
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

1
GSHELL: A COMMAND INTERPRETER

FOR A PUBLIC COMPUTING UTILITY

by

Ying Deng

Novemher 2004

School ofCompllter Science

McGili University

Montréal. Canada

A thcsis SlIblllittcd to McGili University

in partial fultïllillent orthe reqllirel1lcnts or

the ckgree of Master of Science

cD Y ing Deng, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12431-8
Our file Notre référence
ISBN: 0-494-12431-8

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Galaxy shelL a sub comp(ment of Galaxy project is designed and implemented. Galaxy

shell is a core component of the Galaxy services. which provides an interface for Galaxy

developers or other modules to access certain functions supported by Galaxy system.

Through Galaxy shell. developers can sem·ch. query. and bind resources according to

static or dynamic constraints. launch commands either locally or remotely. Galaxy shell

also supports some special functions. such as remote pipeline and multicast remote

execution. Galaxy shell not only provides a valuable tool for the research and

dcvelopment of Galaxy project. but also can be integrated into the core management

module of Galaxy. Distributed Resource Allocation Manager to realize automatic

discovery. dissemination. and allocation Galaxy resources. The specification of Galaxy

shell is also provided.

Galaxy shell is implemcnted based on Project JShe11. an emulation of a UNIX shell

"\Titten in Java. Galaxy shell extends JShe11 by adding new commands special for Galaxy

resource management and consumption. Project JavaCc. a parser generator and lexical

analyzer generator is used for writing the token manager and parser for Galaxy shell.

Apache XML-RPC is used to implement remotc procedure calls.

RESUMÉ

La coquille de Galaxy, un sous composant du projet Galaxy est conçue et mIse en

application. La coquille de Galaxy est un composant de noyau des services Galaxy qui

fournit une interface pour des développeurs de Galaxy ou autres modules pour accéder à

certaines fonctions soutenues par le système Galaxy. Par la coquille de Galaxy, les

développeurs peuvent rechercher, questionner et lier des ressources en tenant compte des

contraintes statiques et dynamiques, lancer les commandes autant localement qu'à

distance. La coquille de Galaxy soutient également quelques fonctions spéciales telles

que les chemins d'accès à distance et l'exécution à distance de plusieurs tüches. La

coquille de Galaxy fournit non seulement un outil valable pour la recherche et le

développement du projet Galaxy, mais également peut être intégrée dams le noyau du

module de gestion de Galaxy, du gestionnaire attribué d'allocation des ressources pour la

réalisation de découvelie automatique, de la diffusion et de l'allocation des ressources de

Galaxy. Les spécifications de la coquille de Galaxy sont également fournies.

La coquille de Galaxy est mise en application basée sur le projct JShelL une émulation

d'une coquille d'UNIX écrite en JA VA. La coquille prolonge JShell pour en ajoutant de

nouvelles commandes spéciales pour la gestion des ressources Galaxy et pour la

consommation. Projet JavaCC, générateur de symbolique et générateur d'analyseur

lexicologique est employé pour écrire le gestionnaire de symbolique et analyseur pour la

coquille de Galaxy. XML-RPC Apache est emploé pour mettre en application des appels

à distance de procédé.

11

ACKNOWLEDG EM ENTS

The 8uthor sincerely thanks Professor Muthuculll8ru M8heswar8n for his expert guidance and

encourageillent throughout the course ofthis rescarch progralll. The author expresses his gratitude

ln Balasubralllane) ,) Mani) Illaran and Shah Asacluzz81llan for their great assistance in the design

and implementation of the Galaxy Shel!.

Thc research presented in this thesis was carried out in the Aelvanceel Networking Research Lab

at McGill University. The 8uthor cxtenels thanks to Paul Carel for his assistance in the laboratory.

Special th81lks are also extcnded to Leying Zhu and 8eidi Chen tOI' their assistance during this

study. The assistance of the office staff in the School of Computer Science is gratefully

acknowlcclged.

Finally. the author \Vould like to thank his wife for her understanding and support throughout his

stay at McGill Univc:rsity.

Ying Deng

Junc.2004

III

TABLE OF CONTENTS

ABSTRACT ... i
RÉSUMÉ ... ii
ACKNOWLEDGEMENTS .. iii
LIST OF FIGURES .. vi
LIST OF TABLES .. vii

CHAPTER 1: INTRODUCTION .. 1

1.1 Galaxy project .. 1
1.2 Galaxy shell project... ... 2

1.2.1 Responsibilities ofGalaxy shell .. 3
1.2.1.1 Search resources .. 3
1.2.1.2 Bind resollrces ... 4
1.2.1.3 Directed execlltion on a resollrce collection 4

1.3 Re lated projects .. 4
1.3.1 JXTA ... 4
1.3.2 GLUnix ... 7
1.3.3 CODINE ... 8
I.J.4LSF .. 10

CHAPTER 2: GALAXY SHELL DESIGN .. 12

2.1 Galaxy middleware layer ... 12
2.2 Galaxy shell Rationale .. 15
2.3 Galaxy shell COllllllands ... 17
2.4 Galaxy shell architecture .. 18

2.4.1 Shell .. 19
2.4.1.1 Parscr .. 20

2.4.2 Local daelllon ... 21
2.4.3 Peer kcrnel ... 22

2.) Galaxy shell \\ork110w ... 22
2.5.1 Bootstrap ... 22
2.).2 Rcmote procedure cali .. 23
2.5.3 Process control .. 24

CHArTER 3: GALAXY SHELL SPECIFICATION ... 26

3.1 Galaxy rcsource ni1ll1ing system ... 26
3.1.1 Group bascclnallling .. 26

3.1.1.1 Usage .. 26
3.1.2 Static type baseclnaming ... 28

3.1.2.1 Definition .. 28
3.1.2.1.1 Static type .. 28
3.1.2.1.2 Type cl irectory '" ... 29

3.1.2.2 Usage .. 29

IV

3.1.3 Dyné1lllic type based naming .. 34
3.2 Gala:\y shell cOlllll1ands 35

3.2.1 BlIilt-in cOlllmands 35
3.2.2 External c01l1mands ... 38

3.2.2.1 Extelï1al cOllllllands list.. ... 38
3.2.3 Batch command ... 41
3.2.4 Reillote pipeline ... 41

3.2.4.1 Seqllential pipeline .. 41
J.2.4.2 Concurrent pipeline ... 42

J.] Sy'lltax of'Galaxy shell COIl111l3nd ... 42
J.3.1 Rescrvcd words .. 42
3.3.2 BNF for Galax)' shell. .. 43

CHAPTER 4: GALAXY SHELL IMPLEMENTATION ... 47

4.1 Shell ... 47
4.1.1 Parscr .. 50

4.2 Local claemon .. 53
4.2.1 Slipporting c01l11l1ancls 55

4.3 Peerkelï1el 56
4.3.1 Supporting cOllllllancls 57

4.4 Remote procedure cali 58
4.4.1 XML-RPC Server 58
4.4.2 XML-RPC Client .. 59

4.5 Galaxy shell extension ... 60

CHAPTER 5: GALAXY SHELL USAGE AND ANALYSIS ... 61

5.1 Galax)' shell lisage .. 61
5.1.1 Galax)" shell installation ... 61
5.1.2 RlIl1l1ing Galaxy sllell ... 62
5.1.3 Starting XML-RPC servel' ... 62

5.2 Galaxy silell performance .. 63

CHAPTER 6: CONCLUSION ... 68

REFERENCES .. 70

AI'PENDIX A: PARSER SEED FILE ... 7J

APPENDIX 13: SOURCE CODE DESCRIPTION ... 81

v

Chapte,' 1

1.1
1.2
1.3
1,4
1.5

Chaptu 2
2.1
2.2

Chapte .. .t
4.1
4.2
4.3
4,4
4.5
4.6
4.7
4.8
4.9

Chapter :;
5.1
- Î
).~

5.3
5,4
5.5
5.6

Appendix B
8.1
8.2
ILl

LIST OF FIGURES

Gala,y architecture layer .. 2
Cîalax) daemon on a resource .. 3
JXT A architecture .. 5
CiLUllix architecturc .. 7
CODINE architecture .. 9

Prol'ile based naming .. 13
Resource joining Galaxy .. 14
Cialax) shell Architecture .. 19

Fik Structure ofshellmodule ... 48
UML cliagram ofClass CO!7.1'o!e .. 49
File Structure of parser module ... 51
UML diagram ofClass Tokel1 ... 51
UML cliagram ofClassponcr .. 52
File Structure of local claemon module ... 53
lJML cliagralll ofClass Loco!DuCl11o!7 .. 54
UML diagram ofClass 1.\ .. 56
File Structure ofpeer kernelllloclule ... 57

File Structure ofGalaxy shell Projeet ... 61
Respol1se time of cOllll11ands ... 64
Response t illle of broaclcasting in PlanetLab network 65
Response time of broaclcasting ... 66
Scalability test in a LAN ... 67
Scalability test in PlanetLab network ... 69

Cialax) shell illlplementation architecture ... 81
Classes list in thrce sub packages ... 81
Snapshot of Java Document ofCialaxy shell project.. 82

vi

LIST OF TABLES

Chaptc,']

1.1 Gala:\) shcliproccssscenarios ... 10

Chapte .. 2

2.1 Gala:\) shell process scenarios .. 19
COlllparison ofparsers ... 20
COlllparison ofthree distribuled cOlllpliting technologies 24

Cha pIc .. 3

J.I D)nall1ic based nall1ing options ... J4

Chaptu 5

).1 Rcsollrce consllillption ofshells ... 6J
).2 Response lime ofbroadcasting in a LAN ... 67
).3 Response lime of broaclcasting in PlanetLab network 68

vii

CHAPTER 1

INTHODUCTION

1.1 Galaxy projcct

Gala;.;y is a project rhat implements a public computing utility (PCU). A PCU is a generalized

resourcc provisioning system that is cOll1posed l'rom geographically distributed resources. The

resources l'an be categmizcd into man)' types. such as CPU time. storage. network bandwidth.

ancl ctc. ;\11 these availablc rcsources are locatecl at distributed domains and the clients of these

resources are also distributed. There are man)' problems need to be resolved for the success of a

PCU system. such as scalable distributed resource management. resource naming. resource

discovery and disscillination. setting and disseminating administrative policies. handling tàults.

job schcduling. security Illanagement. and service level agreement. The design of Gala;.;y

cOlllbines both peer-to-pcer (P2P) and Grid computing ideas: a P2P overlay substrate for

connccting the rcsources in a global network and a comillunity-based decentralized resource

manageillent systclll. The P2P substratc names and locates resources as standardized virtual

cOlllmodities. At the top of the P2P layer. PCU services are plugged into the P2P substrate and

create a cOllllllunity-oriented architecture for the PCU. where services are bound to the resources

in a dynamic and lle;.;ible manner. Gala;.;y provides a utility like interface to the virtual pool

similar to that provided by electricity and water departments. By this move. it helps to neutralize

the resource providers and simplifies activities such as mctering and billing. The benefits and

challenges or a utilit) cOlllputing lie on efficientl) realizing the cOlllmoditization process in

clistributcd cOlllputing systcllls. While Gala;.;)' shares several ideas \Vith other utility computing

systems. it difTers Illost or them because it is designed and implemented with:

(i) Comilloclitization at the core andutilizes this notion to efficiently implement resource

n<llll i ng and d iscovery

(ii) Rela;.;ccl participation models to induct public resources into the system

(iii) Gcographically scalable resource:: management archilécturc

1.2 Galaxy shell project

Figure 1.1 shO\\s a layered architecture of Galaxy. It has three laYl'rs from top which are

appl ication. m idd Icware and resource pool. At the bottoll1 is the resource pool com posed by

joincd resources. In the middle is Galaxy Illiddleware which is the core ofGalaxy project and will

be deta i!ccl short 1:. !\ 1 appl icat ion layer. man)' appl icat ions can be bui It on for spec ial tasks or

organiziltions. such as lile exchange syslem. storage sharing system. computing power sharing

syst\:'m. and etc. The m idd leware is composed by three leve Is. the bottoll1 one is Resource

!\ddrcssablc Nd\\ork (R!\N) which provides the l'l'source naming. discovery. and access services

10 the PCU. The ncxt upper layer is Galaxy resource management systell1 (GRMS). built on top of

RAN. GRMS provides scveral services such as resource allocation. incentive managell1ent, and

trust management to the PCU. The next upper layer ofGalaxy is the service layer which includes

man) services such as application level QoS managers. network file system and Galaxy shell.

Q)
~

C\J
S
Q)

=0
~
2
>,
x
C\J

Applications

Galaxy Services

Resource
Management

IncentivelTrust
Management

c3 Resource Addressable Network (RAN)

Resource Pool (RP)

Figu,"e 1.1 Galaxy architecture la)'c,"

(Taken from "Design ofa Quality of Service Aware Public COll1puting Utility".

Maheswaran et al.. School ofCompuler Science. McGi11 University)

Cala\) shell is responsiblc eithér for sending qlleries 10 GRMS for searching certain resollrces. or

sénding rel]uest to somé resources (nodes) in resource pool to rell1otel) execule cOll1ll1ancls there

(consume Ihe public resources). From this architecture. it is notable that the shell is playing a key

l'Ole in Gal,lxy: lïrst. the shell can be used as a developlllcnt tool for Galaxy developers to test and

de bug Galax)' systém. select the best address methods and searching algorithm to optilllize the

rcsourcc management. Second. the shell can be integrated into the GRMS 1l10dule. combined with

2

sécurity ami servieç lèvel agreement to build an automatic resource allocation and management

module l'or controlling tlle \\holc Galaxy system.

ln orcier to cOll1lllunicate with the Galaxy system, eacll resource joined Galaxy resource pool will

be \\I"appecl into a Galaxy Daelllon (GD) (Sec Figure 1.2). GD is a clistributecl sub componcnt of

the GRMS. Several CJRMS runetions are embeddecl in GD ancl some ofthese include generating

status updatés. sending or éluthentieating aceess requests, issuing resource usage right tokens

(resouree tickets), Illonitoring ongoing resource accesses for quality of service violations, ancl

reporting C]uality of service violations.

Resource

Resource before
joining Galaxy

:>
1

Resource

Galaxy Daemon

Resource atter
joining Galaxy

Figure 1.2: Galaxy daemon on a resource

1.2.1 Responsibilities of Galaxy shell

J

The nlalll task of Galaxy sllell is to provicling an easy 10 use intert~lCe for searehing, bincling,

alloeati ng and COnSUll1 i ng resources in the resource poo 1. It will ease the Ga laxy research on

CîRMS \\hieh is the hémt of Galaxy, GRMS. From this task, Galaxy shell needs to support

lollclWing résponsibilities.

1.2.1.1 Search l'eSOIlITes

Searehing for certain resourees III the resource pool basécl on certain constraints. These

constraints could be eitllér statié or dynamic. Statie constraints include domain and type, domain

is a Sét or cOIllj1uting résources aggregatce! aceording to certain rules ancl type is a special feature

créalee! and usee! by Ga laxy G RM S 10 I~ Iter heterogéneous mach i nes thus to im prove effic iency

3

and perlèlllllilnce in resource management. Dynamic constraint inclucles loacl, speed, lease time,

and 1le1\\ork (rallic dc. Galaxy resource naming system provicles support for this function. The

searching result call be usecl for bindillg ancl e:\Ccuting clirectecl execution commancls at a laler

lime.

1.2.1.2 Binl! l'CSOllITCS

The searchillg cOlllll1ilnds will retmn available resources accorcling to the searching constraints.

Berure using Ihese resoul'Ces. they neecl to be bOllncl \Vith the cllrrent nocle (the nocle where the

shell is rllnning). The bind cOll1mé1ncl bincls current nocle with remote nodes through certain

prolocol \\here ail sicles agrec. artel' bincling. the c1istributeclnocles can talk to each other.

1.2.1.3 Dil'cctcd cxcclItion on a resoll l'ce collection

Alter bincling, lè)llowing cOllllllancis can be directed and executecl on a glven machine or

machines remotel)'. Alter the comilland execution fÏnishecl. the execution result (if any) will be

sent back to the console of the shell that originally sent out the cOJlllllands. The clirectecl execution

comilland can inclllck relllo(e redirection function. which means that the outcome of an execution

\\ill directed to the next machine. who is the consumer of the running result. After ail the chain

like execution finished. the result (success. failure. or some other data) will be sent back. the shel!.

1.3 Rclatcd p.-ojccts

lhere are man) relatcd projccts ""cre researched. both in academic ancl industrial area. Following

is a l'ev ie\\ about these projects.

1.3.1 JXTA

Project .IXTA is an open-sollJ'ce project originally conceived by Sun Microsystems. Inc . .IXTA

tcchnology is dcsigned to facilitate developing P2P system. which enable inlerconnected peers to

easily locate ancl cOll1ll1unicate \Vith each other. and olTer services to each other seamlessly across

dirlèrenl platl()JïllS and ndworks. Projecl JXTA provicles a fi'al11ework tor developing clistributecl

cOl11puting applications and support the C0ll11110n functions required by any P2P system. With

JXTA. lèmllcrly c1aunting fral11c\Vork-builcling work is waivecl. thus. enterprises can rocus on

4

crcating innovative soltwarc applications, and not re-inventing the "'wheel". JXTA is divided into

three layers (sec Figure 1.3), which are platform layer (JXTA Core), services layer and

applications layer.

,/XTA
Applications

.JXTA
Scniccs

.JXTA Corc

JXTA
Co III III un ity

1

SUN JXTA l
Applications Applications

1 JXTA Shell

f-
I--

Peer Commands
JXTA

Community l SUN JXTA

1 Sery ices Services

Peer Groups Peer Pipes Peer Monitoring

Security

Any Peer on the Extended Web

Figure 1.3: JXT A architecture

The platform layer, also known as the JXTA core, provides minimal and essential primitives that

arc comll1on to P2P networking. The services layer includes optional but common and desirable

network services 101' a P2P network including searching and indexing, directory, storage systems,

lïle sharing. distributed file systems, resource aggregation and renting, protocol translation,

authentieation, and etc. The applications layer includes implementation of integrated applications

\\ hich can be seen in claily lire, sueh as file sharing, P2P Email systems, distributed aLlction

systems. and etc.

JXTA Shell is an application build on JXT/\ platform; it provides interactive access to the JXTA

platforll1 via a simple commancl line interface, just like a UNIX shel!. The difference is that the

JXTA Shell is designecl to be executed in a networked environlllent. What happens under the

cover is that a user cOllllllilnd is likely to generate a sequence oflllessage exchanges between a set

of peers. \vith sOllle cOlllputation occurring on relllote peer nodes. and \Vith the answer being

retumee! to the user.

5

Ihere are man) similarities between JXTA Shell and Gala:;:y shell: they arc both targeting a

distribllted system: both can launch seaI'Ching and binding remole nodes, and e:;:ecllte commands

remoteh'. l-Iowever. the\' do have man\, ditTerences in their goal. infrastructure and functionality.
~ r "' '-....- "'

• Goal

.1 XT;\ She Il IS a project written by .1 XT A commun ily basica lIy 10 dell10 the functions and

values 01' JXT;\ platlorm. thus it is more in the application level instead of service leveL

altllOugh the line bct\vccn the two bels is a liule bit blur f()r JXTA Shel!. JXTA Shell

provides man\' basic "plumbing" comlllands such as crcating pipeline, publishing

advertisement. and etc. Gala:;:y shell aims to assist Gala:;:y project research, especially of

RA N research. thus it doesn't prov ide prim it ive demonstral ive comll1ands 1 ike J XTA ShelL

on the contrary. Gala:;:y shell masks these \'york and provides a 1110re abstract interface for

Gala:;:) developers.

• Infrastructure

.IXIA Shcll is based on a primitive resouree pool, whieh is cOlllposed by basic peer groups:

those groups are categorizcd randomly without any specific meaning. Galaxy shell is based

on (îala:;:)' resource pool, which is weil defined and organized according to Galaxy resource

nall1ing system, This infrastructure assigns new tasks to Galaxy shell to investigate its

fllnetionality ancl scalability. Gala:;:y shell provicles Illany new methocls, which are

speci1ïcally clistoillized loI' this infi·astrllctllre. such as type searching. direct execution on a

resource collection, etc.

• Functionalit\

.IXIA Shell is basecl on a primitive resource pool, which is eomposed by basic peer groups:

those groups are categorizecl randolllly \\ ithout any specific lIleaning. Galax) shell is based

on Gala,y resource pool, \'vhich is \\ell dcfined and organized according to Galaxy resource

naming S) steill. This infrastructure assigns ne\V tasks to Gala,,)' shell to investigate its

fUllctiollal it) and sca labi 1 ily, Gala:;:) she Il prov ides many new methocls, which are

spccilïcally custoJ11izeci for this inll'astructure, such as type searching, direct execution on a

rcsourcc collection. etc,

6

1.3.2 GLUnix

CiLlJni:\ \vas started in 1993 as the global operating systcm layer for the U.C. Berkeley NOW

(Nclwork or Workstation) projcct. which was tn conslruc1 a platforlll thal can cxecute interactive

parallcl and sequentialjobs on a cluster with negligiblc slowdown. A NOW is capable of hiring

available cluster resourccs (CPU. disk. meillory. network) to guarantee the performance of any

workstalion in the clusler. GLUni:\ e:\tends some e:\isting UNIX abstractions and introduces new

abstractions. such as nel \Vork programs (N PI D). Para Ile 1 programs and v irtual mode nUIll bers

(SPMD. VNN). signal delivcry. 1/0 redireclion (stdout. stderr). and parallel progralll support

(barricrs. coschcd ul ing).

