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Abstract

The alltollolllOIlH calibration of a lIIanipnlator is considered with respect to both dynamie

a.nd joint HenHor properties. UHing methods based on adaptive control, a new formulation

iH intl'Ddllced snch that bench calibration of the robot joint sensors and actuators is no

longer neceHsary. When adaptive control is used in identification, inaccuracies caus"d by

variouH sources of noise are averaged out because the identification takes place on-Iine,

thiH is in contrast to statie methods which rely on a Iimited number of input data. This

lIIethod is unique because the joint calibration is done with respect to invariant forces

due to gravity loading. The method also guarantees convergence to the truc values from

arbitrary initial estimates. Experimental results are presented whieh were perforrned on

two links of a. a six degree of freedom hand-controller. Results show that angles can be

recovered to an accuracy of ±1.5° in the absence of initial estimates. From both the

theoretieal derivations and experiments, the properties and performance of the algorithm

are discussed. Conclusions and topies for future research are presented.
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Résumé

On considèrc la calibration autonomc des paramètres des capteur" arLiculairps cl. dps »1'0­

pl'iétés incltiel1cs potlr UIl roboL ITHUlipulaLclIl'. On int.roduit unp nouvelle forlllulation

dérivée de la commandc adaptativc qui élimininc la lIécessité d'ulle calibmtioll :-;UI' banc

d 'cssais. La corn mande adaptative est utilisée comme ou til d 'identi Iicatioll des pal'a.llLl~tres

"en ligne", cc qui fait que le bruit est filtré sur (le gmndcH quantités de donné(ls qui lU!

sont pas enregistrées. Ceci s'oppose aux méthodes statiqucs qui sc basellt sur d<'s quan­

tités limitées de données enregistrées à. j'ava.llce, L'origina.1i té de la lIIéthode ti<H1I. au fait

que la calibration sc base sur les forccs invariantes de la gravité. De plu:-;, la cOllvergcllcn

de l'estimation vers les vraies valeurs est guarantie Cil l'ab:-;cllcc d'c:-ltirn{~l's initiales. 011

présente allssi des résulats expérimelltaux effectués sur deux des art.iculations d'ull palon­

nier à six degrés de liberté. Les angles peuvent être obt.ellus avec ulle préci:-liou de ± 1.5(J

sans avoir aucune estimation initiale. On discute les dériva.tions t.héoriques, les expérienccs,

les propriétés e:t la performance de l'algorithme, ainsi que des conclusion cL de:-; quest.ions

de recherches futures .
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CLAIM OF OIUGINALITY

Claim of Originality

The procceding components of this thesis, to the anthor'H knowledge, arc original conld­

butions to the field of robotics.

• Calibration of robot joint position sensors using gravity alonc.

• Demonstration of polynomial approximations to formlliale robot, dynamics in the

regl'essor form.

• Formulation of adaptive control for autonomous estimation of joint sensor param­

eters.

• Experimental evidence of the strenglhs and limitations of the adal'live control lLl'­

proach .
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CHAPTER 1

CIIAPTEIt 1. INTRODUCTION

Introduction

•

f1nnHLns and animais possess the ability to antonomonsly calibrate mnscles and sensors by

continnons interaction with the environ ment aronnd them. Althongh sensors and actnators

nsed in robotics are very (lirrerent, the precedent set by hnmans and animais presents an

interesting challenge, Can a robot's joint sensors be calibrated solely throngh interaction

with the environ ment?

.Joint calibration schemes have, in general, relied on either constraining the robot to a

known position in space, reqnired extra measnrement devices, or needed a preset reference

within the joint. These constraints prevent the robot from being t~uly antonomons. The

importance or antonomy is evident when a robot is operated in a hazardons and unknown

environment. Onring operation, a hardware or software failnre may canse the robot to

loose calibration. In the event that the robot cannot antonomonsly regain its calibration,

it will be rendered inoperable. Thererore the calibration task reqnires a minimnm of a

priori information and only ordinary environmental interaction.

The c10sest robot control has come to autonomous calibration is in the field of adaptive

control. In order ta optimize a robot's performance, adaptive controllers arc used ta adjust

gains and system model parameters by using feedback from past and present information.

ln the process, the dynamic parameters of the system can be estimated. In the mid 1980'5

Slotine and Li proposed an adaplive controller which, using a robot's dynamic model,

was globally convergent with respect ta bath trajectory tracking and dynamic parameters

[46]. Uy using the full dynamic model (which is nonlinear) within the control, information

directly rclatcd to the parameters of the system cou!d be found. What is more, a priori

knowledge of the dynamic parameters is not required, making the controller autonomous.

The importance of their adaptive controller lies also in its practicality for actual robotic

systems. Neither measurement of joint accelerations nor inversion of (possib!y singular)

1
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matrices is required. 1I0wever, the algorithm pn'Heuted hy Siolilll' aud Li, l'l''Iuil'<'H t.hl'

joints to be l'ully calibrated.

The joint calibmtion problem involves linding a re!ationHhip bel,Wl'l'n t.he joint Hl'nHol'

output and the joint angle or diHplacemenl.. For mOHt HenHOI'H the 1'l'lat.iouHhip iH Iinl'al" Huch

that a joint gain (0'), and ajoint orrset (,6) must be fOlll1d fol' ('ach joint.. With thl' ad"pt.ivl'

controlmethod of Siotine and Li in mind, the ideal Hcenario would 1", 1.0 ('HtinHt\.(' 1.1", joint

calibration parametel's within the ad"ptive control framework. linfol'tulHltl'ly thiH is not

possible because allunknown pammeters must occllI'linearly with l'I'HI"'cl, tn joint pOHitionH

and velocities. In the case of rotational joint sensors, the Sl'nsol' mode! paraml'tl'1'H gl'lIl'rally

occur within transcendental functions such as eoS(ntl + IJ); this l'l'l'ven tH tlll' paranll'tl'l'H

being written in the Iinear fashion.

This thesis presents a new method 1.0 enable joint calibration thl'Ough UH" of 1.1",

Siotine and Li Composite Adaptive Control Aigorithm. In essence, the algol'ithm r"placl's

tmnscendental tenns, which occur within the gmvity vector of t1", robol, dyn"mics, with

polynomial approximations. It is weil known that a polynomial l'an be uHed 1.0 approximatl'

a rcgion of a nonlinear function with arbitrary accumcYi what is more, the coefficients which

deline the shape of the polynomial occur linearly with respect 1.0 the known pamnwters of

the system. For example, cos (II) l'an be approximated by Il +bll +cO'. Th" paramcters, (t,

b, and c l'an be estimated within the Siotine and Li adaptive control fmmework and then

used to obtain joint calibration information.

The complete algorithm estimates both joint calibmtion and dynamic pammeterH,

requiring no human intervention, special equipment, or physical conHtmints on the rohot.

Experimental results show that joint gains and offsets l'an be calibmted to an accumcy

of approximately ±1.5°. From this experimental work several important properties arc

evident, most notably the global convergence of joint calibration pammeters. In general,

methods which rely on static input output data experienCl' l'l'obil'ms in numel'icaI stability

and convergence, requiring good initial estimates of the unknown pammeters. The adaptive

control based calibration did not experiencc such problems and achieved convergence l'rom

arbitrary initial conditions.

The thesis is organized as follows. Chapter 2 presents a rcview of the work donc in both

joint calibration and adaptive control schemes. Chapter 3 introduces the adaptive control

methods introduccd by Siotine and Li, paying particular attention to the innovations of

the algorithm which make il. suitable for calibration and practical application. In Chapter

4 the new scheme for joint calibration is prescntcd. Within the thcoretical development,

2
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atteutiou is giveu 1.0 the ove rail properl.ies of the calibration scheme which arc evident from

the theory ;Lioue, iuclndiug practicality, weakuesses, aud strengths. Chapter 5 preseuts the

results of the algorithm wheu applied to a l'cal robotic system - a fOl'cc fccdback hand­

<:outroller. l'roblems aud solutious, not evident from the original theory, which a,'ose

dnriug illlpiemIJutatiou are discus8ed. A180, wcakncsses aud st,'eugths of the algorithm

an, p,'eseuted. Fiually, Chapte!' (j prcseuts couclnsious, and 8uggests improvements and

cousideratious for future work .

3
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1. "VOLlJTION OF ADAI'TIVE CONTIlOL IN 1I01l0TICS

CHAPTER 2

Literature Review

The union of adaptive control and joint sensor calibration is nov'" to this t.Ill'sis. Ncver­

theless, active research in the respective tapies has been perfol'lned over seve rai decad,'s.

Adaptive control methods have evolved to the point that unknown paramet.ers in noniinear

systems can be accuratcly estimated; this makes the adapt.ive control parameter estimation

schemes applicable to calibration.

1. Evolution of Adaptive Control in Robotics

The need for nonlinear control mcthods in roboties originated becaus" Iinear control,

snch as PID feedback, did not satisfactorily address tbe handling of nonlineariti"s and

couplings which exist in robot manipulator systems. For tl",se l'casons, Iinear fcedback,

although reliable and simple to implement, gives conservative performancc. It \ViL' realized

that nonlinear controllers based on the dynamie properties of a manipulator could, if prop­

erly implemented, vastly increase performance with respect to both speed and accu l'licy.

Unfortunately the dynamic parameters are not easy to measure. What is more, when a

manipulator picks up a payload with unknown inertial properties, the dynamic par:uneters

of the system will change. It was realized that nonlinear control methods, whieh are based

on a plant with constant parameters, were not robust to parameter uncertainty while the

robot was in operation. This not only decreased the precision of the robot, but cou Id also

cause instability. To counter these problems adaptive control were sought.

The motivating concept in adaptive control is that the system par:uneters, be they

gains or plant parameters, couId be adjusted on-line from empirical data to optimise per­

formance. For example, when a manipulator pieks up a payload, the controller would

automatically update the affected parameters to renect the change in the system and

hence optimise performance.
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1. EVOLUTION OF ADAPTIVE CONTROL IN ROBOTICS

III the early days of adaptive cOlltrol, research was directed toward Iinear systems. It

was Ilot lI11tif the 1!)80's that attentioll was directed ta the mnlti-variable, coupled, non Iin­

ear systems J'olllld in roboties. Proposed sol litions can be split into two categories: Madel

fteference Adaptive Controllers (MRAC) and Self-Tnning Adaptive Controllers (STAC)

[47].

1.1. Madel Reference Adaptive Control A typieal MRAC system is shawn in

Fignre 2.1 [47]. The plant is considered ta have a known strnctnre, however, some or ail

of the parameters of the system arc unknown. The reference model is a representation

of how the system shanId ideally perform. The choiee of model is dependent on control

engineering trade offs snch as sensitivity, settling time, and complexity. The error measure

between the model and the actual plant is used ta adjust the parameters of controller using

a derived parameter update law. The combination of the adaptation law and controller

sllOuld ensure bath stability and convergence. In nonlinear systems, this has generally been

assured using Lyapunov Stabifity analysis [22], hyperstabiiity [33), or passivity theory [13)

[40).

Reference Ymodel

Model

1
X Y -,...",

Controller
u

Plant
e

r +

A Adaptationa
Law

Figure 2.1: Black Diagram of a Madel Reference Adaptive Control System

Existing MRAC systems generally do not take advantage of the full robot dynamic

Illodelwhich cau normally derived for seriaI manipulators. Therefore, l'rom the perspective

of calibration, MRAC methods yield Iittle useful information.

1.2. Self Tuning Adaptive Control1ers Self-tuning adaptive controllers attempt

ta identify system parameters on-Iine by minimising the input-output error between the

5



• 1. EVOLUTION OF ADAJ>TIVE CONTHOL IN llûllOTICS

act Ilal plallt alld the plant lIIodel. A black diagram of a t.ypkal STAC is showll ill Figll\'('

2.2.

1
X

Y
Controller

u
Plantr /

a
Estimator

Figul'e 2.2: mock Diagram of a Self Tuning Adaptive Control System

The estimator updates unknown parallleters of the plant based on differenCl's between

the dynalllic response of the plant and the predieted response of the plant dynamic mode!.

The parameter estimates are then nsed within the nonlinear controller.

Methods priaI' ta 1985 relied on sorne sort of restriction on the controller or system;

for example, Iinearization of dynamics, decoupling of dynamics equations, or a slow rate

of change in the inertia llIatrix. By imposing restrictions of this nature on the system, the

adaptive control problem becomes easier ta manage [3) [22] [26) [50).

After this period, globally convergent adaptive controllers were proposed which did

not require such restrictions. A catalyst for this generation of adaptive controllers MIS the

regl'essor model of the Lagrangian robot dynamics.

Robot dynamics equations are most commonly expressed in the form,

(2.1) T = M(O)ii +e(O, 0)0 +G(O)

where T is the force or torque input, M(O) is the inertia matrix, e(O,O) is the ccntrifugal

and Coriolis terms, G(O) is the contribution due ta gravity, and 0 is a veetor of joint angles.

In Khosla and Kanade, the dynamic equation (2.1) was expressed Iinearly in terrns of the

physical parameters (ii) of the system [24]

(2.2) T = Y(O,O,ii)ii.

•
Equation (2.2) is known as the regressor form of the dynamics. The veetor ii comprises

the unknown parameters of the system. Generally this includes masses, Iink dimensions,

and even friction constants. The regressor form is no! an approximation of the robot
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• I. EVOLUTION or Af)APTIVE CONTROL IN ROBOTICS

dynamicH, but rather an alternative format for the dynamics equations which isolate. the

phYHica' pararneterH. Usiug thi. pararneterisation method, globaliy convergent adaptive

<:on t 1'01 algorithms were developed.

1.3. The Algorithm of Craig, Hsu, and Sastry The adaptive control algorithm

of Craii\ ct al. implements adaptive feedback lineari~ation of a nonlinear system [11] [12].

Fucdback lincari~ation utilises both a nonlinear inner 1001' and a linear outer feedback

1001', The nonlinear inner control 1001' is used to cancel the nonlinearities of the plant [10].

TlJe nonlinearities, however, will rernain if the model of the robot does not c)Œctly match

the physical system. This may lead to unpredictable performance and instability. For this

l'Cason, adaptive methods are required to continuously update the model to ensure the best

possible canccliation of nonlinearities. Figure 2.3 shows the block diagram of the Craig et

al. controlier [11].

1
Ü:J >r. ë' ~

A

M(S) Robot 1>+

1
+

Kv KI'
./

Adaptation ~
C(é,S)+G(S)Law

ll:t \-.::
~ +r." -r.

Figure 2.3: Block Diagram of the Craig et al. Feedback Linearization Adaptive Control

System

The controllaw for the nonlinear controlier is:

(2.3) T =M(O)O° +ê(O, 0) +G(O)

•
where M, ê, and G are the estimates of the real physical matrices M, C, and G of the

robot. Defining E as the joint position error Od - 0, and É as the joint velocity error Od - 0,
0° is described by:

7



• 1. EVOLUTION OF ADAPTIVE CONTHOL IN HOIlOTles

(VI)

The Iinearization of the system becomes apparent when (2.1) is ['qnatcd with (2.:1).

(2.5) M(o)ii +e(O, iJ)iJ +G(O) =Û(IJ)ii" +ê'(o, li) +(;(0)

expanding and re-arranging givcs,

Ë + [(vÊ + [(pE = Û-I(O)[M(IJ)O - fo,:/(IJ)ii +C(lJ, li) - (;'(IJ, li) +0(0) - (:'(11)]

= fo,;r l (o)[A71(O)ii +(;'(0, li) +è;(II)]

(2.6) = Ü-I(O)}'(IJ,iJ,O)à

where Y is the regl'essor form of the dynamics and à is the el'ror between the physical

parameters (ii) and the estimated parameters (à). Using (2.6) and Lyapnnov st.ability

criteria the adaptation law is derived as:

(2.7)

•

where r is a positive definite gain matrix, and El is a filtel'ed joint el'rol' measure.

The Craig et al. algorithm was pivotai 1.0 adaptive control in robotics becanse il Wl.~

the first algorithm which did not add constraints 1.0 the nonlinear dynamics aud, most

importantly, had a global trajectory convergence proor.

Unfortunately, from an applied perspective, the Craig et al. algorithm hll.'l two major

limitations, both evident in (2.6) and (2.7) .

• Inversion of the inertia matrix (M) is required. Although physically the iuertia

matrix is always positive definite, there is not a guarantcc that the t'Stimated iuertia

matrix Ù will also be positive definite. This is especially truc at startup wheu

parameters arc assumed unknown. Therefore, NI must be monitored for positive

definiteness.

• Measurement or estimation of joint acceleration is required. Accelemtion rnell.'lUrt~

ments are notoriously noisy; hence thcir use in control can cause loss of performance

and even instability.

Simulation results nevertheless, showed that under ideal conditions the adaptive con­

troller was superior 1.0 that of a c1assical PD controller for a two Iink robot.

With respect 1.0 potential application in calibration techniques, the Craig et al. algo­

rithm is not satisfactory. Despite the use of the robot dynamic model, there is no guarantt'C

8



• 1. gVOLUTION OF ADAPTIVE CONTROL IN ROnOTICS

tliat tlie dY/larnic pararneters of tlie system (û) will cO/lverge to the pliysical values. lt cau

be sliown i/l simulatio/l tliat for a two degree of freedom robot, tlie parameters of the system

rarely converge to tlieir silllulated values. Therefore, the lack of guarantee of parameter

convergeucc excludes tlie Craig algoritlim fOl' calibration metliods.

