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ABSTRACT

With the recent progress in both computer technology and systems biology, it is now possible to

simulate and visualise biological systems virtually. It is expected that realistic in silico simulations

will enhance our understanding of biological processes and will promote the development of effective

therapeutic treatments. Realistic biochemical simulators aim to improve our understanding of bi-

ological processes that could not be, otherwise, properly understood in experimental studies. This

situation calls for increasingly accurate simulators that take into account not only the stochastic na-

ture of biological systems, but also the spatial heterogeneity and the effect of crowding of biological

systems. This thesis presents a novel particle-based stochastic biological simulator named Grid-

Cell. It also presents a novel VLSI architecture accelerating GridCell between one and two orders of

magnitude. GridCell is a three-dimensional simulation environment for investigating the behaviour

of biochemical networks under a variety of spatial influences including crowding, recruitment and

localisation. GridCell enables the tracking and characterisation of individual particles, leading to

insights on the behaviour of low copy number molecules participating in signalling networks. The

simulation space is divided into a discrete 3D grid that provides ideal support for particle collisions

without distance calculations and particle searches. SBML support enables existing networks to be

simulated and visualised. The user interface provides intuitive navigation that facilitates insights

into species behaviour across spatial and temporal dimensions. Crowding effects on a Michaelis-

Menten system are simulated and results show they can have a huge impact on the effective rate

of product formation. Tracking millions of particles is extremely computationally expensive and in

order to run whole cells at the molecular resolution in less than 24 hours, a commonly expressed

goal in systems biology, accelerating GridCell with parallel hardware is required. An FPGA archi-

tecture combining pipelining, parallel processing units and streaming is presented. The architecture

is scalable to multiple FPGAs and the streaming approach ensures that the architecture scales well

to very large systems. An architecture containing 25 processing units on each stage of the pipeline

is synthesised on a single Virtex-6 XC6VLX760 FPGA device and a speedup of 76x over the serial

implementation is achieved. This speedup reduces the gap between the complexity of cell simulation

and the processing power of advanced simulators. Future work on GridCell could include support

for highly complex compartment and high definition particles.
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ABRÉGÉ

Grâce aux récents progrès en informatique et en biologie, il est maintenant possible de simuler et

de visualiser des systèmes biologiques de façon virtuelle. Il est attendu que des simulations réalistes

produites par ordinateur, in silico, nous permettront d’améliorer notre connaissance des processus

biologiques et de favoriser le développement de traitements thérapeutiques efficaces. Les simula-

teurs biologiques visent à améliorer notre connaissance de processus biologiques qui, autrement, ne

pourraient pas être correctement analysés par des études expérimentales. Cette situation requiert

le développement de simulateurs de plus en plus précis qui tiennent compte non seulement de la

nature stochastique des systèmes biologiques, mais aussi de l’hétérogénéité spatiale ainsi que des

effets causés par la grande densité de particules présentes dans ces systèmes. Ce mémoire présente

GridCell, un simulateur biologique stochastique original basé sur une représentation microscopique

des particules. Ce mémoire présente aussi une architecture parallèle originale accélérant GridCell

par presque deux ordres de magnitude. GridCell est un environnement de simulation tridimen-

sionnel qui permet d’étudier le comportement des réseaux biochimique sous différentes influences

spatiales, notamment l’encombrement moléculaire ainsi que les effets de recrutement et de locali-

sation des particules. GridCell traque les particules individuellement, ce qui permet d’explorer le

comportement de molécules participants en très petits nombres à divers réseaux de signalisation.

L’espace de simulation est divisé en une grille 3D discrète qui permet de générer des collisions entre

les particules sans avoir à faire de calculs de distance ni de recherches de particules complexes. La

compatibilité avec le format SBML permet à des réseaux déjà existants d’être simulés et visualisés.

L’interface visuelle permet à l’utilisateur de naviguer de façon intuitive dans la simulation afin

d’observer le comportement des espèces à travers le temps et l’espace. Des effets d’encombrement

moléculaire sur un système enzymatique de type Michaelis-Menten sont simulés, et les résultats

montrent un effet important sur le taux de formation du produit. Tenir compte de millions de

particules à la fois est extrêmement demandant pour un ordinateur et, pour pouvoir simuler des

cellules complètes avec une résolution spatiale moléculaire en moins d’une journée, un but souvent

exprimé en biologie des systèmes, il est essentiel d’accélérer GridCell à l’aide de matériel informa-

tique fonctionnant en parallèle. On propose une architecture sur FPGA combinant le traitement

en pipeline, le fonctionnement en mode continu ainsi que l’exécution parallèle. L’architecture peut

supporter plusieurs FPGA et l’approche en mode continu permet à l’architecture de supporter
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très grands systèmes. Une architecture comprenant 25 unités de traitement sur chaque étage du

pipeline est synthétisée sur un seul FPGA Virtex-6 XC6VLX760, ce qui permet d’obtenir des gains

de performance 76 fois supérieurs à l’implémentation séquentielle de l’algorithme. Ce gain de per-

formance réduit l’écart entre la complexité de la simulation des cellules biologiques et la puissance

de calcul des simulateurs avancés. Des travaux futurs sur GridCell pourraient avoir pour objectif

de supporter des compartiments de forme très complexe ainsi que des particules haute définition.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Proposed Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Previous Papers and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Qualitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 General-Purpose Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Ordinary Differential Equation Solvers . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Stochastic Simulation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Characteristics of Modern Simulators . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Modern Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Problematics of Cell Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Hardware Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Previous Hardware Implementations . . . . . . . . . . . . . . . . . . . . . 23

2.6 SBML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Algorithm for a Stochastic Particle-Based Biological Simulator . . . . . . . . . . . . . . 27

3.1 Movement Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Compartments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Reaction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Simple Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Large Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Reversible Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 User Interface Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 SBML Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Initialisation of the Simulation Space . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

- vi -



3.8.1 Simple Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8.2 Michaelis-Menten Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.3 Crowding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8.4 Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.5 3-Stage MAPK Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Architecture for a Stochastic Particle-Based Biological Simulator . . . . . . . . . . . . . 51

4.1 6-Stage Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Movement Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Movement Processing Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Movement Voxel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Ports Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.3 Probability of Movement Memory Block . . . . . . . . . . . . . . . . . . . 59
4.4.4 Input Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.5 Behavioural Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.6 Output Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.7 Pipelining of the Movement Phase . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Random Number Generation with LFSRs . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Movement Buffer Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.1 Movement Buffer Voxel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Reaction Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Reaction Processing Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 Reaction Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10 Reaction Voxel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10.1 Ports Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10.2 Input Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10.3 Behavioural Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.10.4 Output Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.11 Reaction Buffer Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.12 Reaction Buffer Voxel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.13 General Update Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.14 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.14.1 XC6VLX760 Xilinx Virtex 6 Device . . . . . . . . . . . . . . . . . . . . . . 75
4.14.2 FPGA Synthesis Resources Utilisation . . . . . . . . . . . . . . . . . . . . 75
4.14.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.14.4 Scaling Properties and Bottlenecks . . . . . . . . . . . . . . . . . . . . . . 77

5 Future Research Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Complete VHDL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Scaling to Multiple FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Possible Improvements to GridCell . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Limitation of Current Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Implementation on Different Architectures . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Next Generation GridCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

- vii -



LIST OF TABLES
Table page

2–1 Spatial Simulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2–2 One of the 256 transition rules φ of an ECA. In this specific case, ECA 177. . . . . . 20

3–1 GridCell performance versus system size. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3–2 GridCell performance versus number of voxels. Zero particles. . . . . . . . . . . . . . 37

3–3 GridCell performance versus number of particles. 106 voxels. . . . . . . . . . . . . . . 37

3–4 GridCell performance versus the average number of reactions. . . . . . . . . . . . . . 38

3–5 Simulation parameters for the crowded system. . . . . . . . . . . . . . . . . . . . . . . 45

4–1 Input/output ports of the movement voxel. . . . . . . . . . . . . . . . . . . . . . . . . 58

4–2 Description of the movement task field. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4–3 Fields of a voxel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4–4 Input/output ports of the reaction voxel. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4–5 Description of the reaction task field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4–6 Resource utilisation of the XC6VLX760 FGPA. . . . . . . . . . . . . . . . . . . . . . 76

4–7 Throughput and gains of performance of the architecture. . . . . . . . . . . . . . . . . 76

- viii -



LIST OF FIGURES
Figure page

1–1 The 27 different directions of the D3Q27 grid. . . . . . . . . . . . . . . . . . . . . . . 3

2–1 Representation of two different two-dimensional r = 1 neighbourhoods a) the Von
Neumann neighbourhood and b) the Moore neighbourhood. The active cell being
updated is shaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2–2 Update of the states of the ECA following the transition rule described in Table 2–2. 20

2–3 Space time diagram demonstrating the aperiodic pattern of the ECA 124. Cells in
state 1 are illustrated in black while cells in state 0 are white. . . . . . . . . . . . . 21

3–1 Brownian random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3–2 Diffusion in GridCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3–3 GridCell user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3–4 Comparison between GridCell and SSA for the reaction A+B ↔ C. . . . . . . . . . 43

3–5 Comparison GridCell and the dimensionless SSA for a Michaelis-Menten system. . . 44

3–6 Effect of crowding on Michaelis-Menten product formation using GridCell. . . . . . . 45

3–7 Top view of the simulation structure. Red area indicates location of the substrate,
blue areas indicate the locations of the enzymes and yellow areas indicate the inert
particles forming the porous membrane. . . . . . . . . . . . . . . . . . . . . . . . . 47

3–8 Top view contour plot of substrate concentration at t = 0, t = 2, t = 6 and t = 10. . 48

3–9 Top view contour plot of product concentration at t = 0, t = 2, t = 6 and t = 10. . . 48

3–10 Concentration of the same Michaelis-Menten system under two different conditions.
S and P consider localisation effect, Swm and Pwm assume a well-mixed solution. 49

3–11 Schematic view of the MAPK cascade from [23]. MAPKKK is activated by E1 (the
input) into MAPKKK*, which stimulates the MAPKK to phosphorylise twice. The
doubly phosphorylated MAPKK-PP promotes the phosphorylation of the MAPK
and MAPK-P protein. MAPK-PP is considered the end of the chain and the output
of the system. P’ase denotes phosphatase and promotes the dephosphorylation of
the kinases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3–12 Steady state response of the 3-stage MAPK cascade. . . . . . . . . . . . . . . . . . . 50

4–1 Side view of the 6-stage engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4–2 Voxel arrangement of the input and output ports on a buffer plane. . . . . . . . . . . 53

4–3 Voxel arrangement of the input and output ports on a processing plane. . . . . . . . 53

4–4 Arrangement of a 2x2 movement processing plane containing 4 MPEs. . . . . . . . . 54

- ix -



4–5 Architecture of the movement processing engine . . . . . . . . . . . . . . . . . . . . . 55

4–6 Update process of the MPEs. The red squares represent the neighbourhood of the
voxels currently processed. By processing the same internal voxels, it is ensured
the neighbourhoods of the updated voxels do not intersect. . . . . . . . . . . . . . 56

4–7 High level organisation of the movement voxel. . . . . . . . . . . . . . . . . . . . . . 57

4–8 Architecture of the probability of movement memory block. First block receives
the species type and output the address of the first element and the number of
elements N belonging to that species to the second block. The second block reads
the address and output the next N following entries. The selector compares the
compartment values and if a match is found, outputs the corresponding probability
of movement value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4–9 Structural view of the distributed interleaved memory block with four distinct mem-
ory banks. A front layer of multiplexors selects the right index for each memory
bank based upon the values of the least significant bits of the address. A back-end
layer of multiplexors reorders the data from the memory banks to the output. . . . 62

4–10 Example showing voxel 3 performing a movement order to the NW direction. The
voxel forwards the task to voxel 2 to the west and to voxel 1 to the north. In the
next clock cycle, voxel 1 and voxel 2 both forward the task to voxel 0 to the west
and north respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4–11 Architecture of the reaction processing engine . . . . . . . . . . . . . . . . . . . . . . 68

4–12 An example of a 2D broadcast search. Voxel S is searching for a specific species
type in its neighbourhood; the matches are designated by the M notation, while
Xs are mismatches. On step 1, S is sending a broadcast search to its four direct
neighbours (blue arrow). On step 2, the west and east voxel, which are both
matches, reply with a match found signal (green arrow). The north and south voxel,
being mismatches, forward the broadcast search to the last layer of neighbours. On
Step 3, S reacts, preventing any other reaction from happening during this time
step, and sends a confirmation (red arrow) to the east voxel since it is higher on the
priority list than the west one. The northwestern and northeastern voxels reply to
the north voxel that a match has been found. On step 4, the east voxel reacts and
the process is finished. S ignores the second wave of reply from the north since it
has already reacted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4–13 Pipeline movement over multiple iterations to update the full simulation space. After
each iteration, more and more of the simulation space is processed. In this example,
it would take roughly nine iterations to cover the full space. Top view of the xy
plane is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5–1 Schematic view of the dual buffering technique. . . . . . . . . . . . . . . . . . . . . . 80

5–2 Zone partitioning with multiple FPGAs working in parallel. In this example, we
assume four FPGAs and one CPU. The simulation space is divided into four equal
parts for each FPGA and a central buffer zone updated by the CPU (shaded area).
Each FPGA starts by processing the portion of their zone closest to the centre of
the simulation space (iteration 1). During iteration 2, the FPGAs update a nearby
zone adjacent to the buffer zone, denoted by 2, while the CPU can start updating
the voxels in the buffer zone 2. After the 7th iteration, all voxels in the buffer zone
can be updated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

- x -



CHAPTER 1
Introduction

1.1 Systems Biology

Computational cell biology is currently one of the most exciting cross-disciplinary areas of

research [31]. An ambitious, long term goal of this field is to produce accurate simulations of

biological cells with molecular resolution. This task has two major challenges: 1) the construction

of accurate biological models and 2) the development of scalable simulation architectures. Efforts

towards realising these objectives are expected to support therapeutic drug development against

human diseases by increasing our understanding of biological systems.

In order to construct a model that is as accurate as possible, the simulator has to be compatible

with several key aspects of molecular systems. First, biological systems are inherently stochastic and

spatially dependent. Second, it is well known that molecules behave with Brownian dynamics [27].

Also, the functionality of certain proteins known as enzymes is limited by the rate of diffusion in the

solution medium. An important aspect to this functionality has to do with the mobility of particles

in what is increasingly believed to be a crowded environment [35]. Importantly, certain cellular

responses occur as a result of single or few particle fluctuations, and this precludes the modelling

of systems with continuum dynamics. Finally, the effect of spatial localisation is expected to play

an important role in the behaviour of the system [31]. The idealisation of a “well-mixed” system

is unlikely to reflect biological reality, where molecular complexes form scaffolds of recruitment for

cellular signalling and metabolism. Indeed, stochastic and spatial considerations are necessary for

realistic in silico simulation of biological cells.

Another key aspect that is required to build an accurate model is to possess enough biological

knowledge to be able to describe with enough details the behaviour of the system. Such information

is rarely totally known and often slow and difficult to acquire. As such, the general approach relies

on formulating hypotheses and validating results in silico with known experimental facts. By using

the knowledge acquired from simpler and smaller system, it is possible to build larger and more

complex simulations to achieve a better understanding of the biological processes in a living cell.

Simulating a biological cell at the molecular level implies dealing with millions of particles

moving, reacting and colliding with each other, often simultaneously. It also implies having to

- 1 -



1.3. Motivation

handle thousands of different reactions in different compartments. Consequently, the simulator

has to be efficient and scalable. One key aspect that can be used to improve the scalability of

the system is to exploit the fact that while particles close to each other are dependent, they only

influence particles in their neighbourhood and, therefore, particles that are far away are independent

and can be processed concurrently. An extremely computationally expensive problem with a large

amount of independent data is a situation which applies to several other fields, such as video

graphics processing, traffic simulations [53], particle physics, molecular dynamics [4][11], and more.

The traditional solution to these problems is to implement those algorithms on massively parallel

platforms such as graphic processing units (GPUs), field programmable gate array (FPGA) devices,

supercomputers and computer clusters.

1.2 Motivation

The simulation of discrete, stochastic, spatially-dependent molecular systems is extremely com-

putationally expensive and current simulators can not support all of these characteristics without

being too slow to be usable on large systems. In addition, molecular crowding, which is believed

to have a large impact in biological networks, requires a microscopic representation of the parti-

cles as well as collision detection between particles. This feature is rarely supported by the recent

simulators due to its high computational cost, and most simulators have opted for a dimensionless

representation of the particles.

Hardware acceleration might close the gap between the high computational cost of cell simula-

tion at molecular resolution and the processing power of current computers. Many algorithms which

can benefit from parallel computing have gained speedups between one and two orders of magni-

tude when ported to FPGA architectures. While some simulators are planning to accelerate their

algorithm over multiple computers, the massively parallel approach has not yet been fully explored.

Moreover, no stochastic and spatial simulators have yet been designed with parallel computing in

mind, nor been implemented in a massively parallel environment.

This is why we present GridCell, a stochastic, spatial, particle-based simulator with a highly

scalable architecture.

1.3 Proposed Research

We developed GridCell to simulate biological models with specific considerations for stochas-

ticity, locality, and collision [7][6]. GridCell is based on a simplified model for molecular movement

and interaction. The organisation of the space is heavily based on the cellular automata model

which is inherently heavily parallelisable. It uses a discrete three-dimensional cubic grid based on
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Figure 1–1: The 27 different directions of the D3Q27 grid.

the D3Q27 model often used in the application of the Lattice-Boltzmann Method (LBM) [59]. Each

discrete location of the grid, called a voxel, has access to itself and its 26 neighbours and is indepen-

dent of the other voxels outside this immediate neighbourhood. Figure 1–1 shows the 27 different

locations accessible to a voxel from a D3Q27 grid. The integer-addressed 3D grid avoids floating-

point computations and distance calculations, resulting in an efficient implementation. Molecules

are represented as particles that move and react stochastically within discrete volumes in discrete

time steps. Collisions and molecular crowding are enforced since only one particle can occupy a

given location at any time. GridCell stores the coordinates of all the particles on the 3D grid at

every turn, thereby enabling individual particle tracking in both space and time. An OpenGL user

interface shows the particles in the 3D space and plots concentration and surface graphs. GridCell’s

biological models are written and stored by following the standard Systems Biology Markup Lan-

guage (SBML) already used by several hundreds of other applications. Spatial information of the

system which is not inherently supported by the SBML format is entered into GridCell with specific

custom annotations. The state of the systems can also be saved in a tab delimited text file to be

used by other tools for analysis and imaging. The algorithm provides biologically valid results for

well-mixed systems and provides additional insight in crowded and spatially heterogeneous systems.

GridCell performance is tightly linked to the number of voxels in the simulation space. The

software simulator can currently support a maximum of 107 voxels/particles which is not enough

to simulate structures as complex as a complete cell at a molecular resolution, the long-term goal
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of GridCell. However, the simple and regular algorithm of GridCell, which does not require any

searches or complex operations, is a prime candidate for acceleration by parallelisation. An FPGA

architecture was developed and is presented in Chapter 4. The architecture benefits from the

regularity, simplicity and independence of non-adjacent particles to process several particles at the

same time using multiple processing elements. The throughput of the pipelined architecture is

larger by almost two orders of magnitude compared to the serial implementation of the algorithm.

This large acceleration closes the gap even further between full cell simulations at the molecular

resolution and current available processing power.

1.4 Outline

This thesis is divided in several chapters. Chapter 2 provides an overview of the research done

over the past 40 years in systems biology. From the early qualitative models to the deterministic

solvers, to the stochastic simulation algorithm (SSA) and, finally, the latest spatial simulators. The

origins and uses of the highly parallel cellular automata model, which GridCell is based upon, is

also reviewed. The popular parallel platforms that can be used to accelerate GridCell are also

described, as well as a brief overview of the literature on some applications previously accelerated.

