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Abstract 

A mining complex is an integrated mineral value chain that consists of multiple interconnected 

components, from the extraction of ore to a set of sellable products. Over the last decade, 

advancements made in the field of mine planning have led to the development of simultaneous 

stochastic optimization of mining complexes. The cutting-edge framework of simultaneous 

stochastic optimization moves away from considering the economic value of blocks to the value 

of final products, allowing integrated value chain modelling and optimization. This thesis studies 

the simultaneous stochastic optimization framework through two real-world case studies, applying 

the methods and assessing the ability, impact, and benefits of incorporating multiple sources of 

uncertainties. 

The first chapter of the thesis presents a literature review on the development of simultaneous 

stochastic optimization starting with the conventional framework. It details the trail of research of 

incorporation of multiple components in the optimization process, modelling of different sources 

of uncertainties, incorporation of uncertainties in mine planning, and finally the establishment of 

simultaneous stochastic optimization including mathematical modelling of the mining complex 

with sources of uncertainty, objective formulation, and optimization algorithm.  

The second chapter of the thesis presents an application of a stochastic framework that 

simultaneously optimizes mining, destination and processing decisions for a multi-pit, multi-

processor copper mining complex with the incorporation of mining equipment uncertainty in 

addition to supply uncertainty. The case study assesses the impacts of integrating equipment 

uncertainty as input that influences all components of the production schedule. It addresses the 

issue that a conventional schedule is difficult to realize during operation due to the uncertainty of 

equipment performance. An analysis is provided to demonstrate how the incorporation equipment 

modifies the production schedule that is capable of producing not only a more realizable schedule 

but also a schedule with a 2% improvement in terms of economic value from the better capturing 

of the synergy among components.  

The third chapter of the thesis presents an application of the same stochastic framework for a multi-

pit, multiprocessor copper mining complex with the incorporation of market uncertainty and 
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recovery uncertainty in addition to supply uncertainty. The study aims to assess the impacts of 

market and recovery uncertainty that affect the profitability of mining operations. It also details 

the modelling of different sources of uncertainty at different components of a mineral value chain. 

The case study provides a comprehensive comparison of the effect of incorporating different 

combinations of uncertainty on the production schedule. The result shows that the incorporation 

of additional will improve the project value by around 7% to 12% compared to only including the 

supply uncertainty. The joint effect of uncertainties as well as the interaction between components 

within a mineral value chain has to be considered.   
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Résumé 

Un complexe minier est une chaîne de valeur minérale intégrée composée de plusieurs composants 

interconnectés, depuis l’extraction du minerai jusqu’à un ensemble de produits vendables. Au 

cours de la dernière décennie, les progrès réalisés dans le domaine de la planification minière ont 

conduit au développement de l’optimisation stochastique simultanée des complexes miniers. Le 

cadre de pointe de l'optimisation stochastique simultanée s'éloigne de la considération de la valeur 

économique des blocs pour se concentrer sur la valeur des produits finaux, permettant ainsi une 

modélisation et une optimisation intégrées de la chaîne de valeur. Cette thèse étudie le cadre 

d'optimisation stochastique simultanée à travers deux études de cas réels, appliquant les méthodes 

et évaluant la capacité, l'impact et les avantages de l'intégration de plusieurs sources d'incertitudes. 

Le premier chapitre de la thèse présente une revue de la littérature sur le développement de 

l'optimisation stochastique simultanée en commençant par le cadre conventionnel. Il détaille le 

parcours de recherche d'incorporation de multiples composantes dans le processus d'optimisation, 

la modélisation de différentes sources d'incertitudes, l'incorporation d'incertitudes dans la 

planification minière, et enfin la mise en place d'une optimisation stochastique simultanée incluant 

la modélisation mathématique du complexe minier avec des sources d'incertitude, formulation 

objective et algorithme d’optimisation. 

Le deuxième chapitre de la thèse présente une application d'un cadre stochastique qui optimise 

simultanément les décisions d'extraction, de destination et de traitement pour un complexe minier 

de cuivre multi-puits et multi-processeurs avec l'incorporation de l'incertitude de l'équipement 

minier en plus de l'incertitude de l'approvisionnement. L'étude de cas évalue les impacts de 

l'intégration de l'incertitude de l'équipement comme entrée qui influence tous les composants du 

calendrier de production. Il aborde le problème selon lequel un calendrier conventionnel est 

difficile à réaliser pendant l'exploitation en raison de l'incertitude des performances de 

l'équipement. Une analyse est fournie pour démontrer comment l'équipement d'incorporation 

modifie le calendrier de production qui est capable de produire non seulement un calendrier plus 

réalisable mais également un calendrier avec une amélioration de 2 % en termes de valeur 

économique grâce à une meilleure capture de la synergie entre les composants. 
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Le troisième chapitre de la thèse présente une application du même cadre stochastique pour un 

complexe minier de cuivre multi-puits et multiprocesseur avec l'incorporation de l'incertitude du 

marché et de l'incertitude de la reprise en plus de l'incertitude de l'offre. L’étude vise à évaluer les 

impacts de l’incertitude du marché et de la reprise qui affectent la rentabilité des opérations 

minières. Il détaille également la modélisation de différentes sources d’incertitude au niveau de 

différents composants d’une chaîne de valeur minérale. L'étude de cas fournit une comparaison 

complète de l'effet de l'incorporation de différentes combinaisons d'incertitudes sur le calendrier 

de production. Le résultat montre que l'incorporation d'éléments supplémentaires améliorera la 

valeur du projet d'environ 7 à 12 % par rapport à la seule prise en compte de l'incertitude de 

l'approvisionnement. L’effet conjoint des incertitudes ainsi que l’interaction entre les composants 

d’une chaîne de valeur minérale doivent être pris en compte. 
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Chapter 1. Introduction and literature review 

A mining complex is an integrated mineral value chain that transforms in-situ raw material 

extracted from mineral deposits into valuable commodities. Components in a mineral value chain 

can include multiple mineral deposits, stockpiles, processing streams, waste disposal, and 

transportation to clients or spot markets (Goodfellow and Dimitrakopoulos, 2016, 2017; Montiel 

and Dimitrakopoulos, 2015, 2017, 2018; Pimentel et al., 2010). The objective of strategic mine 

planning or life-of-mine planning is to maximize the net present value (NPV) generated by the 

mining operation by determining various aspects of the production plan such as extraction 

sequence, processing decisions, transportation, etc., while adhering to operation and 

environmental constraints specific to each mining complex. The conventional approach for 

strategic mine planning starts with representing the deposit with a deterministic orebody model. 

Based on the information provided by the orebody model, different components in a mining 

complex are optimized separately and sequentially using several optimization algorithms to 

maximize the economic value (Alford and Whittle, 1986; Dagdelen, 2006; Gershon, 1983; 

Hustrulid et al., 2013; Lerchs and Grossman, 1965). For example, the mine will be first optimized 

to produce an extraction sequence, then the processing destination policy will be determined based 

on the processing destination policy. However, local optimization of individual components, often 

with misaligned objectives of the final economic outcome of a mining complex leads to suboptimal 

production plans. Increasing complexity in the mineral value chain and non-linear transfer 

functions, aggravates such effects. The geological or supply uncertainty of pertinent properties of 

the mineral deposit, such as attribute grades and material types, is the major contributor to not 

meeting production targets during mining operations. Baker and Giacomo (2001) reveal that the 

primary reason for not meeting production targets is the misconception of reserves/resources due 

to uncertain material supply. 13 out of 48 mining projects in Australia had 20% more than the 

estimated reserves, and 9 had 20% less estimated reserves. Vallee (2000) also shows that 73% of 

failed mining projects are attributed to misestimating the ore reserve. Dimitrakopoulos (2011) 

analyses these studies and highlights that most project failures are due to the inconsideration of 

supply uncertainty during the conventional strategic mining process.  
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Over the past decade, significant developments have been achieved in integrating various 

components within the mineral value chain into a single optimization model while considering 

uncertainty. This integrated model for mining complexes enables simultaneous optimization of 

diverse decisions, such as extraction sequence, destination policies, and processing stream 

utilization, while incorporating uncertainties presented in mining complexes. The primary 

objective of modelling a mining complex in a single mathematical formulation is to simultaneously 

determine diverse decisions in a long-term production plan, such as extraction sequence, 

destination policies, processing stream utilization, waste management, and capital investment 

decisions. The optimization maximizes the net present value (NPV) of a mining complex, while 

satisfying operational constraints and managing technical risks, especially those related to supply 

uncertainty. Simultaneous stochastic optimization leverages the value of final products sold and 

captures synergies across the value chain, facilitating comprehensive and efficient decision-

making under uncertainty for mining operations. 

This chapter reviews the technical literature related to strategic mine planning and modelling 

uncertainty. Section 1.2 covers deterministic approaches to integrate the optimization of mining 

complexes. Section 1.3 explains the risk associated with supply and market uncertainty, followed 

by a review of simulation methods for mineral deposits and commodity prices. Section 1.4 reviews 

the methods for integrating risk into the mine planning process, initial stochastic mine planning 

formulations and finally the simultaneous optimization of mining complexes. Section 1.5 outlines 

the objectives and Section 1.6 outlines the remainder of this work. 

1.1 Deterministic approach for strategic mine planning 

Strategic or long-term mine planning aims to optimize the life-of-mine production decisions of a 

single mine to maximize the economic outcome (net present value) of assets while respecting 

economic and operational constraints. Conventional approaches for strategic mine planning start 

with representing the mineral deposit as a collection of three-dimensional blocks that contain 

attributes describing the mineral deposit. These attributes may be metal grades, material types, 

rock properties, tonnage, etc. According to these attributes, blocks are scheduled to be extracted at 

a certain period (Hustrulid et al., 2013). Conventionally, the block model assumes perfect 
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knowledge of the mineral deposit (deterministic orebody model) as well as fixed mining and 

processing capacity, recovery, and commodity price (Hustrulid et al., 2013), making the 

conventional approaches for strategic mine planning deterministic. A deterministic orebody model 

is a single estimation of the mineral deposit where relevant characteristics of the deposit are 

considered fixed and certain. Conventional approaches also produce the production schedule of 

each mine individually, ignoring the interactions between components in a mining complex. 

Typical steps of conventional approaches in open-pit mine planning generally start with the 

determination of the optimal cut-off grade (Lane, 1964, 1988), which decides the destination and 

economic value of a block. Then, the ultimate pit limit is typically determined by the Lerchs-

Grossman algorithm (Lerchs and Grossman, 1965) to maximize the cumulative discounted cash flow. 

Within the ultimate pit limit, pushback designs that account for operational mining widths are 

determined. The processing stream decision can also be determined based on the material produced by 

pushback design. A major disadvantage of this approach is the use of deterministic orebody and 

parameters which can vary significantly in reality, which will be discussed in detail in Section 1.2. 

Another drawback is the sequential nature of the optimization framework, which will be elaborated in 

this section. Interrelated components in a mining complex are optimized independently when in 

reality, their behaviours depend on each other, thus leading to sub-optimal production schedules.  

To address the limitation of the sequential approach of conventional mine planning methods, 

starting in the mid-1990s, researchers started developing optimization frameworks toward joint 

optimization of multiple interconnected components in mining complexes. Pimentel et al. (2010) 

provide an important theoretical integrated modelling of a mining complex including mine and 

milling operations, product blending and railway system, and port operations. Hoerger, et al. 

(1999a) presented a study that realized the opportunity of including 50 material sources, 8 

stockpiles, and 50 destinations in Newmont's Nevada Operations into a single Mixed Integer 

Programming (MIP) formulation. The goal of the study is to develop an optimizer to capture the 

synergies between multiple open-pit and underground mines, and processing destinations by 

simultaneously optimizing material flows. Three continuous variables are used to quantify the 

material flows: the amount of material from a mine (source) to a processor, the amount of material 

from a mine to a stockpile, and the amount of material from a stockpile to a processor. This 

formulation maximizes NPV and satisfies constraints such as the mining rates, processing rates, 
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metallurgical blending limits, cash flow generation rates, and gold production rates. The 

framework achieves an increased net present value when applied to Newmont's Nevada Operation 

(Hoerger, et al., 1999b). This linear formulation has several limitations as it only models the 

material flow between different components. First, it assumes there is a fixed annual production 

schedule for the mine, which means the extraction sequences need to be predetermined. Also, the 

blocks are aggregated as pushbacks based on their metallurgical properties, thus losing the 

selectivity of mining units. The averaging procedure during aggregation might also mislead the 

material properties and lead to processing and blending issues at processing destinations. This 

work demonstrates benefits, provides motivations, and shows an example of capturing the value 

of synergies in a mining complex by simultaneously optimizing multiple components. 

Later, BHP developed the Blasor mine planning software (Stone et al., 2018). Blasor generates a 

production sequence of multiple pits and their ultimate pit limits to maximize the NPV over the 

life of the operation based on a MIP model. First, it aggregates spatially connected blocks with 

similar block attributes to reduce the number of integer variables, so that the size of the MIP is 

reduced and can be solved in a reasonable time. Based on the aggregated orebody model, the 

optimal extraction sequence of aggregates is generated using the CPLEX MILP engine obeying 

all mining, slope precedence, processing and market constraints. Then, the optimal aggregate 

extraction sequence is used to generate pushback designs for each pit. During this step, manual 

input might be required to assist the algorithm in designing mineable phases. Finally, the optimal 

panel extraction sequence is generated using the same method and the same mining, processing 

and marketing constraints to maximize economic value. Blasor was successfully applied to the 

Yandi Joint Venture, which consists of eleven pits. The optimization result provides long-term 

feasible extraction sequences that maximize the economic value of the operation. Limitations still 

exist. For example, the aggregation of blocks misrepresents the selectivity of the mining operation. 

And the manual adjustment of the pushback designs requires expert knowledge which might 

produce different results given the same input. Later, BlasorInPitDumping is developed by 

Zuckerberg et al. (2007) to incorporate in-pit dumping. In-pit dumping is required for some 

operations that either do not have enough space available outside the pit limits within their permit 

for dumping or have specific environmental requirements. On top of Blasor, BlasorInPitDumping 
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can model the movement of waste material from the extraction of blocks to in-pit dumping 

locations based on the haulage network. It also avoids the placement of waste material on top of 

valuable ore. The model simultaneously optimizes the panel extraction sequence and the placement 

of waste material in mined-out pit areas while respecting blending and capacity constraints as well 

as waste repose slope constraints. However, the previously mentioned limitations of Blasor remain 

in BlasorInPitDumping. 

Whittle and Whittle (2007) propose a model that includes more components (multiple mines, 

stockpile, processing destination) in a mining complex to optimize the extraction sequence of each 

mine and the processing stream strategies while respecting mining and processing constraints. 

Although the paper used the term “global asset optimization”, it optimizes components 

sequentially by first determining the extraction sequence and then optimizing the processing and 

blending strategies for the pre-determined extraction sequence. First, for each mine, nested pit 

shells are generated from orebody models using a modified version of the Lerchs-Grossman 

algorithm (Lerchs and Grossman, 1965). Then, nested pits are grouped into pushbacks satisfying the 

stripping ratio and generating economic value. Within each pushback, mining blocks that share similar 

grade attributes are aggregated into panels. Blocks belonging to the same panel are also grouped into 

parcels based on their material types. The sequence of panels and pushback form the extraction 

sequence of each mine. Aggregations of mining blocks reduce the size of the model allowing the 

"Prober" to optimize the processing and blending strategies with less computational expense. The 

“Prober” can solve the optimal processing and blending strategies using a linear solver for a given 

extraction sequence with a linear formulation. “Prober” repeatedly creates random feasible 

extraction sequences until convergence. Later, ProberB (Whittle, 2010) is developed to accelerate 

the optimization process. Starting from randomly generated combinations of feasible extraction 

depths of each panel of each mine, ProberB optimizes processing and blending decisions. Instead 

of generating another feasible extraction depth, ProberB modifies the depth based on the optimized 

result. The modification is repeated until ProberB obtains a local maximum for the randomly 

generated depths scenario. Then another randomly generated combination of feasible extraction 

depths can be used to find another local maximum. The process is repeated until the top ten results 

lie within a small fraction of a percent of the best local maxima. The optimization process can also 

be conducted with multi-threading to further decrease the computation time. ProberC (Whittle, 
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2018) further improves the algorithm to comprehend material grade as metal quantities and 

changes of material by as many procedures modelled as possible, by enhancing the data structure 

used. It allows increased complexity in modelling material flow for more accurate valuation of 

different processes. One drawback of the framework is that it employs several optimization 

procedures throughout the mineral value chain rather than in a single formulation. Each mine is 

optimized separately first to produce a sequence of pushbacks within its optimized pit limit. Then 

interactions between components are optimized to improve the outcome of the mining complex. 

This sequential process reduces the framework’s ability to capture synergies between different 

components and generate higher NPV. Other limitations exist such as the aggregation of blocks 

into panels, assumptions that parcels are mined with the same proportion, and the use of pre-

determined economic value of blocks. 

Previously mentioned optimization approaches attempt to optimize many components of the 

mining complex jointly, however, they all have limitations and are not simultaneous optimization 

frameworks. First and foremost, they ignore the uncertainty and spatial variability of pertinent 

properties of the mineral deposit, which is a major source of technical risk in mine planning 

referred to as supply or geological uncertainty (Dimitrakopoulos et al., 2002; Dowd, 1994, 1997; 

Ravenscroft, 1992). It misrepresents the actual material along with the impacts on the economic 

value of the mine production schedule; therefore the integration of supply uncertainty with 

stochastic simulations into optimization algorithms is required to enhance the robustness of mining 

complex optimization and its ability to capture synergies. Other limitations result from algorithmic 

design decisions to speed up the optimization process such as the aggregation of blocks and pre-

determination of extraction sequence. There is also a lack consideration of other major decisions 

for a mining project such as capital decisions and/or operating modes. 

1.2 Modelling uncertainties 

1.2.1 Modelling uncertainty in mineral deposits 

The methods outlined in Section 1.1 provide improvement to the conventional, sequential strategic 

mine planning approach. A common limitation of the above methods is the neglect of supply 
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uncertainty during the optimization process by using a single estimated orebody model providing 

a smoothed representation of mineral deposits by averaging the distribution of extreme values and 

local variability of materials.  

Supply or geological uncertainty is the uncertainty and spatial variability of pertinent properties of 

the mineral deposit, and it is the major contributor to risk in mining operations (Baker and 

Giacomo, 1998; Vallee, 2000). The primary limitation of estimation techniques and conventional 

mine planning approaches is their inability to accommodate the inherent spatial variations in 

deposit grades. Past studies have shown that the long-term mine production schedules produced 

with an average-type orebody model fail to deliver forecasted production results when supply 

uncertainty is later applied (Dimitrakopoulos et al., 2002; Dowd, 1994, 1997; Ravenscroft, 1992).  

This phenomenon arises from what is referred to as the 'smoothing effect' inherent in estimation 

methods leading to reduced variability in histograms and variograms compared to the actual data 

distribution (David, 1988; Dimitrakopoulos, 1998; Goovaerts, 1997; Journel and Huijbregts, 1978; 

Rossi and Deutsch, 2014). These impacts are further accentuated by the nonlinear nature of mining 

transfer functions (Dimitrakopoulos et al., 2002). This highlights the key takeaway that average-

type inputs do not necessarily yield average-type outputs, underscoring the necessity of modelling 

uncertainty and incorporating it into the strategic mine planning process.  

A set of equally probable representations of mineral deposits, referred to as stochastic orebody 

models/simulations, represent the spatial variability of relevant attributes in a mineral deposit. 

They are generated by stochastic simulation methods that reproduce the critical statistics, including 

(i) data value, (ii) histogram, and (iii) spatial correlation of the original data. Stochastic simulations 

are conditioned on available drill hole data or information obtained from mined-out areas. Among 

the stochastic simulation methods, a common characteristic is the adaption of the sequential 

simulation paradigm, which is built upon the underlying theory that a multivariate probability 

density function (PDF) can be rewritten as the product of univariate distribution functions by 

recursively applying the definition of conditional probability (Deutsch and Journel, 1997; Journel, 

1994; Rossi and Deutsch, 2014). The generic procedure of the sequential simulation follows: (i) 

define a random path visiting all the nodes, (ii) construct the conditional cumulative distribution 

function (CCDF) of relevant attributes at each location conditioned on data and previously 
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simulated value, (iii) randomly sample from the CCDF, and (iv) repeat until all nodes have been 

visited.  

