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Ahstract 

This thesis describes the architecture of the Kali multi-arm robot control system. 

including discussions on design trade-offs and performance. as weil as a detailed implementation 

using off-the-shelf hardware and software. Kali 's mam objectives are flexibility. integration. and 

hardware and software modularity so as to facilitate programming. experimentation and portability. 

It is used primarily to prototype concepts in multi-arm coordination, teleoperation. force control. 

and sensor fusion etc. To implement Kali requires only a minimal real-time kernel. a sufficiently 

powerful computer and a robot interface. It is based on the princip le that, today. computational 

hardware. real-time operating systems and robot interfaces no longer impede robot controller 

design. Rather it is control software and system integration which are now the main problems. To 

that end. this work also discusses in depth the fundamental problems in the design and engineering 

of robot controllers from an implementational point of view using Kali as a primary design example. 

11 



r, 
1 , 
.' 

! , 
t 
" r 

0, 

~ 
~ 
f 
~ 
~ 

! 
î 
t, 
~ 
r 
~ 
~' 

t, 

~, 
~ 

,,' 

Résumll 

On décrit dans cette thèse l'architecture de Kali, un système de cornmandt! de rohot~ 

multi-bras. On discute aussi des différentes options de sa conception, de la performance, ainSI que 

de la mise en oeuvre à l'aide de composants maténels et logH:lels disponibles dam. le commerce 

Les objectifs du système Kalt sont la flexibilité, l'mtégration et IH modularité matérielle cl loglclclle 

pour faciliter la programmation, l'expérimentation et la portab:lit-:. On l'utilise prmclpalement pour 

construire des systèmes prototypes de coordination multi-bras. de téléopératIon, de commande a 

retour d'effons et de fusion multi-sensorielle. La mise en oeu',re de Kali se faIt a raIde d'un noyau 

temps-réel de fonctionahté minimale, d'un système informatIque suffisament pUIssant et d'un 

interface manipulateur. Ce développement est basé sur le principe que de nos Jours, le maténel de 

calcul. les systèmes temps-réels et les interfaces mantpulateurs ne sont plus ce qUI retarde la 

conception des systèmes de commande de manipulateurs Le problème est maintenant celUI du 

développement du logiciel et de l'intégration du système. Dans cette optique, ce travail examme en 

détail les problèmes fondamentaux de la com:eption des controleurs de mampulateur~ du pomt de 

we de la mise en oeuvre en utilisant Kali comme exemple principal. 
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1. Introduction 
Casties ln the O/r-they 're so easy fO rake retl/xe 111. So eor)' to bwld. tao. 

-HennJ.. Ibsen (/X2H-1906) 

1.1 The Robot Controll('r Prohlem 

Robotics IS by ItS very nature an expenmental sCience. yet rarely has the literature 

dlscussed one of the major practlcal dlfficulues in robotIcs. namely. the process of actually bUilding 

a robot control system-the robot controller problem It encompasses the process of engmeenng a 

solution to a particular application mcludmg ail Its practIcal and Idlomatic aspects such as 

computing hardware, software. actuator interfaces, etc. It 15 not In itself any theory or rationale of 

the application at hand; nor is It about any partlcular deSign philosophy; It IS, however, about 

communicatIon mechanisms, servo rates, processor speed, kernel calls. and programmmg tools, etc. 

The former are prerequisites to the problem, the latter are the problem. 

ln the past, the major obstacles to blllldmg robot controllers were the poor floatmg pomt 

performance of commercial processors and the meager capabllIties and often unbearable 

development envlronments of commercial real-time kemels. These limitatIons drove researchers to 

waste most of their effort Just to bmld an adequate computmg platform Wlth sufficient software 100ls 

upon which ta test thelr theones about robotlcs, In addition. mterfacmg a dIgital control system 

directly to a robot's motors and sensor feedback was a non-trivIal task. and the lack of ready-to-use 

hardware mterfaces made It a difficult undertaking for ail but experienced robotIcs engineers. Thus. 

robot controHers often depended on unique hardware and software architectures and operated only 

Wlth specific robots and host computers. Su ch systems were often too cumbersome ta use and 

certamly too difflcult. If not impossible. for others to adopt for thelr own research Despite 

assenions of thelr powerful capabllitIes. most research controllers performed ev en simple tasks less 

weil than the primitive commercial systems they were designed to surpass. 



.. 
Today. however. thanks to vendor mdcpendent open architectures. and the ad\cm 01 

powerful yet inexpensive mlcroprocessors wlth lI1tegrated real-wlle programmlllg envlrollll1ent~. Il 

is now easy to engmeer an Impresslve. yet easy-to-Ilse. robot controllel 111 a mattel 01 wcc~" 1I\1I1!!, 

off-the-shelf hardware and sottware Ail that IS requlred a sutfu':lently powertul computer. a 

mmimal real-time kemel. a robot mterface. and robot control software l'he Illst three can he 

purchased simply l'rom commercial sources. leavmg the last to he ohtallled ellher ft 0111 othc! 

researchers or created as needed McGlI1 Univer~ity's Kali l rohot control ~ystcm l' an c\<lmpk ni 

this new trend. It I~ a software archItecture for the control of multiple coordlllated mallipulato!"', 

founded on the pnnclple that the robot controller problem 1<; no long~~r hmdered hy Inadequate 

floating-point hardware. real-ume operating systems. or robot II1ter/aces Rather rt I~ contlOl 

software and system mtegration whlch are now the mam problems-preclsely lhose arca~ 01 mtcrcst 

to researchers. 

1.2 Sotlwarr is Panlmount 

ln seeking a plausible system architecture. the robot controller deSIgner must. m eflcct. 

have a good knowledge of the emplflcal and idiomatic aspects and the vanolls computaUonal. 

programming. and UO demands of a baSIC robot controller mcluding computatlOnal hardware fast 

enough to perform traJectory generauon and Joint level servomg. user programmmg mterface and 

development envlronrnent. and a real-rime kernel to tie the system together. Once these are laId 

down. the problem becomes one of software architecture to me et ail the specIfIcations whlle 

'mapping' the enure system onto an appropriate hardware implementatlon IOstroff871. In practIce. 

this is far easier said than done. not only because of the mynad problem~ 111 deslgnmg a çomplcx 

real-time system. tut also because dett:rminmg specIfications 'a pnon' durmg the deSIgn phase 15 a 

difficult task, smce much information about the enVlronment I~ not known unul run-llme 

[Ramarnritham881. Thus rapld prototypmg. both in bUilding a functIonal skeleton of the end-rc~ult 

and in simulating algonthms. plays an important raie m the creation of any m(Jdern robot controller 

lin Hmdu mytholog}-, KalI the DIVine Mother. I~ olten repreM:n\cd 11\ U l.reutUTl. wlth mllny urm~ 
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1. Introduction 

Without adequate ease in creating and altering code. or a fast enough edit-compile-test cycle • 

development bogs down and the flexibility necessary for research and experimentation quickly 

decays. In facto it is the programming environ ment and the development tools which determine the 

usefulness of a robot control system. in the end. 

1.3 Thesis Overview 

It is to assist the reader in this endeavor-the building of functional, ease-to-use robot 

controllers-that this thesis is dedicated. It examines the problems in the design and implementation 

of su ch systems while provlding Kali as the principal design example including aH the critical nuts 

and bolts information. otherwise sa often forgotten: 

• SQfiware structure. The blueprint for" robot controller are the processes 

required to make it work, these include application code (task planning), 

trajectory generation. and servoing. A detailed examination of their 

organization, data structures. algorithms. and communication mechanisms is 

made. 

• Computational requirements. What performance features does each process 

need from the hardware? How much computational power is needed execute 

a given algorithm at the required sampling rate? How many MIPS 1 or 

MFLOPS2 are needed? 

• CompUlinK architectures. Wh<:lt architecture best suits the robot controller 

problem: vectored, pipelined, dataflow, or connection machine? Since a 

robot controUer is buitt on a foundation of computing hardware, a 

fundamental understanding of il is necessary in order to select/design 

computational components for a robot control system. Perhaps nothing has 

stirred so much confusion as the advantages/disadvantages among the 

different hardware architectures: cise. RlSC, DSP, VLlW. systolic arrays, 

1 Million Floolmg POInl Opclllllonb Pcr Second 

" - 1\-I11110n Illbtrucllon' Pcr Second uhually bll.o,cd onlhc bcnchmark lhal a Digital Equlpment Corp VAX IlnSO IS 1 MIPS 

3 
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superscalar, superpipelining, etc. The costslbent!fits of each as applied to 

robotics is explained. 

• The communication bortll) neck. Today, a robot controller is lilcly to be a 

tightly coupled multiprocessor system with complex intcrprocessor 

communication. The major architectural issue is whether to use clther shared 

memory or message passing. What are the advantages/disadvantagcs of 

each? Which is most often used and Why? What mechanisms for mterCPU 

messaging are necessary su ch as gang scheduled test-and-set, sleep-and­

wake-up, or uncoordinated test-and-set? How are these implemented 

together with communication protocols and algonthms? ln either case, 

synchronization of data exchange is always the crux of the problem. This, III 

tum, leads to the other major problem-bus traffie. As sarnpling rates and 

computation loads increase, it beeomes the major bottleneck on 

perfonnance. How does it increase and what can be done about Il? 

• Commeïcial hardware. No doubt this subject matter changes as fast as 

technology progresses, thus making any discussion of it quickly outdated, 

however, at sorne point decisions must be taken and real world hardware 

selected. For the reader's convenience an evaluation of CUITent CPUs such 

as SPARC, MC68040, Mipsl R3000, i860, etc., as weil as computer buses 

such as VMEbus, EISAbus, FutureBus, etc. is also made. A discussion on 

other miscellaneous, though equally important, Implementation issues like 

memory access time, power consumption, bus termination, and arbitration 

is also offered. 

• Real-lime Software requirements. A robot controller is very much a 'hard' 

real-time device for which scheduling deadlines such as servoing must be 

met unfailing. Thus what features are needed from a real-time kerneI? How 

1 Corporate name for MlpS Computer Ine , not to be eonfubed wlth Milbon Imtruchon~ Pcr S~ond 

Intrlllludlllll 
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1. introduction 

long should it take to process an interrupt, a kernel cali, or a interprocess 

message? Which con.mercial kernels provide these features and how weil do 

they perform thern? 

• Control Issues. Fundamental to any robot control system are the trajectory 

generator rates and servo rates. How fast should these be generated to 

guarantee a srnooth trajectory? Stable control of the manipulator? What are 

the upper and lower bounds? What are typical numbers? What about 

controller delay, quantization problems, and dynamic range of calculations? 

• Robot Interfaces. What is the basic model for a robot joint? How are 

encoders used to determine li_ sition and velocity. How they are mterfaced? 

How is a robot calibrated to absolute position? Sorne valuable tricks and 

techniques are explained as weil as the complete design for a robot interface 

board is given. ln addition, an examination of the advantages/disadvantages 

between brushed and brushless electric motors (the most common type of 

robot actuator), al'd between linear and switching amplifiers is made, 

although no comprehensive discussion of actuators is offered. 

• Solery and robusrness. Fmally, how is safety and robustness (ability to 

withstand and recover from error or disaster) ensured in an experimental 

system? To prevent disaster it is essential to have a means of detecting 

faults, software failures and dangerous conditions. 

1.4 Scopt' 

ln short, this work examines ail the empirical and idiomatic aspects of robot controller 

design and implementation. However. it does not discuss the theory of robot control, trajectory 

generation, robot language design. or programming. For such grounding. the reader is directed to 

these works: IPaul72J one of the original works in digital robot control; [Pau1811 the inveterate and 

founding handbook of modern robot control and trajectory generation (/Luh83] also provides a 

useful synopsis on the subject); (Craig891 an updated and more comprehensive version of Paul's 
5 
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classic: ICraig881 and IAsada861 provide useful explanations and examples about advanced 

manipulator control: lastly. 1 Brooks751 and 1 Allworth87 1 contribute many princlples. techmques. 

and wise counsel in software and real-lime systems design. 

ln this thesls. the Kali robot control system is used as the princIpal design examplc wlllch 

deals with the issues of multi-processor. multi-robot performance and control thm reprc~cn\ a 

significant step in cornplexity and requirernents over that for a single robot Furthcrmore. thls wOl'k 

dea!s with the diverse interrelated design issues concemmg robot controllcrs and contains a wcalth 

of information useful and necessary to the reahzatlon of any such systems. 

Finally. it must also be pointed out that this thesis IS not an attempt to proselytlzc the 

reader to sorne new, supposedly superior. scheme for a robot control system. Rather il is 10 

demonstrate that the 'yet another robot controller' cliché is no longer relevant by showing the readcr 

that any competent research team can quickly put together a controller tailored to the needs of a 

particular robotic system. 

6 
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2 The Elements of Robot Controller Design 

2.1 The Rohot Control Hierarchy 

When lI'e mean to bll/M. 
We first S/lrvey the plot. tllen dlOw the motlel; 

And when lI'e see the fi!:we oj tht· JW/l.\e. 
Then hie must late the coM tif the erecflon; 

Wlllch If IVe fintl OUfll·el!:l!.\ ablluy, 
w.ltat dtl IVe then but (Irall' anell' thl' model 

-William Shakespeme (1564-/616) 

As with :my engineering endeavor. the challenge is to decompose the problem into an as 

architecturally simple and economic solution as possible. Always it boiIs down to the design 

decisions and the engineering trade-offs. Of primary importance to robot controllers are the design 

choices imposed by that archetype of system design-the hierarchy of tasks. A scheme which takes 

maximum advantage of the natural data abstractions inherent in robotic control systems fVolz84). 

Precise specifications for each layer or task in the hierarchy can be independently defined, thus 

sirnplifying development and removing, as much as possible, the burden of explicitly programming 

the details of the underlying mechanical system, ie., manipulator kinematics, dynamics, motor 

parameters, etc. Changes in either hardware or software do not propagate throughout the system, but 

rernain confined to the relevant levels in the hierarchy. 

The fundamental system trade-off for robot controlk .. rs is between the computational 

complexity of their component tasks and the sampling rate of those tasks. That is, given the 

application: how complex are the strategies for planning. mOdeJing, and control versus the sampJing 

rate at which they are computed? The sampling frequency of control algorithm!i and, of course, the 

algorithms themselves define the performance of the system (aside from the inherent electro­

mechanical limitations). but since the designer is always limited by the computational power 

available. he must trade-off between the two. For instance, a simple servo algorithm may provide 

fast position control at a high sampling rate. essential for pick-and-place applications, but a more 
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sophisticRted algorithrn usmg laser guiding sensors may provide bette\' lrackmg control al ~IOWl!t 

sarnpling rate, necessary for seam welding. There is always the naggmg po~sibtlltv. thOlIgh. that tht: 

poor performance of a sophisticated control scherne IS due to a limllalton in sarnpling fr.:qucncv and 

not-as is sornetimes the case with a weil concelved algorithm. jusllficd III sll11Ulallon- lalll11g 

miserably becallse of sorne fundamentaL il! perceived f1aw. 

level N 

l ~er Interface (-I/"ccl - -, 
Icvcl '1 

It!\'cl 1 

(-25-IOO/M:Cl 

,\(hUilor Orh,. 

(onlrol 
(-250· tOOO/~Cl 1 

, 
l '0" U\\ rf' .. fI,,,rk. fI! \hlOIi '\\-\Iftll , L _______________________________ ~ 

10",1"" n\\ r"f'(I1,,('k f'~ Il .... r prOf!rllll1!lIllIl! 1II1111i1nrlllr 

-JO ,}: -IOOx -IOx x SamplinJ,! Inll'r\ a! 

FI!: 2.1 The BaSIC Rohot Controller Modd and Sy~tem Trade-Oft 
A hlerarchy ot control task, wlth lOcrea~mg. complexlty and ..arnphn!! 
IDtervai as one advances up the hlerarchy 
LevelO; actuator 1/0 and 100nt levd control ,uch a1> I)(NlIoll or tré\ckllJ~ 
control, torce comphance, dynamlc, compensatIOn, etc Sorne ,en~()r 1/0 
su ch a& torclue feedback for gnpplllg, gnndmg, belter tr,t(;kmg 
Level1 temporal and geometnc motIon control Sorne 1>lmple mulh-:-.en'>(lr 
lIlput IS also corn mon, le., te1eoperatlOn wlth torce teedhack, peg-III-hole 
lIlsertJon!>, sensor!> to aVOId colhMon<;. etc Dependlllg Oll the 1>y,tclII 
deSign, IOtegralion hetweenleveh 0 and 1 vane1> conMderahly 
level2; world rnodellllg, geornel-!;: rea!.omng. pdth planlllng. dec"lon), 
based on symboltc sen<;or mtonnahon, le., plck up ob)ect recognlzed hy 
vIsion system 
Level N Ul>er mterface (g.raphiclicolllc protocoh-,), programmmg 
envlfonment, operatmg system, and ott-lme programmmg 

Figure 2.1 about illustrates this baSIC trade-off in terms of the generic architecture for 

robot controllers: the user's application process is at the highest level and i~sue!l ta!lk commands 

(about 1 per sec) to a trajectory planning process which creates motion requests (more commonly 

8 
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2 Tht! Elt!ment), 01 Robot Controller Ikslgn 

the user code does the trajectory planning itself), these motions requests (Cartesian space motions, 

joint space motlon~, force profiles, almost anythmg) are then, in turn, processed by a trajectory 

generator whlch tran~lates these mto a continuous stream of Joint set-points quickly enough to 

ensure smooth motion (-25-100 per sec) while sausfying ail the specified spatial, temporal. and 

dynamlc constraints (il'., move in a stralght line from A to B at a speed of 1 mis while not exceeding 

ID m/s2 accelcratlon); in the final stage, these points are sent ta servo loops (these could be 

individual jomt-based PlO servos or a Carteslan space control loop with force feedback) which 

stabilize the manlpulator al these set-points (-250-1000 per sec). Ali motions are tYPlcally 

permitted by the trajectory generator provided that they are withm the manipulator's kinematic and 

dynamic capability When the trajectories are generatcd fast enough (usually ten times faster than 

the mampulator's natural structural resonant frequency WauI81 D, and the servos stabilize quickly 

enough (ie'., in one sample mterval), so that tracking error dynamics are approximately linear over 

successive servo samples, then the generated set-points are perceived as continuous and smooth 

motions 1 Ahmad881 ! 

Despite the fact that manipulators are highly non-linear control plants, this scheme works 

because it exploits a successive small signal paradigm in which motions are seen as points along 

nominal trajectories m Cartesian velocity/force subspaces (level 1) and feed-forward dynamics are 

used to Iinearize the control Oevel 0). In this way each layer in the hierarchy locally linearizes its 

functionality. so as to provide to its higher. 'parent', layer a linear system, in effect. Thus, coupling 

is highly reduced and the problem is divided into smaller and better defined pieces-the basic 

principle behind robot controllers. The prevailîng assumption, however. is that the nonlinearities are 

not sufficiently severe to prevent effective local linearizations in the neighborhood of the operating 

point. 

2.2 Anatorny of a Robot Controller 

ln general. robot control requires an implementation of each level in the hierarchy 

including hardware interfaces. However. the trajectory generation and servoing tasks are the 

minimum required for the most basic. often sufficient, function of a robot controller. narnely, 
9 
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posItion and/or tracking control along sorne specltied nommai tralcctory rhcsc t",o tasl-..~. III 

essence. form the heart of every robot control system. 

2.2.J Tra.iector~ Generation 

The user applIcation Issues motion/position reqllests ta the systcm III an asynchronou~ 

manner using either a blockmg (wait for move to be complcted) or non-blocl-..mg (mOllon 1" qucuCll. 

user code contInues) mode. The traJcctory generator then 1I1tcrrolate~ oelwecn the la\1 

mOllon/poSItlOn to the newly desired one. Imttally. Il I~ neces~ary to gel Sl1100th motIon 01 Ihe 

indlvidual joints or 10lOt space control-known as 'Iomt mode' -bccall ~e 1) 101111 Il a lCClorv 

generatton IS the easlest type of motion to get up and mnnmg. and 2) Il IS olter. ncces~ary \0 mnvc 

the arm into a glven posItIon free from singulanues. especially for th\! dCOllgglllg 01 other ~y~tern 

software. Next. ;he task is to get smooth mouon along arbltrary cllrves III spacc. I-.nown a~ 

'Caneslan mode: which simphfies programmmg. If .. easy workspace geometry wlth lrg~. etc 

Generally. traJectory generatlon IS split into three sections 1) the generallon 01 Ihe ~cl 

points along a stralght line segment where constant hnear veloclty IS varrable 01 control (the lI!\cr 

specifying the lime for the movement). 2) the merging or blendmg ot motrom bctwccn hne 

segments to mamtam smooth motion (te •• contmUlty of veloclty and pos~rbly acceleratlon) when 

rapid changes of dIrection lead to increased forces on the Jomts (a fourth or hlgher order polynomial 

is usually fitted as the transItion path between the hne segments 1 PaulSl , Hayward88(2). Lloyd911 1. 

and 3) inverse kinematics which converts the Cartesian space Ime geometry lOto the JOInt \pace l1~ed 

by the servos. The final. blended Cartesian traJectory can be sent elther dlrectly to a ('ane~ran-ba\ed 

controller. or. more commonly. through inverse kinematlcs to jOint mode controllcr~ "he ratc 01 

traJectory generation depends on the structural resonance of the arm IPauI811--too \Iow a rate and 

the arm may begin to shake (resonate). Accurate set-point generatlon and effectIve \cgrnent 

transition algorithms m response to sensor feedback are still much of a re~earch toplC lPauI8~. 

Hayward841. especially for muill-robot control systems 1 Ahrnad88(2). Hayward88. H\u8<J1 

Checks for smgularittes and/or confIguratIOn changes are cntlcal at the tralcctory 

generation level, lest the servos are glven dlscontinuous joint demand!l (l'!! .. equally vahd klncrnatlc 
10 
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solutIon!l 1800 apart). A vOlding the problem by plcking the solution with the loints c10sest 10 the 

CUITent position is not useful elther, because ncar a singularity arithmeuc round off error can cause 

unpredicted configuration 'flips'. It IS standard practIce, today, for robot controllers simply to leave 

it up to the programmer who decides on the configuration-the system slmply 'advises' him. ie,. 

checks and Issues warmng of singulanties or imminent configuration changes before the nh-<:m or 

do es nothmg and crashes durmg the motion. Many higher level path planning systems, though. have 

attempted to automate the process 

2.2.2 1 ntertulik 1 nterface 

A queue is used to Interface the asynchronous motion requests issued by the user code to 

the traJectory generator. A linearly interpolated FIFO (first-In First-Out buffer. similar to a queue. 

exce.pt each 'end' IS tied to a synchronous task of a dlfferent frequency) is used to interface the 

trajectory generatIon with the much faster servo control level. ln this way large motion 

displacements are 'smoothed' out into smaller ones that the servo controller can better handle. If a 

position vector. A • represents the CUITent position and. B, the desired new position. and r the ratio 

of the servo rate to the trajectory generator rate. then the incremental amount (B-A)/r can be added 

to A for Lr J interpolated cycles (ie., at each cycle of the servo). so that (B-A)Lr Jr is the position at 

the final cycle ln the event Lr J < r, the trajectory generator rate is not an integer multiple of the 

servo rate, the Lr JI st cycle adds the remaining tail-end amount. ft could also be spread-out among 

more cycles to avoid a 'jolt' al the Lr 1-1 st cycle. 

2.2.3 Seno Control 

Because of the decomposition into what amounts to an approximately continuous linear 

time invariant system. the large body of theory developed for linear systems is usually applied to 

robot controllers. For tracking control. a dual rate computed torque control strategy is generally 

employed: pole-placement via state feedback in the main loop with a forward loop compensator 

11 
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intended to invel1 the highly non-linear dynamics of the feedback compensated plant IC'ratg8l) 1. 

Expressed as an equation: 

T = lI(q) Il + h(q. (1) 

where T i~ the vector of torque demands on the Jomt actuators: Il the manipulalOf menl3 matnx. h. 

a vector function of Joint position and velocity. representing ail the dynamic forces actlllg on the 

manipulator. ie .. centrifugaI. Conolts. gravitattonal. Joint fnctton. etc (these parameter~ easlly vary 

as much as three orders of magnitude over dlfferent configurations. speed. acœleralion 1 BCIC/y74IL 

finally. u represents the vector of decoupled linear Joint controller!!. il'. a PlO controller whcre "-DI 

and kPI are the proportional and derivative feedback respectively (for the J'h entry) 

u 1 = q d, - k D, (q d, - q, ) - k PI (q d, - q , ) 

with qJ and its time derivative representing the jomt position and veloclty respecuvcly. and q", Wilh 

its time derivatives. the position demand. velOCIty demand. and acceleratlon demand rc~pectlvcly 

The 'core' loop, ie .. the computation of u. must be ca1culated qUlckly enough to en~urc stahlc 

control. A reasonable mIe of thumb is that this should be sampled approxlmately lO urnes htghcr 

than the joint's natural frequency [PauI81). For most OC servo motors mechalllcally coupled 10 

links of a representative mass. ttme constants are between 20 and 100 msec ICraig881 Thu~. from 

the point of view of \inear theory it sheuld suffice to sample at about 10{}-SOO Hz Howevcr. 

sampling rates as high as 5 kHz may be required for direct drive arms IKanade84. Shalom881. On 

the other hand, the parameters Il and h depend on the configuration q and change much more 

slowly than the sampling rate for u. Thus. if Il is estimated that .hese function!! vary with a 

significant amount, say for every 5° of joint displacement. and rate of change of the configuration of 

the robot IS slow. say with a slew rate of less than 1800 a sec (fast by todays' dIrect drive rohot 

standards). then these 'inverse dynamics' need only be calculated at a mere 36 Hz (l800/!!ec - 50 = 

36 Hz) [Kircanski86, Zhang88)! Figure 2.2 below shows the basic tasks of a robot controller and 

their how they interaet, along with details on sampling rates. 
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As it turns out, though, both the graVIt y and loml tnctlon aCluallv hdp ln dampen nut th~ 

system and reduce the control bandwldth. ~o that moderale posltlon/trad.lIlg control can h~ adlle\~d 

using just plam indlvldual Joint PIOs wlthoul any dynamic~ compen~atlOn-ll1lllallv ,1 !!.od~e\1(.1 Ill! 

slow computers in the pasto now a curse, Impedlllg hlghcr performance and one 01 the compclhng 

motivations behmd 'c1eaner' dIrect drive arms 1 Kanade84. Cralg88. Kaierooll1881 wnh ~Impkl 

models. 

ln research robotics, however. the typlcal application mvolve~ not only pO\II!on/uadl.l\l)!, 

control. but al50 force control in Cartesian space, le .. II1sert peg 111 hole by 'fed', or more olten a 

combination of the IWO. A force sensor at the wnst and/or ln the 10\llt~ provides the appropnate 

feedback. Other sensor modaliues like tactile and VISIon are bemg employed \11 an mtcgratcd 

fashion. so as to achieve greater control than would be possible wlth any one sensor alone--I...nown 

as multi-sensor fusion 1 Hackett90J. However, these algonthms are of a dlftcrent nature th an thmc 

used for traditional roboties motion/force control In that they lead themselves more ea~lly to parallel 

decomposition (ie .• image processing algorithms) The dIscussion here. however. conccntrale~ on 

the traditional modalities for robot control. 

2.2.4 l.omputational Requirements 

ln general, the computatlonal co st for positionltracking control-by far the mo~l 

computationally intensive task in the robot control hierarchy-for a six degree of frccdom arm I~ 

about 50 kFLOPS using ordinary PID servos at a 1 kHz samphng rate More sophl~lIcatcd 

algorithms, su ch as adaptive PlO. require around 2000 kFLOPS @ 1 kHz ~ampllng A!.~umlng a 

worst case scenario using. say a 6 OOF direct drive arm reqUlnng a 5 kHz samplmg frt:quency, and 

using a computed torque method with tnverse kinematics ln the core loop (about 1500 FLOPS per 

control cycle), then only 7.5 MFLOPS of computation al power are needed-well wlthin the rcach of 

many CUITent microproce~sors (see section 2.3.5). 

For generalized hybnd force/position control, on the other hand, the reqUlrcment~ arc 

cons~derable greater. Typically about 750 kFLOPS @ 250 Hz ~ampling IZhang881 or about j 

MFLOPS per kHz are needed (15 MFLOPS for the 5 kHz, dIrect drive mal1lpulalor examplc). 
14 
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The tradltIonal preoccupation among researchers. however. has been with the mverse 

dynamic computatlon-thoughl to be the cntlcal component in ach levmg better trackmg 

performance From the theoretlcal perspective. the computatlonal complexny has been reduced over 

the yearl, from ahout 0(n2 ) (105 FLOPS for n== 6 DOF) usmg Lagrangian formulatIOn. to ahout 

O(n) (103 FLOPS for n=6 DOF) ILuh80. Hollerbach821 using various Newton-Euler fonnulation It 

ha~ even be reduced further usmg a completely empmcal approach employmg sensltlvlty analysis 

techmques to estlmate. wlthm a glven percentage accuracy. the inverse dynamlcs. as one would of 

any functlon. glven enough expenmental data points Ilzaguirre911. On other hand. parallel 

algonthms executed on speciallzed hardware can achleve O(/0R n) or better ILathrop85. Fijam91. 

McMillan911 (discussed further in sections 2.3.2 and 2.3.3). Table 2.1 summarlzes the 

computational requirements for a typlcal set of robotics algonthms. 

Table 2.1 Computational Requirements for Robot Control 

Aigorithm 

TrackinR/Position Control @ J kHz 
(/evel 0): 
PID control 
Adaptive PlO control 

Force ('Omrol @ J kHz (leveIO): 
Stiffness controllSalisbury80) 
Impedance control [Hogan87J 
Hybrid control 1 Raibert8 1 1 
Operational Space control 1 Khatib86 1 

Feed:forward dynamic compensation 
@ 50 Hz (Ievel 0): 
lLuh801 
1 Hollerbach82] 
Ilzagu irre911 

(levell ): 
TraJectory generation & 
inverse kinematics (@ 50 Hz) 

FLOPS 
(per 6 DOF mantpulatorl 

50k 
2000k 

1600 k 
2200k 
2200k 
3000k 

80k 
60k 
40k 

25 k 

For each algonthm glven (as apphed to a SIX DOF robot), the approximate 
computation cost III t1oatlog pomt operations per second per Hertz of 
samphn~ frequency IS shown That IS to control a robot, such as a PUMA 
560. at 250 Hz samphng frequency uSlOg a PID reqUlres 125 kFLOPS = 
50 kFLOPS X (250 HzJl kHz) The force control computatlOnal 
reqUlrements are exammed 111 detall 10 IZhang881 
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2.3 Computing Architecture 

Once the designer decldes on basIc strategies. he or she must precisely deterrlllne the 

functions every level in the hlerarchy should perform. bemg carcful to ensurc each CXCClIle.., 

efficiently enough to meet the associated real-ume constramts Next. he or ~he estahllshc~ a 

computing architecture and then a sUltable commulllcallon mechalllsm among the pl Ocl· ... se~ 

Depending on the resource shanng requlred by the tasks and the desIgn 01 applIcahle palalld 

algorithms. he or she may choose a loosely coupled archItecture based on networks. a tl!?,htly 

coupled one based around a common bus or on sorne vanatlon between the two 

The cardmal rule of digital control systems is to mmimlze delay. smce Il mosl 

profoundly effects stabihty and performance 1 Korem78. FranklIn861 Great care must he taken to 

effectively reduce system bottlenecks WlthOUt increasmg latency. For mstance. addmg plpclulIng 

may Improve system throughput. but Jt leads to larger delay times IStone871. There 15 nothmg 10 he 

gained. for example. by using one processor to perform Cartesian trajectory generatlon whlle 

another processor, performing inverse kmematic transforrr.ations. walts for mput from the tïr~t (a 

possible exception can be made, though. when an algorithm is Implemented as an application 

specifie integrated circuit. ASIC, where sheer speed of the pipeline results In a small overall delay 

[Lee86. Javahen87j). Similarly. the effective computation ume In a control cycle (a leve\ 0 control 

loop) is always diminished by the 1/0 latency. because the task must wait for mput feedback before 

beginning computation. only the time elapsed from the mput of operands to the Ume when the 

results are output is actually free for computatIon. 

