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Abstract

The standard cosmological model, also known as the Lambda-Cold-Dark-Matter
(ACDM) scenario, is a rather simple but yet very predictive model describing the
evolution and matter-energy content of the Universe. Despite its multiple successes,
it suffers from a number of unresolved mysteries, such as the source of inflation and
the mechanism of generating the observed baryon asymmetry. Perhaps more impor-
tantly, the ACDM model does not address the nature of its main pillars: dark energy
and Dark Matter (DM).

The aim of this thesis is to advance our understanding about the major myster-
ies of the ACDM scenario, particularly focusing on the role of DM and its possible
interactions with Standard Model particles, such as neutrinos.

We will start by building a "little theory of everything", where inflation, baryo-
genesis, neutrino masses and production of asymmetric DM can be explained in an
experimentally-consistent and unified picture, using the Affleck-Dine mechanism as a
key ingredient. In such a scenario, the asymmetric DM abundance observed today is
achieved via the annihilation of DM particles with their antiparticles, which freezes
out in the early Universe.

However, if a small DM-number violating mass term between particles and an-
tiparticles is allowed, DM oscillations can be reactivated at late times and the resulting
DM annihilation might solve one of the long-standing issues of the ACDM model at
galactic scales, known as the core-cusp problem.

Since neutrinos and DM are fundamental ingredients in the "little theory of ev-
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erything", it comes natural to question whether a potential interaction between them
could be constrained using astrophysical or cosmological probes. We will show that
strong bounds on the scattering cross section between neutrinos and DM can be de-
rived by studying the flux attenuation of neutrinos emitted by active galactic nuclei,
such as the blazar TXS 05064056 and the radio galaxy NGC 1068, because they have
to pass through a dense DM spike surrounding the central black hole.
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Abrégeé

Le modéle cosmologique standard, également connu sous le nom de scénario Lambda-
Cold-Dark-Matter (ACDM), est un modele plutot simple mais trés prédictif décrivant
I’évolution et la composition matiére-énergie de I'Univers. Malgré ses multiples suc-
cés, il souffre de plusieurs mystéres non résolus, tels que 'origine de I'inflation et le
mécanisme de génération de l'asymétrie baryonique observée. Peut-étre plus impor-
tant encore, le modéle ACDM ne répond pas a la nature de ses piliers principaux :
I'énergie sombre et la matiére noire (DM).

L’objectif de cette thése est d’avancer dans notre compréhension des principaux
mystéres du scénario ACDM, en mettant I'accent particulierement sur le role de la
matiére noire et de ses interactions possibles avec les particules du Modéle Standard,
telles que les neutrinos.

Nous commencerons par construire une "petite théorie de tout", ou l'inflation, la
baryogenése, les masses des neutrinos et la production de matiére noire asymétrique
peuvent étre expliquées dans un cadre cohérent avec les expériences, en utilisant le
mécanisme d’Affleck-Dine comme ingrédient clé. Dans un tel scénario, 'abondance
de matiére noire asymétrique observée aujourd’hui est obtenue grace a ’annihilation
des particules de matiére noire avec leurs antiparticules, qui s’est figée dans 1I’Univers
primitif.

Cependant, si un petit terme de masse violant le nombre de matiére noire entre
particules et antiparticules est autorisé, les oscillations de matiére noire peuvent étre

réactivées é des époques tardives et I’annihilation résultante de matiére noire pourrait
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résoudre 1'un des problémes de longue date du modele ACDM & ’échelle galactique,
connu sous le nom de probléme du cceur-pointe.