1.4. The Adnptive Control Methods of Slotine and Li 'l'lie implementatiou

problems ;L<;.~ociated witli the precediug algoritlim motivated the work of Slotine and Li.

lu [41], [42], aud [44] a globally convergent adaptive controller is developed which does

uot require inversion of the inertia matrix or measurement of joint accelerations. The

tlieoretical background to tlie Siotine and Li adaptive control tecliuiques is given in Chapter

:J.

'l'lie original Sioti/le and Li algorithm in [42] and [44] is similar to the Craig ct al.

algoritlim because tliey both use tlie full robotic dynamic structure in the regressor form,

a/ld tlie parameter update algoritlim is driven by joint tracking errors. However, tlie Slotine

aud Li algorithm does not attempt to feedback Iinearise tlie system. Instead, the algorithm

is ccntred about au important property of the robot dynamics.

It was sliown by Koditschek [25] that the matrices M and C in the robot dynamics

(2.1) are not independent. Due to conservation of energy, the derivative of the system

kiuetic energy, equals the power input to the system. This implies:

(2.8)

The gravity term is subtracted from the torque input since G(e) is a potential energy

term. The implication of (2.8) is:

(2.9) OT (~M(e) - C(e, 0)) 0= 0

•

'l'lie expression !M(B) -C(a, 0) in (2.9) is therefore skew symmetric. (A l'roof is given

in [48] page 143.) Using the property of (2.9), the controllaw is derived using Lyapunov

stability theory without the requirement of inverting the inertia matrix. Measured joint

acceleration is eliminated from control by defining the joint errors on a sliding surface.

Tliis property of the control law is explained in detail in Chapter 3.

The Slotine aud Li method, as with the Craig et al. method, falls into the category

of direct adaptive control. The term "direct" is used because the adaptation is driven by

crrors in joint tracking.

9
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The Siotille alld Li aigorithlll, although glohally cOllvel'gl'lIt, did Ilot l'IISUI'l' parallll'tl'I'

cOllvergellce. Therefore this algorithm alolle is Ilot useful for calibmtioll. 11OWl'Vl'l' , rl'sl'arch

in iruliJ'Cct adaptivc cont.rol provcd that paramctcr convergence (~ot1ld lu.' gllill'ilntcl'd.

1.5. Indirect Adaptive Control of Middleton and Goodwin AIt.hough still

a STAC algorithm, the algorithm of Middletoll alld Goodwill dill'ers from tlll' pl','viollS

algorithms because the adaptive coutroller is drivell Ilot by joillt trackillg el'l'Ol', bill. by

torque erraI' [29]. This is achieved by comparillg the torqlle applied 1.0 thl' systl'm with the

estimated torque based on the robot model. The result is an adaptivl' "olltrolll'i' focussl'd

on minimising the erraI' between the model parameters and system parameters ratl",r t.han

trajectory t.racking errors. Global t.racking ability is proved in [20), but inversion of t.he

inertia matrix is required. By using a first. order stable filt.er, it is shown that use of

measured joint acceleration is not required. This idea was later used by IIsu cl Id. [23) in

a continuation of the Craig cl Ill. controller featured ill Section 1.:1.

1.6. Composite Adaptive Control of Slotine and Li Composite Adaptive Con­

trol is the amalgamation of indirect controllers [27) [28] (29) and the direct adapt.ive con­

trol methods [41) [42] [44]. This amalgamation, known as composite adapt.ive control,

appeared in [43] [45] [46]. Composite Adaptive control methods were shown to guarautcc

both tracking and exponential parumeter convergence under excitatory conditions. The

algorithm also maintained the l'l'opel'tics of requiring ncither measurement of acceleration

nor inversion of the mass matrix.

An important improvement of this generation of adaptive controllers is that the speed

of convergence was no longer dictated by a constant gain matrix. Originally, the rate

of parameter convergence was set by a positive definite gain matrix P. Theoretkally,

the larger the magnitude of P, the faster the convergence. (In practice however, an upper

bound on Pis necessary due to noise.) By making P timc-varying, the spccd ofconvergence

couId be adjusted depending on the current conditions in the system. For example, if the

parameter estimates are oscillatory, then P must be 10lVered; conversely, P should b~

increased when parameter movement over time is small. A mathematical treatment is

given for these concepts in Chapter 3.

Composite adaptive control gives both convergence in joint tracking and system param­

eters. This makes it useful for calibration methods. What is more, without the Ileccssity

of inverting the inertia matrix, or measuring joint accelerations, the algorithm is suitable

for implementation on a l'cal robot.

llJ



• l, EVOLUTION or ADAPTIVE CONTROL IN ROBOTICS

1.7. Ot/1er Issues in Adoptive Control There has been much research into sta­

bility aualysis and robnstness of adaptive control; so much so. the term robust adaptive

"ontroll",s hccn coined as a distiuct research field. The bulk of this research is concentrated

ou Hnding cxcitatol'y trajectories and diminating instabiEty duc to unmodeled dynamics,

noise, and Lirne varying system paralllctcrs.

1.7.1. 'lh/jcct07'Y lssuc", One of the major concerns associated with adaptive con­

trollers is that they require the system ta be reasonably active. ln non-excitatory condi­

tions, Înaccllracics in the model can rcsult in pOOl' paramctcr convergence or paramctcr

drift, ultimately leading to instability.l This can be explained by noting that the adap­

tation schemes arc b'lSed on dynamic properties of the system. Therefore if the dynamic

content of the system is predorninantly duc to noise, then the adaptation will lock onto

the dynamics of the noise rather than the joint feedback.

An cxarnple of instability duc an absence of an excitatory trajectory is given in [47].
They show Rohrs' example in which a !inear system, plus an unmodeled dynarnic clement,

is subjected to a slow trajectory [38].

ln the Rohrs example, the aetual plant is described by:

1
- 2 229 U

(2.10) Y(1') - l' + 11'2 +301' +229 (1')

I1owever, the adaptation mechanism is based on a first order model, and hence does

not consider the higher order dynamics of the plant. The first order system is described

by:

(2.11 )
k

llo(1') =­
1'+a

•

where k and a arc the parameters of the system to be estimated.

The unmodeled poles at -15 ± Ij, although very damped and at a rclatively high

frequency, cause problems in slow trajectories. ln simulation, a constant input command

is given with additive noise in the form of a sinusoid with a frequency of 16.1 radians

a second. Over a period of just 60 seconds the trajectory output goes from stability, to

oscillatory, and ultimately becoming unstable.

For this reason there has been much research into minimally acceptable trajectories

rl'<luired for adaptive controllers. This has been done by Armstrong who delined a condition

measure for a trajectory, and used it ta optimise existing trajectories [1]. However, when

this paper was publishcd the algorithm took over one hour ta optimise just one trajectory!

1An effective fix for parameter drift is to introduce a dead.band to the parameter update law.

11



• 1. EVOLUTION OF ADAI'TIVE CONTIlOL IN 1l01l0TICS

Al'mstrong's results al'(' not explained l'mm an intuilivl' lel'el. <:raphkally his l'l"

sults show the original siugle l'reqll<'ncy siuusoid trajedory being optimised iuto a multiph'

l'requency trajectory, This l'requency contt'nt issul', largdy ovcriookl'd by Armstrong, il'

repolted in Boyd and Sastry [6] [7J. They show that for a "th order Iil\('al' system, thl'rl'

must be al Icast 211 discrclc frcqucncics for piHamctcl' convergelll'c. \Vllal is lIIort', if t.lwl'l~

arc less titan 2n discrctc frcqucncÎcs, the paramctcrs will (~()Ilvcr~(' tu a. HlIhHpal'P nI' tilt'

pammeter solutions. There is still no prool' of sueh a condition l'tH' !\o1nlilll'al' systems,

however it is generally accepted that the trajectory should he l'rt'queney l'kh.

It is possible to measure the richncss of a trajedor)' /I{I). That al'e ~eVt'l'a1 t'ondit;on

measures, the most widcly used being [9):

(2.12) l
'oHI

(1::; Y'/'(/I,iJ,ii)Y(/I,iJ,ii)dl::; 'If
'.

•

where Y represents the system dyuamics, aud (, If, and 01 arc positive. In the ea"e of

regressor techniques, Y would be the l'cgl'essor nmtrix.

The neccssity for trajectory richness has been one of the main retardants in preventing

adaptive control being widely used in l'cal systems. With respect to rohot calihration, this

is not a crîtieal problem. This is bccause autonomotls ca.libration is iL scparatc stage of

robot operation; therefore the calibration algorithm can chose ',n arbitrary trajectory. Fol'

this reason, one of the major setbacks in adaptive control is effectively hypassed.

1.7.2. InstClbility Issues Most of the adaptive controllers, including the ones studied

in this and the proceeding sections, assume that the parameters of the system arc time

invariant. This is a critical assumption necessary to perform the I.yapunov and passivity

analysis. For this reason there has becn much research in the effect of the hreakdown

of this assumption and the possible solutions to it. Reed and loannou mise the l'ollowing

question, What happens to a nonlinear adaptive controller when the model does not match

the plant or when the parameters are time varying [35] [36)'! They show that a bounded

disturbance produces a bounded output disturbance. Based on this finding, they d"rive a

controller designed ta be more robust ta such disturbances. (No experimental results are

given.)

1.8. Summary The evolution of adaptive control has matured l'rom conservative

Iinear systems in the late seventies ta multi-input mulli-output time varying nonlinear

systems in the mid eighties. The convergence of bath system parameters and trajectories

makes such methods applicable ta calibration schemes. Fortunately, calibration techniques

12



• 2.•JOINT CALII3RATION TECHNIQUES

eôu, specify arbitrary trajectoriesj thus by-passing one of the major stumbling blocks in the

l'radical application of adaptive control.

2. Joint Calibration r.rechniques

The importance of joint calibration in rc.uotics cannot be understated.2 An uncal­

ibrated robot renders most cont.rol schemes inoperable. For this reason, thcre has been

much research Jirected toward calibration of various robot components including: position

,nnsors, force sensors, dynamic properties, and kinematic properties. In general, calibration

sdlC/IIes aim to lind either kinematic and joint sensor properties, or dynamic properties.

The algorithm presented in this thesis breaks this mold somewhat by linding joint sensor

and dynamic properties together. The kinematic and joint sensor calibration algorithms

discnssed in this section arc listed below.

• l'r~~set position (Open loop) calibration.

• Constrained calibration.

• Metrology based calibration.

These topies serve to iIIustrate the issues and problems associate:1 with joint and

kinematic calibration.

2.1. Open Loop Calibration Open loop calibration schemcs require the manipu­

lator to be set in several known configurations. Using the known end-effector position and

joint sensor data, the forward kinematies problem is solved such that:

(2.13) ,;; = fla, 01, d, 0)

•

where x is a fi component vector made up of three translations (x, y, and z) and three

rotations (roll, pitch, and yawl. a, 01, d, and 0 represent Denavit Hartenberg parameters

which deline the position and orientation of each joint of the robot in space. Other con­

straints can also be added to the problem, in particular, non geometric constraints such as

backlash, sensor gains, and elasticity [18].
The Ji.Ml.antage of the open loop method is that a measuring system is required to

perform the calibration. For this reason, c10sed loop methods have evolved.

2.2. Closed Loop Calibration Methods Closed loop calibration methods (for

scriallink robots) constrain the robot, normally at the end-effector, to the environment [5]

2110llerbach and Iluntcr in (20J stBle: "Wc ahould expect to spend most orourc:'I:perimentai effort in calibration•
rt'Illtively leu in actually ronning the experimenta in robot contro""

13



• 2.•JOINT CALIBRATION TECHNiqUES

[18]. Therefore the rooot and the environlIIent fOl'ln a c10sed loop. The calibration is then

performed by 1II0ving the robot joints wh Ile the end crfector renmins Iixed.

One to the c1osnl'e of the rooot loop throngh the environlllent (2.1 :1) now bewnll's.

(2.14) 0= f(n, n, d,II)

The parameters of the system arc estimated based on the consistency of (2.1'1).

The advantage of this method is that external measnrelllent is not. reqnired. 1I0wev()l'

it is still necessary to physically constrain the rooot, lIIaking any c10sed loop algOl'it.hlll not

truly autonomous. Unless an additional passive linkage is nsed, the robot lIIust, also have

some redundancy to allow the joints to move whlle the end erfector is at the fixed position.

From the perspective of joint sensor calioration, closed loop lIIethods were shown to

give pOOl' estimates of the gain parameter n, which relates joint sensor outpnt If aud joint

displacement or angle Il in the equation [31]:

(2.15)

•

The requirement of fixing the end-erfector is impractical for non-redllndant rooots.

For this reason, researchers have developed methods which constrain sOllle of the degrees

of freedom at the end-effector whlle others arc allowed to move in free space. This is

possible because the forward kinematics equations in (2.13) represent six eqllations. By

eliminating some of the forward kinematics equations, less degrecs of end-erfector frccdolll

need to be considered. For example, Newman and Osborn use a laser oeam on which the

robot end-effector is position seI'voed [32]. By tracking the straight Iight oealll, the task

is reduced to just two dimensions. Collected data, from the straight line tracking, is then

fit to the kinematic model. The advantage of such a system is its simplicity and low cast.

Aiso no external measuring is required.

An interesting use of closed loop methods has bccn shown in parallel manipulators,

specifically parallel mechanisms which have at least one degree of nctuator-sensor redun­

dancy. An example of an actuator and sensor redundant mechanism is the lIayward hy­

draulic robot shoulder which has three degrecs of freedom, but four hydralllic actuators

and four position sensors [14]. Due ta the redunrlancy and closed kinematic loops inherent

within the mechanism, there is no longer a need to clamp the device, allowing closed loop

calibration procedures ta be used in a truly autonomous fashion. Examples of using closed

loop calibration techniques on this type of mechanism can be found in [21] and [31].

14
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2.3. Metrology Baaed Calibration A significant brancll of robot calibration is

blL,ed on melL,n ring sorne or ail of the position and rotation com ponents of the end erfector.

'l'his is donn by continuonsly sensing the position and orientation of the end-erfector while

the l'Obot is moved in free space. Using these external measurements (X), the forward

kinematic equations in (2.13) become:

(2.W) o=J(Cl, n, d, 8) - X

Them al'e six closed 1001' equations in (2.16), therefore it is possible to eliminate up

to rive of the these eqnations for calibration. This is important because the complexity

and cost of the me'L,uring system generally increases with the number of clements in X.

Nevertheless, kine/llatic calibration schemes have been adopted which /lIeasure ail six of the

position and orientation components of X [34]. This method, as with the majority of the

metrology based methods, uses laser Iight in conjunction with interferometry to measure

position and orientation. In contrast, Tang and Liu present a metrology based method

which /lIeasnres just one degree of frccdom [49]. Renders et ,,/. address the problem of

/lIeasurement eqnipment cornplexity by focusing on straight line motion only [37].

2.4. Other Calibration Techniques The bulk of research in calibration has been

in the preceding areas, however there has been work in other techniques which do not

fall into the categories already discussed. Most notably screw axis tech niques [8] [30] and

.Jacobian based calibratiou techniques [4] [19]. The .Jacobian techniques are interesting

because they do not use the forward kinernatic relationship common to methodologies in

the preccding section. Instead, they focus on the relationship between joint velocity (IÏ)

and Cartesian and angular velocity \1, or joint torque rand Cartesian force and angular

torque F. These relationships arc specified through the Jacobian matrix J,

('Uï)

(2.18)

.Y =JIÏ

r=JTF

•

l3y using the inpnt output relationships in (2.18), the clements of J arc estimated

using a minirnization strategy.

2.5. Summary The calibration ideas presented in this section arc by no means

exhaustive. \Vhat is common to most of these algorithms is the requirement of equipment

which is not "standard" with the robot; for example, lasers, torque sensors, and clamping

points. Also, ail of the algorithms do not estimate the parameters on-line. Rather, data

points arc collccted and then proccssed using minimization strategies such as least squares
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minimization. Alt.hongh t.he algorit.hm prl'scntcd in this t.h,'sis dol'S not. at!.l'mpt to calibra!.,'

kincmat.ic paramctcrs, it. diffcrs from tbe majority of tlwsc calibration algol'it.hnls in that.

calibrat.ion is donc continnonsly on-Iinl', and nscs only position Hl'nsors fol' ,·alibrat.ion.

3. SUlluuary of Adaptive Control and Calibration Techniques

The adaptivc control tcchni'lnl's prcscnted in this chapter show t.hal, global 1II0dcl

paramctcr convergence and trajcctory convergence call he achicvcd in ail oll-Iitt(' IlDnlitll'ar

l'ont l'olier. What is mol'C, t.his l'an bc donc withont pntting physical l'l'strictions (JlI thl'

plant or simplifying the robot. modcl. 'l'Ill' global convcl'gl'ncc properl,y illlplil's that. a

pl'iori parametcr information is not rC'lnircd. Also, the adaptivc contl'OlIcl's do not. ,'e'lnil'c

human intel'vcntion or use of non staudard lIIea5uriug cquipmcnt. ThcHl' prupert.il's make

tbe adaptive l'ont l'olier autonomous. Thcse adaptive controllers howcvl'I', ail assnme that

the relationship betwccn joint sensor output and joint angle or displal'cnll'nt is known; i.e.

the robot must be calibrated before using adaptive contro\.

