NOTE TO USERS

This reproduction is the best copy available.

®

UMI

GSHELL: A COMMAND INTERPRETER
FOR A PUBLIC COMPUTING UTILITY

by

Ying Deng

November 2004

School of Computer Science
McGill University

Montréal, Canada

A thesis submitted to McGill University
in partial fulfillment of the requirements of

the degree of Master of Science

© Ying Deng. 2004

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-12431-8
Our file Notre référence
ISBN: 0-494-12431-8
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Galaxy shell. a sub component of Galaxy project is designed and implemented. Galaxy
shell is a core component of the Galaxy services, which provides an interface for Galaxy
developers or other modules to access certain functions supported by Galaxy system.
Through Galaxy shell. developers can search, query. and bind resources according to
static or dynamic constraints. launch commands either locally or remotely. Galaxy shell
also supports some special functions. such as remote pipeline and multicast remote
execution. Galaxy shell not only provides a valuable tool for the research and
development of Galaxy project, but also can be integrated into the core management
module of Galaxy. Distributed Resource Allocation Manager to realize automatic
discovery. dissemination. and allocation Galaxy resources. The specification of Galaxy

shell 1s also provided.

Galaxy shell is implemented based on Project JShell, an emulation of a UNIX shell
written in Java. Galaxy shell extends JShell by adding new commands special for Galaxy
resource management and consumption. Project JavaCC, a parser generator and lexical
analyzer generator is used for writing the token manager and parser for Galaxy shell.

Apache XML-RPC is used to implement remote procedure calls.

RESUME

La coquille de Galaxy, un sous composant du projet Galaxy est congue et mise cn
application. La coquille de Galaxy est un composant de noyau des services Galaxy qui
fournit une interface pour des développeurs de Galaxy ou autres modules pour accéder a
certaines fonctions soutenues par le systeme Galaxy. Par la coquille de Galaxy, les
développeurs peuvent rechercher, questionner et lier des ressources en tenant compte des
contraintes statiques et dynamiques, lancer les commandes autant localement qu’a
distance. La coquille de Galaxy soutient également quelques fonctions spéciales telles
que les chemins d’accés a distance et I'exécution a distance de plusieurs tiches. La
coquille de Galaxy fournit non seulement un outil valable pour la recherche et le
développement du projet Galaxy, mais également peut étre intégrée dams le noyau du
module de gestion de Galaxy, du gestionnaire attribué d’allocation des ressources pour la
réalisation de découverte automatique, de la diffusion et de 1"allocation des ressources de

Galaxy. Les spécifications de la coquille de Galaxy sont également fournies.

La coquille de Galaxy est mise en application basée sur le projct JShell, une émulation
d’une coquille d’UNIX écrite en JAVA. La coquille prolonge JShell pour en ajoutant de
nouvelles commandes spéciales pour la gestion des ressources Galaxy et pour la
consommation. Projet JavaCC, générateur de symbolique et générateur d analyseur
lexicologique est employé pour écrire le gestionnaire de symbolique et analyseur pour la
coquille de Galaxy. XML-RPC Apache est emploé pour mettre en application des appels

a distance de procéde.

i

ACKNOWLEDGEMENTS

The author sincerely thanks Professor Muthucumaru Maheswaran for his expert guidance and
encouragement throughout the course of this research program. The author expresses his gratitude
to Balasubramaneya Maniymaran and Shah Asaduzzaman for their great assistance in the design

and implementation of the Galaxy Shell.

The research presented in this thesis was carried out in the Advanced Networking Research Lab
at McGill University. The author extends thanks to Paul Card for his assistance in the {aboratory.
Special thanks are also extended to Leying Zhu and Beidi Chen for their assistance during this
study. The assistance of the office staff in the Schoo! of Computer Science is gratefully

acknowledged.

Finally. the author would like to thank his wife for her understanding and support throughout his

stay at McGill University.

Ying Deng

June. 2004

1

TABLE OF CONTENTS

ABSTRACT L e i
RISSUME L.t ii
ACKNOWLEDGEMENTS ...t i
LIST OF FIGURES L. ..o ettt vi
LIST OF TABLES | ot e vii
CHAPTER ©1: INTRODUCGTION ...t 1
L1 GalAXY PIOJCCE 1ottt ittt ettt e et ettt ar e e ea e 1
1.2 Galaxy SNEll PrOJeCt.. v 2
1.2.1 Responsibilities of Galaxy shell ..o, 3
F2000 T S@ArCh F@SOUICES. ui ittt 3
1.2.1.2 BilNd T@SOUICES ... viiiiiiiie ittt e rvae e 4
1.2.1.3 Directed execution on a resoutrce collectionccccceevviiinniinnicnn. 4
1.3 Related ProJects ..o 4
IS T N, G 1Y N O NS UUR R U U UUUUTUUPRR TR 4
1302 GLUIIX 1ot e et e ettt e e e e ebaea s e 7
1.3.3 CODINE e 8
L 3 LS s 10
CHAPTER 2: GALAXY SHELL DESIGN ..o 12
2.1 Galaxy middIewWare JaYEr .ooovioiiiiiiii e 12
2.2 Galaxy shell Rationaleccooiiiiiiiiiii e 15
2.3 Galaxy shell commands ..o 17
2.4 Galaxy shell archifectUre ..o 18
201 SREIl e 19
2T PAISCE o 20
2.4.2 Local daemon . 21
203 Peer KeINEl oo 22
2.5 Galaxy shell WorkfToOW oo 22
2501 BOOTSITAD <ot 22
2.5.2 Remote procedure call ..o 23
2.5.3 Process CONIOL cooooiiiiiiiiiii e 24
CHAPTER 3: GALAXY SHELL SPECIFICATION ..., 26
3.1 Galaxy resource NAMING SYSIEM oot 26
3.1 Group based NamMINg oo 26
UL TUT USAGE oo, 26
3.1.2 Static type based namingccooooiiiiiiniiiio e, 28
3200 DEfinition (oo e, 28
2010 StAtIC EYPE toiiiie e 28
312012 Type direCtOry it 29
31202 USAEE oo, 29

3.1.3 Dynamic type based naming...........c.cooiiiiii 34

3.2 Galaxy shell commands ..o e 35
3201 BUilt=1n COMMANGAS oottt 35

3.2.2 EXIernal COMMANGS .ooivireiiiieiie it 38

3.2.2.1 External commands TSt oo 38

3.2.3 Bateh command ..ot 41

3.2.4 REMOLE PIPEIINE ottt et et 41

3.2.401 Sequential pipeline ... 41

3.2.4.2 Concurrent pIPeliNe. ..o 42

3.3 Syntax of Galaxy shell command...........o..ii 42
3307 RESCIVEA WOTAS. oo 42

3.3.2 BNF for Galaxy shell....oo e 43
CHAPTER 4: GALAXY SHELL IMPLEMENTATION ... 47
A1 SRR o et 47
AT PaISCE e et 50

4.2 Local dACMON oiiiii i 53
421 Supporting CoMMANS ..oovireiii ittt 55

B3 PeCI KEINE . it 56
4.3.1 Supporting COMMANS ..ottt 57

4.4 Remote procedure Calli i 58
4T XML-RPC SEIVEI ..ot 58

4.4.2 XML-RPC CHENE 1ottt 59

4.5 Galaxy shell @XIENSION ..o e 60
CHAPTER 5: GALAXY SHELL USAGE AND ANALYSIS. ..., 61
5.1 (mIA\\ SHETT USAZE .ottt 61
.11 Galaxy shell Installation ..o, 61

5 1.2 Running Gataxy shell ..., 62

313 Starting XML-RPC SErVer .o 62

5.2 Galaxy shell performance ..o, 63
CHAPTER 6: CONCLUSTONoooriiiiooeeoeceeeeee oo seees oo 68
REFERENCE S e, 70
APPENDIX A: PARSER SEED FILE e 73
APPENDIX B: SOURCE CODE DESCRIPTION ..., 81

Chapter 1

L O

T

I
I
I
I
1.

()

Chapter 2

ST NS R NS
)) —

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Chapter 5

U
It —

N i
o

N
[SR

Appendix B
B.1
B.2
B.3

LIST OF FIGURES

Galaxy architeCture [AYET ..ooiiii e 2
Galaxy daemon 0N @ reSOUITE ...t e 3
JXTA ArchileClUIe (oo s 5
GLUNIX @rehiteCtUTC Lottt 7
CODINE architeClUTE . ooioiieiiiie e e 9
Profile based NaAmMiNg ...
Resource joining Galaxy

Galaxy shell ArchiteCture ..o 19

UML diagram of Class Token
UML diagram of Class parser

File Structure of local daemon module ... 33
UML diagram ot Class LocalDagmomnc.cocoevovnoiniciiiciiiiiis e, 54
UMILL diagram ot Class /8 .oooociiiiiiiiiec e 56
File Structure of peer kernel module ..o 57
File Structure of Galaxy shell Project ..o 61
Response time of commands............ocoooiiiiiiiiiice e 64
Response time of broadcasting in PlanetLab network 65
Response time of broadcasting ..o, 66
Scalability test in @ LAN oo, 67
Scalability test in PlanetLab network ..., 69
Galaxy shell implementation architecture ..o 81
Classes listin three sub packages ..o, 81
Snapshot o' Java Document of Galaxy shell project.........o..o.ooooiiiinin, 82

vi

Chapter 1
[.1

Chapter 2

SO PO I)
D 1Y —

.
.

Chapter 3
.

(OS]

Chapter 5

o
O O

LIST OF TABLES

Galaxy shell process SCENAriOS ..oivoiiiiiiie e 10
Gataxy shell process SCENArTOS oottt 19
COMPATISON OF PATSCTS oottt ettt e e 20

Comparison of three distributed computing technologies

Dynamic based naming Optionscoccooiiviiioiiiiiiie e 34
Resource consumption of shells ..o 63
Response time of broadcasting ina LAN ..., 67
Response time of broadcasting in PlanetLab network ... 68

CHAPTER 1

INTRODUCTION
1.1 Galaxy project

Galaxy is a project that implements a public computing utility (PCU). A PCU is a generalized
resource provisioning system that is composed from geographically distributed resources. The
resources can be categorized into many types, such as CPU time, storage. network bandwidth,
and cte. All these available resources are located at distributed domains and the clients of these
resources are also distributed. There are many problems need to be resolved for the success of a
PCU system. such as scalable distributed resource management. resource naming, resource
discovery and dissemination. setting and disseminating administrative policies, handling faults,
job scheduling. security management, and service level agreement. The design of Galaxy
combines both peer-to-pecer (P2P) and Grid computing ideas: a P2P overlay substrate for
connecting the resources in a global network and a community-based decentralized resource
management system. The P2P substrate names and locates resources as standardized virtual
commodities. At the top of the P2P layer, PCU services are plugged into the P2P substrate and
create a community-oriented architecture for the PCU, where services are bound to the resources
in a dynamic and flexible manner. Galaxy provides a utility like interface to the virtual pool
similar to that provided by electricity and water departments. By this move, it helps to neutralize
the resource providers and simplifies activitics such as metering and billing. The benefits and
challenges ot a utility computing lie on efficiently realizing the commoditization process in
distributed computing systems. While Galaxy shares several ideas with other utility computing
systems. it differs most of them because it is designed and implemented with:

(1) Commoditization at the core and utilizes this notion to efficiently implement resource

naming and discovery
(i) Relaxed participation models to induct public resources into the system

(iil) Geographically scalable resource management architecture

1.2 Galaxy shell project

Figure 1.1 shows a layered architecture of Galaxy. It has three layers from top which are
application. middleware and resource pool. At the bottom is the resource pool composed by
joined resources. In the middle is Galaxy middieware which is the core of Galaxy project and will
be detailed shortly. At application layer. many applications can be built on for special tasks or
organizations. such as file exchange system. storage sharing system, computing power sharing
svstem. and etc. The middleware is composed by three levels, the bottom one is Resource
Addressable Network (RAN) which provides the resource naming, discovery, and access services
to the PCU. The next upper layer is Galaxy resource management system (GRMS), built on top of
RAN, GRMS provides scveral services such as resource allocation, incentive management, and
trust management to the PCU. The next upper fayer of Galaxy is the service layer which includes

many services such as application level QoS managers. network file system and Galaxy shell.

Resource Addressable Network (RAN)

Applications
6] .
5 Galaxy Services
=
Q@ >
_TS Resource Incentive/Trust g‘
= Management Management o
> 0
=
Y
T
@)

Resource Pool (RP)

Figure 1.1 Galaxy architecture layer
(Taken from ~Design of a Quality of Service Aware Public Computing Utility™,

Maheswaran et al., School ot Computer Science, McGill University)

Galaxy shell is responsible either for sending queries to GRMS for searching certain resources, or
sending request o some resources (nodes) in resource pool to remotely execute commands there
(consume the public resources). From this architecture, it is notable that the shell is playing a key
role in Galaxy: first, the shell can be used as a development tool for Galaxy developers to test and
debug Galaxy system. sclect the best address methods and searching algorithm to optimize the

resource management. Second. the shell can be integrated into the GRMS module, combined with

R

sceurity and service level agreement to build an automatic resource allocation and management

module for controlling the whole Galaxy system.

In order to communicate with the Galaxy system. each resource joined Galaxy resource pool will
be wrapped into a Galaxy Daemon (GD) (See Figure 1.2). GD is a distributed sub component of
the GRMS. Several GRMS functions are embedded in GD and some of these include generating
status updates. sending or authenticating access requests, issuing resource usage right tokens
(resource tickets). monitoring ongoing resource accesses for quality of service violations. and

reporting quality of service violations.

Resource
Resource
E:> Galaxy Daemon
Resource before Resource after
joining Galaxy joining Galaxy

Figure 1.2: Galaxy daemon on a resource

1.2.1 Responsibilities of Galaxy shell

The main task of Galaxy shell is to providing an easy to use interface for searching, binding.
allocating and consuming resources in the resource pool. It will ease the Galaxy research on
GRMS which is the heart of Galaxy, GRMS. From this task, Galaxy shell needs to support

following responsibilities.

1.2.1.1 Search resources

Scarching for certain resources in the resource pool based on certain constraints. These
constraints could be either static or dynamic. Static constraints include domain and type, domain
is a sct of computing resources aggregated according to certain rules and type is a special feature

created and used by Galaxy GRMS to filter heterogencous machines thus to improve efficiency

(WS

and performance in resource management. Dynamic constraint includes load, speed. lease time,
and network traffic ete. Galaxy resource naming system provides support for this function. The
searching result can be used for binding and executing directed execution commands at a later

time.
1.2.1.2 Bind resources

The scarching commands will return available resources according to the searching constraints.
Before using these resources. they need to be bound with the current node (the node where the
shell is running). The bind command binds current node with remote nodes through certain

protocol where all sides agree, after binding, the distributed nodes can talk to each other.
1.2.1.3 Directed execution on a resource collection

After binding. following commands can be directed and executed on a given machine or
machines remotely. After the command exccution finished. the execution result (if any) will be
sent back to the console of the shell that originally sent out the commands. The directed execution
command can include remote redirection function. which means that the outcome of an execution
will directed to the next machine, who is the consumer of the running result. After all the chain-

like execution finished, the result (success, failure, or some other data) will be sent back the shell.

