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Abstract

Hypoxia, a common feature of solid tumors, is typical of aggressive cancers and leads to

poorer outcomes in radiation therapy and some types of chemotherapy. Imaging tumour

hypoxia would, therefore, provide medical teams with important insights to tailor treatment

approaches and improve outcomes. Magnetic ressonance imaging (MRI)-based oximetry

with endogenous contrast relies on the sensitivity of the R∗
2 relaxation rate to changes in

blood oxygenation and of the R1 relaxation rate to changes in tissue oxygen.

To this end, our group has proposed the use of the Fat DESPOT technique, a

multiparametric model that simultaneously fits R∗
2, the R1 of fat, R1f , advantageous due to

the higher solubility of oxygen in fat, in addition to the R1 of water, R1w and proton

density fat fraction (PDFF) to a variable flip angle, multi-echo gradient echo acquisition.

In its conventional form, the Fat DESPOT model fits the magnitude of the mGRE signal.

Fitting the complex signal would fully exploit the available data, potentially improving

accuracy and precision while reducing acquisition time by approximately 30%.

The complex approach to Fat DESPOT (Fat DESPOTc) was rigorously compared to the
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conventional approach (Fat DESPOTm). This was done in simulation, in a phantom with

variable fat fraction, and in an in vivo measurement of the lower leg of a healthy participant.

In simulations, Fat DESOTm had a higher precision and accuracy when the initial phases

of the fat and water components of the signal were assumed to be the same, but was more

vulnerable to fit errors compared to Fat DESPOTc when the fat and water components of

the signal did not share a common initial phase. This vulnerability may have contributed

to experimental results, as in phantom, Fat DESPOTc has a slightly higher goodness of

fit compared to Fat DESPOTm. Likewise, the accuracy of PDFF estimates compared to a

reference technique, and overall precision, were slightly higher for Fat DESPOTc compared

to Fat DESPOTm. in vivo, both appraoches returned estimates of PDFF, R∗
2, R1f , and R1w

that were plausible when compared to literature, though Fat DESPOTc again tended to have

a slightly higher precision. Though both techniques performed well, the higher precision and

accuracy of Fat DESPOTc compared to Fat DESPOTm, paired with time-saving, make it a

valuable asset for future work in MRI multiparametric assessment of tumour hypoxia.
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Abrégé

L’hypoxie, un trait commun des tumeurs solides, est indicateur de cancers agressifs et réduit

l’efficacité de la radiothérapie et certaines formes de chimiothérapie. L’imagerie de l’hypoxie

tumorale fournirait aux équipes médicales des informations clés pour adapter leur approche

de traitement menant à une amélioration des résultats. L’oxymétrie par l’imagerie par

résonance magnétique (IRM) utilise la sensibilité du taux de relaxation R∗
2 au changement

d’oxygénation sanguin et du taux de relaxation R1 au changement d’oxygénation tissulaire

comme mode de contraste endogène.

Ainsi, notre groupe a proposé l’utilisation de la technique Fat DESPOT, qui applique un

modèle multiparametrique à une séquence à échos de gradiants multiples (mGRE, en anglais),

permettant la mesure simultanée de R∗
2, de R1 du gras, R1f (exploitant la plus grande

solubilité de l’oxygène dans le gras comparé à l’eau), ainsi que le R1 de l’eau, R1w et la fraction

de graisse en densité de protons (PDFF en anglais). Dans sa forme conventionnelle, le modèle

Fat DESPOT utilise l’amplitude du signal mGRE. Toutefois, adapter le modèle au signal

complexe exploiterait pleinement les données acquises et pourrait améliorer l’exactitude et la
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précision des paramètres estimés tout en réduisant le temps d’acquisition par environ 30%.

Dans ce mémoire de maitrise, l’approche complexe (Fat DESPOTc) a été

rigoureusement comparé à l’approche conventionnelle (Fat DESPOTm). Cette comparaison

a été complétée en utilisant des simulations, et en effectuant des mesures dans un fantôme

à fraction grasse variable et in vivo dans la jambe inférieure d’un sujet sain. En simulation,

Fat DESPOTm a démontré une plus grande exactitude et précision lorsque les composantes

du signal appartenant au gras et à l’eau partageaient une phase initiale commune.

Toutefois, Fat DESPOTm était plus vulnérable aux erreurs lorsque ces deux composantes

du signal avaient des phases initiales différentes. Ceci pourrait être un facteur dans les

résultats expérimentaux. En effet, le modèle Fat DESPOTc était légèrement mieux ajusté

pour les mesures dans le fantôme et produisant une mesure plus exacte et légèrement plus

précise de la PDFF lorsqueles deux approahces ont été comparées à une technique de

référence. in vivo, les deux approches ont fourni des estimés plausible de la PDFF, R∗
2, R1f

et R1w lorsque comparés à la littérature. Fat DESPOTc avait encore tendance à fournir des

estimés plus précis. Sur le tout, la plus haute précision et exactitude de Fat DESPOTc, en

comparaison avec Fat DESPOTm, ainsi que les gains de temps potentiels, font de cette

technique une avancée intéressante pour les futurs travaux en évaluation multiparamétrique

de l’hypoxie tumorale.
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Chapter 1

Introduction

1.1 Motivation

Hypoxia, an insufficient oxygen supply to tissues, is a prevalent feature in several diseases,

impacting prognosis and treatment. Indeed, hypoxia plays a role in diseases such as fatty

liver disease [6,7], diabetes [8], and solid cancers [9] and can lead to various effects including

inflammation, fibrosis, and, in severe cases, necrosis [9]. Hypoxia has been correlated with

poor treatment outcomes in several solid tumors including head and neck cancers, prostate

cancer, liver metastases, and breast cancer [9, 10]. This is likely in part due to changes to

gene expression and immune response mediated by hypoxia-inducible factors (HIF), which

results in more aggressive cancer phenotypes [9,11]. Furthermore, oxygen plays a key role in

preventing damage repair in radiation therapy and some types of chemotherapies. As such,
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hypoxia reduces the efficacy of these treatments [12]. Imaging of hypoxia could, therefore,

allow for treatments to be tailored in the hopes of improving patient outcomes.

Several approaches have been proposed for hypoxia measurement in tumors, though

their limitations are significant. The polarographic electrode probe is considered a gold

standard for oximetry, but is highly invasive and only offers point measurements [13].

Imaging techniques, like Positron emission tomography (PET) and Single-photon emission

computed tomography (SPECT), require ionizing radiation and have low resolution [10,14].

In MRI, blood oxygen level-dependent (BOLD) measurements rely on oxygen-induced

changes in the R∗
2 relaxation rate of blood [15] and tissue oxygen level-dependent (TOLD)

measurements rely on the oxygen-induced change in the R1 relaxation rate of tissue [16] to

produce endogenous, non-invasive contrast [17–20]. However, R∗
2 is an indirect measure of

tissue oxygen and is affected by other factors such as blood flow and volume changes [21],

while R1 measurements of change in oxygen are often challenged by low sensitivity [22].

The measure of a fat-only R1, R1f , has been proposed to mitigate this low sensitivity, as

oxygen is significantly more soluble in fat than in water, but techniques used to achieve

this rely on suppressing the water signal [23] or simplifying the fat MR spectrum. [24].

Hence, our group has proposed using the Fat separated Driven equilibrium single pulse

observation of T1 (Fat DESPOT) to measure hypoxia in tumours [25].

In addition to R1f , Fat DESPOT models the magnitude of a multi-echo gradient echo

(mGRE) acquisition to estimate the R1 of water, R1w, R∗
2 and proton density fat fraction
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(PDFF) [25, 26]. This would allow for simultaneous observation of oxygenation in blood

and tissue and preserve the ability to use R1w in low-fat environments. However, in the

conventional approach, the Fat DESPOT model is fit to the magnitude of the mGRE signal,

only using part of the available data. Our group has previously suggested incorporating the

complex signal into the Fat DESPOT model, fully exploiting the signal data. This would

reduce the echo requirements for fitting, driving down acquisition times and potentially

increasing accuracy and precision. While this approach proved advantageous in simulations,

this did not hold in retrospective data studies and it has yet to be tested in prospective

experiments [3]. Hence, open questions as to the validity and resistance to experimental

factors such as field inhomogeneities of the complex approach remain.

1.2 Objectives

First, this thesis aimed to further develop the Fat DESPOT technique, reevaluating the

Fat DESPOT workflow and complex model. For both approaches to fat DESPOT, the

algorithms used to provide initial guesses to the Fat DESPOT model were modified to

improve fitting. The complex Fat DESPOT model was also expanded to include separate

initial phase estimates for fat and water and Flip-angle specific estimations of the B0 field.

This thesis is focused on its second objective: a rigorous comparison of the complex and

magnitude approaches to Fat DESPOT. Approaches were first compared in simulation,

assessing the respective resistance of the complex and magnitude approaches to phase
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differences in fat and water. A variable fat fraction phantom was used to compare models

experimentally over a wide range of fat fractions. Finally, an in vivo pilot measurement

was conducted to compare approaches to compare the performance of both techniques in

human tissue. This work aimed not only to compare techniques for precision and accuracy

but also to determine the feasibility of the Fat DESPOT approach for tumour MR

oximetry, to guide the approach of this group and others in the field of MR oximetry.

1.3 Thesis outline

Chapter 2 provides context and background information relevant to this thesis. This

includes an overview of vasculature, hypoxia, and existing techniques for hypoxia imaging,

a review of the fundamentals of MRI, and the state of the science of the Fat DESPOT

technique. Chapter 3 of this thesis contains an original manuscript comparing the

magnitude and complex approaches to Fat DESPOT in simulations, phantom, and in vivo.

This manuscript builds on previous work by our group [3, 25], and includes technique

advancements and experiments conducted throughout this project. Chapter 3 contains a

scholarly discussion of the work presented in this thesis in relation to imaging tumour

hypoxia. Chapter 4, contains a summary of the work presented and outlines future work.

Finally, Chapter 6 contains appendices offering supplemental information on work

mentioned in this thesis including phantom construction, the evolution of the complex

approach to Fat DESPOT, and additional work in accelerating Fat DESPOT acquisitions.
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Chapter 2

Background

2.1 Vasculature, perfusion, and hypoxia

Hypoxia plays an important role in many diseases, including fatty liver disease, diabetes,

and solid cancers [8, 27–30]. In this section, the underlying principles of tissue oxygenation,

hypoxia, and the effects of hypoxia in disease will be explored, with an emphasis on its role

in solid tumour outcomes and treatment.

2.1.1 Healthy vasculature

The cardiovascular system ensures that organs receive the necessary metabolites and

nutrients for proper function while eliminating waste products and toxins. This complex

system comprises various organs, such as the heart, arteries, capillaries, and veins. The
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heart plays a central role in ensuring oxygenation and circulation by pumping

deoxygenated blood from the body through the pulmonary artery to be reoxygenated in

the lungs and propelling the oxygen-rich blood into the aorta. The aorta branches into

smaller arteries and arterioles, distributing oxygenated blood through the body [31]. These

blood vessels have a thick layer of smooth muscle and are elastic, allowing them to

withstand high pressures [31]. The exchange of metabolites between the blood and tissues

occurs in the capillaries, small, single-cell walled vessels. Small, water-soluble compounds

such as salts and glucose can diffuse through pores in the vessel wall, while lipid-soluble

compounds, such as oxygen, diffuse directly through the lipid bi-layer of the capillary

cells [32]. Following the capillaries, the blood collects in larger veins. Subject to lower

blood pressure than the arteries, veins have a thinner muscle wall and unidirectional valves

to prevent backflow as the blood is pumped back towards the heart [31].

Due to its relatively low solubility in water, 98% of oxygen contained in blood is found

in the red blood cells (RBCs), where it is associated with the hemoglobin protein (Hb) [33].

This protein consists of two α and two β units, each of which is bound to a heme molecule

coordinated with a ferrous iron. When in the oxygen-favourable relaxed (R) state, the

ferrous iron atoms can bind with an O2 molecule, allowing each Hb to transport up to four

O2 molecules. Conversely, in the (T) tense state, the Hb has a low affinity for oxygen and

remains in its deoxygenated form [1]. At a given oxygen partial oxygen (pO2), typically

reported in mmHg, the deoxygenated form of Hb, deoxyhemoglobin, and its oxygenated
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form, oxyhemoglobin (HbO2) establish an equilibrium. At high pO2s, such as in the lungs,

the oxygen saturation of Hb is near 100%. However, as the blood travels away from the

lungs and through the body, pO2 drops, oxygen dissociates from Hb and diffuses into the

surrounding tissue [33]. The oxygen equilibrium curve of Hb can represent this behaviour,

shown in Figure 2.1 along with the structure of the Hb molecule. The stability of the T and

R formes of Hb can be affected by several factors including pH, temperature, and partial

pressure of carbon dioxide (pCO2). This can result in a left or right shift of the equilibrium

curve [1].

(a) (b)

Figure 2.1: Images from Ahmed et al. depicting (a) The structure of the hemoglobin (Hb)
molecule consists of two α and two β units arranged around a central water cavity. Each
unit is bound to a heme, which centers around a ferrous iron that binds with oxygen. (b)
The oxygen equilibrium curve of Hb shows the change in Hb oxygen saturation (SO2) as a
function of partial oxygen pressure reflecting its changing affinity to O2. This curve can be
left-shifted (red) or right-shifted (blue) due to pH, pCO2 or other factors [1].

The circulatory system must meet the metabolic needs of organs and tissues. Organs
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are connected in parallel, such that they receive equal metabolite concentrations and that

perfusion, or the passage of blood through their vasculature, can be independently controlled.

The metabolic exchange rate between a tissue or organ and the bloodstream is determined

by the vascular resistance, which is related to the size of the vascular lumen in that particular

organ or tissue [32]. Hence blood flow is regulated through vasodilation and vasoconstriction

to meet metabolic demand [31]. Vasodilation and constriction also increase and decrease the

number of anatomically present capillaries [32].

2.1.2 Hypoxia and disease

Hypoxia can alter cellular metabolism and gene expression and, in cases of prolonged or

extreme oxygen deprivation, will cause cellular death. Hypoxia has a bidirectional

relationship with chronic inflammation, fibrosis, and angiogenesis [27] and is a common

trait of several diseases, including fibrogenic liver disease [27], diabetes [8, 30], kidney

disease [28] Alzheimer’s disease [29], and solid tumours [9–11]. Indeed, hypoxic cells

upregulate the production of Hypoxia-inducible factors HIF-1α and HIF-2α, which trigger

immune and cellular responses including further angiogenesis and inflammation [8]. In

some diseases such as diabetes, the HIF response is impaired, leading to cellular

dysregulation and disease exacerbation [8]. In solid tumours, hypoxia negatively affects

cancer progression, treatment outcomes, and prognosis [9].
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2.1.3 Anatomy and physiology of tumour hypoxia

While existing vasculature may initially sustain the growing tumour, its high cellular

proliferation, and metabolic activity requires additional blood flow [34, 35]. Tumour

angiogenesis is thought to be triggered by the upregulation of HIF and subsequent

synthesis of hormones such as vascular endothelial growth factor-A (VEGF-A) and

angiopöıetin-2 (Ang-2) [36]. In the first step of angiogenesis, abnormally thin, wide, and

highly porous ”mother vessels” form. They then differentiate into capillaries, glomeruloid

microvascular proliferations, disorganized vessel structures with an appearance similar to

that of renal glomeruli, and vascular malformations, abnormally large vascular structures

stabilized by a thin and irregular layer of smooth muscle [37]. In parallel, host arteries

become abnormally thin, dilate, and lose vasomotion, the ability to contract.