Shakespeare

hamlet 111 ac bet h romeo othello

Figlll'C 1.4: GLUnix architcctlll'C

(takcn rrolll "GLUni:\: a Global Layer Uni:\ for a Nctwork of Workstations".

DY. GhorInley ct al. 1998 [5])

The archilecturc ofCiLUni:\ syslem is shown in rigure 1.4. There are three components inside the

syskill. \\hich arc: pcr-cluster masler. per-node daelllon and per-application library. Each clustcr

IlilS 11 Illilster to coordinate jobs on distributed node. and each job can be chopped into several

sillai kr proccsses. Ihen sent and e:\ccuted paralle 1 in di fièrent nodes. r or exalll pie. Prog B started

al Node Macbeth. and e:\ccutcd at Node Othe 110.

7

The GLLlni\: Shell is the interface of the global operating system layer, users launch commands

l'rom this shell and ail thesc requests will be distributed and processed in the cluster, while still

keep the Single Interface Image (Sil), users will still have the feeling that these eOl1lmands are

e\:ecuted loca lIy ancl i ntegrally. The most obv ious sim i larity between G L LI n i\: She Il and Galaxy

shell is that both Shells \\ ill e\:ecute cOlllmand remotely, i.e" on a collect of resources. However,

the t"o shclls have man) cli ITerent points:

• Goal

GLU n i\: \\ as origina lIy intended to support interactive sequentia 1 ancl para lIel programs

through transparent remote e\:ecution ancl load balancing. Performance is the most concerned

issues l'or GLUnix. While Gala\:y is a public resource utility, it involves more complex issues

such as addressing. security. service control. and scalability.

• Resource management

1 n order to ach ieve transparcnt rcmote exccution. GLUn ix uses central izecl structure to

manage rcsources. represented by a single master node to control a collection of client nodes.

this structure is relatively straightforwarcl to design, build and debug. On the contrary. Galaxy

doesn't have a centralizecl node for ail resources in the resource pool beeause its Peer-to-Peer

character. ail resources canjoin and !eave the resource pool at their discretion. and ail relatecl

"hanclshaking" proceclures are distributecl and autonomous.

• Rcsource distribution

Ci L Unix is targeti ng a re latively locally distributed ancl homogeneous Illach ines. normally it is

running on a collection of machines insicle a clomain. such as U.C. Berkeley. GLUni\: is

c.\tremel) suitable tè)r system aclministrators to test systems in a cluster and tOI' simulation

\\ork \\ hich nccd man) machines involved. While Galaxy is a public resource utility. it

involves outsourcing. aclclrcssing ancl allocating resources; generally these resources are

heterogeneous ancl cl istri butecl remote Iy

1.3.3 CODINE

CODINF is a resourcc managcment system createel at Florida State University aimecl to optimize

th\.' utilizatioll ofhctcrogcncous sollware and harcl\\are in a nctwork environment. Ils easy-to-use

8

GUI eases Ihe lire or users and adillinistrators. The architecture of CODINE is shown in Figure

1.). Thcre arc l'our Iypes or daelllons in CODINE Ihal are masteL scheduler. execution and

COllllllUllic<l1ion c1aelllons. CODINE uses a cenlral conirolillodule to coordinate the whole system.

\\ hich are cOlllposecl by Illaster daelllon. schecluler daelllon and database. shown in the left hand

side in figure 1.). Thc Illasler claelllon is the hearl of Ihe cenlral control Illoclule: periodically il

recéives inforillalion aboui each node inside of CODINE cluster including workload. job

progress. and available resource by the execution daelllon running on them. then Ihe master stores

this infèmllation into the database. The Scheduler is responsibk~ for matching job with available

resource. and then il sellCls the matehing list to master. which further sends jobs to specific nodes

aecording ID Ihe Illalching lis!. /\1 each node. there is one eXécution daelllon. which is not only

I"\:sponsiblc l'or execuling Ihe job assignee! by the Illasler. bul also reporting its status at regular

interval. "Ille communication daemon at each node is to cOllllllunicate with the master daemon,

either synchronously or asynchronously to make the coml1lunication 11l0re efficient. f"ast and

reliable.

Scheduler
Daemoll

Database

Communication
Daemon

Communication
Daemon

Figure 1.5: CODINE architectu/"c

Execution
Daernon

Node

Execution
Daemoll

Node

Decause Ihe masler claelllon is critical. CODINE provides a shadow master functionally. Once the

CODINE Illaster fail. a new master will be selccted ane! put into the front line. CODINE provides

a Single Systelll Illlage (SSI) fè)r the \\ohole cluster. the disks attached to cilister nodes appear as a

single large siorage syslelll and every nocle in CODINE has the same view or Ihe data. COlllpare

10 CODINE. Galax) is more public which involves more heterogeneolls machines ail over cerlain

area. Ihlls a strict allthcntication protocol and secllrity checking are needed. Galaxy also differs

9

l'rom CODINE by its special type ring algorithm used in it Resource Acldressable Network (RAN)

which is expccting to improve the ertïciency ofresource management.

1.3.4 LSF

Platform LSF is the Ilagship product of LSF Platform Computing based in Canada and it is a

Ic<lcling cOlllmercial solution for production-quality workloacl management. LSF enables good

resource lisage aeross corporate LANs. 8ased on the production-proven. open. grid-enabling.

Virtllal Execution Machine (VEM)TM architecture. Platform LSF manages and accelerates batch

workloacl process i ng tè)r compute-and data- i ntens ive appl ications. LSF adopts h igh pertorm ing

ami open scalable architecture and its web-based. SOAP/XML interface facilitates the

cllstomization and integration of applications. As an industrial product. LSF uses many

technology incillding fairshare. preemption. advance reservation. and resource reservation to

create an intelligent scheduling policies. These policies ensure the right resources are

automat ica lIy a 1I0cated to the right lIsers for max imum e ftïciency. LSF is a se 1 f-heal ing and se If

adaptive system which can reduces administration and management requirements and associated

costs. LSF also has strong security protection as a mature industrial product. LSF has been

implcmented on various UNIX and Windows/NT plattorms. LSF provides almost the same

fllnctionality as CODINE slieh as load balancing and tàult tolcrance. and it also provides similar

SSI service like CODINE. with an industrial standard. Table 1.1 compares above tour related

projeets with Galaxy by thcir available services. features, and tàult tolerance.

Table 1.1: Five ,-esou,-ce management projects comparison

Support Features Galaxy GLUnix CODTNE LSF

Single entry point No Yes No No

Single l'ile hierarch) No Yes Yes Yes

l3atch support Yes Yes Yes Yes

Interact ive support Yes Yes Yes Yes

Parallel support Yes Yes Yes Yes

Load balancing Yes Yes Yes Yes

Fault to!cranee Yes Yes Yes Yes

10

ln Table 1.1, Ihç single cnlry poinl means a user can connect ta the dustcr as a virtual hast. The

S) slçm transparentl) clistributes the user's connection requests to different physical hasts ta

balançç Ihç l(lad. Gala"\)' shell docsn't support this bccause l'very user in Galax)' has ta be a

(;ala."\) node already, and each user has a unique dOlllain address wh en it joined Galaxy. The

single lile hiçrarchy l11çans on entering into the system, the user sees a single, huge tiles system

image as a single hierarchy of tlles and directories under the same root directory that

transparçntly i ntegrates loca 1 and globa 1 cl isks ancl other ti le dev ices. Galaxy doesn 't support th is

featurç but usç cloillain acldressing to organize the tile structure insicle Galaxy, thus every user

\\ ill onl) be able to sçe local rçsourcçs in clet~llIlt. but a user is able ta explore or utilize l'l'sources

on a remote l11achine in Galaxy ifhe passed the authentication checking. Like normal Unix shells,

Galaxy shell supports both batch and intcractive cOlllmands to make the life of shell uscrs easier.

The batch cOl11llland can be put in a file and loaded into Galaxy shell when required. Parallel

support is a very important function provicled by Galaxy shell, through it, a user coulcl broadcast

information ta multiple nodes inside Galaxy: this is very useful to update the profile ofa node or

Galaxy type rings. Since load distribution is very critical for the performance of a cluster system,

Inac! balancing is also an important function of Galaxy. Loac! balance is not only an issue at the

lx:ginning moment but also at the duration of a job. When a job request was receivec!, Galaxy

protiles each node and assigns the Illost appropriate node to execute the job: and during the

c"\CcutiOIl, Galaxy also watches the load status on the machine, should the load is too high, then

Galasy trics to balancc thc load to olher Ilodes. The RAN and GRMS provide strong fault

tolcrance Cor Galax), Ihere is no obvious weak points in the chain which couic! jeopardize the

\\ hole system, and should an) node filils, there is always olle nocle takes its place, so the whole

Galaxy system is a sçlr-healing systçm.

Il

CHAPTER 2

CALAXY SHELL DESIGN

Ga la,y shell ta Iks dO\\n ward to the III ide! leware leve 1 and provides an upwards interface for the

application level. Thus the Illie!dleware greatly arfects the design of Galaxy shell. The following

sect ion \\ i Il prov ide il genera 1 picture of the m idd leware layer, and then the design of Galaxy she Il

\\ ili be detailed.

2.1 Galaxy middlcwan' layer

Galaxy is a peu systcm, which opens the membership to public resources, by doing this many

benefits are achievee! such as lowering the cost of participation, preventing monopoly and creating

a geographically distributed resource base that is capable of satisfying location specific resource

requirements. HoweveL a peu needs to solve some problems before it can be declared a success,

these problel11s including scalability, trust. security, and incentive control, in addition, peu also

necds to ae!drcss the rrt?quent arrivai and departure of indepencknt resources. Galaxy middleware

layer is created for handling these problems. As shown in Figure 1.2, hom the Galaxy

architecturt? we can see that Galaxy middlcwarc layer has three substrates, RAN, GRMS, and

Sery ice layer.

Galax)' uses RAN 10 provide naming and directory service. RAN naming can be divided to two

killCls or 1H1Ining: protik (or t.vpe) basee! naming and positional naming. Profile basednaming is

bast?d on proliling incllming resource and categorize it to a predenned type. The rational behind

Ihis is that Ihere élI'I.' almost infinite software and hardware cOlllbinations for a resource, and ifwe

don 't categorized these i nto a few types, the message overhead created by discovery and

disscl11ination l11ight be too big, we just cannot arford to such a descriptive based nallling.

Predel~ned types Cllt down the size of the RAN messages, eliminate the necessity for complex

resource matching algorithms, and decouple the naming from discovery to increase the scalability,

thus ellicicncy is illlprovcd, and users can also detine their type as the nced be. Figure 2.1 shows

the mapping l'rom description based naming to profile based nallling.

12

description
based

profile-based

Proe pe-~tlum IVJ -~ frproe Pentium li
Clock 3GHz ~ 1\ ; Clock > 2GHz ~ Type A
RAM 512MB 1 Disk >60GB 1

D~Sk 100GB ____ J 1 C~pe A 1
1 Proe Pentium 1

ProePentlum III Il Clock < 2GHz

Clock. 1GHz f----------Jili f----~~ T\lne B 1

RAM 256MB I~ 1_ TypeJ? __ r--'I Vl-__ 1J'~

Dlsk 40GB 1 Profiling 1

Proc Pentium IV
Clock 2GHz
RAM 512MB
Disk 60GB

1 1 Proc 1

~ l g::~k 1 f-ccc-X T1~e ~J
l '~Type () ~

L-_____ --'

Figure 2.1: ProtïIe based naming

(Takcn from "Dèsign ofa Quality of Service Aware Public Computing Utility".

Mahcswaran et al.. School of Computer Science. McGi11 University)

Whèn il rcsourCè joins the RAN. it is analyzed to obtain a description of the resource

characteristics as a set of attribute-value tuples. This set is then profiled into a resource type,

Resources orthe samè type are collected together in type rings, ln the RAN domain, multiple type

rings eacll comprises tllè resources of a unique type/profile. There are arbitrary links between the

rings to avoid cliques ofresources being isolated. Positonal names are given to each resource in a

ring. A resource in a ring has at !cast two pointcrs (route entries) to ronn thc ring (to left and right

resources in tlle ring): Also it can havè multiple nonfixed number of pointers to other resources

that help route to a destination \Vith a O(log n) nUlllber ofrouting hops and self-healing process.

Therè arc arbitrary links between the rings to avoid cliques ofresources being isolated. Within thc

rings tlle rèsClurces arè placed according to their positionainailles. A resource in a ring has several

pointèrs point to otller rèsources to form a f~1l1l'ic for better communication inside a ring. The

RAN rings provide an cftïcient proxilllity-aware discovèry mechanism.

Positional naming is the other nailling method in RAN. this nailling is actually based on dynamic

information of tlle CUITent nodc in the Galaxy system. such as proximity. traftïc. and etc. The

positional namlng cnables the RAN to handle QoS as the intègral part of the discovery

13

Illcchanisill. The rational bchind the positionainallling is that in adynamie P2P network. it ll1akes

no sense to ncglcct the current network profile. whilc try to provide an efficient and fair rcsource

distribution. R;\N initiall) aclopts the concept oCpositional naming. ancl this arfects both when the

incol1ling rcsource joins Gala"y and whcn a client sencls a request using positional naming. Figure

2.2 shO\vs the procedures of a rcsource joining Gala"y resource pool.

4

GSP Registration

D 2 Code Transfer

2 3 RAN Node 3 Join Request

D 5
4 Destination Discovery

5 Join Reply

New Node

Figure 2.2: Resoul"cc joining Galaxy

(Taken from "'RAN Nailling and Discovery'·. Balasubraillaneyaill Maniymaran. 2004 [2])

1. When a resource wants to join the Gala"y. it first contacts the Galaxy service provicler

(GSP).

Î The latter semis profiling ancl galaxy bootstrapping moclules (Galaxy c1aemon) to the

resource. the profiling code probes the resource for a specific set of resource attributes

ancl categorized the resources into one of the RAN-recognized types based on profiling

result. Once profilcd. a resource is identified by the profile naille (and its positional

nal1le).

3. Thc rcsource sellCls the join request to an) node inside the Gala"y resource pool.

4. The "entry" node checks the profile of the incoming node. and calculates the place where

the resource should be. and put the ne\\ resource into the Gala"y.

The searching and binding are also using the same two kinds of nall1ing service. by using type

based naming and positional based naming. the overhead of searching a certain resource inside a

huge resource pool \\ ill be greatly recluced. Gala"y shell. \vhich \vill be detailed in following

sections is heavil) involved \\ith these t\\O kinds ofné1l1ling services.

Another main Illodule in the Gala"y Illiddleware layer is Gala"y Resource Management System

(GRMS). It incluclcs many sub moclules including resource adclressing module. 3uthentication

14

llloduie. ami ccntral control module. GRMS uses a "eommunity-oriented·· architecture to manage

the resourccs. \\ hich is cOlllpletel)' dirrerent from traditional resource management architectures

such as centralized. hierarchicaL or distributed. where a resource is associated with a manager in a

static Illanner. In this cOJl1munity-based architecture. a resource can contact an)' weil standing

member of the manager community and receive the management service. The comlllunity of

resource managers is organized in a P2P overlay and l'an be located and accessed efTiciently by ail

l'l'source peers.

Ga laxy sery iee layer is the h ighest layer 01' the Ga lax) m idd leware: these sery ices provide generie

capabilities l'or l'l'source peers to perlorm aetivities sueh as launehing resource acquisition

cOJl1lllancls. lll<1naging and lllonitoring acquired resources. and releasing resources. CUITently

severa 1 sery ices are des igned inc lud ing Galax) she IL Ga lax) Network ri le System. and

A pp 1 ication Ieve 1 QoS management. Galax) shell is a coml1land-1 ine interface to Galax), users

l'an user it to interaet \Vith Galax) system or resources that are alloeated b) the Galax) to the

l'l'source peers. The design ol'Galax) shell will be detailed in the tollowing sections.

2.2 Galaxy shdl Ratiouale

As Galaxy research goes further and deeper. there is a need for a rescarch tool which is able to

support Galaxy research. Cialaxy shell is designed and illlplellleilted for this purpose. Galaxy silell

is dirrcrent rrolll il traditioll!!1 silell in Unix or Lilm\ \\orkslation. A normal sllell we orteil lIseel in

['nix \lr 1 illliX ellvimllllleill is a cOlllll1and interpreter l'or the operating system of a standalolle

\\ork-;tatioll. Mo')[cOlllll1ands in a Unix shel! arc localized comll1<lnds. whicil provide an interf~lce

("or lIsers tn cOll1l1ll1nÎc<lte vvith the core orthe operating systelll. Most funclionality proviclcd by il

Uni\. silell such as seareh, pipelinc, and redirection arc based 011 the saille machine. On the

COl1trnl"). (iala\.) shell is designecl for supporting a Public Computing l Jtility, which provide

cOlllpukr services 10 allO\\ finlls 10 t(leUS Iess on admillistering and supporting their inl(lrIml1ion

tccllllology ilild Illure on nml1ing their business. Ilm\ever. delivering computing service is not lhal

simple 1 ike de 1 i\ l'ring e lectrie il) over copper \v ires. there must ex ist a Illecllan iSI1l 10 crea le

COllteX! bel<lre a success computing ulilit) delivery l'an he f'ulfïllcd. l:Ieetricity becéllllc il

cOlllmodity "hen consulllers c\ccided it \Vas no longer in thcir illteresl tu be power generation

c·\.lwrts. and a sarc. cheap. reliablc and 11leaslII"<lble delivery way \\as there. ;\ Public C011lpuling

tilility will success oilly when tlwse eOl11panies that ell1braee it carly will indeed acquire a

strategie ad\anlage o\er [hose thal continue ln insisl they can clo il better tllell1selves. Thus in

addition tn the normal lllllctionalilies ortCIl lound in il Ullix silelL Galaxy shell needs tn support

15

1l1~111\ fllllctionalities speeially reqllired ln a PC'U to ereate this eontex!, The~e fllllctionalitie:-,

iIH.:lude'

• Resourccs control

Se,lrch, qller)', bind (reservation), and allthenticate resources in the Galaxy l'l'source pool

• Resollrce consumption

L,'\ccllte a task at spec i ncd resources (consume the resources), th is conslllllll1ation cou Id

be pipèlinecl or IlllllticasL whieh can hèlp in scalability and processes migration research.

• GRMS optimization

1 nvest igate the v iabi 1 ity of RA N design, routing a Igorithlll, and allthenticatioll options.

1 n ortier 10 ~lIppOrl these spec ia 1 t'ullctions, (ialaxy shèll \'vas nat urally dcsigned to contain threc

Illodules, which are silel!, local déwlllon, anel peer kernel. The reason to have the tl1ree modules

Cilille J'rom the reqllirellleilts ora Galasy node, it neccls comlllul1icating with other nodes (0 search

cert,lill Jlode or l1oc!es, joill or leave certain type rings, collect and update net\Vork prollle, ail these

communicatioll neecls are handlcd Il) peel keme!. Every Galaxy node provides œrtain eDll1puting

services to rcgistered clients, these services ean be added or rellloved as lime goes by, there is a

lleeLi for crealing a cledicatcd module to eOlltain these service, in Galaxy silel!, this module is local

daell1on. Like ail utiler shells in Unix wc are already f~lllliliar with, Galaxy shell needs provide an

interface I()r users to eOll1llllll1icate Ivith the internai services, thus a silell sub eOll1ponent is also

cre~lkd. hl! 10\\ il (k'lailcd description orthe three modules.

l'Ile shell modlile is the interfllee of the (ll1la.'\-' silell likc llormal sllells il1 Unix machines, usees

lise this shell 10 input comrnand and get respond, the shell also has ils parser !()r allaly/ing the

illput COllllllill1ds. The IOeil! daemon is tile core service provider of il Galaxy Ilode, ail service

invokcd by external cOll1mand~ will be implelllented in this module, as the rcseareh of Galaxy

contillues, 11('\\ services will be added illlo this module. The peel kernellllodulc is respollsible l'or

~llpportillg the unique Ilcecb or Cîala.\y, slich as quel') the nc1\\OI'k inllJrlnatiolL search a certain

Ih)(1e (lI' (\ type or nocles based on either slalic or dynamic eOl1straints, bine! or unhind to certain

llode or certain kintl or nodcs, ill1d get or set the default domain, type, attrihutcs, and node fl)r

reducing user'" inpllt \vork il' similar operations art' rcpeating over and over again. Galax) shcll

implclllented mail) eOllllllon rune! ions provicled by a Unix sllclL the relllote procedure cali and

16

pipeline allloilg relll\ltl' Ilode:-; arc also illlplemented. in addition to thal. Galaxy shell also réserves

lllall\ kèJ\\or(\-; alld :-;\vileh :-;)1ll1Illl:-; l'or the spccialllccds in Galaxy researeh in the future. such as

quer) hilsed (lI) dynélmie cOllstraints. Ilowcvcr. duc to the currcnt prog:rcss of GRMS. these

fUlletiolls h:lvcn't been ill1plell1entcd yct. hut their cOIl1mands were rescrvcd and il IS casy to hl'

hookcd Uj1 ol1ee l'cal implcmcnlation orthose flll1ctions arc rcady.