The review of calibration methods presented il. this chaptcr showed t.hat calibrat.ion

generally required non standard e'luipment or constraining the robol.. This l'l'l'vents the

robot from alltonomously calibrating itself. This present.s the challenge, Can a robot be

calibrated using standard joint sensors and IInconstrained environ mental interaction'! This

thesis attempts 1.0 answer this qnestion.

Although some adaptive control methods l'an calibrate robot dynamic parallleters,

adaptive control techniques have not, so far, entered the field of joint calibration. In Roth

et al. the line is firmly drawn differentiating these two fields as discrcte and continnous

events [39]. This thesis challenges this notion by nsing adaptive control 1.0 estinmte both

dynamic parameters and calibrate joint sensors.

There would appear several advantages 1.0 using continnons methods 1.0 estimate nn­

known system parameters. Specifically, l'ontinuous techniques avoid the use of discrete

least squares estimation. Least squares solutions cannot, in general, guarantee global con­

vergence, while Lyapunov based methods cano Also, continnons calibration schemes Imve

the potential 1.0 constantly monitor the robot for any deviations in robot parameters which

may signal structural, sensor, or actuator failure. This thesis presents a novel method 1.0

implement on-Iine joint calibration within an adaptive l'ontrol framework. The resnlt is an

algorithm which l'an identify dynamic parameters and joint calibration parameters without

the use of non standard equipment, physically constraining the robot, or re'luiring human

intervention.
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CHAPTER 3

Adaptive Control Algorithms of Slotine
and Li

ln this chapter the adaptive control methods developed by Slotine and Li arc discussed.

They forlll the basis of the autonornous joint calibration introduced in Chapter 4.

The basie Slotine and Li algorithrn introduces an adaptive controller whieh is globally

convergent and does not require rneasurernent of joint acceleration or inversion of the inertia

matrix. This method drivcs parameter adaptation by errors in the trajectory tracking of

Illanipulator; this is known as direct adaptive control. Indirect adaptive control methods

however, drive adaptation from prediction errors in the manipulator mode!. The focus on

model errors enables superior parameter convergence when compared to joint error driven

direct controllers. Ilowever, this cornes at the expense of trajectory tracking ability. For

this reason, "Composite Adaptive Control" was conceived; it combines both approaches

and reflnes the update mechanisms.

1. The Dynamics of a Robot Manipulator

For many robot manipulators, the structure of the dynamie equations, whieh char­

acterise the evolution of the mechanieal system subject to holonomie constraints, can be

derived using techniqucs such as Euler-Lagrange or Newton-Euler formulations [10] [48].

The dynamies equations arc most comrnonly written in the form:

(:1.1 ) T = M(II)jj +C(II, ÎJ)ÎJ +G(II)

•
where 11'1(11) is the inertia matrix, C(II, ÎJ) is the centrifugaI and Coriolis terms, G(II) is

the contribution duc to gravity, and T is the torque at the joint. The variables Il, ÎJ,

and jj arc vcctors of joint angles or displacements, joint velocities, and joint accelerations

rcspcctively. For example, a two degree of frecdom planar manipulator shown in Figure
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Figure 3.1: A Two Degree of Freedolll Plallal' Ilohot

3.1 has the dynamics1 :

+

+

(3.2)

[

2 22 2 ][ .. ]mllcl + mZ~t + leZ +2ltle2c2) 1n2(le2 + ~llc2C'l) ~l

1n2(lcZ + 't lc2 c2) 11l21c2 O2

[
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mzlllc2sz0. 0

[
(mtlcl +1nZltlYCI +mzlc2yclz ] = [ Tl ]

1nZlcZY CIZ r2

Where Ici denotes the distance from the Iink base to the celltre of 111.1.-;''' of link i, li

is the Iink Icngth of Iink i, m rcprescnts rnass, and Cl and Cl2 arc dcfil\(~d .1." cos(O.) and

cos(81 + 8z) respectively.

II, \Vas shown in Chapter 2 that, in general, the rnass and link icngth paralllctcrs of

the system must he known with reasonable accuracy 1,0 cnsure stability in cOlltrol systems

which utilise the robot dynamics. Unfortunately, these parameters are generally Ilot knowlI

and, in the case of a robot picking up a load, variable. Tlterefore the lël."ik of the adaplive

controller is 1,0 find these parameters and track lhem. ln the rorm of (a.2) it is clcar tltat

these unknown parameters are not easy 1,0 isolate for estimation purposcs. This rnotivatcs

the use of the regressor form of the robot dynamics which express the physic'Ll paramcters of

the system Iinearly with respect to the known components of the dYllamics. The regressor

rorm is written as:

(3.3) r=Y(O,O,O)il,

• IThe mode! assumes that m~ses are lumpcd into point mQSM:1l

18



• 2. 'l'liE BASIC ADAPTIVE CONTROL ALGORITHM OF SLOTINE AND LI

where the vector fi rcprescnts the physical parameters. The dynamics of the planar two

link robot wrillen i/l the rcgressor form are:

[

!J(l)~1 gCl2 O. ii. + è~ cii. + c2è~ - 820201 - 82 82
2

- 828182 ]

!J CI2 0 iil + è~ C2è'1 +82012

Tn./cl + m2/1

Tn2/c2

ml/cl +m2/r

Tn2l;2

Tn2l~2

Tn2l]lc2

•

Usi/lg the regrcssor forlll in (3.4) the unknown parameters appenr conciscly within the

ii vector. In terms of estimation. the problem is rcduccd to cstimating a.

2. The Basic Adaptive Control Aigorithm of Slotine and Li

The most important theoretical property of an adaplive control algorithm is its ability

to guarantee convergence and system stability. Thesa conditions are addressed by Siotine

and Li through Lyapunov stability theory.

Lyapunov stability theory adopts a positive definite function Vasa measure of system

energy. Although V is arbitrary, it i5 most often motivated by functions which describe

the total energy within the system. If it can be shown that the rate of change of the energy

fUllction (V), is less than or equal to zero, then the system energy is not increasing and

tharafore the system is stable. What is more, if li is strictly less than zero, or zero only

when V is zero. then the system energy will go to zero and convergence is also guaranteed.

Mathematically, this can be summarised as:

Given the System: x= f(:c, t)
\'(x,t)isaLyapunovfunctionforfonGclnn if V(x,t)::;O Y:cEG Yt~O

When deriving the adaptation mechanism using the Lyapunov technique, the controBer

mllst ensurc that the Lyapunov stability condition is met. Consequently, the choice of

l'ontrollcr is motivatcd predominantly by the Lyapunov function itself. Also, because the

choice of Lyapunov encrgy function (V) is arbitrary, the c[lntroner can, in theory, take

as many forms as there are viable energy functions. Therefore an appropriate choice of

Lyapunov function for the controller should address bath the stability constraints and

implementation issues.
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• 2. THE BASIC ADAP1'IVE CONTROL ALGOIUTIIM OF SLO'l'INE AND LI

I3efore the intl'Oduction of the original Slot.ine a.ud Li algorit.hm there were Aeveml

adaptive controllers which nsed the Lyapunov t.echnique 1.0 mect Atabilit.y criteria; however

the cont.rollers required bot.h measurement of accelemtion, and inversion of the inertia,

mat.rix.

2.1. The Interdependence of the Robot Dynnmics Ilellloving the reqnirelllent.

of inversion of t.he inertia matrix is achieved hy sni table choice of the Lyapnnov energy

function. In the Siotine and Li algorithm, the choiee is motiva.ted predominantly by a

property of the robot dynamies.

Il. has been shown that the inertia matrix M, and velocity matrix C, are not illdepen­

dent, they al'e related by:

(3.5) ~ ,~/irJ'vI(O)iJ = iJ'I'[r - G(O)]

Physieally (3.5) l'an be interpreted as:

(3.6) 'Il Kinetie Energy = Power IlIpnt
ct

Substituting (3.1) into (3.5) and expanding gives:

(3.i) ~iJ'I'MiJ + iJ'fMii = iJ'I'[Mii +ciJ]

(3.8) iJ'f[~M - C]iJ = 0
2

whieh implies that !M -C is always skew symmetrie. This property is applied within the

Lyapunov derivation.

2.2. Using a Sliding Surface ta Guarantee Trajectory Convergence It is

common, when using Lyapunov stability theory, that the strongest stability conditioll on

the derivative of the energy function Vtt) is:

(3.9) Vtt) ~ 0

Although (3.9) does guarantee stability, il. does not guarantcc the elirnination of steady

state errors. For nonlinear systems there arc several techniques used 1.0 prove that steady

state l'l'l'or can be eliminated. Most notably LaSalle's theorem whieh l'an be IIsed 1.0 show

that:

20

Since V(x,t) ~ 0 and is a positive definite decrcscent function, (3.10) illlplics that V(x,t)

l'quaIs zero only when Vix, t) l'quais zero.•
(3.10) V(x,t)=O Hf x=O



• 2, THE BASIC ADAPTIVE CONTROL ALGORITHM or SLOTINE AND LI

Unfortunatcly the LaSalle condition in (3.10) is hard to apply, especially for multi­

input multi-output (MIMO) non linear systems. Instead Siotine and Li restrict the joint

erl'ors to the sliding surface:

(:1.11) s =0 + [(pO

•

where 0 is the joint velocity error, 0 is the joint position error, fi is a constant gain matrix

which hlL~ ail eigenvalues on the right half plane, and s rcpresents the sliding surface. By

defining a virtuaJ trajectory, 0, = 0+ [(pO, it is possible to define 8, and its derivatives in

terlns of desired and measured variables.

(3.12) 8, = 8d - [(p lt 0 clt

(3.1:1) 0, = Od - [(pO

(3.14) 0, = Od - [(pO

Through the derivation of the controller in Section 2.3 it will be shown that (3.12) is not

re'luired; hence calculation of the integral term is not necessary.

Ifit can be shown that the sliding surface s -t 0 by proving V :5 0, then this will imp1y

that both position Cl'ror 0, and velocity error 0, both go to zero duc to the relationship in

(3.11).

2.3. The Adaptive Control Derivation ln this section the adaptive controller is

derived using both the sliding surface and the skew symmetric properties discussed in the

preceding sections.

Before introducing the adaptive controller derivation, it is necessary to define several

parameters. Joint error is defined as 0 = 8 - 8d. Parameter estimate error is defined as

ii = ii - ii, where â is a vector of the adaptive control estimates of the physical parameters

ii. Estimatcs of dynamics matrices are shown as, !VI, ê, and ë. The error between the

l'cal and the estimated dynamic matrices are defined as: !VI = il - M, ê =ê - C and

ë = ë - G. Therc arc also several positive definite gain matrices used in the formulation:

proportional fcedback gain [(p, velocity feedback gain /(D, and parameter gain matrix P.

The properties and affect of these gain matrices on the system are important to successful

implementation; this is discussed in Section 2.6.

The Lyapunov function candidate proposed by Siotine and Li in [42] is:

1 1 •
(3.15) vtt) =2sTM(8)s + 2aTPii

The function Vtt) is positive definite, for ail time t. Differentiating vtt), gives:

21



• 2. 'l'IlE BASIC ADAI'TIVI, CONTIlOL ALGOIUTIIM OF SLOTINE AND LI

(3.Hl)

Substituting i\olO from the system dynamics in (:1.1),

(3.17)

(3.18)

MO = T - C(O, Ô)Ô - 0(0)

= T - C(O, Ô)(s +Ô,.) - 0(0)

Substituting (3.18) into (3.16) and using the skew symmetl'ic pl'opelty of (:l.H), li(t) hl'-

cornes:

(3.19) Vtt) = s'J' [T - M(O)Or -C(O,O)Or -0(0)] +it·J'I'ft.

The input to the system T is defined as a combiuation of the feed-fol'wal'd nonline,u'

l'Obot dynamics and liuear feedback:

(3.20) T = Nior +ê(O, O)qr +ê(O) - /\/)5.

Note that in (3.20) the linear feedback term comprises both derivative and proportional

feed back because:

(3.21)

[(DS = K/) (0 + Kpi!)

= K/)i! +KpKDi!.

Applying (3.20) to (3.19) gives.

(3.22) \i(t) = sT [Ni(O)Or +ê(O,O)qr +ê(O) - KDS] + it'J'pft.

Rewriting (3.22) using the regl'essor form of the dynamics gives:

(3.23)

The Lyapunov stability criteria l'l'qui l'es that:

(3.24)

'1'0 achieve t.his condition the adaptive control must be implernented such that:

Applying (3.26) to (3.23) gives:

Under the assumption that the system parameters arc constant implies that il = O. This

leads to the parameter update law,

•

(3.25)

(3.26)

, 'J' •• ..
Pa + y (0,0,0" Or)s =0

, -1 T ....
a = -1' Y (8,0, Oro Or)s
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• :L INDIRECT ADAPTIV8 CONTROL METHODS

(a.27)

Usi/lg (:J.27) and the slidi/lg surface defined in (3.11) both stability and trajectory

conVC!fgence is shawn. Since V(l) ~ 0 and V(t) is lowcr bounded by 0, this implies that

the cncrgy converges to cithcl' 0 or a fiuite positive constant. This convergence shows from

(:3.27) that ."1 ~ n. Since s ~ 0 both 0 and iJ converges to 0 as t ~ 00. Therefore global

joint trajcctory convergence is ensured. A detailed proof of the trajectory convergence is

give/l i/l [42J.
Examinatioll of the control input in (3.20) and the parameter updatc law (3.26) shows

lhat acceleration measurcments and inversion of the inertia matrix 1\JI(O} is not required.

3. Indirect Adaptive Control Methods

Indirect adaptive control methods drive adaptation by monitoring prediction error in

the estimatcd robot model.2 The consequence of using model prediction errors is that

therc is a greatcr emphasis on parameter convergence than trajectory convergence which

WM the focus in Section 2. In this section the methods used in indirect adaptive control

arc cxplained. Specifically, the form of the parameter update law, which differs from

direct methods, and the methodology used ta avoid measurement of joint acceleration is

introd uccd.

3.1. Filtering to Avoid Measurement of Joint Accelerations Indirect adap­

tive control methods also adopt the regressor form of the dynamics to linearise the unknown

parameters in terms of known measurements, such that:

(3.28) T == y (0, iJ, Ô}a

Measurcment of joint acceleration in (3.28) is avoided by filtering both sides of (3.28)

with a first order stable filter of the form:

(3.29)
b

F(s) =­
s+b

where b is a positive constant and sis the Laplace operator. The application of the tilter

can be viewed frorn bath the frequency domain and the time domain perspective. Applying

F(s) ta bath sides of (3.28) gives:

2This dirrers rrom the direct adaptive control methods which use joint tracking errors ta drive adaptation.•
(3.30)

F(S}T = F(s}[M(9}O +C(iJ, 0)9 + G(O)]

= F(s)[C(9, 0)9 +G(O)] + F(s)M(8)O
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• a. INDlltECT ADAPTIVE CONTHOI. METIIODS

Manipulating the last tenll ill (3.30), IIsl1 ct Ill. show (23}:

b .. bs . b '.
(3.31) -M(O)O = -M(O)O - -M(lI)O

s+b s+b s+b
Altel'llativcly, the filterillg action l'an be analysed in the time domaill by ,'onvollltion

[47]. Applying a filter 1(1) to the acccleration dependent term in (:l.ao):

1, .. . l' cl .1(1 -1')M(O)O,b' = I(I-I')MO I~ - -1.[M(II)O]cl'·
o u (1

= I(O)AI(O)O - I(O)M[/I(O)]O(O)

(3.32) -1' [/(1- ")Ù(O)O - j(l- r)M(II)M(II)IÎ] ,b'

The filtered dynamics l'an now be deflned as:

(3.33) F(s)Y(O, 0,0) == W(O,O)

The filtering technique relinquishes the nccd to measnre joint acccleration; however,

this comes at the l'ost of loosing higher frequency content. For this reason it is important

that the bandwidth of the fIIter includes the core dynamics and modes of the system.

3.2. Indirect Adaptive Cantraller Parameter Updnte A mea"n!'e of error for

the system model l'an be defl ned as:

(3.34) c = F(s)Y(O, 0, O)â - F(S)T

(3.35) = W(O,O)â - W(O,O)a

(3.36) = W(O,IÏ)â

When implemented, anly (3.34) is used. Physically (3.34)-(3.:lü) deline tbe prediction

l'l'l'or between the torque applied to the system and the torqne which wonld he applied,

based on the position and vclocity of the robot joints in conjnnction with the cnrrent

parameter estimates. From this deflnition of system error c, indirect adaptive controllers

are derived.

The method of parameter update adopted in this research for indirect adaptive control

is based on least squares minimization. Parameter update is governed by the minimization

of(47]:

24

Expanding (3.37) and differentiating, the parameter update formnla is derived as:

•
(3.37)

(3.38)

J = 1'111'(1') - W(r)â(I)1I 2 clr.



• 4. COMPOSITE ADAPTIVE CONTROL

wherfl the time varying gain matrix Ptt), is updated based on:

(3.30)

Siotine and Li show that parameter error à, converges to zero under persistently ex­

citing conditions (27).