The details of the GridCell’s algorithm are described in Chapter 3, along with a description of its

user interface, the format of the input biological models and results from biological simulations

under various conditions. Chapter 4 describes the details of the 6-stage pipeline of the FPGA

implementation of the algorithm. The results from the parallel architecture are provided, showing

large increases in performance. Chapter 5 mentions the future work that can be performed on either

the software, the algorithm itself or the very-large-scale integration (VLSI) architecture. Chapter

6 concludes the thesis by reviewing the current situation of systems biology along with what can

be expected in the near future.

1.5 Previous Papers and Contributions
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(USA), July 2007, pp.794-801.

4



1.5. Previous Papers and Contributions

3. L. Boulianne, M. Dumontier, W. J. Gross. GridCell :A Stochastic Particle-Based Simulator,
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mentation (SIPS 2005), Athens, Greece, November 2005, pp. 750-755.

2. L. Boulianne, W. J. Gross. DSP Implementation of a Soft-Decision Reed-Solomon Decoder,
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CHAPTER 2
Background

Biology is the natural science studying life, which is the study of self-replicating processes.

Living organisms have the ability to grow, reproduce, adapt and evolve. Biology is one of the most

diverse fields of study and is divided into many subbranches which all focus on a specific aspect of

life, including anatomy, biochemistry, ecology, genetics, neurobiology, cell biology, bioinformatics,

systems biology and many more. Biology is mainly an experimental science as the evolutionary

processes of living organisms are not yet understood well enough to allow for theoretical advances.

The recently acquired knowledge on how life grows, sustains and replicates created a large

impact on the life of mankind. Advances in alimentation, drug development, hygiene, medicine and

surgical procedures have made it possible to live longer, healthier and created new possibilities of

recovering from and preventing injuries, diseases and malformations. The health sector, which is

mostly derived from the knowledge acquired in biology, is one of the biggest industry of developed

countries. For example, Canada spends more than 10% of its total Growth Domestic Product

(GDP) on Health Care, which corresponds to more than 30G$ per year, while the pharmaceutical

and medicine manufacturing industry alone is generating sales larger than 5G$ [46]. Even with all

the investments and energy spent in the general field of biology, the overall knowledge of the living

processes is fairly limited and a lot still needs to be understood, discovered and recorded. The recent

technological advances of computers and measurement and imaging tools allow the development of

new models which can provide a better understanding of the processes inherent to life. These new

tools and models are believed to support therapeutic drug development.

2.1 Qualitative Models

Prior to the recent technological advances in the field of computing, the use of qualitative

models to describe biological processes was common (and it still is). Some examples of qualita-

tive models include graphs, laws, diagrams, relationships, Bayesian inference, stoichiometric and

constraint-based modelling and several others. The main advantages of these qualitative models

are that they usually do not require extensive calculations nor extensive biological background in

order to provide additional insights on a particular biological network.
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2.2 Systems Biology

Systems biology is the quantitative study of biological systems [50]. It is a new branch of

biology that has been made possible by the recent technological advances and with the arrival of

extremely large amount of biological data gathered with new tools over the last 15 years. Systems

biology is in a state called data-rich but hypothesis-poor, which means that a lot of biological data

is available, but not much understanding of biological processes is made out of it. Even in this state,

most data required to completely describe the elements of a given system is still unknown or not

yet recorded. This is why a purely reductionist approach has not been successful. In order to get a

better knowledge of biological systems, neither a purely deduction nor a purely induction approach

can be used. Instead, an iterative cycle, named the cycle of knowledge in [50] is more appropriate.

This circle iterates over two different stages. The first one builds from limited knowledge and ideas

to create an hypothesis, then performs an analysis to generate new data and observations. These

newly acquired data and observations are then synthesised through an induction process into new

knowledge and ideas. The cycle can then start over with this newly acquired knowledge. The use of

mathematical analysis and computer simulations can demonstrate that a given hypothesis is either

valid or invalid and can provide quantitative data used for future experimental exploration. As

such, they are an important element of the iterative process of the circle of knowledge.

The new processing power and knowledge of cell mechanics formed a new branch in systems

biology called computational cell biology. Computational cell biology explores the dynamic pro-

cesses of the living cells. One key characteristic of these processes is that even the simplest ones are

extremely complex and are inherently non-linear, which make them difficult to solve analytically.

Instead, numerical solutions, solved by mathematical models on computers have proven to be far

more efficient. These simulators have been an important tool in understanding biological mechanics

and in refining the kinetic model taking part inside living cells [13]. Virtual simulators can explore

hypothesises that are otherwise difficult or impossible to analyse in laboratory experimentation, and

they are also much cheaper to maintain and execute than actual laboratory experiments. Finally,

a commonly expressed goal in computational cell biology is to be able to run one-day simulation of

a whole cell at the molecular resolution [31].

2.3 General-Purpose Simulators

While many models were designed to target specific applications, such as DNA pattern match-

ing, protein folding molecular dynamics (MD), neuronal interconnections, ca2+ ions dispersion

simulations and more, we are interested in the category of simulators described as general purpose
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simulators, which explores the middle-ground scale of the cell. General purpose simulators aim to

include as many details as possible to accurately describe the interactions between species inside a

cell while keeping the level of details as low as possible to keep the complexity at a reasonable level.

For example, modelling the molecular dynamics of particles in order to determine if a reaction is

successful is considered to take the bottom-end approach of exploring the behaviour of biomolecules.

While it is very accurate, the scale in size and time of current simulations is too small to encompass

the whole cell. Therefore, including this level of details is usually out of the scope of general purpose

simulators. Instead, most middle-ground simulators use the less complex and more general rate of

reaction coming from the law of mass action, which corresponds to the averaged behaviour resulting

from collisions between particles. On the other hand, modern simulators includes characteristics

such as stochastic events, tridimensional space and compartments as well as individual particle dif-

fusion movements, which are not usually included in the top-end simulation approaches exploring

the system-level behaviour of biological processes. General purpose simulators are probably the

best suited class of simulators able to capture the behaviour of a whole cell at molecular resolution.

The first general purpose simulators were fairly simple and many assumptions had to be made,

such as well-mixed assumptions, continuous concentrations, dimensionless compartments, etc. As

time passed and computer power and biological knowledge increased, characteristics such as stochas-

ticity, 3D space, diffusion, compartment geometry started to be included in recent simulators. We

will look at the popular general purpose biological simulators along with their principal character-

istics.

2.3.1 Ordinary Differential Equation Solvers

Chemical reactions have traditionally been simulated by solving a set of ordinary differential

equations (ODEs) as they are the inherent solution of well-mixed kinetics models [13]. Let’s take a

simple model representing a protein, which can be in either a closed or an open state. The kinetics

of such a model is usually described as

C ⇔ O, (2.1)

where C represents the closed state and O the open state of the protein. The bidirectional

arrow means the reaction (or the change of state) is reversible. A closed protein is assumed to

change to its open state at a given rate J+. Similarly the open protein closes at a rate J−. It

is assumed that a large number of proteins are present in the system and the rates represent the

average number of transformations per unit of time. The rates are determined by the value of the
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so-called ”law of action mass”, which comes from the early days of the studies of chemical kinetics

and stipulates that the number of reactions is proportional to the product of the concentration of

the reactants involved in the reaction multiplied by the rate constant. By defining the forward rate

constant as k+ and the reverse rate constant as k−, the corresponding overall rates are given by

J+ = k+[C] and J− = k−[O], where the brackets [] represent the concentration of the protein in

the corresponding state. By applying the law of conservation of mass, we can affirm that the total

number of proteins N is the sum of the closed proteins Nc and the open proteins No. Since Nc can

be expressed as Nc = N − No, solving the problem for No is also solving the problem for Nc. In

biological systems, the concentration can be measured in several different ways, such as in terms of

cell volumes, weights or raw numbers of molecules. Here, we define the concentration as the number

of particles in the given state over the total number of particles N so that [O] = fo = No/N . We

can also define the proportion of closed proteins fc = 1 − fo. Multiplying both concentrations fo

and fc with their respective rate constant k− and k+ provides the flux for each process, which

represents the change that each process makes for each state. We define the two fluxes with the

symbols j− and j+ so that

flux(O → C) = j− = k−fo (2.2)

flux(C → 0) = j+ = k+(1− fo). (2.3)

Both fluxes are linked together, and when one increases, the other decreases. The difference of

the two fluxes represents the change of fo over time.

dfo
dt

= j+ − j− = k+(1− fo)− k−fo = −(k− + k+)(fo − k+

k− + k+
) (2.4)

by substituing τ = 1
k−+k+ and f∞ = k+

k−+k+ , we get

dfo
dt

=
−(fo − f∞)

τ
, (2.5)

which is a classical differential equation of the type

dX

dt
=

−X

τ
. (2.6)

The solution to this kind of differential equation is well known and is of the type

X = Ce−τt, (2.7)
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where C is a constant. From there, finalising the equation by using the initial conditions of

the species solves the system for the concentration of open and closed proteins over time. This

simple model can be solved analytically. However, even though it is possible to describe complex

models as a set of differential equations, the solution is rarely obtainable analytically and numeric

methods are needed. Thus, ODE solvers have been among the first biological simulators. They are

fast and simple to use, and many systems have been successfully simulated with ODE solvers, such

as the Michealis-Menten kinetics, systems with feedback loops (positive and negative), oscillatory

networks and more. However, a lot of assumptions are made in order to create those differential

equations. First, it is assumed that a well-mixed system where particles are uniformly distributed

in a dimensionless compartment is used. The differential equations also assume there are enough

particles so that the changes in concentration are continuous. Also, if the system is stable, differ-

ential equations always converge toward the same deterministic solution. All those assumptions

are not reflecting the spatial organisation and chaotic behaviour of the particles within cellular

compartments.

Partial differential equation (PDE) solvers can be used to include the concept of gradient

concentration in the system. The state of the system is given as a density function with respect to

space, and as long as the scale of the space and the number of particles involved is large enough so

that the discrete properties of the individual particles can be neglected, they can provide informative

results. Reaction-Diffusion systems can be described with PDEs and localisation effects can be

observed at the cost of increased complexity. They are still used today by some simulators since

they can be fast, robust and are relatively easy to set up.

2.3.2 Stochastic Simulation Algorithm

As mentioned above, continuum representation of the system is appropriate as long as the

densities are large enough. In biological systems, the small populations of some reactant species

can produce randomness and discrete effects in the behaviour of the living cells that cannot be

reproduced by traditional ODE and PDE simulators. The importance of this noise in cellular

pathways has usually been underestimated and it is only recently that its importance became

apparent [38]. In order to explore this chaotic behaviour inside cells, a stochastic representation

of the system is required. The stochastic simulation algorithm from Gillespie [18] is the first

stochastic simulator created. The SSA uses a Monte Carlo (MC) strategy to solve the Chemical

Master Equation (CME) describing the state of a biological system. It is still a dimensionless

algorithm that assumes a well-mixed solution, as only the concentration of the species are tracked
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and not their location, but, unlike to ODE simulators, the SSA can produce stochastic effects.

The algorithm considers a system with N different species interacting with M different reactions.

x = X(t) = (X1(t), .., XN (t)) represents the vector containing the number of molecules of each

species at time t given that the vector was initialised to some non-zero value at time t = t0. The

array vij is defined as the stoichiometry matrix where each vector vj represents the change in

population of species i when reaction j occurs so that when reaction j fires, the state of the system

jumps to x+vj . aj(x) is defined as the propensity function containing the probability that reaction

j occurs within the next infinitesimal time dt given the state of the system x. Also, a0(x) is defined

as being the sum of all aj(x). For unimolecular reactions involving species i, aj(x) equals cjxi where

cj has the same numerical value as kj , the rate constant used in the conventional continuous case.

For bimolecular reactions involving species i and i2, aj(x) is defined as cjxixi2 where cj = kj/V

and V is the volume of the simulation space. The exact derivation of the update process from the

CME is described in [50]. The idea is that instead of trying to solve the full probability densities

described by the CME over time, which is impossible but for the simplest systems, the SSA follows a

numerical realisation of the CME. This numerical realisation is equivalent to taking a single possible

path out of the infinite number of states that are possible. By running the SSA multiple times and

saving all the results in a histogram, the probability density function can be approximated. The

selection of the reaction occurring at each time step τ is determined randomly, as well as the size

of τ . The update process requires two uniform random numbers between zero and one, r1 and r2.

The time step τ is inversely proportional to the value of a0(x) and is modified by a random factor

driven by r1, so that

τ =
1

a0(x)
ln(

1

r1
). (2.8)

The reaction j occurring during the time step τ is chosen by generating a uniform value between

0 and a0. The first reaction j where the sum of the propensity values from j1 = 0 up to j is larger

than the random number is chosen. The exact equation is

j = smallest integer satisfying

j∑

j1=1

aj1(x) > r2a0(x). (2.9)

The update of the SSA can be divided into 5 different steps:

• 1. Initialise t to t0 and x to x0.

• 2. Compute all the aj(x) as well as the sum a0(x).
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• 3. Compute the next τ and reaction j according to equations 2.8 and 2.9.

• 4. Update the system so that t = t+ τ and x = x+ vj .

• 5. Record the state of the system if needed and go back to step 2 if the simulation is not

finished.

This implementation of the algorithm is the original algorithm and is called the Direct Method

(DM). The major issue of the DM is that it is often very slow because the number of iterations

scales linearly with the number of reactions and the time step τ is inversely proportional to a0(x),

which is proportional to the size of the system. The Tau-Leaping method is an evolution of the

DM that advances through time by a preselected amount of time τ and processes several reactions

per time steps. The number of reactions taking place during this amount of time is estimated by

a Poisson random variable. The Logarithmic Direct Method (LDM) [33] is another version of the

SSA. These two adaptations of the SSA reduce the scaling issues of the original algorithm. The

SSA has been used to simulate many different systems and is still popular for simulation assuming

a well-mixed environment.

2.3.3 Characteristics of Modern Simulators

We discussed in the previous section that noise had an important effect on the signalling

pathways of living cell and why a stochastic representation of the system is optimal. An aspect

which is neglected with the SSA is the effect of protein localisation and mobility within the cell.

The SSA assumes a well-mixed solution with dimensionless compartments which makes abstraction

of molecular mobility and structural/compartmental effects. Macromolecular mobility in living

cells is affected by what is called the molecular crowding. Molecular crowding is believed to be

important in cellular organisms [16] and induces non-linear signal delays by causing anomalous

diffusion speeds of macromolecules. Anomalous diffusion speed is defined as being a sub-linear

scaling of mean-square displacement of the molecule over time [51]. This anomalous diffusion can

have a huge impact in systems where the reaction rates are faster than the diffusion speeds and

can modify the classical reaction kinetics. Limited mobility kinetics have been described as fractal

kinetics [45]. The macromolecular density of a typical cell is also much higher than typical in vitro

conditions, so even with laboratory experiments, it is hard to quantify and predict its effect. The

molecular density inside a living cell is also variable, which suggests that an explicit representation

of crowding effects would be superior to an implicit representation (which requires to manually

reduce the diffusion speeds and constant rates or artificially add physical constructs to hinder the

progress of particles). Beyond the mobility issues of macromolecules in cells, the idealisation of a
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well-mixed dimensionless system is unlikely to reflect biological reality where molecular complexes

form scaffolds of recruitment for cellular signalling. The physical locations of the molecules have to

be tracked, and tridimensional compartments should have an effect on the mobility and location of

the macromolecules in order to simulate molecular crowding and localisation effects.

In order to overcome some of the limitations of the SSA, namely, the well-mixed assumption

and dimensionless compartments, several new biological simulators have been developed over the

past decade. These simulators adopted different strategies to describe the biological models, each

having different pros and cons regarding accuracy, amount of details, ease of use and computational

complexity. We will look at popular strategies used regarding model geometry, and how movements

and reactions between species can be handled.

The integration of spatial effects can be implemented in many different ways. The simplest

in term of computational power is called the compartmental model where a set of non-spatially

resolved compartments are connected together. Flux of species can be set so that particles go in

and out of the various compartments. While it is possible to observe some compartmental effects,

it is impossible to track down the location of individual or group of particles as the compartments

have no defined shape. Therefore, diffusion or molecular crowding can’t be simulated.

Space can also be represented as a continuous volume limited by external walls where indi-

vidual particles or densities of molecules occupy a floating point location. Individual particles can

move following a Brownian random walk and react with nearby particles, while densities generally

use a deterministic diffusion scheme. Compartments can have theoretically any shapes, from re-

alistic models derived from experimental images to idealised models built with constructive solid

geometry (CSG), to analytical shapes described by mathematical expressions. The compartments

can also be constructed with meshes. This representation possesses a lot of flexibility and can rep-

resent the space geometry within living cells with high accuracy. However, the algorithm usually

needs floating point calculations, while intermolecular reactions have to go through a search or col-

lision detection algorithm to find nearby particles. This can increase the simulation computational

complexity. Exclusion volume calculation, together with collision detection, can be performed to

simulate crowding effects; it is however very expensive to do so and simulations with this amount

of details have been limited to small systems. Most simulators have opted for a dimensionless

representation of particles, which ignore molecular crowding effects.

The last type of space geometry is the lattice or discretised space. It is a quantisation of the

continuous volume space where a finite number of distinct areas (in 2D) or volumes (in 3D) form a
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grid containing all the possible physical locations. With a fine enough grid, the quantisation effects

can be ignored. The shape of the lattice can be almost anything from triangle and hexagons, to

squares, cubes and more. The shape of the lattice can have an impact on the simulation results

[54]. Structural compartments can be a discretised version of the continuous compartment and the

same techniques can be applied to construct them. Using an integer-based lattice space reduces

the need for floating point operations. Lattice space is also naturally compatible with cellular

automata (CA) algorithms which are described in section 2.5.1. CA have several advantages, such

as using a simple logic, being versatile and scalable, eliminating complex distance calculations by

limiting interactions between neighbouring sites, being naturally parallel algorithms and providing

simple collision detection schemes. The size of the lattice sites can be large enough to contain many

particles; this technique permits faster execution time and smaller memory requirements at the cost

of lower precision.

The species can be represented in three different ways. The first one is the microscopic repre-

sentation, where each molecule is represented as an individual particle occupying a specific location.

This is the most computationally expensive species description, but it is the one which provides the

most details, as it is possible to observe, follow and define the specific behaviour of each individ-

ual particle. This representation is needed to explicitly simulate crowding effects. The mesocopic

description represents species with populations of particles that are located at a specific location

inside a discrete space. This allows quicker simulation execution time at the cost of losing the abil-

ity to track individual particles. Finally, the last one is the macroscopic species representation of

particles, which describe the species as densities in a continuous space. This type of representation

is often used by PDE simulators. It works well with large populations but, as noted previously,

fails when dealing with smaller amounts of particles.

Unlike dimensionless algorithms, which only consider the concentration of the species, most

spatial simulators add the notion of locality or “neighbourhoodness” between two species before

triggering a reaction. In a continuous space with a microscopic representation of the particles, the

hard-sphere model is often used [49][37]. This model assumes that each particle occupies a given

spherical volume and that if two different particles are in touch with each other, the particles have

collided and a reaction can occur. The rate of successful reactions is derived from the macroscopic

rate of reaction. Similarly, in discretised space with a mesoscopic representation of the reacting

species, a collision is assumed when two particles occupy the same location. If a microscopic particle

representation is adopted, reaction occurs with neighbouring locations or membranes.
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It is well known that molecules behave with Brownian dynamics [27]. This Brownian random

walk leads to a diffusing behaviour of the particles that is based on the statistical law of Einstein-

Smoluchowski (more details are provided in Section 3.1.1). In a microscopic continuous space, it

is possible to emulate the Einstein-Smoluchowski equation with Gaussian random variables [37].

In a discrete space, particles jump to random nearby locations at a frequency determined by the

diffusion speed of the particles.

2.3.4 Modern Simulators

Once the geometry, species description, movement and reaction procedures are determined, the

algorithm must use the kinetic theory, the CME for stochastic algorithms and law of mass action for

deterministic models and apply diffusion (fick’s law) to translate the simulator into an actual valid

algorithm which has some biological relevance. Of course, depending on the approximations and

assumptions being made and the limitation in computation power (and appropriate data), some

simulators perform better for some specific models and applications than others. Following is a

quick overview of some of the most well-known and popular general purpose simulators along with

their principal characteristics. Table 2–1 describes the primary characteristics of some of the most

well-known and popular spatial simulators.