Where normally oxygenated subcutaneous tissue has oxygen pressure of between 40 and

60 mmHg, tumours have, on average, much lower oxygen pressure at 10 mmHg, reflecting

the presence of hypoxia [12]. Tumour hypoxia is categorized by its cause and the effect on

cells [34]. Chronic, or diffusion-limited hypoxia is the result of the heterogeneous distribution

of tumour vasculature, resulting in areas of under-perfused tissue. Acute, or perfusion-

driven hypoxia stems from structural and functional changes in vasculature such irregular

branching, tortuosity, and wide lumens, leading to transient changes in perfusion and limiting

the exchange of gases and nutrients [9,34,37]. In other areas the geometry or size of vessels

permits the flow of plasma but not of cells, resulting in what is known as partial or hypoxemic
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hypoxia. Here, hypoxia quickly becomes severe as only the cells at the start of such vessels

receive any oxygen [9, 34].

2.1.4 Tumour hypoxia and treatment outcomes

Hypoxia is a biomarker for tumour progression, poorer treatment outcomes, and prognoses

in various solid tumours. Indeed, hypoxia is a marker of locally advanced solid tumours for

over 15 cancer types including cancers of the breast, uterus, cervix, head and neck, prostate,

pancreas, and metastatic liver tumours [9] . Hypoxia and the expression of hypoxia-related

proteins such as HIF, is also related to adverse outcomes, poorer survival, and poorer local

tumour control in various cancer types, such as head and neck, breast, and ovarian cancers [9].

While anoxia, severe hypoxia, triggers immediate cellular arrest or apoptosis leading to

areas of necrosis, HIF expression in mild and chronic hypoxic volumes regulates over 70

known genes, including genes for erythropoisesis, angiogenesis, glycolysis, proliferation, cell

survival, and apoptosis [38]. These changes in the cell’s genomic and proteomic expression

often result in more aggressive or resistant phenotypes [9, 11].

Hypoxia affects tumour response to chemotherapy due to both structural limitations to

drug delivery and the interaction of chemotherapy compounds with hypoxic cells. First, just

as diffusive and perfusive hypoxia limit the delivery of oxygen and nutrients to tissue, poor

tumour perfusion limits the dose of chemotherapy compounds delivered to targeted cells [12].

Second, H1F-induced changes to gene and protein expression also affect the efficacy of some
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types of chemotherapy [39]. For example, while some chemotherapy compounds target the

expression of p53, a protein regulating cell division, hypoxic tumours are often resistant to

p53-induced apoptosis [12].

Hypoxia also reduces the efficacy of radiation therapy, which relies on free-radical-induced

DNA damage. Free radicals are produced when high-energy photons, electrons, or, in some

emerging treatments, protons, interact directly with DNA strands or ionize water molecules

in the nucleus of the cell. Unstable hydrogen free radicals then interact with DNA, breaking

the strand. In normoxic cells, oxygen fixes the free radical to the DNA and prevents repair.

However, in hypoxic cells, free radicals can be removed by scavenger proteins, allowing for

repair to occur and reducing net damage [9, 12, 34]. While both acute and chronic hypoxic

tumour volumes experience a lower rate oxygen fixation, nutrient deficiencies may impact

the repair ability of tumour cells. Acutely hypoxic areas, however, experience a temporary

reduction in radiation damage fixation and benefit from sufficient nutrient availability to

repair the damage, making these areas particularly resistant to radiation therapy [34].

2.2 Approaches to in vivo hypoxia imaging

The ability to image hypoxia as part of a typical clinical workflow would provide medical

teams with important prognostic information, allow for compound-based therapies to be

tailored to the hypoxic tumour environment, and allow for radiation treatments to be tailored

to the distribution of hypoxia in the tumour volume [11, 34]. The ideal measurement of



2. Background 12

hypoxia should be non-invasive, reproducible, cost-efficient [14], rapid, measures the tumour

tissue oxygen directly, and sensitive to a range of hypoxia levels. However, current hypoxia

measurement techniques fall short of these requirements and have failed to be integrated

into the clinical workflow.

Several non-imaging methods for hypoxia measurement have emerged. Polarographic

electrode probes are considered the gold standard for oximetry and have been used to

measure hypoxia in tumours for over two decades [13]. Though these probes provide a

direct measurement of tumour tissue oxygen, this method is highly invasive and delivers

point measurements of pO2, making it difficult to determine the distribution of hypoxia in

the tumour [10]. Phosphorescence quenching, electron paramagnetic resonance (EPR)

oximetry, and 19F-magnetic resonance spectroscopy follow a similar principle, measuring

oxygen-induced changes in the spin-lattice relaxation rate of a probe inserted in the

tumour, offer direct measurements of pO2 but invasively and with little to no spatial

information [11].

Near-infrared spectroscopy (NIRS) and photoacoustic tomography (PAT) offer

non-invasive alternatives to these techniques, both based on the different photon

absorption spectra of hemoglobine and deoxyhemoglobine. However these techniques probe

blood oxygen, offering an indirect measure of tissue hypoxia. Additionally, NIRS has

limited tissue penetration and sensitivity. Conversely, photoacousic tomography has high

tissue penetration and resolution, but a narrow field of view [10,11].
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Exogenous contrast-based imaging techniques have also been harnessed for tumour

oxygen quantification. Notably, PET with contrast agents such as F18-EF5 and SPECT

with contrast agents such as I123-IAZA can track tumour oxygen consumption. However,

PET compounds for oxygen tracking have a low yield and resolution, while SPECT

compounds for this purpose are unstable, have a slow clearance, and a high background

signal [10, 40].

Various contrast-based MRI techniques offer a non-radiation-based alternative to

imaging hypoxia. These approaches include 19F MRI (using perfluorocarbons (PFCs) and

fluorinated nitroimidazoles contrast agents), Overhauser-enhanced MRI (OMRI), and

DCE-MRI. However, in addition to involving the use of an injectable contrast agent, these

MRI techniques have several limitations. 19F MRI, is highly sensitive to flow artifacts,

temperature, dilution, pH, and blood proteins, making it challenging to reliably

implement [10, 11], OMRI suffers from low resolution and high cost [40, 41], and DCE MRI

measures tissue oxygenation indirectly via perfusion, and has low resolution [11,40].

BOLD and TOLD -based MRI techniques with endogenous contrast have also emerged

for tumour hypoxia mapping. These techniques rely on the change in R2* of blood and R1

of tissue in response to an oxygen challenge to identify hypoxic tumour volumes [18,21] and

will be described in greater detail in section 2.3.5.

It should be noted, that in addition to having significant drawbacks, current hypoxia

measurement technique are rarely used clinically in the cancer treatment workflow [41, 42].



2. Background 14

This could be due to implementation challenges such as a lack of personnel with the expertise

to run these exams and time constraints, emphasizing the importance of a rapid, easily

implemented technique that easily integrates into current treatment planning protocols.

2.3 MRI oximetry

MRI has emerged as a powerful imaging technique for anatomic and functional imaging of

soft tissue. This modality has numerous advantages; high soft tissue contrast, non-reliance

on ionizing radiation, and high spatial resolution. This section delves into the fundamental

concepts of MRI and current MRI applications for endogenous contrast of tumour hypoxia.

2.3.1 Nuclear magnetic resonance and excitation

In quantum mechanics, spin (s⃗) describes the intrinsic angular momentum of subatomic

particles. Baryons, such as protons, neutrons, and electrons have a spin 1/2. In the

nucleus, protons and neutrons will arrange themselves such that net spin is minimized. It

follows that nuclei with odd mass numbers have a net half-integer spin. Though spin

mechanics are explained by quantum physics, they can also be approached through a

classical mechanics lens where the nucleus is considered as a charged sphere spinning on

itself, resulting in a magnetic moment, µ⃗, and angular momentum, L⃗, related to each other

through the gyromagnetic ratio, γ, as seen in equation 2.1 [43, 44]. γ is a quantity specific

to the nuclei. For the hydrogen nucleus H1, it is equal to 267.5 × 106rad/s · T [45].
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γ = µ⃗

L⃗
(2.1)

When placed in an external magnetic field, B⃗, generally measured in tesla (T), the nuclear

magnetic moment experiences a torque, T⃗ , corresponding to equation 2.2 [44].

T⃗ = µ⃗ × B⃗ (2.2)

Given the relationship between µ⃗ and L⃗, this results in a rate of change of dµ⃗/dt

corresponding to equation 2.3 and an angular velocity given by equation 2.4. This is the

Larmor frequency, ω0 the precession or resonance frequency of a nucleus in a given

magnetic field, as represented in Figure 2.2 [43,44].

dµ⃗

dt
= m⃗u × γB⃗ (2.3)

ω⃗0 = γB⃗ (2.4)

The interaction between the magnetic moment and external magnetic field is the basis

for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). In MRI, the

nucleus most often of interest is the hydrogen nucleus, a single proton with spin 1/2, due to

its being nearly ubiquitous in living organisms, notably present in water molecules, proteins,
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Figure 2.2: The 1H nucleus has a magnetic moment, µ⃗, resulting from its non-zero spin
and electric charge. In an external magnetic field, µ⃗ precesses at the Larmor frequency, ω⃗0

in the left-hand direction.

and triglycerides. X-nuclei MRI interest itself in imaging other nuclei with non-zero spin

with magnetic moments such as 35Cl, 17O, and 23Na [46].

In the absence of a magnetic field, the magnetic moments of hydrogen atoms are randomly

oriented. However, when placed in an external magnetic field, B0, quantum mechanics dictate

that the potential energy of the magnetic moment is quantized in one of two states: a ground

state, E+ = −γℏB0/2, parallel to B⃗0, or an antiparallel excited state, E− = γℏB0/2. For an

ensemble of spins, the ratio between the number of nuclei in the ground state, N+, and the

excited state N− is described by Boltzmann statistics, as seen in equation 2.5, where T is

temperature and ℏ is Plank’s constant over by 2π, k is Boltzman’s constant [43,44].
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N+

N−
= eE+/kT

E−/kT
= e−γℏB0/kT (2.5)

While the ratio between states will change with temperature, the number of nuclei in the

excited state will never outnumber the number of nuclei in the ground state. Hence, the net

magnetization, M⃗ , will always be parallel to B⃗0. When ℏω0 << kT , the approximative net

magnetization is given by equation 2.6 [43, 44]. By convention, B⃗0 is always oriented in the

z dimension.

M⃗0 ≈ ρ0
s(s + 1)γ2ℏ2

3kT
B⃗0 (2.6)

Excitation describes tilting the net magnetization away from the B⃗0, by applying a

second, smaller field B1 through an RF pulse, delivered by RF coils, at the Larmor

frequency. This effectively applies a torque to the magnetic moment of the hydrogen

protons with the rate of change equal to equation 2.7. The angle of the net magnetization

relative to B⃗0 is dictated by the intensity and length of the B1 field [43,44].

dM⃗

dt
= γM⃗ × B⃗1 (2.7)

As previously discussed, the resulting net magnetization will precess around B⃗0 and have a

transverse and longitudinal component. Following the B1 excitation pulse, this net magnetic

moment will return to its equilibrium state, in a process called relaxation. Free induction
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decay (FID) is relaxation without the additional application of fields. The relaxation rate

depends on interactions specific to the nuclear environment and changes from tissue to tissue.

Just as an RF pulse induces a precession in the proton magnetic moments during excitation,

the proton’s precession during relaxation induces an RF current in a second set of receive

coils during relaxation, also at the Larmor frequency. The resulting signal is then spatially

encoded and used to construct MR images [43, 44]. As such, relaxation is at the basis of

MRI contrast. Two types of relaxation are considered, Longitudinal, or spin-lattice, and

transverse, or spin-spin relaxation [43,44].

Longitudinal relaxation describes the return of the net magnetization along the z

dimension (Mz) due to transitions between spin energy levels and is described by equation

2.8, where T1 is the longitudinal relaxation time, corresponding to the time at which 63%

of the Mz magnetization is recovered, and t is time [43,44].

Mz′(t) = M0
z′(1 − e−t/T1) + Mz′(0+)e−t/T1 (2.8)

Transverse, or spin-spin relaxation describes the loss of the net magnetization in the

transverse plane (Mxy) due to the loss of phase coherence of individual hydrogen atoms and

is described by equation 2.9, where T2 is the transverse relaxation time, corresponding to

the time at which 63% of the Mxy magnetization is lost [43,44].

Mx′y′(t) = Mx′y′(0+)e−t/T2 (2.9)



2. Background 19

Loss of phase coherence, or nuclei de-phasing due to interactions between neighbouring

magnetic moments and random fluctuations in the transverse component of the magnetic

field is responsible for the T2 relaxation time. These fluctuations in the B0 field can also

cause energy level transitions, contributing to T1. Effects from additional fluctuations in the

B0 field are due to imperfections in the NMR instrument, variations in the properties of the

sample, and the chemical environment of the sample, such as the presence of electrons from

metal ions are encompassed by T2’. The total relaxation time, T∗
2 is given by a combination

of the ”pure” T2 and T2’, as shown in equation 2.10. T∗
2 is always shorter than T2. While T2’

effects are constant over time, such that they can be reversed, T2 effects are not [43,44].

1
T ∗

2
= 1

T2
+ 1

T ′
2

(2.10)

Relaxation can also be described with relaxation rates R1, R2 and R∗
2, relating to T1, T2

and T∗
2 through equation 2.11. Relaxation rate and relaxation time are often used

interchangeably.

R1 = 1
T1

, R2 = 1
T2

, R∗
2 = 1

T ∗
2

(2.11)

2.3.2 Basic pulse sequences

While the FID is the result of precession paired with T1 and T ∗
2 relaxation, RF pulses can

be combined in various pulse sequences to allow for the differentiation of T1, T2, and T ∗
2
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decays [43].

The spin echo sequence, described in Figure 2.3 involves a 90◦ FA pulse, placing the

macroscopic magnetic moment entirely in the transverse plane. Subsequently 1H protons

precess at slightly different frequencies and begin dephasing as per T ∗
2 decay. At time TE/2,

a second pulse with a 180◦ FA is applied, flipping each magnetic moment into its opposite

quadrant and inverting the Mz signal component. Effectively, faster-precessing protons are

now ”behind” in their precession compared to slower-moving protons. Since T2’ effects are

constant over time, this creates a refocusing of the 1H magnetic moments at the echo time

TE, called an echo. Furthermore, TE corresponds to the time at which the magnetization

crosses 0 in the z direction, putting M⃗ entirely in the xy plane. However, T2 effects are

inconsistent over time and cannot be recovered. Hence the signal reduction at time TE can

be entirely attributed to T2 through equation 2.12 and 2.13, where Mxy0 and S0 are the

magnetization and signal immediately following excitation [47].

Mxy,SE(t) = Mxy0e
−t/T2 (2.12)

Sxy,SE(t) = Sxy0e
−t/T2 (2.13)

Saturation recovery is a simple sequence to measure T1 or T ∗
2 . In this sequence, a 90◦ RF

pulse is used to tilt M⃗ into the transverse plane. After a recovery time TR, the following 90◦
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RF pulse is applied to the system. The resulting Mxy and MR signal are given by equations

2.14 and 2.15 respectively, provided TR is long enough for transverse magnetization to decay

to 0, as described by e−t/T2∗ [43].

Mxy,SR(t) = Mxy0(1 − e−T R/T1)e−t/T2∗ (2.14)

Sxy,SR(t) = Sxy0(1 − e−T R/T1)e−t/T2∗ (2.15)

T1 can therefore be measured by repeating this sequence while maintaining the same

measurement time, t, and modulating TR, While T ∗
2 measurements are obtained by

measuring the signal at different measurement times with a fixed TR.

2.3.3 Signal localisation

To achieve an MR-based image, the MRI signal must be localized in space. This is done by

establishing a relationship between spatial coordinates and signal frequency, in the Fourier

domain, commonly referred to as k-space. To establish this relationship, magnetic gradient

fields, generated by gradient coils, are applied to the volume of interest [43,44].

