
FPGA Partiele Graphies Hardware

John Sachs Beeckler

Department of Electrical & Computer Engineering

McGill University, Montreal

A thesis submitted to Mc Gill University in partial fulfillment

of the requirements of the degree of Master of Engineering.

Copyright @John Sachs Beeckler 2005

January 23, 2006

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-24941-3
Our file Notre référence
ISBN: 978-0-494-24941-3

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Acknow ledgments

1 thank my supervisor, Professor Warren J. Gross, for his time and help. 1 thank

CMC Microsystems for donating FPGA design resources and equipment to McGill

University. 1 thank Altera Corporation for giving me the opportunity to present

my work. 1 thank Tsuyoshi Hamada, Naohito Nakasato, and Dr. Ebisuzaki of the

RIKEN Institute for sponsoring my visit. Finally, 1 thank my family and friends.

1

Abstract

Partic1e graphies simulations are weIl suited for modeling phenomena su ch as water,

c1oth, explosions, fire, smoke, and c1ouds. They are normally realized in software,

as part of an interactive graphies application. Their use in such applications is lim­

ited by the computational burden and resource competition they create. This thesis

presents the design and implementation of a reconfigurable hardware partic1e graph­

ies system for accelerating real-time partic1e graphies effects: The Partic1e Pipe. We

explore the design process, implementation issues, limitations, challenges, and new

possibilities of using FPGAs for the acceleration of real-time partic1e graphies. The

Partic1e Pipe has been synthesized to an operating frequency of 130 MHz and has

the potential for an increase in performance of two orders of magnitude over soft­

ware methods and one order of magnitude over GPU methods.

2

Résumé

Les simulations graphiques utilisant des particules sont bien adaptées pour la

modelisation de phenomenes tels que l'eau, les textiles, les explosions, le feu, la

fumée et les nuages. Ces simulations sont habituellement realisées dans le contexte

d'un logiciel interactif graphique. Leur utilité dans ces applications est limitée

par le la lourde exigence calculatoire et la competition crée pour le partage des

ressources informatiques. Cette thèse presente la conception d'un systeme pour

accélérer, en temps-réel, la simulation graphique de particules basés sur la logique

programmable: La Pipeline de Particules. La Pipeline de Particules a été synthétisée

pour une vitesse de 130 MHz et pourrait potentiellement offrir une augmentation de

performance de deux ordres de magnitudes pour des system graphiques particulairs.

3

Contents

1 Introduction

1.1 Reconfigurable Hardware in Standard Computer Systems

1.2 Acceleration with Fixed Hardware and Reconfigurable Hardware .

1.3 Reconfigurable Acceleration for Computer Graphics

1.4 Organization .

10

10

11

12

13

2 Particle Graphies 15

2.1 Introduction to ParticIe Graphies 15

2.2 General Implementation of ParticIe Graphics 16

2.3 Problems and Challenges that Limit the Use of Software Particle

Systems 19

2.4 Software Based Implementation 19

2.5 Programmable GPU Based Implementation 20

2.6 New Parti cIe Graphics 21

2.7 An Ideal Solution for Parti cIe Graphics . 21

2.8 Reconfigurable Hardware Acceleration for ParticIe Graphies 22

3 The Particle Pipe 24

3.1 Particle Pipe System Overview 24

3.2 Parti cIe Memory 27

3.3 Pipe Fixed-Point Data Format 29

3.4 Pipe Modularity and Extensibility 30

3.5 Pipe Functionality Control 31

4

3.6 Partic1e Pipe Systems 33

3.6.1 Forces 33

3.6.2 Force-to-Acceleration 34

3.6.3 Integration of Motion . 35

3.6.4 Update Properties. . 36

3.6.5 Collision Detection . 36

3.6.6 Collision Response 37

3.6.7 Rendering. 39

4 System Implementation 42

4.1 Hardware Library, Configuration, and Simulation 42

4.2 System Configuration . 44

4.3 Development Board . . 47

4.4 Soft-Core Microcontrollers . 47

4.5 Nios Microcontroller System 48

4.6 Video System 51

4.7 Parameter Bus System 52

4.8 Partic1e Data Flow .. 54

4.9 Graphies Output Display 57

4.10 System Operation and Control Flow 58

5 Results and Conclusions 64

5.1 Partic1e Test System Results 64

5.2 High Performance Implementation . 68

5.3 Particle Pipe Operation Rate 69

5.4 Method Comparison 71

5.5 Conclusions 73

5

List of Tables

3.1 Example parameter table for simple force unit. " 33

5.1 FPGA utilization of test system. 65

5.2 Memory throughputs observed. . 66

5.3 Particle test system performance at 75 MHz .. 68

5.4 Instantiation counts of basic fixed-point operations. 70

5 FPGA utilization of test system by design entity.. . 75

6 Percent FPGA utilization of test system by design entity. 76

6

List of Figures

2.1 Scenes from David McAllister's partic1e system API.

2.2 General flow of partic1e graphies simulation ..

3.1 FPGA hardware partic1e graphies accelerator.

3.2 General Partic1e Pipe system operation. ...

3.3 RAM based height map collision detection unit.

3.4 Pipe parameter selection.

3.5 Force system.

3.6 Viscosity force unit. .

3.7 Motion integration stage.

3.8 Collision detection system.

16

17

25

27

30

32

33

34

35

37

3.9 Simplified collision response system. . 38

3.10 Simplified rendering system. . . . 40

4.1 Partic1e Pipe test system in action. 43

4.2 Partic1e graphies simulation screen shot. 44

4.3 Nios FPGA development board with custom VGA interface. 47

4.4 Partic1e Pipe test system architecture overview. 49

4.5 Slave side arbitration in the Nios' on-chip bus. 50

4.6 Video enhanced Nios soft-core microcontroller system ..

4.7 Parameter tables and bus system ..

4.8 Test system architecture overview.

4.9 System operation and flow.

4.10 New partic1e initialization using the partic1e nursery.

7

51

53

55

59

61

5.1 Stratix PCI high-speed development board (from [13]). 69

8

Acronyms

AA~ Axis Aligned

API: Application Programming Interface

CPU: Central Processing Unit

DAC: Digital to Analog Converter

DDR: Double Data Rate (Synehronous Random Aeeess Memory)

DSP: Digital Signal Processor

FIFO: First In First Out

FPGA: Field Programmable Gate Array

GPU: Graphies Proeessing Unit

PC: Personal Computer

PCI: Peripheral Component Intereonneet

RAM: Random Aecess Memory

RGB: Red Green Blue

SDR: Single Data Rate (Synehronous Random Aecess Memory)

SDRAM: Synehronous Random Aeeess Memory

SRAM: Statie Random Aecess Memory

VGA: Video Graphies Adapter

9

Chapter 1

Introduction

1.1 Reconfigurable Hardware in Standard Computer

Systems

There will soon come a day when most general-purpose computers are equipped

with sorne form of reconfigurable hardware. Computers will be expected to have

a standard FPGA card, or reconfigurable fabrics and chips incorporated in their

graphies cards and mother boards. What is most interesting, is the possibility of

the se FPGAs to be used not simply as a flexible or convenient alternative to cus­

tom ICs, but as application-programmable hardware elements in the system. Once

application-programmable FPGAs have such a presence in standard computer hard­

ware and system interfaces, many new types of applications can be accelerated and

enhanced in completely new ways, being designed to make use of custom, unique,

and application-specifie hardware designs for run-time realization in standard re­

configurable hardware.

Application software will no longer be developed separate from hardware de­

sign. but instead, together and in parallel with custom supporting hardware units for

run-time realization in FPGAs, providing very specifie functionality, as opposed to

the general functionality provided by standard hardware. Furthermore, hardware

support will not be limited to one design or unit per application, but application

10

software having access to reconfigurable resources, may be accompanied by any

number of, or entire sets of task-specific hardware designs, each realized only when

needed, targeting different tasks and stages of the application.

1.2 Acceleration with Fixed Hardware and Reconfig­

urable Hardware

Reconfigurable hardware acceleration is not subject to the same costs and limita­

tions that is fixed hardware acceleration. The use of fixed hardware acceleration is

limited by the cost of the physical hardware, and even more importantly, the need to

justify its presence in standard computer hardware. There is a finite amount of fixed

hardware that can be present in any single machine. Hardware designs cannot have

a standard presence in general-purpose computers, unless justified by a common

need or usefulness for the majority of users. On the other hand, hardware designs

meant for run-time realization in reconfigurable resources do not exist when not

being used, as they are only actually realized in the FPGA when in use! Therefore,

their presence or inclusion with applications is not subject to the same constraints.

Only users who actually use the application will ever realize the hardware design

in the FPGAs or their computers. Although the number of designs which can be

simultaneously used is limited by a computer's FPGAs, the total number of recon­

figurable hardware designs a computer and its applications can have access to is

virtually uniimited. Fixed hardware acceleration in standard computer systems, is

only realistic for common, universal, or generally important tasks and problems. It

is impossible or impracticai to have a standard presence of hardware specifically

targeting one application or a use of narrow scope, uniess that use is common or

universally important. Once general-purpose computers have standardized FPGA

resources and interfaces, reconfigurable hardware acceleration will become realistic

and possible for aimost any application.

We see that acceleration by fixed hardware and acceleration by reconfigurable

hardware have important differences, and that the universal presence of standard-

11

ized FPGA hardware in general-purpose computer systems will have a great impact

on applications, the design methodology of applications, and the acceleration op­

tions available to applications. Reconfigurable hardware will change the way in

whieh hardware acceleration is used, and the types of applieations and uses that it

is available for. With reconfigurable hardware, it will become possible for virtually

any task or application to have any number of possible hardware accelerators for

use at different times, during different stages, for different problems. Hardware ac­

celeration will be a realistic and practical option and tool regardless of how unique

the task or application is, infrequently it is used, narrow the sc ope of application

is, or how many users of the application there are. Hardware acceleration will no

longer be constrained by general usefulness, or a need for generality. With recon­

figurable hardware, accelerators can be designed specific to one task, providing one

specialized service to a single application.

1.3 Reconfigurable Acceleration for Computer Graph­

ies

Computer graphies is an example of a field with potential for many changes and

new possibilities to be created by the use of reconfigurable hardware acceleration

in standard computer systems. This is due to both the intense, real-time, com­

putational demands of computer graphies applications, and particularly the desire

and need for unique, application-specific, non-standard, specialized tasks, or in the

specific case of computer graphies, graphical and artistic effects.

Fixed hardware acceleration already has a large presence in the field of com­

puter graphics. In many ways the current state of computer graphies, and in par­

ticular, real-time graphics applications, is defined by the current hardware acceler­

ation technologies present in standard general-purpose systems. However, the use

of reconfigurable hardware would make possible and allow the use of new hard­

ware designs and acceleration techniques currently unexplored. Most obviously,

reconfigurable hardware would make possible and practical the implementation of

12

hardware units providing specialized, customized, and specifie services, each de­

signed especially to support one partieular effect, at any moment in an application.

The techniques and possibilities of such use of reconfigurable hardware accelera­

tors is not currently possible with general-purpose graphies hardware. We believe

that these new possibilities and design methodologies could potentially revolution­

ize computer graphies. The new possibilities of reconfigurable hardware and its use

in general-purpose computer systems, could create a new application software and

FPGA accelerator co-development paradigm, with the potential to greatly influence

and change application areas such as real-time computer graphies.

CUITent graphies hardware is designed to provide general functionality and ser­

viees useful to many different types of graphies applications. With FPGAs, we can

start to make use of hardware which specifically implements exactly one particular

effect, ca1culation, or service, specialized and customized, targeting one specifie

use, one scene of one game, one effect in one scene, and so on. This thesis is an ex­

periment, a design and implementation case study, of the use of reconfigurable hard­

ware to create custom reconfigurable hardware accelerators for a specifie graphies

technique and effect: particle graphies. We explore the design process, imple­

mentation issues, benefits, limitations, and new possibilities of using FPGAs for

the customized run-tÎme and real-time acceleration of this technique. We present

a new approach to creating real-time particle graphies effects: The Particle Pipe,

a hardware coprocessor system meant for run-time realization in reconfigurable

logic.

1.4 Organization

1 Section 2 of this paper presents an introduction to the problem of particle graph­

ies, discussing the use and application, implementation, and challenges and lim­

itations of particle graphies. In Section 3, the Particle Pipe design is studied in

detail, together with important related concepts and issues. A complete test system

1 Content from Sections 2 and 3 was previously published in [1].

13

implementation of the Particle Pipe is presented in Section 4, followed by discus­

sion and analysis of performance results. Finally, Section 5 contains conclusions

and discussions of implementation issues, performance potential, practical benefits

and limitations, and the design methodology of using reconfigurable hardware for

run-time application acceleration in general-purpose computer systems.