The Virtual Cell (VCell) [44] is a popular deterministic simulator solving PDEs with the finite

volume method to compute the concentration and location of every species. The simulation space

is divided into compartments that represent the cell spatial structure. The compartments can be

subdivided into smaller subvolumes to increase accuracy at the cost of larger computational time.

The software has a powerful user interface where the user can specify the topology of the cellular

structure, the geometric model, the simulation results and much more. The software uses its own

Virtual Cell Markup Language (VCML) to describe the models and has some compatibility with

SBML. VCell is used to describe a multitude of models with high accuracy such has the calcium

transport mechanisms of PC12 cells [12] or the spatial and temporal dynamics of chemotactic

networks [60]. It is one of the most scalable algorithms; it is however a deterministic algorithm that

can not simulate either stochastic or molecular crowding effects.

StochSim [30] has been developed as part of a study on bacterial chemotaxis as a way to explore

the stochastic effects of this signalling pathway. It has been later modified to become a general

purpose simulator. It is a stochastic simulator that tracks individual molecules on a discretised

2D grid. Species can be in different states such as phosphorylation, methylation, or other covalent

modifications which can affect the reaction rates of the molecules. Simple 2D structures can be
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created where nearest-neighbour interactions of molecules can be simulated. Work is currently done

to port the algorithm to a 3D grid.

MCell [49] is a stochastic simulator tracking individual particles in a continuous 3D space. The

diffusing particles move independently with Brownian dynamics. 2D meshes form surfaces repre-

senting membranes, compartments and sites of chemical reactions which can handle highly detailed

structures. The 2D structures are mapped in the 3D volume and a ray-tracing algorithm is used to

detect collisions between particles and the surface, resulting in chemical reactions. Reactions occur

only on surfaces. The models are described using their simple model description language (MDL)

and the output can be visualised with the DReAMM tool (Design, Render and Animate MCell

Models). Biomedical applications such has calcium dynamics [14] and ectopic neurotransmission

[19] were modelled. Two means of parallelising the algorithm are currently being pursued, one with

supercomputers and the other with the use of computer clusters.

SmartCell [2] and MesoRD [21] use a similar approach where they use a mesoscopic repre-

sentation of the particles, which subdivides the simulation space into smaller discrete subvolumes

(voxels) containing many particles. Each of these subvolumes is considered to be a well-mixed solu-

tion and have to be small enough to be considered homogenised by diffusion within the time-scale

of the reactions. Inside each subvolume, an SSA-like procedure is performed to update the system.

The particles can diffuse to adjacent subvolumes. Simulation of the Min-System in E.Coly has

been performed in MesoRD. This approach allows quicker simulations, but it is impossible to track

individual particles, and molecular crowding has no effect on movement and reaction rates.

Cell++ [43] uses two different particle representations. Small particles (which are in large

numbers) are simulated with a mesoscopic representation using a cellular automata engine with

Brownian dynamics on a discretised grid. The larger molecules are simulated, microscopically and

stochastically, on a continuous space. Both spaces are then superimposed onto each other, and

reactions can take place between the two different spaces. This hybrid solution combines the fast

execution of large quantities of diffusive particle from the mesoscopic representation with the details

included with the microscopic representation of the larger particles. An openGL interface provides

a 3D internal view of the simulation space. Case studies such has signal transduction pathway

(MAPK cascade), methabolic pathways (glycolysis) and intracellular calcium signalling effects were

simulated. All molecules are considered as pointless particles and only collisions between particles

and fixed membranes separating two compartments are supported.
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Table 2–1: Spatial Simulators.
GridCell SmartCell MesoRD Cell++ MCell Smoldyn ChemCell

Molecule
represen-
tation

Particle Population Population Hybrid Particle Particle Particle

Stochastic Yes Yes Yes Large parti-
cles only

Yes Yes Yes

Space Discretised Discretised Discretised Continuous
and Discre-
tised

Continuous Continuous Continuous

Explicit
Molec-
ular
Crowding

Yes No No No No No No

Diffusion
support

Yes Yes Yes Yes Yes Yes Yes

SBML
support

Yes Yes Yes No No No No

Web
availabil-
ity

Yes Yes Yes Yes Yes Yes Yes

ChemCell [37] is a particle-based (microscopic) simulator where each particle is individually

located on a continuous space. The particles diffuse in the 3D spaces by following a Brownian

motion and are represented as dimensionless particles. Nearby particles can react with each other

and the probability of reaction per time step is calculated from the macroscopic reaction rate. The

geometry of the cell is done with constructive solid geometry or as an assemblage of triangles meshed

together. The creation of the cellular geometry and the output visualisation are handled by external

tools. An ODE or SSA solver can also be used when spatial effects are not wanted. The simulation

space can be partitioned among multiple computers to allow for parallel processing. Various effects

such as chemotaxis response by E.Coli, Ca++ ion release from endoplasmic reticulum, oscillatory

immune response of the NF-kB network and 3-stage MAPK cascade were successfully simulated.

Project CyberCell [8] uses a particle-based representation on a continuous tridimensional space.

Each particle is represented as a hard sphere model of different size. This approach can simulate

macromolecular crowding effect [39]; it is, however, computationally expensive.

2.4 Problematics of Cell Simulation

No current simulation methodology allows the simulation of stochastic models described with a

molecular spatial resolution in a crowded state for any length of time of the order of a cell life span.

The simulators are either too slow, or they are forfeiting biological details in order to reduce the

processing power requirements. As described above, most simulators treat particles as dimensionless

points or populations, which makes it impossible to observe crowding effects explicitly. CyberCell
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has demonstrated that it can have significant impacts in the behaviour of signalling pathways;

it is however computationally expensive and can not support simulation the size of a whole cell

yet[40]. While more efficient algorithms and the technological advances in computing power are

expected to alleviate some of the performance issues, the gap is still large. The large computational

cost of stochastic simulators comes from the intrinsic difference between the sequential steps of

the algorithms (which runs on sequential processors) and the highly parallel nature of biological

processes, where multiples molecules move, react and collide simultaneously [42].

2.5 Parallel Computing

The disparity between the sequential processing of the simulator algorithms and the parallel

nature of biological processes can be reduced by designing parallel algorithms for the simulation of

biological processes. Simulators such as MCell, ChemCell and CyberCell have started to explore

parallelism by using multiple computers at once. MCell is also working on porting the algorithm on

the Cray T3E and IBM SP supercomputers. However, this approach has not yet been thoroughly

explored and it is expected that larger gains can be obtained. The increases in speed obtained with

parallel processing are believed to be able to close the gap between current simulation techniques

and full cell simulation.

In this section, we will explore the CA model, which has been already used to describe biological

systems, although most previous work spanned only on two dimensions [52][57][54]. The CA model

can be used to describe both mesoscopic and microscopic particle representations. The local inter-

action promoted by the CA model makes it highly susceptible to parallel implementations which

negate the high computational cost of executing large systems. The CA computational modelling

technique for biochemical systems is promising in terms of versatility, simplicity and scalability.

In order to exploit the parallelism offered by the CA architecture, a parallel hardware platform

is required. The three most popular are currently the cluster, the GPU and the FPGA and a quick

review of these three systems is presented.

Finally, some CA applications that have been successfully accelerated on parallel hardware are

reviewed. We will also look at some of the most popular biological applications that have already

been accelerated.

2.5.1 Cellular Automata

Cellular automata is a model studied in several scientific fields of research such as natural

science, mathematics, computer science, physics, computability theory and theoretical biology [36].

It has been used to model physical and biological phenomena such as self-organisations phenomena,
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fluid flow dynamics (also known as lattice-gas method [15]), galaxy formation, etc. CA are also

used to perform tasks such as pattern recognition, image processing, traffic simulation and parallel

processing. The literature is vast, and this section introduces the basic concepts and properties of

CA as well as some applications of CA in parallel processing.

Cellular automata use a discrete representation of time and space. It is a spatially decentralised

model which contains a large quantity of small, simple and usually identical components connected

together locally. The CA can be divided into two different parts: the cellular space and the

transition rule.

The cellular space is a lattice of cells (not to be confused with the living biological cell),

which are usually finite state machines (FSMs) interconnected together in a regular pattern of

inputs/outputs. The lattice can contain a finite or infinite number of cells, and the boundaries, if

present, can be fixed or circular. The lattice can also span over any number of dimensionalities,

although for most practical applications, dimensionality varies between one and three. Each cell

can be in a single state at a given time. The maximum number of states a cell can be in is often

denoted by k in CA literature. The set of the k states is denoted by Σ. Each cell in the lattice is

denoted by an index i and the state of cell i at time t is represented by si
t. At all times, si

t ∈ Σ.

The neighbourhood ηi
t of cell i is the association of si

t with the states of the other cells to which

cell i is connected. In one-dimensional CA, the radius r of the neighbourhood is the number of cells

beyond itself that the active cell has access to in both available directions. For example, assuming

an horizontal dimension, the neighbourhood of a one-dimensional CA with r = 1 would contain

three cells: the current cell as well as the immediate left and right cell. In multidimensional lattices,

the same radius r, also called range in some sources, can represent different shapes and needs to be

explicitly defined. Figure 2–1 shows two different two-dimensional neighbourhoods of radius r = 1

a) the Von Neumann neighbourhood which has a star shape and has access to four external cells and

b) the Moore neighbourhood which has a square shape and has access to the eight closest external

cells. In the Lattice Boltzmann Methods terminology [62], the Von Neumann neighbourhood is

called D2Q5 (for two dimensions, five directions) while the Moore neighbourhood is designated as

D2Q9.

The second component of CA is the transition rule, also named the CA rule. The CA rule func-

tion calculates the next state of cell i, si
t+1, in function of the states of the current neighbourhood

ηi
t. It is denoted as φ(ηi

t).
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a) b)

Figure 2–1: Representation of two different two-dimensional r = 1 neighbourhoods a) the Von
Neumann neighbourhood and b) the Moore neighbourhood. The active cell being updated is shaded.

Table 2–2: One of the 256 transition rules φ of an ECA. In this specific case, ECA 177.
Neighbourhood 000 001 010 011 100 101 110 111
Next State 1 0 1 1 0 0 0 1

The simplest cellular automaton are members of the so-called elementary CA (ECA) [58]. ECA

is the family of one-dimensional CA in which k = 2, Σ = {0, 1} and r = 1. There exist 256 different

ECA members accounting for the 256 different CA rules that can be created from the eight different

states of the neighbourhood made of three cells. When the number of states of the neighbourhood

is small, the CA rule φ can be described as a lookup table (LUT). Table 2–2 demonstrates an

example of one of the 256 transition rule of an elementary CA. Figure 2–2 updates the states of the

cells of an ECA over three time steps using the transition rule of table 2–2. The lattice boundaries

wrap circularly, so that cell 0 is connected to cell 7.

One-dimensional CA are often described as a two-dimensional plane where the x axis represents

the cells of the CA and the y axis represents the evolution of the cell states over time. Even the

simplest elementary CA can produce complex aperiodic patterns, as can be shown in Figure 2–3.

1 0 0 0 1 1 0 1

0 0 1 0 1 0 0 1

0 0 1 0 1 0 0 1

T = 0

T = 1

T = 2

Figure 2–2: Update of the states of the ECA following the transition rule described in Table 2–2.
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Figure 2–3: Space time diagram demonstrating the aperiodic pattern of the ECA 124. Cells in
state 1 are illustrated in black while cells in state 0 are white.

Some of these patterns have even been observed in living animals and flora such as the Conus

textile seashell.

Some notable two-dimensional, but still very simple CA include the self-replicating CA from

Von Neumann [9] which, interestingly, was developed before the discovery of the principles behind

the replication of DNA, but yet uses the same principles. The well-known Conway’s Game of Life

[5] which can create arbitrarily complex patterns, is also a good example. In the Game of Life, one

can create “gliders” which are self-replicating and moving entities from which AND and OR gates

can be generated. Therefore, the Game of Life can be used for universal computation. Even the

simplest CA can be inherently unpredictable.

One of the strength of the CA model comes from its decentralised structure where all cells

are independent of each other in that they can be updated at the same time. Thus, this decen-

tralised model is naturally suited to be ported to parallel algorithms and architectures, and many

applications have been implemented as CA for efficient computation. For example, linear time

pattern recognition and efficient adders/multipliers have been achieved with simple CA algorithms.

Lattice Gaz Automata (LGA) have been used to solve the incompressible Navier-Stroke equations

describing fluid flows [15]. The massively parallel algorithms and the numerical stability of fixed

point numbers were big advantages over the conventional approach. A triangular lattice was found

to provide better results than the regular square lattice for the propagation of the particle velocities

and for handling the collisions. Later, the Lattice Boltzmann Method replaced the LGA [62]. LBM

uses the same general principles as the LGA, but instead of using discrete state, it uses probabilistic

density functions to describe the mass, momentum and energy of particles. It retains the discrete

lattice structure, discrete time and massively parallel properties and, as such, could be considered
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as an evolved class of CA. LBMs have also been recently used in other applications such as image

processing and filtering.

Other applications such traffic simulation [53], Molecular Dynamics, Monte Carlo biological

simulators [54] and many more have been implemented using CA like algorithms.

2.5.2 Hardware Acceleration

In this section, we will go through a brief overview of three of the most popular hardware

architectures commonly used to accelerate an algorithm, namely, the GPU, the FPGA with recon-

figurable computing (RC) and lastly, the cluster.

GPUs have a highly parallel structure with high memory bandwidth and run at high clock

rate. However, they have limited flow control and data caching and are therefore best suited to

stream-like applications. They can output massive amounts of work very quickly if mapped to a

suitable application, and the boards are cheap. Their uses have been somewhat limited in the past

due to difficult programming issues, but the recent progress of application programming interfaces

(APIs) such as CUDA from NVIDIA reduced considerably the amount of time required to port

an algorithm to the GPU. At this moment, GPUs have been used to accelerate several massively

parallel applications in video processing, cryptography, grid computing, fast Fourier transforms and

bioinformatics.

Reconfigurable computing with FPGAs has been used in a wide range of applications includ-

ing signal processing, image processing, automotive, data storage, communications, aerospace and

bioinformatics. By mapping the algorithms into reconfigurable logic, speedups between 10x and

100x are often obtained. They get their speed advantage from the fact that they are customised to

a particular algorithm. The user can then use techniques such as pipelining and parallel execution

without wasting resources to unused instruction blocks to improve the throughput of his algorithm.

RC is also currently advancing technologically at a faster rate than standard microprocessors which

means that observed speedups will continue to increase over time. FPGAs provide very-large-scale

spatial parallelism with high internal memory bandwidth. They are very efficient at performing

regular simple tasks that can be executed in parallel. Computing platforms such as the SGI RC-

100 or the Cray XD1 combine CPU processing and FPGAs coupled with very fast and low latency

interconnect. The FPGA is then used as an accelerator for the host processor. Two schemes can be

used in this situation; the data can be streamed through the I/O ports between the FPGA and the

host processor, or a chunk of data can be sent into the memory blocks of the FPGA, which is then

processed until the algorithm has performed its task. Size constraints, limited external memory
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bandwidth and difficulty to code and debug are among the disadvantages of FPGAs. However,

the regular structure of the CA algorithms had some great success in being ported on FPGA plat-

forms [29][10]. An FPGA-accelerated biological simulator which supports three-dimensional particle

movement and reaction, crowding effects, collision detection and 3D compartments has yet to be

implemented.

A cluster is a group of computers linked together, usually through a local area network (LAN),

all working on the same application. They are used in a wide range of applications such as web

servers, databases, file servers and multiprogramming/batch processing [22]. They are most effective

in applications requiring large amounts of non-unified memory and processing power and that can

be divided into several parts that are not hindered by the high latency of the interconnects. The

tools to port an algorithm to a cluster are also fairly well developed. Their price range can go from

medium to extremely high depending on the size of the cluster. ChemCell can divide its simulation

space onto several computers, and MCell is currently exploring the use of clusters to improve its

performance.

2.5.3 Previous Hardware Implementations

In this section, we will look at a few algorithms which have been accelerated on parallel

hardware that a) are related to computational cell biology or 2) share some similarity with a CA

model.

Traffic Simulation on FPGA

While road traffic simulation is not directly related to a particle-based stochastic biological

simulation, the algorithm shares a lot of similarities in organisation with the presented stochastic

biological simulator. In [53], the CA algorithm TRANSIMS [47] is accelerated by using the high-

level parallelism provided by an FPGA device. Using a single FPGA on a Cray XD1 supercomputer,

they were able to simulate the road traffic of the entire Portland metropolitan area and achieved a

34.4x speedup over the software processor used alone.

The TRANSIMS algorithm is a CA computation on a semi-regular cell network. Each cell can

hold at most one car, and the movement, acceleration and update of the cars are governed by a

four-step algorithm taking into consideration the ID of the car, the states of the surrounding cells

and a random number for stochastic fluctuation. All the cells are updated concurrently.

Two approaches were taken to build the system. The first one is the direct implementation,

where each individual road cell is physically present in the FPGA board. This approach permitted

incredible speedups which, for some cases, were larger than three orders of magnitude. The problem
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is that a single FPGA device could only fit a few hundred cells, while several millions are needed to

represent a big metropolitan area like Portland. Thus, it was calculated that 12,400 boards would

be required to map the full area, clearly an impossible implementation. The direct implementation

also suffered from the difficulty to access the traffic data inside the FPGA for visualisation. The

second approach is a streaming implementation where a processing engine receives a streaming flow

of data as input, performs the update process, and outputs the stream of updated data back to the

host processor. This implementation is scalable, as the structure of the FPGA is not related to the

size nor geometry of the metropolitan area. The FPGA processing engines only process the single

lane road segments of the metropolitan area, thereby removing all the complex rules and routes from

the hardware processing. Fortunately, since 90% of the road cells consist of one-lane roads, most

of the work is done by the FPGA. The software processor takes care of the intersections, merging

nodes, routes and synchronisation of the memory. An overlap/buffer zone is used to synchronise

the data between the software and the hardware processor. The streaming approach ensures that

the scalability of the system is not a problem.

The CA traffic modelling has several similarities with the modelling of particles of a stochastic

simulator. The update process and complexity of the structures are about the same as the presented

stochastic biological simulator. The number of road cells of very large cities can be as high as 108,

which is also not too far from the number of voxels required to describe a single cell at a molecular

resolution. Also, a similar overlap/buffer zone is needed to synchronise the data between the

different FPGAs and the software processor. Finally, both the throughput and bandwidth required

for the two applications should be of the same magnitude. The two main differences between a

biological voxel and a road cell are that nearby voxels cannot be updated concurrently and that

they are operating in a 3D volume instead of a 2D area.

Biological Simulators on FPGA

While FPGAs have been used in bioinformatics in several sequencing projects such as, DNA

protein string comparison and Basic Local Alignment Search Tool (BLAST) algorithms, the work

on accelerating biological reaction simulators is fairly limited. Most progress has been done on the

dimensionless SSA. Several teams have implemented their own version of SSA on an FPGA [42][26]

device, one popular architecture being the ReSCiP [61][17]. A range of acceleration between one

and two orders of magnitude is achieved. This speedup permitted the simulation of bigger systems,

since even the most efficient implementation of SSA can carry a very high computational cost when

used to process very large sets of stochastic simulations.
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Stochastic Simulation Algorithm on GPU

While cluster and FPGA implementations of SSA have been successfully done, the GPU im-

plementation is interesting because it offers both a shorter development time than an FPGA and

is much cheaper than a cluster. In [32], the authors have shown that the SSA can be mapped very

efficiently to a GPU. By mapping the Logarithmic Direct Method formulation of SSA, they have

been able to achieve a speed up of 150x to 170x.

