
••• N..lt..-n.ll 1 _t'li .1,..,.
01 r~"""~1

l\.bhOU\4'''(ltx· n.lhon.,I..
d,) C.\n.l(1,t

J\cQlIJ""JtI(lfY, .l'Xt [ltreC11()(l dc~. ~tCQU1~IIIOY. el
l~bl<JQr~t)hoc:;"rw:.,,-, lIr;\llCt, ""c. c",rv>c~ blhl~r"plIQlJ\!"

.",~., ~,"R'\ ."1", fur- W~{Yl
r~... ~, l>r.....l(Onc.'\fIO}

"" 1A CW4 ~ lA ON"

NOTICE

..... - \<, ..... '_...

AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missillg, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-SO, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-SO, et
ses amendements subséquents.



•

•

Precision ion optics ofaxisymmetric electric systems

by

Peter Varfalvy

A thesis subllÙtted to the Faculty of Graduate Sttldies and Research
in partial fulfilment of the requirements for the degree of

Master of Science

Foster Radiation Laboratory
Departmer:t of Physics

McGill University
Montreal. Canada

A:lgust, 1995

~ 1995 by P. Varfalvy



1+1 National Library
of Canada

Bibliothèque nationale
duC"lnada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 WC1li~lon Street 395. rue Wellington
Ottawa.Ontano Onawa (Ontano)
K1AON4 K1AON4

The author has granted an
irrevocabie non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa ~i1èse

de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-12284-0

Canada



•

•

ABSTRAcr

A comprehensive computer package for the calculation and simulation of charg~d­
pa:1icle dynamics in electromagnetic fields has been developed and tested. The program
provides a user-friendly and flexible interface for visualizing particle dynamics using
phase space diagrams. which are cssential for complete understanding of a beam optics
system. The program performs an accurate finite difference computation of a user-defined
bO'mdary value problem (in the form of a grid) followed by a high-order Runge-Kutta
numerical integration of the equations of motion to evaluate the particle dynamics within
the field. The program is unique in its combination of these flexible finite calculation
techniques with the pan>l!el processing of particle ensembles in order to display phase
space diagrams.

After extensive testing. the program has been used to design a low emittance ion
source and an ion beam deccleration system for high-efficiency ion collection. The
program has also been used to analyzc a radiofrequency quadrupole collisional focusing
system using ion mobility concepts.

RÉsUMÉ

Un logiciel compréhensif qui calcule et simule la dynamique des particules
chargées dans des champs électromagnétiques a été développé et testé. Le programme
est facile à utiliser et très utile pour évoquer les images de la dynamique des particules
en utilisant des diagrammes d'action, qui sont essentiels pour la compréhension complète
des systèmes d'optiques ioniques. Le programme calcule tme différence finie précise d'un
problème aux valeurs limites définies par l'utilisateur (sur une grille), suivi par une
intégration numérique Runge·Kutta, d'ordre-élevé, des équations de mouvement pour
évaluer la dynamique des particules dans le champ. Le programme est unique dans la
manière dont il intègre ces techniques flexibles de calcul finies avec le calcul parallèle
de toute les trajectoires d'un ensemble de particules pour visualiser les diagrammes
d'action.

Après des tests consciencieux, le programme a été utilisé pour établir le plan d'une
source d'ions à base émittance et d'un système de décélération de faisceau d'ions pour
la collection d'ions avec haute efficacité. Le programme a aussi été utilisé pour faire
l'analyse d'un système (avec un champ quadrupolaire oscillatoire à convergence par
collision) qui utilise des concepts de mobilité d'ions.
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l. Introduction

1.1~ Pat1Jdc Bcam Optics

,...,~ -S lpplaeations of fundamental physics require the use of elccttomagnetic

rclelo for ~I chargcd particles. Perhaps the best known examples are particle

8Ccclcnlon Md telcvision pictun: tubes. Systems for guiding. or transporting. charged­

plthck tarm cali bc quite complex. requiring detailed simulation for their realization.

ComcqucntIy. \CIChniques for such simulation have bcen significaotly developed. generally

faUlIII 11IIO the eategory of "beam optics".

A r.Jajor appliation of beam optics is found in the field of nuclear physics using

noocopc lCpIIBIOC' facilities. At such facilities. radioactive beams are produced by

biNI"'"!iDg a targel with a high energy projectile. The radioisotopes are then ionized and

euracted !rom the target as a particle beam. As these facilities are quite rare and in very

biab dc:mand. they include a nelWorlc of paths so that the beam may be traDSported to a

numher ofexperimental stations. An example of an isotope separator facility. in this case

ISOLDE al CERN. is shown in figure 1.1. The an:a after the mass separator itself is

ca1Ied the experimental switchyard. Various experimental programs (users) install

apparatus that is customized for parL~'Ular types of measurements. The central beam line

is split into smaJler beam lines using chambers containing elccttostatic parallel plate

deflectors. At any give time. the beam is deflected along a certain path and transported

to only one installation. In the straight sections of the beam lines there are quadrupole

focusing elements to keep the beam from diverging and being lost.

The positioning of these standard beam line elements is chosen using a certain

type of beam optics calculation methods. mos! of which falI under the category of transfer

matrix techniques. These are applied in cases where the effects of certain electrode

geometries on ion trajcctories cao be approximated analyticalIy. The beam-Iine elements

have characteristic transfer matrices which are multiplied together with a beam profile

1
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matrix. The desired focal point is specified and the overall matrix is inverted to

determine the elemc'lt positions. An important figure of merit for a beam transport

system is the emirrance of the bearn which characterizes the beam quality using the spot

sizc and the divergence. Emittance is derived from general phase space arguments which

will be developed in the following chapter. Ali transfer rnatrix beam transport

calculations are based on phase space considerations.

In the individual experimental areas, usually the electromagnetic optics are more

complicated as they are tailored to the particular experimental technique and it becomes

impossible to defme characteristic and analytical ~Iements as such. In these cases, the

particie dynamics must be evaluated by direct, numerical methods. In general, such

methods are comprised of two main features: an accurate determination of the

electrornagnetic field, followed by an evaluation of the resultant dynamics of the particles

subjected to these fields. Again, several methods exist, generally known as finite

calculation techniques. Unlike traDsfer matrix methods, finite calculation methods te!ld

to treat dynamics on a particle-by-particle basis rather than using phase space

considerations. Thus, it becomes difficult to gauge the performance of apparatus in

conjunction with the particle bearn and information that cao be critical, is not displayed.

In any field of endeavour, it makes no sense to "re-invent the wheel". When a

charged particle optics problem needs to be solve<!, one naturally looks for the tools that

are already available. In the next two sections, a brief review is given concerning both

transfer matrix and finite calculation techniques. From these should emerge the fact that

there is a lack of a tool providing the advantages of fmite calculations with the

formulations and especially, display, of phase space considerations that come out of

transfer rnatrix approaches. The last section of this chapter will therefore outline the

contribution of this thesis in this regard.

2
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• 1.2 Transfer Matrlx (Algebraic) Methods

There are many available programs that use transfer matrix methods for ion

trajectory simulations of accelerators and beam transport facilities. One of the first such

programs was Brown's TRANSPORT program (BRCI]. It was developed through the

efforts of many people working at various laboratories around the world (CERN. SLAC.

and NAL) in the 196O's and carly 70·s. The program was f1I'St written in a language

called BALGOL and was later translated into FORTRAN. The TRANSPORT program

was primarily intended for the design of static-magnetic beam transport systems.

Therefore, in its simplest form, the geometries that could be handled by this program

were limited to a sequence of paraxial magnetic elements and the spaces separating them.

However, the TRANSPORT program a1s0 allowed users to specify their own calculations

as elements in order to simulate other effects such as the presence of electric fields.

The TRANSPORT program is referred to as a first and second order matrix

multiplication program. For the fust order calculation, each element a10ng the beam line

bas a fust order transfer matrix assigned to it The produet of all those matrices yields

the mapping of a collection of particles from the beginning to the end of a beam line in

six-dimensional phase space. (For each of the three directions. the corresponding phase

space coordinate is represented by the two components of momentum versus

displacement Chapter 2 provides details on phase space derivation.) Thus. the f1I'St order

transfer matrices are aIl 6 by 6. The second order correction is obtained by including

cross terms of the 6 dimensions of phase space in the analytical approximations. Overall.

the mapping can be represented mathematically as follows:

(\.1)

•

where X is the vector representing the 6D point in phase space. R is the f1I'St order

transfer matrix, and T is the second order transfer matrix !hat bebaves like a tensor.

The TRANSPORT program was very popular in accelerator simulations because

it allowed for an entire phase space ellipse (see chapter 2) to be specified and mapped

4
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t.'u'ough a system of electrodes and magnets. The program was aIso able to fit the transfer

matrices (and hence the physical parameters related to them) in order to obtain a desired

beam. Unfonunately, TRANSPORT had a few drawbacks. It was not always very

accurate because it was limited to second order (the order of the approximation depends

on, and is limited by, the analytical solutions). The authors of the program even

suggested that if greater precision than what TRANSPORT' calcu1ations permit is required,

then ray-traeing programs that integrate the equations of motion should be used [BRCI].

Furthermore, TRANSPORT's input and output was entirely text and not always easily

understood. Finally, TRANSPORT was usually only available on mainframes, making

it almost impossible to be used anywhere, anytime, and interactively.

Because of the popularity and usefulness of TRANSPORf, higher-order programs

such as MAFIA [KRWE], PARMELA (MCDO], MARYLIE and COSY lNFlNITY were

created. AIl these codes calculate the motion of charged particles in phase space by using

transfer maps combined with other techniques to render them more generally applicable.

MARYLIE [DFBW] and COSY INFINITY [BERZ] use special techniques which make

use of Lie polynomials or differential algebras.

MARYLIE is a third-order mapping program that was developed at the University

of Maryland in the early 1980's for the design of acceleratl)rs and storage rings [DFBW].

Like TRANSPORT, MARYLIE is specifically designed for magnetic beam line elements.

On the other hand, COSY INFINITY is a very general program (allowing electrostatic

sector fields and multipoles to be specified directly as elements in a beam line) which can

compute to an arbitrary order (as high as the user wishes) the maps for standard beam

line elements [BERZ]. In order to be able to compute maps to arbitrary order, COSY

INFINITY uses a numerical integration technique (a seventh order Runge-Kuna with

adaptive step size) to integrate the equations that arise from the differential algebraic

description [BERZ]. Given all their power, these codes are very computationally

extensive and not readily available on simple platforms such as personal computers.

A transfer matrix program very simi1ar to TRANSPORf that can calculate maps

up to third-order was developed for personal computers (IBM compatibles) in the

1980'5: GIOSP, which stands for General Ion Optica1 Systems on PC's [PRZE]. The

5
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program was based on an earlier version. known simply as GIOS. from the 1970's that

ran on mainframes. Both programs were written in FORTRAN; GIOSP was more

specificaily compiled on a PC with the Lahey FORTRAN-77 compiler.

GIOSP is particularly useful as it can be run on a PC. It also has an excellent

capability for displaying graphics of the resulting calculations. Not ooly is the bearn

envelope displayed as it traverses the optics system, but the beam pb3se space profiles

can be displayed at any position. This gives the user critical information on how the

beam enters the apparatus (that is. the bearn spot size and the energy spread).

AIl the transfer matrix programs mentioned make use of phase space concepts that

are essential for the accurate design of beam optics systems. The most reeent codes also

provide graphical outputs for the computed beam profiles. Unfortunately. these programs

remain inflexible when electrode systems stray too far from the standard geometries for

which these prograrns were wrinen. For such situations. finite calculation methods

become a valid alternative to transfer matrix maps.

1.3 Finite Calculation Methods

Fmite calculation methods essentially solve the boundary value problem for the

potential which is defined by the electrode system geometly. The equations of motion

of the charged particle subjected to the electric field are then directly integrated by a

numerical algorithm to obtain the ion trajectories. Numerical methods approximating the

continuons solution of a potential distribution may be of integral or differential form

depending on the initial format of the equations used. A good review of solution methods

for electromagnetic problems is found in Lowther & Silvester [LOSI).