14

Chapter 2

Partiele Graphies

2.1 Introduction to Particle Graphies

Particle graphics simulations are weIl suited for modeling phenomena su ch as wa­

ter, cloth, explosions, fire, smoke, and clouds [2]. Dynamic, physical simulations

of large groups of individually simple particles can create graphical models of ob­

jects and phenomena that are otherwise difficult to render and model realistically.

Figure 2.1 shows sorne ex amples of particle graphics effects. In these simulations,

systems of simple elements such as point masses, with minimal physical properties,

structure, and rendered detail, evolve together, interacting with an environ ment, in­

fluenced by forces, and subject to a set of rules designed to produce desired effects.

The general properties and evolution of the system are also determined by randomly

varying initial conditions, or more precisely, the stochastic properties of those ini­

tial conditions [3][4]. The visual ensemble of such a great group of particles, its

behavior and evolution, appearance, interaction with an environ ment, and inherent

random variation, can aIl exhibit a great degree of complexity and detail, attempting

to properly resemble the detail and randomness of the natural world.

These graphical particle simulations are generally implemented in software, as a

set of effects embedded in a graphics application. The embedding of particle graph­

ics effects in real-time, interactive applications, such as video games, presents a

difficult challenge. As discussed in Section 2.3, the size, complexity, and overall

15

Figure 2.1: Scenes from David McAllister's particle system API.

use of particle graphies in video games are currently severely limited by the compu­

tational burden that particle graphies imposes on host applications, competing for

valuable computer system resources [5].

2.2 General Implementation of Partiele Graphies

The typical implementation of a particle graphies system, shown in Figure 2.2, in­

volves the simulation state data for aIl particles of a system being loaded sequen­

tially from memory, updated, rendered, and then finally written back to memory.

Between frames, new particles can be created and initialized with randomly varying

initial conditions. Dead particles, particles which have been active for sorne time

or have reached a certain state, can be deactivated and replaced by newly initialized

particles. For each particle processed, a set of forces is calculated for that particle

16

Particle Data

........ ~ Graphies Scene

Updated Particle Data

Figure 2.2: General fiow of particle graphics simulation.

using its current state data and data describing the simulation environment. These

forces might include gravitational and electrical forces, vortex and wind forces, liq­

uid current forces, viscosity and friction forces, explosive forces, spring forces, and

anything the designer of a particle graphics effect invents to create the desired sys­

tem behavior, properties, and effects [5]. From these forces an acceleration for each

particle is ca1culated. Each particle's motion is integrated, typically using a Euler

integration step, giving it new, updated velocity and position vectors. Subsequently,

collision detection and collision resolution are performed for each particle, allowing

them to collide and interact with the simulation environment. Finally, the particles

are rendered graphically into a visual scene. A particle could be rendered very sim­

ply as a single colored pixel, or as a streak, small texture, or anything else. Since

the visual detail of the particle system essential1y cornes from the massive collec­

tion of distinct particles, each with its our dynamic behavior, even the most simple

rendering scheme, such as a colored pixel, can be sufficient.

It is worth noting that particle graphics effects, the type of large particle systems

used for graphies in real-time applications, are usually first-order. By first-order, it

is meant that normal particles within a simulation do not interact with other normal

particles in that simulation. Even those described in [8] can be considered as first-

17

order in the sense that the number of inter-particle interactions is not proportional to

n2• There are projects involving reconfigurable hardware for second-order particle

ca1culations for off-line scientific simulation [9] [10]. However in this thesis, we are

interested in particle simulations intended for real-time graphics effects, and those

which we are considering will be limited to first-order systems. In these first-order

systems, particles will generally not interact with each other, but interact with the

system and environment, allowing the entire system of particles to be updated and

processed with one single pass through the particle data. However, as described

in [8], particles may interact with special force carrying particles, implemented

outside of the normal particle system framework, and thus considered to be part of

the simulation environment.

Looking at Figure 2.2 we can make a few key observations about the the nature

of the problem and task of implementing real-time particle graphics simulations.

First, many particle simulations, with sorne exceptions su ch as particle effects rely­

ing on depth sorting for alpha blending, can be ideally implemented such that the

entire population of simulation particles may be updated in one single pass through

the particle data. Second, if we limit the simulation interactions to those between

particles and the environment (non particles), or particles with other special, force

carrying particles, then not only can the simulation be updated and processed with

one single pass through the particle data, but the processing and updating of each

normal particle can and will be performed completely independently of aIl other

normal particles. This means the tasks, work, and ca1culations to be performed in

such a particle graphics system, are completely paraUeZ and pipelined in nature.

There is a clear, unidirectional, and constant flow of data, allowing acceleration by

a parallel or pipelined hardware architecture.

18

2.3 Problems and Challenges that Limit the Use of

Software Particle Systems

The embedding of particle graphics effects in live, interactive graphical applica­

tions, such as video games, is where the true challenge lies. As opposed to off-line

applications, a partic1e system in a video game must be calculated and œndered

with real-time constraints. In addition, the management and execution of partic1e

systems in live, interactive graphics applications, can only be allocated a very lim­

ited portion of a computers system's available resources. These interactive graphics

applications, are demanding and typically make full use of computer resources and

hardware. Due to the requirements of managing a large partic1e system, and the

inability of these applications to devote major portions of computer resources to

a partic1e system, software implemented partic1e systems in real-time applications

are severely limited in size, number and complexity of effects, rendering complex­

ity, and interaction with an environment [11]. Software-based partic1e systems in

games are currently limited to about 10,000 partic1es per frame [11].

2.4 Software Based Implementation

Particle systems in computer graphics are for the most part a software task. The

great strength of software is it's flexibility. A software partic1e engine can be built

into a graphics toolkit, and made to be completely flexible and customizable, able

to create a wide variety of systems and effects. This flexibility is critical, and makes

software implementations desirable whenever possible. Unfortunately, using cur­

rent single processor computers, it is not possible to embed a large software partic1e

system into a real-time application without creating critical competition for system

resources to the application's expense.

One could argue that microprocessors are getting faster every day and that what

is not possible with software today will be possible tomorrow. However, the prob­

lem at hand is not a stand-al one task. We are talking about embedding partic1e

19

graphies into a fully demanding software application. We have to assume that if

tomorrow's microprocessors are more powerful, then tomorrow's applications will

take full advantage of that power and leave us again facing the same problem: How

to add a massive particle system to an application, without competing with or bur­

dening that application.

2.5 Programmable GPU Based Implementation

Recently, as described in [11][12], powerful techniques have been developed which

make use of programmable floating-point graphies hardware to accelerate particle

systems. These techniques make use of the graphies processor to support and accel­

erate particle graphies. The approach is to create a set of double-buffered streams

of data, using the CPU and main memory, containing particle position data, particle

velocity data, and even a depth map for collision detection. These streams: are fed

from the CPU to the graphies processor, one pass for each "transformation" that

needs to be applied to the particle data. For each pass, an output data stream is

created from an input stream by software executing on the graphies processor in

the forrn of a "pixel shader" program. The CPU creates a particle data stream in

main memory, feeds it to the graphies processor which has been programmed to

perforrn sorne ca1culation on the particles in that stream, and then obtains a stream

containing data with updated values. These GPU supported systems [11] are re­

ported to enable the implementation of systems as large as 512x512 particle:s, while

sharing the graphies processor with other tasks. Currently this approach is not ca­

pable of implementing collisions with objects of arbitrary geometry, forces being

associated with particles themselves, or any kind of 2nd order effect. This technique

alone, without an application, is able to create particle systems with as many as one

million particles, but the number and complexity of effects are limited.

The work in [11] has succeeded in moving parts of the work involved in man­

aging a particle system to graphies hardware, when it can be conveniently rendered

without being constrained by CPU to graphies hardware communication limits.

20

However, the particle system is not isolated from the CPU and main memory. It

continues to require CPU preparation and work at each stage of the process, thus

creating a burden, limiting the size and extent of particle graphics in full featured

applications. Additionally, the technique requires multiple passes or streams of data

for each update cycle of a particle system, and could potentially conflict with other

GPU uses. FinaIly, it appears that a particle system implemented in this way is not

as flexible as a pure software implementation.

2.6 New Partiele Graphies

What would happen if it were possible to embed huge particle graphics systems

into graphics applications without significantly burdening system and application

performance, taking away from or compromising sorne other aspect of the applica­

tion? The use of particle based simulations for modeling aIl kinds of objects and

phenomena would change drasticaIly. The scope of use of particle graphies could

expand. In general, dynamic physical simulations on a fine-grained, particle

level could become an essential part of modeling. AlI particle systems could be

made larger, more detailed, and have mu ch more complex and flexible behaviors.

Live rendered scenes could contain not one or two, but numerous, simultaneous

particle system effects. One single scene could model a number of objects using

particles without a significant decrease in quality, speed, or compromising another

aspect of the host application. What is currently only possible with pre-calculated

and pre-rendered, off-line applications could become a reality for live, interactive

applications.

2.7 An Ideal Solution for Partiele Graphies

What characteristics does an ideal solution for particle graphics have? What prop­

erties must a system or solution have to realize these goals? The implementation of

a system designed to support and accelerate particle graphies in real-time applica-

21

tions, must attempt to isolate work, ca1culations, and memory accesses required to

simulate, render, and manage particle graphies from the main computer resources

which are needed for other tasks. The particle graphics implementation cannot bur­

den or create unacceptable competition for CPU time, memory access, or graphics

hardware usage. Secondly, although isolated from the main system, a good imple­

mentation must allow for an efficient, flexible, weIl defined, and adequate method

of interaction between application and particles. A good particle system needs to

be a fully interacting and colliding member of its environment. FinaIly, it must be

flexible and custornizable, able to impIe ment any visual and artistic effects desired,

including those not yet envisioned [5].

2.8 Reconfigurable Hardware Acceleration for Par­

ticle Graphics

Could particle graphics, more specifically the embedding of particle graphics into

real-time, interactive graphies applications, benefit from custom hardware acceler­

ation? Can reeonfigurable logic be used as a platform to realize a particle graphies

hardware aeeeleration system? How suitable is the problem of parti cIe graphies

for hardware aeceleration via reeonfigurable daughter systems? Work deseribed

in [6][7] investigates the use of FPGAs for prototyping news kinds of rendering

schemes, with potential use for particle graphics.

Particle graphics would benefit greatly from an implementation which eom­

pletely contains the particle simulations in a separate daughter system with isolated

particle memory and processing hardware. In this way, large particle simulations

could be managed without competing for system resources. Managing and comput­

ing a particle system is, in many cases, highly parallel. As diseussed in Section 2.2,

for first-order partic1e effeets (with sorne exceptions sueh as systems that require

depth sorting for rendering with alpha blending), every partic1e eould be proeessed

completely independently of other normal particle data in one single pass. Although

in sueh systems aIl particles could theoretically be processed simultaneously, nor-

22

mal software or GPU-accelerated implementations still process particles sequen­

tially, and often in several passes. Upon investigating in Figure 2.2 the sequence of

tasks which must be performed for each particle processed, one finds that it is ideal

for a pipelined hardware structure. There is a single, unidirectional and constant

ftow of data, which is easily divided into separate, independent stages. For these

reasons, particle graphies has great potential for dramatic acceleration by custom

reconfigurable hardware designs.

23

Chapter 3

The Particle Pipe

This thesis is an exploration, case study, and investigation into the design and use of

a custom, application-specifie, reconfigurable hardware accelerator for a specifie

application and task. The application and task targeted by this thesis is the cre­

ation of real-time particle graphies effects. In the following sections, our design,

a eustom particle graphies aceeleration system for run-time implementation in an

FPGA, will be deseribed in detail. The particle graphies aeceleration system de­

signed is based upon a highly eonfigurable, particle update pipeline, referred to as

the Particle Pipe. The Particle Pipe and the test system built around it provides a

complete and working proof-of-coneept implementation, giving us insight into the

issues, problems, potential benefits and new possibilities of incorporating eustom,

reeonfigurable hardware aceelerators together with software applications.

3.1 Particle Pipe System Overview

The Particle Pipe system, shown in Figure 3.1, is a self-contained hardware eo­

processing system, whieh eompletely contains, manages, exeeutes, and renders par­

ticle graphies simulations for an application running on the ho st machine. The

system is intended for implementation in an FPGA with access to its own dedi­

cated RAM, and able to eommunieate with the system's main processor. A Particle

Pipe system is primarily eomprised of the following major components: the Particle

24

i Main/Display 1
System

-- - - -

- -

1 P article Memory
Particle Pipe

1 graphieal data
(") Cfl S- c:: (") (") particle w 1 p . 1 partiele i s:: rt "Cl 0 0 e:- 6 f--+f output FIFO r+- artic e data 13 Cl) p. != != partiele (i+l) p <Ci III ::tl ll-Controller

partiele (i+Z) 'T.I " rt 0 ~ 'T.I Cl) Cl)

partiele (i+3) 0 0
~ <Il Cl) :::s H output FIFO ~ Ci Ci rt !" P-o Cl)

Cl) Cl)

1

Co (l

<Il <Il 0
,..

t
:::s

updated particle data

Figure 3.1: FPGA hardware particle graphics accelerator.