When the probability density functions are assumed to be Gaussian, the method is called sequential 

Gaussian simulation (SGS) (Goovaerts, 1997; Journel, 1994; Journel and Deutsch, 1993; Remy et 

al., 2009; Rossi and Deutsch, 2014). The Gaussian assumption allows the utilization of the kriging 

system to estimate the mean and variance for conditional Gaussian distributions. The efficiency of 

SGS is described by its time complexity, which refers to how the computational time required for 

conducting the simulation increases with the size or complexity of the geological model or dataset 

being simulated. SGS has a time complexity of 𝑂(𝑁4) (Luo, 1998). The lower-upper triangular 

decomposition method (LU) is developed to reduce the computing time to 𝑂(𝑁3) by using vector 

processing capabilities (Davis, 1987). However, the limitation of high memory requirement is a 

drawback. Luo (1998) proves that SGS using Screen Effect Approximation (SEA) achieves 

computational complexity of 𝑂(𝑁𝑣𝑚𝑎𝑥
3 ) by limiting the maximum number of conditioning data, 

𝑣𝑚𝑎𝑥. Luo (1998) and Dimitrakopoulos and Luo (2004) introduce the Group Sequential Gaussian 

Simulation (GSGS) that instead of sequential simulation of nodes, is conducted by groups of 

nodes. GSGS reduces the computing cost to 𝑂 (
𝑁

𝑣
(𝑣𝑚𝑎𝑥
3 + 𝑣3)) , where 𝑣  is the group size. 

Furthermore, when 𝑣 = 1, GSGS is equivalent to SGS and when 𝑣 = 𝑁, GSGS is equivalent to 

LU. Dimitrakopoulos and Luo (2004) also explore how to determine the size of the neighbourhood 

to find a balance between the precision of simulation results and computational efficiency by using 

screen-effect approximation loss, which is the mean square difference between the simulated 

values using all conditioning data and local neighborhood data. 

LU, SGS, and GSGS generate simulations at the same support as the conditioning data, often 

require re-blocking to block support. Storing point support results during simulation requires a 

large amount of memory allocation. To overcome this limitation,  Godoy (2003) presents the direct 

block simulation (DBSIM) which can simulate block models directly at block support. DBSIM 

utilizes the advantage of GSGS of simultaneously simulating a group of nodes within a block to 

save computation time; furthermore, DBSIM discards the group of simulated points at each step 

to output a block directly reducing memory requirements. The consideration of dispersion variance 
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allows the sequential conditional simulation process to use the data points and previously 

simulated blocks as conditioning data and uses point-block variance and block-block variance even 

if they are in different support scales. Block sizes as the selective mining unit (SMU) can be used 

for DBSIM so that re-blocking is not needed, and the result can be directly used as input for 

stochastic optimizations (Dimitrakopoulos and Ramazan, 2004; Goodfellow and Dimitrakopoulos, 

2016, 2017; Leite and Dimitrakopoulos, 2014; Montiel and Dimitrakopoulos, 2015, 2018) 

Mineral deposits have multiple correlated attributes of interest for mining operations, including 

valuable metal content, material types, deleterious elements, etc. Multiple elements can be 

simulated using previously mentioned SGS methods with the assumption of multi-gaussian 

distribution and the use of co-kriging (reference). However, computational complexity increases 

exponentially with the number of attributes to be simulated (Verly, 1992). Methods are developed 

to reduce the computational requirement and preserve the correlations of the simulated result. 

These methods first de-correlate the correlated attributes then simulate them separately and then 

re-correlate them, so the computational complexity will increase linearly, rather than 

exponentially. The de-correlation of collocated attributes can be carried out by principle 

component analysis (PCA) (David, 1988). PCA de-correlates correlated variables into independent 

factors that can be simulated separately without considering correlations of original variables to 

reduce computing time; however, PCA only guarantees the de-correlation of the covariance matrix 

at zero lag. Desbarats and Dimitrakopoulos (2000) employ minimum/maximum autocorrelation 

factors (MAF) (Switzer and Green, 1984) to simulate multi-variate orebodies. MAF applies two 

PCA decompositions, to de-correlate variables into independent factors at all the lag distances, 

overcoming the disadvantages of PCA. Furthermore, Boucher and Dimitrakopoulos (2009) 

develop direct block simulation with Min/Max autocorrelation factors (DBMAFSIM), that 

combines the benefits of MAF and DBSIM. With a case study on the Yandi iron ore deposit, 

Boucher and Dimitrakopoulos (2012) demonstrate that the use of DBMAFSIM is able to reproduce 

both direct- and cross-variogram while demonstrating the benefits of requiring fewer variograms 

to be calculated and outputting block-support simulation with manageable file sizes. 

Previously mentioned Gaussian-based simulation methods are limited by the Gaussian assumption 

and use of variograms, which are two-point statistical measurements describing the spatial 
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variability of mineral deposits. Although the Gaussian assumption offers conveniences because 

the distribution of relevant attributes can be described with only mean and variance, natural 

geological phenomena are known to present complex curvilinear and non-linear spatial patterns 

(Dimitrakopoulos et al., 2010; Guardiano and Srivastava, 1992). And the maximum entropy 

property of Gaussian methods results in the ‘salt and pepper’ effect for extreme values (Journel 

and Deutsch, 1993). The outcome of strategic mine planning might be impacted by the inability to 

reproduce these complex patterns and connection of extreme values in mineral deposits, due to 

spatial connection requirements of extraction sequence and non-linear transfer functions of the 

mine production schedule. 

Multi-point statistic (MPS) methods are one category of simulation methods that address the limitation 

of two-point statistics and capitalize on the opportunities to infer multiple-point spatial statistics. MPS 

also follows the sequential simulating paradigm. Different from traditional simulations of a spatial 

random field, multi-point statistics collect information from training images using data templates, to 

consider spatial relationships among multiple points simultaneously (Journel, 1989; Remy et al., 2009; 

Strebelle, 2002; T. Zhang et al., 2006). Training images are a 2D or 3D representation of a geological 

or spatial phenomenon that serves as a reference for the desired spatial characteristics. They can be 

obtained from direct observations and measurements from production data, exploration sampling, and 

mined-out areas. A data template is a search neighbourhood that is defined by a center location and its 

neighbourhood and is used for pattern matching during the MPS simulation process. It captures 

multiple data points at the same time. In most MPS simulations, training images are reprocessed and 

saved as a “pattern database”, based on the spatial template. MPS methods search the patterns database 

for patterns that match the conditioning data. ENESIM (Guardiano and Srivastava, 1992) and SNESIM 

(Strebelle, 2002; Strebelle and Cavelius, 2014) are MPS that simulate one pixel/node at a time, termed 

as a pixel-based method. SIMPAT (Arpat and Caers, 2007) and FILTERSIM (Zhang et al., 2006) 

simulate entire patterns instead of one pixel, termed pattern-based. Compared to ENESIM and 

SNESIM which only simulate categorical attributes, SIMPAT and FILTERSIM can simulate 

continuous attributes using different distance measurements for similarity instead of looking for exact 

match. The storing of a pattern database requires large memory space, and scanning the pattern 

database is computationally expensive. Direct sampling (Mariethoz et al., 2010) allows sampling from 

the training image, avoiding storing the data events in a search tree. The process randomly chooses a 
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replicate from the Training Image (TI). Then, a distance function is employed to calculate the degree 

of similarity between the chosen replicate and the data event. If the replicate is determined to be similar, 

the simulation node takes on the central value of the said replicate. Otherwise, another replicate is 

chosen instead. Such random selection of similar data events can accelerate the simulation by running 

the sampling in parallel. Above mentioned methods need to handle multi-scale spatial characteristics 

using techniques such as multi-grid to capture spatial phenomena in different scales. WAVESIM 

(Chatterjee et al., 2016; Gloaguen and Dimitrakopoulos, 2009) utilizes wavelet transform of 

training image to simulate features in different scales directly, given considerable dependencies 

between scales as observed from the distribution of the wavelet coefficients. MPS methods 

demonstrate several limitations. First of all, the use of training images is usually computationally 

expensive for multivariate models. Also, the use of training images generally requires large amounts 

of data that are often unavailable. For example, a training image can be a completely mined-out area, 

which is unavailable at the early stage of a mining operation. Moreover, MPS methods do not always 

reproduce statistics of exploration data because they are focused on reproducing the pattern in the 

training image. 

Due to the need to reproduce high-order statistics and the limitations of MPS methods, another 

category of simulation methods has been developed to extend spatial models beyond second-order 

statistics by accounting for high-order spatial characteristics such as cumulants from conditioning 

data to simulate complex geological structures and non-linear patterns. Dimitrakopoulos et al. 

(2010) proposed the high-order stochastic simulation (HOSIM) method that uses spatial cumulants 

and moments for the description of complex geological structures and non-linear patterns beyond 

second-order statistics. Cumulants are statistical measures used to describe the properties of a 

probability distribution (Brillinger and Rosenblatt, 1967; Rosenblatt, 1985), especially for spatial 

statistics of higher order than mean (first order) and variance (second order). They are 

mathematical quantities derived from the moments of a random variable and provide useful 

information about the shape, dispersion, and other characteristics of the distribution.  

Dimitrakopoulos et al. (2010) demonstrate the ability of high-order cumulants to describe complex 

geological structures and connectivity and the relations between the higher and the lower-order 

moments or cumulants. These characteristics show consistency over a series of orders, which 

cannot be represented or reproduced by multiple-point statistics observed with spatial templates. 
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However, it also shows that the sequential calculation of cumulants is computationally expensive. 

Mustapha and Dimitrakopoulos (2010) present a HOSIM method that uses spatial cumulants to 

build the conditional probability distribution function (CPDF) and high-order Legendre 

polynomials to approximate said distribution. This framework is capable of reproducing low and 

high-order spatial statistics and generating more accurate realizations of complex geological, and 

no prior assumptions about the probability distribution are made. To reduce the high cost of 

computing high-order spatial cumulant, spatial templates are defined as a priori.  

Minniakhmetov and Dimitrakopoulos (2017a) extend the method to jointly simulate spatially 

correlated variables of deposits. The method first de-correlates the correlated variables into 

independent factors with the diagonal domination cumulants. Then, factors are independently 

simulated. The simulated factors are transformed back to generate simulations that reproduce both 

low and high-order spatial statistics. de Carvalho et al. (2019) further extend the method to directly 

simulate orebody at block support by estimating the cross-support probability distribution 

function. The benefits include minimizing the memory requirements and improving the 

computation time as explained previously. Minniakhmetov and Dimitrakopoulos (2017b) propose 

a data-driven framework for high-order simulation of correlated variables without using training 

images. Based on the fact that high-order spatial moments are connected with lower-order 

moments based on boundary conditions, spatial cumulants can be calculated recursively from hard 

data using the B-spline approximation of higher-order cumulants under zero-boundary constraints. 

The method is capable of reproducing with conditioning data and avoiding the necessity of a 

training image. The option of using a training image is still available in case the conditioning data 

is sparse. Yao et al. (2018) present a new computational model for high-order stochastic 

simulation. The method uses spatial Legendre polynomials with location-dependent templates to 

approximate the CPDF. Doing so avoids the requirement of defining prior templates and reduces 

the computational time of calculating moments or cumulants by parallelizing the calculation for 

each replicate. de Carvalho et al. (2019b) compare the effect of using high-order simulations and 

using two-point SGS simulations in the mine production scheduling optimization. The high-order 

simulations demonstrate more complex, nonlinear spatial characteristics of the variables and 

reproduce the connectivity of extreme values. When high-order simulations are used for 
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simultaneous stochastic optimization, the production plan of an open-pit gold mine generates 5% 

to 16% more NPV when compared to using two-point SGS simulations.  

1.2.2 Modelling uncertainty  in mining equipment performance 

Factors affecting uncertainty in equipment performance include availability, utilization, 

productivity, breakdown, performance, repair time, cycle time, etc., and these factors vary largely 

between all the equipment used in a mining operation. Monte Carlo simulations have been used to 

generate equally probable scenarios that are generated based on historical equipment performance 

data and can quantify the uncertainty associated with the performance of different equipment in a 

mining operation. Two major types of Monte Carlo simulation approaches are used to quantify 

equipment performance uncertainty in the literature (Fioroni et al., 2008; Upadhyay et al., 2015; 

Upadhyay and Askari-Nasab, 2017). The first type of simulation assumes that equipment 

performance follows a prior distribution, and then simulations can be done by estimating the 

parameters of the prior distribution. The second type of simulation follows empirical distribution, 

which makes no priori assumption, solely based on the historical equipment performance data. 

Matamoros and Dimitrakopoulos (2016) simulate shovel and truck availability, by assuming the 

availability of equipment follows a Gaussian distribution. Quigley and Dimitrakopoulos (2016) 

simulate cycle time, assuming Gaussian distribution. Both and Dimitrakopoulos (2018) simulate 

shovel productivity and truck availability assuming a Gaussian distribution. Paduraru and 

Dimitrakopoulos (2019) simulate the shovel load time, truck cycle time assuming a Gaussian 

distribution, shovel breakdown time assuming an exponential distribution, and shovel repair time 

assuming a log-normal distribution. Ozdemir and Kumral (2019) simulate truck fill factor, loading 

time, dumping time, and truck hauling time by assuming either log-normal, normal, or Weibull 

distributions. Quigley and Dimitrakopoulos (2020) generate simulations of shovel production, 

utilization, availability, and truck utilization and availability, assuming multi-Gaussian 

distribution. However, instead of simulating with a multi-Gaussian distribution, different 

correlated equipment performance indicators, such as production, utilization, and availability, are 

first de-correlated into independent factors using Principle Component Analysis (Hotelling, 1933). 

Then, the PCA factors are simulated separately assuming Gaussian distribution. Finally, the set of 
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independently simulated factors is back-transformed into performance indicators representing the 

simulated equipment performance. de Carvalho and Dimitrakopoulos (2021; 2023) simulate the 

shovel loading and truck cycle time assuming normal distribution as well as equipment failure 

frequencies and repair times assuming Poisson distribution. 

1.2.3 Modelling uncertainty in mineral processing recovery 

The integration of geo-metallurgical properties, especially recovery rate, into the evaluation and 

optimization of the mine production plan, is vital for the realization of the economic value of the 

mining operation (Coward et al., 2009). The uncertainty of processing recovery arises from the 

interaction between the mineralization (attribute grade, hardness, texture, etc.) and the operation 

of the mining and processing plant (comminution time, reagent used, etc.). This uncertainty can 

be modelled by stochastic simulations. Coward et al. (2013), Coward and Dowd (2015), and 

Jackson et al. (2014) use a set of simulated recovery responses to assess the effect multiple 

uncertainties have on the economic outcome of mining projects. Coward et al. (2013) propose a 

method for simulating the recovery curve by bootstrap sampling of the recovery data. The study 

suggests that these recovery curves can often be reasonably modelled by many models such as the 

linear, second-order quadratic or logarithm functions, and for each of the input parameters used, it 

is possible to describe the distribution, based on experiments conducted on the historical 

production data from the mine.  In a case study, the recovery uncertainty is generated by assuming 

the recovery function of the form 𝑅𝑒𝑐% = 𝑚 ∗% Kimberlite + c. By removing one data point 

(“bootstrapping”) and re-estimating 𝑚 𝑎𝑛𝑑 𝑐 , it was possible to derive a set of 𝑚 𝑎𝑛𝑑 𝑐 

parameters. Repeating the above process, multiple values of  𝑚 𝑎𝑛𝑑 𝑐 are produced. Then, by 

computing the mean and variance from the set of 𝑚, it was possible to draw random values of 𝑚  

from the normal distributions with the same mean and variance to produce simulated values of 𝑚. 

A similar procedure is followed for simulating the values of 𝑐. 

Scenario Based Project Evaluation (SBPE), or stochastic risk analysis, is conducted with said 

recovery uncertainty and geological uncertainty, and the results show significant deviations from 

production targets due to the joint effect of uncertainties. Jackson et al. (2014) explain the process 

of SBPE in detail and present a case study incorporating geological, recovery and market 
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uncertainty. Coward and Dowd (2015) present a more comprehensive approach and case study at 

a copper porphyry mine with flotation processing plants. The study assesses the uncertainty of the 

net smelter return (NSR) based on the combined effect of geological uncertainty with a set of 

simulated orebody models, recovery uncertainty by creating multiple simulated grade-recovery 

curves using the process presented by Coward et al. (2013), and market uncertainty with a set of 

future metal prices scenarios. The risk analysis reveals that the spread of NPV, the range between 

P10 and P90, is as large as 70 % of the expected project NPV when the compound uncertainty is 

considered. These demonstrate the importance of recovery uncertainty by measuring the effect of 

recovery uncertainty on NPV. Future works are needed to account for the recovery uncertainty in 

the mine optimization process. 

1.2.4 Modelling uncertainty in commodity prices 

The commodity price is essential to the economic viability of mining operations as it governs the 

classification of in-situ resources and profits of sellable products. Also, price uncertainty is 

generally considered uncontrollable to mining companies over a long-term horizon. Therefore, it 

is vital to account for the market uncertainty in strategic mine planning (McCarthy and 

Monkhouse, 2002). Generally, the four main factors governing commodity prices are supply and 

demand, regulation by cartels or commodity agreements, negotiation between producers and 

consumers, and fixed prices by a monopoly or oligopoly (Gocht et al., 1988). However, long-term 

commodity forecasting using an economic model is not common practice for mining companies 

(Dooley and Lenihan, 2005). Instead of integrating metal price forecasts, the expected commodity 

price is used for strategic mine planning to produce a long-term plan. This planning process is 

repeated every year, and the most current fixed price is used. Then, the outcome of the long-term 

plan is analyzed for its sensitivity with base, upside, and downside case prices as base, best, and 

worst-case scenarios of the deterministic mine plan. Each commodity is influenced by its 

characters and markets.  

Commodity price forecasting can be formulated as stochastic models like the ones presented by 

Schwartz (1997), or structural models like the ones presented by Pirrong (2011). Schwartz (1997) 

presents the two most commonly used models to conduct commodity price simulation, Geometric 
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Brownian Motion (GBM) and Mean-Reversion (MR). The GBM model incorporates market 

volatility and long-term interest rates as factors influencing commodity prices. On the other hand, 

the MR model accounts for a long-term mean price, reverting speed, and volatility as factors. It is 

commonly accepted that base metal prices are heavily influenced by supply and demand, and are 

fluctuating around a long-term price, and precious metals tend to be influenced by investment 

factors such as interest rates (Kernot and West, 1991). Therefore, GBM is commonly used for 

precious metals price simulation and MR is used for base metal. Many other variants of GBM and 

MR also exist. For example, Suarez and Fernandez (2009) present an MR model with Poisson 

jumps (Press, 1967) for modelling sudden and significant changes in price. Del Castillo and 

Dimitrakopoulos (2014) incorporate copper price simulation into determining ultimate pit limits 

in addition to the geological uncertainty. The copper prices are simulated using MR with Poisson 

jumps. Although the integration of market uncertainty has the potential to improve strategic mine 

plans, the effect of a set stochastic price simulation still requires study. 

1.3 Strategic mine planning with uncertainty 

1.3.1 Incorporating uncertainty in strategic mine planning 

Previous sections describe the conventional method of strategic mine planning, and their need to 

incorporate multiple sources of uncertainties in the planning process to increase project value while 

managing risks and exploiting opportunities appropriately. The primary contributor to not meeting 

project expectations is supply uncertainty. This is due to the fact that optimizing a mine design 

with deterministic approaches involves complex non-linear transfer functions, and employing an 

average-type model as input for optimization can yield misleading outcomes. They also 

demonstrate that including uncertainty can significantly reduce the deviation from the production 

target while increasing the project value. 

One of the first approaches to account for geological uncertainty in the mine production scheduling 

process is developed by Godoy (2003) and  Godoy and Dimitrakopoulos (2004). This stochastic 

optimization approach manages risks associated with supply uncertainty. First, the stable solution 

domains for each orebody model are defined based on all feasible stripping ratios, and the stable 
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solution domain is bounded by the best case (pit-shell-by-pit-shell) and the worst case (bench-by-

bench). Then the optimum mining rates are determined by a mathematical programming 

formulation within the overlapping area of the stable solution domain. The optimum mining rate 

is then used to generate extraction sequences for each one of the orebody simulations. Possible 

periods for blocks to be extracted are determined for perturbations by considering all extraction 

sequence generated. For example, if there is a 95% chance a block belongs to the same extraction 

period, there is only one candidate period for extracting this block, and this block is "freezed" at 

this period and will not be considered for perturbation. By perturbing the remaining blocks to 

minimize the deviation from the optimal ore and waste production targets, the optimal production 

schedule is generated using a simulated annealing (SA) optimization approach (Metropolis et al., 

1953). This method generates a single production schedule that aims to minimize deviations from 

the optimized processing capacity while accounting for supply uncertainty and respecting the 

production capacities. Certain limitations remain such as the intensive labour required to develop 

initial schedule for all scenarios. However, it is the first optimization method that produces 

production schedules accounting for uncertainty. The method is applied to a real-life open-pit gold 

mine and the production schedule is compared to the base case schedule generated with a single 

estimated orebody model (Godoy and Dimitrakopoulos, 2004). Compared to the base case 

schedule, the production schedule generated by the method substantially increases the project NPV 

by 28% and reduces the risk of deviating from production targets by approximately 9%. Leite and 

Dimitrakopoulos (2007) apply the method to a low-grade disseminated copper deposit. The result 

shows an increase of NPV by 26% and a significant reduction in deviations from production 

targets. Furthermore, Albor and Dimitrakopoulos (2009) study additional aspects of the method. 