In the integral approach, the potential at a point inside a volume may be

deterrnined directly from a knowledge of the source distribution by the application of

Green's theorem. By dividing a region into sma11 surface elements over which the

potential and its normal derivative are known. a matrix of linear equations can be

6
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constructed to calculate the potential at each of a set of specified points within the

volume. The potential at any point requires knowledge of only the boundary conditions

and the accuracy at any point is determined by the accuracy of the integration. Integral,

or charge density methods, can be very accurate but tend to become quite compu:ationally

intensive for general cases. ELEcrRA [ISMA] is an example of a program that uses

such techniques. MAFIA, which was mentioned earlier. also uses integration techniques.

Differential techniques, on the other hand, calculate the potential at a point via a

connection matrix relating ail the unknown potentials. There are !wo main differential

methods in widespread use at present: finite differences and jïnite elements. With these

methods. the problem area is sub-divided into a grid and the potential is determined for

the various grid points. The electric field can then be derived from the potential

distribution. The grids can be !wo- or three-dimensional, but for systems with

axisymmetric symmetry or systems that have a constant cross section, 2D grids are ail

that are needed.

With the fmite element method (FEM), the problem area is arbitrarily sub-divided

into small areas, or elements. The potential is then calculated on node points forming the

elements (see figure 1.2). The FEM does not approxima:e the differential equation

directly but rather minimizes a global function of the field and attempts to provide a best

fit to the entire field region. Elements can be made of 3 edges (triangles) or more, with

3 and 4 edged elements being the most common. By far the greatest advantage of FEM

is the ease with which a geometry may be discretized, or "meshed". For this reason it

is often employed in designing magnetic or electronic devices and machines.

Furthermore, the global tninimization procedure makes calculation of global quantities,

for example unit capacitance, quite straightforward. On the other hand, in axisymmetric

cases, there are oftcn problems with the potential along the axis of symmetry which

deteriorate accuracy in this important region. Computing packages available using FEM

include MagNet, Tosca, PE2D, Ansoft and MSC. While they are targeted for design

applications in magnetics, some provide options for computing trajectories but only on

a particle by particle basis.

7
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The fmite difference method (FDM) is a computer implementation of an earlier

manual method known as "relaxation". The approach is to produce a discrete form of the

potential equations in their differectial form. To do this, the area of interest enclosed by

the electrode geometry and other boundary conditions is divided into a grid of successive

nQ'jes that is usually evenly spaced (see figure \.3). The problem is solved by iteratively

calculating the potential at each node from its nearest neighbours until the residual after

each calculation becomes sma\1 enough. One widely used computer package using FDM

is SIMION which is a very accurate and user-friendly program nicely suited for custom

electrode geometries. SIMION uses a fourth-order fmite difference technique to solve

Laplace's equation for arbitrary planar symmetric and axisymmetric geometries. It

performs a bi-linear interpolation of the grid potential values to within half a gridstep in

all directions about the current partic1e position. Furthermore. it performs trajectory

calculations on a particle by particle basis. The only problem is that wiLh trajectories

a10ne rather than full phase space diagrams. important information for detailed analysis

of the bearn dynamics is missing.

While the FDM method can he somewhat inflexible for arbitrary geometries

(especially compared to FEM). it is extremely accurate and can compute highly

continuous potentials along the axis. This fealUre is extremely important for calculating

partic1e trajectories since the pofentials are only available al the node points whereas

particle trajectories will always pass through arbitrary points between nodes. Interpolating

hetween grid points to compute the field must he done very carefully and the potential

map must he as continuous as possible to avoid errors. A way of avoiding this is to

derive a field value for a point off axis using a high-order multipole expansion of the

potential values along the axis. The idea for using this technique carne from the SLAC

electron trajectory program EGUN [HERR] which was designed for the calculation of

electron and ion trajectories in electron guns and lenses.

EGUN uses a variable (non-evenly spaced) grid to obtain highly continuous

potentials even near electrodes. However. the high-order multî?Ole expansion technique

is used only for calculating the magnetic field. The high-order maltipole expansion

technique as applied to an electric field on an evenly spaced mesb is described in

8
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chapter 2. Sorne comparisons between the interpolation and the expansion techniques are

a1so given in chapter 4.

One feature of the FDM is that it remains open to wide variety of numerical

integration methods to calculate the particle trajectories. The three basic methods are:

Runge-Kutta, Richardson extrapolation. and predictor-corrector methods. Runge-Kutta

methods are the most widely use:! since their a1goritbm is relatively simple. Furthermore.

the Runge-Kutta method can be applied to wide variety of problems. even those where

the other two methods usually fail [PFI'V]. The authors of Numerical recipes in C

[PFTV1. recornmend the Runge-Kutta integration method whenever it is not certain that

one of the other two methods will work betler. In cases where the FDM is applied to

arbitrary problems. the Runge-Kutta numerical integration method is clearly the wisest

choice.

9
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Figure 1.2: Example of a triangular finite element mesh.

Figure 1.3: Example of an evenly spaced finite difference mesh.
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•

1.4 Contribution of Thesis

It is clear that in the evolution of tools for the evaluation of charged particle optics

and dynamics, a dichotomy persists between those designing particle accelerators and

transport systems, and those designing more arbitrary and "custom" beam optics for

individual applications. The main problem is in the omission of phase space concepts in

the design and analysis processes using the more flexible and direct, fmite calculation

schemes. By simply looking at particle trajectories, important information is missing

conceming the velocity components of the particle motion. On the other hand, transfer

matrix methods which give a complete phase space analysis of the particle dynamics, are

not suitable for arbitrary electrode geometries.

The Foster Laboratory at McGill University is involved in two particular

collaborations for making precise determinations of atomic~ using the ISOLDE

radioactive beam facility at CERN. From this experimental program, the use of

quadrupole ion traps [MLRS) and mass filters [MGVZ] has become of paramount

importance for improving the apparatus performance and continuing in this field. When

this auxiliary development work was started, it became appareIlt that existing computer

p:lckages were grossly inadequate for the detailed analysis needed. Not only was very

high accuracy required, but also a comprehensive phase space pieture of the ion dynamics

and other features related to superimposed, time-varying fields and pulsed beams

[LWMO, LBMO).

The contribution of this thesis is therefore the creation and extensive testing of a

comprehensive computer package combining the power and flexibility of finite calculation

techniques with necessary calculation and display capabilities for phase space diagrams,

with a modular design and user-friendly interface, to perform high accuracy charge­

particle optics simulations. This computer package has the following general capabilities:

• User specification (or importation from another application) of an arbitrary

electrode geometry with clirresponding boundary conditions.

Il
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• An optimized finite difference calculation of the above geometry with user­

specifie<! target residual (accuracy) that generates a grid of electric potential

values.

• Accurate and continuous computation of the resultant elecldc fields using either

(1) a seventh-order multipole expansion of the axial potentials or (2) a bi-linear

interpolation of the off-axis grid points.

• User specification of an arbitrary initial phase space distribution describing an

ensemble of charge<! particles (or initial characteristics of single particles).

• A fifth-order Runge-Kutta numerical integration with adaptive step size control

to completely determine the particle trajectories in phase space (or geometric

space) using parallel evaluation of all particles in the ensemble.

• Specification of time-varying functions for the fields in question.

• Superposition of multiple potential maps.

• Superposition of magnetic fields.

• A fully interactive, graphic display capability for the phase space diagrams

and/or single particle trajectories.

• Output of ~ults to a file for subsequent analysis.

No other program, at least documente<! in the literature, exists with these capabilities. It

has been use<! extensively in the McGill Foster group for analysis of ion sources

[GDMV], a quadrupole ion trap collection system [MGDP], an ion beam collisional

focusi.'1g studies using quadrupole rods at high pressure [KIMT]. and a deceleration

system for ion collection in a Penning Trap [ZHAO].

Chapter 2 presents the theory relevant for a description of ion dynarnics using

phase space considerations and brief mathematical descriptions of the finite calculation

techniques as weil as the high-order multipole expansion. Chapter 3 gives a detaile<!

description of the computer package and chapter 4, a description of the prograrn testing

as weil as the results obtaine<! for sorne of the above applications.

12



• 2. Theory

2.1 Phase Space

The state of motion of a particle at time, t is completely specified if two quantities:

displacement, x(t) and velocity, l(t) are known. These quantities are considered to be the

two cootdinates of a point in phase space, (x.x). For an ion beam with three degrees of

freedom, the phase space is, therefore, six dimensional. For different initial conditions,

the motion is described in time by different phase paths. The totality of ail possible phast;

paths constitutes the phase space volume.

The concept of phase space is nicely derived from the equations of Hamiltonian

mechanics (shown here in canonical form):

aHft - _
YI - -,

aq/

(2.1)

(2.2)

where q is the generalized position, p the generalized"momentum and H the Hamiltonian,

or total energy of the collection of particles, i = 1,2,3.... If, at a given instant of time, the

initial positions and momenturns of ail the particles in a collection are known, then the

subsequent motion of the collection is completely determined (e.g., Goldstein) [GOLO].

Taking as an example a harmonic oscillator, we can define (as functions of time)

the position x(t) and momentum pit) of a mass m, oscillating with amplitude A, at

frequency 00, as:

•
x(t) = AcosCJ)t ,

13
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• Pz(t) = mX(t) = - mooA sinCllt .

Eliminating t from these equations gives:

2
x2 Pz

-A-2 ... -m""'2(Jj-::-A"""2 = 1 .

(2.4)

(2.5)

This equation represents a family of ellipses which constitute the phase space of the

oscillator as shown in figure 2.1 [MOOR]. This area is the projection of the entire phase

space volume in one direction. The angular motion around cach ellipse. at frequency 00.

is clockwise because when x < 0 the velocity is always increasing (and vice versa) as

snown by equations (2.3) and (2.4). No!Wo phase paths of the diagram can cross as the

solution of the goveming differential equation is unique for given initial conditions. The

combined generalized coordinates of position and momentum can be considered to have

the dimension of action. For this reason, phase space diagrams (projections of the phase

space volume in one direction) are sometimes called action diagrams.

The total phase space volume S can be defined as the product of the phase space

area in each dimension:

S = Sz S, S, = fd:cdP.fdydP.,fdzdP: . (2.6)

From beam optics cornes the important quantity of eminance, Ç. which is defined as:

ç. = fad" • (2.7)

•

where a is the angle of the beam with the corresponding axis, or beam divergence and

" is the corresponding spatial coordinate. Emittance is usually described by thrce

components: !Wo transverse and one longitudinal. An eminance diagram is generally
•used to characterize the components of the beam. The emittance is plotted as " versus

" so the emittance is the area represented by this phase space diagram. The emittance

is related to the transverse phase space components by:

14



• (2.8)

•

where Po is the central momentum of the beam.

For complex collections of numerous particles, such as an ion beam, it is clearly

a practical impossibility to determine the initial conditions for each constituent ion. Since

we cannot identify any particular point in phase space as representing the actua1

conditions at any given time, we must turn to the field of statistical mechanics and

introduce the representation of the ion collection by an ensemble ofsystems (e.g., Landau

and Lifshitz) [LAU].

The phase space is a collection of points where each point represents a particular

system of the ensemble. Each system in an ensemble is comprised of any number of

constituents e.g., particles. The ensemble has a phase space density that determines the

number of points inside an infinitesimal hypervolume element of the six-dimensiona1

phase space. An important resuIt from Hamiltonian mechanics is that the phase space

density of the ensemble remains constant as it moves through phase space in time. This

result is known as Liouville 's theorem [GOLO, LAU].

The geometrical consequence of Liouville's theorem is that the phase space

volume will behave like an incompressible liquid drop thalo squeezed one way, will buIge

out the other conserving both the density and the volume. Furthermore, for linear forces

(forces which do not couple the different motions) acting on the ensemble, each projection

of the phase space volume, (p, vs X, P, vs y, P: vs z) will also behave as an

incompressible area. (For non-linear forces, coupling can occur between dimensions

resulting in the projections changing area.) It is interesting to note that a similar theorem

does not exist for three-dimensional configuration space.