Pipe, a particle memory, and a system controller.

The Particle Pipe system will full y contain a large pool of particles, with which

any number of simulations can be simultaneously created. It carries out aIl exe­

cution and tasks related to the particle simulations under the control of application

software. At each frame or simulation step, the Particle Pipe system will either

provide software with aIl or a select portion of simulation results and current data.

This data will be either sent directly to graphies hardware for rendering, or back

to application software for integration into application graphics. These results may

include contents such as

• 3-D rendered graphie al data for visible particles,

• aIl or select parts of the current particle state data,

• collision information.

The Particle Pipe itself, shown in the center of Figure 3.1, is a full y pipelined

particle update processor. Every clock cycle a new particle's data set is accepted

as input. Particle data sets travel together synchronously, down the pipeline, from

one latch stage to the next. At any moment, aIl of the registers in one latch stage,

are filled with data for one particle. As each particle's data moves down the pipe,

it passes in and out of many functional units, which perform aIl the operations and

25

tasks needed for the particle graphies simulations. The Particle Pipe includes the

following four major systems:

1. The Force System,

2. Integration and Updates,

3. Collision Detection and Response,

4. Graphical Rendering.

Figure 3.2 shows the basic operation of a particle simulation within the Particle

Pipe system. First, in Figure 3.2a, sending commands to the particle controller,

application software sets up and con trois properties, parameters, and options for

creating the desired particle simulations. As needed by the simulations, the particle

controller will continuously create and initialize new particles in particle memory

between frames, introducing them into running simulations with initial conditions

created according to the specified simulation properties. This can be seen in Figure

3.2b. The control1er will also set and continuously control parameter registers in the

Particle Pipe, thus controlling its functionality and the properties of the simulations

it implements. This occurs in response to application requests and commands to

the controller specifying simulation parameters and properties. As shown in Figure

3.2c, for each simulation frame, aIl particle data is loaded sequentially from particle

memory, and fed one particle per clock cycle, into the Particle Pipe. The Particle

Pipe is a fully pipelined hardware unit, whieh performs aIl simulation operations on

each particle data set. Ideally, upon every clock cycle one particle data set will begin

its execution, entering the input end of the pipeline, and one updated particle data

set will complete its processing, output from the opposite end of the pipe together

with its rendered graphical data. As the updated particle data sets are output from

the pipe, they are stored back into particle memory, while the graphical results are

sent to the ho st system for integration into application graphies and display. In

preparation for the next frame, the particle controller repeats the actions illustrated

26

a)

b)

Initialization & Setup

Particle Pipe

(") en 5' c:: (") (") "" particle i ~ " fij 'C 0 0 6 1 output FIFO 1 partiel. (i+I) r S '"
.,. !=' !='

~ 0> S' partiel. (i+2) "Il "Il fij tl S' partiel. (i+3) 0 0 ;;;: '" * " 1 output FIFO 1 8 8 0 ~ po

'" " g 8-'"
en

" I _________________________________ J

Emit New ParticIes & Update Pipe Control

Particle Pipe

(") en
~ c:: (") (") ""

1 output FIFO 1
particle i

~ " 'C 0 ~ 6
1 partiel. (i+I) S '"

.,. !='
~ 0> S' particle (i+2) "Il "Il Œ tl S' particle U+3) 0 0 ;;;:

* " 1 output FIFO 1 8
..,

~ po n 0

'" " po 8-1 '" '" 0
L_ " 1 _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ ___ _ __ _ _ _ _ _ __ _ _ _ _ _ __ __ _ J

1 P

1

article MemOly
(")

ParticIe & Graphies Data Pass

-~ graphical data
en c:: (") (") ""1

" 'C 0

Particle Pipe
1

c) 1

particle i particle ~
partiel. (i+I) data r S
partiel. (i+2) "Il "Il

~ F '"
.,.

~ ; tl
!='
S'

6 ~ output FIFO 1
~ 1 1 1

~ r~~'~l
~ ;,~~~~~, ~; ~a~nJ~s~a; : , ~o~erl: 1 __ Sy~e~ _ 1

partiel. (i+3) 0 0 ;;;: '" * 8
..,

~ n g. ~ ~ 8- 1

" • updated partiele data
-1_ _ _____ J

Figure 3.2: General Particle Pipe system operation.

in Figure 3.2b, initializing new particles and updating pipe parameters. FinaIly, the

next frame proceeds with a new ftow of particle and graphies data as in 3.2c.

3.2 Particle Memory

The Particle Pipe system needs high-bandwidth and exclusive access to a RAM

device, dedicated to containing a large pool of aIl available particles for simulations.

This memory, the particle memory shown in Figure 3.1, should be part of the FPGA

system used to implement the Particle Pipe system and needs to be separate or

isolated from main system memory. The pipe design is capable of inputting and

outputting one particle data on each FPGA clock cycle. Therefore, to use the pipe

to its full potential, a particle memory would need to provide read and write access

rates given by

Rpmem = (bp x 2 X !pipe) , (3.1)

27

where bp is the width of one particle's data set in bits, !pipe is the frequency of the

Particle Pipe clock in Hz, and Rpmem is the required access rate in units of bits

per second. Fortunately, aIl accesses to particle memory, with the exception of the

initialization of new particles, are made in a regular, sequential order. This means

that the bursting modes of RAM devices can be fully exploited to help achieve the

required access rate.

Particle data is stored in particle memory as one large packed array. A particle's

data set, or it's entry in particle memory must include all the data fields needed to

create any of the simulations. These fields must at least include a position vector,

velocity vector, color, life count, and a type field. The position and velocity vectors

are 3 dimensional vectors represented in the pipe's fixed-point format. The col or

field can be whatever the targeted system uses to represent colors, but should corre­

spond to the format used by any color related effects or functional units included in

the Particle Pipe. The life count is an integer which is set to sorne value when a new

particle is initialized, and can be, depending on the type of simulation, decremented

on every pass through the pipe. When a particle's life count reaches zero, it can

be considered "dead" or inactive, and will no longer contribute to the simulation.

The particle memory entries occupied by inactive particles then bec orne available

for the initialization and creation of new particles. Finally, there is a special field in

the particle data, the type field. The Particle Pipe system contains one giant array

of particles in memory which will be repeatedly passed through the Particle Pipe.

Although there is a single array, or pool, of particles, this pool will be used to cre­

ate any number of distinct simulations, running concurrently. The type field will

identify a particle's data set as belonging to one simulation, and will determine the

functionality of the Particle Pipe, on that particle's data set at every latch stage, as

it moves though the pipe.

28

3.3 Pipe Fixed';....Point Data Format

The VHDL hardware design for the Particle Pipe is structured in such as way that

many parameters and options concerning the structure and functionality of the Par­

ticle Pipe can be configured at FPGA compile time by changing a corresponding

set of configuration constants in a package which is globally visible throughout the

design. The pipe design will then be self--configured to implement these changes.

One important aspect of the pipe design which is configurable via these constants

is the fixed-point format used within the pipe.

There are several factors inftuencing the choice of an optimum fixed-point rep­

resentation. Primarily, the fixed-point format used in the pipe will limit the pre­

cision and range possible for particle simulations. Another factor inftuencing the

decision is the width of particle memory. It is best for the data set of each particle

to fit exactly in an integer number of words, for the memory device used. If the

pipe frequency is relatively slow wh en compared to the the particle memory access

time, then particle data sets can be stored in multiple words of memory. However,

if the pipe frequency and memory access time are comparable, then each particle

data entry will need to fit in as few words as possible.

The Particle Pipe contains numerous fixed-point additions, subtractions, multi­

plications and divisions, all of which are pipelined. These circuits, become more

and more complex with larger bit widths. Also, FPGAs contain dedicated hard­

ware multiplier circuits, which the Particle Pipe design uses to implement many

high speed multiplications without using reconfigurable fabric. Altera Stratix FP­

GAs and Xilinx Virtex FPGAs both have hardwired resources for implementing

large numbers of 18x 18 bit multiplications. For these reasons, an 18 bit (4: 14)

fixed-point format is used in the pipe. This format makes the best use of dedicated

FPGA multiplier circuits, while still allowing particle data sets to fit perfectly into

a low multiple of 32 bits, making optimal use of particle memory. This format also

provides the necessary precision to implement a large class of effects.

29

Collision Detection Unit
-- ~ --- ~ -- ~ ~ ~ ~ ~ ~ ~ ~

1

ground i-sect point

particle height estimate

X&y
~ collision

(') flag 0
S

particle '0

particle Z
.. ~

p)

Z "'1

~
CD

L ___ ~~~~_~

Figure 3.3: RAM based height map collision detection unit.

3.4 Pipe Modularity and Extensibility

The Particle Pipe is organized in a sequence of sections and function units. There

is a section for each major operation or class of tasks that need to be performed for

a particle graphics simulation. These sections do not refer to one latch stage of the

pipeline containing one particle's data set. Rather, they are macroscopic operations,

or related groups of operations, su ch as the "Force System". A very important prop­

erty of the Particle Pipe design is that the interfaces between blocks and sections are

consistent and well defined. The building block modules which make up sections,

the function units, have consistent interfaces making them replaceable. By select­

ing, designing, and replacing new sections and function units which provide desired

operations and behavior while satisfying the defined interfaces, a Particle Pipe can

be easily and flexibly customized and extended for one particular use. This FPGA­

compile-time reconfigurability of the pipe is an important feature, since flexibility

and extendability are key aspects of any usable particle graphics system.

Highly specialized pipelines can be designed containing any function unit or

section that meets the interface requirements. As discussed in [11], various op­

erations could even be implemented as programmable RAM-based lookup tables.

One such example is the height map lookup table collision detection unit shown in

Figure 3.3. In this unit, particles can be collided against a programmable height

30

map contained in a lookup table. For each partic1e, a height value is obtained using

an index formed from the partic1e's (x, y) coordinates, and compared against the

partic1e's z coordinate. If the comparison indicates a collision, the height value ob­

tained from the lookup table can be combined with the partic1e's (x, y) coordinates

to form a collision point estimate. The collision may then be resolved by the normal

collision response hardware discussed in Section 3.6.6.

3.5 Pipe Functionality Control

How is the functionality of the pipe controlled? Recall that the Partic1e Pipe system

contains a giant pool of partic1es for making a number of concurrent simulations.

Furthermore, within a single simulation, there may be several distinct kinds of par­

tic1es with different properties, each subject to different forces and rules. At any

moment, the hundreds of latch stages within the Partic1e Pipe each contain the data

of different partic1es. The pipe needs to perform different operations on each parti­

c1e's data set, at each latch stage, depending on the type field of the particIe which

is there.

Each functional unit or block in the pipeline is enabled, disabled, and cus­

tomized by its own set of parameter registers. Before a partic1e enters a function

unit or block, a set of values for the unit's parameter registers, specific to the type

of partic1e entering the function unit, is selected from a table using the partic1e's

type field as a table index. This is depicted in Figure 3.4. These selected parameters

then synchronously pass through the function unit, from latch stage to latch stage,

together with the partic1e data. At any instant, one single function unit or block,

contains the partic1e data of numerous different partic1es, each at a different latch

stage, and each at a different stage of execution. Each data set is accompanied by

its own parameter set, corresponding to its type field, determining the functionality

of the pipe on that partic1e.

On the application side, to create simulations, application software defines a

number of groups of partic1es, or "partic1e types". These are sets of settings and

31

Function Unit

- - 1---,1--- -- - - -- ,
"0

,
"0 "0 "0

,
el

,
~ a. Il:>

, ,
::\.' n· , n· , , (") !2.,

0- - 0-.. , ('J) ('J) , ...
~ 0- 0- 0- 0-

Il:> .. ,
~ ~ ~, -..... ,

Il:> Il:> Il:> Il:> ,
,-..,

, ,-.., ,-.., ,-.., ,
+. , + . CI , + ,
w Parameter IV
'-"

,
'-" '-"

, ,
Table

, , , , , ,
"

, , , . -- -_ __ ... - - ~

ty

params (type a)
r--~r--~r--~r--~ , " "0 " "0 " "0

,
,

" el " el " el
,

--------------- ,
" S " S " Il:>

,
params (type b) - +: " " " :3

,
"

CIO " CIO
" CIO

,
pe (i+3) --------------- ,

" " "

,
1 _ __ , 1 ___ , 1 ___ , 1 ___ ,

params (type c) \J\J\J

Figure 3.4: Pipe parameter selection.

parameters, along with the groups of partic1es associated with them. By sending

commands to the Partic1e Pipe controIler, application software fills in the values of

the parameter tables for each function unit of the pipe, specifying its configuration

for each partic1e type. For example, if there is a uniform force block in the pipeline,

its job is to add a specified vector to each partic1e's sum of forces. Such a block

might have two configuration registers. One would be an enable bit, to determine if

this block should be enabled for a partic1e, and another would contain the force vec­

tor to be added. Now, imagine a simulation in which there are 3 types of partic1es.