First, it reveals that freezing blocks does not affect the final result other than requiring longer 

computing time. Also, the method is not sensitive to increasing the number of input simulated 

orebodies when the number is more than 10. It reveals an important feature that although modelling 

supply uncertainty requires a number of simulated orebodies to describe the distribution of an 

individual block, a stable mining production schedule can be obtained with a lower number of 

orebody simulations. This is caused by the volume-support effect as an annual schedule extracts a 

large volume of blocks within a single period. As opposed to all previous studies assumed a fixed 

ultimate pit limit generated by the Lerchs-Grossman algorithm (Lerchs and Grossman, 1965), 
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Albor and Dimitrakopoulos (2009) also improve the method to consider optimal pit limits 

generated by the stochastic approach. The stochastic approach shows a 10% improvement when 

letting the optimizer decide the ultimate pit limit due to the input of supply uncertainty. The 

stochastic optimal pit limit is larger than the one determined by conventional optimization methods 

due to the optimization of mining rates and using multiple simulated orebody models as input, 

resulting in a 17% increase in total tonnage and extending the production life by one year.  

Stochastic integer programming (SIP) can be used to formulate problems with uncertainty and find 

a solution that maximizes the desired outcome while satisfying constraints and managing and 

exploiting associated risk (Birge and Louveaux, 2011). Various technical literature suggests the 2-

stage stochastic integer programming model is suitable for the optimization of mining complexes 

(Dimitrakopoulos and Ramazan, 2008; Ramazan and Dimitrakopoulos, 2005, 2013). The first-

stage decisions are taken before observing the uncertainty, and second-stage decisions, also called 

recourse decisions, are taken after the uncertainty is revealed. SIP formulations provide flexibility 

to model mining complex optimization. It can maximize the expected NPV of the mining 

operation, minimize the deviations from production targets including ore tonnage, grade and 

quality, and create a feasible production schedule at the same time (Albor and Dimitrakopoulos, 

2009; Dimitrakopoulos, 2011; Leite and Dimitrakopoulos, 2014). The first stage decisions are the 

mining and processing decisions describing the production plan of the mining complex. The 

second stage recourse variables are measurements of deviations from production targets resulting 

from the first-stage decisions.  

Ramazan and Dimitrakopoulos (2005) propose the first application of the two-stage stochastic 

integer programming (SIP) model. It produces a long-term production schedule using a set of 

stochastic orebodies as input instead of an average-type model. The objective function aims to 

maximize the project NPV and minimize deviation from ore, waste, and metal production targets. 

The first stage extraction decisions are modelled as binary variables. The second stage variables 

are used to measure deviations from the production target in each scenario. A case study of a 

hypothetical two-dimensional deposit with a 3-year LOM is conducted with a commercial solver. 

The use of penalty costs in the objective function generates a balance between the NPV and risk 

management. The risks are reduced and deferred to later years when more information is available 
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through the use of geological discounting (Dimitrakopoulos and Ramazan, 2004). This overcomes 

substantial limitations of the maximum-upside and minimum-downside approach. Ramazan and 

Dimitrakopoulos (2013) extend the framework to incorporate stockpiles to improve the processing 

strategy and the geological discount rate. The geological risk discount rate enables the optimization 

to not only reduce the risk but also defer risks into later periods. The optimization model is tested 

on a gold deposit. The application is computationally expensive. The total number of decision 

variables exceeds 90,000 with more than 27,000 binary variables and 54,000 constraints. The 

production schedule is optimized over two time horizons, first years 1-4, with 18,000 binary 

variables, are optimized, and then years 4-6 with, 9,000 binary variables, are optimized. The 

combined schedule results in a 10% improvement in NPV and reductions in ore production 

deviation compared with a conventional schedule. Later, Benndorf and Dimitrakopoulos (2013) 

proposed a similar formulation to model the blending of material to allow the incorporation of 

blending constraints for processing destinations requiring their throughput to have certain material 

properties. The method is applied to the Yandi Central 1 iron ore deposit in Western Australia. 

Geological uncertainty in iron, silica, alumina, phosphorus, and loss on ignition are modelled 

through twenty simulated orebodies. Geological risk discounting is used through the blending 

target deviation penalty, the influence of the material quality on the performance of the production 

schedule is reflected in the objective function. The case study also explores how to choose 

appropriate penalty costs for deviating from production targets. $1, $10, and $100 per unit 

deviation are tested and their impact on schedule dispersion and the achievement of blending 

targets are demonstrated and compared to determine the most suitable penalty. It finds that medium 

penalties produced the best results in meeting blending targets while producing a smooth schedule. 

The result shows that the method can manage the risk of deviating from blending targets while 

increasing project NPV. However, due to the fact that deviation penalties are modelled in the 

objective function alongside cash flows, the production target penalty cost and smoothing penalty 

cost must be calibrated to achieve a satisfactory production schedule.  

Multistage stochastic programming mimics real-world scenarios where decision-makers must 

make choices at different points in time with information already observed in the past and 

uncertainty that might be observed in the future. Multistage stochastic programming allows 
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decisions to be modelled and optimized in multiple time periods or stages. At each stage, the 

decision-maker faces a set of decisions and must choose the best course of action based on the 

information available up to that point. Boland et al. (2008) propose a multistage formulation to 

allow both mining decisions and processing decisions to adapt to the geological uncertainty 

observed. It is able to alter mine processing decisions as new information is available. Processing 

decisions are allowed to change at the same period as uncertainty is revealed, while mining 

decisions are subjected to a one-year lag to adapt to the uncertainty observed. As opposed to two-

stage SIPs that only produce one production schedule, multistage stochastic programming 

produces a set of production plans corresponding to each one of the input stochastic scenarios. 

When there are significant differences between the grades of simulated orebodies, the solution is 

allowed to change the processing and mining decision variables between scenarios. If there are no 

significant differences, non-anticipativity constraints are enforced to ensure decisions are the same 

across different scenarios. Such non-anticipativity constraints avoid the set of production 

schedules overfitting the distribution of grades. The method is applied and compared to a 

deterministic equivalent base case. The result shows that the proposed approach increases the NPV 

by 3%. However, there are serval limitations with this method. First, there is no control over 

deviations because multiple scenarios are considered a set of perfect information; therefore, the 

set of production schedules will over-fit the corresponding scenario. Consequently, they will 

perform poorly when tested over a different set of simulations. This suggests that the reality 

encountered cannot be represented exactly by any of the simulations. Also, the flexibility of the 

method increases the number of multistage decision variables, which increases computational 

expense. Lastly, the set of production plans is produced by branching, so there is no unique 

schedule for implementation.  

Approaches based on SIPs provide many benefits for strategic mine planning with uncertainty. A 

thorough review of the methods, advancement, benefits and drawbacks with examples and 

summaries of case studies are conducted by Dimitrakopoulos (2011). The stochastic framework 

addresses the main drawback of estimation methods and conventional planning approaches which 

is the inability to produce a single optimal schedule to account for the inherent spatial variability 

of in situ grades. In fact, conventional optimization methods assume perfect knowledge of the 
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orebody in question. Neglecting this fundamental source of risk and uncertainty can result in 

impractical production projections and suboptimal mine plans. The research presented in this 

context demonstrates that the stochastic framework adds value to the production plan in the order 

of 25% (Dimitrakopoulos, 2011). The stochastic framework also produces about 15% more 

tonnage than deterministic ones. These optimization frameworks also minimize the risk of 

deviation from production targets with a feasible schedule or deferring them into later periods by 

the use of geological risk discounting.   

1.3.2 Simultaneous stochastic optimization 

Simultaneous stochastic optimization incorporates all components of a mining complex in a single 

mathematical formulation, allowing the modelling of constraints of every component at the same 

time and any nonlinear transformation so that the solution is able to capitalize the synergies 

between components (Goodfellow and Dimitrakopoulos, 2016; 2017; Montiel and 

Dimitrakopoulos, 2015; 2017; 2018). Components in a mining complex can include mineral 

deposits (open-pit and underground), stockpiles, waste disposal, processing destinations, 

transportation, products to clients etc. Two-stage SIP formulations with fixed recourse (Birge and 

Louveaux, 2011) provide a practical formulation that maximizes NPV, while managing technical 

risks by accounting for supply uncertainty. The simultaneous stochastic optimization framework 

generates a long-term production schedule that considers the flow of material between the 

components in the mining complex from the mines to the customers and the spot market. The 

approach captures the synergies between the different components and determines the optimal 

production schedule decisions that account for the configuration of a mining complex. The 

formulation of the mining complex allows the optimization to consider the value of the product 

sold at the end of the value chain instead of determining the economic value of blocks prior to 

optimization. This change allows synergies between components to be discovered and capitalized 

by directly integrating stockpiling, blending, destination policy and capital expenditure decisions 

into the optimization. The production schedule generated using a simultaneous stochastic 

optimizer increases the NPV and improves the ability to manage technical risks. 



 

 

25 

 

Montiel and Dimitrakopoulos (2013) present an initial approach to model an entire mining 

complex. The extraction decisions are optimized, followed by the downstream flow of materials. 

The optimizer modify the extraction sequence first and then assigns a destination to each block 

based on their material type under different scenarios. The optimizer aims to reduce deviations 

from production targets and quality requirements using simulated annealing. The method is applied 

to the Escondida Norte mine in Chile. The case study shows that the method reduces production 

target deviations from 20% to 5% in the benchmark for the processing and grade targets. Although 

the NPV is not specifically optimized in this framework, the case study still shows a 4% increase 

in NPV. Despite only optimizing the extraction sequence, the method integrates important 

processing decisions into the production schedule by modelling the entire mining complex. 

However, the misclassification of ore blocks remains an issue because the material type of a block 

might vary between different scenarios and certain destinations only accept certain types of 

material. Also, the approach shows better performance when an initial solution is used as input. 

Montiel and Dimitrakopoulos (2015) present an optimization model to overcome several 

limitations mentioned above. The model incorporates multiple mineral deposits, processing 

steams, and transportation alternatives. The objective function is modelled as a two-stage SIP to 

explicitly maximize NPV by accounting for the value of the final product sold and operational 

costs while minimizing deviations from production targets. The block extraction and processing 

decisions, processing alternatives, and transportation alternatives are optimized simultaneously 

with supply uncertainty. The simulated annealing solution approach (Metropolis et al., 1953) 

utilizes three types of perturbations to improve the objective function. The three types of 

perturbations are used to modify block extraction and processing decisions, processing 

alternatives, and transportation alternatives respectively (Montiel and Dimitrakopoulos, 2017). 

First, the block-based perturbations modify the extraction period of a block. Destinations of the 

blocks are determined by formulating a knapsack problem (Dantzig and Thapa, 2003) based on 

the overall profitability of the block to a destination across all orebody scenarios. The operating 

alternative perturbations randomly change the operating modes at processing facilities. The 

objective value is evaluated for new operating alternatives considering all orebody scenarios. 

Transportation perturbations randomly modify the proportions of output material from a 
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processing facility at a period to a transportation system. The method is applied to Newmont’s 

Twin Creek operations (Montiel and Dimitrakopoulos, 2018). The simultaneous stochastic 

optimization increases the NPV by 7% and improves the management of autoclave blending 

constraints when compared to the deterministic schedule of Twin Creek operations. However, 

limitations exist for the method. First, destinations are determined by finding the most profitable 

destination for each block instead of optimizing the destinations of other blocks at the same time. 

An initial solution is required for reasonable execution time. This would limit the efficient 

exploration of solution space. The block-based destination decisions are scenario-independent, 

which reduces the number of decision variable but increase the chance of misclassification of 

material. 

Goodfellow and Dimitrakopoulos (2016) propose a generalized network-based modelling method 

that allows the inclusion of all components in a mining complex for simultaneous stochastic 

optimization and considers the value of final products sold at the end of the mining complex instead 

of block economic values. It is the framework for the research discussed herein. The method aims 

to simultaneously define the life-of-asset extraction sequences, destination policy, and processing 

stream decisions while managing the metal production targets. With a two-stage SIP model, the 

extraction sequence and destination policy are modelled as first-stage decision variables and 

processing stream decisions are modelled as second-stage decision variables. The scenario-

independent extraction decisions determine which period a block is mined. The scenario-

independent destination decisions determine the destination of a cluster of blocks after they are 

mined. This new destination policy avoids misclassification of material by allowing blocks to be 

assigned to different clusters in different scenarios. The clusters of blocks are decided based 

similarity of grade attributes using the k-means++ clustering algorithm (Arthur and Vassilvitskii, 

2007). Although the destination decisions are scenario-independent, the membership for each 

block is scenario-dependent due to the supply uncertainty of the simulated metal grade. However, 

it introduces a user-defined parameter, the number of clusters. A higher number of clusters leads 

to a higher degree of flexibility for the optimizer and can lead to higher NPV, but it might also 

create overfitting the distribution of metal grade as the number gets close to the number of blocks 

and creates difficulty for operation. This multi-variate clustering improves optimization for 
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orebodies with multiple valuable metals as well as better management of deleterious elements. The 

clustering approach allows the destination policy to be determined jointly with extraction decisions 

and processing stream decisions during the optimization process. However, the clustering result 

and the cluster-based destination policy is difficult to visualize or interpret at high dimensions as 

the boundary becomes complicated. The processing stream decisions determine the proportion of 

output material from a location to another downstream destination. The scenario-independent 

decisions are made resilient to the uncertainty observed in the mining complex while scenario-

dependent decisions can be made adaptive to the uncertainty. The uncertainty can be characterized 

through a set of scenarios or a combination of different sets of scenarios, which describes joint 

uncertainty. The uncertainty and other relevant operation parameters are modelled as attributes 

such as metal contents, mining cost, recovery, revenue from sales, etc. A multiple neighborhood 

simulated annealing algorithm is used as the solution approach along with constraint relaxation. 

This algorithm is an effective strategy that ensures both improving the solution and exploring a 

wide solution space, making it well-suited for finding global optima instead of getting stuck in 

local optima (Dimitrakopoulos and Lamghari, 2022). The algorithm will be explained in detail in 

Section 1.3.3. 

A case study was performed on a multi-element nickel laterite mining complex in comparison to 

the conventional schedule to demonstrate the framework’s ability to incorporate supply uncertainty 

in a mining complex and the benefit of considering the value of the product sold (Goodfellow and 

Dimitrakopoulos, 2017). The mining complex consists of two orebodies and multiple stockpiles 

with strict blending requirements. Ignoring supply uncertainty leads to sub-optimal production 

schedules with destination policy and blending strategies that can be detrimental to the material 

quality requirements. The simultaneous stochastic optimization must generate an optimal 

production schedule determining a multi-element destination policy, with clusters on nickel, iron, 

silica and magnesia grades, and a dry tonnage density factor. The result is compared to a 

“deterministic-equivalent” design. The “deterministic-equivalent” design is generated by the same 

formulation but using a single estimated orebody as input. The stochastic design is able to satisfy 

the key constraints of interest, such as the SiO2:MgO ratio, iron grade and plant feed tonnage, 

while increasing the NPV by 3%. Another case study of a copper-gold mining complex is also 
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conducted (Goodfellow by Dimitrakopoulos, 2017). This case study incorporates a non-linear 

grade-recovery relationship for copper and gold grades into the optimization model. In a 

conventional optimization framework, nonlinear recoveries can only be considered by calculating 

the economic value of the block assuming each block can be processed separately. This 

advancement, brought by the consideration of the value of final products sold, enables the 

calculation of blending of materials at the different processing destination and capture the added 

value of maximizing recovery through blending. The result of simultaneous stochastic 

optimization not only better meets the production targets at the sulphide mill and sulphide heap 

leach while reducing the risk in terms of the quantities sent but also increases the NPV by 22.6%. 

Goodfellow and Dimitrakopoulos (2015) extend the framework to include capital expenditure 

(CapEx) options. It allows the modelling of CapEx by modelling concepts such as truck and shovel 

hours to integrate load, haul fleet purchases etc. It addresses the challenge of determining the 

optimal timing of large capital investments such as the purchase of shovels and trucks determining 

the optimal mining rate. The mining rate determines the amount of material and metal to be 

generated and the mining cost of the mine. Predetermining the mining rate can only obtain a locally 

optimized production schedule. Hence, the consideration of CapEx decisions is vital to obtain an 

optimal result. The result of optimization not only shows a 5.7% increase in NPV, when compared 

to a deterministic design that does not consider risk but also demonstrates the framework’s 

flexibility to model concepts such as truck and shovel hours and haul fleet purchases into the 

simultaneous optimization. 

Farmer (2016) extends the framework introduced by Goodfellow and Dimitrakopoulos (2016) to 

incorporate processing capacity and mining capacity options by modelling CapEx options. The 

optimization simultaneously optimizes the sizing of a processing capacity and the mining rate 

which are two major bottlenecks of mining operations. This provides simultaneous determination 

of the amount of mining equipment and the size processing facility considering their required 

capital investment, with the extraction sequence, destination policy, stockpiling, and processing 

decisions. Additionally, it also incorporates complex revenue calculations such as royalties and 

metal streaming for copper-gold mining. The calculations of revenues are conducted under price 

uncertainty, which is modelled by commodity price simulation. However, the price uncertainty is 
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incorporated through a multi-step process. First, the optimization is conducted with only the supply 

uncertainty incorporated, then the first-stage decisions are frozen and only second-stage decision 

variables are optimized with both supply and market uncertainty. The resulting production 

schedule obtains a 12% increase in NPV by producing higher-grade metal during higher-price 

periods and lower-grade material during lower-price periods. 

Kumar and Dimitrakopoulos (2017) incorporate geo-metallurgical uncertainties into simultaneous 

stochastic optimization in addition to supply uncertainty. The semi-autogenous power index (SPI) 

and bond work index (BWI) are simulated as input. The non-additive nature of the two attributes 

makes them difficult to incorporate into the conventional framework. The method classifies the 

material as soft or hard based on SPI and BWI and then includes geo-metallurgical constraints to 

limit their ratio at processing mills. Twelve different material types are defined based on the 

calculation of the hardness of material using geo-metallurgical properties. Operational constraints 

regarding geo-metallurgical properties are modelled in the processing facility to maximize the 

utility and recovered metal. A case study is conducted at a copper-gold mining complex. The result 

indicates a higher chance of meeting production targets at the processing destination especially the 

constraint regarding the ratio of hard/soft material. In addition to the deduction in deviations from 

geo-metallurgical targets, the stochastic schedule generates 19.3% higher NPV compared to the 

conventional schedule, which is used in the current production of the mine. 

Zhang and Dimitrakopoulos (2017) present a decomposition method to optimize the upstream 

mine production schedule (MPS) and downstream material flow plan (MFP) of mining complexes 

under supply and market uncertainty. Although the optimization of upstream and downstream 

decisions is separate, the interactions between components are modelled so that the synergy of the 

two sets of decisions is captured and the combined solution will converge. The optimization 

process first solves the mine production schedule and the tonnage of each material type is 

summarized and used as input for optimizing the material flow plan. Then, the result of MPS 

updates the value of the material and the mine production schedule is re-optimized based on the 

update value. This process is repeated until a convergence condition is met for the amounts of 

purchasing and selling of each material type in each period being zero. Using a shadow price for 

MFP, also shows that ignoring market uncertainty will lead to overestimation of the profitability 
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of the mine plan. Later, Zhang and Dimitrakopoulos (2018) present a two-stage SIP model to 

integrate forward contracts and non-linear recovery rate into the optimization while considering 

market and supply uncertainty. An efficient heuristic is used to iteratively optimize the production 

schedule by gradually moving the lower and upper bound of throughput and head grade until the 

gap between bounds is small enough for all periods and scenarios. It emphasizes the importance 

of considering dynamic recovery rates when a forward contract is included as a component of the 

mining complex. The result of the optimization also provides guidance for accepting a forward 

contract: (i) the company should reject the contract if the expected NPV and the worst-case NPV 

would decrease (ii) the company should accept the contract, if the expected NPV and the worst-

case NPV would increase, (iii) the company should balance the trade-off of the contract if the 

expected NPV would decrease and the worst-case NPV would increase. 

Saliba and Dimitrakopoulos (2019) present an application of the simultaneous stochastic 

optimization at a complex gold mining operation in Nevada, restricted by stringent geochemical 

blending constraints. This study investigates the impact of joint market and supply uncertainties 

by incorporating commodity price simulations as inputs into the optimization model. This 

approach allows the simultaneous stochastic optimizer to account for market uncertainty in all 

three decision variables. Furthermore, the research assesses the efficacy of the simultaneous 

stochastic optimization framework's cut-off strategies. It does so by considering downstream 

product values, the intricate non-linear blending of material, and the extraction sequence. This 

approach replaces the need for a pre-determined cut-off grade optimization used by traditional 

methods, addressing limitations associated with determining cut-off grades before production 

scheduling. The proposed approach also reduces the operational complexity, due to the blending 

requirements in the case study of the mining complex, by reducing the number of material types 

and stockpiles. The result shows that the joint uncertainty case generates a 3% higher net present 

value. The reduction of the number of material types and stockpiles to twelve yields similar results 

when compared to the base case where the number of material types and stockpiles is thirty-eight. 