An example of Liouville's theorem at work is illustrated by figure 2.2 (MOOR].

A phase space diagram representing a beam in the transverse direction is shown al

position 1. As the beam drifts to position 2 at a constant momentum spread, the

displacement spread increases but the overall phase space area is the same. When the

beam goes through the lens, the phase space diagram is transformed at position 3 resuIting

15



• in an increased momentum spread for the same displacement spread but the area is still

the same. When the beam reaches the focus at position 4. it has the same momentum

spread as position 3 but the beam width is dramatica1ly reduced so as to conserve the

overall area. This figure illustrates how a tight geometric focus can only come at the

expense of a large spread in momentum because of Liouville's theorem.

As previously mentioned. the product of generalized position and momentum.

coordinates said to be canonically conjugate. has the dimension of action. Such a

dimension is aIso described by energy x time. Using these coordinates. the phase space

area can be rewrinen as:

Sz = !:>p l!.x =mf.v vôt =ôEôt . (2.9)

•

Using these coordinates. a particularly useful unit for phase space is the eV-lIS which

equals about 1.6 x l{)'2S kg-mI/s. The eV-J1S is more manageable and bener lends itself

to phase space representation. Lenses and voltage pedestaIs are aIways controlled by

voltage and pulsed system operation is aIways controUed by time 50 the eV-J1S is a more

intuitive unit. The corresponding unit for momentum in this system is the eV-JISImm

from the relation p = 2E!CiJa•

16
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Figure 2.1: Family of ellipses eonstituting the phase space ofa simple harmonie oscillator.
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2.2 The Finite Difference Method• The second order paltial derivatives of the differential forro of Laplace's equation

(V2u = 0) may be approximated by using the tirst few terms of a Taylor series expansion

of u. In most problems, u will ooly depend on !wo variables, such as the cylindricaI

coordinate variables r and z in axisymmetric geometries which will reduce Laplace's

equation to:

(2.10)

Using the eveoly spaced grid shown in figure 2.3 with a grid step size of h and the first

three terms of the Taylor series expansion of u about uo' the partial derivatives of u from

equation (2.10) can be rewritten to give:

u_ -2u"'u u -2u"'u u-u
_'_~0_3 + 4 0 1 + 1 4 = 0 ,

h2 h2 2rh

where r = jh. Equation (2.11) cao be simplified to give:

(2.11)

(2.12)

:.c:
Il..

"1

u2 "0 "3

"4

z=ih

Figure 2.3: The eveoly spaeed grid used by finite difference methods.
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• Equation (2.1 2) forms the basis of the four-point relaxation method for

axisymmetric systems. The value of u at any grid node cao be approximated by using

the values of its four nearest neighbours. Those grid points which correspond to

boundary conditions are fIXed to an initial value if they represent Dirichlet boundaries or

set to sorne function of the nearest grid points if they represent Neumann boundaries. ln

axisymmetric geometries, the axis of symmetty (usually chosen to be along z) is special

kind of Neumann boundaIy for which equation (2.12) needs to be modified. Due to the

symmetty about the z-axis. the point below the axis must have the same value as the point

above (i.e., u. =u l ). By taking the limit of equation (2.10) as r approaches 0 and by

using Hôpital's rule on the first partial derivative term, equation (2.10) becomes:

(2.13)

By using u. =u1 at r =O. equation (2.13) is further reduced to:

(2.14)

The basic algorithm of the finite difference method (FDM), as applied to

axisymmetric systems. is therefore to assign all the Dirichlet boundaIy conditions to the

apptopriate grid nodes and then approximate the value of u at each grid node by using

either equation (2.12) or (2.14). ln the simplest form of the FDM, this is done by

continuously iterating through tb: 2D array of values for u and replacing them by the

approximations of the current iteration. Eventually the difference between new and old

values of u-refetred to as the residual, ç-will become very small and a solution for

Laplace's equation will be obtained. The residual is acmally defined as follows:

(2.15)

•
The· fmite difference method achieves much bener results when modified to

include Successive Over-Relaxation (SOR) combined with Chebyshev acceleration
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• [PFrV]. With the SOR a1gorithm, an over-relaxation parameter, m is introduced to make

an over-correction to the new grid node values of u. If the new value of u is given by

li""" and the old value of u is given by u'*l then the SOR a1gorithm's approximation is

given by:

u.... = uold + ml ; j;c 0 ,
4

(2.16)

The SOR a1gorithm converges to a solution only if the over-relaxation parameter satisfies

the condition: 0 < m< 2. In its simplest form. the value for the over-relaxation parameter

is determined from a value known as the spectral radius, p, and remains static through­

out the relaxation. It suffices to say that the spectral radius is a value between 0 and 1

(exclusively) which depends on the density of the grid and gives a measure as to how fast

the relaxation a1gorithm will converge to a solution. The greater the grid node density,

the closer p, gets to 1 and the longer the relaxation a1gorithm takes to converge.

The Cebyshev acceleration algorithm sets the initial value for mto 1 and then

recalculates the value of mat the end of cach sweep through the grid. Furthermore, each

sweep through the grid is actually taken as a half-sweep, once for the odd points (i+j odd)

then once for the even points. The result is that at the end of each half step, mgets

updated and c10ser to the optimal value. If lifO) represents the initial value of mand lifln)

represents the value of m at the end of the first half-sweep, then the Cebyshev

acceleration a1gorithm can be wrinen as:

GiO) = 1.
lifln) = 1/(l - p~/2).

lifn - In) = 1/(1 - p~lifn)/4), n =112.1.312, ....

(2.17)

•
The only parameter left is the spectral radius which for most applications will involve rme

grids and therefore have a value usually very close to 1.
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• 2.3 The Runge-Kutta NumericaI Integration

Trajectories are computed using successive numerical integrations of the Lorentz

equation for a mass m of charge e. in an electric field E and/or magnetic field B:

(2.18)

in order to obtain a new particle position. r. Such a second order ordinary differential

equation can be rewritten as !Wo flISt order differential equations for each of the three

cartesian coordinate variables. x. y. and z. Each of these sets of !WO equations will have

the form:

dx_ = u(t) •
dt

du = ft.t) - g(t) u(t) •
dt

(2.19)

where u. f, and g are some function of the vector components of v. B. and E. The

problem of integrating equation (2.18) is therefore reduced to integrating 6 flIS! order

differential equations.

The most commonly used algorithm for integrating a set of N coupled flIS! order

differential equations of the form:

(2.20)

•

(which includes equations (2.19» is thefourth-order Runge-Kutta [PFTV]. The fourth­

order Runge-Kutta is based on the very simple Euler method. To improve on the Euler

method. the fourth-order Runge-Kutta takes four intermediate steps within the full

integration step. h to correct itself. If Y. is the current value of y at x. and Y••} is the

value of Yto be calculated at x. + IL, then the fourth-order Runge-Kutta is given by the

following set of equations:
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•
(2.21)

where OOr) implies that the procedure is fourth-order.

The fourth-order Runge-Kutta can be made accurate to fiftn-order by using a

technique known as adapti~'e stepsize control. This technique evaluates Y••I from

equations (2.21) twice by fIrSt taking the full integration step h. and then by taking two

half-steps to x••1• If YI is the solution for the full integration step and Y2 is the solution

for the two half-steps. then the fIfth-order approximation to Y•• I is given by:

(2.22)

•

where À =Y2 - YI' What gives this technique its name is that the quantity. À can be used

to control the stepsize, h. When the integration is having no problems due to smooth

derivative5. the quantity À will be very small and the stepsize can be increased until sorne

threshold value of À is reached. The effect of this technique is to speed up calculations

in areas of the geometty where very little is happening. Likewise, if À goes beyond a

certain threshold at sorne point in the integration. the stepsize can be decreased and that

same integration step redone until À goes below the desired threshold. Overall, adaptive

stepsize control allows the integration process to be self-checking.
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• 2.4 High-Order Multipole Expansion of Axial Potentials

In order to express the multipole expansion of the electric field in terms of partial

derivatives along the axis of symmetry, sorne properties of the electric field and its

potential must be used. In axisymmetric systems the potential has no azimuthal

dependence-that is, in the spherical coordinates r, cp, 9, the potential is independent of

cp. The potential, $ also satisfies Laplace's equation, VZ$ = 0, when charge densities are

neglected. The complete axisymmetric solution in spherical coordinates for Laplace's

equation is given by

(2.23)

where the P, are the Legendre polynomials and the A, and B, are constants. Since source

charges have been neglected, the main constraint to equation (2.23) is that $ be finite at

the origin (r =0). To satisfy that constraint, the B, must all be equal to zero, reducing

equation (2.23) to

$(r,9) = L A,rIP,(cos9).
loCI

(2.24)

Next, the z-axis is defmed to be the axis of symmetry and the first partial

derivative of the potential with respect to z can be derived. The relationships between

cylindrical and spherical coordinates with no azimuthal component are expressed as

follows:

z = rcos9 ,

r = (p2 .... Z2)1I2 ,

p = rsin9 ,

9 = tan-lE. ,
z

(2.25)

•
from which the following partial derivatives are obtained:
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• ar z_=_=c0s9,
az r

ae _ _ p _ _sine
az- -;r- -r-'

(2.26)

By the chain rule, the following equation for <he f1I5t partial derivative of the polential

with respect to z is obtained:

acp = cose acp _ sine aep •
az ar r ae

(2.27)

Since cp is given by equation (2.24), the f1I5t part of equation (2.27) simply gives

(2.28)

In order to obtain the second part of equation (2.27), two properties of the Legendre

polynomials have to be used, notably

(2.29)
dP (u)

(1 - u2). = nP (u) - nuP (u)
du .-1 .'

Furthermore, the following relationship is also needed:

ap,(cose) . aPI(cose)_=-=:--_ = - sme .
ae a(cose)

(2.30)

By combining equations (2.29) and (2.30), the second part of equation (2.27) gives

•

_ sine acp
-r-ae

~ 1-1' 2 ap,(cose)
= L.J A,r sm e~---,,,.......

1-1 a(cose)

= :E IA/'1(P
"I

(cose) - cosePI( cose») .
1-)
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• Finally, by inserting equations (2.28) and (2.31) inlo equation (2.27), the following is

obtained:

à$ = i-- lA r l - I p (cose)
3 ~ 1 ~I
aZ 1_'

= L [(l+I)AI.1]rIP/(cose) .
/00

(2.32)

Since equation (2.32) is of the same fonn as equation (2.24), il is possible 10

derive an expression for partial derivative$ of the potential with respecllo z 10 any order.

Firsl, the following notation is introduced:

(2.33)

where l and n are integers such thal l ~ 0 and n ~ 1. By repealedly laking the partial

derivative of equation (2.24) with respecl 10 z and by using the above notation, the

following useful resull is derived:

Il follows directly from the above equation thal

(
à"cjlL= ~) = n!A •
àz· •

(2.34)

(2.35)

•

Equations (2.35) allow for the polential 10 be expressed entirely in terms of partial

derivatives with respecl 10 z evalualed along the axis of symmetry. For the program

developed al McGill, the Taylor series expansion is always expressed in the local

coordinates aboul the axial grid poinl nearesl 10 a given particle. Thal means !hal a
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• solution for the potential of the exact form of equation (2.24) is used for every axial grid

point, in local coordinates. Therefore, each axial grid point will have its own set of

coefficients, Al and hence, its own set of partial derivatives with respect to z. By noting

that E: is simply the negative of the fmt partial derivative of the potential with respect

to z and by introducing the following notation:

equations (2.35) give

D = (à"E:L. "" 'az·

A = _ D._.. --,n!
AI = E_ •..