Lattice Boltzmann Method

Lattice Boltzmann Method algorithms are similar in principles to CA algorithms, one of the

main differences being the cells are not limited to a specific number of states, but rather repre-

sent some density, velocity and energy continuous variables. Most principles regarding the update

process are similar to CA, however, and they retain the local connectivity and concurrent updates

which makes the algorithms highly parallel. Several LBM methods have been implemented in FP-

GAs, clusters and GPUs[62]. Successful implementations have observed speedups between one and

twos order of magnitude.

2.6 SBML

Until recently, simulators and biological databases were using their own custom representation

for biological models, which made the programs incompatible between each other. With the large

number of different tools being developed, the lack of a universal model reduced the general efficiency

of any systems biologist using these tools. A standardised description would alleviate the following

problems. First, as each different tool has its pros and cons, it is not uncommon that a systems

biologist has to work with several different tools at once. With different model representations,

the only way to go from one software to another one is to perform a manual conversion from one

format to another. This manual conversion is time consuming and error prone. Second, the use of a

general model description would also remove the dependency of some models being usable only while

their original software is still supported. Many valid biological models have been lost when older

simulators stopped being distributed. Third, the development of a standardised model description

would ensure the models could be stored in reliable databases and would be easily downloaded

along with the literature published with those models. This package including both the literature

and the corresponding model could provide the necessary data and terminology needed by the user

to start working on the model as fast as possible. A standardised solution would also be easily

expandable and able to describe increasingly complex systems [50].

25



2.6. SBML

The Systems Biology Markup Language (SBML) [24] was developed to address these problems.

Its main goal is to improve the interoperability between softwares so that less time is spent on data

formatting issues and more on actual research. It is an XML-based language which can be read and

written by the programs. It is also clear enough to be readable and editable manually. Libraries

parsing automatically the SBML models are provided by the SBML team and can be included in

software applications.

SBML provides a basic representation of biochemical reaction networks by breaking down the

simulation space into several components such as: compartment, species, reaction, parameter, unit

definition and rule. SBML uses a hierarchical structure to specify the relationships between those

different components. Specific annotations can be included in the model description to specify

customised data.

SBML is in constant evolution and is expanding its “instruction set” by providing the new

features needed by the community. The latest level included the concept of modularity. Different

softwares can decide to include different modules depending on their range of applications such as

rendering options, geometry, spatial diffusion, etc. Most of these new modules are currently under

development. The current revision of SBML is level 3 version 1. SBML is currently being used by

over 180 different software programs and this number is constantly growing.
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CHAPTER 3
Algorithm for a Stochastic Particle-Based Biological Simulator

The algorithm has been designed to meet several different goals. First, as biological processes

are stochastic in nature and a deterministic approach can not catch the stochastic behaviours

observed in biological systems, GridCell needed to be a stochastic simulator. Second, following

a similar reasoning, the particles had to follow a Brownian motion. The algorithm also had to

fully support three-dimensional simulations in order to describe localisation effects, which are also

expected to play a major role in cellular processes. Finally, as biological systems have been found to

be “crowded” in nature and inter-particle collisions can have a huge impact on the diffusion speeds

and the overall rates of reaction of the particles, GridCell was designed to be able to implicitly

simulate particle collisions. This also means a microscopic representation of the particles is adopted.

A simulator supporting crowding effects will show mechanics that could not be otherwise observed

with other simulators or through in vitro experiments.

Three-dimensional, particle-based, stochastic, biological simulations at the molecular resolution

is very computationally expensive. In fact, this kind of application is known to be too demanding

to be able to simulate systems at the cellular level serially within any reasonable amount of time.

So in order to circumvent this issue, the algorithm was designed so that it can be easily mapped

into a massively parallel architecture.

All these goals led to an algorithm which shares similar properties to the CA algorithms used

in several other applications such as traffic simulations, the LBM used in fluid simulations, error

correction codes, etc. The GridCell algorithm uses a tridimensional cubic grid of type D3Q27, where

each location represents a voxel which can contain a single particle. Similarly to CA algorithms,

each of these voxels has only access to an immediate neighbourhood which in this case consists of the

26 surrounding voxels in addition to it own location, for a total of 27 locations. However, there is a

major difference between GridCell and most CA algorithms. In CA algorithms, the update process

of each cell can be performed independently from other cells. In GridCell, the neighbour particles

move, collide and react with their surrounding, which creates a dependency. Fortunately, any pair

of particles where the intersection of their neighbourhood is null (non existent) can not interfere

with each other and can be considered independent. So, even though neighbouring particles are
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dependent with each other, it is still possible to divide the space into many independent areas which

can be processed in parallel. Therefore, the massively parallel property of the algorithm still exists

and the possibly to port the algorithm onto a parallel architecture remains very attractive.

Using a grid of type D3Q27 has several advantages; it removes the need to do complex distance

calculations between the particles as the neighbours are fixed, limited in number and at already

known locations. Also, by breaking the overall computation into multiple small processing elements,

the logic of each of these elements is simple enough to avoid floating point calculations, which is

an important feature for an efficient FPGA implementation. Finally, collisions become simply a

matter of looking if the voxel is empty or not, and no expensive ray-tracing or exclusion volume

algorithms are required.

The algorithm advances through time through discrete time steps where each of these time

steps requires running the update process on all the particles in the simulation space. The update

process of the voxels consists of two different phases: a movement phase and a reaction phase. Both

phases are independent with each other in that they can be completed in any order as long as all

particles are updated with both phases every time step.

From the software point of view, GridCell had to be easily usable, which led to the creation

of an intuitive graphical user interface (GUI) in OpenGL. The GUI enables the user to navigate

in the simulation space, start and stop the simulation, save results to various files and look at

concentration and surface plots describing the system.

GridCell uses the SBML format to load the biological models to be simulated. SBML is the

most popular format to store biological systems and is already used by several hundreds of other

simulators, tools and databases. Supporting the SBML format allows quicker setup time and the

sharing of models with other applications and databases. The SBML standard format contains

information about the species, the reactions, the compartments and so on. Extra information

required by the simulator, such as the simulations parameters, the shape of the compartments and

the locations of the particles is added in the SBML file through custom annotations, since these

features are not inherently supported in the current SBML format.

3.1 Movement Phase

The movement phase is one of the two update processes to be executed to advance to the next

time step. Every particle attempts to move at every time step and every particle can move at most

once per time step. As described above, each particle only has access to its immediate surrounding

of 27 voxels which limits the movement in a single time step to one of these 27 nearest locations.
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Figure 3–1: Brownian random walk

The selection of that location is made randomly, which over several time steps creates a Brownian

random walk for every particles, as shown in section 3.1.1. Figure 3–1 shows an example of four

different Brownian random walks of particles starting from the same location. Also, any particle

attempting to move to an occupied location generates a collision. A collision prevents the particle

from moving during that turn and has no effect on the other particle (ie. the other particle can

still attempt to move if it has not tried to move yet). The order in which the particles are updated

does not have any significant impact on the overall simulation results, as the difference in behaviour

a different ordering could have in the system is contained within the inherent stochasticity of the

simulator. Changing the update order has an effect similar to using a different starting random

number generator “seed”.

3.1.1 Diffusion

In cell biology, diffusion is the main type of movement for the particles. In GridCell, diffusion

is achieved through the movement phase, which moves every particle in a random direction at

every time step. Particles following a Brownian random walk also follow the well-known Einstein-

Smoluchowski equation

< r2 >= 2dDt, (3.1)
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where < r2 > is the mean-square displacement, d is the dimensionality, D the diffusion coeffi-

cient and t the elapsed time. Movement in GridCell should also follow a similar behaviour. Figure

3–2 shows the mean-square displacement in units of voxel < v2 > (averaged over 1000 iterations)

versus the number of time steps nts when the probability of movement of the particles at every

time step is equal to one. The mean-square displacement < r2 > is equal to the mean-square

displacement of voxels < v2 > multiplied by the side length squared of the voxels s2vox. Similarly,

the elapsed time t is equal to the number of time step elapsed nts multiplied by the length of each

time step lts. In agreement with the Equation 3.1, the mean-square displacement < v2 > increases

linearly with the number of time steps nts. This leads to the following linear relation

< v2 >= Ants, (3.2)

where A, the slope of the graph, is in units of meter2 per second. By substituting< v2 >= <r2>
svox

2

and nts =
t
lts

, we get

< r2 >=
Asvox

2

lts
t = 2dDt. (3.3)

Since the probability of movement at each time step of the particle is equal to one, D can

be substituted for the maximum diffusion speed Dmax supported for a given time step and voxel

size. This upper limit on diffusion speed is caused by the design decision of restraining particle

movement to its immediate neighbourhood (the D3Q27 grid). In the case where no such limit

exists, the diffusion equation is solved by a tridimensional Gaussian probability density function.

By calculating the slope of the graph and setting the dimensionality d equal to 3, Dmax can be

calculated as

Dmax = 0.335svox
2/ts. (3.4)

Smaller diffusion speeds are simulated by applying a different probability of movement such

that

D = pmDmax, (3.5)

where pm is the probability of movement of a particle at every time step. As long as the

diffusion speeds of the particles are smaller than Dmax, diffusion is modelled correctly. If a larger

diffusion speed is needed, one can reduce the time step or increase the size of the voxels.
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Figure 3–2: Diffusion in GridCell

3.2 Compartments

In cell biology, the term compartment is generally used to describe all the parts, located inside

a membrane, usually made of lipid, which have a specific function inside a larger organism. The

membrane forming the compartment can be solid, semi-porous or porous. More generally, the term

compartment can also describe any structure used to add spatial organisation to a model. GridCell’s

compartments fit both descriptions.

Every voxel has a compartment field representing the compartment the voxel is in. Different

compartments are represented by different values. The main effect of compartments is to change

the diffusion speed of the particles moving through or inside them. Instead of having a single

diffusion speed, which translates into a probability of movement pm per time step as mentioned

in section 3.1.1, a system containing N different compartments generates a NxN matrix for each

species containing every combination of movement going from compartment A to compartment B.

Each entry [A][B] of the matrix represents the permeability rate or the probability of entry pmAB

of going from compartment A to compartment B. Note that when A and B are the same value, the

entry represents the probability of movement of the species moving inside the given compartment.

pmAB
having a different value from pmBA

can be used to represent an asymmetric flux between two

different compartments, which could be caused by some kind of active transport. By adjusting the
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various diffusion speeds and permeability rates, it is possible to let a particle move free, restrain it,

or even block it completely from entering, exiting or moving inside any given compartment.

Reactions with particles belonging to different compartments are prohibited. If needed, one can

simulate a reaction occurring at the surface of a membrane by adding an extra thin compartment

surrounding the inside compartment.

The probability of movement matrix is the only memory element in the algorithm scaling with

the square (O(n2)) of a parameter. This could potentially lead to some scaling issues. Fortunately,

the parameter in cause, the number of compartments, is usually a very small number. Most

available SBML models have between one and three compartments. More complex models, showing

localisation effects could have around 10 compartments. Also, for the very complex systems, the

moving ratio matrix is expected to be sparse, as several combinations of compartments would be

invalid. For example, if compartment A is inside compartment B, which is inside compartment C,

then A and C are not in contact with each other, which means that any diffusion speed assigning A

to C or C to A is irrelevant. It is also assumed some compartments would restrict access to some

type of particles, which further increase the number of zero entries in the matrix. For very large

system simulations, a sparse matrix representation can be used.

3.3 Reaction Phase

The reaction phase is the second update process required to complete a time step. Similarly

to the movement phase, a particle may react only once per turn and only with its immediate

surrounding. It also shares the same properties regarding the ordering of the update. The purpose of

the reaction phase is to simulate the common interactions between the particles in biological systems.

These interactions include aggregation events such as molecular complex formation/dissolution, or

conversion events such as chemical reactions. Some of these reactions can involve a large number

of reactants and products. Fortunately, it is usually possible to decompose those reactions into a

cascade of several small reactions. Therefore, only the simplest reactions involving three or less

participants are directly supported by the simulator. Larger reactions involving more than three

particles are automatically decomposed into several elementary reactions by the algorithm. The

procedure is described in Section 3.3.2. The probability of reaction per time step is derived from

the overall rate of reaction, the voxel size and the length of the time step. It is very similar to the

approach taken by ChemCell [37] and is derived from the macroscopic law of mass action. There

are three different reactions involving three or less participants: one reactant and one product, one

reactant and two products and two reactants and one product.
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3.3.1 Simple Reactions

Let’s consider the two types of reaction involving a single reactant

A → B (3.6)

A → B + C. (3.7)

Both reactions have a forward rate of reaction k in units of time−1 and a time step of t second.

Assuming a well-mixed approximation and N particles of type A in the system, then in both cases,

the expected number of reactions per turn is given by N(1− e−kt). Each individual particle has a

probability equal to 1−e−kt of reacting every time step. In our stochastic model, a uniform random

number Rn between 0 and 1 is generated for each particle, and the reaction occurs if Rn < 1−e−kt.

In the reaction with only one reactant and one product, the reactant is simply replaced by

the product. In the reaction with one reactant and two products, a search is first conducted in

the surrounding area. If at least one free voxel in the surrounding area of the particle is found,

the reaction takes place, and the second product is positioned in the free location while the first

product is placed at the position of the initial reactant. The reaction is blocked if no free position

is found. Simulations have shown that this limitation starts affecting the overall reaction rate of

the reaction when more than 98% of the voxels of the simulation space is filled with particles. A

system containing such a high particles per voxel ratio is so crowded that it becomes almost static

and, therefore, of limited interest.

Consider the following reaction with two reactants:

A+B → C, (3.8)

with a rate constant k in units of (molarity*time)−1 and a time step of t second. Assuming Na

particle of type A, Nb particle of type B, a Volume V and the Avogadro’s number Av, which refers

to the number of molecules (6.022 ∗ 1023) contained in one mole of matter, then the total number

of reactions Nr in a well-mixed system is given by

Nr =
kNaNbt

AvV
. (3.9)

On average, in a well-mixed situation, the desired number of reactions in GridCell should

be equivalent to the result of the above equation. In our system, particles can only react with

their immediate surrounding locations. In a well-mixed system, the number of A,B pairs that
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are close enough to each other to generate a reaction is given by N = NaNbVc/V where Vc is

the volume of the cube containing the 27 neighbouring voxels and V is the total volume of the

simulation. If each of those pairs react with probability P , then Nr = NP . Setting the two

equations Nr = NP = kNaNbt/(AvV ) gives the equation

P =
kt

AvVc
. (3.10)

The formula is independent of V , Na and Nb as expected. Also, for a given rate constant k,

it is possible to have a set of parameters t/Vc such that P is greater than 1. If that is the case, a

smaller time step or larger voxel volume has to be selected. A random number Rn is generated.

If Rn < P , then the first reactant searches its surrounding area for the second reactant. If it is

found, the reaction takes place and the product is placed at the location of the first reactant. If

no reactant is found, the reaction is aborted. Note that only one of the two reactants attempts to

react with the other one, doing so makes it possible to get the right overall rate of reaction while

reducing the total number of operations needed to complete the reaction phase.

When the same species participates in more than one reaction, the probabilities of reaction P

are added one after the other, and the value of the random number R determines which reaction

is selected. For example, if species A participates in reaction R1 and R2, with probability P1 and

P2. Then, reaction 1 is selected if 0 ≤ R < P1, reaction 2 is selected if P1 ≤ R < P1 + P2 and no

reaction takes place if R ≥ P1+P2. This approach is very similar to the decision process performed

in the SSA to select which reaction takes place at every time step. The time step needs to be small

enough to make sure that the sum of the probabilities is not larger than one.

When two reactants of the same species form a product like

A+A → B, (3.11)

the individual rate of reaction of particle A needs to be modified to ensure that the overall rate

of reaction is respected since there is no way to avoid the fact that each reactant will attempt to

react with the other one. Assuming y is the overall probability of reaction and x is the individual

probability of reaction of species A, then

x = 1−
√

1− y. (3.12)
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3.3.2 Large Reactions

Complex reactions are implemented by creating a cascade of several elementary reactions. This

process, done automatically by the software, breaks the complex reactions into a series of simpler

reactions by introducing temporary species. For example, consider the following reaction with one

reactant and five products

A → B + C +D + E + F, (3.13)

where k is the rate of reaction in time−1. For each product exceeding two, a temporary species

is created. In this specific case, three temporary species are created. The reaction is then broken

down into:

T1 → B + C, (3.14)

T2 → D + E, (3.15)

T3 → F + T1, (3.16)

A → T2 + T3, (3.17)

where T1, T2 and T3 are respectively the first, second and third temporary species. By setting

the rate of reaction of equation 3.17 equal to k and the probability of reaction of equations containing

any temporary species on the reactant side to one, we reduce the artefacts caused by the creation

of the temporary species to a minimum. Indeed, the temporary species disappear from the system

as quickly as possible and the overall rate of reaction is identical.

Shown below is an example where more than two reactants merge into a single product:

A+B + C +D + E → F. (3.18)

The procedure is similar to the previous case; a single temporary species is created for each

reactant above two:

A+B → T1, (3.19)

C +D → T2, (3.20)

E + T1 → T3, (3.21)

T2 + T3 → F. (3.22)
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In order to obtain the same overall probability of reaction and to reduce the impact of the

temporary species on the system to a minimum, the probability of reaction of any reaction con-

taining temporary species on the reactant side (equations 3.21 and 3.22) is set to one. Assuming

that P is the probability of reaction of the reaction presented in equation 3.18 and P1 and P2 are

the probability of the first and second simple reactions A+B → T1 and C +D → T2, then we set

P = P1P2. We also set P1 = P2. Equating the two equations gives P1 = P2 =
√
P . In general, the

probability of the simple reactions Pn containing no temporary species is equal to

Pn = P

1

�Nreactants
2 � , (3.23)

where P is the overall probability of reaction and Nreactants is the number of reactants of the

initial reaction.

The two procedures are superposed together when handling reactions with several reactants

and products.

Each temporary particle has a parameter lifetime indicating the number of turns the particle

has to live in the system before reverting back to its previous state. Similarly to the case of the

simple reaction with one reactant and two products, if no room is found, the reaction is aborted and

the temporary species will attempt to revert back to its previous state during the next time step.

Simulation have shown that the overall rate of reaction is not affected until the ratio of occupied

voxel becomes larger than 98%. It is assumed that biologically relevant model operates below this

threshold. The short lifetime of temporary particles is important for two reasons. First, it makes

sure temporary particles are effectively temporary and never stay in the system for long periods of

time. It also makes sure that all the reactants are close to each other for a reaction to complete.

Usually, a lifetime between two and three time steps is reasonable since it gives enough time to

react with the neighbouring particles while making sure temporary particles do not constitute the

bulk of the system.

3.3.3 Reversible Reactions

Reversible reactions are handled by creating two different separate reactions, one for the for-

ward reaction with the forward reaction rate and one for the backward reaction with the corre-

sponding backward reaction rate. The following reaction

A+B + C +D + E ↔ F, (3.24)
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Table 3–1: GridCell performance versus system size.
Number of Voxels 1e3 1e4 1e5 1e6
Number of Particles 3e2 3e3 3e4 3e5

Time (s) 1.62e− 4 1.58e− 3 1.6e− 2 1.7e− 1

Table 3–2: GridCell performance versus number of voxels. Zero particles.
Number of Voxels 1e3 1e4 1e5 1e6

Time (s) 1.6e-5 1.6e-4 2.14e-3 2.06e-2

where forward reaction rate is kf and backward reaction rate is kb, is then split into

A+B + C +D + E → F, (3.25)

with a reaction rate kf and

F → A+B + C +D + E, (3.26)

with a reaction rate kb.

3.4 Performance Analysis

Tests have been conducted to determine how the software reacts to different system sizes. The

tests have been executed on a stand-alone microprocessor: a 3.2 GHz P4 with 2GB of RAM. The

algorithm is computed serially. As it can be shown in Table 3–1, the time required to compute a

time step increases linearly with the number of particles and voxels present in the system. Tables

3–2 and 3–3 demonstrate how the performance is affected by independently modifying the number

of voxels or the number of particles. It can be seen that both parameters affect performance. Thus,

an occupied voxel takes more time to process than an empty voxel and an empty voxel takes more

time to process than no voxel at all. The maximum number of particles that can be currently

simulated is equal to the maximum number of voxels that can be supported, which is 107. Table

3–4 shows that the number of reactions occurring at each time step has a negligible effect on the

performance. The reason is that all reactions have to be tested, regardless of whether or not they

actually react. There are no practical limitations to the total number of chemical species or the

number of different reactions supported by the software.