This case study demonstrates the flexibility of the framework by integrating commodity price 

fluctuations and optimizing the mining complex under joint market and supply uncertainty and the 

ability to reduce the operational complexity in terms of managing the mining complex. 
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Del Castillo and Dimitrakopoulos (2019) extend the simultaneous stochastic optimization 

framework developed by Goodfellow and Dimitrakopoulos (2016, 2017) to incorporate CapEx 

and operating mode decisions with a dynamic optimization approach. The amount and timing of 

capital investments as well as the operation mode of the processing facility affect the mining and 

processing capacity of different components in a mining complex. They significantly change the 

result of the optimal production schedule when they are included. This approach extends the 

original framework to use a branching mechanism to consider different capital investment 

decisions under different scenarios. The result comprised a set of alternative investment options 

with different production schedules. The branching mechanism first performs optimization on 

every orebody scenario separately by making all three sets of decision variable scenarios 

dependent. The probability of taking each capital decision in the first year is calculated. When the 

probability of a capital decision reaches a certain threshold, for example, if 16 out of 20 scenarios 

will purchase a shovel in the first period, these 16 scenarios will be combined as a branch of the 

alternative mine plan and the other 4 scenarios will be combined as another branch. Then the first-

year extraction decision and destination decisions on each branch are set to be scenario-

independent again with two branches separately. Then optimizations are performed on every 

orebody scenario again with decisions at later periods being all scenario dependent. This dynamic 

optimization algorithm is repeated until the last period. The result is a set of alternative mine plans 

that provide a balance between two major benefits. First, a set of alternative mine plans provides 

flexibility to make capital decisions adapted to the uncertainty observed and a production plan 

adapted to changing mining and processing capacity. Also, it avoids overfitting the distribution 

because branching to an alternative mine plan requires a minimum amount of scenarios to choose 

the same capital investment. A case study is conducted for a copper mining complex considering 

capital decisions of the purchase of trucks and shovels to increase the mining capacity and a 

secondary crusher to increase the processing capacity. The solution from the initial framework 

without the dynamic optimization algorithm is used as a baseline for comparison. The NPV 

increases by $170 million. Del Castillo (2018) further expands the method to include operating 

alternatives, such as the processing facility operating mode to increase the recovery at the expense 

of decreased capacity and the drill-and-blast pattern designs. The result generates 10.5% higher 

NPV compared to the baseline. 
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1.3.3 Solving algorithms 

The simultaneous stochastic optimization framework mentioned above is computationally 

expensive, mainly due to the number of integer variables. The number of integer variables can 

reach the order of billions. Simultaneous stochastic optimization is considered an NP-hard problem 

(Bienstock and Zuckerberg, 2010; Lamghari et al., 2014), which is challenging for a commercial 

solver. This challenge is further complicated by the number of scenarios describing uncertainty, 

which grows exponentially with different sources of uncertainties incorporated. Metaheuristic 

algorithms are alternative algorithms to provide many benefits for solving simultaneous stochastic 

optimizations. These benefits include (i) efficient exploration of a large solution space, (ii) 

handling of complex, non-linear, and multi-modal functions, (iii) flexibility and adaptability to 

different types of variables, (iv) the ability to hybridize with other optimization techniques, (v) the 

possibility to parallelize and scale, etc. (Yang, 2010). An effective and efficient metaheuristic 

should be tailored to the mathematical model at hand to achieve a balance among sufficient 

optimality, efficient exploration of the solution space, and eventual convergence on the best 

solution.  

As mentioned in the previous section, Godoy and Dimitrakopoulos (2004) propose a simulated 

annealing algorithm (Metropolis et al., 1953) which performs mine production scheduling 

problems and is used in many other studies (Goodfellow and Dimitrakopoulos, 2013; Kumral, 

2013; Montiel and Dimitrakopoulos, 2013). SA algorithm starts with an initial solution, each 

perturbation step generates a new solution based on the current solution and its neighborhoods. If 

the objective value is improved with the new solution, this improving perturbation is accepted. 

Also, a deteriorating perturbation might also be accepted based on the annealing temperature. A 

high annealing temperature gives a higher chance of a deteriorating perturbation with large 

changes being accepted in order to thoroughly explore the solution space. The temperature is 

gradually reduced until only minor changes are accepted in order to explicitly improve the solution. 

Cooling schedules and diversifications are used to control the annealing temperature to balance 

exploration and exploitation. The cooling schedule defines the annealing temperature being 

reduced after a number of iterations, and the diversification strategy resets the annealing 

temperature to its initial value, or another defined value.  Lamghari and Dimitrakopoulos (2012) 
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propose a diversified Tabu search approach to optimize the extraction sequence to maximize NPV 

and minimize deviations from production targets. Two variants of the algorithm are tested, long-

term memory (LTM) and variable neighbourhood (VN). VN only modify the block extraction 

period under mining capacity. LTM will try extraction schedules that are infeasible in terms of 

capacities and then fix them by remembering the search history. Tests of 10 practical case studies 

are conducted. Both variants of the algorithm generate solutions with less than 5% of the optimality 

gap and within a fraction of the CPU time needed for commercial optimization software. Both 

variants of diversified Tabu search perform similarly but the variable neighbourhood is less 

efficient as the size of applications grows compared to LTM.  

Lamghari et al. (2014) propose two variants of variable neighbourhood descent algorithm for a 

two-stage stochastic formulation to deal with large instances of the mine production schedule with 

supply uncertainty in a two-stage stochastic integer formulation. The algorithm first generates an 

initial solution and then uses a decomposition approach to separate the problem into sub-problems, 

one for each period. The first variant solves the sub-problems exactly using the branch-and-cut 

algorithm implemented in a commercial solver. The second variant solves the sub-problems 

approximately with a sequential greedy heuristic. The exact method performs slightly better for 

solution quality, while the greedy heuristic significantly reduces the solution time.  

In the study of simultaneous stochastic optimization of the mining complex presented by 

Goodfellow and Dimitrakopoulos (2016), the authors utilized multi-neighborhood simulated 

annealing to solve the problem. The algorithm perturbs for a better solution using three 

neighborhoods. The first neighborhood changes the mining period of a block, the second 

neighborhood changes the destination of a cluster of blocks, and the third neighborhood changes 

the amount of material sent from one destination to another destination. As mentioned previously, 

simulated annealing has many successes in optimizing extraction sequences; therefore, it is 

selected as a base algorithm. However, the simultaneous stochastic optimization method by 

Goodfellow and Dimitrakopoulos (2016) aims to simultaneously define the extraction sequences, 

destination policy, and processing stream decisions. The ability to optimize both discrete and 

continuous variables and the ability to escape local optima with three distinct sets of decision 

variables is essential. To address the concern, the study also compares the multi-neighborhood 
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simulated annealing algorithm with two alternatives, particle swarm optimization (PSO) (Kennedy 

and Eberhart, 1995) and differential evolution (DE) (Storn and Price, 1997), for their performance 

and efficiency in optimizing downstream decisions. The study tests the effectiveness of SA when 

combined with PSO and DE: (i) simulated annealing with downstream decisions optimized by 

particle swarm optimization (SA-D-PSO) and (ii) simulated annealing with downstream decisions 

optimized by differential evolution (SA-D-DE). SA-D-PSO and SA-D-DE are tested with a 

copper-gold mining complex and compared to the SA algorithm. Compared to the base SA, the 

production schedules obtained by using simulating annealing with PSO and DE increase the NPV 

by 1.91% and 2.57% but also require 2.4 and 2.9 times longer running time, respectively.  

As mentioned previously, metaheuristic algorithms substantially reduce the solution time and 

improve the solution quality in simultaneous stochastic optimization described in (Goodfellow and 

Dimitrakopoulos, 2016). However, metaheuristics may involve a relatively large number of 

parameters and/or algorithm choices, hence it might require fine-tuning for different cases. 

Lamghari and Dimitrakopoulos (2018) develop a hyper-heuristic approach that provides a learning 

mechanism that can select or generate heuristics to solve computationally challenging problems. 

Hyper-heuristics can be self-managed and provide more generality than currently existing 

methodologies. Hyper-heuristics is an automated process to select low-level heuristics for 

perturbations. The method uses a combination of reinforcement learning and Tabu search to solve 

the optimization of a mining complex. A set of 27 low-level heuristics is used to improve the 

current solution, and three hyper-heuristics, which are score-based online learning mechanisms, 

are proposed to govern the selection of low-level heuristics. Hyper-heuristics 1 (HH1) selects the 

non-tabu heuristic having the highest score, which represents the performance of different 

heuristics. Hyper-heuristics 2 (HH2) can select any heuristic based on a more complicated score 

representing the performance, pairwise dependencies, and the time elapsed since the heuristic was 

selected. Hyper-heuristics 3 (HH3) separates heuristics for first-stage decisions and second-stage 

decisions. For first-stage decisions, HH3 picks a heuristic that is able to improve the solution more 

efficiently, and for the second stage, the best heuristic is selected with a probability approach. The 

method is applied to two stochastic mine planning problems. The result demonstrates the methods' 

abilities to tackle very large instances with multiple destinations including a stockpile and also 
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different classes of problems. Although this method helps choose different heuristics for a specific 

problem, some hyper-heuristics perform better in one case compared to another. Therefore, it still 

requires tuning or the ability to switch between hyper-heuristics that best suit the problem at hand. 

Following the work by Goodfellow and Dimitrakopoulos (2016) and Lamghari and 

Dimitrakopoulos (2018), Yaakoubi and Dimitrakopoulos (2023) develop the learn-to-perturb 

(L2P) hyper-heuristic which combines the multi-neighborhood simulated annealing algorithm 

with reinforcement learning (RL). The goal of the algorithm is to generalize the selection of 

heuristics across different instances so that no switching between hyper-heuristics is needed. The 

algorithm starts with an initial solution and then moves to a neighboring solution in search of a 

better solution. It iterates until no significant improvement can be obtained. In this algorithm, the 

current solution is modified into a new solution using a heuristic, which is selected from a set of 

low-level heuristics. The acceptance of the new solution is handled by simulated annealing, and 

the heuristic selection is based on its past performance and the expected performance predicted by 

the RL agent. L2P utilizes a score that represents the importance of heuristic ℎ𝑖 and the probability 

of this heuristic being selected. It consists of two parts. The first part represents the recent 

performance of different heuristics (Lamghari and Dimitrakopoulos, 2018). A heuristic is given a 

higher score if it improves solutions more efficiently per unit of execution time and it is given a 

lower score if it deteriorates the solution and consumes more execution time. The second part is a 

score provided by a reinforcement learning agent (Yaakoubi and Dimitrakopoulos, 2023). It 

predicts the performance of future iterations by learning from past performance of different 

heuristics stored in a replay buffer. The score is able to consider all perturbations and consecutive 

perturbations. A parameter, 𝜆𝑅𝐿, is used to control the contribution of the reinforcement learning 

agent toward the final score. With the help of the RL agent, the heuristic selection process is able 

to learn from past experiences to be self-adaptive and to guide future searches through the solution 

space more efficiently. The training of the agent is online as to the solution being improved. Three 

RL algorithms are tested for their ability to predict heuristic performance and improve the solution: 

advantage actor-critic (A2C), soft actor-critic (SAC), and proximal policy optimization (PPO). 

Yaakoubi and Dimitrakopoulos (2023) show a comparison between the baseline hyper-heuristic 

without contribution from the RL agent (L2P-Baseline) and three variants of RL-based hyper-

heuristics (L2P-A2C, L2P-SAC, and L2P- PPO). Three stages of numerical testing are conducted 
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in the study. The first stage tests performance, robustness, and generalization capacity by 

evaluating the number of iterations and execution time required to obtain a solution with an 

objective function value within 1% of the linear relaxation result computed by CPLEX. The 

experiment is run multiple times across three different instances (𝐼1, 𝐼2, and 𝐼3 which are small-

medium-size) to ensure generality. All three RL-based hyper-heuristics outperform the baseline 

hyper-heuristic. L2P-A2C, on average, reduces the number of iterations and execution time by 

45%-55%, outperforming the other two variants. However, the performance of L2P-A2C is not as 

consistent across runs as L2P–PPO which reduces the number of iterations and execution time by 

38%-48%. The authors explain the effect as that PPO takes much smaller steps to update its policy, 

hence presenting a more stable but less adaptive strategy than A2C. The results demonstrate its 

efficacy across various instances, leading to a notable reduction in the number of iterations by 30–

50% and a decrease in computational time by 30–45%. When assessing the performance of 

variants trained on different instances, typically, the slightly superior variant is the one evaluated 

on the same instance it was trained on. However, the difference is small enough to indicate that 

the heuristic selection and performance may exhibit similarity across different instances. It 

demonstrates the method's ability to generalize. The second stage of testing uses a fourth instance, 

𝐼4 which is a real use case, that is significantly larger and more complex than, 𝐼1, 𝐼2, and 𝐼3. The 

agents are trained and tested on 𝐼4. The L2P–A2C still performs best among the three variants, 

reducing the number of iterations by 50–80% and the execution time by 40–75%. This indicates 

the RL agent is able to handle real-life cases with complexity. The third stage of testing uses a fifth 

instance, 𝐼5, which is a real use case different from 𝐼4 but similar in size. The L2P–A2C agents 

previously trained on 𝐼4 will be tested on 𝐼5. The L2P–A2C still outperforms the baseline. This 

indicates the generalizing ability of the RL agent remains effective for real-life size cases. In 

summary, the L2P hyper-heuristic algorithm is able to not only guide the search for a better 

solution for simultaneous stochastic optimizations but also generalize previous learning across 

different problems of different scales. 
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1.4 Goals and objectives 

The goal of the research presented in this thesis is to explore the use of the simultaneous stochastic 

optimization framework in strategic mine planning of the mining complex by incorporating 

various sources of uncertainties observed in real-world operations. These different sources of 

uncertainties may affect the execution and outcome of the production scheduling. The following 

objectives are set to meet this goal: 

• Review the technical literature related to strategic mine planning, conventional approaches for 

the optimization of mining complexes, and simultaneous stochastic optimization of mining 

complexes. Review simulation methods for modeling various types of uncertainty related to 

mining operations. 

• Incorporate joint supply and equipment uncertainty directly into the optimization model and 

analyze their effects on the execution of production schedules and forecasts.  

• Incorporate joint supply, recovery, and market uncertainty into the simultaneous stochastic 

optimization model and analyze their effects on production schedules and forecasts as well as 

the effect of different combinations of uncertainties 

• Summarize the conclusions and contributions of the research presented and provide 

suggestions for future study. 

1.5 Thesis outline 

Chapter 1 - Presents the technical literature review on strategic mine planning highlighting the 

significance of an integrated optimization approach that accounts for the global impact of each 

component, the resilience and adaptability of production decisions, and the incorporation of 

uncertainties within the mining complex.  

Chapter 2 - Presents an extension of the simultaneous stochastic optimization framework to 

incorporate equipment uncertainty for creating a realizable mine plan. The case study at a copper 

mining complex includes two large deposits, multiple crushers, and processing mills. The 

production schedule generated with the integration of equipment uncertainty is compared to the 
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stochastic schedule generated without equipment uncertainty to highlight the practicality of the 

production schedule. 

Chapter 3 - Presents a major case study an application of a simultaneous stochastic optimization 

framework, with recovery and market uncertainty in addition to supply uncertainty. The multi-

mine, multi-processor copper mining complex is used as a basis for incorporating different sources 

of uncertainties. Production schedules are generated and the effect of different combinations of 

uncertainty is demonstrated. 

Chapter 4 - Outlines the conclusions obtained from the above contributions, explains the value of 

the simultaneous stochastic optimization framework, and provides suggestions for future research. 

  



 

 

39 

 

Chapter 2. Simultaneous stochastic optimization of mining 

complexes with equipment uncertainty: application at an open pit 

copper mining complex 

2.1 Introduction 

A mining complex can be considered as an integrated mineral value chain that transforms in-situ 

raw material extracted from mineral deposits into valuable commodities, with components 

including multiple mineral deposits, stockpiles, processing streams, waste disposal, and 

transportation to clients or spot markets (Goodfellow and Dimitrakopoulos, 2016, 2017; Montiel 

and Dimitrakopoulos, 2015, 2017; Pimentel et al., 2010). Over the past decade, significant 

developments have been achieved in integrating various components within the mineral value 

chain into a single optimization model while considering uncertainty. This integrated model for 

mining complexes enables the simultaneous optimization of diverse decisions, such as the 

extraction sequence, destination policies, and processing stream utilization, and incorporates 

uncertainties presented in mining complexes. The simultaneous stochastic optimization leverages 

the value of the final products sold and captures synergies across the value chain, facilitating 

comprehensive and efficient decision-making for mining operations. 

Conventionally, the components of a mining complex are optimized separately and sequentially 

(Hustrulid et al., 2013).  In the past, several developments have advanced the conventional 

approach toward joint optimization by incorporating multiple components of a mining complex in 

the planning process. Hoerger et al. (1999a, 1999b) present a Mixed Integer Programming (MIP) 

formulation to capture the synergies of jointly optimizing the flow of material tonnage between 

mines, stockpiles, and processing plants by maximizing the net present value; however, in this 

case, mine production schedules are a pre-determined input. The Blasor mine planning software 

of BHP (Stone et al., 2018) simultaneously optimizes the proportion of material extracted from 

multiple pits for long-term mine planning using a MIP model. However, it aggregates spatially 

connected blocks to reduce the number of integer variables, such that the size of the MIP is reduced 

and can be solved in a reasonable time. Whittle and Whittle (2007) propose an approach that 
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includes multiple mines, stockpiles, and processing destinations in a mining complex to capture 

synergies. However, it employs several optimization procedures throughout the mineral value 

chain rather than in a single formulation. Each mine is optimized separately first to produce a 

sequence of pushbacks within its optimized pit limit. Then, interactions between components, 

modeled by the processing and blending strategies, are optimized to improve the outcome of the 

mining complex using heuristics approaches (Whittle, 2018). The above-mentioned approaches 

have limitations, which include aggregate blocks to reduce the computational complexities and the 

use of estimated (average type) orebody models of the deposit. The latter ignore the uncertainty 

and spatial variability of pertinent properties of the mineral deposit, which is a major source of 

technical risk in mine planning, referred to as supply or geological uncertainty (Ravenscroft, 1992; 

Dowd, 1994, 1997), and affects the grades and material types of the deposit. It misrepresents the 

impacts on the economic value of the mine production schedule; therefore, the integration of 

supply uncertainty with stochastic simulations into optimization algorithms is required to enhance 

the robustness of the mining complex optimization and its ability to capture synergies 

(Dimitrakopoulos et al., 2002).  

In response to the above limitations, the simultaneous stochastic optimization of mining complexes 

incorporates all of the components of a mining complex into a single mathematical formulation, 

while accounting for uncertainties (Goodfellow and Dimitrakopoulos, 2016; Montiel and 

Dimitrakopoulos, 2015). Montiel and Dimitrakopoulos (2015) present a simultaneous stochastic 

optimization model that can incorporate multiple mineral deposits, multiple processing steams, 

and multiple transportation alternatives. The block extraction sequence and processing destination, 

as well as the processing and transportation alternatives, are optimized simultaneously in the 

presence of supply uncertainty. Montiel and Dimitrakopoulos (2018) introduce an extension that 

integrates specific operational constraints for creating practical mine production schedules. The 

study includes a large-scale application and comparisons with conventional methods at the Twin 

Creeks gold mining complex in Nevada. Montiel and Dimitrakopoulos (2017) introduce a 

metaheuristic algorithm designed to solve the extensive optimization model of mining complexes. 

The case study conducted at a copper deposit showed that, compared to a mine plan generated by 

conventional mine planning software, the simultaneous stochastic optimization model was able to 

reduce deviations in capacity from 9% to 0.2%, while increasing the expected net present value by 
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30%.  Goodfellow and Dimitrakopoulos (2016) present a generalized network-based modelling 

method that allows for the inclusion of every component in a mining complex for the simultaneous 

stochastic optimization and considers the value of the final products sold at the end of the mining 

complex, instead of block economic values. The method aims to define simultaneously the life-of-

asset extraction sequence, destination policy, and processing stream decisions while managing the 

production targets. The model can be easily adapted for any mining complex. In the given case 

study, the simultaneous stochastic optimization of mining complexes manages the technical risk 

associated with geological uncertainty. A case study (Goodfellow and Dimitrakopoulos, 2017) is 

performed on a copper-gold mining complex, in comparison to the conventional schedule, and 

resulted in an increase of the NPV by 22.6%, while also more closely meeting production targets 

and managing the associated geological risk. Due to its generalized and adaptable formulation, 

subsequent research has tested the framework introduced by Goodfellow and Dimitrakopoulos 

(2016) through a large variety of applications incorporating various aspects of mining operations. 