(2.36)

(2.37)

Equation (2.24) can now be expanded in local cylindrical coordinates to provide

the desired results. In the McGill program, the expansion of the potential is done up to

the seventh order. First, the Legendre polynomials from Po to P, are given here as

follows:

Po(u) = 1,

PI(u) = u,

P2 (u) = +(3u2
- 1),

P3(u) = +(5u3 - 3u),

p.(u) = ..!-(35u· - 30u 2 + 3),
8

Ps(U) = ~(63uS -70u3 + 15u),

P6 (u) = ":'(231u6
- 315u' + 105u2 - 5),

16

P,(u) = ":'(429u' - 693us + 315u3 - 35u).
16

(2.38)

•

By using equations (2.37) and (2.38) in equation (2.24), the expansion of the potential in

cylindrical coordinates gives equation (2.39) below.

The next step is to take the appropriate partial derivatives of the potential to obtain

the expansions of E: and Ep• Those expansions are also given below as equations (2.40)

and (2.41) respectively. With the change of variable p -+ r and with the terms in the

parenthesis fully expanded, equations (2.40) and (2.41) are identical to the multipole

expansions given in section 3.5.
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• CP(p.z) =

(2.39)

•

Finally. the partial derivatives. Dft are calculated directly from the potentials of

each axial grid point. The next section describes in detail how those partial derivatives

are extracted from the axial potential.
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• 2.5 Extraction of Partial Derivatives from the Axial Potentials

In order to use the multipole expansions of the elcctric field (equations (2.40) and

(2.41» for the Runge-Kutta numerical integration. the partial derivatives. D. need to be

extracted from the axial potentials. The axial potentials are obtained from the finite

difference algorithm on an equally-spaced grid. To evaluate the D. al a specifie grid

point, Taylor series expansions about that point can be used iKOME]. If the notation

1. =ft.:l1l+nh) is used (where h is the grid's stepsize, n is any integer, and :l1l is the grid

point about which a Taylor series is expanded), then the Taylor series expansions can be

written as:

!. = Jo + t (m;)1 d!(X)1 .
1-1 1. dx .-z, (2.42)

•

In order to calculate numerically derivatives up to the mlll order from the Taylor series.

m+1 grid points (including :l1J) are needed-that is, m Taylor series expansions to the mlll

order, to m grid points about Xo-

Since equations (2.40) and (2.41) need to have al1 the D. up to n =6 calculated,

the partial derivatives must be calculated numerically up to the seventh order. At lcast

8 grid points are needed to do so. However, the McGill program always uses 9 grid

points, usually 4 on either side of:l1l (plus :l1l). That allows the accuracy to be improved.

slightly and a certain symmetry to be maintained when calculating derivatives about most

points. (The program always makes sure that the relaxation grid has at least 9 grid points

on axis.)

When x.:. is near the ends of the axis, more grid points must be used on one side

than on the other. For example, if:l1l is 2 grid steps away from the beginning of the axis,

then the only 2 grid points available to the left of Xo plus the 6 grid points to the right of

:l1l will be used. If Xo is the very fU'St or last grid point on the axis, then all 8 grid points

used will be on one side. That implies that the Taylor series expansions required cao be
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•

•

up 10 8 grid steps away from.%'o. Ali 16 possible Taylor series expansions up the eighth

order are given here:

wbere aIl the derivatives are evaluated at x =Xc- By taking various linear combinations

of the above expansions to the desired grid points. any derivative (up to the eighth) of the
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•

•

potential can he extraeted. The McGill program has ail the possible formulae-for the

fII'St to seventh derivatives of the potential-that can he extracted from the above

expansions coded-in; that is, the program does not invert any matrix that arises from the

!inear combinations of the expansions (2.43).

For example, the formulae for the fII'St to seventh derivatives of the axial potentiais

for grid points that have four neighbours on either side are coded-in as follows:

AlI the other appropriate formulae, such as for two neighbours on one side and six on the

other, are also coded-in.
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•

3. The Code

3.1 Choice of System and Language

Having done an overview of most of the common programs available, it became evident

that a new program would have to be written in order to display action diagrams

dynamically. For this new implementation. !wo questions had to be asked: what

programming language to use, and what computer system to use. Mest of the programs

available were coded in FORTRAN for use on mainframes or Intel™ based persona!

computers (IBMTM PCs and compatibles). When implementation of the code was started

over five years ago, it was cbosen to go against the above standard.

For the computer system it was necessary to have readily available and accessible

systems for persona! computing-at an affordable price-to allow use of the program by

anyone who has Iimited knowledge of computers. This ruled out the use of mainframes

at the time. As for IBM PCs and compatibles, the 640 kilobyte memory barrier, under

DOS, was considered a serious limitation-as mentioned earlier for SIMION. The use

of so-called DOS-extenders, or even Microsoft™ Wmdows™, would merely add to the

cost and complexity of implementing the code. Apple Computer's line of Macintosh™

computers seemed like the appropriate choice due to its user-friendly interface and

extensive programming support. Furthermore the Macintosh operating system is Dot

limited to a 640 kilobyte memory barrier, which made the Macintosh'llolline of computers

the ideal choice for implementing large user-friendly projects.

For the choice of programming language, it was [lecessary to have a languag( .; ~

was at once structured, had an extensive Iibrary of mathematical functions, and was

popular enough to be easily learned and used on any system. These were necessary

considerations since the code was expected to evolve with lime and become increasingly

complex. This Iimited our choice-at the lime the programming began-to either

FORTRAN-77, PASCAL, BASIC, or C (alI other languages being less popular).
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FORTRAN-77 is a very cumbersome language due to certain limiting characteristics such

as identifier (variable name) lengths of no more than eight characters. and poor support

for structured programnûng. Furthermore. with FORTRAN-77. as a program evolves and

its code becomes increasingly more complex. it becomes more difficult for programmers

to sec the general flow of the code and be able to debug il. This makes upgrades to

existing FORTRAN-77 source code very time-consuming. In other words. FORTRAN-77

lacks the necessary modularity of a truly strucrured language. Even with the recent

arrival of FORTRAN-90 (which includes C-like functions). the language remains

impractical for implementing large projects. On the other band. PASCAL supports

strucrured programnûng but is primarily intended for instructional purposes and. in most

cases. has a poor library of mathemat;-::al functions. Finally. BASIC lacks the modularity

~d the extensive support for various data types that PASCAL bas. Despite its popularity.

these short-comings of BASIC make it impractical for the implementation of very large

programs. The ooly language at the time that seemed to mect all the above criteria was

C. and therefore was initially chosen for the implementation of the code.

The C language has severa! additional virtues. It alIows for high level

programnûng with its extensive mathematical and input/output libraries. as weIl as for low

level assembly-like prograrnming for machine-<!ependent code. In fac!, the C language

can make the amazing claim of having had the bulk of its fust compiler compiled in its

own language [BOOC]. Furthermore. the C language eventua1ly expanded to include

object-oriented extensions and evolved into a new language: C++. of which standard C

remained a subsel.

It is claimed that the object-oriented programnûng approach-as opposed to the

structured programming approach-allows for better organization of the inherent

complexity of large programs [BOOC]. An object-oriented approach would case upgrades

of the code since it would cut down on the lime necessary for programmers to become

familiar with the entire structure and purpose of a program. On the other hand. strucrured

programs tend to become ever more complicated and difficult to decipher as they grew.

Furthermore. it is claimed that slrUctured programming "appears to fall apart" when
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source code exceeds 100 ()()() !ines [BOOC]. Since our program was expected to become

increasingly more complex, an object-oriented language secmed a more logical choice.

Many object-oriented languages were available but C (with object-oriented

extensions and now also C++) remained a valid choice. Both C with objects and C++

had the advantage of allowing for a smooth transition from a s:ructured design to an

object-oriented design, since both design approaches are supported in the same language

(C being a subset of C++ and its other object-oriented extended languages). Therefore,

for the final implementation of the code on the Macintosh, a C compiler with

object-oriented extensions was chosen: SYMANTEC'N THINK C (versions 4 and 5) since

they provided the most affcrdable C compilers (with object-oriented support) for the

Macintosh at the time.

Finally, in the Summer of 1993, a newer version of the above compiler (version 6)

that includes a C++ compiler was purchased. It is hoped that eventually the current

object-oriented program will be fully implemented in an X-Windows baseci system using

the C++ language.

3.2 BrieC History of the Code

Implementation of the McGill FDC!RKI program began over five years ago by

Professor R. B. Moore and Dr. M. David N. Lunney, then a doctoral student of Professor

Moore's. As described, a standard four-point relaxation algorithm was used to calculate

the scalar potential from Laplace's equation and a fifth order Runge-Kutta with adaptive

step-size control to calculate the equations of motion. The actual electric field used by

the Runge-Kutta was calculated using a local multipole expansion of the potential about

the axis (sec later sections for details).

In its very f1l'5t form., the program was only able to solve for a single geometry

at a time that had to be coded into the program. Furthermore, the finite differences and

Runge-Kutta were actually separate programs with the laner using as input the output of
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the former. This meant that any user of the programs would have to modify both.. each

time a new geometty would have to be solved. The program was however, unique in its

ability to display action diagrams dynamically. This allowed to save considerable lime

during the early designing stages of the ion trap systems and later for determining the

properties of built systems.

Unfortunately, the code did not have as yet the necessary user-friendly interface

for boundary condition input and display. Furthermore, certain crrors had to be corrected.

especially in the Runge-Kutta, to render the code both more accurate and more effective.

Finally, few actual tests were conducted to determine the accuracy of the program in its

use of local multipole expansions. Hence there was a dire need for the code to be

upgraded.

In the late Spring of 1992, when this thesis work began. it was decided to upgrade

the C code to includc object-oriented extensions. The developers of THINK C, at that

time, h::d not come up with a true C++ compiler for the Macintosh but had implemented

object-oriented extensions into their compiler. The inherent complexity of a graphical.

user-friendly interface with its pop-up menus, dialogue boxes. and multiple windows

seemed to require an object-oriented approach. Furthermore, the developers of the

THINK C package had implemented severa! such objects which would greatly facilitate

the implementation of a user-friendly interface. That would a!so greatly facilitate the

implementation of an interface for genera! boundary condition inputs.

ln this new implementaticn. the relaxation and the Runge-Kutta each bccame

separate objects of the same program rather than remaining two separate programs.

Furthermore. with the help of Rui Lopes. an undergraduate summer student in 1992, the

program truly became capable of genera! boundary inputs with the boundary conditions

being a single object in itself. By the lime actual calculations were carried out with the

new code. the author of this thesis had corrected the problems with the Runge-Kutta's use

of a local multipole expansion; implemented a user-friendly interface for boundary

condition input (heavily based on one of the demonstration object-oriented codes that

were available with the THINK C development environment); and carried out severa! tests

of accuracy in comparison with SIMION on single geometries.
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Finally, during the summer of 1993, another summer student, Debbie Reynolds,

helped on making the program more object oriented by using the latest release of THINK

C (version 6), which includes a C++ translator. Further modifications include the

capability of using multiple overlapping geometries for ion trajectory calculations as weil

as an enhanced user-friendly interface. From Ibis point on, it is hoped that the code will

be fully implemented in C++ and made to be portable to the now fàr more affordable

work-stations.

3.3 Boundary Conditions

As mentioned earlier, the original programs lacked a necessary feature: the ability

to interpret general boundary conditions. When work for Ibis thesis was started, the fmt

step was to implement a user-friendly interface for boundary condition in1,ut. Some

programs. like SIMION, relied on a graphical interface for specifying bOundary

conditions. This had the advantage that the same grid could be used for the relaxation.

However, in the case of SIMION, the user is forced to enter the boundary conditions

directly on a grid. This had the disadvantage of forcing the user to do all the mapping

calculations from the aetual geometry of the electrodes to the grid. It was felt that being

able to enter the actual dimensions of boundaries and have the program interpret the input

would have far more advantages. Two such advantages would be having a reduced time

required for boundary inputs and having a computer record of the aetual geometry.

