quite smail (less than 0.001%),
especially close to the z-axis which is usually the area of interest for trajectory
calculations in lenses.

A conservation of energy test was performed and compared with the SIMION
program which uses a straightforward planar interpolation of potentials to calculate the
fields. When a particle comes into a region with a certain kinetic energy, it must exit the
region with the same energy added to (or subtracted from) the total potential difference
along the trajectory. This Is a good test of whether or not the fields have been properly
evaluated as well as the trajectories accurately integrated. For the particular case of this
problem, all the ions were '**Cs*. The ions all had 60 000eV of energy (about 9.6 x 10°**
J) with no radial spread and were evenly spaced every 0.Imm from 0 to Imm off-axis.
Since the Einzel lens is symmetrical, the final energies should all equal 60 000eV. The
results of the two caiculations (McGill’s multipole expansion and SIMION) are
summarized in table 4.1 below, with the exact same number of significant figures given
by the McGill program and SEMION (the McGill program can provide up to 20). It can
be seen that the final particle energies agree to within ore part in 100 000 and the time-
of-flight values to about the same precision. Results obtained by the McGill program
when using the bi-linear interpolation technique to calculate the electric field, are almost
identical to those given by SIMION in table 4.1.
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The trajeciory calculations were verified by a comparison of phase space (action)
diagrams generated by the program and those extracted from SIMION. This is where the
advantages of our program are clear since it provides dynamic phase space plots along
the trajectory while SIMION does not. To extract phase space plots from SIMION, the
trajectories were saved at given time intervals and the positions and velocities were
extracted particle by particle to construct the phase space plots at those times. This is the
major disadvantage of SIMION as all the calculations must be done before one may take
a look at the phase space. Furthermore the process itself of extracting the phase space
plot from the saved trajectories is very time consuming. Again, the same set of initial
conditions were used for both programs. In this case, the initial phase space at ime ¢t = 0
was a rectangle of 9x9 ’Cs" ions with a transverse momentum range of +5.25¢V-ps/mm,
a displacement range from the z-axis of £lmm, and an axial energy of 60 000eV.
Figure 4.4 illustrates the results of this operation for two instants of time (0.7 and 1.4 ps).
Three evaluations of the action diagram for the x-component are shown: that extracted
from SIMION (SIM), from the McGill program using the local (high-order) multipole
expansion (LME) ang a bi-linear interpolation (similar to what SIMION performs) of the
potentials generated from the finite difference calculation (BLI). It can be seen that the
three action diagrams for each time arc identical indicating that there is little doubt
concerning the integrity of the McGill program’s performance. Furthermore, the
calculations using LME were observed to be almost two times faster than those using BLI
in this case. For 81 particles, the above LME calculations took approximately 8 minutes

while the BLI calculations took approximately 15 minutes.
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Figure 4.2: Einzel Lens outline with superimposed ion trajectories.
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nmm | BV | BV | s ) ' )
0.0 60000.00006 60000.000 1.409262467 1.40931
0.1 60000.00006 59999.997 1.409262616 1.40931
0.2 60000.00006 59999.998 1.409263064 1.40931
0.3 60000.00007 60000.005 1.409263810 1.40932
04 60000.00008 60000.017 1.409264855 1.40932
0.5 60000.00009 60000.036 1.409266199 1.40932
0.6 60000.00010 60000.058 1.409267842 1.40932

0.7 60000.00011 60000.088 1.409269785 1.40932 “
0.8 60000.00013 | 60000.123 | 1.409272029 1.40932
0.9 60000.02016 60000.163 1.409274574 1.40932
1.0 60000.00019 59999.216 1.409277421 1.40933

N R

Table 4.1:  Final energy values and time of flights for the Einzel Lens problem as

61

calculated by the McGill program (E,,%,) and SIMION (Et). The
theoretical final energy value is 60000eV.



4.1.3 Ion Beam Deceleration System

The deceleration system is used in the McGill physics program at ISOLDE to slow
the mass separated beam from its nominal transport energy of 60 keV to some tens of eV
for injection into a Paul trap collector. This is a delicate operation that requires high
accuracy to simulate. The decelerator geometry is shown in figure 4.5. This problem
provides a more stringent test of the FDC/RKI program than the Einzel lens from the
previous section because of the different scales involved. The injection electrode near the
end of the decelerator is very close to the trap end cap constraining the FDC to small
stepsizes. The actual discretization of that critical area used by the program is shown in
figure 4.6. For this problem the decelerator was 198mm long along z and 64mm wide
along r with a grid step size of Imm/gridstep. The ion trap was replaced by an
equipotential volume as can be seen in figure 4.5.

