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ABSTRACT

Abstract

The antonomous calibration of a manipulator is considered with respect to both dynamic
and joint sensor properties, Using methods based on adaptive control, a new formulation
is introduced such that bench calibration of the robot joint sensors and actuators is no
longer necessary., When adaptive control is used in identification, inaccuracies caused by
varions sources of noise are averaged out because the identification takes place on-line,
this is in contrast o stalic methods which rely on a limited number of input data. This
method is uniqite because the joint calibration is done with respect to invariant forces
due to gravity loading. The method also guarantees convergence to the true values from
arbitrary initial estimates. Experimental results are presented which were performed on
two links of a a six degree of freedom hand-controller. Results show that angles can be
recovered to an accuracy of £1.5¢ in the absence of initial estimates. From both the
theoretical derivations and experiments, the properties and performance of the algorithm

are discussed. Conclusions and topics for future research are presented.



RESUME

Résumé

On considere Ia calibration autonome des parametres des capteurs articulaires et des pro-
priétés inerticlles pour un robot manipulateur. On introduit une nouvelle formulation
dérivée de la commande adaptative qui éliminine la nécessite d’une calibration sur banc
d’essais. La commande adaptative est utilisée comme outil d’identification des paramitres
“en ligne”, ce qui fait que le bruit est filtré sur de grandes quantités de données qui ne
sont pas enregistrées. Ceci s’oppose aux méthodes statiques qui se basent sur does quan-
tités limitées de données enregistrées & 'avance. Lloriginalité de la méthode tient au fait
que la calibration se base sur les forces invariantes de la gravité. De plus, la convergence
de 'estimation vers les vraies valeurs est guarantie en Pabsence d'estimées initiales. On
présente aussi des résulats expéritnentaux effectués sur deux des articulations d’un palou-
nier & six degrés de liberté, Les angles peuvent étre obtenus avec nne précision de £1.5¢
sans avoir aucune estimation initiale. On discute les dérivations théoriques, les expériences,
les propriétés et la performance de 'algorithme, ainsi que des conclusion et des questions

de recherches futures.
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CLAIM OF ORIGINALITY

Claim of Originality

The proceeding components of this thesis, to the author’s knowledge, are original contri-

butions to the field of robotics.

e Calibration of robot joint position sensors using gravity alone.

¢ Demonstration of polynomial approximations to formulate robot dynamics in the
regressor form.

e Formulation of adaptive control for autonomous estimation of joint sensor param-
cters.

¢ Experimental evidence of the strengths and limitations of the adaptive control ap-

proach.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

Humans and animals possess the ability to autonomously calibrate muscles and sensors by
continuous interaction with the environment around them. Although sensors and actuators
used in robotics are very different, the precedent set by humans and animals presents an
interesting challenge, Can a rabot’s joint sensors be calibrated solely through interaction
with the environment?

Joint calibration schemes have, in general, relied on cither constraining the robot to a
known position in space, required extra measurement devices, or needed a preset reference
within the joint. These constraints prevent the robot from being truly autonomous. The
importance of autonomy is evident when a robot is operated in a hazardous and unknown
environment. During operation, a hardware or software failure may cause the robot to
loose calibration. In the event that the robot cannot autonomously regain its calibration,
it will be rendered inoperable. Therefore the calibration task requires a minimum of a
priori information and only ordinary environmental interaction.

The closest robot control has come to autonomous calibration is in the field of adaptive
control. In order to optimize a robot’s performance, adaptive controllers are used to adjust
gains and system model parameters by using feedback from past and present information.
In the process, the dynamic parameters of the system can be estimated. In the mid 1980’
Slotine and Li proposed an adaptive controller which, using a robot’s dynamic model,
was globally convergent with respect to both trajectory tracking and dynamic parameters
[48]. By using the full dynamic model (which is nonlinear) within the control, information
dircctly related to the parameters of the system could be found. What is more, a priori
knowledge of the dynamic parameters is not required, making the controller autonomous.
The importance of their adaptive controller lies also in its practicality for actual robotic

systems. Neither measurement of joint accelerations nor inversion of (possibly singular)

1



CIHAPTER 1. INTRODUCTION

matrices is required. However, the algorithm presented by Slotine and Li, requives the
Jjoints to be fully calibrated.

The joint calibration problem involves finding a relationship between the joint sensor
output and the joint angle or displacement. For most sensors the relationship is linear, such
that a joint gain (@), and a joint offset (#) must be found for cach joint, With the adaptive
control method of Slotine and Li in mind, the ideal scenario would be to estimate the joint
calibration parameters within the adaptive control framework. Unfortunately this is not
possible because all unknown parameters must occur lincarly with respect to joint positions
and velocitics. In the case of rotational joint sensors, the sensor model parameters generally
occur within transcendental functions such as cos(ag 4 3); this prevents the parameters
being written in the lincar fashion.

This thesis presents a new method to cnable joint calibration through use of the
Slotine and Li Composite Adaptive Control Algorithm. In essence, the algorithm replaces
transcendental terms, which occur within the gravity vector of the robot dynamics, with
polynomial approximations. It is well known that a polynomial can be used to approximate
a region of a nonlincar function with arbitrary accuracy; what is more, the coefficients which
define the shape of the polynomial occur linearly with respect 1o the known parameters of
the system. For example, cos(d) can be approximated by a4 b8 + cf?. The parameters, «,
b, and ¢ can be estimated within the Slotine and Li adaptive control framework and then
used to obtain joint calibration information.

The complete algorithm estimates both joint calibration and dynamic parameters,
requiring no human intervention, special equipment, or physical constraints on the robot,
Experimental results show that joint gains and offsels can be calibrated to an accuracy
of approximately +1.5°, From this experimental work several important properties are
evident, most notably the global convergence of joint calibration parameters. In general,
methods which rely on static input output data experience problems in numerical stability
and convergence, requiring good initial estimates of the unknown parameters. ‘T'he adaptive
control based calibration did not experience such problems and achieved convergence from
arbitrary initial conditions.

The thesis is organized as follows. Chapter 2 presents a review of the work done in both
joint calibration and adaptive control schemes. Chapter 3 introduces the adaptive control
methods introduced by Slotine and Li, paying particular attention to the innovations of
the algorithm which make it suitable for calibration and practical application. In Chapter

4 the new scheme for joint calibration is presented. Within the theoretical development,

2



CHAPTER 1. INTRODUCTION

attention is given Lo the overall properties of the calibration scheme which are evident from
the theory alone, including practicality, weaknesses, and strengths. Chapter 5 presents the
resnjts of the algorithm when applied to a real robotic system - a force lcedback hand-
controller,  Problems and solutions, not evident from the original theory, which arose
during implementation are discussed.  Also, weaknesses and strengths of the algorithm
are presented,  Finally, Chapter 6 presents conclusions, and suggests improvements and

considerations for futnre work.



L EVOLUTION OF ADAPTIVE CONTROL IN ROBOTICS

CHAPTER 2

Literature Review

The union of adaptive control and joint sensor calibration is novel to this thesis, Never-
theless, active rescarch in the respective topics has been performed over several decades,
Adaptive control methods have evolved to the point that unknown parameters in nonlinear
systems can be accurately estimated; this mmakes the adaptive control parameter estimation

schemes applicable to calibration.

1. Evolution of Adaptive Control in Robotics

The need for nonlinear control methods in robotics originated because linear control,
such as PID feedback, did not satisfactorily address the handling of nonlinearities and
couplings which exist in robot manipulator systems. For these reasons, linear feedback,
although reliable and simple to implement, gives conservative performance. It was realized
that nonlinear controllers based on the dynamic properties of a manipulator could, i prop-
erly implemented, vastly increase performance with respect to both speed and accuracy.

Unfortunately the dynamic paraineters are not easy to measure. What is more, when a
manipulator picks up a payload with unknown inertial properties, the dynamic parameters
of the system will change. It was realized that nonlinear control methods, which are based
on a plant with constant parameters, were not robust to parameter uncertainty while the
robot was in operation. This not only decreased the precision of the robot, but could also
cause instability. To counter these probleins adaptive control were sought.

The motivating concept in adaptive control is that the system paramecters, be they
gains or plant parameters, could be adjusted on-line from empirical data to optimise per-
formance. For example, when a manipulator picks up a payload, the controller would
automatically update the affected paramecters to reflect the change in the system and

hence optimise performance.



l. EVOLUTION OFF ADAPTIVE CONTROL IN ROBOTICS

In the early days of adaptive control, rescarch was directed toward linear systems. It
was not until the 1980°s that attention was directed to the multi-variable, coupled, nonlin-
car systems found in robotics. Proposed solutions can be split into two categories: Model
Reference Adaptive Controllers (MRAC) and Self-Tuning Adaptive Controllers (STAC)
[47].

1.1. Model Reference Adaptive Control A typical MRAC system is shown in
igure 2.1 [47]. The plant is considered to have a known structure, however, some or all
of the parameters of the system are unknown. The reference model is a representation
of how the system should ideally perform. The choice of model is dependent on control
engineering trade offs such as sensitivity, settling time, and complexity. The error measure
between the model and the actual plant is used to adjust the parameters of controller using
a derived parameter update law. The combination of the adaptation law and controller
should ensure both stability and convergence. In nonlinear systems, this has generally been
assured using Lyapunov Stability analysis [22], hyperstability [33], or passivity theory [13]}
[40].

Reference | Ymodel
Model
X £ u Y e
. Controller = Plant ne;
E Adaptation
Law

Figure 2.1: Block Diagram of a Model Reference Adaptive Control System

Existing MRAC systems generally do not take advantage of the full robot dynamic
model which can normally derived for serial manipulators. Therefore, from the perspective

of calibration, MRAC methods yield little useful information.

1.2. Self Tuning Adaptive Controllers Self-tuning adaptive controllers attempt
to identify system parameters on-line by minimising the input-output error between the
5



. 1. EVOLUTION OF ADAPTIVE CONTROL IN ROBOTICS

actual plant and the plant model. A block diagram of a typical STAC is shown in Figure
2.2

b4

"] Controller Plant

>

Estimator

Figure 2.2: Block Diagram of a Self Tuning Adaptive Control System

The estimator updates unknown parameters of the plant based on differences between
the dynamic response of the plant and the predicted response of the plant dynamic model.
The parameter estimates are then used within the nonlinear controller.

Methods prior to 1985 relied on some sort of restriction on the controller or system;
for example, linearization of dynamics, decoupling of dynamics equations, or a slow rate
of change in the inertia matrix. By imposing restrictions of this nature on the system, the
adaptive control problem becomes casier to manage [3) [22] [26] {50].

After this period, globally convergent adaptive controllers were proposed which did
not require such restrictions. A catalyst for this generation of adaptive controllers was the
regressor model of the Lagrangian robot dynamics.

Robot dynamics equations are most commonly expressed in the form,
(2.1) r=M©)8+C(8,6)0 +C(8)

where 7 is the force or torque input, M{(f) is the inertia matrix, C(8,9) is the centrifugal
and Coriolis terms, G(#) is the contribution due to gravity, and 8 is a vector of joint angles.
In Khosla and Kanade, the dynamic equation (2.1} was expressed linearly in terms of the
physical parameters (@) of the system [24]

(2.2) r=Y(9,8,b)a.

Equation (2.2) is known as the regressor form of the dynamics. The vector & comprises
the unknown parameters of the system. Generally this includes masses, link dimensions,
. and even friction constants. The regressor form is nol an approximation of the robot

6



1. EVOLUTION OF ADAPTIVE CONTROL IN ROBOTICS

dynamics, but rather an alternative format for the dynamics equations which isolates the
physical parameters, Using this parameterisation method, globally convergent adaptive

control algorithms were developed.

1.3. The Algorithm of Craig, Hsu, and Sastry The adaptive control algorithm
of Craig el al. implements adaptive feedback linearization of a nonlinear system [11] [12].
Feedback linearization utilises both a nonlinear inner loop and a linear outer feedback
loop. The nonlincar inner control loop is used to cancel the nonlinearities of the plant [10].
Fhe nonlinearities, however, will remain if the model of the robot does not exactly match
the physical system. This may lead to unpredictable performance and instability. For this
reason, adaptive methods are required to continuously update the model to ensure the best
possible cancellation of nonlinearities. Figure 2.3 shows the block diagram of the Craig et
al. controller [11].

B + i) + b
ﬁ’\*- M(8) | Robot 4
+
Kv Kp
/
Adaptation .
fhw | A4 C(8.0)+G(6)
I3
& +/z -
At

Figure 2.3: Block Diagram of the Craig e! al. Feedback Linearization Adaptive Control
System

The contro! faw for the nonlinear controller is:
(2.3) T = M(0)§" + C(8,6) + G(6)

where M, C, and G are the estimates of the real physical matrices M, C, and G of the

robot. Defining E as the joint position error 85—, and E as the joint velocity error by -é,
g* is described by:
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B = But+ Koy - 0) + N8y - 6)
(2.4) = O+ KE+ K,E

The lincarization of the system becomes apparent when (2.1) is equated with (2.3).
(2.5) M(0) + C(8,0)8 + G(0) = N(0)6* + C(0,0) + C(9)
expanding and re-arranging gives,

E+4 KB+ K,E = M'O)[M(0) - M(0)F +C(8,0) - C(6,0) + G(8) - C()]
= MY @M (0)6+ C(8,0) + C(9))
(2.6) = MYO)Y(8,6,0)a

where Y is the regressor form of the dynamics and & is the error between the physical
parameters (@) and the estimated parameters (@). Using (2.6) and Lyapunov stability

criteria the adaptation law is derived as:
(2.7) a=rY At e

where I' is a positive definite gain matrix, and £ is a filtered joint error measure.

The Craig et al. algorithm was pivotal to adaptive control in robotics because it was
the first algorithm which did not add constraints to the nonlinear dynamics and, most
importantly, had a global trajectory convergence proof.

Unfortunately, from an applied perspective, the Craig et al. algorithm has two major
limitations, both evident in (2.6) and (2.7).

o Inversion of the inertia matrix {M) is required. Although physically the inertia
matrix is always positive definite, there is not a guarantee that the cstimated inertia
matrix M will also be positive definite. This is especially Lrue at startup when
parameters are assumed unknown. Therefore, M must be monitored for positive
definiteness.

e Measurement or estimation of joint acceleration is required. Acceleration measure-
ments are notoriously noisy; hence their use in control can cause loss of performance

and even instability.