A gradient field applied during or following an excitation linearly modulates the B0

field along a given axis. This establishes a relationship between spatial position along this

axis, Larmor frequency during the gradient pulse, and dephasing of the signal relative to
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Figure 2.3: A schematic representation of the spin echo pulse sequence, its effect on relative
phase, and the MR signal. Figure adapted with permission [2]

a reference phase ϕ0 following the gradient pulse, described by equations 2.17 and 2.16

respectively for the case of a gradient along the z-axis, Gz, turned on for a time TP E.

In the simplest cases, gradients are used to perform slice selection, frequency, and phase

encoding [43,44].

In slice selection, a gradient is applied during the excitation, modulating the Larmor

frequency such that only a slice of the volume has a Larmor frequency within the bandwidth

of the excitation pulse. This effectively results in the excitation of a slice of the volume of

interest and simplifies the imaging problem from a 3D problem to a 2D problem. However,

the phase shift induced by the slice-selective gradient also results in signal loss. To mitigate

this, a post-excitation rephasing gradient must be applied to the system [43,44].
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ω(z) = ω0 + γGzz (2.16)

ϕ(z) = −γGzzTP E (2.17)

Applying a gradient along a given axis also establishes a relationship between the time

integral of the gradient and the frequency coordinate in k-space and the MRI signal. A

gradient along a given axis, a, can be seen as moving the sampling point in k-space in the ka

direction, and the distance traveled in k-space is proportional to the strength and duration of

the applied gradient. Phase and frequency encoding are used to trace sampling trajectories

in k-space [43,44].

A simple example of frequency and phase encoding consists of exploring k-space in a

Cartesian grid trajectory. Frequency encoding is conducted in the read-out (RO) direction.

In this case, following excitation and before the signal readout a first gradient, -GRO, is

applied. Effectively linearly dephasing the macroscopic magnetic moment along the RO

direction and moving in K-space along in the -kRO axis. A second gradient, GRO, is then

applied during readout. This selectively rephases the macroscopic magnetic moment along

the RO axis, creating an echo, or moves the MR signal back in the kRO direction. For a

monopolar acquisition, the pulse sequence is designed so that the signal is only collected

during the positive lobe of the GRO while bipolar acquisitions are designed to collect signals
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(a) (b)

Figure 2.4: (a) A pulse sequence imaging a single line of k-space in a cartesian grid and
(b) resulting k-space trajectory. Figure adapted with permission [2]

in both the positive and negative lobe are collected for a bipolar acquisition [43,44].

To achieve 2-D imaging, a second Gradient, is applied before readout in the Phase-encode

(PE) direction, orthogonally to GRO, allowing the MR signal to move in k-space along the

kP E direction. Consequentially, During readout, a single line through k-space is measured. A

schematic of this frequency and phase encoding process for a case in which the RO direction

is in x and the phase-encode direction is in y can be seen in Figure 2.4. These gradient

encoding steps must be repeated at time intervals TR, with varying strengths of GP E such

that all of k-space is sampled. It follows that the number of TR repetitions corresponds to

the number of voxels in the PE direction. Likewise, the number of signal samples taken at

each TR corresponds to the number of voxels in the RO direction. This is demonstrated in

Figure 2.5 [44].
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Figure 2.5: The relationship between k-space sampling and the resulting voxelized image.
Figure reproduced with permission [2]

The relationship between k-space and image-space dictates that the sampling intervals are

inversely proportional to the field of view in the RO and PE directions, while the voxel size

is inversely proportional to the coverage of k-space [44]. As an alternative to slice selection

in 3D MRI, an additional phase-encoding step can be completed in the remaining dimension

of k-space. Furthermore, in addition to cartesian sampling, other k-space trajectories, such

as radial or spiral readouts, can be used to explore k-space [48].

The spoiled multi echo gradient echo (mGRE) technique, showed in Figure 2.6 is highly

relevant to this thesis. It combines multiple repeat RF excitations, each followed by multiple

gradient echoes. Between excitations and following readout, RF spoiling is used to eliminate

remaining magnetization. The resulting signal can be modeled by equation 2.18 and sequence
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parameters can be adjusted to create different contrasts [49]. For example, the variable flip

angle (VFA) approach to T1 mapping keeps TR and TE constant and measures the signal

with n≥2 FAs taken in successive acquisitions. The signal equation can then be rearranged

into equation 2.19 and fit with a non-linear least-squared approach [50]. Conversely, a T ∗
2

fitting can be achieved by using a single TR, and FA while measuring the signal at several

TEs [51].

S(TR, TE, θ) = S0

[
(1 − e−R1f T R)sin(θn)
1 − e−R1f T Rcos(θn)

]
e−R2∗T E (2.18)

Sn

sin(θn) = Sn

tan(θn

e−T R/T 1 + constant (2.19)
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Thesis_figures/figure_mGRE-eps-converted-to.pdf

Figure 2.6: Schematic of a monopolar mGRE sequence sequence parameters, consisting of
an RF pulse with FA θ repeated at an interval TR, with phase encode gradients GP E1 and
GP E2. Within each TR, a readout gradient GRO produces N gradient echoes separated by
a time ∆TE, following initial echo time TE1. Between each RF repeat, spoiling gradients
eliminate any remaining signal. Figure adapted with permission [3].
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2.3.4 Image quality and acquisition time

The signal-to-noise ratio (SNR) is an important consideration in all imaging modalities. In

MRI, the main source of noise is from Brownian motion of electrons in conductive materials,

which generate electrical fluctuations. For the complex signal, this noise is modeled as a

Gaussian distribution and is additive, produced both in the imaged volume and the RF

coils. SNR is proportional to several acquisition parameters including, B0,
√

TR, voxel size,

and
√

NSA, where NSA is the number of signal averages [44].

Scan time, given by equation 2.20 is determined by TR, the number of desired phase

encode steps, NP E, and the NSA acquired. As such, increasing FOV and resolution will

increase scan time. Likewise, sequences requiring longer TRs to accommodate longer echo

trains or contrast requirements, for example, have longer scan times. Finally, increasing SNR

by increasing the NSA will in turn increase scan time [49].

scan time = TR × NP E × NSA (2.20)

2.3.5 R1 and R∗
2 endogenous oxygen contrast

The sensitivity of tissue R1 and blood R∗
2 offers the potential for non-invasive MR oximetry

with endogenous oxygen contrast [16].

Oxygen is a paramagnetic molecule, hence, it causes local distortions in the magnetic

field. Spin-lattice interactions between oxygen and surrounding water molecules shorten the
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T1 relaxation time in plasma and tissue [16]. Therefore, there is a linear relationship between

tissue T1 and oxygen partial pressure, PO2 [24, 25, 52]. This relationship is referred to as

the TOLD effect [17]. TOLD contrast imaging is commonly achieved through a variety of

quantitative T1 (or R1) MRI sequences, the most common of which include the previously

discussed VFA and IR approaches in addition to the Locker-Locker (LL) approach [50].

While oxygenated hemoglobin is diamagnetic and does not distort the magnetic field,

deoxyhemoglobin is paramagnetic, acting on the magnetic field in a way similar to dissolved

oxygen. Unlike the case of dissolved oxygen, however, Hb is contained in the RBCs and

therefore sequestered from tissue. Furthermore, the configuration of Hb and the dynamics

of water exchange between RBC and plasma reduce the number of spin-lattice interactions,

and the field distortion effects of hemoglobin on T ∗
2 become predominant [15,16]. At a given

pO2, an equilibrium is reached between Hb and HbO2, forming a correlation between T ∗
2

and pO2 [21, 53]. This is the BOLD effect, where T ∗
2 (or R∗

2) contrast images are typically

taken with GRE sequences [54]. However, it should be noted that blood T ∗
2 is also impacted

by blood flow and volume changes and pH, factors which may also fluctuate with blood

pO2 [21].

TOLD and BOLD contrast can be generated by gas challenges aimed at modulating

blood and tissue pO2. A gas challenge typically consists of two MRI measurements, one at a

baseline oxygen concentration, and one at a modified oxygen concentration. Gas challenges

can be hyperoxic, where pure oxygen or an oxygen-rich gas is administered to the patient



2. Background 30

to increase pO2, or hypoxic, where oxygen-poor gasses, are administered to reduce pO2

[17, 18, 20, 55–58]. Whereas most normoxic tissues tend to show an R∗
2 and R1 change in

response to a gas challenge [59–61], researchers have shown that hypoxic tumour volumes

would exhibit a reduction or lack of response, serving as a basis for hypoxia imaging.

Indeed, several studies have shown links between ∆R1 and or ∆R2∗ in response to oxygen

challenges consistent with physiological markers for hypoxia such as tumour size both in

pre-clinical [58] and clinical [62–65] studies. Several groups also compared BOLD and/or

TOLD-based tumour hypoxia maps with other techniques such as histological staining and

PET and found a significant correlation between techniques [20, 57, 66–68]. Furthermore,

∆R1 and or ∆R2∗ measurements in response to gas challenges were found to change in

response to therapy [17,56,69,70], and to be predictive of treatment outcomes [18,71,72].

While promising, both clinical and pre-clinical research has also underlined limitations in

BOLD and TOLD approaches to tumour hypoxia. First, BOLD measures blood oxygenation,

and is limited by its non-specificity to tumour hypoxia [73]. Furthermore, several groups

have found TOLD response to change following treatment while BOLD does not, suggesting

TOLD is a more robust tracker of tumour response [17,56,69]. Nonetheless, BOLD imaging

provides important complementary information to tumour hypoxia imaging and should not

be discounted entirely. Indeed, the BOLD sensitivity to oxygen challenges is often stronger

than the TOLD sensitivity, making TOLD a less reliable marker for hypoxia in some tumour

models [20,55,58].
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The limited R1 response to a respiratory challenge is likely due to the low solubility

of oxygen in water. However, oxygen has a six-fold increase in solubility in fat compared

to water [74], and isolating the T1 of fat (T1f ) has been shown to increase T1 sensitivity

to changes in pO2 [22, 25]. Furthermore, one T1f imaging technique, mapping of oxygen by

imaging lipids relaxation enhancement (MOBILE), has been shown to increase R1 sensitivity

to changes in oxygen in mammary tumours in mice [23]. This technique, however, uses water

suppression and is, therefore, unsuitable for low-fat fraction environments [25].

2.3.6 Fat suppression and imaging

Capitalizing on T1f for tumour hypoxia imaging hinges on understanding the role of fat and

water in the MRI signal, which can be seen as the sum of the signals generated by the various

materials present in the voxel. Given that fat and water are responsible for the bulk of the

MRI signal, it can be represented mathematically by equation 2.21, where Sw and Sf are

the fat and water components of the signal.

S0 = Sw + Sf (2.21)

Separating or suppressing the fat and water signals can be achieved by capitalizing on

differences in R1 between fat and water or chemical shift [75, 76].

R1-based fat or water suppression techniques exploit the higher fat R1 to selectively
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excite one signal component. In the short TI inversion recovery (STIR) approach to fat

suppression, for example, an initial 180◦ flip is applied to the volume of interest. The greater

R1 of fat results in quicker signal recovery. A second 90◦ excitation is applied at T1f log(2)

when the fat signal is entirely in the transverse plane and therefore has a net magnetization

of zero, such that only the water protons are excited [76].

Chemical shift refers to a change in the Larmor frequency due to the chemical environment

of the nuclei making it more or less susceptible to the magnetic field compared to a reference

material. In water, the strong electronegativity of oxygen compared to hydrogen pulls the

hydrogen electron away from the 1H nucleus. This leaves the 1H less ”shielded” from the B0

field compared to a less polar bond, such as that of hydrogen and carbon in a triglyceride

chain. This results in a slight change in the Larmor frequency between these two chemical

environments. This change ωσ, for a given shielding parameter σ, is given by equation 2.22.

In practice, this frequency change for a given sample, ωref is measured as the chemical shift,

δ, relative to a reference frequency, typically considered to be water, in ppm, as in equation

2.23 [44]. The MOBILE technique for mapping R1 of fat, R1f , uses a narrow RF bandwidth

to selectively excite the fat 1H [23].

ωref = (1 − σ)ω0 (2.22)
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δ = ωsample−ωref

ωref
∗ 106(ppm) (2.23)

While the fat resonance frequency is often simplified to a single peak, it should be noted

that 1H in fat experiences an array of chemical environments, resulting in a spectrum of

chemical shifts, rather than a single peak. [77].

Chemical shift can also be used to separate the fat and water components of the signal.

The difference in Larmor frequency, and therefore, precession frequency, between fat and

water gives rise to a time-dependent relative phase difference. When in phase, fat and water

signals are additive, and when out of phase, phase shifted by 180◦, they are subtractive.

Out-of-phase images can increase signal contrast in tissues where fat and water content are

similar [76]. Furthermore, some imaging approaches measure the signal at three or more

echo times to solve for the fat and water signals separately in addition to the B0 field.

Examples of this approach include the iterative decomposition of water and fat with echo

asymmetric and least-squares estimation (IDEAL) [78], three-point Dixon approach, which

combines region growing algorithm to determine the correct analytical solution to its signal

model [79, 80], and the Graph Cut algorithm, which transforms the fitting problem into an

optimal segmentation problem [81]. The ratios of these signals are then used for quantitative

proton density fat fraction images.



2. Background 34

2.3.7 Fat DESPOT

While BOLD, TOLD, and MOBILE MRI techniques have been shown to provide promising

insights into tumour hypoxia, as previously mentioned, they are imperfect techniques. BOLD

measurements probe tissue oxygen indirectly through measurements of blood oxygen [21].

While TOLD measurements probe tissue oxygen directly, they can suffer from low sensitivity

[23]. MOBILE has been suggested as a remedy to TOLDs sensitivity issues, by suppressing

the water signal and isolating the T1f , however, this method is limited to a high-fat fraction

environment, as it does not measure T1w or global T1, T1glaobal [26].

Our research group has suggested applying the Fat-separated Driven Equilibrium Single

Pulse Observation of T1, fat DESPOT, technique to MRI oximetry. This is a multiparametric

mapping technique that returns maps of PDFF, R∗
2, and R1 of fat and water separately by

fitting the Fat DESPOT signal model to a VFA mGRE acquisition [26]. By simultaneously

obtaining R∗
2, R1f , and R1w, changes in both blood oxygen and tissue oxygen can be observed.

Furthermore, by conserving the R1 of fat and water, either or both metrics can be used,

depending on the fat fraction, as determined by the PDFF estimate, thereby not limiting

the technique to high-fat tissues.

The conventional approach to Fat DESPOT, as presented by Le Ster et al., proposes a

fat-water separate model for the magnitude of the mGRE signal acquired at two or more

FAs, as seen in equation 2.24, where the fat and water signals are given by equation 2.25 and

2.26 respectively [26]. This model fits the magnitude of the MRI signal and will be referred
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to in this thesis as Fat DESPOTm, such that B0 field inhomogeneity (∆B0) and initial phase

(Φ0) can be ignored as they do not affect the magnitude of the signal. It should be noted

that this simplification assumes that the fat and water components of the signal have the

same ϕ0. Given the complexity of this signal model, a 3-point DIXON estimate of PDFF

and a DESPOT R1global measurement are used to provide initial guesses to the Fat DESPOT

fitting algorithm [25].

Using this approach, our group has previously conducted phantom-based oximetry

validation studies, showing that the R1f is indeed more sensitive than R1w or R1global to

changes in pO2 [25]. However, the clinical translation of this approach is challenged by long

imaging times, due to Fat DESPOT requiring two six-echo acquisitions to achieve a

12-echo dataset with artificially short TEs, increasing accuracy of the fat-water separation,

and four FAs to cover a wide range of expected R1 values [25].

