A computing architecture for a multiple robot controller

Anthony Topper
B. Eng.

Department of Electrical Engineering
McGill University, Montréal

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements for the degree
Master of Engineering

June 1991
© Anthony Topper

)

Abstract

This thesis describes the architecture of the Kali muiti-arm robot control system,
including discussions on design trade-offs and performance. as well as a detailed implementation
using off-the-shelf hardware and software. Kali's main objectives are flexibility. integration, and
hardware and software modularity so as to facilitate programming, experimentation and portability.
It is used primarily to prototype concepts in muiti-arm coordination, teleoperation. force control,
and sensor fusion etc. To implement Kali requires only a minimal real-time kernel, a sufficiently
powerful computer and a robot interface. It is based on the principle that, today, computational
hardware, real-time operating systems and robot interfaces no longer impede robot controller
design. Rather it is control software and system integration which are now the main problems. To
that end. this work also discusses in depth the fundamental problems in the design and engineering

of robot controllers from an implementational point of view using Kali as a primary design example.

Edeniah: L

o A

L - alE

T

Résumé

On décrit dans cette thése I'architecture de Kuali, un systéme de commands de robots
multi-bras. On discute aussi des différentes options de sa conception, de la pertormance, ainsi que
de la mise en oeuvre a I’aide de composants maténiels et logiciels disponibles dans le commerce
Les objectifs du systéme Kalt sont la flexibilité€. i'intégration et 1a modularité matérielle ct logicielle
pour faciliter la programmation, I’'expérimentation et la portabiiits. On ['utilise principalement pour
construire des systémes prototypes de coordination multi-bras, de téléopération, de commande a
retour d”efforts et de fusion multi-sensorielle. La mise en oeure de Kali se fait a I’aide d'un noyau
temps-réel de fonctionalité minimale, d’'un syst¢éme informatique suffisament puissant et d’un
interface manipulateur. Ce développement est basé sur le principe que de nos jours, le matériel de
calcul, les systémes temps-réels et les interfaces manipulateurs ne sont plus ce qui retarde la
conception des systémes de commande de manipulateurs Le probleme est maintenant celui du
développement du logiciel et de I'intégration du systeme. Dans cette optique, ce travail examine en
détail les problémes fondamentaux de la conception des controleurs de manipulateurs du point de

vue de la mise en oeuvre en utilisant Kali comme exemple principal.

10t

> -4

Acknowledgements

First and foremost | thank project leader Professor Vincent Hayward without whose
vision and guidance Kali never would have become a reality. Secondly, I thank Professor Laeeque
Daneshmend for his invaluable contributions. numerous suggestions and for the design of the Kali
servo code. | also thank Ajit Nilakantan who along with Professor Hayward created the Kali
trajectory generator software. | extend my gratitude to Dr. Samad Hayati of the Jet Propulsion
Laboratory for pushing through red tape and funding the project. I also confer my appreciation to
John Lloyd for his thoughts on robot software design. to Mike Parker for his help in UNIX
networking intricacies and to Cem Eskenazi for honoring many special requests. Finally, I would

like to thank my family for their encouragement and unfailing support.

Contents

L I OQUCHION oot eee eeveeearee e eees rveereenns

1.1 The Robot Controller Problem
1.2 Software 1s Paramount

1.3 Thesis OVErVIEW......coviiieviiiiiiins ceeeriiiie e crviniee o veeerriesierereenes
L SCOPE ..ttt et ettt e

2. The Elements of Robot Controller Design
2.1 The Robot Control Hierarchy........cccccccooveniininenniicninis e

2.2 Anatomy of a Robot Controller

2.2.1 Trajectory Generation

2.2.2 Intertask Interface

2.2.3 Servo Controlocoeeveviiieiee e

2.2.4 Computational Requirements

2.3 Computing Architecture

..

...
...

...

2.3.1 MURIProCeSSINGc.coceeeeviririrereeniiieecreer e rerenes
2.3.2 Systolic Arrays and Pipelines

2.3.3 Vector Machines

2.3.4 Scalar Machines

2.3.5 Super Chips

2.5 Real-Time Kernels

2.6 Robot Joints

2.6.1 Sampling ISSUES.........ccccveevmrerreeriiieieciee e

2.6.2 Motors & AmpPHFIersccoceeevriiieceiceeceeeecierenes

2.7 System Implementation Approaches

2.7.1 Robot Controller Roundup

2.7.2 Commercial Competition

3. Kali Implementation

..................................
...
..

..

3.1 Kali OVEIVIEW ..ottt e
3.2 ImpIementation................cceoviiieeeerrnerecercneeie e ese e resseenes
3.2.1 Real-Time O/S
3.2.2 Servo CONtIO]ooiiieeeeinirieseie e e ssaeiene e

3.2.3 Other Considerations

..

..

3.3 Process MOGE] ...ovveeveeiieiieiieeeeeeeeciseeeeessesssessnersessessessessassnnnsenes 49

3.3.1 Trajectory Generator Process (TG)ccoovveernrerineeens 49

3.3.2 User Process (UP)oovvs v 50

3.3.3 Servo /O Process (SI10)oveviviievnnineeeerrneneinns 50

3.3.4 Servo Process (SV) .o eeee s ereeeeens 51

3.3.5 SIO/SV Dynamic Loading Algorithm......................... 52

3.3.6 Feedforward Dynamic Compensation............ccceecueneee 52

3.3.7 VIEWEr PrOCESSeoivereeerereiereeeeieeecrernssssriseeresssesnesenes 53

3.4 Servo Programming Interfacec... coeevvecenevnnnncerencnnnnn: 55
3.5 RODOUDTIVELScoviers cviviiereeeirtenie et sniaesseersasses s e s banavsssnen 58
3.5.1 Caltbrationcccoeeeeervinrnennienieneneseeneesssesensssesens 60

3.6 Real-Time INterface........ccoceeerniricrnnreineernnnneerierniseresssessnsesenans 61
3.6.1 Shared MemOryccceeveenrirenrenrenesernnierersseseseesnsens 61

3.6.2 Wall CloCK ... ssieeesre e e seses 63

3.7 System Hardwareccccccveee eerirecnmnisninestesnenissesteeeseenens 65
3.7.1 McGill HO Boardcoouevrcrenenniennrarnneeessesaeenes 66

3.7.2 MOOT DIIVE.....cvveneeeeiinerciierereeeesesresseseseesseennseaesans 67

4, CONCIUSION.....c.coeceirreicriiceeeeetieere s s eaestesse s e e terbessesessesaressansnsssssreres 69
4.1 SUMIMATYcooovieiieeiiee ettt sares st s e e enseen 69
4.2 Lessons Learned, The Hard Waycccovvenvninncncnnneeccnnnne 70
Appendix A, Buses & CPUSoovvieiimniiviennnicincscneessesesas s 73
AL BUSES oo ettt ebe s e s anaserenens 73
A.1.2 VMEDbBUS/VSBDUSccooveriiriieerienreine e e 75

A2 Commercial CPUSoccoimreieerireeissenre e cseeneeseesesssaaseenns 76
A.2.1 MOOTOLA ..ottt e s neseenes 76

A2.2 INELceeeeeciererecee ettt er et aeeaetetes 77

A2 SPARC ...ttt e sasaeees 78

A28 MIDS....ooiieee et et 79

A.2.5 Advanced Micro Devices (AMD)coceevenreeerennnns 80

A2.6 DSPS ...ttt ettt e snasetes 81

A.2.T TrANSPULETSccovennrrrerccrereeeresenreessesesaresesessessessessans 82

A.2.8 National Semiconductor...............ccovvevvreveererreenrererens 82

A29 IBM ...t stes 83
Appendix B. Real-Timne Kemelsccocoveeerireriinerieenrieeinreieseseesseesevesanes 85
B.1 O/S Classificationcoeerreererereeniierenrnnieresinnneresessesseesnesens 85
B.2 Evaluation & COMMENLATYcccovimrieerrnereernririernseseessansenenns 86

B.2.1 PSOSH.eeeereeseceeeeeesseeseeesssssssessssesesessesssesessensne 87

B.2.2 VRTX Velocity

.................................... 8Y
B.2.3 VXWOrKS .. .o oo e e e e, B

B.2.4 LynxOS...94

B25 PDOS. ...« o e e 95§

B.3 Pertormance Comparison co.ou. o . . 96

B.3 | CPU Performance Impact. . . YR

B.4 Standards e 9
Appendix C. McGill Robot /O Board 101
C.1 Introduction i veeeer i e e 101

C.2 Specifications cooeees . . 101

C.2.1 Electrical Specifications, o . 102

C.3 Theory of Operation cevevecvivvicciinies «vee v vens e 2103

C.4 Implememationcocviiee ceeee vviveveiie e et e 106

C.4.1 PAL Programming.......coco e ot viieens o 9

C.4.2 Power Switch Circuit oo v o o 110

C.5 Programmingot veevinr e e e HH

C.5.1 Hardware Addressescccoo voecr v v e ceen e 112

C.5.2 Diagnostic Programccceeee v ov e i v v ceer .o 114

C.6 Schematics.cccooooiieieie oo e ceves et e e 114

C.7 PAL LiStINGS.. .« cooiieiiiies ceeeeie e viviiees e et e ceee 0 122

C.8 IC Data Sheet References.ccocvveerer cveveeeneeienns cene 130
RETEIENCES viveicreiiiiies cvrree ceven e viet eeeneeaine e erine o e ee veereee e cere e 131

vi

i

List of Tables

Table Page
2.1 Computational Requirements for Robot Controlc.cocoevvrinnnnne. 15
2.2 Summary of Reasearch Robot Controllersccceeevviniicvnviiine. 38
3.1 PUMA 560 Motor and Contraves Amplifier Parameters 68
A.l A Comparison of 32/64-bit Computer Busesccccoceevviveveecninnne. 73
B.l Classification of Selected Real-Time O/S’Scccceecvvvvvrvnvcccnnenriinenn 73
B.2 Comparative Performance of Some Real-Time Kernels 84

B.3 Comparison of a Typical Real-time Kernel on Various Processors 98

Vi

List of Figures

Figure

Page
2.1 The Basic Robot Controller Model and System Trade-Ott 8
2.2 Anatomy of a Typical Robot Controllero vt iiiiie + e, 13
2.3 Paraliel Computational Architectures in Robotics coeee o 17
2.4 Performance of Message Passing Used in Roboticso voe vevenan. 20
2.5 Multiprocessor Bandwidth vs. Task Communication Overhead 20

2.6 Multiprocessor Communication Methods 2l
2.7 Relationship Between Robotics Code and Processor Architectures ... 25
2.8 Aggregate Performance of Current Microprocessors on Robotics Code 26
2.9 The LINPACK benchmark for Current Microprocessors 29
2.10 Typical Joint Control & Feedbackccco oo n e 31

2.11 Motor Peformance Characteristicscoccer vevveees vever vve vereeesvisieenes. 39
2.12 The Basic Robot Controller Architectures TV | o)
2.13 Current and Future Workstation Performance 41
3.1 The Kali Process Organization.c..ccee. voveees covivvirens cvvevans oe onae 53
3.2 Detailed Block Diagram of Kali Processes & Timing 54
3.3 Servo Datd StrUCTUIES ..o & coit ces et e eereit ceverenie + creterrens eerrens e S7
3.4 Servo Algorithm Code Example e 58
3.5. Kali Robot Driver Interface e coveveviiies eeeeeiecivirene e e, 59
3.6 On-line Robot Calibration Methodsccoveiieccniins vvieiniieen 6l
3.7 Kali Shared Memory Data SUUCUTES.. voevvoreeeriinenericeenenn & . 62
3.8 Kali Wall Clock MeChaniSm coveeeieeiinnnnes cemvenriiieiennes caee er . 64
3.9 McGill Robot I/0 board Overviewcccoees cveeeer vt e oo+ o 66
C.1 Quadrature Encoder Signalsooovieeeiiiiiiecieniiceit e, 104
C.2 Encoder QuIput DIivVErS.... . .. cooes vovieiis e eeeenerreisies eeesienans 105

C.3 Encoder Chip Interface Software

.)uv“

1. Introduction

Castles in the air—they 're 5o easy 10 take refuge . So easy to build, roo.
—Hennk Ibsen (1828-1906)

1.1 The Robot Controller Problem

Robotics 1s by its very nature an experimental science. yet rarely has the literature
discussed one of the major practical difficulties in robotics, namely, the process of actually building
a robot control system—the robot controller problem It encompasses the process of engineering a
solution to a particular application including all 1its practical and idiomatic aspects such as
computing hardware, software. actuator interfaces, etc. It 1s not in itself any theory or rationale of
the application at hand: nor is 1t about any particular design philosophy: it 1s, however, about
communication mechanisms, servo rates, processor speed, kernel calls, and programming tools, etc.
The former are prerequisites to the problem, the latter are the problem.

In the past, the major obstacles to building robot controllers were the poor floating point
performance of commercial processors and the meager capabilities and often unbearable
development environments of commercial real-time kernels. These limitations drove researchers to
waste most of their effort just to build an adequate computing platform with sufficient software tools
upon which to test their theories about robotics. In additton, interfacing a digital control system
directly to a robot’s motors and sensor feedback was a non-triviai task. and the lack of ready-to-use
hardware interfaces made 1t a difficult undertaking for all but experienced robotics engineers, Thus,
robot controliers often depended on unique hardware and software architectures and operated only
with specific robots and host computers. Such systems were often too cumbersome to use and
certainly too difficult. 1f not impossible. for others to adopt for their own research Despite
assertions of their powerful capabilities, most research controllers performed even simple tasks less

well than the primitive commercial systems they were designed to surpass.

I lattoduction

Today, however, thanks to vendor independent open architectures. and the advent ot
powerful yet inexpensive microprocessors with integrated real-ume programming environments, i
is now easy to engineer an impressive, yet easy-to-use. robot controtler m a matter ot weeks using,
off-the-shelf hardware and sottware All that 1s required a sutficiently powertul computer, a
minimal real-time kernel. a robot interface. and robot control sottware lhe tust three can be
purchased simply from commercial sources. leaving the last to be obtained either trom other
researchers or created as needed McGill University’s Kali' robot control system s an example ot
this new trend. It 1s a software architecture for the control ot multiple coordinated manpulators
founded on the principle that the robot controller problem 1s no longer hindered by nadequate
floating-point hardware. real-time operating systems. or robot intertaces Rather 1t 1s contiol
software and system integration which are now the main problems—precisely those areas ot mterest

to researchers.

1.2 Softwareis Paramount

In seeking a plausible system architecture. the robot controller designer must, in eftect,
have a good knowledge of the empirical and idiomatic aspects and the various computational,
programming, and /O demands of a basic robot controller including computational hardware tast
enough to perform trajectory generation and joint level servoing, user programming nterface and
development environment, and a real-time kernel to tie the system together. Once these are laid
down. the problem becomes one of software architecture to meet all the specifications while
‘mapping’ the entire system onto an appropriate hardware implementation [Ostroff87]. In practice,
this is far easier said than done, not only because of the myriad problems n designing a complex
real-time system. but also because determining specifications ‘a priori’ during the design phase 1s a
difficult task, since much information about the environment 1y not known until run-time
[Ramamritham88|. Thus rapid prototyping. both in building a functional skeleton of the end-result

and in simulating algorithms, plays an important role in the creation of any modern robot controller

!'In Hindu mythology, Kali the Divine Mother, 15 olten represented as a creature with many arms

1. Introduction

Without adequate ease in creating and altering code. or a fast enough edit-compile-test cycle,
development bogs down and the flexibility necessary for research and experimentation quickly
decays. In fact, it is the programming environment and the development tools which determine the

usefulness of a robot control system, in the end.

1.3 Thesis Overview

It is to assist the reader in this endeavor—the building of functional, ease-to-use robot
controllers—that this thesis is dedicated. It examines the problems in the design and implementation
of such systems while providing Kali as the principal design example including ail the critical nuts
and bolts information, otherwise so often forgotten:

* Software structure. The blueprint for « robot controller are the processes

required to make it work, these include application code (task planning),

trajectory generation, and servoing. A detailed examination of their

organization, data structures, algorithms, and communication mechanisms is

made.

* Computarional requirements. What performance features does each process

need from the hardware? How much computational power is needed execute

a given algorithm at the required sampling rate? How many MIPS! or

MFLOPS? are needed?

» Computing architectures. What architecture best suits the robot controller

problem: vectored, pipelined, dataflow, or connection machine? Since a

robot controller is built on a foundation of computing hardware, a

fundamental understanding of it is necessary in order to select/design

computational components for a robot contro! system. Perhaps nothing has

stirred so much confusion as the advantages/disadvantages among the

different hardware architectures: CISC, RISC, DSP, VLIW, systolic arrays,

! Mulkion Floating Point Operations Per Second
2 Mullon Instructions Per Second usually based on the benchmark that a Digital Equipment Corp VAX 11/780 1s 1 MIPS

I introduction

superscalar, superpipelining, etc. The costs/benefits of each as applied to
robotics is explained.

* The communication bottle neck. Today, a robot controller is likely to be a
tightly coupled multiprocessor system with complex interprocessor
communication. The major architectural issue is whether to use cither shared
memory or message passing. What are the advantages/disadvantages of
each? Which is most often used and Why? What mechanisms for interCPU
messaging are necessary such as gang scheduled test-and-set. sleep-and-
wake-up, or uncoordinated test-and-set? How are these implemented
together with communication protocois and algorithms? In either case,
synchronization of data exchange is always the crux of the problem. This, in
turn, leads to the other major problem—bus traffic. As sampling rates and
computation loads increase, it becomes the major bottleneck on
performance. How does it increase and what can be done about 1t?

» Commeicial hardware. No doubt this subject matter changes as fast as
technology progresses, thus making any discussion of it quickly outdated,
however, at some point decisions must be taken and real world hardware
selected. For the reader’s convenience an evaluation of current CPUs such
as SPARC, MC68040, Mips! R3000, i860, etc., as well as computer buses
such as VMEbus. EISAbus, FutureBus, etc. is also made. A discussion on
other miscellaneous, though equally important, implementation issues like
memory access time, power consumption, bus termination, and arbitration
is also offered.

* Real-time Software requirements. A robot controller is very much a ‘hard’
real-time device for which scheduling deadlines such as servoing must be
met unfailing. Thus what features are needed from a real-time kernel? How

! Corporate name for Mips Computer Inc , not to be confused with Million Instructions Per Sccond

. Introduction

long should it take to process an interrupt, a kernel call. or a interprocess
message? Which con.mercial kernels provide these features and how well do
they perform them?

s Control Issues. Fundamental to any robot control system are the trajectory
generator rates and servo rates. How fast should these be generated to
guarantee a smooth trajectory? Stable control of the manipulator? What are
the upper and lower bounds? What are typical numbers? What about
controller delay, quantization problems, and dynamic range of calculations?

s Robor Interfaces. What is the basic model for a robot joint? How are
encoders used to determine . sition and velocity. How they are interfaced?
How is a robot calibrated to absolute position? Some valuable tricks and
techniques are explained as well as the complete design for a robot interface
board is given. In addition, an examination of the advantages/disadvantages
between brushed and brushless electric motors (the most common type of
robot actuator), and between linear and switching amplifiers is made,
although no comprehensive discussion of actuators is offered.

* Safety and robusmess. Finally, how is safety and robustness (ability to
withstand and recover from error or disaster) ensured in an experimental
system? To prevent disaster it is essential to have a means of detecting

faults, software failures and dangerous conditions.

14 Scope

In short, this work examines all the empirical and idiomatic aspects of robot controller
design and implementation. However, it does not discuss the theory of robot control, trajectory
generation, robot language design, or programming. For such grounding, the reader is directed to
these works: {Paul72] one of the originai works in digital robot control; [Paul81) the inveterate and
founding handbook of modern robot control and trajectory generation ([Luh83) also provides a

useful synopsis on the subject); [Craig89] an updated and more comprehensive version of Paul’s
5

e

1 Introduchon

classic: [Craig88| and |Asada86] provide useful explanations and examples about advanced
manipulator control; lastly, |Brooks75] and [Allworth87] contribute many principles. techniques.
and wise counsel in software and real-time systems design.

In this thesis. the Kali robot control system is used as the principal design example which
deals with the issues of multi-processor, multi-robot performance and control that represent a
significant step in complexity and requirements over that for a single robot Furthermore. this work
deals with the diverse interrelated design issues concerning robot controllers and contains a wealth
of information useful and necessary to the realization of any such systems.

Finally, it must also be pointed out that this thesis is not an attempt to proselytize the
reader to some new, supposedly superior, scheme for a robot control system. Rather it is to
demonstrate that the ‘yet another robot controller’ cliché is no longer relevant by showing the reader
that any competent research team can quickly put together a controller tailored to the needs of a

particular robotic system.

2 The Elements of Robot Controller Design

When we mean to build,

We first survey the plot, then draw the model;
And when we see the figure of the house,
Then we must 1ate the cost of the erection;
Which if we find ounveighs abiliry,

Whar do we then bur draw anew the model
—William Shakespeare (1564-1616)

2.1 The Robot Control Hierarchy

As with any engineering endeavor, the challenge is to decompose the problem into an as
architecturally simple and economic solution as possible. Always it boils down to the design
decisions and the engineering trade-offs. Of primary importance to robot controllers are the design
choices imposed by that archetype of system design—the hierarchy of tasks. A scheme which takes
maximum advantage of the natural data abstractions inherent in robotic control systems [Volz84].
Precise specifications for each layer or task in the hierarchy can be independently defined, thus
simplifying development and removing, as much as possible, the burden of explicitly programming
the details of the underlying mechanical system, ie., manipulator kinematics, dynamics, motor
parameters, etc. Changes in either hardware or software do not propagate throughout the system, but
remain confined to the relevant levels in the hierarchy.

The fundamental system trade-off for robot controllers is between the computational
complexity of their component tasks and the sampling rate of those tasks. That is, given the
application: how complex are the strategies for planning, modeling, and control versus the sampling
rate at which they are computed? The sampling frequency of control algorithms and, of course, the
algorithms themselves define the performance of the system (aside from the inherent electro-
mechanical limitations). but since the designer is always limited by the computational power
available, he must trade-off between the two. For instance, a simple servo algorithm may provide

fast position control at a high sampling rate, essential for pick-and-place applications, but a more

R T

g wy fwey e T

B R L e

PSRRI X Y 3P~ W3 e 4 % T TN S SO ERETR T

2 The Elements ot Robot Controller Design

sophisticated algorithm using laser guiding sensors may provide better tracking control at slower
sampling rate, necessary for seam welding. There is always the nagging possibility, though. that the
poor performance of a sophisticated control scheme 1s due to a limitation in sampling frequency and
not—as is sometimes the case with a well concerved algorithm, justified in simulation— tahing

miserably because of some fundamental., ill perceived flaw.

level N
User Interfaced (-1 /ece)
Programming !
Y level 2
A
J= t Planning.
z : Modeling
= i level |
g | ﬁ
o -
© : Trajectory | o5 100/c)
s ! Generation
1
2 I q level O Z
= - 1
] [} Actuator Drive Q
5 ! Control '
g I (~250-1000/sc0) !
& ! tugh RW (eeidinck !
| ep puosition, velocaty :
: lower BW feedback. e force |
| Tow BV Teedback, eg viston system '
e e e e e e o e e e e e e e e e o e e e e e e |
towest BW feedback e nwer progranaing monitoring
~10 &' ~100x ~10x X Sampling Intersal

Fig 2.1 The Basic Robot Controller Model and System_Trade-Oft
A hierarchy of control tasks with increasing complexity and samphng
interval as one advances up the hierarchy
level 0: actuzator VO and joint level control such as position or tracking
control, force compliance, dynamics compensation, etc Some sensor I/ O
such as torque feedback for grnipping, grinding, better tracking
level 1 temporal and geometric motion control Some simple multi-sensor
input 1s also common, te., teleoperation with torce feedback, peg-mn-hole
insertions, sensors to avord collisions, etc Depending on the system
design, integration between levels O and 1 vanies considerably
level 2: world modeling, geomet-:c reasoning, path planning, decisions
based on symbolic sensor intormation, ie., pick up object recognized by
VisSion system
level N user nterface (graphic/iconic protocols), programming
environment, operating system, and ott-line programming

Figure 2.1 about illustrates this basic trade-off in terms of the generic architecture for
robot controllers: the user’s application process is at the highest level and issues task commands

(about 1 per sec) to a trajectory planning process which creates motion requests (more commonly

8

2 Ty

2 The Elements of Robot Controller Design

the user code does the trajectory planning itself). these motions requests (Cartesian space motions,
joint space motions, force profiles, almost anything) are then, in turn, processed by a trajectory
generator which transiates these into a continuous stream of joint set-points quickly enough to
ensure smooth motion (~25-100 per sec) while satisfying all the specified spatial, temporal, and
dynamic constraints (ie., move in a straight line from A to B at a speed of 1 m/s while not exceeding
10 m/s? acceleration); in the final stage. these points are sent to servo loops (these could be
individual joint-based PID servos or a Cartesian space control loop with force feedback) which
stabilize the manipulator at these set-points (~250-1000 per sec). All motions are typically
permitted by the trajectory generator provided that they are within the manipulator’s kinematic and
dynamic capability When the trajectories are generated fast enough (usually ten times faster than
the manipulator’s natural structural resonant frequency [Paul81]), and the servos stabilize quickly
enough (ie., in one sample interval), so that tracking error dynamics are approximately linear over
successive servo samples, then the generated set-points are perceived as continuous and smooth
motions | Ahmad88|'

Despite the fact that manipulators are highly non-linear control plants, this scheme works
because it exploits a successive small signal paradigm in which motions are seen as points along
nominal trajectories in Cartesian velocity/force subspaces (level 1) and feed-forward dynamics are
used to linearize the control (level 0). In this way each layer in the hierarchy locally linearizes its
functionality, so as to provide to its higher, ‘parent’, layer a linear system, in effect. Thus, coupling
is highly reduced and the problem is divided into smaller and better defined pieces—the basic
principle behind robot controllers. The prevailing assumption, however, is that the nonlinearities are
not sufficiently severe to prevent effective local linearizations in the neighborhood of the operating

point.

2.2 Anatomy of a Robot Controller

In general, robot control requires an implementation of each level in the hierarchy
including hardware interfaces. However, the trajectory generation and servoing tasks are the

minimum required for the most basic, often sufficient, function of a robot controller, namely,
9

2 The blements ot Robot Controlier Design

position and/or tracking control along some specitied nominal trajectory Fhese two tashs. in

essence, form the heart of every robot control system.

2.2.1 ‘Irajectory Generation

The user application 1ssues motion/position requests to the system in an asynchronous
manner using either a blocking (wait for move to be completed) or non-blocking (motion 15 queued.
user code continues) mode. The trajectory generator then interpolates between the last
motion/position to the newly desired one. Imtially, 1t 1s necessary to get smooth mouon ot the
individual joints or joint space control—known as ‘joint mode’—because 1) jomnt trajectory
generation 1s the easiest type of motion to get up and running. and 2) it 1s otten necessary 10 move
the arm into a given position free from singularities, especially for the debugging of other system
software. Next, the task is to get smooth motion along arbitrary curves 1n space. hknown as
‘Cartesian mode.” which simplifies programming,. te., easy workspace geometry with jigs. etc

Generally. trajectory generation 1s split into three sections 1) the genceration of the set
points along a straight line segment where constant linear velocity 1s variable ot control (the user
specifying the time for the movement), 2) the merging or blending ot motions between line
segments to maintain smooth motion (ie., continuity of velocity and possibly acceleration) when
rapid changes of direction lead to increased forces on the joints (a fourth or higher order polynonual
is usually fitted as the transition path between the line segments {Paul81, Hayward88(2). Lloyd9l|).
and 3) inverse kinematics which converts the Cartesian space line geometry into the joint space used
by the servos. The final, blended Cartesian trajectory can be sent either directly to a Cartesian-based
controller, or, more commonly. through inverse kinematics to joint mode controliers ‘the rate of
trajectory generation depends on the structural resonance of the arm [Paul81|—-too slow a rate and
the arm may begin to shake (resonate). Accurate set-point generation and eftective segment
transition algorithms 1n response to sensor feedback are still much of a research topic [Paul8$.
Hayward84|, especially for multi-robot control systems | Ahmad88(2). Hayward88. Hsu89|

Checks for singularities and/or configuration changes are critical at the trajectory

generation level, lest the servos are given discontinuous joint demands (eg.. equally valid kinematc
10

2 The Elements ot Robot Controller Design

solutions 180° apart). Avoiding the problem by picking the solution with the joints closest to the
current position is not useful either, because near a singularity arithmetic round off error can cause
unpredicted configuration ‘flips’. It 1s standard practice, today. for robot controllers simply to leave
it up to the programmer who decides on the configuration—the system simply ‘advises’ him, ie..
checks and 1ssues warning of singulanties or imminent configuration changes before the nw"’>n or
does nothing and crashes during the motion. Many higher level path plarring systems. though, have

attempted to automate the process

2.2.2 Intertask Interface

A queue is used to interface the asvnchronous motion requests issued by the user code to
the trajectory generator. A linearly interpolated FIFO (First-In First-Out buffer. similar to a queue,
except each ‘end’ 1s tied to a synchronous task of a different frequency) is used to interface the
trajectory generation with the much faster servo control level. In this way large motion
displacements are ‘smoothed’ out into smaller ones that the servo controller can better handle. If a
position vector, A ., represents the current position and. B. the desired new position, and r the ratio
of the servo rate to the trajectory generator rate, then the incremental amount (B-A)/r can be added
to A for L] interpolated cycles (ie.. at each cycle of the servo), so that (B-A)L.rJr is the position at
the final cycle In the event [r] < r. the trajectory generator rate is not an integer multiple of the
servo rate, the Lr - 15 cycle adds the remaining tail-end amount. It could also be spread-out among

more cycles to avoid a ‘jolt” at the [r }-15t cycle.

2.2.3 Servo Control

Because of the decomposition into what amounts to an approximately continuous linear
time invariant system. the large body of theory developed for linear systems is usually applied to
robot controllers. For tracking control. a dual rate computed torque control strategy is generally

employed: pole-placement via state feedback in the main loop with a forward loop compensator

11

s 3

2 The Blements ot Robot Controller Devign

intended to invert the highly non-linear dynamics of the feedback compensated plant {Craig89].
Expressed as an equation;
T=H(@) v +hi(q.

where T is the vector of torque demands on the joint actuators: H the manipulator inertia matrix, h.
a vector function of joint position and velocity, representing all the dynamic forces acting on the
manipulator, ie.. centrifugal, Coriolis, gravitational. joint friction, etc (these parameters easily vary
as much as three orders of magnitude over different configurations, speed. acceleration [Bejczy74)).
finally, u represents the vector of decoupled linear joint controliers, ie. a PID controller where kp,
and kp, are the proportional and derivative feedback respectively (for the jtb entry)

u,=qq-kp, (qq-4,)-Kkp,(qq4-q,)
with q; and its time derivative representing the joint position and velocity respectively. and qg, with
its time derivatives, the position demand, velocity demand, and acceleration demand respectively
The ‘core’ loop, ie., the computation of u, must be calculated quickly enough to ensure stable
control. A reasonable rule of thumb is that this should be sampled approximately 10 umes higher
than the joint’s natural frequency [Paul81]. For most DC servo motors mechanically coupled to
links of a representative mass, time constants are between 20 and 100 msec {Craig88) Thus, from
the point of view of linear theory it shculd suffice to sample at about 100—500 Hz However,
sampling rates as high as 5 kHz may be required for direct drive arms {Kanade84, Shalom88). On
the other hand, the parameters H and h depend on the configuration q and change much more
slowly than the sampling rate for u. Thus, if 1t is estimated that these functions vary with a
significant amount, say for every 5° of joint displacement, and rate of change of the configuration of
the robot 1s slow. say with a slew rate of less than 180° a sec (fast by todays’ direct drive robot
standards), then these ‘inverse dynamics’ need only be calculated at a mere 36 Hz (180°/sec — §° =
36 Hz) [Kircanski86, Zhang88]! Figure 2.2 below shows the basic tasks of a robot controiler and

their how they interact, along with details on sampling rates.

2 The Elements of Robot Controller Design

int generation)

oint set-

Joint motion mode

ommmenesse— aruinnd Daia i e poant space commf,

level

w— wmm Allermate Ixua flov ne Canenanspace
ol

N

APPLICATION CODF

Traditionaliy tn sone interyreted progpramming
lanjusgc howevernow € s used and hture
[4 to tuke advantape of ohged onented

(o ratninmy

Level |

maotion I'(’(llll'.slé
oYy

Y

layectory Generation at /.

«

SE1-POINT GENERATION

Typewily simple penadic set poants with v eloerts and
ucvelesut o constraigs

antesi i coordinates [or end effector tash puee

6 unblended set pomts

SEGMENT TRANSITION
Blending of datferent line segmentsto meet iming

velocy and accelenetion constnunts [Paul 81, Havward84,
HavaandBR]

Canesian set pomnts

INVERSE KINEMATICS
Here amgulanties or redundant manipulators cavse
scrious problans Nomnally « ssstum balt s issued when

he solution does not exast o 13 not Imaue

AN

Notes on Samipling Rates:

 friv> ~10 x lowest structural resonant frequency of arm (eg | lor
PUMA fi; at 35 Hs, but tast SCARA arms over 100 Hz)

o fo> ~10 x lowest natural trequency of actuator and

« fi > =15 xlowest natural frequency of hnk [Paul81] forvery suff
posiion contro] and tracking (1e, electne motors tens of Hertz,
theretore, £ typically ~ 300 H,)

« When fc>>

~ ertia of arm
~ damping coefficient of arm

n
RﬂdlUS}mm 'jry_

then trajectory generator output (Cartesian set points) arc approx
hinear with respect to servoing [Ahmad88], thus a only a lincar
servo and linear FIFO mterpolation are necessary 1n level 0
Jear> ~10 < lowest natural frequency of actuator, more comphance
than stitfness s desired (eg . tor PUMA or other anthropomophicallp
sized arms fiar ~ 250 Hy [Zhang88)), also
« traching accuracy deperds directly on fig(1e . 21 mm,
tracking error & Vcl()cny:;_xg_a for revolute joints [Paul81])

+ Should have fiy < f as increasing fg does not improve tracking

o fim= fi, Peformance degrades only gradually as finis reduced
[Kircanski86]

« Typically £ > far> frg> fm

Level

Nonunal Cartestan Position
o -_ -— - -— - -—
and Nonunal Cariesian Force

0

Force feedback Control at }.,,

Interfaces trajectons gen and control at different rates
Interpolates between demand pomts output by
tra) gen. and pumps these uterpolated pownts into senvo

Level O

Nominal joint position

‘»‘ set puunts outpul tn tea) gen and

Joind Mation Control at f;
FIFO

Interfaces trajectory gen and senvo
Interpolates between suiccssive

pumps these mierpuisted ponts mio

R

JOINT SERVO CONTROL
Propettnal [ntegrud Darvalive (PID) control s
usuallv selected for it's ssmplicty and proven
stabildy however the trend 18 wercasing toward
torque tased control [Vischer88] as well as
adaptn e and ahudng mode techniques | Asada86]

CARTESIAN BASED CONTROL

impedence control [Hogan87], st1ffaess control {Salubury 80),
opermional space control {Khatib®} etc Usually i task space ot
end effector space where the force sensor 18 located | Paul86
Zhang88) Addional torque sensors at the jomts can be used to
greatly anprovc control {Jansen90)

&mehﬁed seneral impedence

' OR

control outputs direct 10 joint servo
(ie . sffness. damping, vanable
merna control)

Hybnd Control ousputs
to direct to joint
Level 0 actuator

Posuwon velocuty torque
Sfeedback from actuators

\
\ —

.

Dynamic Compensation at f, .
Used to linesnze the svatem and unprove dvoam
performance Ge. faster posshioning better tracking)
Mampulator postion, velocty and acoeleration
dependent L sually o d 1wnjue compensation
Uses both enm inertia values and velocity direct from
actuaor feedback [Luh®, Hollerbach82 lzaguirreyl |
Outputs directly to jomt actuator demand. Torae
feedback from actuatons i servo can obviate need for

heavy computation here

Position and velocty feedback from actuators

A
i
!
_]

Yovqpasf

404

Y

40SUIS WO.

Fig. 2.2 Anatomy ot a _Typical Robot Controller

o

s

2 The Elements of Robot Controller Desgn

As it turns out. though, both the gravity and joint triction actually help to dampen out the
system and reduce the control bandwidth. so that moderate position/tracking control can be achieved
using just plain individual joint PIDs without any dynamics compensation—initially a podsend tot
slow computers in the past. now a curse. impeding higher pertormance and one ot the compelhing
motivations behind ‘cleaner’ direct drive arms |Kanade84. Craig88. Kazeroom88| with sumplet
models.

In research robotics. however, the typical application involves not oaly position/ttacking,
control, but also force control in Cartesian space. te.. insert peg in hole by “feel’. or more often a
combination of the two. A force sensor at the wrist and/or tn the joints provides the appropriate
feedback. Other sensor modalities like tactile and vision are being employed in an integrated
fashion. so as to achieve greater control than would be possible with any one sensor alone—hknown
as multi-sensor fusion [Hackett90]. However, these algorithms are of a difterent nature than those
used for traditional robotics motion/force control 1n that they lead themselves more easily to paraliel
decompositicn (ie., image processing algorithms) The discussion here, however, concentrates on

the traditional modalities for robot control.

224 Computational Requirements

In general, the computational cost for position/tracking control—by far the most
computationally intensive task in the robot control hierarchy—for a six degree of freedom arm 15
about 50 kFLOPS using ordinary PID servos at a | kHz sampling rate More sophisticated
algorithms, such as adaptive PID. require around 2000 kFLOPS @ 1 kHz sampling Assuming a
worst case scenario using. say a 6 DOF direct drive arm requiring a 5 kHz samphing frequency, and
using a computed torque method with inverse kinematics in the core loop (about 1500 FLLOPS per
control cycle), then only 7.5 MFLOPS of computational power are needed—well within the reach of
many current microprocessors (see section 2.3.5).

For generalized hybrid force/position control, on the other hand, the requirements are
cons:derable greater. Typically about 750 kFLOPS @ 250 Hz sampling [Zhang88] or about 3
MFLOPS per kHz are needed (15 MFLOPS for the 5 kHz, direct drive manipulator example).