Simulation results nevertheless, showed that under ideal conditions the adaptive con-
troller was superior to that of a classical PD controller for a two link robot.
With respect to potential application in calibration techniques, the Craig ¢t al. algo-
. rithm is not satisfactory. Despite the use of the robot dynamic model, there is no guarantee
8



I. EVOLUTION OF ADAPTIVE CONTROL IN ROBOTICS

that the dynamic parameters of the system (@) will converge to the physical values. [t can
be shown in simulation that for & two degree of freedom robot, the parameters of the system
rarely converge Lo their simulated values. Therefore, the lack of guarantee of parameter

convergence excludes the Craig algorithm for ealibration methods.

1.4. The Adaptive Control Methods of Slotine and Li T'he implementation
problems associated with the preceding algorithm motivated the work of Slotine and Li.
In [41], [42], and [44] a globally convergent adaptive controller is developed which does
nol require inversion of the inertia matrix or measurement of joint accelerations. The
theoretical background to the Slotine and Li adaptive control techniques is given in Chapter
3.

The original Slotine and Li algorithm in [42] and [44] is similar to the Craig et al.
algorithm because they both use the full robotic dynamic structure in the regressor form,
and the parameter update algorithm is driven by joint tracking errors. However, the Slotine
and Li algorithm does not attempt to feedback lincarise the system. Instead, the algorithm
is centred about an important property of the robot dynamics.

It was shown by Koditschek [25) that the matrices M and C in the robot dynamics
(2.1) are not independent. Due to conservation of energy, the derivative of the system

kinetic energy, equals the power input to the system. This implies:

(2.8) -1-51@"}14(9)55 =4T[r - G(8)).
24t
The gravity term is subtracted from the torque input since G(8) is a potential energy

term, The implication of (2.8) is:
(2.9) 6T (%M(B) -c(, é)) §=0

The expression 1M (9) - C(6,8) in (2.9} is therefore skew symmetric. (A proof is given
in [48] page 143.) Using the property of (2.9), the control law is derived using Lyapunov
stability theory without the requirement of inverting the inertia matrix. Measured joint
acceleralion is eliminated from control by defining the joint errors on a sliding surface,
This property of the control law is explained in detail in Chapter 3.

The Slotine and Li method, as with the Craig et al. method, falls into the category
of dircct adaptive control. The term “direct” is used because the adaptation is driven by

errors in joint tracking.
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"The Slotine and Li algorithm, although globally convergent, did not ensure parameter
convergence. Therefore this algorithm alone is not usclul for calibration. llowever, rescarch

in indirect adaptive control proved that parameter couvergence could be gnaranteed.

1.5. Indirect Adaptive Control of Middleton and Goodwin Although still
a STAC algorithm, the algorithm of Middleton and Goodwin differs from the previous
algorithms because the adaptive controller is driven not by joint tracking error, but by
torque error [29]. This is achieved by comparing the torque applicd to the system with the
estimated torque based on the robot model. The result is an adaptive controller focussed
on minimising the error between the model parameters and system parameters rather than
trajectory tracking crrors. Global tracking ability is proved in [28], but inversion of the
inertia matrix is required. By using a first order stable filter, it is shown that use ol
measured joint acceleration is not required. This idea was later used by lsu ef al. [23] in

a continuation of the Craig ¢! «l. controller featured in Section 1.3,

1.6. Composite Adaptive Control of Slotine and Li Composite Adaptive Con-
trol is the amalgamation of indirect controllers [27] {28] [28] and the direct adaptive con-
trol methods [41] [42] [44]). This amalgamation, known as composite adaptive control,
appeared in [43] [45] [468]. Composite Adaptive control methods were shown to guarantee
both tracking and exponential parameter convergence under excitatory conditions. ‘The
algorithm also maintained the properties of requiring neither measurement of acceleration
nor inversion of the mass matrix.

An important improvement of this generation of adaptive controllers is that the speed
of convergence was no longer dictated by a constant gain matrix. Originally, the rate
of parameter convergence was set by a positive definite gain matrix . Theoretically,
the larger the magnitude of P, the faster the convergence. (In practice however, an upper
bound on P is necessary due to noise.) By making P time-varying, the speed of convergence
could be adjusted depending on the current conditions in the system. For example, il the
parameter estimates are oscillatory, then P must be lowered; conversely, P should be
increased when parameter movement over time is small. A mathematical treatment is
given for these concepts in Chapter 3.

Composite adaptive control gives both convergence in joint tracking and system param-
eters. This makes it useful for calibration methods. What is more, without the necessity

of inverting the inertia matrix, or measuring joint accclerations, the algorithm is suitable
for implementation on a real robot.
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1.7. Other Issues in Adaptive Control There has been much research into sta-
bility analysis and robustness of adaptive control; so much so, the term robust adaptive
control has been coined as a distinct research field. The bulk of this rescarch is concentrated
ou finding excitatory trajectories and eliminating instability due to unmodeled dynamics,

noise, and time varying systein parameters.

1.7.1. Irajectory Issues QOune of the major concerns associated with adaptive con-
trollers is that they require the system to be reasonably active. In non-excitatory condi-
tions, inaccuracies in the model can result in poor parameter convergence or parameter
drift, ultimately leading to instability.! This can be explained by noting that the adap-
tation schemes are based on dynamic properties of the system. Therefore if the dynamic
content of the system is predominantly due to noise, then the adaptation will lock onto
the dynamics of the noise rather than the joint feedback.

An example of instability due an absence of an excitatory trajectory is given in [47).
They show Rohrs’ example in which a linear system, plus an unmodeled dynamic element,
is subjected to a slow trajectory [38].

In the Rohrs example, the actual plant is described by:

2 229
2, =

However, the adaptation mechanism is based on a first order model, and hence does

not consider the higher order dynamics of the plant. The first order system is described
by:
k

(2.11) Ho(p) = vta

where k and a are the parameters of the system to be estimated.

The unmodeled poles at —15 £ 17, although very damped and at a relatively high
frequency, cause problems in slow trajectories. In simulation, a constant input command
is given with additive noise in the form of a sinusoid with a frequency of 16.1 radians
a second. Over a period of just 60 seconds the trajectory output goes from stability, to
oscillatory, and ultimately becoming unstable.

For this reason there has been much research into minimally acceptable trajectories
required for adaptive controllers. This has been done by Armstrong who defined a condition
measure for a trajectory, and used it to optimise existing trajectories [1]. However, when

this paper was published the algorithm took over one hour to optimise just one trajectory!

! An effective fix for parameter drilt is to intreduce a dead-band to the parameter update law,

11
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Armstrong's results are not explained from an intuitive level,  CGraphically his ro-
sults show the original single frequency sinusoid trajectory being optimised into a muliiple
frequency trajectory., ‘This frequency content issue, largely overlooked by Armstrong, is
reported in Boyd and Sastry [8] [7]. They show that for a nth order linear system, there
must be at least 2n discrete frequencies for parameter convergence, What is more, if there
are less than 2n discrete frequencies, the parameters will converge to @ subspace of the
parameter solutions. There is still no proofl of such a condition for nonlinear systems,
however it is gencrally accepted that the trajectory should be frequency rich,

It is possible to measure the richness of a trajectory 8(f). That ave several condition

measures, the most widely used being [9]:

Lot8t o .
(2.12) ¢l < f YT (0,8,6)Y(8,6,8)dt <31 Wi,
to

where Y represents the system dynamics, and ¢, n, and 8 are positive. In the case of
regressor techniques, Y would be the regressor matrix.

The necessity for trajectory richness has been one of the main retardants in preventing
adaptive control being widely used in real systems. With respect to robol cafibration, this
is not a critical problem. ‘This is because autonomous calibration is a separate stage of
robot operation; therefore the calibration algorithm can chose an arbitrary trajectory. For

this reason, one of the major setbacks in adaptive contro! is effectively by passed.

1.7.2. Instability Issucs Most of the adaptive controllers, including the ones studied
in this and the proceeding sections, assume that the parameters of the system are time
invariaiit. This is a critical assumption necessary to perform the Lyapunov and passivity
analysis. For this reason there has been much research in the effect of the breakdown
of this assumption and the possible solutions to it. Reed and loannou raise the following
question, What happens to a nonlinear adaptive controller when the model does not match
the plant or when the parameters are time varying (35] {36]? They show that a bounded
disturbance produces a bounded output disturbance. Based on this finding, they derive a

controller designed to be more robust to such disturbances. (No experimental results are
given.)

1.8. Summary The evolution of adaptive control has matured from conservative
linear systems in the late seventies to multi-input multi-output time varying nonlincar
systems in the mid eighties. The convergence of both system parameters and trajectories
makes such methods applicable to calibration schemes. Fortunately, calibration technigues

12
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can apecify arbitrary trajectories: thus by-passing one of the major stumbling blocks in the

practical application of adaptive control.

2. Joint Calibration Techniques

‘I'ie tinportance of joint calibration in rebotics cannot be understated.? An uncal-
ibrated robot renders most control schemes inoperable. For this reason, there has been
much research directed toward calibration of various robot components including: position
sonsors, lorce sensors, dynamic properties, and kinematic properties, In general, calibration
senemes aim Lo find either kinematic and joint sensor properties, or dynamic properties.
The algorithin presented in this thesis breaks this mold somewhat by finding joint sensor
and dynamic properties together. The kinematic and joint sensor calibration algorithms

discussed in this section are listed below,

o Pre-set position (Open loop) calibration.
e Constrained calibration.

e Metrology based calibration.

These topics serve to illustrate the issues and problems associated with joint and

kinematic calibration.

2.1. Open Loop Calibration Open loop calibration schemes require the manipu-
lator Lo be set in several known configurations. Using the known end-effector position and

joint sensor data, the forward kinematics problem is solved such that:
(2.13) = f(a,0,d,8)

where & is a 6 component vector made up of three translations (z,y, and z) and three
rotations (roll, pitch, and yaw). «,a,d, and # represent Denavit Hartenberg parameters
which define the position and orientation of each joint of the robot in space. Other con-
straints can also be added to the problem, in particular, non geometric constraints such as
backlash, sensor gains, and elasticity [18].

The disadvantage of the open loop method is that a measuring system is required to

perform the calibration. For this reason, closed loop methods have evolved.

2.2, Closed Loop Calibration Methods Closed loop calibration methods (for

serial link robots) constrain the robot, normally at the end-effector, to the environment {5)

?Hollerbach and Hunter in [20] state: “We should expect to spend most of our experimental effort in calibration,
relatively less in actually running the expetiments in robot control,”

13
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[18]. Therefore the robot and the environment form a closed loop, The calibration is then
performed by moving the robot joints while the end effector remains fixed.

Due Lo the closure of the robot loop through the environment (2.13) now becomes,
(2.14) 0= fle,a,d, )

The parameters of the system are estimated based on the consistency of (2.14),

The advantage of this method is that external measurement is not required. However
it is still necessary to physically constrain the robot, making any closed loop algorithm not
truly autonomous. Unless an additional passive linkage is used, the robot must also have
some redundancy to allow the joints to move while the end effector is at the fixed position.

From the perspective of joint sensor calibration, closed loop methods were shown to
give poor estimates of the gain parameter a, which relates joint sensor output 4 and joint

displacement or angle & in the equation [31]:
(2.15) f=aq+p

The requirement of fixing the end-effector is impractical for non-redundant robots,
For this reason, researchers have developed methods which constrain some of the degrees
of freedom at the end-effector while others are allowed to move in free space. This is
possible because the forward kinematics equations in (2.13) represent six equations. By
eliminating some of the forward kinematics equations, less degrees of end-effector freedom
need to be considered. For example, Newman and Osborn use a laser beam on which the
robot end-effector is position servoed [32]. By tracking the straight light beam, the task
is reduced to just two dimensions. Collected data, from the straight line tracking, is then
fit to the kinematic model, The advantage of such a system is its simplicity and low cost.
Also no external measuring is required.

An interesting use of closed loop methods has been shown in parallel manipulators,
specifically parallel mechanisms which have at least one degree of actuator-sensor redun-
dancy. An example of an actuator and sensor redundant mechanism is the Hayward hy-
draulic robot shoulder which has three degrees of frecedom, but four hydraulic actuators
and four position sensors {14]. Due to the redundancy and closed kinematic loops inherent
within the mechanism, there is no longer a need to clamp the device, allowing closed loop
calibration procedures to be used in a truly autonomous fashion. Examples of using closed
loop calibration techniques on this type of mechanism can be found in [21] and [31)].

14
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2.3, Metrology Based Calibration A significant branch of robot calibration is
based on measuring some or all of the position and rotation components of the end effector.
T'his is done by continuously sensing the position and orientation of the end-effector while
the robot is moved in free space. Using these external measurements (X)), the forward

kinematic equations in (2.13) becone:
(2.16) 0=f(e,0,d,8) - X

There are six closed loop equations in (2.16), therefore it is possible to eliminate up
to five of the these equations for calibration. ‘This is important because the complexity
and cost of the measuring system gencerally increases with the number of elements in X,
Nevertheless, kinematic calibration schemes have been adopted which measure all six of the
position and orientation components of X [34]. This method, as with the majority of the
metrology based methods, uses laser light in conjunction with interferometry to measure
position and orientation, In contrast, Tang and Liu present a metrology bascd method
which measures just one degree of freedom [49]. Renders et al. address the problem of

measurement equipment complexity by focusing on straight fine motion only [37].

2.4, Other Calibration Techniques The bulk of research in calibration has been
in the preceding areas, however there has been work in other techniques which do not
fall into the categories alrcady discussed. Most notably screw axis techniques [8] [30] and
Jacobian based calibration techniques [4] [19]. The Jacobian techniques are interesting
because they do not use the forward kinematic relationship common to methodologies in
the preceding section, Instead, they focus on the relationship between joint velocity (é)
and Cartesian and angular velocity V, or joint torque T and Cartesian force and angular

torque [, These relationships are specified through the Jacobian matrix J,
(2.17) X=Jé
(2.18) r=JTF

By using the input output relationships in (2.18), the elements of J are estimated

using a minimization strategy.

2.5, Summary The calibration ideas presented in this section are by no means
cxhaustive. What is common to most of these algorithms is the requirement of equipment
which is not “standard” with the robot; for example, lasers, torque sensors, and clamping
points. Also, all of the algorithms do not estimate the parameters on-line. Rather, data
points are collected and then processed using minimization strategies such as least squares
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minimization. Although the algorithm presented in this thesis does not attempt to calibrate
kinematic parameters, it differs from the majority of these calibration algorithms in that

calibration is done continnously on-line, and uses only position sensors for calibration.