Smeas(TE, TR, θ) = S0

[
(1 − f)W + fF

N∑
n=1

Ane∆wnT E

]
e−R∗

2T E; (2.24)

F =
[

(1 − e−R1f T R)sin(θn)
1 − e−R1f T Rcos(θn)

]
(2.25)

W =
[

(1 − e−R1wT R)sin(θn)
1 − e−R1wT Rcos(θn)

]
(2.26)

To reduce imaging times and improve the quality of the subsequent fit, our group proposes
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a complex approach to Fat DESPOT, referred to in this thesis as Fat DESPOTc, be taken.

By fitting the complex signal, the available data can be fully exploited. In a practical sense,

this means that for each echo, two data points, corresponding to the real and the complex

components of the signal, can be used, compared to a single magnitude data point in Fat

DESPOTm and fewer echoes are required to complete Fat DESPOT fitting. Fat DESPOTc,

as proposed by our research group therefore fits data to the model presented in equation

2.27 [3, 25]. In simulations, Fat DESPOTc was optimized to a single 8-echo acquisition at

each FA. Theoretically, these 8 echoes could be contained in a single TR of the same length

as the TR used in the conventional approach, effectively reducing the acquisition time by

50% [3]. However, modeling the complex signal requires a model that accounts for the ϕ0

and ∆B0. Introducing these additional parameters to the signal model makes it vulnerable

to phase errors [82]. Both approaches must therefore be rigorously compared.

Smeas(TE, TR, θ) = S0

[
(1 − f)W + fF

N∑
n=1

Ane−i∆wnT E

]
eR∗

2T Ee−i(2πγ−∆B0T E)e−iϕ0 (2.27)

Simulations previously conducted by our research group have indicated that Fat

DESPOTc outperforms the Fat DESPOTm returning higher estimates of R1f with higher

precision and accuracy over a wider range of fat fractions [3]. Yet, when compared in

retrospective data, Fat DESPOTc behaved significantly more poorly than Fat DESPOTm,
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and achieved lower goodness of fit. However, this retrospective analysis was flawed, as

complex fitting was performed on the six echo acquisitions obtained for the magnitude

approach, and therefore not optimized for the complex model [3]. To conduct a fair

comparison, new phantom data must therefore be collected.
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Chapter 3

Comparing the magnitude and

complex approaches to Fat DESPOT

multiparametric mapping

This chapter consists of a preliminary version of a manuscript to be submitted to the journal

Magnetic Resonance in Medicine. The goal of this study was to compare the precision

and accuracy of the magnitude and complex approaches to Fat DESPOT in simulations,

in phantom and in vivo, and their consistency with other published multiparametric MRI

approaches. This work will guide the decision on which approach will be used by our research

group and others in future MR oximetry of tumours.

In the Fat DESPOT processing pipeline described in section 2.3.7, the 3-point DIXON
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algorithm was used to obtain initial guesses for PDFF and B0, while a rapid R2* algorithm,

which fits the exponential of the decay curve, was used for the R∗
2 initial guess [1]. In the work

presented in this chapter, the Gaph Cut (GC) algorithm was used to obtain more robust

initial guesses for PDFF and R∗
2. Furthermore, the GC fat-water separated complex signal

outputs allowed for the estimation of ϕ0, where a different initial phase for fat and water was

observed. Hence, the model used to fit the mGRE data in the Fat DESPOTc approach differs

from that presented in equation 2.27 in section 2.3.7, due to the inclusion of separate initial

phases, ϕ0f and ϕ0w. FA-specific B0 fields, B0θ were also included in the model, following the

observation that the B0 field differed between FAs for some measurements. The evolution of

the Fat DESPOT model and pipeline is detailed in Appendix 2 (section 6.2) of this thesis.

Additional work on accelerating the Fat DESPOT acquisition time was completed but

outside of the scope of the study presented in this manuscript. However, this work provides

valuable insights into Fat DESPOT acceleration which would benefit future experiments.

Hence, it has been detailed in Appendix 3 (section 6.3) for future reference. Likewise, high-

fat fraction phantoms proved difficult to achieve. As such a detailed set of instructions on

phantom preparation is presented in Appendix 1 (section 6.1) as a resource for future work

with variable fat-fraction phantoms.



3. Comparing the magnitude and complex approaches to Fat DESPOT
multiparametric mapping 40

Comparing the magnitude and complex approaches to Fat
DESPOT multiparametric mapping

Renée-Claude Bider1, Cristian Ciobanu1, Jorge Campos Pazmiño1,2, Véronique
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Abstract

Purpose: Fat DESPOT is a multiparametric mapping technique that provides R1f , and

R1w, the fat- and water-specific estimates of R1, in addition to the estimation of Proton

Density Fat Fraction (PDFF), and R∗
2 which could valuable insights into various diseases.

However, in its conventional form, Fat DESPOT fits the magnitude of a variable flip angle

(VFA) multi echo gradient echo (mGRE) signal, only using part of the available data.

Fitting to the complex signal would fully exploit the signal information, potentially

allowing for higher accuracy and precision in shorter acquisition times. Methods: In this

work, the magnitude and complex approaches to Fat DESPOT were compared in

simulations and experiments at 3 T in a variable fat fraction gel phantom and in vivo in

the lower leg of a healthy participant. Results: In phantom, the complex approach showed

better agreement with reference values of PDFF. In the phantom and in vivo, the complex

approach also fit the data better and had higher overall precision. These observations were

partially explained by simulations, where the magnitude approach to Fat DESPOT was

more vulnerable to fit errors due to differences between the initial phases of the fat and

water signal components. Conclusion: With a higher precision and accuracy, and a

shorter acquisition time than the magnitude approach, this work demonstrates the

advantages of complex fitting in Fat DESPOT multiparametric imaging.

Keywords Multiparametric imaging, Relaxation mapping, Fat-water separation, gel

phantom, in vivo, Fat relaxation rate, Water relaxation rate,
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Introduction

Quantitative MRI mapping of proton density fat fraction (PDFF) and relaxometry

parameters, R1, R2, and R∗
2 offer promising insights into disease. Notably, mapping R∗

2 and

PDFF in the pancreas has offered insights into the iron overload in patients with a variety

of diseases including thalassemia major [2, 3]. Meanwhile, mapping PDFF, R1, and R∗
2,

could differentiate between types of liver disease [4, 5] and correlate with treatment

outcomes [5–7]. Finally, joint mapping of R∗
2 and R1 have offered valuable insights into

tumour hypoxia [8]. However, when separate acquisition protocols are required for each

measured parameter, imaging time can become a challenge, as long acquisition times are

taxing on patients, increase the risk of motion artifacts, and make dynamic imaging

impossible. Multiparametric mapping, where a single acquisition protocol obtains maps for

several parameters, can significantly reduce acquisition times [7, 9].

The conventional approach to Fat DESPOT, referred to in this work as Fat DESPOTm,

[9, 10] is a multiparametric fitting technique, which models the magnitude of a variable fip

angle (VFA) multi echo gradient echo (mGRE) signal to obtain maps for PDFF, R∗
2, the R1 of

water, R1w, and the R1 fat, R1f , simultaneously. This method proposes several advantages.

Notably, the number of fitted parameters makes it versatile in its application. For example

the isolated R1w is frequently used in MRI-based assessments of liver disease [11, 12], while

R1f mapping has been proposed to increase the sensitivity of R1 based MR oximetry [1,13]

due to the increased solubility of oxygen in fat relative to water. Indeed, our group has
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validated the Fat DESPOT approach for oximetric measurements in phantom [1].

In contrast with other multiparametric approaches to mapping R1f and R1w [10], our

group’s previously published implementation of the Fat DESPOT technique used in this

study has a larger number of Flip angles (FAs) to accommodate a wide range of anticipated

R1 values and more echoes to improve fat-water separation. This comes at the cost of

imaging time. Due to requirements for shorter echo spacing (∆TE), our implementation of

Fat DESPOT also involves two mGRE acquisitions for each FA to create artificially short

∆TE, for a total of 8 acquisitions [1]. Modifying the Fat DESPOT technique to model the

complex mGRE signal would fully exploit the available data from the mGRE sequence by

fitting the real and imaginary components of the signal. This provides additional information

on the off-resonance behaviour of the water-fat shift, reducing the amount of data required

for the subsequent Fat DESPOT fitting. This, paired with more flexible echo selection, would

allow Fat DESPOT to be performed in a single acquisition per FA, enabling a reduction in

imaging time. Additionally, the more complete picture of the data provided by the complex

fitting, referred to in this manuscript as Fat DESPOTc, might increase the quality of the

resulting estimates. Indeed, in fat-water separation approaches, using the complex signal has

increased precision of PDFF, R1f , and R1w and accuracy of PDFF estimates [14], suggesting

Fat DESPOT may see the same benefits. However, complex models have also made fat-

water separation more vulnerable to phase errors [15]. Hence, a rigorous assessment of the

magnitude and complex approaches to Fat DESPOT is required.
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In this work, we introduce the Fat DESPOTc model and conduct a systematic comparison

of Fat DEPOTm and Fat DESPOTc, in simulation, in a phantom, and in vivo, to assess their

performance across a wide range of fat fractions.

Methods

All simulations and data processing were completed in MATLAB (Mathworks, USA,

R2023a).

The Fat DESPOT approach

In the Fat DESPOTm approach, the model presented in equation 3.1 is fit to the magnitude

of the mGRE data, where f is the fat fraction, F and W are the fat and water signal

components, given by 3.3 and 3.4 respectively. The Fat DESPOTm assumes that the initial

phases of fat and water are identical (ϕ0f=ϕ0w), such that ϕ0 falls out of the model as it

does not impact the magnitude of the mGRE signal. However, phase information is retained

when fitting the complex signal in the Fat DESOTc approach. Hence, in Fat DESPOTc, a

modified Fat DESPOT model (equation 6.1) can be fitted to the real and imaginary parts

of the mGRE acquisition. In the complex case, the initial phases ϕ0f and ϕ0w are modeled

separately to improve goodness of fit [16]. Additionally, the B0 field inhomogeneity, ∆B0

must also be considered due to its effect on phase progression. In the experiments presented

in this work, the B0 field map was observed to vary between flip angle acquisitions, and so
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an FA-specific ∆B0, denoted ∆B0,θ, was used to account for these changes in the B0 field

between acquisitions.

Smeas(TE, TR, θ) = S0

[
(1 − f)W + fF

N∑
n=1

Ane∆wnT E

]
e−R∗

2T E (3.1)

Smeas(TE, TR, θ) = S0

[
(1 − f)We−iΦ0w + fF

N∑
n=1

Ane−i∆wnT Ee−iΦ0f

]
eR∗

2T Ee−i2πγ−∆B0,θT E

(3.2)

F =
[

(1 − e−R1f T R)sin(θn)
1 − e−R1f T Rcos(θn)

]
(3.3)

W =
[

(1 − e−R1wT R)sin(θn)
1 − e−R1wT Rcos(θn)

]
(3.4)

Simulations

To investigate the effect of assuming equal initial phases for fat and water on the Fat

DESPOTm fit, two scenarios were investigated in simulation, using ϕ0w = ϕ0f and

ϕ0w ̸= ϕ0f in the input to the simulations.

A synthetic signal was generated with R1f , R1w, and R∗
2 values based on reported

values from in-vivo measurements of the liver [17, 18] and ϕ0w, ϕ0f , and ∆B0 values based



3. Comparing the magnitude and complex approaches to Fat DESPOT
multiparametric mapping 46

on our experiments. A single value for ∆B0 was used for all flip angles in the simulated

signal and in the Fat DESPOT model. PDFF was modulated in 5% increments from 5% to

95% to assess the performance of the magnitude and complex approaches to Fat DESPOT

across fat fractions. A six peak model of the chemical shift spectrum of peanut oil, with

chemical shift (ω) = [0.80 ppm, 1.20 ppm, 2.00 ppm, 2.66 ppm, 4.21 ppm, 5.20 ppm,] and

amplitude (a) = [0.087, 0.694, 0.128, 0.004, 0.039, 0.048], was borrowed from experimental

measurement [19]. Noisy realizations were generated by adding Gaussian-distributed noise

adjusting the noise amplitude to reach a Signal-to-noise Ratio (SNR) of 100 calibrated to

the first echo, and largest FA acquisition, as described by equation 3.5, where N is a

normal distribution, centered around either the real part of the standard noises signal,

R(Snoisless) or the imaginary part of the noiseless signal, J(Snoisless), with a standard

deviation (σ) =
√

(|Snoisless|2)/(SNR2). 1000 realizations of the noisy mGRE signal were

calculated for each fat fraction increment.

Imaging parameters for the synthetic mGRE signal were selected to match experimental

values. For the Fat DESPOTm simulation, a 12-echo sequence with echo spacing (∆TE)

= 1.2 ms, and repetition time (TR) = 18 ms were generated at each FA. This TR is the

shortest possible given the echo requirements.

Incorporating complex data into the Fat DESPOT model reduces the required number

of echoes and allows for more flexibility in the echo time selection given the bandwidth voxel

parameters from experiments (Table 3.3). Hence, the mGRE sequence was previously re-
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Parameter Value
Iterations 1000
SNR 100
R1w (s−1) 1.25
R1f (s−1) 3.33
R2* (s−1) 36.50
S0 1000
ϕ0f/π 0.5, 0.8
ϕ0w/π 0.5
∆B0(Hz) 10

Fat DESPOTm Fat DESPOTc

TR (ms) 18 24
FAs (\degree) 3,6,15,34 3,7,17,49
TE1 (ms) 1.5 1.9
∆TE (ms) 1.2 1.8
# echoes 12 8

Table 3.1: Signal generation and imaging parameters for Fat Despot simulations comparing
Fat DESPOTm and Fat DESPOTc approaches.

optimized by our group for Fat DESPOTc in simulation, using a simplified complex signal

model with a shared phase for fat and water and single B0 . In these optimizations, a noisy

complex Fat DESPOT signal (SNR=100) was generated for combinations of TE1 between

1.3 ms and 2.7 ms and ∆TE between 1.2 ms and 2.8 ms and PDFF values between 10%

and 90%. The echo number was set to the maximum number of echoes able to fit in a

TR=18 ms. The Fat DESPOT multi-parametric estimates were then calculated, along with

error and standard deviation compared to the ground truth. Acceptable TE combinations

were determined based on R1f error < 20% and R1f standard deviation < 20% for all fat

fractions. This optimization resulted in an 8 echo measurement with ∆TE = 1.8 ms, and

TE1 = 1.9 ms for the Fat DESPOTc experiments [20]. To match the achievable TR on our
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MRI system, which had a lower bound of 24 ms when collecting 8 echoes with these echo

times.

FAs in simulations were also selected to match phantom experiments, where they were

optimized for R1 range from 0.54–2.9 s−1, and for their respective TRs [21, 22]. For the

magnitude approach with TR=18 ms, selected FAs were 3, 6, 15, and 34◦. For the complex

approach with TR=24 ms, selected flip angles were 3, 7, 17, and 39◦. Synthetic signal and

mGRE simulation parameters are summarized in table 3.1.

Snoisy = N

(
R(Snoisless),

|Snoiseless|2

SNR2

)
+ iN

(
J(Snoisless),

|Snoisless|2

SNR2

)
(3.5)

To obtain initial guess values and fit the Fat DESPOTm and Fat DESPOTc models,

processing of the synthetic mGRE signal followed the same procedure as the processing

of the phantom and in-vivo data, outlined in the data processing section of the methods,

excluding image registration and B1 correction as B1 field inhomogeneity was not introduced

in the model.