The first test was a conservation of energy, as performed for the Einzel lens, for
the McGill program and SIMION. This time however, the '*Cs* ions were evenly spaced
every Imm from 0 to 4mm off-axis. The ions all had 60 310eV of energy with no initial
transverse energy. In this case, all the jons that enter the equipotential volume (as they
all did) will have a theoretical final energy of 310eV. The results are summarized in
table 4.2 below. As can be seen, the results are guite agreeable except for the last two
cases. The problem here is the same as for the parallel plate test problem: the particles
are several gridsteps off-axis as can be seen from the trajectories in figure 4.5. and from
the additi~nal information in table 4.2, This indicates that the fifth-order local multipole
expansion scheme is still sufficiently accurate slightly past 11 gridsteps off-axis.

Phase space diagrams were also computed for three different times and only for
the LME in the case of the McGill program. For this test, the initial phase space at time
t=0 was a rectangle of 9x9 '’Cs* ions with a transverse momentum range of
+5.25¢V-us/mm, a displacement range from the z-axis of +2mm, and an axial energy of
60 310eV. These results, again identical for the two programs, are shown in figure 4.7.
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Figure 4.5: Decelerator outline with superimposed ion trajectories.
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T(mm) Ey (eV) ﬁE-s (cg— ) | 5(s) || rpy (mm) | g (mm) |
0.0 310.000 | 310.000 | 2.34328 | 2.34160 0.000 0.000
1.0 310.045 | 309.816 | 2.37135 | 2.37035 5.227 5.202
2.0 310.042 | 308.486 | 2.46598 | 2.46823 11222 11.200
3.0 290.987 | 307.813 | 2.67120 | 2.67377 19.174 19.238
4.0 251.751 | 307.841 | 3.07863 | 2.97078 30.000 30.000 I
Table 4.2:  Final radial positions, erergy values, and time of flights for the Decelerator

problem as calculated by the McGill program (r,\,Ep.f,) and SIMION

(r;sEsits). The theoretical final energy value is 310eV.
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4.14 Jon Gun

The ion source problem provides the most stringent test of the program due to the
very high field gradients over small grid regions. The geometry is illustrated in figure 3.1
schematically and as exactly used by the FDC algorithm (and SIMION). Figure 3.2 alsc
shows a screen capture of boundary definition table for the geometry which lists these
boundary conditions explicitly.

What makes the ion gun different from all the other geometries used to test the
program is the uncertainty in what initial conditions to use. All that is known is that
ions will come off the hot plate, but there is no knowledge as to their energies or angular
distributions. It was assumed that across this surface the ions would have anywhere from
0 to 20eV in total energy and would have angular spread of over 45 degrees. The later
was required in order to facilitate comparisons between SIMION and our program since
both programs differ greatly in the way initial conditions are specified. (In SIMION
particles are defined in terms of grid units for position, and total energy and angle for
direction whereas the McGill program allows the input of momentums in all dimensions.)
Furthermore, the geometry was 91.5mm long along z and 77.5mm wide along r, with a
2mm diameter plate as the ionizing surface. The ideal stepsize for this problem would
have been 0.5mm/gridstep but this would have required an array of 28 365 grid points.
A limiting factor here is that the version of SIMION used required that the potential
arrays contain no more that 16 000 points whereas this is not a problem on a Macintosh
where it is straightforward to use all the memory available. Here again, the difference
in ease of use between our program and SIMION is evident: the McGill program allows
the geometry to be re-scaled at will since the actual dimensions are input whereas with
SIMION, the geometry has to be input directly onto a grid.