There are two options l'or creating such a developing tool. either il GUI application or a

cUllllnand-line shel!. [30th have pros and cons. Although cOlllll1alld-line shell is difficult to use and

Icarn. it is very flc.,ible and powerful once users have conquered it. Thus a cOlllllland-line shell

projeet was ereated. !\nother illlport reason for this dccision is that ill1plell1enting a eomll1and-line

shell is casier 10 develop Ihan a GU[application.

There \\ere some considerations about \\ here the she Il should phys ica lIy locate. There are three

options: outside Galax). at GRMS, or at every Galaxy resources. The last one was chosen because

I~rst wc nced to optimize public resources management. such as proximity between resources

inside Gala.'y l'l'source pool. another reason is that in a P2P system, a resource contributor can

and should be an eligible consumer.

2.3 Galaxy shell eommands

The issues discuSSéd in Section 2.2 motivated the design of Galaxy shell commando From an

analysis of thuse issues. it can bc noted that generally there are two types of tasks. one is

involving n:source management. including seat-ching. binding and querying resources according

certain criteria. or configuring the Galaxy system. we name these commands as "built-in

commands" beeause the) are an important part of Galaxy shell which arc used to investigate

CiRMS design and these comillands are elllbedded in the peer kernel module of Galaxy shell;

There is another kiml or commands which are implcillented by executable fïles on target

l'l'sources. they can be executcd either locally or remotely. also they can be pipelined and/or

Illullicast. We n,Ulle these type 01' comillands as "extell1al cOlllmands" sinee they are external to

Gala.') shell. which can be an)' exceutable nies and these commands is extendable independent of

the Galax) shel!.

13uilt-in commancb don't consuille resources but create the condition for cxtemal cOll1mands to do

that. The prolile based nililling (static type based nall1ing) and position basecl naming (dynamic

17

type based nailling) is onen plugged into built-in cOl11lllands for advanced sem'ching and

l'l'se l'vat ion, F.'\tclïl<ll cOllll11ands coulcl execute some executable fi les on a remote llode. or execute

some ll1ethoc!s supportee! by the local daellloll of a rel110te node, Here cOll1es a security issue: what

arc the privileges or extemal cOlllmands'? Galax)' GRMS has a module which is responsible for

authentication. by using il. a flexible scheme could be realized: different access privilcges are

givcn to clients according to their identification. GRMS is responsible tor crcating this protection

mcchan ism.

Whcn consiclering the syntax of Galax)' shel!. the switch symbol for built-in commands vvas

ckcided to hl' doublé dash. The reason behind this is many single clashes have been widely used in

Unix sllell, and since Cîalax)' shell will provide man)' eomll1ancls similar to those comlllonly seen

in Unix, it \\ould be better to avoid sueh conlliet 1'1'0111 the very beginning. and double clashes is

also cas)' to parse.

Cîa la'\)' sile Il cOllllllanels invol veel III uch design concepts in Galax)' III iddleware. and both bu i It- in

cOIllIll<lncls ami e.'\lL'lïlal cOllll11ancis are extendable as Galaxy research continues. The cOll1mands

ofGalaxy sllell are detailed in Chapter 3 "Galax)' Specification".

2.4 Galaxy shcII architcctuJ'c

To implelllent the mcchanisms discussed in Section 2.2. Galaxy shell needs to talk to RAN tOI'

searching and binding, and needs to send request to either locally or relllotely. When a resource

joins (jalaxy, it do\\nloads and inslalls Galax)' daelllon fî'olll Galax)' Service Provicler. Galax)'

daell10n includes three parts: shell (pure 110 interface). local daemon (tOI' inbound request), and

peer kemel (for searching. binding. querying. and etc). A modulaI' design is shown in Figure 2.4.

This Illodul{lr design assigns a clear-cut responsibilit)' ta each cOlllponent. thus it is easier to

develop. de bug, ancll11aintain.

From Figure 2.-1-. \\ hen a user enter a call1illand l'rom the shel!. it will tirst be sent to the parser

illside the shel!. il'there is sOllle syntax crror. an cxception will be thrO\vn to ask the user to revise

input. If no error detected. the cOlllll1and will be processed. If the redirection parallleter or the

comilland is nol the localll1aclline and it is a built-in commando then the cOlllmand will be sent to

the peer kemel to search or bind relllote resaurces. 1 Cthe redirection parailleter of the cOlllll1and is

not the local machine and it is an external cOlllllland. then the shell will launch a rell10te Illethod

18

invocation b) a \\a) slipported b) Galaxy system, which is XML-RPC. Before this remote

methoc! invocation cOlllc! fire, the shell needs to get the network information of Galaxy resources

(where the resource is, what the profile it is, and etc), and make reservations, ail these preparation

works \vill bc donc b) using built-in commands. If the redirection parameter of the command is

thc local machinc or missing, thcn the local daemon at the local machine will be responsible for

proccssing il. Table 2.1 lists ail scenarios ofthis process.

Node A Node B

1\ ." 1 ~~

RAN

Figu,"e 2.3: Galaxy shell Architecture

Table 2.1: Galaxy shcll p,"ocess scenarios

Command Rcdi,"cction panlllletcr p'"OCCSS module

local
bu i It - in cOlllmand

peer kernel of local machine

remote peer kemel of remote mach i ne

local local daemon of local machine
extemal command

remote local dacmon of remote machine

2.4.1 Shcll

Here the shell is il nal'l'O\\ deflnition that means the pure input/output framework inside Galax)

shell (sec "igure 2.cf). The shell operates in a simple loop: it accepts a command, interprets the

commancL clispatches the eommand to corresponding modules to execute, and then waits for

19

élnother comlllélllli. The shell displays a ">" prompt. to notiry users that it is ready to acccpt a ne\'v

conlnwnd. Mosi shell cOl11l11ancls are not built inlo the shel!, but are clynamically loaded ancl

stal"ted by the shell fi'(ll11e\Vork when they are invokecl. Separating the shell ti'amework ti'om the

commands enabks developers to dynamically acld ne\\' cOl11mands to the shell. The parser is a sub

module inside the shell. When the user types a eomlllanci at the prompt. the parser reacls the

cOllllllélnd line and breaks the line inlo tokens, 1è)r lexical analysis. 1 f everything is fine.

corresponding modules \\ ill be called to fui fi Il the cOlllmand.

2.-L 1.1 Pal'sel'

There are man) parser generators available tOI' implementing the parser. the Illost C0l111110n ones

are Lex. Flex. Yaec and Bison. Lex is the lexical analyzer supplied for l11any years with most

versions of Unix. Flex is a ti-eely distributable relative associated with the GNU project. Yacc is a

parser generator developed at Bell labs. Bison is a freely distributable implementation associated

\\ith the CîNU project. .IavaCc. an open source projeet. vvhich stands for .lava Compiler Compiler

is usecl 10 gcnerale the token manager and parser tor Galaxy shel!. Table 2.2 compares these

parser generators.

Table 2.2: Comparison of parser generators 12911JOII J1 1

Language of Gnlmmal'
Parscl' generator WOl'k style Specialties

parser gel1enlted accepted

• Common token actions

.IavaCC .lava top-down EBNF • Special token rules

• More mies

top-clown
look ahead in the input

Lex/Fic, C Ef3NF stream past the end of the
bottom-lip

ll1atchecl token

YaeclBisun C bottoill-up BNF LALR gralllillar

.Jav'lCC alld Lex/Fic", are aetllally C]llite sill1ilar. 130th work essentially the saille way. tllrning a set

or regular expressions inlo a big finite state autolllaton and Lise the sall1e rules. The big ditference

is the Lex and Flex produee C. whereas JavaCC procluces Java. 111 addition, .IavaCC have some

20

nice featun:s that Lex and Flex laek, such as common token actions, MORE rules, and SPECIAL

TOKEN rules \Vhich simplify the parser generation.

Thcre is a bigger dilTerence bet\Veen Yacc ancl JavaCC in that Yacc \Vorks bottol11-up while

JmilCC only works top-clown l,II. This Illeans that Yacc and Bison make choices aner consuming

ail the tokens associatecl with the choiee, whereas JavaCC has to make its choices priar to

consuming any or the tokens associated \Vith the choice. Ho\Vever, JavaCCs lookaheild

capabilities alkm it to peck \'vell ahead in the token stream without consuming any tokens; the

lookahead capabilities rceluce most of the c1isadvantages of the top-down approach. In addition,

Yacc ancl Bison reads BN F grammilrs wh i le JavaCC accepts EBN F gral11mars. 1 n a BN F

graillmar, cach nontcrlllinai is describcd as choice of zero or more sequences of zero or more

terminais and nonlcrillinais. EBNF extends BNF with looping, optional parts, ancl allows choices

an) where, IlOt j ust at the top leve 1. For th is reason Y acc/B ison gram mars tend to have more

nontenninals than JavaCC grammars ancl to be harder to write. Generally speaking, it is often

easicr to \Vritc scmantic actions tor JavaCC gralllillars than for Yacc gralllillars. because there is

less need to cOlllmunicate values from one rule to another. Yacc has no equivalent of JavaCCs

parameterized nonterm i na Is.

Since Galax) is implementcd in .lava, JavaCC is suitable for this project. JavaCC is not intuitive

to grasp but proved to he a po\Verful tool once it has bcen conquered. The workflow of JavaCC is

like this: the programmer supplies a collection of"Extended BNF production rules"; JavaCC uses

these productions to generate the parser as a Java class. These production rules can be annotatecl

\Vith snippets of Java code, \Vhich is how the programmer tells the parser what to procluce.

2.4.2 Local daelllon

The l'Ole or local daemon is someone like a "reccptor"' and "waiter" in a hotel. Il checks the

reservation of a rcquesL authenticate the request, if passed, then it provides the service for the

request. Gy crcating local daemon module, the work tor developing, e1ebugging and maintaining

arc grcatl) easeel. Local daelllon also has an important function to Illask the difference of

hetcrogeneous resolll'C\:s. Sincc thcre arc so many different hardware and platforms out there, it

\\ill be very dillicult to implelllent a shell to talk to these systems without a module to provide a

21

kind of abstraction at thc remote side. Local daemon provides a unique interface and an

abstraction for shell.

Local daemon has a sand box to protect illegal access, and provides YM control for a resource.

When a request arrives, local daemon will first check its identification, and reservation ticket. 1 f

everything is lïne, then it will ereate a thread or process to take care of the request according to

the agreement specified in the reservation ticket. There is a main thread always running to

supervise the request proCèSS behavior, it has the power to suspend or l'ven kil! a child process

should some abnormal things happen. The main thread later can resume the child process should

the situation back to normal.

2A.3 PCC!' kemcl

Peer kerne! provides the updated Galaxy information. Its malll responsibilities includes

perioe!ically sene! out heartbeat to Galaxy GRMS to report the node's profile. The interval ofthis

net work updat ing \\ ork should be carefully consideree!: too freq Lient Iy is expens ive and

unneeessary, on the contrary. iftoo sparse, the information ofthis resource on the RAN could be

stail'. Another major function providee! by peer kernel is providing an API for GRMS, which

coule! be used by the shell. Normally this API includes seat'ching, binding, querying. and

reserving resources inside Galaxy resource pool. The shell doesn't need to une!erstane! how the

GRMS works as long as il knO\vs the API. This modular design separates the task betvveen front

end and back-cnd programming, and provides the convenience for Galaxy development.

2.5 Galaxy shell workflow

SOllle issues need to be addressed \\ hen designing the Galaxy shell. such as shel! session control

ancl coml11unication bèl\\een remote nodes. Following sections \\ ill talk about some of these

Issues.

2.5.1 Bootstra Il

22

When the she Il starts. sOllle in formation will be loaded into the shel L incl ud ing somc

con figurat ion in format ion and netw ork in formation. There are several locations to put th is

inforillation: memory. disk. ane! both according to the properties of this infc)Jïllation. It seems that

the thire! \\ay is attractive because some intormation such as shell configuration or preference set

by a user sllould nol he elelcted once a session finished. so put them into the disk and load them

into the shell at ne"t session willmake the shell more friendly and convenient. On the other héllld.

sOllle information arc dynamically changed. because Galaxy system is Ilot static. so in order to let

Ihe shcll use most up-Io-date information. some information must be stored in the memory for fast

aecess i ng and upcIal ing. Th is e!ynam ic i Il formai ion will not be preservee! once user term inates a

Sl.'ssion (close the shl'll).

2.5.2 Rcmotc proccdure cali

Since Gala"y is a e!istributed system. the communication method of distributed machines is an

important 1~1ctor which could greatly affect Gala"y design and performance. Currently. there are

several cOllllllon dislributecl comlllunication technologies are using: (Java) RMI. Corba. XML

RPC and Sery IcI. Table 2.3 cOlllpares these technologies.

RMI is a Java-centric distributecl objcct system. It inherits ail of the benefits of Java. An RMI

system is immediately cross-plattorm: any subsystem of the distributed system can be relocated to

any host that has a Java virtual Illachine handy. Howcver. the only way currently to integrate code

"riltcn in other languages into a RMI system is to usc the Java native-code intertàce to link a

rem o Il' object implemcntalion in .lava to C or C++ code. This is a possibility, but painful. The

native-code interface in Java is complicated. and can quiekly lead to fragile or difticult-to

maintain codc. The speed is also a bottleneck for RMI since an additional interpretation layer is

mlclcd to tlle processing or instructions. The Java just-in-time compilers (.liT) are capable of

generating native instructions l'rom Java bytecode. but there is still an additional piece of

overhead in running each piece or Java code.

CO R 13/\ IS " popular protoco 1 for writing cl istributed. object -oriented appf ications. 1 tls typicall)'

useel ill mufti-tier ellterprise applications tor integrating legacy systems. CORBA is weil

supporl\:d by man) vendors and several free software projects. CORBA is designcd to be

language-indepencieni. Object intert~lces are specitied in a language that is inclependent of the

aclual impleillentation language. This intert~lce description can then be compiled into whatever

implcmentation language su ils lhe job and the environment. CORSA is a more mature standard

than R ML i nc lud ing comprehens ive h igh-Ieve 1 inlerfaces for nam ing, security, and transaction

services. Unfortunately. l'ORBA is very complex. lt has a steep learning curve, requlres

sign i Ijcanl effml 10 illlplemenL and req u ircs fa i rly soph isticated cl ienls. 1 t's better su ited 10

enterprise and desktop applications than it is to distributed web applications. Another concern

about l'ORBA is thal the adoption of l'ORBA is shrinking in industry 1,21' CORBA itself may

become a Iegacy technology.

Table 2.3: Comparison ofthree distributed computing technologies

Distrihutcd
Language Platforl11

cOlllputing COl11plexity Spced Overhead
depcndcnt dcpcndcnt

tcchnology

RMI yes no low Slow low

l'ORBA no yes high Fast low

XML-RPC no no low fast high

XML-RPC is a lightweight way to make procedure calls over the Internet. It converts the

procedure cali into XML document sencls il to a remote server using HTTP, and gets back the

response as XML. l'ORBA forces you 10 e.'\plicitly defïne interfaces for lypes, whilc XML-RPC

doesn'l have th is requ i l'Cillent. X M L- RPC jusl uses U RLs for 10 reference objects, th is shows its

tlcxibility or simplicity. XML-RPC is language and platform independent. \vhich l11ake it quite

suitable l'or Cîalaxy system, with 50 man)' hcterogeneous systems collected. 1I0wever, the XML

data format adds overhead compared to CORBA's binary format. In Galaxy, it is highly probable

thal a resource will provide a legacy services ill1plemented in a language other than Java, and

there is lhe possibility that certain sub modules of local daell10ns will need to be ill1plemented in

dill'erenl languages, lhus XML-r~.PC is the best candidate for distributed cOll1puting in Galaxy.

24

25.3 Proccss control

Thcrc are sClinc consideraI ions aboul dealing with the dynaillically changing Galaxy resource

pool. Whal \\OlJld happen irthe situation changed before or during a relllote procedure cali which

means Ihe rémotc process couldn'I be completed? A cheap way is just neglect and give up; but

Ihis \Vay conlradicls with the Galaxy system goal. which is to provide an accessible. stable. and

reliable public rcsource utility. Galaxy uses this way to address this problem: before a client uses

a rcmotc resource. il Illust make a reservalion tIrs!. the reservation will specify \Vhen. where. who.

and how Ihe resource will be used. Once a reservation has been made. the resource willlry its best

10 honllr Ihis agreemenl. By Ihis "reserve-tlrsl" strategy. we can avoid chaos fi"om the beginning.

Ilo\\ever. this I1lclhocl is not llawlcss. 1Irst it is complex ancl expensive. it needs the complex

GRMS syslem to supporl this function; second. even \Vith reservation. there is no absolute

guaranlee Ihe rcsource will honO!' that promise because Ihe resource could be dead due to a power

blackoul. A Ithough th is scenario should be rare. G RM S needs 10 take care of il. may be a backup

resollrce coulcl be callecl to replace thc failcd resource. and GRMS should migrate the job and

reslarl it on Ihe backliP resource. Ali these issues need to be further investigated in the GRMS

design.

Remole cOlllpuling often affected by the network performance. it is highly probable that a remote

cOllnection is jammed or even broken cluring a transaction. In order to solve "hanging" problem.

evcry rel1lote method should be firecl by a child thread instead of the main thread of the shell. and

a tillléout will be raised shoulcl a rcmote method cali doesn't rcturn for a long time. ancluser can

a 1\\ a) s be assured Ihal the control is rcturned to the shcll.

CHAPTER 3

GALAXY SHELL SPECIFICATION

Galaxy shell cxtene!s the functions of normal shells by ae!ding special cOl1lll1aneis supporting

rcsource searching. bincling and consull1ing. Resource management system (RMS) is the

backbone behine! the interface. anel the rcsource nallling system L1seel by RMS is reflecteel in the

syntax ofGalaxy shell.

3.1 Galaxy resource naming system

Galaxy resource naming system IS the core component of RMS. RMS is the fundamental

component which manages the resources and provieles low-Ievel functionalities such as nallling

and discovcry to the upper level components like Galaxy shell. Ali the machines are profileel

v\hen they join Galaxy. and their types arc known at that time. which can be useel as the principle

Illeans for scarching. At present time. there are thrce categories of naming. which are group

based. stat ie type basecl. and dynam ic type baseel nam ing.

3.1.1 Group based naming

Galaxy resource pool is clivielecl by many domains. each elolllain represents a collection of

machines who have some common properties. The common properties can be but not limit to

location. political 01' intercsts approximation. Group baseel naming is a basic naming accoreling to

the c!omains. This is kiml 01' like an extension 01' peer groups in JXTA. where each group

reprcsents certain trust clomain. \vhere in cach clomain. sOl11e coml11on services are provided to its

me 111 be rs.

3.1.1.1 Usage

The syntax 01' clomain basecinallling is:

IglohalNamel: IdomainNamel :lmachineNamel

26

V/hère glob,liName is Ihe rcsourCè pool name, domainName represenls the name of eerlain

dOlllain. maehineNallle is Ihe cleslinalion Illaehine where the eOlllllland will be directed ta and

ewculecl Ihere, and ail Ihree fields are optional. Two wildcards ean apply ta any field: "7'"

malehes (lny ancl .. *" Illalches ail. If a field is Illissing. then it means this field will be instantiatecl

by ail available iteills in this field, l'quai ta the wilclcarcl "*"".

E:\alllple 1:

Ca/a.\)': Ca I/adia I/II/slill/le: COl11fJUlel'-A

This reclirection parailleter will direcl il Gala:\y shcll cOlllmand to "Computer_A", which IS

locared the Canadianlnstitute cloillain ofGalaxy resource pool.

Ail eonlenls insidc square brackets are optionaL for e:\alllple, if no domain name presents, then

Ihe eOlllllland applies 10 ail dOlllains inside gala:\y, if no MachineName presents, then the

cOllllllélnd applies ln alllllachines inside the domain.

E:\élillple 2:

Ca/(I.\T:Calladialllllstilule: *

This rcclireelion parameler will direct a Gala:\y shell commélnd to ail machines inside

Canaclianlnstilulc clomain.

Ail running resull should be n:turnecllo Galaxy shell console exeepl for pipeline commando

billllple J:

Cil /11.\)': Cil 11(1 dia Il 111 sI ill/le:

This redireclion paramelcr has Ihe saille effecl as the previoLls one.

Exaillple 4:

Ga/a.\y,' "

This rcdirectioll pm,1Il1l'ler will direct a Gala.'.:y shell comilland tu ail machines inside Galaxy, no

mattcl' \\hich dOIll<lin thosc machillcs arc locatcd in. It shoulcl be Ilotecl here that ",',''' is syntax

correct but lllcailingless since at CUiTent tillle, Gala.'.:) l'l'source pool is unique.

3.1.2 Static typl' hasl.·(\ naming

Stat il' typc based na III illg is based on the profi 1 ing result when a l'l'source jo in Galax). The

prufïling l'l'suit is a list or attributl'-valuc pairs. Ilcre static type meilns the attributes are based on

statil' propertics. such as CPU Illake. disk volume. physicallllcmory. operating system, and etc.