Phantom construction

To compare the magnitude and complex approaches to Fat DESPOT experimentally across

a range of fat fractions, a phantom was constructed following the protocol outlined by

Bush et al. [23]. Five emulsions of peanut oil (JVF Canada inc), and a 3% agar by weight

(agar powder, MilliporeSigma Canada Ltd) solution were prepared in ratios of 5%, 25%,



3. Comparing the magnitude and complex approaches to Fat DESPOT
multiparametric mapping 49

50%, 60%, and 75% nominal fat fraction. Before combining,sorbitan monooleate (span 80,

MilliporeSigma Canada Ltd), a surfactant, and sodium benzoate (MilliporeSigma Canada

Ltd) were added to the agar solution. Likewise, the surfactant polyethylene glycol sorbitan

monolaurate (Tween 20, MilliporeSigma Canada Ltd) was added to the peanut oil.

Gadobutrol (Gadovist, Bayer Healthcare) was added as a relaxation agent, at a

concentration of [Gd+]= 0.2 mM in the agar gel preparation before mixing it into the

emulsion. Each emulsion was placed in a 50 mL conical polypropylene tube (Corning® 50

mL centrifuge tubes). Two additional tubes, one containing peanut oil only and one

containing the agar solution only were also prepared, for a total of seven nominal fat

volume fractions ranging from 0 to 100%. The tubes were then suspended on a plastic and

polystyrene rig placed in a cylindrical acrylic phantom container (Magphan ®SMR170, The

Phantom Laboratories, Salem, USA), which was then filled with a solution of distilled

deionized water with gadobutrol ([Gd+]=0.3 mM) and sodium chloride (Windsor Salt Ltd)

([NaCl]=24 mM) to approach the conductivity of human tissue [24].

Phantom data acquisition

All MRI measurements were performed at room temperature in a 3 T MRI scanner

(Ingenia, Philips Healthcare) using a vendor-provided 15-channel head coil for the phantom

measurements. The phantom was left to rest for at least 30 minutes before all

measurements to eliminate flow artifacts. For Fat DESPOT measurements, a 3D mGRE
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sequence with monopolar readout and default spoiling was employed with parameters

specific to each approach. Measurements for both the Fat DESPOTm and Fat DESPOTc

approach were collected at four excitation pulse FAs. A summary of all sequence

parameters used in these experiments can be seen in Table 3.3.

In the magnitude approach outlined by Fortier et al. [1], two 6-echo sequences, with ∆TE

= 2.4 ms and TR = 18 ms were acquired at each FA. For the first acquisition, the initial echo

time (TE1) = 1.5 ms, and for the second acquisition, TE1 = 2.7 ms. TE1s were selected such

that the two acquisitions could be combined in post-processing to create a 12-echo train

with shorter apparent ∆TE (= 1.2ms). For Fat DESPOTc, a single 8-echo measurement

with ∆TE = 1.8 ms, TE1 = 1.9 ms, and TR = 24 ms at each FA, matching the simulations.

In both the magnitude and complex approaches to Fat DESPOT, eight signal averages were

acquired for each measurement and parallel imaging was not used.

As discussed in the simulations section of the methods, in phantom measurements, flip

angles were optimized for their respective TRs and for the lower and upper limits of an R1

range from 0.54 -2.9 s−1 [1,25] and combined for a set of four FAs [21,22]. For the magnitude

approach with TR = 18 ms, selected flip angles were θ=[3◦, 6◦, 15◦, 34◦]. For the complex

approach with TR = 24 ms, selected flip angles were θ=[3◦, 7◦, 17◦, 39◦].

For accurate R1 measurements, the signal was corrected with a B1 map. The B1 map

acquisition was done using a multi-slice turbo spin-echo (MS TSE) acquisition at two angles

(FA = 60, 120◦) [1].
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Fat DESPOTm Fat DESPOTc B1 mapping Unipolar
FW separation

Acquisition type mGRE mGRE MS TSE mGRE
TR (ms) 18 24 1000 18
TE1 (ms) 1.5, 2.7 1.9 9 1.1
∆TE 2.4 1.8 – 1.7
# TE 6× 2 8 1 6
NSA 8 8 1 8
FA - Phantom
(◦) 3, 6, 15, 34 3, 7, 17, 39 60, 120 3

FA - in vivo
(◦) 3, 8, 19, 45 4, 10, 22, 51 60, 120 3

BW(Hz/px) 1360 1360 1360 1360
Voxel Size -
Phantom (mm3) 210×210×100 210×210×100 210×210×90 210×210×100

Voxel Size -
in vivo
(mm3)

1.875×1.875×5 1.875×1.875×5 1.875×1.875×5 1.875×1.875×5

FOV - Phantom
(mm3) 192.5×192.5×100 192.5×192.5×100 192.5×192.5×90 192.5×192.5×100

FOV - in vivo
(mm3) 192.5×160.4×100 192.5×160.4×100 192.5×160.4×90 192.5×160.4×100

Scan Time -
Phantom (min) 5.05 6.87 3.3 5.61

Scan Time -
in vivo (min) 3.47 5.15 2.3 3.88

Table 3.3: Sequence parameters for complex and magnitude Fat DESPOT, B1 mapping,
and referencePDFF measurement in phantom and in vivo.
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An additional unipolar mGRE sequence (TE1 = 1 ms, # of echoes = 6, ∆TE=1.7 ms,

FA=3◦) was acquired to obtain a reference measurement for PDFF.

All measurements had an acquired voxel size of 1.875×1.875×5.0 mm3, covering a

210×210×100 mm3 field of view (FOV) for mGRE measurements and a 210×210×90 mm3

FOV for MS TSE measurements. The total scan time was 47 minutes for Fat DESPOTm

and 34 min for Fat DESPOTc. The additional scan time for the reference measurement for

PDFF was 5.6 min.

in vivo data acquisition

To compare the magnitude and complex approaches in vivo, a series of pilot measurements

were conducted in the lower leg of a volunteer (healthy male, age 24) using the same 3 T

MRI scanner as the phantom measurement and an 8-channel extremity coil, and following

the same acquisition protocol as the phantom measurements, excluding the PDFF reference

measurement. FAs were reoptimized to better represent the R1 range of human tissue, 0.56-

3.33 s−1, as used in recent work by our group [20]. This resulted in FAs of θ=[3◦, 8◦, 19◦,

45◦] for Fat DESPOTm and θ=[4◦, 10◦, 22◦, 51◦] for Fat DESPOTc. To reduce acquisition

time, a smaller FOV (192.5×160.4×100 mm3) and larger voxel size (2.00×2.00×5.00 mm3)

were selected. All other parameters were preserved from the acquisition protocol for phantom

measurements, including the number of averages and the absence of parallel imaging. in vivo,

the total scan time was 36 min for Fat DESPOTm and 25 min for the complex approach.
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Parameter Lower Limit Upper Limit
S0 0.00001 1 × 1015

PDFF (%) GC PDFF - 5 GC PDFF +5
R∗

2 (s−1) 0 1000
R1f (s−1) 0 10
R1w (s−1) 1/3 10
Phi0f (rad) 0 2π
Phi0w (rad) 0 2π

Table 3.4: Lower and upper bounds for fitting parameters used in Fat DESPOTm and Fat
DESPOTc.

Data processing

The mGRE data underwent several preprocessing steps before Fat DESPOT fitting. For Fat

DESPOTm, the two acquisitions taken at each FA were recombined into a single data set by

alternating echoes in increasing echo order. A relative B1 map was then constructed from

the dual angle MS TSE acquisition and used to scale the nominal FA for each voxel [26]. For

the in vivo experiment, all images including B1 maps were registered to the 3◦ MGRE Fat

DESPOT acquisition using rigid registration (function imregtform with default parameters,

MATLAB 2023).

Next, using the graph cut (GC) algorithm for fat-water separation [15], initial guess maps

of PDFF and R2* were obtained for both approaches to Fat DESPOT, and two additional

initial guess maps for the initial phase of fat and water (ϕ0f and ϕ0w) were obtained for Fat

DESPOTc along with FA-specific B0 maps (B0θ) which were used as fixed parameters in

the subsequent fitting algorithm. The initial guesses maps of R∗
2, PDFF , ϕ0f and ϕ0w were
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obtained from the 3◦ FA data. While the R∗
2 map is provided directly from the GC output,

the PDFF, and ϕ0f and ϕ0w maps were calculated from the fat-water separated complex

signal maps. For Fat DESPOTc, the separate B0θ maps were obtained directly from a GC

fitting at each FA. Finally, maps of the joint R1 of fat and water, R1global, were calculated

using a VFA approach with data from the first echo. In both approaches to Fat DESPOT,

the resulting R1global for each voxel was used as the initial guess of R1f for GC estimates of

PDFF > 50% and R1w for GC estimates of PDFF < 50%, and otherwise a fixed initial guess

of 4 s−1 and 1 s−1 for R1f and R1w respectively.

Following this pre-processing, The Fat DESPOTm and Fat DESPOTc signal models

were fit to their respective mGRE data using a non-linear least-squares algorithm (function

lsqnonlin using the trust-region-reflective algorithm, MATLAB 2023). The same six-peak

chemical shift spectrum used to simulate the peanut oil spectrum in simulations was used in

the Fat DESPOT fitting of the phantom. For the in-vivo acquisition, a six peak spectrum

based on the fat spectrum of skeletal muscle with ω=[5.3 ppm, 4.13 ppm, 2.78 ppm. 2.24

ppm, 1.3 ppm, 0.9 ppm] and a=[0.066, 0.035, 0.011, 0.052, 0.077, 0.047, 0.598, 0.089] was

used [27]. Upper and lower bounds for PDFF were set to be within 5% of the PDFF initial

guess. All other parameter bounds are displayed in Table 3.4.

The PDFF from the reference measurement was measured from the GC output, as

described above.



3. Comparing the magnitude and complex approaches to Fat DESPOT
multiparametric mapping 55

Statistical analysis

For quantitaive measurements and statistical analysis of PDFF, R∗
2, R1f , and R1w, regions

of interest (ROIs) were selected (Figure 3.1). In the phantom, manually drawn circular ROIs

with matched volumes (number voxels = 243) were selected to fit within the cross-sectional

area of each tube, while in vivo, circular ROIs were selected for the bone marrow and muscle

and a rectangular ROI for the subcutaneous fat layer. Due to the size and shape of the

bone marrow and subcutaneous tissue, a geometrical ROI could not be used alone without

significantly reducing the number of voxels included in the quantitative analysis or including

voxels from other tissues. Hence, semi-automatic ROIs were created by including voxels

with PDFF > 70% from a larger selection area to ensure that the voxels included in the

analysis were representative of the tissue of interest. All ROIs were measured over three

slices selected centrally to the imaging volume.

Means, standard deviations, and coefficients of variance were calculated in MATLAB.

Comparisson of means was conducted using a two-way ANOVAS for all experiments

(function anova2, MATLAB 2023). Inter-technique means were then compared using a

one-way ANOVA (function anova, MATLAB 2023) and a p-value of 0.05 was used to

determine significance. To compare standard deviations between approaches, a two-sample

F-test for equal variance (function vartest2 MATLAB 2023) with a 0.05 significance

threshold was used. In order to compare standard deviations, they were averaged across

ROIs for each approach following equation 3.6, where n is the number of standard
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Figure 3.1: Regions of interest for Fat DESPOTm and Fat DESPOTc of (a) the variable
fat fraction phantom and (b) a human lower leg. In the phantom, ROIs 1-7 correspond to
nominal fat fractions of 0%, 5%, 25%, 50%, 60%, 75%, and 100% respectively. In the lower
leg, ROIs 1-3 correspond to tubular bone marrow, skeletal calf muscle, and subcutaneous fat.
Bone marrow and subcutaneous fat voxels of interest within the ROI were selected based on
a fat fraction <70%. All ROIs were measured over 3 slices of the acquired image.
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deviations being combined, w is the sample size, and std is the standard deviation.

stdcombined =
√√√√ n∑

i=1

std2
n

wn

(3.6)

Results

Simulation Results

When the ground truth initial phase of the simulated fat and water signals were equal (ϕ0f =

ϕ0w = 0.5π), Fat DESPOTm had a slightly higher accuracy, though both approaches were

highly accurate. Conversly, when the initial phase of the fat and water signal componentswere

different, Fat DESPOTm resulted in large errors in estimates while Fat DESPOTc retained

a high accuracy.

In the case of identical initial phases, the mean relative error remained low for all

parameters. Fat DESPOTc had a lower mean relative error on R1w, while Fat DESPOTm

had a lower mean relative error on PDFF, R∗
2, and R1f . Indeed, for Fat DESPOTm the

mean relative error for PDFF, R∗
2, R1f , and R1w was 0.43±1.18%, 0.030±0.040%,

0.57±1.40%, and 0.41±1.11% respectively. Likewise, the mean relative error of Fat

DESPOTc for PDFF, R∗
2, R1f , and R1w was 1.3±2.7%, 0.16±0.12%, 0.75±1.12%, and

0.36±0.55%. Fat DESPOT parameter estimates were accurate over a broad range of

PDFFs, though PDFF, R1f , and R1w saw steep increases in relative error at ground truth
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values of PDFF< 10%, PDFF> 90% and PDFF< 10% respectively. Results for this

simulation case are displayed in the top row of Figure 3.2.

In the case where the ground truth initial phase of fat and water signal components

was different (ϕ0f = 0.8π and ϕ0w = 0.5π), the relative error using the Fat DESPOTm

approach increased drastically. In contrast, the relative error remained relatively low for

Fat DESPOTc. Indeed, in this case, the mean relative error for PDFF, R∗
2, R1f , and R1w

is 3.4±3.8%, 6.0±1.7%, 18±18%, and 123±18% respectively for Fat DESPOTm. Except

R∗
2, the error was highest near PDFF=50%. This was a markedly different trend from the

simulated results for ϕ0f=ϕ0w. Conversely, the error for Fat DESPOTc followed the same

trend in both ϕ0 cases, and remaining low overall, with values of 0.56±1.39, 0.1±0.10%,

0.37±0.61%, and 0.31±0.67% for PDFF, R∗
2, R1f , and R1w respectively.

Precision was high and followed similar trends in both initial phase scenarios explored

in simulations. Fat DESPOTm returned more precise estimates for all parameters when

the initial phases of the fat and water components of the simulated signal were identical

and for R∗
2 and R‘1w when initial phases were different, while Fat DESPOTc had more

precise estimates of PDFF and R1f when initial phases were different. Specifically, when

fat and water shared an initial phase, the mean coefficients of variation of Fat DESPOTm

outputs were 2.0×10−4%, 5.6 ×10−4 %, 3.5×10−3 %, and 4.5×10−3 % for PDFF, R∗
2, R1f ,

and R1w respectively, while the mean coefficients of variation of Fat DESPOTc outputs were

2.5×10−4 %, 1.4×10−3 %, 8.8×10−3 %, and 1.4×10−2 % for the same parameters. When
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Figure 3.2: Relative error of Fat DESPOTm and Fat DESPOTc output parameters
compared to the ground truth with SNR=100 for PDFF values between 5% and 95% in
the case where fat and water signals have the same initial phase (top row) and in the case
where fat and water signals have different initial phases (bottom row).
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the initial phases of fat and water were different, the mean coefficients of variation from Fat

DESPOTm were 4.0×10−4 %, 6.0 ×10−4 %, 6.8×10−3 %, and 7.8×10−3 % for PDFF, R∗
2,

R1f , and R1w respectively, while the mean coefficients of variation of Fat DESPOTc outputs

were 1.8×10−4 %, 1.8×10−3 %, 6.1×10−3 %, and 1.4×10−2 % for the same parameters. This

is a slight decrease in precision for Fat DESPOTm and a slight increase in precision for Fat

DESPOTc compared to the identical initial phase case. In both cases, precision was high

over a wide range of PDFF values, but reduced drastically for PDFF and R1f at ground

truth PDFF < 10% and for R1w for ground truth PDFF > 90%, while R∗
2 remained fairly

constant

Phantom results

Multiparametric maps of PDFF, R∗
2, R1f , and R1w obtained from Fat DESPOTm and Fat

DESPOTc fitting (Figure 3.3) are fairly uniform within the emulsion tubes. Both approaches

to Fat DESPOT returned high-quality fits in all tubes, with an average R2 value of 0.96

for Fat DESPOTm and 0.98 for Fat DESPOTc. The lowest average R2 value using both

approaches was 0.90 for Fat DESPOTm and 0.98 for Fat DESPOTc, corresponding to the

tube with a nominal fat fraction of 50%. Artifacts in the R1f maps located in the water

compartment and 0% nominal fat fraction tube are due to the Fat DESPOT equation fitting

a non-existent fat signal rendering them meaningless. Artifacts also appeared in the R∗
2 maps

of both approaches to Fat DESPOT, likely due to strong B0 field inhomogeneity from the
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styrofoam support in the phantom not sufficiently accounted for by the model fit.