3. Summary of Adaptive Control and Calibration Techniques

The adaptive control techniques presented in this chapter show that global model
parameter convergence and trajectory convergence can be achieved in an on-line nonlinear
controller. What is more, Lthis can be done without putting physical restrictions on the
plant or simplifying the robot model. The global convergence property implies that a
priori parameter information is not required. Also, the adaptive controllers do not require
human intervention or use of non standard measuring equipment. These properties make
the adaptive controller autonomous, These adaptive controllers however, all assume that
the relationship between joint sensor output and joint angle or displacement is known; i.e.
the robot must be calibrated before using adaptive control,

The review of calibration methods presented ir this chapter showed that calibration
generally required non standard equipment or constraining the robot. This prevents the
robot from autonomously calibrating itself. This presents the challenge, Can a robot be
calibrated using standard joint sensors and unconstrained environmental interaction? ‘T'his
thesis attempts to answer this question.

Although some adaptive control methods can calibrate robot dynamic parameters,
adaptive control techniques have not, so far, entered the field of joint calibration. In Roth
et al. the line is firmly drawn differentiating these two fields as discrete and continuous
events [39). This thesis challenges this notion by using adaptive control to estimate hoth
dynamic parameters and calibrate joint sensors.

There would appear several advantages to using continuous methods to estimate un-
known system parameters. Specifically, continuous techniques avoid the use of discrete
least squares estimation. Least squares solutions cannot, in general, guarantee global con-
vergence, while Lyapunov based methods can. Also, continuous calibration schemes have
the potential to constantly monitor the robot for any deviations in robot parameters which
may signal structural, sensor, or actuator fatlure. This thesis presents a novel method to
implement on-line joint calibration within an adaptive control framework. The result is an
algorithm which can identify dynamic parameters and joint calibration parameters without

the use of non standard equipment, physically constraining the robot, or requiring human
intervention.
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1. THE DYNAMICS OF A ROCBOT MANIPULATOR

CHAPTER 3

Adaptive Control Algorithms of Slotine
and Li

Iu this chapter the adaptive control methods developed by Slotine and Li are discussed.
They form the basis of the autonomous joint calibration introduced in Chapter 4.

The basic Slotine and Li algorithm introduces an adaptive controller which is globally
convergent and does not require measurement of joint acceleration or inversion of the inertia
matrix. This method drives parameter adaptation by errors in the trajectory tracking of
manipulator; this is known as direct adaptive control. Indirect adaptive control methods
however, drive adaptation from prediction errors in the manipulator model. The focus on
model errors enables superior parameter convergence when compared to joint error driven
direct controllers, However, this comes at the expense of trajectory tracking ability. For
this reason, “Composite Adaptive Control” was conceived; it combines both approaches

and refines the update mechanisms.

1. The Dynamics of a Robot Manipulator

For many robot manipulators, the structure of the dynamic equations, which char-
acterise the evolution of the mechanical system subject to holonomic constraints, can be
derived using techniques such as Euler-Lagrange or Newton-Euler formulations [10] [48].

The dynamics equations are most commonly written in the form:
(3.1) = M(0)§+C(8,0)6 +G(6)

where M(8) is the inertia matrix, C{(8,8) is the centrifugal and Coriolis terms, G{8) is
the contribution due to gravity, and 7 is the torque at the joint. The variables 8, 8,
and @ are vectors of joint angles or displacements, joint velocities, and joint accelerations
respectively. For example, a two degree of freedom planar manipulator shown in Figure
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Figure 3.1: A Two Degree of Freedom Planar Robot,

3.1 has the dynamics!:
mllgl + mg(l'f’ + 132 + 211'(:202) 1n2([32 + l;lcgc'z) (.}l
'H’Lz(lgg -+ lllCQCQ) 1112132 0),

[ —nlglllczszg.g —nlzillczb'zo.z bl 1”2!|!c252(i| ] [ 0[ ]

1712“[&829.1 0 (;2
(3.2) + (mile + maly)ger + maleagerz | _ | 1
malcagca T

Where [;; denotes the distance from the link base 1o the centre of mass of link 1, I
is the link length of link i, m represents mass, and ¢; and ¢;2 are defined as cos(#,) and
cos(8 + 02) respectively.

It was shown in Chapter 2 that, in general, the mass and link iength parameters of
the system must be known with reasonable accuracy to ensure stability in control systems
which utilise the robot dynamics. Unfortunately, these parameters are generally not known
and, in the case of a robot picking up a load, variable. Therefore the task of the adaptive
controller is to find these parameters and track them. In the form of (3.2) it is clear that
these unknown parameters are not easy to isolate for estimation purposes. This motivates
the use of the regressor form of the robot dynamics which express the physical parameters of
the system linearly with respect to the known components of the dynamics. The regressor

form is written as:
(3.3) T=Y(0, éa 5)&!

!The model assumes that masses are lJumped into point masses
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where the vector @ represents the physical parameters. The dynamics of the planar two

link robot written in the regressor form are:

(3.4)

[ myley + maly |

maleo

[ ger gers O 6y + 6y by + a6y — 52650, — 520" ~ 5,66 maler + mal}
0 gez 0 646, cably + 526, mal?,

mg[gz

m2ll ch

Using the regressor form in (3.4) the unknown parameters appear concisely within the

@ vector. In terms of estimation, the problem is reduced to estimating a.

2. The Basic Adaptive Control Algorithm of Slotine and Li

The most important theoretical property of an adaptive control algorithm is its ability
Lo guarantee convergence and system stability. These conditions are addressed by Slotine
and Li through Lyapunov stability theory.

Lyapunov stability theory adopts a positive definite function V' as a measure of system
encrgy. Although V is arbitrary, it is most often motivated by functions which describe
the total energy within the system. If it can be shown that the rate of change of the energy
function (V), is less than or equal to zero, then the system energy is not increasing and
therefore the system is stable. What is more, if V is strictly less than zero, or zero only
when V is zero, then the system energy will go to zero and convergence is also guaranteed.

Mathematically, this can be summarised as:

Given the System: £ = f(z,¢)
V(z,t) is a Lyapunov function for fon G CR" if V(z,t)<0 VzeG Vt>0

When deriving the adaptation mechanism using the Lyapunov technique, the controller
must cnsure that the Lyapunov stability condition is met. Consequently, the choice of
controller is motivated predominantly by the Lyapunov function itself. Also, because the
choice of Lyapunov energy function (V) is arbitrary, the controller can, in theory, take
as many forms as there are viable energy functions. Therefore an appropriate choice of
Lyapunov function for the controller should address both the stability constraints and

implementation issues.
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Before the introduction of the original Slotine and Li algorithm there were soverad
adaptive controllers which used the Lyapunov technique to meet stability criteria; however

the controllers required both measurement ol aceeleration, and inversion of the inertin
matrix.

2.1. The Interdependence of the Robot Dynamics Removing the requirement.
of inversion of the inertia matrix is achieved by suitable choice of the Lyapunov encrgy
function. In the Slotine and Li algorithm, the choice is motivated predominantly by a
propetty of the robot dynamics.

It has been shown that the inertia matrix M, and velocity matrix C, are not indepen-

dent, they are related by:

(3.5) %%wmﬂmé=éﬁr-cwn
Physically (3.5) can be interpreted as:

(3.6) %I(inctic Energy = Power Input
Substituting (3.1) into (3.5) and expanding gives:

(3.7) %é’f“n}:é +6TME = 6T[ME+Ch)

(3.8) Iih - Cl = 0

which implies that %M — (' is always skew symmetric. This property is applied within the

Lyapunov derivation.

2.2. Using a Sliding Surface to Guarantee Trajectory Convergence It is
common, when using Lyapunov stability theory, that the strongest stability condition on

the derivative of the energy function V(t) is:
(3.9) V() <0

Although (3.9) does guarantee stability, it does not guarantee the elimination of steady
state errors. For nonlinear systems there are several techniques used to prove that steady
state error can be eliminated. Most notably LaSalle’s theorem which can be used to show
that:

(3.10) V(iz,t)=0 iff z=0

Since V(z,t) > 0 and is a positive definite decrescent function, {3.10) implies that Vi, t)
equals zero only when V(z,t) equals zero.
20
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Unfortunately the LaSalle condition in (3.10) is hard to apply, especially for multi-
input multi-output (MIMO) non lincar systems. Instead Slotine and Li restrict the joint

crrors to the sliding surface:

(3.11) s=0+Kpd

where # is the joint velocity error, 8 is the joint position error, A is a constant gain matrix
which has all cigenvalues on the right hall plane, and s represents the sliding surface. By
defining a virtual trajectory, 8, = 8 + K pd, it is possible to define 8, and its derivatives in

terms of desired and measured variables.

t -
(3.12) 8. = Bd—Kp/ adt

0
(3.13) b, = 65— Kpf
(3.14) b, = - Kpb

Through the derivation of the controller in Section 2.3 it will be shown that (3.12) is not
required; hence calculation of the integral term is not necessary.

Ifit can be shown that the sliding surface s — 0 by proving V < 0, then this will imply
that both position error 8, and velocity error 5, both go to zero due to the relationship in
(3.11).

2.3. The Adaptive Control Derivation In this section the adaptive controller is
derived using both the sliding surface and the skew symmetric properties discussed in the
preceding sections.

Before introducing the adaptive controller derivation, it is necessary to define several
parameters. Joint error is defined as # =  — 8;. Parameter estimate error is defined as
@ = @ — @, where @ is a vector of the adaptive control estimates of the physical parameters
a. Estimates of dynamics matrices are shown as, M, €, and G. The error between the
real and the estimated dynamic matrices are defined as: M = M - M, C =C —~ C and
G = G - G. There are also several positive definite gain matrices used in the formulation:
proportional feedback gain Kp, velocity feedback gain Kp, and parameter gain matrix P.
The properties and affect of these gain matrices on the system are important to successful
implementation; this is discussed in Section 2.6.

The Lyapunov function candidate proposed by Slotine and Lt in [42] is:
(3.15) V() = %STM(G)H %JTP&

The function V(t) is positive definite, for all time ¢. Differentiating V(¢), gives:
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(3.16) V) =" (M@ - Mo)] + %s"'n-‘f(a)s +al P
Substituting A6 from the system dynamics in (3.1),

(3.17) Mé = r=C(06)8 —C(B)

(3.18) = T=C(0,0)(s+8)-C®

Substituting (3.18) into (3.16) and using the skew symmetric property of (3.8), V(f) be-
comes:

(3.10) V() =s" [1‘ = M(®)F. - C(0,8)6, - G(0)] + 4" Pi

The input to the system 7 is defined as a combination ol the leed-forward nonlinear

robot dynamics and linear feedback:
(3.20) r= M, +C(8,0)q + CG®) - Kps.

Note that in (3.20) the linear feedback term comprises both derivative and proportional
feedback because:

Kps = Kp (5 + K pd)

(3.21) = Kpb+ KpKpb.

Applying (3.20) to (3.19) gives.
(3.22) V(t) = s [N1(0)d +C(6,0)i, + G(6) - Kps| +a"Ph

Rewriting (3.22) using the regressor form of the dynamics gives:
(3.23) V(t)y = ~s"Kps+a” [Pa+ Y7

The Lyapunov stability criteria requires that:
(3.24) il [Pé +Y7(8,8,6,, ﬁ,)s] =0

To achieve this condition the adaptive control must be implemented such that:
(3.25) Pa+YT(6,0,6,,6)s=0

Under the assumption that the system paramecters are constant implies that @ = 0. This

leads to the parameter update law,
(3.26) a=-P'Y7(6,0,0,,6,)s

Applying (3.26) to (3.23) gives:
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(3.27) V()= —sTKps<0 Yt20

Using (3.27) and the sliding surface defined in (3.11) both stability and trajectory
convergence is shown. Since V() < 0 and V(t) is lower bounded by 0, this implics that
the energy converges Lo either 0 or a finite positive constant. This convergence shows from
(3.27) that s = 0. Since s — 0 both & and 8 converges to 0 as ¢ = co. Therefore global
joint trajectory convergence is ensured. A detailed proof of the trajectory convergence is
given in [42].

Examination of the control input in (3.20) and the parameter update law (3.26) shows

that acceleration measurements and inversion of the inertia matrix M (8) is not required.

3. Indirect Adaptive Control Methods

Indirect adaptive control methods drive adaptation by monitoring prediction error in
the estimated robot model.? The consequence of using model prediction errors is that
there is a greater emphasis on parameter convergence than trajectory convergence which
was the focus in Section 2. In this section the methods used in indirect adaptive control
arc explained. Specifically, the form of the parameter update law, which differs from
direct methods, and the methodology used to avoid measurement of joint acceleration is
introduced.

3.1. Filtering to Avoid Measurement of Joint Accelerations Indirect adap-
tive control methods also adopt the regressor form of the dynamics to linearise the unknown

parameters in terms of known measurements, such that:
(3.28) Tr=Y(0,0,0)a

Measurement of joint acceleration in (3.28) is avoided by filtering both sides of (3.28)
with a first order stable filter of the form:
b
.29 F(s) = —
(3.29) ()= =17
where b is a positive constant and s is the Laplace operator. The application of the filter
can be viewed from both the frequency domain and the time domain perspective. Applying

F(s) to both sides of (3.28) gives:
P(syr = F(s)[M(0)8+C(8,8)8+G(6)]
(3.30) = F(s)[C(8,0)0 + G(8)] + F(s)M(8)d

2This differs from the direct adaptive control methods which use joint tracking errors to drive adaptation.
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3. INDIRECT ADAPTIVE CONTROL MIFTHODS

Manipulating the last term in (3.30), Hsu et al. show [23]:

b " bs . b "y
. ' l — — ’ — —
(3.31) s (00 = MO ~ —— M)

Alternatively, the filtering action can be analysed in the time domain by convolution

[47). Applying a filter f(2) to the acceleration dependent term in (3.30):
fo =M@ = J(t-1)ME | - _[U ' ;;—i—_[n»l(())f)] dr
SOYM{9)0 — F(O)MIB(0)]6()
(3.32) - f ![f(t. — PYM(0)0 —~ (L = r)M(O)M (0)0) dr
0

The filtered dynamics can now be defined as:

(3.33) F(s)Y (8,6,6) = W(8,8)

The filtering technique relinquishes the need to measure joint acceleration; however,
this comes at the cost of loosing higher frequency content. For this renson it is important

that the bandwidth of the filter includes the core dynamics and modes of the system.