Table 3–3: GridCell performance versus number of particles. 106 voxels.
Number of Particles 1e3 1e4 1e5 5e5

Time (s) 21.3e-2 26.4e-2 68.1e-2 22.8e-1
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Table 3–4: GridCell performance versus the average number of reactions.
Average Number of Reactions 0 16.5e3 29.5e3 39.5e3 47.5e3

Time (s) 7.4e-2 7.3e-2 7.25e-2 7.2e-2 7.1e-2

Figure 3–3: GridCell user interface

3.5 User Interface Features

The rendering is implemented in OpenGL, and most user-interface functions are written using

the PLIB library, available online (http://plib.sourceforge.net/). The user interface is shown in

Figure 3–3 and consists of a) a menu system, b) an interactive 3D simulation space, c) a species

panel, d) a 2D plot of concentration versus time, and e) a 2D plot of concentration versus space.

The menu system (Figure 3–3a) provides the ability to load SBML models, set parameters and

control the simulation. User-designated simulation parameters include the number of times to run

the simulation, the time step, the total simulation time and the update rate, which is the frequency

of the refresh rate of 2D graphs and 3D visualisation, as well as the frequency at which the results

are saved to file. These preferences may be entered in the configuration panel or can be stored

as annotations in the SBML file itself. GridCell computes the means and the standard deviations

of the concentration of the species over time if the user chooses to run multiple iterations of the

simulation. The particle concentrations and the 2D surface plot data are saved in user-specified

tab-delimited files.
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A key feature of the GUI is the ability to interact with the three-dimensional simulation

volume (Figure 3–3b). Users can navigate into the 3D scene with mouse and keyboard controls to

rotate, pan and zoom. Buttons are present to i) start/pause simulations, ii) change the particle

representation from cubes to points for faster rendering, iii) turn off the visualisation for optimal

simulation performance, and iv) hide or show all particle types.

The species panel (Figure 3–3c) contains the current amount of each species, and allows species

selection for the visualisation plots. A second column specifies which species to render in the 2D

surface plot of concentration versus space (Figure 4e). Particle colours are automatically selected

from a predefined colour palette.

Finally, two plots to summarise particle concentrations with respect to time (Figure 3–3d) and

space (Figure 3–3e) are provided in real-time. The 2D spatial plot displays increasing concentration

with increasing brightness along a selected Cartesian axis.

3.6 SBML Support

GridCell uses the SBML format to describe its model. SBML models are inherently non-spatial,

as most tools were not including spatial effects when it was first developed ten years ago. The latest

revision has plans to include modules providing spatial information into the models; however, the

SBML spatial specification has not yet been completed. As a result, many details such as the

simulation parameters, the shape and location of the compartments as well as the diffusion speed

and location of each species inside the different compartments can not be specified in the current

SBML format. This information is entered by adding specific annotations to the various entities

that need to be updated. Default values are used if no specific parameters are entered.

Model Annotations

The simulation parameters such as the number of times to run the simulation, the time step,

the total simulation time, the update rate and the voxel volume can either be entered through

the UI or be assigned in the SBML file inside the model annotation. The parameter argument

line inside the model entity is used to define the values of the five simulation parameters. The

concentration and localisation argument lines specify if the data is to be stored and the name of

the file where the data is saved. The format and the default values are presented below.

<parameter numberOfIteration="1" timestep="0.001" length="10" updateRate="1"

voxelVolume="3.2768e-23"/>

<concentration saveResults="yes/no" fileName="conc.txt" />
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<localization saveResults="yes/no" fileName="loc.txt" />

Compartment Annotations

Compartments are created in the simulation in the same order as they appear in the SBML file.

The first compartment is always the largest and represents the total simulation space. Its shape

can be modified, but not its relative location. Compartments created afterwards overwrite previous

compartments if they overlap, which is used to create compartments inside others compartments.

The shape of compartments and their locations can be individually specified inside their respective

annotation. The shape argument specifies the proportion of each side of the rectangular box

forming the compartment. The overall volume stays constant regardless of the scale of the values

used (plus or minus some possible quantisation errors). The location argument specifies the position

of the centre of the compartment to the overall simulation space (i.e.: the first compartment). For

example, if x,y,z values are set to 0.5, the centre of the compartment is located at the centre of the

simulation space. Finally, a new compartment can be assigned to be of same type of a previously

created compartment with the type argument line and the name of the previous compartment.

This last option enables the creation of complex shapes as well as the possibility of having multiple

compartments of the same type at different locations. As an example, here are the three arguments

presented with possible values.

<shape x="1" y="1.3" z="0.45"/>. Where X,Y,Z are floating point values greater than 0.

(Default: x=1 y=1 z=1)

<location x="0.2" y="0.7" z="0.666"/>. Where X,Y,Z are values between 0 and 1.

(Default: x=0.5 y=0.5 z=0.5)

<type compartment="nameOfCompartment"/> (Default: No default)

Species Annotations

The diffusion speed of each species when entering, exiting and moving inside a compartment

can be specified through the diffusion annotation line. Supported units are cm2/s if prob = “no”,

or probability of movement per time step if prob = “yes′′. Diffusion speed is assigned from

compartment1 going into compartment2. If compartment1 is equal to compartment2, then the

diffusion speed when moving inside the given compartment is assigned. There is no maximum to

the number of different diffusion speeds that can be entered per species. However, writing an entry

with the same compartments twice will overwrite the initial entry. The location of particles inside
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a compartment can be specified through the location annotation. The coordinates represent the

fraction of the compartment where the particles are randomly distributed and is specified with

the arguments xmin, xmax, ymin, ymax, zmin and zmax. The frac parameter represents the

fraction of the particles assigned to the compartment placed in the specified location. There is no

limit to the number of location lines that can be entered but the sum of the frac should not exceed

one for each species in the same compartment.

<diffusion compartment1="comp1" compartment2="comp2" speed="0.02" prob="yes/no"/>

(Default: compartment1="0" compartment2="0" speed="1" prob="yes")

(all other entries are set to 0)

<location xmin="0.0" xmax="0.5" ymin="0.5" ymax="0.9" zmin="0.3" zmax="0.6" frac="0.8"/>

(Default : xmin="0" xmax="1" ymin="0" ymax="1" zmin="0" zmax="1" frac="1")

The same species (same name must be used) can be placed in different compartments.

3.7 Initialisation of the Simulation Space

The software can be divided into three different parts: the graphical user interface, the initiali-

sation of the simulation space and the update process. The GUI and the update process have both

been described earlier in this chapter. The task of the initialisation phase is to build the simulation

space and precompute the databases required by the update process to perform its task without

interruptions. The initialisation phase is ran once at the beginning of the simulation and, once

completed, the update process can iterate as many times as needed on the simulation space. Its

main input is the SBML file, which is parsed to get the relevant data. The initialisation also issues

warnings and errors when encountering invalid parameters. Most warnings come from a combina-

tion of parameters which yield a value for a rate of reaction or a rate of movement larger than one.

Errors are triggered when invalid parameters completely prohibit the creation of the simulation

space. For example, trying to create a system that exceeds the maximum size, generating more

particles than the number of available voxels or generating out of bounds compartments.

The first step of the initialisation phase is to parse the unit definition section of the SBML

file. The software has to know which units are used to represent the volumes, concentrations and

diffusion speeds of the various elements of the system in order to do the correct calculations.

The next step is the creation of the compartments. The initialisation starts with the main com-

partment, which corresponds to the full simulation space, and constructs the other compartments

in the order that they appear in the SBML file. The size, shape, type and position parameters are
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used to create the compartments accordingly. Currently, only rectangular shapes are supported,

although more complex shapes can be created by superposing several compartments of the same

type together. Since the compartments are created in the initialisation phase, which is done in

software, arbitrary complex shapes could be supported without modifying the update algorithm.

Once the compartments are created and the voxels are initialised, the species database is built.

Each new species is given its own entry, and species already entered in the database are merged into

their corresponding entry. The particles of each species are then created in the simulation space

according to the amount, the location and the compartment values specified in the SBML file. The

diffusion speeds of the particles are also parsed and converted into the probability of movement per

time step during this stage.

Finally, the last step is the creation of the reaction database. For each reaction in the SBML

file, the software looks at the number of reactants, products and their corresponding stoichiometry

and, if needed, decomposes the reaction into several smaller reactions by introducing temporary

species, as described earlier in this chapter. The mathematical expression describing the kinetics

of each reaction is parsed in order to calculate the probability of reaction per time step. If the

reaction is reversible, another set of reactions is generated, but with the products as reactants and

the reactants as products.

3.8 Results and Discussion

In order to validate the algorithm, several molecular models were simulated and their results

compared to an already well-known and proven approach, the SSA from Gillespie [18]. It is a

very good candidate to validate our model as both approaches should provide equivalent results for

well-mixed systems. The first model is a simple reversible reaction A + B ↔ C. The second one

is a Michaelis-Menten system, which describes the kinetics of many enzymes. The third example

demonstrates the effects of crowding by adding a large amount of non-interacting particles to a

Michaelis-Menten system. The fourth example introduces how spatial constructs and localisation

effects can play an important role in the overall behaviour of the system. The last example simulates

the ultra-sensitivity of a 3-stage mitogen-activated protein kinase (MAPK) cascade, which has also

been observed experimentally in Xenopus extracts.

3.8.1 Simple Reaction

This system is a simple reversible reaction involving three different species A, B and C in the

following manner: A + B ↔ C. The forward reaction A + B → C has a rate of reaction kf of

1010 per mole per second. The reverse reaction C → A + B has a rate of reaction kb of 1 per
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Figure 3–4: Comparison between GridCell and SSA for the reaction A+B ↔ C.

second. The simulation space is a cube with a volume of 10−11 litres and the time step is 10−4

seconds. The initial number of particles is 3000 A particles, 1000 B particles and 0 C particles. The

system reaches steady state fairly quickly and after 1 second of simulated time, the species reach

equilibrium with the exception of some small stochastic noise. The SSA simulator has been set

with similar parameters. The results are shown in Figure 3–4. Both simulators produce the same

results with small, but expected stochastic fluctuations. This model has also been simulated by the

ChemCell software with similar results [37]. These results support the idea that the discretisation

of the volume into a grid does not affect system behaviour under these conditions.

3.8.2 Michaelis-Menten Reaction

The Michaelis-Menten equations are used to describe most enzymatic reactions. Its kinetics is

given by the following equation:

E + S ↔ ES → E + P. (3.27)

The enzyme E reacts with the substrate S to form the complex ES with a rate of reaction

k1. ES decomposes into the enzyme E and a new product P with a rate k2, or reverts back to its

original form E + S with rate kr . As in the previous case, the simulation takes place in a cube

of 10−11 litres, the number of enzymes E is 1000 particles and the initial amount of substrate S is

3000 particles. The forward rate of reaction k1 of E + S → ES is 1010 per mole per second and
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Figure 3–5: Comparison GridCell and the dimensionless SSA for a Michaelis-Menten system.

the reverse rate of reaction is 1 per second. The forward rate of reaction of ES → E + P is also

1 per second. The simulation runs for 10 seconds, and the time step in both cases has been set to

10−3. The results are compared to the SSA algorithm and presented in Figure 3–5. Similarly to

the previous test, both approaches produce comparable results.

3.8.3 Crowding

One of the main differences between GridCell and other simulators is its ability to simulate

crowding effects. Molecular crowding occurs when the particle density affects movement and reac-

tivity. Crowding is typically ignored in most models since kinetics are often based on controlled, in

vitro conditions that are not crowded. In addition, simulators do not typically support this feature

because it is computationally expensive to keep track of all particle positions and their excluded

volume, and to implement collision-detection algorithms. Some simulators (e.g. Smoldyn [3]) have

shown crowding effects by explicitly introducing cubic obstacles [34] in the model. In contrast,

GridCell implicitly exhibits molecular crowding effects by allowing inter-particle collisions. We

demonstrate the effect of crowding by adding inert particles to a Michaelis-Menten system. Inert

particles do not react with other molecules, but their presence reduces the amount of available

space, impacting the diffusion speed and affecting the overall number of reactions of the active

particles. The simulation parameters are described in Table 3–5.

Figure 3–6 shows the number of products over time for a wide range of concentrations of

inert particles averaged over 20 iterations. The individual simulations provided almost identical
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Table 3–5: Simulation parameters for the crowded system.
Volume (litres) 10−14

Number of S particles 3000
Number of E particles 1000

k1 (M−1s−1) 107

k2 (s−1) 1
kr (s−1) 1

Simulation time (s) 10
Timestep (s) 10−3

Figure 3–6: Effect of crowding on Michaelis-Menten product formation using GridCell.
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results compared to one another with a relative standard deviation smaller than 3.5% at the end of

the simulation. The number indicated in the legend is the percentage of voxels occupied by inert

particles. In this specific example, with a voxel size of 3.2−20 litres, this amounts to approximately

30000 inert particles per step of 10%. Interestingly, the maximum rate of reaction is obtained when

the inert particles occupy 20% of the volume, confirming the fact that macromolecular crowding

may enhance reaction rates, as the particles have to search a smaller volume to find each other[63].

However, above 30%, the reaction rates decrease linearly as more and more inert particles are

added. Interestingly, the rate of reaction for the first half second is roughly the same regardless of

the amount of crowding in the system. This can be explained by the fact that at the beginning of

the simulation, a roughly equal number of enzyme-substrate pairs are close enough to each other

to be able to react. It is only after the initial set of pairs have reacted and after the substrate and

the enzyme particles have to move to form new pairs that an effect is observed, as the movement

is hindered by the crowding of the system.

3.8.4 Localisation

Localisation of particles, either by recruitment to a specific location or by anchoring them in

structured environments, is expected to affect cellular processes. Here, we examine the effect of

localisation on reaction rates when a system is not well-mixed. Localisation to cellular structures

such as membranes may influence the overall behaviour of the system by fixing position, reducing

diffusion and hence affecting the rate of collision between interacting particles. The biochemical

model is a Michaelis-Menten reaction where enzymes are localised to regions of a semi-porous

membrane made of immobile inert particles. The substrate particles are also all placed on one

side of the membrane. This example is similar to the one presented in [20]. The top view of the

structure is shown in Figure 3–7. Substrate particles initially located on the left side slowly migrate

to the right side, as shown in Figure 3–8. The S concentration is still much higher on the left side

after 10s of simulation time. Concentration of the S is lowest at the two enzyme sites, since the

particles are converted to products when interacting with enzymes embedded in the membrane.

Figure 3–9 shows the evolution of the species P . Figure 3–10 shows the difference in the overall

reaction rate between a well-mixed system and a system with the structure described by Figure 3–7.

Both simulations have the same number of particles, the same volume and the same reaction rates.

However, the overall speed of reaction is substantially different between the two systems. Due to

the presence of the semi-porous membrane and only two specific areas where the reaction can take

place, the non-well-mixed system exhibits a much slower reaction rate than the ideal well-mixed
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3.8. Results and Discussion

Figure 3–7: Top view of the simulation structure. Red area indicates location of the substrate, blue
areas indicate the locations of the enzymes and yellow areas indicate the inert particles forming the
porous membrane.

case. This demonstrates that the structure can have a significant impact on the behaviour of a

biological pathway and that the well-mixed assumption can produce very important errors.

3.8.5 3-Stage MAPK Cascade

The family of MAPK pathways has received a lot of attention from biologists both in experi-

mental studies and in computational cell simulations. While the biological responses of the cascade

are highly varied and a full description of the processes is not within the scope of this thesis, the

general structure of the cascade remains similar for most cases. The pathway starts by reacting

to an external stimuli, usually from the outer plasma membrane. The cascade is used to relay

this outside information inside the cytoplasm and nucleus to regulate various intra-cellular activi-

ties. The external stimuli activates the first stage of the chain consisting of MAPK kinase kinase

(MAPKKK) which will then promote the activation of the second stage made of MAPK kinase

(MAPKK), which will finally activate the final stage consisting of MAPK. The concentration of

activated MAPK is the output of the cascade.

In this example, the chain starts with the MAPKKK which is activated by an external stimuli,

the enzyme E1. The activated MAPKKK (denoted by MAPKKK*) then promotes the phospho-

rylation of the MAPKK into MAPKK-P and then in turn promotes the phosphorylation of the

MAPKK-P into MAPKK-PP. Finally, the doubly-phosporylated MAPKK-PP promotes phospho-

rylation of the MAPK into MAPK-P and the MAPK-P into the MAPK-PP. The concentration level

of the MAPK-PP is the output of the chain. Figure 3–11 describes the 3-stage MAPK cascade.

More details can be found in [28].

[23] were intrigued by the fact that the MAPK signalling pathway cascade arrangement had

three different stages, while a number of other membrane to nucleus pathways were a protein cascade
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Figure 3–8: Top view contour plot of substrate concentration at t = 0, t = 2, t = 6 and t = 10.
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Figure 3–9: Top view contour plot of product concentration at t = 0, t = 2, t = 6 and t = 10.
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Figure 3–10: Concentration of the same Michaelis-Menten system under two different conditions.
S and P consider localisation effect, Swm and Pwm assume a well-mixed solution.

MAPKKK MAPKKK*

E1

E2

MAPKK MAPKK-P MAPKK-PP

MAPKK

MAPK MAPK-P MAPK-PP

MAPK

OUTPUT

Figure 3–11: Schematic view of the MAPK cascade from [23]. MAPKKK is activated by E1
(the input) into MAPKKK*, which stimulates the MAPKK to phosphorylise twice. The doubly
phosphorylated MAPKK-PP promotes the phosphorylation of the MAPK and MAPK-P protein.
MAPK-PP is considered the end of the chain and the output of the system. P’ase denotes phos-
phatase and promotes the dephosphorylation of the kinases.
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Figure 3–12: Steady state response of the 3-stage MAPK cascade.

with a single stage. Also, the fact that each stage needed to be phosphorylated twice should have

an important incidence on the overall dynamics of the system. It was found, both numerically and

experimentally, that the 3-stage cascade exhibits an ultra sensitive behaviour denoted by a large

Hill coefficient varying between 4 and 5. The Hill coefficient is a measure to determine the amount

of cooperativity in a binding process. A value larger than one demonstrates an ultrasensitivity

response compared to the response curve of a Michaelis-Menten enzyme while a value smaller than

one signify a subsenstivity behaviour. This system was executed in GridCell and the steady state

response from various quantity of enzyme E1 input is shown in Figure 3–12.

A Hill coefficient of 4 is observed in GridCell which is similar to the behaviour observed

experimentally in Xenopus extracts and agrees to the numerical research conducted in [23]. The

ultrasensitivity observed in the 3-stage MAPK cascade turns a graded input into a zero to one

switch-like response. This kind of behaviour is believed to be necessary for signaling pathways

driving biological process such as mitogenesis, cell fate induction and oocyte maturation, where the

cell has to go from one discrete state to an other discrete state without intermediate grading.
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CHAPTER 4
Architecture for a Stochastic Particle-Based Biological Simulator

Section 3.4 showed that the performance of GridCell executed serially on a generic CPU limits

the simulation to systems both smaller than 107 voxels and converging in less than 106 to 108 time

steps. Larger systems would not be able to produce results within one day of processing. In order

to simulate larger and more complex systems, the algorithm needs to be expanded and accelerated.

Fortunately, the algorithm has been designed with the idea that it would be executed in parallel

right from the start of its conception. In this section, an FPGA architecture accelerating GridCell is

presented. The architecture is described in VHDL and successfully synthesised on a Xilinx Virtex-6

device providing speedups of one to two orders of magnitude over the serial implementation.

The algorithm is to be executed on a software/hardware platform where a software CPU hosts

the application and streams the data to be processed to an FPGA. All the initialisation, boundary

and synchronisation issues are solved by the software processor, as in the serial implementation.