1.3 Related projects

There are many related projects were researched, both in academic and industrial area. Following

is a review about these projects.
1.3.1 JXTA

Project JXTA is an open-source project originally concceived by Sun Microsystems, Inc. JXTA
technology is designed to facilitate developing P2P system. which enable interconnected peers to
casily locate and communicate with each other, and offer services to each other seamlessly across
different platforms and networks. Project IXTA provides a framework for developing distributed

computing applications and support the common functions required by any P2P system. With

JXTA. formerly daunting framework-building work is waived, thus, enterprises can focus on

creating innovative software applications, and not re-inventing the “wheel™. JXTA is divided into

three layers (see Figure 1.3), which are platform layer (JXTA Core). services layer and

applications layer.

JXTA
JXTA Community SUN. JXTA
Applications Applications Applications IXTA Shell

; Peer Commands

JXTA IXTA , -
Services Community SL‘JN *l'XTA

Services Services

Peer Groups Peer Pipes Peer Monitoring
JXTA Core
, Security
Any Peer on the Extended Web

Figure 1.3: JXTA architecture

The platform layer, also known as the JXTA core. provides minimal and essential primitives that
are common (o P2P networking. The services layer includes optional but common and desirable
network services for a P2P network including searching and indexing, directory, storage systems,
file sharing. distributed file systems. resource aggregation and renting, protocol translation,
authentication, and etc. The applications layer includes implementation of integrated applications
which can be seen in daily life. such as file sharing, P2 Email systems. distributed auction

systems. and etc.

JXTA Shell is an application build on JXTA platform; it provides interactive access to the IXTA
platform via a simple command line interface, just like a UNIX shell. The difference is that the
JXTA Shell is designed to be executed in a networked environment. What happens under the
cover is that a user command is likely to generate a sequence of message exchanges between a set
of peers. with some computation occurring on remote peer nodes, and with the answer being

returned to the user.

There are many similarities between JXTA Shell and Galaxy shell: they arc both targeting a
distributed system: both can launch searching and binding remote nodes, and execute commands

remotely. However, they do have many differences in their goal, infrastructure and functionality.

e (Goal

IXTA Shell is a project written by JXTA community basically to demo the functions and
values of JXTA platform. thus it is more in the application level instead of service level,
although the line between the two levels is a little bit blur for JXTA Shell. JXTA Shell
provides many basic “plumbing™ commands such as creating pipeline, publishing
advertiscment, and etc. Galaxy shell aims to assist Galaxy project research, especially of
RAN research. thus it doesn’t provide primitive demonstrative commands like JXTA Shell,

on the contrary, Galaxy shell masks these work and provides a more abstract interface for

Galaxy developers.

o Infrastructure

JXTA Shell is based on a primitive resource pool, which is composed by basic peer groups;
those groups are categorized randomly without any specific meaning, Galaxy shell is based
on Galaxy resource pool. which is well defined and organized according to Galaxy resource
naming system. This infrastructure assigns new tasks to Galaxy shell to investigate its
functionality and scalability. Galaxy shell provides many new methods, which are
specifically customized for this infrastructure, such as type searching. direct execution on a

resource collection, ete.

o Functionality

JXTA Shell is based on a primitive resource pool, which is composed by basic peer groups:
those groups are categorized randomly without any specific meaning. Galaxy shell is based
on Galaxy resource pool. which is well defined and organized according to Galaxy resource
naming system. This infrastructure assigns new tasks to Galaxy shell to investigate its
functionality and scalability. Galaxy shell provides many new methods, which are
specifically customized for this infrastructure. such as type searching. direct execution on a

resource collection. ete.

1.3.2 GLUnix

GLUnix was started in 1993 as the global operating system layer for the U.C. Berkeley NOW
(Network of Workstation) project, which was to construct a platform that can execute interactive
parallel and sequential jobs on a cluster with negligible slowdown. A NOW s capable of hiring
available cluster resources (CPU. disk. memory. network) to guarantee the performance of any
workstation in the cluster. GLUnix extends some existing UNIX abstractions and introduces new
abstractions. such as network programs (NPID), Paralle!l programs and virtual mode numbers
(SPMD. VNN). signal delivery, /O redirection (stdout, stderr), and paraliel program support

(barriers, coscheduling).

Shakespeare

£ || 2|2 B

hamlet macheth romeo othello

Figure 1.4: GLUnix architecture
(taken from “GLUnix: a Global Layer Unix for a Network of Workstations™,

D.P. Ghormley et al. 1998 {5])

The architecture of GLUnix system is shown in Figure 1.4, There are three components inside the
system. which are: per-cluster master, per-node dacmon and per-application library. Each cluster
has a master to coordinate jobs on distributed node, and each job can be chopped into several
smaller processes. then sent and executed parallel in different nodes, For example, Prog B started

at Node Macbeth. and executed at Node Othello.

The GLUnix Shell is the interface of the global operating system layer, users launch commands
from this shell and all these requests will be distributed and processed in the cluster, while still
keep the Single Interface Image (SII). users will still have the feeling that these commands are
executed locallyv and integrally. The most obvious similarity between GLUnix Shell and Galaxy

shell is that both Shells will execute command remotely, i.e., on a collect of resources. However,

the two shells have many different points:

e Goal

GLUnix was originally intended to support interactive sequential and parallel programs
through transparent remote execution and load balancing. Performance is the most concerned
issues for GLUnix. While Galaxy is a public resource utility, it involves more complex issues

such as addressing. security, service control, and scalability.

L4 Resource management

In order to achieve transparent remote exccution, GLUnix uses centralized structure to
manage resources, represented by a single master node to control a collection of client nodes.
this structure is relatively straightforward to design, build and debug. On the contrary, Galaxy
doesn’t have a centralized node for all resources in the resource pool because its Peer-to-Peer
character. all resources can join and leave the resource pool at their discretion, and all related

“handshaking™ procedures are distributed and autonomous.

s Resource distribution

GLUnix is targeting a relatively locally distributed and homogeneous machines, normally it is
running on a collection of machines inside a domain, such as U.C. Berkeley. GLUnix is
extremely suitable for system administrators to test systems in a cluster and for simulation
work which need many machines involved. While Galaxy is a public resource utility, it
involves outsourcing, addressing and allocating resources; generally these resources are

heterogencous and distributed remotely

1.3.3 CODINE

CODINI is a resource management system created at Florida State University aimed to optimize

the utilization of heterogencous software and hardware in a nctwork environment. Its easy-to-use

GUI cases the life of users and administrators. The architecture ot CODINE is shown in Figure
1.3, There arc four tvpes of daemons in CODINE that are master, scheduler, execution and
communication dacmons. CODINE uses a central control module to coordinate the whole system,
which are composed by master daemon, scheduler daemon and database, shown in the left hand
side in Figure 1.5, The master daemon is the heart of the central control module: periodically it
receives information about each node inside of CODINE cluster including workload, job
progress. and available resource by the execution daemon running on them. then the master stores
this information into the database. The Scheduler is responsible for matching job with available
resource. and then it sends the matching list to master, which further sends jobs to specific nodes
according to the matching list. At each node. there is one execution daemon. which is not only
responsible for exccuting the job assigned by the master, but also reporting its status at regular
interval. The communication daemon at each node is to communicate with the master daemon,
either synchronously or asynchronously to make the communication more efficient, fast and

reliable.

Communication Execution

Daemon Daemon
Database
Node
Scheduler Master
Daemon ﬁ Daemon
Communication Execution
Daemon Daemon

Node

Figure 1.5: CODINE architecture

Because the master daemon is critical, CODINE provides a shadow master functionally. Once the
CODINE master fail, a new master will be selected and put into the front line. CODINE provides
a Single System Image (SSI) for the whole cluster. the disks attached to cluster nodes appear as a
single large storage system and every node in CODINE has the same view of the data. Compare

to CODINE. Galaxy is more public which involves more heterogeneous machines all over certain

arca. thus a strict authentication protocol and security checking are needed. Galaxy also differs

from CODINE by its special type ring algorithm used in it Resource Addressable Network (RAN)

which is expecting to improve the elficiency of resource management.

1.3.4 LSF

Platform 1.SF is the flagship product of LSF Platform Computing based in Canada and it is a
lcading commercial solution for production-quality workload management. LSF enables good
resource usage across corporate LANs. Based on the production-proven. open, grid-enabling,
Virtual Exceution Machine (VEM)™ architecture, Platform LSF manages and accelerates batch
workload processing for compute-and data-intensive applications. LSF adopts high performing
and open scalable architecture and its web-based. SOAP/XML interface facilitates the
customization and integration of applications. As an industrial product, LSF uses many
technology including fairshare, preemption. advance reservation, and resource reservation to
create an intelligent scheduling policies. These policies ensure the right resources are
automatically allocated to the right users for maximum efficiency. LSF is a self-healing and self-
adaptive system which can reduces administration and management requirements and associated
costs. LSF also has strong security protection as a mature industrial product. LSF has been
implemented on various UNIX and Windows/NT platforms. LSF provides almost the same
functionality as CODINE such as load balancing and fault tolerance, and it also provides similar

SSI service like CODINE. with an industrial standard. Table 1.1 compares above four related

projects with Galaxy by their available services, features, and fault tolerance.

Table 1.1: Five resource management projects comparison

Support Features Galaxy GLUnix CODINE LSF
Single entry point No Yes No No
Single file hierarchy No Yes Yes Yes
Batch support Yes Yes Yes Yes
Interactive support Yes Yes Yes Yes
Parallel support Yes Yes Yes Yes
Load balancing Yes Yes Yes Yes
Fault tolerance Yes Yes Yes Yes

In Table 1.1, the single entry point means a user can connect to the cluster as a virtual host. The
system transparently distributes the user’s connection requests to different physical hosts to
balance the load. Galaxy shell doesn’t support this because every user in Galaxy has to be a
Galaxy node already. and each user has a unique domain address when it joined Galaxy. The
single file hicrarchy means on entering into the system, the user sees a single, huge files system
image as a single hierarchy of files and directories under the same root directory that
transparcntly integrates local and global disks and other file devices. Galaxy doesn’t support this
feature but use domain addressing to organize the file structure inside Galaxy. thus every user
will only be able to see local resources in default. but a user is able to explore or utilize resources
on a remote machine in Galaxy if he passed the authentication checking. Like normal Unix shells.
Galaxy shell supports both batch and intcractive commands to make the life of shell users casier.
The batch command can be put in a file and loaded into Galaxy shell when required. Parallel
support is a very important function provided by Galaxy shell, through it, a user could broadcast
information to multiple nodes inside Galaxy: this is very useful to update the profile of'a node or
Galaxy type rings. Since load distribution is very critical for the performance of a cluster system,
load balancing is also an important function of Galaxy. Load balance is not only an issue at the
beginning moment but also at the duration of a job. When a job request was received, Galaxy
profiles each node and assigns the most appropriate node to execute the job: and during the
execution, Galaxy also watches the load status on the machine, should the load is too high, then
Galaxy trics to balance the load to other nodes. The RAN and GRMS provide strong fault
tolerance for Galaxy. there is no obvious weak points in the chain which could jeopardize the
whole system. and should any node fails. there is always one node takes its place. so the whole

Galaxy system is a sclf-healing system.

CHAPTER 2

GALAXY SHELL DESIGN

Galaxy shell talks downward to the middleware level and provides an upwards interface for the
application level. Thus the middleware greatly affects the design of Galaxy shell. The following

section will provide a general picture of the middleware layer, and then the design of Galaxy shell

will be detailed.
2.1 Galaxy middleware layer

Galaxy is a PCU system, which opens the membership to public resources, by doing this many
benefits are achieved such as lowering the cost of participation, preventing monopoly and creating
a geographically distributed resource base that is capable of satisfying location specific resource
requirements. However, a PCU needs to solve some problems before it can be declared a success.
these problems including scalability, trust, security. and incentive control. in addition, PCU also
needs to address the frequent arrival and departure of independent resources. Galaxy middleware
layer is created for handling these problems. As shown in Figure 1.2, from the Galaxy

architecture. we can see that Galaxy middleware layer has three substrates, RAN, GRMS, and

Service layer.

Galaxy uses RAN 1o provide naming and directory service. RAN naming can be divided to two
kinds of naming: profile (or type) based naming and positional naming. Profile based naming is
based on profiling incoming resource and categorize it to a predefined type. The rational behind
this is that there are almost infinite software and hardware combinations for a resource, and if we
don’t categorized these into a few types, the message overhead created by discovery and
dissemination might be too big. we just cannot afford to such a descriptive based naming.
Predefined types cut down the size of the RAN messages. eliminate the necessity for complex
resource matching algorithms, and decouple the naming from discovery to increase the scalability,
thus efficiency is improved, and users can also define their type as the nced be. Figure 2.1 shows

the mapping from description based naming to profile based naming.

dezzrér;tcijon- profile-based

Proc: Pentium IV (Proc Pentium
Clock: 3GHz Clock: > 2GHz
RAM: 512MB Disk: >60GB

Disk: 100GB |

J:’roc: Pentium Il J
Clock: 1GHz

RAM: 256MB i

Disk: 40GB

| Proc: Pentium
Clock: < 2GHz

Type B

Proc: Pentium IV
Clock: 2GHz
RAM: 512MB
Disk: 60GB

Type A

Figure 2.1: Profile based naming
(Taken from “Design of a Quality of Service Aware Public Computing Utility™,

Maheswaran et al., School of Computer Science, McGill University)

When a resource joins the RAN. it is analyzed to obtain a description of the resource
characteristics as a set of attribute-value tuples. This set is then profiled into a resource type.
Resources of the same tyvpe are collected together in type rings. In the RAN domain, multiple type
rings each comprises the resources of a unique type/profile. There are arbitrary links between the
rings to avoid cliques of resources being isolated. Positonal names are given to each resource in a
ring. A resource in a ring has at least two pointers (route entries) to form the ring (to left and right
resotrees in the ring): Also it can have multiple nonfixed number of pointers to other resources

that help route to a destination with a O(log n) number of routing hops and self-healing process.

There are arbitrary links between the rings to avoid cliques of resources being isolated. Within the
rings the resources are placed according to their positional names. A resource in a ring has several
pointers point to other resources to form a fabric for better communication inside a ring. The

RAN rings provide an ctficient proximity-aware discovery mechanism.

Positional naming is the other naming method in RAN, this naming is actually based on dynamic
information of the current node in the Galaxy system. such as proximity, traffic, and etc. The

positional naming enables the RAN to handle QoS as the integral part of the discovery

J—
(U8

mechanism. The rational behind the positional naming is that in a dynamic P2P network, it makes
no sense to neglect the current network profile, while try to provide an efficient and fair resource
distribution. RAN initially adopts the concept of positional naming, and this affects both when the
incoming resource joins Galaxy and when a client sends a request using positional naming. Figure

2.2 shows the procedures of a resource joining Galaxy resource pool.