In order to compare results from both programs, a grid stepsize of
0.75mm/gridstep was chosen (to avoid array size limitations for SIMION as well as to
minimize round-off in the dimensions of the ion gun). For such a gridstep, the ionizing
plate will be rounded down to 1.5mm in diameter. For the purposes of this test, the
ionizing plate was set to 60 000 Volts and the extraction ring to 100 Voits below
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providing a potential gradient of 100 Volts across only 4 gridsteps. The nozzle at the end
of the geometry was kept at 0 Volts. For the phase space calculations, the original phase
space distribution was fixed at +1.66eV-ps/mm of momentum {leV of energy) and
0.75mm of displacement in the transverse plane, with an energy of 1eV along the axis
of symmetry for every 'Cs* ion (this corresponds to an angular spread of 45 degrees).

Figure 4.8 shows three action diagrams for SIMION, compared to the LME and
BLI of the McGill program. In this case, the resulting diagrams are not the same. Those
determined via SIMION and the BLI are similar but the LME diagram has a different
orientation, Furthermore, in the case of the LME the energy was not conserved within
the same degree of accuracy as the others. This is an indication that the problem is not
sufficiently discretized which means that the array size must be increased in order for the
problem to be accurately treated. It was possible, in the case of the McGill program, to
triple the array in size and recalculate the phase space diagrams (change the grid stepsize
to 0.25mm/gridstep). In this case, with the jon source region better discretized, the phase
space diagram has the same orientation as the others and moreover, the trajectories
conserve energy. Overall, this would indicate that the LME algorithm is quite sensitive
to large gradients. However, due to the ease of grid scaling, the problem can be avoided
by improving discretization. Table 4.3 shows the energy conservation comparisons
between SIMION and the McGill program at a 0.75mm/gridstep and for the LME only
at 0.25mm/gridstep. I each case, a single 'Cs* ion was used with initially 1eV of

energy with no transverse energy at 0.75mm off-axis.
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0.75 60011.286 60001.990 60001.721

0.25 60000.999 - -

Table 4.3:  Final, energy values for the Ion Gun problem as caiculated by the McGiii
program for the local multipole expansion (E,,), bi-linear interpolation
(EgL) and SIMION (E;). The theoretical final energy value is 60001eV.
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4.2 Analyses

4.2.1 Ion source beam profile

Having analyzed the ion source optics, an attempt was made to simulate the ion
beam distributicn in phase space using the local (high-order) multipole expansion on a
0.25mm/gridstep array for the ion gun. To do this, a thermodynamic model based on the
Gibbs distribution was used to determine the temperature-determined weighting functions
on the phase space diagram [LUNP, GDMV]. The phase space diagrams were calculated
‘1 the way already described and the corresponding distribution was applied to reconstruct
the beam profile at the detector position.

The basic result of statistical mechanics (sce, for example, Statistical Physics by
Landav and Lifshitz) of importance in particle action diagrams is that the most probable
state of a particle collection sharing a total energy E is that in which the density in six-
dimensional phase space, made up of the spatial dimensions x, y, z and the momentum

dimensions p,. p, and p.. is given by

E
d°rx T

= Ae 4.1
dxdyd:dp,dp dp.

*

where £ is the energy of particles in the phasc space volume element dxdydzdp dpdp..
kT is a constant that characterizes the distribution of particle energies and is usually
expressed as the Boltzman constant k multiplied by a temperature T and A is a
normalization constant that results in the integration of the density function over all of the
coordinates being simply the total number of particles [LALI].

The simplest cases are those in which £ is only a function of the momentum

coordinates. The integration over the spatial coordinates is then trivial resulting in

£

3 -
_ L ave T 4.2)
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where V is the volume of the particle collection. For a collection in which the total
energy is conserved, an underlying assumption in arriving at (4.1), E becomes simply the
Xinetic energy of the particles, which can be expressed as

dn _pieplepl

—_— = AVe ™ (4.3)
dp.dp dp,

Here the independence of the distribution in the three coordinates of motion is explicit

as.