Partic1es of type 'a' will not experience this force at aIl. Partic1es of type 'b', will

experience the (1.0,0.0,0.0) force vector, and partic1es of type 'c', will experience

the (0.0, -2.2,0.0) force vector. To accomplish this, the parameter tables for this

function unit should be initialized such that the enable bits for partic1e types 'a', 'b',

and 'c' are 0, 1, and 1 respectively. This enables the unit for partic1es of type: 'b' and

'c', while disabling it for particles of type 'a'. The force vector entries in the param-

eter tables could be filled in as (0.0,0.0,0.0) , (1.0,0.0,0.0) , and (0.0, -2.2,0.0),

indicating that partic1es of type 'b' should have the (1.0,0.0,0.0) vector added to

their total force, while partic1es of type 'c' will experience the (0.0, -2.2,0.0) force

vector. The type values 'a', 'b', and 'c', implemented as the integer values 0, 1, and

32

type
o Ca')
1 ('b')
2 Cb')

enable
o
1
1

(0.0,
(1.0,
(0.0,

0.0,
0.0,
-2.2,

0.0)
0.0)
0.0)

Table 3.1: Example parameter table for simple force unit.

partic1e data
&

force params

Force Unit

Force Unit

Force Unit

Force Unit

Figure 3.5: Force system.

Vector
Sum

total force
vector

2, could then be used as indices to the following parameter table for the simple force

unit ex ample shown in Table 3.1.

3.6 Particle Pipe Systems

3.6.1 Forces

The force system, shown in Figure 3.5, contains a set of force units in parallel.

The interface to each force unit, its inputs and outputs are identical, and the total

latch stage latency each unit is declared in a package of constants. Due to this well

defined structure, the force system can easily by modified to include any custom set

of force units. New force units can be made without knowledge of the pipe design,

as long as they provide the required interface. Simple VHDL generation scripts can

be used to to include new force units and select existing ones to customize a custom

pipe design before FPGA compilation.

Each force unit receives as input all CUITent particle data, together with a set

of type-selected force parameters, and outputs a resulting 3-D force vector in the

pipe's fixed-point format. Each force unit's output vector is delayed for synchro-

33

zero vise. ...
input veetor .. fore e
particle velocity select i+
data Veetor --. 3 Multipliers r----. ...

... Subtraet (Veetor Seale) ...
vise. Vref

Î
.. ~

unit K
~ delay) paramsJ ~

.. \.. delay)
enable

Figure 3.6: Viscosity force unit.

nization and summed to one total force vector.

Examples of easily implementable force units include uniform forces, viscosity

forces, vortex forces, attractive and repulsive forces, spring forces, "random nudge"

forces, and many more. In Figure 3.6 we take a detailed look at the implementation

of a viscosity force unit. The unit calculates a general viscous force using:

(3.2)

where f:iSC is the viscous force result, kvisc is the scalar viscosity factor, Vrej is the

reference velocity, analogous to the velocity vector of the fluid in which the particle

is immersed, and Vparticle is the velocity vector of the particle.

3.6.2 Force-to-Acceleration

An acceleration vector must be obtained from the total force vector. This is done in

the force-to-acceleration stage using the following weIl known relationship:

1 -> a = -ftotal'
m

(3.3)

First, one hardware division obtains the ~ term from the particle's mass value. That

term is then multiplied with each component of the total force vector to obtain the

particle's acceleration. A less flexible particle system may be implemented without

this stage entirely, thus eliminating one inversion and 3 fixed-point multiplications

from the pipe design. This can be done by forcing aIl particles to have the same mass

34

Vx Vx'
Ax ADD

Vy Vy'
Ay ADD

Vz

Az ADD
Vx'

Px'
Px

ADD Vy'

Py
Py'

Vz'

Pz Pz'

Figure 3.7: Motion integration stage.

and making the proper choice of units. If it is not practical to inc1ude a mass term

in the partiele data sets, partic1e mass may be treated as a type-selected parameter

in the acceleration stage. Each partic1e type may be assigned a type mass, and this

value stored in the pipe parameter tables.

3.6.3 Integration of Motion

Each partic1e's path of motion, position and velocity over time, needs to be inte­

grated and updated according the following differential equation, which is actually

equivalent to Equation 3.3:

f (3.4)
m

where fis the partic1e's position vector, t is time, fis the force vector, and m is

partic1e mass.

A particle system should use the simplest integration method possible-. This

is the Euler step method. VerIet integration is also a possibility for sorne partic1e

graphies implementations [11], but the Euler step integration method is by far the

best choice for hardware due to its simplicity and explicit use of partic1e velocity,

needed in other parts of the pipe. Figure 3.7 shows the Partic1e Pipe's motion in-

35

tegration circuit. The position and velocity vectors are updated as follows, with 2

fixed-point vector additions in parallel:

3.6.4 Update Properties

ilnew = il + â ,

fnew = T + il.
(3.5)

Particle graphies systems have many properties that can be changed and updated

using simple rules, implementing important features and effects. These include

such option al and type-configurable update rules as:

• decrementing particle life count,

• fading particle col ors by a color step,

• killing particles which satisfy sorne condition su ch as energy or position be­

yond a given value,

• interpolating between colors based on another value such as time, energy, or

life.

3.6.5 Collision Detection

The particles need a weIl defined, flexible, and manageable way of colliding and in­

teracting with the geometry of the virtual word in which the simulation resides. The

following solution, while having the obvious problem of being unable to implement

collision with arbitrary or relatively complex geometries, detects and resolves colli­

sions with environments of simple geometry efficiently and conveniently. As shown

in Figure 3.8, the collision detection system is comprised of a parallel collection of

collision detection units. Each collision detection unit detects and reports collision

information with one type of geometry. For example, the plane collision detection

unit detects collisions of particles with a plane, and reports information about that

collision if detected. The collision detection system shares the same modular ap­

proach that the force system does, making the inclusion of new units for custom

36

particle pos.
Coll. Detect Unit

~I
o 1 Coll. Detect Unit
~ ~I -1r-~L-----------~
~I

"'g 1 Coll. Detect Unit
~ ~11~~----------~
en

Coll. Detect Unit

'ï::l
::1.

collision
info

o t---____ ~
::1. _.
N

~

Figure 3.8: Collision detection system.

geometries easy. Inputs to the collision detection units inc1ude the partic1e posi­

tion and a set of type-selected parameters, defining the collision geometry. Each

collision detection unit output contains a collision ftag indicating whether or not a

collision was in fact detected, an estimate for the point of intersection, a surface

normal vector at the intersection point, and surface friction and bounce factors. In

our example of the plane detection unit, parameter registers would define the exact

orientation and location of the plane, and on what side of that plane should the par­

tic1es collide. They also provide the surface properties, bounce and friction factors

which will be used to respond to a detected collision. Each collision detection unit

detects for a basic geometry. Collision detection for slightly more complex shapes

can be achieved by approximating the desired shape with a hierarchy of several

basic detection units.

Similar to the force system, Figure 3.8 shows the collision detection units in

parallel. The collision detection unit outputs, collision information sets, are each

delayed and synchronized. Fin aIl y, one set of collision information is selected from

the detection unit outputs and passed forward to the collision response stage.

3.6.6 Collision Response

Figure 3.9 shows a simplification of the collision response system. If in fact there

was a collision detected, and the collision ftag received as part of the input colli-

37

bounce flag

bounce ... l -
.... vector

t:n ve
norm l' scale

t:n - (l)

vel
(l) --. -- vector

(l) ... (l) (')

vector (') r--
norm split '-- add r-...

tang l vector
....

friction

1

....
scale L.-....

is~ct -. coll. flag t:n
p

(l) -. pomt -pos (l)
.... (')

os

...
-

Figure 3.9: Simplified collision response system.

sion information was set, the collision response system will need to perform the

following tasks:

1. Replace the particle position by the intersection point estimate.

2. Calculate the component of particle velocity tangent to the collision surface.

3. Calculate the component of particle velocity normal to the collision surface.

4. Scale the tangential particle velocity by the surface friction factor.

5. If the projection of the particle velocity on the surface normal is negative, the

particle must be "bounced" off the surface by multiplying the normal particle

velocity by the bounce factor.

6. Combine the updated normal and tangential particle velocity components to

form a new total velocity vector for the particle.

The first operation in the collision response system, shown in Figure 3.9, breaks

the particle velocity into a normal velocity vector and tangential velocity vector

(relative to the surface) using the following relationships:

.... (.... A) A

Vnorm = v, nsur face nsur face
(3.6)

Vtang = V - Vnorm .

38

First the dot-product of the particle velocity and surface normal is computed. The

result of the dot-product is then used to scale a delayed surface normal vector,

which pro duces the normal velocity component in vector form. Then, the result of

the scale, the normal velocity vector, is subtracted from a delayed version of the

original particle velocity, producing the tangential velocity vector.

During the second section of collision response, the tangential velocity vector is

scaled by the friction factor, and in parallel, the normal velocity vector is scaled by

the bounce factor:
-+ k -+
Vtang +- friction Vtang

(3.7)

The surface friction factor would usually be a fixed-point number between zero

and one, while the surface bounce factor should be a negative number to create the

bounce, a reversing of the normal velocity component.

Recall that the dot product of the original particle velocity vector and the surface

normal has already been computed during the first section of collision response. The

sign bit of that resuIt is delayed so that it can be used here to determine whether or

not the particle should be bounced. If the sign bit is set, the bounced normal veloc­

ity just caIculated is selected, otherwise, a delayed version of the original normal

velocity is selected.

Next the selected normal velocity, either bounced or not bounced, is combined

with the scaled tangential velocity, to create a new total velocity vector which is the

proper response to a potential collision. Finally, shown at the end of the collision

response stage in Figure 3.9, ifthe collision flag was set indicating that there was in

fact a collision, the particle velocity is replaced with this new collided velocity, and

the particle position is replaced with the intersection position estimate, otherwise,

the original position and velocity is used.

3.6.7 Rendering

A simplification of the pipe's rendering system is shown in Figure 3.10. Rendering

is the last stage of the Particle Pipe. At this stage, particle data has been completely

39

(a) (b) (c)

,'X',1:;;::;;;;;j5féXf;',;,;' 1
r--------- ------- --

1 -1 rendering parameter registers :- - - - - - - - - 1
1 1 center x,y

Figure 3.10: Simplified rendering system.

updated. Graphieal information is ealculated using the newly updated partic1e data

together with rendering parameters, initialized and updated eontinuously by the par­

tic1e eontroller. The graphieal information ealculated and output for eaeh partic1e

inc1udes:

• a visibility flag,

• sereen pixel eoordinates,

• a frame buffer address or index,

• a eolor value,

• a z-buffer depth value.

As shown in Figure 3.1, after the rendering stage, the rendered graphical infor­

mation and partic1e data are output together from the pipe. Partic1e data will be set

baek to partic1e memory, and rendering results will be send to the graphies system

for display.

The first task in rendering is to find a set of view coordinates for the partic1es.

Simulations exists in world space, and the partic1e position veetors are in world

space eoordinates. In Figure 3.lOa, To eonvert partic1e position eoordinates from

40

world space to view space the following transform is applied:

Xview = Tworld . right + dx

..... d
Yview = r world . up + y (3.8)

Zview = Tworld . dir + dz .

where right , up, and dir are three vectors defining the "camera's" orientation in

world space coordinates. The vector J represents the location of the world origin in

view space coordinates. These values are held in parameter registers which software

uses to control the view throughout a simulation.

After having obtained view space coordinates for the partic1e position, the view

space position vector needs to be projected onto a 2-D surface, the viewing screen.

This is accompli shed in Figure 3.1 Ob using the following relationships:

- k 1 Xscreen - x-scale XView-z -. -
vtew

- k 1 Yscreen - y-scale YView-z -. - .
v't€w

(3.9)

The previous two formulas provide coordinates relative to the center of the screen.

Generally, pixel coordinates are most conveniently specified relative to the top left

corner of the screen with positive values going down. In Figure 3.lOc the follow­

ing formulas are used to transform the screen coordinates into more useful pixel

coordinates:

Xpixel = Xscreen + Xcenter
(3.10)

Ypixel = Ycenter - Yscreen

Finally, the visibility of the partic1e is determined by comparing the view space

Z value to a minimum value, and checking that Xpixel and Ypixel are within the valid

range.

41

Chapter 4

System Implementation

In order to provide proof-of-concept verification of the Particle Pipe, to test and

verify that the Particle Pipe implemented is indeed functioning and capable of cre­

ating real particle graphies effects, a full Y functioning test system was made. This

test system, shown in Figure 4.1, is a working Particle Pipe system implementation

capable of creating and testing simple, low-performance particle graphies systems.