4
GSP 1 Registration
1 I:] Code Transfer
2 3 RAN Node Join Request

Destination Discovery

g W N

Join Reply

.

New Node
Figure 2.2: Resource joining Galaxy

(Taken from "RAN Naming and Discovery”, Balasubramaneyam Maniymaran, 2004 [2])

. When a resource wants to join the Galaxy, it first contacts the Galaxy service provider

(GSP).

2. The latter sends profiling and galaxy bootstrapping modules (Galaxy daemon) to the
resource. the proliling code probes the resource for a specific set of resource attributes
and categorized the resources into one of the RAN-recognized types based on profiling
result. Once profiled. a resource is identified by the profile name (and its positional
name).

5. The resource sends the join request to any node inside the Galaxy resource pool.

4. The “entry™ node checks the profile of the incoming node, and calculates the place where

the resource should be. and put the new resource into the Galaxy.

The searching and binding are also using the same two kinds of naming service, by using type
bascd naming and positional based naming. the overhead of searching a certain resource inside a
huge resource pool will be greatly reduced. Galaxy shell, which will be detailed in following

sections is heavily involved with these two kinds of naming services.

Another main module in the Galaxy middleware layer is Galaxy Resource Management System

(GRMS). It includes many sub modules including resource addressing module, authentication

14

module. and central control module. GRMS uses a “community-oriented™ architecture to manage
the resources. which is completely different from traditional resource management architectures
such as centralized, hierarchical, or distributed. where a resource is associated with a manager in a
static manner. In this community-based architecture, a resource can contact any well standing
member of the manager community and receive the management service. The community of
resource managers is organized in a P2P overlay and can be located and accessed eftficiently by all
resoUrce peers.

Galaxy service laver is the highest tayer of the Galaxy middleware: these services provide generic
capabilities for resource peers to perform activities such as launching resource acquisition
commands. managing and monitoring acquired resources, and releasing resources. Currently
several services are designed including Galaxy shell, Galaxy Network File System, and
Application level QoS management. Galaxy shell is a command-line interface to Galaxy, users
can user it to interact with Galaxy system or resources that are allocated by the Galaxy to the

resource peers. The design ol Galaxy shell will be detailed in the tollowing sections.
2.2 Galaxy shell Rationale

As Galaxy rescarch goes further and deeper. there is a need for a research tool which is able to
support Galaxy research. Galaxy shell is designed and implemented for this purpose, Galaxy shell
is different from a traditional shell in Unix or Linux workstation. A normal shell we often used in
Unix or Linux cnvironment is a command interpreter for the operating system of a standalone
workstation. Most commands in a Unix shell are localized commands, which provide an interface
for users to communicate with the core of the operating system. Most functionality provided by a
Unix shell such as search, pipeline, and redirection are based on the same machine. On the
contrary. Galaxy shell is designed for supporting a Public Computing Utility, which provide
computer services 1o allow firms to focus less on administering and supporting their information
technology and more on running their business. However, delivering computing service is not that
simiple like delivering electricity over copper wires. there must exist a mechanism to create
context before a success computing utility delivery can be fulfilled. Electricity became a
commodity when consumers decided it was no longer in their interest to be power generation
experts. and a sate. cheap. reliable and measurable delivery way was there. A Public Computing
Utility will success only when those companies that embrace it carly will indeed acquire a
strategic advantage over those that continue to insist they can do it better themselves. Thus in

addition to the normal functionalities often found in a Unix shell. Galaxy shell needs to support

many functionalitics specially required by a PCU to create this context. These functionalities

include:

L4 Resources control

Search, query, bind (reservation), and authenticate resources in the Galaxy resource pool

e Resource consumption

Fixecute a task at specified resources (consume the resources), this consummation could

be pipelined or multicast. which can help in scalability and processes migration research.

o GRMS optimization

Investigate the viability of RAN design. routing algorithm. and authentication options.

In order to support these special functions, Galaxy shell was naturally designed to contain three
modules, which are shell, Tocal daemon, and peer kernel. The reason to have the three modules
came from the requirements of a Galaxy node, it needs communicating with other nodes to search
certain node or nodes, join or leave certain type rings, collect and update network profile, all these
communication needs are handled by peel kernel. Every Galaxy node provides certain computing
services Lo registered clients, these services can be added or removed as time goes by, there is a
need for creating a dedicated module to contain these service, in Galaxy shell, this module is local
daemon. Like all other shells in Unix we are already familiar with. Galaxy shell needs provide an
interface tor users to communicate with the internal services. thus a shell sub component is also

created. Following gives a detailed description of the three modules.

The shell module is the interface of the Galaxy shell Tike normal shells in Unix machines, users
use this shell to input command and get respond. the shell also has its parser for analyzing the
mput commands. The local daemon is the core service provider of a Galaxy node, all service
invoked by external commands will be implemented in this module, as the research of Galaxy
continues, new services will be added into this module. The peel kernel module is responsible for
supporting the unique needs of Galaxy. such as guery the network information, scarch a certain
node or a type of nodes based on either static or dynamic constraints, bind or unbind to certain
node or certain Kind of nodes. and get or set the default domain. type, attributes. and node for
reducing user’s input work if similar operations are repeating over and over again. Galaxy shell

implemented many common functions provided by a Unix shell. the remote procedure call and

16

pipeline among remote nodes are also implemented. in addition to that, Galaxy shell also reserves
many keywords and switch symbols for the special needs in Galaxy research in the future, such as
query based on dynamic constraints. However, due to the current progress of GRMS. these
functions haven’t been implemented yet. but their commands were reserved and it is easy to be

hooked up once real implementation of those functions are ready.

There are two options for creating such a developing tool, either a GUI application or a
command-line shell. Both have pros and cons. Although command-line shell is difficult to use and
lcarn. it is very flexible and powerful once users have conquered it. Thus a command-line shell
project was created. Another import reason for this decision is that implementing a command-line

shell is casier to develop than a GUI application.

There were some considerations about where the shell should physically locate. There are three
options: outside Galaxy. at GRMS, or at every Galaxy resources. The last one was chosen because
first we need to optimize public resources management, such as proximity between resources
inside Galaxy resource pool, another reason is that in a P2P system. a resource contributor can

and should be an eligible consumer.
2.3 Galaxy shell commands

The issues discussed in Section 2.2 motivated the design of Galaxy shell command. From an
analysis of those issues. it can be noted that generally there are two types of tasks, one is
involving resource management. including searching. binding and querying resources according
certain criteria. or configuring the Galaxy system. we name these commands as “built-in
commands™ because they are an important part ot Galaxy shell which are used to investig{ate
GRMS design and these commands are embedded in the peer kernel module of Galaxy shell;
There is another kind of commands which are implemented by executable files on target
resources, they can be executed either locally or remotely, also they can be pipelined and/or
multicast. We name thesc type of commands as “external commands™ since they are external to

Galaxy shell, which can be any exccutable files and these commands is extendable independent of

the Galaxy shell.

Built-in commands don’t consume resources but create the condition for external commands to do

that. The profile based naming (static type based naming) and position based naming (dynamic

tvpe based naming) is often plugged into built-in commands for advanced searching and
reservation. External commands could execute some executable files on a remote node, or execute
some methods supported by the local daemon of a remote node. Here comes a security issue: what
are the privileges of external commands? Galaxy GRMS has a module which is responsible for
authentication, by using it, a flexible scheme could be realized: different access privileges are
given to clients according to their identification. GRMS is responsibie for creating this protection

mechanism.

When considering the syntax of Galaxy shell. the switch symbol for built-in commands was
decided to be double dash. The reason behind this is many single dashes have been widely used in
Unix shell. and since Galaxy shell will provide many commands similar to those commonly seen

in Unix. it would be better to avoid such conflict from the very beginning, and double dashes is

also easy to parse.

Galaxy shell commands involved much design concepts in Galaxy middleware, and both built-in
commands and external commands are extendable as Galaxy research continues. The commands

of Galaxy shell are detailed in Chapter 3 ~Galaxy Specification™.
2.4 Galaxy shell architecture

To implement the mechanisms discussed in Section 2.2, Galaxy shell needs to talk to RAN for
searching and binding. and nceds to send request to either locally or remotely. When a resource
joins Galaxy. it downloads and installs Galaxy daemon from Galaxy Service Provider. Galaxy
dacmon includes three parts: sheld (pure IO interface), local daemon (for inbound request), and
peer kernel (for searching. binding, querving. and etc). A modular design is shown in Figure 2.4.
This modular design assigns a clear-cut responsibility to each component. thus it is easier to

develop, debug. and maintain.

From Figure 2.4, when a user enter a command from the shell. it will first be sent to the parser
inside the shelll if there is some syntax error. an exception wilt be thrown to ask the user to revise
input. [t no crror detected, the command will be processed. If the redirection parameter of the
command is not the local machine and it is a built-in command. then the command will be sent to
the peer kernel to scarch or bind remote resources. If the redirection parameter of the command is

not the local machine and it is an external command, then the shell will launch a remote method

invocation by a way supported by Galaxy system, which is XML-RPC. Before this remote
method invocation could fire, the shell needs to get the network information of Galaxy resources
(where the resource is. what the profile it is. and etc), and make reservations, all these preparation
works will be done by using built-in commands. If the redirection parameter of the command is
the focal machine or missing. then the local daemon at the local machine will be responsible for

processing it. Table 2.1 lists all scenarios of this process.

Node A Node B
Shell <« -2 Shell
AN /'/
-
7
I AN
i AN
Peer Local 4 L Local Peer
Kernel Daemon Daemon Kernel
| RAN |

Figure 2.3: Galaxy shell Architecture

Table 2.1: Galaxy shell process scenarios

Command Redirection parameter Process module
o local peer kernel of local machine
built-in command
remote peer kernel of remote machine
local local daemon of local machine
external command
remote local dacmon of remote machine

2.4.1 Shell

Hlere the shell is a narrow definition that means the pure input/output framework inside Galaxy
shell (see Figure 2.4). The shell operates in a simple loop: it accepts a command, interprets the

command. dispatches the command to corresponding modules to execute, and then waits for

19

another command. The shell displays a *>" prompt. to notify users that it is ready to accept a new
command. Most shell commands are not built into the shell. but are dynamically loaded and
started by the shell framework when they are invoked. Separating the shell framework from the
commands enables developers to dynamically add new commands to the shell. The parser is a sub
module inside the shell. When the user types a command at the prompt. the parser reads the
command line and breaks the line into tokens, for lexical analysis. If everything is fine,

corresponding modules will be called to tulfill the command.
2.4.1.1 Parser

There are many parser generators available for implementing the parser. the most common ones
are Lex. Flex, Yace and Bison. Lex is the lexical analyzer supplied for many years with most
versions of Unix. Flex is a frecly distributable relative associated with the GNU project. Yacc is a
parser generator developed at Bell labs. Bison is a freely distributable implementation associated
with the GNU project. JavaCC, an open source project, which stands for Java Compiler Compiler
is used to generate the token manager and parser for Galaxy shell. Table 2.2 compares these

parser generators.

Table 2.2: Comparison of parser generators 293031

Language of Grammar
Parser generator Work style Specialties
parser generated accepted
¢ Common token actions
JavaCC Java top-down EBNF e Special token rules

e More rules

look ahead in the input
top-down
Lex/FFlex C EBNF stream past the end of the
bottom-up
matched token

Yace/Bison C bottom-up BNF LALR grammar

JavaCC and Lex/FFlex are actually quite similar. Both work essentially the same way, turning a set
of regular expressions into a big finite state automaton and use the same rules. The big difference

is the Lex and Flex produce C. whereas JavaCC produces Java. In addition, JavaCC have some

20

nice features that L.ex and Flex lack. such as common token actions, MORE rules, and SPECIAL

TOKEN rules which simplify the parser generation.

There is a bigeer dilference between Yace and JavaCC in that Yacc works bottom-up while
JavaCC only works top-down ;. This means that Yacc and Bison make choices after consuming
all the tokens associated with the choice, whereas JavaCC has to make its choices prior to
consuming any of the tokens associated with the choice. However, JavaCC’s lookahead
capabilities allow it to peek well ahead in the token stream without consuming any tokens; the
lookahead capabilities reduce most of the disadvantages of the top-down approach. In addition,
Yacce and Bison reads BNF grammars while JavaCC accepts EBNF grammars. In a BNF
erammar, cach nonterminal is described as choice of zero or more sequences of zero or more
terminals and nonterminals. EBNF extends BNI with looping. optional parts. and allows choices
anywhere. not just at the top level. For this reason Yacc/Bison grammars tend to have more
nonterminals than JavaCC grammars and to be harder to write. Generally speaking, it is often
ecasicr to write semantic actions for JavaCC grammars than for Yacc grammars, because there is
less need to communicate values from one rule to another. Yacc has no equivalent of JavaCC’s

parameterized nonterminals.

Since Galaxy is implemented in Java, JavaCC is suitable {or this project. JavaCC is not intuitive
to grasp but proved to be a powerful tool once it has been conquered. The workflow of JavaCC is
like this: the programmer supplics a collection of “Extended BNF production rules™; JavaCC uses
these productions to generate the parser as a Java class. These production rules can be annotated

with snippets of Java code, which is how the programmer tells the parser what to produce.

2.4.2 Local daemon

The role of local daemon is someone like a “receptor”™ and “waiter™ in a hotel. It checks the
reservation of a request. authenticate the request. if passed, then it provides the service for the
request. By creating local daemon module, the work for developing, debugging and maintaining
arc greatly cased. Local daemon also has an important tunction to mask the difference of
heterogeneous resources. Since there are so many ditferent hardware and platforms out there, it

will be very difficult to implement a shell to talk to these systems without a module to provide a

[N

kind of abstraction at the remote side. Local daemon provides a unique interface and an

abstraction for shell.

Local daemon has a sandbox to protect illegal access, and provides VM control for a resource.
When a request arrives, local daemon will first check its identification, and reservation ticket. If
evervthing is fine. then it will create a thread or process to take care of the request according to
the agreement specified in the reservation ticket. There is a main thread always running to
supervise the request process behavior. it has the power to suspend or even Kill a child process
should some abnormal things happen. The main thread later can resume the child process should

the situation back to normal.

2.4.3 Peer kernel

Peer kernel provides the updated Galaxy information. Its main responsibilities includes
periodically send out heartbeat to Galaxy GRMS to report the node’s profile. The interval of this
network updating work should be carefully considered: too frequently is expensive and
unnecessary, on the contrary. if too sparse, the information of this resource on the RAN could be
stale. Another major function provided by peer kernel is providing an APl for GRMS, which
could be used by the shell. Normally this API includes searching, binding, querying, and
reserving resources inside Galaxy resource pool. The shell doesn’t need to understand how the
GRMS works as long as it knows the API. This modular design separates the task between front-

end and back-end programming, and provides the convenience for Galaxy development.

2.5 Galaxy shell workflow
Some issues need to be addressed when designing the Galaxy shell, such as shell session control

and communication between remote nodes. Following sections will talk about some of these

ISSUes.