Farmer (2017) expands the generalized model to incorporate capital expenditure (CapEx) and 

mining capacity decisions, incorporating these aspects into an application with intricate revenue 

streams, including streaming agreements. Del Castillo and Dimitrakopoulos (2019) expand the 

mathematical formulation to include a dynamic optimization for strategic planning explicitly 

including CapEx alternatives and different operating modes. Accounting for the flexibility of an 

operation, the multi-stage model is able to react and adapt to new information over the life of a 

mining complex by allowing the solutions to branch. Kumar and Dimitrakopoulos (2019) present 

an application incorporating geo-metallurgical decisions into the destination policy at a large 

copper-gold mining complex. Saliba and Dimitrakopoulos (2019) present another application that 

accounts for both supply uncertainty and market uncertainty through commodity price simulations 

at a gold mining complex. In summary, simultaneous stochastic optimization offers several 

advantages, including capturing synergies among different components, managing risk associated 

with material supply uncertainty, avoiding misrepresentation of mining selectivity by aggregating 

mine blocks into large volumes, and focusing on the value of the product sold rather than the value 

of the mining blocks. The documented benefits of simultaneous stochastic optimization include 

increased metal quantity, higher NPV, reliable production forecasts, integrated waste production 
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and quality management, and the joint integration of supply and demand uncertainty 

(Dimitrakopoulos and Lamghari, 2022). 

The developments discussed above assume constant equipment capacities, such as fixed truck and 

shovel capacity. However, the impact of uncertain equipment performance on long-term mine 

production scheduling in simultaneous stochastic optimization remains unexplored. Recent 

simultaneous stochastic optimization applications that address equipment uncertainty primarily 

concentrate on the short-term optimization for specific sections of the mine, defined by the long-

term plan. The related stochastic optimization approaches for short-term planning and their 

applications aim, given the long-term plan, to minimize operational costs by optimizing shovel 

and truck activities, as well as uncertainties related to equipment that are often modelled by making 

prior assumptions about the distribution models (Both and Dimitrakopoulos, 2018; Matamoros 

and Dimitrakopoulos, 2016; Paduraru and Dimitrakopoulos, 2019; Quigley and Dimitrakopoulos, 

2016). For example, Both and Dimitrakopoulos (2018) use distribution with known means and 

standard deviations for generating equiprobable stochastic simulations of shovel productivity for 

modelling equipment uncertainty. The research highlights the benefits of simultaneously 

optimizing the mining complex with equipment decisions, leading to cost savings from optimized 

equipment movements and enhanced equipment utilization. However, the short-term production 

plan is constructed on shorter timescales and designed to meet the targets of the long-term 

production plan, which does not consider equipment uncertainty.  

In the following sections, an extension of the simultaneous stochastic optimization framework 

proposed by Goodfellow and Dimitrakopoulos (2016) to incorporate uncertain equipment 

performance in the long-term production planning of mining complexes is presented. Then, the 

quantification of equipment uncertainty is outlined. Subsequently, a case study of the copper 

mining complex is presented to incorporate both supply and equipment uncertainty, and to study 

the potential effect of incorporating equipment uncertainty into the optimization process. Last, 

conclusions and future work are presented. 
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2.2 Simultaneous Stochastic Optimization of Mining Complexes 

 

Figure 2.1: An example of a mining complex. 

2.2.1 Notation 

An example of a mining complex or mineral value chain is shown in Figure 2.1. Sets and indices 

used for the mathematical formulation of the simultaneous stochastic optimization of mining 

complexes are presented in Table 2.1. Inputs and parameters are listed in Table 2.2. 

Table 2.1: List of sets and indices 

Sets/Indices Description 

𝑖 ∈ N = 𝕄 ∪ 𝒮 ∪ 𝒫 
Location 𝑖, within the set of locations N, including mines 𝕄, 

stockpiles 𝒮, and processing destinations 𝒫 

𝑏 ∈ 𝔹𝑚 Block 𝑏 within the set of blocks 𝔹𝑚 at mine 𝑚 ∈ 𝕄 

𝑝 ∈ ℙ 
Primary attributes, sent from one location in the mining 

complex to another 

ℎ ∈ ℍ 
Hereditary attributes, variables of interest at specific 

locations, not necessarily sent to next locations 

𝑠 ∈ 𝕊 
A set of equally probable scenarios (simulations) describing 

the geological uncertainty 

𝑠𝑒 ∈ 𝕊𝑒 
A set of equally probable scenarios (simulations) describing 

the equipment uncertainty at location 𝑒 

𝑒 ∈ 𝐸 A set of locations that utilize mining equipment 
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𝑡 ∈ 𝕋 Time period within the life-of-mine 

𝑐 ∈ 𝒞 

A set of cluster 𝒞 is generated by a pre-processing step using 

clustering based on multiple elements within each material 

types 

 

Table 2.2: List of input and parameters 

Input/Parameter Description 

𝛽𝑝,𝑏,𝑠 Simulated block attributes 

𝐸𝐶𝑒,𝑡,𝑠𝑒 Simulated equipment capacity 

𝕆𝑏 Set of overlaying blocks defined by slope angle 

𝑂(𝑖) The set of subsequent locations for location 𝑖 

𝑂(𝑐) The set of available destinations for cluster 𝑐 

𝜃𝑏,𝑐,𝑠 Block cluster membership 

𝑝ℎ,𝑖,𝑡 
Unit price or cost of each attribute, discounted based on time 

periods 

𝑈ℎ,𝑖,𝑡 and 𝐿ℎ,𝑖,𝑡 Upper- and lower-bounds for each attribute 

𝑐ℎ,𝑖,𝑡
±  Penalty cost for deviations of each attribute 

 

Locations in a mining complex can be described as sources where material is extracted or 

destinations where the material is sent (Goodfellow and Dimitrakopoulos, 2016). The set of 

location, 𝒩, is comprised of three disjoint subsets: clusters of blocks (𝒞), stockpiles (𝒮), and 

processing destinations(𝒫). 𝒞 is a set of clusters of blocks in a mine 𝑚 ∈ 𝕄 with similar attributes 

and is served as the sources of material. These clusters of blocks in a mine are generated with the 

k-means algorithm. 𝒮 is a set of stockpiles, which can receive and hold material over time, but do 

not treat or transform these materials. Stockpiles in a mining complex can be modelled as a source 

or a destination. 𝒫 is a set of processing destinations that treat and process material. Directed arcs, 

𝒜, in a mining complex define the abilities to send output material from one location 𝑖 ∈ 𝒩 to a 

subsequent destination 𝑗 ∈ 𝒩(𝑖). Supply uncertainty in a mining complex is described by a set of 

stochastic orebody scenarios 𝑠 ∈ 𝕊 = {1,… , 𝑆}. The material at each location is characterized by 

primary attributes and hereditary attributes. Primary attributes (𝑝 ∈ ℙ) are fundamental attributes, 
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such as metal tonnage and total tonnage of materials, which is additive and will flow from location 

𝑖 ∈ 𝒩 to subsequent locations 𝑗 ∈ 𝒩(𝑖), if 𝑗 ∈ 𝒩(𝑖) exists. Hereditary attributes (ℎ ∈ ℍ) are the 

information needed for modelling the mining complex and assist in incorporating non-linearities 

into the mathematical programming model, such as recovery rates at each processing destination. 

In a mining complex, different upper and lower production targets and constraints, 𝑈ℎ,𝑖,𝑡 and 𝐿ℎ,𝑖,𝑡 

can be defined for attribute ℎ ∈ ℍ at locations 𝑖 ∈ 𝒩  in period 𝑡 ∈ 𝕋. The deviations from a 

production target associated with property ℎ at location 𝑖 in period 𝑡 and scenario 𝑠 are measured 

by 𝑑ℎ,𝑖,𝑡,𝑠
± , while 𝑐ℎ,𝑖,𝑡

± , represent the unit surplus and shortage costs associated with their respective 

deviations.  

The flow of materials in a mining complex are controlled by three sets of decisions: extraction 

decisions, destination decisions, and processing stream decisions. The extraction decisions 𝑥𝑏,𝑡 ∈

{0,1} determine whether a mining block 𝑏 ∈ 𝔹𝑚 is extracted (1) or not (0) in period 𝑡 ∈ 𝕋. In 

mining complexes, materials are supplied by the mines (𝑚 ∈ 𝕄), which are described by a group 

of mining blocks (𝑏 ∈ 𝔹𝑚). Each mining block is described by simulated material types and 

attributes (𝛽𝑝,𝑏,𝑠, ∀𝑝 ∈ ℙ, ∀𝑏 ∈ 𝔹𝑚, 𝑠 ∈ 𝕊 ). A block may only be extracted if the group of 

overlaying blocks (𝕆𝑚) is extracted in the same or earlier period. The group of overlaying blocks 

is defined by a slope angle required for slope stability. The second set of decisions, destination 

decisions 𝑧𝑐,𝑗,𝑡 ∈ {0,1}, determines whether a cluster of blocks 𝑐 ∈ 𝒞 is sent to destination 𝑗 ∈

𝑂(𝑐) in period 𝑡 ∈ 𝕋 after they are mined. A cluster 𝑐 ∈ 𝒞 is a group of blocks in a mine with 

similar properties, based on the k-means algorithm. A block in different orebody scenarios 𝑠 ∈ 𝕊 

could belong to different clusters due to different simulated attribute grades and material types. As 

a result of the k-means algorithm, a set of pre-processed parameters 𝜃𝑏,𝑐,𝑠 will describe whether a 

block 𝑏 ∈ 𝔹𝑚 belongs to cluster 𝑐 ∈ 𝒞 under orebody scenario 𝑠 ∈ 𝕊. The available destinations 

𝑂(𝑐) for cluster 𝑐  are determined by the material type. The last set is the processing stream 

decisions 𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1] which determines the proportion of output material from location 𝑖 ∈ 𝒮 ∪

𝒫  being sent to downstream destination 𝑗 ∈ 𝑂(𝑖)  at period 𝑡 ∈ 𝕋  under scenario 𝑠 ∈ 𝕊 . The 

extraction decisions and the destination decision are scenario-independent. This means those 

decisions have to be made robust to the geological uncertainty in the mining complex. The 

scenario-dependent processing stream decisions, on the other hand, are made adaptive to the 
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uncertainty. The model assumes that, after the material is sent to an immediate destination from 

the mine or existing stockpiles, the uncertainties associated with the material are revealed; 

therefore, the processing stream decisions, which determine downstream operations, can be made 

and adapted to every scenario. 

In a mining complex, for different upper and lower production targets and constraints, 𝑈ℎ,𝑖,𝑡 and 

𝐿ℎ,𝑖,𝑡 can be defined for attribute ℎ ∈ ℍ at locations 𝑖 ∈ 𝒩 in period 𝑡 ∈ 𝕋, such as a processing 

capacity for a flotation mill. The deviations from a production target associated with property ℎ at 

location 𝑖 in period 𝑡 and scenario 𝑠 are measured by 𝑑ℎ,𝑖,𝑡,𝑠
± , while 𝑐ℎ,𝑖,𝑡

± , represent the unit surplus 

and shortage costs associated with their respective deviations. For example, 𝑑ℎ,𝑖,𝑡,𝑠
+  can describe 

the amount of material the mine feeding to the mill and is above the mill’s capacity. With a 

corresponding penalty cost 𝑐ℎ,𝑖,𝑡
+ , the optimization can be guided to control overfeeding the mill. 

To extend the general framework defined in Goodfellow and Dimitrakopoulos (2016) and 

incorporate equipment uncertainties, a set of stochastic equipment capacity simulations 𝑠𝑒 ∈ 𝕊𝑒 =

{1,… , 𝑆𝑒}  are included for quantifying the uncertain equipment performance, where 𝑒 ∈ 𝐸 =

{1,… , 𝐸} is a set of locations that utilize mining equipment; thus, the capacity of such location 

mining or processing material is limited by the equipment fleet used. For example, the mining 

capacity at the mine can be represented as the capacities of truck and shovel, while the crusher 

capacity at the crushing location affects how much material can be processed after they are mined. 

𝐸𝐶𝑒,𝑡,𝑠𝑒  represents the capacity of the equipment fleet under scenario 𝑠𝑒  at time 𝑡 ∈ 𝕋 . An 

additional deviation measurement, 𝑢𝑒,𝑡,𝑠,𝑠𝑒 , is used to describe the deviation from equipment 

capacity at location 𝑒 in period 𝑡 under equipment scenario 𝑠𝑒 when the incoming material is under 

supply uncertainty 𝑠, and the corresponding penalty cost 𝑐𝑒,𝑡
+  will be applied. Equipment capacities 

are simulated at different locations in a mining complex representing the uncertainties of 

equipment affecting the mining and processing capability at different locations. The inclusion of 

equipment capacity penalty and equipment capacity constraints will be detailed in the next section.  
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2.2.2 Optimization with Equipment Uncertainty 

To simultaneously determine the extraction sequence, destination policies, and processing stream 

decisions for mining complexes under uncertainties, Goodfellow and Dimitrakopoulos (2016) 

propose a generalized two-stage stochastic optimization model. The objective function is shown 

in Equation (1) with extensions that incorporate equipment uncertainty. 

𝑀𝑎𝑥
1

‖𝕊‖
∑ ∑∑∑𝑝ℎ,𝑖,𝑡𝑣ℎ,𝑖,𝑡,𝑠

ℎ∈ℍ𝑠∈𝕊𝑡∈𝕋𝑖∈𝕄∪𝒮∪𝒫⏟                      
𝑃𝑎𝑟𝑡 𝐼

−
1

‖𝕊‖
∑ ∑∑∑(𝑐ℎ,𝑖,𝑡

+  𝑑ℎ,𝑖,𝑡,𝑠
+ + 𝑐ℎ,𝑖,𝑡

−  𝑑ℎ,𝑖,𝑡,𝑠
− )

ℎ∈ℍ𝑠∈𝕊𝑡∈𝕋𝑖∈𝕄∪𝒮∪𝒫⏟                                
𝑃𝑎𝑟𝑡 𝐼𝐼

−∑ ∑ ∑ (𝑐𝑚,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ 𝑑𝑏,𝑚,𝑡

𝑠𝑚𝑜𝑜𝑡ℎ)

𝑏∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋⏟                    
𝑃𝑎𝑟𝑡 𝐼𝐼𝐼

−∑ ∑ ∑ (𝑐𝑚,𝑡
𝑠𝑖𝑛𝑘 𝑑𝑏,𝑚,𝑡

𝑠𝑖𝑛𝑘 )

𝑏∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋⏟                
𝑃𝑎𝑟𝑡 𝐼𝑉

−
1

‖𝕊‖

1

‖𝕊𝑒‖
∑∑∑ ∑ (𝑐𝑒,𝑡

+  𝑢𝑒,𝑡,𝑠,𝑠𝑒)

𝑠𝑒∈𝕊𝑒𝑠∈𝕊𝑡∈𝕋𝑒∈𝔼⏟                        
𝑃𝑎𝑟𝑡 𝑉

 

(1) 

Part I of the objective function represents the discounted cash flow by accounting for the revenue 

from metal sales, the mining cost, the processing cost, and other associated costs. Part II represents 

the cost of deviating from the production target by applying penalties costs, 𝑐ℎ,𝑖,𝑡
+  and 𝑐ℎ,𝑖,𝑡

−  , to 

deviations, 𝑑ℎ,𝑖,𝑡,𝑠
+  and 𝑑ℎ,𝑖,𝑡,𝑠

− , respectively. These penalties are discounted by geological discount 

rates (Dimitrakopoulos and Ramazan, 2004), 𝑐ℎ,𝑖,𝑡
+ =

𝑐ℎ,𝑖,1
+

(1+𝑟𝑑)𝑡
. With the risk discount rate, the 

objective function aims to minimize the risk in early periods and defer the risk to later periods 

when more information is available. Part III and Part IV are smoothing penalties and sink rate 

penalties to create a minable shape for the schedule. Part III ensures that the extraction sequence 

is practical in terms of adequate space for equipment access and movement. Extending the 

formulation of Goodfellow and Dimitrakopoulos (2016), Part V accounts for the additional 
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penalties and related costs specific to equipment capacity, as applied to constraint the optimization 

to mine and process materials given the simulated equipment capacities.  

𝑣𝑒,𝑡,𝑠 − 𝑢𝑒,𝑡,𝑠,𝑠𝑒 ≤ 𝐸𝐶𝑒,𝑡,𝑠𝑒     ∀ 𝑒 ∈ 𝔼, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊, 𝑠𝑒 ∈ 𝕊𝔼  (2) 

To enforce the equipment capacity penalty, the additional equipment capacity constraints in 

Equation (2) are applied in the extend model. For each location 𝑒  with simulated equipment 

capacity 𝐸𝐶𝑒,𝑡,𝑠𝑒, a penalty will incur when the production of material under orebody scenario 𝑠 

exceeding each equipment capacity scenario 𝑠𝑒, so the schedule will produce material respecting 

the equipment capacity. 

Mineral complexes have many operational constraints and production targets, such as processing 

stream capacities and the acceptable ratio of different attributes grade of material in a processor. 

Equations (3) and (4) calculate the deviations from the upper and lower bounds of each production 

target at each location under every orebody scenario. By being penalized in the objective, the 

deviations, 𝑑ℎ,𝑖,𝑡,𝑠
+  and 𝑑ℎ,𝑖,𝑡,𝑠

− , are controlled within upper (𝑈ℎ,𝑖,𝑡 ) and lower (𝐿ℎ,𝑖,𝑡 ) targets 

respectively. 

𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡   ∀ ℎ ∈ ℍ, 𝑖 ∈ 𝒞 ∪ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (3) 

𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡   ∀ ℎ ∈ ℍ, 𝑖 ∈ 𝒞 ∪ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (4) 

To create a minable shape that allows equipment access, the smoothing constraints are included, 

as shown in Equation (5).  𝑁𝑒𝑖𝑔ℎ(𝑏) represents the neighbour of blocks surrounding block 𝑏 

within a predefined mining width, as shown in Figure 2.2. The smoothing penalty 𝑑𝑏,𝑚,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ counts 

the number of blocks within 𝑁𝑒𝑖𝑔ℎ(𝑏) that are not mined at the same period as 𝑏, then penalizes 

the objective function. Similarly, the sink rate constraint, Shown in Equation (6), controls how 

deep the benches can be mined in one period. 𝒷(𝑏) represents the block overlay block 𝑏 by the 

height of the predefined sink rate. For example, if the blocks are 10m in height and the sink rate is 

30m, then 𝒷(𝑏) is the block 30m above block 𝑏, and if they are mined at the same period 𝑡, penalty 

𝑑𝑏,𝑚,𝑡
𝑠𝑖𝑛𝑘  will incur. 



 

 

49 

 

 

 

 

 

Figure 2.2: Surrounding blocks in smoothing constraints. 

Remaining constraints, such as capacity constraints, blending constraints, material type 

constraints, reserve, slope constraints, and stockpile constraints are detailed in Goodfellow and 

Dimitrakopoulos (2016). 

2.2.3 Solution Approach 

The simultaneous stochastic optimization of a mining complex is challenging due to the large 

number of binary decision variables. Therefore, solution approaches that utilize commercial 

solvers are often infeasible. Metaheuristics and hyper-heuristics provide solution approaches to 

efficiently obtain near-optimal solutions for large stochastic optimization models of mining 

complexes (Goodfellow and Dimitrakopoulos, 2016, 2017; Lamghari and Dimitrakopoulos, 

2018). In this work, the solution approach is a combination of multi-neighbourhood simulated 

annealing  with adaptive neighbourhood search, where the selection of heuristic is aided with 

reinforcement learning (Yaakoubi and Dimitrakopoulos, 2021).  

Starting with an initial solution, the simulated annealing algorithm (Kirkpatrick et al., 1983; 

Metropolis et al., 1953) iteratively explores neighbourhoods (Ropke and Pisinger, 2006; Ribeiro 

and Laporte, 2012) around the current solution. At each iteration, a new solution 𝜙′ is generated 

|𝑁𝑒𝑖𝑔ℎ(𝑏)| ∗ 𝑥𝑏,𝑡 − ∑ 𝑥𝑛,𝑡
𝑛∈𝑁𝑒𝑖𝑔ℎ(𝑏)

− 𝑑𝑏,𝑚,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ ≤ 0   ∀ 𝑏 ∈ 𝔹𝑚, , 𝑡 ∈ 𝕋,𝑚 ∈ 𝕄 (5) 

𝑥𝑏,𝑡 + 𝑥𝒷(𝑏),𝑡 − 𝑑𝑏,𝑚,𝑡
𝑠𝑖𝑛𝑘 ≤ 1   ∀ 𝑏 ∈ 𝔹𝑚, , 𝑡 ∈ 𝕋,𝑚 ∈ 𝕄 (6) 
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by modifying either the extraction sequence decisions  (𝑥𝜖𝜙), destination decisions  (𝑧𝜖𝜙), or 

processing stream decisions  (𝑦𝜖𝜙)  of the current solution 𝜙  using different heuristics. Then, 

instead of only accepting solutions that improve the objective function value, 𝑔(𝜙), deteriorating 

solutions might also be accepted based on a probabilistic acceptance criteria, as shown in Equation 

(7). This probability is defined by an annealing temperature, 𝑇𝑒𝑚𝑝. Instead of using a fixed 

temperature, the annealing temperature will gradually cool down to zero based on cooling factors 

and cooling schedule (Goodfellow and Dimitrakopoulos, 2016). This mechanism balances the 

exploration, which prioritizes searching through the solution space, and exploitation, focusing on 

improving the objective function.  