In order to allow the user to enter the actual dimensions of boundaries, a

spreadsheet-like interface was implemented. The SYMANTEC THINK C version 5

package contained a demonstration program that had all the necessary objects set up for

a dummy spreadsheet (one whose table cells did not have any memory associated with

them to allow for the storage of information). AlI the necessary functions associated with

a spreadsheet (such as insertion and deletion of rows and columns) were included as part

of those table objects.
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For the purposes of our implementation, cach row of the table is a segment of the

boundary and cach column refers to a specific property of a boundary segment. Each row

is stored in memory as a record (or st:ucture in the C syntax). Each record contains six

fields (cach associated with a table column) which tvgether fully defme a boundary

segment. The six fields are as follows: a description or comment field ignored by the

program and included solely for the user's convenience, a functional fonn field used to

describe the shape of a boundary segment (Hne or curve), a àz field for the projection of

the length of the segment along the axis of symmetry, a t::.r field for the projection of the

length of the segment perpendicular to the axis of symmetry, a boundary type field to

describe Dirichlet or Neumann boundary conditions, and finally a potential field to assign

a fIXed value to a Dirichlet boundary. To access a field a user needs only to double-click

on the associated table cell.

The entïre boundary itself must form a completely enclosed internai contour of the

geometry with each segment defined in order, starting from the first point on the axis of

symmetry (taken as the coordinate Z={). r=O). The axis of symmetry itself must be part

of the contour. Since only axisymmetric geometries are allowed, this contour is exactly

half the internai outline of the longitudinal cross-sectional cut of the geometry including

the axis of symmetry. Figure 3.1 shows a cross-sectional view of a typical geometry used

to test our program-that of an ion guo-as well as the associated internai outline (which

is used for the boundary conditions) while figure 3.2 shows a screen capture of how the

actual boundary condition table would look like.

The description field allows the user to input a string of up to thirty-two charaeters

to describe the boundary segment. This field has no effect oc any calculations and is

ignored by the rest of the program. Its sole purpose'is to serve as a comment for users.

The functional fonn field is used to tell the program whether the boundary

segment is a Hne or a curve. Lines can be either be parallel, perpendicular or diagonal

at any angle to the axis of symmetry. As for curves, only 90 degree arcs of circles (the

quarter of a circles curve) are allowed. Figure 3.3 shows the only four such arcs allowed.

Sincc mast geometrical shapes can be approximated by a series of lines, the arc functions

are sufficient for our needs for the lime being. However, provisions have been made in
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the code to allow for the definition of special functional forms by users who are willing

to code.

The length of a boundary segment is stored in the two fields 6.z and liT. While

reading in the boundary segments, the program assumes that each segment cames

immediately after the previous one, with the fllSt segment starting at the coordinate z=O,

r=O. This pennits the use of differentials for lengths. For example, 6.z is the difference

between the z value of the end point and the z value of the starting point. Since the

differentials can be either negative or positive, the program can easily tell whether the end

point of a segment is located above or below and before or after the starting point. To

appropriately defme a 90 degree arc boundary, the magnitudes of 6.z and liT are set equal

to each other. Furtherrnore, the use of differentials facilitates later modifications ta the

geometry such as changing the axial length of an electrode. If absolute coordinates had

been used (specifying the starting and ending coordinates of every segment instead of

using differentials), this later modification would have required a change of the

coordinates of the endpoints of every segment. With the use of differentiaIs only the 6.z

of the electrode in question and of the z-axis would need to be changed. As the program

scans through the boundary segment defmitions, it sums up the differentiaIs to keep traek

of the coordinales (z, r), ensure that r~, and to verify that the boundary is enclosed.

Figure 3.4 shows ail the eight possible combinations for &: and liT and how they would

be interpreted.

The fifth field, that of the boundary condition type, is used to specify whether the

boundary segment is to be considered a Dirichlet or a Neumann boundary condition. Two

types of Dirichlet boundary conditions can be defined. The fIlS!, labelled as Constant,

fIXes the potential of the boundary segment to the value specified in the sixth field. This

type is usually used on eiectrode surfaces and can be combined with any functionaI forrn

specified in the second field. The second, labelled as Dirichlet, fIXes the potentiaI along

the boundary segment by doing a Iinear inte:polation between two ConstMt boundary

segments. This type ignores the sixth field and is Iimited to Iines perpendicular or

parallel to the z-axis (that is, no diagonaIs or arcs). The Dirichlet condition can be used
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instead of a Neumann boundary condition in a place where the potential is expected to

vary linearly between electrodes. Likewise. a Neumann boundary condition is defined

by a single label, Neumann, and is limited to lines perpendicular or parallel to the ;:-axis.

This type also ignores the sixth field, setting ~;: =0 or ~ar=0 for lines

perpendicular or parallel to the axis of symmetry respectively (where ~ is the scalar

potential). Finally, since the ;:-axis is also the axis of symmetry, a separate Neumann

boundary condition, labelled ;:-axis, is used to emrbasize that facto

The description of the boundary is complete only when the last segment's end

points coincide with r=O, r-O-the initial starting coordinates. The boundary file can then

be saved and will be stored on disk as a binary file to save space. The relaxation

segment will automatically quit the entire program if forced to read a boundary file !hat

is not completely enclosed.
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\
Main cylinder at
same voltage as

source

Figure 3.1: Cross-sectional view of the ion gun (1eft) and its internai outline
used for the setting of boundary conditions. The dotted lines in
the outline represent Dirichlet boundaries with a potential that
varies linearly between electrodes. The solid lines are electrodes
with a constant potential.
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1 .... - LN: 00 llOOClClo+CO ., l'XW'lI'JGt+OO 1"""'" ~~+-04

2 .... ,... LN: -I~ ·3~ IConstInl "'6 i HM HM .....-04
3 ._- LN: OO.llllOllOo<OO .'.4CIOC/OtotOl iConstlnl -.1 !lllOOOo'04
4 mutltor fer dtsk LN: -Z.llllOllOo<OO -o.llOOOOoollO _101 -0 llOlJOOotoOll
:l cHsk 1I>ft faM LN: 00 llOOClClo+CO -1.4OlXlOoo01 IConstInl 05.~

6 -- LN: .,~ -0 00ClQ0000Cl ConstInl +,.9OOQOe.eOt

7 - ,_ LN: -0 CllOClOr'OO +1 l'JI5O"OI.+01 1- 05.~

8 -- LN: -I.llllOllOo<OO -o.llOOOOoollO ConstInl .,.~

9 cHsk"""f_ LN: -o.llllOllOo<OO -8.llOOOOoollO - .:S.~

10 tasulltOr for dtsIc LN: -2llOOClClo+CO -o.llOOOOoollO _101 -0 llOlJOOotoOll
Il ._- LN: 00 .llllOllOo<OO ., .1 0000.+01 1- .... l10CWXIeMM
12 ._- LN: ....'ltXlOOtOO1 -o.llllOllOo<OO ICanstiot .... l10CWXIeMM
13 ._- ARC- ...~ ....-.00 CanstIot "'6 CilOCOJIIt+04
14 ._- ARC- ... -..oc ....-.00 ICoonaot +6 l10CWXIeMM
l:l ._- LN: -2.3llOOOotOl -0 lXXlOll.-<lO IConstInl +6.11OCWXIeMM
16 LN: -o.llllOllOo<OO +3.10000..01 _101 -0_
17 .- LN: 1+6.6OOOllfotOl -o.llOOOOoollO lConstInl 00 llOlJOOotoOll
18 C _lILN: -0 llOlJOOotoOll -l.3l1l1OOo+01 IDHoIIIoI 100_
19 ond ... LN: -2.1~1 -0 lXXlOll.-<lO Coonaot 00 llOlJOOotoOll
20 ond ... ARC- ... -..oc ... -..oc .Coonaot 00 0ll0Cl0r'00
21 ond ... ARC- ...-..oc ...-..oc Coonaot 00 0ll0Cl0r'00
22 ond'" LN: +6 'TOlOo'(Jl -o.llOllllOo+OO Coonaot 00 llOlJOOotoOll
23 ond ... LN: -0 'TOlOo'(Jl ....3:lOOOrIOl CanstIot 00_
24 ond'" LN: ·~.15OQOeot01 ." lXXlOll.-<lO IConstInl 00 llOlJOOotoOll
2:l ond ... LN: 00 'TOlOo'(Jl -21XXlOll.-<lO J_ 00 0ll0Cl0r'00
26 ond'" N: +1.1SOOOtotOl -0 lXXlOll.-<lO Coonaot 00 0ll0Cl0r'00
27 ond _C-..) LN: -0 'TOlOo'(Jl ." llOOClClo+CO Coonaot 00 0ll0Cl0r'00
28 ais LN: -7.6OOOllfot01 -o.llOllllOo+OO ....... 00 0ll0Cl0r'00

FIgUre 3.2: An example of a boundaIy condition table for the finite
difference calculalions.
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3.4 Finite Difference Calculation

Once the boundary conditions have been defined. the program calculates the

potential field at the internai points. Our program uses the Successive Over-Relaxation

(SOR) method in cy!indrical coordinates to calculate this field. The algorithm is

presented in chapter 2. section 2 and is based upon the algorithm given in Numerical

Recipes in C. Section 17.5 [PFTV] with the necessary modifications.

The relaxation segment of the program stans by prompting the user for IWO

scaling factors: one for scaling the actual geometry omo a finite grid in mm/(gridstep);

and one for the scaling of the potentials. The scaling of the geometry is !imited by the

amount of memory required to store the grid-which can be set at compile time. To

reduce memory requirements and to increase the speed of the calculations. the relaxation

is done using long integers instead of double precision reals. hence the need to scale

potentials as weil.

For the scaling on the grid. the program reads in the boundary file which contains

the description of the internai outline of the original geometry. The internai outline forms

the boundaries on the grid on which the field will be determined. scaled according to the

value given by the user. The program then determines which points on the grid are

internai and which are external to the iNundary. Only the points marked as internai will

be used to calculate the field, ail external points being ignored. The algorithms used to

do the scaling of the geometry omo a grid are sinûlar to those used by the Macintosh

toolbox routines to map !ines and circles on the screen-with the exception that the

mapping is done on the IWO dimensional array which is used for the relaxation and is not

displayed on screen.

The program then scales the potentials on the boundary points. It takes the largest

potential it read from the boundary fIle (which is stored as a reaI number) and scales this

potential to the long integer value specified by the user, with ail other boundary potentials

scaled accordingly. This scaling value can be ariy integer from 10 000 to 1 000 000 000.

giving a one-part-per-billion accuracy at best (Le.• for a maximum potential of 1 volt the
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hest possible error if a scaling of Ixl09 is used is ± IxlO·9). The reasons for using long

integers are simple. Long integers take up only 4 bytes of memory while double

precision reals take up 10 bytes on a Macintosh. This is more than twice the amount of

memory required by long integers and this translates into more than twice the

computational time required for long integers. On the other hand. single precision l'cals

which are also ooly 4 bytes would not provide the same degree of precision as long

integers since 4 byte reaJs have ooly 6 significant figures.

Once ail the scaling is done the program sets ail internai points to 0 or sorne other

pocential chosen by the user (Iike the average of ail the potentials for example). The

relaxation is then carried out and can ooly he terrninated by the user. To aid the user in

deciding on terrnination. the program displays the residuals of the calculations on the axis

of symmctry. Figure 3.5 shows a screen display of the residuals. These residuals are

dispIaycd in scaled values (long integers from 0 to 1x10'1 with the maximum axial

residu~ wrincn on the bonom righL The user would stop the calculations when the

diJpIaycd residuals no longer bave a pattern to them (they appear to hebave as noise) and

the mnilDllIJI residual is suitably low (usuaJly helow 10 units). The final maximum

residual pves the best possible error in scaJed units. Figure 3.6 shows wbat is meant by

lbc ,.,id".ls apparing ta bebave like noise.