However, the bulk of the simulation space is processed by the FPGA. The idea of splitting the

work between the FPGA and the software processor has already been explored in applications such

as traffic simulation [53] and produced large performance increases. The full simulation space is

stored in the main memory of the system, while the local information needed by the FPGA is

stored in the smaller and closer distributed memory on the FPGA. The data is streamed to the

FPGA, which acts as a coprocessor. This approach ensures a fast execution while addressing the

scalability issues of a direct implementation when simulating large systems. One big advantage of

the CA model is that each individual voxel can be very simple and only takes a very little amount

of memory. It is expected that two bytes of memory per voxel is sufficient to simulate moderately

complex biological system. Therefore, with 4GB of RAM, a system containing 2 ∗ 109 voxels could

be entirely contained in the main RAM system of the host processor. Larger systems could even

be stored on a hard disk. The increase of processing power from the FPGA architecture makes it

possible to increase the number of time steps by one to two orders of magnitude, which can provide

either a better time resolution, a longer simulation or simply faster execution times.
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4.1. 6-Stage Pipeline

In a parallel and streaming architecture such as GridCell, the bottleneck can either be the

high bandwidth required to supply the FPGA or the amount of logic required on the FPGA. A

bandwidth and memory analysis versus the size occupied in the FPGA is also conducted below.

4.1 6-Stage Pipeline

As mentioned in Chapter 3, the update process of the algorithm is divided into two steps; the

movement phase and the reaction phase. As long as it is ensured that every particle passes through

these two phases every time step, the two phases can be pipelined one after the other. The other

condition is that they must work on independent voxels. Two voxels are independent as long as

they don’t share any of their immediate neighbourhoods. Therefore, each update process needs to

have its own set of voxels along with their corresponding neighbourhoods which are not used by the

other update process. In order to meet this goal, buffer layers are inserted between the movement

phase and the reaction phase. In total, six different stages are needed, as shown in Figure 4–1.

Stages 2 and 5 are the update and movement phase, while stages 1, 3, 5 and 6 are the buffer planes.

Stages 1 and 3 are only accessed by the reaction unit, while stages 4 and 6 are only accessed by

the movement unit. All stages consist of a 2D array of voxels. The size of these is determined by

the number of processing engines (PEs) on each plane, which is in turn determined by the size of

the FPGA and/or the bandwidth of the memory system. Once the movement and reaction phases

have updated all the particles on their plane, all voxels are pushed to the next stage of the pipeline

and the update process can begin anew. New data streamed from the host processor is written in

stage one and the processed data of stage six is sent to the host.

The reaction phase is executed first to make sure every voxel attempts to react and move at

every time step. If the movement phase was handled first, it could be possible for a particle to jump

into a zone that has already been processed in a previous iteration, which would then prevent the

particle from attempting to react. The iteration process of the pipeline is described in more details

in Section 4.13.

Even though the algorithm uses a grid of type D3Q27, each voxel is only physically connected

to either two or six adjacent voxels, depending on which stage they belong. As shown on Figure

4–2, all voxels on the four buffer stages are connected to their top and bottom neighbours only.

The voxels on the two processing stages follow the arrangement shown in Figure 4–3 and have a

direct access to the north, south, east, west, top and bottom directions. The processing voxels

also interact with their corresponding PE, which is not shown on the diagram. Accesses to voxels

outside these six cubic directions are made through a series of voxels. For example, a request to
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Buffer 1

Reaction Unit

Buffer 2

Buffer 3

Movement Unit

Buffer4

Data In From Memory

Data out to Memory

Figure 4–1: Side view of the 6-stage engine.

Figure 4–2: Voxel arrangement of the input and output ports on a buffer plane.

Figure 4–3: Voxel arrangement of the input and output ports on a processing plane.
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4.3. Movement Plane

PE PE

PEPE

Figure 4–4: Arrangement of a 2x2 movement processing plane containing 4 MPEs.

the top northwestern voxel first goes through the north direction, then west direction and then top

direction. This arrangement ensures the complexity of the interconnections between the voxels is

kept to a reasonable level, at the cost of longer access time to farther elements.

4.2 Movement Plane

The movement plane is the fifth stage of the 6-stage pipeline. It contains interconnected

movement processing engines (MPEs) in addition to an external layer of buffering voxels. The

buffering voxels serve a similar purpose as the buffer planes. That is, in order to be able to

update a voxel, its entire neighbourhood is required. This extra layer of voxels is the required

neighbourhood needed to update all the voxels inside the MPEs. These buffering voxels are not

actually processed, and they will still need to be updated by the processing elements in a following

iteration. More details on the data flow of the update process is presented in Section 4.13. Figure

4–4 presents a plane consisting of four MPEs along with its layer of buffered voxels. In order to

reduce the wasted bandwidth on buffered voxels, the shape of the MPEs should always be as close

as possible to a square. For example, a 2x2 plane, a 5x5 plane, etc.

4.3 Movement Processing Engine

Movement processing engines are the main components of the movement processing plane. Each

MPE contains 9 voxels interconnected into a small 3x3 square array, a random number generator,

a finite state machine and the input/output ports required to connect to nearby MPEs and voxels

in the buffer planes. Figure 4–5 illustrates a simplified architecture of the movement processing

engine.
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Vox 1 Vox 2 Vox 3

Vox 4 Vox 5 Vox 6

Vox 7 Vox 8 Vox 9

Finite State

Machine
Counter

Random

Number

Generator

Prob and

Direction Prob and Direction 1..9

Order 1..9

Figure 4–5: Architecture of the movement processing engine

Each MPE updates its nine internal voxels serially since their neighbourhood intersects with

each other, causing a dependency between the voxels. However, as long as each MPE works on

the same relative internal voxel, all MPEs can work in parallel. Figure 4–6 demonstrates the

update process and shows how the neighbourhoods between voxels updated at the same time never

intersect. An internal counter determines which voxel is currently being processed, and since all

counters are synchronised, each MPE works on the same internal voxel.

The state of the FSM is driven by the value of the internal counter. The task of the FSM is

to direct the data generated by the random number generator and issue a move command to the

right voxel at the right time. It is also responsible to issue the push command to all voxels when all

voxels have been updated. The push order writes the current voxel data into the next buffer plane

while loading the data from the previous buffer plane. All other planes also perform the same push

order at the same time, which ensures that all data move forward one stage at the same time and

that nothing is lost or overwritten.

The movement phase of a single voxel can be performed in at most six clock cycles, as described

in Section 4.4. Three extra clock cycles are required to push the data to the next stage and to

accept the new data during the push order. Therefore, the movement phase takes 57 clock cycles

to complete and the number of processed voxels during that time is equal to nine times the number

of MPEs. Note that the reaction phase is more complex than the movement phase and takes more

clock cycles to complete, which creates some free unused clock cycles during the movement phase.
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Figure 4–6: Update process of the MPEs. The red squares represent the neighbourhood of the voxels
currently processed. By processing the same internal voxels, it is ensured the neighbourhoods of
the updated voxels do not intersect.
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Figure 4–7: High level organisation of the movement voxel.

4.4 Movement Voxel

Voxels are the core components of the architecture. There are four different voxel versions in

the architecture: the movement voxel located in the movement plane, the movement buffer voxel

located in the buffer planes 4 and 6, the reaction voxel located inside the reaction plane and reaction

buffer voxel located in the buffer planes 1 and 3. All share the same basic architecture with a few

key differences. This section describes the movement voxel. Differences between the movement

voxel and the other variations are described in their respective section.

Each voxel is designed as a CA entity, which implies its next state is calculated from its current

state and from the state of its neighbourhood. For the purpose of the update process, the state of

the MPE in which the voxel resides is also considered as being a neighbour. The voxel consists of a

small register containing the state of the current voxel, the probability of movement memory block

and three different processes: the input process, the behavioural process and the output process.

Figure 4–7 demonstrates the block level architecture of the movement voxel.

4.4.1 Ports Description

Table 4–1 lists the input and output ports of the movement voxel along with their default size

and a short description.

The task ports are 3-bit vectors, although only the two least significant bits are used in the

moving part of the engine. Table 4–2 shows the list of possible tasks issued by both the MPE and

the adjacent voxels.

The direction field is a 6-bit vector where each bit designates one of the six cubic directions.

The six directions are north, south, east, west, top and bottom (N,S,E,W,T,B), and the direction

field follows this specific order. A “1” value indicates the task needs to be forwarded toward the
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Table 4–1: Input/output ports of the movement voxel.
Port In/Out Size (bits) Definition

General Ports

Clock In 1 General Synchronous Clock
Reset In 1 Synchronous Reset

Ports connecting to the MPE

Task In 3 Task to be performed by the voxel
Direction In 6 Direction relative to the voxel where the task is issued
Prob In 12 Random number generated by the MPE to compare

to the probability of movement.

Ports connecting to adjacent voxels Each of the following ports exist for the 6 cubic direc-
tions (N, S, E, W, T, B)

Species In and Out 8 Species type of the moving particle
Compartment In and Out 3 Compartment type of the voxel initiating the move

task
Reacted In and Out 1 Reacted state of the particle
Moved In and Out 1 Moved state of the particle
Lifetime In and Out 2 Lifetime remaining for temporary particle
Task In and Out 3 Task to be performed by the voxel

Direction In and Out 6 Direction relative to the voxel where the task is issued
Prob In and Out 12 Random number generated by the MPE to determine

if the move task is successful or not.

Table 4–2: Description of the movement task field.
Bitwise Value Corresponding Task

000 Do nothing
001 Try to move toward given direction
010 Move is successful
011 Push the pipeline
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Table 4–3: Fields of a voxel.
Field Size (bits) Definition
Species 4-12 Support for 16 to 4096 different species

Compartment 3-4 Support for 8 to 16 different compartments
Reacted 1 Specify if the particle has already reacted on the current

time step
Moved 1 Specify if the particle has already moved on the current

time step
Lifetime 2 Lifetime of a temporary species before reverting back to

its previous state

given direction. For example “100110” would designate the north west top direction. Although it

is not used in the movement phase, nothing prevents two opposite directions on the same axis to

be active at the same time. This feature is used in the reaction portion of the architecture when

multiple concurrent accesses are issued.

The species, compartment, reacted, moved and lifetime ports are used to send and receive the

information regarding the state of the moving particle. More details on their specific meaning is

provided in the next section.

4.4.2 State Register

This register contains the information necessary to describe the state of a voxel. Table 4–3

describes the various fields. The size of most entries can be modified depending on the size of

the systems expected to be simulated. Most biological systems should require between 11 and 20

bits to completely describe a voxel. The default and current size of the hardware implementation

is 16 bits. It is large enough to support a number of species and compartments for moderately

complex systems while making memory alignment as simple as possible and keeping the memory

requirements low. With 16 bits, the simulator can support 512 different species and 8 different

compartments. If memory space or bandwidth is a problem, we have the flexibility of using smaller

voxels and, for very large systems, it is also possible to increase voxel size.

4.4.3 Probability of Movement Memory Block

As described in Chapter 3, the probability of movement at each time step is calculated from

the diffusion speed of each species in each different compartment. The number of entries is equal

to the supported number of species multiplied by the number of compartments squared. Using

the default values, 512 ∗ 8 ∗ 8 = 32768 different entries are needed. Each entry contains a 12-bit

number representing the probability of movement per time step. Thus, the total amount of memory

needed per voxel is 393.2 Kbits. Considering even the current largest Virtex-6 device contains a
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maximum 34 Mbits of internal memory (BRAMs and distributed memory included), the maximum

number of voxel supported is 86, and this is without considering any other memory elements

needed in other parts of the design. This is clearly below the 588 movement voxels contained in a

16 MPEs architecture, an implementation size believed to provide a speedup larger than one order

of magnitude.

As the brute force approach is not conceivable, a more flexible storage structure is explored.

By assuming the moving matrix is sparse, that most species have a variable number of entries and

that most simulation spaces do not use the maximum number of supported species, it is possible

to dramatically reduce the memory requirements of the probability of movement matrix. The new

memory structure uses a two layer architecture where all entries contain useful non-zero information.

The first layer consists of a memory block indexed by the species number containing the address

of the first element and the number of elements belonging to that species in the second block. The

second block contains all the probability of movement data sorted by species number as well as

the values of the two compartments corresponding to each entry. In addition to the maximum

number of entries contained in the second layer memory block, a restriction on the maximum

number of entries per species is enforced. This second limitation is necessary in order to maintain

a constant and fast execution speed. Indeed, by limiting the number of entries per species to a

specific value, we can design the second memory element in such a way that it always provides

the maximum number of entries in a single read. A distributed memory structure made of several

smaller memory banks with interleaved data is designed. Assuming N is the maximum number of

entries per species, the memory block also contains N different memory banks. By multiplexing

the inputs and outputs, a single read accesses all N small memory blocks and provides the data

at the requested address as well as the next N − 1 entries. The idea of distributed memory with

interleaved data has been explored in [55]. Figure 4–8 shows the general memory structure. Figure

4–9 shows an example of the architecture of the second layer memory element with four different

memory banks. The current hardware implementation uses eight banks generated through the

Xilinx IP core distributed RAM structure. Finally, once the data from the distributed memory

block is obtained, a selector block compares the value of the two compartment values from the

distributed memory block to the two compartment values involved in the movement task. If a

match is found, the corresponding probability of movement is sent. If no match exists, it means

the current combination of compartment is not valid and the probability of movement is zero.
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Selector

Index Block

(First Layer)
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Comp1

Comp2
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Figure 4–8: Architecture of the probability of movement memory block. First block receives the
species type and output the address of the first element and the number of elements N belonging
to that species to the second block. The second block reads the address and output the next N
following entries. The selector compares the compartment values and if a match is found, outputs
the corresponding probability of movement value
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Figure 4–9: Structural view of the distributed interleaved memory block with four distinct memory
banks. A front layer of multiplexors selects the right index for each memory bank based upon the
values of the least significant bits of the address. A back-end layer of multiplexors reorders the data
from the memory banks to the output.
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The maximum number of entries per species has a minimal impact on the total amount of

memory required for the total structure, as only one extra bit per species is added every time the

maximum value is doubled. The flexible structure of FPGA distributed memory also makes it

possible to modify this parameter without modifying the general architecture of the memory blocks

if the modelling accuracy is affected by this limitation.

The main parameter affecting total memory space is the total number of entries supported

in the second block. The maximum number of entries is currently set to 512, a number believed

to be large enough for most current models. By setting the maximum number of entries to 512

and the maximum number of entries per species to eight, the total amount of memory required is

16Kbits, which is 25 times smaller than the brute force approach. As mentionned earlier, both the

total number of entries and the number of entries per species can be increased without modifying

the architecture if the model requires more species and more compartments. While the maximum

number of entries per species has a minimal impact on the memory and logic cost, increasing the

total number of entries would increase the required amount of memory per voxel which would

impact the maximum number of voxels that can be fitted on the FPGA device.

Another alternative can be explored to reduce the memory requirements of the probability of

movement data. It involves simplifying the algorithm so that each species has a single diffusion speed

per compartment and that any transition between compartments would use the diffusion value of the

destination compartment. For example, a particle going from compartment A to compartment B

would simply use the diffusion speed of compartment B instead of using the probability of movement

of going from compartment A to compartment B. The moving ratio memory element would then

scale linearly with the number of compartments. However, implementing this modification would

remove the capacity to have different diffusion speed when entering and exiting a compartment, a

feature useful to simulate active transport.

4.4.4 Input Process

The input process reads all the inputs from the six neighbouring voxels and generates a single

signal used in the behavioural process. Over the multiple iterations of the design of the FPGA

implementation, this process went from a fairly complex, priority-driven multiplexor to a much

lighter and faster block performing a 6 to 1 “or” operation to all voxel inputs. The architecture is

made in such a way that if more than one input is active on the same clock cycle from multiple

directions, then all inputs are necessarily the same request coming from different paths. Therefore,
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the “or” logic is a small and fast operation making sure that all ports are listened to and that the

format of the data is preserved.

The input process also updates the value of the direction port in order to reflect the new

relative position of the voxel. Any input coming from a given direction is now necessarily at the

right location on the given axis. Therefore, the direction bits of that axis are set to ‘0’. For example,

a voxel receiving a task from the south port with the direction “100110”, which designates the north

west top direction, updates the direction vector to “000110” by setting the NS direction bits to 0,

as the task has travelled north and is now at the right location on the NS axis. The move request

now only needs to go to the west and top direction.

4.4.5 Behavioural Process

The behavioural process is a finite state machine reading the signal sent by the input process

and the MPE to produce the new state of the voxel. The process first looks at the MPE ports.

The MPE can request two different tasks. The first one is the movement task, to which the

voxel responds by forwarding the task with its current voxel information to the direction and with

the probability number provided by the MPE. The second task is the push task, where the voxel

forwards its voxel information to the voxel in the bottom direction. The push order starts a cascade

of push tasks in the other planes, so that all the voxels in a given plane are forwarded to the next

plane. If no task is requested by the MPE, the process looks at the signal generated by the input

process coming from the neighbouring voxels.

If the task is a movement order, the behavioural process first looks at the direction field.

If it is not equal to “000000”, it means that the task has not yet arrived at destination. The

process then forwards the received task to the correct direction(s) and updates an internal direction

register which remembers the direction from which the order came from. If the direction is equal

to “000000”, the task has arrived at destination. The process then checks if the voxel is empty

and if the received probability is smaller than the probability of movement. If both checks succeed,

the movement is successful and the voxel updates the species, reacted, moved and lifetime fields

with the data provided by the input signal. The process then sends a reply to the direction(s) from

which the movement task came from, mentioning the movement is successful.

If the process receives a movement successful order, it checks its internal direction register. If

it is not “000000”, it means that the voxel previously forwarded a move order and it implies that we

are not at the right location yet. The process then forwards the task to the direction indicated by
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Figure 4–10: Example showing voxel 3 performing a movement order to the NW direction. The
voxel forwards the task to voxel 2 to the west and to voxel 1 to the north. In the next clock cycle,
voxel 1 and voxel 2 both forward the task to voxel 0 to the west and north respectively.

the internal direction register. If the register is all zero, then we are back at the original location,

and the voxel is emptied.

Finally, if the process receives a push task from a top voxel, the process overwrites its current

voxel registers with the data provided by the top voxel. As the request came from the top voxel, it

is assumed that the current voxel information has already been forwarded to the next stage a few

clock cycles before when the MPE requested the initial push order.

4.4.6 Output Process

The output process is in charge of reading the direction field generated by the input and

behavioural process and drives the output ports. For every active bit in the direction field, the

process sends the data received from the behavioural process to the corresponding direction. For

every inactive direction, zeros are outputted. It is not unusual that multiple ports are active at

the same time and, while it is not a necessity in the movement part of the pipeline, it does not

influence the end result. Figure 4–10 shows an example in which voxel 3 attempts to move to the

NW direction. The voxel forwards the task to voxel 2 to the west and voxel 1 to the north. In

the next clock cycle, voxel 1 and voxel 2 both forward the task to voxel 0 to the west and north

directions respectively. Assuming a successful movement, voxel 0 will reply in a similar fashion in

the opposite direction.

4.4.7 Pipelining of the Movement Phase

As the farthest possible neighbour a voxel can interact with is three steps away, it takes three

cycles to reach the neighbour and another three cycles for the reply to reach the initial voxel. This

implies a maximum of six clock cycles is needed to perform the movement task of a single voxel.

However, as it will be shown in the reaction voxel section, the reaction phase needs three extra
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clock cycles to perform the update, requiring up to nine clock cycles per voxel to complete. As both

update processes need to be synchronised, this leaves an opening of three clock cycles where no

actual work is done. These three clock cycles provide some room to pipeline the slowest stages of

the movement update process and increase the throughput of the movement engines. The critical

data path starts at the species register of the active voxel, needed by the probability of movement

memory block, which drives the selector before being compared to the probability value. If the

movement is successful, it then triggers a “move successful” reply. By adding a register between

the first and second memory blocks, between the second memory block and the selector and between

the selector and the update process, the overall update process now takes three additional clock

cycles and a speedup of 2.2x is achieved.