& N T
R - AVe ™, AT T (4.4)

dp.dp dp.

and the integration over any two of the coordinates to obtain the overall distribution in

a third becomes simply a double integration over the Normal distribution

tH

- p‘
dn _ omAVmkTe TF (4.5)
dp,

For an action diagram one needs the particle density as a function of both the momentum

and the displacement coordinates;

” _p
an oAV ure T (4.6)
dxdp, dx

Thus the variation throughout the volume must be taken into account. If the
volume of the particles is rectangular on all faces then dV/dx is just the area of the
particle collection in the p,-p. plane. However, a more usual particle source—like it is
the case for the ion gun geometry—is a disk, usually expressed by an infinitesimal
thickness in the z coordinate and a radius r in the x-y plane. Such a source has 2 total

volume of 7 and yields the following expression for dVidx:
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AV oeafr-at 4.7)

Substituting equation (4.7) into (4.6), yields the action diagram density for such a source;

dzn . P.
= ARAMATYr? -x e ™0 |

dxdp,

Taking into account that this density integrated over the area of the action diagram must
be the total number of particles N, the distribution can be expressed as

d’n 2N 12, T 4.9)
dedp,  n2[2mmkT

For the numerical calculation of beam profiles, a '*Cs* beam with the same initial
conditions as in the ion gun test problem in section 4.1.4 was used. However, the
potertial on the extraction ring was set (o O Volts. The phase space diagram at the
detector position (set at 540mm from the ionizing plate) is shown in figure 4.9. The
resulting ion density distribution, after applying the weighting function given by equation
(4.9), ts shown in figure 4.10.

Measurements of the ton distribution on the detector using a moveable faraday cup
were made independently 1o measure the intensity as a function of transverse position
[MGDP)]. (These measurements wese done by A. M. Ghalambor Dezfuli as part of his
thesis work.) The measured distributions were integrated and recoanstructed as shown in
figure 4.11. This indicates that their is a good agreement between the measured and
wmulated profilss. These results are very significant as they allow the design and
opumuzation of r0a source parameters with a direct umulation of the beam emittance.
Such 3 procodne s not possabie umply by umuolated w0 trapctones.
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4.2.2 Ion mobility calculations

The damping of the motion of particles in radiofrequency (Paul) traps due to
background gas was first demonstrated by Wuerker et al. in 1959 [WUEA] for metallic
particles in air. The ease with which background gas can be used to cool ion motion in
electromnagnetic traps led to the study by Douglas and French [DOFR] of the effect of
background gas on the transverse motion of ions in a radiofrequency quadrupole (RFQ)
rod structure (shown in figure 4.14). Indeed it was shown that background gas at
moderate pressures, up to about I Pa, did result in a significant increase in the
transmission of ions through a 1 mm diameter orifice following the quadrupole rods.
However, at pressures higher than this the transmission decreased, until at about 10 Pa
it was essentially zero.

This result was very interesting for the purpose of preparing 2 beam of ions for
collection in a trap or simply to improve the transverse emittance of an ion beam for
subsequent use by sensitive apparatus. To investigate ihese possibilities, the McGill
program was modified to study the dynamics of ions in an ideal radiofrequency
quadrupole rod system at bich gas pressures (i.e., the Runge-Kutta integration was used
on the equations of motion at the centre of an RFQ rod system with no fringe field
effects). For this purpose, a short digression is necessary for the explanation of the
concept of ion mobility.

To obtain an approximation to the behaviour of ions under buffer gas collisions,
the effect of the collisions can be modeled as a viscous force. This is indicated by the
results of ion mobility experiments where it is well known that the drift velocity of an ion
through a gas due to an electric field is proportional to the electric field strength, at least
at low values of the electric field. In fact, the proportionality constant X in the relation
between the ion drift velocity v, and the electric field E:



v, = KE , (4.10)

is defined as the "ion mobitity”. Thus the effect of the gas on the ion motion is to
present a drag force which is proportional to the velocity, the proportionality constant
being simply the ionic charge divided by the ion mobility:

F,=Zv,. 4.11)

Ion mobility measurements are made by observing the drift of an ion over a distance that
involves many ion-molecule collisions. Thus the fluctuations that occur due o the
collisions are averaged out over many collisions to give a drift velocity at which the
average drag of the molecules is exactly balanced by the electric field force. The
situation that is to be investigated is that of the transient condition when the velocity of
the ion through the gas is different from that which would have an average drag force
which would exactly balance the applied electric field. From the point of view of the
molecules presenting a viscous drag it is tempting to consider the equation of motion of

such an ion to be

mi = F

optind = %x : (4.12)

For the specific case of an ion suddenly created at zero velocity in an electric field in a
gas, the above cquation can be casily integrated to give
-9
v=v‘(l_e-ﬁ') ' (4.13)

where v, is the equilibrium drift velocity after a long time. Thus the velocity difference
with the equilibrium drift velocity relaxes with a decay rate of g/Km.