4. Composite Adaptive Control

The composite adaptive controller combines the parameter estimation abilities of both

the direct and indirect adaptive controllers. The controller framework remains the same as

the original direct adaptive controller introduced in Section 2, but the parameter update

law is now modified to (46):

(3.40)

•

ln (3.40) the parameter update of (3.26) and (3.38) are sim ply concatenated. Their

contributions arc weighted by positive d,~finite matrices CI and C2 •

Success of the algorithm depends gl'eatly on the update of the gain matrix Ptt).

Intuitively, large magnitudes of P will enable faster convergence. However, there is a

functional upper-bound imposed on P due to sampling and noise. This is because the

parameters should not change faster than the bandwidth of the system. Also a large P

will cause parameter update to be driven by system disturbances. When there is a lot of

movement in the model parameters, P should be low enough to prevent parameter estimate

oscillations. Conversely, when system activity is low, P should be increased to stimulate

parameters out of the lull. '1'0 achieve these properties on-Hne, without using thresholding

heuristics, Siotine and Li modify the basic least squares formulation.

ln [27] and [46), Siotine and Li analyse the properties of the least squares update

formula with respect to robustness, parameter convergence, and time varying parameters.

In particular they found that:

• By minimising the error with respect to à(t) over time, spurious errors due to noise

are averaged out. This is important for robustness.

• If the system is "persistently exciting" the parameter error à --+ O.

• The least squares update responds slowly to time varying parameters because of

the memory inherent in the time dependent least squares formulation.

Siotine and Li also found that under persistently exciting conditions the gain matrix

Ptt) --+ O. For this reason, Stotine and Li developed a modified gain update algorithm
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• -1. COMPOSITE ADAPTIVE CONTIWL

which introduces a forgetting factor to the least squares formulation and intrinsically puts

a bonnd on the gain matrix Ptt). The "bounded-gain-forgetting" (BeF) method is given

as [46]:

(3.41)

where:

(3,42)

'll p-l (t) =-A{I.)p-1 +W'l'W
<t

A(t) =Au{l - ~)
ku

•

Equations (3,41) and (3,42) arc the result of the limitations found in previons npdate

laws. The product W'l'W is the solution to the least squares minimization problem of

the actual and computed joint torques. This is also known as the covariance matrix in

Kalman filter theory. In equation (3,41), the the term -A{t)P-1 is inserted to achieve

what is known as a forgetting factor. This forgetting factor is reqnired becanse of the

Infinite integral condition:

(3,43) Iim rt
WTWc/t -} 00

1-+00 Jo
This implies that without a forgetting factor, P will become very smail and of Iittle

use. By using (3.42), the parameter update gain is gradually reset by the term Aup-I and

kept from becoming to large, I.e. unbounded, by {Ao/ko)IJP,1)P-I.

It is shown that under excitatory conditions the composite adaptive controller at­

tains exponential trajectory convergence and global parameter convergence. This result is

important because it can be used as a basis for calibration algorithms.
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1. MOTIVATION FOIt AUTONOMOUS .JOINT SENSOR CALII3RATION

CHAPTER 4

Autonomous Joint Calibration Using
Adaptive Control

T!Je Composite Adaptive Controller ofSlotine and Li accomplishes several important tasks

within one package.

• By ntilising t!Je manipulator model, useful insig!Jts can be drawn from the control

of the robot.

• T!Je algorit!Jm is not a computationally expensive, it is sympathetic to practical

limitations (acceleration measurements and matrix inversion), and is robust.

• It achieves y/aboi parameter convergence. This makes the algorithm an estimator,

as weil as an adaptive controller.

For these reasons, the composite adaptive controller is attractive for use on real robot

systems.

The global convergence propcrty is a powerful result whcn one considers thc non­

Iinearity of robotic systcms. 1I0wever, in its prescnt form, the controller requires that

t!Je rclationship betwccn joint scnsor output and joint anglc to bc known a priori. It is

apparcnt that the global convcrgcnce propcrties of the adaptive algorithm could be uscd

lo cstimate not only the robot dynamic properties, but also calibrate the joint sensors.

1. Motivation for Autonomous Joint Sensor Calibration

Motivation for autonomous joint calibration can be lookcd at from several levels.

1.1. Humans and AnimaIs As humans, we take for granted our ability to contin­

uonsly adjust and rc-calibrate our own joint sensors. The first stages of this calibration is

exhibitcd in babies when they wave their arms around in a semi-controlled state. This has
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also becn shown in adllils who have becIl forced lo re-Ieal'u mO\'('llIcul ..flm ail acddt'ut.

Althollgh hUIIHUl acluators and Hellsors am very dHl'crenl 1.0 the Ol\l'S IlHl'l1 in 1'000ts, the

principle of li"' rnillg thl'Oligh euvironlllcntal iuteractiou, Ilset! iu hlllll<\l1 and lIlIimal cal­

ibration, shollld be applicable in roboties. It see1ll8 feasible that a robot t'ould also 1'\('11'

calibmte both joint sensors and dynamic parallletel's thl'ollgh ellvirollllwnl..\1 illtt'l'aet.ion.

1.2. Relinquishing the Necessity for ~~Non-Stnndnrd"Equipmcnt 111 Chap­

ter 2, severai calibration algorithms were introt!nced wllich ,'e<JlIircd dt.her 1I0n-st.andard

equipment, such as laser tracking systems, or l'equircd conslraillts on the lIlaniplllator sueh

as fixing the end-errectol' of the manipulator. For ind ustrial applimlions in JlIngerolls cn­

vironments suc\' as space or nuclear power plants, this is not li slIfliciellt sollltioll. A1:-;0,

from the comm~ ;.cial perspective, the user should Ilot havc to clamp the robot or purcha..'lc

extra cquipmenl. What is more, in the event of sensor drift thcse IIIcthods do Ilot hav~

potential to alltomatically sensr. or rc-calibratc on-Iinc without causin~ inconveniellce ta

the opel'ator.

A robot system ideally 8hould be self containcd and Ilot reqllire external intervcntion.

(Exhibited in humans and animaIs.) This implics that aulonolJlons calibmtion techniques

should take advantagc of the intrinsic and predictable forces in nature which arc avaihLblc.

Therefore t.he goal of this rcsearch is to dcsign a control system which, when powered

up, will be able to calibrate both joint sensors and dynamic propertics witliout hllllHLn

involvcment.

1.3. Combining the Various System Gains and Biases Itobotic systems are

composed of many componcnts, cach one having sOllle dcgrce of inaccuracy. The adaptive

controller of Siotine and Li exhibits many advantages in this respect hecause il. effcctivcly

lumps these biases and gains togethcr. Therefore during control, these errors .Lre taken

into account intrinsically.

Figure 4.1 shows a block diagram of a computer controlled rohotic system. For CtLch

device in the system therc is an crror associated with it. For the most part the erraI' is

Iincar \Vith respect to the desired function. t For examplc, the desircd voltage output (\I,J;:.. )

and real output (Vou,) of a digital ta analog converter (DAC) can he related by.

• 1At the outer limitll or the hardwBR'" operMion~range lUlturation orten occura.
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~-------------------.,

DAC
Current

lAmpllfiers Actuators
ad ,J\j a, ,p, ~.Pt

Ydes Robot,

Position

$
Sensors -

MICRO- ao.Pn- AOC
PROCESSOR aa·Pa rn- Velocity

Sensors -
a.. ,p"

PLANT1. _

Figure 4.1: Errors Introduced by Hardware in a Robotic System

This assumes a linear relationship between Voul and Vd•• which is defined by the gain

constant crd and offset /3d. Using Figure 4.1, the effect of the errors from the micro­

processor to the output in the plant become:

(4.2) 'r = crT(crj(crdVd•• + /3d) + /3d + /3T

(4.3) = crTcrjcrd\/d•• + crTcri/3d + crT /3i + /3T

(4.4) - cri Vd•• + /31

Silllilarly, the path from the robot sensors to the microproccssor can be written as:

PmealJ = cr.crppo• + cr./3p + /3.

(4.5) - crpo.po• + /3po.

and

VELmeaa = cr.crov", + cr./3o + /3.

(4.6) - cro.1 v", + /3oel

The adaptive controller enables the various gains in the robotic system to be seen as

one lumped and cquivalent gain. (As in (4.4), (4.5), and (4.6).) Ideally the DAC, AOC,

and motor gains (cr's) will have a value of unity, and their offscts (/3's) will be zero. The
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G

Figure 4.2: A Single Link IImnipulator

joint sensor gains and offsets however, can take a wide range of valucs. COlllbining ail tlu.'se

offsets and being able ta autonomously rc-calibrate is useful becaustl the robot pamlllctcrs

arc round as a function of ail the system componcnts. Also, the avcraging crrecL in adaptive

control allows for the bcst fit over the cntire system range.

2. Using Gravity as a Reference for Calibration

The adaptive control of Siotine and Li uses the robot dynnmic model; titis cllë~blcH

prediction of nonlinear robot behaviour. Intuitively, this predictable bclmviour should nlso

be utiliscd in joint calibration schemes in an attempt ta achicvc an autonomolls nlgorithm.

When examining the various forces which arc applied to the robot system, gmvity

stands out as being the most prcdictable and most reliable of thcse forces. Using gravity

as a rcference, it should be possible ta find the relationship bctween joint sensor output

and joint angle.

Ta simplify the derivations and issues involvcd in joint sensor calibration using adaptivc

control, a single link manipulator is uscd. The single Iink manipulator shawn in figure 4.2

has the dynamic model:

where m represents the point mass of the manipulator, le is the distance from the joint ta

the centre of mass, 9 is the acceleration constant due to gravity, 0 is the joint position, Md

Dis joint acceleration. The dynamies in 4.7 can he rc-writtcn in the regressor form.

•

(4.7)

(4.8) [ .• ] [ mf
z

][Tl = 0 gcos(O)
mie



(4.14)

•

•

2. USINO ORAVITY AS A REFERENCE FOR CALIBRATION

The modcl in (~.8) is the rcgressor model which would be used in the standard 510­

tiue and Li composite adaptive control. Most importantly, (~.8) assumes the rclationship

betwccu sensor output aud joint augle is known.

Assumiug a Iillear relationship between the joiut angle (J, and the sensor output q

gives,

('l.9) (J = aq +{3

('l.IO) il = aq

('1.11 ) ij = aij

where cr represents the unknown joint gain (Degrees/Volt), and (3 is the unknown joint

sensor offset (Degrees). Substituting (~.9)-(~.11) into (4.8) gives:

[Tl = [ij ycos(aq + (3) ] [ aml~ ]
mie

From (4.12) the unknown joint angle parameters of the system (a, (3) cannot be

extracted usiug the regressor form.2 The fundamental problem in this formulation is the

trausccndental cosiue function. The a and {3 terms cannot be written Iinearly with respect

to the joiut sensor values.

An iutuitive solution to this problem is to expand the cosine term in (4.12) using weil

known trigouometric expansion formulas. Unfortunately this approach can only isolate the

offset term (3. For example,

cos((J) = cos(oq+{3)

= cos(oq) cos({3) - sin(oq) sin({3)

Substituting (4.13) into the regrcssor matrix for the single Iink robot gives,

[Tl = [ij ycos(oq) -9 sin(oq) ] [ ml:~!({3) ]

mie sin ({3)

Using the formulation in (4.14) the sensor offset {3 can be found as:

(
mlesin({3))

(4.15) (3 =arctan mlecos((3)

However (4.14) rcquircs a priori knowledge of the gain constant o. In the case of

discrete incremental encoders, this simple expansion of the manipufator dynamics would

'The Ct I.erlll whidl appears in oml~ in the a vec10r cannot be extracted because the estimat.ion proces5 will
efrr-ctively lump ail th~ parameters (m, le. and a) as onc term.
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be adequate (sinee the joint gain will be always be constant), howcvcr in systems which

use analog scnsors this is not possible. 'l'a perforlll a truly ;\IltOllOIllOllS calibratioll, (\' must

also he found using the adaptive control proeess. '1'0 accomplh;h thii'l task, a. lIe\V ilpproach

is required to ovcrcomc the problem illlposed by the tl'ansccndcntal ('llndions.

3. Introducing Polynolnial Approxhnatiol1s

ln Astley and Hayward, a l11ethod for ovel'coming the transccn<lental f\lndion problcm

in autonomous joint calibration is praposed [2], The solution is ccntred around l'eplacinj!;

the cosine functians with palynomials.

It is possible, \Vith arbitrary accliraey, ta approximate segments of nonlincilr fllnc~

tians sueh as cosine and sine fundions with polynomials. For example, (,1.16) :-;hawH !.he

expansion of cos(0).3

(4.16)

where a, b, and é arc sealar constants and (0)3 represents the erraI' intro<luccd hy the

polynomial. The second order approximation is valid over one mode of the cosine funetion;

therefore the range of (J is restricted ta regian defi ned by (Jo and (JI.

By increasing the arder of the polynomial in (4.16), the erraI' betwccn the l'cal and the

approximatcd function can be made arbitrarily smalt for a givcn mnge of input values.

Substituting (4.9) into (4.16) and using terms up ta the second ordt,l' only,

(4.17) cos (0) ~ li +b(aq +j3) + r.(Ofl + {J)2

(4.18)

•

Expanding and caUecting yic1ds.

cos (8) ~ (il + b{J + é{J2) + (2éa(3 + ho) {/ + (éa2) q2

From (4.18), it can be seen than the cosine argumeut can be writteu in tenus of three

constants, !!., Q., and fi where:

(4.19) !!. = il + b{J + é{P

(4.20) Q. 2éa{3 +bo

(4.21) ~ éa2

Therefore (4.16) can be re-written as:

3Thi5 lIhould not he conrulled with a Taylor approximation which approxirnatell ft rUllctÎOII araulld ft Kiven
point. For exarnple,approximating J(:r+6:r} =J(r) + VJ(:r)Sr+ tS:rV2J(:r)S:r+(O)3. Where z =[rI r2 ... r,,)T,
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COS(QIJ +P) = cos(lJ)

= !!.+QIJ +r.1J
2 +0 3

Subst.iLutillg the cosine approximation in (4.22) to the regressor form of the single Iink

robot dynamics givcs,

Qml~

(4.2:1) [Tl = [;j 9 glJ grl]
a

b

C

where a == !!.rrlie, b == Qmle, and c == r.mle.

fn (4.23), the relationship T = Yii is now in the correct form; ail known parameters

and variables arc ill Llie matrix Y, and the unknown parameters arc in the parameter

vedor il. The condition on parameter and trajectory convergence derived in Chapter 3

rernains IInchanged because the transccndental functions arc simply being replaced by an

eqllivalent expression. This is valid as long as two conditions arc met .

• The order of the polynomial is of sufficient degree ta represent the transcendental

function it is replacing.

• The range of operation is not large enough 1.0 invoke the periodic properties intrinsic

to trigonometric functions:'

The restriction on range of operation imposed by using the non-periodic polynomial

function is irnposed only during calibration. Once the joint sensor parameters arc found,

Lhe regular manipulator dynamic mode! can be used.

Ta find the constants ll' and P from the polynomial coefficients in (4.23), sorne sim­

ple post processing is needed. After estimating the parameters lIsing composite adaptive

control for the single link case, and using the manipulator model given in (4.12), the

pararneters estimates should approximate:

(0\.2.1)

(4.25)

gmlecos( ll'IJ + P) = gmlecos(IJ)

.". 9 (a + bq + C1J2)

•
The constants Q and P can be found by equating the right side of (4.24) with (4.25)

such that:

"Pol)"nomiaillpproximations ca" approximate a nonlinear runction locall)' to an arbitrary accuracy. but they
cl\nnot replicate ils periodicity
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mie cos(O) = Cl +bq +cq2

It is neccssary ta normalise the! cosinc tel'ln by Hilding the vaille of mie in ('\.2G).

Diffcrcntiatillg bath sicles of (,1.26) and cqllating to zero:

(4.2ï) -mlesin(O) ::::: b+2cq::::: n.

Assigning ft ta the solution of (4.27) cnablcs mie 1.0 bc foulld by:

(4.28)

•

Therefore by Hnding the maximum point on the cm;ine approximatioll, t.he valllc for

mie can be found. This allows the Htting of cos(a·q + 13) ta hc indcpendellt of t.he Illas."

properties of the manipulator according ta:

li + bq + cq2
(4.29) cos(O) = cos(O' + (3) ::::: 1

me

Usillg (4.29), the value of ca5(0) can be fOlllld for allY valuc of 8('11801' outpllt. fJ. Rea.r­

ranging (4.29) ta isolate the 0' and j3 constants.

(
ii + b(1 +CfP)

(4.30) 0 =ml +,8::::: arccos mie .

Ta solve for CI' and j3 in (4.30) a curvc Httillg stmtegy is IIscd; the cxperilllclltai wark

presented in Chapter 5 uses a least squares technique. The least squares approach adopts

a Iinear system of equations in the form:

ql L O.

q2 1

[;]=
O2

(4.31)

qn 1 On

where (Ji is calculated l'rom (4.30). The nurnbcr of rows in (4.:U) is arbitmry, howevcr the

range of qi is important. The maximum and minimum values of fJ. llsed in (4.:U) shollid

not exceed the maximum and minimum values used during the adaptive control estimation

stage.

Defining the system in (4.31) as Ax = 11, the pararnctcrs 0' and fi can he round lIsing

the Jeast squares pseudo inverse formula.

(4.32)



• ~. EXTENDING THE ALGORITHM FOR THE MULTIPLE LINI< CASE

By extracting the joint sensor calibration values a and (3, plus the dynamic parameters

mie and aml~, a full calibration of the single Iink robot has been achieved. It now remains

to extend this result to the multiple Iink case.