2.5.1 Bootstrap

]
NS

When the shell starts. some information will be loaded into the shell, including some
configuration information and network information. There are several locations to put this
information: memory. disk. and both according to the properties of this information. It scems that
the third way is attractive because some information such as shell configuration or preference set
by a user should not be deleted once a session finished, so put them into the disk and foad them
into the shell at next session will make the shell more friendly and convenient. On the other hand,
some information are dynamically changed, because Galaxy system is not static, so in order to let
the shell use most up-to-date information, some information must be stored in the memory for fast
accessing and updating. This dynamic information will not be preserved once user terminates a

session (close the shetl).

2.5.2 Remote procedure call

Since Galaxy is a distributed system, the communication method of distributed machines is an
important factor which could greatly affect Galaxy design and performance. Currently, there are
several common distributed communication technologies are using: (Java) RMI, Corba, XML-

RPC. and Servlet. Table 2.3 compares these technologies.

RMI is a Java-centric distributed object system. It inherits all of the benefits of Java. An RMI
system is immediately cross-platform: any subsystem of the distributed system can be relocated to
any host that has a Java virtual machine handy. However, the only way currently to integrate code
written in other languages into a RMI system is to use the Java native-code interface to link a
remote object implementation in Java to C or C++ code. This is a possibility, but painful. The
native-code mterface in Java is complicated. and can quickly lead to fragile or difficult-to-
maintain code. The speed is also a bottleneck for RMI since an additional interpretation layer is
added to the processing of instructions. The Java just-in-time compilers (JIT) are capable of
generating native instructions from Java bytecode, but there is still an additional piece of

overhead in running each piece of Java code.

CORBA is a popular protocol for writing distributed. object-oriented applications. It's typically
used in multi-tier enterprise applications for integrating legacy systems. CORBA is well
supported by many vendors and several free software projects. CORBA is designed to be

language-independent. Object interfaces are specitied in a language that is independent of the

o
%)

actual implementation language. This interface description can then be compiled into whatever
implementation language suits the job and the environment. CORBA is a more mature standard
than RMI. including comprehensive high-level interfaces for naming, security, and transaction
services. Unfortunately. CORBA is very complex. It has a steep learning curve, requires
significant cffort to implement, and requires fairly sophisticated clients. It's better suited to
enterprise and desktop applications than it is to distributed web applications. Another concern
about CORBA is that the adoption of CORBA is shrinking in industry ;:,, CORBA itself may
become a legacy technology.

Table 2.3: Comparison of three distributed computing technologies

Distributed
Language | Platform .
computing Complexity Speed Overhead
dependent | dependent
technology
RMI yes no low Slow low
CORBA no yes high Fast low
XMI.-RPC no no fow fast high

XML-RPC is a lightweight way to make procedure calls over the Internet. It converts the
procedure call into XML document. sends it to a remote server using HTTP, and gets back the
response as XML, CORBA forces you to explicitly define interfaces for types, while XML-RPC
doesn’t have this requirement. XML-RPC just uses URLs for to reference objects, this shows its
flexibility or simplicity. XML-RPC is language and platform independent, which make it quite
suitable for Galaxy system. with so many heterogeneous systems collected. However, the XML
data format adds overhead compared to CORBA's binary format. In Galaxy, it is highly probable
that a resource will provide a legacy services implemented in a language other than Java. and
there is the possibility that certain sub modules of local daemons will need to be implemented in

different languages. thus XML-RPC is the best candidate for distributed computing in Galaxy.

2.5.3 Process control

There are some considerations about dealing with the dynamically changing Galaxy resource
pool. What would happen if the situation changed before or during a remote procedure call which
means the remote process couldn’t be completed? A cheap way is just neglect and give up; but
this way contradicts with the Galaxy system goal. which is to provide an accessible, stable, and
reliable public resource utility. Galaxy uses this way to address this problem: before a client uses
a remote resource. it must make a reservation first, the reservation will specify when, where, who.
and how the resource will be used. Once a reservation has been made, the resource will try its best
o honor this agreement. By this “reserve-first™ strategy, we can avoid chaos from the beginning.
However, this method is not tlawless, first it is complex and expensive, it needs the complex
GRMS system to support this function: second, even with reservation, there is no absolute
guarantee the resource will honor that promise because the resource couid be dead due to a power
blackout. Although this scenario should be rare. GRMS needs to take care of it, maybe a backup
resource could be called to replace the failed resource, and GRMS should migrate the job and

restart it on the backup resource. All these issues need to be further investigated in the GRMS

design.,

Remote computing often affected by the network performance, it is highly probable that a remote
connection is jammed or even broken during a transaction. In order to solve “hanging” problem,
every remote method should be fired by a child thread instead of the main thread of the shell, and
a timeout will be raised should a remote method call doesn’t return for a long time, and user can

always be assured that the control is returned to the shell.

o
h

CHAPTER 3

GALAXY SHELL SPECIFICATION

Galaxy shell extends the functions of normal shells by adding special commands supporting
resource searching, binding and consuming. Resource management system (RMS) is the
backbone behind the interface. and the resource naming system used by RMS is reflected in the

syntax of Galaxy shell.
3.1 Galaxy resource naming system

Galaxy resource naming system is the core component of RMS. RMS is the fundamental
component which manages the resources and provides low-level functionalities such as naming
and discovery to the upper level components like Galaxy shell. All the machines are profiled
when they join Galaxy, and their types are known at that time, which can be used as the principle
means for searching. At present time. there are three categories of naming. which are group

based, static type based. and dynamic type based naming.
3.1.1 Group based naming

Galaxy resource pool is divided by many domains, each domain represents a collection of
machines who have some common properties. The common properties can be but not limit to
location. political or interests approximation. Group based naming is a basic naming according to
the domains. This is kind of like an extension of peer groups in JXTA, where each group
represents certain trust domain, where in each domain. some common services are provided to its

members.
3.1.1.1 Usage

The syntax of domain based naming is:

[elobalName]:[domainName}:[machineName]

Where globalName is the resource pool name. domainName represents the name of certain
domain. machineName is the destination machine where the command will be directed to and
executed there. and all three fields are optional. Two wildcards can apply to any field: =77
matches any and %" matches all. It a field is missing, then it means this field will be instantiated
by alf available items in this field. equal to the wildcard **".

Example 1:

Galaxy:CanadianInstitute: Computer A

This redirection parameter will direct a Galaxy shell command to “Computer A”, which is

located the Canadianlnstitute domain of Galaxy resource pool.

All contents inside square brackets are optional, for example, if no domain name presents, then
the command applies to all domains inside galaxy, if no MachineName presents, then the
command applies to all machines inside the domain.

Example 2:

Galaxy:CanadianInstiture: *

This redirection paramcter will direct a Galaxy shell command to all machines inside

Canadianlnstitute domain.

Al running result should be returned to Galaxy shell console except for pipeline command.
Example 3:

Galaxy:Canadianinstitute:

This redirection parameter has the same effect as the previous one.

Example 4.

Galaxy::

This redirection parameter will direct a Galaxy shell command to all machines inside Galaxy, no

matter which domain those machines are located in. 1t should be noted here that “:2” is syntax

correct but meaningless since at current time, Galaxy resource pool is unique.
3.1.2 Static type based naming

Static type based naming is based on the profiling result when a resource join Galaxy. The
profiting result is a list ofattribute-value pairs. Here static type means the attributes are based on
static propertics. such as CPU make, disk volume, physical memory. operating system, and etc.
Due to so many hardware combinations for computers in the world, it is better to sort those
combinations into several predefined categories or types for easy management. There is a fine
line between too general and too fine for these categorize actions. A comprise has to be made for
easy management and high type recognition ratio. For those resources who don’t fall into any
predefined type. they will be tagged “unrecognized type™ in the resource directory in their

domain.
3.1.2.1 Definitions
3.1.2.1.1 Static type

A static type is a user defined resource collection: each type is a list of attribute-value pairs. For

example. one tvpe could be like following:

Type name: WorkStation
CPU = Pentium

0S = Windows

Memory = 512M - 1024M
Disk = < 100 G
Netspeed = < 1 Gbps

Static types are stored in a special directory named “Type directory™, which provides a predefined

list of types lor a certain domain,

Static types can be defined by using command “deftype™. the syntax is:

deftype --t <typeName> <attribute-value pairs>

IF'or example. a type “Work Station™ can be defined using this command:

deftype —t WorkStation CPU=Pentium& & OS=Windows& & Disk<100G& & Netspeed=1Ghps
3.1.2.1.2 Type directory

Type directory is a typing naming service which stores predefined or user defined types. each
domain has its independent type directory for scalability reason, a shell can send a command to
the type directory service to query current available types inside the domain. Normally. there are
a lew predefined types stored in the directory, while this directory can be expended as the need
be.

3.1.2.2 Usage

The syntax to use type based naming is:

<built-in command> |<group based naming>] [<search constraint>|

Where,

<built-in command> are commands specially involved with Galaxy resource searching and

binding. they are:

Istvpe
Listall types which satisfy given search constraint (if any), inside the group(s) specified

in the ¢iven group based naming (if any).

bind

Bind all nodes which satisfy given search constraint (if any) and given duration constraint
(if anv). inside the group(s) specified in the given group based naming (itf'any). Here
bind means 1o build a connection channel between the shell and the local daemon of the

nodes to be bound.

<group based naming> has the same syntax and meaning introduced in previous section, this item

will give the scope where the built-in commands work on. If it is absent, then it means the scope

is in the default domain, the default domain is initially set to the domain where the shell is sitting

in.

<scarch constraint> can be either static type search constraint or dynamic search constraint, the

fatter one will be introduced in following section. 1f the search constraint is a static one, then it is

either an optional filter based on certain attribute-value pairs or certain predefined types, plus an

optional number constraint and reservation constraint, which specify how many nodes need to be

scarched or processed and how many seconds (duration) the bind will last, detault is one. The

syntax of <scarch constraint> is:

<secarch constraint> ;= <static search constraint> |
<dynamic search constraint> |
<pnumber constraint> |

<reservation constraint>

<number constraint> ::= --n <number of nodes will be searched>
<reservation constraint> ;= --d <number of seconds the resource will be reserved for>
<static scarch constraint> ::= --(<predefined type constraint> |

--a <attribute constraint> |
<predefined type constraint> ;= <type name>
<attribute constraint> ::= <attribute constraint> |
<attribute constraint> <logic operator> <attribute constraint>
<logic operator> = "&&" | ||’
<attribute constraint> 1= <atfribute> <relation operator> <value>

~>:“ ‘ ="

<relation opcrator> 1= "< | <=7 | >7

[t should be noted that here “--t™ and ~--a™" are using double dash. the reason is to avoid conflict
with normal shell command switches. Following are several examples to show how the type

bascd naming is used.

Example I:

Istype Galaxy: CanadianInstitute: *

Will list all types available in Domain Canadianlnstitute, like:

CPU | Memory | Disk | OS | NetworkSpeed |

Pentium | 1024M | 100G | Windows | 100 Mbps |

CPU | Memory | Disk | 0OS | NetworkSpeed |
10G | Linux | 10 Mbps \

|83}
—
N
=

Pentium

Example 2:

Istype Galaxy:: --a cpu=pentium

Will list all types available in every domain inside Galaxy resource pool. the result will

something like this:

Domain: Domain 1 Type: Server 1
CPU | Memory | Disk | OS | NetworkSpeed |
Pentium | 1024M | 100G | Windows | 100 Mbps |

Domain 1 Type: WorkStation

cpU | Memcry | Disk | OS | NetworkSpeed |

Pertium | 512ZM | 106G | Linux | 10 Mbps |
Domain 2 Type: Server 2

CPU | Memory | Disk | OS | NetworkSpeed |
Pentium 1024M 100G Windows | 100 Mbps |

Domain 2 Type: Palm
CPU | Memory | Disk | OS | NetworkSpeed |
Pentium | 100M | 1G | Windows | 100 Mbps |

Example 3:

bind Galaxy:CanadianlInstitute: --a cpu=pentium& & mem<l024M --n 3

Will bind three nodes in Domain Canadianlnstitute inside Galaxy resource pool, where their CPU

are Pentium and memory are less than 1024M. The result could be something like this:

3 machines bound! Domain: CanadianInstitute

Machine 1, Alias=Ying
Machine 2, Allas=Mahes
Machine 3, Alias=Mayni

Example 4:

bind Galaxy:Canadianlnstitute:? —-a cpu=pentinvm& & mem<1024M

Lo
ro

Will bind one machinc in Domain Canadianlnstitute inside Galaxy resource pool, where its CPU

is Pentium and memory is less than 1024M. The result could be something like this:

! machine bound! Domain: CanadianInstitute

Machine 1, Alias=Ying, Type: WorkStation

Example 3:

bind Galaxy:CanadianiInstitute:* --t palm --n 10

Will bind ten machines whose types are palm in the domain Canadianlnstitute, the result could be

something like:

10 machines bound! Domain: Galaxy:CanadianInstitute:*

Machine 1: alias: Ying
Machine 2: alias: Mahes

Machine 3: alias: Maniy

Example 6:

Ishind

Will show current bind information, the result could be something like:

Bound information

Machine Alias Domain Type
Ying Galaxy:mcgill: laptop
Mahes Galaxy:ubc: desktop

(U%)
Lo

Example 7:

unbind ying

Will unbind Machine Ying. the result could be something like:

Machine ying is unbound!

All above examples just show some light on how to use static type based naming in the Galaxy

shell commands: detailed information about the Galaxy command will be elaborated in following

section.
3.1.3 Dynamic type based naming

Dynamic type is related to dynamical information which is collected by Galaxy Resource
Management System (GRMS) from time to time. This information could be network topology,
load capacity. throughput, QoS, and location approximation. The syntax of extended type based
naming is using certain options to represent certain combinations of dynamic profile. These
options could be but not limited to network speed. proximity measuring, load, and etc. Notes of

these options are summarized in Table 3.1:

Table 3.1: Dynamic based naming options

Notes Mcaning Optional Value
--1 Load heavy | medium | low
--dt Desired Throughput heavy | medium | low
--p Proximity measuring far | medium | near

i . d (dedicated resource) |
--q (QoS-constraint ‘

b (best effort)

-5 Speed fast | medium | slow

Example :

bind Gulaxv: Canadianinstitute: --p nearest --1 light

Will bind one machine which is closest to the machine hosting the shell and with light load. If

there are multiple machines satisfied with the condition, only the first one found will be returned

to the shell.

Example 2:
hind Galaxy: Canadianinstitute: --q

Will bind onc machine which will be dedicated to current shell.

3.2 Galaxy shell Commands

Galaxy shell commands can be divided into two types, which are built-in and external commands,
combination of these commands provide the basic functionality of Galaxy shell. These commands
provide an interface for users to access the service provided by Galaxy shell and resource

daemon. All Galaxy commands are case insensitive fike Unix Shell.

3.2.1 Built-in commands

Built-in commands are the core of Galaxy shell which provide the basic functionality such as set
and get environment. searching. binding and other “house keeping™ operations. Built in
commands themselves don’t consume resources but do the preparation work for external
commands to do so.