4.5 Random Number Generation with LFSRs

Each MPE needs a random number generator (RNG) to provide the direction and the probability

values. The direction needs to be random enough to simulate the Brownian motion of the particle

and to make sure that no artificial internal flow is imposed on the particles. On the other hand,

the probability value needs to be uniform enough to avoid modifying the overall rate of movement

of the particle.

Generating true random numbers on FPGA is impractical; the usual method is to generate

pseudo-random numbers with the help of linear feedback shift registers (LFSRs) which can be

efficiently mapped in modern FPGAs. The random number generator uses a combination of 10

16-bit LFSRs to create a 32-bit pseudo-random number. Out of these 32 bits, 12 are used as the

uniform probability value and the remaining 20 bits are multiplied by 26 to create a uniform integer

number ranging between 0 and 25 inclusively. This number is mapped through a LUT to a unique

direction. The multiplication is implemented as a series of shifted additions since one of the two

inputs is fixed.

While it is difficult to determine the quality of randomness of a random generator, the Na-

tional Institute of Standards and Technology (NIST) [48][41] developed a battery of statistical tests

to detect non-randomness in binary sequences generated by random and pseudo-random number

generators. The primary test is called the frequency monobits test and is essentially comparing

the number of ‘0’ values to the number of ‘1’ bits in a string of random number. Ideally, both

values should be generated very close to 50% of the time. The frequency monobits test has been

applied to GridCell’s RNG for various seeds and length sequences and it succeeded all the tests.

Additional testing on the software version of GridCell has shown that switching from a reliable
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double-precision random number generation library to a bit-accurate C version of the FPGA RNG

did not introduce any observable change in the results of the systems demonstrated in Section 3.

Given that GridCell’s algorithm needs uniform random values at irregular intervals, it is not

really sensitive to slight patterns that might be observed from using an imperfect RNG. Also,

contrary to most cryptographic applications, the RNG does not need to generate values which are

theoretically impossible to predict based on the past generated values and in general, does not need

to be as strong. Therefore, while not being a complete analysis of the RNG used in the FPGA, the

frequency monobits test and the practical tests validate that the quality of the RNG is high enough

to not introduce any significant bias in the system.

4.6 Movement Buffer Plane

The movement buffer plane consists of a two dimensional array of movement buffer voxel

matching the size of the movement plane. Two different movement buffer planes are present in the

6-stage pipeline, one in stage 4 and one in stage 6.

4.6.1 Movement Buffer Voxel

The movement buffer voxel is a stripped down version of the movement voxel. First, since it

is not located inside an MPE, it does not need any port and logic dealing with tasks coming from

a MPE. It also only has connections to the top and bottom voxels which reduces considerably the

complexity of the wiring of the movement buffer plane, as all the NSEW movements are handled

in the main movement plane. The input and output processes behave in the same way as the

movement voxel. The behavioural process behaves similarly to the movement voxel except when a

push task is issued from the top voxel. In that case, instead of only overwriting the state of the

voxel with the data coming from the top voxel, it also sends its current state to the bottom voxel.

This ensures that the cascade of push commands is forwarded to the next stage. Only a non-buffer

movement or reaction voxel can start or stop a push cascade.

4.7 Reaction Plane

The reaction plane is the second stage of the 6-stage pipeline. The reaction plane is similar in

structure to the movement plane and the organisation of Figure 4–5 is applicable to the reaction

plane as well. The two main differences are the use of reaction processing engines (RPEs) instead

of MPEs and the external layer of voxels is made of the reaction voxel type.

4.8 Reaction Processing Engine

From a structural point of view, the RPEs are similar to the MPEs. Each RPE contains nine

reaction voxels organised in a 3x3 array and the order of processing is done in a similar fashion.
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Figure 4–11: Architecture of the reaction processing engine

Each RPE also contains the same RNG although RPEs are only using the prob output. The FSM

is similar in purpose in that it acts as a big multiplexor connecting the right data and tasks to the

right voxel at the right time and is driven by an internal counter. One of the main differences is

the presence of the reaction selector block which selects which reaction the active voxel attempts

to perform. Figure 4–11 shows the architecture of the RPE.

4.9 Reaction Selector

The reaction selector takes into consideration the species number of the particle attempting

to react and the random probability number from the RNG to generate the reaction information.

The reaction information includes the type of reaction which specifies if a merge, transform or split

reaction is requested and the species of the other particle involved in the reaction, if applicable. The

reaction selector is a memory structure very similar to the probability of movement memory block

shown in Figure 4–8. It is a dual layer architecture where the first memory block is indexed by the

species number and outputs the address of the first entry as well as the total number of entries of

the second block. The second block is a list of all the reactions with their probability of reaction

in order of species number. The second block is also a distributed memory consisting of several

smaller memory banks with interleaved data similar to the block shown in Figure 4–9. It always

outputs the maximum number of reactions per species supported by the implementation. The

memory banks are generated by using the Xilinx IP core software to create fixed sized distributed

RAMs. Finally, a selector takes as input the maximum number of reactions from the first block,
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the random probability from the RNG and the reaction data from the second block to select which

reaction is selected.

The current implementation supports a maximum of 512 different reactions with a maximum

of eight different reactions per species. These two numbers are large enough to support moderately

complex systems and as in the case of the movement phase, the maximum number of reaction per

species can be increased for a minimal increase in memory fabric while increasing the maximal

number of reaction will require more memory per RPE, which could reduce the number of PEs that

can be stored on the device. Note that contrary to the movement memory block, which is currently

needed in every movement voxel, only a single reaction selector per RPE is required, which reduces

considerably the memory scaling issues of increasing those two parameters.

As was the case with the movement, the data path starting at the species register of the active

voxel going into the two layers of memory and the selector of reaction to the active voxel to start

the reaction update process is by far the longest path in the architecture. In the movement voxel,

we had three free clock cycles that were not used since we had to wait for the reaction update

process anyway. In this case, the three clock cycles are needed to finish the reaction update phase.

Fortunately, the properties of the architecture allow us to prefetch the species number information

of the next active voxel before the current reaction update process is finished. Indeed, since all the

reaction voxels inside the RPEs are on the same plane, they are at most two steps away from any

other active reaction voxels, meaning that any voxel on this plane is updated within six clock cycles

at the most. Only the voxels in the buffer planes can take up to nine clock cycles to update. As

such, we can be certain that by clock cycle 6, the species information of the next active voxel is the

correct one. It is then possible to start the reaction selector process at that time and pipeline the

process as we did to the movement phase so that the selection of the reaction is already done when

it is time to start updating the next particle. Doing so provided a speed up of 2.2x compared to

the version where no pipelining and no prefetching was done. The speed up is in the same order as

the one observed for the movement voxel and both the reaction and the movement phases run at

about the same speed.

4.10 Reaction Voxel

The reaction voxel is structurally similar to the movement voxel shown in Figure 4–7. The main

difference is that it does not need any probability of movement memory structure. The reaction

selector, which serves a similar purpose in the reaction update, is located in the RPE and is shared

for all reaction voxels. The behavioural process is also modified to handle reaction tasks.
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Table 4–4: Input/output ports of the reaction voxel.
Port In/Out Size (bits) Definition

General Ports

Clock In 1 General Synchronous Clock
Reset In 1 Synchronous Reset

Ports connecting to the MPE

Task In 3 Task to be performed by the voxel
species1 In 8 First species type involved in the reaction
species2 In 8 Second species type involved in the reaction
speciesout Out 8 Species type of the current voxel. This is used by the

reaction selector

Ports Connecting to buffer voxels Each of the following ports exist for the 2 directions
(T, B)

Species In and Out 8 Species type of the moving particle
Compartment In and Out 3 Compartment type of the voxel initiating the task

Reacted In and Out 1 Reacted state of the particle
Moved In and Out 1 Moved state of the particle
Lifetime In and Out 2 Lifetime remaining for temporary species
Task In and Out 3 Task to be performed by the voxel

Direction In and Out 6 Direction relative to the voxel where the task is issued
Prob In and Out 12 Not used.

Ports Connecting to reaction voxels Each of the following ports exist for the 4 directions
(N, S, E, W)

Species In and Out 8 Species type of the moving particle
Compartment In and Out 3 Compartment type of the voxel initiating the task

Task In and Out 3 Task to be performed by the voxel
Direction In and Out 6 Direction relative to the voxel where the task is issued

4.10.1 Ports Description

The ports of the reaction voxels are slightly different from those in the movement voxel. Table

4–4 shows the input and output ports, the default number of bits, as well as a short description of

each port.

The lifetime, prob, reacted and moved data fields are not needed to perform a reaction, which

is why the buses on the reaction plane are smaller. The top and bottom ports keep the same format

as the movement voxel since it is through these ports that the push order is issued. The push

command can also be considered as a forced move command. Probability is not used but is kept as

a port in order to keep some uniformity in the voxels; otherwise, six different variants, one for each

stage, would be required instead of four.

The task field in the reaction part of the pipeline has different meanings. Table 4–5 describes

the possible values and their corresponding meaning.

4.10.2 Input Process

The input process of the reaction voxel uses the same “or” logic as the one from the movement

voxel for all inputs except for the internal register storing the direction from which the input(s)
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Table 4–5: Description of the reaction task field.
Bitwise Value Corresponding Task

000 Do nothing
001 Perform a merge reaction
010 Unused
011 Push the pipeline
100 Perform a transform reaction
101 Perform a split reaction
110 Reply from a neighbouring voxel to the active voxel saying that a match

has been found
111 Reply from the active voxel to a matching voxel to complete the reaction

came from. The movement voxel was simply “or”ing all the directions together, which meant that

the voxel could reply to multiple directions at once. We can do so since the movement task is

targeting a single direction, so the path itself is not important as long as the origin and destination

remain the same. In the case of the reaction voxel, for both the split and the merge reaction, a

search is conducted in the full neighbourhood in order to find the required match. Therefore, all

voxels are targeted and tested, and out of all the possible matches, only a single one can be selected.

A priority system is needed to make sure only a single external voxel is affected by a single reaction.

Thus, if a voxel receives the same task from two different directions and needs to reply, the reply is

sent to the direction with the highest priority.

In order to eliminate any bias on the macro-level caused by keeping a static priority order, the

priority order is toggled between two opposite directions every time steps during the push order.

The order, from most important to least important, switches from 1) north, south, east, west,

top, bottom to 2) south, north, west, east, bottom, top. These two opposite alternating directions

prevent the creation of any artificial flow of particles that would be caused by always creating or

deleting particles in the same direction.

4.10.3 Behavioural Process

The behavioural process is a finite state machine reacting to the signal sent by the input process

and the RPE to produce the new state of the voxel. Similarly to the movement voxel, the process

looks at the RPE first and if no task is requested, the inputs coming from adjacent voxels are

considered. The RPE can request four different tasks. Three of the four tasks correspond to the

three different types of reaction, the transform reaction (task = “100”), the merge reaction (task

= “001”) and the split reaction (task = “101”). The last task is the push order (task = “011”),

which is handled in the exact same way as in the movement voxel.
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Figure 4–12: An example of a 2D broadcast search. Voxel S is searching for a specific species type
in its neighbourhood; the matches are designated by the M notation, while Xs are mismatches.
On step 1, S is sending a broadcast search to its four direct neighbours (blue arrow). On step 2,
the west and east voxel, which are both matches, reply with a match found signal (green arrow).
The north and south voxel, being mismatches, forward the broadcast search to the last layer of
neighbours. On Step 3, S reacts, preventing any other reaction from happening during this time
step, and sends a confirmation (red arrow) to the east voxel since it is higher on the priority list
than the west one. The northwestern and northeastern voxels reply to the north voxel that a match
has been found. On step 4, the east voxel reacts and the process is finished. S ignores the second
wave of reply from the north since it has already reacted.

The transform reaction first verifies if the particle has not already reacted during this time

step. If the particle can react, the species type of the active voxel is replaced with the new type

provided by the reaction selector, and the state of the particle is set to reacted.

The merge and the split reaction are handled similarly. The reacted state is also verified

and if it is zero, a broadcast search is sent to the full neighbourhood of the active voxel. The

difference between the split and the merge reactions is that the merge reaction searches for a specific

particle type, while the split reaction searches for any empty voxels. Figure 4–12 shows an example

describing how the broadcast search is conducted. The advantages of this broadcast search are

numerous. First, the execution time is independent of the number of good or bad matches. Second,

if more than one match is found, only one of them is chosen and the selection is done automatically.

Finally, if no match is found, no reply is sent and the reaction is aborted.

When no task is active from the RPE, the process listens to the adjacent voxels. If the task

comes from a broadcast search from a split or a merge reaction, the process checks three conditions:

1) The compartment numbers must match as no reaction between different compartments can be

triggered. 2) The particle must not have already reacted. This check is not relevant if the voxel

is empty. 3) The particle types must match. If all these conditions are true, a reply is sent back

toward the highest priority direction saying a match has been found (task = “110”). If one of the

conditions is false, the broadcast is forwarded to the next layer of neighbouring voxels.

If the task indicates that a match has been found (task = “110”), the process tests the internal

direction register and the reacted state to make sure that we are at the right location and that
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the particle has not yet reacted. If both tests pass, the voxel is updated with the new species,

reacted is set to true and a reply (task = “111”) is sent back toward the highest priority direction

from which the response(s) was(were) received. This reply is necessary because even if the external

particle is a match, it can not know that it is the one that is selected until the reply is received.

When the internal direction register is not zero, the task is forwarded in the direction saved by the

internal direction register.

If the task indicates a confirmation (task = “111”) order, the process tests the internal direction

register. If it is zero, we are at the right place, and the species voxel is replaced either with

the corresponding species or is emptied. If the internal direction register is not zero, the task is

forwarded.

Finally, the push task (task = “011”) is handled the same way as the movement voxel.

4.10.4 Output Process

The output process is identical to the one in the movement voxel except for the format of the

input/output ports, which is slightly different.

4.11 Reaction Buffer Plane

The react buffer plane is a two-dimensional array of reaction buffer voxels matching the size of

the reaction and movement plane. A first reaction buffer plane is located in stage 1 the other one

is located in stage 3.

4.12 Reaction Buffer Voxel

Similarly to the movement buffer voxel, the reaction buffer voxel is a stripped down version of

the reaction voxel. All the ports and logic related to the RPE have been removed as well as all the

input and output ports connecting to the NSEW directions. As was the case with the movement

update, all the NSEW requests are handled in the main reaction plane. The input and output

processes behave in the same way as the reaction voxel. The behavioural process behaves similarly

to the reaction voxel except when a push task is issued from the top voxel. In this case, instead of

only overwriting the state of the voxel with the data from the top voxel, it also sends its current

state to the bottom voxel.

4.13 General Update Process

Assuming that the north-south dimension is considered to be on the y axis, the east-west

dimension is on the x axis and the top-bottom dimension goes along the z axis, the pipeline

processes 6 planes in the x and y axis and moves along the z axis after each xy plane is processed.

In general, the size of the xy planes of the pipeline is smaller than the size of the full simulation
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Figure 4–13: Pipeline movement over multiple iterations to update the full simulation space. After
each iteration, more and more of the simulation space is processed. In this example, it would take
roughly nine iterations to cover the full space. Top view of the xy plane is shown.

space. Therefore, it takes several displacements and iterations of the pipeline to cover the full

simulation space. Figure 4–13 shows an example describing how the pipeline moves in order to

cover the full simulation space.

The size of the simulation in the xy axis does not necessarily have to be an integer number of

times the size of the pipeline. A smart memory controller could start processing the next row right

away with the remaining processing elements as long as the two layers of walls delimiting the end

of the current row and the start of the next one are included. This arrangement would ensure the

processing elements would always be busy and doing effective work. A simpler controller could fill

the rest of the processing elements after the wall with empty voxels and could start on the next
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row on the next iteration. The same principle can also be applied when finishing a time step and

starting the next one.

The x, y, z planes are all interchangeable, as rotating the simulation space has no effect on the

end result of the simulation. Optimally, in order to reduce the amount of memory management

required when starting a new iteration, the number of iterations should be minimised. Therefore,

the z axis should always be the longest axis of the simulation space.

4.14 FPGA Implementation

The architecture is synthesised using the Xilinx ISE 12.2 software and simulated with ModelSim

XE 6.5. The FPGA target device is the latest generation Virtex 6 XC6VLX760 which is one of the

two largest devices currently available from Xilinx. The goal was to validate the architecture used

for the implementation of the GridCell algorithm and evaluate the range of speedups obtainable

with current technology. As the architecture is scalable, smaller and (future) larger FPGA can be

used with little to no modifications. The number of processing elements can be modified to fit the

bandwidth as well as the size of the different devices and systems.

4.14.1 XC6VLX760 Xilinx Virtex 6 Device

The FPGA XC6VLX760 contains 118560 slices, each of them made of four 6-input LUT and

eight flip-flops, which correspond to a rating of 758784 logic cells. Some of the slices can be

used as distributed memory or shift registers, two functions extensively used in the architecture.

The device also has 1440 18 Kb BRAMs containing up to 26 Mb of internal memory. BRAMs

are not currently used in the design as they are rather large memory banks and GridCell makes

a better use of multiple smaller memory elements provided by distributed memory. However, if

distributed memory becomes limited, they would make a fine additional memory resource to share

the memory load. The first target would be to replace the reaction memory blocks with BRAMs.

Several hundreds of DSP slices, each containing a multiplier, an accumulator and an adder, are

also featured in the device. However, the algorithm requires a very limited amount of complex

mathematical calculations, and even the smallest FPGA has more than enough DSP units to cover

several hundred PEs.

4.14.2 FPGA Synthesis Resources Utilisation

Four different versions of the architecture are synthesised. The first one contains a single MPE

and RPE, the second one forms a 2x2 array of PEs (4 of each), the third version is made of a 4x4

array of PEs for a total of 16 MPEs and 16 RPEs and, finally, the fourth version consists of a 5x5

array. Table 4–6 shows the resource utilisation of each version of the pipeline.
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Table 4–6: Resource utilisation of the XC6VLX760 FGPA.
Number of PEs per stage Slice Registers (%) Slice LUT (%) Clock Speed (MHz)

1 7300 (0%) 17500 (3%) 182
4 29720 (3%) 67576 (14%) 180
16 117797 (12%) 275473 (58%) 177
25 184022 (19%) 460279 (97%) 173

Table 4–7: Throughput and gains of performance of the architecture.
Number of PEs per stage Throughput (MVox/s) Speedup

1 19 3.2
4 75 12.6
16 296 50
25 452 76

The number of resources used scales linearly with the number of processing elements which is

expected. The clock cycle speed is also mostly unaffected by the size of the pipeline. The small

slowdown in speed is explained by the fact that, while the critical data path does not change, as

more and more units are added, the worst routing delay may increase slightly.

Looking at the trend from table 4–6, as we increase the number of processing elements, the

number of Slice LUT is the resource saturating first, which is usually the case in most FPGA

designs. With 25 PEs per stage, the device is almost completely used.

4.14.3 Performance

The throughput in voxels per second of the pipeline is given by

Tvox =
9FreqNPE

86
, (4.1)

where Freq is the frequency of the FPGA pipeline and NPE is the number of MPEs on the

movement and RPEs on the reaction stage. The number 9 is the number of voxel per PE and the

number 86 is the number of clock cycles required to fully update the PEs (9 voxels * 9 clock cycles

+ 3 for pushing the pipeline + 2 for pipelined latency delay of the first voxel).

Given a frequency of 172MHz and 25 MPEs, we obtain a throughput of 452 Mvoxels/sec. By

calculating the throughput of the software version with the same settings as those used for table

3–1, we may observe that the FPGA implementation is over 76 times faster than the software

version. Table 4–7 presents the speedups achieved with the different implementation sizes of the

architecture. Each additional PE present in the pipeline roughly increases the gain of performance

by an additional 3x over the serial implementation.
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In order to calculate the memory bandwidth required by the architecture, we first need to

compute the number of voxels present per plane, including the buffer zone. Assuming a square

number of processing elements, the relationship between the number of voxels per plane Nvox and

the number of PEs NPE is given by

Nvox = (3
√
NPE + 2)2. (4.2)

Then, the memory bandwidth required to supply the pipeline is given by

BW =
NvoxVsFreq

86
(4.3)

where BW is the bandwidth required by the movement stage, Nvox is the number of voxels

per plane, Freq is the clock frequency of the FPGA board and Vs is the number of bits per voxel.