Since it is generally recognized that certam computations within a samplc penod can he 

performed independently of the others, and by allocatmg them In different ways on a number 01 

concurrently running processors or processing elements (performmg select operations), the realm of 

parallel computing has come to be inexorably tied to robot controller design There arc two major 

forms of parallel computin~: coarse-grain and fme-gram Coarse gramed parallellsm, popularly 

referred to as parallel processing, refers to multiple proces!>e!> runnmg In cooperative fa~hlOn to 

perform a single program, examples of which are dataflow machmes, coarse plpelining, and not 
16 
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incidentally, multiprocessmg systems defined by their communication paradigm Iike shared 

memory or message passing. In contrast fine-grain parallelism exists within a process at the the 

level of the individual operatIons (œ., additions, subtractions, etc.), examples of which are vector 

machines, pipelines. systolic arrays, and host of CPU paradigms Iike CISC, RISC. VLlW, and DSP 

(terms explained later on). Fig 2.3 below shows basic advantages and disadvantages of typical 

parallel computing architectures used ln robotics. 

(1) 

\.ton/Dr MutlpmrrUllr, shnrt~ g!obtJhtl",raU Iot'nl lu tluA 1tachuoow apl'folK.h. the ll(\\\Cf 
t:1\ltul rnrmur't fil mu,,1 1-\IIIUtlll},h hu .. ,lThllr,llllllI (1'1 e\t:n ,tu (',o;ll~ Hll.tl.hec!tt'the ~h\btl hu .. 
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The two. coarse and fine grain parallelism. are. in facto complementarv and may he used 

concurrently. However. coarse grained parallelism is not user transparent. because Il IS still too 

difficult for compilers to translate generic sequential programs into multiple parallel ploccsse~ 

Although It has been observed that a great deal of tine-grain parallehsm can be achlcved at the co~1 

of increased hardware complexity. the use of large grain parallelism tends to favor overall sv stem 

simplicity r StoneS71, 

At first glance, it would seem that the most appropriate solution to the robot contI olier 

problem is sorne complex concoction that exists in the lore of massively parallel computing-a data 

flow approach (where computations are performed as soon as data becomes available. it',. 

computation 'flows' with the data). or maybe a pipeline. or systolic array. or maybe something cise? 

To help in making this determinatton. a popular metrtc. first coined by Arndahl 

rArndah1671. is used as a comparative measure for different parallel architectures: defined (as on\= 

might expect) as the ratio between execution time usmg a smgle processor versus that using 

multiple processors-the 'speedup factor'. Amdahl pomted out that this measure. far from bcmg 

Iinear. is, in fact, inherently Iimited by the amount of parallelism in the algorithm. This parallclism 

can be characterized by a parameter.r. the fraction of computation that must be do ne senally. Note 

that this is not the granularity of a parallel algorithm, but rather a more fundamental measuremcnt 

The granularity indicates the percentage communication overhead regardless of the parallelism in 

the algorithm. The two are often confused since highly parallel, small.r. architectures are often 

finely grained and loosely parallel ones, big/, tend to be coarsely grained. The effective speedup. S, 

according to Arndahl becomes: 

S= P 
jP + 1 -J 

whenJ= 1 ail computation must done serially, so hardware parallelism is wasted and no speedup is 

possible (S=1). The same or worse holds true for the granularity (it is quite conceivable that a 

multiprocessing system requires so much communication, that it actually runs slower than the smgle 

processor case). On the other hand, when .f = 0 then ail computation is in parallel and performance 

increases more directly with the number of CPUs (S=P). Another important mdicator i!o. the 

efficiency, B, of a parallel architecture in matching an algorithm. It is defined as E = S/P (O<E~ l, 
18 
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when E= 1 then 100 percent parallelism). E is essentially limited by the inherent parallelism of the 

algorithm. This measure of efficiency. interestingly. leads to a fundamental conclusion about the 

practical parallelism possible in level 0 robotics algorithms. 

2.3.1 Multiproc~ssin~ 

The general hope Iying behind distributed processing systems is that if one conventional 

processor isn't fast enough then maybe more will be. However communication bottlenecks and the 

inherent limits in the parallelism of robotics code restrict performance gains. Because real-time 

control tasks are as mu ch 1/0 driven as computationally bound. communication schemes become a 

large part of the problem. Li and Malek (Li881 as weil as Stone (Stone871 give detail analyses on 

vanous communication models. In the best case. assuming fully overlapping communications 

(rarely achieved), the system speedup is bounded by the communication overhead. for a uniform 

communications distribution, Smalt = l/tpercent communication overhead or granu 1 arit y). So a 10 

percent overhead (a typical number) results in maximum speedup factor of less than ten, no matter 

how parallel the algorithm is (ie . ./ =0) or how many CPUs are employed! (in general, there are an 

optimal number of CPUs resulting in maximum speedup for a given algorithm). Thus, as a rule. 

multiprocessor architectures should consist of inexpensive and simple processing elements with 

interprocess communication being as fast and efficient as possible, ideally easily reconflgurable and 

expandable with minimal deterioration of bandwidth. However, for practical purposes, a simple 

common bus architecture approach is often chosen (see appendix A). 

For communication design there are basically two techniques: message passing and 

shared memory. Message passing makes the software easier to design and debug (pro vides for better 

data hiding more Iike object oriented systems [Schwan85, Bihari89, Clark89, Gentleman89]), but at 

a severe cost due to the excess flverhead required for the message proto co 1. The performance 

bottleneck comprises not only the effective bus data rate (especially where the system is loosely 

cou pied and shared memory is not used to hold messages) and memory contention (in more tightly 

coupled systems). Typicallatency times on the order of milliseconds (see figure 2.4 below). 
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Shared memory. on the other hand. offers an approach nearing the maximum speed of 

the bus. However. only when processors are designated fixed pnority access to the bus and 

contention is kept to a minimum. Most researchers pre fer a shared memory architecture. becausc the 

robot control hierarchy defines tasks with large granularities. ie. highly decoupled and senal ID 

nature. Sa memory accesses are largely confined to the local processor. thus making bus contention 

infrequent and predictable-the case where shared memory works best. A major di!ladvantagc. 

however, is that su ch algorithms result in poor hardware utilization for highly parallel architectures 

(ie., many CPUs with communication overhead. figure 2.5 below). ILeung881. 
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Bus contention depends on the two factors: a) bus hardware perfonnance fealures such as 

arbitration and how fast rnernory is accessed (see Appendix A). and b) the amount of mteraction 

between the tasks executing on the various processors whlch is basically synchronization probl4!m: 

any shared data structure updated by more than one processor must be protected from conflicting 

concurrent updates by sorne sort of semaphore rnechanism. The two common methods are the test-

and-set spin-Iock (on WhlCh many variations on exist such as delayed-retry. toumament scheduling. 

etc, IDming89. Graunke90J) and the sleep-and-wakeup interrupt rnethod (see figure 2,6 below) 
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Mulhprocessor Commumcahon Methods 

Nevertheless partitioning the robot control problem for a multiprocessor is 

straightforward along the traditional coarse-grain Hnes in the hierarchy (ie., trajectory generation in 

one processor and servo control in another) and a slew of systems have been designed strictly on 
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this paradigm (see section 2.7), Generally. the parallelism offered was the spliumg 01 IIldtvlduul 

joint servo loops among different processors (S$OOP. but S= 1 for everything e1se illcludmg Carh!Slan 

based control). Anotier customarily adopted technique is to perform computatlon~ rcdundantly hv 

ail processors to achieve more partilloning for a given algorithm. sacrificlIlg efticiency On the othel 

hand. for very coarsely grained cases. sorne researchers have even offered a nelwor\...-ba~ed ~olutlOn 

rLee891. More finely grained approaches targeted at specific algonthms (ll' .• IIlverse kinelllatlcsl. 

however. requlre substantial engineering. N igam and Lee 1 N igam851 propo~ed the use 01 

commercial microprocessors interconnected to suit the partIcular algonthm wlth S:::2.5. On the other 

hand, Kasahara and Narita utilized a special depth firstlmiual heuristic search scheduhng algorithm 

[Kasahara851 on a multiprocessor system connected by a common bus to perform inverse dynamics 

Levin ILevin871 employed a Transputer (general purpose CPU with senal links for communication. 

about 0.65 MFLOPS with floating point coprocessor) array for servo control with dynamics 

compensation. Other radical hardware approaches have been proposed ail deahng with the intensIve 

number crunching level 0 algorithms such as inverse dynamics. kinematlcs, Jacobians. and control. 

2.3.2 Systolic Arrays and Pipelines 

Most robotics algorithms can be conveniently represented as an array or vector. so Il 

seems plausible that systolic array processing has the potential to offer great performance. However, 

these type of processors rely on a high degree of regularity, processing possibly hundreds of 

identical elements. to achieve high speed-a high degree of fine grain parallelism. The problem 

arises that as the number of sequential elements drops Ue .. what is called a 'stall' when the data 

configurations or instructions change randornly which force a reloading of the array). the overhead 

in beginning or filling the array can far erceed the actual calculation time. Pipelines suffer from the 

exactly the same problem, being the one dimensional case of array processors. 

Nash and Przytula rNash85, Przytula881 were the first to successfully develop a !:Iystoltc 

array (16x 16 processing elements) to perform Iinear matrix operations useful for most robotic!l 

algorithms incIuding kinematics and inverse dynarnics. Orin et. al. IOrm85, Orin86, Lmg881 

designed a pipelined multiprocessor (32-bit floating point ASIe implementation) system for 
22 
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Jacobian computations and inverse dynamics (S< 1.5). Lee and Chang ILee86. Chang881 employed 

the bit-seriaI CORDIC algorithm [Volder59. Harber881 in a 25 stage pipeline to solve the inverse 

Jacobian very quickly (40 !Jsec inverse kinematic solution). but with relative inefficiency (S=1.38. 

E=O.06), hence the large pipeline needed to 'squeeze-out' the last bit of computation. Javaheri 

(Javaheri871 designed a tloating point ASIC with 4 communication ports intended as processing 

elements for more efficient systolic array (l <S<2.2, E<2.2/P). Kircanski el al. IKircanski891 used 

array processor approach using a multi-stage pipeline which matches the number of hardware 

multipliers and adders in the system against the mix of additions and multiplications JO the 

instruction stream. Coupled with a novet symbotic approach to robot kinematics and dynamics 

algorithms f Klrcanski881. the control loop (for 6 DOF) was c1aimed to be computed in 100 J,lsec. 

Efficient use of processing elements. though. drops off rapidly as the number of multipliers and 

adders is increased (1 <S<2.2, E<0.7). 

The basic problem is that ail such architectures is that provide only increased bandwidth 

or throughput and not smaller latency. The time required for computation is always the maximum 

array depth (je .. the number of processing stages required to complete the algorithm) multiplied by 

the processing stage operation time. 

Trying to avoid this. Wang and Butner IWang87, Butner881 created a heterogeneous 

hierarchy of processors for level 0 control each specialized for a given operation: bit slice processor 

for inverse kinematics & dynamics, CORDICs for trigonometric functions, and 1132020 DSPs for 

servoing. Results are impressive with 300 /lsec for a complete control loop (computed torque servo 

with dynamics in the core loop). However interprocessor communication consumes over 16% of the 

processing time (S<2.3). 

On the other hand. when the problem is confined only to inverse dynamics (no 

kinematics, trajectory generation, or code branching), remal'kable speedups are possible. Fijani 

IFijani911 showed that O(n3) inverse dynamic algorithms are optimal for parallel computation and 

that systolic arrays can be built to achieve S>5 over the best seriai algorithnls (Fijani91 (2)1, 

including communication overhead! Similarly. early on. Lathrop ILathrop85] presented results 

using a Newton-Euler formulation with a logarithmic recursion implementable as a systolic pipeline 
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having O(/og n) overall execution and S"'4. A solution IS available at cach dock. cycle: howevèl . 

there is a 40ü+ pipeline stage latency (6 DOF) for the results. 

2.3.3 Vector Machines 

Altematively. vector machines make use of the fact most robotics algonthm~ can he 

expressed as 3-element vector operations (le .. optimally decomposed 4x4 homogeneous matnces). Il 

seems straightforward that a three fold mcrease in speed IS possIble Ling 1 Lmg881 propo!.cd a 

vector processor of this type with a 20 cycle vector-matrix multiple lime (3x 1 by 3x3) a 6 MFLOPS 

rating with 125 nsec cycle time (2.5 J.Jsec for the vector-matnx operation) Howcver cvcn 

commercially avaitable, non-vectored DSPs (Digital Signal Processors. opumized for vector and 

matrix operations) [Dyer881 such as the MC96000 (Motorola) can perform the same operallon lJl 24 

cycles ISohie881, not mention the vastly superior implementatton technology available to a maJor 

semiconductor houses Iike Motorola (the same vector-matrix operatIon using a 75 nsec cycle urne 

executes in 0.89 flsec on the MC960(0). Interestingly, this is accomphshed usmg only a single 

overlapping multiplier/adder unit. 

Again for the specialized inverse dynamics problem. new approaches have yieldcd 

remarkable results. McMillan (McMillan911 used a Parallel Block Predictor-Corrector nurncncal 

method to solve for inverse dynamics, treating it as a differential equatlon problem. Employmg a 

CRAY Y-MP supercomputer (one of the traditional vector machines) speedups are as high as 5.2 

were achieved (# CPUs = 8, E<O.67). 

2.3.4 Scalar Machines 

Quite clearly robotics algorithms are not very parallel in nature. In fact, it can be roughly 

concluded, by empirical evidence alone (le., ail the previous robotics architectures S<3. except for 

special sub-problems, eg., inverse dynamics) that only 2 CPUs really are needed for maxImum 

speedup of level 0 robotics code, anything more seems to be wasted. So f "'0.5 as figure 2.7 below 

illustrates . 
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FI!:, 2. 7 Rdahonshlp Between Rohohcs Code and Processor Architectures 
As preVIOU'i system é:fchltectures show, rohollcs code IS actually more 
scalar ln nature (hence the Itmlted performance Plpeltne .. and sy .. toltc 
arrays) It seam .. that VLJW machlnee; wlth only two tloahng pom! nmte; 1<; 

sntficlen!ly ophmal for rohohcs tlnverc;~ dynamlcs only 

Realizing this Andersson IAndersson891 opted for the single 'big-iron' approach (a fast 

single scalar processor) . where one general purpose CPU (in this case with two floating point units 

using parallel buses to memory called 'JlFFE') performs allievei 0 tasks, Efficiency is over 99%, 

and the processor was capable of performing the complete inverse dynamics and PID servoing in 

less than ~O J.lsec (about 20 MFLOPS, 40 MFLOPS on matrix addition and multiplication 

operations, 

ft appears inescapable that scalar processors constantly absorb any advantage claimed by 

paralleJ processing for traditional robotics force/motion applications (the same cannot be said, 

however. for other areas like image processing), Thus, it can be argued that at level 0 in the robot 

control hierarchy. parallel processing (as applied to a single manipulator) doesn't work, Robotics 

must be thought of as a coarsely grain operation along the traditional lines in the robot control 

hierarchy: the user code and trajectory generation together, since the user code, basically Cartesian 

motion statements. is closely coupled to motion requests which may vary considerably in 
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computation al mn-time (if .. error handling. collision avoidance. user code debuggmg. etc L h:vd 0 

tasks. such as the servoing. can be placed in a separate CPU. since it IS a crilleal proceS!I not to h~ 

burdened with unnecessary computation. or, worse. stopped because of a data crror kg .. a 

singularity). In general. the problem is to deal with the physical limltatlon~ of thc object hcm!!, 

controlled. 
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Usmg the RCCl specd tc~t hy John Lloyd Ali anthmctlc " pcrlormcd uMn!!. 
smgle precisIon tloatmg pomt and the 'itandard (' hhrary tor tngonomctfIC 
funchons A SPARCstahon™ hy SUN Mlcro<;ystem'l 1<; ahout 30 
hmes tàster than a IlVAX and the Mlp" R3000 CPU wlth R3010 
FPU (Floatmg. Pomt Umt) ln the SIlIcon Graphlc,> IRIS worhtahon Il. 
up to 50 hmes fa'iter than a Il VAX tn tloattng pomt pertormance on 
robohcscode 

Interestingly enough, commercial mîcroprocessors are taking a ~Imilar track to the one 

used by Anderssoll--{)ne instruction stream with 2 floating point units (usually one adder and one 
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2 The Elements of Robot Controller Design 

multiplier) Wlth overlapping operatIon. The progress of mlcroprocessor technology has improved so 

much that the numerous algorithmlc improvements and specialized hardware created by researchers 

in the past IS rapidly becommg obsolete in comparison. In additIon. on the hardware side. the 

hlghest performmg research systems are rapldly losing their performance edge over commercial 

processors. Conslder figure 2.8 above showing sorne of the improvements in recent microprocessors 

(already considered ·old·. the newer CPUs are faster still. like Advanced Micro Deviees 29050 

performing vector-matrix (3x 1 by 3x3) multlply operations in 0.3 IJsec and 4x4 matrix multIplies in 

O.9lJser approaching 40 MFLOPS for these operations (AMD901). It is gerting increasingly difficult 

to out perform the major semiconductor hou ses Wlth discrete home-brew solution Iike JIFFE, 

whether in sIlicon. ie .• ASICs. or not. 

2.3.5 Super Chips 

The argument now is which commercial CPU is fastest? ln order to make this decision. 

an understanding of rninimlzing the execution time is necessary: three factors ct1ntribute to this: N , 

the number of instructions that must be executed. C. the average number of processor cycles per 

instructions. and S. the number of seconds per processor cycle, so that execution time = N x C x S. 

Primanly these three depend on the compiler's optlmization capability. the instruction set 

architecture. and the implementatlon technology. However the interrelationship between the factors 

is ~uite complicated, decreasing one factor may increase another by as much or more! 

The tradnional technique for general purpose processors IS to decrease N at the expense 

of a smaller C. This approach. termed CISC (Complex Instruction Set Computing), attempts to 

better utilize the microparallelism present in horizontally microcoded machines by defining more 

complex instructions with more internai micro-parallelism in the hope that N would decrease more 

sharply than C. On the other hand. the RISC (Reduced Instruction Set Computing) approach 

employs the opposite philosophy: reduce C and S at the expense of N. In this case, hardwired 

instructions and heavy pipelining try to reduce C and S white powerful compiler optimization 

techniques keep N down IGimarc87. Pieph089). The result is a considerable overall reduction in the 

execution time. Current techniques to further improve performance involve increasing parallelism, 
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further decreasing C. by executing more th an one instruction per cycle and USIll~ elabnrate 

instruction sequencing techniques 1 Krick911. Essentlally. these are slmplt lied datatlow deslgm 

made possible by 'Iook-ahead' techniques in the mstmcllon stream. rcglster scorcboardmg (tagglll!! 

those registers not being used by the CUITent Instruction as avallable fOi a concurrent IIlstnKllon III 

another execution unit). and cven more highly optlmized compller~ One such new hardware 

technique is superplpelining where two or more pipelmes are used 111 parallel an IIlstrucllon I~ 

moved into each of execution plpelines every cycle. Essentlally. Il h a ~Imple. flxed multiple 

dispatch architecture. Superscalar is another. where Instructions are fed lOto more than one 

execution unit by a dispatch unit. It is more generahzed than superplpehnmg. smce dispatchlllg I~ 

not on a fixed schedule. but depends more on the instruction stream (!Johnson911 provldes an In­

depth discussion on superscalar design). Still another. though simpler vanatlon. on these thcmc~. IS 

also possible by embeddmg more than one instructIon (at compile ume) m each machme word 

Known as VLIW (Very Long Instruction Word) processors. they seek to gam speed by mcrea~lI1g 

memory bandwidth to the CPU through shear word width. eK. 128 bits. so that many 1I1structlons 

cao be fetcbed in one memory cycle (JlFFE. for example. uses a 200-bil instruction word Icngth) 

Figure 2.9 below shows the comparison of single precision f10ating point capabIllties of currcntly 

available microprocessors/computers (see Appendix A for detailed discussion on current and future 

commercial CPUs). 
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FIg. 2.9 Tht: LINPACK Bt:nchJTIark for Currt:nt Microj!roces!>Orl> 
The LINPACK algonthms benchmark [Welcker90). developed at the 
Argon National Laboratory. measures aggregate floatmg pomt 
llerfonnance over a wlde range or mathemattcal computations 
lDcllldtng matnx mulhpltcatlon and tngonometnc tunctlons. etc It 18 

normally used to charactenze efficlency tn vector processmg. but 
SlDce robotIcs contams much matnxlvector and tng functlOns, a hlgh 
UNPACK rattng IS a reasonable, though by far not defimhve, 
mwcatton of the relahve ablhty of that processor to execute robohcs 
code 
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2.5 Renl-Time Kernels 

Trad 1tI0na Il Y . real-ume kernels have been a great preoccupation ot robot contt llllcr 

designers. most of whom have dwelt on creatmg 'better' real-ume kernels wlth more teaturc~ and 

facilties. However. these kernels. varymg from the sImple IChen861 to the comph::x 1 Stcwart891. 

typically haven 't achieved any better performance than other real-tlme kerncls on the salllc 

hardware. This IS because the real problem is that robot controller pertormance IS not gcnerally 

limited by the real-Ume kernel. but by the robot control software Itself. or the lack 01 It. Il<; 

integratlon with the real-time kernel and the application at hand IGopmath89\ 

As a rule. in robottcs apphcations the essenllal performance factors tOI real-lime kernels 

are: a fast context switch lime and low intenupt latency. to provlde for the fastest pOSSible response 

to critical events and a mimmized overhead for penodlc functlons whlch comprise bulk 01 robot 

controller computatlOnal requirements; an interprocess (or III the case of multl-CPlf systems) 

interprocessor communication and synchronization mechanism Ce!! .• usually shared memory wnh 

semaphores). to provide for effective coordination among the reqUlred tasks. and debuggmg & 

development tools. though consldered ancillary features. to provlde the necessary ease m 

engineering a successful system. See Appendix B for an in-depth comparison of CUITent commercial 

real-time kernels. 

2.6 Robot Joints 

A robot is essentially a collection of individually controlled joints each of WhlCh can be 

seen as a complete sub-system on its own (except in the case of Carteslan mode control in whlch ail 

the joints are collectively controlled). Whereas many dlfferent types of actuation and tecdback 

mechanisms eXlst and are being developed, the gear reduced OC electrlc motor with optlcal encoder 

position feedback is still the actuation/feedback most commonly employed today (though hlgh 

torque output direct drive electric motors are being increasmgly adopted 1 Kanade84. KazeroolllXX, 

Shalom88l). Indeed, robot joints are becommg progressively more hght welghl. compact, easlly 

integrated, efficient, and nearly maintenance free. IDote901 provldes a comprehenSIve exammatlOn 
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of both the practical and theoretical aspects in implementing a single joint or motor control 

systems. The typical joint control and feedback is shown in figure 2.10 below. 
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FIg. 2. JO Typlcal lOlllt Control & Feedback 

2.6.J Samplin~ Issues 

i oc torque 
d~malldon 

There is no doubt that advances in technology will obviate-indeed, to a large degree, 

they already have obviated-the need for any consideration of the effects of discrete time 

controllers. The most obvious of which are: 

• Sampling frequency. The approximation that the sampling rate of a discrete 

time algorithm is continuous which is usually acceptable if the controller 

sampling rate is sufficiently higher. ie .• 10 times higher [Franklin861, than 

the natural frequency of the system being controlled. Otherwise explicit 
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consideration of the discrete time effects mUSlt be taken in consideration (eg •. 

if a servo algorithm requiring one 'tick' is O(n). then for two 'ticks' il is 

O(n2) instead). 

• COn/roller de/ay. There is always a finIte delay betwecn sampllllg feedbac~ 

variables and outputing resuttant control signais. There is also a measurahll! 

delay in the power amplifier and III the current to the motor. and thus in 

torque al the jomt. Such unmodeled delays should at be al least three times 

less than the control cycle time IAsada861. 

• Quantization noise. Because the 'real world' is analog and feedback control 

signais are discretized through digital to analog and analog to digital 

converters. there is a quantization error in their measurement. This 

inherently hmits the accuracy of any digital control system (il' .. a joint 

position servo usually gets to within ±1 encoder counts of demanded 

position) and can lead to drastic results in adaptive systems that accumulate 

round off errors. 

• Dynamic ranKe and word size. Both Simulation and practical experience have 

shown thal al least 16 bits of angular resolution are required for adequate 

motion control (typical high precision pick-and-place robots use 20 bits of 

accuracy [Seik090J). ln the past, attempts to minimize computauonal cost 

using integer arithmetic are now supplanted by the era of floating point 

calculations-no more bit rolling and tWlddhng to keep significant digits on 

integer only machines! The IEEE 32-bit floating point format \Coonan801 

has a 20 bit mantissa giving one per million accuracy or 1.2 arc seconds 

(just enough for current high precision robots, double precision may be 

needed in the future otherwise a retreat to 32-bit integer arithmetic. yielding 

an accuracy of 3xl0-4 arc seconds, may be necessary). 
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2.6.2 Motors & Amplifiers 

ln theOl-Y. most OC motors produce torque in direct proportion to their armature current. 

which means that one needs to servo the armature current to a command voltage using a power 

amplifier controlled through a D ,C (Digital to Analog Converter) in the digital domain. However. 

while aecelerating the load. the motor is acting Iike a generator. and producing a 'back EMF' which 

is directly proportional to the motor (and load) speed. Therefore. in order to achieve a constant 

armature current. it is necessary to apply progressively more voltage to overcome the back EMF. 

whlch is often the Iimiting factor in the loop. One way to overcome the low-speed effeet of back 

EMF is to put the armature in the feedback path of a OC power amplifier. or equivalently establish a 

'CUITent loop' servo (ie .• as a current mode voltage source). In facto most sophisticated manipulator 

control schemes do adopt this technique. since generated motor torque is proportional to armature 

current. r=K, Iamralllrt' .ie .• a computed torque servo control formulation). 

A more efficient way to deal with the 'back EMF' is to use a switching amplifier such as 

a PWM (Pulse Width Modulation) amplifier which is designed to apply relatively high voltages to 

the motor for brief. variable time slices. In this case. it is required that the PWM amplifier is. at 

least roughly. matched to the motor's inductance so that power losses are minimized (ie .• motor 

must meet a minimum inductance for smooth wave fonn). This is expressed as the form factor for 

the amplifier and defined as the ratio of the RMS current to the average current in the motor (k = 

IRMS/Iav~). Il is dependent on amplifier switching frequency. the electrical time constant of the 

motor (ie .• UR. see figure 2.10) and any other stray inductances ('ballast'). The power losses are 

proportion al to the square of both the fonn factor and the torque generated (je., Power loss oc k2T2). 

Thus once a motor has been selected and the torque requirements fixed through selection of gearing 

(if necessary). losses can be minimized by making k to as close to 1.0 as possible. 

ln general. power amplifiers are of two basic types: Iinear or switching. White linear 

amplifiers have excellent stability and control characteristics (ie .• no switching. so the form factor is 

1.0), due to their linearity, they suffer from from heat generation in the output stage. because they 

operate in the high dissipation region of the transistor characteristic. Switching amplifiers overcome 
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this problem by controlling their output stage so that thev are altematmg between the fullv on and . . 

off (ie .. transistor saturation or off) value of the output voltage. By modulatmg the dut y cycle of the 

output. switching amplifiers generate a g\Ven voltage or current. dependmg on the vanabh! of 

control. Due to the high current square wave frequencies necessary a high electromagneuc radiation 

usually accompanies switching mode power amplifiers. However a few new designs. have lIsed very 

high switching frequencies together with small output filters that largely chmmate the radiation. but 

leave a wide performance bandwldth ICopley881. Furthermore. unbeknownst to most researchcrs. 

switching mode amplifiers have typical c10sed loop current-mode bandwldths (not sampling 

frequency) of about 1-3 kHz. This is not a problem for slower geared mampulators with low 

sampling needs (eg .• less than 1 kHz). but for very high perfonnance dIrect drive arms. whlch may 

need over 10kHz sampling frequencies. this could become a problem as the control algonthm may 

respond to the current switching itself. Generally. the switching frequency must be hlgh enough tu 

ensure that the motor control system does not respond to the transistor sWltchmg Itsclf (u' •. 

f~Wllching > lOI bandll'ldlh fl( cnntrolloop). However, hysteresis and eddy CUITent losses in the motor 

increase with frequency. thus limitmg the maximum switching frequency usable Wlth a partJcular 

motor. On the other hand, the amplifie!' must be designed so that the lIf..wlI('hrn~ IS large enough 

relative to the transistor switching delay time to ensure Iinearity. yet small enough so that power 

losses in the transistors (which increase in proportion tolçWllchmg) are not excessive. Motor/amplifier 

selection is not as trivial as it first seems! 

As far as motors are concerned, heat is the principal killer of performance~ however, so 

long as it can be adequately removed. performance can be prevented from diminishing signifïcantly 

(the same is true of power transistors and consequently power amplifiers). Electrlc motors can, m 

general, take peak currents many times higher than their c.:ontinuous RMS values for short durations, 

le., the time the motor can, in effect, 'sink' the excess heat generated. (Fleischer881 provldes a 

useful summary on motor characteristics and selection. See figure 2.11 below. 
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FIl{ 2 J J Motor P~rformance C'haractemllc<, 

IIIIID ~hort durllllon 

17771 conl1l1ou, mnlle 
LLLA OC hrushed motor 

~ addlttonsl continou~ 
range lor DC brushless 
motor 

Pert'()rnlanCe 'hand' (le., power, cUITent, and ~fticlel1cy) for 
electnc motofs I~ hetter when cold and dlmmlshe~ 
conslderably when hot (by as much as 50%) Brushl~ss motors, 
b~caus~ ot su~nor heat dlsslpallon and non-m~chamcal 
commutallon, have a much larger operallng ~nvelope than the Ir 
m~challlcally commutated, brush~d count~rparts 

2.7 System Implementation Approaches 

Since any system is a product of past experience and CUITent influence, it is beneficial to 

examine the many possible overall system approaches to robot controller problem. each 

implementing to various degrees different levels in the hierarchy. Figure 2.12 below iIIustrates. A 

workstation host with graphical user interface is usually employed to perform application level 

programing and modeling/planning (A). This includes everything from basic robot motions. with 

on-Hne path modification in Cartesian end-effector spac~ integrated with sensor UO. to task level 

programming systems. The user is presented a C language library interface or increasingly a C++ 

1 Stroustrup871 library interface to which user code is linked. Applications are built by creating, 

combining. and manipulating functions or objects defined from system primitives. 

ln hlgh level motion planning (level 3) systems like 'Handey' fLozano-Pérez88j, the 

approach is to concentrate the code solely on higher level code and employa commercial conttoller 

for alliower level control intricacies. It is convenience to do so, since point to point motions is all 

that is required. On the other hand, lower level, more control oriented systems like RCCL 

IHayward86. L1oyd881 actually perform trajectory generation on the host workstation in real-time 
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(UNIX kernel modification needed) and use the commercial controUer only to perform position 

servoing and other associated 1/0 (A. B). 

© Mulhproce:,~or rt!.,t:dfch controllt!r 
bypa!>smg commt!rclal controllt!r 
and usmg more sophl<;hcated tralectory g~llerat\On 
and control algorithm<; usually wlIh t()rc~ teedhack Rohot (u!.ually 6 DOF) 

o ~rlII r.~"<f ()!I~ P\\werOn 1 \.lit • 
, K, •• ~, .L-MIIII 

V Ann l'tl\40~r Ol! 