3.2. Indirect Adaptive Controller Parameter Update A measure of error for
the system model can be defined as:

(3.34) ¢ = F(s)Y(0,6,0)a— F(s)r
(3.35) = W(8 8- W0, 0a
(3.36) = W(8,0)

When implemented, only (3.34) is used. Physically (3.34}-(3.36) define the prediction
error between the torque applied to the system and the torque which would be applied,
based on the position and velocity of the robot joints in conjunction with the current

parameter estimates. From this definition of system crror ¢, indirect adaptive controllers
are derived.

The method of parameter update adopted in this research for indirect adaptive control

is based on least squares minimization. Parameter update is governed by the minimization
of [47):

¢
(3.37) J= f lI7(r) = W(r)a(e)|)? dr.
(i
Expanding (3.37) and differentiating, the parameter update formula is derived as:
(3.38) a=-Pt)WTe,
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. 4. COMPOSITE ADAPTIVE CONTROL
where the time varying gain matrix £(t), is updated based on:
(3.39) Pty = -PWIwP,

Slotine and Li show that parameter error &, converges to zero under persistently ex-
citing conditions [27].

4, Composite Adaptive Control

The composite adaptive controller combines the parameter estimation abilities of both
the direct and indirect adaptive controllers. The controller framework remains the same as
the original direct adaptive controller introduced in Section 2, but the parameter update

law is now modified to [46]:
(3.40) b= -P) (C1Y7(0,8,6,,6,)5 + C:W7 (6,6)e)

In (3.40) the parameter update of (3.26) and (3.38) are simply concatenated. Their
contributions are weighted by positive definite matrices Cy and Cs.

Success of the algorithm depends greatly on the update of the gain matrix P(t).
Intuitively, large magnitudes of P will enable faster convergence. However, there is a
functional upper-bound imposed on P due to sampling and noise. This is because the
parameters should not change faster than the bandwidth of the system. Also a large P
will cause parameter update to be driven by system disturbances. When there is a lot of
movement in the model parameters, P should be low enough to prevent parameter estimate
oscillations. Conversely, when system activity is low, P should be increased to stimulate
parameters out of the lull. To achieve these properties on-line, without using thresholding
heuristics, Slotine and Li modify the basic least squares formulation.

In [27] and [46], Slotine and Li analyse the properties of the least squares update
formula with respect to robustness, parameter convergence, and time varying parameters.
in particular they found that:

¢ By minimising the error with respect to @(t) over time, spurious etrors due to noise
are averaged out. This is important for robustness.

o If the system is “persistently exciting” the parameter error @ — 0.

e The least squares update responds slowly to time varying parameters because of

the memory inherent in the time dependent least squares formulation.

Slotine and Li also found that under persistently exciting conditions the gain matrix
. P(t) — 0. For this reason, Slotine and Li developed a modified gain update algorithm
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4. COMPOSITE ADAPTIVE CONTROL

which introduces a forgetting factor to the least squares formulation and intrinsically puts

a bound on the gain matrix P(t). The “bounded-gain-forgetting” (BGF) method is given
as [48]:

(3.41) %P" (1) = ~A() P+ Whw
where:
(3.42) A(t) = dolt - ﬂf;ﬂ)

ko
Equations (3.41) and (3.42) are the result of the limitations found in previous update
laws, The product WTW is the solution to the least squares minimization problem of
the actual and computed joint torques. This is also known as the covariance matrix in
Kalman filter theory. In equation (3.41), the the term —=A{)P~! is inserted to achieve
what is known as a forgetting factor. This forgetting factor is required becauvse of the

infinite integral condition:

(3.43) Jim fo t WTWdt — oo

This implies that without a forgetting factor, P will becomme very small and of little
use. By using (3.42), the parameter update gain is gradually reset by the term Ao~ and
kept from becoming to large, i.e. unbounded, by (Ag/ko)u&u)!’“.

It is shown that under excitatory conditions the composite adaptive controller at-
tains exponential trajectory convergence and global parameter convergence. This result is

important because it can be used as a basis for calibration algorithms.
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I. MOTIVATION FOR AUTONOMOUS JOINT SENSOR CALIBRATION

CHAPTER 4

Autonomous Joint Calibration Using
Adaptive Control

The Composite Adaptive Controller of Slotine and Li accomplishes several important tasks

within one package.

e BBy utilising the manipulator model, uselul insights can be drawn from the control
of the robot.

e The algorithm is not a computationally expensive, it is sympathetic to practical
limitations (acceleration measurements and matrix inversion}, and is robust.

e IL achieves globai parameter convergence. This makes the algorithm an estimator,

as well as an adaplive controller.

For these reasons, the composite adaptive controller is attractive for use on real robot
systems.

The global convergence property is a powerful result when one considers the non-
lincarity of robotic systems. However, in its present form, the controller requires that
the relationship between joint sensor output and joint angle to be known a priori. It is
apparent that the global convergence properties of the adaptive algorithm could be used

to estimate not only the robot dynamic properties, but also calibrate the joint sensors.

1. Motivation for Autonomous Joint Sensor Calibration

Motivation for autonomous joint calibration can be looked at from several levels.

1.1. Humans and Animals As humans, we take for granted our ability to contin-
uously adjust and re-calibrate our own joint sensors. The first stages of this calibration is
exhibited in babies when they wave their arms around in a semi-controlled state. This has
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I. MOTIVATION FOR AUTONOMOUS JOINT SENSOR CALIBRATION

also been shown in adults who lave been forced to re-learn movement after an accident.
Aithough human actuators and sensors are very different to the ones used in robots, the
principle of ' rning through environmental interaction, used in human and animal cal-
ibration, should be applicable in robotics. It scems feasible that a robot conld also sell

calibrate both joint sensors and dynamic paramelers through environmental interaction,

1.2. Relinquishing the Necessity for “Non-Standard” Equipment {n Chap-
ter 2, several calibration algorithms were introduced which required either non-standard
equipment, such as laser tracking systems, or required constraints on the manipulator such
as fixing the end-effector of the manipulator. Ior industrial applications in dangerous en-
vironments such as space or nuclear power plants, this is not a sufficient solution. Also,
from the comm. .cial perspective, the user should not have to clamp the robot or purchase
extra equipment. What is more, in the event of sensor drift these methods do not have
potential to automatically sense or re-calibrate on-line without causing inconvenience to
the operator.

A robot system ideally should be self contained and not require external intervention.
(Exhibited in humans and animals.) This implies that autonomous calibration techniques
should take advantage of the intrinsic and predictable forces in nature which arc available.

Therefore the goal of this research is to design a control system which, when powered

up, will be able to calibrate both joint sensors and dynamic properties without human
involvement.

1.3. Combining the Various System Gains and Biases Robolic systems are
composed of many components, cach one having some degree of inaccuracy. T'he adaptive
controller of Slotine and Li exhibits many advantages in this respect because it effectively
lumps these biases and gains together. Therefore during control, these errors are Laken
into account intrinsically.

Figure 4.1 shows a block diagram of a computer controlled robotic system. For cach
device in the system there is an error associated with it. For the most part the error is
linear with respect to the desired function.! For example, the desired voltage output {Vi..,)

and real output (V,,,) of a digital to analog converter (DAC) can be related by.

(‘11) Vout = @qVies + B

1 At the outer limits of the hardware's operational range saturation often accura.
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1. MOTIVATION FOR AUTONOMOUS JOINT SENSOR CALIBRATION

Current | !
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Figure 4.1; Errors Introduced by Hardware in a Robotic System

This assumes a linear relationship between V, and Vj,, which is defined by the gain
constant ay and offset By. Using Figure 4.1, the effect of the errors from the micro-

processor to the output in the plant become:

(4.2) T = or(ai(adVies + 04) + 8i) + 8-
(4.3) = 0r0i@dVies + araifi + a7 i + -
(4°4) = aVees+ 56

Similarly, the path from the robot sensors to the microprocessor can be written as:

Preas = aaQ’pPoa + O'aﬁp + ﬂa
(4'5) = QposFos + ﬁpas

vEmeas = aaauvcl + a’aﬂu + ﬂa
(“-6) = auelvd + ﬂucl
The adaptive controller enables the various gains in the robotic system to be seen as
one lumped and equivalent gain. (As in (4.4), (4.5), and (4.6).) Ideally the DAC, ADC,
and motor gains (a's) will have a value of unity, and their offsets (8’s) will be zero. The
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G

0

Figure 4.2: A Single Link manipulator

joint sensor gains and offsets however, can take a wide range of values, Combining all these
offsets and being able to autonomously re-calibrate is useful because the robot parameters
are found as a function of all the system components. Also, the averaging effect in adaptive
control allows for the best {it over the entire system range.

2. Using Gravity as a Reference for Calibration

The adaptive control of Slotine and Li uses the robot dynamic model; this enables
prediction of nonlinear robot behaviour, Intuitively, this predictable behaviour should also
be utilised in joint calibration schemes in an attempt to achieve an autonomous algorithn,

When examining the various forces which are applied to the robot system, gravity
stands out as being the most predictable and most reliable of these forces. Using gravity
as a reference, it should be possible to find the relationship between joint sensor output
and joint angle.

To simplify the derivations and issues invelved in joint sensor calibration using adaptive

control, a single link manipulator is used. The single link manipulator shown in Figure 4.2
has the dynamic model:

4.7) 7 = mi?§ + ml_ g cos(f)

where m represents the point mass of the manipulator, I is the distance from the joint to
the centre of mass, g is the acceleration constant due to gravity, 8 is the joint position, and

§ is joint acceleration. The dynamics in 4.7 can be re-written in the regressor form.

mi?
(48) =8 geos®) | [mi ]
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2. USING GRAVITY AS A REFERENCE FOR CALIBRATION

The model in {4.8) is the regressor model which would be used in the standard Slo-
tine and Li composite adaptive control, Most importantly, (4.8) assumes the relationship
between sensor output and joint angle is known,

Assuming a linear relationship between the joint angle 8, and the sensor output ¢

gives,

(4.9) b = ag+p
(4.10) 0 = of
(4.11) § = ai

where e represents the unknown joint gain (Degrees/Volt), and 8 is the unknown joint
sensor offset (Degrees). Substituting (4.9)-(4.11) into (4.8) gives:

(4.12) r={ i geos(ag+8) | [“""3 ]
mi,
From (4.12) the unknown joint angle parameters of the system (e, 8) cannot be
extracted using the regressor form.2 The fundamental problem in this formulation is the
transcendental cosine function. The o and § terms cannot be written linearly with respect
Lo the joint sensor values.
An intuitive solution to this problem is to expand the cosine term in (4.12) using well

known trigonometric expansion formulas. Unfortunately this approach can only isolate the

offset term 8. For example,
cos(f) = cos(aq+ f)
(4.13) = cos{aq) cos(f) — sin{ag) sin{F)

Substituting (4.13) into the regressor matrix for the single link robot gives,

aml?
(4.1:4) [ri= [ i gcos{ag) —gsin{ag) ] ml, cos(f3)
mli, sin(8)
Using the formulation in {(4.14) the sensor offset 2 can be found as:
_ mli, s'm(ﬁ))
(1.15) B = arctan (mlccos(ﬁ)

However (4.14) requires a priori knowledge of the gain constant . In the case of

discrete incremental encoders, this simple expansion of the manipulator dynamics would

#The o term which appears in ami? in the o vector cannot be extracted because the estimation process will
effectively lump all three parameters {m, I, and a} as one term.
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3. INTRODUCING POLYNOMIAL APPROXIMATIONS

be adequate (since the joint gain will be always be constant), however in systems which
use analog sensors this is not possible. To perform a truly autonomous calibration, ¢ must
also be found using the adaptive control process. "To accomplish this task, a new approach

is required to overcome the problem imposed by the transcendental functions.

3. Introducing Polynomial Approximations

In Astley and Hayward, a method for overcoming the transcendental function problem
in autonomous joint calibration is proposed [2]. The solution is centred around replacing
the cosine functions with polynomials.

It is possible, with arbitrary accuracy, to approximate segments of nonlincar func-
tions such as cosine and sine functions with polynomials. For example, (4.16) shows the

expansion of cos(#).3
(4.16) cos(8) = &+ b8 + 0% + (0 By <8<

where &, b, and ¢ are scalar constants and (0)® represents the error introduced by the
polynomial. The second order approximation is valid over one mode of the cosine function;
therefore the range of 8 is restricted to region defined by 8 and 8,.

By increasing the order of the polynomial in (4.16), the error between the real and the
approximated function can be made arbitrarily small for a given range of input values,

Substituting {4.9) into (4.16) and using terms up to the second order only.
(4.17) cos (6) = d + b (aq + B) + 4(ag + B)*

Expanding and collecting yields.
(4.18) cos (8) ~ (a+88+67) + (26 + o) g + (é0?)

From (4.18), it can be seen than the cosine argument can be written in terms of three

constants, g, b, and ¢; where:

(4.19) a = d&+08+ép°
(4.20) b = 2%af+ba
(4.21) ¢ = éo?

Therefore {4.16) can be re-written as:

3This should not be confused with a Taylor approximation which approximates a function arcund n given
point. For example, approximating f(z +4z) = J(z}+ V/f{z)éz+ %6:-V2!(z)62.'+(0)3. Wherez =[zy 23... x.,]T.

32



3. INTRODUCING POLYNOMIAL APPROXIMATIONS

cos(aq+ ) = cos(f)
(1.22) = a+by+eg’+0°

Substituting the cosine approximation in (4.22) to the regressor form of the single link

robot dynamics gives,

am{?
il

b

(44

(1.23) f={d g 91 94 ]

where « = aml;, b = bmmi,, and ¢ = eml,.

In (4.23), the relationship 7 = Yi is now in the correct form; all known parameters
and variables are in the matrix ¥, and the upknown parameters are in the parameter
vector @ The condition on parameter and trajectory convergence derived in Chapter 3
remains unchanged because the transcendental functions are simply being replaced by an

equivalent expression, This is valid as long as two conditions are met.

e The order of the polynomial is of sufficient degree to represent the transcendental
function it is replacing.
e T'he range of operation is not large enough to invoke the periodic properties intrinsic

to trigonometric functions.*

The restriction on range of operation imposed by using the non-periodic polynomial
function is imposed only during calibration. Once the joint sensor parameters are found,
the regular manipulator dynamic model can be used.