The success of the simple equation of motion (4.13) in accounting for the
equilibration of the drift velocity of ions in gases with an electric field, led to an attempt

to use the equation to simulate ion motion in a radiofrequency quadrupole field with
background gas. For this, the Runge-Kutta integrations were carried out for such time-
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varying fields and some typical results are shown in figure 4.12. The calculations shown
were for ®Na* ions in helium at radiofrequencies and field strengths appropriate for
typical quadrupole rod operation.

The results for a helium pressure of 0.01 Torr (1.33 Pa) show the usual pattern of
an RF oscillation superimposed on a slower macro-oscillation, of about 250 kHz.
However, a decay of the overall motion is evident in the 40 ps of the ion motion for
which the calculations were carried out. When the pressure is increased by 10 the decay
rate increases accordingly , to a value of about 10* s™'. This continues until at 1 Torr (133
Pa) the motion seems to take on the characteristic of a critically damped simple harmonic
oscillator, with a damping tiine constant of the order of one microsecond.

At pressures above 1 Torr the only motion remaining is seen to be the RF motion
and this is seen to cause only a slow progression of the ion toward the axis. At 10 Torr
(1333 Pa), the motion is seen to take an inordinately long time to proceed to the axis.

The variation of the damping time constants for three elements (for a radio-
frequency of 2000 kHz) are shown in figure 4.13. From this it appears that the optimum
pressure of helium for cooling the motion of these ions in a radiofrequency field is about
100 Pa.

It appears that the guiding and thermalizing of ions using RFQ fields in high
background gas pressures is quite feasible and could have a broad range of applications
in trace-beam technology. This is the first time that detailed numerical integration bas
been performed for ions in high electric fields at high pressures where ion mobility
dominates the dynamics. This particular version of the program promises to have
considerable impact in the future. Staff at Foster Radiation Lab are currently studying
not only its possible use for the loading of such beams into Paul traps but also for the
improvement of the emittance of high velocity ion beams for conventional magnetic

sector mass spectrometers.
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Figure 4.12: Examples of damped motion for ®Na® ions in Helium.
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Figure 4.14: The schematics of a radiofrequency quadrupole rod system.



5. Conclusion

This thesis describes the creation and extensive testing of a unique computer
package that performs high accuracy charge-particle optics simulations. It is unique in
combining the power and flexibility of finite calculation techniques with calculation and
display capabilities for phase space diagrams. The program features a modular object-
oriented design and user-friendly interface. The major capabilities include:

« User specification of arbitrary electrode geometries, boundary conditions and initial
phase space distribution for an ensemble of charged particles.

An optimized finite difference calculation to generate a grid of electric potentials.

Accurate and continuous calculation of electric fields using either (1) a sixth-order
multipole expansion of the axial electric field or (2) a bi-linear interpolation of the
off-axis grid points.

A fifth-order Runge-Kutta numerical integration with adaptive step size control to

completely determine the particle trajectories in phase space (or geometric space).

Specification of time-varying functions, multiple poisntial maps, magnetic fields.

A fully interactive, graphic display and output capability for the phase space
diagrams and/or single particle trajectories.

After extensive testing, the program was used for the analysis of an ion source
geometry, an ion beam decelerator, and an ion beam collisional focusing system using
quadrupole rods at high pressure. The program further demonstrates that for paraxial
beams, a multipole expansion of axial potentials can be used to speed up calculations
while maintaining accuracy.

Using a thermodynamic weighting of the initial particle ensemble in phase space,
the ion beam profile was simulated with the program and compared to intensity
measurements.

Also, by incorporating relations for ion mobility and diffusion in gases, an
extrecaely important simulation was performed to study the damping times and diffusion

cross sections of ions cooled by background gas at elevated pressure, under the focusing
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of a quadrupole rod structure. This work is very important for efforts to improve ion
beam emittances at isotope separators as well as improving transmission in quadrupole
mass filter instruments for trace element detection and biochemistry analysis. Moreover,
it is the first time that detailed numerical integration of particle dynamics in gases has
been performed using ion mobility concepts.

The program has thus proved to be extremely versatile, making it an essential part

of on-going research efforts in nuclear physics, ion mobility and mass spectrometry.
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