Once the a1cu1alions are stopped the potentials can he displayed along any

bOh2'H4·! (p.nlIcI to :-axis. flxed r value) or vertical (perpendicular to z-axis, fIXed z

nIDc) bDc. This alJows the user to detenni:ne if the potentials are smooth enough. if the

~ lhouJd he resnrncd. and if a different scaling should he used. When selecting

• bDc aIoa& wbictJ ta plot the poccntials. the program requires the user to input all values

• acua.I snes !oca'ions ta cnable the user ta test the scaling algorithms as weil. Once

~1Cd WIIh the caJcu!"lÏODS, the potential field map can he saved.

1"bc P"'C"'i.1 rJdd map is saved as a binary flle to save space. The flle bas the

• !lb~ as 4 byte Joag integers and aIso contains all the scaling information

• Nr7 10 CalWUl the pu«cntills ta tbeir real values. The program first stores the

_ rai pa«' tia! md lbe maJilDl1ID scaJed potentiaJ in the flle. These are followed

.., .. fT • *p1oia: ÏD~). the fU'st boundary point on the z-axis in grid slepS
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(which can be non-zero for geometries like an ion trap). the last boundary point on the

z-axis in grid steps (which can be less that the total length for geometries like the trap).

and the total map length (parallel to z-axis) in grid steps. The prograrn then stores the

potentials on the axis alone which range from the flISt boundary point on the axis to the

last boundary point on the axis for each grid point. This is immediately followed by the

total map height (perpendicular to z-axis) in grid steps and the full potential map (from

z=O to z=maxz. for r=O to r=maxr). This may seem redundant but will be made clear in

the Runge-Kutta where the algorithm we use requires only the potentials on axis. The

full potential map is saved only for those rare cases where a different algorithm is desired

or to enable to store an incomplete relaxation for later completion.
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Fïgure 3.5: Typical display of residuals.
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3.5 Runge-Kutta Integration

The third and final segment of the program actually calculates the trajectories of

ions, and displays the phase space projections of the ion beam as the calculations are

heing carried out. The fourtb-order Runge-Kutta algorithm with fifth order extrapolation

by adaptive step size control (as shown in chapter 2 section 3) is used to calculate the

velocities and accelerations of the ions. Ths is fairly common, but what makes our

program unique is the way the electric field is extraeted from the potential map.

Programs that use fmite difference methods usuaJly calculate the field at a grid point by

laking two or three point derivatives of the potential at that point. Our program uses only

the axial potentials to extraet the higher order partial derivatives, with respect to z, of the

electric field on the axis of symmetry.

These partial derivatives can then he used to calculate the electric field anywhere

within the boundaries of a given geometry. 11ùs is achieved by a local Taylor series

expansion of the electric field about any point along the axis of symmetry. By using the

inherent symmetries of the electric field due to axisymmetric geometries, all the partial

derivatives in the Taylor series expansion can he expressed solely in terms of the

extraeted partial derivatives on the axis. If we let D. he the nUl partial derivative, with

respect to z, of the axial component of the electric field, E, along the axis of symmetry,

then this Taylor series expansion gives, to sixth order, the formulae on the next page

(where Er is the radial field, E, is the axial field, ris the distance form the z-axïs, and z

is the displacement from the grid point al which the derivatives were calculated-iee

chapter 2 section 4 for the derivation of equation (3.1». Each grid point on the axis bas

its own set of the derivatives D•. These derivatives are extracted from the axial potential

by a "nine-point derivative methou" which uses the potcntial values at the axial grid point

itself and at the eight n=st axial grid points (usually four on either side). The

procedure (descrihed in detail in chapter 2 section 5) involves doing a Taylo~ series

expansion up to the SUl derivative of the potential about a given point with intervals of 1

gridstep, 2 gridsteps, and so on. Since the potentials at each grid point are known, the
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result is 8 equations with 8 unknowns (the lit 10 81h derivatives of the potential). From

these equations it then becomes possible to generate formulae to extraet up to the 81h

derivative of the polential-that is up to the 71h derivative of electric field.
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The derivatives D. for each axial grid point are calculated only once at the time

the Runge-Kutta is initialized. During initialization the program reads in the axial

potentials only. To reduce disk access time. the potential map files are saved by the

relaxation segment so !hat all the information needed by the Runge-Kutta is at the

heginning of the file. Once the required information (scaling factors. potentials) is read

in and the required derivatives calculated. the program reads in a parameter file which cao

he created by the user or the program itself. The parameter file contains the initial

conditions for the particles which can have variable masses. charges. starting positions.

and energies. It also contains other information related to the display functions and the

maximum allowed time step. During the final step of the initialization procedure. the user

is allowed to change the information that was read in from the parameter file. When the

trajectory calculation is started the new parameters are used.

As the program calculates the ion trajectories. it finds for each particle-at each

Runge-Kutla step--the nearest axial grid point. The program then uses the derivatives

at each of these grid points to calculate the electric fields at the respective particle

positions. Since the equation of motion that is integrated by the Runge-Kuna-for each

particle-is simply given by F(z.r} =qE(z.r} =ma(z.r}. the program has to simultaneously

integrate the accelerations to get the velocities. and the velocities to get the displacements.

For each particle the position. velociry and acceleration is stored in arrays. This allows

the program to access the necessary information to display updated trajectory profiles.

phase space projections, or energy diagrams. The maximum allowed time step serves as

the plot time interval for these displays. The program cao he stopped at any time by the

user to change the plot time interval or even terminate the calculations.

An additional feature of the Runge-Kutta integration segment is that it cao

terminate trajectory calculations at a specific point along the axis of symmetry (the

z-axis). The program includes an algorithm which uses simple kinematics to interpolate

a particle's position back to the xy plane chosen by the user. This bas to he done since

the integration in time does not guarantee that a particle will land on a surface exactly

within an integration step. Ifno plane is chosen. the end of the geometry is used. At this

point the program saves in a file the positions. momenturns. energies. and time of flights
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•
for every particle. This data can then be used to display any of the action diagrams

desired by the user al the specified distance z.

Furthermore. the Runge-Kutta segment of the program also includes the ability to

overlap multiple potential field maps (up to 8). It further aIlows for these field maps to

be specified as time varying. Therefore. it is possible to solve for the scalar potential of

a geometry by solving for each electrode of the geometry separately and then overlapping

them. Each of these electrodes could the!! be specified as either time varying or static.

Two basic types of time varying functions are implemented: sinusoidal or radio­

frequency; and pulsed ramps. For the radiofrequency time variation the user can specify

the amplitude, frequency. and phase shift of a sinusoidal wave as weil as a OC offset

voltage. In the case of the pulsed ramp. the user can specify the time when the flI'St pulse

arrives. the maximum amplitude. the rise time. the decay time, the duration time of the

pulse, and the interval between pulses. For the last two cases. it is possible to specify a

single pulse that remains tumed on indefmitely, or that is tumed on initially and gets

tumed off for certain time interVais that can be indefinite.

Finally. the program aIlows for a very simple ion mobility calculation where the

user can specify the homogeneous temperature and pressure of the system as weil as the

reduced mobility. Ko value for the ions being tracked. If ion mobility calculations are

tumed on. an additional drag term is added to the equation of motion which acquires the

form:

F = qE -bv • (3.2)

•

where b is sorne function of the reduced mobility. temperature. pressure and electric

charge of the particle.
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3.6 List of Program Capabilities

Below is a comprehensive list of the program's capabilities. First, is a list of aIl

of the program's capabilities that does not require recompiling the source code:

- Set boundary conditions using actual dimensions independent of the grid size.

- Set two types of Dirichlet boundary conditions (constant or linear).

- Set the grid step size desired for the relaxation array (up to 1000 by 200 points).

- Set the scaJing factor (up to le9 for max. potential) for 32-bit integer relaxation.

- Set other relaxation parameters (spectral radius an:i the initial grid values).

- Reset scaJing factor at will.

- Reset grid step size at will.

- Plot potentials along an axial or radial cut at any time during the relaxation.

- Display residuals from the relaxation caJculations.

- Save the full potential map when the relaxation is completed to user's liking.

- Read in the axiaJ potentials alone for up to 8 field rnaps.

- Calculate aIl the derivatives required for the local multipole exp2llsion algorithm

for each field rnap.

- Set the desired order of the local multipole expansion (from the zeroth to sixth

derivative of the elrctric field).

- Read in aIl the potentials for up to S field rnaps.

- Calculate the radial and axial components of the electric field for a bi-linear

interpolation algorithm.

- Overlap the desired fields for up to S field rnaps.

- Save aIl the derivatives for the local multipole expansion in a special file.

- Save the off-axis potentials predieted froro the above derivatives.

- Save the electric field components predieted by the above derivatives.

- Simultaneously track up to 441 particles.

- Perform aIl traeking with So-bit floating point numbers.
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- Specify initial coordinates in phase space for ail particles using momentums or

divergencies.

- Specify the masses and charges of aIl particIes, as weIl as initial times.

- Interpolate positions of particles to the point where they left the field region.

- Save aIl the interpolated particle positions.

- Save aIl particle trajectories in phase space at selected lime steps.

- Display phase space projections in (P..x), (Py,y), (P:oZ), (P.,p,), and (x,y) in

normalized units (eV-JISImm x mm) at selected time steps.

- Display phase space projections in (P.,x" (p,.y), (p.,p) and using beam

divergences at selected lime steps.

- Display transverse beam profiles in (x.z), (y.z), and (r.z) at selected lime steps.

- Display transverse plots for (r,t), (z,t), and (E,t).

- Tum on a constant magnetic field in the axial direction for the entire map.

- Tum on ion mobility calculations (simplistic drag force term) for tracking.

- Save any graphical display on screen to a Plcr file.

Furthermore, here is a list of aIl of the program's capabilities that does require

recompiling the source code:

- Change the maximum grid size for the relaxation up to any value limited by the

arnount of memol)' available (change only two constants in one header file).

- Change the maximum number field maps aIlowed (change only one constant in

one header file).

- Change the maximum number of particles aIlowed (change only one constant

in one header flle).

- Calculate the derivatives for the local multipole expansion using two-point

derivatives instead of nine-point derivatives (Set to 0 one compiler directive in

one flle).
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4. Program Evaluation and ResuUs

Severa! computations and comparisons bave been perfonned in order to test the program

and to evaluate i15 performance. A prelimimllY test problem. consisting of a simple set

a paral1el plates. was run to ensure that bath the finite difference calculation (FOC) of the

electric potentials and the Runge-Kutta integration (RKI) of the partic1e trajectories were

correctly perfonned. Next, the resul15 of the FOC and RIa algorithms were compared

to the resul15 of the SIMION program. For this test, the phase slJace diagrams of ions

traversing a simple Einzel lens were compa.-ed. The program was also tested for

conservation of partic1e kinetic energy. Fmally. designs for a ion deceleration system and

an ion source were evaluated using the McGiII FDCIRKI program and using SIMION as

a check. In addition 10 the foUowing section desc:n"bing these tests and the1r results,

a second section of this chapter presents the results of some further analysis using

the program with added options for thermodynamic distributions and ion mobillty.

SIMION was run on an IBM PS/2 model 55 SX (a 386SX 16MHz chip) and a

486DX 33MHz clone. The McGiII program ran on a Macintosh Quadra 700 (68040 with

a 20MHz c10ck speed). Overal1 speed comparisons would he unfair due to the different

machines involved but in most cases the Quadra was only slightly faster than the 486

clone for alI calculations. Another aside is the ambiguity with which SIMION defines

i15 error checking parameter. calIed "accuracy level". 115 actual implementation in the

SIMION code is not discussed in the documentation. The resul15 for the conservation of

energy are given in terms of the best possible "accuracy level" that was found on a trial

and error basis.
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4.1 Tests

4.1.1 Parallel Plate Test Problem

The axisymmetric geometry used for this problem is shown in figure 4.1. Two

trivial tests were made using this model: (1) a comparison of the calculated potentials to

the analytic linear potentials across the centre at r =0; and (2) a comparison of the

calculated fmal position of a particle trajectory to the analytic case. In the first case, the

potentials obtained from the fmite difference calculation along the axis were all within

Hl"' of the analytical value for a grid spacing of O.5mm1gridstep (a 20 x 200 array).