P

Table 2.1 Computational Requirements for Robot Control

2 The Elements ot Robot Controller Design

the years from about O(n?) (10° FLLOPS for n= 6 DOF) using Lagrangian formulation, to about

computational requirements for a typical set of robotics algorithms.

Algorithm

Tracking/Position Control @ 1 kHz
(level 0):

PID control

Adaptive PID control

Force control @ 1 kHz (level 0):
Stiffness control [Salisbury80]
Impedance control [Hogan87]
Hybrid control [Raibert81}]
Operational Space control [Khatib86|

Feed-forward dynamic compensation
@ 50 Hz (level 0);

{Luh80]

|Hollerbach82]

(Izaguirre91}

(level 1):
Trajectory generation &
inverse kinematics (@ 50 Hz)

FLOPS
(per 6 DOF mantpulator)

50k
2000 k

1600 k
2200 k
2200 k
3000 k

80k
60 k
40k

25k

For each algonthm given (as applied to a six DOF robot), the approximate
computation cost in floating point operations per second per Hertz of
sampling frequency 1s shown That 1s to control a robot, such asa PUMA
560, at 250 Hz sampling frequency using a PID requires 12 5 kFLOPS =

50 kFLOPS x (250 Hz/1 kHz) The force control computational
requirements are examined 1n detail 1n [Zhang88]

The traditional preoccupation among researchers. however, has been with the inverse
dynamic computation—thought to be the critical component in achieving better tracking

performance From the theoretical perspective, the computational complexity has been reduced over

O(n) (103 FLLOPS for n=6 DOF) [Luh80. Hollerbach82] using various Newton-Euler formulation It
has even be reduced further using a completely empirical approach employing sensitivity analysis
techniques to estimate. within a given percentage accuracy. the inverse dynamics, as one would of
any function, given enough experimental data points [lzaguirre91]. On other hand. parallel
algorithms executed on specialized hardware can achieve Orlog n) or better [Lathrop83, Fijam91,

McMillan91] (discussed further in sections 2.3.2 and 2.3.3). Table 2.1 summarizes the

15

M-

2 The Elements ot Robot Controller Pesign

2.3 Computing Architecture

Once the designer decides on basic strategies. he or she must precisely deternune the
functions every level in the hierarchy shouid perform. being careful to ensure each execcutes
efficiently enough to meet the associated real-time constraints Next, he or she establishes a
computing architecture and then a suitable communication mechanism among the processes
Depending on the resource sharing required by the tashs and the design ot applicable parallel
algorithms, he or she may choose a loosely coupled architecture based on networhs, a tightly
coupled one based around a common bus or on some variation between the two

The cardinal rule of digital control systems is to minimize delay, since it most
profoundly effects stability and performance |Koren78, Franklin86] Great care must be taken to
effectively reduce system bottienecks without increasing latency. For instance, adding pipelining
may improve system throughput, but 1t leads to larger delay times [Stone87]. There 1s nothing to be
gained, for example, by using one processor to perform Cartesian trajectory generation while
another processor, performing inverse kinematic transformations. waits for input from the first (a
possible exception can be made, though, when an algorithm is implemented as an application
specific integrated circuit, ASIC, where sheer speed of the pipeline results 1n a small overall delay
[Lee86. Javaher187]). Similarly, the effective computation time 1n a control cycle (a level O control
loop) is always diminished by the I/O latency, because the task must wait for input feedback before
beginning computation, only the time elapsed from the input of operands to the ime when the
results are output is actually free for computation.

Since it is generally recognized that certain computations within a sample period can be
performed independently of the others, and by allocating them in different ways on a number of
concurrently running processors or processing elements (performing select operations), the realm of
parallel computing has come to be inexorably tied to robot controlier design There arc two major
forms of parallel computine: coarse-grain and fine-gramn Coarse grained parallehsm, popularly
referred to as parallel processing, refers to multiple processes running in cooperative fashion to

perform a single program, examples of which are dataflow machines, coarse pipelining, and not
16

2 The Elements of Robot Controller Design

incidentally, multiprocessing systems defined by their communication paradigm like shared

memory or message passing. In contrast fine-grain parallelism exists within a process at the the

level of the individual operations (z¢., additions, subtractions, etc.), examples of which are vector

machines, pipelines. systolic arrays, and host of CPU paradigms like CISC, RISC. VLIW, and DSP

(terms explained later on). Fig 2.3 below shows basic advantages and disadvantages of typical

parallel computing architectures used 1n robotics.

0]
T ocal Memony o

[] []
[] [] Global Memon
[] [}

| oeal Memon @

performance Disadvantageaare the C'P1 communication overhead and bus traffic

D

Pipetined hinear array u sequence of slages where new
operations can be yutated whufe viber data 1s alreads 1 the
pipe Bizadvantage 1s hugh throughput achieved (-N times
for NCPUsy, but at the capense ofsevere delay (N tmes
lomger) which 1 bad for control systemns

)

7)
<> OO
: COCOCE Ty [&=

@

(948
@)

Global Memon

Pl
th)

1 ocal Memon

Sealar Mubiprocessor, shared global/seporate local |uthis traditional approack, the slower Sealar Multiprocessor, shared local 'global This arrangement 18 tyvpical
gobul memony Ot must go through bus arbntration for eveny access)isattached tathe global bus — for industoial robat controllers where CPU th)does user code and tray pen

of each CPU, 1o share common data, and each also has s own much faster local memory and CPU(a) does senvoing Advaniages are amall s1ze and loa cont,
Aviviniages see mmplicaty, beatl avaslabilly ol hardy compl dularity and high but disadvaptagesare poor flexitalny and lower computational power

Sysolic Array Manv smple CPLU's 1n pagallel with a haghly structured,
tterative near neaghbor mtercouneet pattemn The geometry 18 typically o
rectangular or hexagonal array, but could be anv repetive geometry 1n
two dimenstons Data flows through the aray o pipelinad mode.
Advantages are & hiph throughput with lower latency (delay) then
prpelinng, but thisapplies ouly to fmely parallel lgontuns, otherwise
degenerates into same problems as pipelining

(©6)

Vector

J

Register file

Scalar Register

Scalar Register

e-f'-"-
[

a7y omy

-4l

Scalar Register

el

Data Fiow The duta 1s processed m anv sequence of CPUs, which ever 1 available for the task when Veetor processor: Processor clemens or CPUs that operate on

the data uself tecomen availuble Thas w the mont generx of urchuectures and exploits every bt of
rdless of s form Each reguster file can be read tn panllel by an optmuzed for vector/matnx operatons which consttute a majonty of

vectors as basic data structures Advantages are the parallelism

otherwise resources are wasted

combmation ot CPUs and agam written mn parallel by am comb 0 of C PUs mcluding full overiap fobuties code and the relative ease of programming as conparedto
of readwnte operstioms Advantages are hroughput with m possitle delav The
lunstution 18 e the theoretical parullelimn achiesable forthe grven algonthm Disadvaniageare
massnve compleants und high cot of the svstem 1t applics best to massivedy parallel problems

other parallel machines. Thedpadvantagesare that it 1s more coanely
gramed thus requinng soplusticated compulens to maxamize the
paralleliam which 1s ntself msted by the hardware register file size. In
ad'tion besic scalar operations are not much faster thau for swgle
processors

Fig. 2.3 Parallel Computational Architectures 1n Robotics

17

fan

2 The Elements ot Robot Controller Design

The two, coarse and fine grain parallelism, are. in fact, complementary and may be used
concurrently. However, coarse grained parallelism is not user transparent, because 1t 1s still too
difficult for compilers to translate generic sequential programs into multiple paralle! processes
Although 1t has been observed that a great deal of fine-grain parallelism can be achieved at the cost
of increased hardware complexity. the use of large grain parallelism tends to favor overall system
simplicity | Stone87].

At first glance, it would seem that the most appropriate solution to the robot contioller
problem is some complex concoction that exists in the lore of massively parallel computing—a data
flow approach (where computations are performed as soon as data becomes available, ie.,
computaiion ‘flows’ with the data). or maybe a pipeline, or systolic array, or maybe something else?

To help in making this determination, a popular metric, first coined by Amdahl
[Amdahl67], is used as a comparative measure for different parallel architectures: defined (as one
might expect) as the ratio between execution time using a single processor versus that using
multiple processors—the ‘speedup factor’. Amdahl pointed out that this measure. far from being
linear, is, in fact, inherently limited by the amount of parallelism in the algorithm. This parallelism
can be characterized by a parameter f, the fraction of computation that must be done senally. Note
that this is not the granularity of a parallel algorithm, but rather a more fundamental measurement
The granularity indicates the percentage communication overhead regardiess of the parallelism in
the algorithm. The two are often confused since highly parallel, small f, architectures are often
finely grained and loosely parallel ones, big f, tend to be coarsely grained. The effective speedup, S,

according to Amdahl becomes:
P

TRH-f

when f= 1 all computation must done serially, so hardware parallelism is wasted and no speedup is

S

possible (S=1). The same or worse holds true for the granularity (it is quite conceivable that a
multiprocessing system requires so much communication, that it actually runs slower than the single
processor case). On the other hand, when f= 0 then all computation is in parallel and performance
increases more directly with the number of CPUs (8=P). Another important indicator is the

efficiency, F, of a parallel architecture in matching an algorithm. It is defined as E = S/P (0<E<1,
18

2. The Elements of Robot Controller Design

when E=1 then 100 percent parallelism). E is essentially limited by the inherent paralielism of the
algorithm. This measure of efficiency, interestingly. leads to a fundamental conclusion about the

practical parallelism possible in level Q robotics algorithms,

2.3.1 Multiprocessing

The general hope lying behind distributed processing systems is that if one conventional
processor isn’t fast enough then maybe more will be. However communication bottlenecks and the
inherent limits in the parallelism of robotics code restrict performance gains. Because real-time
control tasks are as much 1/0 driven as computationally bound, communication schemes become a
large part of the problem. Li and Malek [Li88)] as well as Stone [Stone87] give detail analyses on
various communication models. In the best case, assuming fully overlapping comnmunications
(rarely achieved), the system speedup is bounded by the communication overhead. for a uniform
communications distribution, S.,,x = l/(percent communication overhead or granularity). So a 10
percent overhead (a typical number) results in maximum speedup factor of less than ten, no matter
how parallel the algorithm is (ie., f=0) or how many CPUs are employed! (in general, there are an
optimal number of CPUs resulting in maximum speedup for a given algorithm). Thus, as a rle,
multiprocessor architectures should consist of inexpensive and simple processing elements with
interprocess communication being as fast and efficient as possible, ideally easily reconfigurable and
expandable with minimal deterioration of bandwidth. However, for practical purposes, a simple
common bus architecture approach is often chosen (see appendix A).

For communication design there are basically two techniques: message passing and
shared memory. Message passing makes the software easier to design and debug (provides for better
data hiding more like object oriented systems [Schwan835, Bihari89, Clark89, Gentleman891), but at
a severe cost due to the excess nverhead required for the message protocol. The performance
bottleneck comprises not only the effective bus data rate (especially where the system is loosely
coupled and shared memory is not used to hold messages) and memory contention (in more tightly

coupled systems). Typical latency times on the order of milliseconds (see figure 2.4 below).

19

bl

2 The Elements ot Robot Controller Design

4096 xmwmn svhets SN OV Y g
Fthermet swhels SUN VS S dep wind wakeup SUN
sleep and wakenp SPARC ¢ ition t M BRI

VaWaorks 11, sockets, sleeps und /
?,,\ 1024 - wahe up Mibus MU6BO2Us xl theruel alecps nind wakeup |1 ceRe|
O [MAAY)
=
L
>~ 256
]
N
o—
75}
6 4_ Chuner [1[Qewnnt 831 'V MEtus
% sleep wrkd wakenp MG ABO20
g G M [SclwanBe] Mulibus |
17,3 1o and s MCERO
L l 6._. Condor 1TV MEDus
E sleep-und wake up MOGRO20
SAGE [Sathined 89 VME bus
i A7 e il w iheup MOGEN
L
' ,)l | I I |
0.0 2.0 40 60 80 10,0
Time (milliseconds)
Fig. 24 Pertormance ot Message Passing O/S’s Used an Roboties

Based on mulhiprocessor mtercommunication across 4 common bus
or network

Shared memory, on the other hand, offers an approach nearing the maximum speed of

the bus. However, only when processors are designated fixed priority access to the bus and

contention is kept to a minimum. Most researchers prefer a shared memory architecture. because the

robot control hierarchy defines tasks with large granularities, ie. highly decoupled and senal 1n

nature. So memory accesses are largely confined to the local processor. thus making bus contention

infrequent and predictable—the case where shared memory works best. A major disadvantage,

however, is that such algorithms result in poor hardware utilization for highly parallel architectures

(fe., many CPUs with communication overhead. figure 2.5 below). |Leung88).

100
S 804
1)
2
M S
2
E 404 N
E et
D p=2 :;,7
v d !
5 20 pei P=s
0 + ' 2 * * 2 4
209 10% 67% 5% 4%
Task Communication Overhead

Fig. 2.5 Multiprocesssr Bus Bandwidth vs Task Communication Overhead
Where P 15 the number of processors Based on a stochastic Petrr Nel
model with a Markovian queueing theory (ie., CPUs randomly accessing
the bus and waiting if it 15 busy)[Marsan83, Han89] Break point s 20%

20

P

2 The Elements ot Robot Controller Design

Bus contention depends on the two factors: a) bus hardware performance features such as
arbitration and how fast memory is accessed (see Appendix A). and b) the amount of interaction
between the tasks executing on the various processors which is basically synchronization problem:
any shared data structure updated by more than one processor must be protected from conflicting
concurrent updates by some sort of semaphore mechanism. The two common methods are the test-
and-set spin-lock (on which many variations on exist such as delayed-retry . tournament scheduling,

etc. [Dining89, Graunke90]) and the sleep-and-wakeup interrupt method (see figure 2.6 below)

CPLA cor g
CPLA CPL B
read{fd, cansunet } 7\ write(fd producer)
suspend precess wainng o/ (Nqueue mesiage on a1gnal {semaphors)
Jormessage N\ message chamnel . become available by wnie message or daia to
ssemaphore)quens © TV performung ecntant shared memory and clear
1 test and setspin locks | semaphore,allow. |
\wlu ntenis of mewaye] wawrg unil clear t C‘Pll Ao contiree §
and conttpme process
1 J)eerrups CPUB ! semaphore cleared t t —t :
] C)wmplmr(handler to | sy Lock releasedyger | |
1 issue wakeup on] message and coninue | !
Iaterrupt Handler consumex Hanlware | 1
| gel semphore inerrupe 1s accomplished | 1
] 1o ignal and r‘- via malbosx (an address senaphors -—
] resume process that when readorwniten | 1 :
1 inferrupxs she CPU)] Global Shared
| 1 T L-L"Mcmm')d.da ‘J————._
i 1 . and/or conten of
! CPl Asemaphore I] Jotuse
! wniemupt “hos " —— o
] conains name of ! Test-and-set/Busy walting A process continously accesses the bus 1n 2
| semphore 1o ngnal] spin lock ¢sawd 10 be *busy & waumg™ lesting and sctting (e semaphore uatl
1 another CPU clears it Large bus bandwidth used during the semaphore "wat *
!_ e - 2{;‘::: i‘;‘:‘::‘sﬂa d____4 Can be used for both shared memory und message passing whemes

Sieep and wakeup basically ¢ consumer/producer semaphore mechunism with

materrupts. This method 18 used exclusively for mesage paasing e [Jita flow

= = am - Processflow

Pt opUr2 cpe oy CPUN A

= 5
= =] = =

Test and set
gang scheduled

.
.
L]
el
Latency of luicraction Betueen CPUs

*

Coarne Fine
Granulursy of Pardle! Algorghm

Gang scheduled test and-set Sumultaneous content swiching across a sl of processors Busy waatiag test and set .3 most efficient for fine gran paralielism provided they
from one tash 1o unother, e, a growp of ;7 ~ =ases cach uning on every processor 1 the wre gang scheduled ye, indsvidual jout servos computing n parallel) Asthe time
geoup On u one oo one busia. Contention 5 ., h only forthe first accesa to shared Y. b synch bec mmaller tume that shared memory 13 locked
cach processor wans and 18 eftective delayext tor phase shified) Sub d hes. teducing latency Random test and-sct synchronzations tead to yele a
thus suf¥er from little contention as each task han fty own tune slot* to memon longer tatency tme because of the uncoerdimated access to shared memory Sleep
and wakeup 1s mont frugal m contention and bus bandwidth, but suffers from the
context swatch everhead which places alower bound on the latency [Fentelsm90]

Fig. 2.6 ultiprocessor Commumicaion Methods
Nevertheless partitioning the robot control problem for a multiprocessor is
straightforward along the traditional coarse-grain lines in the hierarchy (ie., trajectory generation in

one processor and servo control in another) and a slew of systems have been designed strictly on
21

.

2 The Elements ot Robot Controller Design

this paradigm (see section 2.7). Generally. the parallelism offered was the spliting, of individual
joint servo loops among different processors (S=P, but S=1 for everything else including Cartesian
based control). Another customarily adopted technique is to perform computations redundantly by
all processors to achieve more partitioning for a given algorithm, sacrificing efficiency On the othe
hand, for very coarsely grained cases. some researchers have even offered a network-based solution
[Lee89]. More finely grained approaches targeted at specific algorithms (ze.. inverse kinematics).
however. require substantial engineering. Nigam and Lee [Nigam85] proposed the use of
commercial microprocessors interconnected to suit the particular algorithm with §=2.5. On the other
hand, Kasahara and Narita utilized a special depth first/initial heuristic search scheduling algorithm
[Kasahara85] on a multiprocessor system connected by a common bus to perform inverse dynamics
Levin [Leving7] employed a Transputer (general purpose CPU with serial links for communication,
about 0.65 MFLOPS with floating point coprocessor) array for servo control with dynamics
compensation. Other radical hardware approaches have been proposed all dealing with the intensive

number crunching level 0 algorithms such as inverse dynamics, kinematics, Jacobians. and control.

2.3.2 Systolic Arrays and Pipelines

Most robotics algorithms can be conveniently represented as an array or vector, so it
seems plausible that systolic array processing has the potential to offer great performance. However,
these type of processors rely on a high degree of regularity, processing possibly hundreds of
identical elements. to achieve high speed—a high degree of fine grain parallelism. The problem
arises that as the number of sequential elements drops (ie., what is called a ‘stall’ when the data
configurations or instructions change randomly which force a reloading of the array). the overhead
in beginning or filling the array can far erceed the actual calculation time. Pipelines suffer from the
exactly the same problem, being the one dimensional case of array processors.

Nash and Przytula [Nash8S, Przytula88| were the first to successfully develop a systolic
array (16x16 processing elements) to perform linear matrix operations useful for most robotics
algorithms including kinematics and inverse dynamics. Orin er. al. {Orin85, Orin86, Ling88|

designed a pipelined multiprocessor (32-bit floating point ASIC implementation) system for
2

‘®

2 The Elements of Robot Controller Design

Jacobian computations and inverse dynamics (S<1.5). Lee and Chang [Lee86. Chang88] employed
the bit-serial CORDIC algorithm [Volder59. Harber88] in a 25 stage pipeline to solve the inverse
Jacobian very quickly (40 psec inverse kinematic solution), but with relative inefficiency (S=1.38,
E=0.06), hence the large pipeline needed to *squeeze-out’ the last bit of computation. Javaheri
[Javaheri87] designed a floating point ASIC with 4 communication ports intended as processing
elements for more efficient systolic array (1<S<2.2, E<2.2/P). Kircanski e al. [Kircanski89] used
array processor approach using a multi-stage pipeline which matches the number of hardware
multipliers and adders in the system against the mix of additions and multiplications 1n the
instruction stream. Coupled with a novel symbolic approach to robot kinematics and dynamics
algorithms |Kircanski88]. the control loop (for 6 DOF) was claimed to be computed in 100 usec.
Efficient use of processing elements, though, drcps off rapidly as the number of multipliers and
adders is increased (1<§<2.2, E<0.7).

The basic problem is that all such architectures is that provide only increased bandwidth
or throughput and not smaller latency. The time required for computation is always the maximum
array depth (ie.. the number of processing stages required to complete the algorithm) multiplied by
the processing stage operation time,

Trying to avoid this, Wang and Butner [Wang87, Butner88] created a heterogeneous
hierarchy of processors for level 0 control each specialized for a given operation: bit slice processor
for inverse kinematics & dynamics, CORDICs for trigonometric functions, and TI32020 DSPs for
servoing. Results are impressive with 300 usec for a complete control loop (computed torque servo
with dynamics in the core loop). However interprocessor communication consumes over 16% of the
processing time (S<2.3).

On the oiher hand, when the problem is confined only to inverse dynamics (no
kinematics, trajectory generation, or code branching), remarkable speedups are possible. Fijani
[Fijani91] showed that O(n3) inverse dynamic algorithms are optimal for parallel computation and
that systolic arrays can be built to achieve S>5 over the best serial algorithms [Fijani91(2)},
including communication overhead! Similarly, early on, Lathrop [Lathrop85) presented results

using a Newton-Euler formulation with a logarithmic recursion implementable as a systolic pipeline
23

¢ 3

2 The Elements of Robot Controller Design
having Orlog n) overall execution and S~4. A solution 1s available at each clock cycle: however.,

there is a 400+ pipeline stage latency (6 DOF) for the results.

2.3.3 Vector Machines

Alternatively. vector machines make use of the fact most robotics algorithms can be
expressed as 3-element vector operations (ie., optimally decomposed 4x4 homogeneous matrices). It
seems straightforward that a three fold increase in speed 1s possible Ling [Ling88] proposed a
vector processor of this type with a 20 cycle vector-matrix muitiple time (3xt by 3x3) a 6 MFLOPS
rating with 125 nsec cycle time (2.5 usec for the vector-matrix operation) However even
commercially available, non-vectored DSPs (Digital Signal Processors., optimized for vector and
matrix operations) [Dyer88] such as the MC96000 (Motorola) can perform the same operation in 24
cycles [Sohie88], not mention the vastly superior implementation technology available to a major
semiconductor houses like Motorola (the same vector-matrix operation using a 75 nsec cycle time
executes in 0.89 psec on the MC96000). Interestingly, this is accomplished using only a single
overlapping multiplier/adder unit.

Again for the specialized inverse dynamics problem, new approaches have yielded
remarkable results. McMillan [McMillan91] used a Parallel Block Predictor-Corrector numerical
method to solve for inverse dynamics, treating it as a differential equation problem. Employing a
CRAY Y-MP supercomputer (one of the traditional vector machines) speedups are as high as 5.2

were achieved (# CPUs = 8, E<(.67).

2.3.4 Scalar Machines

Quite clearly robotics algorithms are not very parallel in nature. In fact, it can be roughly
concluded, by empirical evidence alone (ie., all the previous robotics architectures S<3, except for
special sub-problems, eg., inverse dynamics) that only 2 CPUs really are needed for maximum
speedup of level 0 robotics code, anything more seems to be wasted. So f~0.5 as figure 2.7 below

illustrates.

24

oty

2 The Elements ot Robot Controller Design

(o Daeow)

L e | Avchiteetyres’
A A vty FOS
(' !Ncuilhnmlt m"'& R

sugadi

SIINIMYIIY

Scalar
Architectures

L{/. — Jj

Scalar computation ~————————— @

Iterative computation

Fi1g. 2.7 Relationship Between Robotics Code and Processor Architectures
As previous system architectures show, robotics code 1s actually more
scalar 1n nature (hence the limited performance pipelines and systohc
arrays) It seams that VLIW machines with only two floating point umts ts
sutficiently optimal for robotics *Inverse dynamics only

Realizing this Andersson [Andersson89] opted for the single ‘big-iron’ approach (a fast
single scalar processor) , where one general purpose CPU (in this case with two floating point units
using parallel buses to memory called ‘JIFFE’) performs all level 0 tasks. Efficiency is over 99%,
and the processor was capable of performing the complete inverse dynamics and PID servoing in
less than 50 usec (about 20 MFLOPS, 40 MFLOPS on matrix addition and multiplication
operations.

It appears inescapable that scalar processors constantly absorb any advantage claimed by
paralle] processing for traditional robotics force/motion applications (the same cannot be said,
however, for other areas like image processing). Thus, it can be argued that at level 0 in the robot
control hierarchy, parallel processing (as applied to a single manipulator) doesn’t work. Raobotics
must be thought of as a coarsely grain operation along the traditional lines in the robot control
hierarchy: the user code and trajectory generation together, since the user code, basically Cartesian

motion statements, is closely coupled to motion requests which may vary considerably in

25

2 The Elements of Robot Controller Design

computation at run-time (ée.. error handling. collision avoidance, user code debugging. etc). level 0
tasks, such as the servoing, can be placed in a separate CPU. since it 1s a critical process not o be

burdened with unnecessary computation, or, worse. stopped because of a data error (e¢g.. a

singularity). In general, the problem is to deal with the physical limitations of the object bemg

controlled.

\O
o
1

[l PUMA inveise
kimematies (AY

o0
o

A
el

DPUM/\ torward
hnematies ()

Py
o

Mhacotan transpose
T without update ot

|
. e e terms (J)

o
(=}

(¥]

0 4 S —— Tt) ’ anstorm
o W oo .::\?e:':‘mnt(Al)
40 i ////////////'/// 4x4 transtorn

multiply (A B)

w

D Sine & cosmne
computation

g
o ©

Cummulative Execution Time (milliseconds)

o

i L e

uVax I [Heunkon SBCISUN 3/280 UN 4/470 SGI IRIS Power Senes
(1985) 68020/68881 68020/68881 SPARC/Weitek R3000/R3010
@ 20 Mhz @20Mhz @ 25MHz @ 25 Mhz

g
o

o (1986) (1987) (1989) (1990) ~

Eg | 4000 230 1800 7130 1000 AT e et
=8 34090 15160 1500 0 980 590 A oM T T

S 38 2760 3810 3780 146 o J mwnows)

§ e 105_0) 1220 - 116 0 56 50 A' (SELOPS » some daty moving)

< -2 3100 4450 4420 127 10 A Bwhor

H o 3410 870 640 65 35 Sin&cos

Fig. 2.8 Aggregate Performance of Current Microprocessors on Robotics Code
Using the RCCL speed test by John Lloyd All arithmetic 1s performed using
stngle preciston floating point and the standard C library tor tngonometric
functions A SPARCstation™ hy SUN Microsystems 1s ahout 30
times faster than a yVAX and the Mips R3000 CPU with R3010
FPU (Floating Point Umit) in the Silicon Graphics IRIS workstation 1s
up to 50 times faster than a yVAX in tloating point pertormance on
robotics code

Interestingly enough, commercial microprocessors are taking a similar track to the one

o~ used by Andersson—one instruction stream with 2 floating point units (usually one adder and one

26

,a‘:‘-’d;‘

2 The Elements of Robot Controller Design

multiphier) with overlapping operation. The progress of microprocessor technology has improved so
much that the numerous algorithmic improvements and specialized hardware created by researchers
in the past 1s rapidly becoming obsolete in comparison. In addition, on the hardware side. the
highest performing research systems are rapidly losing their performance edge over commercial
processors. Consider figure 2.8 above showing some of the improvements in recent microprocessors
(already considered ‘old’, the newer CPUs are faster still, like Advanced Micro Devices 29050
performing vector-matrix (3x1 by 3x3) multiply operations in 0.3 pusec and 4x4 matrix multiplies in
0.9 usec approaching 40 MFLOPS for these operations [AMD90]). It is getting increasingly difficult
to out perform the major semiconductor houses with discrete home-brew solution like JIFFE,

whether in silicon, ie.. ASICs. or not.

2.3.5 Super Chips

The argument now is which commercial CPU is fastest? In order to make this decision,
an understanding of minimizing the execution time is necessary: three factors contribute to this: N ,
the number of instructions that must be executed, C, the average number of processor cycles per
instructions, and S, the number of seconds per processor cycle, so that execution time= NxCx S.
Primarily these three depend on the compiler’s optimization capability, the instruction set
architecture, and the implementation technology. However the interrelationship between the factors
is quite complicated, decreasing one factor may increase another by as much or more!

The traditional technique for general purpose processors 1s to decrease N at the expense
of a smaller C. This approach, termed CISC (Complex Instruction Set Computing), attempts to
better utilize the microparallelism present in horizontally microcoded machines by defining more
complex instructions with more internal micro-parallelism in the hope that N would decrease more
sharply than C. On the other hand, the RISC (Reduced Instruction Set Computing) approach
employs the opposite philosophy: reduce C and S at the expense of N. In this case, hardwired
instructions and heavy pipelining try to reduce C and S while powerful compiler optimization
techniques keep N down |Gimarc87, Piepho89]. The result is a considerable overall reduction in the

execution time. Current techniques to further improve performance involve increasing parallelism,
27

e

s

2 The Llements of Robot Controller Design
further decreasing C. by executing more than one instruction per cycle and using claborate
instruction sequencing techniques [Krick91]. Essentially. these are simplified datatiow designs
made possible by ‘look-ahead” techniques in the instruction stream. register scoreboarding (taggang
those registers not being used by the current instruction as available for a concurrent instruction n
another execution unit), and cven more highly optimized compilers One such new hardware
technique is superpipelining where two or more pipelines are used n parallel an instruction 1s
moved into each of execution pipelines every cycle. Essentially, it is a simple, fixed mulupie
dispatch architecture. Superscalar is another, where instructions are fed into more than one
execution unit by a dispatch unit. It is more generahzed than superpipeliming. since dispatching 1s
not on a fixed schedule, but depends more on the instruction stream ({Johnson91| provides an 1n-
depth discussion on superscalar design). Still another, though simpler variation, on these themes., 15
also possible by embedding more than one instruction (at compile time) in each machine word
Known as VLIW (Very Long Instruction Word) processors, they seek to gain speed by increasing
memory bandwidth to the CPU through shear word width, eg. 128 bits, so that many instructions
can be fetched in one memory cycle (JIFFE, for example. uses a 200-bit instruction word length)
Figure 2.9 below shows the comparison of single precision floating point capabilities of currently
available microprocessors/computers (see Appendix A for detailed discussion on current and future

commercial CPUs).

28

The Elements ot Robot Controller Design

2

4

VdiA yum 084/11 XV A D4d
ZH ST Y 008.L somdsues | (uosdmog L) SOINI

140

TN OF D 00T ILdSNA L

'1-1

100
[
=
a

ZHIN vy D 0L ILASG 1L

ZHW 5T @ Xrdsd LRIV

170
1o

47

10

| ZHIA LT D TO096 dSU BIVIOIOH

THIW OF 2 1L/ 0YVdS T BOUPEONVIS NS
7N ST D WU/ OPVAS *+] BOHRISOUVS NilS

ZHIN 02 D P2 W/0YVdS ' UM RV AS N 1S

THIN 0t B Joma00xdo > 098t ANS

THIN 0T B OTE 90WPI53300d (009H Ml

ZHIN $T B OFS 3A12333M0d 00095 Y WEI

ZHIN 6T & 00088 ‘001 Tonay g
l6guoswapiy] 21 01 @ 231y il QAV '344IS

ZHW 0T D 93096 T4INI

ZHIN T D 0r08Y TOHBIS [XN

ZHIN 99 B (ISHE Vd) 00, 93038 oj{ody 1 dH

TN (5 D) TBBEY/0L089 ST/0006 dH

ZHIN 0t D CR889/0L089 Y11 DVIA

TN ST B T8889/08489 "I OVIN

QN OT D TBB8Y/0E0BY 08/t NilS

AN 09 D 103) 0009Y 08T9 N 3@, [SdIN
ZHW ST D 010G A/000E OTT/AY 290d SRS
ZHIN T D 010 A/000EY 0008 BotIPs A

ZHIN 91 © 010TH/000TY 001+ BOTIRE,)10

ZHN SOt Dd WX AVY)

HA MO [AVHD

ot
el

ZHIN vt D L8y /98¢ bedmio

4 ST Y 98t bedwo,)y

THIN 5T Sl U2 9gs bedma))

THIN ST D 9 Yooy ygp badmo

THIN $T B LU6T/0006T WY 1d0sTA DUV A

.\ —

THIN OF B 05000 QINY

S

_____u______-AA—___u__‘a-_—_ﬂ___-uq___-ﬂa__-d___-d
00 O < (o} (=] oC L]

{uorsidard 3f3urs 1y-7¢) SAOTAN NIVANIT

< ol o

for Current Microprocessors

The LINPACK algonthins benchmark [Weicker90], developed at the

Argon National Laboratory, measures aggregate floating point
including matnx multiplication and trigonometric functions, etc It 1s

normally used to charactenze efficiency in vector processing, but
since robotics contains much matrix/vector and tnig functions, a high

LINPACK rating 1s a reasonable, though by far not definitive,
indication of the relative ability of that processor to execute robotics

performance over a wide range or mathematical computations
code

Fig. 2.9 The LINPACK Benchmark

Mgy

29

2 The Elements ot Robot Controller Design

2.5 Real-Time Kernels

Traditionally, real-time kernels have been a great preoccupation ot robot contioller
designers. most of whom have dwelt on creating ‘better’ real-ime Kernels with more teatures and
facilties. However, these kernels, varying from the simple {Chen86] to the complex |Stewart89].
typically haven’t achieved any better performance than other real-time kernels on the same
hardware. This 1s because the real problem is that robot controller pertormance 1s not generally
limited by the real-time kernel. but by the robot control software itself, or the lack ot i, its
integration with the real-time kernel and the application at hand |Gopinath89]

As arule, in robotics applications the essential performance factors tor real-time hernels
are: a fast context switch time and low interrupt latency. to provide for the fastest possible response
to critical events and a minimized overhead for periodic functions which comprise bulk ot robot
controller computational requirements; an interprocess (or in the case of multi-CPU systems)
interprocessor communication and synchronization mechanism (eg.. usually shared memory with
semaphores), to provide for effective coordination among the required tasks, and debugging &
development tools, though considered ancillary features, to provide the necessary case 1n

engineering a successful system. See Appendix B for an in-depth comparison of current commercial

real-time kernels.

2.6 Robot Joints

A robot is essentially a collection of individually controlied joints each of which can be
seen as a complete sub-system on its own (except in the case of Cartesian mode control in which all
the joints are collectively controlled). Whereas many different types of actuation and teedback
mechanisms exist and are being developed, the gear reduced DC electric motor with optical encoder
position feedback is still the actuation/feedback most commonly employed today (though high
torque output direct drive electric motors are being increasingly adopted {Kanade84. Kazerooni88,
Shalom88]). Indeed, robot joints are becoming progressively more hght weight, compact, eastly

integrated, efficient, and nearly maintenance free. {Dote90] provides a comprehensive examination
30

i,

ﬂ"m\

of both the practical and theoretical aspects

2. The Elements ot Robot Controller Design

in implementing a single joint or motor control

systems. The typical joint control and feedback is shown in figure 2.10 below.

Amplifier enate/dinrble

Y

\j

DAC tdigitul 1o anatog converter) usualiv 10 12 bus tesoluton for
robet control 1be elfective dvpamic range The muput s usually
210V mipnal and condittoming 10 required to adint for full scale of

adthinp tune 0 tune from the application of full sc |h wput (o
when the output settles wathin half @ b resolution) Forthe DAL to
Iehiave as zero deday then setthing tume ~<senvoovee e

. Current Mode Power Amplifier
Servo Controller feeflBd tnotorfunphitier runpe DAC must buse fuast or o Input voltage u directly proportional to nfpm currens

A

o1

Encoder Pulses

fncremental enanders usuglly have three chunnels A, B und
7 The 7 cvanncd s also called the mdex pulse and provides
a reference mgnal once per revoluhon. Channels A and B

Encoder Pulses

the direction vl motwn if chaunel A leads B thenmoveman | Channel B
nctackwise vice vernt for counter elackwise motiom R
Quadsature also quadruples the number of counts generated count detect ¢+
et revotubion. | hus ancreasing the resolution of the

are i quadrature o4 counts perevede aned provide the Ch 1A
position count Quudratiire signals can be usad 1o determine annc w

encoder Typxiul encoder resolutions are 512 and 1,024
counts but by countimg 1k leadwg und traitmy edge of cach
|__Jslot asinple detector penerates four counts so the encoder

Position Feedback

Relative Emodu
mnotor shall mounted with LLD & phote
slot detector everv slot edge

bas an effective resolution ol 2048 or 4096!

13 dan encoder count

L 16 to 32 bit position counter

= B

Index pulse capture
for calibration each pulse idicales one
revolion of 1he motor shall |or systems

lodciermme which pulse 18 being captred
a Jow resalution absolute pusition scnsor
like u pentiometer 13 sed.

Calibration Signals

A/D conventer must resolve 1o number
of index pulses over jount range
ge, for PUMA 75 pulses over 360°
a0 7 buts needed over voltuge range
However it 18 not over the full standard
0 SV or) 10V runge m most A/D & 5o

witha gear 1o 1 there are rindex connts Lol motor shaft

Index pulse

volge:Rx»Lnl(&bO
=K 1=Llo.Ho-NI
N N

i o torque
demand on
motor

wsually a digial output fron
the encoder mounted on the

Potentiometer
rough abaoiute postion used for calibration
Pots usially dnft or shuft offsct position overe § Isttum

where R=1ermunal sesstance L= motor inductance

Kb buch emfconstant Kt =torque constunt

1 = motor shaft moment of mertia

B = coefficient of friction of shatt beanng

N = pear reduction ratic T =torque generated tn

T= effective lopque of magnetic fieid
motor

a complete revolution It s vtal todetermine F 2odugm
which 360 turn 0 18 8o that the propg pot %
oﬁm 18 used (4 sunple tnethod 1510 take a few
and d the Imear on 27
Jomt angle

the jomnt angle axis)

sipnal conditionmg mav be necessan ora
10 bt A/D over a 0 SV runge)

Fig. 2.10 Typical Joint Control & Feedback

2.6.1 Sampling Issues

There is no doubt that advances in technology will obviate—indeed, to a large degree,

they already have obviated—the need for any consideration of the effects of discrete time

controllers. The most obvious of which are:

* Sampling frequency. The approximation that the sampling rate of a discrete

time algorithm is continuous which is usually acceptable if the controller

sampling rate is sufficiently higher,

ie., 10 times higher [Franklin86], than

the natural frequency of the system being controlled. Otherwise explicit

31

L

2 The Elements of Robot Controller Desipn
consideration of the discrete time effects must be taken in consideration (eg..
if a servo algorithm requiring one ‘tick’ is O(n). then for two ‘ticks’ it is
O(n?) instead).