4. Extending the Algorithm for the Multiple Link Case

Unfortunately, extending the algorithm outlined in the previous section is not wholly

straight forward. The intuitive extension to the algorithm presented in Section 3 would be

to replace ail trigonometric functions with polynomial equivalents. I-!owever, this solution

is not practical which is evident when analysing the dynamics of a two degree of freedom

robot.

4.1. Linearly Dependent Columns Within the proofof trajectory and parameter

convergence for adaptive control [46], it is not mentioned that parameter convergence also

requires full rank with respect to the colulllns of the regressor matrix. For example, (4.33)

shows the approximation of two trigonometric terms.

('1.33) [
gCI gSI ... ] ==> [g gq gq2

a 0... a a a
9 gq gq2 ]

a a a .

•

The new regressor matrix in (4.33) is rank deficient; therefore there exist an infinite

number of parameter combinations which will fit the system. For estimation purposes this

breaks down the fnndamental parameter convergence premise which the calibration scheme

requires.

4.2. Frequency Doubling When considering multiple links, components in the

regressor matrix often require the cosine or sine of the difference or sum of two angles.

This has two adverse effects.

The degree of the polynomial required to model the expression must be 'luite high.

For example, using a polynomial of degree two to re"resent the function cos (Ot}, means

that a polynomial of degree 4 is required to model cos (01 + (2 ), i.e.

cos(ot} '" a +bql +cqf

(4.34) cos(O, +(2) '" a +bql +cq~ +dq2 +eq~ + fqlq2 +gq~q2 +hM~ +iqlq~

However, the major cost of (4.34) is the that the term cos(O! +(2), which in the

regular dynamic model required just one unknown parameter, now requires 9 parameters.

This increascs the burden of computation by approximately 92 times; with respect to

impiementation, this is not practical.
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4.3. The Malleability of Polynomials When considming largcr systems, which

utilise severaI polynomial approximations withill the regl'essol' IImtrix, a.n intcresting situa­

tion arises. Unlike the trigonometric funclions which have a fixcd rcsponse ta a.n input, the

polynomial can shape itself ta fit many types of input output rclationships, PolynOllli;tls

have the ability to shape themselves from a constant straight line to cxtrclI\c curv,tture.

This means that without the structure of the cosine and sine terms, the polynomhtl coef­

ficients could converge ta fit the Illodel but in an ulIprcdictahle way. This docs not IlIC;UI

that the overail dynamic rcsponse will be bad, in fact the contmry muid be t.I"W. The

polynomial based unknown parameters may be able ta f:L thel11sclvcs to the unknown ;U1d

unpredictable dynamics of the system; however this is dctrimenta.1 with ]'CSpcct ta pamlll~

eter estimation. ln essence, the rogressor matrix will loose a11 structure, normally imposed

by predictable, pcriodic functions. This would lead ta a system having propcrtics doser

to a neural network than to a calibration algorithm,

5. A Multiple Link Algorithm

From the discussion in the preceding section, it is dcar that it is not possible to si III ply

extend the polynomial approximation idea throughout the lTIultiple Iink manipulator's

dynamics. Instead, a more conservative approach is required with respect to the lise

of polynomial approximations. It is therefore proposed to split the estimation of gaill

constants (a) from estimation of offsets (13).

To show the application of the multiple Iink calibration algoritlulI, a two degrce of

freedom planaI' manipulator is uscd. Also, to illustrate the algorithm in threc dimcIJ8ional

Cartesian space, the robot is is positioned at an angle as shown in Figurc tl.a.
ln Figure 4.3 the angle "'( is fixed, and the joint anglcs are represcnted by 01 and O2 •

The dynamic model can be derived and put in the regressor forrn:

(4.35)

clil +C20; - 820291
• 2 ••

-82fh - 820, O2

(m,Icl +7Tt2Idsin("'()

7Tt 1lc2 sin ('Y)

7Tt11cl + m2I~

Tn21;2

Tn211lc2

•
5.1. Finding the Cl' Gain Constants The use of the polynomial approxÎlnatioi~

was shown in its application to a single link robot in SectÎon 3. Using thc composite

adaptive control, global parameter convergence enablcs the gaÎn constant and offset ta be

round. Since this cannot be expanded to a multiple Iink case, another approach is necded.
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Front View Side. View

Figure 11.3: 'l'wo Degree of Freedom Robot in Three Dimensional Space

A rnanipulator with n joints, can be constrained ta a single degree of freedom by

holding ft - 1 joints in a statie position. This can be achieved by position servoing the

joints at a reference position using PD or PID feedback. A single link model can then be

applied ta the constrained manipulator and the polynomial approximation technique can

be applicd as in Section 3.

For cxample, constraining the second joint of the robot in Figure 4.3 ta an arbitrary

reference position, the dynamies for the remaining joint become:

(4.36)

whcrc mr and 1er rcpresent the combination of m1J m2, lcl, and le2. This can then be

transformcd into the polynomial form based on sensor outputs q.

(,1.37) [Tt] = [ij g gql gq~ J
b

c

•
From (4.36) and (4.36) it is interesting ta notice the effect of the angle "(. The formula­

tion is not affecte<! by the robot not acting directly against gravity because sin(i) appears

ollly as a constant scaling factor. Evidently, if"( =0 then the robot is perpendicular ta the

force of gravity and the calibration is no longer possible. From a practical perspective, it

is favourable ta have the contribution due ta gravity as large as possible such that it will
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Eq~lentcentre
_...L....!IL-.L. of mass seen by joint 1

Figure 4.4: Two Degree of Freedom Robot Constraincd to One Degree of Frecdotll

dominate over ail "unmodeled" forces. From (4.36), as 'Y approachcs !l0" thc proportion of

available mass to be considered in the estimation will increase.

Using the polynomial equivalent in (4.37) gives only joint sensor gain information;

although joint offset information can be found this value is not usefnl, Figurc -1.4 shows

why.

The joint angle offset fi is no longer a predictable quantity. The centre of lIIa.'l.~, scen

by joint 1 in Figure 4.4 is a combination of the position of the centre of ma.'l.~ of link 1

(Md and the centre of mass of link 2 (A·h). Since the joints which arc bcing held arc in

an arbitrary state, the relationship between the desired joint offset and the centre of lIIass

seen by the joint can never oe known.

This is not the case for the joint gain a. /\lthough the location of the centre of lIIass

seen by the joint under consideration is arbitrary, the joint gain maintains its integrity. This

is because an angular displacement in joint l, will cause the same angular displacemcnt in

the centre of mass of joint l, joint 2, an,l also the equivalent ccntre of mas.~ offset at fi.qui•.
Using this formulation it is possible to use the composite adaptive control algorithm

using the polynomial approximations to find the joint sensor gain constants. This is donc

by using a single link model in the adaptive control structure on each joint individually.

The joints which are not under consideration arc held in an arbitrary position, thus making

the single link model valid for the multiple link robot.

5.2. Finding the fi Joint Angle Offsets For the multiple link robot it is not

possible to find the joint offsets separately because link masses will be effectively lumpcd

together when performing the adaptive control. Instead, ail the joint offsets arc found in

:l8
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OlW litep IJtilising tllC Hlethod in Section 2. This requircs knowledge of the joint gains found

IJsing the lJIethod prcscllted in tlle l'rcccdillg section.

It was lihow/l that with kllowledge of joint gains, the joint offset can he found using

identities of tlH! type:

cos(9) = cos(O'q+,8)

= cos(aq) cos(13) - sin (O'q) sin (,8)

III ('1.:18) the fi constants occlIr Iincarly with respect ta the known quantities 0' and fJ.

This cali thcn he writtcn ill the regrcssor form usillg the full dynamic mode!. The regressor

lIIatrix for the two degree of frccdom robot bccomcs:

[ uc~'"
o

[lCOS(O'lfJl +0'2fJ2) -[1 si Il (0'1(/1 + 0'2(/2) filql

[lC08(0'1(/1 + 0'2(/2) gsin(O'lql +0'2lf2) 0

0'1 ih +0'2ih
O'lih +0'2 ih

cos (0'2fJ2)(0'1 lit + Q2ih)

-·'10~'12(al (\'2 (Î2(Ît +O'~(jf +O't0'2Ql (h)

('I.:W)

- sin (0'2fJ2)(G') q) + 0'21h)

-C02 'l2 (Ot 0'2Q2Ql + O'~(it + a) 0'2 lhq2)

- sin (a2fJ2)alql + cos (a2lf2) O'irîr
(mllcl +m21t) sin(i) cos(,8.)

(mt/cl + m2/t) sin(i) sin(,8d

mt1c2sin({)cos(,8t +.82)

mllc2sin(i) sin(.8t + (32)

ml/cl + m21?
m2/~2

m2/1/c2 COS(.82)

m2/t 1c2 sin (,82)

Using the expansion in (4.39) the number of unknown pararnetcrs has increased hy

just thrcc from the original regressor matrix. Arter running the adaptive control, the offset

valllcs can he found as:

(,1..10) .81
((mllcl +m211) sin({) Sin(.Bd)

:::: arctan •
(mt/cl + m2/t) 5m({) COS(.8I)

(-1.41 ) {JI + /32
( m)lc2 sin({) sin(,81 + (82))- arctan .

m)lc2 sm b) cos(,8) +(82)

• (4,42) f32 (m21)lc2 Sin (.B2) )= arctan
m211lc2 COS((32)
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G. AN ANALYSIS OF 'l'III' .IOINT CALI\lIlATION METIIOD

It is also theoretimlly possible to obtain joint sensor information nsinv; vdodty and

accclemtion based para metel's as in (·1..\2). (Which was not l'ossi bic whl'n nsi nv; a si nv;\e

link.) 1I0wever, in practice, these tenns arc less l'eliable with respect 1.0 IlOth nllldl'ilinv;

and predictioll, hence cstablishing joint parametel' illfol'nmt.ioll in this \Vay ha:-; ilOt. hl'<.'11

pursned.

Accompanying the sensor offset values arc the dynamic pamn1<'ters of the robot. 'l'hl'sl'

l'an then be reused, along with the joiut calibration information fOI' robot control.

6. An Analysis of the Joint Calibration Method

ln the preceding sectious a new algorithm for joint sensor mlibratiou IUL< Ill'I'n 1'1'1'­

sented. It is priucipally bccu motivated by the practical constmints imposed by other joinl.

calibration algorithmsj howcvcr from il thcorctical perspective tllCl'e arc severa.1 important.

theoretical issues which l'an be addressed.

6.1. A Brief Summary of the Joint Calibration Aigorithm The alv;orithm

l'an be broken iuto two major components, estimation of the joint sensOl' gains (n), and

estimation of the joint offset parameters (fi). In se'lllence the algorithm for an 7L Iink robot

is:

(i) I-Iold, in a servo 1001', ail joints except the one under consideration. The position

at which each joint is held is arbitrary.

(H) Using the polynomial approximation for gravity tenns, operate the joint nsing a

single Iink e'luivalent model under the composite adaptive control format.

(iii) From the parameter data found in the adaptive control, a minimi~ation strategy is

used to obtain the joint gain value (a).

(iv) Repeat Steps (i)-(iii) for ail the joints.

(v) Using the joint gain information and using trigonometric expansion formuJ;L_, use

the full dynamic model in the composite adaptive control to obtain information on

joint offsets.

(vi) Process the estimations found in step (v) to find joint offsets (fi).

6.2. Disadvantages of the Joint Calibration Algorithm From a theoretical

standpoint there arc several components of the calibration structure which conld be detri­

mental to the algorithm's performance.

6.2.1. Propagation of Error The algorithm is composed of two main stages, joint

sensor gain estimation and joint offset estimation. The joint offset information re'luires
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th" joillt sellsor /laill illformatioll, alld implicitly ;.sslImes its illtegrity. III the evellt of joillt

s""sor gaill "rror (some of which is illevitabl,,), this error will he propagated alld IIsed by

t."" s,'c~OII(I sta/l'" Ther"fom t.he s"colld stagl' will be impeded from the start becallse it

d",'s Ilot n'cllÎvl' tl", correct illpllt data; this ill tllrll will affect the accllrac:y of the joillt

s""sor offset (J.

TI", extellt to which the propagatioll of error affects the overall estimatioll is depelldellt

011 the magllitllde of error beillg illput illto the secolld stage. If the error is Ilot too large

(i.l'. do"s Ilot harshly violate the dYllamic model) thell the joillt offset willtry to fit itself to

tl", mode! ill the I",st pos.o;ible f;.shioll.5 This implics that the best possible fit will be made

IIsili/l the illcorrect joillt gaill values, this amouuts to ail illtrinsic error compeusatiou within

the secolld sta/le. Ullfortuuate!y this compensation will arrect the joint orrset estimation.

(i.:.!.:.!. /lItcgrity of /JYlIlHllic Mm/cl There is an implicit llSSumption, withiu both the

ori/linal Siotine aud Li adaptive control format and the joiut calibratiou scheme presented

in this chapter, that the dyuamic model of the manipulator can be found and is accu rate.

Derivation of the dynamic mo,lel for serialmanipulators is reasonably straight forward.

1I0wever for parallelmanipulators the dynamic model can be difficult to derive. This makes

application of adaptive control methods more ih;'"lvcd bccause of the difficulty in obtaining

the dynamic modd. What is more, the complexity of the dynamics increases exponentially

with the increase in the number of joints. This is due to the coupling between joints.

Ileyond three joints, the complexity and hence the computational requirements on the

system become <luite stresscd. This situation can be somewhat relievcd by eliminating

components of the dYliamics which have relatively small contributions.

More troubling arc the forces within the manipulator dynamics which cannot be mod­

elled. Adaptive control techniques can find friction constants within the system using ba­

sic friction modds; however, complex and nonlinear friction forces, such as stiction, cause

voids within manipulator dynamic models. Hysteresis, backlash, and flexibility present

similar modelling problems. The influence of thcse nonlinearities on estimation and con­

trol depends on their relative magnitudes within the system. These forces, which cannot be

modellcd, should be expcctcd to be the principle source oferror within the joint calibration.

6.2.3. ChalllclcolI./ikc Propcrtics of the Polynomial When substituting a trigonomet­

ric term with a polynomial, two potential detrimentai aspccts are added to the system.

~The delinition of large in this context i. not intuitively cleaf because the sYltem is nonlinear.
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It has ah'eady been lIIentioned that t.he polynomial do,'. not IHlvt' a Ill'riodic propt'rt,y.

This menns that the range of mOVemcnt of a. joint. must. ue rl':-\t.rktl'd Nueh lililt. il Nl'C.'OIHI

order polynomial, for <,xa.mplc, doc::. Ilot approxilnatt' lIIore t.han one pt'ak in the (~ttrV(' il

is attempting to estimate.

A more serions conseqnence of nsing a pol.ynollliai i. that il. dm'. not hav,' ;, wdl

defined strnctnre. A second order polynomial can be stccply cnrved or liaI.. TIlt' ahility 1.0

change its form so dramatically means that il. conld also pick np, and try 1.0 approxinml.<',

unmodeled dynamics of the system. This is undesirable for the purpose of "'Ilihration.

6.3. Advantages of the Joint Calibration Aigorithm The advantages of t.\1l'

algorithm, which arc apparent from a theoretical standpoint, range from adaptiv(' t'Ont.rol

issues t.o processor requiremeuts.

6.3.1. Global Convergence The most. important propt'rty of the composit.e .ulaptive

cont.rol algorithm is exponential global parameter convergence. Without this propt'rty joint

calibration would not be possible.

The global convergence property is the distingnishing characteristic of the algorithm

when compared 1.0 other antomatic joint calibration schemcs..Joint calibration schemes.

which use a static data retrieval followed by post proccssing data fitting tœhniqnt'S. have

consistently encountercd problems in converging 1.0 the joint gain parameter, for example

[31]. Such methods, which often use least squarcs minimization techniqucs, rt'<luire ob..

servability constraints on data and initial estimatcs 1.0 prevent the algorithm converging

1.0 the trivial solution. The adaptive control bascd calibration scheme on the otllt'r hallll,

clocs nol rcquire constraints on the inpl " and will converge 1.0 the system parametcrs

lOilhoul any a priori estimate data.

A limitation of static methods is that the least S<luarcs fitLing strategies do not gnar..

antcc global convergence, particularly for nonlinear systems. Dynamic on-Iine p;muneter

estimation intrinsically averages out noise, erroncous signais. and fluctuations. In general,

olT-line rnethods do not filter out thcsc outliers causing deviations in the fit.

Cornparcd 1.0 static rnethods, dynamic on·line rnethods enable many more data 1.0

be considercd within the estimation. For cxample, a 30 second calibration, rnnning at

1kHz will consider 30,000 data points in each of position, velocity, ar.celeration, and force.

Therefore over 100,000 input data points can be considerro in the :10 seconds. Static

methods in general use in the order of 500 data points.
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G.:I.:.!. ArbilrtH'Y Clllibmlioll '/lvljeelory There has been alot of research in excitatory

tn.jectories in adaptive control and the affect of slow trajectories on stability and conver­

~cnce. Excitation problems have been one of the major detriments to the more widespread

m'If! of adaptive control.

ln the calibration framework this is no longer a problem. Calibration is considered

a scparate procedure from regnlar robot use, and therefore the optimal trajectory for the

system can be chosen for the pnrposes of calibration.