Duc to so many harchvare combinat ions for computers in the world. it is better to sort those

combinations into several predef~ned categories or types for easy management. There is a fine

linc bet\veen too general and too lïne for these categorize actions. A comprise has to be made for

easy managemcnt and high type recognition ratio. For those resources who don't fall into any

precletïned type, thcy will be taggecl "unrecognized type" in the resource clirectory in their

dOlllain.

3.1.2.1 Definitions

3.1.2.1.1 Static typl'

;\ static type is a uscr dellned resource collection: each type is a list of attribute-value pairs. For

exalllpie. one type cou Ici be like follo\Ving:

Type name: WorkStation

CPU = Pentium

OS = Windows

Memory S12M 1024M

Disk = < 100 G

Netspeed < l Gbps

28

Statie types ml' storeel in a special direetory nall1ecl '"Type c1irectory", which provicles a precletinecl

list ortypes l'or a certain cloll1ain.

Static types can he definccl by using cOlllll1anci '"c1eftype", the syntax is:

det'type --t <typeName> <attribute-value pairs>

For exaillpie. a type "Work Station" can be c1efineclusing this cOll1l1lancl:

defiype -1 WorkSlatiol1 CPU=Pel1liu/1l&& OS=Wil1dows&&Disk</ ()()G& & Net.\jJeed=/ Gbps

3,1.2.1.2 Type directol'Y

Type directory is a typing nallling service which stores preclefined or user defined types, each

eloll1ain has its indepl'ndent type directory for scalability reason, a shell can send a cOllllllanci to

the type c1irectory service to query CLlITent available types inside the dOl1lain. Norl1lally, there are

a Jew preclclined types storecl in the directory, while this directory can be expended as the need

be.

3.1.2.2 Usage

The syntax to use type basecinallling is:

<built-in command> I<gmup based naming>[[<search constraint>1

Where,

<bu i It- i Il cOllllllilnd> are cOll1lllancls spec ia Il)' involvecl with Galax)' resource search ing and

bimlillg. the) are:

1.\/l}N

List ail types \\hich satis!'y given search constraint (irany), insicle the groupes) specitied

in the given group based nall1ing (irany).

29

hi/7((

13 ind a Il nodes \\ Il il' Il satis t'y given searcll constra int (if any) and given cluration constraint

(irany), inside the groupes) speeilied in Ihe given group baseclnall1ing (ifany). Here

binclilleans 10 builcl a conneclion channel bel\Veen the shell and the local claemon orthe

nodes 10 be boum!.

<group based naming> has the same synlax anclllleaning introcluccd in previous section, this item

\\ il! give Ihe scope \\here the built-in comlllands \\ork on. If it is absent, then itllleans the scope

is in Ihe del~1lI11 dOll1ain, the c\el~1lI11 dOll1aill is initially set 10 the c\omain where the shell is sitting

Ill.

<search constraint> can be eilher stalic type search constraint or dynalllic search constrain1, the

latter one \\ill be inlroduced in following section. Irthe search constraint is a static one, then it is

either an optional Iilter based on certain attriblite-vaille pairs or certain predetined types, plus an

oplional nUlllber conslraint and reservation constrainl, \vhich specify how many nodes need to be

scarched or proccssed and how many seconds (duration) the bind will las!, dl'tàult is one. The

syntax 01' <scarch constraint> is:

<scarch constraint> ::= <static sem'ch constraint> 1

<dynaillic search constraint> 1

<nulllber constraint> 1

<reservation constraint>

<number conslraint> ::= --n <nulllber ornodes will be searched>

<reservation cOllstrainl> ::= --d <Ilulllber of seconds the rl'source will bl' reservcd for>

<static search constrainl> ::= --t <predefined type constraint> 1

--a <attribute constraint> 1

<prcdelillecl ty pe constraint> ::= <type name>

<attribute constraint> ::= <attribute constraint> 1

<attributc constraint> <Iogic operator> <attribute constraint>

<Iogic opcrator> ::= '&&' l'li'

<altribule cOllstraint> ::= <attribute> <relatioll operator> <value>

<relation operator> ::= '<' l '<=' l '>' 1'>=' l ,='

30

It sholiid bc noted that hcrc "--t" and "--a" are using double dash, the reason is to avoid eonlliet

with normal shcll comilland switches. Following are several cxamples to show how the type

basccl n<1m i ng is lIscd,

Example 1:

/sf)'jJc Ga/a.\)': Ol/l a dia 1I/lIsfifufc: *

Will list ail types available in Domain Canadianlnstitute, likc:

Type: Server l

CPU

Pentium

Memory

1024M

Type: WorkStation

CPU

Pentium

Exaillple 2:

Memory

S12M

Disk

100G

Disk

lOG

/SfJ'jJC G{{/a.\y:: --({ CPII=PClIfilll11

OS

Windows

os

Linux

NetworkSpeed

100 Mbps

NetworkSpeed

10 Mbps

Will list ail t) pcs available in every domain inside Galaxy resource pool. the result will

sOlllcthing like this:

Domain: Domain 1

CPU

Pentium

Memory

1024M

Type: Server 1

Disk

100G

OS

Windows

Domain 1 Type: WorkStation

31

NetworkSpeed

100 Mbps

CPU Memory Disk os NetworkSpeed

Pectium S12M lOG Linux 10 Mbps

Domain 2 Type: Server 2

CPU Memory Disk os NetworkSpeed

Pentium 1024M 100G windows 100 Mbps

Domain 2 Type: Palm

CPU Memory Disk os NetworkSpeed

Pentium 100M lG Windows 100 Mbps

I::\éllllple J:

billd G(f/(f:(y:CtIl1(fdi(flllnsfifufc: --(f cpu=pcnfilll1l&& I1lcl1l</024M --n 3

Will bind three nodes in Domain Canadianlnstitute inside Galaxy resource pool. where their CPU

arc Pcntiulll anclmcll10ry are less than 1 024M. The result coulcl bc sOll1ething like this:

3 machines bound!

Machine l, Alias=Ying

Machine 2, Alias=Mahes

Machine 3, Alias=Mayni

Exall1ple 4:

Domain: Canadianlnstitute

hilld G(f/ll.\y:C(fIl(fdi{/IlIIlSfifllfc:? --{/ cpu=pcnfilll11&& /1lCf11</024M

Will bind one machine in Domain Canadianlnstilute inside Galaxy resouree pool. where its cru

is Pentiulll and melllory is less than 1 024M. The result COU Id be sOl1lething like This:

1 1l1Uc!7illl' h()lIl7d' Domain: CanadianInstitute

Machine l, Alias=Ying, Type: WorkStation

Example 5:

billd Ga/(l.\y:O/l/{/dialllllslilule: * --1 jJall11 --11 If)

Will binc\ ten machines whose types are pall11 in the c\omain Canadianlnstitute. the result could be

sOlllething like:

10 machines bound! Domain: Galaxy:CanadianInstitute:*

Machine 1: alias: Ying

Machine 2: alias: Mahes

Machine 3: alias: Maniy

Exall1ple 6:

Isbilld

Will shO\\ CUITent bincl information. the rcsult could be something like:

Bound information

Machine Alias

Ying

Mahes

Domain

Galaxy:mcgill:

Galaxy:ubc:

Type

laptop

desktop

F.'\<llllp\c 7:

IIllhil/d .l'il//.:

Willunbind Machinc Ying, the result cou Id be something like:

Machine ying is unbound l

;\11 above e'\alllp\csjust sho\V some light on ho\V to use static type based naming in the Galaxy

shell cOlllmands: detailed information about the Galaxy command \Viii be elaborated in following

section.

3.1.3 Dynamic type based naming

Dynilm ic type is re latecl to clynam ica 1 in formation \Vh ieh is eo Ilceteci by Ga lax) Resource

Management S) stem (GRMS) fi'om time to time. This information eould bc net\Vork topology,

load capacily, throughput. QoS, and location approximation. The syntax ofextended type based

naming is using certain options to represent certain combinations of dynall1ic profile. These

options could be but not limitecl to net\Vork speed, proxil11ity measuring. load, and etc. Notes of

these options are summarized in Table 3.1:

Tahle 3.1: Dynamic based naming options

Notes Meaning Optional Value

--1 Loacl heavy Il11ediull1 Ilo\V

--clt Desired Throughput hcavy 1 medium 110\"

--p Proximity measuring t~1r Imeclium Inear

QoS-constraint
d (declicated resource) 1

--q
b (best effort)

--s Speed fast 1 medium 1 slow

E;-;alllp\c 1:

hind (Ju!uxr:('ul7wliunl17slilule: --17 neure,I'1 --! !ig!?1

34

Will bincl olle machine which is closest to the machine hosting the shell ancl with light load. If

there are multiple machines satisfied with the condition, only the first one round will be returned

to the shel!.

E:--:ample 2:

himl (J(//mT:('ol7udiunJn.l'lillllC'. --q cl

Will bincl one machine \\ hich will be dedicatccl to current shel!.

3.2 Galaxy shcll Commands

Gala:--:y shell cOlllmancls can be diviclecl into two types, which are built-in ancl external cOl11mands.

cOlllbination orthese commancls provide the basic functionality ofGalaxy shell. These co 111 111 ancls

providc an interface for uscrs to access the service providecl by Galaxy shell and resource

c1ael1lOn. ;\ Il Ga la:ù com mands are case insens itive 1 ike Unix She II.

3.2.1 BlIiIt-in commands

Built-in cOll1mands are the core ofGalaxy shell which provicle the basic functionality such as set

and get cnvironment. searching, binding ancl other --hou se kceping" operations. Guilt in

comll1<lncls thcmsclvcs don't consume resources but cio the preparation \York for external

cOll1ll1ands to do so.

Thc completc s)ntax ofbuilt-in comll1ancJs is:

<BlIiIt-in command> Idomain based namingll<search constraint>1

35

<scm-ch constraint> is optional and used to set certain condition to execute a cOlllmand, the

e:\planation or <search constraint> is the saille as previous tex!.

<Ijuilt-in cOllllllancl> is a set ofspecial cOll1lllands which support plumbing work such as

configuring, searching, binding/unbinding in Galaxy shel!. they are:

• Ist) pc

This cOlllll1and \\ ililist the type information inside given resource pool and/or domains

• detlype

This cOlllll1and will define a new type

• bind

This cOlllll1and will bind Illachine(s) who satisfied given constraint these constraints could be

either a static type constraint or dynamic type constraint

• unbind

This cOlllmand \\ illunbind the machine with the given machine name

• Isbind

This cOl11mand will list bind information of current shell

• setdomain

This cOlllnwncl \\ ill set the c1ct~llIlt dOll1ain for ail following comlllands in current session,

thus ancr the c10main was sel. ifthc domain based nallling doesn"t give the dOll1ain nallle.

then the c1elillllt dOlllain nallle \'vill be used. For exalllple

.Icldmlluin !I()l7lUil7 J

llll ii('

36

The second cOl11l11and wililist ail types inside dOlllain_1 ofgalaxy resource pool

• gctdol11ain

This cOlllllland \\ ill retlllï1 the deJ'alilt dOl11ain naille lè)r current setting. The initial derault

dOlllain is the dOl11ain where the node hosting the shell is in.

Fxalllpic 1:

.lelclu17win c/ollluin l

gelc!omoin

The second cOl11llland will retUIï1 "c/ol11oin r

Lxalllpic 2:

selc!u/lwin '"

geldullluin

The second comilland will retllill --*". Illeans ail dOl11ains available are going to apply for

rollowing cOllllllands.

• setl10de

This cOl11lllancl \\ill set the def~lllit node tor ail tollowing cOl11mancls. thus if the default nocle

was set. then ail cOllllllands tollowing without specifie nocle name will use the default nocle.

The default node or del~lLIlt nocle naille is --*". \vhich means allnodes available. For example

sL'lI1()c!e n()Lle 1

1.1/1 1)(' gulu.Y1 :c!IJ/llUin 1:

The second cOlllllland will 1 ist the ty pe of nocle _1 i nsicle dom a in 1 of galaxy resource poo 1

37

• settype

This cOl11mand will set the default type for the constraint of ail following commands.

• geltype

This COll1lllilnd will return the default type \vas set

• setattr

This cOlllllland \vill set the default attribute for the constraint orall follo\ving cOlllll1ands.

For c:\all1ple .

. \e/OII,. cpu = duroJ1& & l77el71 > 5 (JO/v!

!.\ilpe gU!U.Yl :G!()l71oiJ1 1: *

The second cOll1mand will retlllï1 ail types ofnodes. which are inside dOlllain_1. and satisfted

with the deraliit constraint set b)' the tlrst cOlllmand.

• gctZlttr

This cOllllllZlncl will retlllï1 the detàult attriblltes tè)r the constraint of ail tollowing cOlllmands.

3.2.2 Exh.'lï1al cOlllll1ands

E:\ternal cOll1m<1ncls are those cOll1mancls does a specific task. sllch as listing files in certain

director)'. e:\ecuting an e:\ecutable file. and etc. External cOllllllands can be execlited either locall)'

or 1\~lllote Iy. depends on the node spec ificat ion following the commando 1 f the node spec ification

is ll1issing or it equals to 10calhos1. then this command \vill be assumed as a local commando

\\h ich wi Il cl irect to loca 1 e1aelllon of current noele. otherw ise. it wi Il be treateel as a remote

commanel. which \\ill invoke il reillote method sitting in a rcmote machine. in this case. the shell

\\ ill seml tllè request to the local c1aclllon orthe remote Illachine. Heforc <1 rcmote external

38

cOlllmand being firccL the relllote machine has to be bound to current shcll by using bind

cOlllmand. This billd operation will crcate the link between the local daelllon ofrelllote machine.

The syl1t<1:\ of e.'\lèrnal eOll1mand is:

<external cOllll1land> l(Gl<node nallle>1 1<~lI'gul11ent list>1

Where.

<e:\ternal comm<1nd> is normal Unix shell command. and the nall1es ofe:\ecutable nies.

<noLie name> is the alias ofcertainll1achine. which was acquired l'rom searching commando The

del'ault nodc is the current machine which is hosting the shel!. The default node will be applied if

the node name is not specified.

<argument list> is the argument list for e:\ternal cOll1mands.

For e:\ample.

/,\ (((ll71imi -/

This command will list ail files and directory at Machine mimi with long format.

3.2.2.1 Extemal commands list

Follo\\ ing ,marc the list orthe extelllai eomlllands currently supported by the Shell and local

L1aemon or a Gala:\) l'l'source.

cul \\Tites the cOlltellts of the fi les to the standard output

clcu!' clcars the screell

cd challges the c1irectory \\ ith rcspect to the current directory

CJ7 makes a copy of the fi le

39

dUI!! prints the clate

!!ch() writes the parameters of this cOl1llllanci to the standard output

l'Xii exits the shell

gl'l'f! searches for a pattern in the files and prints the lines which matehed the pattern

helfi gives a help on a cOll1mand

1\ gives a listillg lll'aill'ilcs in the directory

117!!/71 givcs the totall1lelllory available to the java rUlltillle systelll and free Illeillory

Illkdir creates a subdircctory with the given name

1711' Illoves the source file to the destination file

1)\1'(1 prints the CLiITent \\orking directory

l'Ill dcletes given liles from the current directory

liml' gives the currcnt system time

11'(' gives the COLint ol'nLllllber orlines, words and characters in a file

l'L'l'siOI7 prints the current version of the shell

ln/Je pipe (1) is nol really a comll1and, Il is a \Vay of'joining t\'vO cOllllllancis together. It is

similar to Unix pipe,

The external cOl1ll1lalld list can be ac\c\ec\ as the Ilcccl be, the extension ofsupporting external

Clll1lmallcls \1 ill be detailecl in Chapter 5,

40

3.2.3 Batch cOlllmand

Sinc.: the main goal of Gala,,)' is to support RAN research, it is possible a user has to input many

cOl11l11ands with l11uch repetition, batch cOlllmands will case this stretch by automate some routing

cOllll11ands serial.just like a script file of UNIX Shel\. When a user type the naille ofa batch file,

the script flle will he loaded ancl its content will be e"ecutecl line by line like user input them

l11anually in the same orcier.

3.2A RClllotc pipclinc

Gala"y shell supports reillote pipeline operation. here remote pipeline is clifferent t'rom traclitional

pipeline in Uni" shell where the pipeline is executecl locally. Galax)' shell supports a "global

like" pipeline. which means that the result of execution of one comilland at Machine A can be

clirected to another cOlllmand at Machine 8. The pipeline can be clividecl to two types, sequential

and concurrent pipelines, based on single casting or multi casting requireillent ofGalaxy shel\.

3.2A.l Scq lIcntial pipclinc

Sequential pipeline is silllilar to tradition pipeline in Unix except the pipeline applied to several

distributed machines. The synta" ofsequential pipeline is:

<pipclinc clcmcnt> ~ <pipclinc c1cmcnt> ~ ...

\\ here.

<pi pc 1 i ne clement> ::= <e"terna 1 cOlllmand> [@<node nallle>] [<argument 1 ist>]

This cOlllllland \\ill ewcllte 'Is' on Machine 'mimi' \Vith parailleter '-\" then send the execlltion

resliit to the '\\C' cOl11mand on Machine 'willy'. The final result (if an)') will be returned to the

shell who launching this cOl11mand initially.

41

3.2.4.2 Concurrent pipeline

Concurrent pipelinc has the silllilar functionality as sequential pipeline but adding l11ulticast

runction. Thc S) nta:-.: or concurrent pipeline is:

<pipeline element> (<multicast Iist> }

wherc.

<pi pe 1 ine c IClllcnt> ::= <c:-.:ternal cOlllllland> [@<node nallle>] [<argulllent 1 ist>]

<lllulticast list> ::= <pipcline elelllent> ':' <Illulticast list> ':' <pipeline clcillent>

For exalllple.

Is (U:l11imi { wc(a.wi/(I'; cat(iUlOl'iI}

This COIllIll<1ncl will e:-.:ecute 'Is' on 'mimi'. thenllllllticast the result to l1lachines 'willy' and

'nova'. where '\\C· and 'caf get e:-.:ecuted there. corresponclently. Then ail runn ing result (if any)

will be directcd to the shel!.

3.2.5 Batch command

Since the Illain goal ofGala:-.:y is to support RAN research. it is possible a user has to input Illuch

OfCOll1ll1ilnc!s \\ith huge repetition. batch cOllllllands will ease this stretch by autolllate sOllle

routing cOlllll1ands scrial.jllst like a script file of UNIX Shel!. When a user type the name ofa

batch file. thc script file \\ill hc loaded and its content will be e:-.:ecuted line by line like user input

thelll Illanuall) in the s,lIne order.

3.3 Syntax of Galaxy shell Command

3.3.1 ReselTed Words

The follO\\ ing words are reserved and have a specialmeaning to the Gala:-.:y shell when they are

unquotcd:

42

if

do

then

Jor

3.3.2 BNF for Galaxy shell

cise

while

end

lInti 1

*

111

fllnction

case

Thc 1'0110\\ ing is thc syntax ofGalaxy shell in Backus-Nallr Forlll (BNF), which the parser of

Galax) shell is bascd on.

<Ietter> ::= al blcldlel ~glhl iUI kllllllinioi plqlrlsltlulvl wlxlylzl

AI BIC! DIEI FIGII-IIIIJI KI LIMINIOI PIQIRISITI UIVI WIXIYIZ

<digit> ::= 0111213141516171819

<nlllllber> ::= <digit> 1

<nulllber> <digit>

<word> ::= <letter> 1

<\\orel> <Ietter> 1

<\\ord>' '

<\\ordJ ist> ::= <\'vord> 1

<\\ orel 1 ist> <worel>

<dOlllain_llalllc> ::= <worel> 1 .*' 1 .'J'

<node_na Ille> ::= <word> 1 '*' 1 .'!'