TanHUo\\ MdllU.d l \.Inlhl\ 0 

® Lower Ie:vd controller complet 
wlth llmphtier~ and actuator 1/0 

WorkstatlOn host, graphicallllte:rtace:, Usuallya commt!rclal controll~r, hut 
trajectory generahon, onJoft-hne could abo be a research controller tor 
programmmg and simulatIOn Jomt-level I>ervolll)!, 

Fig. 2.12 The: BaMc Robot Cor.trolle:r Archlb:cture., 
ImplementatIOn!> of tht! robot controlle:r modd vary trom 
complt!te: ground-up ~y"teID~ (A, C, D, E, F, G, H) to lllgh lcvd 
only ven,ions (A, B) U<;mg eXlstlllg commercial controllcr~, ,lIId 
ail the variation!. ln betwee:n Such a~ (A) programmlll)!, ho,t, 
(C,D,E) traj gen, ami (8) <;elVomg wlth actuator dnvc Or 
incorporatmg the commercial controller tClr rohot 110, hut not 
for seo<;on; (A, B, C, D, E, G, 1) Il IS al<;o usually the case that 
sorne torm of teach pendent (1) or handcontroller (whether 
home-brew or commercial) 1<; part ot such systems 

The most common approach. however, is to employ an extemal real-time multiprocessor 

system (C, G) to perform various intermediate level functions (usually level 1 tasks) su ch as ~ensor 

based control (eg., vision, tactile. etc.) and/or various control hlerarchies. Examples of whlch are 

CONDOR II [Narasimhan88] (for UtahlMlT hand), CHIMERA Il system ISchmitz89, Stewart891 

(multisensor fusion, a separate joint-based PlO servo hardware provldes level 0 robot control 

[Kanade84]), and Kali [Hayward88, Backes89] (multi-robot control and coordination). Yet other~ 

build upon previous research controllers, such as HIC (hierarchies of servo loop~) IClark891 
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implemented on a CONDOR Il platform which provides better scheduling and asynchronous event 

handling than its host system. 

Because of the many complexities involved in real-time control, most systems have 

tended to place a heavy emphasis on their own real-time multiprocessor operating systems which 

consist largely of scheduling strategies and interCPU communication mechanisms through shared 

memol) on a common backplane (D, E). The majority of the se systems consist of everything from 

robot interface and motor amplifiers to real-time operating systems and application programming 

(A, F, G, H). Examples of these include COSMOSINYMPH (NS32016 based, shared memory) 

(Chen861, GEM/CHAOS (i80x86 based, message passing) (Schwan85, Schwan861, CONDOR II 

(MC680xO based, shared memory), SAGE (MC680xO based, message passing) [Salkind891, HIC 

(MC680xO based, shared memory), CHIMERA II (MC680xO based with speciaIized coprocessors, 

both shared memory and message passing), etc. However, it is only recently, in systems Iike RIPL 

(MC680xO based, shared memory, VxWorks kemel, A-E, G, 1) (Miller90J, and Kali (MC680xO 

based, shared memory, VxWorks kernel, A, C-H) [Hayward88, Backes891, that commercial 

kernels together with off-the-shelf hardware are being employed together so as to reduce the 

development time as much as possible and concentrate on the robot control. Thus, de-emphasizing 

the previous trend in which robot controllers were largely exercises in hardware and real-time 

operating system design. 

Going still deeper, to the lowest layers, one delves into the realm of computational 

hardware design. As previously described, many researchers, even in the recent past, ~3ve built their 

own specialized processors to speedup calculations. At first the se were designed as highly parallel 

machines implemented as ASICs (Application specifie Integrated Circuits) [Orin85, Orin861, to 

perform faster matrix calculations [Nash85, Nigam85, Orin851, but later more general purpose 

processors were designed using off-the-shelf bit slice parts, such as the RIPS system [W ang87, 

Butner881 (A, C &D with custom bus, E, F, H), or JIFFE [Andersson891 (SUN backplane as host 

for real-time system A, custom D, E, F, G). It is more likely that ASICs or other specialized 

hardware will not be used as main processors as sorne have argued (Leung88(2)1, but rather will be 
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used as specialized 1/0 chips or coprocessors as sorne commercial producls have alreadv 

dernonstrated fOlsen891. 

2.7.1 Robot Controller Roundup 

Table 2.2 below presents thlS diverse collection of research robot control systems over 

the past ten years covering the full range of applications. architectures. and design approachcs 10 the 

robot controller problern. 

Table 2.2 SummM)' of Research Robot Cont(pHers 
Inl.ndrd I><ol~n Arrhllf('turf' "tTrUnlll" f' 

Al!IIJorhL _ ~l'1I\Jr.ru~!L _____ ----Ùl'L- _ lNI __ J.r9'-f1l11lllltœ l'lYl\UOII \ I~b.. ~ unnnUtll\ ""un \. ,~n'lll, 'fflturt) 

(l'nim.UonlO) f Indus.ri •• rohoti,,!, Molli 5\ <iilfm& inlf'f'II'tt", ... \ \1.. 6 6501 jolnl l'rO(''f's\or~. Q Inl\. ,hal't',1 mmlOn l '1 Il U\f'r J'ruJ:. rOllhulc.IH,t-
(Pl '1 \ ronlJ'ollrr) prol' robol !lofl Idl1&!I"'~C·. 1" Ilmol!llrr c,tO:t1' rhnt 1 .. lIlrl~1 MI 1~111 '1MIIl'."4' 

clrltsiln mo\'ts '\t" .. " 'MhtuJ l':rn 

l"I.lnl2) \\ It'kl~ m .. rhlnt \11!1tt ""nn Jo,,"IIiiUt'li ofW"'Rlor oC; , "1 Il prn(,f"<ii'lor'l rlfdlC"ftlf'lt , .. rllllf'llinh .. .thttihul,.,. .. nnltfll Il Inluh 
jA~\.G •• '11 1"'" ,"ou'IOlt' 11It')\"~t' I .. \\h~ (unlrnl,lf0l!ulI1 .. IIUIIt\\rf\" 

\Gol ___ , .. ,UI lbnd ronlroltn MoIlI- 'l""" ...... 1/16·bll (M'O<'f'ssor'l .. ttul ~trArrt1\. ~1.rtMrf'& ,. jolnt\ A ",,\UI , 

lorqur (('C"d,.('k p'o< h\rd Imk\ ptlllru'"htlr 011' lU ... , \""" 

1" .... drU) <.onlrol wr«1 drn·t Moili s)sltl1l ( ,fult'silln 6 TnZ0101)~P,. Mullrhu" ,laurcS hMffh"unl b; lU"" ",rf\u MI 
r.,hol ",ith m nllmir, pfO(" mO\t\ "arlnro "PH '20~ mmlnf' 1'0"'''(\'''0,.,. <lMIIII III '!VI 'W~ 
comlJltraallOfl Mt 6'010 maslrr 

11'0.""5. LI ..... A1~tbra SHlolic 1)'.1"" & Pl.t'hlnt roM 161:"6 arrl) 2 Dmr'lh loclutrl· l1H' '01' 
1'rZ)tu1all) aru\ IJfOfh\Or p .. ofusor "'..,1< "nrhfulII/IUnll Mil" 

ISII ..... 51 Imtrse I>}nannrs Mulll· rOrK'fpl mll'hllM" l'odt fi pl'O('fssor llobll hu\, (t'niraUl"ct. , 1 ..... 1I~1 
l'rOf lIIodult' IlIt MI hll\ 1ilIIIOthlir IIlIrruprflJ!fMIII 

(Orl",5- 111,('rst'~u.mlt'l Mull. S'lslftll6. madunr c:odt' " l ,_O("W"")o ,,,,,,hnt' lut ",tt'I' "''lit ca l\lIu 
O,Inl61 Jocoblon pro< prOl"t"1scr r"" .... FPl ,. 1 ~ l" Cil 

",o.ah.ral~ 'm t'rCit' Th narnk "nlh '(\\1'111 '(" '1I101MIOI" ~hllrl'd ~lnh,,1 rflllrallull CI 01 ,n'IIlI" 
pro< 4IkRAMIHOM nrmlOf'\ ,lItr ,.,oc't"ln 

ISt_ .. 5. Robot co ... rol Moili sui"" & obj..,lb.ord •• 01611017. Mu\lIbUl.m .... ~. .I"tribut .. " 2 mu(" llitf lII"n.~r 
St_.llo) (GE'I. (. H. \O~I pror krrnri soft l , A" 111710 hO'1 po .. I,,~ 

1"1110",1116. T .I«>pr,. .. on ";Ih Mulll system ...... !MlMOOIk MulUbu-. ..... ".., "','nhutrd "ore .. '",II,.,k ((l 
HrrIlOO,'9) torqllr rf'f'dbark pror fIIt'lIIot\ 100fl, \,uIIIU.., 

Il MnlO) Hiliid ("onlrolln Mulll S'l'slt'lll& ( .\'Qnlrol l "31010IH'l, \llIrt'fI~lohlll Ilhlrlhult'd tun" ""'1111'1 II. lU 
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IH'r-r .. 6. Robot ('ont roi Moili 1)'11 .... 10 111"'"'011< WortulaUofi hosl. 16 bU ,." (rol1l ho\1 'ml a~ IUJtrlllr\- \A\ 1117111 
Llo~dll) (HULl pro< robot ,on t'clU/ilhOfl'lIll'( Pl :\.1/\ rohui ronlrolll r 10 1'1 ~IA 1"Oilirolirr ~tU~ryh_r.\I"u ..... ..,ul .. WIIU,\ 

<0C\Ir01 in Pt 'M A ronlrQ11,r \'" 'tI"AltI ,..Hun 1 
1""" III 171, \ 

1" ... nzldrsl6) {onlrol Mnlll ~sl""& ·C'.nrt ... illn Armlll:fr,,~ arr.' MllltlhlJ~'ortJo..;l (onl,nl prnrr.ron',ol (,IW'II 
j~ŒHAI pro< kmlrlsoh mous prO('f'!.SOI's. l 0 m .. !!.h ",rlll IlIlk" r'''''''' 

\IC61000 hO'l1 for _rrll\ I"url Hur .. 

l"or"'"6) COlllrol •• kJ :\Iullo sutftll 1\1 'I( MOOIh 1::101,.1 bu\ dl\lrrhul .. c' 1 C \tll-'I'" 
IUIOlMUon pro< m ....... lorll hl" in mndul .. l'''fl(''''\~, 

Il ~0~'61 Rohn' ~ontf'o' ""iii ~~f"'" 0('''. ('f)n'rot. VA.' 11'''7q) ho"" Q hm frut .. .., ... , t .. hf ... 'ltlljf'("lon '"'' Il .,-lIlh'" 
pro< arltlian mo"" PL MA robol ~onlrollrr ('onlroUtr. st.rr.1 ~,. ... ral·fJr. ",r"'" ml • .,UO. , 

JII"II(,1r~ rnl'( \1,\ folllrull .. , 

(L."6. PH'udo·unus(' Multi· '}ltnn nonr l~lOH\)Il> PI .... I.1lf' rfJnll~ur,.cl hardw6r,. Ih..,h,,,,,,, U( 

l1uo~") Joroblon pmr MdIf"81rd 'IJfrlion 'r ... o~"rllt.n ~ 1 Il ~. Il ",, 
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~. 
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Table 2.2 (cont'd) 
Inl.oo ... '''''~n Armllf'rlurr ptrrorm ..... ,. 

/\IIUlyrb) ,\WIII,IIIVII 1 )1'< l.r\rI _J'Lo~lIJmll~ lUII('lJvJJ tmJ~ lOlfllIlIUlI,IIIIIVII ___ ~_~~l!\r!!l ___ __ Jull!tl'> 

IJ· .. ""rll7l lrM'rt'M \llIlrl\ ')\Iolir "\t .. m 1I\'!Iombh 12 bil .Pl 1!looliollJtbOr lI1irropro~nm 10; c,~ 22 
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(1 ((~, prO<' 160 ... RA.\lIRO\l Multibus ('oltrolsIOl't' al lkllz str.o 
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Il ... k •• ~1 (".\1.11 , ..... robol \Or. " d\rMmlr' f"fJ, .. lion SI 'N-' host "huMmf'fl1on • f(f'tIlor~ 

III C .conuol 
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«(}i'!IOII '" .,rU( ~rrlltl ~urt (' .. rtt~IIUllIJoH " Sl ~ 'ho~1 ~IUlr·J ,"l'llton IllUMlon (Ur.&OO III 
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4.11-b1l1"' .... I .... lh ~f'n. in 4Ip"'" 
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pro< ktnM'1 son Intpetltion. .. ssing 

Mlrtp!lln mo"M 
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1<'»<2.2.1<.<07 
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l'ror ,,~,.mhh nn DSP PCIAT a.; hod 10000ai hm for oc;P al 1.4kH-z 
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'>I.WtlT\l91 _00 robot ('on'fo' pro< "prut) son mo"n M.I'<ury 3lOO l'Pl .nd m .... ~' ,.ulng ('onlrol with 5fMOrs 

((,IIJ\lF"'\ III Sl'!' 3 ho.1 8125Hz 

1\\o,~'91 Mub"'l ('olllro) Mw .. S)stml . ( HI( 61010,61'" • \MI'..b ..... "."d dlllribUltd 1 5 mite for lU!) 
prO(' PCIAT ho" m_ory ...... 01 proplm 
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, ... lIollor c ... ""IIo, 
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, .. oc Il Pl!. nrh (PI b ... 
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I\tIP' l11illlOIlUl·ilrlk hon .. ptr ~('ond 1\110 LO~ million nUMUIlI! poinl oprr.holL't prr HCOnd. tPl nOlltilJ« point UIUL A.."ll .pphealloll sptdlic inlr~nlf'd 
tlrruiL \ LI" .,~" lott« 1 .. lrurllon wo,d. 001' =~r ... r ,,_ 1 ... ~=I ..... w klnnn.U, IOlulion (6001'1.105=1 .... , .. dy ..... lr .... 1III.n (6 001" 
~P dI~I .. , "11_1 prCK'tIIOr ..... 11., (N".,,. •• Itt« prrronn ..... m.lrl .. uwd IArndohl67) ~ ,.pHdup r.tlor ........ P ,. Ih ... onbo, .r (N"oc ....... nd Il. Iht 
rT.rllon .r",m"",.u.n lhol mllllht "'nt .. rl.'M-PI(/P'\ -l' N .... """n S-I.hon/-I lm opoodup' •• ndS-P _n/- 0 ( ... ry1hitt« po,.II .. I, 
K ,0"",1ont) ln .... ulinc ala.'illmI, ~IP E" Ilmlltdby Iht , ........ 1IIa1 ponll"ll'" In Iht Il,orllm, 

f Tht Intl ... rull Pl ,.,\ ('onlrolltr 15 indudrd bf.nuw or ib IndllIOl .. 1 folf' ln roboUn rew.rth !Ii)sttms. Tht!!llblr ..... daplrd rrom (Lf'u~'IJ 

It is clear several trends seem to have emerged: in hardware, multiple processors on a 

common VMEbus backplane is undeniably the dominant architecture, perhaps because of its easy 

implementation. its low co st or the fact that the fastest commercial processors are always available 
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first on boards for this bus: in software. the era of special robot programming language~ and home 

brew real-time operating systems is ending. most researchers now opt for a (' language lib,,\! v 

interface (with C++ soon to follow) and off-the-shelf real-time kerneb. similarly. in proœ~s01 ~ the 

use of high performance commercial microprocessors (Wlth i nteg rai tloatll1g point umts) has come 

to dominate~ in sensors. integratton is increasing rapidly. especiatly ln force control and vIsion. 

lastly. coordinated multi-robot control sy;;j;!ms have begun 10 emerge. 

No doubt the embedded real-time 'black-box' approach offers the grealesl hardware and 

1/0 tlexibility, however the basic architecture expounded by RCCL (workstation hosted supcrvlsory 

layers with servos in the robot controller) may appear to be the 'way -lo-go' ln the near future. SIIlCC 

it still offers the greatest prototyping and development environment bar none. It sutfer!. from only 

one problem-the single processor workstation computing architecture and the limlted real-time 

capacity of UNIX. For the moment, it appears that ttghtly coupled, parallel processors runntng rcal­

time kernels, commercial or not, remain in fashion. However this approach IS nol always the 

panacea people believe it to be-eg .. pOrling code from SunOS to VxWorks IS pamful since they 

are. at best, compatible only superficially, starting with incompatible names of headcr files and 

escalating: the lack of process memory management leads to dlscarded memory cvery Ume a 

function is reloaded (quickly filling memory thus requiring a reboot which IS impractlcal. not ta 

mention annoying, for development);VxWorks pipes aren't the same a~ SunOS pipes: VxWorh 

task and semaphore routines don't have direct counterparts under SunOS: the VxWorks ~tandard C 

Iibrary has differences from the SunOS C Iibrary, etc. The only question IS when will worhtation 

technology and real-time UNIX ICole90] overcome lheir real-lime limitations (sec figure 2 13 

below)? With the emergence of machines Iike the HP RISC-PA (HP/Apollo senes 700), Ils 

astounding 34 MFLOPS capability, the continuing 'workstation wars' arnong the major vendon\ and 

microprocessor houses, and ever more specialized requirements for such CPU ~ 1 Horntng911 (u'., 

circuit boards at 100 MHz, wire-bonded multi-chip modules. etc IMendeJ:iohn91/), Il Will be 

increasingly difficult for single board computer rnanufacturer~ and thClr real-tlme kcrnel 

counterparts to keep up. let alone home-brew research hardware (eg .. SUN Micrmy~tem~ alrcady 

has 40 MHz SPARC based workstations whereas only a few SBC manufacturers ev en produce 
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SPARC-based boards and then only with the CPU speeds @ 25 MHz IChild911: not to mention the 

fact that VxWorks is still in beta test for SPARC-based boards and the port to Mips-based boards 

has been abandoned+). 
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250 

100 

o Entry Level 
« $lOK) 

o Traditional 
(> $25K) 

o High Level 
(> $50K) 

Workstahon performance 15 headmg up rapldly Even though the MIPS 
rating 15 an maccurate ahsolute measure of computer performance, It IS 

useful as a long term relative metnc on system change No doubt, 
workstahon5 10 1993 wdl number crunch robotJCl> code at least 4 to 5 
hmes taster than the) dld m 1989 Source (LelboWltz90, Rosmg90) 

2.7.2 Commercial Competition 

Before c10sing this chapter it is important to take a brief look at the current developments 

in commercial systems. Even though most researchers dismiss such industrial systems out of hand. 

they have vastly improved in recent years. Most research controllers would now do weil just to 

reach the performance levels and usefulness of modern commercial systems: advanced controller 

architectures. targeted at sophisticated force and vision sensing applications. employing 

multiprocessor architectures based on 32-bit CPUs and megabytes of memory around a common 

bus and providing powerful programming and motion control capabilities integrated with sensor 

feedback IAgapakis90. Scheinman88]. ev en at the task level ICampbeIl90]; sophisticated servo 

algorithms applied with dynamic feedforward compensation (including observers) to counteract for 

+ To the helot know1cdge 01 the Iluthor, balloed on mlormahon from Wmd Rlver Systems fi Sl.-pt 1990 Of course, thmgl> change fast m 
th., IIl\lullotl) 
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joint coupling and other nonlinear effects 1 Hiroshi90, Adept90, Selko901: the use of hip.h spced 

digital signal processors to achieve very high servo sampling rates (above 3 kHl) and supcrior 

performance. eg .. 1.1 sec cycle time. lO mis velocity. 5 g 'h.celeratlon 1 ANSIIRIA89. Intelledex90. 

Seiko90. Adept901: compatibility with state-of-the-art off-tine programming and simulation sySh!Il1S 

such as CimStation™ rCraig88(2)l: and aggressive pursuit of many novel applications, especially hy 

the Japanese rWhittaker901. 

T\I A trademark of Silmaln. 
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3.1 Knli Overview 

3 Kali Implementation 
For 'tlS the spon to hm'e the en~mer ho/st by his own petar ... 

-W/Il/Om Shakespeare (1564-1616) 

As a robot control system, Kali IS an instantiation of the robot control hierarchy 

following the princip les previously set forth. However it IS only a level 1 design (trajectory 

generator) which is targeted at control programming for multiple cooperating mampulators. The 

tradttionally thorny issues of user interface design, task simulators, programming Oevel 2), and 

servo desIgn are not treated as direct concerns. but are considered independent of Kali and are 

treated more as 'applIcations' for the user to implement as he wishes. Hence at its core, Kali is 

merely a collection of C language Iibrary functlOns that provide the user a set of primitives for 

multi-arm control Applications are buitt by creating, combining, and manipulating functions or 

obJects defined from these pnmitives. The most basic of these is the notion of a motion system­

two or more arms are lumped together as one motion system which describes the movements and 

constramts associated within the desired control frame. As with more traditional robot control 

systems like RCeL ILloyd88}, the user describes the control frame in terms of synchronization, 

destination. velocity, and force. The coordinated motion of cooperating manipulators is achieved by 

kinematically constraining the manipulators to a control frame. The manipulators can move in 

synchronous. close cooperative fashion, able to grasp and move about obJects together (eg., forming 

closed kmematic chains through the common load and operating within sufficiently accurate mutual 

spatial-temporal constraints). When using such a scheme, a motion system can be seen simply as a 

point in the velocity and force subspaces. This has particular application in low gravit y 

environments Iike outerspace where inertia forces become dominant-the original impetus behind 

Kali 1 Backes89. Hayward89, Hayati90l-or in redundant manipulators like macro-micro arm pairs 



3 Kali Implement.1l11111 

and in robotic hands. For more details on the theory behtnd Ka/ïs coordmated motlOm. scc 

1 Hayward88. Hayward911. Tralectories themselves are specitied as a serie~ of Caneslan stralght Imc 

segments where veloclty is controlled. Between these segments are transItions or hlendmg rhasc~ 

where acceleration is controlled Overall thlS approach treats the concept of motlon~ system~ Illllch 

in the same way that more traditional mantpulator onented systems trcat mdlvldual rohot~­

essentially enhancements of 1 Pau1811. For detalls on the trajectory gcncïator and progral11l1l1ng 

consult (Hayward88. Hayward88(2). Nilal(antan881. 

Because Kali deals with the motIOn of one or more robots m cooperation. there may CXI~t 

a great deal of mechanical coupling among the mampulators which means such a system can only 

be effectively controlled with a control loop that closes around the entire system. not Just arollnd 

each individual manipulator. As a result. thls leads to the need for one very sophlsticated tralcctory 

generation task which takes into account ail spatIal-temporal constramts of the enure wstem 

Consequently. the basic architectural premlse in Kah IS that there IS only one tralecLOry gcncratlon 

task whose purpose is to compute nominal set-pomts for evel) motion system. Ali other supponmg 

tasks, such as the servo processes for the manipulators, must be synchronized to thl~ one maSler 

process. Within the trajectory process itself. however. motion systems are treated mllch as processe~ 

that traverse from one state to another state. hke from 'running' to 'termmated'. and they arc time 

shared for every Kali quantum period. ie .. set-points for each of the motions systems are gencratcd 

one after the other INilakantan891. 

ln addition. the Kali motion control Iibrary is completely system mdependent 01 bath 

robot hardware and processor architectures, ie., the output of Its traJectory generator IS slmply a 

nominal trajectory specification in Cartesian space. The challenge IS to implement ail the support 

hardware and software necessary to run this library. It IS the purpose of this chapter to describe m 

detail the flfst implementatIon of Kali made at McGill University as an example of a robot control 

system. 
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3.2 1 mplementatinn 

The implementation follow very much the typical robot controller anatomy as described 

in figure 2,2 (section 2,2,3), A set of processes is needed which are either high priority synchronous 

processes running at the trajectory generator rate, synchronous processes running at the servo rate (a 

multiple of the trajectory generator rate), or low priority asynchronous processes. Because at the 

time Kali was conceived one CPU was deemed to be vastly insufficient for advanced robot control, 

the Kali supporting processes are distributed over an array of processors connected by a simple 

backplane bus l, though the main trajectory generator process cannot be parallelized. The 

synchronous processes are synchronized by a global clock interrupt ca lied the 'wall clock', Each 

processor has a maximum of two resident processes: one asynchronous running in the foreground, 

and one synchronous (implemented as an interrupt routine tied to th\! global clock) running in the 

background. 

3.2.1 Real-Time OIS 

ln order to make the minimum of assumptions with respect to the synchronization and 

interprocessor communication facilities, as weil as the performance of the underlying operating 

system. no explicit process facilities Iike creation or deletion are necessary; however a global 

(across CPU boards) clock to which can be attached one interrupt routine per processor and a shared 

memory mechanism are required: 

• Wall Clock. A mechanism for interrupting aIl the CPUs using a single clock. 

This is most easily accomplished by designating the hardware timer on one 

of the CPUs as the wall clock. An interrupt routine tied to this timer then 

issues interrupts to the other CPUs on the bus (this can be accomplished via 

themailbox2 facility available formost single board computers). This 

scheme results in a slight clock skew on the other processors as the interrupt 

1 Ait chaptcr 2 shows many procC!>MlI'll Ul parallcl are no longer a prerequlMte for robollcs 

'" - A dual-poJ1ed mcmory locatIOn 011 the proceswr board that when acccs!>Cd lDterrupt!> the CPU, 
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routine takes time to get around to interrupting alllhe CPUs. but It is not 

significant. eg .. if there are 8 CPUs on bus and it takes 1 IJsec lO generatc an 

interrupt across the bus (very conservativel. then the maxImum skcw is 8 

IJsec-Iess than 1 % in a 1 msee servo loop. The Kali tralcelory gencrator 

also requires that the clock be accurate to within a mlllisecond and that Il 

keep a total running urne in milliseconds. In addition. as a safety feature. a 

reliable hardware mechanism must be used to ensure lhat should a servo 

algorithm fail to execute (eg., a hardware fault or software crash) or if the 

servo requires longer th an one mterval to complete «('X .. programmer 

miscalculates the execution time or other processes make many accesses to 

shared memory servo data structures which delays servo processing). then :l 

hardware mechanism to haltldisable al! manipulators is engaged. 

• Shared Menwry. Since multiple CPUs were deemed necessary, a means of 

creating shared data structures in memory is reqUlred. eg .• queues belween 

the processes. These cou Id be allocated in fixed memory locations at start up 

or with dynarnic creationldeletion capabilities. Since more than one process 

may wish to update a shared memory location, at least simple binary 

semaphores and queues are required with the followmg types of 

synchronization: 

Type J: Queues or FIFOs from asynehronous processes to synchronous ones 

which may or may not reside on the same CPU. 

Type 2: FIFOs from synchronous pro cesses at one rate to synchronou~ 

processes at another rate (which is an integer multtple of the first proces~' 

rate). 

Type 3: Atomic f1ags or semaphores raised by asynchronous processe!! and 

inspected by synchronous processes, ostensibly to temporanly synchrol1lze a 

data access. This can be accomplished by the 'test-and-set' mechanism for 
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simple binary semaphores found on modern computer buses (see Appendix 

A). 

Type 4: Data updated or utilized by any process with no need of explicit 

synchronization. el?. data output to an operator console. 

• Give up or Abon. This is the software fail-safe to shut down the system 

when a major error condition occurs and the system doesn 't know how to 

proceed (el?. trajectory generator hits a kinematic dependency or limitation 

of the arm). Since ail critical processes in the system are tied to the wall 

clock, this shut down can accomplished by first disabling power to ail the 

system manipulators and stopping the system clock. The user can then clear 

the error condition and restart the clock (thereby resuming the system). 

Asynchronous processes (other than the user code) in the system are 

designed to operate from data provided by synchronous (recovering from 

such software crashes is easy in Kali). 

3.2.2 Servo Control 

Since Kali only requires that the manipulator servo control maintain set-point positions, 

many forms of control architecture Oevel 0) are possible. For the cUITent Kall implementation no 

standard control algorithm is furnished. but instead a hardware independent programming interface 

is provided for individual joint controllers. Early on. a major goal for Kali was the need for a rapid 

prototyping environment for control design. Thus it is desirable for every joint for each robot 

controlled by the system to have one of many user programmable control algorithms attached to that 

joint with its parameters changeable on-line, so that these servos could be changed on-the-fly 

permitting the user to test many different algorithms in quick succession and modifying parameters 

as desired. For advanced Cartesian based control programming a similar interface with same 

capabilities is also desired, but not yet implemented. 
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3.2.3 ()ther Considerations 

• High /e~'e/ lanKUa~l' prowamminR. Programming in the high level 

language. C. is required from ail levels ln the system. t'rom loint-Iewl 

control to highest supervisory level. There is never the need to program in 

assembly language. Supervisory levels have sottware deslgned more around 

the objects that comprise the system and Its envlronment rather than Just on 

the functions it performs (il' .. kinematlc loops of transform oblects and 

functions). 

• Transparl'nt hOSl programming envmmment. The host system must provide 

the user access to his familiar development environment. Smce UNIX!...") IS 

'the' popular system. it is desired to have as slmilar environment as possible 

on the real-time target including standard system level and Iibrary calls. 

Ideally. the user should not be aware the he is executing code on the target 

system. since it appears so much Iike his 'natural' environment. VxWorks '" 

IWind87. Williams901 is the real-time kernel of choice. in this case, for ils 

high degree of integration with the UNIX hast workstation (it frequently 

happens in VxWorks that users mistakenly reach for the mouse expecting a 

certain graphical-user- interface-like functionality). However real-time 

UNIX when it achleves comparable performance i~ the ideal environment. 

• PortabiliTY: To prolect the large investment in human resources necessary la 

create a complex real-time control system. every provisIOn must be made ta 

ensure compatibihty with changing hardware and software. Needlc~s to say 

this includes CPU and bus architectures. as weil as multiproce~~tng & real-

time prograrnming paradigms and programming languages. 

® UNIX lb a. J:'egl~tcrcd tradcmark of UniX SyMcm Lahoratonc!>, lormcrly wholly owncd h) A I&.T 
T\! A tnldcllUU'k of Wmd RIVer Sy~lcm!o Ine 
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• Reliability: A predictable. reliable system is a necessity for experimentation. 

safety. and portability. Popular processorlbus architectures and software 

development environments are usually the most flexible and reliable (the 

two are not always opposing constraints). 

• Third Party Support: How weil are the third party system hardware and 

software supported and maintained by the vendor? Portability ensures a high 

degree of independence. and manufacturer supported extensibility and 

maintenance. in both hardware and software. considerably simplifies 

portability and flexibility. Poorly addressing this aspect can compromise ail 

of the above. 

3.3 Process Model 

For the McGill implementation. the Kali processes are as follows: 

3.3.1 Tra.iectory Generator Process (fG) 

As in RCeL. the main synchronous process is the trajectory generator whose task is to 

compute the nominal set-points for the ail the manipulators in the system. This process is the heart 

of the system. everything is synchronized to it. lt has a two function interface to connect the lower 

servo layer: wrlte_t6 outputs the homogeneous transforrn representing the Cartesian set-point for a 

manipulator ('T6' is the traditional term for the end-effector Hnk in a 6 DOF robot), the transform is 

converted via inverse kinematics to joint angles before being sent to the servo control process (SIO) 

(a check for singularny is also made at this point. if it fails the system aborts; however work is 

underway to remove this limitation); and read_t6 which reads back the current Cartesian position. 