The complete syntax of built-in commands is:

<Built-in command> [domain based naming] [<search constraint>|

Where.

[O%)
(93]

<scarch constraint> is optional and used to set certain condition to execute a command, the
explanation of <search constraint> is the same as previous text.
<Built-in command> is a set of special commands which support plumbing work such as
configuring, scarching, binding/unbinding in Galaxy shell. they are:
e Istype
This command will list the type information inside given resource pool and/or domains
o deflype
This command will define a new type

e Dbind

This command will bind machine(s) who satistied given constraint, these constraints could be

either a static type constraint or dynamic type constraint

e unbind

‘This command will unbind the machine with the given machine name

e Ishind

This command will list bind information of current shell

¢ setdomain

This command will set the default domain for all following commands in current session.
thus after the domain was set. if the domain based naming doesn’t give the domain name.

then the default domain name will be used. For example

setdomain domain 1

Istype

The second command will list all types inside domain_1 of galaxy resource pool

e petdomain

This command will return the default domain name for current setting. The initial default

domain is the domain where the node hosting the shell is in.

Example 1:

setdomeain domeain_ 1

geldomain
The second command will return “domain_ 17
Example 2:

setdomain *

wetdomeain

The second command will return =*”, means all domains available are going to apply for

following commands.

e setnode

This command will set the default node for all following commands, thus if the default node
was set. then all commands following without specific node name will use the default node.

The default node of default node name is **”, which means all nodes available. For example

setnode node 1

Istvpe galaxy:domain_ 1.

The second command will list the type of node 1 inside domain_1 of galaxy resource pool

e seftype

This command will set the default type for the constraint of all following commands.

e gellype

This command will return the default type was set

e setattr

This command will set the default attribute for the constraint of all following commands.

For example.

setattr epu=duron& &mem>300M

Istype galaxyv:domain 1%

The second command will return all types of nodes, which are inside domain_1, and satisfied

with the delault constraint set by the first command.

tattr

1<
[¢"

This command will return the default attributes for the constraint of all following commands.

3.2.2 External commands

External commands are those commands does a specific task. such as listing files in certain
directory. exccuting an executable file, and etc. External commands can be executed either locally
or remotely. depends on the node specification following the command. If the node specification
is missing or it equals to localhost. then this command will be assumed as a local command,
which will direct to local daemon of current node. otherwise, it will be treated as a remote
command. which will invoke a remote method sitting in a remote machine, in this case. the shell

will send the request (o the local dacmon of the remote machine. Before a remote external

command being fired. the remote machine has to be bound to current sheil by using bind

command. This bind operation will create the link between the local daemon of remote machine.
The syntax of external command is:

<external command> [@<node name>| [<argument list>]

Where.

<external command> is normal Unix shell command, and the names of executable files.

<node name> is the alias of certain machine, which was acquired from searching command. The

default node is the current machine which is hosting the shell. The default node will be applied if

the node name is not specified.

<argument list> is the argument list for external commands.

[For example.

s (wmimi -l

This command will list all files and directory at Machine mimi with long format.
3.2.2.1 External commands list

Following aware the list of the external commands currently supported by the Shell and local

dacmon of a Galaxy resource.

et writes the contents of the files to the standard output
clear clears the screen

ced changes the directory with respect to the current directory

op makes a copy of the file

duate prints the date
echo writes the parameters of this command to the standard output
exit exits the shell

grep searches for a pattern in the files and prints the lines which matched the pattern

help oives a help on a command
ls vives a listing of all files in the directory

mem gives the total memory available to the java runtime system and free memory

mkdir creates a subdirectory with the given name

my moves the source file to the destination file

vl prints the current working directory

i deletes given files from the current directory

time eives the current system time

we gives the count of number of lines, words and characters in a file

version prints the current version of the shell

pipe pipe () is not really a command. It is a way of joining two commands together. It is

similar to Unix pipe.

The external command list can be added as the need be, the extension of supporting external

commands will be detailed in Chapter 5.

40

3.2.3 Batch command

Since the main goal of Galaxy is to support RAN research, it is possible a user has to input many
commands with much repetition, batch commands will ease this stretch by automate some routing
commands serial. just like a script file of UNIX Shell. When a user type the name of a batch file,

the script file will be loaded and its content will be executed line by line like user input them

manually in the same order.

3.2.4 Remote pipeline

Galaxy shell supports remote pipeline operation. here remote pipeline is different from traditional
pipeline in Unix shell where the pipeline is executed locally. Galaxy shell supports a “global-
like™ pipeline, which means that the result of execution of one command at Machine A can be

directed to another command at Machine B. The pipetline can be divided to two types. sequential

and concurrent pipelines, based on single casting or multi casting requirement of Galaxy shell.

3.2.4.1 Sequential pipeline

Sequential pipeline is similar to tradition pipeline in Unix except the pipeline applied to several

distributed machines. The syntax of sequential pipeline is:
<pipeline element> ~ <pipeline clement> ~ ...
where.
<pipeline element> ::= <external command> [@<node name>] [<argument list>]
For example.
Is (omimi =l e faowilly
This command will execute *Is” on Machine "mimi” with parameter *-I". then send the execution

result 1o the “we™ command on Machine “willy™. The final result (if any) will be returned to the

shell who launching this command initially.

41

3.2.4.2 Concurrent pipeline

Concurrent pipeline has the similar functionality as sequential pipeline but adding multicast

function. The syntax ol concurrent pipeline is:
<pipeline element> { <multicast list> }
where.

<pipeline element> = <external command> [(@<node name>} [<argument list>]

<multicast list> ::= <pipcline element> *." <multicast list> *;" <pipeline element>

For example.
Is @mimi § weaowilly; car@wnovay

This command will exccute “Is” on “mimi’, then multicast the result to machines *willy” and
‘nova’. where “wc’ and “cat” get executed there, correspondently. Then all running result (if any)

will be directed to the shell.

3.2.5 Batch command

Since the main goal of Galaxy is to support RAN research. it is possible a user has to input much
of commands with huge repetition, batch commands will ease this stretch by automate some
routing commands serial. just like a script file of UNIX Shell. When a user type the name of'a
batch file, the script file will be loaded and its content will be executed line by line like user input

them manually in the same order.
3.3 Syntax of Galaxy shell Command
3.3.1 Reserved Words

The tollowing words are reserved and have a special meaning to the Galaxy shell when they are

unquoted:

ir then else end in case

do for while until function ~
| I ’ ?
' h @

3.3.2 BNF for Galaxy shell

The following is the syntax of Galaxy shell in Backus-Naur Form (BNF), which the parser of

Galaxy shell is based on.

<letter> ::= alblc|d|e|fglhlilj[k]Tim[n]o|plq]r s|tjulv|wx|y|z]

A[BICIDIEIFIGH]IK]LIMINJOPIQIR|S| TIU[VIW[X|Y|Z

<digit> = 0[1]2/3]4/5]6/7/819

<number> = <digit> |

<pumber> <digit>
<word> 1= <letter> |
<word> <letter> |

<word> "’

<word_list> 1= <word> |

<word list> <word>

<resource pool> = <word> [¥ |7

<domain_name> 1= <word> | **7 | "7’

oM

<node_name> 1= <word> [7

<redirection> =:= <resource_pool> *:* [<domain_name>]":’[<node_name>]

<option_name> = "-"<word>

<option_value> 1= <word> |

<option_value> * * <word>

<option_element> 1= <option_name> |

<option_name> * * <option_value>

<option_list> 1= <option_element> |

<option_list> "~ <option_element>

<lype_name> 1= <word>

<type constraint> ;= *--t "<type_name>

<attribute_name> 1= <word>

N

<relation_operator> 1= =<’ | *>7 | <=

=t | L.

<attribute value_pair> ::= <attribute_name> <relation_operator> <attribute_name>

<logic_operator> 1= "&& ||’

<attribute_value pairs> ;1= <attribute_value pair> |

<attribute_value _pairs> <logic_operator> <attribute_valuc_pair>

<attribute_constraint> ;1= "--a"<attribute_value pairs>

<static searcl constraint> ;= <type constraint> |

<attribute constraint>

<number constraint> ;= --n <number>

44

<reservation constraint> = --d <number>

<qos value> ="b" | *d’

<qos constraint> 1= "--q" <qos value>

<speed value> = “fast” | 'medium’™ | “slow’
<speed constraint> 1= "--s” <speed value>
<proximity value> = “far’ | ‘medium’ | "close’
<proximity constraint> ;1= "--p” <proximity value>
<load value> ;= "heavy | ‘medium’ | “low’

<desired throughput constraint> ::= *--dt’ <load value>

<lpad constraint> ::= *--1" <load value>

<dynamic scarch constraint>::= <load constraint> |
<qos constraint> |
<speed constraint> |
<proximity constraint> |

<desired throughput constraint>

<gcarch_constraint> ;= <static search constraint> |
<dynamic search constraint> |
<number constraint> |

<peservation constraint>

‘setnode” |

‘Isbind™ | “settype’

<built_in_command_keyword> ::= "Istype” | *bind | unbind’

‘getdomain’ | “getattr™ | “deftype’

“setdomain’” | setattr™ | “gettype” | “getnode’

<built_in_command> ;= <built_in_command_keyword> |
<built_in_command_keyword>" "<redirection> |
<built_in_command kevword>" ‘<redirection>" ‘<search_constraint>
<external_command keyword> 1= <word>
<node_alias> ::= <word>
<relocation> 1= (" <node_alias>
<external _command> 1= <external command keyword> |
<external command keyword>" “<relocation> |

<external_command_keyword>" *<relocation>" “<option_list>

<command> ::= <built_in_command> |

<external_command>

<command_list> 1:= <command> |

<command_list> *:" <command>

<multicast_list> == *{"<command_list>"}"

" <command> | <command>

<galaxy_command> ::= <command> | <galaxy_command> *

<multicast_list>

CHAPTER 4

GALAXY SHELL IMPLEMENTATION

The implementation of Galaxy shell is divided into the implementation of the three sub modules
of Galaxy shell, which are the shell (pure interface). local daemon, and peer kernel. In the
following sections. the implementation of these three sub modules of Galaxy is introduced, at the
end of this chapter. the implementation of XML-RPC server, which is used to test the remote

procedure call from Galaxy shell, is also introduced.

4.1 Shell

Shell is responsible for inputting and digesting rudimentary commands, pipes, 1/0 redirection,
and background processing. It works with local daemon and peer kernel to fulfill the mission in
Galaxy. Inside shell. there is a parser module, which is responsible for tokenizing and parsing

incoming commands.

The Shell simply loops through getting a command from the user, evaluating that command, and
returning an output. gshell interacts with the user and simply go to the appropriate class when it
needs to perform certain actions. gshell is like a bus that picks up people that need to go to certain
places. gshell delivers them there, waits for them to do their thing at the stop and then gets back a
changed person. The program design matches this cycle, the gshell class handles the inputting
from the user. It then asks a command class in either local daemon or peer kernel to run the
command, and the output is passed back to gshel/l. outputted, the cycle starts again. Figure 4.]

shows the file structure of the shell module.

Figure 4.1 shows the file structure of shell module of Galaxy shell. From the figure, we can see
that there is a sub package parser inside gshell package, demonstrates the hierarchical relation
between them. There are 13 classes directly inside gshell package, among them; there are three
interfaces. which are ConsoleLine java, OuiputWatcher java, and — ProcessWatcher. java.

Following is a short description of each of these interfaces.

47

ConsolelLine java: an interface used between the console, and the shell. this interface
specities what will be called when the user presses the return key inside the console.
OwiputWeaicher java: an interface that allows a class to be notitied every time something
is written to an output stream.

ProcessWatcher.java: a simple callback interface that allows classes which use the

threadedeommand class to know when their spawn processes have terminated.

a5 oA

Eu TPr'u‘ia 'thf_ |d-‘-|_lldljl:ff java
gshell java
HHIFI H"d

ception. &
dtEe ':ur|tur"1~sr|1|1Pr Jaa
o lutpufl-”vl 1t| hwr '

K E W Cm o w w

Jaw
ThreadedCormmand java

Figure 4.1: File Structure of shell module

Beside three interfaces. gshell package has ten class tiles which working together to implement

the shell functionalities. Several key class files are shortly introduced as followings.

gshell java: The core file of this package. it creates the main frame and the text area for
the console. It parses the commands. then dispatch them to corresponding modules to
process.

Console java: Tt extends the text area, and provides a way to read input and write output.
It will also handle the keyboard output.

EventOupuiStream. java: It implements an output stream in which the data is written into
a byte array. The buffer automatically grows as data is written to it. In addition to this,
whenever something is written to the byte array that information is also sent to the object
that created it. The classes implementing the shell commands will write to System.out.

This class provides a way to capture that stream and redirects to the text area.

48

o Helpjava: This class provides a way to view the help. It extends JFrame class, and it
contains a text area and a button for each command. By clicking the button the

corresponding file is read and displayed on the text area.

Among all these files inside gshell package, the Class Console is playing a key role in displaying
input and output during the interact process. The UML diagram of this class is shown in Figure
4.2, we can sec that Console class implements KeyListener class, extends JTextArea class, and
references dimension, String. StringBuffer. and Vector classes. Console class also associates with

ConsoleLine interface and is referenced by gshell class.

java.awt.event javax.swing

| Keylistener }!] [JTexthrea |- |
M—
|
|
|
I

gshel]

gshell Console ’ gshell .

- — — [et

=) hiztline int

I Consoleline H gshell I 1. history - yectar java am
—J line ; StringBuffar ’
= lineSize : int ::::::l——j
java.awt T ' : .
ion | R
o tedling : String java.awt.event
java.lang =l testlenoth int . KevEvent
¥ java.lang

LString H StringBuffer]

4

java.util

[object || system |

javatext
— —— — DatefFonnat

java.util

Date | StringTokenizer
javax.swing.text

- ——{ Caret

Figure 4.2: UML diagram of Class Console

W prormpt s Btring

49

4.1.1 Parser module

Parser module is a sub module inside Shell module, it is responsible for doing lexical analysis and
parse out the commands. JavaCC, stands for “Java Compiler Compiler™, is an open source project
is used to generate the parser module. JavaCC reads a description of a language and generate
code. written in Java that will read and analyze that language. Although the Galaxy commands
are not complex as a language, it is not bad idea to use an efficient and elegant parser instead of
messy string comparison, and by adopting a parse will make the testing, debugging, and
maintaining work casier in the future. Although we can write a parser manually, it is difficult if
the input contents have a complex structure. Fortunately, JavaCC is able to help by generating a
parser automatically unless the programmer provides a seed file (.jj file). This technology
originated to make programming language implementation easier; hence the term “‘compiler

compiler” comes out.