To find the constants @ and § from the polynomial coefficients in (4.23), some sim-
ple post processing is needed. After estimating the parameters using composite adaptive
control for the single link case, and using the manipulator model given in (4.12), the

parameters estimates should approximate:
(-1.2:4) gmizcos(ag+ ) = gmi cos(8)
(4.25) ~ g{a+bg+cg?)

The constants o and 8 can be found by equating the right side of (4.24) with (4.25)

such that:

4Polynomial npproximations can approximate a nonlinear function lecally to an arbitrary accuracy, but they
cannot replicate its periodicity
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(1.26) ml.cos(8) = a + by + c¢®

It is necessary to normalise the cosine term by finding the value of ml, in (1.26).
Differentiating both sides of (4.26) and cquating to zero:

(4.27) —~mlgsin(8) = b + 2é¢ = 0.
Assigning ¢~ to the solution of (4.27) enables ml. 1o be found by:
(4.28) ml.cos(0°) = ml. = @+ bg* 4 &y**

Therefore by finding the maximum point on the cosine approximation, the value for
mi. can be found. This allows the fitting of cos{(aq + ) to be independent of the mass
properties of the manipulator according to:
(4.29) cos(f) = cos(a + ) = ﬁ-t;%—clz

Using (4.29), the value of cos(8) can be found for any value of sensor output ¢. Rear-
ranging (4.29) to isolate the a and § constants.

IR 72
(4.30) # = aq + 8 = arccos (M) .

mi,
To solve for a and 8 in (4.30) a curve fitting strategy is used; the experimental work
presented in Chapter 5 uses a least squares technique. The least squares approach adopls

a linear system of equations in the form:

g 1] C 6, ]

gz 1 62
(83

w31) . [ ]= |
g

_qﬂ. l_ _Bﬂ_

where 8; is calculated from (4.30). The number of rows in (4.31) is arbitrary, however the
range of ¢; is important. The maximum and minimum values of ¢, used in {4.31) should
not exceed the maximum and minimum values used during the adaptive control estimation
stage.

Defining the system in (4.31) as Az = I3, the parameters & and 4 can be found using

the least squares pseudo inverse formula.
a T Av=1 AT
(4.32) [ 3 ] =z=(A"A)TA'B
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By extracting the joint sensor calibration values & and g, plus the dynamic parameters
nl. and ami?, a full calibration of the single link robot has been achieved. It now remains

o extend this result to the multiple link case.

4. Extending the Algorithm for the Multiple Link Case

Unfortunately, extending the algorithm outlined in the previous section is not wholly
straight forward, The intuitive extension to the algorithm presented in Section 3 would be
to replace all trigonometric functions with polynomial equivalents. However, this solution
is not practical which is evident when analysing the dynamics of a two degree of freedom

robot.

4.1. Linearly Dependent Columns Within the proof of trajectory and parameter
convergence for adaptive control [46], it is not mentioned that parameter convergence also
recuires full rank with respect to the columns of the regressor matrix. For example, (4.33)

shows the approximation of two trigonometric terms.

gcy  YSt ... q 2 aal
(4.33) ger gst — | 9 99 97 9 99 99
0 0 00 0 0 0 0

The new regressor matrix in (4.33) is rank deficient; therefore there exist an infinite
number of parameter combinations which will fit the system. For estimation purposes this
breaks down the fundamental parameter convergence premise which the calibration scheme

requires.

4.2. Frequency Doubling When considering multiple links, components in the
regressor matrix often require the cosine or sine of the difference or sum of two angles.
This has two adverse elfects.

The degree of the polynomial required to model the expression must be quite high.
For example, using a polynomial of degree two to represent the function cos(f;), means

that a polynomial of degree 4 is required to model cos (8 + ), i.e.

cos() =~ a+ by +cqf
(4.34) cos(6y +62) =~ a+bg +cq?+dge+eq:+ fa192 + 9922 + hqra? +iqq?

However, the major cost of (4.34) is the that the term cos(#; + 8;), which in the
regular dynamic model required just one unknown parameter, now requires 9 parameters.
This increases the burden of computation by approximately 92 times; with respect to

impiementation, this is not practical.
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5 A MULTIPLE LINK ALGORITHM

4.3. The Malleability of Polynomials When considering larger systems, which
utilise several polynomial approximations within the regressor matrix, an interesting situa-
tion arises. Unlike the trigonometric functions which have a fixed response to an input, the
polynomial can shape itself to fit many types of input output relationships. Polynomials
have the ability to shape themselves from a coustant straight line to extreme curvature,
This means that without the structure of the cosine and sine terms, the polynomial coef-
ficients could converge to fit the model but in an unpredictable way. This does not mean
that the overall dynamic response will be bad, in fact the contrary could be trie. The
polynomial based unknown parameters may be able to fii themselves to the unknown and
unpredictable dynamics of the system; however this is detrimental with respect to param-
eter estimation. In essence, the regressor matrix will loose all structure, normally imposed
by predictable, periodic functions. This would lead to a system having properties closer

to a neural network than to a calibration algorithm.

5. A Multiple Link Algorithm

From the discussion in the preceding section, it is clear that it is not possible to simply
extend the polynomial approximation idea throughout the multiple link manipulator’s
dynamics. Instead, a more conservative approach is required with respect to the use
of polynomial approximations. It is therefore proposed to split the estimation of gain
constants (a) from estimation of offsets (3).

To show the application of the multiple link calibration algorithm, a two degree of
freedom planar manipulator is used. Also, to illustrate the algorithm in three dimensional
Cartesian space, the robot is is positioned at an angle as shown in Figure 4.3.

In Figure 4.3 the angle ¥ is fixed, and the joint angles are represented by 6, and ..

The dynamic model can be derived and put in the regressor form:

[ (myley + maly ) sin(7y) T
myleasin(y)
myley + mal?

gey gz 91 9“1 + 92 629“1 + 029.2 - 829'29'1
- 2 . -
(4.35) —5202 —829192

- . - . 2
0 gz 0 6,40, o + 6‘2912 males
malyl0

5.1. Finding the o Gain Constants The use of the polynomial approximation
was shown in its application to a single link robot in Section 3. Using the composite
adaptive control, global parameter convergence cnables the gain constant and offset to be

found. Since this cannot be expanded to a multiple link case, another approach is needed.
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Y
Front View Side View

Figure 4.3: Two Degree of Freedom Robot in Three Dimensional Space

A manipulator with n joints, can be constrained to a single degree of freedom by
holding » — 1 joints in a static position. This can be achieved by position servoing the
joints at a reference position using PD or PID feedback. A single link model can then be
applied to the constrained manipulator and the polynomial approximation techrique can
be applied as in Section 3.

For example, constraining the second joint of the robot in Figure 4.3 to an arbitrary

reference position, the dynamics for the remaining joint become:

mgl?,
Mzler sin (7)

(4.36) [n)= [ By gcos(fr) ] [

where m, and /., represent the combination of my, msq, lq, and lee. This can then be

transformed into the polynomial form based on sensor outputs ¢.

am,l?,
a

b

c

(4.37) [n] = [q g 99 993]

From (4.36) and (4.36) it is interesting to notice the effect of the angle y. The formula-
tion is not affected by the robot not acting directly against gravity because sin(y) appears
only as a constant scaling factor. Evidently, if ¥ = 0 then the robot is perpendicular to the
force of gravity and the calibration is no longer possible. From a practical perspective, it
is favourable to have the contribution due to gravity as large as possible such that it will
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Figure 4.4: Two Degree of Freedom Robot Constrained to One Degree of Freedom

dominate over all “unmodeled” forces. From {4.36), as « approaches 90° the proportion of
available mass to be considered in the estimation will increase.

Using the polynomial equivalent in (4.37) gives only joint sensor gain information;
although joint offset information can be found this value is not usclul, Figure 4.4 shows
why.

The joint angle offset 3 is no longer a predictable quantity. ‘I'he centre of mass, seen
by joint 1 in Figure 4.4 is a combination of the position of the centre of mass of link 1
(M1) and the centre of mass of link 2 (M2). Since the joints which are being held are in
an arbitrary state, the relationship between the desired joint offset and the centre of mass
seen by the joint can never be known.

This is not the case for the joint gain a. Although the location of the centre of mass
seen by the joint under consideration is arbitrary, the joint gain maintains its integrity. This
is because an angular displacement in joint 1, will cause the same angular displacement in
the centre of mass of joint 1, joint 2, and also the equivalent centre of mass offset at Beqyiv-

Using this formulation it is possible to use the composite adaptive control algorithin
using the polynomial approximations to find the joint sensor gain constants. This is done
by using a single link model in the adaptive control structure on each joint individually.
The joints which are not under consideration are held in an arbitrary position, thus making
the single link model valid for the multiple link robot.

5.2. Finding the § Joint Angle Offsets For the multiple link robot it is not
possible to find the joint offsets separately because link masses will be effectively lumped
together when performing the adaptive control. Instead, all the joint offsets are found in
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5. A MULTIPLE LINKKX ALGORITHM

one step utilising the method in Seetion 2, ‘This requires knowledge of the joint gains found

using the method presented in the preceding section.

It was shown that with knowledge of joint gains, the joint offset can be found using
identities of the type:

cos(f) = cos(aq+ )
(4.38) = cos(ag) cos(f) — sin{ag) sin(F)

In (4.38) the § constants occur lincarly with respect to the known quantities « and ¢.
"T'his can then be written in the regressor form using the full dynamic model. The regressor

matrix for the two degree of freedom robot becomes:

oy —YS5aq  gcos(ayg + aoa)  —gsin(arqr + o2g2) a1y aréy + o2

0 0 geos(ayqy + azq2)  gsin{ayqr +o2q) 0 1§y + oof
cos(aafe) (o i + azij) — sin{agq2) (1G) + @2d2)
—Sazq (C1@22y + @342 + aro2dia)  —Cogq (O102G26) + 03GF + a1 021 42)
cos(azqz) oy ify + sin(azq2)a’? — sin(a2g2) 01§y + cos(azqz)e? i}

(myle + malp) sin(y) cos(5) ]

(miley + maly) sin(7y) sin(By)
mlezsin(7) cos(fr + B2)
(1.39) mylezsin(7) sin(B1 + B2)
myla + malf
mal?,
malyl cos(f2)

malilea sin(ﬁg)

Using the expansion in (4.39) the number of unknown parameters has increased by

just three from the original regressor matrix. After running the adaptive control, the offset
values can be found as:

a4 - (mula + maly) sin(y) sin(B1)
(1.40) By = arctan ((mlld el S () cos(ﬁl))
d - mlezsin(y) sin(8; + ﬂz))
(4.41) B+ P2 = arctan (mllcz Sin(y) cos(Br + fa)

A _ maly ez sin{G2)

-42) Po = arctan (mz! tle2 COS(ﬁz))
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6. AN ANALYSIS OF THE JOINT CALIBRATION METHOD

It is also theoretically possible to obtain joint sensor information using velocity and
acceleration based parameters as in (42), (Which was not possible when using a single
link.) However, in practice, these terms are less reliable with respect to both modelling
and prediction, hence establishing joint parameter information in this way has not been
pursued.

Accompanying the sensor offset values are the dynamic parameters of the robot. T'hese

can then be reused, along with the joint calibration information lor robot control.

6. An Analysis of the Joint Calibration Method

In the preceding sections a new algorithm for joint sensor calibration has been pre-
sented. It is principally been motivated by the practical constraints imposed by other joint
calibration algorithms; however from a theoretical perspective there are several important

theoretical issues which can be addressed.

6.1. A Brief Summary of the Joint Calibration Algorithm 'T'he algorithm
can be broken into two major components, estimation of the joint sensor gains («), and
estimation of the joint offset parameters (3). In sequence the algorithm for an n link robot
iss
(i) Hold, in a servo loop, all joints except the one under consideration. The position
at which each joint is held is arbitrary.

(ii) Using the polynomial approximation for gravity terms, operate the joint using a
single link equivalent model under the composite adaptive control format.

(iii) From the parameter data found in the adaptive control, a minimization strategy is
used to obtain the joint gain value (a).

{iv) Repeat Steps (i)~(iii) for all the joints.

(v) Using the joint gain information and using trigonometric expansion formulas, use
the full dynamic model in the composite adaptive control to obtain information on
joint offsets.

(vi} Process the estimations found in step (v) to find joint offsets (3}.

6.2. Disadvantages of the Joint Calibration Algorithm From a theoretical
standpoint there are several components of the calibration structure which could be detri-

mental to the algorithm’s performance.

6.2.1. Propagation of Error The algorithm is composed of two main stages, joint

sensor gain estimation and joint offset estimation. The joint offset information requires
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G. AN ANALYSIS OF 'THE JOINT CALIBRATION METHOD

the joint sensor gain information, and implicitly assumes its integrity, In the event of joint
sensor gain error (some of which is inevitable), this error will be propagated and used by
the second stage. ‘Iherefore the second stage will be impeded from the start because it
does nol recetve the correct tnput data; this in tuen will affect the accuracy of the joint
sensor offset 3.

The extent to which the propagation of error aflects the overall estimation is dependent
on the magnitude of error being input into the second stage. If the error is not too large
(i.e. does not harshly violate the dynamic model) then the joint offset will try to fit itsell to
the model in the best possible fashion.® This implies that the best possible fit will be made
using the incorrect joint gain values, this amounts to an intrinsic error compensation within

the second stage. Unfortunately this compensation will affect the joint offset estimation,

6.2.2. Integrity of Dynamic Model There is an implicit assumption, within both the
original Slotine and Li adaptive control format and the joint calibration scheme presented
in this chapter, that the dynamic model of the manipulator can be found and is accurate.

Derivation of the dynamic model for serial manipulators is reasonably straight forward.
llowever for parallel manipulators the dynamic model can be difficult to derive. This makes
application of adaptive control methods more invalved because of the difficulty in obtaining
the dynatic model. What is more, the complexity of the dynamics increases exponentially
with the increase in the number of joints. This is due to the coupling between joints.
Beyond three joints, the complexity and hence the computational requirements on the
system become quite stressed. This situation can be somewhat relieved by eliminating
components of the dynamics which have relatively small contributions.