The motion Iibrary also supplies a joint mode interpolator which moves a manipulator directly in 

joint-space. in this case the outputs go directly to the SIO. 
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3.3.2 User l'rocess (ut') 

This is the process that contains the 'robot program', Its mam functions are tn setup 

kinematic loops. define motion system control specifications (eR .• max veloclly. transit ion lime. 

etc.). issue motion requests, interface to the user and the external world. The user process rlillS on 

the same CPU as the trajectory generator. Il is the foreground process wherea!l the tralcclory 

generator is HIe interrupt or background process. The user code makes ilS molton rcquest~ 

asynchronously which are synchronized to the trajectory generator via a queue (a!l described \11 

figure 2.2 and section 2.2.2). The user process runs freely until a wall dock mlerrupt transfer control 

to the trajectory generator which then creates a set-poi nt for each robot in the system. Sincc the user 

code and trajectory generator share the same processor with the TG having pnority, It IS vItal that 

the trajectory generator execute as quickly as possible to allow enough lime for user code to run, 

Performance results show that a 20 MHz MC68020/68881 processor can handle one or two motion 

systems at 25 Hz trajectory generation rate. provide information from the computation of the 

dynamic models is made available by another processor. 

3.3.3 Servo (/0 Pl'Ocess (SIO) 

This process runs al the servo rate and gathers sensor information, su ch as joint position 

from encoders or force readings from force sensors. con verts them to standard angles (U'., degrees) 

and forces (ie .• Newtons). It also checks against maximum bounds Ut., maximum allowabJe 

mechanical movement of each joint) and trac king error (a simple mean~ of checking against a 'run 

away' robot by measuring servo error), It then 'feeds' the servos by first interpoJating the TG set 

points and then placing the resulting position demand, position. etc ln shared memory The 

interpolatIon is accompli shed as a FIFO interfacing the dlfferent data rates: TG set-point~ on the 

input and servo position demand on the output (as describcd ln figure 2.2 and section 2.2 2) The 

SIO performs a dynamic loading scheme among the servo CPUs so that the user need not know'.he 

exact timing of his or her algorithms. The only requirement is lhat any servo must be able tu 
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complete one servo cycle on its designated CPU. After the servo cycle completes. the SIO picks up 

the torque demand from the servos. checks against motor CUITent Iimits and outputs this demand to 

the amplifiers. The SIO is, in effeet, the bottleneck in level 0 of the Kali system. 

3.3.4 Servo I)r()(~ess (SV) 

These servo processes may reside in one or more CPUs and each may run one or more 

joint servos up to the number of joints controlled in the system, eg., worst case one joint servo per 

CPU. Eaeh SV process run on a separate CPU, of course. is a servo synehronous process (the SV 

processes are effectIvely gang-scheduled by the wall clock). There may be as few as one or as many 

as eight SV processes (the max number of robot joints). Eaeh SV is a servo execution handler that 

performs a simple dynamic loading algorithm. That is a user servo need not know on which SV 

CPU it will run. This is determmed dynamically at run tlme. As the user's servo algorithm becomes 

more eomputationally intensive it will automatically consume more CPU resouree. Ali variables for 

the servo algorithm are stored in shared memory making this possible. At present, each servo is 

independent and servos one joint. It is executed at every servo interval with the basic servo 

parameters. ie., position demand, eUITent position, output torque, etc. as weil as a pointer to private 

data used intemally by the servo algorithm. Thus from the servo programmer's point of view he 

need not be aware lhat ail his data is in sorne shared memory segment since ail synchronization and 

aceess rights are transparently taken care of. A Cartesian servo mode, still in development. will be 

forth ccming. This will consist simply of a different process which is activated instead of the joint 

servo one. At present temporary 'haeks' have been made to test Cartesian control methods such as 

damping and impedance control using a force sensor at the end-effector [Hayward88(4)J. 

Each joint may have many different (user definable by a Kali system compile) servo 

algorithms. any one of which is active for any joint at a time (ie., joint #1 may have an adaptive PID 

whereas joint #2 may have a plain PID.) ln addition, the same code may be used for each joint sinee 

the data used by the servo algorithm for each joint is user-instantiated at run-time. The user may 

switeh servo algorithms and modify them while on~line 10 facilitate experimentation. ln addition. 
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the servo algorithm closes the loop around the kinemauc angle position and motor torqul! mst~ad nt 

encoder counts and DAC (Digital to Analog Converter) unlts (both are simple Imea .. 

transformations). This makes for cleaner programming as the servo is tmly 1/0 haldware 

independent and is a function only of the electromechanical properties of the robot The appropnatc 

conversions like er,coder to radian angle. limn checking and amplifier to torque conver~\l)n arc 

defined in the robot/amplifier driver and executed by the SIO before fcedmg the scrvos. 

Because the SIO translates encoders to angles and torque demand to DAr units (thu~ 

they execute in the servo loop and take precious execution time away from the servos). almos! as 

much processing lime is spent domg this as in executing a the servo algonthm lile a simple PID. 

Consequently. a MC68020/68881 can only run 4 PlO servos (jt) 500 Hz (2 msec usmg 32-bu 

tloating point arithmetic) in the SV process. Thus 2 SV processes are rcquired to servo a SIX (x)1-­

robot. Normally such a processor could easily handle 8 or more PlDs usmg integer arithmetlc (jt; 1 

kHz with ail servo data local to the CPU. however it was deemed worthwhlle to sacrifice specd for 

easy programming and experimentation. 

3.3.5 SUl/SV Dynamic Loadin~ AI~orithm 

The SIO is basically divided into three parts: (a) get Joint position, (b) feed servos. (c) 

get servo torque demand and output. The dynamic loading algonthm is based on simple bmary 

semaphores one for each servo which is c1eared by the SIO after getting previous sample servo data 

in part (b). The SV processes in the meanwhile each use test-and-set to see if the !lervo ha~ bccn 

executed. This mechanism does introduce a delay to the servo processing time for the SIO code. III 

the worst case: time for code block (a) + time for code block (b) (see figure 3.2). However il 15 still 

much less than 2 cycles from joint position input to torque output. 

3.3.6 Feedforward Dynamic Compensation 

This is an asynchronous process running a separate CPU. Update is slow (around the TG 

rate) and it need not be synchronized (Kircanski86\ (see section 2.2.3). The SIO read!o. the 
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compensation torque and adds it to the amplifier torque demand automatically. The dynamic 

compensation has yet to be included in Kali, but the software 'hooks' are already in place. 

3.3.7 Viewer Proces~ 

A separate asynchronous process called the 'viewer' runs on a separate CPU and simply 

picks the relevant data from shared memory and displays it at about 25 Hz refresh so that the user 

can momtor the system status like robot position, tracking error, etc. 

Figure 3.1 below summarizes of ail processes and their basic interrelationship. 

&nt'roll/O 
(tiles, ethernet, etc) 

levd 2nevd 1 

Kali Trajeerory Generaror 
Synchromzmg Process 

_-.L __ Queue (type 1) 1 
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3.4 Servo Progrumming Interface 

The servo programming interface pennits the user an easy way to test servo algorithms 

without needing to know intimate hardware detail of the system. ie .. addresses for 1/0 boards. etc. 

Since most research control algorithms are based on the computed tOI que method. output from the 

servos IS a torque demand should drive a linear torque mode actuator. 

The user must write hislher servo function to accept the following software interface: 

Int servo_functlon(p_servo. demand. position. p_terque. p_error) 

/ * pOinter te structure prwate ta thls serva code for a partlcular JOint on a partlcular robot * / 

ServoFunctlonStruct *p_servo; 

Real demand. 

pOSItion, 

*p_torque, 

*p_error; 

/ * demand trom traJectory generator * / 

/ * current robot position * / 

/ * deslred torque put here are computed * / 

/ * prevlous errer, put new errer after 

comput.ed * / 

The algorithm may update its private data structure any way it wishes. but it must update 

the error. pointed to by p_error. and retum a desired torque. pointed to by p_torque. The demand, 

position. and error are ail in radians in kinematic angle coordinates. The torque is in Newton-Meters 

(usually at motor shaft. depends on robot and driver). The algorithm returns a status condition of the 

servo. The interface also requires that the user provide an initialization function for each servo. This 

routine is not called by the used directly. rather it is executed automatically upon a starting the Kali 

trajectory generator. The user may have a precomputed statie structure pointed to by p_lnlt_data for 

each different joint using the same servo algorithm. The initialize servo function has the following 

format: 

vOid Inlt_servo_functlon[p_servo, p_lnlt_data. samplelnt) 

ServoFunctlonStruct *p_serve, /* pOinter ta pnvate data structure * / 

*p_lnlt_data; /* Initiai data for that structure * / 

MsTlme samplelnt; / * sample Interval tlme ln mllhsecs * / 
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The user must also provide hislher own functions ta alter the private serva al~orithl\l data 

using the get_servo_data and put_servo_data functions for on-line servo data malllpulallon SIl1~C 

these functions are executed by the asynchronous user process, Ùley reqUlre a synchroni1atlol\ Wllh 

the SV pro cess lest a corruption of data oecur. This IIlvolves delaymg the execlltlon of ~cr\'o unlll 

the 'put' or 'get' funcuon IS performed whlle a structure blo~k mave operation ta"c~ place to 

transfer the servo data structure. In practlce Il may happen that the servo IS actually ·sl.lpped' (not 

executed) for one interval. but experience has shown thlS does not have an)' notlceabk (It'" 

hazardous) impact on motion performance. The function interfaces are Illustrated below 

put_servo(robot_ld, JOint_Id, servo_ld, p_data, slze) 

Int robotJd, 

'OInt_Id, 

servo_ld, 

char * p_data; 

Int Slze, 

get_servo(robot_ld, JOint_Id, servo_ld, p_data, slze) 

Int robot_Id, 

'OInt_Id, 

servo_ld; 

char *p_data, 

mt Slze, 

The data pointed to by p_data into the current user servo state from .lOmtlolnt_ld for servo 

algorithm servo_ld on robot robot_Id. The data to transfer is SI2e bytes long Return '0' if succcssfui 

or '-l'if bad id, A host of other functions exist which simply change one element of the servo data 

structure, such as enable or disable an indivldual servos, enable or disable the range check mg. or ~ct 

the tracking error tolerance (ie .. the 'safe' variable in the 'ServoStruct' u~ed as the maxImum servo 

error tolerance, this is easy to set since servo error IS always in joint angles, rlat encoder count.~). Ali 

access to this critical shared memory structure (le .. the 'ServoStruct') must be synchromzed. hgurc 

3.3 shows the data structures used by the SJO and SV processe!l and hence the user !Iervo algofllhm 

Figure 3.4 a shows a complete serva code example for a simple PID . 
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PU:_lC1"Vo(lIlI tcor...lf_id mt lourt_id ml SC"J""ooo_IIi, clld.t -p_dattt ml \lZLI 
{ 
If D '4 .. ~IrlI ... ~Irl·oh..c_.d ,)ms_KiI re1urn 

1}r,'_~I('4' pSI" >1\ nc_~cm 1 

,- \ .. nc.hmnlLe .... llb <"IO B-tAI,~II .. ~ hm..:t.rv kmaplhlfe t.' ICII,,'" ~lUI ~.hCT­
- r"lXC!aCS rh!!. lJTCqutfoi to ~t,nn seno sate ddla .. 
• haDrilm,p: ..... b"ul ç,.rruptnJ! ti.e dal<l dUTlD~ 'en.' -OIDputath}D. pSh' .. 

The "Pul" arul "Gel" juncnt>ns el:chal/ge dara \\1th 
tht' user uno IrruLll/re /Il synchrom::.ed fa~/lIon 
Ali a(CeH (() Ihe ".SenoSrrua" /1/Usr be s::.1Iclmllll;:"J 

nnce 111\ uled/modified bv Ihe SIO and SV pmct!U/'1 

dunng ~en.{JIllg 

,-, 

Ser.o IInl<fIlT<'llleJ h_, rh,' WU pr"«'11 Izlddell {r"1/lIIz.' /llt'r 

Thil daca 1< kt'pll"talh ont' t'"dl CPII Dllnng Itartl//,,,l1 
CPl '5 ,'retille Th,- smne mSltllllWTl"n t ode /11 .. hitl/ rlze r •• l'''h 

• vomr, 10 the m<illcr ,bdfCd memon 1ln..(.1uJe Tb" fun ... tll,n caUJe3 
• Tbe "10 .md hcnce the "(1'l.i)!l, l,) ~~It f(lf a ·'''De rdeasc" \\onen lbL\ • 
- tun<.t\on 111, talled d-lla h~ndlmg m\~ he d\.'nc: q~ <.k.l .. 1 In6 \ ban 

,S"no slruU/lrt' uled hy Ihe S'Vl'T{l(en crmllllnlllg and H'nOI ar" dt"{illed, ,'le 77/111 Ail ('Pl/l/ul\e 1II.I.."l/wl 

- JO~ "fICr'\.l' roile) <\.: .. i ~ ... n, re1cd.~c" c...tlleè. TbL' ta nsnllialh 
Ihe len" Slalt' dala "hlCh IS hlJdt'llfrom Iht' user Lopies ,,{l}zll dala \TnUTl/rt' 

r------------------------------------------------------~ It'n" alr:onthm Onh dt'mLllui llnd po<lt,,'n gnt'n ro : : 

lhe IHer seno 77/ls dala IS J..epT III slU/reJ mem",.., : "r<oIel "ru" : 
• d h!:(\(.lunR KtIldpbl'fe r.'T ilÇ~U h' Kr. • datd.. The ollIcr sb.'uJd 
.. nof t.<fIl thls rt'utme 'HflC.C d 111 tune cr'llal -, 

"",.buffcr (pSU' >K'''ll~nJCII\m('_ldJ p_dalli Ille>, " " d" "fi' d h J 1 { 1 \0 gel an pUl mdlO1I1 Ult' v ollL'r ! ml ,n,l, Jl1d ,. ICI" 'pl"". 1"1 d", IDII .. I~"I·, 

"'tlC_fdeaACIP.\hl >'''nç_'ieml 

j- Rdc.tSC <.,10 "TI.'m ,,")Ilm.,. f~lr UlC'r 10 m ... ke chlRl C.haD~CL Thil l' 
• ri Itmapb"re 1I1~lIal hl .. ~\ DC_ \1(11 ,em IpbOfC \lait The usC'r ,hewd • 
• noC 'oi11 thl. roUlmC' .. mec Il l' I1me cnfl(a! -, 

rdurnOK 
} 

pro<esses on olher CPUI (i" llze ne .. er or IHt'r 

proct'ss) can g,'lllzt' d JtlI ----_.----------------------------------------
I,~ef\lrutf 

{ 
mt 'Cf\(l_ul /- ~ef'tI\' ah,.mlhm id-' 
IDI tCdl.h ,- mdl\alC'5 ~Cf\',l tc:rwly fllr ("1:(.\1111'11 u..,Cllln 

dyndmlc loadmg IIIj!(\1'11hm -, 
lnt ac.h'\lC' /- u~ by d.,narmc. h,..tm~ al):\1fllhm ./ 
ml !loiTU! ,- "'Blu, \,f5en.rl' fdurncd hy mc:t "tcle-j 
Ull prl'CC!' ,- CllfTt'ot (Plf/pr\lCC'5\ ",here ~crv\' 1" C'xC'CUIUl~·/ 

"lelll Aoife ,- lad1. ~l' m.'flC'\cmo(..c·' 

Called by liser dunng ~tortllp (0 

mnaltze the USeI data 5trueture 
for l'oeil sen'o algontllm 

Imt_serv9_functJOn r-;:====:;j:t. Resl demand, /- CUITent clrnldUd ID llDCm<lIlC r,Kh m,"/ 
Rca.) P.'tltlllD /- ... W'Tcnt r~l~ "''5III>'D ln kltlaDdtl<, ra.:h Ul5-' r---......... Real ItlTquc_dC'm.md ,. h1rquC' dem lDded b) Il'et .. c:t'\Il'--' 

'-'.-:-:-:-:-:-::-:-:-:-:-:-:-:-:-:-:1"-C'-:-:-:-:-:-:-:-=-=-=~Z:--=-;-~-.-.-=l=l~~-~-~-:-:-:-~·.a;~~ Real error ,- cunco! ptl.1I1 '0 err.-f Cl1tIlPUtcd h, 5en..' rur -, : ,. Rcal "'t'Que /- ~und.a "'cc~ hlfquc. truc h'rtllJC h' nH'h~ .. ! i\pcrlefl1nJ'1 /·d .. dahufTafClfU5C"' .. C,....1l"ruct· ...... \ecv('JI>ala"-tm(.1 .en.\1_dI18lMIX~ll!1 t .. u .. (r~·.rv('llliltR ... lru(.I·' 1: 
1 { } "-Cf'IoI·<;truc.t : 

: mt dummvl~llD~tll'\l/cJ : 
: } "'CTV('IOrllaSlrucl Tllese data ttnlclures liTt! : 

1 sloreJ III shllrecl mem0'Y : L____________________________________ __~________ __ ______________________________________ J 
USt'r defined sen'o data slruaure 
("',,,Iable To an)' ~en'o ('Igonlhm 
Slore /Il shart'd memorv Ihus 

mw/able (0 aU SV prouSlL's 

utl "("Ir /- .en trh~ re f.'f Il ttn up '"'-qucucC' ~ 
lUI mit l·stlt~uf"<.luC'Il.:-::: ... tltC' .. 

ml I\TI"_"cm ,- runllme , .. tI"rH'nUln~ 'cmlti h~"fC'-/ 
B~,\,I <.:,.\1,0ra11! , ..... .th!!f"t~ m,-.dt fla). -, 

R~\"l r,1I ~e_~hC'f.1 ,- !lm,c ,bec,," 111J:" 
a,\"l rc~ ",m /- 'IaID!,le dtt.l rc ... Md rldJ! -'1 
8,\.,1 U1terpo.. L~IC' ,- !let'\.,. Je"d Imc-ar 1II1t'fJ"IItIC !lH~ -/ 

ml tIlI'o{le J- JOUIt Of l u1e!ll m m,..-Ic f,eT\\'U1~ 1 ,1( Ul.plC1'1cnlcd-' 
Re t1 tl,\. ldCf'\,1Ù lld. 1- rCllpr"'-,tJ ('If "c:n,.' II{l pcf JlIIh..L (n Ibe F1H) IItCfP"),dh'" 

m"'lettd •• fdl\ Klm~ the J.llDl 1'''''''111\10 dlffCf('OCC Il 

ml Wlcn..tI TIcL. 
Il,, mulltp;ICl.I ho. tbc m\ocnl 1\1' I\oCC'U'(.uth"n IUOc'" 

/- ~.1 mtLnrllm mtllt!C'd'l[)(l t,d\-' 
ml ~1..-untCf 

QlJ('!"C' 
/- c\'UlIta ",hen' ,fChb ir.'m .. cn\' ~UC\l\, ./ 

/- In,;:tcmcultl P',Cjl1H'I(lI!cm Il'' P"511h Il-' 

J~'lUl'cl mc.rc:mcIJII\1oi"'cr...~ICUC'lZCI t 
8.".1 'IICT"\.llrrnhlel 'U,I,'IDT .. ! - tum ~CT"l"~ ()r./(}F}- .. 

~en.ll'Imc.r .. en..'I'l,J"lnf!J ,- ah.''\Ie .,cn,."Ldrl o;tnJ~T"/ 
ml r,'11"I_d ,- t.·hlll hl -/ 

ml '"ratt hl",r,T,hl' t<i"-vcl - "lndch fllr f"l~,t JfI\l.t-' 
) 'I\,~'tnld 

t ... ht'rt' fotn/Çi'! \"nn,l1Tn\ nfX Rt'I/' 

'------------ 1he 'e 1\\ 0 data \/ruLlllre, art' ,rored III , 
: IOLClllllt'/Ilon 011 t'\'t'n CPII 

:.-----------~-----------------, 
1 ~lru'l/ .. 4U''\l' Ilhlt "t roll 1 ure -, 
l , 

: i1ill\'1 u,cd 1" colr. In u ... c -j 

:lser servo IS executcd 
by the SV process 

cmand. pOSItIon, &h)rque_dcmand, .ccrrofl !ntrn funl , ... p!..'UIIe1' Il' !ln-\., futJI,.Ih1Tl -, 

\'Ndf n ULlI, ,'- ('l'Ifllcr l,· !!en,' fundl(lll 111111 ULT;t!I\'U -/ 

\bTunc" tmplLj- '1Lf\I' umlle mIen. tl ln t ltlll~t.Wlltls-/ 
} '\cf"\.l,T IhIef utfM r,l"umbcr(}f\cn,I''1] 

, , , , , 
t~ _________________________________________ _ 

,\falTer ~hared m<,mory table umlmmng Ih .. liser I<,n'" alKonlhm 
mfomzanO//I/\ed h} <;/0 al/d SV l'mteflCs 771e emnn are 

made bv Ihe Iller al mn-Ume bv Ihe "lIIltall "jllnuu>I1 
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"putel \Irud 

\ 
Real sampll.uU'CrtlU ,. UInpic IUICI'\..lllll ~(,hll1l.l<;·, 
Rral 1n1C'!;ra"I'n)lm.1 1- tnl('~n'h'n h.ln,1I1m,' -, 
Rral mtegmth1ll_rtlct '-1Il1rrpllt1\11 rC'.stllunll ., 
R\.dl Ullc).!r.tl_l'J_I.",' r 

Real oldJlol)IIlI\1D. 

RCdl \~ld_\cI\'Cll\ 
Re.l ~"T' 
Rad ~J_I., 
R\..I\h 
Reallpr<1. 
Rcrtll(lte::' 
Rad Ipf,l 
R~l Jph~ 
}PII'1~('rvlC\Tnlct 

,- ~l t Ilne:' ,",,,opllll).. IlInC' -, 
<-,.,\\ p." • ., fi1hf pn IU\\.h.f ... • 

VilS strucmrt' umtal/ls tilt' pn,'utt' mJOn/llllll1/l \t''''O algorllhlll 

slale mjomUl/WII {or CI PID ~(I/1l,' <l11/1t! lenm Clrt' /'rt'<t'lllrWt'd I"r 
II/ore tilhlt'I/o' AI~(1 WIlIa/II\ l'aram"lt'nforllIOl\ {'l/ll.filler 

ml pIJIP_!iCI'\.\l d\.maud l"'!lII'111l P-"'f'llI\. l'_CNllfl 

rC,lster Ptd~r""~flIcl Îl_ ~" 
tt:~lstet Re.ù ùemiiud.I"''";I\I\I1.1 
fCf:15t~ Real ,,_"lt1l11(, -r ('"M 

\ 
rl.).!15lu ft\. Il 

("\.lDlf\II_51~lIal 
I,.k_mmus_1 ck ('_rd~_k 

\k Ü_r1I\I. ",cmA_rk 

'-1111,. t'fr,lr '!.'lU,11 .111,1 \d"LI!\ M\ fir .. I}.,\\, pas'\ mluu'·/ 

,- rlnl order fihet. U8-m~ blcl'"\\ard d,ffc:renc('·' 

'-.ct Ipfel = (umphoe pett ... '<l.I-I,I.C·' 
,- "-ben: ~c 15 tlle IIlter If~UCIII.\ lU fHdlUrlJi per ,('",'Ut!·( 
,- "tllpfe~ = 1" 1 • Irfet)-' 

t:_fd"-_k ==dl.ll.IdUd l-.... '<;llh1U 

cJ.._mmw_1 = -V_rn.:n 
cl. == p_8CJ'\\1 >Iplr:!-, p_!tCT\" >lph.I"\.jH",-'" d_wWII!I_11 
"r_OTTnt = .k 

\1.._f.l\ ... = (l,.", ... \t1~\U l'_\\Ct'\.' .. "hl_I",\~\I\..,nl/l'_"'I..f',~' ,. ... UUl--hUh.-l'll..f\·""t 
\k == p_Stf\'\l >lptv.!-'P_!Cf\ll >Ipf\ 1 ~1r.._fIl", p_IC'1'\O >l'ld_\chlClly). 
, ... fùtt..ï gi!.IUS let 11.\ h~r p"SUIIJU hhu ., 

fl_lCf\I(l >oldJlOllllon = ",'"lIh1D 
p_ICf\.\.' >old_\clOCIl\ == Ü., 

Ilgma_ek = p_lt1\ll >mte~a1_l't_err~'f • d. 
11 1 SljWId_èk > p_sel'\.,' >lUtq.~rdlhl(l_fl,.,d 1 
II~ma_d: = p_ICf\tl >mtepe.I,('1D_rtld. 
dt ~\pna_el oc p_Kf"\. ... ' >mt"'FJdh ... 'u_fcs.et 1 

'Ij!mA_rk = P)!"'I' "mtr~'I("1nJ"et 

Il Id. ,. P_!Cl'\.ll >mlcplillllllJ)ltIKlII d. 0:; p_lervo >ullc}l:OOllluJ.lllIJJI 

contn.'I_",nal = p_ta'\lO >kp. ck p_KfVl'l,.h - vk .h. 

} 

conlrol_ 'Ignal = P_ 'tf\.I' ::okp· d r_!C'1'\,' >ll_T ... "J:R1 J_ck 
p_&CT'\'O >lv - vk. 

-V_torque = control_"~ 
fCIUfU(ÜI. 

CompllTed PlD for one ~en'o Inlen'al Relllm~ a de~lred 

torque f'<'1":ecl /(1 n\' p _'orque (lnd an error romlt'cI 10 n\' 
pjrror Conlams a /01<' pass filter aRamsls nO/sv veloCilv 
For a PUMA. 560 the kp ran~es (rom 50 to 2{)() and tlle 
/no ranNes }rom J 10 7 Filler paramelers are appro ( fe=50 
anJfv=25 

J Kali 11111,\1.'111..'111.\1\0" 

IUII..Jlhhl'_ 'CI',' \' IUll •• I.ll,1 •• I1I1I>i~ 11111 

l"k,-..cn"""lnu.1 -1' \(T\" 
"p \II11_,htl" 

\1,111\H' '" \\Il,,\dm 

IL~ .. "I'II'I.1'\I\."lI\1d -l' '\\Ih' 

f('p~ICI 1"II'rl'\.\'''ru~1 -l'Inti ,LlI" 
\t ... 1 1111\ \.un 1'1 \ 

,. Il ,'I\tll Il"1fn:t,.ln1t,,,IIIIIII~1 "!tU 11\,. 11·/ 

Il IP_III11_11"1'1 1:, '"111 
"',,_,,{\,- -1 _ 11111_,\." 

rls(' 

/-II'''Un1e h('f(' ~(' ~1I"" "\lf 111111.11 Ahll 1II11~h 111\ • 
1'_ 'Cl\,' ~\IIIq..,I.llh\n huu.!:. \11) 

t' '1((\., "'1I1'(,~·t.l' l,III rr'lf! = Il Il 
l'_IC(\,' ')1II1C'rrul.,'I.('nI1t ;::IH) 

1'_ 'L(\" ,.I,I_I""~III,\11 Il li 
l'_un Il "'111.1 \d,I\II\ :::\1\) , 

1/11I1<1li,,' Ih, PlD rolll//I.' IlIar,',1 
lIIelllon .1<11./1'0/111",11" /II "1' _ ,,'n.," 

111111 I/I,'r cima romlccI 10 bl' 
"r Iml dllla" ''l'l/Ilpl,'IIII" H IIIt' 

~t'rV(l 11I"'P/" mll'rI'(11 /II /111/11 l". II/Il" 

"('1_1l1\t~·IHTI!Uhlh..ll Id )"IIII_hl \('n.,'_hl Li' LI 1..\, 
1111 J"I""_1I1 "'tlL1_hl 11\1\1'_111 
RU\\..'\\.I,"" , 
PI(I\'rf\,\\"nl~" l'hl cI •• I •• 

Il q .. lI_~I.n.,'lrolh.'I_I(1 "'IIII_hl ''Ilr\.\'_111 '\1''''_11.111 
U/C'IITI1,,1\cn.,,\'lruI.1J1= Il 

1(1111111 Il. 

Jlltt (111hl 'k P ;: kt' 
pkl_{lalil.~I_I" = ~I ·l'kl_tlllltl'IIIIII~IIIJ\.J)('rhll.t 
p\o\_li\\.,I,." :.\., 

put.lCl'\ll(flll""_1l1 J"lnl_1l1 ICI"\'I'_II..I &1'111_,1.111 
\I/I.',fll"d .... ct,.· .... IIU\tl' 

rtlllmlfii 

} 

Ht'rt'll (/II ,'wmple (I1t111~I'r l"rHllr'" If' 
cll(lfI~e Ihe \en'O pamm,'luI (NoIe l/r/l 
{Ùnclioli «(111 he ({ll/.'cl "oli-/II.'-Jlv" II/III,' 

the rohot IS III/H'IIII{ Sillet' 1.\ IHt'1 III .. 
l}7/(lIromzecJ 1111"1/(111 wll\) ,\,'11111,' /'If) 

algonthm gmlll Jor 111:""'/1 "rohOI_,d' 
')ol1lUd ",mu/III<' PID "1t'rI'OUI' 

Reruml '()' I} OK or 1'1} hlld Id 

FIg, 3.4 Servo All:onthm C()d~J:;:1(lt)]U!~ 

3.5 Robot Drivers 

The Kali robot driver is a set of functions entered in a table. foigure 3.5 below illustrales 

58 



VI 
\0 

"~ 

C;;LO\\ (- li'))m", 

.. ,x11!"_ ~"n'1))(r_da',,1 
"CT8tc.h~r.K1 ·p_dal" 

ImtialIZe the: dtl .. er m'Vale dat", llructwC".md llO hard\\'1lrC 
., h. L" called ( JUlIi! Kali dodo IIal'"Up 

,~ 
'1 R\O RATP 1 Zm\, 

,,,·ad rul_I ... 'rq~_to_m"" ,'f'I(p_(lata J_h~Ut' '_('Iut 1 
,,(fatü~ruc1 -p_cbt .. 
J\'lat'\(t -J_'orquc f- torque dC'l18nrl ./ 
}llIDt\(t -J_ ILif ,- .lutpul h,rquc III m,'lon -, 

TIlts j".IUllJlc= output. 'he m .... C'f lOI' )1"1DI l.ttquC'ltorquea nemkooed 
h .. Ihe 'tCI"\'{I aJ~,.nlhm. ft mUJI cbc=t.k tbc= torque! dgAtmt mS'\lIDum 
aIJo ... cd ~ the mot(lt;md t.hp HC(XltdlD~h The actualll'I'QUc output 

h' the motnTlll rdurncd m Ihe JOWI"ct Pl'mfol ta"'" "J_"Ul" 
IIbll 15 d15plll)cd 111 ,he ..... ICYt Cf" , Tba ,.Iutme 11 IImC' '-nttcal ft 11 

nwacrl", Ihe ~IO ln Ih< hlo" le, ID """,IIcI "',Ih Ih< ~V proc ... \ 

~rRVO RATf ( ~mJl 1/ 
\/" .. \ ~ct_ttn~C'...JX"!nll'-'n1p_d.tta ll..J ... .llnll, 
~"Tatcb'-1ruct -p_dala 
J(\111'~ "PJ"IQ1S 

Oct lhe r"hot poenh10.fi kmemalu. COI.l((lW8Ie8 fhlm the P''Ilth''1 

f((fil.ck .t1lbC' )omt1. Th. fN.l1.1D~ \1 cana~ \1 ca .. b ICf\I(' 

lDt«'.-a.I h\ lbe ~IO tlDd k(~ Irllù "fthe '.,hA f't..l!Illh'P ThlA 
wUlItlC' 1\ VCT"< tlme cnJH.aJ 1t8 11 1" exo..ldM.1) Ih~ '10 lr1up 
"l"<fe ,hl.l',k Ittl) f- ... et"V rnICfll~Ct'ttd "-'dlled hC'1C' Il n~lt lI\allahic 
l('Ilh~ IIoC'f'\O pr.lCC'!I'Cft 

rRAlI'('fOR' RA rE, \Om" 

\t'kJ eD8hle_nülC\llp_dltll} 
\cm" .. b~mc' ·p_dHIIi 

rurn' 01' ''1 (,MoNC'"" the' fl,h" m,II,'A ttmplttien 80d dllithlel the 

hrllkC'\. 1 \enlhm~ Oeo:.l0 Ihe &ce the r,,"""'t ftlf movcmeDI fh~ 

fl\lfWe IJl.nI) mcdcr<tlch lunC' m!lcal "1' t.allC'tln,.theKnl'''ttnup 

rOOlUleL ~. 