<rcdirection> ::= <resource_pool> ':' [<dolllain_nal1le>]':'[<node_nalllc>]

43

<llptioll~llaIllC> ::= '-'<word>

<optioll~ value> ::= <word> 1

<option~ value> .. <word>

<opti()l1~ e !cillent> ::= <option~nallle> 1

<option~nallle> .. <option~ value>

<opti()Il~list> ::= <option~elelllcnt> 1

<opt ionJ ist> .. <opt ion~ element>

<type ~nallle> ::= <word>

<type~eonstraint> ::= ·_-t '<type~nallle>

<at tributc nalllc> ::= <word>

<relation~operator> ::= '<' 1 .>' l '<=' 1 '>=' 1 .=' l '<>'

<attribute ~ va lue ~pa ir> ::= <attribute ~nallle> <relation~ operator> <attribute ~nall1e>

<attributc __ value ~pairs> ::= <attribute ~ value ~pair> 1

<attribute ~ value ~pairs> <Iogic ~ operator> <attribute ~ val ue ~pair>

<attributc ~ constra int> ::= . --a' <attribute ~ va lue ~pairs>

<static scarch constraint> ::= <type constraint> 1

<attribute constraint>

<nulllbcr cOllstraint> ::= --n <nulllber>

44

<reservation eonstraint> ::= --d <number>

<qos value> ::= 'b' l'cr

<qns constraint> ::= '--cl' <qns vaille>

<speed value> ::= 'Iils!' l'medium' l'slow'

<speed constraillt> ::= '--s' <speecl value>

<proxilllity value> ::= 'tiu" l 'medium'I 'close'

<proximity constraillt> ::= '--p' <proximity value>

<Ioad value> ::= 'heavy l'medium' l '10\\'

<elesired throughput cOllstraint> ::= '--ell' <Ioael value>

<Ioad cOllstraint> ::= '--l' <Ioad value>

<elYlléllllic semch constraint>::= <Ioael constraint> 1

<qos constra int> 1

<speeel cOllstraint> 1

<proxilllity constraint> 1

<elesired throughput constraint>

<search_constraint> ::= <static search constraint> 1

<elynamie search constraint> 1

<nulllber constraint> 1

<reservatioll constraint>

<blliIUIl_comlllancl-',eyworel> ::= 'Istype' l 'binell 'unbind' l 'Isbind' l 'settype' l 'setnoele' 1

'setdoillain' l 'setattr' l 'gettype' l 'getnoele' l 'getdoillain' l 'getattr' l 'deftypc'

45

<bu i 11_ ill_ clllllilland> ::= <bu i Iljll_ cOIllIll(lIldJ~cy\'iord> 1

<bui Il_in_ cOlllll1andJ~cyword>' "<redircction> 1

<buill in cOll1ll1and key\'vord>' "<redirection>' "<searcil constraint>

<c:\lcmal_coll1ll1and keyword> ::= <word>

<Ilocle alias> ::= <word>

<rclocalilln> ::= "(I,'<node alias>

<c:\ternal_colllll1and> ::= <e:\ternal_coll1l1landJ~cyw()rd> 1

<extcrnal_ cOlllllland J~eyword>' '<re location> 1

<c:\terna 1_ cOlllll1and _"eyword>' '<relocation>' '<option_1 ist>

<coll1ll1ancl> ::= <buill_in_colllll1alld> 1

<c:\lcmal cOlllll1and>

<collllllandJ isl> ::= <coll1111and> 1

<coll1ll1alld list> ";' <coll1\l1and>

<ll1ullicast_list> ::= ,['<collllllancUist>']'

<gala:\y_ cOlllll1and> ::= <coll1111and> 1 <ga la:\y _ c0Il1111and> l <coll1llland> 1 <collll11and>

<ll1ullicast lisl>

46

CHAPTER 4

GALAXY SHELL IMPLEMENTATION

The il11pil'mentation or Galaxy shell is divided into the implementation of the three sub modules

of Cîalaxy shel!. which are the shell (pure interface), local dael11on, and peer kernel. In the

!'oIIO\\ing sections. the impil'Illentation ofthese thrcc sub modules ofGalaxy is introduced, at the

end or this chapter, the implelllentation of XML-RPC server, which is used to test the remote

procl'cIurI.' cali li'oll1 Galax) shell. is also introducecl.

4.1 Shrll

Shell is responsible for inputting and digesting rudimentary cOl11mands, pipes, 1/0 redirection,

and backgrollnd processing. It works with local dael110n and peer kernel to fulfill the mission in

Galaxy. Insidc shel!. there is a parser module, which is responsible for tokenizing and parsing

incoming commands.

The ShI.' Il sim ply loops through getting a command l'rom the user, eval uating that command, and

rctllrning an OlltpUt. gshcl! interacts with the liser and simply go to the appropriate class when it

neccls to perform certain actions. gshcl! is like a blls that picks up people that need to go to certain

places. gshcl! delivers them thcre. waits for them to do their thing at the stop and then gets back a

changecl person. The program design matches this cycle, the gshe!! class handles the inputting

lî'oll1 thc uscr. It thcn asks a cOll1mand class in either local daelllon or peer kernel to run the

cOll1ll1and. and the oUtpllt is passed back to gshcl!. olltputted, the cycle starts again. Figure 4.1

shows the file strllctllre orthe shellllloduie.

Figure 4.1 shows the file strllctllre of shell module of Galaxy shell. From the figure, we can see

that there is a sub package parser inside gshell package, demonstrates the hierarchical relation

between them. There are 13 classes directly illSide gshell package, among them; there are three

interfaces. which are C(}l7s()!eLt'l7ejul'C{. ()UfpufWufcherjol'C{, wu! ProcessWafcherjuvo,

1:0110\\ ing is a short description or each or these intert~lces.

47

• ('()I7\IJ!eUneiu\'LI an interl~lce used he(\\een the console, and the shelL this interface

spccilïes \\ hat \\ill he called when the user presses the return key inside the console.

• ()/lljJlllll'u!cherju\'U. an inter1~lce that allows a class to be notitïed every time something

is written (0 an output stream.

• l'mce.\.IIVUlcherjuFu. a simple callback interlàce that allovvs classes which use the

Ihl'ew!ec!c()l71i71uml class to know when their spawn processes have terminated.

C::' ~1:=JI811
(":1
T

'J ,/J

'l,:'

1'..-:-

'1;:<.

'l' ,,-

t,l

t,'

'l,'

'l,:'

t,:'

par:::;8t·
P·,l) 0 ut! ::: t'I e Il .. i a"i;~
C:on::::ole.ia\la
C:on:::;ole Line .. i;~\la
E\·'e ntel utp ut:::tre a t'n .. i ;~"ia
E>:le n cl a b 1 e C 1 a :::;~; Lo a ci e r .. i a\la
~l:::;t'lell.java

Help.ia"ia
i Ile ~1 a 1/\.r~1 u t'n e ntE>::c epti 1) n.i a"ia
t'·,] 0 E>:it::::e cu rit~ir",1 a n a ~1 e r.ja"ia
IJ utp ut'/"/atc t'I e t·.J a\la
Pro c: e :::; :::;\,'Vatc: h e t· .. i a\la
::: h e IIP"I i a::: .. i ;~\,'a
ni re a ci e cl Corn rn;~ n clj a"la

FigUl'c 4.1: File StnIcturc of shell module

"ksidc thrcc intcl'iilCcs, g.lhel/ package has (en class files which working together to implement

the shell functionalities. Several key class files arc shortly introduced as tollowings.

• g.lhel/jum: Thc core lïle of this package, it creates the main fraille and the text area for

the console. It parses the cOlllmancls, then c1ispatch the III (0 corresponding modules to

process.

• ('ol1.1()/ejum: It extends the text area, and provides a way to read input and write output.

I(\\ill also handle the keyboard output.

• E\'L'1l10/lljJliISII'L'Ui71.j{/\'u: It illlplclllcnts an output strealll in \vhich the data is written into

a byk array. The bulTer alitoillatically grows as c1ata is written to il. In addition to this,

\\hcnever something is written (0 the byte anay that inforillation is also sent to the object

(ha(created il. The classes implementing the shell comillands \vill write (0 SvsICI71.0U!.

This class provides a way to capture that stream and redirects (0 the tex(area.

48

• Hc/vjul'u: This class provides a way to vie\\' the help. It extencls .1F/'Ul11e class. ancl it

contains a text area and a button lor each commando By clicking the but10n the

corresponcling Ille is reacl and displayed on the text area.

Among alilhese Illcs inside gshell package. the Class Console is playing a key role in displaying

inpul ancl output during the inleract process. The UML cliagralll of this class is shown in Figure

4.2. \\e Célll see that Console class ill1plemenls KeyLisll:'ner class. extencls .1TexlArea class. ancl

refercnces climensiu!7. SI ring, 5,'lringBlIftèr, und Veclor classes. Console class also associates with

C'ol1soleLine interface ancl is referencecl by g.lhell class.

gshell

java.awt.event javax.swïng

KeyUstener ~':1 1 JTextArea ~=:l

1

1

1

gshell 1

Console gshell

r-1: --------r----------I-------;.1 MyCaret 1

, A/ 1-listLine : int
1 ConsoJeLine Il gshell 1 ~./ hi":tor'",- : \leetor

l'--____ ,.,~/ line . ::;trin~lE:uffer
java.awt

~_/ lineE;lze in!
java.awt ~/ noLine:3 . int

~/ parent: C:on:,:oleLine
IL!!D~ir!!.ll~ert!.:ls~ioQ!r:!.l r,----, ~ :,: ile : D irn e 1'1 si 0 1'1

~/ ":tartedLine . ::;trin~l java.awt.event
java.lang ~/ te,:tLen~1lI-1 int

,-----------t----:-----------jl- - - ----;,'i KeyEvent 1

,J. "1: -» Con":oleO : \Ioicl

1 String Il StringBuffer l '.> f;: 'j 'iF' le ,:::,: e cl C, 'iD i cl
'v kG'iF' e 1 e a ": e cl C, '·101 c!

java.util

l Vector 1-=:------1

'v kG'",-T''iPc'd(:> "loic!
'v print() : "loiel
'., println() "10 ici
".:/ :,:lw',/, .. ProrYlptO . vedel
'v to::;trin~ll:) . ::;trin~l
<v t'iP e() : "10 ici

ij'/ accep!Line() . \Ioicl
.J./ enter>:) . voici

.... / pn:lI'npt. ::;li'in~l

java.lang

r---------~

1- - - -, Oh}~ct " s~~em
java.text

java.util

javax.swïng.text

-------;.i caret'
'----------~

Figure 4.2: UML diagram of Class Cousole

49

.t.I.I Pat'ser module

Parser Illodule is a sub module inside Shellmodule. it is responsible for doing lexical analysis and

parse out the cOl1llllands. JavaCc. stands for "Java Compiler Compiler". is an open source project

is usecl to gcnerate the parser Illoclule. JavaCC reacls a description of a language and generate

code. written in Java that will read and analyze that language. Although the Galaxy cOlllmands

,\1\; not cOlllplcx as a language. it is not bad idea to use an efficient and elegant parser instead of

Illessy string eOlllparison. and by adopting a parse will make the testing. clebugging. and

Illaintaining \\ork casier in the future. Although we can write a parser manually. it is difficult if

the input contents have a complex structure. Fortunately. JavaCC is able to help by generating a

parser automaticall) unless the prograillmer provides a seed file (..ij file). This technology

originatecl to make programming language implementation easier: hence the term "compiler

compiler" comes out.

ln orcler to proclucc thc parser. which normally includes a token manager in it. a . .ij file needs to be

provicleel b) progralll 111 ers. The ..ij file specifies a collection of' Exteneleel BNF rules which is used

10 break the sequence of characters into a sequence of tokens. It is otlen a headache sometime

when (here is more (han one regular expression matches a prefix of the remaining input. JavaCC

aclopts following rules fè)r picking which regular expression to use to identify the next token:

• The regular expression ll1ust clescribe a prefix of the remaining input stream.

• 1 f Illore than one regular expression clescribes a prefix. then the regular expression that

describes the longest prefix of the input stream is useel. so called '"maximalmunch rule'·.

• 1 f more than one regular expression clescribes the longest possible prefix, then the regular

expression that comes first in the ..ij file is usecl.

A !leI' those tokens are procluced. the parser consumes the sequence of tokens. analyses its

structure. and cio further process. What kind of process the parser will cio is up to programmers

\\ho specillcd this in the jj flle also. From This clescription. wc can sec that JavaCC is completely

Ilc.\ ible.

JavaCC is a progralll generator. It reaels a ..ij file and ifthat ..ij file is error tî·ee. procluces a number

ol".Java source Illes. Figure 4.3 shO\vs the files generated by JavaCc. They are:

• Sil71pleC 'hur,C,"reul71jovu - rcpresent the stream of input characters

• T(}kenju1'U - represents a single input token

• jiikenMgrt'rrorju\"u - an error thrown l'rom the token manager

50

• ['uneEYCej7/i(mju1'O - an exception when the input fai\ed to be parsed

• Puner.lunl - the parser class

• 1\fI"sl!rT(}kel7.\ful7ugerju1'C1 - the token manager class

• l'cII'serCul7s/UI7/,I.jU\'U - an interface associating token classes with sYl11bolic names

(;) ~1 ~:; ~-l e Il. p a tS e r
;j,', F';~t"SeException .. ia\,'a
;Jl' J' F';~ t'~:; e ri a\,'a
:1' ,,> F' a r::;8 rC: 1) n :::ta nt:::.j a'l/a
;Jl';, F';~ r~:;e tTo kenr",lana~le t· .. ia"ia
iI/,. :::;irnpleC:~-larE;trearnjava

;j,,, Token.ja\ia
il' ,', To ke n r',ll ~1 rE tro t .. i a\ia

Figure 4.3: File StructUl'e of pal'ser module

The Tokel7 c lass represents a token produced by the token manager. Figure 4.4 shows the U M L

diagrall1 ofthis class. It can be noted that each token object has some fields to store its properties.

sLich as the location of the token in the seed file. the type (kind) of the token and what the next

lllken is. The T(}kl'17 class associates itselr clue to the linked list structure. and is rererencecl by

l'ur.lcrt·\"(-'L'jJ/ioll and ['ur.ler. The Tokl'17 class is also being clepenclecl by PursL'rTokel7l\![ul1uger

class. where a change to the TokL'1l class will affect Pore.l'rTokemt1ol1uger class.

gsllell·lli:lrser

jW<I.li:lng

Ohject ~~:)-

gsllell.pi:lrser

Token gstlell.lli:lrser

.j': ------J------------j -;.- - - -i ParserTokenMi:lni:lger
_./ be~linColurnn in!

1 Pi:lrseException Il Parser Il Token 1 v' 1:,e~llnLine : in!

1

1 1 ·v···· en(IC:oIUlYln inl

jWi:I.li:lng

1 String

./ enclLine . in!
v" in-,a~18 mlin~1

_./ kincl in!
..... / ne:>:1 Tof;en
_ ' ,o;peci;"ITof;:en Tof.:ell

"v nev, .. Token(;, . Token
'v' 10 :::lli n ':1 0 :::11 i n il

Figure 4.4: UML diagram of Class Token

51

Ul
10

-

."
!JCi

-:
~

.j.;..

'JI

c:
3::
l
c..
~.

IJc"

~

= o -.
(j

~
fJJ
fJJ

~
::::
:::
~ ...,

gshell.llilrser

jil\fil.util

1 Vector

gshell·llilrser
jil\fil.lilng

ParserCQnstants

{subclas:;es = 2} 1<1 Ohject ~~'J

l'
1

1

gshell.llilrser 1

1

gshell Pilrser

~ gshell
,/ Li nt Token
......... tohen_::::out"C8 F'ar~;etTokent','lana~~8t'

-{/ Lu npuC:,;tre.aITI :=:irnpleC·t'lal::::tlearn
-'!/ .iLe:ipentrie~; \/eclor
4,/ iLexpentri intO

~ ___ ---j11/iLgen int
.el" iLklnci int
4./ LUal intO
4/ ii lal 0: intO
-.J/ .iLntk int

gshell.pilrser

f--~ ~ ~~i PilrseException 1

jil\fil.io

f=======I~~~~l,
1 InputSlream Il Reader 1

jil\fil.lilng

e

',.,. di:,;able_traclng() ',/oici
'v enat:tle_tracin,H) . ''1'oici
'v ,1 e n e rate F' a 1':3 e Exc e pti Ct n 0 F' a 1'00; e Exc e pti Ct n
'v getf<,Je>:tTokenO ' Tohen

~=~=~~I===l:====1~~~~1:
1 Integer Il String Il StringBuffer Il System 1 '..r t-naln() . 'l/olei

..-::> F'ar::::er() . 'I/oid

.':;. F'arc;erO void
<~~. F'arsenJ Par~;er

<,," Proce:=:sO "loid

F:elnilt:) voici
v F:elnitO voici

F:elnitO ',/oici
..Jv iLCCtnsulTle_tokenO . Token
..Jv il lal 00: void
J</ iLnthO int

V" tof;:en Token

jil\fil.util

f--~ ~ ~i ArrayUst 1

The !h/rll'I" class IS ln the central position ln the pC/l'Sei' module: it associatcs

!'ur\crT(}kcl7;\/ullugcr ami T(}kCI7 class l'or consul11ing tokens. Figure 4.5 shows the UML diagral11

01" the /hll·.Ia class. There is a public Illcthod !'ron:S.l is responsiblè for consul11ing the incoming

tokens. It recognizes these tokens. make certain change il' necessary. and then load certain

cOlllllland class tile to execute the coml11and. We can also see that there is a circle dependencies

bet\\een /71/1'\1'1' and gshc/! class. any changing in one party will automatically affect the other

one.

-l.2 Local daclIlon

Local daelllon Illoduk is the place where the service is provided. When a resource joins Galaxy.

the local dael110n is always running on that resource, and waiting l'or incoming cOlllmands. Thus

each resource in Galaxy is acting like a service provider. the special thing is that each resource in

Galaxy is acting both a service provider and a consumcr. Local daemon can accept cOl11mands

cOllling from both locally or remotely. POl' rel110te cOl11l1lands. local daemon will authenticate its

identity and checking its reservation ticket before providing the service. local daemon also

proviclès a sanclbox like protection mechanism against malicious clients. At the time when this

shell was implanting. the research of those security functionalities is still on going, thus these

I"unctionalities are not implemented in this version. Figure 4.6 shows the tile structures of

!oco!doCI7/()11 pac kage. and Figurc 4.7 shows the U M L d iagram of c lass LocolDuel71ol1, wh ich wi Il

l'un as a se l'ver to provide services.

(~) localcJaet-non
"';" c:~t.ia"/::l

CP,i8\"8
cl ate "i ::l\!8
ect-Io,ia\!a
~1 re P ,.1 8\,'8
13 rep 1 np u!t:trea rn.l a\!a

"',' Loc81Daernon,j8\i8
;j','. Local[laernon clefault:3ep/et.la\!a

Local[laernon rnlt-ni la',/a
"'," Loc8IDaernon_',/,/ill',/,ja\i8
"';', 1:::,j8\i:~

"';. rn e trl..i 8\,'8
;j';. tOn kcH ria·,/a

t-n\i,.1 8 "/a

rrn"la\ia
"',' ti tri ej a\"a
"'." ',/'/c.,ia\"8

FigUl'c 4.6: Filc Structu re of local daemon mod ule

53

'"rl
!JC:

= ..:
.j.;..

---J

c::
3;:
r
'"'
~

!JC:
"'!

V1 ~
.(0. :3

0 -.
n
~
[fl
CIo

t"'-<
~

'" :::: -I:::l
::::
'" ~
§

e e

jWlI.llIng

()bject)<!-

locllldllemon

LoclllDilemon gshell

-!l/ F'OFn . int
- -01 ExtendallleClilssLOilder 1

jWil.iO
'v 8\:ecute(i :::tring
<~ LocalDaelTlonO voie) r -- ~1 PrintStrellm 1

rnainO . "ioid
jWil.lilng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l======l=====1---1 
- - - - ~i lit;l,l /;'1' 

~ CllIssNotFoundException 1 Exception Il lIIeglllll.ccessException Il lIIegillll.rgumentException Il St;ing Il StringBuffer Il System 1 

jWil.lilng.reflect 

~========~------l 
1 .. ,yv~~"v", u,getException Il Method 1 

jWiI.util 

f- - - -'é<'1 StringTokenizer 1 

locllhlilemon 

f- - - --"'1 Locill[)ilemon mimi 1 

org.ilpilche.xmlrpc 

1-- - - ~1 WebServer 1 L-_____ --.J 



From Figure 4.7. we can sec that the class LocolDuemol1 has an instance variable PORT, by 

assigning difTerent numbers to this fiele!. a silllulation of e!istributee! resources can be createe! at 

one Illachine. \\hich IS convenient for e!evelopment. LocolDoel11ol1 associates with 

E.r/cl1dohlcClus.I/JJUc!CJ'. while the latter one is able to loae! ane! execute a cOll1lllane! class file on 

the tly. If a command class cannot be foune! during loading, a Clus.lNo/Foul1dExcepliol1 will be 

thrown. Wè'hSè'J'\'cr class in the ()rg.opoehcxl71lrpe package is referenced for starting a simple 

XML-RPC servel'. The è'Xè'CU/C methoe! is for executing inputting comll1ands. 

-L2.1 Local daemon commands 

Currelltly. twelve eommancl classes have been implell1entecl in the localdoel11ol7 package. Each of 

these classes rcprescnts a commane! which can be loaclecl ane! executee! on the fiy. Ali the 

follO\ving classes will contain the main Illethod. Each class executes a comlllanci specified by 

name itsclf. The main methoe! will take an array of strings as arguments that are given to the 

respective commane!. ;\ Il the cOlllll1ands will write the output the System. out. which will be 

directed to the console of the Galaxy shell. Following is the short description of these cOll1ll1and 

classes. 

• cu/jUl'CI - prints the cOll1ll1ands contents of the given file 

• e/)/ul'u - copies the source file to destination file 

• clulè'ju\'U - prints the current system e!ate with the following format month, day, ycar 

• è'clw.jul'C/ - \VI'ites each given string argument to the stane!ard output 

• grè'jJjul'U- searches the given string in the files specifiee! 