More troubling are the forces within the manipulator dynamics which cannot be mod-
clled. Adaptive control techniques can find friction constants within the system using ba-
sic friction models; however, complex and nonlinear friction forces, such as stiction, cause
voids within manipulator dynamic models. Hysteresis, backlash, and flexibility present
similar modelling problems., The influence of these nonlinearities on estimation and con-
trol depends on their relative magnitudes within the system. These forces, which cannot be

modelled, should be expected to be the principle source of error within the joint calibration.

6.2.3. Chamecleon-like Propertics of the Polynomial When substituting a trigonomet-

ric term with a polynomial, two potential detrimental aspects are added to the system.

3The definition of Inrge in this context is not intuitively clear because the system is nonlinear.
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6. AN ANALYSIS OF THE JOINT' CALIBRATION METHOD

It has already been mentioned that the polynomial does not have a periadic property.
This means that the range of movement of a joint must be restricted such that a second
order polynomial, for example, does not approximate more than one peak in the curve it
is attempting to estimate,

A more serious consequence of wsing a polynomial is that it does not have a well
defined structure. A second order polynomial can be steeply curved or flat, 'I'he ability to
change its form so dramatically means that it could also pick up, and try to approximale,

unmodeled dynamics of the system. This is undesirable for the purpose of calibration,

6.3. Advantages of the Joint Calibration Algorithm 'The advantages of the
algorithm, which are apparent from a theoretical standpoint, ringe from adaplive control
issues Lo processor requirements.

6.3.1. Global Convergence The most important property of the composite adaptive
control algorithm is exponential global parameter convergence. Without this property joint
calibration would not be possible,

The global convergence property is the distinguishing characteristic of the algorithmn
when compared to other automatic joint calibration schemes. Joint calibration schemes,
which use a static data retrieval followed by post processing data fitting techniques, have
consistently encountered problems in converging to the joint gain parameter, for example
[81). Such methods, which often use least squares minimization techniques, require ob-
servability constraints on data and initial estimates to prevent the algorithm converging
to the trivial solution. The adaptive control based calibration scheme on the other hand,
does not require constraints on the inpt and will converge to the system parameters
withoul any a priori estimate data.

A limitation of static methods is that the least squares fitting strategies do not guar-
antee global convergence, particularly for nonlinear systems. Dynamic on-line parameter
estimation intrinsically averages out noise, erroncous signals, and fluctuations. In general,
off-line methods do not filter out these outliers causing deviations in the fit.

Compared to static methods, dynamic on-line methods enable many more data to
be considered within the cstimation. For example, a 30 second calibration, running at
1kHz will consider 30,000 data points in cach ol position, velocity, arceleration, and force.
Therefore over 100,000 input data points can be considered in the 30 seconds. Static

methods in general use in the order of 500 data points.
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G.3.2, Arbitrary Cualibration ‘rajectory  ‘There has been a lot of research in excitatory
tri jectories in adaptive control and the affect of slow trajectories on stability and conver-
gence. Bxcitation problems have been one of the major detriments Lo the more widespread
use of adaptive control.

In the calibration framework this is no longer a problem. Calibration is considered
a separate procedure from regular robot use, and therefore the optimal trajectory for the

system can be chosen for the purposes of calibration.

6.3.3. Computational Processing Requirements  Although the adaptive control is non-
linear, the processing requirements are not excessive, enabling real time implementation
on mainstrean computers, Matrix multiplication and addition take up the majority of the
processing cycle, Inversion of matrices is also not required. Also, unlike static methods,
the adaptive controller does not need to store data for all time. This enables substantial
savings in microprocessor memory requirements,

Another itnportant component, with respect to processing requirements, is that that
the algorithm does not rely on any iterative procedures. This has three important impli-

cations.

e The processing time is constant for each sampling period.

e There is never a danger that the algorithm will not converge in any given cycle.

o Integrity checks on matrices and data are not required before data processing. Since
no integrity checks are necessary, the computer never has to “bail out” and stop

processing,

These factors make the on-line adaptive control calibration algorithm suitable for real time
implementation.

6.3.4. Sufficient Accuracy with Low Order Polynomials ldeally a transcendental func-
tion should be replaced by an infinite series of polynomials. However, using a low order
polynomial gives very good accuracy.

Figure 4.5 shows the curve fitting ability of the function cos (0.8¢ + 0.3). For just a
2nd order degree polynomial the error is in the order of 2% of the total cosine magnitude
and 1% for the cubic polynomial. Therelore it is possible to achieve good accuracy using a
low order polynomial approximation. This means fewer unknown variables are required for

joint sensor gain determination, making the system less complex and convergence quicker.
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Figure 4.5: Trigonometric Fitting Ability of Low Order Polynomials, (a) 2nd Order Poly-
nomial Approximation of a cos(0.8¢+ 0.3) (b) 3rd Order Polynomial Approxi-
mation of a cos(0.8¢+0.3) (c) 2nd Order Approximation Error of cos(0.8¢4-0.3)
{d) 3rd Order Approximation Error of cos{0.8¢ + 0.3)

6.3.5. Estimation of Mass Properties A bi-product of joint sensor calibration using

adaptive control is that mass properties are also estimated. The mass parameters in

the inertia, velocity, and gravity matrices become available for other control tasks. For

example, after joint sensor calibration the robot can be gravity compensated or used in

further nonlinear control applications.

6.3.6. Autonomy of Calibration The algorithm is designed such that no human in-

tervention is necessary.

In essence, the operator has only to power up the robot and
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computer for calibration of dynamic and joint sensor properties. The case of use enables

casy re-calibration; thus preventing sensor drift affecting accuracy and control.

7. Summary

The algorithm presented in this chapter enables autonomous joint sensor calibration
of analog position sensors, As a bi-product of the joint sensor calibration, mass properties
are also estimated, which can be used in other control applications.

‘I'he algorithm enjoys the property of global convergence relinquishing the need for ini-
tial estimates. Also, because the algorithm performs estimation on-line, a large number of

data can be considered preventing erronecous signals from adversely influencing estimation.
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CHAPTER 5

Experimental Results

In this chapter, the theory presented in the preceding chapters is applied on a real robot.
system. Originally the theory was tested in simulation with excellent results, ‘I'he real test
however, is the performance of the algorithm under non-ideal conditions.

The hardware used for the experiments is described in Scction 1. 'T'he problems en-
countered during the transfer from simulation to practice is desceribed in Section 2. The

results of the experiments and a discussion of results follows in the subsequent sections.

1. Hardware

The principal component of the hardware is & 6 degree of freedom force rellecting
haptic hand controller, shown in Figure 5.1. The design was conceived by Dr. Vincent
Hayward of McGill University [15].

Figure 5.1: The 6 DOF Haptic Hand-Controller
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The hand controller is comprised of seven actuator and sensing channels, Three chan-
nels are used for translational motion, and four are used for rotational motion. The use of
four actuators to achieve the three degrees of rotational freedom (roll, pitch, and yaw) is
known as actuator and sensor redundancy and is discussed in [14]. In essence, the extra
degree of actuation and sensing enables balanced performance over the entire workspace
and the potential for self calibration.

The hand controller is designed to emulate virtual environments in applications such
as teleoperation. The actuators enable forces to be transmitted through tendons to the
user. The remote placement of the actuators makes the output device both ergonomic and
light, critical factors in hand controller design [18].

Figure 5.2 shows the functional representation of the translational stage. Although

this has three degrees of freedom, just two are used for the purpose of these experiments.

Figure 5.2: Schematic of the Translational Joints of the 6 DOF Haptic Hand-Controller

The degrees of freedom centred at A and W’ are used in experiments. The third degree
of freedom at B is not used because it introduces a coupling with joint A; the coupling
effect is hard to model and results in mechanical instability.! This extra degree of freedom

is eliminated by mechanically constraining the joint at B; therefore the robot is equivalent

1'The hand-controller is a version one prototype and is currently being redesigned to climinate such problems.
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to a two degree of freedom planar manipulator working against gravity., The rotational
part of the device is not considered because gravity does not directly act upon it.

The force and position sensor outputs are sent to signal conditioning circuitry. Fach
signal conditioning circuit is part of an analog control board which can implenent foree
feedback, position feedback, reference position setting, or bypass all control to a computer.
In all the experiments presented in this chapter, the control is bypassed to the computer.

All processing is executed on a single general purpose Intel 486DX personal computer
running at a clock rate of 66MHz. Under the DOS operating system, real time implemen-
tation is achieved by running off interrupts triggered by the system clock. Unfortunately
multiple processes are not supported under DOS; therefore all calculations, including up-
date of the system dynamics, are exccuted in the same cycle and at the same rate. The
hand-controtler is interfaced to the microprocessor through Green Spring 16 bit Analog
to Digital Converters (DAC) and 10 bit Digital to Analog Converters (DAC). The torque
output to the motors is sent from the DAC and converted Lo a current by a general purpose
Voltage-Current converter.

The position sensor used for each channel has been custom made. Each position sensor

consists of two Light Emitting Diodes (LED) and two light receivers, shown in Figure 5.3.

Fixed Opaque
Half Circle

Opaque Half Circle
On Pulley

Figure 5.3: The Position Sensor Mechanism

The tendons are wrapped around two pulleys which each have opaque half circles
in the middle. Each pulley is mounted on smali cylinders which also have opaque half
circles. The LED is mounted behind the fixed cylinder, the light is transmitted through
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the transparent side of the cylinder and pulley. As the pulley is rotated by the rotation
of the joint, the proportion of light received by the sensor changes, The amount of light
recoived is proportional to the angular displacement. The position output is the difference

between the outpuls of each sensor such that:

8 = (apigrr+ Bp1) — (ap2gp2 + B2)
= (apigp1 — apagp2) + Br1 — Br2

(5.1) aj+f

i

where gp; and gpz are the outputs of cach light receiving transistor, ap;, apa, are the
joint gains, and 8py, Bp2 are the joint offsets for each sensor unit,

‘I'he opaque half circles are mounted to ensure that the transparent area, in which light
can be transmitted to the sensors, totals 1807 i.e. when one sensor has a 30° transparent
arc, the other will have an arc opening of 150° (180° — 30°). This facilitates a differential
output for the complete position sensor unit expressed in terms of &, ¢, and 8. The
differential ontput is used to reduce noise (in particular thermal noise), and to compensate
for crrors caused by non ideal factors in the tendons such as elasticity. Velocity readings

arc generated by an Operational Amplifier in a differentiating configuration.

2. Problems Encountered in Implementation

In simulation, a given problem can be tested under optimal conditions. Although non
ideal behaviour can be added to the simulation, this, in general, can never fully represent
a rcal system. For this reason, it is often necessary to implement an algorithm on a real
system to ensure that the theory is still applicable in the presence of unpredictable and
untnodeled behaviour.

The simulation results showed that the theory derived in the preceding chapters was
valid. Nevertheless, during the transfer from the simulation environment to the hand-
controller system, several factors, which were not apparent from the simulation results,

surfaced. These problems had to be addressed for successful algorithm implementation.

2.1, Friction The simulations did not take into consideration friction as an unmod-
cled force. The original thought was that the hand controller, which was designed to be a
low friction device, would not have appreciable friction compared to the forces due to grav-
ity and inertia. However, it was quickly realized that this initial assumption was incorrect,

making accurate calibration impossible.
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The intuitive answer to the friction problem is to model {riction within the adaptive
control. Although friction models can be included in the regressor matrix of the robot
model, this is not the case for the polynomial equivalent model. It was found that adding
a Coulombic friction model to the adaptive control interfered with the convergence of
the polynomial, This is due to the chameleon properties of the polynomial which the
trigonometric function, which it replaced, dsoes not exhibit.

To eliminate this detrimental property, the {riction forces must be dealt with outside
of the adaptive controller. This is achieved by using a feed-forward friction signal to the
actuators; it is vital however, that this is done autonomously.

To establish the force contribution due to friction, the hand-controller is run in a
closed loop trajectory using ouly a PD feedback for control. The speed of the trajectory is
kept as low as possible to reduce dynamic effects, but high enough to ensure that stick-slip
(stiction) effects are neglizible. The result of the closed loop, PD controlled trajectory, is

shown Figure 5.4.

<
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Figure 5.4: Position-Torque Profile of a Hand-Controller Joint

From the position-torque response it is clear thal the dominant form of friction is
Coulombic in nature. By calculating the average torque difference in the forward and

negative directions, an estimate of the Coulombic friction can be made:

(5.2) Coloumbic Friction = 0.45 SIGN{Vp}
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where Vpy is the desired velocity, The Coulombic friction term can be added, in a feed-
forward manner, Lo the moter torque calculated by adaptive control routines. The modified

block diagram of the adaptive control system is shown in Figure 5.5.

Friction Comp.
F

— Vel
x /
u+ Y
Controller n Plant
a
Estimator

Figure 5.5: Adaptive Control Framework with Friction Compensation

The coefficient of Coulombic friction must be found individually for each joint. This
is simply done by moving the joint under test in a closed loop trajectory while the other
Jjoints are locked in arbitrary positions. This can be achieved through computer control
without human intervention or knowledge of the joint sensor-joint angle relationship. The
Coulombic friction model obviously does not model stick-slip friction (stiction) or viscous
friction. llowever these frictional forces do not have such a large relative impact over the
overall system dynamics. What is more, friction forces, such as stiction, are hard to model

accurately making their application in a real system questionable.

2.2. Calibration Trajectory The adaptive control is used as part of a calibration
step; this affords the luxury of being able to choose the best possible trajectory to ensure
accurate parameter convergence.

It was stated in Chapter 2 that one of the major hindrances preventing the more
widespread use of adaptive control is the need for excitatory trajectory inputs. Conse-
quently, there has been an effort in the research community to understand the influence of

. trajectorics on stability and parameter convergence. One of the key factors which emerged
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from this research is that accurate parameter convergence requires frequency rich trajecto-
ries. This has been proved for lincar systems and almost certainly holds true for nounlinecar
systems? (6] [7].

In simulation, single frequency sine wave trajectories proved adequate for convergence;
on the real system however, this was not the case. This result is not surprising when one
considers the single lrequency content of a sinusoidal signal, Ideally, the input trajectory
should have an infinite frequency component. This can be achieved theoretically by ap-
plying a train of impulses or applying white noise to the system. Unfortunately, these
signals cannot be applied in practice. In experiments, it was found that a triangular wave
trajectory gave the best parameter convergence results. Although a rigorous explanation
is not available to substantiate this finding, it is possible, in hindsight, to hypothesise on
the intuitive factors which contribute to this result.