\"FRVO Rt\ Tf- (- ::!m'I 
Vllkl d,lHhlc_r"hltlp_dHI8J 
~CTfItch~ruC1 "p_d'Ihl 

rum. OT F the amphflcf'" h' the n,t ... m\lt~,,,,. tum "n tbe hrakc, 
Thu .op!l the roh.1t c"ld Th." rllutlDc 15 VC1"\ lune CfII1('81 l' the lunJ..{'1' 1_IHl..e" 
10 tum "tfthC' nltx>t thC' mOrC' dRmaj!:c II CIiJl dt' ID an emC'f~C'Dc.'\ .nuallt'" 

~ 

'f-R\ORATE, ~mOl 
fR \JEC,OR' RUF lo.lo:l" 

BO('II hounds_cbed."I'_dat'l. p_tomt", 
' ... -raI .. !l~ruct Î'_d.r.Td ml f f_1.. lC_ ... " ..... "'II~r_datot P_ f_l 

J,lm''\d -f-ll'lDtI Scr (h~ru(.1 -r_h1a 
Tra:t"f."""IJ '"'r_1 

( bcc.l th.iI Ibe J 'ml! MC' ... l1 .... tlbm the: "al Ki l1DC11l..r1C mgu. U'T..m~C j.'",,$e- .... _ 

Tbt!ll'\ lumed ('I: b\ the: ~c:nahlc:_nm~c:_(hcd- and -dl! thlC'_ran~e_cb,"cl 

r 'U!IDCL T~l! r.'utmc: 1.1 nccUled hl. tbe IOiIO ln the: po.lSt 

( 
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3.5.1 Calibration 

Robot calibration is is performed at two drfferent levels' absolutc klllcmatll' caltbratlon 

of the manipulator by precise external measurement (eR .. la~er IIltcrleromctry l. and bv lI~lIlg 10111\ 

level absolute transducer senslng mecnamsrns (t'R .• potentlometer fccdback) The lormel I~ II11l11lllh.' 

to robot link and Joint variation (te .• gear backlash and lomt thermal vanatron~). bUI rcqllllc ... mllch 

time a dlfficult setup. The laner can be performed on-hne by the robot cOlllroller and ~o , ... lh"cu"'cd 

here (the assumptlon IS that an absolute kmematlc reference data is avallable lor thl ... operation) 

Most robots use encoder (index reference)/potentiometer method for calibration Thr~ method 

involves noting that a) the encoder provides one Index or referencc pulse pel revolutlon. h) the 

encoder IS usually motor shaft mounted. thus the nurnber of mdex pulse equalthe gcar rallo, and c) 

the AID (analog to digital convener) reading the potentlometer mu~t be able to rehahly dl~tlllgur~h 

between the 'gear ratio' number of mdex pulse~ (il' .. at least one bit resolutlon than nece~!.ary) l'he 

idea is to assign a potentiometer value to each motor mdex pul!le u~mg the accurate external 

calibration reference The exact kinemauc angle must be determmed when the rohot 1\ at a glven 

index pulse and the potentlometer value noted A simple trick here ta save lime Wlth a mmllnal lo~~ 

in precisIon is that cnce that exact potenuometer value for one Index pulse ln a 10lnt 1'1 detcrmrned. 

the external reference is no longer necessary. because the JOint can be servoed to each ~ubsequent 

index pulse and the potenuometer value noted slnce the Index pul!les are a known angular dl~tance 

apart determined from the precise gear ratio (ef, .. for the PUMA gear ratio I!. 75 1. therelore Index 

pulses are precisely 360on5 = 4.80 apart). Another even shorter method mvolve!l takrng only a lew 

of the se data pairs and hnearly mterpolating the potentlometer value!l for the other Index pul~e~ 

ReeL uses this technique and it gives calibration result!l precIse ta the mampulator accuracy for a 

PUMA. 

The actual on-line calibration procedure simply mvolves !.ervomg a Jornt ln an mdex 

pulse. getting the potentiometer reading and companng agamst the known potentlometcr/Jolnt angle 
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(index pulse) table. Which ever entry in the table is close st to the reading detennines the joint angle 

(see Figure 3.6 below). 

(;"tlr ral/(J - WIll/ii", (I) 
",Jel ,,"/H" (/>t'r 36()<> j/ll/ll ml/Kt' 

Encoder IIIdex pulses arou"d )01111 

JUIIII ClllJhrallon Table 

PotcnllOmeler value JOIllI An~le 

,umt an~lc = mdex pulse x 3600 /gcar_rllho + oftset 

where a and B arc Ihe lmear charactcnshc!> 
determmed for the potenttometer This CM be equally 
precisc Il' the taille mcthod, smce OIlC unly necd!> tu 
dl!>lmgul&h IiIllOn)! the lIIdcx pulM!!> 

F'R. 3.6 On~lme Robot Calibration Method~ 

Kali uses the potentiometer Iinear interpolation method for on-line robot calibration. 

3.6 Re~l-Timt> Interface 

The real-time layer forrns a critical part of the Kali system. lt consists of basic shared 

memory management and wall clock synchronization mechanisms described as follows: 

3.6.1 Shared MemoQ' 

The Ka" shared memory management is a somewhat simplified version of the UNIX 

System V (version 2 or later) scheme IAT&T87J. A 'master' Iinked Iist of the shared memory 'ids' 

or keys point to the indlvidual blocks of shared memory. Access to the list for creation or deletion is 

through a synchronizing semaphore. Ali shared memory pointers are stored in relative offset fOTm 

(ie .• pomter = base + offset). so that shared memory addressing is mdependent of the CPU board bus 

address windows (the Kali code itself. though, does not maintain its data pointers in this manner. 

assuming intsead that ail CPU boards have the same address window. Remember, the shared 
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memory scheme is an implementation dependent sub-system sUPPol1ing the Kail Itbrary 1 See 1Ï1!,1lI \! 

3.7 below. 

CPU, ma\' (IC<t'.I,1 I/wrt',1 ltIt'mo,.\, II.It'1 1111((/ 
Cl,I (hl'\' "',,h Kalt dodo ",,/(hrom:,lIfIOI/ 
and It'map/lClu:1 kt't'p (ln/er, Ali {,<I"uefl Ifl 
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Inl k~ 

"hd[ .p 

'"'' L'd 
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I()n~ mIen lu nI( mkn 

, , , , , , , 
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When CPU callç • ShMalloc' (Ir 'ShFrt'e' then (l!'cel 1 ((1 l'hared mpmor\" m(/na~f'f"t'''1 d(/fa Ifr/II furt'I '1 

,,'nchrmIl7e(1 a,-fi the 'KEY_ENT' Itructure " lenrched for a mlltchll/~ 'Ke\" (an II/tt'~t'r Intlt'nfll\'ln~ 
the shared mm/( ry block) mul appropnatf' action takt'n, It' for 'SI/Mall(/( , 1 f a match" nlll Ii/III/t/ IIr,." 
creait' new block 1fshart'd memon. If a match 1\ fouTUJ rt'Ium tht' (HIII/(t'f r(l rhe fT/mhCl"!.: mt'mon' 
block. 

1ha.'iC1 

F,/?, 3, 7 Kali Shared Memory DaI<! Structur~ .. 

The shared memory funcuons are defined as follows: 

char ·shMalloclkey, Sile) 
mt key, / * shared memor-y 'Id' * / 
mt sile; / * sile of shared memery black te allecate ln bytes • / 

The function searches the 'master' hst to see if the key IS already ln use, If it IS then that 

block of shared memory has already been allocated and the functlon merely return!l the pomter to 

the shared memory (in full pointer fonn). In this way synchromzation m creaung/acce~~mg ~harcd 

memory bloclcs is made easy. Ali CPUs needing a partlcular block cf ~hared memory executc the 
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same code (only one CPU actually creates the block). The function returns '-l'in the event that the 

insufficient shared memory exists to satisfy the request. 

Int shFree(key) 
Int key, 

This functIon deletes the shared memory block identified by key. Returns a '-l' is the 

The memory is not c1eared, but only moved to the pool of memory available on the free memory 

block Iist Memory IS always collected mto the largest possible blocks when sorne is freed (a sort of 

garbage collection routme) Inittally the entire shared memory conslsts of one block, but it is slowly 

broken up imo sm aller pleces (external fragmentation) as It 15 allocated/freed and the free memory 

block hst grow!.. This can lead a high degree fragmentation of available memory, 50 that subsequent 

allocatIon requests cannot be met even though enough sufficient memory exists III different blocks 

(1 RandeU691 dlscusses sorne of the basic issues involved m memory fragmentation). In addition, 

Lhese routmes must execute quickly and efficiently. Thelr design is difficult, since they must not 

only be fast (Il'., effiCient garbage colleCtion), but they must also not disturb eXlsting allocated 

shared memory that may be accessed slmultaneously by other CPU s. 

3.6.2 Wall Clock 

As described previously, the wall clock mechanism is a synchronized gang-sceheduled 

interrupt for ail the system CPUs. One processor is designated as the wall dock maSler that is lied to 

a hardware timer. It interrupts the other CPUs at the rate set by each individual processor. Kali 

requires that the wall clock have one millisecond resolution. so the master CPU requires a one 

millisecond tlmer mterrupt rate. However the other CPUs need only be interrupted at the rate of 

their synchronous processes which may be many multiples of one millisecond. Hence, the master 

CPU should be deslgnated to a processor having a synchronous process rate close to one 

milhsecond to avoid unnecessarily high overhead in a CPU with a slower synchronous process. 

Futhermore, to ensure that wall dock interrupts are received and processed within their designated 
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periodic intervals. a simple' interrupt-followed-by-acknowledge' protocol IS lIsed (sec tiv,lIre ., ~ 

below), 
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The principal wall clock funcuons are as follows' 

VOid control(func, serlOUS, perlodlCIty) 
FUNCPTR tune, j* pOinter ta a tunetlOn whlch beeomes the perlodlc proeess .. j 
8001 seriOUS, / * do not allow an Interrupt ta be 'sklpped' 
!nt perlodlelty; j* number of mllhseeonds for pro cess perlod .. / 
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This is the 'core' wall clock function providing the user the means of assigning a 

function as a periodlc process. Since it may be necessary for the user (from the user process running 

on the user CPU) to change the rate of a process on another CPU, the followmg function is provided 

(this IS also useful ln debuggmg and single-Mepping periodic functions): 

mt set_controIJate(process, rate] 
Int process, / * CPU # Indlcatmg the perlodlc background process * / 
mt perlodlclty, / * the new number of mllhseconds for the process perlod * / 

Returns '0' for successful completion or '-l'in case no process exists (or it is a 

undefined. ie .• '-1') number. Of course. rudimentary stoV/start wall clock functions (halts/stans ail 

periodic processes ln the system) and wall clock time set functions are also fumished: 

vOid start_kah_clock{] 

vOid stop_kaILclock(] 

Real set_kah_clock{tlme] 
Real tlme, 

Finally. a means is provided the user to delete or release a function from being executed 

penodically: 

vOid release(message] 
char * message. /* message string ta prlnt, usually NULL * / 

The wall clock functions are essentially an extension of the original control and release 

functions found in RCCL [Hayward861. 

3.7 System Hardware 

The CPU hardware consists of five MC68020/68881 (0.12 MFLOPS) processor boards 

connected on a VMEbus with a 1 Mbyte shared memory board, an ethcmet controller board. the 

robot 1/0 feedback interface board. and an 8 channel 12-bit resolution digital-to-analog converter 

(DAC) board to 'drive' the amplifiers. since this circuit would not easily fit onto the same board as 

the 1/0 (see figure 2.12 for examples of robot controller hardware). The VSBbus (secondary on the 

VMEbus) was initially connected. but not used because of 'test-and-set' bug in the CPU computer 
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board (see Appendix A). A PUMA. 560 robot is used as the manipulator (section '2.7 describcs the 

hardware relative ta other robot control systems). 

3.7.1 McGiI! 110 Roard 

Since at the time no commercially available encoder interface board cXlstcd that 

provided for six joints. index pulses. potentiometer interface (for calibration). and some digital 

control logic for mlscellaneous functions like amplifier on/off control. tt was necessary ta create a 

board that provlded ail this functionality for basic robot 1/0 (sorne recent boards thaugh do provldc 

this in addit!on to DACs for amplifier controIIOlsen89\). 

Jll1l1l III 

Jomt 116 

IndU pubr r' 1 

• 
• • 

<ncodcn lA A· U 

",du puloc , 1. 

Amplifier enableldlSllhle 

MOlor Brakel> dt!>llble (lt'. lum 011 hriÙl.c~) 

--------------------------i 
1 
1 
1 
1 
1 
1 : : ........... _---------------: 
: 1 

iOIl4I_-+! "'11\0,1 
1 1 
1 1 

! 1 R hll dllill hll~ Wllh 

: 16 hll dc)uhlc dltln 
ot-t ............ ~ leteh lor encoder 

IC~ , , 
1 

, l.mlrol : 
l ' 
: VM[hu,lnlerl",c : 
! Lnj!lc IIlId "0 h,,"rd: 
1 1 
: ("IIII11I1IJ(V~llltll' : 
1 1 
: n:)!I~~-r : 

: : 
: : ._--------j 

FI!:. 3. SI McGlll Robot 110 BOdfd OVt![V!ew 

The McGill robot 1/0 board (figure 3.9 above gives a brlef overvlew) is a 16-bu 

VMEbus board so processors can read joint position from the robot encoder"!', read JOint 

potentiometer values, control the motor arnplifiers, and the motar brakes. The board also ha~ a 

watchdog timer, so that in the event of a system failure (te., the software doesn 't reset the watchdog 
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3 Kali Implt!mt!utal1on 

and it 'times out') the ampIifiers are turned off and then the brakes are engaged. Note that the brake 

solenOlds reqUlre -50 msec to engage. whereas amplifier disables In less than 1 /-lsec. so the motor is 

off when the brake~ actually stop the robot momentum. (this can also damage the brakes. but wh en a 

system crash occurs elegant recovery is not possible). The board also provides a user emergency 

stop input so that the user can hait the robot m an emergency (using an emergency stop button box). 

Sec section 2.7.1 for more details and Appendlx C for the complete explanation and design of the 

McGlII robot 110 board. 

3.7.2 Molor J)rin~ 

PWM ampli fiers are selected for the motor drive since they provide high power to 

welght ratio and cost less than linear amplifiers. 

The worst-case (ie., smallest) motor inductance of the PUMA 560 motors is 1.6 mH 

(see table 3.1 below). thus the amplifier must have form factor of near unit y for this value of 

mductive load. A OC bus voltage for the amplifier IS need such that a maximum current can be 

delivered to the motor while not exceedmg breakdown thresholds. For the PUMA motors maximum 

voltage at peak torque is 14.5 V. The standard Unimation controller for this robot uses a 40 V bus 

whlch can deliver the maxImum rated voltage at under 50% duty cycle. 

The worst-case electrical time constant for the PUMA motors is 0.37 millisecond (LIR= 

(2.3 - 30%)mH 1 (3.9 + 12.5%)0) which is equivalent to a -3 db frequency of 400 Hz. Hence the 

PWM switching frequency must be over 4 kHz. The worst-case resonant mechanical frequency of 

the joint motor is approximately 200 Hz which must also be much smaller than the PWM switching 

frequency. 

Comprehensive protection circuitry is des ~rable to ensurc both motor and amplifier 

integrity. Since the system is intended primarily for experimental and research use overloads are 

Iikely to occur. Six Contraves CSR NC600 PWM amplifier boards mou nt in a power rack are used. 

They provide 5 kHz operation and 12.5 A RMS CUITent capability per channel (they PUMA 560 

requires only a total of 18 A RMS for aH joints). 
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.. The amplifiers are controlled by ±10 V mput signai proportional to the output currcnt 

(e~ •• 2.5 V input per amp output. in this case). The 12-bn DAC hoard provldes 401.J6 incrcl11cllI!\ 

between -10 V and 10 V. coupled with a 2.5V/A amplifier gain and .' n A max. CUITent for the 

small PUMA motors. this ylelds less than twelve bits of resolution for peak CUITent dcmand and a 

tittle less than eleven bits for RMS CUITent (RMS .. half of pea~. about 1900 mcrement~ over ± 1 0 V 

range); however no signal condltloning IS provlded for the amplifier input. The tarAc l'liMA motor~. 

having twice the CUITent capacity make almost full use of the 12-blt DAC range. 

Table 3.1 PUMA 560 Motor and çQntrav~s A_mplifier Parameters 

Peak torque 
Max Continuous 
torque 
Max voltage @ 
peak torque 
Max CUITent @ 
peak torque 
Back EMF 
Armature resistance 
Armature Inductance 
Max Winding Temp 
Temp coefficient 

0.34 NM (48 oz-in) 
0.17 NM (24 oz-in) 

14.5 V 

3.72 A 

0.091 V/rad/sec 
3.90(±12.5%) 
2.3 mH (±30%) 
180°C 
3.5°C/W 

Large MotQf~JjQims J Jhtough 3) 

2.12 NM (300 oz-in) 
1.06 NM (150 oL-in) 

l3V 

8A 

0.261 V/rad/sec 
160(±125%l 
2.6 mH (±30%) 
180°(' 
1.6°C/W 

Amplifier parameters (same for large and small motonù 

Output CUITent RMS ±12.5A 
Output current peak ±25 A 
Form factor LOI 
(@ continuous current and min. induction) 
Bandwidth of CUITent 0-500 Hz 
loop (@ RMS cUITent) 
Gain 2.5 AN 
Switching frequency 5 kHz 
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4.1 Summary 

4. Conclusion 
Wuh achmR hanâ\ and bleellmRjeet 

We diX and heap. la\' stone on stone; 
We bear the burden anel the heat 

01 the lonx da}', and wlsh 'twere done. 
Not TIll the hours 01 "Rht remrn, 
Ail we hm'e bllIlt do we âlscern. 
-Mathew Amolli (lH22-1HHH) 

The basls for computing architectures and real-time computing practices as applied to 

robot controllers has been presented as weil as an implementation of the Kali system. 

Today. a 'competitive' robot controller can be only established through diligent 

Investigation of user needs. comprehensive problem analysis. proper design and thorough testing. 

Without the awareness. persistence and foresight 10 recognize and take advantage of state-of-the-an 

technology that maximizes the advantage to both system builder and user alike. a robot controLier 

project IS. at best. doomed 10 obscurity. This is equally true of research projects as of commercial 

ventures. 

Unlike mass market applications which attempt to trade-off functionality at the expense 

of programmability. in research robotics the goal is to minimize development time of new 

algonthms and ideas at the expense of higher controller hardware cost. Whereas the hardware costs 

exceed that of designs suitable for mass market production, low cost systems requil'e considerably 

longer time to deSign and build. during which the original design usually becomes obsolete. Only a 

research team minimizing its engineering time by leveraging leading-edge technology while 

adhering tenaciously to 'open' standards can hope to succeed. The fundamental aim of ail designers 

is to produce a 'good' design. yet il is rarely achieved without experience, and even then only if the 

designer sticks to his or her own area of expertise while building upon the know-how of others. 



4.2 Lessons Learned. The Hard Wn~' 

This thesls is not the prophetie culmination of ail previous works. but rather it seek~ 10 

distill from former endeavors that whlch is useful and dlscard that which IS worthlcss I·rom Ihe 

record of past fallures and sucees ses. one concludes the following necessanly simple. yCl protound 

principles that are qutte self-evldent. It IS not a self-mdulgent phllosophy of design. huI practlcal 

advice learned the hard way from direct experience and that of others: 

• Stop Irying to OUI do the major hardware manufàcwrers. Commercial 

processors from big compantes like Intel or Motorola become more 

powerful qUicker than any hardware researchers can bUild on thclr own. 

CUITent computationa\ hardware is more than adequate for robot motion 

control. and multiprocessor systems are capable of much more demanding 

tasks like multisensor fusion. Since hardware performance i~ doubhng 

approximately every year. software short cuts to meel performance 

requirements on current hardware are unnecessary-next year's processor 

will make up for any shortfall today. 

• Stop Irying to OUT do the commercial real-time .m(rware deve/opas. 

Commercial real-time kemels are now better supported. more rehable and 

have higher performance than researchers can build on thelr own. 

• Stop trying 10 invenr new robot languages. Because of the complex 

hierarchy of models and abstractions needed. it is better to decompose the 

problem for a parttcular application and implement that solutIOn ln a 

conventional computer programming language. 

• Ensure Ponability. To prote ct the large mvestment in human resources 

necessary to create a complex real-time control system. every proviSIon 

must be made to ensure compatibility wlth changing hardware platforms and 

software paradigms. Needless to say this includes processor and bus 
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4. ConclusIon 

architectures. as weil as multiprocessing scheduling and communication 

algorithms and programming languages. 

• Use convenrional. off-the-shelf hardware and software Q.'ii much as possible. 

Be it software or hardware. Il is no longer feasible to create even a fraction 

of su ch a system's components 'in-house.' The reader IS cautioned to take 

advantage of what IS avallable and to leverage it so as to minimize 

development time. Compatibility with the deslgner's favorite tools (those 

with whlch he or she is most proficient) should be considered as a critical 

system requirement. The most useful software environments and 

development tools often appear tjrst on the most common commercial 

systems. Researchers should develop those parts of a robot control system 

that they are best at and obtain the other parts either from commercial 

sources or from other researchers. 

• Concenrrate on system .flexibility and programmability for quick and easy 

experimenta/ion. Because of the research nature of su ch projects. the 

hardware and software must allow for easy changes and experimentation 

during development and use. The maximum ease and range of possible 

changes and future enhancements to botlI hardware and software during 

development as weil as run-time is weil advised. Robot control algorithms 

that are new. not weil understood and hence very experimental will be 

tested. 

• Remember Maintenance: Often forgotten. but increasingly of critical 

con cern in complex software projecl.s. The software must be designed as 

modular and straightforward as possible. so as to make future enhancements 

and changes as simple as possible. One starts by getting a core function up 

and running correctly firs!. so that the system can be tested and the design 

verified rather than attempting to include many initial 'bells and whistles'. If 

the deSIgner is careful to provide 'hooks' in the system. these can be added 
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as and when they are necessary. The best designs usually take thl!> 

maintenance-onented approach. 

• Emphasize svstem imeRratlOn. The blggest stumbling block 111 robotlcs 

systems are often the endless hardware and system dependencics that must 

be expltc\t1y programmed. They must be mmimized. otherwise the 

researcher is condemned to a morass of annoymg detall. 

• Don't forRo Reliabiliry. A predlctable. rehable system is a necessity for 

experimentation and portability. Popular processorlbus architectures and 

software development enVlfonments are ~he most flex.ible and rdiable (the 

two are not always opposing constraints). 

• Uphold DeslRn InreRru)'. As the last and perhaps most Important 

culmination in the building of robot controllers. one concludes that whatever 

approach or design philosophy one chooses. it is unquesttonably beHer to 

have a system reflect one set of cohesive ideas. omlttmg superfluous and 

anomalous features. than to select many worth y though mdependent and 

uncoordinated Ideas whlch are thrust together Experience shows. beyond 

doubt. that it is necessary to ad op t, uphold. indeed embrace. that eluslve 

balance in applying the elements and rules of theory to produce a system as 

unified in concept as in design- that down to the last detail. the single most 

important principle in system building is design integnty 1 Brooks7S. 

Brooks87. Lawson90J. Failure to uphold it mevitably results JO a 'hack' or 

'kludge' and a failed system. Too often designers Implement complex and 

omate systems in the mistaken behef that the more intricate or 'c1ever' Jt IS, 

the more useful it will be. The exact opposite IS true. 
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Appendix A. Buses & CPUs 

A.I 8u~e~ 

Smce processors and buses form a cntical compOilent for robot controllers. a detail 

comparison of currently avallable hardware is offered. We start Wlth a comparison of backplanes. 
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In multiprocessor systems. bus bandwtdth tS cnllcal As one can ),ee trom the abow chan 

memory access time and arbitration are the two key cfltlcal factor!>. 1/' •• bus cyclt.! = rllrh + TIl1~1II "or 

VMEbus. for example. moving from 100 nsec memory to around 10 nsec saves lO Mbytc~/~ec on 

bandwidth (the arbltration overhead IS always the hmumg factor) Sa for ~vstem~. mvolvmg li 11Igh 

degree of contention. the fastest possible memory IS cfllIcal Of course. select mg Li hll~ al~o depend~ 

on priee and availablhty of 1/0 boards. VMEbus offers the greatest vanety of mdllstnal 1/0. but 

EISA tS growmg in popularity and almost the same performance wtth the addcd honm. 01 bcmg 

platformed on low cost peso MultiBlis Il and FutureBus have fast message pas!>mg hardware. but al 

a high cost. SBUS. on the ot.her hand. has tremendous speed. but I1mlted slot~ and board !>e1ectlon 

Another factor in the efficlency of interpracessor commU11ICatlCJn 15 the mechamsm by 

which processc,rs notify each other that new information IS available Il a processor I~ awanmg ~ome 

data from another processor, it should not have to repeatedly dlsrupt Its other acttvltlCS when pollmg 

a semaphore or flag to detennine if the data is avatlable, unless of course Il I~ not perfornung other 

overlappmg tasks and the semaphore 'Im;k-out' Ume IS far less than the mterrupt proccssmg lime A 

point to point interrupt meehanism can be used to increase efficlency On the VMEbu~ thc dcdlcatcd 

interrupt lines qUlckly run out. so 'mailbox' addresses are used (an mterrupt IS generatcd on a 

processor whenever a certain on-board dual ported address IS aecessed To aVOId contllct each CPl J 

board has ItS own hardware settable mail box tngger addresses), Other buses. such a~ MultIBu~ Il 

and FutureBus ha\e sophisticated message passing coprocessors which can act a!> vlrtual tnlcmlpt 

controllers (the message itself sel,ects the interrupt handler). Due to the performance degradallon 

caused by memory contention. tightly coupled designs are generally better suited to a small number 

of processors. 

A.I.2 VMEbuslVSBbus 

Since most researchers intend on using the VMEbus, a few useful notes are offercd: 
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'a . • Do not u!le the customary arbiter provlded by CPU board manufacturers. 

they do not always work. provlde IImlted tlme-out facility and. m sorne 

case~. even slow down CPU processing. Use a separate arbiter In slot O. 

• Do not u' e priority bus a..:cess to try and priofltlze system events. these and 

other events can quickly 'hog' the bus preventmg other boards and/or events 

from getung on the bus. U se the round robin falmess arbitration with ail 

boards at the same priorlty. 

• Do not use the ROR arbitrauon mode as it requires much longer to re­

arbltrate subsequent bus accesses. The ide a in ROR 1S for long DMA blocks 

so the sa me bus master need not wait for arbitration on every access. For 

many CPUs contending for memory RWD is the better choice. 

• Make sure the bus power supply is large enough to handle the anticipated 

load. most of the newer CPU boards require power from both Pl and P2 

connectors and consume as mu ch as 12A @ 5 V. 

• VME requires termmation on both ends of the bus, whereas the VSB (VME 

Secondary Bus) requires termination on ONE end only. The VSB bus 

INewton89\ provides a second 32-bit bus on the spare pins of the VME P2 

connector. This bus can have up to 6 slots and is designed as a high speed 

memory or peripheral bus. It supports multiple masters, slaves, and has 

performance equivalent to the VMEbus. The VSB is a ~ood way to alleviate 

memory contention on the main VMEbus, ie . • one can have network traffic 

1/0 proceed on the VME while simultaneously CPUs communicated 

through shared memory on the VSB. Most VME CPU boards support VSB 

accesses along with an on-board bus arblter. 

• A note on CPU boards. the test-and-set mechanisrn is the sole hardware 

means for synchronizatiOlt and mutual exclusion (ie .• semaphores) on the 

VME and VSB buses. It is critical that the CPU boards used in a 

multiprocessor configuration support the test-and-set feature properly. This 

AppendlxA 
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was a great problern with Heurikon V2F CPl' bOaId u~ed ln Kali 

(fortunately a fix was possible bv usmg the bus lod.. line 10 blod, llUI ail 

other masters while the test-and-set was executed, thlS th though reqUlre~ a 

substantially lor,ger urne for mis semaphore operation). 

A.2 Commt'rcial CPUs 

App\'mil \ A 

Since the a robot controller's processor so affects the performance, aVailahllttv 01 

software and hardware tools. and third party support, its selection IS the most cntieal hardware 

decision when building a robot controller. because most of the effort ln a robot controller deSign 

today is in the software. To that end, the following is a brief summary 01 currenl commercial CPlIs, 

their perfonnance. future versions, and availabll ity of developrnents tools and real-lime kcrncls. 

A.2.l Motorola 

The wom out 68020 and its microprogramed floating point coprocessor the 68881 and 

the newer 68030/68882 once the leading edge of performance (still used in the majonty 01 

multiprocessor robot controllers) are now bemg greatly surpassed. The mam problem IS a dlsmal 

floating ;Joint performance since each operation requires a sequence of mlcro-mstructlon~ to 

execute. The best case register to register multiply (single precIsion) reqUlre~ 28 /lscc (jl) 25 MHI 

and 1.4IJsec @ 50 MHz (the maximum for the technology). weil below 1 Mr-LOP 1 Motorola871 ln 

real programs the situation is even worse since fetching operands from mam mernory IS con~tant 

When both source operanrls and the destination are resident in memory ovcr 200 cycle~ arc rcquln"!d 

to complete the operation, only a third which actually do the arithmeuc! On the othel hand. the 

newest additIon to the family. the 68040. does manage sorne impres~ive performance. A comp Ictcly 

r~design chip, it mcorporates a low instruction cycle mteger core a'1d executes ba~lC moves, lurnp~ 

etc. in a few cycles like aRISe processor. but uses more cycles for complex indIrect addre..,~mg and 

other less frequently used instructions_ For this CPU floatmg pomt performance I~ con~ldcrably 

enhanced. since the coprocessor interface is removed and the high ~peed 1· PU i~ on-chlp At 25 

76 



, 
( 

r 

ApJkndlx A 

MHz the 68040 pertonns smgle precision adds and multiplIes In a noteworthy 3-5 cycles (memory 

to regJSter) reachmg about 2-3 MFLOPS m practlce rEdenfield90. Motorola901 Needless to say the 

MC680xO famJly of processors are the most popular among VMEbus vendors both In CPU boards. 

development tools. and real-tlme kernel!l (almost every real-ume kernel has been ported to. if not 

down-nght developed on. thlS processor famlly) 

The 88000. Motorola 's origmal ail RISC chlp was designed to supplant the 68020 

architecture, but achleves IIttle more than the 68040 (to redeem Itself from the embarrassment 

Motorola IS deslgnmg a newer much faster version of the 88000. the 88110). The 88000 floatmg 

point unit uses heavy pipehmng (a five stage pipe wlth one multlply per stage) to reduce operations 

to flve cycles 1 Motorola881 and the adder is a three stage pipeline. At worst case an operation 

requires a few cycles for memory access. 3-5 for the operation. and another few to output to 

memory. Whereas the theoretical maJ{Jmum. for the chlp @ 20 MHz. IS 20 MFLOPS (assuming a 

full pipelme and a single step for each operation). the pracucal performance IS around 2-3 MFLOPS. 

Unfonunately. the 88000 does not enJoy the popularlty of Ils sibhng. thus the availabllity of boards. 

tools, and real-time kemels have been somewhat less than that for the 680xO. but the 8800 still has 

as mu ch ,f not more m the way of third pany support than processor famihes from nval companies 

(except the Intel 80x86 family). 