* Controller delay. There is always a finite delay between sampling tfeedbackh
variables and outputing resultant control signals. There is also a measurable
detay in the power amplifier and in the current to the motor. and thus in
torque at the joint. Such unmodeled delays should at be at least three times
less than the control cycle time | Asada86].

* Quantization noise. Because the ‘real world’ is analog and feedback control
signals are discretized through digital to analog and analog to digital
converters, there is a quantization error in their measurement. This
inherently hmits the accuracy of any digital control system (ic.. a joint
position servo usually gets to within +1 encoder counts of demanded
position) and can lead to drastic results in adaptive systems that accumulate
round off errors.

* Dynamic range and word size. Both Simulation and practical experience have
shown that at least 16 bits of angular resolution are required for adequate
motion control (typical high precision pick-and-place robots use 20 bits of
accuracy [Seiko90]). In the past, attempts to minimize computational cost
using integer arithmetic are now supplanted by the era of floating point
calculations—no more bit rolling and twiddling to keep significant digits on
integer only machines! The IEEE 32-bit floating point format {Coonan80]
has a 20 bit mantissa giving one per million accuracy or 1.2 arc seconds
(just enough for current high precision robots, double precision may be
needed in the future otherwise a retreat to 32-bit integer arithmetic, yielding

an accuracy of 3x10+ arc seconds, may be necessary).

32

el

2. The Elements of Robot Controller Design

2.6.2 Motors & Amplifiers

In theory, most DC motors produce torque in direct proportion to their armature current,
which means that one needs to servo the armature current to a command voltage using a power
amplifier controlled through a D 1C (Digital to Analog Converter) in the digital domain. However,
while accelerating the load, the motor is acting like a generator. and producing a ‘back EMF’ which
is directly proportional to the motor (and load) speed. Therefore, in order to achieve a constant
armature current, it is necessary to apply progressively more voltage to overcome the back EMF,
which is often the limiting factor in the loop. One way to overcome the low-speed effect of back
EMF is to put the armature in the feedback path of a DC power amplifier, or equivalently establish a
‘current loop’ servo (ie., as a current mode voltage source). In fact, most sophisticated manipulator
control schemes do adopt this technique. since generated motor torque is proportional to armature
current, T=K, lomarre .l€.. @ computed torque servo control formulation).

A more efficient way to deal with the ‘back EMF’ is to use a switching amplifier such as
a PWM (Pulse Width Modulation) amplifier which is designed to apply relatively high voltages to
the motor for brief, variable time slices. In this case, it is required that the PWM amplifier is, at
least roughly, matched to the motor’s inductance so that power losses are minimized (ie., motor
must meet a minimum inductance for smooth wave form). This is expressed as the form factor for
the amplifier and defined as the ratio of the RMS current to the average current in the motor (k =
Irms/lavg). It is dependent on amplifier switching frequency, the electrical time constant of the
motor (ie.. L/R, see figure 2.10) and any other stray inductances (‘ballast’). The power losses are
proportional to the square of both the form factor and the torque generated (ie., Power loss = k2712),
Thus once a motor has been selected and the torque requirements fixed through selection of gearing
(if necessary). losses can be minimized by making k to as close to 1.0 as possible.

In general, power amplifiers are of two basic types: linear or switching. While linear
amplifiers have excellent stability and control characteristics (ie.. no switching, so the form factor is
1.0), due to their linearity. they suffer from from heat generation in the output stage, because they

operate in the high dissipation region of the transistor characteristic. Switching amplifiers overcome
33

2. The Elements of Robot Controtler Design

this problem by controlling their output stage so that they are alternating between the fully on and
off (ie.. transistor saturation or off) value of the output voltage. By modulating the duty cycle of the
output, switching amplifiers generate a given voltage or current, depending on the vanable of
control. Due to the high current square wave frequencies necessary a high electromagnetic radiation
usually accompanies switching mode power amplifiers. However a few new designs, have used very
high switching frequencies together with small output filters that largely eliminate the radiation, but
leave a wide performance bandwidth [Copley88|. Furthermore, unbeknownst to most researchers.
switching mode amplifiers have typical closed loop current-mode bandwidths (not sampling
frequency) of about 1-3 kHz. This is not a problem for slower geared mampulators with low
sampling needs (eg.. less than 1 kHz), but for very high performance direct drive arms. which may
need over 10 kHz sampling frequencies, this couild become a problem as the control algorithm may
respond to the current switching itself. Generally. the switching frequency must be high enough to
ensure that the motor control system does not respond to the transistor switching atself (ze..
Sswitching > 10 f bandwidth of control toop). However, hysteresis and eddy current losses in the motor
increase with frequency, thus limiting the maximum switching frequency usable with a particular
motor. On the other hand. the amplifier must be designed so that the |/fiwucnng 15 large enough
relative to the transistor switching delay time to ensure linearity, yet small enough so that power
losses in the transistors (which increase in proportion to fiwichng) are not excessive. Motor/amplifier
selection is not as trivial as it first seems!

As far as motors are concerned, heat is the principal killer of performance; however, so
long as it can be adequately removed. performance can be prevented from diminishing significantly
(the same is true of power transistors and consequently power amplifiers). Electric motors can, in
general, take peak currents many times higher than their continuous RMS values for short durations,
ie., the time the motor can, in effect, ‘sink’ the excess heat generated. {Fleischer88| provides a

useful summary on motor characteristics and selection. See figure 2.11 below.

34

2 The Elements ot Robot Controller Design

4 A UIH]] short duration
[continous range
2 Current curve | / ”I‘ DC brushed motor
5 (slogc =K;) % / E additional continous
2 l“"‘// range tor DC brushless
Lu. Ibr // o ‘ motor
] N 2 N
/ 2 =
E] —
b —_
(3 Pmax / 2 / —]
¥ Peotd s E
g =
hml \ /:
b ‘ - A E Ll —
Torque To Tow Torque
Fig2 11 Motor Performance Characteristics

Performance *bhand’ (1e., power, current, and etficiency) for
electric motors 1s hetter when cold and diminishes
considerably when hot (by as much as 50%) Brushless motors,
because ot supertor heat disstpation and non-mechantcal
commutation, have a much larger operating envelope than their
mechamcally commutated, brushed counterparts

2.7 System Implementation Approaches

Since any system is a product of past experience and current influence, it is beneficial to
examine the many possible overall system approaches to robot controller problem, each
implementing to various degrees different levels in the hierarchy. Figure 2.12 below illustrates. A
workstation host with graphical user interface is usually employed to perform application level
programing and modeling/planning (A). This includes everything from basic robot motions, with
on-line path modification in Cartesian end-effector space integrated with sensor 1/O, to task level
programming systems. The user is presented a C language library interface or increasingly a C++
|Stroustrup87] library interface to which user code is linked. Applications are built by creating,
combining, and manipulating functions or objects defined from system primitives.

In high level motion planning (level 3) systems like ‘Handey’ [Lozano-Pérez88], the
approach is to concentrate the code solely on higher level code and employ a commercial controller
for all lower level control intricacies. It is convenience to do so. since point to point motions is all
that is required. On the other hand, lower level, more control oriented systems like RCCL

|Hayward86. Lloyd88] actually perform trajectory generation on the host workstation in real-time

35

2. The Elements of Robot Controller Dewgn

(UNIX kernel modification needed) and use the commercial controller only 1o perform position

servoing and other associated 1/0 (A, B).
@ Multiprocessor research controller

bypassing commercial controller
and using more sophisticated trajectory generation

and control algorithms usually with torce teedback Robot (usually 6 DOF)
FNG
. O
SIS (1o H
& P S -l
2 o fy(3(5 EN Current
T lle sUls\ i< — mode
3 é Sl 118 Amplitier

k Foree/Torque
VMEbus @ sensor
typical

—_—— .
(o] Armn Power On @
Power On Talt Q
Pmove_jounll 60 ’ Resan=y | = Run
Seridl
to hof Jemmd Manual € onirel
@ T G\
————— —
—_— @ Lower level controller complet

] -
with amplifiers and actuator 1/O

Ann Yower Of)

Workstation host, graphical intertace, Usually a commercial controller, but Teach pendant
trajectory generation, on/oft-line could also be a research controller tor
programming and simulation Jomt-level servoing,

Fig. 2.12 The Basic Robot Coptroller Architectures
Implementations of the robot controller model vary from
complete ground-up systems (A, C, D, E, F, G, H) to high level
only versions (A, B) using existing commercial controllers, and
all the variations in between Such as (A) programmung host,
(C,D.E) traj gen , and (B) servoing with actuator dnive Or
incorporating the commercial controller for rohot 1/0, but not
for sensors (A, B, C, D, E, G, I) Itisalso usually the case that
some form of teach pendent (J) or handcontroller (whether
home-brew or commercial) 1s part of such systems

The most common approach, however, is to employ an external real-time multiprocessor
system (C, G) to perform various intermediate level functions (usually level 1 tasks) such as sensor
based control (eg., vision, tactile, etc.) and/or various control hierarchies. Examples of which are
CONDOR I [Narasimhan88] (for Utah/MIT hand), CHIMERA 11 system |[Schmitz89, Stewart89}
(multisensor fusion, a separate joint-based PID servo hardware provides level O robot control
[Kanade84]), and Kali [Hayward88, Backes89] (multi-robot control and coordination). Yet others

build upon previous research controllers, such as HIC (hierarchies of servo loops) [Clark89]

36

2. The Elements of Robot Controller Design

implemented on a CONDOR Il platform which provides better scheduling and asynchronous event
handling than its host system.

Because of the many complexities involved in real-time control, most systems have
tended to place a heavy emphasis on their own real-time muitiprocessor operating systems which
consist largely of scheduling strategies and interCPU communication mechanisms through shared
memory on a common backplane (D, E). The majority of these systems consist of everything from
robot interface and motor amplifiers to real-time operating systems and application programming
(A, F, G, H). Examples of these include COSMOS/NYMPH (NS32016 based, shared memory)
[Chen86], GEM/CHAOS (i80x86 based, message passing) [Schwan85, Schwan86], CONDOR I
(MC680x0 based, shared memory), SAGE (MC680x0 based, message passing) [Salkind89], HIC
(MC680x0 based, shared memory), CHIMERA 11 (MC680x0 based with specialized coprocessors,
both shared memory and message passing), etc. However, it is only recently. in systems like RIPL
(MC680x0 based, shared memory, VxWorks kernel, A—E, G, I) [Miller90}], and Kali (MC680x0
based, shared memory, VxWorks kernel, A, C—H) [Hayward88, Backes89], that commercial
kernels together with off-the-shelf hardware are being employed together so as to reduce the
development time as much as possible and concentrate on the robot control. Thus, de-emphasizing
the previous trend in which robot controllers were largely exercises in hardware and real-time
operating system design.

Going still deeper, to the lowest layers, one delves into the realm of computational
hardware design. As previously described, many researchers, even in the recent past, have built their
own specialized processors to speedup calculations. At first these were designed as highly paraliel
machines implemented as ASICs (Application specific Integrated Circuits) [Orin85, Orin86], to
perform faster matrix calculations [Nash85, Nigam85, Orin85], but later more general purpose
processors were designed using off-the-shelf bit slice parts, such as the RIPS system [Wang87,
Butner88] (A, C &D with custom bus, E, F, H), or JIFFE [Andersson89] (SUN backplane as host
for real-time system A, custom D, E, F, G). It is more likely that ASICs or other specialized

hardware will not be used as main processors as some have argued [Leung88(2)], but rather will be

37

¢ 3

2 The Elements of Robot Controller Design

used as specialized 1/O chips or coprocessors as some commercial products have already

demonstrated [Olsen89).

2.7.1 Robot Controller Roundup

Table 2.2 below presents this diverse collection of research robot control systems over

the past ten years covering the full range of applications. architectures. and design approaches to the

robot controller problem.

Table 2.2 Summary of Research Robot Controllers

Intended Design Architectare Performaix e
Author(s) __ Mppheation Ty Level . _ Progrumunug Fuxbon bty o S ommsan ation Contol fraturey
[l-nim-llonlol' Industrial robotics Multi ststem & interpreter, M AL 6 6501 joint processors, Q b, shared memory LSU1T user prog. comtrol 6 DOk
(PUNMA condroller) proc robol soft langiage, 181 1 aster 6S0R fined cunlrod Al LRl swnpling
cartesian moves slwe Wity trw) pen
fhleing2) Walking machine Multi odtem Jovstick operator &1 S1 11 processors dedicnted paratict links distribuged control 18 joints
{ASV.GEM) ot comole EMSHRE punsiing conirol progeam wl 10y servn
{Golwasser84] Hand controller Muli- system none 3/16-bt processors dlevel hierarchn fmrdwire & 6 joints & ot
torgue feedback proc tined ks csot store at 1 setso
fhanudedd) Conirol direct drive Mulu system € ,cartesiun 6 TIZ2000DSPs, Multibus, shared lurdwired & IDS & senvont
tabot with dynamics proe moves Atarinco APR 3204 meamnors comrol store SREL 1 ONMEFLOPS
compernation MC 68010 master
{Nash$s, Linear Algebra Svstolic system & machine code 16x16 array 2 Dmesh locksteps 100 <00
Przy tlads] arrav processor processor ASIC swachromeation MIPS
INigum85] Imverse Dynamics Multi- concept machine code 6 processor global bus, centralized, b 2IS K042
proe module local bus i module IICTOprogran
{OnNn8s, liverse Dy panuds Multy svstem & maclune code A1 processors, ipelie tothstep AN @ M
Orind6) Jacobian proc processer custorn FPU S 18 Fo02
[kasahara®®] Inverse Dyvnamic AMulie svstem o N {8086/008" shared plobat centralized 001 M OPS
proc 48k RAM/ROM mamors per procevar
[SchwansS, Robot control Multi snstem & object based $ 18086/8087, Multibus, messape dhstributed 2 msec gt message
Schwando] (GEM, CHAOY) proc kernetsoft € YA\ 11/780 host pessing
[killough86, Teleoperation with Multi system none 3 MC 680005 Multibun, shared diinboted rorce feedhack @
Herndor#9] torque feedback proc martor 100317 wath IDS
{Chendo] Hund controtler Mulu svstern & C . control 8 w3201k L, shuredd globul disinibuted torce Ferdbock @
torque feedback proc kernel soft & SUN-2 host mentory 100 Hr with IDS
{NYMPH, COSMOY) control soft
{Hsyward86. Robot control Multi system & kinematic Workstation host, 16 bit pmr from host bost »s trajectory VAN 111780
Lioyd83s] (RCCL) proc robot soft equalionsan *(PLMA robol controlli¢ fo PUMA controller perralor, mive TRS 0 200, &
control in PUMA contralier SUNSPARL station 1
TRSan 170,
{kazammides$6} Controt Multi cvsten & *C', rartesian Armsirong array Multibus for hast comtrol propracontrol 6 DOF
{SIERA) proc keenel soft moves processors, 2 Dmesh serial Jinks robot
MC68000 host for wrray processors
[horewo) Control nnd Muit systeny [§ N MO 630004 globel bus disirthated 1 EAUPS per
avtomaticn proc modules local biss in module processor
1 ealry 86) Rohat control Multi systen «C'y control, VAN 111720 host Q bus from hast b, host drajeciors VAX TY 7t IR S
proc carlesianmoves PUMA robot controller controtier, stmred generator, servo 2400, &
menory I PUNA controller
{LeeS6. Pseudo-unverse Multi- system none 25 CORDICS pipehine conligured It dwire Th'y dn 4, sec
Chang$s) Jacohian proc dedicated furrtion from algorithm S 138 Froie
MNarasimhand6] Hand controlier Multy sistem & +C . control, £ALC68000s Multibin divtritnsted 6\ Iy
{CONDOR) proc kernei soft cartesianmoves SU™N-2 host message pmssitg
[Leung$6) Direct kinematics Vector logic none 18-bit ALL dusl bus harithwired 73 evele for
solution proc 4 DOF robn
{Pauilc} force control Moulti swslam & (', force 7 80868087, Multibies shared ditributed tvbirid contral
proc conirol soft cotilrol VAN 11 785 host memory ethernet b host Wt 25011,

38

2. The Elements of Robot Controller Design

Table 2.2 (cont’d

‘\ intended Design Architecture Petformance
Avlhior{s} Apphitation Ty Level _Progrmmmng _ Lunction Lints _ Commmunivateon__ _ ___Comtrel _ ___ __ features
[Juvaherit7} Ineriis Mutriy Sy stolie swstem wnsenbly 2 bit kPL global bas or Mmicroprogram 14 22

arrm 416 hit parts 2D mesh Fr22n
[Bejesn B3] Telerobot control Mult awatem non NS12016 FPL shared mentory on Vlevel luerurchi 14 joints
tees) proc 160h RAM!/ROM Multibus control store at 3kHz serio
{l evin®7} Control Mt svetem «C TA14 traneparters dedicated links distributed 0 65N IFI1 OPS
proc WHITER FPUPOAT host shured memory cortrol program per processor
{beshadri®7] Direct kinematics Single processor machine code AT&T DSP16 16-bit parallel bus comrol store DAS in 10,:5¢c with
swhhon pro 16-bit accurncy
{Vang?, Control Muin sstem & *C .onTIDSP Discrete purts proc, VMEbus fou bost, control prog D3 matrin-vector
Butnerf® (RIPS) proe processor assembh on other TIR2025 DSPs, 1ocal bis shared from host mult in 900ns
Mangsers9| processors 2 CORDIC chips maniory Lsluge pipe Ih$ in S0 sec
[Rilmss) Robot conrol Single sistem *C , cartesian Intel 310, 30286 Multibus ceniralized 100Hz servo
prod moves al 6 MU,
{1 lngh8) inverse Kinematicy \eetor provessor . microcode kP Thuses microprogram SMFLOPS
& dytmmic « proc b
[y wurdss, Mull robol control Muly sistan & anwdti rohol Kane A MC68020,08881 MM Ebus comrol progrun two 0 DOF rebots
HBacke B9 (KAL) proc robol sofi & dvramics equation SUN-3 host shared memon + seraars
in €, control
{Nurasimhwns¥] Hand confroller Multi system & *C , control, SMC63020:68881 VYMEbw, distributed 20MIPT, 32
{LONDOR 1) proc hernel soft cartesiui moves SUN 3host shar=d meniors aclualors @ 400 1t
{Shalowni88) Conirol Muin sysletn & wssembly on ASIC A 32-bit processor PChus contro) program 5 DOY robot
{SPARTA) proc proctssor *C’ on PC, ASICs, PC'AT hoat At SkHz servo
cartesiun moves
{Andersson89] Control Single system & C* VLM Bit slice. host on VMEbus, control program 18 MFLOPS
JIkEEF) proc processor 64 32-tnt regs 4 local buses for Proc TRS-IDS+ten)y
4x32-bit buses locally gen. in 48, sec
{Clarky9} 1land controlter Ml ssm& ¢ 4 MC68020'68881, AVNMFhus distributed 20MIPS
(HIC) proc kernel soft SUN 2 host shared memory
[LeeB9) Multisensor fusion Mulu nstem & *C’, sensor N microvAXs ethernet, message distributed Smsec per message
proc kernel sofi integration, passing
cartesian moves
[Rircunski®s} Robot Controt Mulu svstem & assanbh Bit slice 32-bit FPU 2 Dmeshon coniro! program conlrol law 1DS
(DESCARTES) proc processor Multibus for 6 DOF in 100, sec
1¢9<2.2, k<07
{Takarmshi®9) ¥orce control Multi systemy *(onPC NEC LPD77230 D5P, bost on PC bus control program force control
proc assembh on NSP PCIAT as host toeal hus for DSP ot 1.4kHz
15alandsy) Robol comtrol Mulu ssstemm & € carlesian MC68020s, VMEbus distributed, servo tra). gen. al
(bAGEF) proc kernel soR moves PUMA robot controller message passing InPUMA controller 100Hz from sensors
(Setamitz89, Mult sensor fusion Maudti vstem & O, cartesian NMC68020/69881, VMEbus shared memors control program cartesian state space
Mewart89] s robot control proc Kernel soft moves Mercury 3200 FPL and message passing control with sensors
(CHIMFRA I SUN 3 host al 25Hz
|Wangsy) Robsot control Mulu system ' 4MC68020:68881, MEbus, shared distributed 1 Smsec for IDS
proc PCIAT host menory comtrol program
Milter00} Cell contenl, Mult) wstem & *Ce RIP) NMC63020!/68981, VAMFbhus shared memory, distributed, user on 12MIPS
semsor inlegralion proc robot soft language SUN -3 Host, user program runs host, traj gen. on VME
(PIPELRIPL) comunercin} robot on host wikl servo i conmumercial
controller controlier
{Fani®102)] Imeree chnamiacs Sevstolic ogic 1 ond tables multiple 32.bit 2-D Mesh hardwired S»>¢
arrmy design functional units
[McMilan91] Dynamiics simulation Vector Simulation FORTRAN CRAY Y-MP3 CRAY supercomputer control program 5=52,E-067
proc $CPLs, each(PL 7 bus
64.bit vectors of length 77
AR — T — M I
MIPS milhonnstrin tions per second. MELOPS million floating point operations per second. FPL oating point umt. ASIC application specific integrated
clrcnit. ¥ LIV =very long instruction word. DOF =degree of (reedom [hS=inverse kinematic solution (6 DOF), IDS=inverse dynamic solution (6 DOF)
DSP digital signal processor Paralle! processing performance metrics used [Amdahl67] S (speedup factor. where P is the nuinber of processors and f is the
fraction of v ymputation that must be done serialtv)-P/(fP+1 - f) Note when S—-11hen f~1 {no speedup). and 5-P when /- 0 (sverything marallel)
K (efficiency in execting algorithn) SIP K is limited by the fundmmenta) paralielism inthe slgorithm
¢ The industrial PUMA controller is included because of its traditional role in robotics research systems. This lable 15 adapted from [Leung8s)
It is clear several trends seem to have emerged: in hardware, multiple processors on a
. common VMEbus backplane is undeniably the dominant architecture, perhaps because of its easy
i
-

implementation, its low cost or the fact that the fastest commercial processors are always available

39

S

PR

A o B R AT TS T e

2 The Elements ot Robot Conteoller Desgn

first on boards for this bus: in software. the era of special robot programming languages and home
brew real-time operating systems is ending, most researchers now opt for a C language hbiary
interface (with C++ soon to follow) and off-the-shelf real-time kernels, simitarly, in processors the
use of high performance commercial microprocessors (with integral floating point units) has come
to dominate; in sensors, integration is increasing rapidly, especially in force control and vision,
lastly. coordinated multi-robot control sysiems have begun to emerge.

No doubt the embedded real-time ‘black-box” approach offers the greatest hardware and
1/0 flexibility, however the basic architecture expounded by RCCL (workstation hosted supervisory
layers with servos in the robot controller) may appear to be the ‘way-to-go™ in the near future, since
it still offers the greatest prototyping and development environment bar none. It sutfers from only
one problem—the single processor workstation computing architecture and the limited real-time
capacity of UNIX. For the moment, it appears that tightly coupled, parallel processors running real-
time kernels, commercial or not, remain in fashion. However this approach is not always the
panacea people believe it to be—eg., porting code from SunOS to VxWorks 1s painful since they
are, at best, compatible only superficially, starting with incompatible names of header files and
escalating; the lack of process memory management leads to discarded memory every time a
function is reloaded (quickly filling memory thus requiring a reboot which 1s impractical. not to
mention annoying, for development);VxWorks pipes aren’t the same as SunOS pipes; VxWorks
task and semaphore routines don’t have direct counterparts under SunOS; the VxWorks standard C
library has differences from the SunOS C library, etc. The only question 1s when will workstation
technology and real-time UNIX [Cole90] overcome their real-time himitations (see figure 2 13
below)? With the emergence of machines like the HP RISC-PA (HP/Apollo series 700), 1its
astounding 34 MFLOPS capability, the continuing ‘workstation wars® among the major vendors and
microprocessor houses, and ever more specialized requirements for such CPUs {Horning91] (¢¢.,
circuit boards at 100 MHz, wire-bonded multi-chip modules. etc [Mende'sohn91}), it will be
increasingly difficult for single board computer manufacturers and their real-time kernel
counterparts to keep up, let alone home-brew research hardware (eg.. SUN Microsystems already

has 40 MHz SPARC based workstations whereas only a few SBC manufacturers even produce
40

2 The Elements ot Robot Controller Design

SPARC-based boards and then only with the CPU speeds @ 25 MHz [Child91]: not to mention the
fact that VxWorks is still in beta test for SPARC-based boards and the port to Mips-based boards

has been abandoned™).

250
E 250.00 .
2 200.00 - -
5 . £ Entry Level
2 150.00 (< $10K)
& 3 [Traditional
£ 10000 i (> $25K)
8 : 50 L [High Level
é. 50.00 0 4 (> $50K)
(S} 1 1218 ﬂ . ﬂ .
&) 1 =0 - '
0.00 v
1989 1991 1993

Fig. 2.13 Current and Future Workstation Performance
Workstation performance is heading up rapidly Even though the MIPS
rating 1s an inaccurate absolute measure of computer performance, 1t 1s
useful as a long term relative metric on system change No doubt,
workstations 1n 1993 will number crunch robotics code at least 4 to §
times taster than they did 1n 1989 Source [Letbow1tz90, Rosing90}

2.7.2 Commercial Competition

Before closing this chapter it is important to take a brief look at the current developments
in commercial systems. Even though most researchers dismiss such industrial systems out of hand,
they have vastly improved in recent years. Most research controllers would now do well just to
reach the performance levels and usefulness of modern commercial systems: advanced controller
architectures, targeted at sophisticated force and vision sensing applications, employing
multiprocessor architectures based on 32-bit CPUs and megabytes of memory around a common
bus and providing powerful programming and motion control capabilities integrated with sensor
feedback |Agapakis90, Scheinman88], even at the task level [Campbell90]; sophisticated servo

algorithms applied with dynamic feedforward compensation (including observers) to counteract for

*To the best knowledge of the author, based on nformation from Wind Raver Systems i Sept 1990 Of course, things change fast 1n
this industny

41

<

2 The Elements of Robot Controlter Design

joint coupling and other nonlinear effects |Hiroshi90. Adept90. Seiko90]. the use of high speed
digital signal processors to achieve very high servo sampling rates (above 3 kHz) and superior
performance, eg.. .1 sec cycle time, 10 m/s velocity. 5 g a.celeration |ANSI/RIABY. Intelledex90.
Seik090. Adept90]; compatibility with state-of-the-art off-line programming and simulation systems

™

such as CimStation™ [Craig88(2)]: and aggressive pursuit of many novel applications, especially by

the Japanese [Whittaker90].

™ A trademark of Silma In. 2

3 Kali Implementation

For 'nus the sport to have the enginer hoist by his own pezar...
—William Shakespeare (1564-1616)

3.1 Kali Overview

As a robot control system, Kali 1s an instantiation of the robot control hierarchy
following the principles previously set forth. However it 1s only a level 1 design (trajectory
generator) which is targeted at control programming for multiple cooperating manipulators. The
traditionally thorny issues of user interface design, task simulators, programming (level 2), and
servo design are not treated as direct concerns. but are considered independent of Xali and are
treated more as ‘applications’ for the user to implement as he wishes. Hence at its core, Kali is
merely a collection of C language library functions that provide the user a set of primitives for
multi-arm control Applications are built by creating, combining, and manipulating functions or
objects defined from these primitives. The most basic of these is the notion of a motion system—
two or more arms are lumped together as one motion system which describes the movements and
constraints associated within the desired control frame. As with more traditional robot control
systems like RCCL {Lloyd88}. the user describes the control frame in terms of synchronization,
destination, velocity, and force. The coordinated motion of cooperating manipulators is achieved by
kinematically constraining the inanipulators to a control frame. The manipulators can move in
synchronous, close cooperative fashion, able to grasp and move about objects together (eg., forming
closed kinematic chains through the common load and operating within sufficiently accurate mutual
spatial-temporal constraints). When using such a scheme, a motion system can be seen simply as a
point in the velocity and force subspaces. This has particular application in low gravity
environments like outerspace where inertia forces become dominant—the original impetus behind

Kali |Backes89. Hayward89, Hayati90]—or in redundant manipulators like macro-micro arm pairs

on i -

3 Kal lmplementation

and in robotic hands. For more details on the theory behind Kali's coordinated motions sce
[Hayward88. Hayward91]. Trajectories themselves are specified as a series of Cartesian straught line
segments where veloctty is controlled. Between these segments are transitions or blending phases
where acceleration is controlled Overall this approach treats the concept of motions systems much
in the same way that more traditional manipulator oriented systems treat individual robots—
essentially enhancements of [Paul81]. For details on the trajectory generator and programnung
consult [Hayward88. Hayward88(2), Nilakantan88].

Because Kali deals with the motion of one or more robots in cooperation, there may exist
a great deal of mechanical coupling among the manipulators which means such a system can only
be effectively controlled with a control loop that closes around the entire system, not just around
each individual manipulator. As a result. this leads to the need for one very sophisticated trajectory
generation task which takes into account all spatial-temporal constraints of the entire system
Consequently. the basic architectural premise in Kali 1s that there 1s only one trajectory generation
task whose purpose is to compute nominal set-points for every motion system. All other supporting
tasks, such as the servo processes for the manipulators, must be synchronized to this one master
process. Within the trajectory process itself, however, motion systems are treated much as processes
that traverse from one state to another state, like from ‘running’ to ‘terminated’, and they are time
shared for every Kali quantum period, ie.. set-points for each of the motions systems are generated
one after the other |Nilakantan89].

In addition, the Kal/i motion control library is completely system independent of both
robot hardware and processor architectures, ie., the output of 1ts trajectory generator 1s simply a
nominal trajectory specification in Cartesian space. The challenge s to implement all the support
hardware and software necessary to run this library. It 1s the purpose of this chapter to describe n
detail the first implementation of Kal/i made at McGill University as an example of a robot control

system.

{

.y

3. Kali Impiementation

3.2 Implementation

The implementation follow very much the typical robot controller anatomy as described
in figure 2.2 (section 2.2.3). A set of processes is needed which are either high priority synchronous
processes running at the trajectory generator rate, synchronous processes running at the servo rate (a
multiple of the trajectory generator rate), or low priority asynchronous processes. Because at the
time Kali was conceived one CPU was deemed to be vastly insufficient for advanced robot control,
the Kali supporting processes are distributed over an array of processors connected by a simpie
backplane bus!, though the main trajectory generator process cannot be parallelized. The
synchronous processes are synchronized by a global clock interrupt called the ‘wall clock’. Each
processor has a maximum of two resident processes: one asynchronous running in the foreground,
and one synchronous (implemented as an interrupt routine tied to the global clock) running in the

background.

3.2.1 Real-Time OIS

In order to make the minimum of assumptions with respect to the synchronization and
interprocessor communication facilities, as well as the performance of the underlying operating
system, no explicit process facilities like creation or deletion are necessary; however a global
(across CPU boards) clock to which can be attached one interrupt routine per processor and a shared
memory mechanism are required:

* Wall Clock. A mechanism for interrupting all the CPUs using a single clock.

This is most easily accomplished by designating the hardware timer on one

of the CPUs as the wall clock. An interrupt routine tied to this timer then

issues interrupts to the other CPUs on the bus (this can be accomplished via

the mailbox? facility available for most single board computers). This

scheme results in a slight clock skew on the other processors as the interrupt

t Ay chapler 2 shows many processors m parallel are no longer a prerequisite for robotics
A
~ A dual-ported memory location on the processor board that when accessed interrupts the CPU.

45

Lt

Py

TR

3 Kalt huplementation

routine takes time to get around to interrupting all the CPUs. but 1t is not
significant, eg.. if there are 8 CPUs on bus and it takes | psec to generate an
interrupt across the bus (very conservative). then the maximum skew is 8
usec—Iless than 1% in a 1 msec servo loop. The Kali trajectory generator
also requires that the clock be accurate to within a millisecond and that ut
keep a total running time in milliseconds. In addition, as a safety feature, a
reliable hardware mechanism must be used to ensure that should a servo
algorithm fail to execute (eg., a hardware fault or software crash) or if the
servo requires longer than one interval to complete (eg.. programmer
miscalculates the execution time or other processes make many accesses to
shared memory servo data structures which delays servo processing). then 3
hardware mechanism to halt/disable all manipulators is engaged.

Shared Memory. Since multiple CPUs were deemed necessary, a means of
creating shared data structures in memory is required, eg., queues between
the processes. These could be allocated in fixed memory locations at start up
or with dynamic creation/deletion capabilities. Since more than one process
may wish to update a shared memory location, at least simple binary
semaphores and queues are required with the following types of
synchronization:

Type 1: Queues or FIFOs from asynchronous processes to synchronous ones
which may or may not reside on the same CPU.

Type 2: FIFOs from synchronous processes at one rate to synchronous
processes at another rate (which is an integer multiple of the first process’
rate).

Type 3: Atomic flags or semaphores raised by asynchronous processes and
inspected by synchronous processes, ostensibly to temporarily synchronize a

data access. This can be accomplished by the ‘test-and-set’ mechanism for

46

3 Kah Implementation

simple binary semaphores found on modern computer buses (se¢ Appendix
A).

Type 4. Data updated or utilized by any process with no need of explicit
synchronization, eg., data output to an operator console.

s Give up or Abori. This is the software fail-safe to shut down the system
when a major error condition occurs and the system doesn’t know how to
proceed (eg.. trajectory generator hits a kinematic dependency or limitation
of the arm). Since all critical processes in the system are tied to the wall
clock, this shut down can accomplished by first disabling power to all the
system manipulators and stopping the system clock. The user can then clear
the error condition and restart the clock (thereby resuming the sy stem).
Asynchronous processes (other than the user code) in the system are
designed to operate from data provided by synchronous (recovering from

such software crashes is easy in Kali).

3.2.2 Servo Control

Since Kali only requires that the manipulator servo control maintain set-point positions,
many forms of control architecture (level O) are possible. For the current Kali implementation no
standard control algorithm is furnished, but instead a hardware independent programming interface
is provided for individual joint controllers. Early on, a major goal for Kali was the need for a rapid
prototyping environment for control design. Thus it is desirable for every joint for each robot
controlled by the system to have one of many user programmable control algorithms attached to that
joint with its parameters changeable on-line, so that these servos could be changed on-the-fly
permitting the user to test many different algorithms in quick succession and modifying parameters
as desired. For advanced Cartesian based control programming a similar interface with same

capabilities is also desired, but not yet implemented.

47

-~

3 Kali lmplementation

3.2.3 Other Considerations

™

* High level language programming. Programming in the high level

language. C. is required from all levels 1n the system, from oint-level
control to highest supervisory level. There is never the need to program in
assembly language. Supervisory levels have software designed more around
the objects that comprise the system and 1ts environment rather than just on
the functions it performs (ie.. kinematic loops of transform objects and
functions).

Transparent host programming environment. The host system must provide
the user access to his familiar development environment. Since UNIX® s
‘the’ popular system, it is desired to have as similar environment as possible
on the real-time target including standard system level and library calls.
Ideally . the user should not be aware the he is executing code on the target
system, since it appears so much like his ‘natural’ environment. VxWorks'"
[Wind87, Williams90j is the real-time kernel of choice. in this case, for its
high degree of integration with the UNIX host workstation (it frequently
happens in VxWorks that users mistakenly reach for the mouse expecting a
certain graphical-user- interface-like functionality). However real-time
UNIX when it achieves comparable performance is the ideal environment.
Portabiliry: To protect the large investment in human resources necessary to
create a complex real-time control system, every provision must be made to
ensure compatibility with changing hardware and software. Needless to say
this includes CPU and bus architectures. as well as multiprocessing & real-

time programming paradigms and programming languages.

® UNIX1s a registered trademark of Unix System Laboratories, formerly wholly owned by AI&T
A trademark of Wind Ruver Systems Inc

48

3 Kali implementation

* Reliability: A predictable, reliable system is a necessity for experimentation,
safety, and portability. Popular processor/bus architectures and software
development environments are usually the most flexible and reliable (the
two are not always opposing constraints).

s Third Parry Support: How well are the third party system hardware and
software supported and maintained by the vendor? Portability ensures a high
degree of independence. and manufacturer supported extensibility and
maintenance, in both hardware and software, considerably simplifies
portability and flexibility. Poorly addressing this aspect can compromise all

of the above.

33 Process Model

For the McGill implementation, the Kali processes are as follows:

33.1 Trajectory Generator Process (TG)

As in RCCL, the main synchronous process is the trajectory generator whose task is to
compute the nominal set-points for the all the manipulators in the system. This process is the heart
of the system, everything is synchronized to it. It has a two function interface to connect the lower
servo layer: write_t6 outputs the homogeneous transform representing the Cartesian set-point for a
manipulator (‘T6’ is the traditional term for the end-effector link in a 6 DOF robot), the transform is
converted via inverse kinematics to joint angles before being sent to the servo control process (S10)
(a check for singulanty is also made at this point, if it fails the system aborts; however work is
underway to remove this limitation); and read_t6 which reads back the curment Cartesian position.
The motion library also supplies a joint mode interpolator which moves a manipulator directly in

joint-space, in this case the outputs go directly to the SIO.

49

Lo

3 Kab limplementation

3132 User Process (UP)

This is the process that contains the ‘robot program’. Its main functions are to setup
kinematic loops. define motion system control specifications (eg.. max velocity. transition time,
etc.). issue motion requests, interface to the user and the external world. The user process runs on
the same CPU as the trajectory generator. It is the foreground process whereas the trajectory
generator is the interrupt or background process. The user code makes its motion requests
asynchronously which are synchronized to the trajectory generator via a queue (as described in
figure 2.2 and section 2.2.2). The user process runs freely until a wall clock interrupt transfer control
to the trajectory generator which then creates a set-point for each robot in the system. Since the user
code and trajectory generator share the same processor with the TG having priority, it 1s vital that
the trajectory generator execute as quickly as possible to allow enough time for user code to run.
Performance results show that a 20 MHz MC68020/68881 processor can handle one or two motion
systems at 25 Hz trajectory generation rate, provide information from the computation of the

dynamic models is made available by another processor.