𝑃(𝑔(𝜙), 𝑔(𝜙′), 𝑇𝑒𝑚𝑝) = {

1,                                                     𝑖𝑓 𝑔(𝜙) ≤ 𝑔(𝜙′)

exp (
−|𝑔(𝜙) − 𝑔(𝜙′)|

𝑇𝑒𝑚𝑝
) ,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 (7) 

The improvement of the objective function value, 𝑔(𝜙), depends on the selection of heuristics ℎ𝑖 

(𝑖 = 1,… , 𝑛,  where n in the number of low-level heuristics) used to modify the current solution. 

This selection of heuristics is governed by the learn-to-perturb (L2P) hyper-heuristic, which 

combines the multi-neighborhood simulated annealing algorithm with reinforcement learning 

(RL) (Yaakoubi and Dimitrakopoulos, 2021). L2P utilizes a score function, shown in Equation (8), 

where 𝑆𝐹(ℎ𝑖) represents the importance of heuristic ℎ𝑖 and the probability of this heuristic being 

selected (Yaakoubi and Dimitrakopoulos, 2021). The probability of each non-tabu heuristic ℎ𝑖 𝑝𝑖 

is computed by normalizing the score function 𝑝𝑖 =
𝑆𝐹(ℎ𝑖)

∑ 𝑆𝐹(ℎ𝑘)𝑘:𝐻𝑘

. This score function is the 

weighted sum of two scores, 𝑆1(ℎ𝑖)  and 𝑆2(ℎ𝑖) . 𝑆1(ℎ𝑖)  represents the recent performance of 

different heuristics (Lamghari and Dimitrakopoulos, 2018). A heuristic ℎ𝑖 is given higher 𝑆1(ℎ𝑖) 

score if it improves solutions more efficiently per unit of execution time and it is given lower 

𝑆1(ℎ𝑖) score if it deteriorates the solution and consumes more execution time. However, the 

formulation of 𝑆1(ℎ𝑖) requires expert knowledge, meaning it might require a different formulation 

if applied to different instances or during different stage of the optimization process. To generalise 

the selection of heuristics across different instances, 𝑆2(ℎ𝑖) is a score provided by a reinforcement 

learning agent (Yaakoubi and Dimitrakopoulos, 2021). It predicts the performance of future 

iterations by learning from the past performance of different heuristics stored in a replay buffer. 
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Compared to 𝑆1(ℎ𝑖), which only considers the recent performance, 𝑆2(ℎ𝑖) is able to consider all 

perturbations and consecutive perturbations. 𝜆𝑅𝐿  is used to control the contribution of the 

reinforcement learning agent toward final score 𝑆𝐹(ℎ𝑖). When 𝜆𝑅𝐿 = 0, the hyper-heuristic is not 

aided by the RL agent, referred as the Baseline. The L2P approach refers to the hyper-heuristic 

aided by the RL agent, when 𝜆𝑅𝐿 > 0. With the help of the RL agent, the heuristic selection process 

can learn from past experiences to be self-adaptive and can guide future searches through the 

solution space more efficiently. Figure 2.3 shows a comparison between the baseline hyper-

heuristic and L2P approach (with contribution from the RL agent). For the same amount of 

execution time, the RL approach improves the solution efficiency.  

𝑆𝐹(ℎ𝑖) = (1 − 𝜆𝑅𝐿)𝑆1(ℎ𝑖) + 𝜆𝑅𝐿𝑆2(ℎ𝑖) (8) 

 

Figure 2.3: Evolution of objective function value, comparison of baseline heuristic selection (red line) and 

L2P approach (blue line) 

2.3 Case Study 

2.3.1 Overview of the Mining Complex 

The method of simultaneous stochastic optimization described in the previous section is applied 

to an open-pit copper mining complex. As shown in Figure 2.4, the mining complex consists of 

two open-pit mines, mine 1 and mine 2, with respectively 414,108 and 157,749 blocks, which are 
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25x25x15m3 in size. The main attributes of concern are copper total and copper soluble. Each 

block in the block model belongs to one of the four main material types, sulphide high grade, 

sulphide low grade, oxide, and waste. Materials produced by the mines can be processed by 

different processing streams. Two products are produced by the mining complex, copper 

concentrate, and copper cathodes. As shown in Figure 2.4, Mill 1, Mill 2, and Mill 3 receive high-

grade sulphide material from Mine 1 and Mine 2 after materials are crushed by their corresponding 

crushers and produce copper concentrate as a product. The Oxide Leach pad takes Oxide materials 

from both mines after the Oxide material is crushed by the Oxide crusher and produces copper 

cathodes. The Sulphide Leach Pad takes low-grade material from both mines and produces copper 

cathode as a product. The Sulphide Leach Pad requires the ratio of copper total and copper soluble 

to be within its operational limit. 

 

Figure 2.4: Copper mining complex, with 5 locations for modelling equipment uncertainty (highlighted in 

dash line) 

The long-term strategic plan currently used in the mining complex is based on the conventional 

sequential optimization approach that uses estimated orebodies as input. First, the extraction 

sequences of each mine are optimized separately based on bench design. Then the destination 

policy is determined based on the cut-off policy and materials produced by the extraction 
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sequences of both mines. Lastly, another optimization process is used to maximize the utilization 

of each processing stream. The use of estimated orebodies ignores the geological uncertainties 

presented in the deposits, and the use of fixed equipment capacity ignores the equipment 

performance uncertainty. 

The simultaneous stochastic optimization framework previously described addresses the 

disadvantages of the sequential conventional optimization approach. First of all, the stochastic 

framework considers every component in the mining complex simultaneously to capture the 

synergies among components. By optimizing the extraction sequence, destination policy, and 

processing stream decisions of the two mines at the same time, the downstream operation will not 

be misled by predetermined extraction sequences. Also, the stochastic framework incorporates 

both supply uncertainty for the two mines and equipment uncertainty for multiple equipment 

locations. The blending constraint is considered throughout the optimization process.  

2.3.2 Modelling Equipment Uncertainty 

Equipment capacities can be simulated at different components in a mining complex to represent 

the uncertainties associated with the different equipment. For modelling realistic equipment 

uncertainty, Monte Carlo simulation methods are used. Equipment simulation starts with the 

historical daily production data of each type of equipment. Then, based on the historical production 

data, the empirical distribution of the equipment performance can be built. Then, by sampling this 

distribution 365 times and grouping these daily productivities, the annual productivity of a single 

piece of equipment can be simulated. 

Figure 2.5 shows an example of producing multiple simulations for one type of equipment. The 

blue line represents the empirical distribution constructed from historical production data, and the 

set of green lines represent multiple sampling results conducted on the empirical distribution. The 

figure is presented as probability distribution graph where the horizontal axis presents the tonnage 

per day (tpd) productivity achieved by this type of equipment and the vertical one the frequency 

of occurrence. Figure 2.5 demonstrates that the equipment simulations are able to reproduce the 

historical data distribution. 
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After simulating the annual productivity of each type of equipment, then combined with an 

equipment plan, which shows how many trucks and shovels of equipment are being used in the 

mine, the total production capacity of an equipment fleet, such as truck fleet and shovel fleet, can 

be computed. 

 

Figure 2.5: Equipment simulation of type A trucks 

The production of the mining complex is limited by not only the equipment capacity in the mines 

for trucks and shovels, but also by the crusher capacity. Therefore, the modelling of equipment 

uncertainty is conducted at five locations in the mining complex. As shown in Figure 2.4, the 

uncertainty of the mining capacities of two mines is modelled using truck and shovel uncertainty. 

Three crushers are used to crush materials from Mine 1 before sending them to the mills, one 

crusher for crushing Mine 2 materials for the mills, and one crusher for crushing oxide material 

from both mines for oxide leach. 

For the mining capacities of the two mines, equipment simulations for each type of truck and 

shovel will be produced, and then, based on the equipment plan for each mine, the total simulated 

mining rate can be computed. Figure 2.6 shows the result of the equipment simulation of six types 

of trucks. As shown in Figure 2.6, for each type of truck, the equipment simulations (green lines) 

reproduce the historical data distribution (blue lines). Similarly, Figure 2.7 shows that, for each 

type of shovel, the equipment simulations (green lines) reproduce the historical data distribution 

(blue lines).  
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Figure 2.6: Equipment simulations for six types of trucks 

 

Figure 2.7: Equipment simulation for four types of shovels 
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For simulating the crusher capacity, Figure 2.8 shows a simulation for five crushers and, similarly 

to trucks and shovels, simulations reproduce the historical data distribution. 

 

 

Figure 2.8: Equipment simulation for five crushers 

To validate the equipment simulations, statistical comparisons between the simulated and the data 

productivity are shown in Table 3 and Table 4. Table 3 shows the mean of the historical 

productivity data of each type of equipment, comparing to the 5 simulations, while Table 4 shows 

the standard deviation. 

Table 2.3: Mean of the equipment productivity (tpd), data and 5 simulations 

EquipmentType Data Simulation1 Simulation2 Simulation3 Simulation4 Simulation5 

Truck A 9086 9214 9106 9031 9020 8897 

Truck B 5593 5471 5478 5311 5626 5767 

Truck C 7723 7754 7547 7698 7581 7794 

Truck D 5325 5428 5170 5415 5469 5354 

Shovel A 22021 22441 22496 22665 20970 20288 

Shovel B 70593 68817 70416 70140 70871 70453 

Shovel C 6169 6083 6225 6197 6566 6147 
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Shovel D 14430 14315 15004 14479 14473 14587 

Shovel E 71428 71151 70817 71913 71934 71063 

Shovel F 81331 79259 80052 81181 83323 82218 

Crusher1 32818 33284 33554 32874 33229 33336 

Crusher2 95717 97071 94630 96218 94994 97362 

Crusher3 137753 138329 138495 137130 138934 136767 

Crusher4 56625 55805 57662 56221 55801 56426 

Crusher5 121269 119753 121523 119281 122430 121362 

 

Table 2.4: Standard deviation of the equipment productivity (tpd), data and 5 simulations 

EquipmentType Data Simulation1 Simulation2 Simulation3 Simulation4 Simulation5 

Truck A 4949 5104 4888 4980 4862 4978 

Truck B 4045 4154 4024 4079 4030 3997 

Truck C 4435 4410 4409 4527 4275 4360 

Truck D 4740 4682 4786 4823 4723 4712 

Shovel A 28430 28141 28153 29419 27879 27939 

Shovel B 38678 38998 39812 39226 39564 38150 

Shovel C 10589 10441 10567 10520 11053 10746 

Shovel D 18701 18935 19137 18219 18492 18947 

Shovel E 36358 36552 36291 35240 37451 37232 

Shovel F 31743 33036 32426 30991 31308 30871 

Crusher1 15616 15533 15358 15950 15532 15256 

Crusher2 31487 30598 31567 32338 31823 31562 

Crusher3 31393 30232 30300 34282 29757 33009 

Crusher4 24046 24625 24077 24249 24325 23477 

Crusher5 47405 48613 47090 48737 46734 46479 

 

Table 2.5 shows the equipment plan for each mine, the equipment plan shows how many trucks 

and shovels of each type are being used in the mine. Therefore, using this equipment plan and the 
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previous simulated productivity of each type of equipment, the total simulated capacity can be 

computed for the shovel fleet and truck fleet for Mine 1 and Mine 2. 

Table 2.5: Number of trucks and shovels being used in two mines 

Trucks Mine 1 Mine 2 

A 26 17 

B 2 1 

C 73 23 

D 5 0 

Shovels Mine 1 Mine 2 

A 0 1 

B 5 4 

C 0 0 

D 1 1 

E 4 1 

F 3 0 

 

2.3.3 Parameters  

The case study of simultaneous stochastic optimization for this copper mining complex requires 

two sets of parameters. The set of parameters includes (i) the economic and (ii) the operational 

parameters associated with the mining operation. These are summarized in Table 2.6 for the 

economic parameters and Table 2.7 for the operational parameters.  Due to confidentiality reasons, 

the parameters listed in both tables are scaled. 

Table 2.6 summarizes the costs associated with the mining operation and the price of metal 

produced. Table 2.7 includes the mining width, sink rate, and slope angle limitation, as well as 

fixed recovery rates, for different processing streams. The penalty costs associated with the 

objective function are listed in  
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Table 2.8. They are determined based on a trial-and-error process to achieve an acceptable level 

of technical risk for different production targets and the economic outcome. The second set is 

related to the solution algorithm described in Section 3.2.5. The parameters used for the solution 

approach are summarized in  

Table 2.9. The initial temperature specifies the probability of the simulated annealing algorithm 

accepting deteriorating solutions at the first diversification. The cooling factor, cooling schedule, 

and the number of perturbations before diversification decide what proportions of the optimization 

are spent searching in the solution space and improving the solution. The perturbations before 

diversification and the number of diversifications are specific to the length of optimization.  

Table 2.6: Economic parameters 

Parameters Value 

Discount rate (NPV) 8% 

Geological discount rate 10% 

Copper Price ($US) $US5511 

Mining cost (excluding hauling cost, $US) 0.6 

Hauling cost (based on location, $US) 0.4 to 1.3 

Mill process cost including crushing ($US) 6.4 

Oxide leach cost including crushing ($US) 6.6 

Sulphide leach cost ($US) 1.1 

Stockpile rehandling cost ($US) 0.2 

Copper Concentrate Selling Cost ($US) 571 

Copper Cathode Selling Cost ($US) 551 

 

Table 2.7: Operational parameters 

Parameters Value 

Mining width 200m 
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Sink rate 100m 

Slope angle 37° 45° 

Mill 1 recovery 83% 

Mill 2 recovery 80% 

Mill 3 recovery 82.6% 

Oxide reach recovery 65% 

Sulphide leach recovery 27% 

Number of blocks 414,108 157,749 

Number of periods 8 

 

Table 2.8: Penalty costs 

Parameters Value 

Penalty cost – Simulated capacity (Mine 1, Mine 2, 

Mine 1 Crusher, Mine 2 Crusher, Oxide Crusher)  
20, 20, 40, 100, 20 $/ton 

Penalty cost – Capacity (Mill 1, Mill 2, Mill 3)  100, 100, 100 $/ton 

Penalty Cost – Smoothing Constraint (Mine 1, Mine 2) 50000, 50000 $/ton 

Penalty Cost – Sink Rate Constraint (Mine 1, Mine 2) 20000, 20000 $/ton 

Penalty Cost – Leach Pad Capacity (Oxide, Sulphide) 20, 20 $/ton 

Penalty Cost – CuS/CuT Ratio 4000 $/ton 

 

Table 2.9: Solution approach parameters 

Parameters Value 

Initial annealing temperature 0.2 

Cooling factor 0.98 

Cooling schedule 500 

Perturbations before diversification 500,000 

Number of diversification 15 
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2.3.4 Result and Comparisons 

The result of the stochastic optimization incorporating both supply and equipment uncertainty will 

be presented in this section and is referred to as the “joint uncertainty” case. To provide a 

comparison, the result of only incorporating the supply uncertainty, with constant equipment 

capacity, will be included and referred to as the "supply uncertainty" case. Therefore, the 

comparison will demonstrate the effect of including both equipment uncertainty and supply into 

the optimization framework. 

Figure 2.9 shows the risk profile of the amount of material produced by mine 1 and mine 2. Black 

lines show the simulated equipment capacities, which are the result of Section 2.3.2. As shown in 

Figure 2.9 (a), the joint stochastic case (blue lines) utilizes more of the simulated capacity of the 

equipment in mine 1 compared to the supply case (green lines). Mine 2 shows a similar result in 

Figure 2.9 (b) where the joint stochastic case utilizes more of the capacity of the truck fleet and 

shovel fleet in the mine.  

 

Figure 2.9: Mine 1 tonnages and mine 2 tonnage for supply uncertainty and joint uncertainty case 

 

After the materials are extracted from the mine, they are sent to the crushers for size reduction. 

The result of crusher production is shown in Figure 2.10.  Figure 2.10 (a) shows that the supply 

uncertainty case is trying to produce slightly more material than what mine 1 crusher can handle. 

The risk profile for mine 1 shows the crusher production for supply uncertainty would exceed the 

equipment capacity. In comparison, the joint uncertainty case respects the simulated capacity 
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better than the supply uncertainty case. Although the stochastic optimization tries to push the mine 

1 crusher production as much as possible, it still respects the simulated capacity. The supply 

uncertainty case is likely to send more material to the crusher exceeding the crusher capacity.  In 

another words, the joint case is expected to produce a more realisable schedule as it complies with 

the simulated production capacity. This can also explain the previous result in which the equipment 

capacity in the mines was not fully utilized. The mine 1 crusher can only handle a limited amount 

of high-grade ore from mine 1 based on the simulations. The optimizer is able to identify that the 

mining complex is restricted by the crusher capacities. For the Mine 2 Crusher shown in Figure 

2.10 (b), the production of both supply and joint uncertainty cases respect the simulated capacity. 

But the joint uncertainty case produces more material compared to the supply case, processing 

11% more material. The joint uncertainty case is able to utilize more capacity of the mine 2 

crushers. For the oxide crusher shown in Figure 2.10 (c), a similar result is also observed where 

the production risks exceeding the equipment capacity at years 2, 3, 6, and 7 for the supply 

uncertainty case. But the joint uncertainty case will be able to respect these limitations.  

 

Figure 2.10: Material processed by Mine 1 Crusher (a), Mine 2 Crusher (b) and Oxide Crusher (c) 

 

The result of copper metal recovered from mills 1, 2, and 3 are shown in Figure 2.11. Figure 2.11 

(a) and (c) show that, for the joint uncertainty case, Mill 1 and Mill 3 will recover approximately 
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11% and 16% more more copper in the first two years and a similar amount in later years. Mill 2 

will recover 8% less than the supply uncertainty case in the first two year. As for the copper 

recovered from the leach pad shown in Figure 2.12, the joint uncertainty case gives different results 

compared to the supply uncertainty schedule. For both Oxide Leach and Sulphide Leach, the joint 

uncertainty case shows a similar amount of copper is recovered at the earlier periods and slightly 

more copper at later periods, compared to the supply uncertainty case.  

 

Figure 2.11: Copper recovered by Mill 1 (a) Mill 2 (b) and Mill 3 (c) 

 

Figure 2.12: Copper recovered by Oxide leach (a) and sulphide leach (b) 
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For waste management, Figure 2.13 shows the waste tonnages and the copper content in the waste 

material. The joint uncertainty case shows that it extracts about 13% more waste compared to the 

supply uncertainty case. However, the copper content in the waste material is less than in the 

supply case. The joint uncertainty case is capable of improving the waste management in earlier 

periods. 

 

Figure 2.13: Waste management 

 

To demonstrate more clearly the amount of metal recovered, the amount of copper recovered by 

mills and leach-pads are summed up separately in Figure 2.14. As shown in Figure 16, the mill 

recovered the majority of the copper metal. About 89% of copper is recovered by the mill, and 

about 11 % is recovered by the leach pads. The joint uncertainty case recovers about 5% more 

metal in the first year, and a similar amount of metal in later years, as shown in Figure 2.14 (a). 

For the Leach Pads, Figure 2.14(b) shows that the stochastic plan recovers a similar amount of 

copper in earlier years and slightly more copper in later years. As a result, Figure 2.14 (c) shows 

that the joint uncertainty case can generate a 2% higher NPV compared to what the supply 

uncertainty case is capable of delivering under equipment uncertainty at the end of eight periods. 

The production schedules for the two cases are show in Figure 2.15 and Figure 2.16, where each 

period is represented by a distinct color gradient from blue in period 1 to red in period 8. For Mine 

1, the production schedule of the joint uncertainty case extracts slightly more material compared 

to the supply uncertainty case. This result is consistent with the previous observation: namely, that 

considering equipment uncertainty improves the use of equipment.  
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Figure 2.14: Total recovered copper from mills (a) and from leach pads (b), and NPV of the mining 

complex (c) 

 

Figure 2.15: Mine 1 production schedule for Supply Uncertainty case and Joint Uncertainty case 
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Figure 2.16: Mine 2 production schedule for Supply Uncertainty case and Joint Uncertainty case 

 

In summary, the joint uncertainty case results in a better production schedule with a higher 

utilization of equipment that better respects the equipment capacity. Also, it can achieve a slightly 

higher NPV by recovering more copper at earlier periods. This improvement is in addition to the 

improvement achieved by incorporating supply uncertainty into simultaneous stochastic 

optimization compared to the conventional method. 