All Intel 

lronically. the 80x86 architecture almost bankrupted the company until the triumph of 

the IBM Pc. A host of processors are now offered. the CISC-based 80386 with 80387 FPU and the 

80486 (on-chip FPU). the RISC 80960KB, and the newest host performer. the lightening fast 64-bit 

i860 The 386/387 pair IS a poor performer (0.5 MFLOP @ 33 MHz). the 386/WEITEK(3167) FPU 

does bettt!r at around 1.3 MFLOPS. and the 486 with or w~thout the WEITEK(4167) FPU does 

about the sarne (InteI87. Inte1901. The great advantage of thlS architecture is the huge availability of 

software and development systems. The i960 family of CPUs, targeted at embedded applications, 

offers around the same floating point performance of the 386 family. but with faster integer 
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instruction processing. The newest members of thlS farnily. i960C A. lluhzes a superscalal apploach 

Ilntel881 capable of 66 native MIPS (peak @ 33 MHz). A new versIOn of thls processor I!I to Indlld~ 

an FPU with 27 MFLOPS smgle precision LlNPACK performance (fi) 40 MHl The grcat potent"'! 

for roboties. however. lies ln the 1860 and Its descendants. Wuh a 64-bll data bus, thrcc ~tagc 

floatmg point multipher and parallel adder. this processor can achieve 80 Ml·LOPS pcal when ail 

pipelines are filled IKohn891 Smgle operations reqUlre 2 cycles. sa a 20 MFLOP rate for the CUITent 

40 MHz chip is sustainable With CUITent compllers. however performance 15 around 10 MFl.OPS 

Better compilers and faster chip versions will greatly Improve performance 

Developed by SUN Microsystems in response ta Motorola's slowness In brmg out the 

88000. the SPARC architecture IS now the most wldely used RISC chlp IGlass911 Imtlally wlthout 

an integer or floating pOlOt mllitiply/divide instruction and suffermg from lad. of optlmtLCd ~thcon 

(SUN871. the improved instruction set and low cost licensing avallable now from SUN, ha~ glvcn 

rise to many different implementattons from a ho st of compames are avallable' FUJltsu was the tlrst 

to make SPARC CPUs. mitially as a gale array now in opumlzed silicon. incJudmg cverything from 

the SPARCLite ch;.' set aimed at embedded systems to 33 MHz CPUs. Cypres!. Se.;llIconductor ha~ 

available 40 MHz CPUs & FPUs as weil as a familly of support chips: Solbollrne/Matsushltil wcre 

the first to mtegrate a complete CPU, MMU. and FPU 00 one chip. LSI loglc has a wholc Ime of 

SPARC CPUs and chip sets as well as ASIe standard-cells, finally. TI and WEITEK ofter the 

fa~test FPU implementations for SPARC IBirman90, Oarley901. ln addition, TI. Cyprcs!.. and LSI 

are also racing ahead to develop next-generation super-scalar SPARCs and 64-blt versions (SUN\ 

SPARCstation 3 will be a 64-bit design). Performance of the manufacturers (at the ~ame CPU 

frequency) vary moderately and it is somewhat acknowledged that the SPARC architecture l~ a hulc 

slower in ioteger and floating-point performance than the MIPS R3000 CPUs, but better than 

Motorola's 88000. The 25 MHz WEITEK SPARC FPU does about 2.75 MFLOPS (SPARC~tation 

1 +) and the TI 40 MHz implementation do es about 4.5 MFLOPS (SPARCstation 2) Future versions 

78 



AppendlxA 

will improve performance dramatically especially as 64-bit versions arrive (this IS necessary as the 

IBM RS/5000 workstation and the new HP/Apollo PA-RISC achieve much higher floating point 

performance from 32/64-bit data paths). For the SPARC architecture a number of real-time single 

board computers are available from a vareity uf manufacturers. although Iimited in CPU speed. 

Most real-time OIS 's are available. though sorne are still in beta test like VxWorks. 

A.2.4 Mipo; 

Start-up Mips. iniually funded to build workstations, has come into its own as a RISC 

design house Its much touted R3000 CPU and R3010 FPU are among the fastest RISC CPUs 

available. With a strategy similar to SUN's SPARC, many semiconductor vendors implement Mips 

CPUs. LSI Wlth 25, 33 and 40 MHz versions of both CPU and FPU as weil as sorne specialized 

ernbedded versIOns. Integrated Deviee Technology (lOT) with CPU & FPU available separately and 

with integrated cache modules. Performance Semiconductor with the first mtegrated CPU & FPU on 

a single chip. Siemens, Toshiba and others are or haye plans to manufacture the chips. The Mips 

CPUs are used In DECstation workstations. Silicon Graphies workstations, as weil as sorne recently 

announced (for future delivery) by Compaq, Sony. Siemens, Zenith (Bull), and others (the ACE 

Advance Computing Environment. consortium). Performance is excellent with the 25 MHz version 

achieving about 25 MIPS (one mstruction per cycle) and 4.9 MFLOPS (versus SPARC 18 MIPS 

and 2.75 MFLOPS) ILS1881. A better handcrafted chip design and superior compiler technology 

with more efficient use of a more conventlonal register file (as compared to the SPARC's after 

thought compiler and large number of register windows which suffer from a hlgh reloading penalty 

when the windows are exhausted) give this CPU family a slight performance edge (Kane88]. The 

intense debate between SPARC and Mips continues on which is the most efficient for various 

instructions. le., compare and jump, square root, etc (Williams91]. The one definite Achilles heel of 

MIPS processor family, though, is the lack of software and development 100ls as compared 10 the 

SPARC as a workstation CPU and to the AMD29000 family as an embedded processor. Few single 

board computer implementations are available (such as a VMEbus board) and the better real-time 
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O/S's are generally not avallable for this CPU family. ln parucular VxWorks (though LynxOS hal\ 

been ported). The newest version of the family the R4000. tranSitIOns from .t~ to 64 blt~ and 

features superpipelining. which allows the computer to issue two mstmctlons per c\ocil. cyck Il 

includes Integer and f10ating po lOt unns. an 8 kByte data cache. cache control. a memOly 

management unit and full multiprocessmg capablhties. Imtlal speed should be over 60 MHl wlth 

about 60+ MIPS integer and 20+ MFLOPS floatmg point performance. 

Al.S Ad"anced Micro lle"iceli (AMI» 

The high performance 29000 proeessor family sold by AMD was among the tirst to 

implement true a Harvard architecture (2 dataladdress buses off-chip. ont~ for data. one for 

instructions). Originally offered as a workstation CPU. the 29000 was wllhdrawn from the . race' 

and is now used as in a variety of embedded applicattom. especlally III tloatmg pomt mtenslvc area ... 

like graphies where Il performs very weil The 29000 CPU uses the 29027 FPU chlp for tloatmg 

point operations. but unlike most FPUs thlS chip provldes a plpehned mode and a lower lalency 

mode in which the arithmetie logie unit is tOlally combinatonal This offers far lower latcncy than 

found in other more convenuonal senal-parallel (mterlocked multi-stage plpelmed) FPll~ ln tlO\~I­

through mode the 29027 performs 32-bit floatmg pomt adds/multJplJes in 5-6 cycles. about 200 nsee 

@ 25 MHz IAMD891. in pipelmed mode an operation requires 4 cycles (160 nsee @ 25 MHz) Thl~ 

results in 5-6 MFLOPS peak performance. The newest member of the family. the 29050 offers an 

integrated FPU with much enhanced capabihty. A three stage adder/mulupher plpcllllC that 

performs operations in one cycle as fast as 25 nsec (@ 40 MHz)' 4x4 matrix multlphe!l m 09 IlSCC 

with a sustained 40 MFLOPS (AMD901 throughput for this operatlOn-great for robotlcs 

Availability of design and development 100ls is excellent. though the full feature rcal­

time O/S's like VxWorks have generally not been ported to this processor famlly. 
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A.2.6 ()Sl)~ 

Digital signal processors were heralded as a new age in computmg for many application 

areas. these processors are designed to perform digital filtenng at very high speeds. especially 

muluply-accumulates for dot product and matnx multiplication (ail implement overlapping 

rnultiply/adder plpehnes). The newer DSPs are ail f10ating point now (however sorne sacrifice IEEE 

floatmg point compaublhty to gain speed) and most have full C compilers making them eminently 

sUltable for high speed robotlcs applications. Performance varies between the many DSP families of 

which there are a ho st from many different vendors IAndrews90. Lee901. The most prominent ones 

are: 

• AT&T DSP32C: 25 MFLOPS (peak @ 50 MHz), 3x3 by 3xI matrix 

multiply in 36 cycles=720 nsec. 32-bit floating point format conversion 

to/from IEEE single precision in hardware IFucC10881: 

• Motorola MC96002: 18 MFLOPS (peak @ 27 MHz). 3x3 by 3x 1 matrix 

multiply in 24 cycles=890 nsec. full IEEE single and double precision 

floating point operation using transparent conversion on Ioad/store to 

memory (interstmgly. this DSP uses a 96-bit mternal floating point format 

which has the sarne latency for single or double precision arithmetic 

operations) [Sophie881: 

• TI TMS32C30. 33 MFLOPS (peak @ 33 MHz), 3x3 by 3xl matrix 

multiply in 29 cycles= 879 nsec, 32-bit floating point (non-IEEE 

compatible, but with conversion in software) (Papamichalis88, T189J. 

TMS32C40: 40 MHz version of the 'C30 20% faster. has six symmetric 

multiprocessor communication ports (used for large multiprocessor arrays), 

and has hardware conversion to/from IEEE ~ingle precision format [TI91 J, 

unlike its predecessor. This family of DSPs is far and away the most popular 
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with the best support both from TI and third party hardware/software 

vendors. 

ln general. development tools and systems for DSPs are few and remam contined 10 th~ 

chip manufacturers themselves. Real-time OIS's and kernels arc few and lar oetween, lhe h~~l 

system is 'SPOX' IManuel88\ developed mittally for the TI famlly and bemg port cd 10 the othcr!l /\ 

number of other 'block-mode' graphlcal programmmg systems almed at crealing sIgnai proCC'l!lll1g 

applications seem to be the direction DSP software IS taking, unfortunately unsultable 101 general 

control problems like Cartesian-based robotics control (except for smgle JOllll controllcrs). 

However, reseachers could develop su ch systems for robolles. 

A.2.7 Transputers 

From Europe Inmos' (now a division of Thompson-CSF) mu ch touled Idea I~ the 

Transputer. Following the philosophy of Occam's Razor ("keep Il simple. stupld"), the Transputer 

design involves the eonnection of many small but pow 'rful mlcroproce~sors lomed by hlgh speed 

(30 Mbits/sec) seriai links. Based on a very simple three reglster architecture coupled wlth a RISt' 

Iike instruction sel. the T800 with integrated floatmg point UnIt perfonns vnly about 1.5 MFLOPS 

@ 25 MHz. Later versions hke the T805 make sorne moderate throughput Improvements and attalf. 

higher dock frequencies. However. the latest Transputer. the HI. IS a pipelmed superscalar deSIgn 

capable of 60 MIPS and 10 MFLOPS sustained performance @ 50 MHz (200 MIPS. 25 Mt'LOPS 

peak performance) [Williams91(2)1. The unit mcludes 16 kBytes of on-board cache memory and a 

programmable multichannel seriai data Iink crossbar. 

Availabihty of development and software tools is adequate. though only one or two real­

time OIS's or kemels. of any size or sophistication, have been ported to the Transputer. 

A.2.8 National Semiconductor 

Sluggish sales. no supported bus architecture, and only above average performance 

plague this company. The NS32332/32380 32-bit microprocessor and floating pomt coproces~or 
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performs at about the same level as the MC68030/68882. The newer NS32532 does have sorne 

Impressive performance. 15 MIPS peak about 8-10 MIPS sustained (not qune as good as the 

MC68040 or the 180486). Acknowledging the dlsmal performance of its previous f10atmg point 

coprocessors, National declded to use the WElTEK 3167 as the FPU for the 32532 (note that Intel 

already uses the next generation WEITEK4167 with the 'i486) which can achieve 1-2 MFLOPS. 

Typlcal add/multlply is 4 cyles (2 cycles instruction transfer from CPU mstruction stream plus 2 

cycles for the operation itself). A short 2 stage adder/multiplier plpelin,p allows the throughput to 

achieve operations in 2 cycles for a 15 MFLOPS peak rate on short bursts @ 30 MHz 

lIacobovici881. though in practice only 1-2 MFLOPS is achieved by the 32532 (about the same as 

the WEITEK coprocessor achieves with other CPUs Iike the i486 or SPARC). In addition 

National's microprocessors are only supported by a small group of third party hardware and 

software vendors. 

A.2.9 IBM 

Having invented RISC and then having failed capitalize on it. IBM stunned the 

computing world in 1990 with its System/6000 workstation and RS/6000 CPU chip set. Then IBM. 

Apple Computer and Motorola announced that they were in negotiation (in secret since 1990) for 

Motorola ta produce the RS6000 chip set, thus making it available to third party workstation and 

CPU board rnanufacturers. Performance is second only ta the HP/Apollo PA-RISC with 55 MIPS 

(Specmark benchmark (Weicker90l) and 21 MFLOPS on the LINPACK (double precision for the 

latest 50 MHz CPU) IOehler911. The processor consists of a five chip superscalar RISC design. The 

main instruction decode & dispatch unit communicates to the FPU and lU (integer unit) over a 128-

bit bus and decodes four instructions simultaneously. Data and instruction cache units provide 32K 

and 64K respectively of four-way set-associative caching. thus providing very high hit ratios 

(moreover. error correction (1 bit) and detection (2 bits) is provided on all interchip data and 

address paths). The FPU has a 64-bit data bus, and in addition to standard single cycle 
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multiply/add/divide overlapping execution units. specIal single cycle accumulate and 1l1ultiply 

hardware is provided like in DSPs IOehler901. 

So far. the only operating system provided is IBM's version of UNIX. AIX. whlch has 

sorne. though limited. real-time capabilties. 
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Appendix B, Real-Time Kernels 

8.1 OIS Chl~sitic()tion 

The world of real-time operating systems/executives and/or kernels is arcane. complex 

and dIverse. Designers face a difficult. mvolved process of learning what real-time operating 

systems or kernels are avatlable. whether they are creating sImple plck-and-place robot controllers 

or complex obJect oriented. multi-sensor fusion systems. SelectIon of the OIS that best suits thelr 

applIcation is dlfficult as more than fi ft Y dlfferent products are commercially avallable. To aid the 

reader in thls endeavor. this appendix attempts to c1assify and evaluate these products. beginning 

Wlth a baSIC taxonomy: 

Table 8.1 Classification of Selected Real-rime OIS's 

Ernbedded 

Hybrid 

Full OIS 

Architecture lndependent 
(nol necessarily open architecture) 

VRTX (Rcady Sy~tcm~) 
sPOX (Spcctron Mlcro~y~tcm~. DSP kcmcl) 
C E)(ccutlvcO aMI ('on~ultant') 
USX (us Software) 
Prcc1c,c/MPX (Harmony OS, PrecIse Soltwarc Tech) 
(many other kcmel~ on a vllrJety 01 8,16 IIrJd 32-blt epU~) 

pSOS (Soltware eomp<Jl1cnt~ Group) 
MTOS/UX:::o (Indu~tmil Programmmg lm: ) 
PDOS:j: (Eynng Reru.ean.h Ille) 
VxWork~+o (WlIId RIver S}~lcm,) 
OS-9, OS 9000 (Ml~rowan,) 

UmFlcx· (TcdullCIII Sy!>tcm eUll!>uItanh) 
CHORUS 1 (Choru, Sy,tcm,) 

VRTXveIoclty+ (Rendy Sy~tem~) 
(mllny other kernel~. the fll~tc~t~ growmg categoryl 

Lyn)(OS' (Lyn'l Real-Tune Systems Ine ) 
REAUIX+ (Moocomp Coq> ) 
QNX (QulUltum Soltwarc Sy~tcm' Lld ) 
CHORUSIMIÀ: (CHORUS Sy .. lcm~) 

Ernhcddcd • Trndloonal Emhedded Hyhnd 
• No 110 for FlIc Sy~tem 
• Hard Renl-hme sy~lem~ 
• Crob' dcvclopmclll 
• Targctcd al OEM apph~lItlum 

Full OIS • NOll·EmbcdJcd 
• DI," hn~cd. oycr 1 M Byte code 
• 1/0 and Flle Sy~lcm 
• Soit rcal tune 
• Sclf-ho"'m~ 
• T Ilr 'cleù III elld-u~er or V o\R 

Proprietary 

eX/RT (Hltm~) 

VME Exec (Motorola) 
IRMK IIntc\) 
Fle)(OS (Dl~!.ltal Research) 
RTE (Hewlett-Packard) 
(olher Vendor "Peelfic kemel\) 

FlexOS (DIlplaI Re,ean.h) 
IRMX (1 nt cl) 

Vcrsa DOS 
(other Ven dOT ~peclfie renI-lime UNIX 
VRnatJon~) 

VClllxt (VentureCom Ine ) 
ELN (DEe) 

• Emhedded or Sophl~hcated (dlsk-hn~ed -1 Mhyte) 
• 1/0 and Flle Systcm 
• Cross developmcnt usually &C1I-ho~tlllg 
• Targeled lit End-ubcr, OEM or V AR 

I-UNIX dcnvllhve 
ïndepcndcntly creatcd UNIX compatlh l ,! free of 

AT &T ,ource code 
:j:ApprOlumate UNIX tunehonahty 

(hhrary IUld Iile 110 bouree lcvel compahhle) 
°0 'Il Ardlltecture, !.OUf( e cude IIvlI.!lable 



" As mentioned prevlously. the wise st course of action 111 creatmg a robot commUer \!- tu 

divlde the code into two parts: a) the real-time. system. dependent kerncl. and b) the robot control 

code itself. whlch must. to sorne degree. depend on the partlcular rC<iI-t1me kernel sdected, The real-

time kernel. therefore. must also meet ail the general reqUlrement~ of the robot control code. 

specifically: 

It should be easily portable ta other systems. desplte depcndence on the bus 

and CPU boards. 

ft should contain aIl system dependent code. not mcluding robot 

configuration mformation. though an effort to minimlze thls should be 

made. 

It should be as flexible as possible in terros of source code. networkmg and 

third party support 

It must perform weil enough for the robot control task. not only on the 

development system. but equally on other hardware of slmllar capabIltty 

Primary performance characteristtcs include. task SWItch ume. mterrupt 

latency, effective scheduling algonthms, mtcrtask and interCPU 

communication mechanisms (je., shared memory with semaphores and/or 

message passing). 

It must have support from the vendor and contmued improvements as weil 

as porting to newer hardware as it becomes available 

B.2 Evaluation & Commentaryt 

ln order to provide the reader a useful companson of the most popular commercially 

available real-time kernels, the followmg evaluation and commentary gleaned from the producl 

t Sorne of thc foilowmg commcnl~ tram lhe re~pcctJvc repre~enlallVc, II/llt proouLl hltcrtllun .. Jrolll WIfIO Rlvcr ~yhh .. III', kC/ldy 
Syblernb. Eyring Sy~tl:mb, Softwarc Cumponcllt, Group, Modelll1lp Ine , Lynx Ro.:ul TIIIl<- 5y,tcm,>, and JrulII IWlllllllIl·.'JOJ 
Addltionnl commentnf) pwvlded by Sung. Han of Commonwealth Edl\on, IIlInOl'_ and ot cour,c. the uuthor 
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Iiterature, personal experience of the authoi and that of others is offered (unfonunately tOI' the 

reader. only five kemels are reviewed): 

8.2.1 pSOS+ 

S\lmml\r~: nSOS+ (Vendor Software C'omponents GTIlUp. San los\.". Call1orllla) 

(on 16 MHz MC68020) 
tltftllnterrupt latency' 10 IlSCC 

*tf Task swltch 250 IlSCC 

tltl Messa,l!e send/recclve 340 IlsCC 

T;(T;(T;( Pnonty-based preempttvc schcduhng. user programmahle 
T;(tftf Fully dynamlc proces!> management and mterproccl'!.or commulllcaholl wlth 

st:maphores, lIlcludmg acros~ CPUs 
Q * tf Networkmg support mcludmg tull BSD 4 3 ~ockct~. N FS and ({PC 
Q t< Small-slzed ROMabie targct clpphcallon modularcomponclIt archItecture 
T;( t< i~ Multtprocessor support 
-t<tt Q Integrated devclopment and dcbugglllg tooJ:.. 
tt p: t< W Idcspread use and provt:n rdlablhty 
tf t< Portablhty MC680xO, MC68332, 186.180386, no ~()urce, though larg.c 

number of ~uch CPU hoard .. are supported 

pSOS+ I!> a soho, rdlabh: !>yl>telll u~eo u!>eu III a vdfldy 01 dcro!>pdce, lllt!lhcdl and 
communll;dhon:. product:. Pt:rforrndnct: I~ cxcdh:nt wllh tully mtcgratt!O ôchllgglllg 
and mulhprocc!>!>or Mlpport, 111 clddllton to c,>wnltal nt!lworklllg. ~upport 

pSOS+ is the follow-on to the venerable pSOS kernel. from Software Components 

Group. The system includes the pSOS+ kernel, pROBE+ board-level rnonitor/debugger. and the 

pNA+ Network manager. Also included is compiler package from Microtec. and XRA y +. which IS 

a joint product by Microtec and Software Components Group. 

The pSOS+ kemel is highly flexible, and its feature set is competitive with the others 

However, the approach used to interface pSOS+ components to user code is different from the other 

systems. While the other systems link the user code with the system code to resolve references, ail 

of kemel functions are called through software traps. which vector directly into the pSOS+ kernel 

The kernel then determines which pSOS+ component to cali to service the request. And while thls 

provides position independence and eliminates the need to Iink user code with pSOS+ routines, It 

also creates sorne overhead. since every cali to a pSOS+ system component means a service trap 

This is reflected in the performance figures provided later (see section 8.3). Note, however, that 
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this applies to the software trap kemel library. KJM (Kernel Jump Module) interface. An alternatIve 

interface. CIL (C Interface Library) providing direct Imking. gives better performance. 

The pSOS-+ kernel's messagmg facility allows up to four long words of user data to be 

passed between tasks. YRTX only allows a single word. which usually means that memory has to 

be allocated in order to send any meaningfui datél through messages (the length of VxWorks 

messages is unlimited). Aiso. event flags in pSOS+ can be directed either at a specifie task. or be 

global. Events in VRTX are always global. and YxWorks does not have event flags. pSOS+ also 

allows each task to have an asynchronous signal handler. This signal facility is not entirely like 

UNIX signais however. as the signal handler will not be called until the user task makes a pSOS+ 

system cali. 

The pNA+ networking package provides full Berkeley 4.3 sockets support. The 

competing network packages provid~ similar functionality, but only pNA+ has a socket-sharing 

mechanism. which can be convenient if it is required to deal with numerous independent 

connectIons on a single board computer. 

The XRA Y+ source level debugger proved to be a versatile, reliable debugger. Its user 

interface was a bit awkward. however. The debugging format used is IEEE695: this format is fully 

supported by the accompanied Microtec Research compiler tools package (compatibility problems 

exi~t in using IEEE695 output from other compilers). lbe company also provides provides NFSt 

and RPC~: support through their pNFS product which is available in conjunction with their pHILE+ 

file management system. 

Software Components Group also offers pSOS+/M, which is a multiprocessor version of 

the pSOS+ kernel. It provides (nearly) seamless usage of standard pSOS+ caUs over multiple 

processors connected through various types of media including backplane and ethernet. 

~ Network Fde System A .. lanWud for chcntJM!rver lile ~hanng on UNIX machines popullU"1Lcd by SUN Microsyslems 
::: RClllotc Procedure Cali A meall~ of executllig ft funcllon from olle compult.r to 81I0ther acrOSb a nelwork. RPC IS a necebsary layer 
f,'r NFS 
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8.2.2 VRTX Velocity 

S\lll1ll1ar~: VRTX Velorlty (Vendor Relidy Sy~lt·ms. SnnnvvlIlt". C'n!1tortl1.t) 

(on 16 MHz MC68020) 
~nl'i' lnterrupt latene. y 10 /lSt!c 
ï':i Task sWltch 265 Ilsec (WOf'.t ca~e 530 IlM!c) 
~n Message sendirecelve 375 Il~C 

i4tri-ï Pnonty-based preemptlve scheduhng. user pro~rdmlllahle 
i;({:(l'i' Fully oynamlc proc\!~s mana~ernent and IIllerprOCe'lMlr Ctlmmulllcalion Wllh 

semaphores, me ludlllg acro.,~ CPlIs 
~ (:(f;;. Networklllg SUPI)()rt IIlcludlJlg TeP/Il>. RPC. ilnd Nf-S 
Q Q Small-slzed ROMallle target dPl,hcdholl, IIItlouhu arclulecture 
{;( Q--Q MultIprocessor support 
i;(i) i~ Integrated devdopment and oebugglllg tool, 
{;( Q Q Wldespread u~ amI proven rehanlilty 
{;( Q Portablhty MC680xO, no source, though IMge Ilurnher ut such CPU h()ard~ 

are supported PCIAT also provluelt dt!velopmcnt/targel, hui only lur 
VRTX32 kemd, Ilot Veloclty cxtCIl:'IOIl~ 

VRTX Vdoclty I~ a ~oplmhcdh;!d ocvdopmcnt cllvlrunmcllt •• 1110 provluc, ,Ill 

unsurpa:''it!d levd of flt!xlhlhty. autollldllun dnO Cd~C of u:-'c lIowevcr. Ih l'olllpll'\lly 
can he daunhng at hmt!~. especlally to the hegll1l1cr De,,'cnt kcnwl though VRTXJ2 
is, 11 fall .. short of pSOS+ l1l terms of pertormance and VxWork~ JO tcrlll~ ni tl'attlTl'~ 

VRTX Velocity is a combination of target software components and host-based lools. 

The target software evaluated consisted of the VRTX32 kernel. RTScope board-Ievel 

monitor/debugger. TNX TCP/lpt Network manager. RTL runtime C Iibrary. and RTShell target 

shell. The host-based tools included the RTSource remote source debugger. Hypei iink ethernet 

downloader/command center, and an Oasys Compiler tools package. The host side of the Velocity 

package runs only on SUN3/SUN4 workstations in SUNView. 

VRTX Velocity offers two approaches to developrnent. One is where TJ.iPt i<; used to 

load the system software and RTshell at boot time usmg TFfP. The shell then can be used to load 

software onto the board off a network through NFS. An incremental linking loader is provided. 

which accepts standard Unix fomlat relocatable object files. The shell allows functions to be called, 

and can evaluate most C expressions. The alternative approach is to manually download system 

t Tran&mlssion Control ProtocoUlntcrnct Prolocol A &Ct of COmmUDlCl1tlOn and addrc~smg protowl~ u~cd pnmlll1ly hy UNIX 
machinc&, the U S governrncnt, and by Ill>&ol.lallon mo~l rl">CaC..:h m~l1luhon., 
:j: File Trllllbport Protocol An OIS mdcpendcnl file tranhfl." protoçol u~llIg TeP/lP 
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software to the target board using Hyperlink. an intelligent downloading program. Hyperlink can 

also be used to launch other VeJocity programs. such as RTScope and RTSource. 

The VRTX32 kemel provides a unique approach to identifying tasks. Each task has a 

numeric ID, from 0 to 255. They cannot have names. which are allowed in pSOS+ and VxWorks. 

If more tasks are needed. there can be multiple tasks with an ID of zero, up to 16384 (signed 16-bit 

integer) of them. These tasks are referred to as "anonymous' tasks. and they usually cannot be 

directly referenced by other tasks. For instance. they cannot be del~ted by ID, since an ID of zero 

used ln system calls usually refers to the caller. Fonunately. VRTX32 allows tasks to be referenced 

by priority groups. so this is one way to deal with anonymous tasks. 

The VRTX kemel has sorne features which are lacking in the other kenels; specifically, 

it provides character 1/0 operations at the kemellevel: and mallboxeli, which are single slot message 

queues. It is also lacking in other areas-for instance, there are no built-m time! calendar functions, 

aside from a tick counter (though complete timer functions can be easily buitt by the user, the same 

is true for VxWorks). Furthermore, when creating a new task. there is no easy way to pass 

parameters to it. Also. creation of tasks is always a single-step process, ie., create the task, and if its 

priority is higher than the caller, pre-empt the caller and run the task. This is different from pSOS+, 

where task creation is a two· step process, ie .• create. then activate. VxWorks allows the use of 

either approach. Also. there is the odd restriction that once a message queue is created, it cannot be 

deleted. Ready Systems claims that this is to prevent fragmentation of system memory. Finally, 

unlike pSOS+ and VxWorks, VRTX321acks asynchronous signal handling. 

The RTScope board level monitor/debugger is highly flexible, and prcvides two modes 

of operation: co mm and mode and task mode. In command mode, ail user tasks are halted. interrupts 

are disabled, and the standard suite of memory operations and usk control commands can be used. 

ln tas king mode. RTScope runs as a task. alongside user tasks, with interrupts enabled. The system 

can therefore be monitored in action without impeding on user tasks. Note that commands which 

infringe on normal system operations cannot be used in this mode, eg., memory patching, task 

suspension, task creation. etc, are not avaitable. Also, RTScope, unlike pROBE+, will not 
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automatically haIt ail tasks if a single task crashes (usually). The other user lasks will continUC 10 

run normally. if possible (although whether this is a safe practicc may be queslionable). 

RTSource is a good. user-friendly source debugger It appears casicr 10 use than 

XRA y +; however. re li ab i1it y seemed to be inferior. as it gets more easily losl 111 the code 

RTSource also uses a proprietary debugging format. so the Oasys compiler taols have to he uscd, 

Also available from Ready Systems is MPV. a multiprocessmg version 01 the VRTX 

kernel. which is similar in approach to pSOS+/M. Also av. able is the IFX manager. along wlth 

NFS and RPC support. In addition. unique to Ready Systems is the availability of VRTX Designer. 

which is a CASE tool for real-time system design. lt uses known VRT:-: timmg data to pro,JeCI the 

perfonnance of user designs and spot potential bottlenecks. These prodJJcts were not evaluated. 

VRTX Velocity provides automated scripts to build Ej)ROMs. applications. or cven 

'makefiles'. The scripts are interactive. and the user chooses from a hst what components he or she 

wants to include in the target. The appropriate 'makefile' is then created that builds both the VRTX 

system software and the user application. 
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Summan: V2Work~ (Vendor WlIld River System~, Alemeda, Cahtomla) 

(on 16 MHz MC68020) 
r:rt, Inlerrupl lalency 
ti Ta.,k sWltch 
tif:, Me~c;a!!e send/recelve 

9 Ilsec (worsl case though 75 IJsec) 
200 J.l5eC (worst ca'it! though 500 IJsec) 
375 Il5eC 

tft; Q' Pnonty-ba<;ed preemptlve scheduhng, user programmable 
tft; Fully dynamlc process management and mterprocessor commurucatlOn Wlth 

semaphort!s 
{:, t.t {~ Networkmg support Illcludmg TCP/lP, RPC, and NFS 
tf tJ Small-'lzed ROMabie targel application (200 kByles wlth mlrumal 

nelworkmg) 
{;; NO Mulhproce~<,()r support 
w {;; tl Inlegrdted development and debugglllg tools 
i:, t; Wldel>pread U'it! and proven rehabll!ty 
{:,. w tl Portabliity MC68OxO, SPARC bel,a tel>l, source avallable, large number ot 

CPU bOdfds are snpported 

VxWorh ellJoy:, a good repuldtlOlI amollg Ill> cUl>lomerl> hl> networklllg ~upport I~ 
~l.ond 10 lIone, and Il ha, a fleXible k\!rne! wlth strong IIllerprocesl>or 
communication faclhtte<; However Its remote <;ource level dehuggmg faclhtles are 
not a<; SOphl<;hcated as the competttlOn In addlhon, VxWork .. IS consplcuou<;ly VOId 

ln the area of a multlprocec;<;or kemel, whlch otheTh provlde 

The CUITent version of VxWorks is 5.0.1a (as of 1Q 1991). from Wind River Systems. It 

includes the WIND kernel. a target sh~lI, a TCP!!P networking manager, an extensive C runtime 

library. and the GNU t compiler toolkit. The GNU tools include the C compiler, assembler. linker. 

and VxGDB. which is the GNU debugger modified by Wind River Systems to work in the real-time 

environment. VxWorks. like VRTX, normally boots by loading its system code off the network. 