333 Servo 1O Process (S10)

This process runs at the servo rate and gathers sensor information, such as joint position
from encoders or force readings from force sensors. converts them to standard angles (te., degrees)
and forces (ie.. Newtons). It also checks against maximum bounds (ie., maximum allowable
mechanical movement of each joint) and tracking error (a simple means of checking against a ‘run
away’ robot by measuring servo error). It then ‘feeds’ the servos by first interpolating the TG set
points and then placing the resulting position demand, position, etc in shared memory The
interpolation is accomplished as a FIFO interfacing the different data rates: TG set-points on the
input and servo position demand on the output (as described in figure 2.2 and section 2.2 2) The
SIO performs a dynamic loading scheme among the servo CPUs so that the user need not know the

exact timing of his or her algorithms. The only requirement is that any servo must be able to

50

S

3. Kali Implementation

complete one servo cycle on its designated CPU. After the servo cycle completes, the SIO picks up
the torque demand from the servos. checks against motor current limits and outputs this demand to

the amplifiers. The SIO is, in effect, the bottleneck in level 0 of the Kali system.

3.3.4 Servo Process (SVY)

These servo processes may reside in one or more CPUs and each may run one or more
joint servos up to the number of joints controlled in the system, eg., worst case one joint servo per
CPU. Each SV process run on a separate CPU, of course, is a servo synchronous process (the SV
processes are effectively gang-scheduled by the wall clock). There may be as few as one or as many
as eight SV processes (the max number of robot joints). Each SV is a servo execution handler that
performs a simple dynamic loading algorithm. That is a user servo need not know on which SV
CPU it will run. This is determined dynamically at run time. As the user’s servo algorithm becomes
more computationally intensive it will automatically consume more CPU resource. All variables for
the servo algorithm are stored in shared memory making this possible. At present, each servo is
independent and servos one joint. It is executed at every servo interval with the basic servo
parameters, ie., position demand, current position, output torque, etc. as well as a pointer to private
data used internally by the servo algorithm. Thus from the servo programmer’s point of view he
need not be aware that all his data is in some shared memory segment since all synchronization and
access rights are transparently taken care of. A Cartesian servo mode, still in development, will be
forth ccming. This will consist simply of a different process which is activated instead of the joint
servo one. At present temporary ‘hacks’ have been made to test Cartesian control methods such as
damping and impedance control using a force sensor at the end-effector [Hayward88(4)).

Each joint may have many different (user definable by a Kali system compile) servo
algorithms, any one of which is active for any joint at a time (ie., joint #1 may have an adaptive PID
whereas joint #2 may have a plain PID.) In addition, the same code may be used for each joint since
the data used by the servo algorithm for each joint is user-instantiated at run-time. The user may

switch servo algorithms and modify them while on-line to facilitate experimentation. In addition,

51

L

3 Kah lmplementation

the servo algorithm closes the loop around the kinematic angle position and motor torque instead ot
encoder counts and DAC (Digital to Analog Converter) units (both are simple hnear
transformations). This makes for cleaner programming as the servo is truly /O haidware
independent and is a function only of the electromechanical properties of the robot The appropnate
conversions like encoder to radian angle, limit checking and amplifier to torque conversion are
defined in the robot/amplifier driver and executed by the SIO before feeding the servos.

Because the SIO translates encoders to angles and torque demand to DAC units (thus
they execute in the servo loop and take precious execution time away from the servos). almost as
much processing time is spent doing this as in executing a the servo algornithm like a simple PID.
Consequently, a MC68020/68881 can only run 4 PID servos @ 500 Hz (2 msec using 32-bn
floating point arithmetic) in the SV process. Thus 2 SV processes are required to servo a six DOF
robot. Normally such a processor could easily handle 8 or more PIDs using integer arithmetic @ 1
kHz with all servo data local to the CPU, however it was deemed worthwhile to sacrifice speed for

easy programming and experimentation.
3.3.5 SIOISV Dynamic Loading Algorithm

The SIQ is basically divided into three parts: (a) get joint position, (b) feed servos, (¢)
get servo torque demand and output. The dynamic loading algonthm is based on simple binary
semaphores one for each servo which is cleared by the SIO after getting previous sample servo data
in part (b). The SV processes in the meanwhile each use test-and-set to see if the servo has been
executed. This mechanism does introduce a delay to the servo processing time for the SIO code, in
the worst case: time for code block (a) + time for code block (b) (see figure 3.2). However it s still

much less than 2 cycles from joint position input to torque output.
3.3.6 Feedforward Dynamic Compensation

This is an asynchronous process running a separate CPU. Update is slow (around the TG

rate) and it need not be synchronized [Kircanski86] (see section 2.2.3). The SIO reads the

52

s,

3.3.7 Viewer Process

3. Kali Implementation

compensation has yet to be included in Kali, but the software ‘hooks’ are already in place.

compensation torque and adds it to the amplifier torque demand automatically. The dynamic

A separate asynchronous process called the ‘viewer’ runs on a separate CPU and simply

can monitor the system status like robot position, tracking error, etc.

Figure 3.1 below summarizes of all processes and their basic interrelationship.

Viewer Process

*(ﬁles, ethernet, etc)

General 1/0

y

Synchromazing Pro

Kali Trajectory Generator

Dynamuc
Model Process

cess
Queue (type 1) — o o= o= o 1
User Process _| |Spatial/Temporal
(asynchronous [“‘*" multi-Mampulator| |
motion requests synchromzation |
—_——_—_— & |
l_l Cartesian/joint mode Trajectory Generator I
__________ i
- — o - — _.levglO
r 3 |
set-point I set-point - |
interpolation interpolation
FIFO) | | FIFO ¥ I
Servo 1/0 Process | liervo 1/0 Process |
type) 1 I 3 o 3 L — — — .I
' 7 vpe 3)
1 - Dynanuc
| Model Process
| | | Serve Process | Servo Process

Synchronous communication
@ trajectory generator rate (type 2)
Synchronous communication
@ servo rate (type 2)
Asynchronous communication (type 3)

Asynchronous communication (type 4)

level 2/level 1

one set of these processes per manipulator

Single Board
Computer

Fig. 3.1 The Kal Process Orgamzation

picks the relevant data from shared memory and displays it at about 25 Hz refresh so that the user

53

vs

'Y

JO WeIdel

ST B SHRsa501g jBY

CPU #1

CPU#2

(D User Process

moefrobots] Posstion_A)

@ Trajectory Generator

1f (Abort flag) return

P =TGiPosition_A)

/= yencrate € anteman net poant =/

I=24P

if (Smgufarity 3 set Abert flag and

4= 1 = pveup t"singul imty error”y

J_me =t J_presious_setpoint Ve

£= 1D wthe jount imcremnent torthe
*SIOHIIO wherer s ratio of TG
*matcto SO rare %/

Put J_inc on senvo FIFO

L

Moutor

Queue I-

&
»

k3

S10 Process

#afc'r NO ticks occured) then get new set pomt fro
* 1O, where r st of TOs rate to senvo rate */
of tcounters s > 1) counter =4)

and get new J_m¢ fom S{O FIFO
J_posttion = robot_drniver >get_jout_position_radsns
set all sero_run sciaphores

code block ﬁ

-~

code block B

tor =1 1<=Aumber of Jopta 1) {
error = Serva_demand[i] /= Get senvo ervor from grevivus
sampie *
1f terror < mun trackung error || error > mav
traching error) set Abort Flag od g veupttrcking, emror”
torqueft] = Gret torque_demana from prev vas sample
J_demand = J_demand J_inc /= update jount demand =/
rele metwrvo_run_semaphere[1])

}

®

= check more maximun: mechanical treael =
tf erobot_driver >mechameal_bounds_check = True)
set Abort Flag and giveupt-out_ot_bougds™)

code block C

sobut dniver >pul_torgues_into_motorsi &torqued
/% this routine (Jips agaunst m xunum allowed current

\ moter ¢ hundle and convena tomque from WM 1o DAE S ‘lj

Shared
Memory*

Svchronous @ TG rate

SIOFIFO Per Mampulator

Data tor servo

l sen _cvanter I J_derm ind
asvchronous

J_posinon

Torque_demand

Senvo_error

S*vo_run_semapiivor]

|

Wall. ock itcrrupr noccssme cve ©

Totd seno ale e s one womplete wrerup cycle - tume for SIGCxdc B (LB

11 e for SJOcude Bliwa A

Svchronous @ TG rate

CPU B & #4

SV Process

forti=l 1< 8senos 1 24
1f ent_and_set(senvo_run_semphore[1+1{n
sun senotf_demnd J_position

&Tomue_demand & Scr\n_j
1
J

b

McGill I/O Board

DAC Board \
12 ba dvqutal 10 \
andalog convener |...

CPU #5

Viewer process
fasynchronons)

fisprav a_det anet
t_pesgr Torque_femand
Seno_er o

i 5 ITW IO ek Iterripr Cener dor

forr=! re=¥0 "y,

1 Atem thip==tasey
me~up i P11

cine

Halt (e

4,

i
-

Sen vmy tme Frva stant ot cade Mok Bt end of ivile

D sample at T

sample at T

SI0 e Aews €

S0 sode reet me SiDeve ' . , cam eat T

SIO Process. CPL #2 Bloek A S O conde N «k B tfeed &Omdehl-cUJ r::d‘ mwrd | B o<k n \;’O‘d‘sl{:k‘s ‘_°E ot oe u E] pe
oress. T] swmpie T kesemos wrsanple T capstberorn g o thaxpe T € ST s deT R oraamp e T
r"u:pxz B
! N N < e 84 - s e yvr Sem¢ o #3
SV Process, CPL £3 ! Nervo om #1 Semo 1mt 22 Sy \r»'{;cx:]l :‘"" M A, e T
& #3 Sena v 23 csaap ™ (ampee ™ samaple 73 -l e
israpie T

TIME T

13

uourawading ey

3. Kah Implementation

34 Servo Programming Interface

The servo programming interface permits the user an easy way to test servo algorithms
without needing to know intimate hardware detail of the systemn. ie., addresses for 1/0 boards, etc.
Since most research control algorithms are based on the computed tor que method. output from the
servos 18 a torque demand should drive a linear torque mode actuator.

The user must write his/her servo function to accept the following software interface:

int servo_function(p_servo, demand, position, p_torque, p_error)

/* pointer to structure private to this servo code for a particular joint on a particular robot */

ServoFunctionStruct *p_servo;

Real demand, /* demand from trajectory generator */
position, /* current robot position */
p_torque, / desired torque put here are computed */
p_error; / previous error, put new error after
computed */

The algorithm may update its private data structure any way it wishes, but it must update
the error, pointed to by p_error, and return a desired torque, pointed to by p_torque. The demand,
position, and error are all in radians in kinematic angle coordinates. The torque is in Newton-Meters
(usually at motor shaft, depends on robot and driver). The algorithm returns a status condition of the
servo. The interface also requires that the user provide an initialization function for each servo. This
routine is not called by the used directly, rather it is executed automatically upon a starting the Kali
trajectory generator. The user may have a precomputed static structure pointed to by p_tnit_data for
each different joint using the same servo algorithm. The initialize servo function has the following

format:

void init_servo_function(p_servo, p_init_data, samplelnt)
ServoFunctionStruct *p_servo, /* pointer to private data structure * /
p_init_data; / imtial data for that structure */
MsTime sampleint; /* sample interval time in milisecs */

55

-~ -

AXRSETY A

N PR TV I PTU TITE YE - o Ny

3 Kalt lmplementation

The user must also provide his/her own functions to alter the private servo algorithm data
using the get_servo_data and put_servo_data functions for on-line servo data mampulation Since
these functions are executed by the asynchronous user process, they require a synchronization wath
the SV process lest a corruption of data occur. This involves delaying the execution of servo until
the ‘put’ or ‘get’ function 1s performed while a structure block move operation takes place to
transfer the servo data structure. In practice it may happen that the servo 1s actually *shipped’ (not
executed) for one interval, but experience has shown this does not have any noticeable (1e..

hazardous) impact on motion performance. The function intertaces are illustrated below
put_servo(robet_id, joint_id, servo_id, p_data, size]
int robat_id,
jont_d,
servo_id,
char *p_data;

int size,

get_servo[robot_id, joint_id, servo_id, p_data, size)
Int robot_id,
jont_id,
servo_id;
char *p_data,

nt size,

The data pointed to by p_data into the current user servc state from joint joint_d for servo
algorithm servo_id on robot robot_td. The data to transfer is size bytes long Return ‘0’ if successtul
or ‘-1’ if bad id. A host of other functions exist which simply change one element of the servo data
structure, such as enable or disable an individual servos, enable or disable the range checking, or set
the tracking error tolerance (ie.. the ‘safe’ variable in the ‘ServoStruct’ used as the maximum servo
error tolerance, this is easy to set since servo error 1S always in joint angles, not encoder counts). All
access to this critical shared memory structure (te., the ‘ServoSiruct”) must be synchromized. kgure
3.3 shows the data structures used by the SIO and SV processes and hence the user servo algorithm

Figure 3.4 a shows a complete servo code example for a simple PID.

56

SaMIITIG BIR(] OATAS ¢°F 1y

@_moﬂm robat_id 0t romt_xd it servo_id, char *p_dats mr size) \

\)rdum OK J

o valed tsalud cobad_d ot _d)retum 3
2yne_siodipSie >svne_sem)

/® Svochronize with 1O Basically a bmarv semaphore to fock out other
= processes [his 13 requiredd to pevform senvo siate data

bandling « ghout corruptiag the data durog seno computation. pSie
pounts to the master shared memon structure This function causes =

the S10 and hence the servos o wait for 2 “sune_release™ Whenthis =
tunction s called data hundling must be done qu ckly less than -

* 10% of servo rate) and “svac_relcase” called This s essentially -
* ablocking semaphbure for access to ser » data. The aser sheuld -
* not call this routine sunce 4 18 ime criical e

copybuffer (pSie >senoStruct]servo_id) p_data sre),
svic_releascipSio >ssnc_sem)

1= Release SIO Tom wating for user 1o make data changes. This 1s -
* a semaphore sigoal to "svac_sios sem iphore want The user should =
* 0ot call ths routine since i 1s time entical -/

Called by user during startup to
tnnalize the user dara strucrure
Jor each servo algonthm

The “Pui™ and “Get " funcnons exchange data with
the user senvo structure in synchromzed fashion

All access to the “ServoStruct ™ must be synchronzed
since 1t 15 used/modified by the SIO and SV processes
dunng sernoing

Seno structure used by the SV process conumng
the sero state data which 1s ludden from the user
seno algonthm Only demand and posiion gnven to
the user servo This data 15 hepr in shared memory
so “gel” and “put” funciions used by other
processes on other CPUs fie the viewer or user
process) can get the d wa

it_servo_function

tvpedef struct
{
mt seno_xt /* servao alponitiun id */
wmt ready /= indicates serva ready for exccutien vsed by
dynamic loading algorithm */
wt achive /= used by dvoamic foading, algorithm =/
mt stetus /= watus of serve returned hy user code ™/
 process /= cugrent € PU/process where serve 1 exccuting */
Feal nafe 1 watseno error tolerance
Real demand, /= current demand 10 kiernanic radrans ¥/
Real position /= current robe? positton i kinanatic radi s =/

e o e s o e e o e

Real torque_demand /* torque dem inded by nser servo =/
- | Rcal crror /= current posits 'n ervor computed by servoalp =/

Real torque /= hounds check torgue, true torque to motors =

typedef struct /* data huffer for use” servo siruct #
1

1
1wt dummv[ServoDataSize]
} ServeDataSiruct

\5“”&! wn shared memory
L, ..

} ServoStruct

These duta structures are

(-

User defined servo data structure
available 10 uny servo clgonthm
Store i shared memory thus

avaable to all SV processes

user servo 1s executed
by the SV process

(* ServoTableEnt[servo_id] func){servo_datafservo#],

Seno structure used by the S10 process ludden from the user
This data is kept locally one each CPU Duning startup all
CPUs execute the same instannianon code in which the robors
and senos are defined, etc Thus All CPUs have indenncal
copres of thes data struciure

r M

> r Servodtruct servol Noloratsf
ServoDataStruct senvo_d aafMxServos] /= user servo Jata struct */ nt o rebet_td

typedet struct

wnt anitdue d % ser1iphore tor dat s mitndzad =

wt semr /= sen aphe re for Barmup scquence *
mt g /= startup s quence stte =

mt Vi _sem /* runtume svachronws g semag hore =/
Buol caltbrate /= Calibeate mode flay *f

/* tame check flag =

/= sample i sta record flag =/

Bool mrerp late = serv o leved hinear mterpolate ag =/

mt mode 1= ot or ¢ irtesiam mode senong 1 ouplementat */

Red ms lervat Tick /= reciprocal of servo tich per Mo tich In the FIFO mterpolatio
wnstead of dis wding. the jomt posttion differcace ot
s multiplicd by the mverse 10 s ive execution tune =’

17 serva mterval i mitisecond ficks *f
17 counter when 1y fetoh trom senvo quen */

Bow rar ge_chech
Bool record

nt mtenval Tick
um g ceunter
Quene ¢
/= merement d position dem and posttuon =/
JowntSet merementfMacSen oQueneSize]
Bool senvobmble|Nolonts} * turn servos OMNOFF =
/= ghuve servo data strudt =/
oot wl ®/
mt acratch[SerdchP «dSwe] * sorateh for robat denver =2
} SioStruct

tvhere lowtntSer <anammy of X Rec v

cmand, position, &torque_demand, & crrof)

structures are stored in
every CPU

These two data
local memory on

struct /* scrvo tible strcture =
I

1

Bool used /°entn 10 use */

IntFn fund /7 pomter te senvo fuucton =/

Vowil o nat, /= powmrer fo senvo function unn dizaton =/
MsTumne s imple /= serve samy leanters «f in ndliscconds =7
} SenoT sbiek ptfM cxhumberOfServos|

€

identifies the servo algonthm as insianiiated by the
“servo_tnstall " funcnon called by the user at startup

Muaster shared memory table conicuning the user servo algonthm
mformanion used by SI0 and SV processes The enines are
made by the user at run-nme by the “imnstall " funcuon

LS

uoneuawaiduy ey

3 Kab lmplementation

typedet struct

Real satnpling perind /= sample wiersal w seconds *
Real mtegrarton_tand /= integriton band hima =/
Real mtegration_sesct /= wntergration reset lamit =/
Real miepral _ol_umror

Real old_posution,

Real eld_velocity

Reat kp

Real hi_Is, * ki tanes sanpling tune =/
Real hy *low pass filles pas s ®
Real Ipfel,

Real lpre2

Real Ipfel

Real Iph 2

1 PidSen aStruct

Thus structure contans the private information servo algorithm
state wnformation for a PID Some of the terms are precomputed for
more efficiency Also comans parameters for a low pass filter

Wil _pahep_serve o _date semphnn
Paudvenn ot "p osenvo
mp owt_data
Melune sunpleint
i
roenter Pl ot *posone
tepstet PulSernvosru *p o data
s i samph
Foat paiven s predetined imtial abate une u */
wap_tm_cdata = Nty
Tposene S by
clse
3
= paume here we huow our it stute mpdnis *
posenne cudeyrali bawd =00
osenae Sitepralion reset =00
p_senvo tepral_of _error =100
oo ol a0
p_senno 2okt veloaty =00
L

'
P sense ramphnge penod = sample / 10000
13
'

nt prdip_senvo dumand positian p_torgue p_erron
repister PrdServoStruct =p_senvo

register Real demand, posiion

register Real =p_torrjue =p ervar

soster Rl
control_signal
oh_tninus_| ¢k e_raw_h
Ak vh_raw siema_ek

1% The error stnal and velocity are fiest Tow pass filtered */
1* Timt order filter, using backward difference */

1% get Ipfel =tsampline pertady® we =/
/= where we s the filter trequency in radians per second */
1= act tpfe2 = 141 < Ipfety =/

¢_raw_k =dunand position

ck_wminus_1 = *p_error

eh = p_senvo pted*p_servo dlptcd T _raw_ K ch_wwus_1)
“p_error = ck

Wbt = opositiat p_serns sold_postionyp_senve >sunpday,_poesd
vk = p_servo >1pfv2=ip_servo 2lpfi I™k_raw p_serso 2old_velocity),
/* filter gatus set us tor posttien Difter =7

p_servo >old_position = position

p_senvo >old_selocty = vk,

sgma_ck = p_teno >mtepral_ot_erer - ch
W imgma_ek > pena >imtcgralion_rescty

tigma_ek = p_seno >intepralon_resel

e sigma_ch < p_seN O >intopralion_rescty
asigma_ck = p_senc >integration_reset

p_servo >mtcpral_of_error = sima_ck

ek > p_seno >micpration_bawdlfch < p_servo zintegnation_baud)
control_signal = p_servo »kp*eh p_servo 2kv * vk
else
control_signal =p_servo >kp®eh p_senno >hi_Ts * sigm_ek
poservo *hvTvk

“p_torque = control_signal
returti U,

Computed PID for one servo interval Returns a desired
torque por-ted to by p_torque and an error pmnted 1o by

p_error Contains a low pass filter againsts noisv velocuv

Fora PUMA 560 the kp ranges from 50 to 200 and the

kv ranges from I to 7 Filter parameters are approx fe=50

and fv=25

Inali.e the PID rounne shared
memory data pownted to Iy p_serva”
wth wser data pownted to by

"poantt data™ “samplelnt” 1s the
servo \(""r"t' mterved v millisecomds

sct_pid_guinstrobor 1d jownt_ul seevo_sd kp ki kv
i rolan_wl ot sl scrve_d

Rewd &p bt ke

t

\
PidservoWtmet prd data

spu_servotzobwi_id ol sovo_ed Spid_eaty
sizeolt PiddennoRmua == |)
el (3,

mid_data kp = kp

prd_datwhs_Lwn = hy = pad_datn suenplang_prerid
prltals =k

put_servotrobot_kd gomt_ul servo_sd &pul_data
aizeoftidServoMtudt 1

relumii))

H

Here 1s an example of a user function 1o
change the servo parameters (Note this
function can be called “on-the-fiv" while
the robot is moving since s uses the
synchromzed function calls) Sets the PID
algonthm gans jor a given “robot _id’
ot _d ", ard the PID “serva _wd’
Returns "0° tf OKor 1" 1f bad 1d

Fig. 3.4 Servo Algonthm Code Example

3.5 Robot Drivers

The Kali robot driver is a set of functions entered in a table. Figure 3.5 below illustrates

58

6S

SLOW (- 100msy

voxd e SN _dara)
ScratchSruct *p_data

Ingtiasze the driver private data structures and 1YO harduure
" hm 1s called ¢ riog Kals cloch starup

SERVORATF+ 2Zmwy

voud prt_torques_to_m~ ors(p_data j_torque 1 _out)
ScratchStruct *p_datas
JowntSer *)_torque /° torue demand */
JontSet *,_wt /* output torque to motors =/

Thus routine outputs the motor for jemt torque) forques demanded
n the senvo algonthme It must check the torques against maxumum)
alowed by the motor and chip wccordingly The actual torque output
to the motors 18 retumed m the jowtaet powtal ta by °3_out”

tthis 18 displayed 0 the “viewer™) This routine 11 time critical It s
evecuted b the SIO i the block t¢) 1 parallel with the SV process

SFRVO RATE (2ms;

voul get_angle_poationip_data p_yoinis)
ScratchSiruct =p_data
Jomnt Set “p_sounts

Get the robot posttion n kinematic coordipates from the position
feedbmck at the jomis. Thw soutme w called 1 each serve
wterval by the SIO and keeps track of the robot position This
routme 18 very time cnhical us 1t 15 exexuted by the SO setup
code thiock (a3} Frery microsecond wasied here @ not avaidable
1o the senvo processes

FRAJFCTORY RATEC 30ms)

voud cnable_rohot(p_dat
ScratchSruct =p_data

Furns ON of enables the robot motons ampitiiers and disables the
brakes. T venvthing nees 10 the frec the robot for movewment Thin

routine 18 only maderatels tune cntical 1919 called by the Kalistanupy
routnes.

f’

SFRVO RATF (- 2ms)
voxl dusahle_rohottp_data)
ScratchSruct =p_data

Turne OF F the amplifiers to the robot motors, tum on the brakes
Thu stops the robut cold. This routine 18 vers tume critical 19 the lonper 1 takes
1o turn off the robat the more damage it can do 1o an emergencs situation

SFRYVORATE ¢

JomntSet *p_jewmty

Ime)

Bool hounds_chechip_data p_jomts)
Scrat hStruct “p_data

Checd that the 3 vnts are o}l within the vahd hmematic g « range
This 1 turned oz by the “cnable_range_check™ and "dis 1ble_range_chech
1 uttncs. This routine u executed b the SIO = the post
senvo black (€8 1 18 time critical

typedef steuct {
Bool used
m

1t po_joints

[otkn
for_kne
s _hine

Voutn

.

put

— &«
enible

== duahic

calibrate

ermor
auxl

ar

aud

aud
} Robatlo

1 pede f struct {

mcmon
} SratchNnuct

Rool 1 check _houndak) 7 check for mechanical bo inds =/

/= entn wuse =
7* xd for shared memory =/
/* number of yours =’

= functions refurn wteger status =
/7 forvar] hinematic */

TRAECTORY RATF

mt F ek ose SN IZeWp date p_ opy
Ser hNruct *p_tata

Trazsforn =y t

Jow. Ser =p_

Perform vraard hu ema 1ot com he pomtse ported oy poy o N
‘mpsfortn poarteato ™ p_' Recgnd tf oh o amy ron zere

value to ndicite emor This valuc voud t b sv hung uses d tee
lebuggms

gy

/% mverne & s */

/= functions that return voud */
/= mitiahize driver =/
/* pat torques 10 motors */

1* get jom position =/

/= enable robot motorv/amps */
/= disable 1 ot motorvamps */
’* calibeate robot */

/= fatal error emergency robot shutdown =
1* for auxihary functions like force sensor
parameters arc user definable =/

whatever the driver nceds for private data processing that pay
e shared among processes This data 1s hept in shared

TRAJECTORY RATE ¢ 30ma

wtims _hme S\3xp_laty py pn
ScratchStruet *p _das

1Tanst ym “p_t

JantSet 7 g

Perform s erse kinernatics from the transfor 1 poited to by “p_ "t

the jomtaer porttedtstn gy Retunt afohor av 1on roro

vauc 1o mdcate err r Thsy sue coulid be somett ing aseful

debuggmng This roulne must etum a 1 12eravalye fora

smgu gty When the Ka'i svstem calls this runction 1t cheons for

the returm s alue to detea suigulanty (n which case astutdoan v
performed) The fumtion mus alse AL WAYS RE T RN jomt antes with 1
the point hittem i< range that s e 27 jumps The routine « oadd

returm a nen zero value mthis cvent

TIMF VARYING:

v oxd Gilibraterp_date «h
SeratobStrunt =y _dats
w ud

Peeform ant smanic Caltbration of tohot Must be varv cireful 1o e
wnchronwzed ac casto low level dat s sinictures,

\\

Thus structure provides the ‘function call table for a rober
dniver The user also has available a pnivaie data area i
shared memory (1000 bytes) useful for scrarch pad For the
funcnions all ount angles are i radians and Cartestan
postiions are in meters and torques are i Newton-Meters
Speed of evecution s very tmportant for these routines they
must be handc rafted with care They are indicated here as 10

SERVORAIF L 2ms)

voud faal_emrontp_data)
ScratehStruct =p _dat

Tums OFF the unplitiersto the robat mators tum on the brabes.

This st 'psthe tohot cold even aben the robat 18 muving at full

speed THIS ROUTINFE ISTIFE AND SYSTEMCORITK Al When Kalthas se
option bt fo 1sane an emergencs shutdown (duriny + “giveup thenthus
function 18 caliext and 18 1he last reson 1o sopping the robot*

vanung degrees of cnncalness (the frequency with which these
rounines will be called 1s gnveny In practice They must run 10
nmes faster than the tlis because many other tasks will be
performed with same frequency, 12 , the SIO process 1s doing
many things besides calling these functions

Fig 35 Kuali Robot Dniver Interface

£

uoyeuawadw] ey

3 Nali lmplementation

3.5.1 Calibration

Robot calibration is is performed at two ditferent levels: absolute hinematic calibration
of the manipulator by precise external measurement (eg.. laser mterterometry). and by using joint
level absolute transducer sensing mechanisms (eg.. potentiometer feedback) The tormet 1s immune
to robot link and joint variation (ie.. gear backlash and joint thermal vanations), but requues much
time a difficult setup. The latter can be performed on-line by the robot controller and so s discussed
here (the assumption 1s that an absolute kinematic reference data is available tor this operation)
Most robots use encoder (index reference)/potentiometer method for cahbration This method
involves noting that a) the encoder provides one index or reference pulse per revolution, b) the
encoder 1s usually motor shaft mounted. thus the number of index pulse equal the gear ratio, and ¢)
the A/D (analog to digital converter) reading the potentiometer must be able to rehably distinguish
between the ‘gear ratio’ number of index pulses (ie.. at least one bit resolution than necessary) The
idea is to assign a potentiometer value to each motor index pulse using the accurate external
calibration reference The exact kinematic angle must be determined when the robot is at a given
index pulse and the potentiometer value noted A simple trick here to save ime with a mmnimat loss
in precision is that cnce that exact potentiometer value for one index pulse 1n a joint is determined.
the external reference is no longer necessary, because the joint can be servoed to each subsequent
index pulse and the potentiometer value noted since the index pulses are a known angular distance
apart determined from the precise gear ratio (eg.. for the PUMA gear ratio 1s 75 1. theretore index
pulses are precisely 360°/75 = 4.8° apart). Another even shorter method involves taking only a few
of these data pairs and hnearly interpolating the potentiometer values for the other index pulses
RCCL uses this technique and it gives calibration results precise to the manipulator accuracy for a
PUMA .

The actual on-line calibration procedure simply involves servoing a joint to an index

pulse, getting the potentiometer reading and comparing against the known potentiometer/joint angle

oh)

3 Kalt Implementation

(index pulse) table. Which ever entry in the table is closest to the reading determines the joint angle

(see Figure 3.6 below).

Encoder index pulses around joint

Move joint unnl Jomt Cabibrauon Table
‘7’;{‘;: r’:‘: ‘I;}“m e Potentiometer value | Jont Angle
from calibranon (g‘; z g ?o
) table Optical Jowt angle . .
. Cricoder . .
| . .
Mator
P
OR other method
Gear ratio — number of index pulse = mt (@ (potiometer reading) +)

aw; » » o g .
inde palses over 360° gt range jount angle = index pulse x 360°/gear_ratio + oftset

where a and f are the linear charactenistics
determned for the potentiometer This can be equally
precise as the table method, since one only needs to
distinguish among the index pulses

Fig. 3.6 On-hne Robot Calibration Methods

Kali uses the potentiometer linear interpolation method for on-line robot calibration.

3.6 Real-Time Interface

The real-time layer forms a critical part of the Kali system. It consists of basic shared

memory management and wall clock synchronization mechanisms described as follows:

3.6.1 Shared Memory

The Kali shared memory management is a somewhat simplified version of the UNIX
System V (version 2 or later) scheme |[AT&T87]. A ‘master’ linked list of the shared memory ‘ids’
or keys point to the individual blocks of shared memory. Access to the list for creation or deletion is
through a synchronizing semaphore. All shared memory pointers are stored in relative offset form
(ie.. pointer = base + offset), so that shared memory addressing is independent of the CPU board bus
address windows (the Kali code itself, though, does not maintain its data pointers in this manner,

assuming intsead that all CPU boards have the same address window. Remember, the shared

61

3 Kah lmplementation

memory scheme is an implementation dependent sub-system supporting the Kalt library) See figure

3.7 below.

hase

CPUs mav access shared memory wer data
as they wish Kali dlock synchronmizanon
and semaphores keep order. All pointers in
shared memory sthuctiees are stored in
relative offver form so that CPUs with
different address windows on the bus
can accesy the data

typeded struct {
Int magi,
int sem

mnlsize
thar *end

char *masAdrs

} RASE_RI OCK

antepnity check ¢/
/* semaphore for scess o *
¢ sharcd mumon hist and *

* "malloy ™ and “tree T tunctions ¢

2 s1e o) Wi shared memon blocks ¢
1* end address of code block stant

of shared memon

% highest adddress ot shared memons ¥/
KEY_INT kev _hist /* pointer to key shared memon */
MBI OC K memList, /* pointer to treed shared memon

blocks */

fom mJ m

i Yo

User shared
memory

User shared
memory

bk mem

Fage memory block st

low tnem

1 base

—

ty peded struct kev _ent |

it ke

typedet struct” v ont |
struct ke et *p_nuad, sruct ke ont *p moat
mnt o kes
char *p, thar *p ———y
» RPY_IN] JREY EN)

Available Memon

long
) MBLOCK,

1y pedel struet struct mbl
struct mblock ®*mnext
mlen

ok |

baw

Avatable Memon

1y padel struct sttt mblock |
struct mblock *mneat

long milen

PMBIOX K

o

N

IR R

CPU #1

Data seructures in shared memon

When CPU calls ‘ShMalloc’ or ‘ShFree’ then access ro shared memory management dara structures 1
synchromized ad the ‘KEY_ENT' structure 1s searched for a matching ‘kev’ (an imtever indennfving
the shared memc rv block) and appropnate acnion taken, e for ‘ShMalloc’ 1f a match 1s not found then
create new block f shared memory, 1f a match 1s found return the pointer to the mathcing memory

black.

Fig. 3.7 Kali Shared Memory Data Structures

The shared memory functions are defined as follows:

char *shMallocikey, size)

int key,
int size;

/* shared memory d' */
/* size of shared memory block to allocate in bytes */

The function searches the ‘master’ list to see if the key s already in use, if it 1s then that

block of shared memory has already been allocated and the function merely returns the pointer to

the shared memory (in full pointer form). In this way synchronization in creating/accessing shared

memory blocks is made easy. All CPUs needing a particular block cf shared memory execute the

62

R

3 Kah Implementation

same code (only one CPU actually creates the block). The function reiurns ‘-1" in the event that the

insufficient shared memory exists to satisfy the request.

int shFree(key)
int key,

This function deletes the shared memory block identified by key. Returns a *-1° is the
The memory is not cleared. but only moved to the pool of memory available on the free memory
block list Memory 1s always collected into the largest possible blocks when some is freed (a sort of
garbage collection routine) Initially the entire shared memory consists of one block. but it is slowly
broken up into smaller pieces (external fragmentation) as 1t 1s allocated/freed and the free memory
block hist grows. This can lead a high degree fragmentation of available memory. so that subsequent
allocation requests cannot be met even though enough sufficient memory exists in different blocks
(|Randell69] discusses some of the basic issues involved in memory fragmentation). In addition,
these routines must execute quickly and efficiently. Their design is difficult. since they must not
only be fast (ie.. efficient garbage collection), but they must also not disturb existing allocated

shared memory that may be accessed simultaneously by other CPUs.

3.6.2 Wall Clock

As described previously, the wall clock mechanism is a synchronized gang-sceheduled
interrupt for all the system CPUs. One processor is designated as the wall clock master that is tied to
a hardware timer. It interrupts the other CPUs at the rate set by each individual processor. Kali
requires that the wall clock have one millisecond resolution, so the master CPU requires a one
millisecond timer 1nterrupt rate. However the other CPUs need only be interrupted at the rate of
their synchronous processes which may be many multiples of one millisecond. Hence, the master
CPU should be designated to a processor having a synchronous process rate close to one
millisecond to avoid unnecessarily high overhead in a CPU with a slower synchronous process.

Futhermore, to ensure that wall clock interrupts are received and processed within their designated

63

5

3 Kab lmplementation

periodic intervals. a simple ‘interrupt-followed-by-acknowledge protocol s used (see figure 3 8

below).

Clodh Master CPU

Erveaate this code block on umer sierrupn
where polock o the pont wo the CLOCK straciur e

wmp = pooch ounter - podock dockRale * update ciock counter

Hardwarce timer

Hardware nmer issues an interrupt
every millisecond

whilee'sssBuslavdpalonk >semn 1% wait for seenss to global cionk sttugture ®

forn =0 v enumipu 0 oo jor all CPU s aod imtermupn of segqinined #7
' Hpadock >epulilisrOny 2 assuc dock imtamupt i dock s ON tor that € P1 %
!

C}l/N

)
l /% nterrupt it clock period tten alvs complet @
ituemp € pdock >cpui| samplent = (h
/¢ vkt ok intertupt has buon ack o bodged Tom provious istenagn
| 11 ves then proveed with cumrent oo koaintermap */

j | aete——— T
CPU O

ViWorks Network tser wnjerrupe

|
I
I
esvsHuslastipulonk >opuh] >sem ack v
‘
i
driver ’m":'“ run af the Q>| /% reset the Cowk intery al countera tor the current ¢ P4/
ot rule I ' pelock >apuli] 1sr _counter = polock cpufi] ssrheday
interrupi dn[wch‘ prbock s em - 0
' ' ‘q\ sMailhornSendar e % send matlbov interrupt for cqurrent ¢ PU %/
1f telock interrupti then 5 -.‘Iu
5 - ‘ I 1t cument CPU can sk an imermupt then halt avstem and 1asue
:‘;;r:;::‘l:d;:;‘l::k it ‘ warming that process on the EPU ook oo long to vecute®/
' l | I Vapadink ~opufif serious:
L L‘l)& ‘ givaupprocess overmun for CPU Fdin®
else
call VxWarks network drver l l | /% don tedie s wedopa ok intatupt for e cuteat C i 2
T I
Global Structure for all CPUs | :
! |
12 pedet st 41 - * Data Structure for each CPU
Int sem /* acvess semaphore tor this structure
not including the CLOCRENT &/ ' “' pedef strudt
nt u‘)u‘r;:‘cr I: l:le wall\x Im:}mnmcr . :n\ em 1 syt semaphore ¥
mt clockl p, /*¢ ONIOFE % . d
nt »lmkkig, A ;l::: ik rute ¥/ Bmx sem_ak r .uLnn\\Ivdp(m\L maphore tedls “master that CPL !
CHOCKFENT opu X Pl was sucessfully interrupted ®/ '
! CLOCK. TUMAXCPUL o 1nt counter, /* umming wounte */ i
BOOI dodhAttached 7% dock s attached for (10 * '
BOOL (lockOn, 7% ok ative tor CPU %/
BOOL. ciueal, /® cpuisaritical NGO othe intarrupts ¥
BOOT 1srOn % s imtralized
BOOL. senous /* eriical bming haltit aclock 1 taTupt 1s dropped *7
Shared Memory nt 1s7_counter, /® counter lor imarupt linming ¢/
- intisrDelay /® the deday time for isr ¥
10t sampleint /* sample interval in milhseones ¢/)
FUNCFEIR 1sr_tune /* intemupt function the routine 2t chied W the dock intertupt ®/
PINCPTR 151 _arp /® intermupt argument ¢/
} CLOCKENI
)
:
H

Fig 3.8 Kal Wall Clock Mechanism
The principal wall clock functions are as follows'
void control(func, serious, periodicity)
FUNCPTR func, /* pointer to a function which becomes the periodic process */

Bool serious, /* do not allow an interrupt to be ‘skipped’
int periodicity; /* number of miliseconds for process period * /

64

-

3 Kali Implementation

This is the ‘core’ wall clock function providing the user the means of assigning a
function as a periodic process. Since it may be necessary for the user (from the user process running
on the user CPU) to change the rate of a process on another CPU, the following function is provided
(this 1s also useful in debugging and single-stepping periodic functions):

int set_control_rate(process, rate]

Int process, /* CPU # indicating the periodic background process */
int periodicity, /* the new number of milhiseconds for the process period * /

Returns ‘0’ for successful completion or ‘-1’ in case no process exists (or it is a
undefined, ie., *-1’) number. Of course, rudimentary stop/start wall clock functions (halts/starts all

periodic processes in the system) and wall clock time set functions are also furnished:

void start_kal_clock()
void stop_kali_clock()

Real set_kali_clock{time)
Real time,

Finally, a means is provided the user to delete or release a function from being executed
periodically:

void release(message)

char *message, /* message string to print, usually NULL */

The wall clock functions are essentially an extension of the original control and release

functions found in RCCL [Hayward86).