2.4 Conclusions 

This paper extends the previous simultaneous stochastic optimization framework of mining 

complexes to include equipment uncertainty and related constraints.  The application at a copper 

mining complex demonstrates the practical aspects of integrating joint supply and equipment 

uncertainties. The uncertainty of equipment productivity is captured by simulations based on 

historical production data using Monte Carlo simulations. By integrating equipment uncertainty, 

in addition to geological (supply) uncertainty, the optimization process respects the simulated 

equipment capacity, resulting in pragmatic and realistic life-of-asset production schedules. In the 

case study, the joint uncertainty production schedule produces 5% more copper for the mills in the 

first year, although the risk profiles show more fluctuations across multiple periods compared to 

the schedule where only supply uncertainty is considered. The Leach Pads also show higher copper 
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production in later years. Consequently, the proposed extended stochastic schedule now reflects 

and manages risk regarding equipment productivity, achieves a 2% higher NPV compared to the 

schedule that considers only supply uncertainty, while it is also capable of improving waste 

management in the earlier years.  

Future research directions could consider haul cycles in the optimization process. Another 

important avenue could be including factors such as block depth and distance from the mining site, 

which influence truck productivity and cost structure. Evaluating the feasibility of investing in an 

additional crusher to alleviate production constraints mentioned previously may significantly 

impact overall productivity and profitability. In addition, various operating modes can be explored 

for the mill, such as including options with higher recovery but lower throughput. Additional case 

studies and comparisons would also be valuable in terms of providing understanding of the effects 

of different equipment configurations in mining operations.  
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Chapter 3. Simultaneous stochastic optimization of mining 

complexes with recovery and market uncertainty: application at an 

open pit copper mining complex 

3.1 Introduction 

A mining complex can be seen as an integrated system composed of mines, stockpiles, waste 

disposal and tailings storage facilities, processing destinations and transportation; all leading to the 

generation of sellable products delivered to customers and/or the spot market (Dimitrakopoulos 

and Lamghari, 2022; Goodfellow and Dimitrakopoulos, 2016; Montiel and Dimitrakopoulos, 

2015; Pimentel et al., 2010). To deal with this complex system, conventional mine planning 

approaches optimize each component separately and sequentially (Hustrulid et al., 2013), while 

ignoring the technical uncertainties related to the corresponding components of the mining 

complex. Integration of various components within the mineral value chain while considering 

uncertainty has been a research objective for advanced strategic mine planning over the past 

decade. A wide range of production decisions, including extraction sequencing, destination 

policies, and utilization of processing streams can be simultaneously determined by the integrated 

optimization model for mining complexes while also addressing the uncertainties inherent in 

mining operations. By employing simultaneous stochastic optimization, the value of the final 

products sold by the mineral value chain is maximized, synergies between different components 

are captured, and technical risks are managed.  

Over the past decades, developments in optimization models include multiple components of 

mining complexes advancing the conventional approach toward joint optimization (Hoerger, 

1999a, 1999b; Stone et al., 2018; Whittle, 2018; Whittle and Whittle, 2007). However these 

approaches exhibit several limitations such as the aggregation of blocks to decrease computational 

complexities in optimization, the requirement of pre-determined mine production schedules as 

input, the sequential nature of the optimization process, and most significantly the reliance on a 

single estimated model of the deposits. The use of a single estimated orebody ignores the 

uncertainties and spatial variability in critical properties of the mineral deposit, which is the 
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primary source of technical risk in mine planning (Dowd, 1994, 1997; Ravenscroft, 1992), referred 

to herein as supply or geological uncertainty. The geological uncertainty directly impacts the 

grades and material types within the deposit, leading to a misrepresentation of the actual 

proportions of material concentration, and their subsequent effects on the outcome of the mine 

production schedule. To strengthen the robustness of mining complex optimization and enhance 

its ability to capture synergies, it is necessary to integrate supply uncertainty into the optimization 

process with stochastic simulations (Dimitrakopoulos et al., 2002). 

Simultaneous stochastic optimization of mining complexes overcomes the above-mentioned 

limitations by considering one single mathematical formulation to simultaneously optimize the 

components in a mining complex while considering uncertainties (Goodfellow and 

Dimitrakopoulos, 2016, 2017; Montiel and Dimitrakopoulos, 2015, 2017, 2018). It allows the 

modelling of constraints of the components at the same time and any nonlinear transformation so 

that the solution is able to capture the synergies among components. Montiel and Dimitrakopoulos 

(2015) introduce a model that takes into account multiple mineral deposits, multiple processing 

steam, and multiple transportation alternatives while considering supply uncertainty. The objective 

function is modelled as a two-stage Stochastic Integer Programming (SIP) (Birge and Louveaux, 

2011) to explicitly maximize the NPV by considering the value of the final product, and 

operational costs, and minimizing deviations from production targets. The method is applied to 

Newmont’s Twin Creek operations with additional operational constraints to create a practical 

production schedule (Montiel and Dimitrakopoulos, 2018), and results in a 7% increase in NPV 

and improves the management of autoclave blending constraints, when compared to the 

deterministic schedule.  

Goodfellow and Dimitrakopoulos (2016) introduced a generalized network-based SIP approach 

that accommodates all components within a mining complex for simultaneous stochastic 

optimization. The model aims to simultaneously define the extraction sequence, destination 

policies, and processing stream decisions over the life-of-mine. The method maximizes the NPV 

by considering the value of final products at the end of the mining complex, while effectively 

managing production targets. In a specific case study conducted on a copper-gold mining complex 

(Goodfellow and Dimitrakopoulos, 2017), simultaneous stochastic optimization was deployed to 



 

 

70 

 

mitigate the technical risk associated with geological uncertainty. Compared to a conventional 

schedule, the approach resulted in a 22.6% increase in NPV while effectively managing geological 

risk. The adaptability of this generalized formulation has led to subsequent research exploring a 

wide range of applications for mining operations. Farmer (2017) extended the model to incorporate 

capital expenditure (CapEx) with mining capacity decisions and to incorporate complex revenue 

calculations such as royalties and metal streaming under price uncertainty. Del Castillo and 

Dimitrakopoulos (2019) modify the mathematical framework to enable dynamic optimization for 

strategic planning, explicitly considering CapEx alternatives and various operating modes. This 

multi-stage model exhibits adaptability over the life of a mining complex by reacting and adapting 

to new information as needed. Further applications include the work of Kumar and 

Dimitrakopoulos (2019), who incorporate geo-metallurgical decisions into the destination policy 

for a copper-gold mining complex. Saliba and Dimitrakopoulos (2019) conduct an application 

accounting for both supply and market uncertainty through commodity price simulations at a gold 

mining complex. Levinson and Dimitrakopoulos (2020) applied the method to a gold mining 

complex to generate a production schedule with active management of the production of acid-

generating waste under geological uncertainty. Levinson and Dimitrakopoulos (2023) connect the 

simultaneous stochastic optimization framework (Goodfellow and Dimitrakopoulos, 2016) for 

long-term strategic planning and a reinforcement learning approach (Levinson et al., 2023) for 

short-term production scheduling, to reduce misalignment between schedules of different 

timescales. 

 The applications discussed above typically consider constant recovery of metal at the processing 

destination. However, uncertainty in the metallurgical process is a source of uncertainty in mineral 

projects in addition to geological and market uncertainty (Coward and Dowd, 2015). Coward et 

al. (2013), Coward and Dowd (2015), and Jackson et al. (2014) assess the effect of recovery 

uncertainties on the economic outcome of mining projects. Coward and Dowd (2015) present a 

comprehensive study evaluating the uncertainty of the net smelter return (NSR) by generating 

multiple simulated grade-recovery curves (Coward et al., 2009). The risk analysis shows that the 

range between the 10th and 90th percentile (P10 and P90) of NPV spreads as much as 70% of the 

expected project NPV when considering compound uncertainty. These findings highlight the 



 

 

71 

 

significance of recovery uncertainty and its impact on project outcomes. Incorporating recovery 

uncertainty into the mine optimization process will further enhance the understanding and 

management of uncertainty in mining operations, and incorporating market uncertainty through 

the use of commodity price simulations generates a long-term plan that manages and quantifies 

risk derived from volatile spot markets. Recent simultaneous stochastic optimization applications 

addressing market uncertainty include the work of Farmer (2016), Zhang and Dimitrakopoulos 

(2017), and Saliba and Dimitrakopoulos (2019), with the use of commodity price simulation. On 

the other hand, recovery uncertainty has not been explored for its effect on the simultaneous 

stochastic optimization of the mining complex.  

In the following sections, an application of the simultaneous stochastic optimization method 

proposed by Goodfellow and Dimitrakopoulos (2016) is presented to incorporate market 

uncertainty and recovery uncertainty along with geological uncertainty. The process of quantifying 

market uncertainty through commodity price simulations and recovery uncertainty through 

recovery curve simulations are outlined. Next, a copper mining complex is employed to conduct 

case studies exploring the ramifications of different combinations of geological, recovery, and 

market uncertainties on production schedules. Last, conclusions and possible future work are 

discussed. 

3.2 Simultaneous Stochastic Optimization of Mining Complexes 

3.2.1 Definition and notation 

Components in a mining complex, 𝑖 ∈ 𝒩, are classified as three types of locations: clusters of 

blocks (𝒞), stockpiles (𝒮), and processing destinations(𝒫). Clusters of blocks, 𝒞, serve as sources 

of materials or where the materials are extracted from. Clusters of blocks are generated from the 

block model of mine 𝑚 ∈ 𝕄  by grouping blocks with similar attributes with the k-means 

algorithm. Since a block has different properties under a different scenario 𝑠 ∈ 𝕊, it could belong 

to a different cluster in a different scenario. 𝒫 is a set of processing destinations that receive and 

transform material. 𝒮 is a set of stockpiles which can receive materials from sources or destinations 

but do not treat or transform those materials. Stockpiles hold material over time for possible future 
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use and can be modelled as a source or a destination. Directed arcs, 𝒜, defines the ability to send 

material from one location to another. Together, locations and directed arcs form a directed graph, 

𝒢(𝒩,𝒜) which mathematically describes a mining complex (Goodfellow and Dimitrakopoulos, 

2016).  

In a mining complex, materials in a mining complex are first extracted from the mines, and then 

go through a set of processing destination and stockpile facilities for processing or storage. The 

materials at the end of the mining complex are the final products sold to customers or spot markets. 

𝑣𝑖,𝑎,𝑡,𝑠 describes the geological and geo-metallurgical attribute 𝑎 of the material at location 𝑖 at 

period 𝑡 under the scenario 𝑠. And, two types of attributes are used, primary attributes (𝑝 ∈ ℙ) 

and hereditary attributes (ℎ ∈ ℍ) . Primary attributes describe the fundamental properties of 

materials that can be sent to one location to another, and they are linearly additive. Examples of 

primary properties include material tonnage and metal content tonnage. Hereditary attributes are 

calculated from primary attributes or additional operational or financial information necessary for 

modeling the mining complex. They enable the incorporation of non-linear transformation into the 

optimization model. Examples include recovery rates and metal prices at each processing 

destination. A set of stochastic scenarios  𝑠 ∈ 𝕊 = {1,… , 𝑆}  in employed to comprehensively 

account for all sources of uncertainty within a mining complex.  

3.2.2 Decision variables 

Three sets of decision variables control the production schedule of a mining complex and are to 

be optimized during the simultaneous stochastic optimization. First of all, the extraction 

decisions 𝑥𝑏,𝑡 ∈ {0,1} determine whether a mining block 𝑏 ∈ 𝔹𝑚 is extracted or not at period 𝑡 ∈

𝕋. The destination decisions 𝑧𝑐,𝑗,𝑡 ∈ {0,1}, determine whether a cluster of blocks 𝑐 ∈ 𝒞 is sent to 

destination 𝑗 ∈ 𝑂(𝑐) in period 𝑡 ∈ 𝕋 after they are mined. The last set of decisions, processing 

stream decisions 𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1], determines the proportion of output material from a location 𝑖 ∈

𝒮 ∪ 𝒫 being sent to a downstream destination 𝑗 ∈ 𝑂(𝑖) at period 𝑡 ∈ 𝕋 under scenario 𝑠 ∈ 𝕊. The 

decision variables can be classified into two groups, scenario-independent or scenario-dependent. 

The extraction decisions and destination decisions are scenario-independent decisions that have to 

be made resilient to the geological uncertainty observed in the mining complex. The processing 
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stream decisions are scenario-dependent and adaptive to the uncertainty because the model 

assumes that uncertainties associated with the material are revealed after the material is sent to its 

immediate destination. Besides the three sets of decision variables, for the purpose of modeling 

deviations, 𝑑ℎ,𝑖,𝑡,𝑠
+  is used to represent the surplus exceeding an upper production target, 𝑈ℎ,𝑖,𝑡, and 

𝑑ℎ,𝑖,𝑡,𝑠
−  is used to represent the shortage falling behind a lower production target, 𝐿ℎ,𝑖,𝑡. 

3.2.3 Objective Function 

A generalized two-stage stochastic optimization model is proposed by Goodfellow and 

Dimitrakopoulos (2016, 2017) to maximize the profit of selling products while minimizing the 

deviation from production targets. It aims to simultaneously determine the extraction sequence, 

destination policies and processing stream decisions for mining complexes under uncertainties. 

The objective function is shown in Equation (1).  

𝑀𝑎𝑥
1

‖𝕊‖
∑ ∑∑∑𝑝ℎ,𝑖,𝑡𝑣ℎ,𝑖,𝑡,𝑠

ℎ∈ℍ𝑠∈𝕊𝑡∈𝕋𝑖∈𝕄∪𝒮∪𝒫⏟                      
𝑃𝑎𝑟𝑡 𝐼

−
1

‖𝕊‖
∑ ∑∑∑(𝑐ℎ,𝑖,𝑡

+  𝑑ℎ,𝑖,𝑡,𝑠
+ + 𝑐ℎ,𝑖,𝑡

−  𝑑ℎ,𝑖,𝑡,𝑠
− )

ℎ∈ℍ𝑠∈𝕊𝑡∈𝕋𝑖∈𝕄∪𝒮∪𝒫⏟                                
𝑃𝑎𝑟𝑡 𝐼𝐼

−∑ ∑ ∑ (𝑐𝑏,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ 𝑑𝑏,𝑚,𝑡

𝑠𝑚𝑜𝑜𝑡ℎ)

𝑏∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋⏟                    
𝑃𝑎𝑟𝑡 𝐼𝐼𝐼

−∑ ∑ ∑ (𝑐𝑏,𝑡
𝑠𝑖𝑛𝑘 𝑑𝑏,𝑚,𝑡

𝑠𝑖𝑛𝑘 )

𝑏∈𝔹𝑚𝑚∈𝕄𝑡∈𝕋⏟                
𝑃𝑎𝑟𝑡 𝐼𝑉

 

(1) 

Part I of the objective function accounts for the discounted cash flows from metal sales, the mining 

cost, the processing cost, and other associated costs. Part II accounts for the cost of deviation from 

production targets by applying penalties cost, 𝑐ℎ,𝑖,𝑡
+  and 𝑐ℎ,𝑖,𝑡

−  , to deviations, 𝑑ℎ,𝑖,𝑡,𝑠
+  and 𝑑ℎ,𝑖,𝑡,𝑠

− , 

respectively. The geological discount rate is applied to the penalties, 𝑐ℎ,𝑖,𝑡
+ =

𝑐ℎ,𝑖,1
+

(1+𝑟𝑑)𝑡
 

(Dimitrakopoulos and Ramazan, 2004; Ramazan and Dimitrakopoulos, 2005, 2013) instead of 

economic discounting. The risk discount rate minimizes the risk in early periods and defers the 
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risk into later periods when more information is available. Part III and Part IV are smoothing and 

sink rate penalties. Part III ensures that the extraction sequence creates adequate space for 

equipment access and movement. Together, the smoothing penalties and sink rate penalties create 

a practical minable shape for the schedule that allows adequate space for moving equipment and 

prevents slope instability. For this case study incorporating recovery and market uncertainty in 

addition to supply uncertainty, please note that Part I accommodates the joint supply, recovery, 

and market uncertainties. For example, uncertainty recovery rate can be modelled as hereditary 

attributes at processing mill and market uncertainty can be modelled as hereditary attributes at 

selling. The objective function will be evaluated across the scenarios describing supply, recovery 

and market uncertainties. 

3.2.4 Constraints 

In a mining complex, there are different upper and lower production targets and constraints, 

denoted as  𝑈ℎ,𝑖,𝑡  and 𝐿ℎ,𝑖,𝑡 . Examples include mining capacity, processing capacities, and the 

acceptable ratio of different properties of the material in a mill. They are defined for attribute ℎ ∈

ℍ at locations 𝑖 ∈ 𝒩  in period 𝑡 ∈ 𝕋, such as the processing capacity for a flotation mill. To 

quantify deviations from these production targets within each scenario, 𝑑ℎ,𝑖,𝑡,𝑠
±  represent the unit 

deviations from a production target associated with property ℎ  at location 𝑖  in period 𝑡  and 

scenario 𝑠 , while 𝑐ℎ,𝑖,𝑡
± , represent the unit surplus and shortage costs associated with these 

deviations. For instance, 𝑑ℎ,𝑖,𝑡,𝑠
+  can describe the amount of material the mine tries to extract  but 

is above the mine’s trucking capacity. With a corresponding penalty cost 𝑐ℎ,𝑖,𝑡
+ , optimization can 

be guided to reduce the amount of material being extracted from the mine. Equations (2) and (3) 

calculate the deviations from the upper and lower bounds of each production target at each location 

under every orebody scenario. Then, the deviations are penalized in the objective function.  

𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡   ∀ ℎ ∈ ℍ, 𝑖 ∈ 𝒞 ∪ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (2) 

𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡   ∀ ℎ ∈ ℍ, 𝑖 ∈ 𝒞 ∪ 𝒮 ∪ 𝒫, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 (3) 
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|𝑁𝑒𝑖𝑔ℎ(𝑏)| ∗ 𝑥𝑏,𝑡 − ∑ 𝑥𝑛,𝑡
𝑛∈𝑁𝑒𝑖𝑔ℎ(𝑏)

− 𝑑𝑏,𝑚,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ ≤ 0   ∀ 𝑏 ∈ 𝔹𝑚, , 𝑡 ∈ 𝕋,𝑚 ∈ 𝕄 (4) 

𝑥𝑏,𝑡 + 𝑥𝒷(𝑏),𝑡 − 𝑑𝑏,𝑚,𝑡
𝑠𝑖𝑛𝑘 ≤ 1   ∀ 𝑏 ∈ 𝔹𝑚, , 𝑡 ∈ 𝕋,𝑚 ∈ 𝕄 (5) 

Equation (4) is the smoothing constraints that ensure adequate space for equipment access. Within 

a predefined mining width, a block 𝑏 is surrounded by a set of neighboring blocks, denoted as 

𝑁𝑒𝑖𝑔ℎ(𝑏). 𝑑𝑏,𝑚,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ represents the number of blocks within 𝑁𝑒𝑖𝑔ℎ(𝑏) that are mined at a different 

period as 𝑏. Then, the objective function is penalized with a smoothing penalty cost 𝑐𝑚,𝑡
𝑠𝑚𝑜𝑜𝑡ℎ . 

Similarly, the sink rate constraint, Shown in Equation (5), limits the depth a bench can descend 

within one period. Within a predefined sink rate, 𝒷(𝑏) represents the set of blocks overlaying 

block 𝑏. For example, if blocks are 10m in height and the sink rate is 30m, then 𝒷(𝑏) is the three 

blocks above block 𝑏. A penalty 𝑑𝑏,𝑚,𝑡
𝑠𝑖𝑛𝑘  will incur if they are mined at the same period 𝑡. The 

comprehensive and detailed explanation of the remaining constraints included in the model, such 

as capacity constraints, blending constraints, material type constraints, reserve, slope constraints, 

and stockpiling constraints can be found in (Goodfellow and Dimitrakopoulos, 2016). 

3.2.5 Solution approach 

The simultaneous stochastic optimization of mining complexes is challenging due to its large 

number of binary decision variables and the integration of various sources of uncertainty. Utilizing 

commercial solvers is not feasible for solving the optimization model. Metaheuristics and hyper-

heuristics are effective solution methods to obtain near-optimal solutions for large stochastic 

optimization models of mining complexes (Goodfellow and Dimitrakopoulos, 2016, 2017; 

Lamghari and Dimitrakopoulos, 2018). The solution approach used in this work is a combination 

of multi-neighbourhood simulated annealing with adaptive neighbourhood search, where the 

selection of heuristics is guided by reinforcement learning (Yaakoubi and Dimitrakopoulos, 2023).  
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3.3 Case Study 

3.3.1 Overview of the mining complex 

The method of simultaneous stochastic optimization described in the previous section is applied 

to an open-pit copper mining complex. Shown in Figure 3.1, the mining complex consists of two 

open-pit mines, Mine 1 and Mine 2, with respectively 414,108 and 157,749 blocks, which are 

25x25x15m3 in size. The main attributes of concern are copper total and copper soluble. Each 

block in the block model belongs to one of the four main material types, high-grade sulphide, low-

grade sulphide, oxide, and waste. Materials produced by the mines can be processed by different 

process streams. Two products are produced by the mining complex, copper concentrate and 

copper cathodes. As shown in Figure 3.2, Mill 1, Mill 2, and Mill 3 receive high-grade sulphide 

material from Mine 1 and Mine 2 after materials are crushed by their corresponding crushers and 

produce copper concentrate as a product. The recovery uncertainty of Mill 1, Mill 2, and Mill 3 

will be modelled as sets of stochastically simulated recovery curves. The recovery uncertainty of 

Mill 1 and Mill 2 are assumed to be the same and share the same set of recovery scenarios, as given 

by the mill recovery data from the mining operation. The Oxide Leach Pad takes oxide materials 

from both mines after the oxide material is crushed by Crusher 4 and produces copper cathodes. 