Whereas VRTX uses TFfP to do this, VxWorks uses "rsh' on a host workstation. 

As an interesting note, prior to version 4.0, VxWorks utilized the VRTX kernel rrom 

Ready Systems. Eventually. however. the Wind Rive.' Systems packaged t.ll~ir own WIND kernel 

in VxWorks. 

The W IND kemel provides comparable functiona1ity to the other kernels. However, it 

lacks true round-robin scheduling, and event flags are absent. In addition, the WIND kernel does 

not offer any real-time clock functions. only a tick counter. On the other hand, its semaphore 

t ONU ~ ONU L' Not UIlI:r. De .... doped by the Free Software Founoohon, Cambndgc. Massachusetts 
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support is excellent-binary. countmg. and mutual exclUSIon semaphores (wlth pnonty mverslon) 

are included. Both pSOS+ and YRTX offer unly ccunting semaphores LI~ewlse. pipc~ arc ah~ent 

in both pSOS+ and YRTX32. but they're present in VxWorks Yx.Works also features llNIX-stylc 

signais. which are tmly asynchronQus. ie .. a task will stop whatever Il'!I domg at the moment. and 

service the sIgnal. 

WIND insists on routing interrupt routines through ItS "-erne!: however. thl~ can he 

bypassed. Handling interrupts yourself should not be a problem with any of thcse kerncb 

Nevertheless, VxWorks tries to convmce the user to let It handle interrupts. and thus pnlVldc~ 

several interrupt-related commands in the kemel. 

Uolike pSOS+ and YRTX. there IS no separate mulitprocessmg versIon of the WIND 

kernel. However. Wmd RIver Systems does provide a loosely coupled backplane protocol wh cre 

boards on the same bus can communicate VIa a socket interface. 

YxWorks does not have a true board-Ievel momtor/debugger IIke pSOS+ or RTScopc It 

does however have a target shell that 15 a cross between the board level dt:bugger and the RTShell 

type of shell. providing c expressIon evaluatlOn and mteracti'/e funcHon calls. 1t provJ(lcs an 

incrementallinking loader that accepts UNIX obJect files. and it provldes ail of the memory and task 

oriented examinelmodify commands provided in the board debuggers. In addition. Jt also offcr~ 

extensive symbolic disassembly and debugging facllitles. 

The level of networkmg support provlded by YxWorks is excellent NFS and RPC 

support is. of course. mcluded. In addition. 'rsh·. 'telnee. and FTP are avallable to and From the 

target. 

The VxGDB debugger has its ongins m the UNIX GNU GDB debugger. YxGDB scem~ 

to be a serviceable. if somewhat unremarkable debugger ICs not a wmdowed. SunYlew applIcation 

like XRA y + and RTSource are. so it lacks thelr flash and glamour. In additIOn. it's more of a 

single threaded debugger. so it's more difficult to use when debugging several tash in one sy!ltem 
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SlImmllr\: LynxOS (Vendor Lynx Real-tlme Sy~tem~. Los An!!de~, Callforma) 

(on 16 MHz MC68020) 
f:{ Inh:rrupt latency 20 lJ<;ec (worst case though 140 IJsec) 
t.l Task sWltch 273 IJsec (worst ca~ though 400 lJ~c) 
f:r Me"''iage send/recelve 625 IJse; 

tn:{(;t Fully POSIX 1003 1 and UNIX Sy!.tt:m V compilant 
tr trtr Pnonty-based multl-thrt:aded, preemptlVe kemel 
tr-tr tr Fully dynamlc process management and mterprocessor commuDlcahon wlth 

semaphores 
il ti tt Full UNIX Networkmg ~upport llIc1udmg TCP/IP, RPC, and NFS 
tt ti HIgh speed conllguou!. tiles 
tr MedlUm-slzed ROMabie larget apphcatlon, large standard ver~lOn (> 1 Mbyte) 
tr NO Multlproce!.sor support 
"tr-wf.\ tr Inlegrated devdopment and debuggmg toob 
trnf.\ Wldespread u~ and proven rehablllty (sdected by NASA tor space statIOn) 
t.ï-w tt Portablllty MC680xO, 180386, R3000, MC88000, no source but No AT &T 

code elther, compatible wlth PC archItecture and a number ot CPU boards 

Full UNIX wlth ail capablhtel> Il> standard, thUl> tht: dt:vdopment envlronment Il> 
l>econd 10 nont: Ali the: long hme: comphuntl> dgdlnsl UNIX real-lime Illadequaclel> 
are addre~l.ed However, thlS doe:~ exae! somt: pertormance penalty Il Il. ul>c:d mamly 
III a Wld~ varlet y (If '~oft' real-tlme é\ppllcatlon!., but has also heen use:d to ln a 
rohotJc~ application to control the Sah~bury robot hand 

LynxOS has the rare distinctIOn of being fully POSIXt 1003.1 compliant, as weil as 

UNIX System V.3 binary compatible (with BSD extensions) while maintaining a real-time core that 

was written from the ground up, wlthout any AT &T source code, to meet these demanding 

specifications. The rewritten kemel removes the classic problems with UNIX [Cole901 and 

incorporates a multi-threaded, preemptive. reentrant kemel instead. Taslr communication facilities 

include sockets. semaphores. UNIX signais. messages. pipes and shared memory (virtually ail the 

interprocess communication schemes). Other advantages over typical real-time kemels (like pSOS 

or VxWorks) are a full vlrtual task address space and hardware memory management support 

without much performance penalty (see section B.3). as weil as very deterministic task reponse 

times. Moreover devel(\pment tools include any UNIX compatible utilities. editors, compilers, etc, 

along Wlth the ease of self-hosted development. 

t Porluhlc Opcrulmg Splcm for UNIX An InlcrnllllOnally rccognucd, now wldcly IIdopled. vendor mdependt:nt SIW1dard 

Comphwl\.e \\.Ith lhe ~lllndurd l' re'lulI"cd ~~pc~lall} fur produd~ Mlld lu gov~mmcnt~ and 1ll1'gc institutlOnai computer uscr~ 
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SlImman: P[)OS (V .. ndor Evnl1!! Rt'~ .. .tr,·h, Provo, lll.th) 

(vendor c\dlllled 011 16 MHz MC680:!0l 
ùr.~T," Inlemlpt Idtt:Il,'y 6 !-l'>t''' 
ï4Ù~ Td,k sWltch 70 !-I,e,' 

r:; T~ Me,..agt' 't:ndlrel'el\e 200 !-l,el' 

W ï.1' k Pnonty-tld .. ~d pr~t'lIlptlv\! '>Ch~dllhll~, u.,er pm~fc\mmc\hk 
t:; f~ Flllly dync\ffile pmc\!" mJnd!!~m\!1I1 c\lld 11I1 .. rJlnll: .. ~,or ,'Ollllllllllll.'.11I1l1I '" Ilh 

semaphort:<; (hmltt:d Illlrnht:r ot proe .. ,., .. ." M) 
r~ 1'-4 N .. tworl..lIIg !.upport,howt'wr only \IIdud\ll~ 1 CP/IP, 1 1 P 
~ {~ i~ Small-l>\zt'd ROMc\hlt' Ic\fgd dPI,III:.l!loll (complet\! I..t'fIId 011 .lb J..Uyll'.,) 
i~ NO MlIltlproct:~.,or ,upport 
i~ Intt:grdlt'd dt'vdopnwnl Jlld dt'huggl\l~' 1001., (lIo\l-'ymhohe ddlllgg~r.Il1l11lt'd 

toob) 
t:; k W Wld\!~prt!dd U.,c ,md proven rdldlllllty 
.i Porl.ihlhty MC680xO, 110 I>oun:t!, though I.\r~c lIulIlhcr 01 .,udl ('PllllO,lId., 

are ~u PIJOrtcd 

PDOS 1" .1 Mll<!lI, Id.,1 kcrncl wllh lull roslx tilt- 1/0 .lIlllllhr,\1 y Il1l1l 111111' (PDOS \ 
40) , .\Ild ~df-h().,kd d,'\'cl0plllt'nt "y.,ll'lII ",llIl h 1" ,\ hll pl 1111111\ l' l'\ ,'1\ h~ lit,' 
V"{Work, ~Ialldard (Il()n-~ylllh(\hl' dt.'huggllll:!, .tI1d Ihou).!h :1 h.\.,.\ dl.'gr,·,·111 roSIX 
compatlhlhty. Il ~tJlI t".lJl~ ,!'ort ot ",ourct' compa!lhdlly wllh m,qor llNIX 
dt'veloJ'ment lool~) Stand.trd mltltlpro!!ntmmtn!! kt'nlt'I It'.ttur .. ' tift' prnvlIll·d. hut 
only for 64 prnct'.,<;e~ al any ont' Il ml' Network 'lIppon l' optll111tl1 .ln(1 prnvult'" 
ha SIC protocol~ 

Like pSOS and VRTX. PDOS IS of a modul.::lI' deSIgn. yet H comprise~ an amazmgly 

small kernel (only 36 kBytes + 80 kBytes Tep/IP network support) Of course. the advanced shell 

and debugging features found the larger systems are mlssing, Nevertheless. PDOS does manag~ a 

reasonable degree of POSIX file UO and hbrary compatlbility (support for diskette and hard dlsk 

drives is optional). The system is self-hosting using the VMEPROM extensIon (removable for final 

product embedding). but this envlronment is a bit sparse especially JO the debuggmg which IS more 

akin to a ROM monitor than a debugger. Most people use a cross-deveopment system, many of 

which Eyring supports. eg .. compilers/libranes for cross development on IBM PC-MS/DOS, SlJN3. 

HP-UX. Another area of weakness (for which speed is the trade-off. no doubt) I~ that the mu Itl­

tasking features of the kemel only allow upto 64 tasks to exist slmultaneously The kernel facihtJe~, 

though. are complete with timer functions, event processmg, and a standard pnonzed round-robm 

scht:duler. 
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8.3 Performance Comparison 

The following performance tests are provided for a select group of real-time kernels by 

Kalbfleisch 1 Kalbflelsch911 (at the Superconducting Super Collider Laboratory In Texas) in 

cooperation with the respective real-time kemel vendors t
. Throughput measurements are tabulated 

in Table B.2. What follows IS a brief description of each test as it appears in the table. Maximum. 

average. and minimum times for each are glven 50 t!te reader can gam an insight as to how 

predlctable (le .• least variation in the test times) each kernel is. Hardware platform used for the test 

was a MOlorola MVME-147S-1 VMEbus single board comput~r (MC68030/68882 @ 25 MHz) 

with 1 MByte of RAM. 

Test 1) ereare/De/ere Task. This test measure the time it takes to create and 

delete a task. A task deletes itself as soon as it is created. The created task 

has a higher prionty than its creator. so the time quoted actually includes a 

create. stan. delete. and two context switches. 

Test 2) Ping Suspend/Resume Task. A low priority task resumes a suspended 

high priority task. The high priority task Immediately suspends itself. This 

measurement includes two task context switches and the time it takes to 

suspend and resume a task. There is no facihty to suspend and resume a 

task on LynxOS apan from signais. Thus this test was not performed under 

LynxOS. 

Test 3) Suspend/Resume Task. This is Identical to the previous test except that a 

high priority task suspends and resumes a suspended lower priority task so 

that there is no context switching. 

Test 4) Ping Semaphore. Two tasks of the same priority communicate with each 

other through semaphores. Task A creates a semaphore. gets the 

semaphore then creates Task B which blocks when it attempts to get the 

semaphore. Task A then releases the semaphore which immediately 

t SUl!h I!olllpartlll\c te~1b arc dlUicult 10 come by mlhe hl~hly compelll1ve real-lime kemel arena Wilh re\uclalll vendors 
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unblocks Task B. Task A then attempts to get the semaphore whlch callSe~ 

it to block until Task B releases It The two tasb then alternate owncrshlp 

of the semaphore thereby causmg context sWltches VxWorl~ verSIon 402 

was used which reqUires two separate ~emaphores. because round-roblll 

scheduimg is not supported (lt may be possible to aVOId th\'\ VxWork!. 

version 5.0.1. but it is sull dlfficult to Implement) 

Test 5) GertinglReleasing Semaphore. The ume reported meludes the time Il 

takes to get and immedlately release a semaphore withm the same task 

context. 

Test 6) Queue FiIllDrain. A single task sends a message to a queue whlch the 

task immediately receives on the samr queue There I~ no task swnch nor 

are there any pending queue operatIons. The next test conslsts of two task 

with two queues. The two tasks a\ternate executlon by sendmg to the queue 

while the other is blocked waiting ta receive. The total ume mcludes 

context switches. queue pends and sendmg plus recelving a message. 

Test 7) Queue Fil!, Drain, Fill Urgenr. Flrst the ume It takes to fill a queue is 

with messages is measured. and the urne it takes to dram the queue IS 

measured. The two tests are repeated Wlth priority messages. le .• messages 

going to the head of the queue. YxWorks 4.0.2 does not support message 

queues but ring buffers with semaphores gives the functlonahty of a 

message queue. YxWorks 5.0 now has message queues. LynxOS has UNIX 

System V message queues with priority messages handled dtfferently. 

Test 8) Allocaring/Deallocatmg Memory. The time It takes to allocates a number 

of buffers from a memory partition and the time it takes to return thase 

buffers to the partition is measured. 

Test 9) Real-Time Respon.fije. The real-time response of the kernels by measurmg 

the interrupt service response and the interrupt task response The mterrupt 

service response is the time it takes to execute the first mstructlOn of an 
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mterrupt service routine OSR) from when the Interrupt occurs. The Task 

response IS the ume it takes for a user task to resume executIon from wh en 

the mterrupt occurs. 

Table Jl.2_ Com.p.aGltlve J>erf.9fllWlCe_oJ s.<llJ1e Real-rIme I\.e..IJJels 

pSOS+(KJM) VRTX32 LynxOS VxWorb 

min/max/avg mm/max/avg rnm/max/avg mm/max/avg 

1) CreatelDelete Ta~k. 540/600/591 370/380/371 D781144611423 

2) Ping Suspend t 20/130/128 140/150/142 174/1 82/1 77 

3) Suspend/Rc~ume 80/90/83 80/90/87 68/74/69 

4) Ping Semaphore 210/220/219 230/250/2~9 390/400/397 228/234/232 

5) GetlRelca~c Semaphore 63/64/63 55/56/55 73/76/74 33/34/33 

6) Queue FIII 40/50/46 20/30/26 136/146/140 19/21/20 

6) Queue Drain 40/50/43 20/40/29 126/136/132 21/25/22 

6) Queue FilllDrain 90/93/91 50/70/59 280/290/278 43/48/44 

7) Queue Fill, Urgent 40/50/47 20/30/27 166/175/170 70/76/72 

7) Ait. Qs FiIIlDram 230/240/238 250/260(25: 860/900/867 366/376/371 

8) Alloe Mernory 40/40/40 20/30/27 34/79/57 67/71/68 

8) Dealloc Mernory 30/40/38 30/40/33 20/21/20 82/86/83 

9) Interpt. Sve Response 6/ 6/6 6/ 6/ 6 13/88113 6/56/6 

9) Interpt. Task Response 100/169/163 179/343/169 163/262/175 119/319/125 

Ali tJmec; glven are 10 mlcroc;econd~ The pSOS+ entnec; use the two 
programmlOg lOterface~ a dJn~ct C hnked Llhrary CIL(faster), and a 
software trap scheme KIM (sIower) Note that the mec;sage queue tJmes 
were tastest wlth Y x W orks. hut that these are not 'true' message queues 
that were tested tor YxWorks 
t These numbers were provlded by Eynng Research after the mdependent 

tests were pertormed by (Kalbt1elsch911 SlOce Eynng dld not 
partlclpate 10 the ongmal tests, the results are somewhat suspect 

:t: No data, not provlded 

8.3.1 CPU Performance Impact 

PDOS
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* 
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So that the reader also has idea of the various perfonnance variations that exist between 

CPUs when executing real-time kernels. Table 8.3 below provides an example of a collection of 

RISC and ClSC based CPUs: 
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Table 8.3 Comparison of a TYRlcat Re.<\I-tu:ne ~çrJlel on Vanolls Proccssor~ 

CPU R3000 MC68020 AMD29000 SPARC 

Speed 167 MHz 25 MHz 20MHz 16 MH7 

C compiler Mlp~ Inc. Whitesrmth~ M etaW are Sun Micro~y~tem~ 

Context sWltch 10 17 29 20 

Timer overhead < 1 1 1 < 1 

Write system cali 8 29 9 8 
to null device 

Write to queue 24 91 38 32 

(interlocked) 

Read from queue 24 87 38 28 

Per character 

8.4 Standards 

< 1 < 1 < 1 < 1 

Ali hme" ar~ ln mlcro<;econd" Sourcc r Andrcw~90(2)1 A.., l'an hl' ..,ccn, 
RISC ('PUs tend 10 he ahout threc hmec; fa<;t~r in eXCl'lltllll.! real-hm\:' 
kemd funchono; ao; thelr CISe hafoed counterpart ... 

Appelllh, B 

ln order to facihty the developer of real-time systems, a standardlzation ettort 15 

underway in two areas: the POSIX real-time extensions proposai 1003.4 alms to standardlze a 

number of real-time extensions to UNIX, namely threads, guaranteed mterrupt response. and real-

time scheduling ICole90. Singh911: the VITA (YMEbus Trade Association) has proposed ORKID 

(Open Real-time Kemellnterface Definition) for real-ume kernels as a standard. whlch IS simllar to 

SV ID (UNIX Systems Y Interface Defimtlon) 1 Andrews89(2)1 Ready Systems, on the other hand. 

the overwhelming market leader, has proposed its own system BIOS (BaSIC InputiOuput System) a~ 

a standard IWilliams90(2)1. Basically, each of these proposais must defme a simple, though 

sufficiently comprehensive. interface to the underlying hardware making it kemel mdependent 1) 

task control, 2) queues for multiple task priority management. 3) semaphore~, 4) clock and tlmer 

controls, 5) memory allocation facilities, 6) hardware mterrupt support facihues, 7) event flags. and 

8) exception handhng mechanisms. lmplementing a multiprocesslJi <;ystem IS stralghtforward; the 

necessary local objects are simply flaged as global. 
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ln addition. both the POSIX committee for real-time extensions and ORKID group have 

decided ta pool their standardization effort (P. 1003.13- Real-time Applications Study Group) so that 

future source code is compatible with either UNIX or compliant real-time kemels (even though. 

initially most real-time kemel vendors were opposed to ORKID). 
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Appendix C. McGiII Rohot 110 Board 

C.I Introduction 

The McGill Robot 1/0 board is an interface board for quadrature encoders to thl! 

VMEbus. It is simple in design and easy to implement. The board interfaces up to ctght scrvo 

motors each with an encoder position feedback. mdex. and potentiometer. Aiso incllldcd IS il 

watchdog timer circuit whlch times out in the event of any system failllre (il' .. the CPt! docsn 't 

'refresh' the watchdog m lime) and shuts down the robot. The board has been suc cess l'ully 

interfaced to PUMA series robots and forms the basic hardware interface of the Kali robot control 

system. 

Encoder signais maybe either digital or differential. Sine wave (analog) encoder signal 

are not currently supported. The board is based on a 16-bit VMEbus slave prototypmg card by 

XYCOM. One need only purchase parts listed herein. solder wlre wrap sockets on the board. and 

wire wrap according to the design. Ali design detalls needed are included 

Aiso included is the design for a power switch to enable the robot motor amphfiers. 

enableldisable the brakes, and provide an emergency OFF switch. ThiS is called the Robot Power 

Switch Circuit. It ties directly in with the timeout disable of the Robot 1/0 board to provide a 

complete system with a high degree of safety. 

C.2 Specifications 

• Compatibility: A 16-bit VMEbus board whlch interfaces up to 8 quadrature 

encoders with differential or digital outputs includmg index pulses. Aiso up 

to Il Potent;ometers with 0 to 5 V range. The XYCOM 'NIKL' 

specification with special PROM is not implemented. 

• Module Address: The base address for module is switch selectable on 

kByte boundaries in either the short 1/0 or standard address spaces. 

Determined by setting 8-position DIP switch. (see XVME-085 manual). 
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• Data Tran.~t'er: Data is transferred through 16-bit data path of VMEbus . 

Accesses can be of any type (byte, word. long word). but only read 16-bits 

al a time. 

Col.. Electrical Specifications 

• Encoder interface: 

• Digital: Quadrature encoder A. B channels. 330 kHz (max) encoder line 

frequency (1.2 MHz encoder 'count' frequency). Sink 1 mA @ 5 V 

(max). Threshold + 1.4 V (min). 

• Differentiai: Channels +A, -A. +8, -B, 330 kHz (max) encoder line 

frequency (1.2 MHz encoder 'count' frequency). Sink 1 mA @ 5 V 

(max). Threshold ±25 mY (min). 

• Noise immunity: 

analog tilter: -3 db al 100 kHz (min) to -3 db at 2.3 MHz (max). (input 

filter selected with op amp buffer: TLC27lA for 100kHz cutoff. 

TLC27M4 for 700 kHz cutoff. TLC274 for 2.3 MHz cutoff) 

digital tilter: 300 kHz pulse rejection for independent noise on both 

channels (300 kHz (max) encoder line frequency for maximum noise 

rejection. See Filter Optimization in HCTL-2000 data sheets. reference 

in section C.8). 

• Index Pulse: Sink 1 mA @ 5 V (max). Threshold adjustable from +0.2 V to 

4.95 V (max). 

• Potentiomerer: Sink 500 nA (max). 0 V to 5 V (max). 8-bits ±1/2 LSB over 

temperature. 

• Watchdog: Timeout adjustable from 30 J.lsec to 30 sec. 

• Power Requirements (including XVME-C85 VMEbus interface): 3.0 A @ 

+5 V (max). 0.5 A @ -12V (mn), 0.1 A@ 12 V (max). 

AppendlX C 
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o OperaJing Temperature: 0° C to 50° C. 

o Power Switch Circuit: 

• source drive capability ALL brakes & arnplifier enable: 1 A @ 24 V (max) 

(can be increased by relay with larger contact rating. Note the above is 

sufficient for a PUMA 500 series robot). 

C.3 Theory of Operation 

In general, robots have several types of position feedback mechanisms. The most popular 

being incremental optical encoders. This type of position transducer is both very accuratc and 

inexpensive. 

To determine the absolute position of a robot using incremental encoders. on being first 

tumed on, the robot must be moved to a known position frorn which ail subsequent motions arc 

measured. This is called calibration and is the major drawback when usmg relative transduccrs To 

perform this task, the incremental encoder has a recognizable mdex pomt (mdex pulse) passed for 

every fix number of encoder pulses (usually one revolution of the motor shah) By using an 

independent, low accuracy, absolute transducer (hke a potentiometer) in tandem with the 

incremental encoder, it is possible to assign absolute values to the many 'index pomts' and to be 

able to distinguish between them using an inexpensive absolute transducer. Calibration III ~uch a 

system merely involves passing through the nearest index point. resetting the encoders the Instant 

the index pulse is detected, and reading the current potentiometer value. Note that the potentiometer 

must be accurate enough to read halfway between successive mdex pulses. For example, the c1asslc 

PUMA S60 robot has a joint gear ratio of about 75: 1. The index pulse is once per motor revoluuon. 

so one need only distinguish between 75 pulses. Hence one needs a 2 x 75 = 150 resolution absolute 

position transducer. This is easily achieved Wlth a potentiorneter and an 8-blt analog to digital 

converter. One slight problem, though, can present itself when the potentlometer voltage range l!l 

not over the full 0 to 5 V, but over a much narrower range. In this event. signal conditioning i!l 

needed (ie., level shift and amplification) to bring the signal mto the desired range, or an ND with a 

greater resolution cou Id be employed. 
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Optical encoders consist of an LED shinning thr"ugh an opaque plastic disk into which 

holes have been made at regular intervals around the circumference. The Iight from the LED is 

detected by a phototransistor which outputs a sine wave as the light moves across the hole. Two 

rings of holes are used, one rotationally offset from the other so that where the first ring has a hole 

the other does not. Quadrature encoding (also called limes 4 encoding) uses two channels (A and B) 

to transmit posItion counts and direction using a two phase (2 bits), or 4 state encoding system (the 

channels are 90° out of phase corresponding lO the offset of the rings). For each pulse cycle both 

rhannels form four st.'ltes or encoder ·counts'. The pulse cycle duration is called the encoder Une 

frequency. Hence the encoder couot frequency is four times the !ine frequency. This allows a four 

times higher resolution than the holes in the encoder disk can provide (see figure C.1 below). 

Direction is determme by the sequence of state transitions. Typical quadrature encoder pulse 

frequencies are of the order of 10kHz to 100kHz. 

typlcnllOO kHI malt frequency Svmmctry 180o±:!O° lyplcnl . - .. 
(lrnt'ftl'qlll"nC'\') , 

Cb."~IAJ 1 Il! 1 .... _____ 

Square wave (dl~ltal) L' J 
Channel B 

Quadrature Iktect 
(ellcodllr count) 

Channel A 

SIDIl wave 

Channel B 

-'Qundraturc 9O'"±30o typlCal 

FIg. C.I Quadrature Encoder Si~nal~ 

Dut Y cycle = 50'11 

Quadrature al\ow .. encoder signaIs to carry four hmes as much 
tnfonnahon ('counts') a'i thelr frequency by tal\ytng nsing and falhng 
edges of two channllis 90° out of phase Drrechon IS detenmned by 
defimng whlch slgnalleads and whlch lags, le., It channaI A lags B then 
count up. If B lags A then count down 
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Quadrature encoders come in three different interface flavors. dlfferentlal sille wave, 

differentiai digital. and digital. The simplest form is dlfferential sine wave (somctimcs also calleel 

analog), where the output IS from the phototransistors through a dlfferemial amplifier. rhesc 

differential output encoders. wh ether ana log or digital. use transistor palr~ in common and 

different: 1 mode to provlde two signals per encoder channel. NOIse IS ellmmated by common mode 

rejection ln a differential receiver. Lastly, the digital encoder provldes TTL level square wavc 

signais as the output (using comparators to convert analog sille wave to digital). Index pulse slgnal~ 

are either TIL or analog (see figure C2 below). 

Typlcal output 'dmw',' 
(.:hannel A+,A-, B+. 8- & lI1dex) 
for dlfferenlJal dlglta! ouput 

(5 V. I:!V. 15V ~tandard~) 

NatIonal Semlconductor DS8830 or 
TI 75183 dllierenlllùUlIllMmlter 

Typlcal output 'dnvers' 
(cbannel A, B, mdex ) tor dIgital ouput 

1 U~ (5 V standard' 
CllllU~ J1JlJU1J 

Standard TIL (74265) or open collector 
TIL (7406) 

channel 

Typl~<l1 output 'Ùn\Cl" 

(dlalluel A' ,A-. B t, B-) 
tor llJfferen!J,11 "'lIle w,I\'~' ouput 

tSV, !::V. !SV ,tumlmll~1 

~_._~ 

TyplCal output 'drIver ... ' 

J\AAl~ 
Typlcal IOde'! OIltrut 
(may or may noy haw 
opcn cnllector) 

(chaWlel A, B, l1lùex ) lor hl)!.h I)()wcr dl)!.lt<lllluput _ L (!1V.15 V'lu\1l1unIJ 

lhunnc1..J~ n ~ 
.... Power MOSFE r outpul 

FIg C2 Encodcr QUI>ut DrIver ... 
Typlcal output drlvcr:. for cncoder ... IIlclude .t vandy of volLa)!c dntl 
power level~ (currcnt dnw) Mo~t manutdcturer\ oftèr the tYlle., ,hown 
above The DS8830 dlfferentml tran<;mltter and the 74LS06 TfL ouI rut 
are the indu'ltry ~tandard<; for dlfterenhal (hgllal and digital encoder 
dnve output re'ipectlvely 

The Robot 1/0 Board interfaces Wlth the motor optlcal encoders, mdex pulses and pots. 

The Hewlett-Packard HCTL-2000 I2-bit quadrature decoder IC was selected a~ the encoder 

interface because it offers excellent noise immumty. But smce the typical robot Joint encoder range 

is greater than 4096 pulses, software must detect I2-bit overflow and adjust accordingly. 

The index pulses are captured by PALs specially programmed to set an index bit hlgh 

and reset the HP decoder chips (asynchronously) when an index pulse is received. This 
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asynchronous c1ear can cause a false reading of the decoder chip if the c1ear occurs during an 

access. This is NOT a problem since the index pulses are ONL Y used during calibration when the 

software polis the mdex pulse and can discard an encoder reading just after an mdex pulse occurs. 

The pots are read through an 8-bit AlD converter. A TI TLC532A was selected because 

of Its convenient 11 channel mput. very high input impedance. and fast conversion time. This 

converter also has a self-test voltage reference. 

Because the Kali system is used mainly for experimentation a watchdog circuit is 

necessary for disabling the robot In case the controller fails (in software or hardware). This 'safety' 

circuit is simply a retriggerable timeout circuit. When a retrigger is not had within a given time, it 

sets off a buzzer and disables the robot. 

The robot power switch is used to enable/disable the robot brakes and amplifiers 

simultaneously. This is not a problem. Because a servo amplifier will eut output microseconds after 

receiving a disable and motor brakes take milliseconds to engage. the amplifiers will be off when 

the brakes are applied during emergency stop. On power enable however, the brakes will be applied 

for sorne milliseconds white the ampli fiers are ON. But since the robot is not rnoving (ie., constant 

position servo) during power enable this will not strain the brakes. 

C.4 1 mplementation 

The XVME-085 VMEbus prototyping card incorporates the basic 1/0 addressing in its 

interface (see XVME-085 manual). For Kali software these addresses are dependent on the robot 

driver. The default PUMA 500 series driver requires these settings (1000h in short UO space): 

Switch Bank # 1 
SW 8: c10sed 
SW 7: c10sed 
SW 6: c10sed 
SW 5: c10sed 
SW 4: c10sed 
SW 3: open 
SW 2: closed 
SW 1: closed 

Switch Bank #2 
SW 4: open 
SW 3: open 
SW2: open 
SW 1: open 
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The schematics for robot 110 board are presented on tive sheets. The (Irst descnbcs the 

necessary circuit ta control the data from the VMEbus and capture the robot mdex pul~e~ The 

system clock on sheet #1 IS set via four OIP swltches The board operates al a maximum of 2 MHl 

(AiO chip and HP decoder chip hmlt the frequency). This c10ck is dertved t'rom the VMEbus tll1l1ng 

service. Note that plain VME backplanes do not provlde this. The bus mUSi be setup la provlde lhl~ 

service. Most bus arbiters as weil as sorne CPU boards provide the system clock service. 

Switch settings for the system dock are (see also listIng for PAL III in section Co7), 

SWI SW2 SW3_ SW4 __ 
4MHz c10sed open open open 
2 MHz c10sed c10sed open open 
1 MHz r10sed c10sed c10sed open 
500kHz clo~ed dosed closed c1o~ed 
Single step open open open open 

The variable dock was designed primarily ta be used during board development 

(actually used very little) therefore it need not Implement OIP sWltches. Hardwire 2 MHz. 

Sheet #2 shows a safety circuit (watchdog timer) for disabling the robot in case the 

controlling CPU fails (in ~oftware or hardware). It is STRONGL y recommended that thlS cirCUit be 

implement. It works as a retriggerable tlme-out cirCUIt. When a retrigger is not had within a given 

time. it sets off a buzzer and disables the robot. ft can also be used ta enable or dlsable the robot 

through software. Pot #1 contrais the time-out. and Pot #2 contrais the duration of the buzzer when 

a time-out occurs. The pots are set with the following formula: 

3.3·/(}5 . Pot resÎstance (0) = lime ln seconds 

Therefore for a timeout of 20 ms Pot #1 is set ta 600 n. A buzzer duration of 3 seconds 

corresponds to a resistance of 90 kO for Pot #2. For standard Kali software set Pot #1 ta 600 U .. 