A mechanical system can be approximated to a double integrator, such that a force is
applied to the input and the output is a displacement. Since twice dillerentiating a ramp
position trajectory gives an acceleration profile made up of impulses, full frequency content
is experienced at the force input to the system, This explanation is casily understood lrom

an intuitive level; however, a more rigorous explanation is beyond the scope of this thesis,

2.3. Sensor Input Scaling The most volatile period of the adaplive contro] cali-
bration is the initial one or two seconds after start up. This is because the initial parameter
estimates, in the manipulator model, are all zero. In some experiments, it was found that
during this initial transient stage, parameter overflow would occur causing instability of
the adaptive control. There are several reasons for this instability which is not taken into
account within the theory.

¢ Sampling delays caused by the discretization of the system.
¢ The upper bound of the gain matrix being too high.

¢ Magnitude of sensor inputs being too large.

Unfortunately sampling delays are unavoidable and compensating for them will com-
plicate the control system further and increase computational requirements.

The upper bound on the magnitude of the gain matrix is an clfective cure for the
overflow problem; however in experiments, it was found that by lowering the maximum

magnitude of the gain matrix P, convergence becomes dramatically slowed during the less

2In Boyd and Sastry it was shown that a linear system of order n required 2n spectral lines to achicve
convergence [0). This is remarkably similar to the well known Shannon sampling principle in Communications
which states that to reproduce a sampled signal requires at least two times Lthe frequency of the input signal.
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volatile stages of Lhe calibration. This can be casily remedied in software by changing
the upper bound on /2 on-line, but this is not an clegant solution, and could introduce
discontinuities to the control.

A more cffective solution is to scale the sensor inputs. The output of the position
sonsor is a voltage in the approximate range of —6 Volts to +6 Volts. The polynomial ap-
proximation causes the sensor output to be raised to the power of two, or three depending
on the degree of the polynomial. This relationship causes the components in the regres-
sor model to become quite large causing numerical instability during the volatile stage.

Fortunately this problem can be casily fixed by scaling the sensor output such that:
(53) lll €1 = @ <1 Vn>0

Therefore by scaling the position sensor output to between +1 and —1, the regressor
matrix becomes bounded ensuring greater stability, especially during the the initial tran-
sient stage. Experiments showed that this was an effective way to stop numerical overflow

without reducing the upper bound on the gain matrix P.

2.4. Degree of Polynomial Experiments showed that the higher the degree of
the polynomial, the slower the convergence. It was found that the polynomial coefficient
assoctated with the highest degree term, in the regressor model, converged the slowest. (i.e.
For a cubic polynomial, the coefficient associated with the ¢° term in the regressor matrix.)
Conscquently, repeated experiments showed that a quadratic polynomial was favourable
over a cubic polynomial with respect to both convergence time and even overall accuracy.
For this reason, all experiments using the polynomial approximation use a polynomial of

degree two,

2.5. Use of a Dead-Band in the Adaptive Controller The adaptive control
parameter estimates have a tendency of creeping from their nominal values. This phe-
nomena is common in adaptive controllers once the estimation system has reached steady
state. This is counteracted by inserting a dead-band into the controller causing any small

deviations in the parameter update to be ignored.

2.6. Gain Tuning An argument could be made that a truly adaptive controller
should be able to tune all its internal gains based on system feedback alone. Unfortunately
this is not the case, and several critical gains must be tuned. In particular, the linear
feedback gains K'p and Kp, the forgetting factor Ay, the upper bound on the gain matrix
ko, the relative contributions of the indirect and direct parameter update, and the initial
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value of the gain matrix Py, Over the course of algorithm implementation it was found

that there is no unique strategy for successful calibration. Overall, the following conditions

were found to be best for calibration using adaptive control,

(5.4)

o The values of linear feedback Kp and K p, should be at least half of the value which

would normally be used for PD feedback alone. There is & trade off which occurs
when selecting these values. By choosing low values of proportional and derivative
feedback, the adaptive part of the controller is forced Lo do more work. tHowever,
this comes at the expense of trajectory tracking ability.

The forgetting factor Ag dictates the amount of memory within the system. If the
value is too high, the adaptive controller will lorget past experience and will fit only
most recent data; consequently parameter estimation evolution will be oscillatory
because factors such as random noise will not be averaged out over time. Conversely,
a low forgetting factor decreases the adaptive controller’s propensity to adapt to
dynamically changing parameters. However, since the calibration assumes that the
robot parameters are constant, a low forgetting factor is preferable.

The maximum bound on the magnitude of the gain matrix (k) proved to be the
least sensitive parameter in the composite adaptive control framework. This is
because the magnitude of the gain matrix did not require such a high stimulus to
invoke the upper bound. For this reason this was not a critical factor.

The initial value of Fy is critical for fast convergence. Even though the gain matrix
P(t) is dynamic, there is still a lag time for it to reach an optimal value. If Py is too
high, numerical instability may ensue after startup. It was found that higher order
cocfficients required a higher initial value. For a quadratic polynomial, the diagonal
clements of Py were set at: 8.0 for the coefficient of ¢%, 3.0 for the coefficient of ¢,
and 1.0 for the constant term.

The contribution of the indirect and direct adaptive control components in the

composite adaptive control are critical. Recall from (3.40}):
i = -P(l) (CIYT(Q,é, 6.,6.)s + CWT 8, é)e)

The constant term C; and C, dictate how much weight should be put on the
trajectory error and the torque error . In experiments it was found that the direct
adaptive control constant should be in the order of €} = 0.3, and the indirect

adaptive control constant in the order of C; = 1.0,
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[n general, the nonlineirity of the systens makes it difficult to find optimal and unique

vitltes for these parameters,

2.7. Hardware Inaccuracies T'hroughout the theoretical derivation there is an
assumption that all transducers and actuators respond in a linear manner. In reality this
is not Lhe case.

sach channel has two motors which work in a pull-pull configuration which is switched
by two diodes. Since the diodes are not ideal, the switching action causes nonlinearities.
What is more, the motors are second order clectro-mechanical systems and therefore do
not have a perfect constant gain response which is assumed in the contrai.

The transmizsion, made up of the tendons, is also assumed ideal. However in reality
the tendons add both aamping and clasticity to the system {17).

The theory developed in Chapter 4 assumes that the relationship between sensor
otipnt and joint angle is linear. ‘I'he position sensors however, which have been made “in
house”, are not perfectly lincar. In Figure 5.6 the measured relationship between sensor

output and joint angle is plotted,
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Figure 5.6: Actual Relationship Between Sensor Qutput and Joint Angle. (a) Joint 1. (b)
Joint 2,

The slight nonlinearity exhibited in Figure 5.6 will force the adaptive control to average
out the imperfections. The low forgetting factor and the best fit strategy of the dynamic
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least squares formulation should give the best average value, ‘This will aflect the aceuracy
and the repeatability of the ealibration,

Unfortunately the inaccuracies caused by the hardware are inevitable. From the per-
spective of calibration, the strategy must be to minimise these effects. 'T'his is done by not
exciting high frequencies causing motor gain attenvation, aud preventing fast oscillatory
movements making the clasticity of the tendon a factor, Fortunately the calibrition stage

cnables a trajectory to be chosen which can minimise these effects,

3. Implementation Assumptions

The goal of this research is to power up a robot and have it self calibrate with a mini-
mum of constricting assumptions. There are however, several assuniptions which are made
for the implementation, but they do not restrict its general operation. The assumptions

are:

e The manipulator model is known; this a fundamental assumption of STAC adaptive
control methods.

e The scensor outputs and torque commands are uniform. In essence, the sign of
position and velocity must correspond such that a positive torque will move the
manipulator in a positive direction with respect to sensor output. This is necessary
to prevent positive feedback in the PD loop of the adaptive control.

o The joint limits are known in termns of sensor output. 'I'his prevents the robot from

trying o exceed its workspace.

These are the only assumptions made in the adaptive control joint calibration.

4. Experiments

In the proceeding sections the performance of the single link polynomial approxima-
tion is studied. The first experiment is performed on the second joint of the robot. The
focus of this study will be on polynomial convergence and convergence using the trigono-
metric expansion. This serves as an applied feasibility study of the algorithin. The second
experiment uses a polynomial approximation to cstimate the gain parameter of the first
joint. This stage tests the assumption that the other joints can be held in an arbitrary

position during calibration without causing significant interference through coupling.



4. EXPERIMENTS

4.1. The Polynominl Approximation on a Single Link T'he distal link of the
two degree of freedom robot is stimulated with a ramp trajectory. The adaptive control

uses the single link rebot model:
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I'he results of the parameter estimation are shown in Figure 5.7,

Parameter Estimates for Polynomlal Approx. on Joint 2
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Iigure 5.7: Parameter Estimate Evolution for Polynomial Approximation on Joint 2

Figure 5.7 shows that the initial convergence to approximate values is quite fast,
settling to an initial estimate within one second. The exponential nature of the convergence
after one second is apparent as the parameters slowly converge to nominal values over the
next twenty five seconds. The order of polynomial coefficient convergence is &, b, and then
¢. Therefore the higher the exponent in g, the slower its coefficient converges.

Using the polynomial found in the adaptive control, the values of joint gains and joint
offsets can be derived. In Figure 5.8, the polynomial estimated by the adaptive control is
compared to the function mlcos(ag + 8), where a, 8, and m! have been derived from the
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adaptive control estimates. 1t can be concluded from Figure 5.8 that the cosine function

can be accurately fitted to the polynomial making accurate calibration viable.

Polynomial Aproximation of Cosina For Joint 2
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Figure 5.8: Polynomial Approximation of Cosine Function for Joint 2. (a} Polynomial

Approximation (Solid Line)} Cosine Fitting {.-) (b} Fitting Errer
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I'he resnlts of Lthe single link joint calibration are given in Table 5.1, The results show

the calibration has been successful to an accuracy of approximately | degree?.

o f
degrees/Voll | degrees
Manual Calibration 9.052 26.299
A-C Calibration 8.754 25.559
Absolute Error 0.298 0.740

Table 5.1: Accuracy of Adaptive Control Calibration For Joint 2

Using the adaptive control with the friction compensation also improves the overall
performance of the manipulator. In Figure 5.9 the position error for the system with and

without adaptive control is shown.

Pasition Error of Adaptive and PD Controllers. (Dashed = PD)
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Figure 5.9: Position Error for Adaptive and PD Controllers. Solid=Adaptive Control Po-
sition Error, Dashed = PD Control Position Error

*These results do not consider the repeatability of the experiments - a critical factor in robot calibration. This
topic is addreased in Section 8,
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The improvement in position tracking is approximately a faztor of 10, This is a good
example of the duality of the algorithin as both a joint calibration seheme and an accurate
controller. Once the joint calibration adaptive control framework is implemented, other
general purpose adaptive controllers can be implemented with very little extra offort.

The results presented in this section show that joint calibration, using the polynomial
approximation, achieves good results. The convergence for the single (distal) link is rapid
and definite. The parameters estimates do not fluctuate which indicates that the model
is an accurate representation of the robot. The distal link is not subject to coupling from
other links, Therefore in the next section, the inner fink is calibrated with the distal link
held in a PD feedback loop.

5. The Polynomial Approximation Using the Inner Joint

The preceding section established the success of the polynomial approximation on a
single link. This link however, was not subject to possible coupling caused by holding other
joints at arbitrary positions using PD feedback. In this section, joint I is calibrated while
joint 2 is held in an arbitrary position.

Figure 5.10 shows the paramcter evolution for the inner joint. The behaviour of the
parameter evolution is quite similar to the the uncoupled single link experiment in the pre-
vious section. (Figure 5.7) Good approximations are found within approximately 1 second
for all parameters except parameter ¢, which overshoots its nominal value. The settling
time of parameter ¢ requires almost 7 times the settling time of the other parameters. This
result is in accordance with the uncoupled link of the preceding section which also exhib-

ited the slowest convergence for the coefficient associated with the highest order term, in

this case ¢2.

The result of Figure 5.10 also shows that the convergence is definite. The exponential
convergence is uniform, and there are no oscillations in the parameter estimates. This
indicates that the single link model was accurate and joirt coupling caused by holding
joint 2 did not adversely affect estimation. Also, the non oscillatory nature of parameter
estimates purports that the estimates are accurate.

Figure 5.11 shows the polynomial approximation to the cosine function and the cosine
fitting error. This shows that the polynomial successfully approximated the cosine function.

The small error between the cosine and the polynomial function implies that the gain
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Paramator Eslimates for Polynomlal Approx. on Jeint 1
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IMigure 5.10: Parameter Estimate Evolution for Polynomial Approximation on Joint 1

parameter a, will be an accurate representation of the physical joint gain parameter which

the experiment attempts to find.

T'he accuracy is confirmed in Table 5.2 which shows the estimated and the measured values

of the gain parameter a.

a g |
degrees/Volt | degrees
Manual Calibration 7.638 N/A
A-C Calibration 7.534 16.737
Absolute Error 0.104 N/A

Table 5.2: Accuracy of Adaptive Control Calibration For Joint 1

The accuracy of the gain parameter estimation confirms that locking all but one of the

Jjoints in a PD feedback loop, and using the single link model for calibration on remaining

. joint, is valid.
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Polynomial Aproximalion of Cosine For Jalnt 1
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Figure 5.11: Polynomial Approximation of Cosine Function for Joint 2. (a) Polynomial

Approximation (Solid Line) Cosine Fitting (.-) (b) Fitting krror

There is some degradation of control when controlling the joint subjested to coupling
. which is evident in the position tracking plot of Figure 5.12.
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Positlon Ertor of Singla Link Adaptive Control for Joint 1
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Figure 5.12: Position Error for Adaptive Controllers Using Polynomial Approximation for
Joint 1, and Joint 2. Top: Position Error of Joint 1. Boitom: Position Error
of Joint 2

The position error of the coupled joint is on average twice as a high as the uncoupled
joint 2. This is caused by the movement, and hence coupling, caused by the locked joint 2
affecting joint 1. This coupling effect is inevitable when considering that the PD feedback
loop is essentially a mass-spring-damper system and therefore causes unwanted flexibility

in the joint.