G.:I.:I. COIll]lIlllltioTlIIll'roccssillg IlclJuircmellls Althongh the adaptive control is non­

Iinear, the processing requirements arc not excessive, enabling real tim!! implementation

on mainstream compnters. Matrix multiplication and addition take up the majority of the

processing cycle. Inversion of matrices is also not required. Also, unlike static methods,

the adaptive controller does not need to store data for ail time. This enables snbstantial

savings in microprocessor memory requirements.

Another important component, with respect to processing requirements, is that that

the algorithm does not rely on any iterative procedures. This has three important impli·

catiolls.

• The proccssing time is constant for each sampling period.

• There is never a danger that the algorithm will not converge in any given cycle.

• Integrity checks on matrices and data arc not required before data processing. Since

no integrity checks arc neccssary, the computer never has to "bail out" and stop

proccssing.

These factors make the on-Iine adaptive control calibration algorithm suitable for real time

im plementation.

G.3.4. Sllfficielll Accllmcy uJith Law Order Polynollliais Ideally a transcendental func·

tion shonld be replaccd by an infinite series of polynomials. However, using a low order

polynomial gives very good accuracy.

Figure 4.5 shows the curv(' fitting ability of the function cos (0.8'1+ 0.3). For just a

2nd order degrcc polynomial the error is in the order of 2% of the total cosine magnitude

and 1% for the cubic polynomial. Therefore it is possible to achieve good accuracy using a

low order polynomial approximation. This means fewer unknown variables are required for

joint sensor gain determination, making the system less complex and convergence quicker.
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Figure 4.5: Trigonometrie Fitting Ability of Low arder Polynollliais. (a) 2nd arder Poly­

nomial Approximation of a cos(O.8q+ 0.3) (b) 3rd arder Polynomial Approxi~

mation of a cos(O.8q+0.3) (c) 2nd arder Approximation Error of cos(0.8q+O.3)

(d) 3rd arder Approximation Error of cos(O.8q + O.:~)

6.3.5. Estimation of Mass Properties A bi-product of joint scnsor calibration IIsing

adaptive control is that mass properties are also cstimated. The mMS pammeters in

the incrtia, velocity, and gravity matriees becornc availablc for other control LilSks. For

example, arter joint sensor calibration the robot can be gravity compclIs'Ltcd or Il:;cd in

further nonlinear control applications.

6.3.6. Autonomy of Calibration The algorithm is dcsigned such that no humall in­

tervention is necessary. In essence, the operator has only to power IIp the robot and
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7. SUMMARY

<:rJllIputer for calibratiou of dYllarnic alld joiut sensor properLies. The case of use ellables

(""~y re-calibratiouj thus prevelltillg seusor drift affecting accuracy and coutrol.

7. Summary

The algorithlTl presented iu this chapter euables autonolTlous joint sensor calibration

of aualog position sellsors. As a bi-product of the joint sensor calibration, mass properties

arc also esLimated, which cali be used in other control applications.

'l'he algorithm elljoys the property of global convergcnce reliuquishing the need for ini­

tiai estilllates. Also, because the algorithm pcrforms cstimation oll-Iinc, a large nllmber of

data cau be cousidered prcventing erroncolls siguals from adversely inflllcncing estimation .
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CHAPTER 5

Experimental Results

In this chapter, the theory presented in the prcccding c1mpters h; .tppliecl 011 a real robot

system. Originally the theory was testcd in simulation with excellent results. The real test

however! is the performance of the algorithm ulldcr non~idcal conditions.

The hard ware used for the cxperimcnts is c1cscrilJcd in Section 1. The prohlellls lm­

countcred durillg the transfer l'rom simulation to practice is dcscrilJed in Section 2. The

rcsults of the experiments and a discussion of results follows in the subsequent sections.

1. Hardware

The principal component of the hardware is a (j degrce of frccdolll force rellecling

/wlJlie halld controller, shown in Figure 5.1. The design was conccivcd hy Dr. Vincent

Hayward of McGiII University [15].

Figure 5.1: The 6 DOF Haptic Iland·Controllcr
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The hand controlJer is r.omprised of seve Il actuator and sensing channels. Three ehan­

n<JI1l arc llsed for translational motion, and four arc used for rotational motion. The use of

four actu~Ltors to achieve the thrce degrees of rotational freedom (roll, pitch, and yawl is

known as actuator and sensor redundancy and is discussed in [14]. [n essence, the extra

dcgrcc of actuatioJl and sensing enables balanced performance over the entire workspace

and the potential for self calibration.

The h~tnd controller is dcsigncd to emulate virtual environments in applications sueh

as teleoperation. The actuators enablc forces ta be transmitted through tendons ta the

liser. The remote placement of the actuators makes the output dcvice bath ergonomie and

light, critical fadors in hand controller design [16].

Figure 5.2 shows the functional rcprescntation of the translational stage. Although

titis lias threc degrccs of frecdom, just two arc used for the purpose of thcsc experiments.

Figure 5.2: Schematic of the Translational Joints of the 6 DOF Haptic Hand-Controller

The degrces of frœdom ccntred at A and W' are usud in experiments. The third degree

of frecdom at B is not used because it introduces a eoupling with joint At the coupling

effeet is hard to model and results in mechanical instability.l This extra degree of freedom

is eliminated by rncchanically eonstraining the joint at Bi therefore the robot is equivalent

1Th~ hlUld-i:Ontrolier ill a vnl'1lion one prototype and ia currently b~jng redesigned to eliminate lIuch probl~mll.
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to a two degree of freedom planaI' manipnlator working against gravity. The rotational

part of the device is not considered because gravity does not directly act npon il.

The force and position sensor ontputs arc sent to signal conditioning circuitry. Each

signal conditioning circuit is part of an analog control bmml which can implement forCt'

feedback, position feedback, reference position setting, or bypass ail control to a compnter.

ln ail the experiments presented in this chapter, the control is bypassed to the computel'.

Ali processing is executed on a single general purpose Intc\ 48ClDX persoual computer

running at a clock rate of 66MHz. Under the DOS operating system, l'cal time implemen­

tation is achieved by running off interrupts triggered by the system clock. Unfortutmtc\y

multiple processes arc not supported under DOS; therefore ail calcnlations, inclnding up­

date of the system dynamics, arc executed in the same cycle and at the same rate, 'l'he

hand-controller is interfaced to the microproccssor through Green Spring lli bit Analog

to Digital Converters (DAC) and 10 bit Digital to Analog Converters (DAC). The torque

output to the motors is sent from the DAC and converted to a current by a general purpose

Voltagc-Current converter.

The position sensor used for each channel has been custom made, Each position sensor

consists of two Light Emitting Diodes (LED) and two Hght receivers, shown in Figure 5.:1.

Fixed Opaque

Hall Circle

Opaque Hall Circle
On Pullay

Figure 5.3: The Position Sensor Mechanisrn

The tendons are wrapped around two pulleys which each have opaque half circlcs

in the middle. Each pulley is mounted on small cyHnders which also have opaque half

circles, The LED is mounted behind the fixed cyHnder, the Hght is transmitted through
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LI", t.ransparent side of the cylinder and pulley. As the pulley is rotated by the rotation

of the joint, the proportion of Iight received by the sensor changes. The amount of Iight

rcc"ived is proportional ta the angular displacement. The position output is the difference

"etween the outputs of each sensor such that:

(5.1 )

8 = (al'lfJPl +{3ptl- (a1'2fJP2 +{3P2)

= (apII/pI - ap2fJp2) +{3pI - {3p2

_ iiij + jj

•

where fJl'l and fJP2 arc the outputs of each Iight recciving transistor, apI, 0:1'2, arc the

joint gains, and {3PI, {3P2 arc the joint offsets for each sensor unit.

The opaque half circles are mounted ta ensure that the transparent area, in which Iight

can be transmitted ta the sensors, totals 180°; i.e. when one sensor has a 30° transparent

arc, the other will have an arc opening of 150° (180° - 30°). This facilitates a differential

output for the complete position sensor unit expressed in terms of ii, ij, and 13. The

differential outpnt is used ta reduce noise (in particular thermal noise), and ta compensate

for errors caused by non ideal factors in the tendons such as elasticity. Velocity reading<,

arc gclleratcd by an Operational Amplifier in a differentiating configuration.

2. Problems Encountered in Implementation

ln simulation, a given problem can be tested under optimal conditions. Although non

ideal behaviour can be added ta the simulation, this, in general, can never fully represent

a real system. For this reMon, il. is often necessary ta implement an algorithm on a real

system ta ensure that the theory is still applicable in the presence of unpredictable and

ulllnodcled behaviour.

The simulation results showed that the theory derived in the preceding chapters was

valid. Nevertheless, during the transfer from the simulation environment ta the hand­

controller system, several factors, which were not apparent from the simulation results,

surfaced. Thcse problems had ta be addressed for successful algorithm implementation.

2.1. Friction The simulations did not take into consideration friction as an unmod­

cled force. The original thought was that the hand controller, which was designed ta be a

low friction device, would not have appreciable friction compared ta the forces due ta grav­

ily and inerlia. However, il. was quickly realized that this initial assumplion was incorrect,

making accurate calibration impossible.
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The intuitive êtlls\Ver to the friction problem is to mode! friction within tltt' adaptivc

control. Although friction modcls mn be incllldcd in t.he rl'greHsor lIIat.rix of tlw rohot.

modcl, this is not the case for the polynomial eqllivaleut modd. It wa~ fOlllld t.hat. adding

a COlllombic friction model ta the adaptive control illlcrfcr{'d with the ('onvergcnce of

the polynomial. This is duc to t.he chiUnclcon propert.ies of tlw polynomial which t.he

trigonomctric function, which it replaced, dOéo flot exhibit.

To climinate this detrimental property, the friction forecH must. ht, dt'alt. with olltsidc

of the adaptivc controllcr. This is aehicved by using a fccd-forwal'd friction signal t.o t,he

aetuatofSj it is vital however, that this is donc autonoll\ollsly.

To establish the force contribution due to friction, the Iwnd-controllcr il'> l'un in a

closed loop trajcctory using ollly Ct PD fccdback fol' control. The spced of the t.mjectory is

kept as low as possible to reducc dynamic crfects, but high enough to ensure that stick-slip

(stiction) effeets are negli~~ible. The result of the c10sed 1001', PD cOIlt.rolled tmjectory, is

shown Figure 5.4.

Poeltion-Totque P,c/II.lo. Cloud lOOll TrDJeetOlY
or---,----,.....;...---,---"""T'"-.,.;.-;.,----,.-,

-0.2

-1

-1.2

-1.:111...6---0""".""".---o.,....2,....----'-O---:O:":2--~O~.4---:'08
M....,1d PœIUon (Volis)

Figure 5.4: Position-Torque Profile of a IhUld-Controller .Joint

From the position-torque rcspollse it is denr that the dominant forlU of frict.ion is

Coulombic in nature. By calculating the average torque differenee in the forwarcl and

negative directions t an estimate of the Coulombic friction can be made:

• (5.2) Coloumbic Friction ~ 0.4.5 SIGN{ VD}
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where VIJ is the desired velocity. The Coulombic friction term can be added, in a feed­

forward manner, to the motor torque calculated by adaptive control routines. The modified

block diagram of the adaptive control system is shown in Figure 5.5.

Friction Camp.

~~ f--

X
1

Y
Controller

u +
Plantr +-()----<O

/

"a Estimator

Figure 5.5: Adaptive Control Framework with Friction Compensation

The coefficient of Coulombic friction must be found individually for each joint. This

is simply done by moving the joint under test in a closed loop trajectory while the other

joints are locked in arbitrary positions. This can be achieved through computer control

without human intervention or knowledge of the joint sensor-joint angle relationship. The

Coulombic friction model obviously does not model stick-slip friction (stiction) or viscous

friction. 1I0wever these frictional forces do not have such a large relative impact over the

overail system dynamics. What is more, friction forces, such as stiction, are hard to model

accurately making their application in a real system questionable.

2.2. Calibration Trajectory The adaptive control is used as part of a calibration

step; this alfords the luxury of being able to choose the best possible trajectory to ensure

accurate parameter convergence.

It was statcd in Chapter 2 that one of the major hindrances preventing the more

widcspread use of adaptive control is the need for excitatory trajectory inputs. Conse­

quently, there has been an effort in the research community to understand the influence of

trajectorics on stability and parameter convergence. One of the key factors which emerged
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from this research is that accumte pammeter convergence l'equires frl'qlwncy ri"'l tmject.o­

ries. This has been l'roved for linear systems and almost cel'\.ainly holds (,l'ne fOI' uonlilwar

systems2 [6] [7].

ln simulation, single frequcncy sine wa.vc trajcctol'ics provcd adcqua.te fOI' COIIVCl'gCIlCl'i

on the real system however, this was not the case. This result is not snrprising when one

considers the single frequency content of a sinusoidal signal. Ideally, the inpnt tmjcctory

should have an infinite frequency component. This can be achieved thcorotieally by ap­

plying a train of impulses 01' applying white noise 1.0 the system. Unfortnnatcly, thoso

signais cannot be applied in practiee. ln experiments, il. was found that a triangulaI' wave

trajectory gave the beRt parameter convergence results. Although a rigorons explanation

is not available 1.0 substantiate this finding, it is possible, in hindsight, to hypothesiso on

the intuitive factors which contribute 1.0 this result.

A mechanieal system can be approximated 1.0 a double intogmtor, such that a force is

applied 1.0 the input and the output is a displacement. Since twice dilrerontiating a rlunp

position trajectory gives an acceleration profile made up of impulses, full frequency content

is experienced al. the force input 1.0 the system. This explanation is easily understood from

an intuitive level; however, a more rigorous explanation is beyond the scope of this thesis.

2.3. Sensor Input Scaling The most volatile period of the adalltive control cali­

bration is the initial one or two seconds after start up. This is because the initial pammeter

estimates, in the manipulator model, are 11.11 zero. lu some experiments, it was foulld that

during this initial transient stage, parameter overflow wOllld occllr callsing iustability of

the adaptive control. There are several reasons for this iustability whieh is not taken into

account within the theory.

• Sampling delays caused by the discretization of the system.

• The upper bound of the gain matrix being 1.00 high.

• Magnitude of sensor inputs being 1.00 large.

Unfortunately sampling delays are unavoidable and compensating for them will com­

plicate the control system further and increase computational requiremeuts.

The upper bound on the maguitude of the gain matrix is an efrective cure for the

overflow problem; however in experiments, il. was found that by lowering the maximum

magnitude of the gain matrix P, convergence becomes dramatieally slowed during the less

:lIn Boyd and Snstry it was shown that ft linear system of order n reCJuired 20 IIpedml lines 10 achieve
convergence [0]. This ia remarkably aimilar to the weil known Shannon Mmpling principle in Cornmunicatioru,
which states that to reproduce ft sampled signal requires al Icast two limes the frequency of the input lIig"al.

52



• 2. PROI3LEMS ENCOUNTERED IN IMPLEMENTATION

volat.ile st.ages of t.he calibrat.ion. This can be easily remedied in soft.ware by changing

t.he upper bound ou P on-Iine, but. t.his is not. an c1egant. solut.ion, and could int.roducc

discont.inuities t.o t.he cont.rol.

A more effective solution is t.o scale t.he sensor input.s. The out.put. of t.he posit.ion

sensor is a volt.age in t.he approximat.e range of -6 Volt.s t.o +6 Volt.s. The polynomial ap­

proximat.ion canses t.he sensor ont.pnt. t.o be raised t.o t.he power of t.wo, or t.hree depending

on t.he degree of t.he polynomial. This rclationship causes the components in the regres­

sor model to become quite large causing numerical inst.abilit.y during the volatile stage.

Port.unat.ely t.his problem can be easily fixed by scaling the sensor output such that:

(5.:!) Il,,dl ~ 1 ==} Il,,fll ~ l 'Vn> 0

•

Therefore by scaling t.he position sensor output to bet.ween +1 and -l, t.he regressor

nmtrix becomes bounded ensuring greater stability, especially during the the initial tran­

sient. st.age. Experiment.s showed t.hat this was an effective way to st.op numerical overflow

wit.hout. reducing the upper bound on the gain matrix P.

2.4. Degree of Polynomial Experiments showed that the higher the degree of

t.he polynomial, the slower the convergence. lt was found that the polynomial coefficient

a.""ociated with the highest degree term, in the regressor model, converged the slowest. (Le.

Por a cubic polynomial, the coefficient associated with the ,,3 term in the regressor matrix.)

Consequent.ly, repeated experiments showed that a quadratic polynomial was favourable

over a cnbic polynomial with respect to both convergence time and even overall accuracy.

For t.his reason, ail experiments using the polynomial approximation use a polynomial of

degree two.

2.5. Use of a Dead-Band in the Adaptive Controller The adaptive control

paramet.er estimatcs have a tendency of creeping from their nominal values. This l'he­

nomena is cornmon in adaptive controllers once the estimation system has reached steady

st.at.e. This is counteracted by inserting a dead-band into the controller causing any small

deviations in the parameter ul'date 1.0 be ignored.