3.7 System Hardware

The CPU hardware consists of five MC68020/68881 (0.12 MFLOPS) processor boards
connected on a VMEbus with a 1 Mbyte shared memory board, an ethernet controller board. the
robot 1/O feedback interface board. and an 8 channel 12-bit resolution digital-to-analog converter
(DAC) board to ‘drive’ the amplifiers, since this circuit would not easily fit onto the same board as
the 1/O (see figure 2.12 for examples of robot controller hardware). The VSBbus (secondary on the

VMEDbus) was initially connected. but not used because of ‘test-and-set’ bug in the CPU computer

65

LR

3 Kuli lmplementation

board (see Appendix A). A PUMA 560 robot is used as the manipulator (section 2.7 describes the

hardware relative to other robot control systems).

3.7.1 MeGilt 1O Board

Since at the time no commercially available encoder interface board existed that
provided for six joints, index pulses. potentiometer interface (for calibration), and some digital
control logic for miscellaneous functions like amplifier on/oft control. it was necessary to create a
board that provided all this functionality for basic robot 1/O (some recent boards though do provide

this in addit:on to DACs for amplifier control {Olsen89}).

------ HCTE 20m o
cicodens(A A BB) differential [130l eeonier
———— - m reecIver posifion register
.................... .
Jout #1 ; \ 5
, N 20t Index ¢ Ind)
wndes pulse 11) . voltage aplure laie —+ control 3
comparator - ¥
P Six L'r;coTcr;lllcrlugu 1Cs B bt datn bus with E
° (HP C‘ L'l-°°°' ‘““"l 8 o 161t double datn K
° capture lale lu. tor index tetch tor encoder E‘
pulses e iCs : Z
eacodens A Ar Be B Mowran ditferential 2 -
filiers Ve 1251t ensoder — == Lontrol Ed
> recever l position cegister [=
Jownt #6 TCTRT VMFEbhus lnterface <
sadex pulte (1) — voltage Logte und 170 board, 4
comparator command/status ﬁ
regsier b
Amplifier enable/disable : '
< P i)
Digstal 110 : J
Motor Brakes disable (1e , tumn oft brakes) 1g:n
) control latch
- it sommand status
User EMERGENC rog
Button
Emergency stop or imoout buzzer

Fig. 3.9 McGill Robot VO Board Overview
The McGill robot 1/0 board (figure 3.9 above gives a brief overview) is a 16-bit
VMEbus board so processors can read joint position from the robot encoder’s, read joint
potentiometer values, control the motor amplifiers, and the motor brakes. The board also has a

watchdog timer, so that in the event of a system failure (ze., the software doesn’t reset the watchdog

066

4

3 Kah Implementation

and it ‘times out’) the amplifiers are turned off and then the brakes are engaged. Note that the brake
solenoids require ~50 msec to engage. whereas amplifier disables 1n less than | usec. so the motor is
off when the brakes actually stop the robot momentum. (this can also damage the brakes. but when a
system crash occurs elegant recovery is not possible). The board also provides a user emergency
stop input so that the user can halt the robot 1n an emergency (using an emergency stop button box).
See section 2.7.1 for more details and Appendix C for the complete explanation and design of the

McGill robot 1/0 board.

3.7.2 Motor Drive

PWM amplifiers are selected for the motor drive since they provide high power to
weight ratio and cost less than linear amplifiers.

The worst-case (ie., smallest) motor inductance of the PUMA 560 motors is 1.6 mH
(see table 3.1 below). thus the amplifier must have form factor of near unity for this value of
inductive load. A DC bus voltage for the amplifier 1s need such that a maximum current can be
delivered to the motor while not exceeding breakdown thresholds. For the PUMA motors maximum
voltage at peak torque is 14.5 V. The standard Unimation controller for this robot uses a 40 V bus
which can deliver the maximum rated voltage at under 50% duty cycle.

The worst-case electrical time constant for the PUMA motors is 0.37 millisecond (L/R=
(2.3-30%)mH / (3.9 + 12.5%)Q) which is equivalent to a -3 db frequency of 400 Hz. Hence the
PWM switching frequency must be over 4 kHz. The worst-case resonant mechanical frequency of
the joint motor is approximately 200 Hz which must also be much smaller than the PWM switching
frequency.

Comprehensive protection circuitry is des’rable to ensure both motor and amplifier
integrity. Since the system is intended primarily for experimental and research use overloads are
likely to occur. Six Contraves CSR NC600 PWM amplifier boards mount in a power rack are used.
They provide 5 kHz operation and 12.5 A RMS current capability per channel (they PUMA 560

requires only a total of 18 A RMS for all joints).

67

. |

3 Kab lmplementation

The amplifiers are controlled by £10 V input signal proportional to the output curremt
(eg.. 2.5 V input per amp output, in this case). The 12-bit DAC board provides 4096 increments
between -10 V and 10 V, coupled with a 2.5V/A amplifier gain and 3 72 A max. current for the
small PUMA motors. this yields less than twelve bits of resolution for peak current demand and a
little less than eleven bits for RMS current (RMS = half of peak. about 1900 increments over £10 V
range). however no signal conditioning 1s provided for the amplhfier input. The large PUMA motors,

having twice the current capacity make almost full use of the 12-bit DAC range.

Table 3.1 PUMA 560 Motor and Contraves Amplifier Parameters

Small Motors (joints 4 through 6) Large Motors (joints | through 3)
Peak torque 0.34 NM (48 0z-in) 2.12 NM (300 oz-in)
Max Continuous 0.17 NM (24 oz-in) 1.06 NM (150 oz-in)
torque
Max voltage @ 145V 13v
peak torque
Max current @ 372A SA
peak torque
Back EMF 0.091 V/rad/sec 0.261 V/rad/sec
Armature resistance 39Q (£12.5%) 16Q(£125%)
Armature Inductance 2.3 mH (230%) 2.6 mH (#30%)
Max Winding Temp 180°C 180°C
Temp coefficient 3.5°C/w 1.6°C/W

Amplifier parameters (same for large and small motors)

Output current RMS £12.5A

Output current peak +25A

Form factor 1.01

(@ continuous current and min. induction)
Bandwidth of current 0—500 Hz

loop (@ RMS current)

Gain 25ANV

Switching frequency 5 kHz

68

4. Conclusion

Wirth aching hands and bleeding feer
We dig and heap, lav stone on stone;
We bear the burden and the hear

Of the long day, and wish ‘twere done.
Nor all the hours of hight return,

All we have built do we discern.
—Mathew Arnold (1822-1888)

4.1 Summary

The basis for computing architectures and real-time computing practices as applied to
robot controllers has been presented as well as an implementation of the Kali system.

Today. a ‘competitive’ robot controller can be only established through diligent
investigation of user needs, comprehensive problem analysis. proper design and thorough testing.
Without the awareness, persistence and foresight to recognize and take advantage of state-of-the-art
technology that maximizes the advantage to both system builder and user alike, a robot controller
project is, at best. doomed to obscurity. This is equally true of research projects as of commercial
ventures.

Unlike mass market applications which attempt to trade-off functionality at the expense
of programmability, in research robotics the goal is to minimize development time of new
algorithms and ideas at the expense of higher controller hardware cost. Whereas the hardware costs
exceed that of designs suitable for mass market production, low cost systems require considerably
longer time to design and build. during which the original design usually becomes obsolete. Only a
research team minimizing its engineering time by leveraging leading-edge technology while
adhering tenaciously to ‘open’ standards can hope to succeed. The fundamental aim of all designers
is to produce a ‘good’ design, yet it is rarely achieved without experience, and even then only if the

designer sticks to his or her own area of expertise while building upon the know-how of others.

4

4.2 Lessons Learned, The Hard Way

Conclusnion

This thesis is not the prophetic culmination of all previous works, but rather it secks to

distill from former endeavors that which is useful and discard that which 1s worthless From the

record of past failures and successes. one concludes the following necessarily simple. yet protound

principles that are quite self-evident. It 1s not a self-indulgent philosophy of design, but practical

advice learned the hard way from direct experience and that of others:

Stop trying to out do the major hardware manufacturers. Commercial
processors from big companies like Intel or Motorola become more
powerful quicker than any hardware researchers can build on their own.
Current computational hardware is more than adequate for robot motion
control, and multiprocessor systems are capable of much more demanding
tasks like multisensor fusion. Since hardware performance is doubling
approximately every year. software short cuts to meet performance
requirements on current hardware are unnecessary-—next year's processor
will make up for any shortfall today.

Stop trying ro out do the commercial real-time software developers.
Commercial real-time kernels are now better supported. more reliable and
have higher performance than researchers can build on thetr own.

Stop trying to invent new robot languages. Because of the complex
hierarchy of models and abstractions needed, it is better to decompose the
problem for a particular application and implement that solution 1n a
conventional computer programming language.

Ensure Portability. To protect the large investment in human resources
necessary to create a complex real-time control system. every provision
must be made to ensure compatibility with changing hardware platforms and

software paradigms. Needless to say this includes processor and bus

70

Sy

H

4. Conclusion

architectures, as well as multiprocessing scheduling and communication
algorithms and programming languages.

Use conventional, off-the-shelf hardware and software as much as possible.
Be it software or hardware, 1t is no longer feasible to create even a fraction
of such a system’s components ‘in-house.’ The reader 1s cautioned to take
advantage of what 1s available and to leverage it so as to minimize
development time. Compatibility with the designer’s favorite tools (those
with which he or she is most proficient) should be considered as a critical
system requirement. The most useful software environments and
development tools often appear “irst on the most common commercial
systems. Researchers should develop those parts of a robot control system
that they are best at and obtain the other parts either from commercial
sources or from other researchers.

Concentrate on system flexibility and programmability for quick and easy
experimentation. Because of the research nature of such projects, the
hardware and software must allow for easy changes and experimentation
during development and use. The maximum ease and range of possible
changes and future enhancements to both hardware and software during
development as well as run-time is well advised. Robot control algorithms
that are new, not well understood and hence very experimental will be
tested.

Remember Maintenance: Often forgotten, but increasingly of critical
concern in complex software projects. The software must be designed as
modular and straightforward as possible, so as to make future enhancements
and changes as simple as possible. One starts by getting a core function up
and running correctly first, so that the system can be tested and the design
verified rather than attempting to include many initial ‘bells and whistles’. If

the designer is careful to provide ‘hooks’ in the system, these can be added

71

¢ &

4

as and when they are necessary. The best designs usually take this
maintenance-oriented approach.

Emphasize svstem integranon. The biggest stumbling block n robotics
systems are often the endless hardware and system dependencies that must
be explicitly programmed. They must be minimized, otherwise the
researcher is condemned to a morass of annoying detail.

Don’t forgo Reliabiliry. A predictable, rehable system is a necessity for
experimentation and portability. Popular processor/bus architectures and
software development environments are the most flexible and reliable (the
two are not always opposing constraints).

Uphold Design Integriury. As the last and perhaps most important
culmination in the building of robot controllers. one concludes that whatever
approach or design philosophy one chooses. it is unquestionably better to
have a system reflect one set of cohesive ideas, omitting superfluous and
anomalous features, than to select many worthy though independent and
uncoordinated 1deas which are thrust together Experience shows. beyond
doubt, that it is necessary to adopt, uphold, indeed embrace, that elusive
balance in applying the elements and rules of theory to produce a system as
unified in concept as in design— that down to the last detail, the single most
important principle in system building is design integrity |[Brooks7S,
Brooks87, Lawson90}. Failure to uphold it inevitably results 1n a ‘hack’ or
‘kludge’ and a failed system. Too often designers implement complex and
ornate systems in the mistaken belief that the more intricate or ‘clever’ it is,

the more useful it will be. The exact opposite 1s true.

N

Conctusion

72

A.l

Buses

Appendix A, Buses & CPUs

Since processors and buses form a critical compoient for robot controllers. a detail

comparison of currently available hardware is offered. We start with a comparison of backplanes.

Table A.1 A Comparison of 32-bit/64-bit Buses

VMEbus

FutureBus

EISA

Muitibus 11

NuBus

SBUS

Standard

[FEE PIOIS Draft) 2
VM Adhd b veraon
doahies performance)

[ETE P89 | and
Futwe BBus - PBYS 2 ond
b1 vermon)

Lutendted Industry Standard
Architvcture Specatication
exiension to PC AT bas

ILLE P1296

1ELE PL196/Draft 1 3

SUN Microsy stems Inc
SBUSsperny AZ 32
and rex 0 64 bu

Asvuchronous

Asynchronous puchel

Synchronous B 33 MHz

Syvnchronous fu MHz

Synchronous 10 MHz

Svochronous T6/25 NH,

Bus Protocol swilcficd dwck slock ok ok

Prima dala Dmh 32 bat non mulhiplexed 7t mult plexent 16 bt PC AT bus oon mux | 32 byt mubpleed 2 bt multpiexcd 12 bt non mux 64 bil mux
N 30 T60 Binls wnb 6 bat 0108 bt = 16 Boit last made host [32 16 8bx 16 tat justified | 32 16 8 b non justihied 32 16 Bbr 32bu ifred

S"‘Ond data pmh Justihcalion non justaticd trunsl ates justification pu

Address space

224 p1antyy 232y Pyl

432

2% ipCIAT) 232/ F1SA)

237

R

278 (255 itual address)

Interrupts

7 lmes virtun] mtermupts w1
buoard specitic 1oailinacs

Via message ntesTupts nc
dedicated interrupt hines

11 hines dedicated on bus,
4 for host 15tatal

Fulls virtual mterrups
o dodwated intesmupt fmes

‘intual intermupts no
dedicated umtermupn lnes

Dedicated wterrupt lines
s\ nchronous

Bus Expansion

1 dloty masters/alaves
VSH secondary bua ou P2

i atofn (19 1n rach) master,
aluves

16 slts mastervalaves

19 alota masters/slaves
1 aloturbitor

16 slots masren/slaves

R slots masterv/slaves
vprcul SUN has vnly 3slots

Performance

Contimuously v wuble

Contiwuoush vurmtie

Quantized 120 ns wanl sales

Quaanitized 100 us wait stales

Quantzext 100 ns wdit siates

Quantized 62 S ns wait stales
or 40 na wan states (25 MHz

&, Mintes/scc

120 Mintea/sec (hoards

IV Miniea/sec (bunt DVA

4 Mintes/sec (bursty

75 MintewseC (10 cveles

B0 Mbrviea/sec (burst DMA)

Mewage Passing
DMA control

Burwt mode master/slave
protuca)

wries o multiple slaves
Bunt mode master/slave
protocnt

Centra} DMA controller

read/wi ¢ to multiple slaves
Burst mede manter/alave
privocol

l,(‘ﬂ'\ Bandwidth by hlock ¢ block transfer: 136 Mintes/sec trey B Oy
Singic transfer, 4/t (avg delay=|/3 backplane lengtl. double ﬁgufrc for @3-but version) (Mbyes/sec) . +
Toem= 0 0 250 370 167 200 200, 300 (23 Mhs)
Tman= 50 ns 190 253 1671 200 200 33 325 MHy)
+
Twen = 100 15 154 192 T 133" 133 16 7125 MHz)
Burst transier, 4/Tunster (handshaken, fnfinie block lengtlf, avg delay=1/3 backplane length, doubje figure for §4-bit virsion) (Mbytes/sec
Tan = O 0 279 952 333" 400" 400 80 025 MH)
1

Lman = 50 us 207 435 167 200’ 200 50025 MH.)
Taen = 100 1 154 282 167" 200" 200" 25025 MH,)
Ulumate future -90 ~500 333 t 40" 40 ' 250"
pcrformﬂncc Bus drviey, protlem fsus driviny problem 120 ns between signal 10) s between signal 100 s between sipnal #) us between sigusl
Bastc Iimatation fogic delays prop deday lopic delave prop aelay samplimg due to clock sampling due lo clock sampling dueto clock samplmg due to clock
Arhitratic 3 level dasy cham round] Tl diknbuied Teniraliz 03] [Dambuied ¥ ichronous Abulcg synchronous| (cnralizeg arpner]

rhitratica robu & pronts N assnchronous syochronous central cloc | central dock central cloch syuchronous central dock
Algonthms ROR or RWD Fainess, Prionty Fairness Fairness, Prionty Fairness fFalmess
Tets 200-500 ns 250 ns 240-480 ns 300 s 200'ns 80'ns (25 MHy)
Towaldtme torbants [Selectable, > usty Unconstrained 64 Tiumfa 32 Tiamfe 16 Tiramsfer 64 Tiria
T (prionity) Tub + 2Tb Tab + To Tub+ (N-13 T Ta+ 2T Tub+ (N-13To Tav+ (N-1) T
Teat (1a1mess) Tut+ (N-D To T+ (N-1) To Tat + (N-1) T " (N-O)To Tab + (N-1) To Tas+ (N-1) Tb
Total ime for Teb {4 16 transters with] 100ns slave memory
T pet bt 83 us 26ps 578 ps 57 482 ps 289ps
Tret cwonty 543“5 434 [V 57 SUS 3. 482uh 289].18

ot sipported Fulls supported wlso reads Not supported fu e moed Nt supponted Not supported

Burst mode master/slave
protocol

C entral DMA controller
MMLU’ for addreas translation
requires extra bus cycle

Bus Interface

stheon

1o miduse 01 48X 630

!
[} state & open collector

Multiple sousces

BTl (backplane transceiner
fogic) B0 mA

National/ AND 1ranscvers
vanety plunned

TTl mixture of 24 & SmA
3 sta'z & opeu collector

Intel FISA chip set mcludin,
bus muster

TTI ansture of 48 & 64 m A}
3 mute & open collector

tntel MIX and MP|

TT! mixiure of 48 & 63 mA
3 stule & open collector

Tl NuBus trancetvers and
masier condroller

TTL or CMOS levels
mixture of 3-staie & open
collector

1 St logic SBU'S master and
slave controller

t Ignores ¢l

ock latency

1 ROR 15 Refease On Request which releases the bus for new arbitration only
it another master requests 1t RWD, Release When Done releases the bus tor
new arbitration atter every access Fairness indicates each master 1s allocated
equal tume on the bus (not counting DMA) Priority means one master may
supersede another tor bus access Information sources Borrill85, Warren90,
Whang90, Sha9l, SUN89, IEEES7, IECESS, [EEE/ANSI87, IEEE/ANSI89

Appendin A

In multiprocessor systems, bus bandwidth ts critical As one can see trom the above chart
memory access time and arbitration are the two key critical factors. 1¢., bus cycle = Tub + Twem For
VMEDbus. for example. moving from 100 nsec memory to around 10 nsec saves 10 Mbytes/sec on
bandwidth (the arbitration overhead 1s always the miting factor) So for systems involving a high
degree of contention, the fastest possible memory 1s critical Of course. selecting a bus also depends
on price and availability of 1/O boards. VMEbus offers the greatest variety of industrial 1/0, but
EISA 1s growing in popularity and almost the same performance with the added bonus of being
platformed on low cost PCs. MultiBus Il and FutureBus have fast message passing hardware, but at
a high cost. SBUS, on the other hand, has tremendous speed. but himited slots and board selection

Another factor in the efficiency of interprocessor communication 15 the mechanism by
which processcrs notify each other that new information 1s available 1t a processor 15 awaning some
data from another processor, it should not have to repeatedly disrupt its other activities when polling
a semaphore or flag to determine if the data is available, uniess of course 1t 1s not performing other
overlapping tasks and the semaphore ‘lock-out’ time 1s far less than the interrupt processing ime A
point to point interrupt mechanism can be used to increase efficiency On the VMEbus the dedicated
interrupt lines quickly run out, so ‘mailbox’ addresses are used (an interrupt 1s generaied on a
processor whenever a certain on-board dual ported address 1s accessed To avoid conflict each CPU
board has its own hardware settable mailbox trigger addresses). Other buses, such as MultiBus 11
and FutureBus have sophisticated message passing coprocessors which can act as virtual interrupt
controliers (the message itself selects the interrupt handler). Due to the performance degradation

caused by memory contention, tightly coupled designs are generally better suited to a small number

of processors.
A.12 VMEbus/VSBbus

Since most researchers intend on using the VMEbus, a few useful notes are offered:

74

Do not use the customary arbiter provided by CPU board manufacturers,
they do not always work. provide limited time-out facility and. in some
cases. even slow down CPU processing. Use a separate arbiter in slot (.

Do not v e priority bus access to try and prioritize system events, these and
other events can quickly *hog’ the bus preventing other boards and/or events
from getung on the bus. Use the round robin fairness arbitration with all
boards at the same priority.

Do not use the ROR arbitration mode as it requires much longer to re-
arbitrate subsequent bus accesses. The idea in ROR 1s for long DMA blocks
so the same bus master need not wait for arbitration on every access. For
many CPUs contending for memory RWD is the better choice.

Make sure the bus power supply is large enough to handle the anticipated
load, most of the newer CPU boards require power from both Pl and P2
connectors and consume as muchas 12A@ 5 V.

VME requires termination on both ends of the bus, whereas the VSB (VME
Secondary Bus) requires termination on ONE end only. The VSB bus
{Newton89] provides a second 32-bit bus on the spare pins of the VME P2
connector. This bus can have up to 6 slots and is designed as a high speed
memory or peripheral bus. It supports multiple masters, slaves, and has
performance equivalent to the VMEbus. The VSB is a good way to alleviate
memory contention on the main VMEbus, ie. . one can have network traffic
I1/0 proceed on the VME while simultaneously CPUs communicated
through shared memory on the VSB. Most VME CPU boards support VSB
accesses along with an on-board bus arbiter.

A note on CPU boards. the test-and-set mechanism is the sole hardware
means for synchronizatior: and mutual exclusion (ie., semaphores) on the
VME and VSB buses. It is critical that the CPU boards used in a

multiprocessor configuration support the test-and-set feature properly. This

Appendix A

75

Appendiy A

was a great problem with Heurikon V2F CPU boaird used in Kali
(fortunately a fix was possible bv using the bus lock line to block out all
other masters while the test-and-set was executed, this 11x though requires a

substantially lor.ger time for this semaphore operation).

A.2 Commercial CPUs

Since the a robot controller’s processor so affects the pertormance. availabihity of
software and hardware tools. and third party support, its selection 1s the most critical hardware
decision when building a robot controller, because most of the effort in a robot controller design
today is in the software. To that end, the following is a brief summary of current commercial CPUs,

their performance. future versions, and availability of developments tools and real-time kernels.

A2.1 Motorola

The worn out 68020 and its microprogramed floating point coprocessor the 68881 and
the newer 68030/68882 once the leading edge of performance (still used in the majonty of
multiprocessor robot controllers) are now being greatly surpassed. The main problem 15 a dismal
floating point performance since each operation requires a sequence of micro-nstructions to
execute. The best case register to register multiply (single precision) requires 2 8 usec @ 25 MH/
and 1.4 usec @ 50 MHz (the maximum for the technology), well below | MFLOP |Motorola87] In
real programs the situation iS even worse since fetching operands from matn memory is constant
When both source operands and the destination are resident in memory over 200 cycles are required
to complete the operation, only a third which actually do the arithmetic! On the other hand, the
newest addition to the family, the 68040, does manage some impressive performance. A completely
redesign chip, it iIncorporates a low instruction cycie integer core and executes basic moves, jumps
etc. ina few cycles like a RISC processor, but uses more cycles for complex indirect addressing and
other less frequently used instructions. For this CPU floating point performance 15 considerably

enhanced. since the coprocessor interface is removed and the high speed FPU is on-chip At 25

76

P

Appendix A

MHz the 68040 performs single precision adds and multiplies 1n a noteworthy 3-5 cycles (memory
to register) reaching about 2-3 MFLOPS in practice [Edenfield90. Motorola90] Needless to say the
MC680x0 family of processors are the most popular among VMEbus vendors both 1n CPU boards.
development tools, and real-time kernels (almost every real-time kernel has been ported to. if not
down-right developed on. this processor family)

The 88000, Motorola’s original all RISC chip was designed to supplant the 68020
architecture, but achieves little more than the 68040 (to redeem 1itself from the embarrassment
Motorola 1s designing a newer much faster version of the 88000, the 88110). The 88000 floating
point unit uses heavy pipelining (a five stage pipe with one multinly per stage) to reduce operations
to five cycles [Motorola88] and the adder is a three stage pipeline. At worst case an operation
requires a few cycles for memory access, 3-5 for the operation, and another few to output to
memory. Whereas the theoretical maximum, for the chip @ 20 MHz, 1s 20 MFLOPS (assuming a
full pipeline and a single step for each operation), the practical performance 1s around 2-3 MFLOPS.
Unfortunately, the 88000 does not enjoy the popularity of its sibling. thus the availability of boards.
tools, and real-time kernels have been somewhat less than that for the 680x0, but the 8800 still has
as much 'f not more 1n the way of third party support than processor families from rival companies

(except the intel 80x86 family).

A22 Intel

Ironically, the 80x86 architecture almost bankrupted the company until the triumph of
the IBM PC. A host of processors are now offered. the CISC-based 80386 with 80387 FPU and the
80486 (on-chip FPU), the RISC 80960KB, and the newest host performer, the lightening fast 64-bit
i860 The 386/387 patr 1s a poor performer (0.5 MFLOP @ 33 MHz), the 386/WEITEK(3167) FPU
does better at around 1.3 MFLOPS. and the 486 with or without the WEITEK(4167) FPU does
about the same [Intel87. Intel90]. The great advantage of this architecture is the huge availability of
software and development systems. The 1960 family of CPUs, targeted at embedded applications,

offers around the same floating point performance of the 386 family, but with faster integer

77

Appendin A

instruction processing. The newest members of this family. i960C A. utthzes a superscalat approach
|1nte188] capable of 66 native MIPS (peak @ 33 MHz). A new version of this processor is to include
an FPU with 27 MFLOPS single precision LINPACK performance @ 40 MHz The great potential
for robotics, however, lies in the 1860 and 1ts descendants. With a 64-bit data bus, three stage
floating point multiplher and parallei adder. this processor can achieve 80 MELOPS peak when all
pipelines are filled [Kohn89] Single operations require 2 cycles, so a 20 MFLOP rate tor the current
40 MHz chip is sustainable With current compilers. however performance 1s around 10 MFLOPS

Better compilers and faster chip versions will greatly improve performance
A23 SPARC

Developed by SUN Microsystems in response to Motorola’s slowness n bring out the
88000, the SPARC architecture 1s now the most widely used RISC chip [Glass91] Imuially without
an integer or floating pomnt multiply/divide instruction and suffering from lack of optimized silicon
[SUN87], the improved instruction set and low cost licensing available now from SUN, has given
rise to many different implementations from a host of companies are available' Fupitsu was the tirst
to make SPARC CPUs, initially as a gate array now in opttmized silicon, including everything from
the SPARCLite ch'. set aimed at embedded systems to 33 MHz CPUs, Cypress Semiconductor has
available 40 MHz CPUs & FPUs as well as a familly of support chips; Solbourne/Matsushita were
the first to integrate a complete CPU, MMU, and FPU on one chip. LS! logic has a whole hine of
SPARC CPUs and chip sets as well as ASIC standard-cells, finally, TI and WEITEK offer the
fastest FPU implementations for SPARC [Birman90, Darley90}. In addition, TI, Cyypress, and LS|
are also racing ahead to develop next-generation super-scalar SPARCs and 64-bit versions (SUN’s
SPARCstation 3 will be a 64-bit design). Performance of the manufacturers (at the same CPU
frequency) vary moderately and it is somewhat acknowledged that the SPARC architecture 15 a hittle
slower in integer and floating-point performance than the MIPS R3000 CPUs, but better than
Motorola’s 88000. The 25 MHz WEITEK SPARC FPU does about 2.75 MFLOPS (SPARC station
1+) and the T1 40 MHz implementation does about 4.5 MFLOPS (SPARCstation 2) Future versions

78

e

Appendix A

will improve performance dramatically especially as 64-bit versions arrive (this 1s necessary as the
IBM RS/5000 workstation and the new HP/Apollo PA-RISC achieve much higher floating point
performance from 32/64-bit data paths). For the SPARC architecture a number of real-time single
board computers are available from a vareity of manufacturers, although limited in CPU speed.

Most real-time O/S’s are available, though some are still in beta test like VxWorks.

A24 Mips

Start-up Mips. initially funded to build workstations, has come into its own as a RISC
design house Its much touted R3000 CPU and R3010 FPU are among the fastest RISC CPUs
available. With a strategy similar to SUN's SPARC, many semiconductor vendors implement Mips
CPUs. LSI with 25, 33 and 40 MHz versions of both CPU and FPU as well as some specialized
embedded versions, Integrated Device Technology (IDT) with CPU & FPU available separately and
with integrated cache modules. Performance Semiconductor with the first integrated CPU & FPU on
a single chip. Siemens, Toshiba and others are or have plans to manufacture the chips. The Mips
CPUs are used in DECstation workstations, Silicon Graphics workstations, as well as some recently
announced (for future delivery) by Compaq, Sony, Siemens, Zenith (Bull), and others (the ACE
Advance Computing Environment, consortium). Performance is excellent with the 25 MHz version
achieving about 25 MIPS (one nstruction per cycle) and 4.9 MFLOPS (versus SPARC 18 MIPS
and 2.75 MFLOPS) [LSI88|. A better handcrafted chip design and superior compiler technology
with more efficient use of a more conventional register file (as compared to the SPARC’s after
thought compiler and large number of register windows which suffer from ahigh reloading penalty
when the windows are exhausted) give this CPU family a slight performance edge [Kane88]. The
intense debate between SPARC and Mips continues on which is the most efficient for various
instructions, te., compare and jump, square root, etc [Williams91]. The one definite Achilles heel of
MIPS processor family, though, is the lack of software and development tools as compared to the
SPARC as a workstation CPU and to the AMD29000 family as an embedded processor. Few single

board computer implementations are available (such as a VMEbus board) and the better real-time

79

Appendin A

OIS’s are generally not available for this CPU family. particular VxWorks (though LyvnxOS has
been ported). The newest version of the family the R4000, transitions from 32 to 64 bits and
features superpipelining. which allows the computer to issue two instructions per clock cycle It
includes Integer and floating point units. an 8 kByte data cache. cache control, a memory
management unit and full multiprocessing capabilities. Intial speed should be over 60 MHZz with

about 60+ MIPS integer and 20+ MFLOPS floating point performance.

A2.5 Advanced Micro Devices (AMD)

The high performance 29000 processor family sold by AMD was among the first to
implement true a Harvard architecture (2 data/address buses off-chip. one for data, one tor
instructions). Originally offered as a workstation CPU, the 29000 was withdrawn from the ‘race’
and is now used as in a variety of embedded applications, especially in floating point intensive arcas
like graphics where it performs very well The 29000 CPU uses the 29027 FPU chip tor floating
point operations. but unlike most FPUs this chip provides a pipelined mode and a lower latency
mode in which the arithmetic logic unit is totally combinatorial This otfers far lower latency than
found in other more conventional serial-parallel (interlocked multi-stage pipehined) FPUs In flow-
through mode the 29027 performs 32-bit floating point adds/multiplies in 5-6 cycles, about 200 nsec
@ 25 MHz [AMDZ89], in pipelined mode an operation requires 4 cycles (160 nsec @ 25 MHz} This
results in 5-6 MFLOPS peak performance. The newest member of the family. the 29050 offers an
integrated FPU with much enhanced capability. A three stage adder/multipher pipeline that
performs operations in one cycle as fast as 25 nsec (@ 40 MHz)' 4x4 matrix multiphes 1n 09 pscc
with a sustained 40 MFLOPS |AMD90] throughput for this operation—great for robotics

Availability of design and development tools is excellent, though the full feature real-

time O/S’s like VxWorks have generally not been ported to this processor family.

80

Appendix A

A2.6 DSPs

Digital signal processors were heralded as a new age in computing for many application
areas, these processors are designed to perform digital filtering at very high speeds. especially
multiply-accumulates for dot product and matrix multiplication (all implement overlapping
multiply/adder pipelines). The newer DSPs are all floating point now (however some sacrifice IEEE
floating point compatibility to gain speed) and most have full C compilers making them eminently
surtable for high speed robotics applications. Performance varies between the many DSP families of
which there are a host from many different vendors |Andrews90, Lee90]. The most prominent ones
are:

* AT&T DSP32C: 25 MFLOPS (peak @ 50 MHz), 3x3 by 3x1 matrix
multiply in 36 cycles=720 nsec, 32-bit floating point format conversion
to/from IEEE single precision in hardware {Fucci1088];

* Motorola MC96002: 18 MFLOPS (peak @ 27 MHz). 3x3 by 3x1 matrix

multiply in 24 cycles=890 nsec, full IEEE single and double precision

floating point operation using transparent conversion on load/store to

memory (interstingly, this DSP uses a 96-bit internal floating point format

which has the same latency for single or double precision arithmetic

operations) [Sophie88]:

* TI TMS32C30. 33 MFLOPS (peak @ 33 MHz), 3x3 by 3x1 matrix

multiply in 29 cycles= 879 nsec, 32-bit floating point (non-IEEE

compatible, but with conversion in software) |Papamichalis88, TI89].

TMS32C40: 40 MHz version of the ‘C30 20% faster, has six symmetric

multiprocessor communication ports (used for large multiprocessor arrays),

and has hardware conversion to/from IEEE single precision format [TI91],

unlike its predecessor, This family of DSPs is far and away the most popular

81

Appendin A

with the best support both from Tl and third party hardware/sofiware

vendors.

In general, development tools and systems for DSPs are few and reman confined to the
chip manufacturers themselves. Real-time O/S’s and kernels are tew and tar between, the best
system is ‘SPOX’ [Manuel88} developed initially for the T1 fanmly and bemng ported to the others A
number of other ‘block-mode” graphical programming systems aimed at creating signal processing,
applications seem to be the direction DSP software 1s taking. unfortunately unsuitable tor general
control problems like Cartesian-based robotics control (except for single jomnt controliers).

However, reseachers could develop such systems for robotics.

A2.7 Transputers

From Europe Inmos’ (now a division of Thompson-CSF) much touted 1dea 15 the
Transputer. Following the philosophy of Occam’s Razor (“keep it simple, stupid™), the Transputer
design involves the connection of many small but pow rful microprocessors jotned by high speed
(30 Mbits/sec) serial links. Based on a very simple three register architecture coupled with a RISC
like instruction set, the T800 with integrated floating point unit perforins only about 1.5 MFLOPS
@ 25 MHz. Later versions like the T805 make some moderate throughput improvements and attair.
higher clock frequencies. However, the latest Transputer, the HI, 1s a pipelined superscalar design
capable of 60 MIPS and 10 MFLOPS sustained performance @ 50 MHz (200 MIPS. 25 MILOPS
peak performance) [Williams91(2)]. The unit includes 16 kBytes of on-board cache memory and a
programmable multichannel serial data link crossbar.

Availability of development and software tools is adequate, though only one or two real-

time O/S’s or kernels, of any size or sophistication, have been ported to the Transputer.

A.2.8 National Semiconductor

Sluggish sales, no supported bus architecture, and only above average performance

plague this company. The N§32332/32380 32-bit microprocessor and floating point coprocessor
82

Appendix A

performs at about the same level as the MC68030/68882. The newer NS32532 does have some
impressive performance. 15 MIPS peak about 8-10 MIPS sustained (not quite as good as the
MC68040 or the 180486). Acknowledging the dismal performance of its previous floating point
coprocessors, National decided to use the WEITEK 3167 as the FPU for the 32532 (note that Intel
already uses the next generation WEITEK4167 with the ‘i486) which can achieve 1-2 MFLOPS.
Typical add/multiply is 4 cyles (2 cycles instruction transfer from CPU instruction stream plus 2
cycles for the operation itself). A short 2 stage adder/multiplier pipelin~ allows the throughput to
achieve operations in 2 cycles for a 15 MFLOPS peak rate on short bursts @ 30 MHz
[lacobovici88]. though in practice only 1-2 MFLOPS is achieved by the 32532 (about the same as
the WEITEK coprocessor achieves with other CPUs like the i486 or SPARC). In addition
National's microprocessors are only supported by a small group of third party hardware and

software vendors.

A29 IBM

Having invented RISC and then having failed capitalize on it, IBM stunned the
computing world in 1990 with its System/6000 workstation and RS/6000 CPU chip set. Then IBM,
Apple Computer and Motorola announced that they were in negotiation (in secret since 1990) for
Motorola to produce the RS6000 chip set, thus making it available to third party workstation and
CPU board manufacturers. Performance is second only to the HP/Apollo PA-RISC with 55 MIPS
(Specmark benchmark [Weicker90]) and 21 MFLOPS on the LINPACK (double precision for the
latest 50 MHz CPU) [Oehler91]. The processor consists of a five chip superscalar RISC design. The
main instruction decode & dispatch unit communicates to the FPU and 1U (integer unit) over a 128-
bit bus and decodes four instructions simultaneously. Data and instruction cache units provide 32K
and 64K respectively of four-way set-associative caching, thus providing very high hit ratios
(moreover, error correction (1 bit) and detection (2 bits) is provided on all interchip data and

address paths). The FPU has a 64-bit data bus, and in addition to standard single cycle

83

.~ |

Appeadin A

multiply/add/divide overlapping execution units, special single cycle accumulate and multiply
hardware is provided like in DSPs [Oehler90].
So far. the only operating system provided is IBM s version of UNIX, AIX. which has

some, though limited. real-time capabilties.