6. Trigonometric Expansion Convergence for a Single Link

The preceding sections showed that the polynomial approximation, using the single
link model, is feasible lor calibration of the gain parameters. To complete the joint calibra-
tion algorithm, the angle offset values must be found using the technique of trigonometric
expanston. As a proof of concept, and to give comparison for the multiple link case, the
trigonometric expansion is applied to only joint 2 of the hand-controller.

The model for the single link trigonometric expansion dynamics is:
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amf?
(5.6) (7] = [ i gcos{aq) —gsin{ag) 1 1l cos(f)
mi sin{3)

Using (5.6), and the joint angle gain information found in Section 1,1, the adaptive

control calibration is performed. The evolution of parameters are shown in Figure 5.13

Parameter Estimates using Trigonometrlc Expansion on Joint 2
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Figure 5.13: Parameter Estimate Evolution for a Single Link Manipulator Using Trigono-

metric Expansion

The parameter estimates converge quickly; within approximately 5 seconds all pa-
rameters converge to nominal values. This quicker convergence, when compared to the
polynomial approximations, can be attributed to the greater structure imposed by the

trigonometric based model.

The results of the calibration are shown in Table 5.3. The error in the offset value is just
over one degree. This is a larger offset error than the polynomial approximation which
had a joint offset error of 0.740 degrees. The larger error is a result of the propagation of
error caused by using the joint gain found in the polynomial approximation. Since the gain
parameter is used within the manipulator model, the model can no lorger represent the
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7. JOINT OFFSET ESTIMATION USING THE 2 DOF ROBOT

3 (degrees)

Manual Calibration 26.299
A-C Calibration 24.927
Absolute Error -1,372

Table 5.3: Accuracy of Adaptive Control Calibration For Joint 2: (Using Trigonometric

Eixpansion)

system so well. The effect of this is shown in slight oscillatory motion in Lhie paraineters
estimates in Figure 5.13. 1t can be concluded however, that trigonometric expansion within

adaptive control is feasible, It remains to test this concept on the complete manipulator.

7. Joint Offset Estimation Using the 2 DOF Robot

To estimate the joint offset parameters, the robot must be operated under adaptive
coutrol using the 2 DO robot model with trigonometric expansions. The robot model

used in experiments is a simplified version of (4.39):

Caryy  =YSarq, GCos{arqr + azqz) —gsin(ayq + azqz) a1§i oGy + azfa

0 0 geos{ayqy + aaqz)  gsin(ay1q) + azqz) 0 o) +azie

[ (miley + maly) cos(B1)
(maler 4- maly) sin(6;)
5.7) milez eus(Br + B2)
myley sin(B) + B2)
myley + mal?

malZ J

In (5.7) the contribution due to coupling forces is not required because the actuators
are mounted remotely. The robot is purposely operated in a slow trajectory to reduce
the centripetal and unmodeled dynamic effects. This enables the contribution due to cen-
tripetal forces to be neglected in the manipulator model. By neglecting these parameters,
it is possible to keep the size of the regressor matrix within bounds that enable a high
sampling rate. Experiments showed that the effect of a reduced sample rate was more

detrimental than neglecting centripetal forces.! It is important to ensure that the adaptive

4The contribution of centripetal forces are approximately an order of magnitude lower than that of gravity
terms; this is because the link lengths are small. (=2 0.1m)
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7. JOINT OFFSET ESTIMATION USING THIE 2 DO ROBOT

control is exposed to as many joint configurations as possible. This is done by running
cach joint in a ramp trajectory with different periods.

The convergence of the gravity based parameters are shown in Figure 5.14. The
convergence of the parameters requires approximately 20 seconds 1o nominal values and a

further 25 seconds for finer approximations.

Gravity Based Parameter Estimates on the 2 DOF Robot
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Figure 5.14: Gravity Based Parameter Estimate Evolution for Joint Offset Calibralion on
2 DOF Robot. { Al= (myle + maly) cos(By), A2 = (myley + mal)) sin(f)),
A3 = mylez cos(B) + B2), Ad = mylesin(B) + fz2))

It is clear that the convergence for the two link robot is not as good as the single
link convergence in Figure 5.7. The parameter estimates exhibit oscillatory behaviour, in
particular parameter A4. This is an indication that there are dynamics within the system,
which are not included in the computer model, affecting estimation accuracy. This is in
part due to the absence of the centripetal forces and in part due to dynamics which cannot
be modelled. The contribution of the unmodeled parts of the robot dynamics are small
with respect to the magnitude of the gravitational components shown in Figure 5.14. For
example, the inertial components of the system have magnitudes of almost an order of

magnitude smaller than the gravitational terms. (See Figure 5.15.)
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Inartia Based Paremetor Estimates on the 2 DOF Robot
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Figure 5.15: Inertial Parameter Estimate Evolution for Joint Offset Calibration. { A5 =

myley + mal?, AG= mal?)

Despite the increased problem in accurate robot modelling, the adaptive controller is
adept in averaging out error within the system. This enables the calibration of the joints
without full knowledge or use of the dynamic model.

It should also be noted that the tuning of the feedback gains, update gains, and
forgetting factors was much more difficult for the full two degree of freedom case. In general,
the preceding experiments were quite robust to changes in these parameters, whereas the
multiple link case had a much narrower margin of error. Analysis showed that the two
degree of freedom robot was much more prone to spurious forces, especially during velocity
sign changes in the triangular wave trajectory. These transients are impossible to model
forcing greater emphasis on tunir; the adaptive controller to ensure the transient effects
are averaged out; however this must be done without suppressing the predictable resporse.

The results of the calibration are given in Table 5.4.

The results show that the adaptive control calibration is accurate to within approx-
imately £1°. The parameter information found in the adaptive control can also be used

for gravity compensation of the hand-controller.
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a) B vy g2
degrees/Volt | degrees | degrees/Voll | degrees
Manual Calibration -7.038 -17.544 -9.052 26.299
A-C Calibration -7.534 -17.988 -8.700 26,595
Absolute Error 0.104 0.444 0.207 0.2066

Table 5.4: Accuracy of Adaptive Control for the Complete Robot Calibration

8. Consistency of Results

The results given in the preceding section represent just one complete calibration.
What is most important however, is the consistency of results. ‘I'he algorithm st be

relied upon to calibrate the robot within a given accuracy. Table 5.5 gives a smmmary of

results taken over 10 calibration runs.

ay N 0 3
degrees{Volt | degrees | degrees/Volt | degrees
Manual Calibration -7.638 -17.544 -0.052 26.299
Mean A-C Calibration -7.465 -17.841 -8.537 26.673
Maximum A-C Calibration -6.963 -16.890 -8.322 27.250
Minimum A-C Calibration -8.164 -18.115 -8.795 25.273
Standard Deviation 0.465 0.421 0.161 0.615

Table 5.5: Consistency of Adaptive Control Robot Calibration (Over 10 experiments)

The results in Table 5.5 show that the adaptive control calibration gives numerically
stable results. The results show that the algorithm has an accuracy of approximately £1.5¢

when all factors are considered.

9. Discussion of Experimental Results

From the results of the adaptive calibration, and the experience in implementing the

theory on the robot, there are several issues which should be considered.

9.1. Joint Coupling It was mentioned in Section 7 that when the calibration of the
joint offsets was performed using two active joints, the control system became less robust
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Lo chinges in the control system parameters. Convergence to the desired values beer me
more sensitive to changes in tinear feedback gatns, initial gain matrix (%), and lorgetting
lactor, Alter analysis, it was realized that this was a result of transient torques and forces
between joints which could not be predicted within the manipulator model. It is reasonable
to assute that as the number of joints are increased, the number of transient forces will
also increase; hence the robustness of the algorithm will degenerate with an inerease in the

number of joints,

9.2. The Need for Accurate Model ‘The calibration algorithm relies on an ac-
curate dynamic and gravity model representation of the robot. [f this cannot be achieved,
the calibration will be unsuccessful. The hand-controller, for example, has a coupled link-
age in its translational stage. This design proved impossible to model accurately forcing
the robot to be mechanically constrained to two degrees of freedom for the purpose of the
experitments. In geieral, serizl link robots do not pose a ditficulty in dynamic modelling,
however this may not be the case for parallel mechanisms such as the hand-controller.

T'he hand-controller tendon transmission is virtually backlash free. Also both motors
and sensors do not exhibit measurable hysteresis. (Important design requirements for
Iand-Controllers.) Therefore the algorithm has not been exposed to these common and
nonlincar clements which would be encountered on geared and hydraulic robots. The
cflect of these nonlinearities are diflicult to model and can be expected to degrade the
performance of the calibration in such mechanisms.

For these reasons, the general difficulty in manipulator dynamic modelling is the major

weakness of the calibration algorithm.

9.3. The Global Convergence Property Th~ most important property of the
adaptive control algorithm is global convergence. All the results in this chapter have
been obtained assuming all initial parameter estimates to be zero. In contrast, calibration
methods which have relied on static input-output data generally require initial estimates
to ensure convergence. I is also interesting to note that the cstimation of the joints
sensor gain parameter {a). was a more robust and reliable property to estimate than the
joint sensor offset () when using adaptive control. In comparison, static methods have
traditionally had difficulty estimating the joint sensor gain compatred to joint sensor offset.
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10, SUMMARY
10. Summary

The results of the experiments have shown that the theoretical development derived in
Chapter 4 can be successfully implemented on i eeal robot system. “I'he results showed that
the algorithm can be relied upon to calibrate the robot to an accuracy ol approximately
1.5% per joint. It was fonnd, through experimentation, Lhat factors such as excitation tra-
jectory and feed-forward friction elimination are important Factors in achieving consistent.
calibration, factors which were not evident in simuolation,

The negative aspect of the algorithim is the requirement of an acenrate dynamic and
gravity model to achieve consistent calibration. Also, the unmaodeled dynamics, largely
caused by joint coupling, decreased the calibration robustuess and consistency lor the
multi-link case.

The adaptive control algorithim was able to calibrate the robot autonomously, the
operator is only required to switch the system on. ‘The calibration was performed without,
a priori knowledge of the joint sensor or dynamic properties, without physical constraints

on the robot, and without utilising specialised measuring equipment.
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CHAPTER 6

Conclusion

The algorithm presented in this thesis enables autonomous joint and dynamic parameter
calibration of & multiple link robot. The calibration is performed on-line using adaptive
control methods introduced by Slotine and Li. Their adaptive control method is advan-
tageous for calibration because it is globally convergent with respect to both trajectory
tracking and parameter convergence. This implies that a priori knowledge of the system
parameters is not required to achieve system parameter convergence. The Slotine and Li
method however, requires that the manipulator’s joints are calibrated before operation.

To achicve autonomous joint calibration using the globally convergent adaptive con-
trol method of Slotine and Li, the relationship between the joint sensor output and joint
angle or displacement must be estimated within the control. The estimation of system
parameters in the adaptive control requires that unknown parameters occur linearly with
respect to known quantities such as joint position and velocity. However, rotational joint
calibration parameters occur within transcendental functions and therefore cannot be writ-
ten lincarly. This thesis proposed a method to solve this preblem by replacing nonlinear
trigonometric functions with polynomial approximations. The coefficients of the polynomi-
als occur linearly with respect to the input, and can therefore be used within the adaptive
contro! {ramework. The resulting polynomial coefficient estimates can then be used to
extract joint calibration information.

The resulting algorithm required only knowledge of the manipulator dynamic model
and did not require a priori joint »ensor information other than the assumption of the
lincarity of the joint rensor. This incans that after switching the power to the robot on,
the robot can autoncmously find its dynamic and joint sensor properties without human

interaction, use of specialised measuring equipment, or physical constraints on the robot.
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The algorithm was tested on two links of a six degree of freedom haptic hand-controller.
The algorithm was found to be accurate to approximately £1.5° From both the theoret-
ical development and experimental work, several properties, both positive and negative,
emerged. These can be summarised as:

e The global convergence property of the algorithim made convergence and numer-
ical stability possible without extra constraints on system observability or initial
conditions,

o The algorithm required only matrix addition and multiplication. ‘T'his reduces stress
on the computational requirements of the system and makes real time control pos-
sible using ordinary computers.

o The adaptive control algorithm of Slotine and Li does not require inversion of the
inertia matrix or measurement of joint accelerations. ‘T'his makes the algorithm
much more robust and applicable to real systems,

¢ The joint calibration is performed in two stages, first calibrating the joint sensor
gains, and then joint offsets. The joint oflset estimation requires information found
in the previous stage. This makes propagation of error a factor in the final results.

o The algorithm relies heavily on an accurate dynamic, and in rarticolar gravity,
model of the robot. If this cannot be achieved, accurate calibration is not possible.

o The reliance on manipulator dynamics limits the overall robustness of the joint cal-
ibration algorithm. Real robot systems often exhibit dynamic effects which cannot
be modelled. This can cause problems in convergence, especially as the number of
links are increased.

e An interesting aspect of the algorithm is that convergence and estimation of joint
sensor gains is more accurate and reliable than estimation of joint sensor offsets.
Static methods, which generally rely on some sort of least squares fitting. experience
the opposite problem, have great difficulty estimating tiie joint sensor gain and less

troubie estimating joint offset.

From these results several conclusions and recommendations can be made for future re-
search.

The experiments were performed on a device which has low backlash and hysteresis.
These nonlinearities are difficult to model within the controller. An evaluation of the
joint calibration algorithm on hydraulic and geared robots needs to be performed to gauge

the affect of these nonlinearities on the algorithm. These nonlinearities will certainly be
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detrimental. The adaptive controller however, has the ability of averaging out noise and
spurions effocts which may make calibration still possible under such conditions.

I'he antonomy of the joint calibration scheme means that in the case of sensor drilt,
changes in joint calibration parameters can be casily found after each calibration, An
interesting application of sensor drift, and even sensor failure monitoring, is to redesign
the algorithm so that it can be run in the background during robot operation. This should
be possible because the algorithm relies only on ordinary dynamic feedback. Therefore
application of a “system watchdog” during operation will allow any tnusual changes in
system paramelers to be monitored.

Iinally, as a catalyst for future research, it is intuitive to combine the beneficial prop-
erties of both the adaptive control calibration and static calibration schemes. By using the
traditinnal kinematic calibration schemes such as sensor redundancy, or constraining the
end-effector, emphasis could be taken off the use of the dynamic model, a negative aspect
of the adaptive calibration system. ‘Then adopting an adaptive control approach to benefit
from global convergence properties will relinquish the convergence weaknesses of the static

approaches. This may come at tiie expense of a loss of autonomy within the system.
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