The following section will discuss in detail the design and implementation of that

ParticIe Pipe test system, how it performed, what was learned from it, and how it

could potentially be improved to create a high-performance particIe graphies sys­

tem.

4.1 Hardware Library, Configuration, and Simula­

tion

The Particle Pipe together with its supporting hardware logic was designed as a

modular, parametrized, and configurable VHDL hardware library, with scripts for

automatic generation and configuration of particular Particle Pipe design instances.

This is an important feature because reconfigurable hardware for particle graph­

ies needs to be used to create many custom hardware accelerators, each specifically

designed and custornized to implement a particular set of effects. Data formats, par-

42

Figure 4.1: Particle Pipe test system in action.

ticle data set members, functional units included at different stages of the pipe and

their functionality can aIl be configured automatically prior to FPGA synthesis by

scripts. These generation scripts, in addition to creating the desired hardware con­

figuration, also generate the necessary software header files providing the Particle

Pipe controller with a software interface to Particle Pipe hardware and bus systems.

Of particular importance is the microcontroller's interface to the pipe parameter bus

system, by which the controller sets and controls the pipe parameter tables through­

out simulations. These tables, and the parameter bus interface are highly dependent

on and specifie to the particular pipe configuration created, and therefore need to be

automatically generated by the same configuration system.

43

Figure 4.2: Particle graphies simulation screen shot.

A functional 'C' software model was created in parallel with the development

of the Particle Pipe VHDL hardware design. It is a bit accurate, functionally equiv­

aIent software model of the Particle Pipe, that can be used as a numerieal and graph­

ieal test bench for testing and verifying Particle Pipe configurations, designing and

verifying new hardware units, and developing and experimenting with new effects,

graphically displaying interactive particle simulations such as the one shown in Fig­

ure 4.2.

This structured design approach allows flexible and efficient customization and

extension of Particle Pipe design instances without extensive knowledge or exhaus­

tive understanding of the Particle Pipe. In this way, Particle Pipe systems can be

designed and modified in much the same way that traditional software design can

be done using the framework and functionality of existing works and libraries.

4.2 System Configuration

The first step in implementing the Particle Pipe system was to generate a Particle

Pipe configuration. The original goal was to create a particle graphies system ca-

44

pable of recreating an effect similar to the water fountain generated by software

written at the beginning, when experimenting and learning about particle graphies

effects. This is a relatively simple effect, shown generated by the simulator in Fig­

ure 4.2, and generated by the actual Particle Pipe test system in Figure 4.1. A set of

Particle Pipe function units and other configuration options units was chosen. The

software pipe simulator was then used to test and experiment with that configura­

tion, verifying that it was capable of generating the desired effects. Sorne of the

pipe configuration options selected were:

• Force

- 3 uniform force vectors (for gravit y and wind)

- viscosity force unit

- force vector summation

• Motion

- massless force-to-acceleration

- Euler motion integrator

• Updates

- life decrementing

- particle death (deactivation) at zero life

- color fading

• Collision

- 2 planar collision detection units

- collision prioritizer

- collision resolution unit with friction and bounce

• Rendering

45

- 8-bit color values

- 18-bit depth values

- world-to-view transform

- 3-D to 2-D projection

- pixel coordinate conversion

- video and depth buffer address generation

An 18-bit fixed-point format was chosen for the Particle Pipe's internaI fixed­

point number representation. The was done to best utilize the Stratix FPGA's hard­

wired DSP units, which can be used for either 56, 18x18 multipliers circuits or 14,

36x36 multiplier circuits.

The particle data sets were configured to include the following fields:

• velocity vector: 3, 18-bit fixed-point values,

• position vector: 3, 18-bit fixed-point values,

• col or: 8 bits

• life: Il bits,

• type: 1 bit.

With these chosen formats, a packed particle data set is 128 bits, which can be read

from or written to particle memory in exactly 4 accesses to a 32-bit wide RAM

device.

AIl fixed-point numbers in the Particle Pipe, as weIl as in the parameter table

system will then use the same 18-bit format. Generation and configuration scripts

create a Particle Pipe hardware design configured to the specifications, also gen­

erating, a. pipe parameter table and bus system specifie to the chosen data formats

and pipe configuration. FinaIly, source code is generated or configured, defining the

software interfaces used by the Nios microcontroller to interface to the pipe and its

parameter table system, particle loading and storing hardware, graphies data output

buffer, and particle memory for the initialization of new particles.

46

Figure 4.3: Nios FPGA development board with custom VGA interface.

4.3 Development Board

To implement the Particle Pipe test system, the Altera Nios Development Kit, fea­

turing the Stratix EPI S40 FPGA device, was used as a development platform.

The FPGA has 41,250 logic elements, 44,860 registers, 56 hardwired 18x18 mul­

tiplier cores, and about 3.4 million memory bits [13]. The FPGA is connected

to 1 megabyte of 32-bit wide SRAM, and has separate, independent access to

16 megabytes of 32-bit wide SDR SDRAM. The board also has 8 megabytes of

FLASH, Ethemet hardware, and two seriaI ports. To implement microprocessor

systems with graphical output capability, the board was enhanced with custom video

output hardware, as shown in Figure 4.3.

4.4 Soff-Core Microcontrollers

In recent years FPGAs have become dense enough and fast enough to allow the use

of reconfigurable microprocessor systems as components in FPGA chip designs.

An on-chip microcontroller can be a flexible and powerful tool for chip and sys-

47

tem design, especially for the testing and verification of new hardware designs by

"systems-on-chip". Sorne soft-core microcontrollers are open-source, and have

been designed to be FPGA-independent, even synthesizable as ASICs. Others,

namely systems offered by the manufacturers of FPGAs, are specific to the FPGA

technology they target, and are highly optimized for speed and area, using a min­

imum of FPGA logic and resources. FPGA soft-core microcontroller systems are

generally very flexible. A designer is now able to quickly and easily use FPGAs to

implement custom systems with special bus topologies, multiple processors, many

types of advanced peripherals, and even make use of custom microprocessor in­

structions and co-processor interfaces, to test and support custom hardware designs.

Soft-Core microcontrollers can be synthesized on sorne of the most inexpensive FP­

GAs, and reach frequencies as high as 150 MHz [14]. The Nios-II microcontroller

has even been reported [14] to use as little as 600 logic elements of an Altera FPGA.

4.5 Nios Microcontroller System

Given a hardware accelerator such as the Particle Pipe and all of its supporting hard­

ware, there is a need for a programmable, flexible, and intelligent control system

to manage and coordinate the system as a who le, to perform software tasks su ch as

initialization, implement procedural tasks, move data around, communicate with a

host, and perform testing and other non-critical tasks which do not merit hardware

designs. The Particle Pipe test system, summarized in Figure 4.4, is a fully func­

tioning, self-supporting system-on-chip, capable of testing itself, implementing

simulations, processing and displaying graphics, and communicating with a host

computer. It includes aIl major aspects of a complete, stand-al one system to sup­

port working proof-of...:...concept particle graphics demonstrations using the Particle

Pipe.

The Nios soft-core microcontroller was used as the backbone, the system con­

troller, in the test system. The Nios has flexible tools for designing reconfigurable

32-bit microcontroller systems with pipelined, multimaster bus architectures. The

48

FPGA Board with 2 RAMs

Video
System

•

Graphies 1 ••• Output FIFO 1

L.. __

~ Particle ~
Storer • '------~ .

• 1 I _________________________________ .J

Figure 4.4: Partic1e Pipe test system architecture overview.

Nios bus system also has a feature key to a Partic1e Pipe system: simultaneous

non-conflicting bus transfers.

Non-Conflicting bus transfers may take place simultaneously due to the slave­

side arbitration scheme used in the the Nios' on-chip bus, shown in Figure 4.5.

Nios bus systems designed with more than a single bus master present, are not

implemented in the traditional bus architecture. Master-slave pairs are formed as

needed by making individual bus connections between each bus master and aIl of

its designated slave peripherals. When a bus slave peripheral can be accessed by, or

is a slave to more than a single master, access to that peripheral is arbitrated by bus

logic at the peripheral. In this way, multiple bus transfers between non-conflicting

master-slave pairs may occur simultaneously. This is an flexible way to implement

the bus systems required by the Partic1e Pipe test system.

The development board used provides the FPGA with access to two separate

RAM devices. One of those devices, the sm aIler SRAM is used as Nios system

49

Nios On-Chip Bus

Access
Arbitration

C

Access
Arbitration

D

Traditional Bus

Access
Arbitration

A

Access
Arbitration

B

Figure 4.5: Slave side arbitration in the Nios' on-chip bus.

memory, holding microprocessor code and program data. A section of it is reserved

for use as a video frame buffer, accessed by both the Nios rnicrocontroller and the

video controller. With the use of two separate on-chip bus systems and two inde­

pendent RAM devices, shown in Figure 4.4, transfers on the microcontroller bus

system will not conflict or compete with streaming particle data on the particle data

bus between particle memory and the Particle Pipe. The Nios rnicrocontroller does,

however, also have access to the particle data bus. Between simulation passes wh en

there is no streaming particle data, the Nios microcontroller will access particle

memory to initialize new particles.

Looking at Figure 4.4, one can see that the Nios has access to its own microcon­

troller bus system, the particle data bus, and the pipe parameter bus. The Nios' own

mÏcrocontroller bus allows it to access the RAM used for microprocessor code, pro­

gram data, and a video frame buffer. It also allows the microprocessor to configure

and control the various hardware units supporting the pipeline through each unit's

configuration and control slave interface_ These units include the particle loading

and storing hardware, and the pipe's output-buffers, and the video system's con­

figuration port. The Nios has access to particle memory for initialization of new

particles and testing purposes. The pipe parameter bus allows it to access the pipe's

parameter tables during simulations and initialization. Finally, the video controller

50

Nios

..... -..
l , --.

Nios Softcore
Il-Controller

------- -------~

RGB DIA
Conversion

VGA Video Output

Figure 4.6: Video enhanced Nios soft-core microcontroller system ..

is also a master of the microcontroller bus, giving it access to the video frame buffer

located in microprocessor data memory.

The Nios microcontroller communicates to a host computer, downloading pro­

grams and reporting back system information. A boot-Ioader and default demon­

stration program are stored in the on-board FLASH device.

4.6 Video System

A VGA video system, shown in Figure 4.6, was made for the Nios microcontroller

system and board. First, a video-speed triple digital-to-analog converter was made

for generating and driving the analog RGB (red, green, and bIue) signaIs for the

VGA monitor. In a first attempt, a video triple-DAC IC was used, but analog sig­

nal problems such as "cross-talk" and "ground-bounce" caused by the nature of

the connecting wires caused false latching of input values at the DAC. This was

replaced by three passive DACs made from resistor networks which worked quited

weIl.

In order to form a proper VGA video signal based on the contents of a frame

buffer in RAM, an on-chip video controller peripheral was designed and added to

the Nios microcontroller system. The video controller is a bus master whiich pre-

51

fetches data from a frame buffer in the Nios data RAM, and converts that data into

a properly timed stream of digital RG B values, which it sends out of the FPGA

to the analog-to-digital conversion hardware, along with horizontal and vertical

syncing pulses. This process is illustrated in Figure 4.6. To create an image on

the VGA monitor, the Nios has only to allocate a portion of its data RAM for use

as a frame buffer, initialize the video controller peripheral, telling it where to find

the frame buffer and what its dimensions are, then fill that frame buffer with the

image to be displayed. The Nios can use a double-buffered frame buffer scheme

by allocating memory from its data RAM for two frame buffers, and continuously

swapping them from frame to frame. In su ch as double-buffered video scheme,

the Nios would always configure the video hardware to stream video data from one

buffer while writing pixel data to the other, swapping buffers upon completion of

each frame.

4.7 Parameter Bus System

As introduced in Section 3.5, the functionality of each Partic1e Pipe function unit,

its operation on the partic1e data sets at each latch stage of the pipe, is controlled by

a set of parameter registers, containing values selected according to each partic1e's

type field. This selection of parameter values based on partic1e type occurs in the

parameter selection stages preceding each module, section, or function unit of the

pipeline. Each such parameter selection stage uses the partic1e type as an index

to a parameter table, holding the parameter values for each partic1e type. These

parameters must be initialized by the Partic1e Pipe controller at the beginning of a

simulation, and modified between each simulation frame. One simulation frame, of

course, corresponds to one complete pass of aIl particle data through the pipeline.

The values which are used to initialize these tables, and how they are updated and

modified throughout a simulation, determines the operation of the Partic1e Pipe,

which together with the initialization properties of new partic1es, determines the

resulting simulations and effects.