In order to produce the parser, which normally includes a token manager in it, a .jj file needs to be
provided by programmers. The .jj file specifies a collection of Extended BNF rules which is used
to break the sequence of characters into a sequence of tokens. It is often a headache sometime
when there is more than one regular expression matches a prefix of the remaining input. JavaCC
adopts following rules for picking which regular expression to use to identify the next token:
e The regular expression must describe a prefix of the remaining input stream.
e If more than one regular expression describes a prefix, then the regular expression that
describes the longest prefix of the input stream is used, so called “maximal munch rule™.
e IF'more than one regular expression describes the longest possible prefix, then the regular
expression that comes first in the jj file is used.
After those tokens are produced. the parser consumes the sequence of tokens, analyses its
structure. and do further process. What kind of process the parser will do is up to programmers
who specilied this in the .jj file also. From this description, we can see that JavaCC is completely

flexible.

JavaCC is a program generator. It reads a _jj file and if that .jj file is error free, produces a number
ol Java source files. Figure 4.3 shows the files generated by JavaCC, they are:

o SimpleCharStream.java — represent the stream of input characters

o Tokenjava — represents a single input token

o TokenMgrError java — an error thrown from the token manager

o Purselxception java — an exception when the input failed to be parsed
o Parser.java — the parser class
o ParserTokenManager.java — the token manager class

ParserConsiants java — an interface associating token classes with symbolic names

v
s R
L]

&A% & s sy

ception. java

ParserConstants java
ITokentianager.java
SimpleCharStream java

o Tokernjava

¢ TokenbdgrErmar java

Figure 4.3: File Structure of parser module

The Token class represents a token produced by the token manager. Figure 4.4 shows the UML
diagram of this class. It can be noted that each token object has some fields to store its properties.
such as the location of the token in the seed file, the type (kind) of the token and what the next
token is. The Token class associates itself due to the linked list structure, and is referenced by
ParserException and Parser. The Token class is also being depended by ParserTokenManager

class. where a change to the Token class will affect ParesrTokenManager class.

java.lang

ashell.parser

gshell.parser Token gshell.parser

frpe — — —(ParserTokenManager 1

« eginColumn ;- int
beginline it

< endCalumn sint

< endline :int

L image Btring

~ kind int

o Token

ialTaken Token

ParseException H Parser lLTokenJ

java.lang

[string f=————

Figure 4.4: UML diagram of Class Token

w
Lo

+ aan31y

S

Jasand sse|) Jo weigelp TN

gshell.parser

rparserTokenl'u'Ianager Hjimple(:harStream H Token |

Java.util

f

gshell.parser
java.lang
ParserConstants
jeubclagses=2} | | Ohject |-
B i
[
|
|
; |
gshell.parser |
!
Parser gshell
= -~ gshell
W lint: Taken
l gshell.parser
s WE — — — —=+ ParseException
iy int]] . ‘
nint java.io

_kind s int
a1 int]
i_la1 0int
ji_mtk s int

7 1‘,‘
| nputStream H Reea‘er]

BN

Sy
Swoid

._.i .

= A o

AP qiontkd cint

i
tiond
cToken

java.lang

Far

"1

iy

java.util

—— — = Arraylist

o token Token

K3 i 3 ":
[Integer H String H StringBufferJ rSystem |

The parser class is in the central position in the parser module: it associates
ParserTokenManager and Token class for consuming tokens. Figure 4.5 shows the UML diagram
ol the parser class. There is a public method Process is responsible for consuming the incoming
tokens. 1t recognizes these tokens, make certain change if necessary, and then load certain
command class file to execute the command. We can also see that there is a circle dependencies
between parser and gshell class, any changing in onc party will automatically affect the other

one.

4.2 Local daemon

Local daemon module is the place where the service is provided. When a resource joins Galaxy.
the local dacmon is always running on that resource, and waiting for incoming commands. Thus
each resource in Galaxy is acting like a service provider, the special thing is that each resource in
Galaxy is acting both a service provider and a consumer. Local daecmon can accept commands
coming from both locally or remotely. For remote commands. local daecmon will authenticate its
identity and checking its reservation ticket before providing the service, local daemon also
provides a sandbox like protection mechanism against malicious clients. At the time when this
shell was implanting. the research of those security functionalities is still on going, thus these
[unctionalities are not implemented in this version. Figure 4.6 shows the file structures of
localdaemon package. and Figure 4.7 shows the UML diagram of class Local/Daemon, which will
run as a server to provide services.

T localdaermon
P t o,

ren] ay
GreplnputStream java
* LocalDaemoar java

: maon_defaultSerser java

Figure 4.6: File Structure of local daemon module

n
(%)

123

. (>3
HOWN P20 SS1D JO WRASRIP TN (Y L' 2IN31

java.lang

[_Object J--

lacaidaemon

LocalDaemaon

A, PORT sint

v erecute(String
¥ LocalCaemon | void

"{ LocalDaemun_mimﬂ

gshell

- — ——|_ExtendableClassLoader

Java.io

- — — == PrintStream

java.lang

L.

";‘l 'i“

1 §

] ¥
[Class || ClassNotFoundException || EXC

eption | [flegalAcce

ssException H egalArgume

¥
ntException H String H Strin

gBuffer H System J

java.lang.reflect

TL; ‘.{
I InvocationTargetException || Melhndj

java.util

—— — = StringToKkenizer

lacaldaemaon

org.apache.zmirpc

| WebServer |

From Figure 4.7. we can see that the class Local/Daemon has an instance variable PORT, by
assigning different numbers to this field. a simulation of distributed resources can be created at
one machine, which is convenient for development. LocalDaemon associates with
ExiendahleClassLoader, while the latter one is able to load and execute a command class file on
the fly. It a command class cannot be found during loading, a ClassNotFoundException will be
thrown. WehServer class in the org.apache. xmlrpe package is referenced for starting a simple

XML-RPC server. The execure method is for executing inputting commands.
4.2.1 Local dacmon commands

Currently, twelve command classes have been implemented in the localdaemon package. Each of
these classes represents a command which can be loaded and executed on the fly. All the
following classes will contain the main method. Each class executes a command specitied by
name itself. The main method will take an array of strings as arguments that are given to the
respective command. All the commands will write the output the System.out. which will be
directed to the console of the Galaxy shell. Following is the short description of these command
classes.

o catjava — prints the commands contents of the given file

o ¢pjava — copies the source file to destination file

e dute java — prints the current system date with the following format month, day. year

e cchojava — writes each given string argument to the standard output

* urepjava— searches the given string in the files specified

o /v juva— lists the filenames and folders in the current directory

e memjava— displays the total memory for the java console and also the available free

memory

e mkdir.java— creates a directory. if it does not already exist

e mvjava— move or rename a file from current directory

e rinjava— delete a file from current directory

e limejava—— prints the system time

o e jura—prints the lines, words. characters in the given file or input stream

The implementation of above methods is straightforward. just need to write a class with expecting

input parameters. and do the corresponding task equivalent to the name of the class, and return a

wn
wh

string. which will be shown on the shell console. Figure 4.8 shows the UML diagram of the

command class /s.

java.lang

(G

localdaemon

javaio Is java.io

— — — == PrintStream

o DEBUG boolean

java.lang i —————~*””frg_E|:'ir sting java.lang
oo prwdd S File) .
String = ; ——————

;!l; ,T»
|?tringBufferJ| Systein J

java.util

————{ Vector |

- HizplaFi
displayFullDirgctor
gettildc
¥ sonStrings yvnid

Figure 4.8:UML diagram of Class /s

It should be noted that local daemon should not only be able to load and execute a command class
written in Java. it also needs to be able load and run an executable file written in other languages.
For this situation. Java Native Interface (JNI) can be used to make the cross language operations.

At current version of the Galaxy shell. this is not implemented.

4.3 Pcer kernel

Peer kernel provides an APl for the shell module, masking the complexity of GRMS. Through
this API. the shell module (client) can explore the Galaxy network, and also advertises itself to
other nodes in the Galaxy resource pool. Figure 4.9 shows the file structure inside peerkernel

package.

peerkermel
< bind. javs
< deftpe |
petattr)
getdormain.]ava
gethode java

ﬁ“’i?,‘é’fi‘{i,‘i

gethpe java
HegaldrgumentEyseeption java
< |zhind java

o lstvpe java

T seftype ja

T4 ounhbing

Figure 4.9: File Structure of peer kernel module

4.3.1 Peer kernel commands

Currently. there are thirteen command class files are implemented, which can generally
categorized into two sub types. configuration commands and networking commands. The
implementation and operation of these command files are similar to those commands in local
daemon module. A short introduction of these two kinds of commands class files is listed in

following text.

Command class files for configuration
o selatirjava and getattr java — set/get the default attribute value pair constraints
o selnode java and getnode. java — set/get the default redirection destination
o selvpejava and getlvpe. java — set/get the default type constraints

e sesidomain java and getdomain. juva — set/get the default domain constraints

Command class tiles tor networking
e [stypejava — list available type information (under given constraints)
o hind juva and unbind. java — connect/disconnect a collect of resources
e shind juva — list current bind information

e defivpejuva— define a new resource type

4.4 Remote Procedure Call

The remote procedure call between distributed Galaxy nodes is implemented based on XML-
RPC, a popular protocol that uses XML over HTTP to implement remote procedure calls. Apache
XML-RPC is a Java implementation of XML-RPC, current version is 1.2, which is integrated into
the Galaxy shell project to implementing distributed computing. By using Apache XML-RPC,
programmer can be abstracted from the detailed XML-RPC protocol implementation while focus
on the more important work. Programmers don’t need to know how the XML document is parsed

and how the HTTP protocol is implemented. the only things need to know is what need to be

transferred, and what the interface to call.

Apache XML-RPC supports SAX 1.0 and can therefore be used with any compliant XML parser.
The default parser is John Wilson's MinML Parser which is included in the package so
programmers don't need anything else to start using the software. MinML is an ideal parser for
XML-RPC because it is small, fast, and implements exactly the features of XML which are used

by XML-RPC. Following sections will introduce the implementation of Apache XML-RPC in

Galaxy. both in server and client side.
44.1 XML-RPC Server

On the server side, there are two ways to plug in XML-RPC module: one is to embed the XML-
RPC library into an existing server framework, such as Tomcat or WebLogic, or use the buiit-in
special purpose HTTP server. The XML-RPC library comes with its own built-in HTTP server.
This is not a gencral-purpose web server: its only purpose is to handle XML-RPC requests.
However. it is good enough for testing the remote procedure call between two nodes. Thus, this
built-in HTTP scrver is adopted. The HTTP server can be embedded in any Java application with
a few simple lines:

webServerawehserver = new WebServer (port):

wehserver.addHandler ("examples”. someHandler):
This built-in HTTP server also provides a useful function, which can set the IP addresses of
clients from which to accept or deny requests. It can be used in the authenticate module in the

local daemon for advanced resource management. This is done via the following methods:

webserver.sel Paranoid (true): // deny all clients

wehserver.aceeptClient ("192.168.0.%") 7/ allow local aceess
wehserver.denyClient ("192.168.0.3"); /7 except for this one
Before an XMIL.-RPC server to provide a service, it must know how to map incoming requests to
actual methods. This is done by registering handler objects to the server like following:
addHandler (String name. Object handler):

remove Handler (String name);

4.4.2 XML-RPC Client

Apache XML-RPC provides two client classes.

o orgapache.xmlrpe XmlRpceClieni uses java.net. URLConnection, the HTTP client that

comes with the standard Java API

o org.upache.xmlrpe XmiRpeClieniLite provides its own lightweight HTTP client

implementation.

AmlRpcClient provides the full HTTP support such as proxies or redirect while Xm/RpcClientLite
is lightweight buy may outperform Xm/RpcClient in some scenario. Both client classes provide

the same interface. which includes methods for synchronous and asynchronous calls.

Using the XML-RPC library on the client side is quite straightforward. Following is an example:

NmlRpeClient xmilrpe = new XmlRpeClient ("hiip://localhost: SOSO/RPC2");
Vector params = new Vector (),
params.add Element ("some parameter”):

String result = (String) xmirpc.execute ("method.name”, params);

It should be noted that in the above code snippet, the support to the types of parameters are
limited in current library of Apache XML-RPC. In order to pass some unsupported objects, they
have to be first wrapped into an object supported. such as a Vector. This is a little bit clumsy but

works.

4.5 Galaxy shell extension

Since Galaxy Shell is designed in modular. Galaxy Shell is easier to be extended to match the
pace ol Galaxy rescarch. Each command supported by Galaxy Shell is implemented by a Java
class. thus to add a new command or change an existing command is just related to a single class.
There are two steps to add a new command: first is to change the parser to make the parser
recognize the new command and process it, secondly. to add a new Java class to implement this
command. There are two places to put the new class file. depends the property ot the command: if
the command is a built-in command. then it should be put into the peer kernel module; if it is an
external command. then local daemon module is its destination. Under the help from JavaCC,
changing the parser it not very difficult, the only thing need to change is the .jj file, which is
located in the gshell.parser package, after changing has been made, running javacc parser.jj to
eenerate the new parser of Galaxy Shell.

In the future. it is very likely that Galaxy shell needs to support remote paralle! pipeline. The
concept was created but in this version. this concept is not implemented vet. Following gives
some suggestion for implementing this function in the future. The syntax of the remote parallel
pipeline can be chosen under the developer’s will. For example, ls—we@willywe@nova. This
command means the output of /s command again local machine will be used as input of the we
commands running on two remote machines, willy and nova. The semicolon can be used to
separate the multiple remote machines. In order to implement this, the semicolon symbol must be
added into the parser seed file for successful parsing the input. A vector is recommended to store
the multiple commands and destinations. in this case: we@willy and we@nova. The
processCommand() method in gshell class should be the place need to be changed and also the

method ranCommand().

60

CHAPTERS

GALAXY SHELL USAGE AND ANALYSIS

Galaxy Shell can be deployed on any machine with JVM running on it. Galaxy Shell supports

many commands similar to those in common Unix shells but also adds more functionality on it.

5.1 Galaxy shell usage
5.1.1 Galaxy Shell installation

The Galaxy project is in a folder named gshell, this folder contains source code, compiled files,
supporting libraries. and help documents. In the root directory of this folder, a readme file
contains the basic information about how to run the project. Several batch files are provided for
running the project easily on a Windows machine. Executable files are stored in the folder
classes, in order to run Galaxy Shell; it is a good idea to include this directory into the class path
of' the computer environment setting. The three sub modules of Galaxy Shell can be found in the
classes folder. and supporting libraries are put in the /ib folder. Folder bak stores the backup

copies of the project. Figure 5.1 shows the file structure of Project Galaxy Shell.