Examples of initial guess maps from GC and DESPOT1 are presented in Figure S1 of

the supplementary materials. Notably, the GC outputs for the phases of fat and water

are drastically different, suggesting that these should be distinct free parameters in the Fat

DESPOTc model. An example of Fat DESPOTm and Fat DESPOTc voxelwise fits can also

be found in the Supplementary materials, Figure S2.

Fat DESPOTm and Fat DESPOTc showed similar trends for all parameters versus fat

fraction. Notably, R1f and R1w appear to be stable across fat fractions while R∗
2 is highest

in the tube with a nominal fat fraction of 50% (ROI 4) and lower in both pure water and

fat. However, Fat DESPOTm and Fat DESPOTc returned significantly different parametric

estimates (p<0.05), excluding PDFF in the 75% nominal fat fraction tube (ROI 6) and R1w

in the 50% nominal fat fraction tube (ROI 4). Indeed, the mean absolute differences between

approaches weres 1.4±1.9%, 13.1±4.7 s−1, 0.55±1.39 s−1, and 1.4±1.1 s−1 for PDFF, R∗
2, R1f ,

R1w respectively. This corresponds to relative differences of 20±19%, 25±12%, 15±42%, and

34±25%. It should be noted that while the R1 of fat and water return a relatively consistent

bias between techniques, the difference in R∗
2 values is greatest for the 50% and 60% nominal

fat fraction ROIs. The dispersion of the voxel-wise multiparametric fit results are displayed

in Figure 3.4. ROIs are shown in Figure 3.1.a.

PDFF estimates were significantly different from the reference measurement for both Fat

DESPOT techniques. However, the absolute error for both approaches was below 5% for
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Figure 3.3: Multiparametric maps for PDFF, R∗
2, R1f , R1w, and R2 using the complex

and magnitude approaches to Fat DESPOT. To reduce noise in the R1f image, voxels with
PDFF<3% were masked. All images are displayed with perceptually uniform colour maps
from the crameri library [28,29].
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Figure 3.4: Distribution of voxel-wise estimates of PDFF, R∗
2, R1f , and R1w, using the

complex and magnitude approaches to Fat DESPOT. Box = interquartile range, horizontal
line = median, feathers= data range, dots= outliers. Fat DESPOT m and Fat DESPOTc

return significantly different parametric estimates (p<0.05), excluding PDFF in ROI 6 and
R1w in ROI 4. All inter-group variances are significantly different (p<0.05) excluding R∗

2 in
the 100% nominal fat fraction tube, R1f in the 5% and 60% nominal fat fraction tubes, and
R1w in 10% nominal fat fraction tube.
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Figure 3.5: Distribution of the absolute error on the PDFF using the complex and
magnitude Fat DESPOT approaches compared to a reference measurement. Box =
interquartile range, horizontal line = median, feathers= data range, dots= outliers. Error is
significantly different (p<0.05) between approaches in all ROIs excluding the 75% nominal
fat fraction.

all measurements (figure 3.5). This being said, Fat DESPOTm and Fat DESPOTc returned

significantly different PDFF absolute error values (p<0.05) for all ROIs excluding the 75%

nominal fat fraction. Fat DESPOTm exhibited a higher mean absolute error of 2.1±1.4%

compared to 1.5±1.2% for Fat DESPOTc.

Overall, Fat DESPOTc results in higher precision measurements for PDFF, R1f , and

R1w, and a smaller range of standard deviations across all Fat DESPOT output parameters

compared to Fat DEPSOTm, suggesting an overall more precise and stable fit. Indeed,

standard deviations were significantly different between Fat DESPOT approaches (p<0.05)

for all ROIs excluding R∗
2 in the 100% nominal fat fraction tube (ROI 7), R1f in the 5% and
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Approach Fat DESPOtm Fat DESPOTc

Parameter Mean Range Mean Range
PDFF (%) 0.27 3.8 0.015 0.29
R∗

2 (s−1) 0.35 2.9 0.47 2.1
R1f (s−1) 0.060 3.0 0.052 2.8
R1w (s−1) 0.016 0.26 0.0070 0.040

Table 3.5: The mean and range of the standard deviations of Fat DESPOTm and Fat
DESPOTc across ROIs 1-7 in the variable fat fraction phantom, assessing the stability of
multiparametric fits across PDFF 0-100%.

50% nominal fat fraction tubes (ROI 2 and ROI 5), and R1w in the 0% nominal fat fraction

tube (ROI 1). The standard deviation of R1f increases significantly for both approaches

to Fat DESPOT in the tube with a nominal fat fraction of 5% (ROI 6), agreeing with

simulations that show a loss of precision at low-fat fractions. A summary of mean standard

deviations and standard deviation ranges is displayed in table 3.5.

In vivo results

In vivo Fat DESPOTm and Fat DESPOTc multiparametric maps of the lower leg ( 3.6)

display key anatomical features, including the muscle, bone marrow from the tibia, the

fibula, and the subcutaneous fat layer with distinct combinations of Fat DESPOT output

values. A gradient artifact is visible in the R1w maps of both Fat DESPOTm and Fat

DESPOTc. This artifact is likely due to the lack of image uniformity corrections in this in

vivo dataset.

As was the case in the phantom, while both approaches returned high-quality fits, Fat
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Figure 3.6: Multiparametric maps of a cross-section of the lower leg for PDFF, R2*, R1f,
R1w, and R2 using the complex and magnitude approaches to Fat DESPOT. To reduce
noise in the R1f image, voxels with PDFF<2% were masked. All images are displayed with
perceptually uniform colour maps from the crameri library [28,29].
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DESPOTc performed better with average R2 above 0.92 compared to 0.88 for Fat DESPOTm.

The two approaches to Fat DESPOT returned significantly different parametric estimates

(p<0.05) with the exception of R∗
2 for muscle, PDFF in all tissues. PDFF showed the

best agreement between approaches on average across all regions of interest. Here, muscle

has the highest relative difference in PDFF where Fat DESPOTm estimated 2.8% and Fat

DESPOTc estimated 1.8%, an absolute difference of only 1±1.6%, but a relative difference

of 42±140%. Though precision for both techniques is low, on average, Fat DESPOTc has

a higher precision for R∗
2, R1f , and R1w, while the mean precision of both techniques was

equal for PDFF. Specifically, mean standard deviations were 0.73% 2.1 s−1, 1.4 s−1, and

0.37 s−1 for PDFF, R2*, R1f , and R1w respectively with Fat DESPOTm and 0.73%, 1.6 s−1,

1.2 s−1 and 0.23 s−1 for the same parameters with Fat DESPOTc,. The mean value and

standard deviation of Fat DESPOT output parameters are displayed in table 3.6, along with

the percent difference between techniques.

Discussion

While reducing imaging time by approximately 30%, Fat DEPOTc generally returned

parametric estimates with higher precision, accuracy, and stability over a range of fat

fractions than Fat DESPOTm. In phantoms, Fat DESPOTc had a smaller mean error on

PDFF, a smaller mean standard deviation for PDFF, R1f , and R1w and a smaller range of

standard deviation on all parameters, suggesting greater stability of fits across fat
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ROI Parameter Mean(±std.) % Difference (±std.)
Fat DESPOTm Fat DESPOTc

Bone Marrow PDFF (%) 94(±6) 95(±4) 2(±10)
# Voxels =143 R∗

2 (s−1) 34(±25) 47(±4) 33(±221)*
R1f (s−1) 2.9(±1.4) 3.8(±1.3) 26.49(±83.29)*
R1w (s−1) 4.8(±4.0) 3.5(±2.5) 33(±64)*
R2 0.88(±0.27) 0.92(±0.18) –

Muscle PDFF (%) 2.8(±2.0) 1.8(±1.2) 42(±140)
# Voxels =243 R∗

2 (s−1) 46(±10) 46(±9) 1.4(±43.2)
R1f (s−1) 1.1(±0.7) 1.7(±0.8) 43(±99)*
R1w (s−1) 0.49(±0.05) 0.59(±0.03) 18(±1)*
R2 0.99(±0.0069) 0.99(±0.007) –

Subcutaneous fat PDFF (%) 85(±6) 86(±8) 0.42(±16.93)
# Voxels =150 R∗

2 (s−1) 26(±13) 21(±18) 21(±13)*
R1f (s−1) 2.3(±0.6) 2.6(±0.5) 11(±4)*
R1w (s−1) 1.9(±2.0) 1.3(±1.2) 39(±199)*
R2 0.88(±0.27) 0.92(±0.18) –

Table 3.6: Mean value and relative difference of Fat DESPOTc and Fat DESPOTm output
parameters PDFF, R2*, R1f , and R1w and mean R2 for ROIs in the subcutaneous fat, bone
marrow, and muscle of a human lower leg. The asterix designates a significant difference
(p<0.05)
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fractions. In vivo, Fat DESPOTc returned smaller standard deviations in nearly all

instances, while returning parameter estimates similar to published values.

In phantom, both Fat DESPOT PDFF estimates were highly accurate, with error < 5%

using both approaches. Nonetheless, on average, Fat DESPOTc was more accurate than Fat

DESPOTm. In vivo, relative accuracy was difficult to assess, as measurements were very

similar and a reference measurement was not taken. This said, both Fat DESPOT PDFF

estimates were similar to published values, though slightly higher for bone marrow [30] and

muscle [31,32] and lower for subcutaneous fat [33,34].

Comparison of the relaxation parameter values measured in phantom presented in this

work with the literature is complicated by contradictory trends in prior publications, and

few reports of both R1w and R1f . Indeed, some groups found that R1w in gel phantoms was

independent of fat fractions [35, 36], a behaviour consistent with our observations. Others,

however, found that both R1f and R1w were fat fraction dependant [37]. However,

measurement approach and phantom construction, including the use of agar or agarose and

their respective concentrations, vary between studies, making comparison difficult.

In vivo measurements were further challenged by a lack of literature specific to our

anatomical region for imaging and inter-subject variations. This said, R1f estimated with

both approaches showed reasonable agreement with reports of bone marrow R1f in the

spine [10] and showed fairly good agreement with R1global estimates in subcutaneous fat

[38, 39], which should be dominated by the fat signal. Our Fat DESPOT R1w estimates
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in bone marrow were larger than published values [10], but showed fairly good agreement

with R1global in muscle, which should be dominated by the water signal [40,41]. In the bone

marrow, R∗
2 estimates were markedly different between Fat DESPOT approaches and Fat

DESPOTc agreed more closely with published values [42]. In muscle, Fat DESPOTm and

Fat DESPOTc estimates of R∗
2 were significantly higher than published values [41,43], while

they show fairly good agreement with published values of R∗
2 for subcutaneous fat [44].

In phantoms and in vivo, Fat DESPOTm and Fat DESPOTc most often returned

significantly different results. While there was no discernable trend to the difference in

vivo, in phantom, Fat DESPOTc returned higher R∗
2 and lower R1f and R1w compared to

Fat DESPOTm. Several factors may impact the accuracy of these two techniques and their

agreement. First, due to sequence timing constraints, the TR for Fat DESPOTc is longer

compared to Fat DESPOTm, and echo times between approaches were also different.

Imperfect refocusing or spoiling can cause the R∗
2 decay curve to deviate from the expected

exponential model. The effect of this deviation on the fit is in part dictated by TE and TR

selection [45]. Likewise, in mixed fat-water voxels, the selection of echo times may impact

fitting, as chemical-shift-based models rely on measuring the signal at several different

relative phases [46]. Imperfect spoiling has also been shown to affect T1 estimates in other

VFA experiments and may affect estimates in the Fat DESPOT approach [47, 48]. Flip

angles were also different between approaches, optimized for the highest precision given

their respective TRs. The judicious selection of flip angles is key to T1 fitting [21] and may
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also introduce bias in one measurement relative to the other.

Simulations may also offer insights into the disagreement between approaches. Assigning

different initial phases to the fat and water components of the simulated signal increased

the error in the Fat DESPOTm measurement, by up to 40% in the case of R1f and R1w,

peaking at intermediate fat fractions. In phantoms, R2 values of the Fat DESPOTm fitting

were lowest for intermediate fat fractions, suggesting that the model may be struggling to

accommodate for a difference in the initial phase. R∗
2, which has the greatest difference in

values between approaches at intermediate nominal frat fractions, may be absorbing some

error due to phase differences in the Fat DESPOTm approach. The relative phase of fat

and water may also be responsible for Fat DESPOTm having a lower precision than Fat

DESPOTc in phantoms and in vivo, as initial phases were not constant across the imaged

volume (FigureS1 of the supplementary materials).

Integrating the complex signal into the Fat DESPOT approach was expected to result

in estimates of PDFF, R∗
2, R1w and R1f similar in precision and accuracy to the magnitude

approach in a shorter scan time. Fat DESPOTc showed overall improvements in precision

and accuracy. However, there are some remaining limitations to Fat DESPOT. Notably,

both approaches to Fat DESPOT appear vulnerable to B0 field inhomogeneity artifacts

and effects from the lack of non-uniformity correction. To reduce these issues, alternative

initial parameter estimation techniques could be explored and uniformity corrections

should be included in future measurements. Acquisition time remains a disadvantage in
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this implementation of the Fat DESPOT approach. However, all acquisitions in this work

used 8 signal averages and no parallel imaging. Fat DESPOT has been found to perform

well at an SNR above 63 [1]. Reduction of the number of averages, while keeping above

this SNR threshold will allow for gains in the acquisition time without reduced fit quality.

Furthermore, the number of FAs acquired and used in the fitting algorithm could be

reduced [1]. Finally, while the lower leg provided a straightforward site for the initial

comparison of approaches in vivo, a further comparison should be conducted in sites with a

broader diversity of tissues, such as the abdomen, where the liver is of particular interest,

given the emerging role of multiparametric mapping in the diagnosis of liver disease [4, 5].

This potential application will require careful consideration of motion issues.

Conclusion

The complex approach to Fat DESPOT offers higher precision and accuracy for phantom

and in vivo measurements. Furthermore, the time gains obtained by using the complex

approach reduce the risk of motion artifacts and increase the feasible FOV or resolution of

images. Hence, the complex approach to Fat DESPOT represents a valuable advancement

for multiparametric mapping with potential applications in fatty liver disease, and solid

tumour imaging, where measures of R2*, PDFF, and R1 are of particular value.