Sheet #3 and #4 describe the schematics for ONE joint (or channel), elther dlfferenttal input (sheet 

#3) or digital input (sheet #4) encoders. Determine the highest encoder line frequency for robot 

intended ta be used: 

max speed o.foutput shaft (revs/"iiec)· gear ratio· encoder counts per rev + 4. 

For instance, a PUMA 500 series robot has about a 20 kHz line frequency. This 

determines selection of the appropriate op amp input buffer: TLC274 for 2 3 MHz cutoff. 
107 
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TLC27M4 for 700 kHz cUloff. TLC27L4 for 100 kHz cutoff. Such a detailed selection of 

cornponent~ IS only to provlde sorne addiuonal noise Immunity. One cou Id get samples of each and 

check for wave form attenuation to make th~ optimal selection (thls can be do ne after the board:­

wrapped. smce the parts are pm compatible). Note though that a digital w:we form has higher 

frequency harmonlcs and requires larger bandwidth to maintam ilS shape. If in doubt, one should 

use the TLC274. The original McGili Robot 1/0 board was bUilt using the TLC274 The board has 

been in operauon for many months with no problems. 

The system clock frequency SHOULD NOT BE ADJUSTED to optimize the digital 

filler of the HCTL-2000, il is also used by A/D ch.p and the UO state machines to determine access 

to the VMEbus. Setting the dock too low cou Id cause I:imeouts on the VMEbus and setting il at 4 

MHz is too fast for the HCTL-2000 and the TLC532A 

For digital encoders the outputs may have to be pulled UP instead of the differential case 

where they must be biased. Sec the robot manual. For differential encoder PUMAs the circuit has 

been tested and is in use at McGll1 (see sheet # 3). Input impedanl.e and impedance matching can 

also play a role since the encoder may only have a small drive capability, a relatively high 

frequency. and be a distance of rnany meters from the robot actuators. 

The McGill Robot 1/0 Board should support any robot encoder which has either 

differential or digital outputs. For the digital robot circuit no settings are needed. However. for the 

differential output PUMAs one must set Pot #3, the index trim pot. This pot sets the reference 

voltage for the index pulse level. This reference voltage must 20% lower than the peak voltage of 

the index pulse from the robot, since the typical ripple voltage could be as much as 15%. It is 

easiest to do this wlth a dual trace scope by setting the reference voltage to one channel and the 

robot index pulse to the other (use a slow time base approx 10 msec). 

Note that only six channels are described in the schemêltics, but that the board can 

logically support up to eight channels without adding any more support circuitry, ie .• sheet #1. 

The two DB 25 connec tors provide an easy interface to the robot. The enable and disable 

Iines from the safety circuit can be used to turn the robot amps and brakes on/off through the Robot 

Power Swltch Circuit. 
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The Robot 1/0 board makes NO attempt at checking for access type (1('" J2-htt wont 

request from an 8-bit port). This ehminates another PAL in the design (lor the reader'!. 

convemence). 

A word about grounding. For The Robot 1/0 board, the encoders them~elve~, ~nd the 

mdex pulses. the system ground must be the same. In addition. for the potentlometer5. and the AID 

chip (TLC532A). the reference voltage must be the sa me as the pot power supphed 10 the rohot 

This can be a problem when usmg dlfferent power supplies as they are Isolated The slInplesl 

solution to this problem is to denve encoder and pot power dlrectly l'rom the VMEhu~ backplane 

This guarantees equivalent nommai voltage levels. Note that cable shields !lhould NOT be 

connected to electrical ground. but to the chassis ground of the VMEbus. 

Note also. the single step clock circuit was deslgned only as a debuggmg ald to develop 

the board (in fact hardly used). It is not necessary to implement thlS circuit 

Decoupling capacltors (0.01 J.lF) must placed from power to ground on ail digital chips 

(Augat has sockets with these built-in). Il may also be necessary to place small (about 0.1 JlF) 

between the signal and ground for the potentiometer input lmes to filter out high frequency noise. 

Lastly a few words about circuit layout. The schematIcs only show the electncal layout 

of the circuit which has NO correlation with the physical layout of the components on the board Il 

is recommended that a logical approach to laying out the components on the board be taken Smce 

the 1/0 connectors are on the face plate and have th~ largest number of connectIons. the first 'layer' 

(op-amps of sheets #3 or #4) of the interface should be there Wlth successive layers further away 

The support circuitry can fit mostly into the area adjacent VMEbus interface circuitry (sheet 1/ 1). 

See sample layout in section B,7, 

C.4.1 PAL Pro~rammin~ 

Most people have heard of PALs, however many have still not used them in deSigns. 

They are programmable logic devices (PLDs) which implement AND-OR loglc that greatly reduce 

the number of random logic lCs needed to implement a circuit. Most new Circuit designs use sorne 
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PLDs. Since their introduction In the early '80's PALs have grown enormously in popularity. and 

indeed many more sophisticated programmable devices now exist Today most major le 

manufacturers produce PALs (see your manufacturer's data book and reference In section (8). 

To program a PAL one needs a programmer (a hardware device) and the 'fuse plot' file 

for the PAL. It IS programmed by buming 'fuses' in the device when relatively high voltages and 

currents are apphed to the mputs. The device then behaves under regular TIL voltages and loads. It 

IS the fuse plot that descnbes which fuses in the PAL are to be blown or not. It is generated from a 

hlgh level deSCription of the logie one wishes the PAL to perform. The most popular PLD language 

is PALASM2t from MMI. Most PAL programmers come with PALASM2. 

The Robot 1/0 Board uses four different PAL programs written in PALASM2 (see 

section C.7. The fuse plot files in JEDEC format ready for PAL burning are available from the 

author on a floppy diskette). One does not need to know anything about PALs to use a programmer 

and create PALs for the Robot 1/0 board. 

If the reader does not have a PAL programmer, he or she should consider purchasing 

one. They are very useful ta have for any digital hardware project. These programmers range in cost 

from a few hundred dollars to about twenty thousand dollars. The prices denote the prograrnming 

capability of the unit, the more expensive. the more variety of PLDs you can program. If the reader 

only intends to program PALs and other simple devices, then an inexpensive programmer is 

appropriate. But beware of which manufacturer's devices the unit will program. Cheap 

programmers usually program devices only from a Iimited number of manufacturers, and devices 

will have to be purchased from those manufacturers supported by the programmer. 

C4.2 Power Switch Circuit 

The Robot Power switch circuit is a simple circuit. Basically it is an RS latch with the set 

input connected to 'enable' and reset input connected to 'disable'. The latch ou\.~'ut controls a relay 

for enabling or disabling the robot brakes and amplifiers. 

t PALASM~ Il> Il ttlldc:mark of Monohlhlc Memones lnc • now Il diVISion of AdvlIflced Micro Devlces Inc. 
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For robots with larger brakes a larger relay may be needed (the schemauc shows n rclav 

rated for PUMA 200 and 500 senes robots). It may also be necessary to select fuses with dlfferent 

ratings. Note the power requirements for the encoders and potentlometers of the robot. 

C.5 Programming 

Programming the Robot 1/0 board is easy. It is simply memory mapped 8 or l6-blt 

registers. There is one 16-bit read only register for each of elght decoder chips, one 8-blt register for 

the index pulse capture where each bit represents an mdex pulse: there IS one command/status 

register (in the XVME-08S interface), and three registers in the A/D chip. 

Since the range of encoder counts for most robot joints is greater than 4096 (12-blts) the 

HP decoder chips cannot be used to store the absolute position of the robot .I0mt. Rather they are 

used as relative counters which determine the Jomt displacement between updates (or servo 'tlcks') 

The total displacement can now be stored as a 32-blt counter offermg huge encoder count range 

However one must ensure that less than 2048 (4096 + 2) counts occur between successive servo 

updates. This is weil within the range of most robots. For mstance PUMAs have a typlcal maximum 

encoder tine frequency of 20 kHz, therefore at a slow 100Hz servo sampling rate, the maximum 

encoder counts per sampie are 20 kHz +100 Hz· 4 = 800 (see code m figure C.3 below) 

#deflne encoder _address OXXX 1000 / * 1/0 board encoder address * / 
short /nt / * 1 6-blt access ta 1/0 board * / 

raw_encoder, raw_encoder _old, delta, 
Int encoder _count, / * 32-blt Integer holding encoder count * / 
{ 
/ * Get raw HP encoder value * / 
raw_~ncoder = GetlO(encoder _address) & TwelveBlts, 

/ * measure change between samples * / 
delta = raw_encoder - raw_encoder _old, 
raw_encoder_old = raw_encoder, /* update raw encoder value * / 

/ * test for half maximum counter value, If true then assume the encoder * 
*counter has wrapped around * / 
If (delta < -2048] 

delta .. delta + 4096, 
else 
If idelta > 2047] 
~l!lta = delta - 4096, 

/ * update 32-blt equlvalent encoder counter * / 
encoder _count = encoder _count + delta, 

} 
EDcod~r Ch,,> Inh:rfdcc Soltw.uc 
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The TLC532A contains three registers (for complete details section C.8 for reference): 

• Control register. write only: control start of A/D conversIOn and select 

channel of the analog multiplexer. 

• Digital reglster. read only: high/low TIL value on sorne of the analog 

inputs. 

• Analog reglster. read only: flag for conversion completed. 8-bit value of 

analog voltage ± 1/2 bits. 

For an example of programming the Robot 1/0 board see the diagnostic program source. 

c.s.) Hardware Addre~ses 

The Robot 1/0 board is essential memory mapped 16-bit woret" (where XXXX = base 

address for short 1/0 space: FFXXXX = base address for standard mernory space) . 

• The eight encoders are READ ONLY 16-bit words (only lower 12-bits 

significant) at addresses XXCOh, XXC2h, •• , XXCEh. 

• The encoder index pulses are a READ ONL Y as an 8-bit register at address 

XIOlh or as a 16-bit word (LS-byte) at address XI00h. This requires that 

the index pulse enable bit be set in the command register (see below). Each 

bit in the register represents the index pulse capture state for that joint. The 

least significant bit is for joint #0 and the most significant bit represents 

joint #7. 

• The TLC532A analog to digital converter has three 16-bit registers at (for 

programming details see section 8.8 for reference) : 

• WRITE ONLY control register XIlOh. 

• READ ONLY digital register XIlOh. 

• READ ONL Y analog register XI12h 

• The board has an 8-bit CSR (commandlstatus register) at address XX81h (8-

bit) or XX80h (LS-byte of 16-blt access): 
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0: read/write -- Red LED 

0= Red LED on 

l = Read LED off 

1: read/write -- Green LED 

o = Green LED off 

1 = Green LED on 

2: read Only interrupt pendmg. RESERVED FOR FUTURE USE. 

3: read/write Enable robot (when safety cirCUIt is Implernented) 

0= no enable (allows disables) 

l = enable (allows disables) 

• One must pulse the enable bit high then low. This allows disable pulses 

from the Robot Power Switch circuit ta be used by the operator through 

an emergency OFF button. Note that ta enable a robot via the Robot 

Power Switch circuit one MUST leave the enable bit high for approx. 15 

msecs then set it low. This is the time required for the relay ta switch 

in the Robot Power Switch circuit. 

4: read/write Enable index pulse capture mode 

o = enable index pulse capture 

1 = disable index pulse capture 

5: read/write ReTrigger timeout circuit 

0= low state 

1 = high state 

• One must set high state then low state ta perform a retrigger. 

6: read/write Mode (safety timeout ON or not) 

o = safety timeout NOT ON 

1 = safety timeout ON 

7: read/write Robot Disable 

0= robot disable (overrides robot enables) 
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{ 1 = robot no disable (allows enables) 

• One must pulse the disable bit low then high. This allows subsequent 

enables by the operator through the Robot Power 5witch circuit. Leaving 

this bit low disables the robot against any unwanted or accidentai 

enables. 

C5.2 I)ia~nostic I)ro~ram 

AppendlxC 

A dIagnostic program for testing McGiII Robot 110 board is available from the author on 

diskette. 

C.6 Schematics 

Notes for schematics: 

a) ALL digital circuits must have 0.01 IJF bypass capacitors between power (+5 

V) and ground (this is not shown in the schematics). 

b) 110 ports indicate connection to other sheets, to external 1/0 connector, or 

XVME-085 board interface ports. An indication such as "fOX #1, 5H3" 

means index for joint or channel #1 on schematic sheet #3. 

c) For the Robot 1/0 board schematics. ail numbers enclosed in brackets 

indicate a port (ie., pin) number of the XVME-085 board interface (see 

XVME-085 manual for description of each port). 

d) Circuits enclosed by dashed Iines indicate a special condition on those 

circuits. ie .• optional, only once for ail channels, etc. It is always 

accompanied by a one line explanation. 
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C.7 PAL Listing'i 

'l'ltle kobot F!:ncoder & Pot Interface, CLOCK & WAIT CŒJTROL (PAL #1) 
Pattern robotbl.pds 
ReV1Slon B 
Author A. 'l'opper 
Company McGlll Unlverslty 
Date 4/2~/89 

CHIP ClockWalt PAL16R6 

CLK /SWI /SW2 /SW3 /SW4 /WAIT 4 ME /STO /RESET /SS GND 
foc /SYSCLK /4MHZ /2MHZ /lMHZ-/500KHZ /WAITSO /WAITS /WAIT VCC 

DgSCRIPTION 
Uaed for XYCOM, XYVME-85 prototyping board. 
Clock generator wait-state synchronlzer. Generates system clock for 
board aL user selected clock rate, from 500Khz to 4Mhz. synchronizes 
WAIT to syaclock. WAIT lS asserted and synchronized to the sysclock then 
WAIT lS controlled by input /WAIT_4_ME. 

INPUT: 
CLK (8Mhz) 
/WAIT 4 ME is wait signal from encoder and pot 
/STO - îs start of XYVME-85 board select cycle 
/RESET is VMEbue reeet signal 

read control pals (#2, #3) 

/ss lB single step clock 
clack select ae followe (where L=CLOSED 

/SW4 
and H=OPEN for the ewitch bank) 

4MHz 
2MHz 
IMHz 

500KHz 
single step 

OUTPUT: 

/SWI /SW2 /SW3 
L H H 
L 
L 
L 
H 

L 
L 
L 
H 

H 
L 
L 
H 

H 
H 
H 
L 
H 

/SYSCLK is basic system clock for control pale (#2, #3, #4) and all 
other synchronous components. 

/WAIT is wait state signal to XYVME-85 bus access (required for each 
8Mhz clock cycle). 

EQUATIONS 

4MHZ := /4MHZ • /RESET 
2MHZ := 4MHZ • 2MHZ * /RESET + /4MHZ • /2MHZ • /RESET 
IMHZ := /4MHZ * /2MHZ * /lMHZ • /RESET + IMHZ * 2MHZ • /RESET + 

4MHZ • IMHZ * /RESET 
500KHZ := /4MHZ * /2MHZ * /lMHZ * /500KHZ * /RESET + 

500KHZ * IMHZ * /RESET + 500KHZ • 2MHZ * /RESET + 
500KHZ * 4MHZ * /RESET 

SYSCLK = 4MHZ • SWI * /SW2 • /SWG • /SW4 + 2MHZ • SWI * SW2 • /SWG • /SW4 + 
IMHZ * SWI • SW2 • SW3 * /SW4 + 500KHZ * SWI * SW2 • SW3 • SW4 + 
SS * /SWI * /SW2 • /SW3 * /SW4 
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WAITSO := STO • /4MHZ .. SWl .. /SW2 .. /SW3 • /SW4 .. /RESE'I' • 
STO • /4MHZ .. /2MHZ .. SWl .. SW2 • /SW3 .. ISW4 
STO • /4rJJHZ .. /2MHZ .. /lMHZ * SWl * SW2 * SWJ 
STO • /4MHZ * /2MHZ .. /lMHZ * /SùùKH7. • SW1 

IRESET + STO .. /500KHZ • Iss • /SWl • ;SW1 
IRESET + WAITS .. STO • IRESET 

de-assert walt state when SYSCLK clock edge 

WAITS := WAITSO • /RESET + WAIl'S • STO • IREiOE'r 
delay de-assert of walt state by one 8 Mhz 
clock to allow slow pals to be used 

WAIT STO • WAIT 4 ME + STO • /WAITiO 

Pinout for PAL 
Monollthic Memories PAL16R6 

•••••••••• 
• 

CLK ** 1 
• 

ISWl ** 2 
• 

/SW2·· 3 

• 
/SW3·· 4 

• 
/SW4" 5 

• 

• 
/STO ** 7 

• 
/RESET·· 8 

• 
/SS·· 9 

• 
Gnd •• 10 

• 

••• 
** •••••••• 

* 
20 •• Vcc 

• 
19 •• /WAIT 

• 
18 •• /WAITS 

• 
17 •• /WAITSO 

• 
16 •• /500KHZ 

• 
15 •• /lMHZ 

• 
14 •• /2MHZ 

• 
13 •• /4MHZ 

• 
12 •• /SYSCLK 

• 
11 •• foc 

• 
.*.***************** ••• 

• 
• 

* IRESE'l' 

* ISW4 • / RE:-:Io:'l' 
SW2 • ~W3 * HW4 
Isw_~ • IRw4 * 

.. 
.. 
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'1'1 t 1 e 
pattern 
keV1Slon 
Author 
Compdny 
Date 

kobot Encoder & PoL Interface (PAL #2) 
robotd2 . pds 
[) 

A. 'l'opper 
MCGlll Uni verSl ty 
23/4/89 

CHIP EncoderControl PAL16L~ 

Ile /S'l'O /WRS'fB A4 /CS3 /CS2 Al CO Cl GND 
C2 IWAIT /S_COUNT /SEL Ics /RS IRW /ENIDX /OE VCC 

DI..:8CIUPTIOII 
Encodor & Pot rcad control pal. Controls the reading of the HCTL-2000 chip 
in Lwo 8 bit [eLches, leading the pots via the TLC532A in two 8-bit fet~hes, 
nnd re~dinq rhe encoder index. 

Addressing: 
read encoder: /CS2, Al, 11.2, 11.3 (use 74LS138 to enable one 

of eight encoders) 
16-bit, OC oh - OCEh (QCoh, OC2h, ... ) 
Ics3, /M, S-bit, 100h read encoder index: 

read/write TLC532A regs: /CS3, Al, 11.4, 16-blt, 110h - 11Eh (110h, 112h) 
wrlte control reg: 110h 

UlPU'l': 
Ics2, Ics3, Al, 11.4 

CO, Cl, C2 
IWRSTB 
ISTO 

OU'l'PUT: 
IENIDX 
10E 
ISEL 
les 

RW 
RS 

IWAIT 
Is_cOUNT 

s'rATE MACHINE: 

read digital rE .. g: 110h 
read analog reg: 112h 

ChlP select functions 
state machine counter 
write stobe from VME r/F 
start of VME cycle. 

enable reading of the encoder index pals (#4) 
enable HCTL-2000 
select byte for HCTL-2000 
select TLC532A 
ReadjWrite TLC532A 
Reglster select TLC532A 
tell VME IIF to walt (to pal #1) 
start state machine counter 

IDX HCTL-2000 TLC532A 

C2 Cl CO WAITI WAIT OE SEL 1 WATT Cr, RW RS 
----+-----------------+-----------------------------

O. 0 0 0 L L L L L L L L 
1. 0 0 l H H H H H H WRSTB Al 
2. 0 l 0 L H H H H H WRSTB Al 
3. 0 l l L H H L H H WRSTB Al 
4. l 0 0 L H H L L L L L 
5. l 0 l L L L L L L L L 
6. l l 0 L L L L L L L L 
'1. l l l L L L L L L L L 

-- ~- ~ - - ------------.------------- .. _-- ------ ---------
SLanddtd binary count can be used instead of Grey code count since the 
eettling time between states is much longer than the logic delay (applies 
other PALs aIso) . 

to 
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EQUATIONS 

ENIDX STO * CS3 • jM 

OE = STO * CS2 • CO * jCl * IC2 + 

STO • CS2 * jco * Cl * IC2 + 

STO * CS2 • CO * Cl * jC2 + 

STO * CS2 • jco * jCL * C2 

SEL STO * CS2 • CO * jCl * IC2 + 

STO * CS2 • Ico * Cl * IC2 

CS STO * CS3 * A4 * CO * jCl * IC2 + 

STO * CS3 * A4 * Ico * Cl * IC2 + 
STO * CS3 * A4 * CO * Cl * IC2 

RS STO· CS3 * A4 * Al * CO * ICI * IC2 + 

STO • CS3 * A4 * Al * jco * Cl * IC2 + 

STO * CS3 * A4 * Al * CO * Cl * jC2 

RW STO * CS3 * A4 * WRSTB * CO * JCI * IC2 + 

STO * CS3 * A4 * WRSTB • Ico • Cl * IC2 + 
STO * CS3 * A4 * WRSTB * CO * Cl * IC2 

WAIT STO • CS2 • CO * JCI • IC2 + 

STO * CS2 • Cl * jC2 + 
STO * CS2 * JCO * jCl * C2 + 

STO * CS3 • jM * CO * ICI * IC2 + 

STO * CS3 * A4 * CO • JCI * /C2 + 
STO * CS3 • A4 * Cl • jC2 

S COUNT = STO * CS2 + STO * CS3 * A4 

pinout for PAL 
Monolithic Memories PAL16L8 

•••••• **** ****.***** 

• *** * 
NC •• l 20 ** Vcc 

• * 
ISTO •• 2. 19 ** 10E 

• * 
IWRSTB •• 3 18 ** IENIDX 

• * 
A4 •• 4 17 ** RW 

• * 
Ics3 ** 5 16 ** RS 

* * 
Ics2 ** 6 15 ** Ics 

* * 
Al •• 7 14 ** SEL 

* * 
CO ** 8 13 ** jS_COUNT 

• * 
Cl ** 9 12 ** jWAIT 

• * 
Gnd ** 10 11 ** C2. 

* * 
*********************** 

i 
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'l'lLle 
!Jdttern 
HeV1Slon 
Author 
Company 
Date 

Hobot Encoder & Pot Interface (PAL #3) 
roboLd3.pda 
D 
A. 'l'opper 
MCOll1 University 
23/4/89 

CHIP LaLchConLrol PAL16L8 

IIC /STO /WRSTS A4 Ics3 /CS2 Al CO Cl GND 
C2 CAS2 CBA2 CASl CBAl /Gl DIR /G2 NC VCC 

DESCRIPTIOI1 
Encoder & Pol latch control pal. Controls the latches interEacing VME-bus 
to the HCTL-2000 and TLC532A using two 8-bit Eetches. 

AddresfJing: 
read encoder: /CS2, Al, A2, A3 (uee 74L8l38 ta enable one 

of eight encoders) 
l6-bit, OCOh - OCEh (OCoh, OC2h, .•• ) 

read/wrlte TLC532A regs: /eS3, Al, M, 16-bit, 110h - llEh (110h, 112h) 
write control reg: 110h 
read dlgltal reg: 110h 
read analog reg: 112h 

INPUT: 
/CS2, Ics3, Al, A4 

CO, Cl, C2 
/WRSTB 
/STO 

OUTPUT: 
CBAl capture 
CABI capture 
CBA2 capture 

bue 
bue 
bue 

CAB2 capture bue 

chip select functions 
etate machine counter 
write stobe from VME I/F 
etart of VME cycle. 

B (latch MSS) 
A (latch MSS) 
B (latch LSS) 
B (latch LSS) 

/G2 enable output bus B 
/Gl enable output bus A 
DIR direction control 

STATE MACHINE: 
encoder read: 

C2 Cl CO CBAI CABI CBA2 CAS2 DIR Gl G2 
-_.----------------------------------------

o. 0 0 0 L L L L H L L 
1. 0 0 1 L L L L H L L .., 0 1 0 H L L L H L L ~ . 
3. 0 1 l H L H L H L L 
4. 1 0 0 H L H L H L L 
5. l 0 1 H L H L L H H 
6. l l 0 H L H L L H H 
7. l l l H L H L L H H 
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~~ Cl. '-'" 

O. 0 0 

l. 0 a 
2. 0 1 
3. 0 1 
4. 1 0 

5. l a 
6. l l 
7. l l 

C2 Cl 

o. 0 a 
l. a a 
2. 0 1 
3. 0 1 
4. l 0 

5. l 0 
6. l l 
7. l l 

EQUATIONS 

ICBAI 

ICABI 

ICBA2 

ICAB2 

Gl 

TLC532 read 

CÛ CBhl CABl CBh2 CAB2 DIR Gl G2 
---~--------------------

0 L L L L Il L L 

l L L L L H L L 

0 H L L L H L r. 
1 H L H L H L T. 

0 H L H L L H H 

l H L H L L H H 

0 H L H L L H H 

l H L H L L H H 

TLC532 write 

CO CBAl CABI CBA2 CAB2 DIR Gl G2 
------------------------------~-

0 L L L L 1\ L L 

l L H L L H H L 
0 L H L H H L H 
1 L H L H H L r. 
0 L H L H H L L 

l L H L H H L L 
0 L H L H H L L 

l L H L H H L L 

ICI ... IC2 + 
STO ... CS2 ... IWRSTB ... Ico ... Cl ... IC2 + 

STO ... CS3 ... A4 ... WRSTB ... Ica ... Cl ... IC2 + 

STO ... CS3 ... A4 ... WRSTB + ISTO 

ICo ... ICI ... IC2 + 
STO ... CS2 ... IWRSTB + 
STO ... CS3 ... A4 ... IWRSTB + 

STO ... CS3 ... A4 ... WRSTB ... Ico ... ICI ... IC2 + 

STO ... CS3 ... IA4 + ISTO 

ICI ... IC2 + 
Ico ... Cl ... IC2 + 

STO ... CS2 ... IWRSTB ... CO ... Cl ... IC2 + 

STO ... CS3 ... A4 ... IWRSTB ... Ico ... Cl * IC2 
STO ... CI:l3 ... A4 ... IWRSTB * CO * ICI * IC2 
STO ... CS3 ... A4 ... WRSTB + ISTO 

Ico ... ICI ... IC2 + 

STO ... CS2 ... IWRSTB + 

STO * CS3 ... A4 ... IWRSTB + 
STO * CS3 ... A4 * WRSTB * Ica ... ICI * IC2 + 

STO ... CS3 • A4 • WRSTB • CO • ICI • IC2 + 
STO * CS3 ... IA4 + ISTO 

STO ... CS2 ... CO ... ICI ... C2 + 

STO * CS2 ... Ico ... Cl ... C2 + 

STO * CS2 ... CO • Cl ... C2 + 

STO * CS3 ... /WRSTB ... A4 • C2 + 
STO ... CS3 ... WRSTB * A4 ... IC2 • ICI * CO 

Appelldl\ (' 

+ 

+ 
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ApJ>'lndlx C 

02 STO • CS2 • CO • ICl • C2 + 

( STO • CS2 • Ico • Cl • C2 + 
S'ru • CS2 • CO • Cl • C2 + 
S'l'O • CS3 • IWRsTB • A4 • C2 + 
STO • CS3 • WRSTB • A4 • IC2 • Cl • Ico 

IDIR STO • CS2 • IWRSTB • CO • ICI • C2 + 
STO • CS2 • IWRsTB • Ico • Cl • C2 + 
STO • CS2 • IWRsTB • CO • Cl • C2 + 

STO • CS3 • IWRSTB • A4 • C2 

PlT10ut 

Mono11thlc Memories PAL16L8 

**** ••• *.* •••••••••• 
• ••• • 

CLK •• 1 20 •• Vcc 
• • 

ISTO .* 2 19 •• NC 
• • 

IWRSTB •• 3 18 •• IG2 
• • 

A4 •• 4 17 •• DIR 
• • 

Ics3 •• 5 16 •• IGI 
• • 

Ics2 •• 6 15 •• CBAI 
• • 

Al •• 7 14 •• CABl 
• • 

CO •• B 13 •• CBA2 
• • 

Cl •• 9 12 •• CAB2 
• • 

Gnd •• 10 11 •• C2 
• • 
••••••••••••••••••••••• 

( 
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Title 
Pattern 
Revision 
Author 
Company 
Date 

Robot Encoder & Pot ir.terface board, ENCODER INDEX (PAL #14) 
robotc4.pds 
A 
A. Topper 
McG~ll University 
24/4/88 

CHIP Encoderlndex PAL16R8 

CLK lRAWO IRAWI IRAW2 IRAW3 IEN NC NC NC GND 
loc 10 Il 12 13 IRSTO IRS~l IRST2 IRST3 VCC 

DESCRIPTION 
Encoder index pal. Captures index and holds it wh en enabled (used Lor 
4 -channels) • 

INPUT: 
lIRAWO, .•. IIRAW3 raw input of encoder index pulse 
IEN enable index pulses ta be captured 

OUTPUT: 
10, ... 13 encoder index pulse 
IRSTO, IRST3 reeet pulse for IRAW width when it is received (used 

ta reeet HCTL-2000) 
EQUATIONS 

Pinout 

110 
III 
112 
ID 

:= 
:= 
:= 
:= 

lIRAWO 
IIRAWI 
lIRAW2 
IIRAW3 

* 110 

* III 
* 112 

* II3 

+ 
+ 
+ 
+ 

/IRAWO * IEN + 110 * IEN + IEN 
IIRAWI * IEN + III * IEN + IEN 
lIRAW2 * IEN + 112 * IEN + IEN 
IIRAW3 * IEN + 113 * IEN + IEN 

RSTO := IRAWO * ID * EN 
RSTI := IRAWI * Il * EN 
RST2 := lRAW2 * 12 * EN 
RST3 := IRAW3 * 13 * EN 

Monolithic Memories PAL16R8 

********** ********** 

* *** * 
CLK ** 1 20 ** 

* * 
lRAWO ** 2 19 ** 

* * 
IRAWI ** 3 18 ** 

* * 
IRAW2 ** 4 17 ** 

* * 
IRAW3 ** 5 16 ** 

* * 
IEN ** 6 15 ** 

* * 
NC ** 7 14 ** 

* * 
NC ** 8 13 ** 

* * 
NC ** 9 12 ** 

* * 
Gnd ** 10 11 ** 

* * 
*********************** 

Vcc 

IRST3 

IRSn 

IRSTI 

IRSTO 

I3 

12 

Il 

ID 

loc 
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AppendlxC 

( C.8 le Data Sheet References 

The references for data sheets of aille components used. 

Part Reference Page 

74LSOO The TTL Data Book Vol. 2. 1985, Texas Intruments 3-3 

74LS14 The TIL Data Book Vol. 2. 1985. Texas Intruments 3-85 

74LS32 The TIL Data Book Vol. 2, 1985, Texas lntruments 3-151 

74LS123 The TIL Data Book Vol. 2. 1985. Texas Intruments 3-477 

74LS138 The TIL Data Book Vol. 2. 1985, Texas Intruments 3-527 

74LS161 The TIL Data Book Vol. 2. 1985, Texas Intruments 3-599 

74LS244 The TIL Data Book Vol. 2, 1985, Texas Intruments 3-817 

74LS646 The TIL Data Book Vol. 2, 1985, Texas Intruments 3-1241 

HCTL-2000 Opto-Electronics Designers Guide., 1988, Hew-Pack. 4-67 

PALs PAUPLE Deviee Prog. Logic Array Handbk., MMI. 

TLC532A Interface Circuits Data Book, 1987, Texas Instruments 2-139 

TLC274 Linear Circuits Data Book, 1984, Texas Instruments 3-187 

MC3450 Interface Circuits Data Book, 1987, Texas Instruments 4-35 

LM339 Linear Circuits Data Book, 1984, Texas Instruments 4-25 

79MOS Linear Circuits Data Book, 1984, Texas Instruments 6-207 

( 
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