84

Appendix B, Real-Time Kernels

B.1 OIS Classification

The world of real-time operating systems/executives and/or kernels is arcane. complex
and diverse. Designers face a difficult. involved process of learning what real-time operating
systems or kernels are available, whether they are creating simple pick-and-place robot controllers
or complex object oriented. multi-sensor fusion systems. Selection of the O/S that best suits their
apphcation is difficult as more than fifty different products are commercially available. To aid the
reader in this endeavor, this appendix attempts to classify and evaluate these products. beginning

with a basic taxonomy:

Table B.1 Classification of Selected Real-Time Q/S’s

Architecture Independent

(not necessarily open architecture) Proprietary
VRTX (Ready Systems) CX/RT (Hams)
SPOX (Spectron Microsystems, DSP kernel) VME Exec (Motorola)
C Executive® (JMI Consultants) 1RMK (Inteh)
Embedded usx (US Software) FlexOS (Digital Research)
Precise/MPX (Harmony OS, Precise Software Tech) RTE (Hewlett-Packard)
{many other kemels on a vanety of 8,16 and 32-bit CPUs) (other Vendor specific kerels)
pSOS (Sottware Components Group)
MTOS/UX%® (Industnal Programmung Inc) fm())(s iﬁ'tl;“‘;“ Rescarch)
PDOSE (Eyning Reasearch Inc) Versa DOS
VxWorks3° (Wind River Systems))
Hyb[‘id 05-9, 08 9000 (Microware) (other Vendor specific real-ime UNIX
UniFlex. (Techmeal System Consultants) vanations)
CHORUS! (Chorus Systems)
VRTXvelocityt (Ready Systems)
(many other kernels, the fastests growing category)
LynxOS$" {Lynx Real-Time Systems Inc) Vemx+ (VentureCom Inc)
Full O/S REAL/IX+ (Modcomp Corp) ELN (DEC)
ONX (Quantum Sottware Systems Ltd)
CHORUSMiX | (CHORUS Systems)

Embedded * Tradional Embedded Hybnd + Embedded or Sophisticated (disk-based ~ |Mbyte)
* No IO for File System « 1/0 and File System
* Hard Real-time systems * Cross development usually self-hosting
= Cross development * Targeted at End-user, OEM or VAR
* Targeted at OEM applications
Full O/S « Non-Embedded FUNIX derivative

* Disk based. over | MByte code
* [/O and File System

* Softreal ime

* Self-hosing

* Targeted at end-user or VAR

“Independently created UNIX compatible frec of
AT&T source code

$Approximate UNIX tunctionality
(library and file VO source level compatible)

°Open Architecture, sourq e code avarlable

_ -—-—

Appeadin B

As mentioned previously. the wisest course ot action in creating a robot controller 1s to
divide the code into two parts: a) the real-time. system, dependent kernel, and b) the robot control
code itself, which must. to some degree. depend on the particular real-time kernel selected. The real-

time kernel, therefore. must also meet all the general requirements of the robot control code,

specifically:
. It should be easily portable to other systems. despite dependence on the bus
and CPU boards.
. It should contain all system dependent code. not including robot

configuration information, though an effort to minimize this should be
made.

. It should be as flexible as possible in terms of source code. networking and
third party support

. It must perform well enough for the robot control task, not only on the
development system, but equally on other hardware of similar capability
Primary performance characteristics include, task switch time, interrupt
latency, effective scheduling algorithms, intertask and interCPU
communication mechanisms (ie., shared memory with semaphores and/or
message passing).

. It must have support from the vendor and continued improvements as well

as porting to newer hardware as it becomes available

B.2 Evaluation & Commentary*

In order to provide the reader a useful comparison of the most popular commercially

available real-time kernels, the following evaluation and commentary gleaned from the product

¥ Some of the foilowing comments from the respective representatives and product hiterature trom Wind River Systems, Kendy
Systems, Eyring Systems, Software Components Group, Modeomp Ine, Lynx Reul Time Systems, and from [Willinm»90)
Additional commentary provided by Sung Han of Commonwealth Edison, Ilhinows, and of course, the author

86

L

Appendin B

literature, personal experience of the author and that of others is oftered (untortunately tor the

reader, only five kernels are reviewed):

B2.1 pSOS+

Summary: pSOS+ (Vendor Software Components Group, San Jose, Calitorma)

(on 16 MHz MC68020)

Yrivse Interrupt latency: 10 psec
%% Task switch 250 psec
wir Message send/receive 340 psec

wirie Prionity-based preemptive scheduling, user programmable

17 {7 ¢ Fully dynamue process management and interprocessor commumeation with
semaphores, meluding across CPUs

#r Networktng support including tull BSD 4 3 sockets, NFS and RPC
Small-sized ROMable target application modular component architecture

7 7% %« Multiprocessor support

¢ Integrated development and debugging tools

Widespread use and proven rehabihity

Portability MC680x0, MC68332, 186, 180386, 1o source, though large

number ot such CPU hoards are supported

s ox- x-
A X3

x> 3t
Z.k Z\

X X X

=

pSOS+ 15 a solid, reliable system used used 1 a variety of aerospace, medical and
commumeations products Performance 15 excellent with tully integrated debugging
and multiprocessor support, 1n addition to essential networking support

pSOS+ is the follow-on to the venerable pSOS kernel, from Software Components
Group. The system includes the pSOS+ kernel, pPROBE+ board-level monitor/debugger. and the
pNA+ Network manager. Also included is compiler package from Microtec, and XRAY +. which 1s
a joint product by Microtec and Software Components Group.

The pSOS+ kernel is highly flexible, and its feature set is competitive with the others
However, the approach used to interface pSOS+ components to user code is different from the other
systems. While the other systems link the user code with the system code to resol ve references, all
of kernel functions are called through software traps. which vector directly into the pSOS+ kernel
The kernel then determines which pSOS+ component to call to service the request. And while this
provides position independence and eliminates the need to link user code with pSOS+ routines, 1t
also creates some overhead, since every call to a pSOS+ system component means a service trap

This is reflected in the performance figures provided later (see section B.3). Note, however, that

87

eoN

Appendix B

this applies to the software trap kernel library, KIM (Kernel Jump Module) interface. An alternative
interface. CIL (C Interface Library) providing direct linking, gives better performance.

The pSOS+ kernel’s messaging facility allows up to four long words of user data to be
passed between tasks. VRT X only allows a single word. which usually means that memory has to
be allocated in order to send any meaningfui data through messages (the length of VxWorks
messages is unlimited). Also, event flags in pSOS+ can be directed either at a specific task. or be
global. Events in VRTX are always global, and VxWorks does not have event flags. pSOS+ also
allows each task to have an asynchronous signal handler. This signal facility is not entirely like
UNIX signals however, as the signal handler will not be called until the user task makes a pSOS+
system call.

The pNA+ networking package provides full Berkeley 4.3 sockets support. The
competing network packages providc similar functionality, but only pNA+ has a socket-sharing
mechanism, which can be convenient if it is required to deal with numerous independent
connections on a single board computer.

The XRAY+ source level debugger proved to be a versatile, reliable debugger. Its user
interface was a bit awkward. however. The debugging format used is IEEE695; this format is fully
supported by the accompanied Microtec Research compiler tools package (compatibility problems
exist in using IEEE695 output from other compilers). The company also provides provides NFSt
and RPC*+ support through their pNFS product which is available in conjunction witir their pHILE+
file management system,

Software Components Group also offers pSOS+/M, which is a multiprocessor version of
the pSOS+ kernel. It provides (nearly) seamless usage of standard pSOS+ calls over multiple

processors connected through various types of media including backplane and ethernet.

¥ Network File System A standard for client/server file sharing on UNIY machines popularized by SUN Microsystems

-+
* Remote Procedure Call A means of executing a function from one computer to another across a network. RPC 1s a necessary layer
for NFS

88

“p

Appendix 4

B.22 VRTX Velocity

Summary: VRTX Velocty (Vendor Ready Systems, Sunnyvale, Cahtornia)

(on 16 MHz MC68020)

Yevriv Interrupt latenc y 10 psec

v Task switch 265 psec (worst case 530 psec)
7w Message send/receive 375 psec

wririe Prionty-based preemptive scheduling, user programmable
w7 Fully dynamic process management and interprocessor communieation wath
semaphores, including across CPUs
7 Networking support including TCP/IP, RPC, and NFS
Small-sized ROMable target application, modular architecture

v Multiprocessor support

it Integrated development and debugging tools

% Widespread use and proven reliabihity
Portabiity MC680x0, no source, though large number ot such CPU boards
are supported PC/AT also provides development/target, but only tor
VRTX32kernel, not Velocity extensions

pat

e OXe N X 2

P
W
A
W
A
W
A
W

VRTX Velocity 15 4 sophisticated development environiment, and provides an
unsurpassed level of flexibility, automation and ease of use However, its complexity
can be daunting at times, especially to the beginner Decent kernel though VRTX32
is, it falls short of pSOS+ in terms of pertormance and VxWaorks 1n terms of teatures

VRTX Velocity is a combination of target software components and host-based tools.
The target software evaluated consisted of the VRTX32 kernel, RTScope board-level
monitor/debugger, TNX TCP/IP* Network manager, RTL runtime C library, and RTShell target
shell. The host-based tools included the RTSource remote source debugger, Hypei'iink ethernet
downloader/command center, and an Oasys Compiler tools package. The host side of the Velocity
package runs only on SUN3/SUN4 workstations in SUNView.

VRTX Velocity offers two approaches to development. One is where TFTP! is used to
load the system software and RTshell at boot time using TFTP. The shell then can be used to load
software onto the board off a network through NFS. An incremental linking loader is provided,
which accepts standard Unix format relocatable object files. The shell allows functions to be called,

and can evaluate most C expressions. The alternative approach is to manually download system

T Transmission Control Protocol/Internet Protocol A set of communication and addressing protocols used primanly by UNIX
machines, the US government, and by association most rescarch mstitutions

¥File Trans port Protocol An O/S independent file transfer protocol using TCP/IP
89

Appendix B

software to the target board using Hyperlink, an intelligent downloading program. Hyperlink can
also be used to launch other Velocity programs. such as RTScope and RTSource.

The VRTX32 kernel provides a unique approach to identifying tasks. Each task has a
numeric ID. from 0 to 255. They cannot have names, which are allowed in pSOS+ and VxWorks.
If more tasks are needed, there can be multiple tasks with an ID of zero, up to 16384 (signed 16-bit
integer) of them. These tasks are referred to as ‘anonymous’ tasks. and they usually cannot be
directly referenced by other tasks. For instance, they cannot be delsted by ID. since an ID of zero
used in system calls usually refers to the caller. Fortunately, VRTX32 allows tasks to be referenced
by priority groups, so this is one way to deal with anonymous tasks.

The VRTX kernel has some features which are lacking in the other kerels; specifically.
it provides character 1/0 operations at the kernel level; and mailboxes. which are single slot message
queues. It is also lacking in other areas—for instance, there are no built-in time/ calendar functions,
aside from a tick counter (though complete timer functions can be easily built by the user, the same
is true for VxWorks). Furthermore, when creating a new task, there is no easy way to pass
parameters to it. Also. creation of tasks is always a single-step process, ie., create the task, and if its
priority is higher than the caller, pre-empt the caller and run the task. This is different from pSOS+,
where task creation is a two- step process, ie., create, then activate. VxWorks allows the use of
either approach. Also. there is the odd restriction that once a message queue is created, it cannot be
deleted. Ready Systems claims that this is to prevent fragmentation of system memory. Finally,
unlike pSOS+ and VxWorks, VRTX32 lacks asynchronous signal handling.

The RTScope board level monitor/debugger is highly flexible, and prevides two modes
of operation: command mode and task mode. In command mode, all user tasks are halted, interrupts
are disabled, and the standard suite of memory operations and tisk control commands can be used.
In tasking mode, RT Scope runs as atask. alongside user tasks, with interrupts enabled. The system
can therefore be monitored in action without impeding on user tasks. Note that commands which
infringe on normal system operations cannot be used in this mode, eg., memory patching, task

suspension, task creation, etc, are not available. Also, RTScope, unlike pROBE+, will not

90

93

‘4—

Appendix B

automatically halt all tasks if a single task crashes (usually). The other user tasks will continue to
run normally, if possible (although whether this is a safe practice may be questionable).

RTSource is a good, user-friendly source debugger It appears easier to use than
XRAY +; however, reliability seemed to be inferior. as it gets more easily lost m the code
RTSource also uses a proprietary debugging format. so the Qasys compiler tools have to be used.

Also available from Ready Systems is MPV, a multiprocessing version ot the VRTX
kernel, which is similar in approach to pSOS+/M. Also av. able is the IFX manager, along with
NF§ and RPC support. In addition, unique to Ready Systems is the availability of VRTX Designer.
which is a CASE tool for real-time system design. It uses known VRT 1 timing data to project the
performance of user designs and spot potential bottlenecks. These products were not evaluated.

VRTX Velocity provides automated scripts to build E®PROMs, applications, or even
‘makefiles’. The scripts are interactive, and the user chooses from a list what components he or she
wants to include in the target. The appropriate ‘makefile’ is then created that builds both the VRTX

system software and the user application.

91

Appendix B

B.2.3 VxWorks

Summanr: VxWorks (Vendor Wind River Systems, Alemeda, Cahitorma)

(on 16 MHz MC68020)

Yr7r Interrupt latency 9 usec (worst case though 75 psec)
Ve Task switch 200 psec (worst case though 500 psec)
vris Message send/receive 375 usec

i¥ Priority-based preemptive scheduling, user programmable
Fully dynamic process management and interprocessor communication with
semaphores
71 7« Networking support including TCP/IP, RPC, and NFS
% Small-sized ROMable target application (200 kBytes with mimimal
networking)
NO Multiprocessor support
i i Integrated development and debugging tools
17 Widespread use and proven rehiability
31 #3 Portability MC680x0, SPARC beta test, source available, large number ot
CPU boards are supported

X %

e
b
e
W

R

Pl

I I XXy

VxWorks enjoys a good reputation among its customers Its networking support 1s
second to none, and 1t has a flexible kernel with strong interprocessor
communication facihites However its remote source level debugging facilities are
not as sophisticated as the competition In addition, VxWorks 1s conspicuously vord
1n the area of a multiprocessor kernel, which others provide

The current version of VxWorks is 5.0.1a (as of 1Q 1991), from Wind River Systems. It
includes the WIND kernel, a target shzll, a TCP/IP networking manager, an extensive C runtime
library, and the GNU* compiler toolkit. The GNU tools include the C compiler, assembler, linker.
and VxGDB, which is the GNU debugger modified by Wind River Systems to work in the real-time
environment. VxWorks. like VRTX, normally boots by loading its system code off the network.
Whereas VRTX uses TFTP to do this, VxWorks uses ‘rsh’ on a host workstation.

As an interesting note, prior to version 4.0, VxWorks utilized the VRTX kernel from
Ready Systems. Eventually, however, the Wind River Systems packaged tagir own WIND kernel
in VxWorks.

The WIND kemel provides comparable functionality to the other kernels. However, it
lacks true round-robin scheduling, and event flags are absent. In addition, the WIND kernel does

not offer any real-time clock functions. only a tick counter. On the other hand, its semaphore

* GNU = GNU 1 Not Unix Developed by the Free Software Foundation, Cambridge, Massachusetts
92

Appendin B

support is excellent—binary, counting. and mutual exclusion semaphores (with priority inversion)
are included. Both pSOS+ and VRTX offer unly ccunting semaphores Likewise. pipes are absent
in both pSOS+ and VRTX32. but they 're present in VxWorks VxWorks also features UNIX-style
signals, which are truly asynchronous. ie.. a task will stop whatever it's doing at the moment. and
service the signal.

WIND insists on routing interrupt routines through its hernel; however, this can be
bypassed. Handling interrupts yourself should not be a problem with any of these kernels
Nevertheless, VxWorks tries to convince the user to let 1t handle interrupts, and thus provides
several interrupt-related commands in the kernel.

Unlike pSOS+ and VRTX, there 1s no separate mulitprocessing version of the WIND
kernel. However, Wind River Systems does provide a loosely coupled backplane protocol where
boards on the same bus can communicate via a socket interface.

VxWorks does not have a true board-level monmitor/debugger like pSOS+ or RTScope 1t
does however have a target shell that 1s a cross between the board level debugger and the RTShell
type of shell, providing ¢ expression evaluation and interactive function calls. It provides an
incremental linking loader that accepts UNIX object files, and it provides all of the memory and task
oriented examine/modify commands provided in the board debuggers. In addition, 1t also offers
extensive symbolic disassembly and debugging facilities.

The level of networking support provided by VxWorks is excellent NFS and RPC
support is, of course, included. In addition. ‘rsh’, ‘teinet’, and FTP are available to and from the
target.

The VxGDB debugger has its origins in the UNIX GNU GDB debugger. VxGDB scems
to be a serviceable, if somewhat unremarkable debugger It’s not a windowed, SunView application
like XRAY+ and RTSource are, so it lacks their flash and glamour. In addition, it’'s more of a

single threaded debugger, so it’s more difficult to use when debugging several tasks in one system

93

Appendix B

B.24 LynxOS

Summary: LynxOS (Vendor Lynx Real-time Systems. Los Angeles, Califorma)

(on 16 MHz MC68020)

%t Interrupt latency 20 psec (worst case though 140 usec)
¢ Task switch 273 psec (worst case though 400 psec)
v Message send/receive 625 use:

iviviz Fully POSIX 1003 I and UNIX System V comphiant

fr frir Pnonty-based multi-threaded, preemptive kernel

777 ix Fully dynamic process management and interprocessor communication with
semaphores

7i % & Full UNIX Networking support including TCP/IP, RPC, and NFS

ti3x High speed contiguous files

fr Medium-sized ROMable target application, large standard version (>1 Mbyte)
% NO Multiprocessor support

WivT v Integrated development and debugging tools

e v ve Wadespread use and proven rehability (selected by NASA tor space station)
7¢ ¥ s Portabihity MC680x0, 180386, R3000, MC8800C0, no source but No AT&T

code either, compatible with PC architecture and a number ot CPU boards

Full UNIX wath all capabilites 1s standard, thus the development environment 1s
second to none All the long time complaints against UNIX real-time madequacies
are addressed However, this does exact some performance penalty It is used mainly
in a wide variety of *soft” real-time applications, but has also been used to 1n a
robotics application to control the Salisbury robot hand

LynxOS has the rare distinction of being fully POSIX* 1003.1 compliant, as well as
UNIX System V.3 binary compatible (with BSD extensions) while maintaining a real-time core that
was written from the ground up. without any AT&T source code, to meet these demanding
specifications. The rewritten kernel removes the classic problems with UNIX (Cole90] and
incorporates a multi-threaded, preemptive, reentrant kernel instead. Task communication facilities
include sockets, semaphores. UNIX signals, messages, pipes and shared memory (virtually all the
interprocess communication schemes). Other advantages over typical real-time kernels (like pSOS
or VxWorks) are a full virtual task address space and hardware memory management support
without much performance penalty (see section B.3). as well as very deterministic task reponse
times. Moreover development tools include any UNIX compatible utilities, editors, compilers, etc,

along with the ease of self-hosted development.

¥ Portable Operating System for UNIX An Internationally recognized, now widely adopled, vendor independent standard
Compluice with the standard 15 required espeaially for products sold to governments and large institutional computer users

94

¢

Appendhix B

B.2.5 PDOS

Summary: PDOS (Verdor Evring Research, Provo, Utah)

(vendor clanned on 16 MHz MC68020)
e Interrupt latency 6 psec
Wit Taskh switch 70 psec
Wit Message send/recene 200 psec

itivic Prionty-based preemptive scheduling, user programmable

fiir Fully dynamic process management and mterprocessor commuunication wath
semaphores (Iimited number ot processes, 64)

id Networking supporthowever only mcludimg ICPAP, | 1P

2 i iy Small-sized ROMable target appheation (complete kernel on 36 hBytes)

i NO Multiprocessor support

i Integrated development and debugging tools (non-symbohe debugger linmted
tools)
£ 10 Widespread use and proven reluability

I
pavs

Portability MC680x0, no source, though large number ot such CPU hoards
are supported

PDOS 1« a small, tast kernel with tull POSIX tile O and hbrary tunctions (PDOS v
40), and self-hosted development system whichis o bt pimitive even by the
VxWorks standard (non-symbolic debuggimg, and though it has a degree of POSTX
compatibility, 1t st1ll talls <hort of source compatibihty with major UNIX
development tools) Standard multiprogramming kernel teatures are provided, but
only for 64 processes at any one time Network support 1s optional and provides
basic protocols

Like pSOS and VRTX, PDOS 1s of a modular design. yet 1t comprises an amazingly
small kernel (only 36 kBytes + 80 kBytes TCP/IP network support) Of course. the advanced shell
and debugging features found the larger systems are missing. Nevertheless. PDOS does manage a
reasonable degree of POSIX file 1/O and hbrary compatibility (support tor diskette and hard disk
drives is optional). The system is self-hosting using the VMEPROM extension (removable for final
product embedding). but this environment is a bit sparse especially in the debugging which 1s more
akin to a ROM monitor than a debugger. Most people use a cross-deveopment system, many of
which Eyring supports. eg.. compilers/libraries for cross development on IBM PC-MS/DOS, SUN3,
HP-UX. Another area of weakness (for which speed is the trade-off, no doubt) 1s that the multi-
tasking features of the kernel only allow upto 64 tasks to exist simultaneously The kernel facilities,
though, are complete with timer functions, event processing, and a standard priorized round-robin

scheduler.

95

e

Appendix B

B3 Performance Comparison

‘The following performance tests are provided for a select group of real-time kernels by
Kalbfieisch |Kalbfleisch9!l] (at the Superconducting Super Collider Laboratory in Texas) in
cooperation with the respective real-time kernel vendors*. Throughput measurements are tabulated
in Table B.2. What follows 1s a brief description of each test as it appears in the table. Maximum,
average, and minimum times for each are given so the reader can gain an insight as to how
predictable (ze., least variation in the test times) each kernel is. Hardware platform used for the test
was a Motorola MYME-147S-1 VMEbus single board computer (MC68030/68882 @ 25 MHz)
with | MByte of RAM.

Test 1) Create/Delete Task. This test measure the time it takes to create and

delete a task. A task deletes itself as soon as it is created. The created task

has a higher prionty than its creator. so the time quoted actually includes a

create, start. delete, and two context switches.

Test 2) Ping Suspend/Resume Task. A low priority task resumes a suspended

high priority task. The high priority task immediately suspends itself. This

measurement includes two task context switches and the time it takes to

suspend and resume a task. There is no facility to suspend and resume a

task on LynxQOS apart from signals. Thus this test was not performed under

LynxOS.

Test 3) Suspend/Resume Task. This is 1dentical to the previous test except that a
high priority task suspends and resumes a suspended lower priority task so
that there is no context switching.

Test 4) Ping Semaphore. Two tasks of the same priority communicate with each

other through semaphores. Task A creates a semaphore, gets the

semaphore then creates Task B which blocks when it attempts to get the

semaphore. Task A then releases the semaphore which immediately

* Such comparative tests are ditficult to come by 1n the hughly compettive real-time kernel arena with reluctant vendors
96

unblocks Task B. Task A then attempts to get the semaphore which causes
it to block until Task B releases 1t The two tasks then alternate ownership
of the semaphore thereby causing context switches VxWorks version 4 02
was used which requires two separate semaphores, because round-robin
scheduiing is not supported (1t may be possible to avoid this VxWorks

version 5.0. 1, but it is still difficult to implement)

Test 5) Gerting/Releasing Semaphore. The time reported includes the time ut

takes to get and immediately release a semaphore within the same task

context.

Test 6) Queue Fill/Drain. A single task sends a message to a queue which the

task immediately receives on the same queue There 1s no task switch nor
are there any pending queue operations. The next test consists of two task
with two queues. The two tasks alternate execution by sending to the queue
while the other is blocked waiting to receive. The total time includes

context switches, queue pends and sending plus receiving a message.

Test 7) Queue Fill, Drain, Fill Urgenr. First the time 1t takes to fill a queue is

with messages is measured. and the time it takes to drain the queue 1s
measured. The two tests are repeated with priority messages. le.. messages
going to the head of the queue. VxWorks 4.0.2 does not support message
queues but ring buffers with semaphores gives the functionahty of a
message queue. VxWorks 5.0 now has message queues. LynxOS has UNIX

System V message queues with priority messages handled difterently.

Test 8) Allocating/Deallocating Memory. The time 1t takes to allocates a number

of buffers from a memory partition and the time it takes to return those

buffers to the partition is measured.

Test 9) Real-Time Response. The real-time response of the kernels by measuring

the interrupt service response and the interrupt task response The interrupt

service response is the time it takes to execute the first instruction of an

Appendix B

97

ﬁé&“ .

- Appendix B

interrupt service routine (ISR) from when the interrupt occurs. The Task
response 1s the time it takes for a user task to resume execution from when
the interrupt occurs.

Table B.2 Comparative Performance of Some Real-Time Kernels

pSOS+(KIM) VRTX32 LynxOS VxWorks PDOS"

min/max/avg min/max/avg min/max/avg min/max/avg min
1) Create/Delete Task 540/600/591 370/380/371 —_ 1378/1446/1423 1113
2) Ping Suspend 120/130/128 140/150/142 — 174/182/177 79
3) Suspend/Resume 80/90/83 80/90/ 87 —_ 68/ 74/ 69 27
4) Ping Semaphore 210220219 230/250/239 390/400/397 228/234/232 %
5) Get/Release Semaphore 63/ 64/ 63 55/ 56/55 73/ 76/ 74 33/ 34/33 2
6) Queue Fill 40/ 50/ 46 20/ 30/26 136/146/140 19/ 21/20 %
6) Queue Drain 40/ 50/ 43 20/40/29 126/136/132 21/25/22 i
6) Queue Fill/Drain 90/ 93/91 50/70/59 280/290/278 43/ 48/ 44 i
7) Queue Fill, Urgent 40/ 50/ 47 20/ 30/ 27 166/175/170 70/ 76/ 72 i
7) Alt . Qs Fill/Drain 23072401238 25072607252 860/900/867 366/376/371 i
8) Alloc Memory 40/ 40/40 20/ 30/27 34/ 79/ 57 67/ 71/ 68 i
8) Dealloc Memory 30/ 40/38 30/40/33 20/ 21/20 82/86 /83 i
9) Interpt. Svc Response 6/ 6/6 6/ 6/ 6 13/88/13 6/ 56/ 6 3

9) Interpt. Tash Response100/169/163 179/343/169 163/262/175 119/319/125 4]

All times given are tn microseconds The pSOS+ entries use the two

programmung interfaces a direct C hnked Library CIL(faster), and a

software trap scheme KIM (slower) Note that the message queue times

were fastest with VxWorks, but that these are not ‘true’ message queues

that were tested for VxWorks

T These numbers were provided by Eynng Research after the independent
tests were performed by [Kalbtleisch91] Since Eyrning did not
partictpate 1n the onginal tests, the results are somewhat suspect

1 No data, not provided

B.3.1 CPU Performance Impact

So that the reader also has idea of the various performance variations that exist between
CPUs when executing real-time kernels, Table B.3 below provides an example of a collection of

RISC and CISC based CPUs:

98

RO IR M T T

TR er,

Appendix B

Table B.3 Comparison of a Typical Real-ime Kernel on Various Processors

CPU R3000 MC68020 AMD29000 SPARC
Speed 16 7 MHz 25 MHz 20 MHz 16 MH?
C compiler Mips Inc. Whitesmiths MetaWare Sun Microsystems
Context switch 10 17 29 20
Timer overhead <1 1 1 <1
Write system call 8 29 9 8

to null device

Write to queue 24 91 38 32
(interlocked)

Read from queue 24 87 38 28

Per character <1 <1 <1 <1

All times are 1n microseconds Source [Andrews90(2)] As can be seen,
RISC CPUs tend to be about three times faster in executing real-time
kernel functions as their CISC hased counterparts

B4 Standards

In order to facility the developer of real-time systems, a standardization effort 1s
underway in two areas: the POSIX real-time extensions proposal 1003.4 aims to standardize a
number of real-time extensions to UNIX., namely threads, guaranteed interrupt response, and real-
time scheduling [Cole90, Singh91]; the VITA (VMEbus Trade Association) has proposed ORKID
(Open Real-time Kernel Interface Definition) for real-time kernels as a standard, which 13 simuilar to
SVID (UNIX Systems V Interface Definition) [Andrews89(2)] Ready Systems, on the other hand,
the overwhelming market leader, has proposed its own systera BIOS (Basic Input/Ouput System) as
a standard {Williams90(2)]. Basically, each of these proposals must define a simple, though
sufficiently comprehensive, interface to the underlying hardware making it kernel independent 1)
task control, 2) queues for multiple task priority management, 3) semaphores, 4) clock and tmer
controls, 5) memory allocation facilities, 6) hardware interrupt support facilities, 7) event flags. and
8) exception handling mechanisms. Implementing a multiprocessor system 1s straightforward; the

necessary local objects are simply flaged as global.

99

-

yasey

Appendix B

In addition, both the POSIX committee for real-time extensions and ORKID group have
decided to pool their standardization effort (P.1003.13- Real-time Applications Study Group) so that
future source code is compatible with either UNIX or compliant real-time kernels (even though,

initially most real-time kernel vendors were opposed to ORKID).

100

¥ 3

Appendix C. McGill Robot 1/0O Board

C.1 Introduction

The McGill Robot 1/O board is an interface board for quadrature encoders to the
VMEDbus. It is simple in design and easy to implement. The board interfaces up to eight servo
motors each with an encoder position feedback. index. and potentiometer. Also included 1s a
watchdog timer circuit which times out in the event of any system failure (ic.. the CPU doesn’t
‘refresh’ the watchdog in time) and shuts down the robot. The board has been successfully
interfaced to PUMA series robots and forms the basic hardware interface of the Kali robot control
system.

Encoder signals maybe either digital or differential. Sine wave (analog) encoder signal
are not currently supported. The board is based on a 16-bit VMEbus slave prototyping card by
XYCOM. One need only purchase parts listed herein, solder wire wrap sockets on the board, and
wire wrap according to the design. All design details needed are included

Also included is the design for a power switch to enable the robot motor amplifiers,
enable/disable the brakes, and provide an emergency OFF switch. This is called the Robot Power
Switch Circuit. It ties directly in with the timeout disable of the Robot 1/0 board to provide a

complete system with a high degree of safety.

C.2 Specifications

» Compatibility: A 16-bit VMEDbus board which interfaces up to 8 quadrature
encoders with differential or digital outputs including index pulses. Also up
to 11 Potentiometers with 0 to 5 V range. The XYCOM ‘NIKL’
specification with special PROM is not implemented.

* Module Address: The base address for module is switch selectable on |
kByte boundaries in either the short 1/0 or standard address spaces.

Determined by setting 8-position DIP switch. (see XVME-085 manual).

3

* Data Transfer: Data is transferred through 16-bit data path of VMEbus.
Accesses can be of any type (byte, word, long word). but only read 16-bits

at a time.

C.2.1 Electrical Specifications

* Encoder interface:
* Digital: Quadrature encoder A, B channels, 330 kHz (max) encoder line
frequency (1.2 MHz encoder ‘count’ frequency). Sink ImMA @ 5 V
(max). Threshold +1.4 V (min).
* Differential: Channels +A, -A, +B, -B. 330 kHz (max) encoder line
frequency (1.2 MHz encoder ‘count’ frequency). Sink ImA @ 5 V
(max). Threshold 25 mV (min).
* Noise immunity:
analog filter: -3 db at 100 kHz (min) to -3 db at 2.3 MHz (max), (input
filter selected with op amp buffer: TLC27LA4 for 100 kHz cutoff,
TLC27M4 for 700 kHz cutoff, TLC274 for 2.3 MHz cutof¥)
digital filter: 300 kHz pulse rejection for independent noise on both
channels (300 kHz (max) encoder line frequency for maximum noise
rejection. See Filter Optimization in HCTL-2000 data sheets, reference
in section C.8).
o Index Pulse: Sink 1 mA @ 5 V (max). Threshold adjustable from +0.2 V to
4.95 V (max).
* Potentiometer: Sink 500 nA (max). O Vto 5 V (max), 8-bits £1/2 LSB over
temperature.
» Warchdog: Timeout adjustable from 30 usec to 30 sec.
* Power Requirements (including XVME-C85 VMEbus interface): 3.0 A @
+5V (max),05 A@-12V (max),0.1 A@ 12 V (max).

Appendix C

102

£y

Appendix C

* Operating temperasure: 0° C to 50°C.

» Power Switch Circuit:
= source drive capability ALL brakes & amplifier enable: | A @ 24 V (max)
(can be increased by relay with larger contact rating. Note the above is

sufficient for a PUMA 500 series robot).

C.3 Theory of Operation

In general, robots have several types of position feedback mechanisms. The most popular
being incremental optical encoders. This type of position transducer is both very accurate and
inexpensive.

To determine the absolute position of a robot using incremental encoders, on being first
turned on, the robot must be moved to a known position from which all subsequent motions are
measured. This is called calibration and is the major drawback when using relative transducers To
perform this task, the incremental encoder has a recognizable index point (index pulse) passed for
every fix number of encoder pulses (usually one revolution of the motor shaft) By using an
independent. low accuracy. absolute transducer (like a potentiometer) in tandem with the
incremental encoder, it is possible to assign absolute values to the many ‘index points’ and to be
able to distinguish between them using an inexpensive absolute transducer. Calibration 1n such a
system merely involves passing through the nearest index point, resetting the encoders the instant
the index pulse is detected, and reading the current potentiometer value. Note that the potentiometer
must be accurate enough to read half way between successive index pulses. For example, the classic
PUMA 560 robot has a joint gear ratio of about 75:1. The index pulse is once per motor revolution,
so one need only distinguish between 75 pulses. Hence one needs a 2 x 75 = 150 resolution absolute
position transducer. This is easily achieved with a potentiometer and an 8-bit analog to digital
converter. One slight problem, though, can present itself when the potentiometer voltage range 1s
not over the full 0 to 5 V, but over a much narrower range. In this event, signal conditioning is
needed (ie., level shift and amplification) to bring the signal into the desired range, or an A/D with a

greater resolution could be employed.
103

Appendix C

Optical encoders consist of an LED shinning through an opaque plastic disk into which

.

holes have been made at regular intervals around the circumference. The light from the LED is
detected by a phototransistor which outputs a sine wave as the light moves across the hole. Two
rings of holes are used, one rotationally offset from the other so that where the first ring has a hole
the other does not. Quadrature encoding (also called times 4 encoding) uses two channels (A and B)
to transmit position counts and direction using a two phase (2 bits), or 4 state encoding system (the
channels are 90° out of phase corresponding 1o the offset of the rings). For each pulse cycle both
channels form four states or encoder ‘counts’. The pulse cycle duration is called the encoder line
[frequency. Hence the encoder count frequency is four times the line frequency. This allows a four
times higher resolution than the holes in the encoder disk can provide (see figure C.1 below).
Direction is determine by the sequence of state transitions. Typical quadrature encoder pulse

frequencies are of the order of 10 kHz to 100 kHz.

typrcal 100 kH7 max frequency Symmetry 180°4+20° typical Duty cycle = 50%
(ine-frequency) L
Channcl A

PR ——

Square wave (digital)

Channel B

Quadrature Detect

(encoder count) >
‘Quadrature 90°+30° typical

Channel A , /\
Sine wave /\
Channel B '

Fig. C.1 Quadrature Encoder Signals
Quadrature allows encoder signals to carry four times as much
information (‘counts’) as their frequency by tallying nising and falling
edges of two channels 90° out of phase Direction 1s determined by
defining which signal leads and which lags, re., it channal A lags B then
count up, 1f B lags A then count down

T

104

$)

Appendix ¢

Quadrature encoders come in three difterent intertace flavors. difterential sine wave,
differentiai digital, and digital. The simplest form is differential sine wave (sometimes also called
analog), where the output 1s from the phototransistors through a differential amplifier. T'hese
differential output encoders. whether analog or digital, use transistor pairs in common and
different. ' mode to provide two signals per encoder channel. Notse 1s ehminated by common mode
rejection 1n a differential receiver. Lastly. the digital encoder provides TTL level square wave
signals as the output (using comparators to convert analog sine wave to digital). index pulse signals

are either TTL or analog (see figure C.2 below).

Typical output *drivers’ Typical output “drivers’
(channel A+,A-, B+, B- & index) (channel A+ A-, B+, B-)
for differential digitai ouput

tor differential sine wave ouput
(5V, 12V, 15V standards)

channel 1SV, 12V, 15V sandards)

channel I_ﬂ_ﬂ_ﬂm DCOmL>#

National Semiconductor DS8830 or YAVAVEAYE
TI 75183 ditierential transimtter
T ol outout “dervers’ index Typical index output
ypical output ‘drivers (may or may noy have
(channel A, B, index) tor digital ouput open collector)
(5 V standard) <
channel =
_ﬂ_ﬂ_ﬂ_ﬂ_r Typical output *drivers’
Standard TTL (74265) or open collector (channel A, B, index) tor high power digital ouput

2V,
TTL (7406) (1 IS V standard)

<hannel 4 _I—er_l—l__r

= Power MOSFET output

FigC2 Encoder Quput Drvers

Typical output drivers for encoders include a vanety of voltage and
power levels (current drive) Most manufacturers ofter the types shown
above The DS8830 differential transmitter and the 741,806 TTL output
are the industry standards for difterental digital and digital encoder
dnive output respectively

The Robot 1/0 Board interfaces with the motor optical encoders, index pulses and pots.
The Hewlett-Packard HCTL-2000 12-bit quadrature decoder IC was selected as the encoder
interface because it offers excellent noise immunity. But since the typical robot joint encoder range
is greater than 4096 pulses, software must detect 12-bit overflow and adjust accordingly.