When the axial component of the electric field was compared with the analytical value

of 10 000 V/m, a difference of at most 0.83% below the analytical value was obtained

15 gridsteps off-axis (this error drops to 0.06% for 10 gridsteps off-axis and to 10-5

percent along the axis)

For the second test, a single I3lCs· ion was positioned 5mm (10 gridsteps) off-axis

and 1mm (2 gridsteps) away from the 50 Volts electrode. For such an ion, their will be

a resulting acceleration along z due to the electric field of 10 VImm (10 000 Vlm). It is

easy to show that the theoretical lime of flight for the ion to travel the 9mm distance is,

to 9 significant digits, given by 1.5751894711S. The reason for so many significant figures

is that the program predicts a value of 1.575189451JS, again a difference of less than 10-5

percent. Furthermore, if the ion is given on initial velocity towards the axis of 20mm111S

it will hit the right plate about 26.504mm below the axis. Again, the program agrees

within 10.5 percent.

The real test of the high-order multipole expansion is when the ion is placed far

off-axis, such as 50mm off-axis (100 gridsteps). The full high-order multipole expansion

(up to D6, sec equations (2.40) and (2.41), section 2.4) fails completely in this case. The

order of the multipole expansion has to be lowered to 3n1 oroer in the electric field (up

to D3) before meaningful reSults can be obtained. For this stringent case, the 3n1 order
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multipole expansion gives errors within 10-2 percent. At higher orders the errors range

from 5% to 600%.

These later results do not invalidate the multipole expansion since most problems

deal with paraxial beams (near axis). These results only indicate that the order of the

multipole expansion can ~nd has to he control1ed depending on the problem at hand. For

the fol1owing comparison tests with SIMION, all particles were usually within 20

gridsteps from the axis. Furthennore, the multipole expansion was set to~ order in the

electric field (up to Ds)•
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4.1.2 Einzel Lens Trajectories

The Einzel lens geometry used for these tests is shown in figure 4.2. For both

SIMIÛN and the McGiIl program, the grid step size chosen was 1mm1gridstep. The

whole geometry was 398mm long along z. and 37mm wide along r. Before looking at

the trajectories and making comparisons with SIMIÛN. an evaluation of the off-axis

multipole expansion algorithm was made. Shown in figure 4.2 are the off-axis potentials

generated directly by the FOC and those generated by the high order multipole expansion

scheme (outlined in chapter 2) at (a) r = 5 grid steps and (b) r = 10 grid steps as weIl as

the percentage differences be!Ween the !wo methods. Very close to the edges. the

differences can be greater than 10%. However !bis is also a region where the potential is

zero. In the central elel.:rode region. the differences are quite small (less than 0.001%).

especiaIly close to the z-axis which is usuaIly the area of interest for trajectory

calculations in lenses.

A conservation of energy test was performed and compared with the SIMION

program which uses a straightforward planar interpolation of potentials to calculate the

fields. When a particle cornes into a region with a certain kinetic energy. it must exit the

region with the same energy added to (or subtraeted from) the total potential difference

along the trajectory. This is a good test of whether or not the fields have been properly

evaluated as weIl as the trajectories accurately integrated. For the particular case of !bis

problem, aIl the ions were 133Cs-. The ions ail had 60 OOOev of energy (about 9.6 x 10.15

1) with no radial spread and were evenly spaced every 0.1mm from 0 to 1mm off-axis.

Since the Einzel lens is symmetrical. the final energies sbould aIl equal 60 000eV. The

results of the !wo calculations (McGiII's multipole expansion and SIMION) are

summarized in table 4.1 below. with the exact same number of significant figures given

by the McGiII program and SIMIÛN (the McGilI program can provide up to 20). It can

be seen that the fmal particle energies agree to within one part in 100 000 and the time­

of-flight values to about the same precision. Results obtained by the McGiIl program

when using the bi-linear interpolation technique to calculate the electric field, are almost

identical te those given by SIMIûN in table 4.1.
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The trajectory calculations were verifiee! by a compariso:l of phase space (action)

diagrams generatee! by the program and thase extraeted from SIMION. This is where the

advantages of our program are clear since it provides dynamic phase space plots along

the trajectory while SIMION does not To extraet phase space plots from SIMION, the

trajectories were saved at given time intervals and the positions and velocities were

extracted particle by particle to construct the phase space plots at those times. This is the

major disadvantage of SIMION as all the calculations must be done before one may take

a look at the phase space. Furthermore the process itself of extracting the phase space

plot from the saved trajectories is very time consuming. Again, the same set of initial

conditions were used for both programs. In this case, the initial phase space at lime t =0

was a rectangle of9x9 133es· ions with a transverse momentum range of ±5.25eV-!!S"mm.

a displacement range from the z-axis of ± 1mm, and an axial energy of 60 000eV.

Figure 4.4 illustrates the results ofthis operation for IWO instants oftime (0.7 and 1.4115).

Three evaluations of the action diagram for the x-component are shown: that extraeted

from SIMION (SIM), from the McGill program using the local (high-order) multipole

expansion (LME) anù a bi-linear interpolation (similar to what SIMION perforrns) of the

potentials generated from the finite difference calculation (BLn. It can be seen that the

three action diagrams for each time an:: identical indicating that there is little doubt

conceming the integrity of the McGill program's performance. Furthermore, the

calculations using LME were observee! to be almost IWO times faster th:m those using BU

in this case. For 81 particles, the above LME calculations took approximately 8 minutes

while the BU calculations took approximately 15 minutes.
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• ri (mm) ~(eV) Es (eV) tM (J.Is) ts (J.Is)

0.0 60000.00006 60000.000 1.409262467 1.40931

0.1 60000.00006 59999.997 1.409262616 1.40931

0.2 60000.00006 59999.998 1.409263064 1.40931

0.3 60000.00007 60000.005 1.409263810 1.40932

0.4 60000.00008 60000.017 1.409264855 1.40932

0.5 60000.00009 60000.036 1.409266199 1.40932

0.6 60000.00010 60000.058 1.409267842 1.40932

0.7 60000.00011 60000.088 1.409269785 1.40932

0.8 60000.00013 60000.123 1.409272029 1.40932

0.9 60000.00016 60000.163 1.409274574 1.40932

1.0 60000.00019 59999.216 1.409277421 1.40933

•

Table 4.1: Final energy values and lime of flights for the Einzel Lens problem as
calculated by the McGilI program ~.tM) and SIMION (Es.tS>. The
theoretical fmal energy value is 60000eV.
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4.1.3 Ion Bearn Deceleration System

The deceleration system is used in the McGill physics program at ISOLDE to slow

the m;.ss separated beam from its nominal transport energy c:'lf 60 keV to some tens of eV

for injection into a Paul trap collector. This is a delicate operation that requires high

accuracy to simulate. The decelerator geometry is shown in figure 4.5. This problem

provides a more stringent test of the FDCIRKI program than the Einzel lens from the

previous section because of the different scales involved. The injection electrode near the

end of the decelerator is very close to the trap end cap constraining the FOC to small

stepsizes. The actual discretization of that critical area used by the program is shown in

figure 4.6. For this problem the decelerator was 198mm long along, and 64mm wide

along r with a grid stcp size of Immlgridstep. The ion trap was replaced by an

equipotential volume as can he seen in figure 4.5.

The f1I'St test was a conservation of energy. as performed for the Einzel lens. for

the McGill program and SIMION. This time however. the IDCs· ions were eveoly spaced

every Imm from 0 to 4mm off-axis. The ions ail had 60 310eV of energy with no initial

transverse energy. In this case. ail the ions that enter the equipotential volume (as they

ail did) will have a theoretical final energy of 31OeV. The results are summarized in

table 4.2 helow. As cao he seen. the results are quite agreeable except for the last two

cases. The problem here is the same as for the parallel plate test problem: the particles

are severa! gridsteps off-axis as cao he seen from the trajectories in figure 4.5. and from

the addit:~nal information in table 4.2. This indicates that the fifth-order local multipole

expansion scheme is still sufficiently accurate slightly past Il gridsteps off-axis.

Phase space diagrams were also computed for three different times and ooly for

the LME in the case of the McGill program. For this test, the initial phase space al time

t = 0 was a rectangle of 9x9 IllCs· ions with a transverse momentum range of

±S.2SeV-JlS/mm, a displacement range from the ,-axis of ~mm, and an axial energy of

60 310eV. These results. again identical for the two programs. are shown in figure 4.7.
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• r j (mm) ~(eV) Es (eV) tM (IlS) ts <IlS) r'M (mm) r,S (mm)

0.0 310.000 310.000 2.34328 2.34160 0.000 0.000

1.0 310.045 309.816 2.37135 2.37035 5.227 5.202

2.0 310.042 308.486 2.46598 2.46823 11.222 11.200

3.0 290.987 307.813 2.67120 2.67377 19.174 19.238

4.0 251.751 307.841 3.07863 2.97078 30.000 30.000

•

Table 4.2: Final radial positions, eI'.ergy values, and time of flights for the Decelerator
problem as calculated by the McGill program (r'MA!,tM) and SIMION
(r,s.Es,tS>. The theoretical final energy value is 310eV.
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4.1.4 Ion Guo

The ion source problem provides the most stringent test of the program due to the

very high field gradients over small grid regions. The geometry is illustrated in figure 3.1

schematically and as exactly used by the FOC algorithm (and SIMIeN). Figure 3.2 also

shows a screen capture of boundary definition table for the geometry which lists these

boundary conditions explicitly.

What makes the ion gun diiferent from all the other geometries used to test the

program is the uncertainty in what initial conditions to use. AIl !bat is known is !bat

ions will come off the hot plate, but there is no knowledge as to their energies or angular

distributions. It was assumed that across this surface the ions would have anywhere from

oto 20eV in total energy and would have angular spread of over 45 degrees. The later

was required in order to facilitate comparisons between SIMIeN and our program since

both programs differ greatly in the way initial conditions are specified. (In SIMIeN

particles are defined in terms of grid units for position, and total energy and angle for

direction whereas the McGill program allows the input of momentums in all dimensions.)

Furthennore, the geometry was 91.5mm long along z and 77.5mm wide along r. with a

2mm diameter plate as the ionizing surface. The ideal stepsize for this problem would

have been O.5mm1gridstep but this would have required an array of 28 365 grid points.

A Iimiting factor here is that the version of SIMIeN used required !bat the potential

arrays contain no more !bat 16 000 points whereas this is not a problem on a Macintosh

where it is straightforward to use all the memory available. Here again. the difference

in case of use between our program and SIMIeN is evident: the McGill program allows

the geometry to be re-scaled at will since the actual dimensions are input whereas with

SIMIeN, the geometry bas to be input directly onto a grid.

In oroer to compare results from both programs, a grid stepsize of

O.75mm1gridstep was chosen (to avoid array size limitations for SIMIeN as weil as to

minimize round-off in the dimensions of the ion gun). For such a gridstep, the ionizing

plate will be rounded down to l.5mm in diameter. For the purposes of this test, the

ionizi'lg plate was set to 60 000 Volts and the extraction ring to 100 Volts helow
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providing a potential gradient of 100 Volts across only 4 gridsteps. The nozzle at the end

of the geometry was kept at 0 Volts. For the phase space calculations. the original phase

space distribution was fIXed at :l:l.66eV-lJSImm of momentum (leV of energy) and

:I:O.75mm of displacement in the transverse plane, with an energy of leV along the axis

of symmetry for every 133es· ion (this corresponds to an angular spread of 45 degrces).