• 1.1'.1(/1'(/- lists the filenames alld folders in the current clirectory 

• I17Clllju1'u- displays the total memory for the java console and also the available free 

III C 111 ory 

• 17lkdiJ'.,iava- crea1\:s a directory. if it does not already exist 

• 1l11'jU1'U- movc or rcname a file fi'om current e!irectory 

• f'l71jUl'U- clelete a file from eurrent e!irectory 

• /illlcjul'CI--- prints the system time 

• )IC)Ul'(/-- pl'illts the lincs. wore!s. eharacters in the given file or input stream 

The illlplclllentatiull of above Illethocls is straightforward. just neecl to writc a class with expeeting 

input paramcters. and do the corrcsponding task equivalent to the na me of the elass. and retulï1 a 

55 



slring. \\ h ich \\ i Il be shown on the she Il console. Figure 4.8 shows the U M L diagram of the 

command class 1.1'. 

jwa.lang 

1 Object ~':l-

localdaelllon 

java.io Is java.io 

File ~---_I-----------___jr_ - - ....,.;.1 PrintStrealll 
/ DEE:UC, , l'üolean 

iL/ cunentDir , ::::trinq 
-'l/ v",',/cl : File 

java.lang java.lang 

1 String 1-'-:----j-------------1_-= = = = = '1- - - - ~ 
,,:.. clirO : ::::trincl'; "j; 

'<", r'natct1() : bonlean 1 StringBuffer Il System 1 

"l'/O rkO : :::;tri rHl 
J'v' cnspla'l'FileO : int java.util 

.J'if cli'c;plavFuIIDirectOp'rO : ::::trinq r- - - ~ Vector 

.J~' Cl ef'/\''j 1 cl ,_: a nHI.I' atct"1 e 'c; () : :::;tri n Cl 0 . 
il'." S 0 rtc:=:tri n Cl S () : 'lO i cl 

Figure 4.8:UML diagl'am ofClass Is 

Il should be Iloted that local c1aemon should not only be able ta load alld execute a cOJ1lJ1land class 

written in Java. it also neecls ta be able load and run an executable file written in other languages. 

For this situation. Java Native Interface (.INI) can be used to make the cross language operations. 

AI CUITent \crsion orthe Galaxy shel!. this is not impleillented. 

4.3 Pccr kCnlcl 

Peer kemel provides an API for the shell module. masking the cOJ1lplexity of GRMS. Through 

this API. the shell module (client) can explore the Galaxy network. and also advertises itself ta 

other nodes in the Galaxy resource pool. Figure 4.9 shows the tile structure inside peerkernel 

package. 

56 



(~) p88rkernel 
"'''>. bincJ.la\,'a 
"';'" cl eft~/p e .. i a',/a 
Jo.' ~1 etattt·.i a',/a 
",/. ~1etcjornain.ja\,'a 

'f j
• ~1etnodeia"/a 

t" ~'j, ~1 ett~lP 8 ,j a'ila 
"01')0 i Il e 9 a I.A,rg u tri e ntExc e pti 0 n .. i a\la 
il',,' 1::;bincLja\la 
'" ." 1 ::;t'l'P e.i a',/a 
il' ," ::; et;~ttr.j a',/a 
:1' ,,'! ::; etd (1 rn a i n ,j :3\I'a 

::; etn 0 cl e.j a',/a 
il'.. ::; ett~/p ei a\la 
;t'f" unbind.ja'tl:3 

Figure 4.9: File Structure of peer kernel module 

4.3.1 Peer kernl'l commands 

Clirrently. there are thirteen eommand class files are implemented. which can generally 

categorizecl into two sub types. configuration commands and networking commands. The 

implcmcntation and operation of these cOllllllanci files are silllilar to those commands in local 

daelllon modulc. A short introduction of these two kinds of cOllllllands class files is listed in 

l'ollowing te.'\t. 

COll1ll1and class liles for configuration 

• .\I!IU/ll'juru uncl gelClllrjU1'U - set/get the dctàult attribute value pair constraints 

• sl!Il7()dl!jum {{nd gl!ln(}dl!jo)'U - set/get the default redirection destination 

• SI!I/lpl!juru Clnd gl!l/l'fll!jCl1'U - set/get the detàult type constraints 

• .\l!stc!(}17/(/i17jUl·U uncl geldol71oinjul'u - set/get the de l'a LI It dOll1ain constraints 

COll1llland class files for net\vorking 

• !.\/l'pejuru - list available type information (Linder given constraints) 

• hindju1'U uncl /lnhindjul'CI- connect/disconnect a collect ofresources 

• !.\himljum- lis! CUITent bind information 

• cll!j/lj7L'jum- delinc a new resource type 

57 



4 .... RCll10tc Proccdul'c Cali 

The rClllote proecdure cali belween distributed Gala:>.:y nodes is implemented based on XML

RPC, a popular protocol that uses XML over HTTP to impleillent remote procedure calls. Apache 

X M L- R PC is a Java i Illplem entation of X M L- RPC. cUITent version is 1 .2, wh ich is integrated into 

the Gala:>.:} shell project to implelllenting distributed computing. By using Apache XML-RPC. 

programmer can bc abslracted 1'rom the detailed XML-RPC protocol implelllentation while foc us 

on the Illore illlportant work. Programlllers don't need to know how the XML document is parsed 

and how the HTTP protocol is implemenled. the only things neecl to know is what neecl to be 

transCerred. <lml \\ hat the interrace to calI. 

Apache XML-RPC supports SAX 1.0 and can theref'ore be used vvith any compliant XML parser. 

The det'ault parser is John Wilson's MinML Parser which is includecl in the package so 

progralllillers don't need anything else to start using the software. MinML is an icleal parser for 

XML-RPC because it is smalL fast. and ill1plements exactly the features of XML which are used 

by XML-RPC. Following sections will introduce the implel11entation of Apache XML-RPC in 

Galaxy. both in server ancl client sicle . 

... .4.1 XML-RPC Scrvcr 

On the server side. there are two ways to plug in XML-RPC moclule: one is 10 embecl the XML

RPC library into an e.'\isting server frall1ework, such as TOll1cat or WebLogic, or use the built-in 

special purpose 1 !TT? servel'. The XML-RPC library comes \Vith its o\Vn built-in HTTP servel'. 

This is not a gcncral-purpose web server; its only purpose is to handle XML-RPC requests. 

I!O\\ever. it is good enough l'or tcsting the remote procedure cali belween two nodes. Thus, this 

built-in HTTP server is adopted. The HTTP server can be cll1bedcled in any Java application with 

a few simple lines: 

JI'(,hSef'l'ef' JI'(.'h.l'e/T!!/' = ne\!' WehSel'1'c:r (pu/'I): 

we h,le f'l'r!f'. odcl /-/uncl! el' ("r!.YUl71p! es". ,Wl7le HOl1d! er): 

This built-in IITTP server also provides a useful function, which can set the IP addresses of 

clients l'rom \\hich to accept 01' den)' requests. It can be usecl in the 311thenticate module in the 

local daelllon for achanccd resollrce management. This is done via the t'ollm\ ing methods: 

lI·ehse!'1't.:!'.sc/Pul'onuid ((me): Il dem' 011 clien/,I' 

58 



11'l'h,Il'ITl'r,LlCCe'f7!C 'Iie'n! ("J CJ], l 6iUJ. *"): ullo1\' lond uccess 

\1'chselTe'r.d<.'l1rC'lien! ("JC)], 16c'i.(),3"): e,\ceplli)r !his one' 

Be lixe an X M L- R PC server to provide a sery ice. it must know how to map incom ing requests to 

actualmethods, This is donc by rcgistering handler objects to the server like following: 

udd/-!ul1dler (S!ring nume, (}hjee! hune/1er): 

relll(}]'L' Hundla (S!ring nume): 

-lA.2 XML-RPC Clicnt 

Apache XML-RPC provides two client classes, 

• (}rg, uJ7l1che,,\'I77 hpc,XI71I RpeClien! uses java,net, LJ RLConnection. the HTTP client that 

comes \\ith Ihe standard Java API 

• (}rg, u/7uchc\,!71lr/Jc, Xml RpcClien/ Lile prov ides its own 1 ightweight HTTP client 

i III Il \clllen tation, 

Xm/RpcClien! provides the ru Il I-ITTP support such as prox ies or redirect wh i le Xml RpcClicnl Lill' 

is 1 ightweight buy Illay outperforll1 Xml RpcClienl in some scenario. Both client classes prov ide 

the sall1e interface. \\hieh includes methods for s)nchronous and asynchronous calls. 

Using the XML-RPC library on the client side is quite straightforward. Following is an exall1p\e: 

XIllIR/7cClienl XlI1lr/7e ~ ne1l' XmlRpcClien/ ("hllp://locolhosl:8080/RPC2"): 

Vec!or f7u/'u/IlS = l7e11' Veclor (): 

/h !/,(!IIl,I, LlLlci El ellle n! ("some parumel cr"): 

String re.llIl! cc (Slring) xmlrpc.execllle ("me/hodnul71e", parums;: 

Il should be notec\ Ihal in Ihe above code snippet. the support to the types of parameters are 

lilllilecl in currenl library of Apache XML-RPC. In order to pass sOll1e unsupported objects. they 

have to be lirst \\Tapped into an object supported. such as a Vector. This is a liule bit clull1sy but 

\vorks. 

59 



4.5 Galaxy shell extension 

Since Cala'.:) Shell is designed in modulaI'. Calaxy Shell is easier ta be extended to Illatch the 

pace of Gala'.:) research. Each cOll1mand supported by Cala'.:) Shell is implemented by a Java 

class, thus to add a new cOlllmand or change an existing command is just related to a single class. 

There arc two steps to add a new command: first is to change the parser to make the parser 

recognize the ne\\ command and process il. sccondly, to add a ncw Java class to illlpleillent this 

cOlllmand. There are two places ta put the new class lile, depends the property of the cOlllll1and: if 

the cOI1lI1l,ll1d is a bllilt-in comll1ancL then it sholiid bc put into the peer kernel module; if it is an 

e.\ternal cOll1mand. thcn local daclllon module is its destination. Undcr the help l'rom JavaCc. 

changing the parser it not very dirtïcult. the onl) thing need to change is the ..ij tile, which is 

located in the gshe Il.parser package, after changi ng has been made, runn ing javace parser.jj to 

generate the new parser ofGalaxy Shell. 

ln the future, it is very likely that Gala'.:y shell needs to support remote pm'allel pipeline. The 

concept \\<lS createel but in this version. this concept is not implemented yet. Following gives 

sOl1le suggestion for il1lplelllenting this function in the future. The syntax of the remote parallel 

pipeline can be choscn under the developcr's v,ill. For examplc, 1,\~m;@1I'illy:1I'(fiiJno"u. This 

command means the output of 1.1' comll1and again local machine will be used as input of the 1I'C 

cOllllllands running on two remote machines, ll'i!ll' and nOl'O. The semicolon can be used to 

separate the Illultiple reillote machines. In order to implement this, the sell1icolon symbolll1ust be 

added into the parser se cd file for succcssfui parsing the input. A vector is recoll1ll1ended to store 

the Illultiple commands and destinations, in this case: ll'C@ll'i!!y and lI'C@110VO. The 

!JmCi.',I,I( '(}mll1und() method in gshell class should be the place nced to be changed and also the 

Illethod ruile 'o17l171und(). 

60 



CHArTER 5 

GALAXY SHELL USAGE AND ANALYSIS 

(Jala.,) Shell ean be deployed on an)' machine with JVM runnl11g on it. Galax)' Shell supports 

manv cO\lllllands silllilar to those in comillon Unix shells but also adds more functionalitv on it. 
• 0 

5.1 Galaxy shell usage 

5.l.l Galaxy Shell installation 

The Galaxy project is in a folcler named gshel!. this folder contains source code. cOlllpiled files, 

supporting libraries. and helf7 documents. In the root directory of this folder, a readme file 

contains the basic information about how to l'un the project. Several batch files are provided for 

running the prnject casily on a Windows machine. Executable files are stored in the folder 

clal.les, in order to l'un Galaxy Shell; it is a good idea to include this directory into the class path 

of the cOlllputer environment setting. The thrce sub modules of Galaxy Shell can be found in the 

c!wse.1 folcler. ami supporting libraries are put in the lih folder. rolder bak stores the backup 

copies orthe project. Figure 5.1 shows the file structme ofProject Galaxy Shel!. 

- ~ 

+ -.J [Iaf: 

- -.J c la :~;se:~; 
- -.J (J:~;hell 

-.J par-ser-

-.J h)c"ildaerncn 
-.J packalje cache 

-.J peerk.ernel 
-.J help 

- -.J lib 
+ -.J }=f'./acc-::::.2 

+ -.J Jdk.l.4 

+ -.J src 

Figul-e 5.1: File Strllctlll'e of Galaxy Shell PJ'Oject 

61 



5.1.2 Running Gala:x)' Shcll 

When run the Galaxy ShelL open a shell under Unix or a Windows command processor LInder 

Windows machine, ni to the closses folder. and enter java g\'/Iell. If the library path is correctly 

set. then a Galax) Shell console will be displayed on the screen. After entering into the shelL a 

prompt SUSER \vill remind the LIser that Galaxy Shell is fully initialized for liser with identity 

cg uals ,,,. USER. and is ready to accept comll1ands. Galaxy She Il is des igned to be able to use 

interactivel) or in a batch through a script lile. Should an invalid input is given. the shell will 

thrcl\\ a parser CITor. and tip the user what cou Id be wrong. and wait there for the user to input a 

ne\\' commando If there is no syntax error in cOll1mand line. but some parameters are ll1issing for 

suecessfully executing the command. the user will be notitied about the usage of specific 

command. At any time. user can use the get help information about specifie eommand by typing 

hel!7 commune/_nume or use the drop-down menu at the top of the console. When the user wants 

to close the shelL he/she canjust type exil to gracefully terminate the session. 

S.I.J Starting XML-RPC sCI'vel' 

X M L- R PC servers are em bedded into the Ga laxy Project fo Ider for eas ier distribution and 

installation. In orcier to develop and test the remote procedure cali on the sa1l1C machine. currently 

the scrver name of ail servers are set to /uco/host. but with different port numbers to simulate 

different machines. This can be easily changed when real remote procedure calls are to be tested. 

The Cîalax) shell has been tested suecessfully on mimi and 11'lï~l' servers of McGi11 University. It 

also \\as tested on I.AN in the planet lab of McGi11 University. The testing analysis will be 

c1ctailcd in Ile.\t section. Each XML-RPC server is a sub component of a running local dae1110n of 

a remote resource. To run a XML-RPC server. just open a shell under Unix or a Windows 

com1l1ancl processor under Winclows machine. cd to the closses folder. and enter java 

/oca/dael1uJII.Loca/Dael1loll. then the XML-RPC server is running and reacly to accept requests at 

a clelault port \\ hich is 8080. this port Ilumber ean be changed according to users' will. Once 

servers are running. it is the time to test the remote methocl calI. such as /.l'@l71il71i~lI'c@.II'i//y. 

This eOlllmancl will list contents under the projeet root c1ireetory at Server mimi. and send the 

result to Server Il'i/h', \vhere II'C (word eount) Illethod will be executed. finally. the result will be 

sent baek to the shell console. It is shoulcl be noted that the pipeline sign is .. ~" insteacl of ''1'' 

which laller is often secn in Unix shells. the reason behind this is that in Galaxy shell, the '1" is 

rescrvccl for local pipeline only. and .. ~" is L1secl only for pipeline betwcen remote machines. 

62 



5.2 Galax)' Shell ped'omulIlce 

The resource lItilization 01' Gala,y Shell is small. compared \Vith similar shells. Table 5.1 shows 

the l'eSOlIl'Ce consumption of several shells. These data are collceted l'rom a Windows machine 

\\ith ail shells installed. the total physieal Illemory of the testing machinc is 512 Mb, and the CPU 

is Pentiulll IV with J'requency 2.4GHz. Ali the values in the table are the peak values when they 

\\ere rllnning at normal statlls. It ean be seen that Gala,y Shell doesn't consume mLlch system 

resolll'CèS. as both ils CPU and ll1elllory eonsull1ption are quite low. This attribute makes it 

suitable for those systems with limited system resollrces such as PDAs. 

Tahle 5.1: Resoul'cc COI1SlIlllptiol1 ofshclIs 

CPU 
Meillory (kb) Disk 

(Peak value) 

Gala.'\Y Shell 1% 14600 

JXT A Shell * 3% 29900 

Windows Commélnd 1 nterpreter * * 1% 800 

* .IXTA Silell version: 2.3-pre-16 157e 06-15-2004 

** Micrusotl Windows XP Professional. Version 5.1.2600 Service Pack 1 BlIild 2600 

*** Not considel'ing SlIpp01'1 libraries 

(kb) *** 

175 

306 

367 

The speed 01' Gala,) Shell or the rl'sponsc lime of' Calaxy Sileli is also te~tcd at different 

l'ireull1sU.lIlc<c's. Fii-'lIn: 5.1 compares the response lime of internai c0Il1111ands and extcrnal 

cOl1lll1ands \lJ'Ciala'\) Shl'il insilk a LAN. Inkmal cOIllmi1nds are (!Josc l'ollllTlallds that only have 

cOllnections \\ ith lucal :-,yslell1 and arc e,pected 10 have s!Jone!' l'espOllse times c01l1pared 10 

l:xlcrilai cOllll11ulllls. \\ hC'l'i: rel110te procedure calls are illvokC'd. The lesl \Vas C',eeutC'd Oll several 

Illilchine" linked in a LAN at McCiiIl University. The link bandwidth hetwecn compukrs is 

IOrVlbps and ail tcsting machincs are rUllning Linux systeills. Twt) machines \HTC uscd for Ihis 

test. on(' is a sC'l'\er. and the ot!Jer is a clicnt. The servel' machine is rlillning on Linux system. 

w!JerC' X M L- RPC sC'rver is rU1l1l i n!:! on it thC' cl ienl mach ine is runn ing on Windows X P system, 

and il scnt out n.'quC'sts 10 the server rnachine. Tcn cornmélnds \Vere sekcted out rrolll both 

internai ami e'\tclïlal comlllanci sets for tl'still!:!. and eilch cOlllllland ''.as e.\ecutecl 1000 tirnes in il 

I()op. then the average 1 imc \'.as record for analysis. From Figure 5.). the average respol1sc timc 

63 



l'or illkrnal comlll<1nds is R.223 milliseconds. whilc the eorresponding lime roI' cxtcll1al 

CUIllI1WIlds is 19.39X rnilliscl'ollds. Thc slowdO\vll is mainly dlle to thc serialization and cle

seriali/.atioll during reillole procedure l'ails and network trallsfer. 1I0wevcL the rcspollse lime is 

quitc acl'cptilhlc l'rom il hllillan bcing's point ol'vic". 

, • Internai Commands External Commands i 

25 

~ 20 
Ul 

É-
Q) 

15 E 
'';:; 
Q) 
Ul 
c 10 0 
0.. 
Ul 
Q) 

Cl:: 5 

0 
0 2 4 6 8 10 12 

Tests 

Figun~ 5.2: nt>spO/1st> timt> of commallds in a LAN 

(Iestcd at Planet Lab al McGili University, two machines were llsed; one is Linux system running 
as il servel', the other onc is Wil1dow~ system running as a client. Thc Iwo machines arc linked in a 
1./\ N. whcrc bandwidth is 10 Mbps) 

I-'igure 5.3 comparcs the response time or internai cOlllmands and external cOillmands of Galaxy 

Shell in Plillletl.ilh I1clwork. ail overlay network supportee! by a collection or' acadeillic. Îndustrial, 

and gnvclïllllcnt institutions for rcscarch and dcvclopll1cl1t. Three nodes in the PlanctLab nelvvork 

\\erl~ usccl l'or tcsting the rcsponse lime of external cOlllll1ands, the threc nodes arc: nodc-

1. IIIcgi!!phml'!!uh.o/"g. lloc!ciI.ho\I'U/'dcc!li. and p!unclluhl.cs.dct/"/II101/Ih.cdll. Ail the thrce nudes 

were LillllA machines anel a dedicatcd slicc \Vas allocated on eilch or the thrcc noc1cs «JI" doing 

rcscilrch \\ itllOlit disturb b) other lIscrs. Amollg thc thrce nodcs. thc machinc r!oc!c

I.lIlcgilljJ!(lIiL:l!uh. ()rg \VélS phys ica Ily locatecl in the salllc roOIll where the test was starting. wh i le 

thc 011]('1' two Iludes \\erc il liule bit f~lI' imay. they werc ail in the north-cast of America. The 

COlllleclioll ilillong Planet/ab Ilodes is varied just likc the machines lIsed. Thus it pretty weil 

l'l'presents the III iscellalleous and l'om plex net work i Il the l'ca 1 \vorl(L \\ h ich is also the target of 

CialaA) system. T\\o machines were useel for this test. olle is a server, anel the other is a client. 

The servel' is rUllllillg on the three Planctl.ab nodes, where XML-RPC server is runlling on il. the 

64 



client machine IS runnll1g on a randomly picked Linux machine in the Planet lab of McGi11 

U Il iV .. TS il), the client mach ine sent out req uests to the servel' Illach ine. Ten comlllands \Vere 

selected out frolll both internai and external cOll1m<1nd sets for testing. and each coml11and was 

e.\:ecllted 1000 tillles in a loop. then the average time \Vas record for analysis. Sillce the respol1se 

(illl~' or intclll;!1 clll1lll1ands is relativcly constant. thus only one '.eries or the il' rcspollse timc is 

given in tlnee !es! groups. 