The index pulses are captured by PALSs specially programmed to set an index bit high

and reset the HP decoder chips (asynchronously) when an index pulse is received. This

105

Appendix C

asynchronous clear can cause a false reading of the decoder chip if the clear occurs during an
access. This is NOT a problem since the index pulses are ONLY uvsed during calibration when the
software polls the index pulse and can discard an encoder reading just after an index pulse occurs.

The pots are read through an 8-bit A/D converter. A TI TLC532A was selected because
of its convenient 11 channel input, very high input impedance, and fast conversion time. This
converter also has a self-test voltage reference.

Because the Kali system is used mainly for experimentation a watchdog circuit is
necessary for disabling the robot in case the controller fails (in software or hardware). This ‘safety’
circuit is simply a retriggerable timeout circuit. When a retrigger is not had within a given time, it
sets off a buzzer and disables the robot.

The robot power switch is used to enable/disable the robot brakes and amplifiers
simultaneously. This is not a problem. Because a servo amplifier will cut output microseconds after
receiving a disable and motor brakes take milliseconds to engage, the amplifiers will be off when
the brakes are applied during emergency stop. On power enable however, the brakes will be applied
for some milliseconds while the amplifiers are ON. But since the robot is not moving (ie., constant

position servo) during power enable this will not strain the brakes.
C.4 Implementation
The XVME-085 VMEbus prototyping card incorporates the basic 1/0 addressing in its

interface (see XVME-085 manual). For Ka:i software these addresses are dependent on the robot

driver. The default PUMA 500 series driver requires these settings (1000h in short 1/O space):

Switch Bank #1 Switch Bank #2
SW 8: closed SW 4: open
SW 7: closed SW 3: open
SW 6: closed SW 2: open
SW 5: closed SW 1: open
SW 4. closed
SW 3: open
SW 2: closed
SW 1: closed

106

$d

Appendin O

The schematics for robot 1/0 board are gresented on five sheets. The first describes the
necessary circuit to control the data from the VMEbus and capture the robot index pulses The
system clock on sheet #1 1s set via four DIP switches The board operates at a maximum of 2 MH¢
(A/D chip and HP decoder chip limit the frequency). This clock is dertved from the VMEbus timing
service. Note that plain VME backplanes do not provide this. The bus musi be setup to provide this
service. Most bus arbiters as well as some CPU boards provide the system ciock service.

Switch settings for the system clock are (see also listing for PAL #1 in section C.7).

SWI Sw2 SW3 SwW4
4MHz closed open open open
2MHz closed closed open open
1 MHz closed closed closed open
S00kHz closed closed closed closed
Single step open open open open

The varnable clock was designed primarily to be used during board development
(actually used very little) therefore it need not implement DIP switches. Hardwire 2 MHz.

Sheet #2 shows a safety circuit (watchdog timer) for disabling the robot in case the
controlling CPU fails (in software or hardware). It is STRONGLY recommended that this circuit be
implement. It works as a retriggerable time-out circuit. When a retrigger is not had within a given
time, it sets off a buzzer and disables the robot. It can also be used to enable or disable the robot
through software. Pot #1 controls the time-out, and Pot #2 controls the duration of the buzzer when
a time-out occurs. The pots are set with the following formula:

3.3.10 . Por resistance ()) = time in seconds

Therefore for a timeout of 20 ms Pot #1 is set to 600 Q. A buzzer duration of 3 seconds
corresponds to a resistance of 90 k(2 for Pot #2. For standard Kali software set Pot #1 to 600)..
Sheet #3 and #4 describe the schematics for ONE joint (or channel), etther differential input (sheet
#3) or digital input (sheet #4) encoders. Determine the highest encoder line frequency for robot
intended to be used:

max speed of output shaft (revs/sec) - gear ratio - encoder counts per rev + 4.

For instance, a PUMA 500 series robot has about a 20 kHz line frequency. This

determines selection of the appropriate op amp input buffer: TLC274 for 23 MHz cutoff,
107

)

Appendix C

TLC27M4 for 700 kHz cutoff, TLC27L4 for 100 kHz cutoff. Such a detailed selection of
components 1s only to provide some additional noise immunity. One couid get samples of each and
check for wave form attenuation to make the optimali selecticn (this can be done after the board :-
wrapped. since the parts are pin compatible). Note though that a digital wave form has higher
frequency harmonics and requires larger bandwidth to maintain 1ts shape. if in doubt, one shouid
use the TLC274. The original McGill Robot 1/0 board was built using the TLC274 The board has
been in operation for many months with no problems.

The system clock frequency SHOULD NOT BE ADJUSTED to optimize the digital
filter of the HCTL-2000., it is also used by A/D ch,p and the I/O state machines to determine access
to the VMEDbus. Setting the clock too low could cause timeouts on the VMEDbus and setting it at 4
MHz is too fast for the HCTL-2000 and the TLC532A

For digital encoders the outputs may have to be pulled UP instead of the differential case
where they must be biased. See the robot manual. For differential encoder PUMAs the circuit has
been tested and is in use at McGill (see sheet # 3). Input impedance and impedance matching can
also play a role since the encoder may only have a small drive capability, a relatively high
frequency, and be a distance of many meters from the robot actuators.

The McGill Robot 1/0 Board should support any robot encoder which has either
differential or digital outputs. For the digital robot circuit no settings are needed. However, for the
differential output PUMASs one must set Pot #3, the index trim pot. This pot sets the reference
voltage for the index pulse level. This reference voltage must 20% lower than the peak voltage of
the index puise from the robot, since the typical ripple voltage couid be as much as 15%. It is
easiest to do this with a dual trace scope by setting the reference voltage to one channel and the
robot index pulse to the other (use a slow time base approx 10 msec).

Note that only six channels are described in the schematics, but that the board can
logically support up to eight channels without adding any more support circuitry, ie., sheet #1.

The two DB 25 connectors provide an easy interface to the robot. The enable and disable
lines from the safety circuit can be used to turn the robot amps and brakes on/off through the Robot

Power Switch Circuit.
108

TS T

iy

Appendin €

The Robot 1/O board makes NO attempt at checking for access tvpe (1., 32-bit word
request from an 8-bit port). This eliminates another PAL in the design (tor the reader’s
convenience).

A word about grounding. For The Robot 1/0 board. the encoders themselves. and the
index pulses, the system ground must be the same. In addition. for the potentiometers and the A/D
chip (TLCS532A). the reference voltage must be the same as the pot power supplied to the robot
This can be a problem when using different power supplies as they are 1solated The simplest
solution to this probiem is to derive encoder and pot power directly from the VMEbus backplane
This guarantees equivalent nominal voltage levels. Note that cable shields should NOT be
connected to electrical ground, but to the chassis ground of the VMEbus,

Note also. the single step clock circuit was designed only as a debugging aid to develop
the board (in fact hardly used). It is not necessary to implement this circuit

Decoupling capacitors (0.01 pF) must placed from power to ground on all digital chips
(Augat has sockets with these built-in). It may also be necessary to place small (about 0.1 ukF)
between the signal and ground for the potentiometer input lines to filter out high frequency noise.

Lastly a few words about circuit layout. The schematics only show the electrical layout
of the circuit which has NO correlation with the physical layout of the components on the board It
is recommended that a logical approach to laying out the components on the board be taken Since
the 1/0 connectors are on the face plate and have the largest number of connections, the first ‘layer’
(cp-amps of sheets #3 or #4) of the interface should be there with successive layers further away

The support circuitry can fit mostly into the area adjacent VMEbus interface circuitry (sheet # 1).

See sample layout in section B.7.

C4.1 PAL Programming

Most people have heard of PALs, however many have still not used them in designs.
They are programmable logic devices (PLDs) which implement AND-OR logic that greatly reduce

the number of random logic ICs needed to implement a circuit. Most new circuit designs use some

109

Appendix C

PLDs. Since their introduction in the early ‘80’s PALs have grown enormously in popularity, and
indeed many more sophisticated programmable devices now exist Today most major IC
manufacturers produce PALs (see your manufacturer’s data book and reference in section C.8).

To program a PAL one needs a programmer (a hardware device) and the ‘fuse plot’ file
for the PAL. It 1s programmed by burning ‘fuses’ in the device when relatively high voltages and
currents are applied to the inputs. The device then behaves under regular TTL voltages and loads. It
1s the fuse plot that describes which fuses in the PAL are to be blown or not. It is generated from a
high level description of the logic one wishes the PAL to perform. The most popular PLD language
is PALASM2* from MMI. Most PAL programmers come with PALASM2.

The Robot I/0O Board uses four different PAL programs written in PALASM2 (see
section C.7. The fuse plot files in JEDEC format ready for PAL burning are available from the
author on a floppy diskette). One does not need to know anything about PALs {0 use a programmer
and create PALs for the Robot 1/0 board.

If the reader does not have a PAL programmer, he or she should consider purchasing
one. They are very useful to have for any digital hardware project. These programmers range in cost
from a few hundred doilars to about twenty thousand dollars. The prices denote the programming
capability of the unit, the more expensive, the more variety of PLDs you can program. If the reader
only intends to program PALs and other simple devices, then an inexpensive programmer is
appropriate. But beware of which manufacturer’s devices the unit will program. Cheap
programmers usually program devices only from a limited number of manufacturers, and devices

will have to be purchased from those manufacturers supported by the programmer.

C4.2 Power Switch Circuit

The Robot Power switch circuit is a simple circuit. Basically it is an RS latch with the set
input connected to ‘enable’ and reset input connected to ‘disable’. The latch outhut controls a relay

for enabling or disabling the robot brakes and amplifiers.

* PALASM? 1 a trademark of Monolithic Memones Inc , now a division of Advanced Micro Devices Inc.
110

2

Appendix C

For robots with larger brakes a larger relay may be needed (the schematic shows a relay
rated for PUMA 200 and 500 series robots). It may also be necessary to select fuses with different

ratings. Note the power requirements for the encoders and potentiometers of the robot.

C.5 Programming

Programming the Robot 1/O board is easy. It is simply memory mapped 8 or 16-buit
registers. There is one 16-bit read only register for each of eight decoder chips, one 8-bit register for
the index pulse capture where each bit represents an index pulse: there 1s one command/status
register (in the XVME-C8) interface). and three registers in the A/D chip.

Since the range of encoder counts for most robot joints is greater than 4096 (12-buts) the
HP decoder chips cannot be used to store the absolute position of the robot joint. Rather they are
used as relative counters which determine the joint displacement between updates (or servo ‘ticks”)
The total displacement can now be stored as a 32-bit counter offering huge encoder count range
However one must ensure that less than 2048 (4096 + 2) counts occur between successive servo
updates. This is well within the range of most robots. For instance PUMAs have a typical maximum
encoder line frequency of 20 kHz, therefore at a slow 100 Hz servo sampling rate, the maximum

encoder counts per sample are 20 kHz +100 Hz - 4 = 800 (see code 1n figure C.3 below)

#define encoder_address OxXX1000 /* |/0 board encoder address */

short int /* 16-bit access to |/0 board */
raw_encoder, raw_encoder_old, delta,
int encoder_count, /* 32-bit integer holding encoder count */

/ *Get raw HP encoder value * /
raw_encoder = GetlO{encoder_address) & TwelveBits,
/ *measure change between sampies* /
delta = raw_encoder - raw_encoder_old,
raw_encoder_old = raw_encoder, /* update raw encoder value */
/ *test for half maximum counter value, if true then assume the encader *
*counter has wrapped around */
if (defta < -2048)
delta = delta + 4036,
else
if (delta > 2047)
telta = delta - 40396,
/* update 32-bit equivalent encoder counter* /
encoder_count = encoder_count + delta,
)

Fig. C.3 ncoder C terface Software

141

Appendix C

The TLC532A contains three registers (for complete details section C.8 for reference):
« Control register, write only: control start of A/D conversion and select

channel of the analog multiplexer.
+ Dgital register, read only: high/low TTL value on some of the analog

inputs.
 Analog register, read only: flag for conversion completed, 8-bit value of

analog voltage *1/2 bits.

For an example of programming the Robot I/O board see the diagnostic program source.

C.5.1 Hardware Addresses

The Robot I/O board is essential memory mapped 16-bit words (where XXXX = base
address for short 1/0 space: FFXXXX = base address for standa~d memory space).

* The eight encoders are READ ONLY 16-bit words (only lower 12-bits
significant) at addresses XXCOh, XXC2h, .., XXCEh.

* The encoder index pulses are a READ ONLY as an 8-bit register at address
X101h or as a 16-bit word (LS-byte) at address X100h. This requires that
the index pulse enable bit be set in the command register (see below). Each
bit in the register represents the index pulse capture state for that joint. The
least significant bit is for joint #0 and the most significant bit represents
joint #7.

* The TLC532A analog to digital converter has three 16-bit registers at (for
programming details see section B.8 for reference) :

* WRITE ONLY control register X110h.
+ READONLY digital register X110h.
* READONLY analog register Xi12h
* The board has an 8-bit CSR (command/status register) at address XX81h (8-

bit) or XX80h (LS-byte of 16-bit access):
112

Appendix U

0: read/write -- Red LED

0 = Red LED on

1 = Read LED off
1: read/write -- Green LED

0 = Green LED off

1 = Green LED on
2: read Only interrupt pending. RESERVED FOR FUTURE USE.
3: read/write Enable robot (when safety circuit is implemented)

0 = no enable (allows disables)
| =enable (allows disables)

* One must pulse the enable bit high then low. This allows disable pulses
from the Robot Power Switch circuit to be used by the operator through
an emergency OFF button. Note that to enable a robot via the Robot
Power Switch circuit one MUST leave the enable bit high for approx. 15
msecs then set it low. This is the time required for the relay to switch

in the Robot Power Switch circuit.

4: read/write Enable index pulse capture mode

0 = enable index pulse capture

1 = disable index pulse capture
5: read/write ReTrigger timeout circuit

0 = low state
1 = high state

» One must set high state then low state to perform a retrigger.

6: read/write Mode (safety timeout ON or not)

0 = safety timeout NOT ON

1 = safety timeout ON
7: read/write Robot Disable

0 = robot disable (overrides robot enables)
113

P

r"&q

Appendix C

1 =robot no disable (allows enables)

* One must pulse the disable bit low then high. This allows subsequent
enables by the operator through the Robot Power Switch circuit. Leaving
this bit low disables the robot against any unwanted or accidental

enables.

C.5.2 Diagnostic Program

A diagnostic program for testing McGill Robot 1/0 board is available from the author on

diskette.

C.6 Schematics

Notes for schematics:

a) ALL digital circuits must have 0.01 uF bypass capacitors between power (+5
V) and ground (this is not shown in the schematics).

b) /O ports indicate connection to other sheets, to external 1/0 connector, or
XVME-085 board interface ports. An indication such as “IDX #1, SH3”
means index for joint or channel #1 on schematic sheet #3.

c¢) For the Robot 1/0 board schematics, all numbers enclosed in brackets
indicate a port (ie., pin) number of the XVME-085 board interface (see
XVME-085 manual for description of each port).

d) Circuits enclosed by dashed lines indicate a special condition on those
circuits, ie., optional, only once for all channels, etc. It is always

accompanied by a one line explanation.

114

Appendix C

JINJIIY) [O[UOD) UIBA— | # JHBWAYDIS

115

ssuenel T9Z ly- ey

o804y YieN v
Soguny jusenood &= __Nﬂuuu_!«u -
P4u08 O/ IONOY - ~434 ~434
a3y - 1.3
[~ 19Z-9EH 29 ov
"0 ‘lesujucy “M M"
“15 MITELeATUN 0BT oa v
T A3IssAaTLN 11TDOM . _ mm M«MMm Lé
[X MOJAX (QWUOS 1dAL-010Md
seo-ma 00 faurv)
Sy g _urma
et BHE Bl LurTa
¢4 >m>g L= e
[143) 1 L2 ————<JHE T XN
<THE XBI Toe)
<XHY X8 ST XIIep— — IO
N S < YO 30>
» €3 ‘¢ ‘S ‘S ‘T ‘Z °‘w ‘g%
‘IE ‘0L ‘62 ‘0z ‘9 'SZ ‘fZ "Z%) ﬁ oz
114 §3 s oF
| vz swz [~ <SEVEIrXI
#5303%53:875%5A18 =] g e
weveenae e e e e T - g L A TAT T
1 1 N T PAY | edd
H 4 i AR & SAT gwY .
Pofraesms ¥ : A ot 1) ——<amarm
H © n i m 1A E - jaeenis A8 ¥
H o i “Yaw o%a . oI
oo L S . i & i
BTy w ~ 3 5
+ — —JH 7RI X
bk 1 H mﬂl [£0 I
H =1 ISP To &I
== To il
g ®
|EL
X
axn
EITH T & %921 nn
[M2
o TEn 1 in3
I N3
s aew— &1 02 fey—
e 94—

T
T
5333

il
;

pioT_°
CH pgs
e o1 o1 wo
&8 i LT 0
CST e T ‘ov zr ‘o) % . H I+
%0 o1 = *1 %0
! f0 31 - £ 0
g exf] e =
C9E 0Z ‘E CEL ‘wT ‘91> , 10 _triy— gu AAERLD L | o

-

-

o
L% 3

-
s 2]
-3 CLR D—g—
13 81—
@ Ap —
vz REXT/CEXT 48— = V&C
cA |
o CEXT | "—— POTL NA c14)> ‘
7ALTIZ3 = 100uF 1K
- vie U L
ULF u 1U< 11 MODE (ZQ)M‘
ot zaLSla 'DIS“I'—M—%E:
9
74L814 ?
(1) V) u3a
13 o 2
| 118 .
? 12 5 c._g ? ?
—=1a ap i
<BOZZER +, SHS} 2 =
R7 REXT/CEXT vee
10K ce
a1 R6 CEXT 'L—
) | 7aL5123 == 100uF POT2
——t 100K
_E 2N2222 10K
—<Fi3zv]
SAFETY CIRCUIT COPTIONAL)
McGill University
3480 University St.
Montreal, ¢QC.
H3A—2Aa7
Title
E‘ Robot 1/0 Board
izePocument Number
[-] Kali ProJect B
COPYRIGHY €C> A. YOPPER, 1980, 1989, ALl RIGHTS RESERVED., .. Date Pr 2 eet
o

2 of

Schematic #2—Safety Circuit

D xipuaidy

OP1C

L

Schematic #3—Differential Encoder Interface Circuit

+ DO |-
%2 l—_%>‘a—“ | e 2o B2
1ok a —3{18 enpt— 3lseL o3 M3
‘ 2n L a D4 e
= oP1B 28 1y iqoe bsH
< I 2y - Dé
38 3y ———5q RST 07|
o aa Ay
a8 vce- | CH A
L CH B
1/2 of chip HCTL-20
== eI OCAL_DATA BUS, SAL >
vge
= RS
T 10K cM1A
TLC27L4 3
£ {IoxX_Jei, SHi>
a
LM339
174 of chip
X Jei>— L
<=1zV]
EACH ENCODER CHANNEL
vCC VCQ PUMA ROBOT SERIES WITH
POT3 RP
vL o el DIFFERENTIAL ENCODER OUTPUT
A~
v ve - ANAA
—— PR -
T %2 E 3 F McGill University
10K AMAELD & 3480 University St.
d — \ANA : Mcrntreal, QC.
= b 10K : H3A-2A7
feeerereerenne rerereereneneanas eeereereaieeteteraneeerernaneens veerrerreenerans feeesiesseresssastesenserasreasrassenaestearanantes jJTitle
ONCE FOR ALL CHANNELS Robot 1/0 Board
ze DPocument Number EE‘\?
A Kali Project B
COPYRI OPPER LA 1 ate Aeril 26, 1389Bheat of 5

J xpuaddy

COP.

-

_t.—l

vi

~C3
« 1uF

ZOMOSA
VIEVO

"""""" ONCE " FORALL EHARRELE

811

=)

H}
li‘ CH B
CH
<L.OCAL DATA BUS, SHI >
————————j% RST
S—), 7 5
—— 3 T
2hcLk SYSTEN CLOCK, SH{]
CYL=200 —<SEL, SHI]
AAI [1) J&1 H
[—<=IDX _RESET J#]1, SHI]
1/¢
RESISTOR VALUES ONLY ESTIMATES.
<=12v]

PUMA ROBOT SERIES HITH DIGITAL ENCODER OUTPUTS

EACH ENCODER CHANNEL

(NOTE: THIS CIRCUIT NOT ACTUALLY TESTED)

McGill University St.

3480 University St.
Montreal, QC

H3A-2A7
Title
Robot 1I/0 Board
S5ize Document Number EV
A Kali Prodect 8
ate April 26, 1983[cheet 4 _of 5

Schematic #4—Digital Encoder Interface Circuit

D xrpuaddy

¢ 9

FRONT ("ACE PLATE
XYCOM XYVME-08S PROTO

easae

COPYRIGHY ¢CD A, TOPPER, 39

611

..........................

........ gy J#1l, a—
r/o.‘ [%1, A+>
oﬁc‘"' #1 =

O+

lr 1‘!_3_1; B+ >
0 g J#1, ToX >
o

o f
CO_] r {;!!2; A+ >
o—1% I T 5=>
o —

> al —

I
% ; eI
O— i |

o r J%3, a—>
o

o ll Je3 av>
o
o_o-_J :g | [J®3, ©—

o i | *3 *
CONNECTOR i DB2S

I YPING BOARD
P2 —{J%s,a->
o) —4
[l WS

o —{J1%3, 8>
O—

o ——{J%4, B+>
O—

o N ;7 yug 1575
O !!EIIEI"
o2

O
1% {85,

o] —

; O {J#5, B+>

[o S
[J#5, 10X >
O—

o —{Je¥e, IoX>

O & A+
O—

o %G, B
0"‘0_ *G +
kc?ifm—:crorz

McGill University

3480 Unjiversity St.
Montreal, Canada, H3IR-2A7

Title
Robot 1/0 Board
ze Pocument Number Ty
2] Kali Project B8
9, A RIGHIS R RVE ate Arril 26, 1309 heet S of

Schematic #5—Connector Pinout

3 nipuaddy

v

Fg e
—oN_o* —<ZBV_VnE]
FUSE ! 3A
K1 1 FAST {BLOW
Fi :
O 4—% o\ o’ VIR
FUSE 3&
FAST BLOW
iN4149 o%x F2 :
* +———<ZI2V_VHE]
U RELAY DPDT, 12V 1A FUSE 3R
R4 a1 FAST BLDKW
""""""" :;;;"""""3 1] Tox 2N2222 i
sl aL300 T~ Cc2 :
12v Eéx ujla 10uF : '
4
%L D1
2
i1 ‘
IN4 148 ‘ 3
SH1
uof 3 et
""""""" ROHENFARY™ ConTadrT]B s
2 « 1uF
0
“T D2 TERMINAL STRIP
R3 iN4 148
i D3
H 10K
: 1%3148 CIRCUIT WILL DRIVE PUMA 200 and 500 SERIES
§ D4 CASE/PC Combo BOX: RADIO SHACK #270-284
: I/0 on 8 pcs barrier strip: RADIO SHACK #274—-670
H PCB wire terminal: RADIO SHACK #276-138¢
H 231 habie, ack, shra-igise
q H .. . ot H C -
EMERGENSY "SHUT 6## TOP 1O THREES DIODES: RADIO SHACK #276—1620
4 WIRE TELEPHONE CA RELAY: RADIO SHACK #275-213
CRADIO SHACK 0278—365) FUSE HOLDER: RADIO SHACK #270-742
TRANSISTOR Q1: RADIO SHACK #276—1617
B U - . FUSES: fast blow 3A, RADIO SHACK #270-1246
LEDS: RADIO SHACK #272-332
ALL RADIO SHACK PARTS FROM CANADIAN CATALOG °89
Eﬁ Dept Electrical Engineering
nitév McGill University
SH2 3480 University St.
Montreal, Canada
o Title
ggﬂg:?;R$NggNTRCT Robot Pouer Switch (PUMA robot series)
EHERGENCY SHUY "OFE"CUB Y6 THREES ™ tzePocument Numoser
- GENCY SHUT™ 0 0]
CALUM BOX: RADIO SHACK #270-239) A Kall Project 8
COPYRI A TS RESERVED., ate pr cet 1 of 1

174

Schematic #6—Emergency OFF switch Circuit

D xpuaddy

TLC274 o TLC274 o TLC274 o TLC214 o TLC274 o TLC274 o LM339 . A
) 3 P S o 3 w3 ™
TLCS532A
MC3450 = R-PACK, 10K MC3450 = R-PACK. 10K MC3450 = mg
o = POT #3 S
o _ g]
%E HCTL-2000 = HCTL-2000 . HCTL-2000 z HCTL-2000 _ LM339 2 PAL#4=16RS) ~ PAL#4(I6RS) _
hd mu = 5
HCTL-2000
= raLssts 7415646 ﬂg% TRTITIPOT 41 TRWTITITY -
C

° 5 CACBR6R7QI

74LS138
a0 ﬂ%mhv

PAL#3 (16L8) __ 7418123
T S
PAL#2(I6L8) _ PALAI(I6RE)
. . Py &=
XVME-085 VMEDbus Interface Circuitry 7
7aLsle] _ 74Ls32 T4LS00
S Yoys ™wmmc
Switch
R-PACK. 10K 741514
Tz owmh =
=
— L

Circuit Side

Schematic #7 — Board layout

D xypuaddy

Appendix C

C.7 PAL Listings

Title Robot Encoder & Pot Interface, CLOCK & WAIT COIITROL (PAL #1)
pattern robotbl .pds

Revision B

Author A. 'Topper

Company McGill Univereity

Date 4/23/89

CHIP ClockWait PAL1l6R6

CLK /SWL /SW2 /SW3 /SW4 /WAIT 4 ME /STO /RESET /SS GND
/OC /SYSCLK /4MHZ /2MHZ /1MHZ /SOOKHZ /WAITSO /WAITS /WAIT VCC

-~

~. we we

DESCRIPTION

Used for XYCOM, XYVME-85 prototyping board.

Clock generator wait-state synchronizer. Generates system clock for
board a. user selected clock rate, from 500Kkhz to 4Mhz. Synchronizes
WAIT to sysclock. WAIT 18 asserted and synchronized to the sysclock then
WAIT 18 controlled by input /WAIT_ 4 _ME.

INPUT:

CLK (8Mhz)

/WAIT 4 ME is wait signal from encoder and pot read control pals (#2, #3)

/STo 18 start of XYVME-85 board select cycle

/RESET is VMEbus reset signal

/sS 18 single step clock

clock select as follows (where L=CLOSED and H=O0PEN for the switch bank)
/SW1 /SW2 /SW3 /swid

4MHz L H H H

2MHz L L H H

1MHZz L L L H

SO00KHzZ L L L L
single step H H H H

QUTPUT:
/SYSCLK is basic system clock for control pals (#2, #3, #4) and all
other synchronous components.
/WAIT is wait state signal to XYVME-8S5 bus access (required for each
8Mhz clock cycle).

EQUATIONS

4MHZ := /4MHZ * /RESET
2MHZ := 4MHZ * 2MHZ * /RESET + /4MHZ * /2MHZ * /RESET
1MHZ := /4MHZ * /2MHZ * /IMHZ * /RESET + 1MHZ * 2MHZ * /RESET +
4MHZ * 1MHZ * /RESET
SOOKHZ := /4MHZ * /2MHZ * /1MHZ * /500KHZ * /RESET +
500KHZ * 1MHZ * /RESET + S500KHZ * 2MHZ * /RESET +
S00KHZ * 4MHZ * /RESET

SYSCLK = 4MHZ * SW1 * /SwW2 * /SW3 * /SW4 + 2MHZ * SW1 * SW2 * /SW3 * /SW4 +
1MHZ * SW1 * SW2 * SW3 * /SW4 + SO00KHZ * SW1 * SW2 * SW3 * SW4 +

SS * /SWL * /SwW2 * /SW3 * /SW4

122

o TS,

B i T

TR LT AN, T T+ TS e

o

<3

WAITSO := STO *
sTO *
STO *
STO *

/RESET + WAITS * STO * /RESET

/4MHZ
/4MHZ
/4AMHZ
/4MHZ
/RESET + STO

*
w
*
*

SW1 * /SW2

Appendix €

* /SW3 * /8SWd * /RESET +

/2MHZ * SW1 * SW2 * /SW3 * /SWd * /RESET ¢

/2MHZ * /1MHZ * SW1l * SW2 * SWal * /SWd * /RESHT +
/2MHZ * /1MHZ * /SO0KHZ * SW1 * SW2 * SW3 * SWil »
* /500KHZ * /8§ »

JSWL * /SWL * /8Wa « /SWq +

: de-assert wait state when SYSCLK clock edge

WAITS := WAITSO * /RESET + WAII'S * STO * /RESET
; delay de-assert of wait state by one 8 Mhz
; clock to allow slow pals to be used

WAIT = STO * WAIT 4 ME + STO * J/WAITS

; Pinout for PAL

Monolithic Memories PALLG6R6

CLK
/SWi

/sw2

/SW3

/SW4
/WAIT 4 ME
/STO
/RESET

/88

Gnd

Ak hhkoh ok kW

*
* W
*
*
*
* %
*
L8 4
*
LA 4
*
W
L]
* v
*
*
*
* N
L4
*w
*

10

L2 2

hkok hokkk ok h N

20

19

18

17

16

15

14

13

12

11

*
LEJ
*
* W
*
*
*
-
*
[3 4
*
*
*
LA
*
e
*
* W
*
w

*

IZEAZXERX2 22222 R 2 2 QRN R)

Vce
/WAIT
/JWAITS
/WAITSO
/500KHZ
/ LMHZ
/2MHZ
/4MHZ
/SYSCLK

/ocC

123

Title Robot Encoder & Pol lnterface (PAL #2)
tattern robotd2.pds
Revision D

Author A. Topper
Compdny McGill University
Date 23/4/89

CHI1P EncoderControl PALLeLS

NC /8TO /WRSTB A4 /CS3 /CS2 Al CO Cl GND
C2 /WALIT /S COUNT /SEL /CS /RS /RW /ENIDX /OE vcCC

; DESCRIPTIOI

Appendix C

; Encoder & Pot recad control pal. Controls the reading of the HCTL-2000 chip
: in Lwo 8 bit fetches, r1eading the pots via the TLCS32A in two 8-bit fetches,

; and reading the encoder index.

; Addressing:

1 read encoder: /CS2, Al, A2, A3 (use 74LS138 to enable one
: of eight encoders)
; l6-bit, 0Coh - 0CEh (0C0h, 0C2h,

: read encoder index: /CS3, /A4, 8-bit, loOh

; read/write TLC532A regs: /C83, Al, A4, lé-bit, 110h - 11Eh (1iCh, 112h)
: write control reg:

: read digital reg: 110h

: read analog reg: 112h

H

; INPUT:

; /csz, /Cs2, Al, A4 chip select functions

; co, C1, C2 state machine counter

;: /WRSTR write stobe from VME I/F

; /8TO start of VME cycle.

; OUTPUT:

; /ENIDX enable reading of the encoder index pals
: /OE enable HCTL-2000

; /SEL select byte for HCTL-2000

; /¢S select TLCS32A

H RW Read/Write TLC532A

: RS Register select TLC532A

: /WAIT tell VME I/F to wait (to pal #1)

; /S_COUNT start state machine counter

; STATE MACHINE:

H IDX HCTL-2000 TLC532A

H C2 C1 CO WAIT! WAIT OE SEL | WAIT Ccs RW RS

H R A R I A L A I I I e I I B R
; 0.0 0 O L | L L L | L L L L

;i l.o 0o 1 H | H H H | H H WRSTB Al
;2.0 1 0 L | H H H | H H WRSTB Al
;3.0 1 1 L | H H L | H H WRSTB Al
;4.1 0 0 L | H H L | L L L L

i 5.1 0 1 L | L L L | L L L L

i 6.1 1 0o L | L L L | L L L L
;7.1 1 1 L | L L L | L L L L

; Standard binary count can be used instead of Grey code count since the

; settling time between states is much longer than the logic delay (applies to

; other PALs also).

124

¢ 9

R |

Appendin €

EQUATIONS

ENIDX = STO * CS3 * /A4

OE = STO * €S2 * CO * /CL * /C2 +
STO * C82 * /CO * Cl * JC2 +
STO * CS2 * CO * Cl * /C2 +
STO * CS2 * /CO * /CL * C2

SEL = STO * CS2 * CUO * /Cl * /C2 +

STO * C82 * /jco « Cl » /C2

CS = STO * CS3 * A4 * CO * /Cl * /C2 +
STO * CS3 * A4 * /JCO * C1l * /C2 +
STO * CS3 * A4 * CO * C1 * /C2

RS = STO * CS3 * A4 * A)Y * CO * /C1 * /C2 +
STO * CS3 * A4 * Al * /CO * C1 * /C2 +
STO * CS3 * A4 * Al * CO * CL * /C2

RW = STO * CS3 * A4 * WRSTB * CO * /Cl * /C2 +

STO * CS3 * Aq * WRSTB * /CO * Cl * /C2 +
STO * S3 * A4 * WRSTB * CO * Cl1 * /C2

WAIT = STO * CS2 * CO0 * /Cl1 * /C2 +

STO * C82 * Cl * /Cc2 +

STO * CS2 * /CO * /ClL * C2 +
STO * CS3 * /A4 * CO * /JCl * /JC2 +
STO * CS3 * A4 * CO * /Cl * /C2 +
STO * CS3 * A4 * CL * /c2

S_COUNT = &STo * CS2 + STO * CS3 * A4

; Pinout for PAL
Monolithic Memories PALL6LS

L X X222 X2 X3 ddrdr dedr W
- L X X *

NC *» 1 20 ** Vcco
w *

/STO ** 2 19 *»» /OE
* *
/WRSTB *+ 3 18 ** /ENIDX
* *

A ** 4 17 ** RW
* *

/C83 *» 5§ 16 %+ RS
* *

/Cs2 ** 6 15 ** /CS
* W

AL *x 7 14 *+ SEL

* 4

Co ** 8 13 *+ /S COUNT
* *

ClL ** 9 12 ** /WAIT
»* *

énd ** 10 11 »% C2
* *

(22222 XX S2 22228 R X 222X

125

e,

Appendix C

Title Robot Encoder & Pot Interface (PAL #3)
Pattern robotd3 .pds

Revision D

Author A. Topper

Company McG11]l University

Date 23/4/89
CHLP LatchControl PALLELS

HC /sT0 /WRSTB A4 /CS3 /CS2 Al CO C

1l GND

C2 CAB2 CBA2 CABl CBAl /Gl DIR /G2 NC VCC

; DESCRIPTION
; Encoder & Pot latch control pal.

Controls the latches interfacing VME-bus

to the HCTL-2000 and TLC532A using two 8-bit fetches,

, BAl, A2, A3 (use 7418138 to enable one
of eight encoders)
it, 0COh - 0OCEh (OCOh, O0C2h, ...)

, Al, A4, 16-bit, 110h - 11Eh (1l0h, 112h)

e control reg: 110h
digital reg: 110h
analog reg: ll2h

t functions
ine counter
e from VME I/F

; Addressing:

; read encoder: /Ccs2

i

: 16-b

; read/write TLCS532A regs: /Cs3

: writ

: read

; read

;i INPUT:

; /Cs2, /CcS83, Al, A4 chip selec

H co, C1, C2 atate mach

; /WRSTB write stob

; /8To start of VME cycle.
1

; OUTPUT:

; CBAl capture bus B (latch MSB)
; CABl capture bus A (latch MSB)
; CBA2 capture bus B (latch LSB)
; CAB2 capture bus B (latch LSB)
: /G2 enable output bus B

;i /61 enable output bus A

; DIR direction control

; STATE MACHINE:
: encoder read:

; C2 C1 CO CBAl CABl CBA2 CA
e
;s 0.0 0 0O L L L L
; L. 0o 0 1 L L L L
;2.0 1 O H L L L
;7 3.0 1 1 H L H L
;4.1 0 O H L H L
;s 5.1 0 1 H L H L
;) 6.1 1 0 H L H L
;7.1 1 1 H L H L

B2 DIR Gl G2

[an i) s e o fie ofit< o i« 1l o]
o e o< B vl ol e o o
e ofts 2l o o B B B B o

126

A

e we

TLC532 read

; Jz Ci CO CBAL CABl CBA2 CABZ DIR Gl 2
1
;: 0. 0 0 © L L L L H L L
;1.0 0 1 L L L L H L L
;2.0 1 0 H L L L H L L
;3.0 1 1 H L H L H L L
;4.1 0 0 H L H L L H H
; 5.1 0 1 H L H L L H H
s 6.1 1 0 H L H L L H H
;7.1 1 1 H L H L L H H
1
: TLC532 write
i
: €2 Cl1 CO CBAl CABl CBA2 CAB2 DIR clL G2
!
; 0. 0 0 © L L L L H L L
; L. 0o 0 1 L H L L H H L
;2.0 1 0 L H L H H L. H
;3.0 1 1 L H L H H L L
;4.1 0 0 L H L H H L L
;5. 1 0 1 L H L H H L L
; 6.1 1 0 L H L H H L L
;7.1 1 1 L H L H H L L
EQUATIONS
/JCBAl = /Cl * [fC2 +
STO * CS2 * /WRSTB * /CO * C1 * /C2 +
STQ * CS3 * A4 * WRSTB * /Q0 % Cl * /fC2 +
STO * CS3 * B4 * WRSTB + /STO
JCABL = /CO * /Cl * JC2 +
STO * (CS2 * /WRSTB +
STO * CS3 * A4 * /WRSTB +
STO * CS3 * R4 * WRSTB * /Co * /C1 * /C2 +
STO * CS3 * /A4 + /STO
/CBA2 = /Cl * /C2 +
/CO * Cl * /C2 +
ST0 * CS2 * /WRSTB * CO * ClL * /C2 +
STO * CS3 * A4 * /WRSTB * /CO * Cl1 * /C2 +
STO * Cs3 *» A4 * /WRSTB * CO * /ClL * /C2 +
STO * CS3 * A4 * WRSTB + /STO
/CAB2 = /CO * /Cl1 * /C2 +
STO * CS2 * /WRSTB +
STO * CS3 * A4 * /WRSTB +
STO * CS3 * A4 * WRSTB * /COo * /Cl * /C2 +
STO * CS3 * A4 * WRSTB * CO * /C1 * /C2 +
STO % CS3 * /A4 + /STO
Gl = STO * CS2 % CO * /Cl * C2 +
STO *» CS2 * /CO * C1 * C2 +
STO * CS2 * CO * C1 * C2 +
STO * CS3 * /WRSTB * B4 * C2 +
STO * CS3 * WRSTB * a4 * /Cc2 * /CL * CO

Appendin €

127

G2

/DIR

Pinout

it

]

STO
sSTO
870
ST0
8TO

STO
STO
STO
STO

cse
cs2
Cs2
cs3
Ccs3

* * * % #

cs2
cs2
cs2
cs3

* * * %

* * * % %

* * % %

Co * /Cl * C2 +
/CO * Cl * C2 +
Co * C1 * Q2 +

/WRSTB

WRSTB * A4 * /C2 * Cl * /CO

/WRSTB
/WRSTR
/WRSTB
/WRSTB

* A4 * C2 +

* Co0 * /Cl * C2 +
* JCO * Cl * C2 +
* CO0 % ClL * C2 +

* A4 * C2

Monolithic Memories PALLI6LS

Tk hkhhkkh bk

*

CLK *+
*

/STQ *»
w

/WRSTB #*

*

A4 *+*
*

/CS3 #*

*

/CS2 ww

*

Al *w
*

Cp *w
*

CL *=
*

Gnd *+
*

10

ek Wb dewk b Rk

LA A

20

19

18

17

16

15

14

13

12

i1

*
* &
w
w
*
w* o
*
w* W
*
L2
*
* W
*
L 8.
*
* &
W
*
L]
&
>

LA A AR ASA SRSl E &

Vce
NC
/G2
DIR
/Gl
CBAl
CABR1
CBA2
CAB2

c2

Appendix C

128

Title Robot Encoder & Pot interface board, ENCODER INDEX (PAL #4)
B Pattern robotcd.pds
I Revision A

Author A. Topper

Company McGill University

Date 24/4/88

CHIP EncoderIndex PALL6RS

CLK IRAWO IRAW1 IRAW2 IRAW3 /EN NC NC NC GND
/oC 10 I1 I2 I3 /RSTO /RSYl /RST2 /RST3 VCC

DESCRIPTION

Encoder index pal. Captures index and holds it when enabled (used {or
4 -channels).

w. we we

INPUT:
/IRAWO, ... /IRAW3 raw input of encoder index pulse
/EN enable index pulses to be captured

OUTPUT:

Appendix C

/RSTO, ... /RST3 reset pulse for IRAW width when it is received (used

i

i

i

i

: I0, ... I3 encoder index pulse
1

; to reset HCTL-2000)
B

QUATIONS
/10 := /IRAWO * /IO + /JIRAWO * /EN + /IO * /EN + /EN
/Il := /IRAW1 * /Il + /IRAWL * /EN + /Il * /EN + /EN
/I2 := /IRAW2 * /I2 + /IRAW2 * /EN + /I2 * /EN + /EN
/I3 := /IRAW3 * /I3 + /IRAW3 * /EN + /I3 * /EN + /EN
RSTO0 := IRAWO * I0 * EN
RST1 := IRAW1 * I1 * EN
RST2 := IRAW2 * I2 * EN
RST3 := IRAW3 * I3 * EN
; Pinout
Monolithic Memories PALLl6RS
LA 2222222 K Fdededr ek kkdw
* *hw w
CLK *»] 20 ** Vcc
L 4 *
IRAWO ** 2 19 *« /RST3
* w
IRAWL *+ 3 18 *+ /RST2
* "
IRAW2 ** 4 17 *« /RST1
* L 2
IRAW3 ** § 16 *» /RSTO
* *
/EN ** g 15 *+ I3
* *
NC ** 7 14 ** I2
L 4 *
NC ** 8 13 «* 1)
* *
NC #** 9 12 ** I0
* L 4
Gnd ** 10 11 *» /OC
* »*

¢ 9

(I 2Z X222 222222 X RARRSA

129

CS8

1C Data Sheet Reterences

The references for data sheets of all IC components used.