3. Comparing the magnitude and complex approaches to Fat DESPOT
multiparametric mapping 73

Acknowledgements

The authors acknowledge the developers of the ISMRM fat-water toolbox

(http://www.ismrm.org/workshops/FatWater12/data.htm), Norma Ybarra for technical

assistance in phantom building and the MR Methods Research Group (McGill University)

for useful discussion. This work was funded by the Research Institute of the McGill

University Health Centre, the Fond de Recherche Québec - Santé (FRQS), and a Discovery
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Figure S1: Examples of initial guess maps for the variable fat fraction phantom (8-echo
acquisition) and of the B1 correction map. Estimates from the upper and lower rows were
obtained from the Graph Cut algorithm. The displayed B0 map is for the first Flip angle
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Figure S2: Examples of voxel-wise fits for the central pixel of each ROI in the variable
fat fraction phantom. The left column shows the magnitude of the mGRE data (points)
and the Fat DESPOTm fits (dashed line). The central column and right column show the
magnitude of the mGRE data (points) and the Fat DESPOTc fit, and the phase of the
mGRE data(points) and the Fat DESPOTc fit respectively. Flip angles 1-4 are 3◦, 6◦, 15◦

and 34◦ respectively for Fat DESPOTm and 3◦, 7◦, 19◦ and 45◦ for Fat DESPOTc.



Bibliography 76

Bibliography

[1] V. Fortier and I. R. Levesque, “MR-oximetry with fat DESPOT,” Magnetic Resonance

Imaging, vol. 97, pp. 112–121, Apr. 2023.

[2] C. D. Pfeifer, B. P. Schoennagel, R. Grosse, Z. J. Wang, J. Graessner,

P. Nielsen, G. Adam, R. Fischer, and J. Yamamura, “Pancreatic iron and

fat assessment by MRI-R2* in patients with iron overload diseases,” Journal

of Magnetic Resonance Imaging, vol. 42, no. 1, pp. 196–203, 2015. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.24752.

[3] M. F. Santarelli, A. Meloni, D. De Marchi, L. Pistoia, A. Quarta, A. Spasiano,

L. Landini, A. Pepe, and V. Positano, “Estimation of pancreatic R2* for iron overload

assessment in the presence of fat: a comparison of different approaches,” Magnetic

Resonance Materials in Physics, Biology and Medicine, vol. 31, pp. 757–769, Dec. 2018.

[4] J. J. Schaapman, M. E. Tushuizen, M. J. Coenraad, and H. J. Lamb,

“Multiparametric MRI in Patients With Nonalcoholic Fatty Liver Disease,” Journal

of Magnetic Resonance Imaging, vol. 53, no. 6, pp. 1623–1631, 2021. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.27292.

[5] R. Banerjee, M. Pavlides, E. M. Tunnicliffe, S. K. Piechnik, N. Sarania, R. Philips,

J. D. Collier, J. C. Booth, J. E. Schneider, L. M. Wang, D. W. Delaney, K. A. Fleming,

M. D. Robson, E. Barnes, and S. Neubauer, “Multiparametric magnetic resonance for



Bibliography 77

the non-invasive diagnosis of liver disease,” Journal of Hepatology, vol. 60, pp. 69–77,

Jan. 2014.

[6] M. Pavlides, R. Banerjee, J. Sellwood, C. J. Kelly, M. D. Robson, J. C. Booth, J. Collier,

S. Neubauer, and E. Barnes, “Multiparametric magnetic resonance imaging predicts

clinical outcomes in patients with chronic liver disease,” Journal of Hepatology, vol. 64,

pp. 308–315, Feb. 2016.

[7] O. Jaubert, C. Arrieta, G. Cruz, A. Bustin, T. Schneider, G. Georgiopoulos, P.-G.

Masci, C. Sing-Long, R. M. Botnar, and C. Prieto, “Multi-parametric liver tissue

characterization using MR fingerprinting: Simultaneous T1, T2, T2*, and fat fraction

mapping,” Magnetic Resonance in Medicine, vol. 84, no. 5, pp. 2625–2635, 2020. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.28311.

[8] T. J. Arai, D. M. Yang, J. W. Campbell, T. Chiu, X. Cheng, S. Stojadinovic, P. Peschke,

and R. P. Mason, “Oxygen-Sensitive MRI: A Predictive Imaging Biomarker for Tumor

Radiation Response?,” International journal of radiation oncology, biology, physics,

vol. 110, pp. 1519–1529, Aug. 2021.

[9] C. Le Ster, J. Lasbleiz, S. Kannengiesser, R. Guillin, G. Gambarota, and H. Saint-

Jalmes, “A fast method for the quantification of fat fraction and relaxation times:

Comparison of five sites of bone marrow,” Magnetic Resonance Imaging, vol. 39,

pp. 157–161, June 2017.



Bibliography 78

[10] C. Le Ster, G. Gambarota, J. Lasbleiz, R. Guillin, O. Decaux, and H. Saint-Jalmes,

“Breath-hold MR measurements of fat fraction, T1, and T2* of water and fat in vertebral

bone marrow,” Journal of Magnetic Resonance Imaging, vol. 44, no. 3, pp. 549–555,

2016. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.25205.

[11] Q. Wan, H. Peng, J. Lyu, F. Liu, C. Chuanli, Y. Qiao, J. Deng, H. Zheng, Y. Wang,

C. Zou, and X. Liu, “Water Specific MRI T1 Mapping for Evaluating Liver Inflammation

Activity Grades in Rats With Methionine-Choline-Deficient Diet-Induced Nonalcoholic

Fatty Liver Disease,” Journal of Magnetic Resonance Imaging, vol. 56, Feb. 2022.

[12] F. C. Michelotti, Y. Kupriyanova, T. Mori, T. Küstner, G. Heilmann, M. Bombrich,
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Chapter 4

Discussion

Results presented in the methods section of Chapter 3 suggest that Fat DESPOTc is a

promising candidate for multiparametric mapping, increasing precision and accuracy

compared to Fat DESPOTm while offering the potential for shorter acquisition times or

increased FOV or resolution within a clinically acceptable time frame. The increased

performance of Fat DESPOTc compared to Fat DESPOTm also has implications for the

feasibility of Fat DESPOT as a tool for MR oximetry. Indeed, measurement precision

contributes to the achievable sensitivity of the technique, while acquisition time, FOV, and

resolution have implications for the patient experience and the type of tumour that can be

investigated.
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4.1 Fat DESPOT Precision and MR Oximetry

The sensitivity of Fat DESPOT approaches to oxygen-induced changes in R1 and R∗
2 depends

on measurement precision. For a carbogen gas challenge on a variety in murine prolactinomas

and human PC3 prostate xenografts, Burrell et al. noted a change in R∗
2 on the order of 100

s−1 for R∗
2 and 0.3 s−1 for R1global for responsive tissue [66]. Studying response to an oxygen

challenge in a murine renal cell carcinoma model, Little et al., noted a change in R∗
2 up to 40

s−1 and in R1 up to 0.5 s−1 in responsive areas and a change in R∗
2 up to -80 s−1 and in R1 up

to -0.1 s−1 in unresponsive tissue [67]. In murine xenografts of glioblastoma and non-small

cell lung cancer, Featherstone et al. created voxel clusters based on R1 responsiveness to

an oxygen challenge, which they associated with different levels of hypoxia. These clusters

were differentiated by ∆R1global differences between 0.2 and 0.4 s−1 [83]. While results vary

widely from study to study, likely in part due to different cancer models being studied and

gas challenge implementation, they suggest a conservative estimate of the expected change

in relaxation rate in response to a gas challenge around 50 s−1 for R∗
2 and on the order of

0.2 s−1 for R1. These expected changes can guide our estimate of the necessary precision for

Fat DESPOT.

Power analysis provides a measure of the required sample size to detect a change given

a desired level of significance. In our case this would correspond to a minimum number of

voxels to determine whether a change in R∗
2, R1f or R1w has occcured in response to an oxygen

challenge. To measure a change in a single voxel, the sample size from the power analysis
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could guide the minimum number of repetitions required. A power analysis was conducted

assuming a 95% confidence that a change on the order of the previously mentioned estimates

can been detected (using the function sampsizepwr, MATLAB 2023, with default parameters

and power=0.95). In phantom, the maximum standard deviation of R∗
2 was 3.88 s−1 for Fat

DESPOTm and 3.79 s−1 for Fat DESPOTc. Detection of 50 s−1 change in R∗
2 would require

a sample size of 3 for Fat DESPOTm and Fat DESPOTc. The same analysis to detect a

change of 0.2 s−1 for R1w, for the maximum standard deviation of R1w (0.09 s−1 for Fat

DESPOTm and 0.071 s−1 for Fat DESPOTc) returns a sample size of 5 for both approaches.

For R1f , the largest standard deviation was 3.57 s−1 for Fat DESPOTm and 2.86 s−1 for

Fat DESPOTc corresponding to the 5% fat fraction vial. Detecting a change of 0.2 s−1 for

R1f , would require a sample size of 4143 and 2660 for Fat DESPOTm and Fat DESPOTc,

far beyond a reasonable sample size for our measurements. However, the standard deviation

for R1f is much higher for the 5% nominal fat fraction vial than the others. Taking the

second-largest standard deviation for each approach (0.80 s−1 for Fat DESPOTm and 0.79

s−1 for Fat DESPOTc) returns a much smaller sample size of 210 and 205 for Fat DESPOTm

and Fat DESPOTc, respectively. While this sample size is still unreasonably large for repeat

measurements or as a minimum detectable hypoxic volume, R1f sensitivity to oxygen is

greater than R1w and R1global [23, 25], such that a lower precision is likely required.

These results suggest that R∗
2 and R1w obtained with both approaches to Fat DESPOT

are reasonable for MR oximetry. They also suggest a PDFF threshold for MR oximetry
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using R1f between 5% and 25%, though additional measurements with fat fractions in this

range and a comprehensive study of expected R1f changes in response to a gas challenge in

tumours would need to be completed to determine this limit.

While the phantom data suggests reasonable requirements for sample sizes in phantom,

this is a highly simplified model and in vivo, standard deviations are larger for all measured

tissues compared to phantom measurements. This is partly expected, given that tissue

homogeneity in the ROI is difficult to achieve. Bone marrow is heterogeneously vascularized

with a central arteriole surrounded by capillaries [84]. Likewise, while intermuscular fascia

itself does not appear on MRI, it is often lined with a thin layer of fat which produces a

signal [85] and is consistent with our observation of a ”marbling” of the muscle with slightly

elevated PDFF, elevated R∗
2, and lower R2 (likely due to the fascia) in the multiparametric

maps of the lower leg cross-section. The subcutaneous fat layer of the lower leg is relatively

thin and fringe voxels likely contain partial volumes with surrounding muscular and epithelial

tissues. These inhomogeneities likely increase the standard deviation of estimates in the

bone marrow, muscle, and subcutaneous tissue ROI. Hence, they do not offer an accurate

depiction of the expected precision of measurements in each voxel. This being said the

smaller standard deviation of the Fat DESPOTc approach in most instances suggests that

this technique would render more precise oximetry results.

To measure the true consistency of measurements and estimate the required sample

size or repeat measurements for hypoxia measurements, several consecutive Fat DESPOT
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measurements should be taken such that a voxel-specific standard deviation can be observed.

Given published Fat DESPOT acquisition times, this has not been done so far but would be

possible paired with acceleration techniques, such as those presented in the appendix section

6.3.

4.2 Acquisition time and feasibility of gas challenges

A typical gas challenge protocol includes one baseline measurement with the patient

breathing room or medical air, exposure to a hyperoxic or hypoxic gas mixture for

approximately 5 minutes to ensure an equilibrium pO2 is reached [86], and a repeat

measurement [87]. Hence, acquisition time is an important consideration as both

measurements must fit within a clinically feasible time frame and exposure to gas mixtures

with high or low oxygen should be limited. The Fat DESPOTm method as used in our

previous publication and presented in this work, including B1 mapping, takes 32.36 min,

while our Fat DESPOTc protocol takes 25.2 min for a 192×192×100 mm3 FOV, with 4.6

mins dedicated to B1 mapping. Even if B1 mapping was only completed once, this is well

above reasonable measurement times. However, our group has explored several acceleration

strategies to reduce acquisition time, namely reducing the number of signal averages (NSA)

used and reducing the number of FAs (Véronique Fortier, PhD, personal communication).

The published measurement protocol involves taking 8 NSA for each acquisition. Taking a

single signal average would reduce measurement time to 3.47 min for the magnitude approach
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and 2.57 min for the complex approach, excluding B1 mapping. This puts both approaches

within a reasonable range for gas challenges. Furthermore, preliminary measurements using 1

NSA suggest that this does not reduce measurement precision, as demonstrated in Appendix

6.3, Figure 6.5. These shorter acquisition times also make breath-hold imaging for anatomies

such as the liver realistic. Assuming a 20 s breath hold and the in-plane FOV and voxel size

presented in the methods section of this work, 6 slices could be covered in a single breath-

hold for Fat DESPOTm and 9 slices for Fat DESPOTc. Parallel imaging could be used to

decrease the scan time further, at a well-understood cost in SNR [88].

In Fat DESPOT, four FAs are measured to cover a range of R1 values. Removing one FA

acquisition reduces Fat DESPOT scan time by 25%. While angle selection affects bias in the

resulting R1f and R1w measurement, Cheng et al. found that using three FAs maintained

precision [89]. Fortier et al. showed good agreement between the 4 FA and 2 FA fat DESPOT

R1 values at a fat fraction above 25% for R1f and all measured fat fractions for R1w, while

the 14% fat fraction measurement was biased [25]. A consistent bias will not likely affect

measurements of ∆R1f or ∆R1w under a gas challenge. In preliminary measurements with

Fat DESPOTc, also in Appendix 6.3, Figure 6.5, reducing the measurement from 4 to 3 FAs

(without re-optimization of the angles) again did not reduce precision.

The combined effect of removing signal averaging and one FA would result in Fat

DESPOTm measurements taking 2.60 min and Fat DESPOTc measurements taking 1.92

min. Not only does this bring Fat DESPOT acquisition time into a realistic range for gas



4. Discussion 93

challenges but it also opens the possibility for dynamic imaging where tumor hypoxia could

be assessed at several time points in the gas challenge or during repeated gas challenges.

Alternatively, a shorter acquisition per voxel allows for greater FOVs to be covered or

increased resolution while staying within a clinically feasible imaging time. By this logic,

the 30% time reduction of Fat DESPOTc compared to Fat DESPOTm can be translated to

a 30% increase in FOV or resolution for the same imaging time.

Alternative B1 mapping techniques could also be explored to further reduce acquisition

time. Boudreau et al. obtain whole-brain coverage with and echo planar imaging double-

angle (EPI-DA) approach with scan time below 2 minutes using standard available sequences

[90]. Voltz et al. presented a FLASH-based B1 mapping with whole brain coverage (FOV

approximately 200×200×150 mm3) with reasonable resolution in only 46 s [91]. A modified

version of the saturation-prepared turbo FLASH (SatTFL) approach has also showed promise

at 7 T with whole brain B1 imaging in 20 s [92].

4.3 Potential applications of Fat DESPOT in hypoxia

imaging

As discussed in section 2.1.4 of the background chapter of this thesis, hypoxia has been

correlated with poor treatment outcomes in a number of cancers including those of the head

and neck, breast , prostate , and pancreas , and metastatic liver tumours. Fat DESPOT R1f
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is of particular interest due to its increased sensitivity to oxygen changes compared to R1w

and R1global [23–25]. However, our simulation and phantom experiments suggest a steep loss

of R1f precision at fat fractions below 10%. This being said, several solid cancers have a

significant fat fraction which might benefit from R1f measurement. Notably, Agarwal et al.

measured mean fat fractions in breast cancer at 17% [93], Martin et al. measured average

lymphoma fat fraction of 26±12.2% [94], and Sun et al. measured average fat fraction

of lymphnode metastases of esophageal cancer at 17% [95]. Furthermore, case studies by

Skorpi et al. and Yasuda et al. measure high fat fractions in liposarcomas (11-21%) [96] and

pancreatic carcinomas (27.44%) [97] respectively. And outside of applications in cancer, Fat

DESPOT is also a promising tool for investigating hypoxia’s role in fatty liver disease where

fat fractions are often above 5% and can reach up to 30% [98].