I lecadazman
| package cache
_ I peerkernel

+] javacc-3.2
+ _Jjdk1.4
+ s

Figure 5.1: File Structure of Galaxy Shell Project

61

5.1.2 Running Galaxy Shell

When run the Galaxy Shell, open a shell under Unix or a Windows command processor under
Windows machine. ¢ to the classes folder, and enter java gshell. 1f the library path is correctly
set, then a Galaxy Shell console will be displayed on the screen. After entering into the shell, a
prompt SUSER will remind the user that Galaxy Shell is fully initialized for user with identity
cquals SUSER. and is ready to accept commands. Galaxy Shell is designed to be able to use
interactively or in a batch through a seript file. Should an invalid input is given. the shell will
throw a parser error, and tip the user what could be wrong, and wait there for the user to input a
new command. If there is no syntax error in command line, but some parameters are missing for
successfully exceuting the command, the user will be notified about the usage of specific
command. At any time. user can use the get help information about specific command by typing
help command _name or use the drop-down menu at the top of the console. When the user wants

to close the shell, he/she can just type exir to gracefully terminate the session.
5.1.3 Starting XML-RPC server

XML-RPC servers are embedded into the Galaxy Project folder for easier distribution and
installation. In order to develop and test the remote procedure call on the same machine, currently
the scrver name of all servers are set to localhost, but with different port numbers to simulate
different machines. This can be easily changed when real remote procedure calls are to be tested.
The Galaxy shell has been tested successtully on mimi and willy servers of McGill University. It
also was tested on LAN in the planet lab of McGill University. The testing analysis will be
detailed in next section. Each XML-RPC server is a sub component of a running local daemon of
a remote resource. To run a XML-RPC server, just open a shell under Unix or a Windows
command processor under Windows machine, ¢d to the classes folder, and enter java
localdaemon. LocalDaemon, then the XML-RPC server is running and ready to accept requests at
a default port which is 8080, this port number can be changed according to users’ will. Once
servers are running. it is the time to test the remote method call, such as [s@mimi~we@willy.
This command will list contents under the project root directory at Server mimi, and send the

result to Server willyv, where we (word count) method will be executed, finally. the result will be

bR an

sent back to the shell console. It is should be noted that the pipeline sign is =~ instead of *

an

is

which latter is often seen in Unix shells, the reason behind this is that in Galaxy shell, the *

reserved for local pipeline only, and *~" is used only for pipeline between remote machines.

5.2 Galaxy Shell performance

The resource utilization of Galaxy Shell is small. compared with similar shells. Table 5.1 shows
the resource consumption of several shells. These data are collected from a Windows machine
with all shells installed. the total physical memory of the testing machine is 512 Mb, and the CPU
is Pentium IV with frequency 2.4GHz. All the values in the table are the peak values when they
were running at normal status. [t can be seen that Galaxy Shell doesn’t consume much system
resources, as both its CPU and memory consumption are quite low. This attribute makes it

suitable for those systems with limited system resources such as PDAs.

Table 5.1: Resource consumption of shells

CPU

Memory (kb) Disk (kb) ***
(Peak value)

Galaxy Shell 1% 14600 175
JXTA Shell * 3% 29900 306
Windows Command Interpreter ** 1% 800 367

*JXTA Shell version: 2.3-pre-16 157¢ 06-15-2004
- Microsoft Windows XP Professional. Version 3.1.2600 Service Pack | Build 2600

2% Not considering support libraries

The speed of Galaxy Shell or the response time of Galaxy Shell is also tested at different
circumstances. Figure 5.1 compares the response time of internal commands and external
commands of Galaxy Shell inside a LAN. Internal commands are those commands that only have
connections with local system and are expected to have shorter response times compared to
external commands, where remote procedure calls are invoked. The test was executed on several
machines linked in a LAN at McGill University. The link bandwidth between computers is
[0Mbps and all testing machines are running Linux systems. Two machines were used for this
test. one is a server, and the other is a client. The server machine is running on Linux system.
where XML-RPC server is running on it, the client machine is running on Windows XP system,
and it sent out requests to the server machine. Ten commands were selected out from both
mternal and external command sets for testing, and cach command was executed 1000 times in a

loop. then the average time was record for analysis. From Figure 3.1. the average response time

for internal commands is 8.223 milliseconds, while the corresponding time for external
commands is 19.398 milliseconds. The slowdown is mainly due to the serialization and de-
serialization during remote procedure calls and network transfer. However, the response time is

quite acceptable from a human being’s point of view.

'+ Internal Commands - External Commands,

25
— 20
[%2]
E
g 15
P
4
(o] 10 'y
Q‘ Y Iy & A A A & r'y &
[72)
<)
€ 5
O - - S - _ P
0 2 4 6 8 10 12
Tests

Figure 5.2: Response time of commands in a LAN

(Tested at Planet Lab at McGill University, two machines were used; one is Linux system running
as a server, the other one is Windows system running as a client. The two machines are linked in a
LAN. where bandwidth is 10 Mbps)

Figure 3.3 compares the response time of internal commands and external commands of Galaxy
Shell in Planetl.ab network, an overlay network supported by a collection of academic, industrial,
and government institutions for research and development. Three nodes in the Planetlab network
were used for testing the response time of external commands, the three nodes are: node-
I mcgiliplancilab.ore. nodea howard edie. and planeilab] cs.dartmouth.ecie. All the three nodes
were Linux machines and a dedicated slice was allocated on each of the three nodes for doing
research without disturb by other users. Among the three nodes, the machine node-
Lncgillplancrlab.ore was physically located in the same room where the test was starting, while
the other two nodes were a little bit far away. they were all in the north-east of America. The
connection among Planctlab nodes is varied just like the machines used. Thus it pretty well
represents the miscellancous and complex network in the real world. which is also the target of
Galaxy system. Two machines were used for this test. one is a server, and the other is a client.

The server is running on the three Planetlab nodes, where XMIL-RPC server is running on it the

64

client machine is running on a randomly picked Linux machine in the Planet lab of McGill
University, the client machine sent out requests to the server machine. Ten commands were
selected out from both internal and external command sets for testing. and each command was
executed 1000 times in a loop. then the average time was record for analysis. Since the response
time of internal commands is relatively constant. thus only one series of their response time is

aiven in three test groups.

o External Commands (mcgill)

i = Internal Commands (local)

| =« External Commands (howard) = External Commands (dartmouth)
140
120
@ 100
£
]
£ 80
3
5 60
a
&
x 40
20 J o o ° o o o s =S B o
ol -~ -~ - - T
0 2 4 6 8 10 12
Test times

Figure 5.3: Response time of commands in PlanetLab network
{Tested at Planct Lab at McGill University, three Linux nodes in the PlanetLab overlay network were

chosen to be servers. the clientis a Linux machine in the McGill computer lab which has access to internet)

From Figure 3.3, the average response time for internal commands is 8.223 milliseconds, while
the corresponding time for external commands is varied from around 19.4 milliseconds to 113
milliseconds. The response time pretty well demonstrated the distance between the client and
server machines. Because the Planet node at McGill is physically close to the client machine, thus
a quite quick response is understandable: while the Planet node at Howard University is
physically located in Washington DC area. thus it has the longest response time. The Planet node
at Dartmouth is in Massachusetts. thus its response time is sitting in the middle. All the response
time is quite acceptable and these tests proved that Galaxy Shell is acceptable for distributed

computing tasks in Galaxy systems.

N
W

As a PCU system. Galaxy needs to support hundreds or even thousands machines simultaneously.
At the planet lab, the scalability of Galaxy Shell was tested to explore the feasibility of its design
and implementation. We expect the Galaxy Shell has reasonable good scalability. Due to the
facility limitation, it was difficult to test the scalability is a real world situation where various
network connection and thousands machines working together, so two simplified tests were
executed: one is based on a LAN in McGill, the other is based on PlanetLab at McGill. Figure 5.4
shows the general idea about how the broadcasting time was recorded. To communicate with
multiple XML-RPC server instances at the same time. the client thread created equal number of
child threads and delegated the task to those child threads, then waited for the last child thread
returns, The time from the broadcasting method was sent to the last child thread returns was

record as the index of scalability evaluation.
Client Server | Server 2 -~~~ Servern

Sending out
command

BrOﬂClCﬂSl'ing \/
response time]

The moment when last \
child thread returns

Figure 5.4: Response time of broadcasting

The result of scalability testing in a LAN was shown in Table 5.2 and Figure 5.5, Table 5.2 shows
the ditterent response times for executing broadcasting commands to remote machines. Three
eroups of tests were execuled and it shows that the response times were quite small when the
number of nodes was below one hundred: when number of nodes reached one hundred, the
response time was still less than one second. which is quite acceptable in real situation. When
number of nodes was increased to 250. it required about 2.4 seconds to finish the broadcasting
execution. and when number of nodes was 500, the response time was little longer at around 3

seconds. It needs more than 10 seconds to broadcast to 1000 machines, this is quite fong for

66

.....

simultaneously communicating with 100 machines or less and its performance goes down after
this threshold. Fieure 3.4 shows the response time increase trend as the number of nodes are
increased. it can be seen that when the machine number is less than 100, the response time

increase is quite slow, and when the number of nodes passes 250, the response time increase

much faster than before.

Table 5.2: Response time of broadcasting in a LAN

Machine Test 1 Test 2 Test 3 Average
numbers (ms) {ms) (ms) (ms)
| 19 21 22 21
10 27 28 31 29
50 295 313 317 308
100 908 918 921 916
250 2418 2491 2514 2474
500 5423 5792 5942 5719
000 12134 11234 11457 11608

o Testl - Test2 Test3

14000 ‘
12000 |
2 1000 |
£ 0000 |
o |
E 8000 | y
£ 6000 ’ s
[} 7
o 7
1] e
& 4000 { P
2000 | e
1 10 50 100 250 500 1000

Machine numbers

Figure 5.5: Scalability test in a LAN

67

Another scalability testing was on Planetlab network, in the Planet Lab at McGill, three nodes in
Planctl.ab overlay network were chosen to be the servers for scalability test, they are: node-
1.megillplanetlab. org. nodea howard.edu, and plancilabl.cs.dartmouth.edu. In each of the server
machines. a bunch of XML-RPC server instances were initiated before the client sending out
requests, each instance is matching to a specific port number to mimic an independent machine in
a real Galaxy system. The total requests were evenly distributed into three servers where cach
server had about one third of total server instances to accept requests. The client invoked remote

procedure calls on those XML-RPC server instances running on the three servers simultaneously.

Table 3.3 shows the different response times for executing broadcasting commands to remote
machines. Three groups of tests were executed and it shows that the response times were quite
small when the number of nodes was below one hundred which is quite acceptable in real
situation. When number of nodes increased to 500. the response time was little longer at around
7.5 scconds. It is a little bit longer but still can be categorized to acceptable level. It needs more
than 40 seconds to broadcast to 1000 machines, this is quite long for normal users” tolerance, this
suggests that current Shell design will perform very well when simultaneously communicating
with up to 100 machines, and can perform in an acceptable level when the broadcasting nodes up

{0 500. Further than that, a long delay is expected.

Table 5.3: Response time of broadcasting in PlanetLab network

Machine I Test | Test 2 Test 3 Average
numbers (ms) (ms) (ms) {(ms)
I 71 83 70 77
10 101 112 119 111
100 656 988 712 785
500 7506 7403 7866 7592
1000 45556 48526 41256 45113

(Tested at Planet Lab at McGill University. three Linux nodes in the Planetlab overlay network were
chosen to be servers. the client is a Linux machine in the McGill computer lab which has access to internet.
The machine numbers are the number of XML-RPC server instances instantiated in the three server nodes.
these instances were evenly distributed among three server nodes. The three nodes are: node-
Limcgillplanctlab.org. nodea howard.edu. and planetlabl.cs.dartmouth.edu. which are physically located at

McGill, Howard and Dartmoutn Universities)

68

Fioure 5.6 shows the response time increase trend as the number of nodes are increased. it can be
seen that when the machine number is less than 100, the response time increase is quite slow.
which demonstrated a good scalability. and when nodes number was up to 300. the delay increase

is a little bit higher. after the 500 threshold. the response time increase jumped quickly.
Test1 —-Test2 ~—Test3

60000

50000

40000 -

30000

20000

Response time (ms)

10000

1 10 100 500 1000

Machine numbers

Figure 5.6: Scalability test in PlanetLab network

Although the full Galaxy system will hold thousands or millions of nodes, according to its RAN
organization, the Galaxy shell will only directly communicate commands to the “cluster” that is
allocated for a particular invocation. That is a shell won™t be required to communicate with all the
resources that are participating in the Galaxy system. There will be correspondingly large number

of invocations ol the Galaxy shells that are communicating with the nodes.

It needs to be pointed out that the scalability test is a based on an academic network, which may
not be able to reflect the complexity of the network in the real world. Since all machines in
Planctl.ab are Linuy machines with Redhat OS. which may not be able to represent the real
situation where Galaxy svstem may encounter. The bandwidth between nodes in PlanetLab is
quite broad due to the advantage of academic institutes” network system. while in the real world:
the network connection may vary very much from a telephone dialup to a high speed 11 cable.
Although there is some limitation, this test does show us some information about the scalabitity
of the Galaxy Shell. which is the threshold of parallel remote procedure calls. As Galaxy system

matures, more tests could be executed based on more “real” situations.

69

CHAPTER 6

CONCLUSION

Galaxy is a project that implements a public computing utility. It is used to explore solutions for
many problems commonly existing in a PCU system, such as scalability. fault tolerance, security
management. and resource management. Galaxy combines both P2P and Grid- computing ideas.
Galaxy neutralizes the resource providers and simplifies the resource collecting, organizing and
leasing work. Galaxy differs itself from other public computing utility by its core
commoditization concept. relaxed participation models and geographically scalable resource

management architecture,

Galaxy shell is at the service layer of Galaxy system, talks downward to the middleware level and
provides upwards an interface for the application level. Galaxy shell is a module in Galaxy
service layer provides providing searching. binding, allocating and consuming resources in the
resource pool. It eases the Galaxy research on sub layer organization. In a big picture, Galaxy
shell is composed by three modules, which are shell, local daemon and peer kernel. Shell is
responsible for sending requests either locally or remotely in the resource pool, local daemon is
running on each node inside Galaxy and accepting and processing commands sent from shell,
either locally or remotely: peer kernel is responsible for communicating with outside Galaxy

nodes. reporting and collecting information to and from GRMS.

Galaxy shell uses JavaCC to parse input commands to provide a clean, maintainable and
extensible syntax checking mechanism. XML-RPC protocol is used for remote communication
among distributed Galaxy nodes. Galaxy shell supports commands, which can be used to search.
bind resources according to both static and dynamic constraints: multicast and broadcasting are
also provided for supporting Galaxy GRMS research. Galaxy shell is small, which means it is
casy (o be download from Internet for a machine wanting to join Galaxy and get the Galaxy
Dacmon. Installing and using Galaxy shell is also straightforward as its commands are designed
to be similar to the normal Unix Shell we use everyday. From the tests executed at the Planet Lab
of McGill University. it can be seen that Galaxy shell performs very well for both internal and
external commands: the response times are quite fast and arc acceptable for human interactions.

from a human being’s view. Galaxy shell also demonstrates very good scalability in accordance

70

with the current Galaxy design goals. Thus it is suitable for supporting Galaxy research in the
future as well, Galaxy shell is also easy to be extended. the shell. parser, local daemon and peer
kernel modules provide a clear-cut organization which make it very easy to read, maintain,

change and extend.