2.6. Gain Tuning An argument could be made that a truly adaptive controller

should be able to tune ail its internaI gains based on system feedback alone. Unfortunately

this is not the case, and several critical gains must be tuned. In particular, the linear

fecdback gains [(p and [(D, the forgetting factor >'0, the upper bound on the gain matrix

ko, the relative contributions of the indirect and direct parameter update, and the initial
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vaille of the gaill matrix Po. Over the comHe of algorithm implelllelitatioli it. waH 1'011 I\(I

that there is no IIl1iqlle strategy fol' sllccessflll calibration. Overall, the l'ollowing conditi'HIH

were fOllnd 1.0 be best fol' calibration IIsing a,daptive control.

• The values of Iinear feedback /(p and /(D, Hhoilld be al. least hall' of t.he vaille which

wOllld normally be IIsed for PD feedback alolle. There iH a tmde on' which O"""I'H

when selecting these vailles. l3y choosillg low vallleH of proport.iollal alld derivative

feedback, the adaptive part of the controller is l'orced 1.0 do more work. I\owevel',

this comes al. the expense of trajectory tracking ability.

• The forgetting factor Ào dictates the amollnt of l\1emory wit.hin the sYHt.em. If I.he

value is 1.00 high, the adaptive colltroller will forget past experience and will fil. only

most recent data; consequently parameter estimation evollltion will be oHciliatory

becaose factors such as random noise willnot be averaged 0111. over time. ConverHely,

a low forgetting factor decreases the adaptive controller's propenHity t.o adapt. t.o

dynamically changing parameters. However, since the calibration assllmes thal. the

robot parameters arc constant, a low forgetting fact.or is preferable.

• The maximum bound on the magnitude of the gain matrix (ko) proved to be the

least sensitive parameter in the composite adaptive control framework. This is

becaose the magnitllde of the gain matrix did not reqllire slich a high stimllills to

invoke the upper bound. For this reason this was not a critical factor.

• The initial value of Po is critical for fast convergence. Even though the gain mat l'il'

Ptt) is dynamic, there is still a lag time for il. 1.0 reach an optimal vaille. If 1'0 iH 1.00

high, numerical instability may ensue al'ter startup. II. was found that higher order

coefficients required a higher initial value. For a quadratic polynomial, the diagonal

clements of Po were set al.: 8.0 for the coefficient of ,p, a.o for the coeflicient of '10

and 1.0 for the constant tenu.

• The contribution of the indirect and direct adaptive control components in the

composite adaptive control arc critical. Recall l'rom (3.40):

(5.4)

•
The constant term Cl and C2 dictate how much weight should be put on the

trajectory l'l'l'or and the torque error. In experiments il. was found that the direct

adaptive control constant should be in the order of CI = 0.:1, and the indirect

adaptive control constant in the order of C2 = 1.0.
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/11 J!;l!nl!ral, tlU! lIonlinearity of the Hystelll IllfLkes it dirncult to filld optimal and Illliqll(~

valuf's for these parallletNs.

2.7. HnrdwUl"c Innccurncies ThroughotJt the theoretical derivatiolJ there is an

a~Slllll pl.ion I.IHlt ail transd lIn'rs and actllators l'l:'spolld in il Iinear miUlncr. III rcality titis

is 1101. tlll' l:'L'W.

Ead dmunellléL'l two motors whiclt work in il pull-pull configuration which is switchl!d

by two diodl's. Silice the diodes are Ilot idcal, the switching actiou causes 1I0nlincaritics.

What is IllOn!, tht· mutors are second ordcr clœtro-lIIecliallical systems and thcrefore do

Ilot haw a perfl'ct constallt gaill respollse which is assullled in the cOlltml.

The transllli~~'iion, made Ill' of the tendons, is also ass1I1I1ed ideal. lIowever iu reality

1IH' h'udous add hoth .;<tlllpiug and c1asticity to the system [17].

The thcory deve10pcd in Chapter ·1 assumes that the relationship betweell sellsor

Uli;,pUL alll! juillt allglc is Iillcar. The position sclIsors however, which have been made "in

houl'~~"', art! Ilot perfcctly liJlt'ar. III Figure 5.6 the lJleasured relatiollship betwcclI sellsor

output alld joint allgle is plottt'd.
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f·'iJ;\lre 5.6; Actllal nelatiollship BetweclI Scnsor Output and Joint Angle. (a) Joint 1. (b)

Joint 2.

• The slight 1I01llincarity exhibitcd in Figure 5.6 will force the adaptive control to average

out the imp<'rfcctiolls. The low forgetting factor and the bcst fit strategy of the dynamic
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IcasL SqUlll'l'S fOI'lJtulat.ioll s!loliid p;iVl' t.1I(' 1)('1'\1. ilVl'I'ap;l' valut'. This will all'.·(·t, t.ht' ,H'l'III'iH'Y

and the rl'peatability of the calibration.

Unfortllllntcly the inaccuracil's catlscd hy t.he hard\\'a.rl~ art' illl'vitahll'. From tlw pl'r·

spl'cl.ive of calibration, the stratl'gy IIInst be 1.0 lIIinillliSl' tlll'se ,'IIi'(·ls. This is dom' hy not

cxciting high frcqucncics causing motar p;ain aUelluation, and pnI Vl'lItillP; fa:;t oH('iIIat.{)r~'

1II0vements nHlking the c1asticity of the tendon a factor. Fortnnalely the calil'I'ation stag..

l'nablcs a trajcctory to oc dlosell which l'an minimise t1H'sP l'fI'l'l't.S.

3. Implementation Assumptions

The goal of tbis research is to power np a robot and have it self ""libr;I\.<· with a mini·

ilium of constricting é\sstlJllptions. Thcrc arc howevcr, sev(~ral aSSlIlliptiollS whkll art' 1l1il<lt'

for the implelllentation, but they do not l'l'strict its general op..ration. The a"'''lIl1ptions

arc:

• Tbe manipulator model is known; this a fundaml'ntal ",;slImption of STAC a<laptiV<'

control methods.

• The sensor outputs and tor<]lIe comlllands are uniform. In "SSl'nrt', till' sign of

position and vclocity must correspond such that a positive lor'l"e will move tlw

manipulator in a positive direction with respect to sensor outpnt. This is II<'Cl'""ary

to prevent positive feedback in the PD loop of the adaptive control.

• The joint Iimits arc known in terllls of sensor output. This prcvl'nls tlll! robot 1'1'0111

trying to exceed ils workspacc.

These arc the only assumptions made in the adaptive control joint calibration.

4. Experiments

ln the proceeding sections the performance of the single Iink polynollliai approxima­

tion is studied. The first experiment is performed on the second joint of the robot. 'l'hl'

focus of this study will be on polynomial convergence and convergence using the trigono­

rnetric expansion. This serves as an applicd feasibility stlldy of the aigorithlll. 'l'hl' sl'Cond

experiment uses a polynomial approximation to cstimate the gain parallleter of the first

joint. This stage tests the assumption that the other joints can be hcld in an arbitrary

position during calibration without causing significant interference through cOlll'ling.
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• 4.1. The Polynominl Approximntion on n Single Link

t.wo de~ree of freedolll robot is sti/llulatcd with a ramp trajectory.

lIS(~S the l'lill~le lin k robot lIIodel:

01. l~XPEIUMEN'fS

The distal link of the

The adaptivc control

O'm/~

[r] = [ij !J !JfJ !J,/2]
b

c

The rcsults of the plWUJlcter esti mation me shawn in Figure 5.7.

PII/amolor Estlmoloa lor Polynomial Approx. on Joint 2
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Figure 5.7: Parameter Estimate Evolution for Polynomial Approximation on Joint 2

•

Figure 5.7 shows that the initial convergence ta approximate values is quite fast,

settling ta an initial cstimate within one second. The exponential nature of the convergence

after one second is apparent as the parameters slowly converge ta nominal values over the

next twenty live seconds. The arder of polynomial coefficient convergence is a, h, and thcn

c. Thercforc the higher the exponent in q, the slower its coefficient converges.

Using the polynomial found in the adaptive control, the values of joint gains and joint

offsets can be derivcd. In Figure 5.8, the polynomial estimated by the adaptive control is

comparcd ta the funeLion ml cos(aq + Pl, where a, P, and ml have been derived from the
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• ac!aptivc control cstinmtcs. IL CilII be conc!udcd l'l'UIII Fill:un~ IU~ t1Lilt. the ('()sint' fUllctioll

can be accumtc1y fittcd to the polynomial milking aecllratl' calihl'atioll viahle.

polynomial ApraKlmalloo ct CaBine FOI Jalnl 2
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Figure 5.8: Polynomial Approximation of Cosine FUllction for .Joint 2. (a) Polynomial

Approximation (Solid Line) Cosine Fitting (.-) (h) Fitting Error
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• 4. EXPERIMENTS

'l'he results of the single link joint calibration are given in Table 5.1. The rcsults show

l.h,~ ntlibration hils been sllccessful ta an accuracy of approximately 1 dcgrec:J.

0' fi
(lcgrces/Volt ficgrccs

MéUllla1 Calibration 9.052 26.299

A-C Calibration 8.7M 25.559

Absolllte Error 0.298 0.740

Table 5.1: Accliracy of Adaptive Control Calibration for .Joint 2

Usillg the adaptive control \Vith the friction compellsation also improvcs the ovcral1

perforllléulce of the lIIéulipulator. In Figure o"i.!J the position error for the system \Vith and

witilollt éHlaptivc control is shawn.

Position Enar al Adapllve and PO ContraUer•. (Oashed • POl
0.02

0

, Ji
l' 1 1,

, 1 , ,, 1 1
1

,
i

~-0.04 1 1 1 , ,,
1 1 1

~ 1
~

, 1

l' l'
, " 1 ,.~

~ 1

,
J 1, 1 ,

w-o·06 , j 1 1 1
1 1 1

:1 :
1 t , 1

1 t t
1 1 t 1

1 1
1 1 ,

t 1Q. -0.08 1 t 1 1
1 1 t t

1 • t
1 1 ,

1 1,
1 1 t

-0.1 \ 1 1 .\ 1
\ 1 \

1 1 , t 1
t

1 1
1 • 1 t \

t
1 1

-0.12
, 1 \ 1 , ,

1 1 , 1 \ 1
1 1

,, t 1 t
, 1,

-0.14
0

~ . ' ,1

2 3 4 5 6 7 8 9 10
TlmelSeesI

•
Figure 5.9: Position Error for Adaptive and PD ControlJers. Solid=Adaptive Coutrol Po­

sition Error, Dashcd = PD Control Position Error

;tTh~ ~ulhdo not conllid~r the l'l!peatability of the exp~riment5- Il eriticaI factor in robot calibration. Thï.
tapie illadd~ in Section 8.
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5. 'l'III' POLYNOMIAL APPIlOXI~IATIONUSING 'l'liE INNEIl .JOINT

The improveml'nt. in posit.ion t.racking is approximlllely a fa-:lor of lU. This is a good

l'xample of t.he dnalit.y of UIl' algorit.hm as bot.h a joint. calibration sl'il('me and an lI<l'nrat.l'

cont.roller. Once t.he joint. calibration adapt.ive cont.rol framl'work is impl(·ml'nt.(·d, ot.11<'1'

general pnrpose adaptive controllers can be itllplementl'd wit.h vl'l'Y 1itt.ll' (·xt.ra ..lfort..

The resnlts presellted in this sectioll show t.hat joint calibrat.ion, IIsillg t.h(· polynomial

approximation, achieves good resllits. The convergence for UIl' single (dist.al) Iink is rapid

and definite. The parameters estimates do not l\lIctllate which indicat(·s lhat t.hl' model

is ail accllrate l'l'presentation of the robot. The distal link is Ilot subject. to coupling l'rom

other links. Therefore ill the next section, the inner link is (·alibral..d wÎt.h \.II<' dist.al Iink

held in a PD feedback 1001'.

5. The Polynomial Approximation Using the hmer Joint

The preceding section established the success of the polynomial approximation on a

single Iink. This Iink however, wa., not subject ta possible coupling caused by holding oUter

joints at arbitrary positions using PD feedback. In this section, joint 1 is calibrat.ed while

joint 2 is held in an arbitrary position.

figure 5.10 shows the parameter evolution for the inner joint. The belmviour of tlte

parameter evolution is quite similar ta the the uncoupled single Iink ('xperiment in the prt~

vious section. (figure 5.7) Good approximations are fOlllld within approximately 1 second

for ail parameters except parameter c, which overshoots its nominal value. The settling

time of parameter C requires almost 7 times the setUing time of the other parametl'rs. This

result is in accordance with the uncoupled Iink of the preceding section which also exhib..

ited the slowest convergence for the coefficient a.,sociatl'd with the highl'st order term, in

this case ,p.

The result of figure 5.10 also shows that the convergence is definite. TI", exponential

convergence is uniform, and there arc no oscillations in the parameter l'Stimates. This

indicates that the single Iink model was accu rate and joÎl;t coupling caused by holding

joint 2 did not adversely affect estimation. Also, the non oSI'~lIatory nature of parameter

estimates purports that the estimates arc accu rate.

figure 5.11 shows the polynomial approximation to thl' cosine function and the cosine

fitting error. This shows that the polynomial successfully ;"pproximate<1 the cosine fnnction .

The small error between the cosine and the polynomial function implics that the gain
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• fi. 'l'liE POLYNOMIAl, APPROXIMATION USING 'l'ilE INN ER JOINT

.

b

•

ParamolOr Esllmolellor PolynomIal ApprOIl. on Joint 1
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Figure 5.10: Parallleter E~timate Evolution for Polynomial Appwximation on .Joint 1

parallleter 0, will be an accu rate representation of the physical joint gain parameter which

the experilllent attelllpts to find.

The accuracy is coufirmed in Table 5.2 which shows the estimated and the measured values

of the gain parameter o.

0 {J 1

degrees/Volt degrees

Mannal Calibration 7.638 N/A

A-C Calibration 7.534 16.737

Absolute Error 0.104 N/A

Table 5.2: Accnracy of Adaptive Control Calibration For Joint 1

•
The accnracy of the gain parameter estimation confirms that locking ail but one of the

joinL~ in a PD feedback loop, and using the single Iink model for calibration on remaining

joint, is valid.

61



• fi, 'l'liE POLYNOi\lIAL APPHOXIr\'tA'I'ION USINe: 'l'ilE INNJ<:1l .JOINT
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Figure 5.11: Polynomial Approximation of Cosine FUllction for .Joint 2. ('l) Polynollli:LI

Approximation (Solid Line) Cosinc Fitting (.-) (IJ) Fitting Error

There is sorne degradation of control when controlling the joint su!Jjc~tt'd to coupling

which is cvident in the position tracking plot of Figure 5.12.
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• O. TH.JGONOMETIUC EXPANSION CONVEIlGENCE FOIl A SINGLE UNI<

Position Error 01 Singlo Llnk Adllpllvo Conlrol lor Joint 1
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Figure 5.12: Position Error for Adaptive Controllcrs Using Polynomial Approximation for

.Joint l, and .Joint 2. Top: Position Error of Joint 1. 130t.torn: Position Error

of .Joint 2

The position error of the coupied joint is on average twice as a high as the uncoupled

joint 2. This is caused by the movement, and hence coupling, caused by the locked joint 2

affccting joint 1. This coupling cffect is inevitable when considering that the PD feedback

loop is csscntially a lIIass-spring-damper system and thcrefore causes unwanted fiexibility

in the joint.

6. Trigonometrie Expansion Convergence for a Single Link

•

The prcceding scct:ons showed that the polynomial approximation, using the single

lillk model, is feasiblc for calibration of the gain parameters. 'lb complete the joint calibra­

tion algorithm, the angle offset values must be found using the technique of trigonometric

expansion. As a proof of concept, and to give comparison for the multiple link case, the

trigonomctric expansion is applicd ta only joint 2 of the hand-controller•

The mode) for the single Iink trigonometric expansion dynamics is:
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Q. TRIGONOMETIUC EXPANSION CONVEIlGENCI'~ Fon A SINGLI': LINI\•
(5.G) [T] = [rj !Jcos{oq)

[

l

"]

(\ 1/1 l~

- fi si Il (Off)] mlc. cos(#)

mie !'iin (!')

ml"2

Usillg (5.6), and the joint angle gaÎn information found În Sl'cl.ioll ·1.1, t.1H' adaptive

control calibration is performcd. The evolutioll of p:tmllletel'!'i are l'howlI in Fip;lIl'(! 1').1 a

Parameter ESllmates using Trigonometrie EMpanslon on Joint 2
0.1,---------,-------r--------,
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o,on

l! 0.04
~

~
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0.. ----------- 1
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Figure 5.13: Parameter Estimate Evolution for iL Single Link Mnnipulator UI'illg Trigollo.

metric Expansion

The pararneter estimates converge quickly; within approxim;\tdy ;; seconds ail pa..

rameters converge to nominal values. This quicker convergence, whcn compared tn the

polynomial approximations, can be attributed to the greater structure imposcd by the

trigonometric based model.

The results of the calibration arc shown in Table 5.3. The crror iu the orfset value in just

over one degrce. This is a larger offset error than the polynomial approximation which

had a joint offset error of 0.740 degrees. The larger error is il rœult of the propagation of

error caused by using the joint gain found in the polynomial approximation. Sillet.' t1w gain

parameter is used within the manipulator model, the model can no lorlger rcpresent the

G-1



• 7.•JOINT OFFSET ESTIMATION USINa THE 2 DOF ROBOT

f3 (degrecs)

Manual Calibration 26.299

A-C Calibration 24.927

Abl;otute Error -1.372

Table ,!j.a: Accuraey of Adaptive Control Calibration For .Joillt 2: (Using Trigonometrie

Expansion)

system 80 weil. The effect of this is shown in slight oscillatory motion in t.IH' pan.l.lIleters

esl.irnates in Figure 5.l:J. It ean be concluded howcvcr, that trigonometrie expansion within

a<1a.ptive control is feasible. ft remains to test this concept on the complete manipulator.