Assuming a frequency of 172MHz, 25 MPEs and a voxel size of 2 bytes, we obtain a bandwidth

of 1.2 GB/s per direction, for a combined 2.4 GB/s memory bandwidth. This range of bandwidth

is within the range of most current systems. For example, the SGI RC-100 Numalink interface can

support theoretical speeds of up to 6.4 GB/s.

4.14.4 Scaling Properties and Bottlenecks

From the bandwidth analysis and the resource utilisation, we can see the resource utilisation of

the Slice LUT is more restrictive than the bandwidth required to supply the pipeline. The resource

utilisation of the FPGA could be reduced by using BRAMs in addition to distributed memory. The

probability of movement memory block inside each movement voxel is taking slightly more than

half the resources of the FPGA fabric. With some modifications to the movement voxel and MPE

structure, it should be possible to reduce the number of probability of movement memory blocks

to a single one per MPE, instead of one in every voxel, similarly to how the reaction selector is

used in the reaction phase. The movement update would have to be slightly more complex, but

the difference in size is probably worth it. A stronger optimisation of the voxels could also lead to

a more efficient implementation.

The bandwidth utilisation, even if not a major bottleneck, could be improved by reducing the

amount of data spent on transferring buffered voxel. For example, a brute force approach where

the full buffered neighbourhood is received and sent along with the processed data uses 26% of the

bandwidth for the buffered data when using a 4x4 array of PEs. As the number of PEs increase, the

layer of buffering voxels becomes less important. For example, it reduces to 15% with a 8x8 array
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of PEs. By storing the voxel information that will be needed again shortly on the device, a smart

memory controller could considerably reduce this wasted bandwidth at the cost of increased memory

capacity and additional logic. Both the bandwidth and the resource utilisation scale linearly with

the size of the system.

Besides increasing the number of PEs on the board, the throughput could also be improved

by increasing the clock frequency of the pipeline. The best way to do so is to further pipeline the

critical data path until the increase of clock frequency does not compensate for the extra number

of stages needed to update the stage. Currently, adding one extra clock cycle per voxel increases

the number of steps by roughly 10%. Thus, as long as the increase in clock speed is larger than

10% the throughput will increase.
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CHAPTER 5
Future Research Work

The development of both the algorithm and the architecture is the first attempt at building

a hardware-accelerated, scalable, stochastic simulator which includes locality and crowding effects.

While this specific goal has been met, several aspects of the simulator could be improved or modified

such as adding more functionality or making it easier to use, faster, and biologically more accurate.

In this section, we will look at the possible avenues that can be pursued to improve GridCell.

5.1 Complete VHDL Implementation

The hardware implementation into an actual FPGA platform is the main short-term goal of the

research work. The algorithm of GridCell was developed with the idea that it would be parallelised.

An efficient pipelined and parallel architecture was designed and synthesised. The next step is to

physically implement the pipeline into an actual accelerating hardware platform. A streaming

approach would be used where the three different stages consisting of data loading, unloading and

algorithm execution are overlapped. In order to do this, a dual buffering strategy is adopted. Two

different SRAM banks connected to the FPGA are required, the first one storing the input data

and the second one containing the output data. Each bank is divided into two sections. While

one section from the input RAM feeds the data to the algorithm, the other section is receiving

the data to be used in the next iteration from the host. Meanwhile, one section from the output

RAM is receiving the processed data from the algorithm block while the other section is sending

the processed data from the previous iteration to the host. When both sections in each RAM banks

have finished doing their respective task, the sections are swapped and the next iteration can start.

Figure 5–1 demonstrates a schematic of a classical dual buffering streaming model.

Compared to a constructive approach where the full simulation space is represented inside

the FPGA, the streaming approach removes the dependency issues between the size of the FPGA

and the size of the simulation. A larger simulation simply takes more iterations to complete, and

modifying the size of the simulation does not require any modification to the pipeline.

The SGI RC-100 is a good example of a platform with high bandwidth between the host and the

FPGA and it already supports streaming applications inherently. The SRAM blocks connecting

to the FPGA are dual-ported and can perform the ping-pong buffering. The tools and FPGA
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Figure 5–1: Schematic view of the dual buffering technique.

core elements are supplied by the provider to interface between the host system and the FPGA

algorithm. Therefore, the memory controller dealing with the timings of the memory banks and the

bus interfacing between the FPGA and the host CPU does not have to be manually developed. The

hardware platform has a decent bandwidth of 6.4 GB/s between the host and the FPGA, which

is large enough to support speedups of more than two orders of magnitude. The system can also

contain several FPGA devices.

Finally, an input/output stage interfacing between the SRAM port and the pipeline data format

is required. Theses two stages serve a similar purpose as serial to parallel converters and parallel

to serial converters. The input buffering stage reads the SRAM port (a 128-bit bus in the RC-100

architecture) divides the bus data into voxel data and aligns each voxel so that they can be read by

the first stage of the pipeline. The output buffering stage performs the reverse operation. Assuming

16-bit voxels, a 128-bit bus would contain exactly 8 voxels. Using voxel sizes that are not multiples

of 128 would require a slightly more complex alignment.

5.2 Scaling to Multiple FPGAs

The architecture is scalable to multiple FPGAs without any modification to the pipeline.

Adding more FPGAs increases the number of processing units in the pipeline, so that each iteration

of the pipeline covers more area. Since the computational load is evenly divided between the FPGAs,

the speed increases linearly with the number of FPGAs used. When multiple FPGAs are used, the

host CPU processes the central buffer zone between the FPGAs sections while each FPGA takes care

of its own section. The central buffer zone plays a similar role to the buffer zone surrounding each
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individual pipeline. The FPGA can move particles into the buffer zone or use it to find reactants

for a reaction, but they do not actually process the voxels inside the zone, which is why the CPU

has to perform the update process. By processing the voxels adjacent to the central buffer zone

first, the FPGA and the CPU can work concurrently. Indeed, once the FPGAs have produced their

results and written them back into memory, the software can start processing the nearby buffer

zone. An example of the update process with four FPGAs is shown in Figure 5–2. This update

process can be modified for any number of devices. The architecture is also scalable to multiple

CPUs in a similar fashion, where each CPU can be affected to a given zone. One could also imagine

a system with a master/slave hierarchy where the master CPU takes care of the data transfer and

communication, while the slave CPUs work on their given zone. The central buffer zone is fairly

small compared to the full simulation volume, and the proportion of voxels to be processed by the

CPU gets smaller and smaller as the simulation space increase. For example, in a system using

four FPGAs and a single CPU containing 107 and 109 voxels, the central buffer zone amounts to

respectively 1.5% and 0.4% of the whole simulation space. The main advantage of using this hybrid

CPU/FPGA solution is the complete removal of any direct communication between the FPGAs,

all the communication being handled by the central CPU.

5.3 Possible Improvements to GridCell

This section discusses some of the possible modifications and improvements which would not

request significant modifications to the update algorithm and, consequently, to the VHDL archi-

tecture. These improvements can be classified into several categories: user interface modifications,

input/output improvements, stronger SBML support, high definition compartments and particles

and grid modifications.

The current user interface could use several improvements to make it more user friendly and

many functionalities could be added or improved. For example, adding a model editor where the

user could build the biological models graphically would remove the need to manually edit and tinker

the SBML file. Adding the options to do a steady state or sensitivity analysis would also be useful.

Adding a command line interface would allow for an easier use of automatic script events. A check

point feature would also enable to save and load simulations in the middle of their execution. The

ability to automatically link to Internet biological databases could also be implemented. Improving

the 3D graphics could be done and adding a ”hot spot” feature which would locate the high density

areas of reactions sounds like a nice idea. The list can go on.
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Figure 5–2: Zone partitioning with multiple FPGAs working in parallel. In this example, we assume
four FPGAs and one CPU. The simulation space is divided into four equal parts for each FPGA
and a central buffer zone updated by the CPU (shaded area). Each FPGA starts by processing the
portion of their zone closest to the centre of the simulation space (iteration 1). During iteration 2,
the FPGAs update a nearby zone adjacent to the buffer zone, denoted by 2, while the CPU can
start updating the voxels in the buffer zone 2. After the 7th iteration, all voxels in the buffer zone
can be updated.
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While it is possible to construct relatively interesting compartment shapes from the super-

position of multiple rectangular shapes, the shape feature is fairly limited in itself and could be

improved. A big improvement would be to design the compartments using the constructive solid

geometry technique. CSG is a technique allowing the creation of complex shapes by performing a

series of simple operations combining simpler objects. The standard operations are union, inter-

section, addition and subtraction, along with the possibility to rotate and translate each individual

construct. The final shape would then be voxelised and included in the simulation model. It could

also be possible to push the idea a bit further and implement the ability to load a discretised version

of compartments from real 3D images.

In the same vein as the high definition compartments, adding the support of large, complex and

non regular particles would improve the biological accuracy of GridCell. These complex particles

could have different binding points with different properties and shapes and could be used to

emulate localisation and structural effects. Representing DNA particles with high precision is a

good example where this new technology could be useful. Unfortunately, due to limitations of the

algorithm, these large molecules would not be able to move. As the largest molecules tend to move

slower than the smaller particles, however, the non-moving state of the very large particle might

actually not be such a bad assumption for the modelling purpose.

SBML is a modular model description language which offers a lot of flexibility. GridCell is

currently supporting the basic set of features allowing the description of the modelling space. It

does not however support every possible representation within the SBML specification. As such,

some modifications to the file might be needed to convert a biological model coming from an external

simulator, although this is not unique to GridCell, since other tools have to do this as well. It could

be possible to reduce the amount of modifications by expanding the number of supported features.

For example, the mathematical expression parsing and unit definition could be stronger and more

flexible. Another improvement would be the addition of the support of SBML level 3 (level 2 revision

3 is currently supported), which was released earlier this year. Finally, when the specifications for

geometry and spatial effects will be released, supporting these features would allow the sharing of

spatial models with other simulators without tinkering with custom-made annotations.

GridCell currently uses a grid of type D3Q27. This type of grid is usually seen as fairly

complex and memory expensive [56]. In the FPGA implementation, the full 27-directional grid is

not physically implemented. The grid is instead emulated by using a cubic grid where the memory

accesses are divided into a cascade of simpler steps spanning over multiple clock cycles. The D3Q27
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grid can be considered as having a radius equal to three when accessing the farthest corners of the

neighbourhood. Modifying the grid type to D3Q19 would reduce the neighbourhood radius to two,

which would reduce the maximum access time from three clock cycles to two clock cycles. This

would reduce the number of clock cycles of the movement update by two and the reaction update

by three, a reduction of 33% in latency. Although some speed gain is expected, modifying the grid

would not, however, result in a direct speed up of 1.5x since the architecture already needs extra

clock cycles to pipeline the longer update stage and increase the clock speed. The modification

of the grid would also impact the biological behaviour and accuracy of the simulation. However,

most LBM applications that use this kind of grid are using the simpler D3Q19 grid as the loss in

precision and accuracy is considered insignificant compared to the reduction in complexity [56]. As

both LBM and GridCell algorithms share a lot of similarities in their structure, it would make sense

that modifying the Grid to a D3Q19 would also not have a large impact on the biological accuracy

of the simulations. Exploring this avenue to quantify the speed improvements and modification in

biological behaviour is therefore relevant.

5.4 Limitation of Current Algorithm

From a biological accuracy point of view, the fact that all moving particles are represented

as occupying the same volume is one of the biggest limitations of the algorithm. We know that

in living cells, the smallest particles such as ions are several order of magnitudes smaller than the

largest molecules, such as DNA. As all the particles have the same size, they forcibly also have

the same shape, which is also a fairly large biological assumption. The artefacts caused by this

assumption can be limited by using a voxel size which is the estimate of the average size of the

proteins taking place in the simulation. Particles that are assumed to be larger should also be

assigned a slower diffusion speed than smaller particles. While the GridCell model is more accurate

than the dimensionless particle representation often used in today’s simulations, the ability to model

differently sized and shaped particles would improve the biological accuracy of the simulation.

All particles in GridCell follow a Brownian random walk. This type of movement is accurate

for most particles in a biological system; it is not however, the only way molecules move in the cell.

While membrane active transport can be simulated by specifying different rates of permeability

when entering or exiting a compartment, other active transport effects, such as molecular motors

or transport tubes, cannot be simulated accurately.

Limiting the movement to the neighbouring voxels has many advantages from a computational

point of view, such as the removal of a search algorithm or the need to handle probability density
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functions. However, in order to respect the specified diffusion speed assigned to the species, an

upper limit on the time steps size is imposed. Depending on the range of parameters used, the

length of the time step could be limited by the diffusion speed which would affect the overall speed

of the simulation.

Finally, representation of molecular species with a mechanical function such as the cytoskeleton

and coatomers (molecules that curve and stabilise membranes) or transport tubes are a great

challenge to represent in the current context.

5.5 Implementation on Different Architectures

The FPGA implementation was selected for many reasons. One of the main reasons was the

amount of freedom provided with the inherent customisation of the FPGA that is not available with

other accelerating platforms. It was possible to use the spatial parallelism and large internal memory

bandwidth provided by the FPGAs to design a highly efficient pipelined architecture made of several

processing elements. However, FPGAs are not the only type of accelerating hardware platform

available and GridCell could respond well to a different architecture. A interesting alternative

would be to explore even further how well it responds to other parallel accelerating platforms such

as a GPU, a computer cluster or the Cell Broadband Engine (CBE)[25][1].

5.6 Next Generation GridCell

In order to overcome the above-mentioned limitations of the current revision of GridCell, a

second generation GridCell can be developed. The current approach focuses on simple and regular

kinetics in order to have an efficient and regular brute-force parallel architecture. By building a

regular grid, it is possible to process all the particles in parallel with simple logic. However, it

also puts some limitations on the behaviour, size and shape of the particles. A second generation

GridCell could add a more accurate representation of particle size, such as by spanning a single

particle over multiple grid units. With this feature, it would be possible to implement much more

realistic reactions, like the formation of complex resulting in the attachment of the reactants instead

of collapsing them together. The different parts of a molecule could also be assigned to a different

function such as a binding or reaction site. Movement and collision detection and crowding effects

would also be more accurately simulated with complex particles and, we could even integrate the

notion of momentum in the simulator.

This algorithm would invariably be much more computationally expensive than the current

version and would also need to be accelerated with parallel hardware. Also, the modifications to

the algorithm to simulate large scale particles would require an extensive overhaul of the proposed
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architecture. The application of the CA model is very well suited for dealing with individual parti-

cles, but CA algorithms are somewhat restricted when dealing with the large range communication

that would be required for movement and collision detection of large molecules. An accelerated

version of the second generation GridCell would probably benefit more from a particle per particle

processing architecture, similarly to n-body problems, instead of the CA model currently used,

which processes every voxels at all time. Both approaches should be explored more thoroughly.
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CHAPTER 6
Conclusion

We have explored the field of study of systems biology, which thrives to understand quanti-

tatively the biological systems. The sheer amount of information and the large differences in the

scales of the size, time and number of elements describing those systems make them impossible to

analyse without external computerised assistance. Over the past decade and a half, with the expo-

nential growth of computer power and data retrieving methods, several tools have been developed

to gain additional insight on various types of biological networks. Between the top-end applica-

tions, where data is linked together via signalling and regulatory pathways into large-scale systems,

and bottom-end applications, which work on the molecular dynamics of the particles, a family of

middle-end range simulators has made its apparition. These middle-range simulators, explore the

stochastic effects of particles, the heterogeneity of the space and the crowding effects, which are all

affecting the behaviour of living cells. One of the goal of those simulators, and of systems biology as

a whole, is to simulate a complete cell with enough details to capture the internal logic describing

its behaviour.

We have presented a novel stochastic simulator based on the cellular automata model. The

simulator supports several key aspects of biological behaviour inside a living cell, such as spatial

effects, diffusion, compartment supports, explicit molecular representation, individual microscopic

particle tracking and of course, stochasticity. Other key aspects of the simulator include SBML

support and interactive real time user interface. The CA model results in an efficient algorithm

which ensures a simple collision detection scheme, eliminates the need to perform expensive particle

searches for reactions and avoids the use of floating points calculation during the update phase. A

regular cubic grid of type D3Q27 is adopted where particles move and reacts in discrete location

with discrete time step. The particles diffuse through space by following Brownian dynamics at a

rate derived from the Einstein-Smoluchowski equations. The particles reaction rates are derived

from the macroscopic law of mass action, which implies that under well-mixed assumption, GridCell

matches results obtained by the SSA algorithm, which is an exact numerical realisation of the CME

describing the state of the system. However, GridCell’s main purpose is not to emulate the SSA

algorithm under the well-mixed approximation but, on the contrary, to explore the behaviour of the
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systems under heterogeneous and crowded environments. Simulations of crowded system showed

that after a certain amount of crowdiness, the enzyme particles of the Michaelis-Menten were in a

state called diffusion-limited, and the overall reaction rate was affected. As the system was becoming

more and more crowded, the reaction rate was becoming slower and slower. An explicit crowding

representation, where particles occupy a physical location and volume, is essential in simulating

crowding effects and is one of the key advantages of GridCell compared to other simulators, as most

of them consider particles as dimensionless entities. Spatial effects are also of prime importance

and are believed to play an important role in the stability and behaviour of signalling pathways

in biological systems. A system describing a semi-porous membrane with localised enzyme sites

was simulated under GridCell. The behaviour of the system with spatial effects was found to be

significantly different than the well-mixed version of the same system.

The GridCell software program is available on the Web at www.iml.ece.mcgill.ca/GridCell/. It

was first released on September 2008, and a revision implementing several bug fixes, UI improvement

and compartment support was released on February 2010. It comes in a package with a few biological

systems that are ready to be simulated, as well as a user manual detailing how to use GridCell.

The major problem with biological simulators is that the systems they are trying to describe are

inherently very large, complex and often unpredictable. The amount of processing power needed to

describe them is a few orders of magnitude above the current computational power by conventional

means, and this is true for the serial implementation of the GridCell algorithm as well. The gap

between available processing power and the complexity of the system can be reduced by parallelising

the algorithm. FPGAs can provide large speedups to the application, which can benefit from spatial

parallelism, pipelining and high internal memory bandwidth. GridCell highly benefits from these

three properties, and a FPGA architecture exploiting them has been designed. The architecture

uses a streaming approach with six pipelined stages to increase the throughput and make the

solution scalable. Each stage contains multiple processing units and operates on several voxels at

the same time. When compared to the serial processor implementation, gain in performance larger

than 75x were achieved. The solution is also scalable to multiple FPGA devices to increase the

speedup range to an even higher level.

The development of highly scalable biological simulators and their accelerated architectures

are a really interesting and exciting area of research. The multidisciplinary nature of the research

work involves expertise in several different branches of science such as biology for the general

knowledge and principles of life, systems biology in order to use and design a valid biological

88



6.0. Next Generation GridCell

simulator, software engineering to implement the simulator into an actual computer program and

the conception of the user interface and, finally, computer/electrical engineering for the design of

the VLSI implementation into an accelerated hardware architecture.

The development of scalable and biologically accurate simulators, as well as the construction of

biological model grasping the behaviour of full living cells, is expected to assist drugs development as

well improving our understanding of diseases and their possible treatments. Due to the inherently

large scale and high complexity of biological systems, parallel processing is expected to take an

important role in the simulation of those systems and it was shown that speedups larger than

one order of magnitude can be gained with massively parallel architectures. The development

of hierarchical multi-scale systems, where each level provides a different amount of spatial and

temporal resolution, is also believed to be key in achieving the not so long-term goal of full cell

simulation in real time.
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