Galaxy research is still going on, the core module of Galaxy, GRMS is still in conceptual design
phase, current Galaxy shell is designed and implemented based on current knowledge of GRMS,
thus the local daemon and pecr kernel modules are far from mature. However, Galaxy shell
creates a start for the future extension and revision. The basic framework is there and it is ready

for future Galaxy researchers to extend and revise,

Possible future research in Galaxy shell could be:
e Explore the local daemon design and implementation, including authentication and
sandbox. which should be integrated into the local daemon module of Galaxy shell
e [‘urther explore the remote procedure call process. make it more stable, reliable and
cfficient. local daemon should be able to guarantee a resource reservation, a process
suspension and resume control system is deserved to be explored

e Explore the peel kernel operation mechanism as the GRMS research goes deeper.

71

REFERENCES

1] Advanced Networking Research Lab. Galaxy Developers ' Journal,
www.cs.megill.ca/~anel/PROJECTS/devel journal.htinl

[2] Balasubramaneyam Maniymaran (2004), RAN Numing and Discovery, Department of
Electrical and Computer Engineering, McGill University, Montreal, QC. Canada, 2004

[3] Andrew W. Appel and Jens Palsberg, Modern Compileir Implementation in Java, Second
Edition. Cambridge University Press © 2002

[4] Ronald Mak, Writing Compilers and Interpreters, Second Edition, Wiley Computer
Publishing, 1996

151 D.P. Ghormiey, D. Petrou and S.H. Rodrigues, GLUnix: « Global Laver Unix for a Network
of Workstations, Software Practice and Experience. Vol 28(9), 1998:929-961,

http://now.cs.berkelev.edu/Glunix/glunix html

[6] C.M Tan, C.P. Tan and W.I-. Wong, Shell over a Cluster (SHOC): Towards Achieving Single
Svstem Image via the Shell, Department of Computer Science, National University of Singapore

[7] Allamaraju. Subrahmanyam et al, Professional Java Server programming: J2EE edition,
Wrox Press. 2000

I8] Project IXTA wwe jxia.org.

[91 Project Apache XML-RPC, hitp.iAws.apache. org/xmlirpe/

[10] Project JShell. htip:“homepage mac.com/pebeard/IShell/

[11] Project Java Compiler Compiler (JavaCCQ), https. /javace. dev. jova.net!

[12] Wrox Press. Making P2P interoperable: The Jxta command shell, Sept 2001

[13]S. Zhou, "LSF: Load Sharing in Large-scale Heterogencous Distributed Systems.” Proc. Of
Workshop of Cluster Computing, Dec 1992

[14] R. Dornfest. Leairning the JXTA Shell.
hitp://www.openp2p.com/pub/app2p/2001/04/25/lcarning_jxta_shell.html

[15]S. Oaks. B. Traversat, L. Gong., JATA in a Nutshell. O'Reilly Press. 0-596-00236-X, Sept.
2002.

[16] Project IXTA Protocols Specification, htip:Zspec.jxta.orgh 1 .O/docbook- JNTAProtocols. pdf.

[17] Bernard Traversat. Ahkil Arora. Mohamed Abdelaziz, Mike Duigou, Carl Haywood, Jean-
Christophe Hugly. Eric Pouyoul. Bill Yeager. Project JXTA 2.0 Super-Peer Virtual Nenvork,

[18] V. Sunderam. PYM: A Framework for Parallel Distributed Computing. Concurrency: pratice
and Experience. 2(4):315-339. Dec 1990,

[19]1 M. Baker. Cluster Computing White Paper.
http://www.des.port.ac.uk/~mab/tfee/WhitePaper/

[20] Andrew Birrell and Bruce Nelson. Implementing remole procedure calls. ACM Trans.
Computer Systems. 2(1): 39-59, February 1984

[21] Ma, M., Wang, C.. and Lau, F. Forthcoming. JESSICA: Java-enabled single-system-image
computing architecture. Journal of Parallel and Distributed Computing

[22] S. Ratnasamy. P. Francis. M. Handley, R. Karp, and S. Shenker, 4 Scalable Content
Addressable Nenvork. ACM SIGCOM, 2001.

[23] F. Dabek, E. Brunskill, M.F. Kaashoek. D. Karger, R. Morris, 1. Stoica. and H. Balakrishnan,
Building Peer-io-Peer Systems with Chord, a Distributed Lookup Service, 2001,

[24] Thomas E. Anderson, David E. Culler, David A. Patterson, and the NOW Team. 4 Case for
NOW (Networks of Workstations). |EEE Micro, February 1995.

[25] Andrea C. Dusseau. Remzi H. Arpaci, and David E. Culler. £ffective Distributed Scheduling
of Paraliel Workloads. In Proceedings of the 1996 ACM SIGMETRICS Conference, 1996.

[26] Alan Mainwaring and David Culler. Active Message Applications Programming Interface
and Communication Subsystem Organization. Technical Report CSD-96-918, University of
California at Berkeley. October 1996.

[27] V. Sunderam. PVM: 4 Framework for Parallel Distributed Computing. Concurrency:
Practice and Experience. 2(4):315-339, December 1990.

[28] Songnian Zhou. LSF: load sharing in large-scale heterogeneous distributed systems. In
Proceedings of the Workshop on Cluster Computing, December 1992,

[291 M. E. Lesk and 5. Schmidt. Lex - 4 Lexical Anulyzer Generator.
hup: /Ao es.utexas. ediu/users/novak/lexpaper. him

[30] How lexers work. futp/Avww. cs.man.ac.uk/~pjizes 212 17ho/node 6. html

[31] The JavaCC FAQ. futp i, engr mn. ca/~theo/JavaCC-FAQ

[32] Java RMI & CORBA. a comparison of two competing technologies,
hitp e javacoffeebreak comsarticlessrot_corba

APPENDIX A

PARSER SEED FILE

Following is the tile Parser.jj which is the seed file being used to produce the lexical analyzer and

parser ot Galaxy Shell. this file is located at Package gshell parser.

options /|
LOOKAHEAD = 1:
CHOICE AMBIGUITY CHECK = 2;
OTHER AMBIGUITY CHECK = [;
STATIC = fulse;
DEBUG _PARSER = fulse;
DEBUG LOOKAHEAD = fulse;
DEBUG TOKEN MANAGER = false,
ERROR _REPORTING = true;
JAVA UNICODE ESCAPE = false.
UNICODE INPUT = false.
IGNORE CASE = tulse;
USER TOKEN MANAGER = false.
USER CHAR STREAM = false;
BUILD PARSER = tiue;
BUILD TOKEN MANAGER = true:
SANITY CHECK = tirue;
FORCE LA CHECK = false;

!
s

PARSER BEGIN(Parser)

package gshell parser,

A . . ook
. import juva.lil. =

import gshell*:
public class Parser |
public static void main(String args[]) throws Parse Exception |

Parser parser = new Parser(System.in);

parser Process();

PARSER _END(Parser)
void Process() .

Token 1;

A follovwing are temporary vars.

String built_in_command ="

¢ buill_in_

String external command = ""; // including "Is". "ed", and other executable file names
String destination = " // rename "domain' to "destination” for avoiding naming conflict

i,

String attr_constrainl =
mnir,

String tvpe constraing =

e

String dvnamic _constrainl = "": // for string connection

String other parameter =" // for string connection
e,

String node _range constraint =

int node _number constraint = 1.

[= <domain>

/
¢

destination = timage; // If more than one domain occurs. the last one override previous

. onels)

74

i <attrConstraint=

/
{

atly_constrainl = (image:

!
J

t = <wvpeConstraint™>

J
!

Ivpe _constrainl = Limage.

¢
!

1 = <loadConstraint>

/
¢

dvnamic_constrainl += rimage:

"o,

dyvnamic _constraint +=
|
|
{ = <proximitvConstraint>

/
¢

dvnamic _constraint += Limage;

AN

dvacimic _constraint £=

!
’

1= <speedConstraint >

/
!

dynamic constraint += t.image:
cvnamic _consiraing +="";

4
/

1= <gosConstraint>

/
¢

dvnamic constraint += t.image:
dvnamic _constraint += """

!
J

75

{ = <peservationConstraint™>

i/
!

dynamic_constrainl += image;
dyvnamic_constraint += """

!
s

t = <desiredThroughput™>

/
!

dynamic_constraint += Limuage;

dvnamic _constraint += """

¢
/

(= <commonDashParameter>

/
¢

other _parameter += timuge:
other parameter +="",

1
!

(= <commonWeirdParameter>

!
¢

other parameter = timage:

()//7@/‘77/7(1/'((/)70“)/- 4o 1 /r;

!
s

1 = <nodeNumberConstraint>

!
{

node_number constraint = Integer.value Offt.image

¢
!

1= <wildeard>

/
!

other paramerer += timage.

76

substring(4)) intValue():

"o,

other _parameter -+

!
!

|
1

(= <idWithWildcard=

other parameter += Limage;
frotr.

other parameter +-=

!
!

= <nodeRangeConstraint >

/
!

node range constrainl = (image:

!
f

\
1= <id>

/
!

String s = Limage,
it built in command ==""&& external_command =="")) [// command already exisis
other parameler +=s;
other_parameter +="":// sepearate by white space for convinence
}else '/ no any command yet
if (s.cqualsignoreCase("lstvpe”))
huilt _in_command = "Istype”:
it (s.equatsienoreCase("lshind”))
built_in_command = "Ishind";
it'(s.equalsienoreCase("bind"))
built_in command = "bind";
it (s.equalslenoreCase("unbind"))
built _in_command = "unbind":
it (s.cqualsienoreCase("setdomain'))
built_in_command = "setdomain”,
it (s.equalsignoreCase("getdomain’))
built _in_command = "gerdomain;

if (s.equulsignoreCase("setnode”))

77

built in _command = "seinode "
it'(s.cqualslenoreCase("getnode™))
built_in_command = "geinode";
if (s.equalslgnoreCase("settvpe))
built_in command = "seltvpe™:
if (s.cqualsignoreCase("gettvpe"))
huilt _in_command = "getivpe”:
if (s.equalslenoreCase("setattr”))
built in_command = "setattr’;
if ts.cqualsignoreCase("getallr"”))
huilt in_command = "gelatir’™:
it (s.equalslgnoreCase("defivpe"))
built _in_command = "defivpe”:
it thuilt _in_command == "") // not a built-in commend

external _command = s. // now it is an external commmand

!
s

!
/

<EOF>)

JE A <endOfCommcand=

f
¢

it (dvnamic constraintlength() > 0) [
dvnamic_constraint==dvnumic_constraint.substring(0,
dvnamic_constraint length() - 1);

!
/

if (other parameter.length() > 0)]

other_parameter = other_parameter.substring((). other _parameter.length() - 1):

Srequrn parse result by setiing shell parameters
ashell.built _in_command = built in_command:
ashell.atir_constraint = aur _constraini.
gshell.type consiraint = tvpe_constraini;

gshell.dvnamic_constraint = dvnamic_constraini;

78

ashell node number _constraint = node_number _constraint.

ashell node range constraint = node _range_constraint:

ashell.external _command list.add(external _command); 7/ ahvavs add
ashell destination list.add(destination) .

ashell.other parameter list.addtother _parameter):

!

lexical specification begin here
TOKEN :

<](/ [”U " N‘___ VI‘ N/l " ”Z'i/ ([”(1 ”"_ H: Iry ”/1 "”_ ”Z”‘ H() " /!9 !y) sk >

\
< pum: (["0"-"9"])-+ >

|
CvalidNumOfNodes: ["'T"-"9"l(<num>)? >

i
")

< relationOp: ("& & |
o /()‘(\r]("()/7 (”‘:i ”“ H:~; N‘ N'<: — ”‘ N\/\/ _ H‘ H:.: //‘ VI\,: "> //) >

< relationPair: <id><logicOp>(<id>'<num=>(<jd>)?) >

< atlribute: <relationPair>(<relationOp><yelationPair>) * >

avildeard: ("F 212

"o~

< dot:

< AdWithWildeard: (<domainld>)+ >

< domcainld: (<id> <wildcard>) >

79

"ot

< domain: (<domainld>":"<domainld>

1"

<domainld>|"@"<id>) >

< commonDashParameter: "-"<id> >

< commeonWeirdParameter: ¢ " <id><id>)? <swildeard> (<id>)?|(<id>)?<dor>(<id>)?) >

< attrConstrraint: ("--a’) 0" ") F<ariribute> >

< pepeConstraint: ("=t) E<id> >
A

< AoadConstraint: ("=-1")(" ")*("heavy"| "medium"| "low") >

desiredThroughput: ("--dt") (")5 "heavy”| "medium " "low ") >
< gosConstraint: ("--g") (" ")E"D A BY B>

< reservationConstraint: ("--r")(" ") *<validNumOfNodes> >

" -

"medium"|"close”) >

|

< proximitvConstraint: ("--p")i(")<’

< wspeedConstraint: ("--s")0")R fast” | "medium ") 'slow ") >

< nodeRangeConstraint: <id>"{"<validNumOfNodes>"-"<validNumOfNodes>"]" >
< nodeNumberConstraint: ("--n")(" ") *<validNumOfNodes> =

ot

< endOfCommand: (""" e

SKIP .

oty
! |

30

APPENDIX B

SOURCE CODE DESCRIPTION

Following is a high-level description ot the source code of Galaxy shell. Galaxy shell
implementation is composed by three components. which are shell. local daemon and peer kernel,
shown as Figure B.1. The gshell package contains classes to compose the graphic shell interface,
it also has a sub package named parser, which contains classes tokenizing and syntax checking
input commands from the shell intertace. The localdacmon package contains classes provide
Galaxy services: a developer can add new services into this package by creating new classes. The
peerkernel package contains classes for supporting kernel service of'a Galaxy node, such as
profiling network information. Figure B.2 shows the classes in the three sub packages. A detailed

explanation of the classes in these packages can be referenced in Chapter 4.

Figure B.1 Galaxy shell implementation architecture

eEsieption java

Simplec
* Token javs
< TokentorError @
“hontlshell java

L Grepinputstream.iays
Locallaemaon java
* LocalDaeman_defs

SErer java

& s

#2 N)
. - ¥ LocalDaeman_mmimi,

< Edtendatiec i T - o
PO - Locallaesmaon_willy] rournentException java
i};,‘. ¥

& ¥ merm

. 5 i

£ Dutput . I, -

P i

*o Shell : o tirme sefh

* ML unbind java

© ThreadediCommand java

Figure B.2 Classes list in three sub packages

81

A Java document was created for users™ convenience, a snapshot of this document is shown in

Figure B.3. where the hierarchy of all packages is shown (partially due to the screen limitation).

Overview Fackage Class BEEEY Deprecated Index Help
PRES NEST ERAMES MO ERAMES.

Hierarchy For All Packages

Package Hierarchies:

AMenuontainer javaio Seralizable)

sitiflity Accessitle,

(1]
1 Testirea
ellConsole

Figure B.3 Snapshot of Java Document of Galaxy shell project

For the detail information for each class or methods in these classes. please refer to Chapter 4 or

go through the documentation and click corresponding links.