The Sulphide Leach Pad takes low-grade material from both mines and produces copper cathode 

as a product. The Sulphide Leach Pad requires the ratio of copper total and copper soluble to be 

within its operational limit.  
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Figure 3.1: Copper mining complex, with 3 mills for modelling recovery uncertainty (highlighted in dash 

line) 

3.3.2 Modelling recovery uncertainty 

In the present case study, the group of recovery curves is simulated using the method presented by 

Coward et al. (2013), with historical recovery data provided by the mining operation. The recovery 

uncertainty is modelled using the third-order inverse polynomial model of copper grade, 𝑅𝑒𝑐% =

𝑎 +
𝑏

𝐶𝑢%
+

𝑐

(𝐶𝑢%)2
. By removing one data point (“bootstrapping”), it was possible to fit a regression 

curve with a set of 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 parameters for the model. Repeating the above process by removing 

different data points, multiple values of  𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 are produced. Then, by computing the mean 

and variance from the set of 𝑎, it was possible to draw random values of 𝑎 from the normal 

distributions with the same mean and variance to produce simulated values of 𝑎 . A similar 

procedure is followed for simulating the values of 𝑏 and 𝑐 to produce simulated recovery curves. 

The use of the third-order inverse polynomial model is determined by repeating the simulation 

process for different models including linear, second-order quadratic, logarithm functions, etc. The 

third-order inverse polynomial model is chosen because the generated recovery curves best cover 

the dispersion of the historical data.  
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Figure 3.2 shows the set simulated recovery curves of Mill 1 and Mill 2in colours which are 

capable of reproducing the variability of historical recovery data and are comparable to the 

regression line of all data which is used in the baseline case for comparison purposes. Figure 3.3 

shows the set of simulated recovery curves of Mill 3, and similarly, the set of simulated recovery 

curves reproduces the variability of historical recovery data and is comparable to the regression 

line of all data.  

 

Figure 3.2: Simulated recovery curves (color lines), historical recovery data (blue dots), and the 

regression line of all data (black line) for Mill 1 and 2 
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Figure 3.3: Simulated recovery curves (color lines), historical recovery data (blue dots), and the 

regression line of all data (black line) for Mill 3 

3.3.3 Modelling market uncertainty 

Copper prices are simulated using an established model for base metals, the Mean Reverting 

Process (Dixit and Pindyck, 2019; Schwartz, 1997; Suarez and Fernandez, 2009), described by Eq. 

8, where 𝑥𝑡 is the metal price at time 𝑡, 𝑑𝑧 is the standard normal distribution. Long-term price, 𝑥̅, 

is the expected mean price used in price models where the price is reverting around. The speed of 

reversion is given by parameter 𝜂, and 𝜎  is the average annual price volatility. The parameters 

used to model copper price uncertainty in this case study are given in Table 3.1. Figure 3.4 presents 

the ten simulated copper price scenarios used in this case study. The mean of the simulated prices 

and the constant price used in the baseline case are comparable. It is typically accepted that the 

number of simulations necessary to accurately quantify metal price uncertainty can be on the order 

of hundreds (Briggs et al., 2012). However, it would make the number of joint uncertainty 

scenarios is in the order of millions for the case study, making the problem intractable. However, 

the influence of the number of price scenarios on the long-term production scheduling for mineral 
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value chains has not been sufficiently explored. With 10 simulated price scenarios, this case study 

demonstrates the impact of price uncertainty on the output of simultaneous stochastic optimization 

of mining complexes.  

𝑥𝑡 = 𝑒
−𝜂𝛥𝑡 ∗ 𝑥𝑡 + (1 − 𝑒

−𝜂𝛥𝑡) ∗ 𝑥̅ + 𝜎√
(1 − 𝑒−2𝜂𝛥𝑡)

2𝜂
𝑑𝑧 

(8) 

Table 3.1: Parameters for price simulations 

Parameters Value 

Initial price, 𝑥0 US$5511/t 

Expected mean price, 𝑥̅ US$5511/t 

Reverting speed, 𝜂 0.5 

Annual price volatility, 𝜎 9% 
 

 

 

Figure 3.4: Copper price simulations (grey),  mean of simulated prices (red), constant copper price (black) 
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3.3.4 Parameters  

The case study of simultaneous stochastic optimization for this copper mining complex requires 

two sets of parameters. The first set of parameters is the economic and operational parameters 

associated with the mining operation, which are summarized in Table 3.2 and Table 3.3, 

respectively. For confidentiality reasons, the parameters listed in both tables are scaled. Table 3.2 

summarizes the costs associated with the mining operation and the price of metal produced. Table 

3.3 includes the mining width, sink rate, and slope angle limitation as well as fixed recovery rates 

for different processing streams. The penalty costs associated with the objective function are listed 

in Table 3.4. They are determined based on a trial and error process to achieve an acceptable level 

of technical risks for different production targets and the economic outcome (Benndorf and 

Dimitrakopoulos, 2013).  

Table 3.2: Economic parameters 

Parameters Value 

Discount rate (NPV) 8% 

Geological discount rate 10% 

Copper Price ($US) $US5511 

Mining cost (excluding hauling cost, $US) 0.6 

Hauling cost (based on location, $US) 0.4 to 1.3 

Mill process cost including crushing ($US) 6.4 

Oxide leach cost including crushing ($US) 6.6 

Sulphide leach cost ($US) 1.1 

Stockpile rehandling cost ($US) 0.2 

Copper Concentrate Selling Cost ($US) 571 

Copper Cathode Selling Cost ($US) 551 
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Table 3.3: Operational parameters 

Parameters Value 

Mining width 200m 

Sink rate 100m 

Slope angle 37° (Mine 1) 45°(Mine 2) 

Oxide reach recovery 65% 

Sulphide leach recovery 27% 

Number of blocks 414,108 

Number of periods 10 

 

Table 3.4: Penalty costs 

Parameters Value 

Penalty cost – Simulated capacity (Mine 1, Mine 2, 

Mine 1 Crusher, Mine 2 Crusher, Oxide Crusher)  
20, 20, 40, 100, 20 $/ton 

Penalty cost – Capacity (Mill 1, Mill 2, Mill 3)  100, 100, 100 $/ton 

Penalty Cost – Smoothing Constraint (Mine 1, Mine 2) 50000, 50000 $/ton 

Penalty Cost – Sink Rate Constraint (Mine 1, Mine 2) 20000, 20000 $/ton 

Penalty Cost – Leach Pad Capacity (Oxide, Sulphide) 20, 20 $/ton 

Penalty Cost – CuS/CuT Ratio 4000 $/ton 

 

3.3.5 Result and comparisons 

Three case studies are conducted to demonstrate the effect of incorporating recovery and market 

uncertainty into the mining complex. The first case serves as the "baseline," including only supply 

uncertainty, with two sets of fifteen simulated orebodies for Mine 1 and Mine 2. In the second 

case, referred to as the "recovery uncertainty" case, it incorporate both supply and recovery 
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uncertainty, characterized by a separate set of ten simulated recovery curves. The last case study, 

termed the "joint uncertainty" case, includes all three sources of uncertainties: namely supply, 

recovery, and market uncertainties. The result is presented in two comparisons to highlight the 

effects of different sources of uncertainties. In the first comparison, the outcomes of the recovery 

case are compared with those of the baseline case. In the second comparison, the result of joint 

case are compared to baseline case. 

3.3.5.1 Comparison between recovery case and baseline case 

Figure 3.5 to Figure 3.8 present the comparison between the baseline case, shown in black lines 

and the recovery case, shown in orange lines. Figure 3.5 shows the risk profile of recovered copper 

metal from Mill 1, 2, and 3. Figure 3.5 (a) shows that the recovery uncertainty case extracts more 

copper in early years and less copper in later years at Mill 1, compared to the baseline. For Mill 2 

and Mill 3, shown in Figure 3.5 (b) and Figure 3.5 (c) the recovery uncertainty case extracts more 

copper in early years and less copper in later years at Mill 1, compared to the baseline. Figure 3.6 

shows the throughput grade of the three mills. All three mills behave similarly, with higher-grade 

material throughput in early years, and lower-grade throughput in later years. The recovery rates 

achieved by the three mills are shown in Figure 3.7. When recovery uncertainty is incorporated, 

the risk profile of the recovery rate is wider than the baseline. Incorporating recovery uncertainty 

in the optimization produces a stable recovery rate compared to the baseline.  

Figure 3.8 (a) shows the sum of copper recovered at three mills. It confirms the previous finding 

that the recovery uncertainty case produces more copper metal in year 2 and a slightly lower 

amount of copper in some later years when compared to the baseline. Cumulatively, the market 

case will recover 3.5% more copper and eventually generate 7.8% higher NPV, compared to the 

baseline case, as shown in Figure 3.8 (b) and Figure 3.8 (c). This result can be visualized when 

looking at the extraction sequence. Figure 3.9 shows the comparison of the extractions for Mine 

1. In the areas indicated by circles, more high-grade materials are extracted for the recovery case 

in year 2. Similar results are observed when looking at Figure 3.10 showing the extraction 

sequence of Mine 2, which shows the recovery case extracting more material in year 2. 
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Figure 3.5: Copper metal recovered from Mill 1, 2, and 3 for baseline and recovery uncertainty cases 

 

Figure 3.6: Throughput grade of Mill 1 (a), Mill 2 (b) and Mill 3 (c) for baseline and recovery uncertainty 

case 



 

 

85 

 

 

Figure 3.7: Recovery rate of Mill 1 (a), Mill 2 (b) and Mill 3 (c) for baseline and recovery uncertainty 

case 

 

Figure 3.8: Recovered copper from mills (a), cumulative recovered copper from mills (b), and NPV (c) 

for baseline and recovery uncertainty case 
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Figure 3.9: Mine 1 production schedule for baseline and recovery uncertainty case 

 

Figure 3.10: Mine 2 production schedule for baseline and recovery uncertainty case 

3.3.5.2 Comparison between joint case and baseline case 

Figure 3.11 to Figure 3.16 presents the second comparison between the baseline case, shown in 

black lines and the joint case, shown in blue lines. Figure 3.11 (a) shows that the joint uncertainty 

case extracts more copper in year 3 and less copper in later years compared to the baseline. For 

Mill 2 and Mill 3, shown in Figure 3.11 (b) and Figure 3.11 (c), similar results can be observed. 

Figure 3.12 shows the throughput grade of three mills which behave similarly. The joint case 

produces higher grade material throughput in year 3 compared to the baseline case, and lower 
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grade input in later years. The recovery rates achieved by the three mills are shown in Figure 3.13. 

In the joint uncertainty case, the risk profile of the recovery rate is wider than the baseline. This 

indicates the risk of recovery rate is underestimated in the baseline as recovery uncertainty is not 

included in the optimization. Also, the 50th percentile of the risk profile for Mill 2 and Mill 3 

indicates that the joint case produces a stable recovery rate compared to the baseline.  

The difference in performance between Mill 1 and Mill 2 is important for analyzing the production 

schedules, given Mill 1 and Mill 2 share the same set of recovery uncertainty. This difference in 

performance arises from the configuration of the mining complex. As shown in Figure 3.2, Mill 1 

material is supplied by Crusher 1 and Crusher 5.  Crusher 1 receives material from Mine 1 and 

Crusher 5 receives material from Mine 2. Given Crusher 1 has a capacity half of the capacity of 

Mill 1, about 50% of the material processed by Mill 1 comes from Mine 2, while Mill 2 and Mill 

3 have 15% of the material coming from Mine 2. Therefore, the performance of Mill 1 is dominated 

by the supply uncertainty and the configuration of the mining complex before being influenced by 

recovery and market uncertainty. Recovery and market uncertainty exert their effects on top of the 

underlying supply uncertainty and the synergy encapsulated by the mining complex's 

configuration as optimized.  

Figure 3.14 (a) shows the total copper recovered at three mills. It shows that the mining complex 

produces more copper metal in year 3 and a slightly lower amount of copper in some later years 

when recovery and market uncertainty are incorporated. Cumulatively, the joint case will recover 

7.0% more copper and eventually generate 12.5% higher NPV, compared to the baseline case, as 

shown in Figure 3.14 (b) and Figure 3.14 (c). This result can be visualized when looking at the 

extraction sequence. Figure 3.15 shows the comparison of the extractions for Mine 1. In the areas 

indicated by circles, more high-grade materials are extracted for the recovery case in year 3. 

Similar results are observed in Figure 3.16 showing the extraction sequence of Mine 2, which 

shows the recovery case extracting more material in year 3. 
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Figure 3.11: Copper metal recovered from Mill 1, 2, and 3 for baseline and joint uncertainty case 

 

Figure 3.12: Throughput grade of Mill 1 (a), Mill 2 (b) and Mill 3 (c) for baseline and joint uncertainty 

case 
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Figure 3.13: Recovery rate of Mill 1 (a), Mill 2 (b) and Mill 3 (c) for baseline and joint uncertainty case 

 

Figure 3.14: Recovered copper from mills (a), cumulative recovered copper from mills (b), and NPV (c) 

for baseline and joint uncertainty case 
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Figure 3.15: Mine 1 production schedule for baseline and joint uncertainty case 

 

Figure 3.16: Mine 2 production schedule for baseline and joint uncertainty case 

3.4 Conclusions 

This paper presents an application of the simultaneous stochastic optimization framework of 

mining complexes that includes recovery and market uncertainty in addition to geological 

uncertainty. The application is conducted for a copper mining complex, showcasing the 

framework's ability to supply, recovery, and market uncertainties. The framework searches for a 
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globally optimal solution by optimizing extraction sequences, destination policies, and processing 

stream decisions simultaneously. The incorporation of recovery uncertainty involves simulations 

of recovery curves based on historical production data using Monte Carlo simulations of the curve 

model parameters. Market uncertainty is captured through commodity price simulations based on 

the mean-reverting process. Through the incorporation of recovery and market uncertainties 

alongside geological uncertainty, the stochastic optimization process adjusts production schedules, 

to reflect different combinations of incorporated uncertainties. The recovery case and joint case 

schedules led to cumulative copper production increases of 3.8% and 7.0%, respectively. In 

addition, the recovery case and joint case result in higher Net Present Values (NPV) of 7.8% and 

12.5% compared to the baseline case. Furthermore, the incorporation of recovery uncertainty leads 

to production schedules achieving more stable recovery rates, as observed in the recovery case and 

joint case schedules compared to the baseline. This highlights the impact of the mineral value chain 

configuration on the production schedule. Importantly, it is shown that the incorporation of 

multiple sources of uncertainty should not be viewed as a mere sum of uncertainties. Instead, the 

joint effects and interactions with specific mineral value chains need to be considered for a 

comprehensive analysis. The presented research provides valuable insights into the effective 

management of uncertainties and the optimization of production schedules for mining complexes, 

particularly when dealing with recovery and market uncertainties in addition to supply uncertainty. 

The framework's versatility and robustness contribute significantly to decision-making processes 

in the mining operation. 

Possible future research may include exploring alternative recovery simulation methods. For 

instance, considering the correlation between different recovery curve parameters during the 

simulation to provide more accurate representations of recovery uncertainties. Additionally, 

conducting case studies and comparisons for mining complexes with varying configurations would 

be helpful to deepen the understanding of how different mine setups impact production. These 

research would offer insights into the robustness and adaptability of the optimization framework 

in different mining scenarios. 
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Chapter 4. Conclusions and Future Works 

4.1 Conclusions 

Advancements made in the field of strategic mine planning, stochastic simulations, and operations 

research during past decades build up to the simultaneous stochastic optimization framework, 

which is the basis of the thesis (Goodfellow and Dimitrakopoulos, 2016, 2017).  

The first application expands upon the existing simultaneous stochastic optimization framework 

for mining complexes by incorporating both equipment and supply uncertainties. The study's focus 

is on a copper mining complex, where the framework demonstrates its ability to effectively 

integrate both equipment and supply uncertainties. To account for equipment productivity 

uncertainty, Monte Carlo simulations are used based on historical production data, ensuring a more 

accurate representation. By integrating equipment uncertainty alongside geological uncertainty, 

the optimizer adheres to the simulated equipment capacity, resulting in a practical schedule. The 

framework optimizes extraction sequences, destination policies, and processing stream decisions 

concurrently, enhancing overall efficiency. The stochastic schedule generated by this approach 

yields a 5% increase in copper production for mills in the first year. However, it is essential to note 

that risk profiles exhibit greater fluctuations across multiple periods compared to the conventional 

schedule. Nonetheless, the Leach Pads also display higher copper production in later years. 

Moreover, the stochastic schedule effectively manages risks associated with equipment 

productivity, leading to a 2% higher Net Present Value (NPV) compared to the conventional 

schedule. Furthermore, it showcases improvements in waste management during earlier years. 

Overall, this chapter demonstrates the value of incorporating equipment and supply uncertainties 

into the optimization process, providing valuable insights and more robust decision-making for 

mining complexes. 

The second application expands the simultaneous stochastic optimization framework for mining 

complexes by incorporating recovery and market uncertainties in addition to supply uncertainty. 

The application is demonstrated in a copper mining complex, showcasing the framework's 

impressive ability to seamlessly integrate supply, recovery, and market uncertainty. By optimizing 
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extraction sequences, destination policies, and processing stream decisions simultaneously, the 

framework provides comprehensive solutions. The incorporation of recovery uncertainty involves 

simulations of recovery curves based on historical production data using Monte Carlo simulations 

of the curve model parameters. Market uncertainty is captured through commodity price 

simulations based on the mean-reverting process. By integrating recovery and market uncertainties 

alongside geological uncertainty, the optimizer generates diverse production schedules, each 

reflecting different combinations of incorporated uncertainties. The market case, recovery case, 

and joint case schedules lead to cumulative copper production increases of 2.8%, 3.8%, and 7.0%, 

respectively. Moreover, they result in significantly higher Net Present Values (NPV) of 8.5%, 

7.8%, and 12.5% compared to the baseline case. Furthermore, the incorporation of recovery 

uncertainty leads to production schedules with more stable recovery rates, as observed in the 

recovery case and joint case schedules. This highlights the profound impact of different 

components' configurations within a mineral value chain on the production schedule. Importantly, 

it is emphasized that the incorporation of multiple sources of uncertainty should not be viewed as 

a mere sum of uncertainties. Instead, the joint effects and interactions with specific mineral value 

chains need to be carefully considered for a comprehensive analysis. This research provides 

valuable insights into effectively managing uncertainties and optimizing production schedules for 

mining complexes, particularly when dealing with recovery and market uncertainties in addition 

to supply uncertainty. The framework's versatility and robustness contribute significantly to 

decision-making processes in the mining industry. 

Both of these studies underscore the significance of considering the entire mining complex while 

effectively managing and quantifying different sources of uncertainty. The simultaneous stochastic 

optimization framework (Goodfellow and Dimitrakopoulos, 2016, 2017) possesses a highly 

generalized nature, enabling the modeling of multiple downstream value chain components. 

Different sources of uncertainty affect different aspect of the mining complex depending on the 

mining complex at hand. It reveals the importance thoroughly analyzing the operational aspects of 

a mining complex and incorporating uncertainty modeling tailored to the specific problem at hand. 
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4.2 Future work 

Some possible future work could be first to consider haul cycles. Instead of simulating tonnage 

productivity and cost structure, blocks that are deeper and further away could consume more truck 

operating hour and has higher mining cost. Another possible future work is to include the option 

of capital investment for extra-crusher. As presented in previous sections, the productivity of the 

mining complex is primarily constrained by the crushers for mine 1.  Such options could provide 

the evaluation of whether or not is worth it to invest extra crusher to release that constraint. Options 

for operating modes for the mill could also be included. For example, operating modes with higher 

recovery but lower throughput. These options could provide opportunities to explore different 

configurations and exploit the synergies amount different components to increase the economic 

value of the mining complex. Additional case studies and comparisons should also be conducted 

to understand the effect of different equipment configurations on mining operations. One avenue 

is to explore alternative recovery simulation methods. For instance, instead of assuming 

independence, the correlation between different recovery curve parameters could be incorporated 

during the simulation. This approach may yield more precise and realistic representations of 

recovery uncertainties. Furthermore, extending the research to encompass additional case studies 

and comparisons involving mining complexes with diverse configurations would be highly 

beneficial. By analyzing various mine setups and their influence on production schedules when 

recovery and market uncertainties are integrated, we can gain deeper insights into the framework's 

adaptability and effectiveness. These comparative studies would enhance our understanding of 

how the optimization approach performs under different mining scenarios, contributing to more 

informed decision-making in the mining industry. Lastly, it is crucial to develop more advanced 

optimization algorithms capable of efficiently handling the incorporation of additional 

uncertainties and the increasing complexity of mining complexes  
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