Part
74L.500
741514
74L832
7415123
7415138
7415161
7415244
7415646

HCTL-2000 Opto-Electronics Designers Guide., 1988, Hew-Pack.
PAL/PLE Device Prog. Logic Array Handbk., MML.

PALs

TLC532A Interface Circuits Data Book, 1987, Texas Instruments

TLC274
MC3450
LM339
TOMO5

Reference
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments
The TTL Data Book Vol. 2, 1985, Texas Intruments

Linear Circuits Data Book, 1984, Texas Instruments
Interface Circuits Data Book, 1987, Texas Instruments
Linear Circuits Data Book, 1984, Texas Instruments

Linear Circuits Data Book, 1984, Texas Instruments

Appendix C

Page
33
3-85
3-151
3477
3-527
3-599
3-817
3-1241
4-67

2-139
3-187
435
4-25
6-207

130

R VGRS T o 4 3R o A R

P 0w EEAS QOCa T ST ASTIOY LI T st ey Y T

Reterences

References

Adept90. “Adept A-Series Controliers and AdeptOne Robot.™ Adept Inc.. San Jose. California, June
1990.

Agapakis90 Agapakis. J. E.. Katz, J. M., and Pieper. D. L... Automatix Inc., *Programming and
Control of Multiple Robotic Devices in Coordinated Motion.™ Proc. IEEE Int. Conf. on
Robotics and Automation 1990, pp. 362—367.

Ahmad88 Ahmad. S.. “Issues In The Design of Multiprocessor-Based Robot Control Hardware.”
IEEE Workshop on Special Computer Archutectures for Roboncs, April 1988, pp. 127—144,

Ahmad88 (2) Ahmad. S., Guo, H.. “Dynamic Coordination or Dual-Arm Robotic Systems With
Joint Flexibility,” Proc. IEEE Int. Conf. on Robotics and Auromanion 1988, pp. 332—337.

Allworth87 Allworth, S. T.. Zobel, N., Introduction to Real-Time Software Design. nd eg
Springer-Verlag, New York, New York, 1987.

AMDAS9 ,“29k Family 1990 Data Book.” Advanced Micro Devices. 1989.
AMD90, “29050 Data Sheet (preliminary),” Advanced Micro Devices. 1990.

Amdahl67 Amdahl, G. M., “Validity of the single processor approach to achieving large scale

computing capabilities,” Proc. AFIPS.. vol. 30, Thompson, Washington D C.. 1967, pp.
483—485.

Andersson89Y Andersson, R. L., “Computer Architectures for Robot Control: A Comparison and A
New Processor Delivering 20 Real MFLOPS,” Proc. IEEE Int. Conf. on Robotics and
Automation 1989, pp. 1162—1167.

Andrews89 Andrews, W., “32-bit buses Contend for Designer’s Attention,” Computer Design,
November 1989, pp. 78—96.

Andrews89(2) Andrews, W., “ORKID: The Standard No One Wants?,” Computer Design, August
1989, pp. 4—46.

Andrews90 Andrews, W., “Designers Pack Intelligence, memory, speed into new DSPs,” Computer
Design, April 1990, pp. 82—97.

131

4

References

Andrews90(2) Andrews, W., “RISC vs. CISC Debate Moves into Real-Time Turf,” Computer
Design, January, 1990, pp. 44—48.

ANSI/RIASY, “Point-to-Point and Static Performance Characteristics for Industrial Robots,”
ANSI/RIA R15.05-1-1990, American Nationa! Standards Institute, September, 1990.

Asada86 Asada, H., Slotine, J. E.. Robot Analysis and Control, John Wiley & Sons, New York,
New York, 1986.

AT&T87, UNIX System V (v.2) Programmer’s Reference Manual, Prentice-Hall. Englewood

Cliffs, New Jersey, 1987 (also available on-line on most UNIX systems under heading
shmget(2)).

Backes89 Backes, P., Hyati. S., Hayward, V., and Tso, K., “The KALI Multi-Arm Robot
Programming and Control Environment,” Proc. of NASA Conf. on Space Telercbotics, 1989,
pp. 173—182.

Bejczy74 Bejczy, A. K., “Robot Arm Dynamics and Control,” Jer Propulsion Laboratory Technical
Memo 33-669, Pasadena, California, February 1974.

Bejczy87 Bejczy, A. K., Szakaly, Z., “Universal computer control system (UCCS) for space
telerobots.” Proc. IEEE Int. Conf. on Robotics and Automation 1987, pp. 318—324.

Bihn88 Bihn, D. G, Hsia, T. C., “Universal Six-Joint Robot Controller,” IEEE Transactions on
Computers, February 1988, pp. 31—35.

Bihari89 Bihari, T., Gopinath, P., Schwan, K., “Object-Oriented Design of Real-Time Software,”
IEEE Real-Time Systems Symposium 1989, pp. 194—201.

Birman90 Birman, M., er. al., “Developing the WTL3170/3171 Sparc Floating-Point
Coprocessors,” Micro, February 1990, pp. 55—64.

Borrill85 Borrill, P. L., “Micro Standards Special Feature: A Comparison of 32-bit Buses,” IEEE
Mirco, December 1985, pp. 71—79.

Brooks75 Brooks, F. P., The Mythical Man-Month, Addison-Wesley, Reading, Massachusetts,
1975.

Brooks87 Brooks. F. P., “No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer. April 1987, pp. 10—18.

132

~as

¢ 3

—

Reterences

Butner88 Butner, S.. Wang Y.. Mangaser, A.. and Jordan, S..“Design and Simulation of RIPS. An
Advanced Robot Control System.” Proc. IEEE Int. Conf. on Robotics and Automation 1988,
pp. 470—474.

Campbell90 Campbell. J. E., Helmes. G. D.. Adept Technology Inc., “The Integrated Controls
Platform.” Proc. International Robots & Vision Automation Conf. 1990, pp. 13-28—13-43.

Chang88 Chang. P. R., Lee, C. S. G., “Residue Arithmetic VLSI Array Architecture for
Manipulator Pseudo-Inverse Jacobian Computation,” Proc. IEEE Ini. Conf. on Robotics and
Automation 1988, pp. 297—302.

Chen86 Chen, J. B., Fearing, R. S., Armstrong. B. S.. and Burdick. J. W., “NYMPH: A
Multiprocessor for Manipulation Applications,” Proc. IEEE Int. Conf. on Robotics and
Automation 1986, pp. 1721—1736.

Chiid91 Child, J., “High-performance microprocessors push limits of VMEbus,” Computer Design,
March 1991, pp. 105—114.

Clark89 Clark, D., “HIC: An Operating System for Hierarchies of Servo Loops.” Proc. IEEE Int.
Conf. on Robotics and Automation 1989, pp. 1004—1009.

Cole90 Cole, C. T., “Real-Time Unix: Fact or Fantasy,” Unix Review, October 1990, pp. 40—44.

Coonan80 Coonan, J. T., “An Implementation Guide to a Proposed Standard for Floating-Point
Arithmetic,” Computer, January 1980.

Copley88. “PWM Servo Amplifiers Model 220/230 Specifications.” Copley Controls Corp..
Newton, Massachusetts, 1988.

Craig88 Craig, J. J., Adaptive Control of Mechanical Manipulators, Addison-Wesley, Reading,
Massachusetts, 1988.

Craig88(2) Craig, J. J., Silma Inc., “Issues in the Design of Off-line Programming Systems,”
Robotics Research, 4h International Symposium. pp. 379—389.

Craig89 Craig, J. J. , Introduction to Robotics Mechanics and Control. 20d ed., Addison-Wesley.
Reading, Massachusetts, 1989.

Darley90 Darley, M., et. al., “The TMS39C602A Floating-Point Coprocessor for Sparc Systems,”
Micro, June 1990, pp. 36—47.

133

Reterences

Dinning89 Dinning A., “A Survey of Synchronization Methods for Parallel Computers.” Computer,
July 1989, pp. 66—77.

Dote90 Dote, Y., Servo Motor and Motion Control Using Digital Sighal Processors, Prentice Hall,
Englewnod Cliffs, New Jersey, 1990.

Dyer88 Dyer, S. A., Morris. L. R., “Floating-Point Digital Signal Processing Chips, A New ERA
for DSP Systems Design,” Micro, December 1988, pp. 10—13.

F.denfield90 Edenfield, er. al, “The 68040 Processors: Part 1, Design and Implementation,” Mirco.
February, 1990, pp. 66—78.

FeitelsonY0 Feitelson, D. G., Rudolph, L..“Distributed Hierarchical Control for Parallel
Processing,” Computer, May 1990, pp. 65—77.

Fijany9l Fijany, A., Bejczy. A. K., “Parallel Algorithms and Architecture fo Computation of
Manipulator Forward Dynamics.” Proc. IEEE Int. Conf. on Robotics and Automation 1991,
pp. 1156—1161.

Fijany91(2) Fijany, A., Bejczy, “Fast Parallel Computation of Manipulator Forward Dynamics or
Two-Dimensional Processor Array,” Submitted to /EEE Trans. Robotics and Automation.

Fleischer88 Fleischer, W. A., “How to Select DC Motors,” Machine Design, November 1988,
pp. 99—103.

Franklin86 Franklin, G., Powell, J. D., and Emami-Naeini, A., Feedback Control of Dynamic
Systems, Addison-Wesley, Reading, Massachusetts, 1986.

Fuccio88 Fuccio, M. L., er. al, “The DSP32C: AT&T’s Second-Generation Floating-Point Digital
Signal Processor,” Micro, December 1988, pp. 30—48.

Gentleman89 Gentleman, W.M., MacKay, S.A., Stewart, D.A., and Wein, M., “Using the
Harmony Operating System: Release 3.0,” Narional Research Council Report ERA-377,
February 1989.

Glass91 Glass, B.. “Under the Hood: SPARC Revealed,” Byre, April 1991, pp. 295—302.

Gimarc87 Gimarc, C. E., Milutinovnic, V. M., “A Survey of RISC processors and computers of the
mid-1980s.” Computer. September 1987, pp. 59—69.

134

A

Reterences

Golwasser84 Goldwasser. S. M., “Computer architecture for grasping.™ Proc. IEEE Int. Conf. on
Robotics and Automation 1984, pp. 320—325.

Gopinath89 Gopinath, P., Schwan, K., “CHAOS. Why one cannot have only an operating system
for real-time applications,” ACM Operating Systems Review, July, 1989, pp. 106—125.

Graunke90 Graunke, G., Thakkar, S., “Synchronization Algorithms for Shared-Memory
Multiprocessors,” Computer, June 1990, pp. 60—69.

Hackett90 Hackett, J. K., Mubarak. S., “Multi-Sensor Fusion: A perspective,” Proc. IEEE Int.
Conf. on Robotics and Automation 1990, pp. 1324—1330.

Han89 Han, J.Y., Wang, C.Y., “Modeling and Performance Evaluation of Multiprocessor Systems
for Real-Time Nonlinear Robot Control,” Proc. IEEE Int. Conf. on Robotics and Automation
1989, pp. 1016—1021.

Harber88 Harber, R.G., Hu. X., Li. J., and Bass, S.C., “The Application of Bit-Serial CORDIC
Computational Units to the Design of Inverse Kinematics Processors.” Proc. IEEE Int. Con.
on Robotics and Automation 1988, pp. 1152—1163.

Hayward84 Hayward, V., Paul, R.. “Introduction to RCCL: A Robot Control C Library,” Proc.
IEEE Int. Conf. on Robotics and Automation 1984, pp. 293—297.

Hayward86 Hayward, V., Paul, R., “Robot Manipulator Control Under UNIX RCCL: A Robot
Control *C’ Library,” International. Journal of Robotics Research, vol. 5, no. 4., 1986,
pp. 94—111.

Hayward88 Hayward, V., Hayati, S., “Kali: An Environment for the Programming and Control of
Cooperative Manipulators,” American Control Conference, 1988, pp. 473—478.

Hayward88(2) Hayward,V., Daneshmend, L., Nilakantan, A., “Model Based Trajectory Planning
Using Preview,” SPIE Conf., Space Automation IV, 1988, pp. 186—193.

Hayward89 Hayward, V., Daneshmend, L. K., Hayati, S., “An Overview of Kali: A System to
Program and Control Cooperative Manipulators,” Fourth International Conference on
Advanced Robotics 1989, pp. 547—558.

Hayward91 Hayward, V., Nilakantan, A., Daneshemnd, L. K., “Trajectory Generation and Control
for Automatic Manipulation,” Submitted to Robotica.

135

Reterences

Hayati90 Hayati, S., Lee, T., Tso. K., Backes. P., and Lloyd, J.. “A Testbed for a Unified
Teleoperated- Autonomous Dual-Arm Robotic System,” Proc. IEEE Int. Conf. on Robotics
and Automation 1990, pp. 1090—1095.

Herndon89 Herndon, J. N., et al., “Telerobotic Manipulator Developments for Ground-Based Space
Research,” Proc. of ANS 3rd Topical Meeting on Robotics and Remote Systems, March 1989,

Hiroshi90 Hiroshi, S., “History and Future Development Trends of Robot Controllers,” Proc.
International Robots & Vision Automation Conf. 1990, pp. 13-56—13-67.

Hogan87 Hogan, N., “Stable execution of contact tasks using impedence control,” Proc.
International Robots & Vision Automation Conf. 1987.

Hollerbach82 Hollerbach, J. M., “A recursive formulation of manipulator dynamics and
comparative study of dynamics formulation and complexity.” Robot Motion, Brady et
al.(Eds.), MIT press, Cambridge, Massachusetts, 1982, pp. 73—87.

Horning91 Horning, R. J., Forsyth, M, Yetter, J., and Thayer, L. J., “How ICs impact
workstations,” /EEE Spectrum, April 1991, pp. 58—68.

Hsu89 Hsu, P., “Control of Multi-manipulator Systems—Trajectory Tracking, Load Distribution,
Internal Force Control, and Decentralized Archnecture,” Proc. IEEE Int. Conf. on Robotics
and Automation 1989, pp. 1234—1239.

lacobovici88 lacobovici, A., “A Pipelined Interface for High Performance Floating Point
Performance with Precise Exceptions,” Micro, June 1988, pp. 77—87.

IEEES7, “Standard 1296-Standard for a Full-Feature 32-Bit Backplane Bus,” IEEE CS Press, 1987.
IEEESS, “Standard 1196-Standard for a Simple 32-Bit Backplane Bus,” IEEE CS Press, 1988.
IEEE/ANSI87, “Standard 1014-Versatile Backplane Bus: VMEbus,” IEEE CS Press, 1987.
IEEE/ANSI89. “Dyaft P896.1-Standard for FutureBus+,” IEEE CS Press, 1989.

Intel87, “80386/80387 Hardware Reference Manual,” Intel, 1987.

Intel88. “80960KB Hardware Designer’s Reference Manual,” Intel, 1988.

Intel90. “i486 Programmer’s Reference Manual,” Osborne McGraw-Hill, 1990,

136

[

Reterences

Intelledex90, “Specifications Model 2400 series 11l SCARA Robot.” Intelledex. Corvalis, Oregon,
July 1990.

Izaguirre91 lzaguirre, A.. Hashimoto, M.. Paul. R. P., Hayward, V.. “A New Computational
Structure for Real-time Dynamics.” International Journal of Robotics Research. In Press.

Javaheri87 Amin-Javaheri, M.. Orin, D. E., “A systolic architecture for computation of the
manipulator invertia matrix.” Proc. IEEE Int. Conf. on Robotics and Automanon 1987,
pp. 647—653.

Johnson91 Johnson, M., Superscalar Microprocessor Design, Prentice Hall, Englewood Cliffs, New
Jersey, 1991.

Kalbfleisch91 Kalbfleisch, C. W., “Overview of Real-Time Kernels at the Superconducting Super
collider Laboratory,” Superconducting Super collider Laboratory, Dallas, Texas, 1991.

Kanade84 Kanade, T., Khosla, P.. and Tanaka, N., “Real-time control of CMU Direct-Drive Arm I
Using Customized Inverse Dynamics,” Proc. 23" d [EEE CDC, December 1984, pp 1345—
1352.

Kane88 Kane, G., MIPS RISC Architecture (R2000/R3000). Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

Kasahara85 Kasahara, H., Narita, S., “Parallel processing of robot-arm control computation on a
multi-microprocessor system.” IEEE Journal of Robotics and Automation, vol. RA-1, no. 2,
1985, pp. 104—113.

Kazanzides86 Kazanzides, P., Wasti, H., and Wolovich, W. A_, “A Multiprocessor System for
Real-Time Robotic Control: Design and Applications,” Proc. IEEE Int. Conf. on Robotics and
Automation 1987, pp. 1731—1736.

Kazerooni88 Kazerooni, H., Kim, S., “A New Architecture for Direct Drive Robots.” Proc. IEEE
Int. Conf. on Robotics and Automation 1987, pp. 442—445.

Khatib86 Khatib, O., “The Operational Space Formulation in the Analysis, Design, and Control of
Robot Manipulators,” Robotics Research Third International Symposium, MIT Press,
Cambridge, Massachusetts, 1986, pp. 263—270.

Klein82 Klein, C. A., Wahawisan, W., “Use of a Multiproces:or for Control of a Robotic System”,
The International Journal of Robotics Research, vol. 1, no. 2, summer 1982.

137

LY

References

Killough86 Kiliough, S. M., Martin, H.L., and Hamel. W. R.. “Conversion of a Servomanipulator
from Analog to Digital Control,” Pro.c IEEE Int. Conf. on Robotics and Automation 1986,
pp. 734—739.

Kircanski86 Kircanski, M., Vukobratovic, M., and Timcenko, A., “An Approach to Development
of Real-Time Robot Models,” IFToMM Symposium. ROMANCY, Krakow 1986.

Kircanski88 Kircanski, M., Vukobratovic, M., and Kircanski, N., “A new program package for the
generation of efficient manipulator kinematic and dynamic equations in symbolic form.”
Robotica, vol 6.. 1988, pp. 311—318.

Kircanski89 Kircanski, N., Timcenko, A.. Jovanovic, Z., “Computation of Customized Symbolic
Robot Models on Peripheral Array Processors,” Proc. IEEE Int. Conf. on Robotics and
Automation 1989, pp. 1180—1185.

Kohn89 Kohn, L., Margulis. N., “Introducing the Intel i860 64-bit Microprocessor,” Micro, August
1989, pp. 15—30.

Korein78 Korein, J. U., Bollinger, J. G., “Design Parameters for Sampled-Data Drives fo CNC
Machine Tools,” IEEE Trans. Industry Applications, May/June 1978, pp. 255—263.

Korein86 Korein, J. U., Maier, G. ., Taylor, R. H., and Durfee, L. F., “A Configurable System for
Automation and Programming Control,” Proc. IEEE Int. Conf. on Robotics and Automation
1986, pp. 734—739.

Krick91 Krick, R. F., Dollas, A., “The Evolution of Instruction Sequencing,” Computer, April
1991, pp. 5—15.

Lathrop8S Lathrop. R. H., “Parallelism in Manipulator Dynamics,” Proc. IEEE Int. Conf. on
Robotics and Automation 1985, pp. 772—17717.

Lawson90 Lawson, W. H., “Philosophies for Engineering Computer-Based Systems,” Computer,
December 1990, pp. 52—63.

Leahy86 Leahy, M. B, Saridis, G. N., “The RAL Hierarchical Control System,” Proc. IEEE Int.
Conf. on Robotics and Automation 1986, pp. 407—411.

Lee86 Lee, C. G. S.. Chang. P. R., “A maximum pipelined CORDIC architecture for robot inverse
kinematics computation,” TR-EE-86-5, School of E.E., Purdue University, January 1986.

138

Reterences

Lee8Y Lee, L., King, R. B., and Paul. R. P., “A Predictable Real-Time Kernel for Distributed
Multisensor Systems.” Computer, June 1989, pp. 78—83

Lee90 Lee, E. A., “Programmable DSPs: A Brief Overview,” Micro. October 1990, pp 14.—16.

Leibowitz90 Leibowitz, M. R., “UNIX Workstations Arrive!™ Daramarion, June 1, 1990, pp
24—30.

Leung86 Leung, S. S.. Shanblatt, M. A., “Real-Time Direct Kinematics on a VLSI Chip.” Proc.
IEEE Real-Time Systems Symposium 1986. pp. 257—263.

Leung88 Leung. S. S.. Shanblatt, M. A., “Computer Architecture Design for Robotic,” Proc. IEEE
Int. Conf. on Robotics and Automation 1988, pp. 453—456.

Leung88(2) Leung. S. S.. Shanblatt, M. A.. A Conceptual Framework for Designing Robotic
Computational Hardware with ASIC Technology.” Proc. IEEE Int. Conf. on Robotics and
Automation 1988. pp. 461—464

Levin87 Levin, F., Biihler, M., and Koditschek. D. E.. “A Prototype Processing Cell for Distributed
Real Time Control,” RP-8701. Center for Systems Science, Dept. E.E.. Yale University,
March 1987.

Li88 Li, X., Malek, M., “Analysis of Speedup and Communication/Computation ratio in
multiprocessor Systems.” Proc. IEEE Real-Time Systems Svmposwum 1988. pp. 282—288

Ling88 Ling. Y. L. C., Sadayappan, P., Olson, K. W., and Orin, D. E . “A VLSI Robotics Vector
Processor for Real-Time Control,” Proc. IEEE Int. Conf. on Robotics and Automation 1988,
pp. 303—308.

Lloyd88 Lloyd, J., Parker, M., and McClain, R., “Extending RCCL Programming Environment to
Multiple Robots and Processors,” Proc. IEEE Int. Conf. on Robotics and Automation 1988,
pp. 465—469.

Lloyd91 Liloyd, J. E. Hayward, V., “Real-time Trajectory Generation Using Blend Functions,”
Proc. IEEE Int. Conf. on Robotics and Automation 1991

Lozano-Pérez88 Lozano-Pérez, T., er al.. “Handey: A Task-Level Robot System,” Robotics
Research Symposium 1988. pp. 29—36.

LSI88, “LSI Logic—LR3010 Floating Point Accelerator {preliminary),” LSI Logic 1988.

139

)

Reterences

Luh80 Luh, J. Y. S., Walker, M. W., and Paul, R. P., “On-line computation scheme for mechnical
manipulators,” Trans. ASME Journal of Dvn. Syst. Meas. Cont.. June 1984, pp. 134—142.

L.uh83 Luh, J.Y.S., “Conventional Controller design for industrial robots—A tutorial,” IEEE Trans.
Svstems, Man, and Cybernerics, May/June, 1983, pp. 298—316.

Mangaser89 Mangaser, A. A., Wang, Y., and Butner, S.E.. “Concurrent Programming Support for
a Multi-Manipulator Experiment on RIPS.” Proc. IEEE Int. Conf. on Robotics and
Automation 1989, pp. 853—859.

Manuel88 Manuel, T., “DSP Gets a Real-Time Operating System,” Electronics (now Electronics
Week), October 1988, pp. 137.

Marsan83 Marsan, M. A, Balbo, G., “Modeling Bus Contention and Memory Interference in a
Multi-Processor System,” IEEE Trans. on Computing, January.1983, pp. 60—72.

McMillan91 McMillan, S., Orin, D. E., and Sadayappan, P., “Real-Time Robot Dynamic
Simulation on a Vector/Parallel Supercomputer,” Proc. IEEE Int. Conf. on Robotics and
Auromation 1991, pp. 1836—1841.

Mendelsohn91 Mendelsohn, A., “Will Monolithic or Multichip Processors Win the Performance
Race?” Computer Design. May 1991, pp. 100—121.

Miller90 Miller, D. J., Lennox, C. R., “An Object-Orient2d Enviroment for Robot System
Architectures,” Proc. IEEE Int. Conf. on Robotics and Automation 1990, pp. 352—361.

Motorola87, “MC68881/MC68882 Floating Point Coprocessor User’s Manual,” Motorola Inc.,
November 1987.

Motorola88, “MC88100 Technical Summary,” Motorola Inc., October 1988.
Motorola90, “MC68040 Reference Manual,” Motorola Inc., June 1990.

Narasimhan86 Narasimham. S., Siegel, D. M., Hollerbach, J. M., Biggers, K., and Gerpheide, G.,
“Implementation of control methodologies on the computational architecture for the Utah/MIT
hand.” Proc. IEEE Int. Conf. on Robotics and Attomation 1986, pp. 1884—1889.

Narasimhan88 Narasimham, S., Siegel, D. M., and Holierbach, J. M., “Condor: A Revised
Architecture for Controlling the Utah-MIT hand,” Proc. IEEE Int. Conf. on Robotics and
Auromation 1988, pp. 446—449.

140

W‘hw»w B e R ot B e e s St Ll WO DU

Reterences

Nash85 Nash. J. G., “A systolic/cellular computer architecture for linear algebraic operations.”
Proc. IEEE Int. Conf. on Robotics and Automation 1985, pp. 779—784.

Newton89 Newton, K.. “VSB Breaks Through VME Peformance Roadblocks.™ Computer Design,
November 1989, pp. 96—105.

Nigam85 Nigam, R.. Lee. C. S. G., “A multiprocessor-based controller for the control ot
mechanical manipulators.” IEEE J. Robotics Automation, December 1985, pp. 173—182.

Nilakantan88 Nilkantan, A., Hayward. V., “Synchronizing Multiple Mampulators.” Second Int.
Symposium on Robotics and Manfacturing, Research, Education, and Applicanions, 1988

Nilakantan89 Nilakantan, A.. Hayward, V.. “The Synchronization of Multiple Manipulators
Kali,” Robotics and Autonomous Systems (Special Issue on Multi-Arm Robots), North
Holland. vol 5., 1989.

Oehler90 Oehler, R.. “RISC System/6000 Architecture and Performance,” Proc. Hot Chips
Symposium, IEEE CS Press, 1990.

Oehler91 Oehler, R., Blasgen, M. W., “IBM RISC/6000 Architecture and Performance,” Micro,
June 1991, pp. 14—17, 56—61.

Olsen8Y Olsen, W. R., Dimitri, D. S., and Berg. D., “Control for Eight Axes by DSP,” Power
Conversion and Intelligent Motion (Europe), Nov. 1989, pp. 236—240.

Orin85 Orin, D. E., Chao, H. H., Olson, K. W., and Schrader, W. W., “Pipeline/parallel algorithms
for the Jacobian and inverse dynamic computations,” Proc. IEEE Int. Conf. on Robotcy and
Automation 1985, pp. 785—789.

Orin86 Orin, D. E., Tsai, Y. T., “A real-time computer architecture for inverse kinematics,” Proc.
IEEE Int. Conf. on Robotics and Automation 1986, pp. 843—850.

Ostroft87 Ostroff, J.S., Wonham, W.M., “Modelling, Specifying and Verifying Real-Time
Embedded Computer Systems,” Proc. IEEE Real-Time Systems Symposium 1987, pp. 124—
132.

Papamichalis88 Papamichalis, P., Simar, R., “The TMS320C30 Floating-Point Digital Signal
Processor,” Micro, December 1988, pp. 13—29.

Paul72 Paul, R. P., “Modeling, Trajectory Calculation and Servoing of a Computer Controlled
Arm,” AIM 177, Standford Artificial Intelligence Laboratory, Stanford University, 1972

141

gy

Reterences

Paul81 Paul, R. P., Robot Manipulators: Mathematics, Programming and Control, MIT Press.
Cambridge. Massachusetts, 1981.

Paul85 Paul. R. P., Zhang, H., “Robot Motion trajectory specification and generation,” Robotics
Research: The Second International Symposium, H. Hanafusa and H. Inoue (Eds.), MIT Press,
Cambridge, Massachusetts, 1985, pp. 373-380.

Paul86 Paul, R. P., Zhang, H., “Design and Implementation of a Robot Force/Motion Server,” Proc.
IEEE Conf. on Robotics and Auromation 1986, pp. 1878—1883.

Piepho89 Piepho, R. S., Wu, W. S, “A Comparison of RISC Architectures,” Micro, August 1989,
pp. S1—61.

Przytula88 Przytula, K. W., Nash, J. G., “A Special Purpose Coprocessor for Robotics and Signal
Processing,” IEEE Workshop on Special Computer Architectures for Robotics. April 1988,
pp. 74—82.

Raibert81 Raibert, M. H., Craig, J. J., “Hybrid Position/Force Control of Manipulators,” Trans.
ASME J. of Dyn., Sys., Meas., and Control, June 1981, pp. 102:126—133.

Ramaritham88 Ramamritham, K., “Real-Time System Support for Robotics,” IEEE Workshop on
Special Computer Architectures for Robotics, April 1988, pp. 149—160.

Randell69 Randell, B.. “A Note on Storage Fragmentation and Program Segmentation,”
Communications of the ACM, July 1969, pp. 365-—372.

Rosing90 Rosing, W., “Technology Trends of the 1990°s,” UNIX Review, February 1990, pp. 82—
89.

Salkind89 Salkind, L., “The SAGE Operating System,” Proc. IEEE Int. Conf. on Robotics and
Automation 1989, pp. 860—3865.

Salisbury80 Salisbury, J. K., “Active Stiffness Control of a Robot Manipulator in Cartesian
Coordinates.” Proc. IEEE Inter. Conf. on Decision and Control, 1980.

Scheinman88 Scheinman,V., “Robotworld: A Multiple Robot Vision Guided Assembly System,”
Robotics Research, 4h ed., R. Bolles and B. Roth (Eds.), MIT Press, Cambridge,
Massachusetts, 1988, pp. 23—28.

142

Reterences

Schmitz89 Schmitz, D., Khosla, P., Hoffman, R.. and Kande. T., “CHIMERA: A Real-time

Programming Environment,” Proc. IEEE Int. Conf. on Robotics and Automation 1989,
pp. 846—852.

Schwan85 Schwan, K.. Bihari, T.. Weide. B. W., and Taulbee. G., *GEM: Operating System
Primitives for Robots and Real-Time Control.™ Proc. IEEE Int. Conf. on Robotics and
Automation 1985, pp. 807—813.

Schwan86 Schwan, K., Bo, W.. and Gopinath, P., “A High-Performance, Object-Based Operating
System for Real-time, Robotics Applications.” Proc. IEEE Real-Time Svstems Svmposium
1986, pp. 147—156.

Seik090, “RT 3200 High Performance Precision Robot,” Seiko Inc., Torrence, California, June
| 1990.

Sha91 Sha, L. Rajkumar, R., and Lehoczky, J. P., “Real-Time Computing with 1EEE Futurebus+.”
Micro, June 1991, pp. 30—33. 95—100.

| Shalom88 Ish-Shalom, J., Kazanzides, P., “SPARTA: Multiple Signal Processors for High-
Performance Robotic Control,” Proc. IEEE Int. Conf. on Robotics and Automation 1988,
pp. 284—290.

Singh91 Singh, 1., “Inder Singh on: Posix,” Computer Design, March, 1991, pp. 23—25.

Sohie88 Sohie, G. R., Kloker, K. L., “A Digital Signal Processor with IEEE Floating-Point
Arithmetic,” Micro, December, 1988, pp. 49—67.

Stewart89 Stewart, D. B., Schmitz, D. E.. and Khosla, P. K., “CHIMERA II: A Real-Time UNIX-
Compatible Multiprocessor Operating System for Sensor-based Control Application,” CMU-
RI-TR-89-24, Advanced Manipulators Lab, The Robotics Institute Carnegie Mellon
University, September 1989.

Stone87 Stone, H. S., High-Performance Computer Architecture, Addison-Wesley Co., Reading.
Massachusetts, 1987.

Stroustrup87 Stroustrup, B., The C++ Programming Language, Addison-Wesley Co., Reading,
Massachusetts, 1987.

SUNS8T7 ,“The SPARC Architecture Manual Rev. 5,” Sun Microsystems Inc., February, 1987.

B
> SUNS89, “The SBUS Specification Rev A.2,” Sun Microsystems Inc., November, 1989.

143

-

Reterences

'Takanashi8Y Takanashi, N., Ikeda, T., and Tagawa, N.. “A High-Sample-Rate Robot Control

System Using a DSP Based Numerical Calculation Engine,” Proc. IEEE Int. Conf. on
Robotics and Automation 1989. pp. 1168—1173.

'I'189, “Third-Generation TMS320 User’s Guide,” Texas Instruments, October 1989,

T191, “T132C40 Data Sheet.” Texas Instruments, March 1991.

Unimation80 Unimate Puma Robot Volume I — Technical Manual 398H1, Unimation Inc.,
Danbury, Connecticut, April 1980.

Vischer88 Vischer, D., and Khatib, O., “Design and Development of Torque-Controlled Joints,”
Experimental Roborics 1,V. Hayward and O. Khatib (Eds.). Lecture Notes in Control and
Information Science 139, Springer Verlag. 1988. pp. 271—286.

Volder59 Volder, J. E., “The CORDIC Trigonometric Computing Technique,” IRE Transactions on
Electronic Computers, September 1959, pp. 330—334.

Volz84 Volz, R.N.. Mudge, T.N., “Robots Are (Nothing More than) Abstract Data Types,” Robotics
Research: The Next Five Years and Beyond, August, 1984.

Wang87 Wang, Y., Butner, S. E.. “A New Architecture for Robot Control.” Proc. IEEE Int. Conf.
on Robotics and Automation 1987, pp. 664—670.

Wang89 Wang, W. §., Chen, K. K., Lai, Y. S., and Liu. C. H., “Implementation of a Multiprocessor
system for Real-Time Inverse Dynamics Computation,” Proc. IEEE Int. Conf. on Robotics
and Automation 1989, pp. 1174—11179.

Weicker90 Weicker, R. P., “An Overview of Common Benchmarks,” Computer, December 1990,
pp. 65—75.

Whang90 Whang M., Kua, J., “Join the EISA Evolution,” Byre, May 1990, pp. 241—247.

Whittaker9) Whittaker, W. L., Kanade, T., “Japan robotics for unmanned space exploration,”
IEEE Spectrum, December 1990, pp. 64—67.

Williams90 Williams, T.. “Real-time operating systems struggle with multiple tasks,” Computzer
Design, October 1990, pp. 92—108.

Williams90(2) Williams, T.. “BIOS Standard Would Link Real-Time Kernels To New Hardware,”
Computer Design, May 1990, pp. 24—26.

"
k]

Reterences

Williams91 Williams, T., “RISC Instruction benchmarks Spark Performance Debate.” Computer
Design, May 1991, pp. 69—72.

Williams91(2) Williams, T., “Transputer Performance boosted 10x that of its
Predecessor.” Computer Design, May 1991 . pp. 36—38.

Wind87 . “VxWorks Reference Manual & Documentation version 3.2,” Wind River Systems,
October 1987.

Zhang88 Zhang, H., Paul, R.P., “Robot Manipulator Control and Computational Cost.” JEEE
Workshop on Special Computer Architectures for Robotics, April 1988, pp. 28—65.

145