52

Nias
address

Nias
data

Figure 4.7: Parameter tables and bus system.

graphies
data

How then does the controller set and update these values? The parameter bus

interface, shown in Figure 4.7, is the microprocessor interface which gives the con­

troller access to all the parameter tables in the Particle Pipe. AIl the parameter

tables of the Particle Pipe are connected by a special bus system, the pipe parame­

ter bus, allowing them all to be read from and written to. The pipe parameter bus

is mapped, through the parameter bus interface, to a reserved section of the Nios

microprocessor's address space. The address mappings and data structures used

by the parameter tables is completely determined by the pipe configuration details,

the contents and structure of the Particle Pipe instantiated. That is why it is nec­

essary for the parameter bus itself, as weIl as the software interfaces used by the

Nios microcontroller, to be generated by the pipe's configuration scripts. By using

the addresses and data structures defined in software header files generated by the

pipe configuration scripts, microprocessor code running on the Nios microcontroller

can read from and write to the Particle Pipe parameter tables, initializing them and

changing their contents between simulation frames to create the desired simulation

behavior and effects. The mapping of the parameter bus onto the Nios bus does not

create bus competition or conftict with other data transfers in the system such as

53

movement of graphical data to and from the frame buffer, or most importantly, the

ftow of particle data to and from particle memory.

4.8 Particle Data Flow

The ftow of particle data represents the biggest challenge faced wh en implementing

a Particle Pipe system. The Particle Pipe is designed to be capable of receiving one

input particle data set and outputting one updated particle data set together with its

graphical data upon every clock cycle. In the case of our test system implementa­

tion, data formats were chosen su ch that each particle data set fits into exactly 128

bits, or 4, 32-bit words. For each particle that goes through the pipeline, 4, 32-bit

words of particle data must be read from and written to particle memory. To help

achieve the highest possible throughput of particle data, it is necessary to:

• Use special hardware for the loading, storing, and transfer of particle data,

• Store particle data in a dedicated RAM device, isolated from other bus trans­

actions,

• Transfer particle data using an isolated and dedicated particle data bus,

• Attempt to fully exploit bus and RAM device high-throughput bursting modes

by designing buffered hardware which accesses particle memory in bursts of

sequential accesses.

Figures 4.4 and 4.8 show how the particle data ftows through the particle test

system in its own data path. It is streamed from particle memory into the pipe by

the particle loading hardware. From the pipe's output it enters the pipe output FIFO

buffers, from where it will be written back to particle memory by the particle storing

hardware. This whole process of streaming data through the Particle Pipe, occurs

independently and in isolation, without direct participation by the system micro­

controller and its bus. Therefore, it occurs without contending or competing with

54

video output

NiosBus

Particle Data Bus

Figure 4.8: Test system architecture overview.

the bus traffic of the microcontroller's video system, particle initialization system,

or parameter bus system.

If the system microcontroller were used to load particle data, feed the pipe with

an input particle stream, and store the output particle stream back to memory, the

throughput of the Particle Pipe would be severely limited. Instead, a custom hard­

ware loading unit streams data out of particle memory from a specific address range

specified during initialization, and feeds the data to the input end of the Particle Pipe

at a specified rate. Since the width of the particle data sets, and therefore the width

of the pipe's input port, is 128 bits or four, 32-bit words, the particle loader will

fetch aIl four words of one particle then apply them together to the pipe's input port

forming a valid input cycle. When the loading hardware is not capable of providing

the pipe with particle data at its throughput rate of one data set per pipe clock cycle,

or when it is necessary to decrease the rate of input data ftow to avoid overftowing

the pipe's output buffers, invalid "blank entries" are sent through the pipe, effec.­

tively stalling it without interfering with the processing of the valid data streanr.

The particle loader itself receives commands from, and is configured and controlled

by the Nios microprocessor through its command and configuration port on the

Nios' bus. The Nios controller will specify from what range of particle memory

55

to stream the particle data, and at what rate it should be streamed. It is necessary

for the Nios controller to control and adjust the rate at which the input particle data

is streamed to the pipeline to prevent the pipe from "flooding" the particle storer,

outputting updated particle data at a rate faster than it can be stored back to particle

memory.

As the particle data moves through the pipe, updated particle data together with

graphies data for visible particles will stream out of the output end of the pipe.

This output data must be buffered, before it can be handled properly. The particle

data and graphies data need to be buffered separately because they are processed

separately at difference rates and by different mechanisms. Therefore, as shown in

Figure 4.8, the output end of the Particle Pipe feeds into two PIFO buffers, one for

the particle data and one for the graphics data. These pipe output buffers contain

logie and signais for tracking information about number of "valid" and "active"

particles output from the pipeline, and making this information available to the

Nios mierocontroller over its control bus. The state of these FIFOs can be accessed

by both the particle storing hardware to control the rate of streaming data though

the pipe, and the Nios microcontroller.

Only wh en a particle in the pipeline is determined to be visible in the pipe's

rendering stage, will valid graphics data be output from the pipe together with par­

ticle data. For "invalid" or stalled cycles, inactive particles, and particles that were

determined to be invisible by the rendering hardware, the graphies data output is

flagged as invisible and will not enter the graphies data output buffer. Similarly,

during "invalid" or stalled cycles, or when particles have an inactive state, they will

not enter the particle data output buffer. Each buffer keeps track of the number of

valid cycles or data sets that were presented at its input, the number of data sets that

have been read out of the FIFO, the number of data sets currently in the FIFO, and

its empty or full status. This information and these signais are used by the particle

storer and the Nios controller to determine how and when to processes data from

the FIFOs, as well as how to control the particle data input rate.

56

The Particle storing hardware continuously wrÏtes data from the pipe's particle

data output buffer, back to particle memory in the address range specified by the

Nios microcontroller during initialization. Since inactive particles are not stored

back to particle memory, as aIl the valid and active particles are stored back sequen­

tially to the same block of particle memory from which they were read, the spaces

or entries in particle memory oc cu pied by inactive particles will be shifted to the

top of particle memory. At the end of each simulation pass, by knowing how many

"active" particle data sets were stored back to particle memory, the microcontroller

knows at what address the "inactive" and available space begins and how large it is.

This block of available, inactive space at the top of particle memory, can be used

between frames for the initialization and injection of new particles. Any remaining

space in this range, which is not written over with newly initialized particle data,

must be c1eared to an inactive state as it still contains data from particles left over

from the previous simulation frame. This processes is illustrated in Figure 4.10.

4.9 Graphies Output Display

The Partic1e Pipe outputs graphical data for visible and valid particles during the

streaming of partic1e data. The graphics output for each visible particle will include

pixel coordinates ("x" and "y" coordinates for the frame buffer), as weIl as a color

value and a z-buffer depth value for each pixel. This rendering information enters

the graphics data output buffer, just as partic1e data enters the partic1e data output

buffer. The Nios microcontroller can check the state of the graphies output buffer,

and wh en necessary, may read and display graphical data from it. The output of

the graphies output buffer has special circuitry to allow the microcontroller to read

data from it in a number of forms allowing more efficient processing and rendering

of the simulation graphics. It may read a hardware-formed frame buffer index or

address directly, together with color and depth values. The Nios reads these pixels

as they become available, output from the pipe, and writes them to the video frame

buffer in Nios microcontroller memory. EventuaIly, when the frame is complete,

57

they will be read out by the video controller, converted to a timed video signal and

displayed on the monitor, as in Figure 4.6.

4.10 System Operation and Control Flow

Demonstration code running on the test system's microcontroller, uses the Parti­

cIe Pipe to make a simple particIe graphies effect resembling a fountain of water,

shown in Figure 4.1. Here we de scribe in detail the interaction and operation of the

different system components, how they work together, and how the system micro­

controller synchronizes and controls the system to create and display a real particIe

graphies simulation. The general operation of the system is summarized in Figure

4.9.

In preparation, the microcontroller must reset and initialize the video system.

After reseting the video hardware, the Nios allocates three contiguous blocks of

memory from its data RAM area, each large enough to hold a frame buffer in the

form of one color value per pixel. In order to increase the efficiency of our simple

microcontroller video system, we decrease the amount of video traffic on the bus,

as weIl as the size of the frame buffers that must be cIeared to black between each

frame. This is done by commanding the video controller to enter a mode which only

displays a 256 by 256 pixel area in the center of the standard 640 by 480 pixel VGA

video stream. The system can then use much smaller 64 kilobyte frame buffers,

which are more easily managed by the 80 MHz microcontroller bus system. Two of

the three frame buffers allocated will be used to implement a double-buffered video

scheme. The two buffers will be swapped between frames such that during the

preparation of each frame, one frame is written to by the microcontroIler, while the

other is read from by the video controller for video content. After frame preparation

has completed, the microcontroller sends a command to the video controller, giving

it a new frame buffer address to read from, pointing to the newly prepared buffer.

The third buffer is used to hold a depth buffer, or "Z-buffer", storing depth values

for each pixel in the preparation buffer. When a new pixel or particIe is to be written

58

System Initialization

- Init. video system
- Init. particle memory
- Init. particle nursery
- Init. parti cie loader & storer
- Reset pipe output buffers

+
(Re)Start Simulation Pass

- Create new particles.
- Clear unused particle memory.
- Swap and clear video buffers.
- Reset particle loader & storer.
- Start parti cie data stream .

.. Check graphies
...

output buffer.

Empty?

/,,, no

yes

..
Check particle output
and storage counts.

Complete?
no A

yes

"
1 Start New Frame

1 1

Process Graphies

- Check depth buffer
- Write to depth buffer.
- Write to frame buffer.

Figure 4.9: System operation and ftow.

to the frame buffer, its depth value is compared against the depth value already

present at that location. Only if the new pixel's depth value is less than the existing

depth value will it be drawn. If it is to be drawn, its col or value will be written to

the preparation col or buffer, and depth written to the depth buffer.

To reset and initialize the Partic1e Pipe, the pipe output FIFOs must be emptied

and the pipe parameter tables must be initialized. The pipe parameter tables are

59

mapped to a dedicated region of the microcontroller's address space by the pipe

parameter bus interface, and can be read from and written to directly. The data

structures, and tables of data structures which make up the Particle Pipe's parameter

tables, as weIl as how these parameter table structures map to the microcontroller's

memory are defined in the microcontroller's software header files, together with

the routines that software executing on the microcontroller will use to access them.

These header files, and the interfaces, structures, and mappings they contain were

generated by the pipe configuration scripts, together with the hardware they corre­

spond to. The pipe parameter tables are filled with parameter values that determine

the simulation properties and the pipe's operation on the different particle types in

the desired simulations.

The particle pool, the collection of all particle data sets in particle memory,

needs to be initialized before the simulation. AlI particles in the pool should be

cleared to an inactive state, which will be recognized by the pipe as "dead" or

inactive. Inactive particles are not updated or rendered by the pipe, nor do they enter

the particle data output buffer to be stored back to particle memory. The spaces,

or entries these inactive particles occupy are available for use by new particles as

they are emitted. It suffices for the microcontroller to simply zero out the particle

memory, because this will ensure that the "life" field in each packed particle data

set will have the inactive value of zero.

Before the simulation begins, in preparation for the initialization and injection of

new partic1es, which will occur between frames throughout the life of a simulation,

the microcontroller prepares a collection of initialized and packed particle data sets.

This collection of prepared new particles, the particle nursery, is shown in Figure

4.10. The fields of these particles are initialized with random values conforming

to the specified stochastic properties of each field, for each particle type. AlI fields

are assigned random values with the desired mean and standard deviation. These

values are then packed together to the format used in the Particle Pipe and partic1e

memory.

The loading and storing hardware, hardware controllers responsible for stream-

60

<'~: '

~iiQS ~Qftcor:e
m-{,4o rntüoller

Nios p-Controller Bus

Figure 4.10: New particle initialization using the particle nursery.

ing data from particle memory, through the pipe, and back into particle memory, are

initialized. The particle loader and storer need to be set with values specifying the

address and size of the particle pool. The loader must also be set with a delay value,

for insuring that the pipe input does not overrun the pipe output. AIso, counters in

the storer and the particle output buffers need to be reset. These are the counters

that track the number of valid and inactive data sets seen at the output of the pipe.

Finally to begin the simulation, the microcontroller enables the video controller

and commands the particle loader to begin streaming particle data. The particle

loader will read data sets from the specified range of particle memory until com­

plete, feeding the packed particles to the pipe's input. As the updated particle data

sets complete their processing and joumey through the pipe, they are output from

the other end. Each clock cycle, the pipe's output will be marked as "valid" if there

is truly a particle data set completing, or "invalid" if there was no particle data set

input to the pipe on the corresponding input cycle, effectively a "staIl slot". Valid

output particles will either be active or inactive, and active particles may also be

visible, in which case they are accompanied by valid graphical data. There is hard­

ware to track during each simulation pass, the number of valid outputs seen by the

output buffers and the number of active particles stored back to particle memory

61

by the storer. The partic1e data output buffer is constantly read from and emptied

by the storing hardware, which stores the active partic1es back to memory, from a

specified starting address upward.