140 

120 

Ci) 100 
E 
<l> 
E 80 

:;:::; 
<l> 
VI 

60 !:: 
0 
0-
VI 
<l> 40 0::: 

20 

0 
0 

- Internai Commands (local) 

External Commands (howard) 

o 0 

2 4 6 

External Commands (mcgill) 

External Commands (dartmouth) 

8 10 12 

Test times 

Figun' 5.3: \{rsponse time of commands in PlanctLab ndwork 

(ll~,led al l'bnet L,lb al McCî i Il LI Il iversity. three 1. il1l1x Ilodes in the PlanetLab overlay network were 

cllOsell to be serVl'rs. the client is a Linux machine in the McGi11 computer lab which has llCCCSS to internet) 

From Figure 5.3. the average respollse time tOI' internai cOlllmands is 8.223 Illilliseconc\s. while 

the correspollc\ing rillle for exteillai cOlllmanc\s is varied rrolll aroulld 19.,1 milliseconc\s ln 115 

Illillisccollds. The rcsponse lime prett)' \\ell c\elllollstrated the distance betwccn the client and 

server machines. Hecmlse thc Planet Iloc!e al McGill is physically close to the client rnachinc. thus 

il qllite quick respollse is understandable: \\ hile the Planet l10de at HO\vard University is 

ph) "icall) located in Washingtoll De area. thus it has the longes! respollse time. The Planet node 

al Dartmouth is in Massachusetts. thus its response tillle is sitting in the Illiddlc. Ali the l'es pOil se 

tilllC is quite acceptable and !hese tests provecl that Galaxy Shell is acceptable for c1istributec\ 

cOll1pllting tasks in Galaxy systems. 

65 



I\s a PCU systeill. Gala\:y needs to support hundreds or even thousands machines simllitaneollsly. 

I\t the planet lab. the sealability of Gala\:y Shell was tested to explore the feasibility of its design 

and illlplcmentation. Wc npect the Gala\:y Shell has reasonable good scalability. Due to the 

1~ICility limitation. it \\as difficult to test the scalability is a real warld situation where various 

nel\\ork connection and thousands machines working together. so l\\0 simplifïed tests were 

c.,ecutccl: ulle is hilS,:d on a l./\N in Mdiill, the other is based on PlanetLab at McGili. Figurc 5.4 

shows the gcneral idea about how the hroadeasting tinw was reeonkd. To commullicate \\ith 

lIlultiple X!V1L-RPC servel' instances at the saille time. tlle client lhrcacl crcatee! equal llul11ber or 
chilcl thrcacls and clelcgatce! thc task to thosc chilcl thrcads. then waitcd for the lasl child th l'l'ad 

rctulï1s. Thc time fi'um the broadeasting Illethod was sent to the last child thread returns was 

recorel as the inde\: of'scalabilit) l'valuation. 

Scncling out 
eOll1ll1and 

Rroacleasting 
response t illle 

The moment when last 
ch i Ici thread retmns 

Client Server 1 Server 2 

Figure S.4: I{(.'sponse timl' of broadcasting 

Server n 

Ille l'l'suit orscalabilit) kSlillg in a LI\N was sI10\\11 ill Table 5.2 alld Figure 5.5. Table 5.2 shows 

the difkrent respulls,-' limes l'or c.\ecuting broadcasting cOl11mands to rel110lè machines. lhrce 

groups ur lests \\ere e.,eculL'd ilnd il shows that the respOllse times \vere quill' small \'vh":ll the 

IlLllllber of Ilodes \,as belovv Olle hllndred; \\ hell Il li III ber of Ilocles l'cachee! olle hunc\red, the 

l'es pOil se tilnc \\il:-, still kss than olle secolld, v,hich is quite acceptable in l'cal situation. Whell 

Ilumber or l10dcs \Vas increased tu 250. il required about 2.4 secollcls to finish the broadcasting 

e\:l'cutioll. and \\hell Illlmbcr 01' l1oc!es \Vas 500, the rcspol1se lime was liule longer al arollnd 5 

seconds. Il Ilecds 1ll000C than 1 () seconds 10 broadcast tn 1 (lOn machines, this is qllile long ft)r 

66 



normal user~' (u!crallcc. Ihis suggests rhat clIrrenl Shcll dc~igll will perf'ol"m very wcll when 

sillllllulllL'ously cOJl1ll1l1nicHting wilh 100 machines or !css and ils perl<lIîmll1cc goes clown afier 

ihi~ tlm:sltold. ligurc ;;.4 sho\vs the responsc lime illCl"casc trelld as thc 1l1ll11ber or nodcs arc 

illcrCilsed. it l',111 hc SCCIl that whcll thc rnachillc 1l1ll1lber is \css thall 100, the l"CSpOIlSC timc 

il1l'reasc is quile slow, and vdlen thc number or noc!es passes 250, the response lime increase 

11111ch l~lster than bçj()rc. 

Table 5.2: Respollse time ofhroadcastillg in a LAN 

Vlachinc l'l'st 1 Test 2 . lest) Avcrage 
IHlrll bers (ms) ( ms) (rns) (ms) 

1 19 21 'Y) 
L_ 21 

lO 27 2R 31 29 

50 295 )]3 317 308 

100 908 91R 921 916 

2;;0 2418 2491 2514 2474 

500 5423 5792 5942 5719 

1000 12134 11234 11457 1160R 

67 



i\llo1hcr scalability testing was on PlanctLab network, in the Planet Lab at MeGilL three noc!es in 

PlanetLab ove ria) network \Vere ehosen to be the servers l'or scalability tes!' they arc: IlIJdc-

1I7lcgi//f1/ul7el/uh()rg. llodeu.h()ll'un!.cc!lI, and p/u!lclluhlcs,c!U/'II1l()uth.Cc!II. In eaeh of the servel' 

machines. ,1 bunch or XML-RPC servel' instances were initiated befme the client sending out 

requests. each instance is matehing to a specific port number to mimic an independent machine in 

a real Cial'l.':) system. The total requests \Vere eyenly distributed into three servers where each 

servel' had aboul one thinl o!' [olal servel' instances 10 acecpt requests. The client invoked remote 

proccdure calls on those XML-RPC servel' instances running on the three servers simultaneously. 

Table 5.:1 shows the dilTerent response times rùr exccuting broadcasting commands to remote 

machines, Three groups ni' tests \Vere e.':ecutecl and it shows tha! the responsc times \Vere quite 

sillaii whcn the number of nocles \Vas belO\\ one hundred which is quite acceptable in real 

situation, When number of nocles increasecl to 500. the response time \Vas little longer at arouncl 

7.5 seconds. lt is a liUle bit longer but still can be categorized to acceptable Icvel. It neecls more 

than 40 seconcls to broadcast to 1000 machines. this is quite long for normal users' tolerance, this 

suggests that currcnt Shell design will perforlll very weil when simllitaneollsly comll1unicating 

\vith LI!, 10 100 machines. and c~m perrorm in an acceptable level when the broadcasting l10des up 

ln 5()O. FlIrther lhan Iha1. a long delay is e.':pectcd. 

Tahle 5.3: Response time of broadcasting in PhmctLab l1etworl{ 

Machine Test 1 Test 2 Test 3 Average 
Ilumbers (ms) (ms) (ms) (ms) 

1 71 85 76 77 

10 101 112 119 111 
100 656 988 712 785 
500 7506 7403 7866 7592 
1000 45556 485)6 41256 45113 

(Testcd at l'land Lab at \!)c(;ill University. three Linux nodes in the PlanetLab oyerlay l1etwork vIere 

cllO'icll tu be serVCTS, the client is a Linux machine in the Mdîill computer lab which has acccss tn internet. 

The machine Illirnher, are the nlllllber of XML-RI'C servel' instances instantialed in the three SCl'ver nodes. 

these instances Ilere cvenl) distribllted anlung three servel' nocles. l'he three nOLles arc: node-

Ilj1lallet lab.OI'!,'.. nOlka.hO\\ ard.edll. and plandlab l.cs.c1arllllollth.edli. which arc physically located at 

f\.1c(Îill. Ilo\\,1I'l1 .lIld J)al'tlllOliln Universities ) 

68 



,'it!un: :l.6 "hm,s the respollsc time incrcase trcnd a~ thc nllmbcr of l10des arc increased. it l'an be 

SCl'll thal \1 hen the machine llull1her is \css (han 100, (hl' response timc increasc is quitc skm. 

\\ hich dCl11unc;traled il gond scalability. ancl when nocles Illirnber was up to 500. thc clclay II1crcase 

is a lil1 lé bit higher. ,liter Il](' 500 Ihrcsholc1. the response limé increasc jlllnped quickly. 

60000 

50000 

Cf) 

.s 40000 
Q) 

E 
:;; 
Q) 30000 
Cf) 

c 
o 
~ 20000 
Q) 

Cl::: 

10000 

o 

Test 1 ~ Test 2 Test 3 

10 100 500 1000 

Machine numbers 

Figure 5.6: Scalahility test in PlanctLah Ilenvork 

Althollgh the full Gala,y system will holc1 thousancls or Illillions of noc1es. accorcling to its RAN 

organ izat ion, the Ga laxy she Il wi Il only cl irectly comlllun icate cOllll1lancis to the "c luster" that is 

allocated l'or il particular invocation. That is a shell \'von't be reqllirec1 10 cOllllllunicatc with ail the 

l'l'sources that arc pal'1icipating ill thc Galaxy system. There will be corresponclingly large nUlllber 

or invocations orthe (;ala.'y shells that are comll1unicating with the noclcs. 

It Ileeds to be poinlecl out that the scalability test is a bilsed 011 an academie nctwork. which may 

Ilot be able 10 relleet the complexity of the nctwork in thc l'cal world. Since ail machines in 

!'lmll'lLab arc Lillll'\ lllachillCs with Rcdhat OS. which Illay !lot he able to l'l'present the l'cal 

:;ill1at i(lll \\ here Ciil s\ stCIn Illay CIlCOlllltcr. Thc bandwidth betwecll Ilodcs in PlalletLab is 

quill' broad due 10 the advantagc or academic institute:-.' I1clwork system, while in the l'cal world: 

thl' Ilct\\ork cOl1llectiull ma)' vary very much l'rom a tclcphone dialup ln a high speed TI cable. 

Ailhough thcrc is sornc limitatioll, this tcst c10es show us some information about the scalability 

or the Galax) Shel!. \\hich is the thresholcl of parallel remote procedure calls. As Galaxy system 

Illatures, more tests coulcl be executecl basecl on Illore "real" situations. 

69 



CHAPTER 6 

CONCLUSION 

Galax)' is il projecl Ihal illlplelllents a public computing utilily. Il is used to explore solutions for 

Illan)' problellls cOlllmonly existing in a peu system. such as scalability. t~1ult tolerance. security 

management anel resource Illanagelllent. Galaxy combines both P2P anel Grid cOll1puting ieleas. 

Galaxy neulralizcs the resource providers and simplifies the resource collccting, organizing and 

Icasing work. Galaxy ditTers itsclf l'rom other public computing utility by its core 

commod itizal ion concept. relaxcd partic ipal ion models and gcograph ica lIy scalable resource 

managcmenl archilcclure. 

Galax)' shell is at Ihe service layer ofGalaxy system. talks downwarel to the middleware level and 

prov ides upwarcls an interface for the appl ication level: Galaxy she Il is a module in Galaxy 

service layer provides providing searching. binding, allocating and consuming resources in the 

resource pool. Il cases the Galaxy research on sub layer organization. In a big picture. Galaxy 

shell is cOlllposcd b)' Ihree modules. which are shel!. local daemon and peer kemel. Shell IS 

responsiblc t()!" sending requests eilher locally or remotely in the resource pool, local daemon IS 

running on each node inside Galaxy and accepting and processing cOll1mands sent from shell, 

either locall)' or remotely: pccr kcmel is responsible for communicating with outside Galaxy 

nocles. reporling and collecting information to and froll1 GRMS. 

Galax)' shell uses JavaCC to parse inpul commands to provide a clean. maintainable anel 

extensible synta.' checking mechanism. XML-RPC protocol is used for remote communication 

aillong dislriblltecl Galax) nodes. Galax)' shell supports cOlllll1ands. which can be lIsed to sem·ch. 

bind resollrces accoreling to both static and e1)'namic constraints: multicast and broadcasting are 

also provickd te)r sllpporting Galaxy GRMS research. Galaxy shell is small, which means it is 

cas)' to be downloael l'rom Internet for a machine wanting to join Galaxy and get the Galaxy 

Dacmon. Installing anel using Galaxy shell is also straightforwarel as its commanels are e1esigned 

to be silllilar to the norillai Unix Shell wc lise everyelay. From the tests executed at the Planet Lab 

01" McGili UniversilY, it can be seen thal Galaxy shell pcrforms very weil for both internai and 

e.,temal cOll1mands: Ihc response times are quite t~lst and arc acceptable for human interactions. 

t'rolll a hllillan heing's view. Galaxy shell also demonstratcs very gooel scalability in accorelance 

70 



\\ith the current Galax) design goals. Thus it is suitable for supporting Galaxy research in the 

future as weil. Cîalax) shell is also cas) to be extendec!. the shel!. parser. local daemon and peer 

kemel modules provide a clear-cut organization \vhich Illakc it very easy to read. maintain. 

change and extl'nd. 

Galaxy research is still going on. the core module ofGalaxy. GRMS is still in conceptual design 

phase. current Gala:..;y shell is designed and impJcmented based on current knowledge of GRMS, 

thus the local daell10n and peer kl'mel modules are far li'om mature. However. Galaxy shell 

creaks a start for the future exknsion and revision. The basic frame\Vork is there and il is ready 

1'01' future Galaxv researchers to ntend and revise. 

Possible future research in Galaxy shell could be: 

• Explore the local daemon design and implelllentation. including authentication and 

sanclbox. which should be integratccl into the local daemon module ofGalaxy shell 

• further explore the relllo(e procedure cali process, make it more stable, reliable and 

efficient. local elaemon shoulel be able to guarantee a resource reservation, a process 

suspension anel reSllll1e control system is eleserved to be exploreel 

• Explore the pee 1 keme 1 operation mcchan iSIl1 as the G RM S research goes eleeper. 

71 



REFERENCES 

[1] Advanccd Nct\\orking Research Lab. GulU\T Dc\'elopcr,1 './ouJ'I7ol. 
\\W\\.cs.l11cgi II ,ca/-an rl/PROJ ECTS/deve Uourna \.htllli 

12] [3alasubramaneyall1 Maniymaran (2004). RAN Numing oml Di,l'cm'eIT, Department of 
Ekctrical ,1Ild COlllputer Engineering. McGi11 University. Montreal. Oc. Canada. 2004 

[31 Andrew W. Appel and Jens Palsberg. j\;/oc/el'/? Compiler Implemcnlalion in./Ul'Cl, Secund 
Edilio!7. Call1bridge University Press CO 2002 

[4] Ronald Mak. rrrilillg ('(JIll/Jilers und IlIlerf7rele!'s, Second Edition. Wiley Computer 
Publishing. 199ô 

]51 DY. Ghorllllcy, D. Petrou ancl S.H. Roclrigues, GLUnix: (/ Globul Loyer Unix/àr u Nell\'(wk 
ojlYurkl/uliol7.l, Software Practice and Experience, Vol 28(9), 1998:929-961, 
http://now.cs.berkeley.edu/Glunix/glulli:\.htlTll 

[6] C.M Tan, c.P. Tan and W.F. Wong, Shel/ over Cl Clus/er (SHOC): T01l'Unil' Achieving Single 
S1'IIel71 Image riu /he Shell, Department of Computer Science, National University ofSingapore 

P] A Ilamaraj u. Su brahmanyam et al, Prok,lsiol1ul ./uvu Server progroml71 ing: ./2 EE edil ion, 
W ro:\ Press, 2000 

l8] Project JXTA, \1'\I'\lj\/u,org. 

[9J Project Apache XML-RPC. hllp./\I'S,O!Hlclle,()rgl'ifnlrpc/ 

[101 Projeet JShel\. hl/v I/IOC. (,oll1/pcheon l/./Shc/ 1/ 

[Ill Project Java COlllpiler Compiler (JavaCC). hll!)S, del'juFu l'lei! 

]121 Wmx Press. :\!ukillg j)JP inlemjJeruhle: Thc Jr/u c'()l7Il1wnd shell, Sept 2001 

l13] S. Zhou. "LSF: Load Sharing in Large-scale Heterogeneous Distributed Systems." Proc. Of 
Workshop orCluster COl11pllting. Dec 1992 

l14] R. DornlCst. Leul'I1ing Ihe ,/)'7:4 Shcll. 
hl! p:l /\\ \\ W .upcnp2p.cull1/pllb/app2p/200 1 /04i25/lcarn illi:Uxta~ shd 1. hlrn 1 

[15] S. Oaks. R. Traversa!. L. Gong. JXTA in ({ NUlshelr O'Reilly Press. 0-596-00236-X. Sept. 
2002. 

]16] Pro.iect .IXIA Protocols Specitication, hl/V .IX/cl. /. (Jr Il Je' bUI Ik] \7:1 J '/'1 Iloe! Jispr Il 

[17] Bernard TraversaI. Ahkil Arora. Mohall1ed Abdclaziz, Mike Dliigoli. Carll-layvvood, .Iean
Christophe Ilugly. Eric Pouyolll, Bill Yeager. Pmjec/ JXTA 2.0 Super-j)eer Virll/ul Ne/11'ork, 

li RI V, Slinderall1. PV\!: A FI'ull/C\I'orkj(JI' Pont/lei Di,llrihllled COI71f7l1ling. Concurrency: pratice 
and Experience. 2(4 ):315-539. Dec 1990. 

72 



[19] M. RélkéL ('1nlNr ('()lllIJ/i/ing fVhi/e Poper. 
http://w\\\\.dcs.port.ac .u k/ 'vmab/t ICc/Wh ite Paper/ 

120] Andrew Birrell ancl Bruce Nelson. 1I71p/emen/ing rel71o/e procedure co/ls. ACM Trans. 
Computér Systt'Ilîs. 2( 1): 39-59. February 1984 

[21] Ma, M .. Wang, c.. ancl Lau. F. Forthcollling. JESSICA: Javo-enah/ecl sing/e-syslem-il71age 
colll17llling urc:hi/eclure. Journal of Parallel and Distributed COlllputing 

[22] S. Ratnasamy. r. Francis. M. Handley. R. Karp. and S. Shenker. A 5;culuh/e ('on/en/ 
.,lddre.lsuh/e ,Vel1\(wk. ACM SIGCOM. 2001. 

1231 F. Dabck. E. I3runskill, M.F. Kaashoek. D. Karger, R. Morris, 1. Stoica, and H. Balakrishnan, 
Building Peer-I(}-Peer S1'.I'le177S 1l'i/h ('hure!. LI Di,\//'ihlited LuukliP Service, 2001. 

[241 Thomas E. Anderson, David E. Cullcr, David A, Patterson, and the NOW Team. A Case/ôr 
NOW (Nelll'()rk.1 ofW()/'ks/u/iol1s). IEEE Micro, February 1995. 

r25] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Ejfèc:tive Di,\/ribll/ed Scheduling 
ojPuml/el f1'()rk/owls. In Proceedings of the 1996 ACM SIGMETRICS Contèrence, 1996. 

[26] A lan Ma i 1l\\é1ri ng and Dav id Culler. A ct ire Message Applieoriol1s Progrol71l71ing In/erjGiee 
une! COl71munica/ion SUh.l)'slel71 Orgon i::o 1 ion. Technical Report CSD-96-918, University of 
California al Berkeley. October 1996. 

[27J Y. Sunderam. PYM: A F/'Cl171e11'()rkfor Pareillel Dis/ributed COl11puting Coneli/'reney: 
Proc/ice ({11C1 Experience. 2(4):315-339, Decelllber 1990. 

r28J Songnian Zhou. LSF: load sharing in large-scale heterogeneolls distributed systems. In 
FmL'(:edings ol/he W()/'ks/wj7 on C '1l/s/e/' Comp7l/ing, December 1992. 

[29] M. F. Lt:sk and F. Schmidt rex - Il Lexicu/ /lnul.1'::;er Gel1em/()/,. 
hll V·hl'll·ll·.cs,ule,w.I'. eclli/liserslno1'1lk/lnJ)ouer. h/m 

[30] Ho\V lexcrs \\ork. hl/().//1I'1\'11'.C.\.I77L1l1.uc.l/k/~J)iik·s2 J 2 l/ho/node6. h/111/ 

[32] Java RViI & COR BA. a cOl11parison oft",o compcting technologies, 
1i:1J.Jl:Ji:l.I.:i./('( !//eehreu,k. cOin/uN icles l'il 1 i ("(!rh,; 

73 



APPENDIX A 

PARSER SEED FILE 

I··ollowing is the lïle Parser.jj which is the seed tile being L1sed to produce the lexical analyzer and 

parscr ofGalaxy Shell, this lile is located at Package gshellpw'.\·er. 