This being said both Fat DESPOT approaches discussed in this thesis likely have

acceptable R1w precision and R1w measurements could be used in isolation or conjunction

with R1f for tumors with lower fat fractions, expanding the scope of possible imaging sites.

To truly assess Fat DESPOT’s ability to capture oxygen-induced changes in R1w, R1f , and

R2*, gas challenge pilot measurements should be conducted in these areas of interest. Due

to their simple immobilization, range of fat fractions, and the recorded link between

hypoxia and treatment outcomes for these cancers, prostate and head and neck cancers

would be ideal initial candidates.
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Chapter 5

Conclusion

5.1 Summary

This thesis compared the conventional magnitude-based Fat DESPOTm with the complex

Fat DESPOTc approach, assessing them as multiparametric mapping tools and for their

potential applicability to MR oximetry. Though both Fat DESPOT techniques have

potential in these areas, the higher precision and accuracy of Fat DESPOTc paired with

shorter acquisition times increase the possible applications of this approach.

In simulations, Fat DESPOTc was shown to have a greater resistance to differences in

the initial phase of fat and water. Fat DESPOTm and Fat DESPOTc were compared in two

simulated scenarios. In the first, the initial phases of the fat and water signal components

shared a single phase. In the second, fat and water were given separate phases, based on
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values obtained in experiments. While Fat DESPOTm had an overall higher precision and

accuracy in the first scenario, this approach was strongly affected by a phase difference,

demonstrating large error and standard deviation at intermediate fat fraction ranges. The

complex model, which has separate parameters for the fat and water initial phases improved

in precision when a phase difference was introduced.

In phantom experiments, Fat DESPOTc had a smaller average standard deviation for

all parameters except R∗
2, though this difference had a minimal impact on the subsequent

power analysis. Fat DESPOT also had a lower average error in PDFF. Comparison of

R∗
2, R1f and R1w to literature was not straightforward, but both Fat DESPOT approaches

were self-consistent and agreed with some published reports. The lower precision of Fat

DESPOTm compared to Fat DESPOTc may have been due to phase differences, as suggested

by simulations. This is further supported by lower R2 values for Fat DESPOTm, especially

for intermediate fat fractions.

In vivo, both approaches to Fat DESPOT generally agreed with published values of

PDFF, R∗
2, R1f , and R1w, while Fat DESPOTc once again tended to have smaller standard

deviations. However, comparison to literature was once again made difficult by the lack of

anatomy-specific data and measurements of fat-water separated R1.
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5.2 Future Work

While Fat DESPOTc shows potential for multiparametric and hypoxia mapping, as

mentioned in the discussion sections of the manuscript, additional experiments could be

beneficial for a more direct comparison to existing literature. Namely, deploying both Fat

DESPOT approaches in the liver would allow for comparison to a wider body of

quantitative MRI work. Furthermore, repeated in vivo measurements combined with

acceleration techniques could help assess the repeatability of both approaches in feasible

acquisition times.

Results from GC showed that initial phases of fat and water are not identical. This raises

questions on the Fat DESPOTm assumption that the initial phase of fat and water can be

modeled by a single parameter and the effect of this assumption on the Fat DESPOTm output

estimates. Indeed, simulations suggested that the Fat DESPOTm model is susceptible to

error when a phase difference is introduced. Including separate initial phases for fat and

water may increase the accuracy of Fat DESPOTm, though fitting an additional parameter

may also affect the stability of the fit. Nonetheless, further developing and optimizing Fat

DESPOTm has the potential to increase precision and accuracy and should be investigated.

Finally, the true test of the Fat DESPOT approaches for MR oximetry is to use these

approaches in a gas challenge in healthy participants or patients, assessing the sensitivity and

reliability with which they detect changes in oxygenation. These measurements could also be

paired in point measurements using a polarographic probe in animal studies, comparing the
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change detected with MR to the true change in oxygenation. As proposed in the Discussion

chapter, cancers of the prostate and of the head and neck would be ideal initial assessment

sites.
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Chapter 6

Appendices

6.1 Appendix 1: Phantom construction

A phantom was constructed to compare the accuracy of the magnitude Fat DESPOT

compared to the complex Fat DESPOT approaches in experimental data. Two iterations of

the phantom were constructed, each containing seven 50 ml vials of agar-based fat-water

emulsions. These were created following a modified version of the methodology outlined by

Bush et al. [99].

To prepare the agar-water solution, 9.0 g of agar powder (MilliporeSigma Canada Ltd)

was added to 300 ml of distilled water in a 1L beaker, set on a hot plate at approximately

300 ◦C with a stir bar set to approximately 1000 rpm. Then, 0.3 g of sodium benzoate

(MilliporeSigma Canada Ltd), a preservative, was added to the solution to increase the
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phantom’s longevity. Finally, 0.6 mL of Polyethylene glycol sorbitan monolaurate (Tween

20, MilliporeSigma Canada Ltd) was added as a surfactant to improve the stability of the

oil-water emulsion. In the first iteration of the phantom, x ml of a 20 mM Gadobutrol

(Gadovist, Bayer Healthcare) solution was added to increase the relaxation rate of water. In

the first iteration of the phantom, the final gadobutrol concentration was 1.5 mM; however,

this led to very high values of R1w. Hence, in the second iteration of the phantom, the final

concentration of gadobutrol was selected to be 0.2 mM. The solution was covered to reduce

evaporation and increase the heating rate until it had exceeded 80◦C and the agar powder

had completely dissolved.

To prepare the oil solution, 300 mL of peanut oil (JVF Canada inc) was placed in a 1 L

beaker, and heated to approximately 300◦C with a stir bar set to approximately 1000 rpm,

as with the water. 2 mL of sorbitane monooleate (Span 80 MilliporeSigma Canada Ltd) was

added as a surfactant. The solution was mixed and heated for a minimum of 10 minutes or

until it exceeded 80◦C.

In the first iteration of the phantom, a single hot plate was used, such that oil and

water solutions had to be interchanged to maintain equivalent temperatures. In the second

iteration of the phantom, two hotplates were used, such that oil and water solutions could

be warmed simultaneously. This made for more consistent temperatures, leading to higher

success rates for emulsions and extending the range of possible PDFFs.

For each fat fraction, 100 ml of solution was prepared. Using an electric pipette, the water
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fraction was first added to a 500 mL beaker with a stir bar. This solution was maintained at

a temperature between 70◦C and 90◦C to ensure the agar remained liquid while preventing

evaporation with the stir-bar set to approximately 1000 rpm. The temperature-matched

oil fraction was then slowly added to the water using an electric pipette, ensuring that the

fat was incorporated progressively into the water. The solution was then mixed for 5 min,

regularly monitoring the temperature to maintain it in the acceptable range.

The emulsion was then slowly decanted into a 50 mL polypropylene centrifuge tube

(Corning® 50 mL centrifuge tubes). To remove any remaining bubbles, the tubes were

tapped on the bench top. Any remaining space was filled with additional emulsion to avoid

large air bubbles at the top of the phantom. In the first iteration of the phantom, two vials

were filled with a gadobutrol-water solution at two different concentrations to create 100%

water fractions with different relaxation times, while in the second version of the phantom,

the agar-water solution was used for this purpose. Nominal fat fractions for each phantom

iteration are given in table 6.1.

Tubes were suspended on a plastic and polystyrene rig placed in a cylindrical acrylic

container (Magphan ®SMR170, The Phantom Laboratories, Salem, USA). The container

was filled with a solution of water, sodium chloride (Windsor Salt Ltd) ([NaCl]=24 mM) to

reduce B0 field inhomogeneity, and gadobutrol ([Gd+]=0.3 mM). Between uses, the phantom

was stored in a 4◦C refrigerator and returned to room temperature before measurements.
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Iteration 1 2

Vial Nominal Fat Fraction (%)

1 0 0

2 6 5

3 25 25

4 50 50

5 60 60

6 0 75

7 100 100

Table 6.1: Nominal fat fraction of the 1st and 2nd iterations of the variable fat fraction
phantom.

6.2 Appendix 2: Refining the complex approach to Fat

DESPOT

Three versions of the complex approach to Fat DESPOT were evaluated during this thesis.

The final version is presented in the manuscript presented in Chapter 3.

Our group previously modified the magnitude Fat DESPOT model to create a complex

model [3,25]. In the first version of Fat DESPOTc model was used with the same processing

steps as Fat DESPOTm outlined in In preprocessing, a relative B1 map was generated to
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correct FAs in the Fat DESPOT fit. Initial guesses were then calculated for PDFF, T1,

and R∗
2. To obtain initial guesses of PDFF, a 3-point Dixon fat-water separation was then

accomplished on the first three echoes of the dataset from the smallest echo. An R∗
2 map

was then calculated using the monoexponential fit to the even echoes with the smallest FA.

Data from the 3◦ FA acquisitions was then processed through a non-linear DESPOT1 with

B1 correction to obtain a joint fat and water R1 estimate, R1,global. This was used as an

initial guess for the dominant species in each via, based on the initial estimate of the PDFFl.

The complex Fat DESPOT model outlined in equation 2.27 was then fit to the data. Initial

guesses of ∆B0 were obtained from the 3-point DIXON while the initial guess of Φ0 was 0

rad.

With this initial version of Fat DESPOTc, fitting the entire phantom was not possible,

as solutions were not reached in some areas of the phantom water compartment. Assessing

the emulsion tubes only showed a high degree of inhomogeneity and poor goodness of fit in

some areas (Figure 6.3, column 1). Quantitative analysis showed large standard deviations, a

large number of outlier voxels, and inconsistent trends in R∗
2, R1f , and R1w. The distribution

of multiparametric estimates for this and subsequent s of the Fat DESPOTc approach is

displayed in Figure 6.4.

A second version of the Fat DESPOT approach was developed after the initial assessment

of results, modifying the processing pipeline. Given the susceptibility of 3-point DIXON fat-

water separation to fat-water swaps, the graph cuts (GC) fat-water separation algorithm [82],
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using all FAs and echoes, was incorporated into the complex workflow to provide initial

guesses for PDFF. The GC algorithm returns a separated complex signal for fat and water,

R∗
2 maps, and ∆B0. The PDFF was obtained from the magnitude of the fat-water separated

complex signals as well as the initial phase of the fat, water, and combined initial phase.

These initial guesses were used in the complex Fat DESPOT model for signal fitting using

equation 2.27.

While goodness of fit and homogeneity within the tubes was improved using the GC

initial guesses, multiparametric maps of the second version of Fat DESPOTc (Figure 6.3,

column 2) revealed reduced goodness of fit at the intermediate fat fractions and areas of

very poor fitting in the water compartment that corresponded to artifacts in the R∗
2 and

R1w maps. Though dwarfed by the outlier values of the first version of Fat DESPOTc, the

quantitative assessment of multiparametric estimates revealed once again irregular trends in

the R1w compartment, which was markedly lower for intermediate fat fractions compared

to the higher or lower extremes, and a much lower value of R1w at 5% nominal fat fraction

compared to the other fat fractions.

Following this assessment of the second version of the fitting method and given the

additional information available from the GC algorithm, a third version of the Fat DESPOTc

approach was developed, modifying the signal model itself. This new model included separate

parameters for fat and water Φ0, reflecting experimental results showing that initial phases

were different. Example maps of the phase of fat and water, obtained from the GC output
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of their respective complex signal components. are displayed in Figure 6.1. ∆B0 obtained

from GC also revealed that in some measurements, the value of ∆B0 changed between FAs.

An example of these ∆B0 maps is presented in Figure 6.2. An angle specific ∆B0, ∆B0θ

was therefore included in the updated fat DESPOT model. These observations resulted in a

modified complex Fat DESPOT model, equation 6.1. For fitting, initial guesses for PDFF,

R∗
2, ϕ0f , and ϕ0w were obtained from GC. B0θ was also obtained from a GC fitting of mGRE

data from each FA and used as a fixed parameter in the Fat DESPOT equation. R1global

estimates were obtained from the DESPOT1 fitting, as in the original processing pipeline,

and attributed to either R1f or R1w according to which signal component was dominant

according to the PDFF estimate.

Smeas(TE, TR, α) = S0

[
(1 − f)We−iΦ0W + fF

N∑
n=1

Ane−i∆wnT Ee−iΦ0f

]
eR∗

2T Ee−i(2πγ−∆B0T E)

(6.1)
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Figure 6.1: Example of fat, water, and total signal initial phase maps, calculated from the
complex fat-water separated signal obtained using the GC algorithm. Fat and water initial
phases are noticeably different. All images are displayed with perceptually uniform colour
maps from the crameri library [4, 5]

The third version of Fat DESPOTc returned smooth multiparametric maps (Figure 6.3,

column 2), though minor artifacts remained in the R1w and R2* maps, in the water

compartment. These artifacts have been discussed previously in the phantom and in vivo

results section of Chapter 3 of this thesis. The goodness of fit was high in all tubes.

Furthermore, in quantitative analysis, standard deviations were on par or smaller than

previous versions, and trends appeared consistent throughout the ROIs. This version of the

Fat DESPOTc approach was selected for comparison to Fat DESPOTm in the work

presented in Chapter 3 of this thesis.
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Figure 6.2: (a) Examples of the FA-specific B0 maps obtained by applying the GC
algorithm to an mGRE acquisition of the multi-variable fat fraction phantom and (b)
difference B0 maps taken between the second, third, and fourth FA acquisitions with respect
to the first FA. All images are displayed with perceptually uniform colour maps from the
crameri library [4, 5]
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Figure 6.3: Multiparametric maps of the variable fat fraction phantom using the three
versions of the Fat DESPOTc approach. The 1st version is masked to show only the manually
selected ROIs, as a poor fit was observed in some of the water compartments. All images
are displayed with perceptually uniform colour maps from the crameri library [4, 5]
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Figure 6.4: Distribution of voxel-wise estimates of PDFF, R∗
2, R1f , and R1w in the variable

fat fraction phantom using the three versions of the Fat DESPOTc approach.
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6.3 Appendix 3: Further work in accelerating

acquisitions

All results presented in this thesis use 8 NSA in each mGRE acquisition and a VFA approach

with four FAs. Signal averaging increases the SNR [44]; however, Fat DESPOT has been

reported to achieve good fits with SNR > 63 [25]. Hence, the NSA could likely be reduced.

A series of mGRE acquisitions were collected following the sequence parameters for Fat

DESPOTc displayed in table 3.3, but with 1 NSA, and processed in the same way as the 8

NSA data. Each acquisition took 5.15 minutes, as opposed to the 8 NSA acquisition which

took 51 min.

Chen et al. have suggested that using three FAs rather than 4 in VFA approaches to T1

mapping is the most efficient for accuracy and precision [89]. FA reduction was also used in

our group’s previous Fat DESPOT work [25]. Retrospective fitting of our data was therefore

conducted using the 1st, 3rd, and 4th FA for the 8 NSA and 1 NSA acquisitions for the Fat

DESPOTc approach, nominally reducing the acquisition time by 25%.

The change in NSA and FA seemed to bias R1 results, but precision is not affected

(Figure 6.5). The stable precision suggests that using these acceleration techniques with Fat

DESPOT may be appropriate for MR hypoxia mapping, where the change in R1 may be more

relevant than the actual value of R1. VFA angle optimization aims at maximizing precision

rather than accuracy and the bias in the 3 FA results compared to the 4 FA results was
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likely due to the impact of FA selection on the accuracy of R1 estimates [89]. However, the

bias in the 1 NSA acquisition compared to the 8 NSA acquisition remains an open question.
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