As the partic1e data is streaming during the simulation pass, visible partic1es will

create graphics data that will accumulate in the graphics data output buffer. The

Nios microcontroller continuously checks the state of that buffer, and processes any

graphics data that it contains. To process the graphics data, entries of the buffer

are read out by the microcontroller. For each entry, the microcontroller can read

coordinates, a color value, a depth value, and a preformed frame buffer index or

address. For each pixel or partic1e read from the buffer, the depth value is checked

against the depth value at that pixel location in the depth buffer. If the depth value

already present in the depth buffer is less than the pixel currently being processed,

nothing else is done and that pixel is abandoned since it is obscured by the content

already in the frame buffer. Otherwise, the depth buffer is updated with the pixel's

depth value, and the color value is written to the preparation frame buffer.

The microcontroller continues checking, emptying, and processing the graphics

output data, throughout the simulation pass. When it finds that the buffer is empty,

it will check if the data pass is complete. This is done by reading the counter values

tracking the number of valid output partic1es. When this number is equal to the size

of the partic1e pool, or the number of partic1es that the loader was instructed to load,

then all partic1e data has been loaded and processed by the pipe. If the partic1e data

output buffer has already been emptied by the storer, then the data pass has truly

completed.

Now that the partic1e data has been updated, newly inactivated or "dead" parti­

c1es have created an empty region at the top of partic1e memory. Inactive partic1es

output from the pipe, are counted but are not buffered or stored back to partic1e

memory. This means that an entry in partic1e memory for each inactivated partic1e

will float to the top, as aIl active partic1e data is shifted down in memory, replacing

inactive entries. The inactive space at the top of partic1e memory is used for new

partic1es, and any space remaining after the injection and initialization of new par-

62

tic1es, must be c1eared to the inactive state as it still contains data from other shifted

partic1es. As illustrated in Figure 4.10, new particles are copied from the particle

nursery in microcontroller data RAM, and written to the empty region in partic1e

memory.

Finally, the simulation frame has completed, aIl particle data has been updated,

graphical output data has been written to the preparation frame buffer, new parti­

c1es have been created, and we are ready to swap the preparation and display frame

buffers. The video controller is instructed to read from the frame buffer just pre­

pared, displaying the graphical data from the simulation frame just completed, and

the other frame buffer, together with the depth buffer are cleared.

The pipe's parameter tables can now be updated according to the desired simula­

tion properties, perhaps changing the 3-D rendering view orientation. The particle

loading and storing hardware, and the output buffers are reset. A new simulation

frame begins as the particle data starts streaming once again.

63

Chapter 5

Results and Conclusions

5.1 Particle Test System Results

The Particle Pipe test system, is a complete working system, designed for the pur­

pose of testing, verifying, and demonstrating the functionality and concepts of the

Particle Pipe. Above aIl, as a working example implementation, it provides a func­

tioning and interactive proof-of-concept for the use of pipelined FPGA hardware

designs to accelerate and enhance particle graphies techniques in real-time appli­

cations.

The Particle Pipe test system was implemented using an Altera EPlS40 Stratix

FPGA. Table 5.1 shows FPGA resource utilization of the fitted design in that device.

The Particle Pipe alone was synthesized for that device to a maximum operating

frequency of 130 MHz. The complete test system, including the Nios microcon­

troller, buses, controllers, and other components, operates at a system frequency of

80 MHz. Recalling that the Particle Pipe design is capable of updating and ren­

dering one particle data set upon each pipe clock cycle, the Particle Pipe itself has

a potential throughput of processing 130 million particles per second. This corre­

sponds to simulations and effects with 2.1 million particles in each frame at a frame

rate of 60 Hz, or 4.3 million particles per frame at 30 Hz.

These throughputs, of course, depend on a particle memory capable of provid­

ing the required access rates, and a system integration capable of processing and

64

Logic Cells Registers 18x18 Mult.
Avail. in FPGA 41,250 44,860 56
Total System Design 40,764 32,215 29
Nios j.l-Controller 6,397 2,424 1
P. Pipe with I-Faces 32,962 29,156 28
P. Pipe 30,283 27,853 28
Force System 5,157 4,962 3
Total Collision System 15,417 14,577 12
Coll. Detection 2,472 2,301 ° Coll. Response 12,699 12,031 12
Integrate Motion 624 582 ° Rendering 8,382 7,034 13

Table 5.1: FPGA utilization of test system.

displaying the generated graphical data. Given a particle data set width of 128 bits,

to achieve the pipe's maximum throughput, the read and write access rates required

of particle memory are:

(128 bit~)(130 MHz)(l particle) = 2.08 gigabytes . (5.1)
part'lcle cycle sec

This can be realized with standard PC-2IOO, PC-2700, and PC-3200 DDR-SDRAM

memory modules, which respectively provide 2.133, 2.667, and 3.2 gigabytes per

second ofmemory bandwidth [15]. Only 1.28 gigabytes per second are required to

full Y utilize the Particle Pipe in the 80 MHz test system. This would correspond to

a peak performance of 1.3 million particle per frame at a frame rate of 60 Hz, or 2.6

million particles per frame at 30 Hz.

The video processing and display capabilities of the test system are very simple

and low in performance compared to standard computer hardware. The inability

of the test system as a whole to efficiently process and remove graphical data from

the Particle Pipe's output buffer severely lirnits the speed and size of simulations

implemented on the test system. As data is streamed from particle memory through

the pipe and back into particle memory by the particle loading and storing hardware,

the test system relies on the Nios microcontroller to process the graphies output

buffer. Processing graphie al data means integrating it into a display system. The

65

Memory Region
Particle Memory
Graphics Memory - Video OFF
Graphies Memory - Video ON

Write Access Rate
0.7235 bytes/clk
0.6142 bytes/clk
0.6146 bytes/clk

Copy Access Rate
0.1365 bytes/clk
0.2806 bytes/clk
0.2771 bytes/clk

Table 5.2: Memory throughputs observed.

test system's simple VGA display system does not have an efficient method for

writing pixels to color and depth buffers, or clearing those buffers. Combined with

low particle memory access rates, this limits performance to weIl below what the

Particle Pipe is truly capable of.

The primary factor severely limiting the performance of the test system, and

preventing utilization of the Particle Pipe at a performance closer to its potential, is

the low access rate achieved to particle memory by the system. The particle loading

and storing hardware is unable to load and store particle data from memory effi­

ciently, and therefore starves the Particle Pipe, failing to provide it will a sufficient

input stream, or empty its output buffers in time. Since the loading and storing

hardware is unable to provide the pipe with a sufficient input stream, the pipe is

staIled, processing null data for most of the time during test system operation.

Table 5.2 shows the results of performance tests which measured the system's

ability to access blocks of memory in both the SDRAM device, used by the test

system as particle memory, and the SRAM device, used by the test system for mi­

crocontroller and video memory. The performance tests were performed by using

dedicated timing hardware to profile both software accesses to memory regions us­

ing the Nios microcontroIler, and accesses made by special bus hardware created

to generate continuous sequences of transfers to particle memory. The copy rate to

particle memory, the type of access required by the Particle Pipe, has been limited to

0.1365 bytes per clock cycle. With this in mind, considering that the Particle Pipe

at maximum throughput would require a copy rate of 128 bits per cycle, particle

memory starvation is responsible for limiting Particle Pipe utilization to 0.85% of

its true potential. During simulations on the test system, the Particle Pipe is actually

stalled and not in use for 99.15% of aIl cycles.

66

The extremely low partic1e memory access rate achieved by the loading and

storing hardware is the result of the simple design of the partic1e data system as a

whole. As a first implementation of the Partic1e Pipe, and primarily intended for

the testing and verification of the concept and operation of the Partic1e Pipe, the test

system was designed and organized in the most simple and direct way possible. The

partic1e data loading and storing units were designed as two separate controllers,

each a master on the partic1e data bus, implemented using the Nios' Avalon on-chip

bus system. The partic1e storing hardware blindly attempts to empty the partic1e

data output buffer, while the loading hardware loads partic1e data at a specified

rate. Coordination and arbitration between these two bus masters, attempting to

simultaneously access partic1e memory is resolved by the Avalon bus arbitration

logic. As the loading and storing units attempt to simultaneously read and write

from the single partic1e memory device, access is shared between the two with

alternating permission. The result of this simple solution is that what should be two

sequential, pipe-lined, high-speed bursts, one read stream and one write stream,

becomes altemating random accesses, by two different masters. The bus transfers

are not pipeline d, the SDRAM controller cannot reach a bursting mode of operation,

and the access rates seen by the partic1e pipe are extremely slow.

A partic1e data system couid be designed explicitly to maximize the perfor­

mance of the partic1e memory, since as we have seen, access to partic1e memory

is the major factor limiting Partic1e Pipe performance. For the design of a high­

performance Partic1e Pipe system, The partic1e loading and storing hardware should

be merged into a single design, capable of exc1usively bursting sequential data from

partic1e memory, while aIl pipe output is buffered for sorne duration. Then, the

pipe output should be exc1usively bursted back to partic1e memory, while the pipe

is either not feed with input data, or feed from a read buffer. In order to maximize

partic1e memory performance, it is absolutely necessary that the loading and storing

unit s, as weIl as the interconnection or bus between with the memory controller and

the pipe is pipelined. The transfer of data should be separated from the transfer of

address and control information, to allow multiple simultaneous pending read oper-

67

Frame Rate Video Num.ofP. P. Data Pass Time Total Frame Time
30Hz disabled 45,000 partic1es 98.14% 29.83 Hz
30Hz enabled 41,000 partic1es 89.04% 29.71 Hz
60Hz disabled 22,000 partic1es 96.09% 59.86 Hz
60Hz enabled 18,000 partic1es 77.72% 59.45 Hz

Table 5.3: Partic1e test system performance at 75 MHz.

ations. If this is done, then a Partic1e Pipe system could expect to have access rates

to partic1e memory at the performance limits of either the memory device itself, or

the c10ck frequency and width of the system bus.

The Partic1e Pipe test system provides a proof-of-concept demonstration of

FPGA implemented partic1e graphics, and a platform for testing the functionality of

the Partic1e Pipe design.

Table 5.3 contains results summarizing the actual performance and capabilities

of the partic1e test system. The results shown are the actual performances observed

from the test system running demonstration code, generating the effect shown in

Figure 4.1, while targeting a given frame rate. The largest partic1e simulation im­

plementable on the test system contains 45,000 partic1es, at a frame rate of 30 Hz.

The video system, when enabled, reduced the simulation size to 41,000 partic1es.

5.2 High Performance Implementation

A true, high performance Partic1e Pipe system could be implemented using a plat­

form such as the Altera PCI Development Kit, shown in Figure 5.1. This platform

is a PCI card, featuring the EP1S60 Stratix FPGA, and 256 megabytes of DDR

SDRAM. The EP1S60 FPGA has about 60,000 logic elements, which is 20,000

more logic elements than were available in the test system's EPIS40 FPGA. The

256 megabytes of PC333 DDR SDRAM can operate at 333 MHz (2x 166 MHz)

providing 2.667 gigabytes per second of memory bandwidth. Recalling equation

5.1, we see that 2.667 gigabytes per second of memory bandwidth would provide

more than enough partic1e memory access to support a 130 MHz Partic1e Pipe at

68

Figure 5.1: Stratix PCI high-speed development board (from [13]).

full throughput. In addition, a 32-bit PCI interface at 33 MHz can burst at 132

megabytes per second, and a 64-bit PCI interface at 64 MHz can burst: at 528

megabytes per second [16]. The Particle Pipe to host connection using this plat­

form would therefore be fast enough to handle the graphics output of the Particle

Pipe.

Using this kind of a platform to implement a Particle Pipe system, the rendering

section in the Particle Pipe FPGA hardware may not be necessary. The 3-D projec­

tion and rendering operations can be accomplished by the host computer's normal

graphics hardware. This will make available much more of the FPGA's reconfig­

urable logic and resources to the actual particle simulation hardware. In Table 5.1,

we see that about 20% of the reconfigurable logic was used on the rendering section

of the pipeline. This wou Id enable the implementable of much more interresting and

complex pipelines and simulations.

5.3 Particle Pipe Operation Rate

A reasonable question to ask about Particle Pipe performance, when trying to com­

pare it to normal software or GPU methods is, "What would be the equivalent per­

formance of the system in terms of instructions-per-second, or operations-per-

69

Design Entity
Fixed-Point Add/Sub & Limit
Fixed-Point Multiply & Limit
Fixed-Point Divide
Fixed-Point 3-D Vector Add/Sub
Fixed-Point 3-D Vector Dot Product
Fixed-Point 3-D Vector Scale

Number in Partic1e Test System
39
28
1
5
4
4

Table 5.4: Instantiation counts of basic fixed-point operations.

second?" This question merits an explanation of a few major concepts. First of aIl,

the Partic1e Pipe is application-specific hardware, that implements parti cIe graphics

simulations in a completely different way than would software running on a CPU

or GPU. The concept of "instruction" does not apply at all, since the hardware does

not accomplish tasks by executing sequences of instructions. It is a hardwired logie

circuit that updates and produces data. The concept of a metric of the rate of in­

structions or operations possible is specific to the method or the implementation of

a task. In fact, it is weIl know that the instruction execution rates of two CPUs can

not at aIl be used as a metric of performance or comparison, even if the two CPU's

are executing the same program compiled by the same compiler! The only way to

compare different architectures is to compare their performance on specific tasks.