7. Joint Offset Estimation Using the 2 nüF Robot

'lb cstimate the joint offset parameters, the robot must be operated under adaptive

control lIsing the 2Dor robot model with trigonometric expansions. The robot model

IIscd in cxpcrimcnts is a simplified version of (4.39):

-gSOtQl gCOS{QifJl +0'2fJ2) -gsin(O'(fJI + 0'2fJ2) O'liit

o gCOS(O'lfJI + 0'2fJ2) gsin(O'lql + 0'2Q2) 0
O'l~l +0'2~2 ]
O'lql + 0'2fJ2

(5.7)

(ml/cl +m2/.) cos(,8()

(mllcl +m2/1) sin(,8t}

ml/C2 C/)S(,81 +,82)

m(/c2 !>În(,81 + ,82)

ml/cl + m2 lr
m2/~2

•

III (5.7) the contribution duc ta coupling forces is not required because the actuators

are mountcd remotely. The robot is purposely operated in a slow trajectory ta reduee

the centripetal and unmodelcd dynamic effects. This enables the contribution due to cen­

tripotaI forces ta be neglected in the manipulator model. By neglecting these parameters,

it is possible ta keep the size of the regressor matrix within bounds that cnable a high

sampling rate. Experirnents showed that the effect of a reduced sample rate was more

detrimental than neglecting centripetal forces:1 It is important to ensure that the adaptive

4The contribution or cent ri petai rorees are approxinlately an arder or magnitude lowcr than that or gmvity
Icrn1~; this is because the link lenglhll are IImall. (lld a.lm)
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• i. ,JOINT OFFSI~T ESTJr\'IATION USiNG 'l'ilE 2 DOJo' ItOnO'I'

contl'OI is exposed to as mauy joint con figu rations a~ possible. This is donc hy l'Illl1li ng

each joint in a ramp trajectol'Y with dHferent pcriods.

The convergence of the gravity bnsed p'U'éU1Wtt'I'S an' shown in Fip;ul'l' [1,1·1. TI\('

convergence of the pammetcrs l'cqllires approximatcly 20 sccondH \.0 nominal v.t!Ill'S aHlI Cl.

furthcr 25 seconds for finer approximations.

Gravlty Based Parameler F.sllmate, on the 2 OOF Robol

0.08

AI

0,06 ..

A3

A2

A4 -

•

-0·040~--:-5-~170--7::15:------:2~0-~25:----:30lo:---:L35:---4.l-0----l45

Tlme{secs)

Figure 5.14: Gravity Based Parameter Estirnate Evolution for .Join\. Offset Calibration 011

2 DOF Robot. ( AI= (mllcl +m2ld cos(13d, A2 = (ml/cl + m2l.) sin((j.),

A3 = ml/c2 cos (131 +132)' A4 = ml lc2 sin (131 +132))

It is clear that the convergence for the two Iink robot is Ilot as good a.'i the single

link convergence in Figure 5.7. The parameter cstimates exhibit oscillatory hehaviollr, in

particular parameter A4. This is an indication that thcrc are dynamics within the system,

which are not incllldcd in the computer model, affccting estimation accuracy. This is in

part due to the absence of the centripetai forces and in part due to dynamics which cannot

be modelled. The contribution of the unmodeled parts of the robot dynamics are srnall

\Vith respect to the magnitude of the gravitational components shawn in Figure 5.14. For

example, the inertial components of the system have magnitudes of almost ail arder of

magnitude smaller than the gravitational terms. (See Figure 5.15.)
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7..JOINT OFFSET ESTIMATION USINO THE 2 DOl" ROBOT

Inollla Based Poremelor E'sllmatos on lhe 2 OOF Robol

A5
0,01

~ AB
Si 0
~

~
-0,01

·0,02

-0,03
0 5 10 15 20 25 30 35 40 45

Tlme (secs)

Figure 5.15: Inertial Paramcter Estimate Evolution for Joint Offset Calibration. (AS =

ml/cl + m21~, Aû= m21~2)

Despite the increascd problem in accurate robot modelling, the aùaptive controller is

aùept in averaging out error within the system. This enables the calibration of the joints

without full knowlcdge or use of the dynamic mode!.

It should also be noted that the tuning of the feeùback gains, update gains, and

forgeLLing factors was much more difficult for the full two degree of freedom case. In general,

the preceùing experirnents were quite robust to changes in thcse parameters, whereas the

Illultiple Iink case had a much narrower margin of error. Analysis showed that the two

degree of frecdom robot was mueh more prone to spurious forces, especially during velocity

sign changes in the triangular wave trajectory. These transients are impossible to moùel

forcing grcater emphasis on tunil';; the adaptive controller to ensure the transient effects

are averagcd out; however this must be donc without suppressing the predictable response.

The results of the calibration are given in Table 5.4.

The results show that the adaptive control calibration is accu rate to within approx­

imatcly ± 1o. The paramoter information round in the adaptive control can also be used

for gravity compensation of the hand-controller.
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Il. DISCUSSION OF EXPElliMENTAI. ItESUI.TS

ni (31 (\'2 Pz
dell"ecs/IIolt ,Ic!l"ces dC!l,·ce.,/ Ilolt dell"c/'S

Mannal Calibration -7.638 -17.5<1·' -9.052 2(i.2!l!)

A-C Calibration -7.534 -17.988 ·8.755 2G.595

Absolnte Errar 0.104 0.'1,14 () .297 0:2ûû

Table 5.4: Accnracy of Adaptive Control for the COlllplete I~obnt Calibration

8. Consistency of Results

The resnlts given in the preceding section represent jnst one cOlllplete calibration.

What is most important however, is the consistency of resnlts. The algorithlll IIInst 1",

relied npon to calibl'llte the robot within a given accnracy. Table 5.5 gives a snlllnHLI'y of

resnlts taken over 10 calibration runs.

al III "2 (32

deY"ees/1Iolt deY"ces ,leY"ces/1Iolt ,leYI'ces

Manual Calibration -7.638 -17.544 -9.052 26.299

Mean A-C Calibration -7.465 -17.841 -8.5:17 26.67:\

Maximum A-C Calibration -6.963 -16.890 -8.322 27.250

Minimum A-C Calibration -8.164 -18.115 -8.795 25.27:1

Standard Deviation 0.465 0.421 0.16 1 0.615

Table 5.5: Consistency of Adaptive Control Robot Calibration (Over 10 experiments)

The results in Table 5.5 show that the adaptive control calibration gives nnmerically

sta.ble results. The results show that the algorithm has an accnracy of approximately ±1.1j"

when ail factors are considered.

9. Discussion of Experimental Results

From the results of the adaptive calibration, and the experience in implementing the

theoryon the robot, there are several issues which should be considered.

9.1. Joint Coupling It was mentioned in Section 7 that when the calibration of the

joint offsets was performed using two active joints, the control system became lcss robust
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il. DISCUSSION OF EXI'I~IUMENTAL IŒSUI:rS

1,0 dIflIlW~H in t.he controi ',YHtl~11I pararJlclers. C()IIVer~ellcc 10 the desircd values bec:' "Il'

lIIort! SIIIlHitiv{! tu dHLlIW!S iu litlC!ar fcedhac;k p;aills, initial gain matrix (Pu), iLnd forgctting

fador. Aftl!r illlalysis, iL \Vas realizcd tllat titis was il result of t.ransicnt torques and forces

(,,·tW'·I'II joillts whieh coliid Ilot 1,,· predicted withill themalliplilatormodel.ltis fl"L,onable

t.u i1sslllllP that ils the 1I11111hcr of jointH arc incrcascd, the Ilumber of triLlIHicnt forces will
also iJl(~fI!il."H!; heuel' Llw rohllsLIIPss of the algorithm will d('gcllcratc \Vith an illcrca:-ic in the

Il Il ml",1' of joi Il ts.

9.2. The Need for Accurate Model The r.alibration algorithm relies on an ac­

""rate dYliamic alld ~ravity model representation of the robot. If this cannat be achieved,

1.1". r.alibration will he IInsuccessful. The haud-controller, for el'ample, has a coupied Iiuk­

a~l' in its trauslational stage. This desigu proved impossible to model accurately forcin~

th" robot ta be nll'chauically coustraiued ta two degrees of frecdom for the purpose of the

"l'periments. In ~eileral, seri~1 Iiuk robots do not pose a dilficulty in dynamic modelling,

however this may not be the case for paraile! mechanisms such as the hand-controller.

'l'he hand-coutroller teudon trausmission is vlrtually backlash free. Aiso bath motors

aud seusors do not el'hibit measurable hysteresis. (Importaut desigu requirements for

lIand-Controilers.) Therefore the algoritlun has not been exposed to these common and

nonlinear clements which 1V0uid he encounterl'd on ge:,:ed and hydratllic robots. The

dfect of these nonlinearities arc difficult to model and l'an be expected to degrade the

p"rformancl' of the calibration in stlch rnechanisrns.

For these l'casons, the general dif'leulty iu manipulator dynamic modelling is the major

weakness of the calibration algorithm.

9.3. The Global Convergence Propert,y Th·~ most important property of the

adaptive control algorithm is glohal convergenc<. Ali the results in this chapter have

b",'n obtaÏJIl'<1 asstlming ail initial parameter estirnates to be zero. In contrast, calibration

Il,,,thods which have relied on statle input-output <Iata generally require initial estimates

to ensure convergencc. It is also iutercsting ta note that the estimation of the joints

sensor gain parameter (0). was a more robust and reliable property to estimate than the

joint sensor offset (p) when using adaptive control. In comparison, statie methods have

lraditionally had difficulty estimating the joint lIl'nsor gain compared to jo;nt sensor offset.
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Ill. Sll~I~IAHY

10. Summary

The resulls of the l'Xpt'rillll'llls have sltoWII that. tlU' t,llt'ol'l'lit'al dt'''t'loPlIll'llt. dt'rivl'd in

Chaptel··1 cali be sllccl'ssflllly illlpl"IIII'lItl'd 011 a n'alro!>ot systeill. The rl'sllils shOll'l'd that

the algorithm cali ht, l't'lied IIpOIl tu ealihratc lIlP rohot to ail iHTUra('y or approximat,('ly

1.5(1 pel' joillt. Il Wil:i round, thr()u~h cxperillH'lItatioll, lhat faetol's slidi as t'xdtat.iull t.I'it­

jcctory and fccd-forward friction climinatÎolI art' important. l'adors in adlil'vinv; ('ollsist.('IIt.

calibratioll, factors which wcre Ilot cvident in simulat.ioll.

The IIcgativc a."'pcct of t.he algorithm is the requin'InPut or ail ill'('lIratt' d,VllalllÎt' ilnd

gra.vity mode! ta achicv(~ consistent calibration. Also, the 1I11I11o<it'It'd dynetlllks, largl'Iy

causcd by joint coupling, d(lcreascd the calibration rohuHtueHH élnd l"OIlHiHtt'II(:Y lilr thl'

ll1ulti-liuk case.

The adaptivc control algorithm was able tu calibratl' tlll' robot éllllullulllOlIHly, tht'

operator is ouly required 1.0 switch the systelll ou. The calibrat.iou 10'.' pl'l'fol'lllcd wit.hollt.

a priori kllowledge of the joillt. sellsor or dYllalllic propert.il'li, wit.hout. physkal "llllst.raillts

011 the robot, alld without IItilisillg specialised lIIe,.,urillg "'luil'IllI·1I1..
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CIIAI'TEIl G. CONCLUSION

CHAPTER 6

Conclusion

The algorithm presented in this theois enables autonomous joint and dynamic parameter

calibrat.ion of a mnltiple Iink robot. The calibration is performed on-Iine using adaptive

control methods introdnced by Siotine and Li. Their adaptive control method is advan­

tageons for calibration because it is globally convergent with respect to both trajectory

tracking and parameter convergence. This implies that a priori knowledge of the system

parametcrs is not reqnired to achieve system parameter convergence. The Siotine and Li

method however, requires that the manipulator's joints arc calibr~ted before operation.

'1'0 achieve antonomous joint calibration using the globally convergent adaptive con­

trol method of Siotine and Li, the relationship betwccn the joint sensor output and joint

angle or displacement must be estimated within the control. The estimation of system

parameters in the adaptive control requires that unknown parameters occur Iinearly with

respect to known qnantities such as joint position and velocity. Ilowever, rotational joint

calibration parameters occnr within transcendental functions and therefore cannot be writ­

ten linearly. This thesis proposcd a method to solve this problem by replacing nonlinear

trïgonometric fnnctions with polynomial approximations. The coefficients of the polynomi­

ais occnr Iinearly with respect to the input, and can therefore be used within the adaptive

control framework. The resulting polynomial coefficient estimates can then be used to

extrac! joint calibration information.

The l'!'Sulting algorithm required only knowledge of the manipulator dynamic model

and did not rl'quire a priori joint ,.ensor information other than the assumption of the

Iinearity of the joint pensor. This lIleans that after switching the power to the robot on,

the robot can autonc:nously r.lld its dynamic and joint scnsor properties without human

interaction, use of spccialiscd measuring l'quipment, or ph,Ysical constraints on the robot.
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CHAPT!':\!. li, CONCLUSION

The algorithm was tested on two links of a six dl'grl'l' of frel'dom Impl.k hand·l'ont.rolll'l',

The algorithm wus fOllnd to ue uccllrate to approximately ±1.5", From bolll t.he t.hl'm'et.·

ical dcvclopmcnL élnd experimclltal work, several PI'OPI'I'lil's, hoth pm~iti\'l' iUld Ilt'v;ativl'.

cmcrgcd. Thcsc can he summariscd as:

• The global convergence propCl'ly of the algorithm matit' COllvl'rgelH'e a.ml IltllllC'r·

ical stauility possi ble wi tholl t ext.ra constrai nts on syst.em obsl'l'vabili t.y 01' in it.ial

conditions,

• The algorithm reqnired only matrix addition alld mlllt.iplkat.ion. This n'dnl'l'S strl'SS

on the complltational requirements of the system and mak"s real tim" ('Ont.rol pos­

,iule IIsing ordinary computers.

• The udaptive control algorithm of Siotiue and Li does nol, rl'quir" iuversion of tlll'

in~rtia matrix or mcasurcmcllt of joint accclcratiollH. This lI1akcH the al~orithtll

much more robust and upplicable to real systems,

• The joint calibration is performed in two stages, lirst calibrating the joint. Sl'nsor

gains, and t.hen joint offsets, The joint olfset estimation reqnires information fonnd

in the previous stage, This makes propugation of error a factor in t.he linal resnlt.s.

• The algorithm relies heavily on an accllrate dyn:unic, and in ~·art.icnlar gravit.y,

model of the robot. If this cannot be achieved, accnrate calibration is not. possible.

• The reliance on manipulator dynamics Iimits the overail robustness of the joint ml·

ibration algorithm, Real robot systems often exhibit dynamic elfl'Cts which cannot

be modelled. This l'an cause problems in convergence, especially us the number of

links are increased.

• An interesting aspect of the algorithm is that convergence and l'st.imation of joint

sensor gains is more accul'llte and reliable than estimation of joint sensor olfsets.

Static methodll, which generally rely on some sort of le1L,t squares litting. experience

the opposite problem, have great dimculty estimating ti,e joint sensor l~ain and less

troubie estimating joint offset.

From these results several conclusions and recommendations l'an be made for future r.,..

search.

The experiments were performed on a device which has low backlash aud hysteresis.

These nonlinearities are dimcult to model within the controller. An l'valuation of th..

joint calibration algorithm on hydraulic and geared robots nceds to be pcrformcd to gaugc

the affect of these nonlinearities on the algorithm. Thesc ~onlinearities will certainly be
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d(~4 rilJwJltal. 'l'lU! ildaptivc cOlltroll':r however, Ims the ability of avcraging out noise and

spllriolls erfl'Cts which may make calibration still possible IInder sllch conditions.

The antonomy of the joint calibratioll scherne llIeans that in the case of sensor drift,

(~IHLlI~es in joillt calibration paramclcfli cali be ca..'iily round after cach calibration. Ail

interl'sting applieatioll of sensor drift, and even sensor failllre monitoring, is to redesign

I.h .. algorithm so that it can be rnn in the backgrollnd dllring robot operatioll. This shollid

he possible becallse the algorithm l'dies only 011 ol'dinary dynamic feedback. Therefore

application of a "system watchdog" dllring operation will allow any IInusllal changes in

systelll paralllcLcrH to be mDllitorcd.

Finally, oc, a catalyst for flltllre research, it is intuitive to combine the beneficial l'l'Op­

!!rties of bol.h the adaptive control calibration and statie calibration schemes. By IIsing the

I.raditÏ'Jnal kinernatie calibration schernes snch as sens'Jr redundancy, or constraining the

!!nd-erfector, emphasis con Id be taken orf the lise of the dynamk modcl, a r.cgative :wpect

of the adaptive calibration system. Then adopting an adaptive c"ntrol approach to benefit

l'rom global convergencc properties will relinquish the convergence weaknesses of the statie

approaches, This may come at li;(' cxpense of a loss of alltonomy within the system.
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