(JI)! j()IlS / 

LOOK./1HF.AD = J, 

CHOJCE AMBI(Ju/TY CHECK = 2, 
- ~ 

OTHER AlvfiJlGU/Tr CHECK = J: 
~ ~ 

S'lA nc = .let/se, 

DEjJ[i(J ~PA RSER = folse: 

Dt'fJUCJ JOOKAHD1D =folse: 

Dt'fJU(J~T()KE/'v' M.'IN4.GER =fétl.l'e, 

ERROR REl'ORTINCJ = Irlle, 

.JAVA~UNJc()DE~ESC 'APE =fulse, 

Ui'nC()DE Jl"/PUT =fèt/.I'e, 

IGNORE ~ CASE ~ fulse: 

USER~TOKEN)1ANA(JER =fàl.l'e: 

U,",'F.R('IL1R STRE-IM =fol.le, 

ma rD PA RSJ:R . 11'111.', 

iJUILl) T()f{F.N MANAGF.R = fl'lle. 
~ ~ 

S/INITY CI1ECK = lrue, 

l'A /?,,)F.R~ iJEG IN( /'urler) 

f7uduge gshell.j7ul'.I'er: 

73 



iIJl/)()J'ljU\'CI.lllil. :;,. 

illl/){J/'i gshel! *: 

puhlic cluss l'UI'S(,1' : 

/7lIhlic slu/ic miel ll1oin(S/l'ing u/'gs[]) /hI'01I',\ PUl'seE.Ycce/irm / 

1 
J 

l'u!'.Ie/' j7u!'.Iel' = I1Cll' l'w',\'el'(S\'.I'/cllI in): 

/Ju/'sel',I'I'()CC.I',\() : 

V4RSER END(l'ul'.I'c/') 

l'()icll)l'(}ces.l'() , 

Tokel1 1, 

tiJllml'il1g ul'e /CIl1P()I'C/IT l'urs, 

S/I'ing IJ/lil/ in C017llllune! = "", 

S/i'ing eX/l!rnOI_C(}II1I7/Unc! = '"': // including "1.1''', "cc/", ol1d (J/her e.\'cculahlefilc l10mes 

,')'/i'ing de,\lino/iol1 = "": // renome "c!() 171 0 in " 10 "de.l'/inatiol7"f()/' (J]'oidin,'!: noming conjlicl 

"". 

S/!'il7g lljH'_COl7s//'uin/ ~, "": 

S/i'ing c/l'l1ulIlicc()ns/I'Liim = "": //f()/' .l'/i'ing connec/ion 

S/!'ing o/he/'_pu/'w71e/e/' = "": ((}l' .l'll'i/w cOl1necf ion , ,..., 

S/!'ing !wc!1.' _l'Lil1gl.' _ cons//'uin/ ~ "". 

in/n(}c!c !7l1ll/he/' c()!1.1/ruin/ = 1: 

1 
1 

one (sj 

d()!71uin :> 

dl.',\/ i!7LiI i()!7 

1 
J 

/, imuge: // Ijmo/'c /hun one c/ol71uin o('cu/',\, 1171.' lust onc ol'er/'ide p/'el'ious 

74 



<: u// r( 'OIlS/ ni ill/> 

1 
1 

u/ll' CUllsll'uim ~- I.imuge: 

1 
1 

.• /ypd 'ul7.l/l'uin/ 

/ljH'_cons/l'uin/ = /.imuge: 

1 
1 

<: (oucle 'ons/I'uin/> 

(1Jï1U1lIi(' ('ons/I'uinl += r.i171uge: 

cll'l1umic ('unl/I'oinl += 

1 
1 

<prrn il77 i /.1'( 'onsll'uim > 

1 
1 

fi ". 

L1ll/Ul7lie ('ons/I'uinl +~. /.imuge: 

d1'l7uIl7ie eons/I'uin/ f-= 

1 
1 

<:.l'jJceclClJi7.\/ l'U in/ > 

1 
1 

" ff. 

c!)'I7UI7l ie (,ol7.l/l'uinl + = 1. imuge: 

111'lIumic cons/I'uinl + = ".": 

1 
1 

< C! ().l' ( 'ons/I'uill/> 

1 
1 

(/)ï1umie (,ol7.l/l'oinl += I.imuge: 

ch'l7ulllic ('ons/I'uinl += " fi. 

75 



l'C'sC'/'1'u/io!7( '()!7.\/l'ui!7/> 

e/l'l7umic cUl7s/I'Clinf += /.imuge: 

d1'l7CImic cOl7s/l'oinf += 

1 
1 

" ". 

/ C.,· e/csi/'edlhl'()lIghjJII/> 

d\'l1ullIic L(Ji7\/l'uin/ -t = f imugC' , 

(!1ï1(//71ic c()l7sf/'uil7/ += fi, fi: 

1 
1 

C()17/1/1I!17 Dush l'urumcfC'/' '> 

f 
1 

()/ hCI'_purull1C'fc/' + = 1. imuge: 

1 
/ 

ofhel'_JJul'umCfC/' + = " Tf. 

f = < cOll1llwl7lVcirclf'u/'ul11c!CI'>-

1 
1 

!J/hCI'.-lJu/'ul71c/cr +-= f.imuge: 

o/hcr pOl'ome/c/' + " ". 

/ = <'l7odeNlIllIhcl'('(}nsf/'ui!7f> 

1 
1 

l7udc !7l11ll hel' l'uns/ l'U im ~ ln/cgC/'. l'uIIlCOf(/. imuge. S Il hsf ring( -1)). inl Vulue(): 

1 
1 

/ ~ <. 1I'ile/cUl'eI> 

o/hcrporume/el' += I.imugc: 

76 



1 
J 

" Ir. 

! ~. <idIYi!hJ;JïldcLll'cI· 

u/hel' !JW'U/llc'/CI' T~ l.illlugC: 

" fI. 

! = <l1oc!eRul1gc( 'um/I'oin!>· 

( 
1 

noe/e l'Llngc ('uns/I'uin/ I~ = !.imuge: 

! = <id> 

1 
1 

S//'ings = 1. imuge: 

if( l(lmill incolJ7177ul7d =c= 'u, && e.Y!el'l1ol c0I77177ond == "")) (/1 ('oll7mand alre{/(~v nis!s 

o! ltu'_pul'u!I1c/cr +,~ s: 

u/hcr-.l)(/l'ul71e/e/' += "": /Isepeu/'u/e hF ll'hi!e ,lpocej(J/, ('onvinence 

/ clsc / 110 Ul71' coml71une/)'e/ 

if (s. Ci! lIol.llgl7o/'eCClsc ("/.1'/1 pe ")) 

huil!_in_(,ol71mond = "Is/J'pe": 

if (.1'. ec! llUl.\'~lZ:l1o/'e( 'use ("/.I'hind")) 

hl/ilt il7 C()1l7111Und = "/.I'hind": 

il (s. l'Cf lIulslgn()/'c( 'we("hind";) 

huilt in c()l71ll1ond = "hind", 

it (s. Ci! liUlslgl7o/'e( 'use( "I/I1hind")) 

lm il! il7 c()l77l77ond = "ul7hind": 

ij (s. Ci! liUl.I'lgno/'e( 'ose ("se /domu in")) 

huil! in C()l77l71une! = "sc/dol71uin": 

if (1 e Cf Il CI 1.1' Igno/'c( 'wc (':lZ:e / dom (/ i 11 ")) 

IJ/IlI/)11 cOl71lJ7ul7d = "gc/dol71uin": 

il (.1' Ci! uu!slgno/'e( 'use ("se/noe/e ")) 

77 



1 
J 

hl/il! in c()ml77une! =c "selnoe/e": 

it· (se(llIulslg17uJ'eCuse( "gelnoe!e")) 

h/lill il1 commune! = "gelnode": 

if (.1 ellllulslgl7oJ'eC 'use ("se!l\pc")) 

huill in cOI11i7ulI1d = "se/lvpe": 

if· (.1' eCf lIols1gl7oJ'eCuse ("gcll\pe ")) 

hllillinJol71l7wnd = "gellype": 

il (.1. l'III (ulslgm )rcCuse (''sel ull J''')) 

hl/ill in COllli77U17c1 = "sefal/J''': 

if (.1. ('IIIIUls Igl1l )reC 'use ("gcl ull J''')) 

hllilr i17 cOl71l77und =. "gelullr", 

if (.1. CiIIiU/.IJgl7oreCose("deji\pe ")) 

blli!1 in cOI77/1/une! = "dcjirpe": 

(l( h/lill )11 _COI77I17U11!! = c. "") 11170/ CI huil/-in cOl77mune! 

ex/cJ'l1u! CO!JII77C1l1d = .l': Il nOl!' i/ is UI1 exlerl1u/ cOl71l77l11Clnd 

)" ( <cudOjC()!JI ll/u17d> 1 < t'OF> ) 

1 
1 

ij(dlï7UllIic ClJI7s/ruint.!cng/h() > ()) / 

1 Il ï7U1I1 iL'_ClJI1,I'11'O inl cd\ 'I7UII7 ic'_c 0 11.1 {ru il7l..I' uhslring((), 

dmulllic (ol7l/ruii71lcllg/h() - 1): 

1 
1 

ij(o/hcr,)JUl'Ul77cler./englh() > 0) / 

1 
1 

olhcrpuJ'ull/e/eJ' C.' u/heJ',J)((n/l71e/cr.s/lhslri/1g(O. u/heJ'_poJ'ul71eleJ',lcnglhO - 1): 

J'C/IIJ'/1 !)w'se rl'sliif hr .l'cll ing .l'he!! !x/rullle/eJ's 

g.lhc/l.hliill)11 CIJ!JIlllUI1c1 = hllilt in coml77une!. 

g,lhell.ullr_C()I7Sfruil7l = UI/J'_COl7slJ'uinl: 

gshe/l.llj)e couslruinl = l\peJonslruinf: 

gshcll.d\'I1U/l/ic c017s/J'uinl =, d\'17Ul71ic_c()I1.1'lrui17l: 

78 



gshr.: I!. J1( J( Il' nu 177 hl'J'_ cons/l'CI in/ = l1odr.: _11/1177 hr.: l'_cons/l'cr in/: 

gshr.:1 1.l1oc/r.: _ru I1gl'CI ms/ru inl = l10cle _ronge_cons/l'cr in/: 

gshl' 1 !.l'xll'l'Ilul _ COI7l 177 une! _lis/. wlc/ (I:'.Yfl' mu 1_ com /l1unel): Il uh l '01 'suc/cl 

g,lhc!!. dl'II il1UI i Oil_ 1 i.l/. wh/( cll:'sl il1u/ io!?): 

gs/Il' I!. (J/ hl:' r !}( /l'UI/ll' / l'J'_l isl. ({(!c/( 0/ herJ)w'CI mr.: /e l'): 

/i Inicu!.IIJI:'cificu/i!!1I hcgin hl:'rl:' 

T()KEN' 

< '1' [" "-"-" "il "-"Z''j ([" "-"~" "A "-"Z" "()"_"(l"7)" > li. U _., " (/ ~,/l -", "J 

<. il/1/l1. (["O"-"!)"J)-I' > 

rul iclNuI/lOj,Yudl:'.I'· [" /"- "!) "! « 11/1171 > /) > 

. 1 . () '''".' ""II") " . . ~ rI:' u/{(}11 1): ( ('(': " 

!ogic( )/7: ("< "1":> "1"'< = "1"> = "1 ,,~, "1 "< > ") > 

, l'du/ iOI1/' uir' . -- id" < logicOp> « id>: <11/1/71 > « id»?) > 

({lInimle. <rc!uliol1l'uir> ( <rc!u/ioI10p> < rl:'!ul irmPoir> )" > 

<: do/.· 

idWi/hlt'i!dcunl: «c/UI71UiIlJcI'»+ :> 

< e!ol71uinJd: «.icl'> <\l'fldeurcl>) > 

79 



:: c/()/IlClin: «dO/llilill!c(>'" "<d()l71uin/cI>": "<domuin/cl> l''@ "<id» > 

C()I7//l/!!I7Du.\hfurU/71!!/l:'r. "-"<id> > 

. C(JIlII7/on IF!! ire! Pumm!!/!!r' ( "/"<ic!> i « ici> /) < \IRdcC/rcl> « ici» / 1 « id» / <dol> « id»:; ) > 

< ullrC'(}l1s/ruin/: ("--u"j(" ")*<o//rihll/!!> > 

ll'/N( 'uns/I'uin/: ("--/ ")(" If) *<id> > 

< louclCol1.l/roin/: ("--1")(" If) *("hI:'ClFY"1 "l71nlillm"l fIlm!''') > 

.: cl!!,\' iredTh rOllgh/)/f /. ("--cl/ ")(" If) *( "h!!u\T"1 "lIl!!clilll71"l "/ ()11''') > 

< (/osCu17s/rui17/: ("--1j"j(" If) "("D"I "c/"I "/3"1 "17"» 

re.\cITo/iol1('uns/rcri17/: ("--1''')('' '')*<volidNuI110/Nodes> > 

<: /)r(}.ùlll ilr( 'uns/l'crin/: ("--17") (" If) *t'/L{/'''I "mcdium"l "e/OS!!") > 

.l'fie cdC 'uns 1 l'il in/: (" --,\' If) (" ")" ('/às /"1 "111 ccli Ul7l "1 ".1'/ ()\!"') > 

· nIJcle Runge( 'unl/ruin/: < ici> "["< \'ulidNlIl71 ( )/Noe/cs>' "-"< WlliclNUI71 ( J/Nudcs>"}" > 

· l1odeNu/17haCuns//'!lin/: ("--11")(" '') *< \'ulidl\iul71 O/Nodcs > > 

· cm(()j('IJ/Il/l/ulld (",/,"i "',n"l "",/',/1") > 

,,,'K/I' .' 

/ " If 1 "'\/ fi / 

80 



APPENDIX B 

SOURCE CODE DESCRIPTION 

Follow i ng is a h igh-Icve 1 description 0 f the sourcc code of Galaxy she II. Galaxy shell 

il1lplcmcntation is composed by thrce components. \vhich are shel!. local daemon and peer kerne!. 

shown as Figure B,I, The gshcll package contains classes to compose the graphic shell interface. 

it also has a sub package namcd pC/I'SCI'. \\hich contains classes tokenizing and syntax checking 

input cOIlllllilnds Il'oIll the shcll interface, The !oCO!dOC171011 package contains classes provide 

(iala:\) services: a developer can add ne\\ services into this package by creating new classes, The 

j7cCl'kcl'17cl package contains classes for supporting kernel service of a Galaxy node. such as 

proilling net\Vork information, Figure B,2 shows the classes in the three sub packages, A detailed 

explanat ion 0 r the c lasses in these packages can be re ferenced in Chapter 4, 

~) <F'rüiect :=;outce~ 
c!:... ~1!=: ~'I e Il 
cs... localcJaerrlon 
I~~ peerkernel 

Figure RI Galaxy shell implcmcntation architecture 

F'al',:eEie eption,la"ia 
F' al:, el 1 a'o"'~ (:) 
F'al',: elC 0 n:,;\;~ nt,,: ,,1 a"ia 
F' a l':: e ITo ken 1','1 a 1'1 a ~I el 1 :~'",,~ 
::: !l'np 1 eC 1'1 a 1 :::tl e Mni a'o"" 
Token ,1a',,"a 
Tokenl',11 ~IIE Il 0 li a'",'a 

,~,i:lout..1 :::1'1 e Iii a'",'a 
C:on'::,ole i;~'i/a 

'::1] n :,:01 e li ne ,,1 a"ia 
E'",'e nt':'l.Itp umtle a 111.1 :~'o,'a 

E"ie 1'1 cl a ::"e C la :" :c: Lü a cl e 1,la"ia 
~I :,: 1'1 e III a","a 

~: ille~lal,~.r[IUlllentE,'e eptionia"ia 
1'-10 En!::: e c ullt,/II,II,~ 1'1 a ~I e Il a'i:~ 
C'utp ur'/',fate 1'1 e 1.1 a"ia 
F'I oc e',: ",\,"",,~tcll e 1.la\,':~ 
::: 1'1 e 1 l,A, Il:" "'. 1 a',',~ 

Hlle:"cle:I,:'Ollllllana la"ia 

locaielaeliion 
~.' cat.la'",'a 
~" Cp.I:I'ia 

clateia\,'a 1;) 

;(, echo.ia","a 
t., [llep.ia'o"a 

C;rep Input:3tr ea 111.i a ',/a 
Lü cal D:, e mon.) a"ia 

',' LOI:aIDaemülu:lefault:::ep/er.ia"/a 
;fi Lüc,IDaeliIOI'UIIIIIIIJa'",'a 

Lo cal [1 a e III 0 n_",..,ii Il':/.1 a"/a 

;{i melll.io'/a 
t, t'nf,dil.p"ia 
t." Ill'oria"ia 

ITnla"ia 
;f, tililelava 
t," v,/e i:""/a 

peerkernel 

tJincl.la\·'a 
deft'ipeja'',''a 
~I etattt i a',/a 

"i ~Ietelolrlainja\,'a 
;f,' getnocje.java 

".' ~lettiP ei '"'",'a 
~,' illega 1,i\J~IU me ntExc e ptl on,.ia"la 
ït~> Ist) incl.ja\,';:':l 
'l',' 1:3tipe .lava 

"',' !,: etattr. i a"la 
'l',:' :,:etcIOtilainia\"a 
'l',' !::etnDele.iava 
~,", :::ettipe.java 
:l'.' Unl)lnlj.ja\I',~ 

Figure B.2 Classes list in threc sub packages 

81 



A Java docull1ellt was created for users' cOllvelliellce, a sllapshot ofthis document is showil in 

F igurc 13.3, wilcre t he il icrarchy of a Il packages is shown (partially due to the screen 1 illl itation). 

Ali Classes 

rli""_k'll/.\r'lIHrl':--lltF '('"'fAI"n 

Ù l,:;,!} ~j!~~.,!..'.:CJ.l! !:~ t.:!tI~~~ .~:p1.IDn 
LII:,!lI[I,;'II;;rnor, 

Hierarchy For Ali Packages 

Package Hier dfctlÎes: 

Class Hierarchy 

C: (I~~':,':::, I,:l',,'] l.;,n~ll~lb.lect 

Co' cla';:.';. pee~~.ernel.hitl(1 
r: c la': c. 11=lc,Cjldaen",on Cdt 

Co' cl a::;.:::, ia"ia lanç1 1= la '::/:.LoaeJer 
~' 1.1 a'::. '::, ~l '::JIl? Il ExJ.l!tJijQlJ.!fl!:]~~s:.SltJ.{lJI.er_ 

r:;. cl.:l ::,":. I,:l",/a 03\;,,1 '= on"lponent 1:lrrlpiernent,::. I,j',/a ,Cl ',.'t IfliaQI? Irn,:lçll?'=Jb'::,l?f\/er, 1·;''<''''::' 

~ cl.j":;':' 1,;jV.j 8\1" .. t I~-ont::tmel 

G 1 la':::, 1·:i\i.;F :::'i·iIrlÇl ,K. ornpünent ':H-nph?f"nenh 1·;'\",;' 10 :=::eriallz.:ible) 
r;. r: 1.;, '::.:;, 1"'\1.3;' ':::'",.,,11(1 ~j te;j .JT e ~tl= CI r-npon ent (1 rn pie Ifl ent::, la'</·::J.' ae ( e':::'::.ltllllt'i ,1-\,( ce': :,lt)le, 

Co' (Ia:~,':. 1,:1"i,~~'.:::'il"'II'IQ .JTJ?,'tI!..rJ?a 
Co' cL:!,:,':: ~l':,hell ÇQqf'Qh~. (irnpler-nenh la""'·:J a'I,I'",i e'"Ie nt k,'e",,'ll':,tenen 

r:;' (1 ,:l':. ':: 1,:l\"a,,~\1, .. 1 V'"I'j ncJ O'if'i (Iril)) 1 er-ne nt':: 1,j',,o";:O' ace e '::,:::, Il:llllt'i p',( c e'::,':.ll:lle:1 

G (la '':' la'ria a't/'il [lIalo~l 

Co' cl a'::, ':: .. ia',,"a,'. ':::',,,.'/1 nçl .. J Cl lai og 1: 1 n-I pl e I-n ent:::: 1 a\l:~ 'I,ae ce'; '::Il:llllt\" ,.".,C( 8'3:::, Ibl e, 
)03"/03,' ':::,,"'iln~l F.'ootF'aneC ontalner, la\,'a:.:. sv,/inl,.l ''.l''I/lndo'\~,'I=· on'.::,t::lnt':.) 

c:- cla':,':, Çl'::j-Iell AhoutJSllelf 
r:;' (1 a'::, ':, la',/,~ ,l'i· .. tF r .:lrne I:i Illple ITI8nt'::, .I,:f'i.:l.a\""t 1",181'1 UI~Ü ntain el') 

r:; (la,:,'::: j,;1\,r',:n" '3',/r/lng..JFrarne (irrlplenrents 18'",'a)~.au e';'::,IIJllit,/ ,,u,,cce'::,':::It:de, 

Jav,:n~. '3"<,,',,1'1 n Çl F: oütF' ,:ln e 1=~ont.31 n et, 1,:1'I,I',::n" S l'I/lng 'l,i'I.llnd o",t\<'r=: CI 1"I-::.t.:::Jnt'::,:1 

Figu re 13.3 Snapshot of Java Document of Galaxy shell p"o,ject 

For the detail inf()lïnatioll for eaeh class or methods in these classes, please rcfer to Chapter 4 or 

go throllgh the documentation and click corresponding links. 

82 