It is possible, however, to consider the fundamental operations which are being

accompli shed by a system for a particular problem. How to define the fundamen­

tal operations is questionable, especially when the task or problem, as in computer

graphies, is not defined by a specific computation or solution, but is to create an ef­

fect of sorne kind, for which there may be many unrelated and individually unique

solutions. However, in an effort to quantize how the Partic1e Pipe hardwaœ is per­

forming, what it is achieving, and what work it is doing, we examine in Table 5.4 the

instantiation counts of the major fixed-point math operations in the Partic1e Pipe.

From this, we can see that fundamentaIly, for every partic1e updated in each simula­

tion frame there are about 68 major fixed-point math operations performed. Using

these operations, and considering the maximum operation frequency of the Partic1e

70

Pipe, we find that the Partic1e Pipe has a potential operation rate of

particle ops ops
(130 M H z)(1 l)(68 . l) = 8.84 billion - (5.2)

eye e parhe e see

and
(130 M H z)(1 particle)(68 ~)

clk particle 294 6 'll' ops -------;:------'--- = . mz zon ---
30 frames frame

sec

(5.3)

Given that the test system is capable of running simulations as large as 45,000

partic1es per frame at a frame rate of 30 Hz, we can conc1ude that the average

operation rate of the test system's Partic1e Pipe is

(68 op~)(45,000 particles)(30 frames) = 91.8 million ops (5.4)
partzcle frame see see

and
ops particles ops

(68 . l)(45,000 f) = 3.06 million f . (5.5)
partze e rame rame

5.4 Method Comparison

Partic1e graphies effects created in software, GPU methods, and those created by

the hardware of a Partic1e Pipe, could be and are implemented in completely dif­

ferent ways, essentially doing and accomplishing different tasks, creating unique

graphieal simulations and effects. Although each is unique and implemented in

a different way, they have common properties and goals universal to aIl partic1e

graphies simulations. The only true way to compare different systems, each capa­

ble of implementing partic1e graphies effects in their own way, is to consider the

following aspects:

• What is the largest possible partic1e simulation size, measured in partic1es per

frame?

• The complexity, variety, and flexibility of implemented simulations.

• How do the size and complexity of the simulations effect a ho st application?

71

• How practical is the solution?

We have seen that the use of reconfigurable hardware to implement sets of spe­

cialized Partic1e Pipe systems has the capacity for extremely large simulations, far

beyond what wou Id be possible with tradition al software methods. The performance

of the partic1e test system was limited to relatively small and simple systems, but as

discussed in Sections 5.1 and 5.2, if properly implemented using the right platform,

the approach definitely has potential for extremely high throughput, of the order of

several million partic1es per frame. These high throughputs, because implemented

in an isolated FPGA subsystem, and not in main memory as are both software and

GPU partic1e systems, could be achieved with a minimum burden on ho st system

and application resources. Because each instantiation within a set of a Partic1e Pipe

systems supporting a ho st application can be completely unique and specialized

specifically for the set of effects it generates, reconfigurable hardware offers a great

amount of flexibility not available to GPU methods. An FPGA Partic1e Pipe can

be designed especially to implement a special set of relatively complex or eccentric

effects. Although in sorne ways software offers an unequivocal amount of flexibil­

ity and possible complexity, as weIl as ease of design, FPGA design can achieve

flexibility and complexity in a different way, while supporting high performance

throughputs not achievable by software methods. In particular, if the FPGA design

is approached with a "component library" methodology, making use of an exist­

ing framework, designing and using components of a library with sorne predefined

structure, it can also be realistic in terms ofboth difficulty and flexibility for applica­

tion designers. Furthermore, the complexity of software partic1e systems is limited

by the unacceptable performance cost they impose on host applications. Real-time

graphies applications running on todays standard computer hardware, simply can­

not afford to implement large and complex partic1e systems [11]. Finally, while

software and GPU methods offer practicality in that the required components are

already present in general purpose computers, FPGAs and reconfigurable hardware

may soon have such a presence. When FPGAs do have a general presence in com­

puter hardware, and a standard interface emerges, then not only particle graphies,

72

but many new applications stand to bene fit or possibly be revolutionized by the use

of reconfigurable hardware accelerators.

5.5 Conclusions

In this thesis we have explored the idea of how reconfigurable hardware c:ould be

used to enhance and accelerate an application area su ch as partic1e graphies. Not

just partic1e graphies, but many different kinds of new applications and tasks never

before considered candidates of hardware acceleration could potentially use the

presence of FPGA hardware in standard computers to be accelerated and enhanced

in ways which are currently not possible or practical. This was done through the

case study of the design and implementation of an FPGA partic1e graphies hardware

system, a radical new approach to partic1e graphies. We have seen that this tech­

nique contains the possibility for achieving new tremendous performances, but that

these performances will not be achieved without facing implementation challenges.

Like all solutions to all problems, FPGA hardware pipelines have their limitations.

We have seen that it is not trivial to design a system capable of providing and pro­

cessing data at the rates required for that high performance, and if possible, will not

occur without in tum causing its own performance or system costs. The fixed point

format used in a Particle Pipe system is yet another challenge, as it could possibly

limit the dynamic range of sorne simulations. However, if solutions to these chal­

lenges and limitations can be found, than FPGA partic1e graphies pipelines have the

promise and potential for making possible what is otherwise not: real-time graphies

applieations for standard computers with multiple complex and customized partic1e

simulations as large as 4.3 million particles per frame.

73

Appendix

The following tables show FPGA synthesis and fitting details of the Particle

Pipe test system.

74

Logic Cells Registers 18x18 Mult.
Avail. in FPGA 41,250 44,860 56
Total Test System Chip Design 40,764 32,215 29
Nios p,-Controller System 6,397 2,424 1
Nios CPU and Caches 4,422 1590 1
Video System 451 256 0
Particle Pipe with Interfaces 32,962 29,156 28
Pipe Parameter Bus 1,470 852 0
Particle Pipe 30,283 27,853 28
Force System 5,157 4,962 3
Uniform Force 54 54 0
Viscosity Force 1,005 831 3
Total Collision System 15,417 14,577 12
Coll. Detection 2,472 2,301 0
AA-Planar Collision Detection 526 489 0
Coll. Response 12,699 12,031 12
Integrate Motion 624 582 0
Rendering 8,382 7,034 13
Screen Projection 3,756 3,021 4
Fixed-Point Inverter 2,072 1,541 0
World-to-View Transform 2,799 2,277 9
Static Update Unit 130 130 0
Pipe Data Interface 1,209 451 0
Particle Loader 476 175 0
Particle Storer 385 102 0
Particle Data Output FIFO 37 20 0
Graphics Data Output FIFO 37 20 0
Fixed-Point Multiply and Limit 196 145 1
Fixed-Point Divide 2,072 1,541 0
Fixed-Point Add/Subtract 91 84 0
Fixed-Point Vector Dot-Product 842 675 3
Fixed-Point Vector Add/Subtract 279 258 0
Fixed-Point Vector Scale 588 435 3

Table 5: FPGA utilization of test system by design entity.

75

Logic Cells Registers 18x18 Mult.
Avail. in FPGA 100.00% 100.00% 100.00%
Total Test System Chip Design 98.82% 71.81% 51.79%
Nios p,-Controller System 15.51% 5.40% 1.79%
Nios CPU and Caches 10.72% 3.54% 1.79%
Video System 1.09% 0.57% 0.00%
Particle Pipe with Interfaces 79.91% 64.99% 50.00%
Pipe Parameter Bus 3.56% 1.90% 0.00%
Particle Pipe 73.41% 62.09% 50.00%
Force System 12.50% Il.06% 5.36%
Uniform Force 0.13% 0.12% 0.00%
Viscosity Force 2.44% 1.85% 5.36%
Total Collision System 37.37% 32.49% 21.43%
Coll. Detection 5.99% 5.13% 0.00%
AA-Planar Collision Detection 1.28% 1.09% 0.00%
Coll. Response 30.79% 26.82% 21.43%
Integrate Motion 1.51% 1.30% 0.00%
Rendering 20.32% 15.68% 23.21%
Screen Projection 9.11% 6.73% 7.14%
Fixed-Point Inverter 5.02% 3.44% 0.00%
World-to-View Transform 6.79% 5.08% 16.07%
Static Update Unit 0.32% 0.29% 0.00%
Pipe Data Interface 2.93% 1.01% 0.00%
Particle Loader 1.15% 0.39% 0.00%
Particle Storer 0.93% 0.23% 0.00%
Particle Data Output FIFO 0.09% 0.04% 0.00%
Graphics Data Output FIFO 0.09% 0.04% 0.00%
Fixed-Point Multiply and Limit 0.48% 0.32% 1.79%
Fixed-Point Divide 5.02% 3.44% 0.00%
Fixed-Point Add/Subtract 0.22% 0.19% 0.00%
Fixed-Point Vector Dot-Product 2.04% 1.50% 5.36%
Fixed-Point Vector Add/Subtract 0.68% 0.58% 0.00%
Fixed-Point Vector Scale 1.43% 0.97% 5.36%

Table 6: Percent FPGA utilization of test system by design entity.

76

Bibliography

[1] John Sachs Beeckler and Warren J. Gross, "FPGA Partic1e Graphies Hard­

ware," in Proceedings of the IEEE Symposium on Field-Programmable Cus­

tom Computing Machines, Napa, CA, pp. 85-94, April 2005.

[2] William T. Reeves, "Partic1e Systems - A Technique for Modeling a Class of

Fuzzy Objects," in Computer Graphies, 17:3, pp. 359-376, 1983.

[3] Kees van den Doel, Dave Knott, Dinesh K. Pei, "Simulation of Complex

Audio-Visual Scenes," in Presence: Teleoperators and Virtual Environments,

13(1), pp. 99-111, February 2004.

[4] Meciej Matyka, "Inverse Dynamic Displacement Constraints in Real-Time

Cloth and Soft-Body Models," in Graphies Programming Methods, pp. 81-

91,2003.

[5] John van der Burg, "Building an Advanced Particle System," in Game Devel­

oper Magazine, pp. 44-50, March 2000.

[6] Adam Herout and Pavel Zemcik, ,"Hardware Pipeline for Rendering Clouds of

Circular Points," in Proceedings of the International Conferences in Central

Europe on Computer Graphies, Visualization and Computer Vision, pp. 17-22,

February 2005.

[7] Pavel Zemcik, Adam Herout, Ludek Crha, Otto Fucik, Pavel Tupec, "Particle

Rendering Engine in DSP and FPGA," in Proeeedings of the Conference and

Workshop on the Engineering ofComputer-Based Systems, pp. 361, 2004.

77

[8] Tommi Ilmonen, Janne Kontkanen, "The Second Order Partic1e System,"

in Proceedings of the Conference and Workshop on the Engineering of

Computer-Based Systems, 11(2), pp. 240-247, 2003.

[9] Navid Azizi, Ian Kuon, Aaron Egier, Ahmad Arabiha, and Paul Chow, "Re­

configurable Molecular Dynamics Simulator," in IEEE Symposium on Field­

Programmable Custom Computing Machines, pp. 197-206, April 2004.

[10] Toshiyuki Fukushige, Makoto Taiji, Juniehiro Makino, Toshikazu Ebisuzaki,

andDaiichiro Sugimoto, "A highly parallelized special-purpose computer for

many-body simulations with an arbitrary central force: Md-grape," The Astro­

physical Journal, pp. 468-480, 1996.

[11] Lutz Latta, "Building a Million Partic1e System," in Proceedings of the Game

Developers Conference, 2004.

[12] Dave Knott, Kees van den Doel, Dinesh K. Pai, "Partic1e System Collision

Detection using Graphies Hardware," in Proceedings of the SIGGRAPH 2003

Conference on Sketches and Applications, July 2003.

[13] Altera Corporation, ''Altera Stratix Device Family Data Sheet," 2005,

http://www.altera.comlliterature.

[14] Altera Corporation, "NIOS II Processor Reference Handbook," 2005,

http://www.a1tera.comlliterature.

[15] JEDEC, The Standards Resource for the Worlds Semiconductor Industry,

"DDR SDRAM Specification," November 2005, http://www.jedec.org.

[16] PCI SIG, "Conventional PCI 3.0 and 3.3: An Evolution of the

Conventional PCI Local Bus Specification," November 2005,

http://www.pcisig.comlspecifications/conventional/ .

78