Figure 4.8 shows three action diagrams for SIMION, compared to the LME and

BLI of the McGill program. In this case, the resulting diagrams are not the same. Those

detennined via SIMION and the BU are similar but the LME diagram has a different

orientation. Furthermore, in the case of the LME the energy was not conserved within

the same degree of accuracy as the others. This is an indication that the problem is not

sufficiently discretized which means that the array size must be increased in order for the

problem to be accurately treated. It was possible. in the case of the McGill program, to

triple the array in size and recalculate the phase space diagrams (change the grid stepsize

to 0.25mm1gridstep). In this case, with the ion source region bener discretized. the phase

space diagram has the same orientation as the others and moreover. the trajectories

conserve energy. Overall. this would indicate that the LME algorithm is quite sensitive

to large gradients. However, due to the case of grid scaling. the problem can be avoided

by improving discretization. Table 4.3 shows the energy conservation comparisons

between SIMION and the McGill program at a 0.75mm1gridstep and for the LME only

at 0.25mm1gridstep. il. cach case, a single 133es· ion was used witb initially leV of

energy witb no transverse energy at 0.75mm off-axis.
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mmlgridstep Euœ (eV) Eau (eV) Es (eV)

0.75 60011.286 60001.990 60001.721

0.25 60000.999 -- -

•

Table 4.3: Final, energy values for the Ion Gun problem as calculated by the McGiii
program for the local multipole expansion CEum). bi-Iinear interpolation
<Eau) and SIMION (Es). The theoretical final energy value is 6OOO1eV.
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• 4.2 Analyses

4.2.1 Ion source beam prame

Having analyzcd the ion source optics. an allempt was made to simulate the ion

beam distribution in phase space using the local (high-order) multipole expansion on a

O.25mmlgridstep array for the ion gun. To do this. a thermodynamic model based on the

Gibbs distribution was used to determine the temperature-determined weighting functions

on the phase space diagram [LUNP. GDMV]. The phase space diagrams were calculated

.~ the way already describcd and the corresponding distribution was applied to rcconstnlct

the bcam profile at the dete.:tor position.

The basic result of statistical mechanics (see. for exarnple. Slalislicai Physics by

Landav and Lifshitz) of importance in particle action diagrams is that the most probable

state of a par.icle collection sharing a total energy E is that in which the density in six­

dimensional phast! spact!. made up of the spatial dimensions x. y. z and the momentum

dimensions P,o p, and p" is given by

dOn E
-;--;--;-;--.,---;- = At!-17'
dxdyd:.dp,dp,dp.. .

(4.1)

•

where E is the energy of particles in the ph3S:: space volume clement dxdyti:.dp,dp,dp"

kT is a constant that ~haracterizes the distribution of particle energies and is usually

expressed as the Boltzrnan constant k multiplied by a temperature T and A is a

normaJization constant that res:llts in the integration of the density function over all of the

coordinates bcing simp!y the total number of particles [LAU].

The simplest cases are those in which E is only a function of the momentum

coor:Enates. 1be integratïon over the spatial coordinates is then trivial resulting in

(4.2)
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• where V is the volume of the particle collection. For a collection in which the total

energy is conserved. an underlying assumption in arriving at (4.1). Ebecomes simply the

kinetic energy of the particles. which can be expressed as

(4.3)

Here the independence of the distribution in the three coordinates of motion is explicit

as:

(4.4)

and the integration over any two of the coordinates to obtain the overall distribution in

a third becomes simply a double integration over the Normal distribution

•
d

P.n -
_ = 21t AV mkTe "'SiilT
dpz

(4.5)

For an action diagram one needs the particle density as a function of both the momentum

and the displacement coordinates;

(4.6)

•

Thus the variation throughout the volume must be taken into account. If the

volume of the particles is rectangular on ail faces then dVldx is just the area of the

particle collection in the Py-P, plane. However, a more usual particle source-like it is

the case for the ion gun geometry-is a disk, usually expressed by an infinitesimal

thickness in the z coordinate and a radius r in the x-y plane. Such a source has a total

volume of w and yields the following expression for dVldx:
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• (4.7)

Substituting equation (4.7) into (4.6), yields the action diagram density for such a source;

•
d 2 .; P.__n_ • 4ltAmkT r2 - x2 e '='

dxdp,

Taking into account that this density integrated over the area of the action diagram must

be the total number of particles N. the distribution can be expressed as

dxdp,
(4.9)

•

For the numerical calculalion ofbeam profiles. a mCs· beam with the same initial

conditions as in the ion gun test problem in section 4.1.4 was used. However. the

poter.tial on the extraction ring was set [() 0 Volts. The phase space diagram at the

detector position (set at S40mm f= the ionizing plate) is shown in figure 4.9. The

resulting ion density distribution. after applying the weighting functjon given by equation

(4.9). is sbown in figure 4.10.

Masurements of the ion distribution 011 the detector using a moveable faraday cup

wae lDôIde independentJy to measure the intcnsity as a functioo of transVerse positioo

IMGDP). (Thcse measumncllts we:e dooe by A. M. Ghalambor Dezfuli as part of bis

tha&i WOft.) The measun:d dislribuuons were inlegr3ted and reconsuucted as sbown in

fi~ 4.11. T1us indIC_CS !bal tbcir is a &ood agit'" _nt bctwcen the measured and

..mublcd pror~~. Thcse maIL' ~ YCTY sipliflCant as they a110w the desipl and

op'.lft!lM"" oC .... tOUra: pou:am:1Cn with a direct sinmlMioo or the bcam emiamœ.

SudI a l''uc&:du<< l' DOC pot.wblc iUDp!y by '''!!l1lated .... trajectorics.
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4.2.2 Ion mobility calculations

The darnping of the motion of particles in radiofrequency (Paul) traps due to

background gas was first demonstrated by Wuerker et al. in 1959 [WUEA] for metallic

particles in air. The ease with which background gas can be used to cool ion motion in

electromagnetic traps led to the study by Douglas and French [OOFR] of the effect of

background gas on the transverse motion of ions in a radiofrequency quadrupole (RFQ)

rod structure (shown in figure 4.14). Indeed it was shown that background gas at

moderate pressures. up to about 1 Pa, did result in a significant increase in the

transmission of ions through a 1 mm diameter orifice following the quadrupo!e rods.

However, at pressures higher than this the transmission decreased. until at about JO Pa

it was essentially zero.

This result was very interesting for the purpose of preparing a bearn of ions for

collection in a trap or simply to improve the transverse emittance of an ion beam for

subsequent use by sensitive apparatus. To investigate these possibilities, the McGilI

program was modified to study the dynamics of ions in an ideal radiofrequency

quadrupole rod system at J':ç;h gas pressures (i.e.• the Runge-Kuna integration was used

on the equations of motion at the centre of an RFQ rod system with no fringe field

effects). For this purpose, a short digression is necessary for the explanation of the

concept of ion mobiIity.

To obtain an approximation to the behaviour of ions under buffer gas collisions.

the effect of the collisions can be modeled as a vis.::ous force. This is indicated by the

results of ion mobility experiments where it is weIl known that the drift velocity of an ion

through a gas due to an electric field is proportional to the electric field strength, al least

at low values of the electric field. In faet. the proportionality constant K in the relation

between the ion drift velocity vJ and the electric field E:
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• (4.10)

is defined as the "ion mob: lilY". Thus the effeet of the gas on the ion motion is to

present a drag force which is proportional to the velocity. the proportionality constant

heing simply the ionic charge divided by the ion mobility:

(4.11 )

Ion mobility measurements are made by observing the drift of an ion over a distance that

involves many ion-moleeule collisions. Thus the fluctuations that occur due io the

collisions are averaged out over many collisions to give a drift velocity at which the

average drag of the molecules is exactly balanced by the eleetric field force. The

situation that is to he investigated is that of the transient condition when the velocity of

the ion through the gas is different from that which would have an average drag force

which would exactly balance the applied eleetric field. From the point of view of the

moleeules presenting a viscous drag it is tempting to consider the equation of motion of

such an ion to he

.. F q.nu: = appIiLd - _x
K

(4.12)

For the specific case of an ion suddenly created at zero velocity in an eleetric field in a

gas. the above equation can he easily integrated to give

(4.13)

•

where vd is the equilibrium drift velocity after a long time. Thus the velocity difference

with the equilibrium drift velocity relaxes with a deeay rate of qlKm.

The success of the simple equation of motion (4.13) in accounting for the

equilibration of the drift velocity of ions in gases with an electric field. led to an a~mpt

to use the equation te simulate ion motion in a radiofrequency quadrupole field with

background gas. For this. the Runge-Kutta integrations were carried out for such timc-
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varying fields and sorne typical results are shown in figure 4.12. The calculations shown

were for 23Na+ ions in helium at radiofrequencies and field strengths appropriate for

typical quadrupole rad operation.

The results for a helium pressure of 0.01 Torr (1.33 Pa) show the usual pattern of

an RF oscillation superimposed on a slower macro-oscillation. of about 250 kHz.

However. a decay of the overall motion is evident in the 40 Ils of the ion motion for

wbich the calculations were carried out. When the pressure is increased by 10 the decay

rate increases accordingly. to a value of about 10" S·I. This continues unill at 1 Torr (133

Pa) the motion seems to take on the characteristic of a etitically darnped simple harmonic

oscillator, with a damping time constant of the order of one microsecond.

At pressures above 1 Torr the only motion remaining is seen to be the RF motion

and tbis is seen to cause only a slow progression of the ion toward the axis. At 10 Torr

(1333 Pa), the motion is seen to take an inordinately long time to procl".ed to the axis.

The variation of the damping time constants for three elements (for a radio­

frequency of 2000 kHz) are shown in figure 4.13. From this it appears that the optimum

pressure of helium for cooling the motion of these ions in a radiofrequency field is about

100 Pa.

It appears that the guiding and thermalizing of ions using RFQ fields in high

background gas pressures is quite feasible and could have a broad range of applications

in trace-beam technology. This is the f1I'St time that detailed numerical integration bas

been perforrned for ions in bigh eleetric fields at high pressures where ion mobility

dominates the dynamics. This particular version of the program promises to have

considerable impact in the future. Staff at Foster Radiation Lab are currently studying

not only its possible use for the loading of such beams into Paul traps but also for the

improvement of the emittance of high velocity ion beams for conventional magnetic

sector mass spectrometers.
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Figure 4.12: Examples of damped motion for 23Na· ions in Helium.
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5. Conclusion

This thesis describes the creation and extensive testing of a unique computer

package that performs bigh accuracy charge-particle optics simulations. It is unique in

combining the power and flexibility of fmite calculation techniques with calculation and

display capabilities for phase space diagrams. The program features a modular object­

oriented design and user-friendly interface. The major capabilities include:

• User specification of arbitrary electrode geometries. boundary conditions and initial

phase space distribution for an ensemble of charged particles.

• An optimized fmite difference calculation to generate a grid of electric potentials.

• Accurate and continuous calculation of electric fields using either Cl) a sixth-order

multipoJe expansion of the axial electric field or (2) a bi-linear interpolation of the

off-axis grid points.

• A fifth-order Runge-Kutta numerical integrati"on with adaptive step size control to

completely determine the particle trajectories in phase space (or geometric space).

• Specification of time-varying functions. multiple poi:ntial maps, magnetic fields.

• A fully interactive, graphic display and output capability for the phase space

diagrams and/or single particle trajectories.

ACter extensive testing. the program was used for the analysis of an ion source

geometry, an ion beam decelerator, and an ion beam collisional focusing system using

quadrupole rods at high pressure. The program further demonstrates that fur paraxial

beams. a multipole expansion of axial potentials can be used to speed up calculations

while maintaining accuracy.

Using a thermodynamic weighting of the initial particle ensemble in phase space.

the ion beam profile was simulated with the program and compared to intensity

measurements.

Aise, by incorporating relations for ion mobility and diffusion in gases. an

extrP'::lely important simulation was performed to study the damping times and diffusion

cross sections of ions cooled by background gas at elevated pressure, under the focusing
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of a quadrupole rod structure. This work is very imponant for efforts to improve ion

beam emittances at isotope separators as weil as improving transmission in quadrupole

mass filter instruments for trace element detection and biochemistry 'IIIalysis. Moreover.

it is the first time that detailed numerical integration of particle dynanuc~ il: gases ha..

been performed using ion mobility concepts.

The program has thus proved to be extremely versatile. making it an essential pan

of on-going research effons in nuclear physics. ion mobility and mass spectrometry.
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