Etant donné que les neutrinos et la matiére noire sont des ingrédients fondamen-
taux dans la "petite théorie de tout", il est naturel de se demander si une interaction
potentielle entre eux pourrait étre contrainte en utilisant des sondes astrophysiques ou
cosmologiques. Nous montrerons que des limites strictes sur la section efficace de dif-
fusion entre neutrinos et matiére noire peuvent étre déduites en étudiant ’atténuation
du flux de neutrinos émis par les noyaux actifs de galaxies, tels que le blazar TXS
05064056 et la galaxie radio NGC 1068, car ils doivent traverser une région dense de

matiére noire entourant le trou noir central.
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the DM density distribution of the Milky Way. Figure and values taken
from Ref. [89]. . . . . . . .
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2.5 Evolution of the relativistic degrees of freedom g, (7'), defined in Eq. (2.82),

2.6

2.7

2.8

2.9

2.10

assuming the SM particle content. At energies above the Higgs mass,
we have g, = >°._, g; = 28, accounting for photons (2), W* and
Z bosons (3 - 3), gluons (8 - 2), and the Higgs boson (1). Similarly,
9F = D i—formions 9i = 90 due to quarks (6 - 12), charged leptons (3 - 4),
and neutrinos (3 -2). The total is given by g. = g, + £g; = 106.75.
The dotted line represents the number of effective degrees of freedom
in entropy, ¢,s(T") (see Eq (2.87)). Figure taken from [8]. . . . .. ..
Evolution of the co-moving number density Y of the DM particle y

with respect to the rescaled time variable x = m, /T during the epoch

of DM thermal decoupling/freeze-out. Figure adapted from Ref. [104].

Evolution of Y4 () (accounting for DM asymmetry npy > 0) and Y-
(without asymmetry) after freeze-out. ¥ = Y, —Y_ represents the sum
of relative co-moving number densities. Figure taken from Ref. [119].

Annihilation process suppressed at high temperature, enabling freeze-
intooccur. . . . ..o
Evolution of DM relic abundance for freeze-out (solid curves) and
freeze-in via Yukawa interaction (dashed curves) as a function of the
dimensionless time = m, /7. The black solid line represents the relic
density in thermal equilibrium. The black arrows indicate the impact
of increasing coupling strength for both processes. Freeze-in abundance
dominates around x ~ 2 — 5, in contrast with freeze-out which occur
at © ~ 20. Figure taken from [121]. . . . . ... ... ... ... ...
History of the Universe. Credits: NASA, Planck, Caltech (https://

www.nasa.gov/mission_pages/planck/multimedia/pial6876b.html)
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3.1

3.2

3.3

3.4

3.5

Conformal diagram illustrating the horizon problem in Big Bang cos-
mology. The orange circles represent causally disconnected regions of
the CMB last-scattering surface (at recombination), while the green
dot represents the observer. Figure from Ref. [4]. . . .. ... .. ..
Evolution of the inflaton ¢ depicted as a ball rolling down a hill in the
potential-energy plot V' (¢) versus ¢. The acceleration phase, driven by
the dominance of V(¢) over the kinetic term ¢/2, ends at ¢enq when the
two terms reach a comparable magnitude. Quantum perturbations d¢
at povp generate the observed CMB fluctuations. The energy stored
in ¢ is later converted into radiation during reheating. Figure from
Ref. [4]. . . o o o o
Top: Conformal-time diagram illustrating the inflationary scenario,
where previously causally disconnected regions become in thermal con-
tact in the past. Inflation extends the conformal time to negative val-
ues, leading to an "apparent" Big Bang at 7 = 0 corresponding to
reheating, which is not a singularity. Figure taken from Ref. [4]. Bot-
tom: Solution to the horizon problem shown through the evolution of
comoving scales (green dashed curves) and the particle horizon (red
solid curve) with the scale factor. From Ref. [6]. . . . . . . .. .. ..
68% and 95% C.L. constraints on n, and r at & = 0.002 Mpc™" from
Planck 2018 data alone and in combination with additional datasets.
Theoretical predictions of popular inflationary models are included for
comparison. From Ref. [52]. . . . .. ... ... o000
Decomposition of an arbitrary perturbation into adiabatic (do) and
entropy (ds) components, with the angle of the tangent to the back-
ground trajectory denoted by «. Figure adapted from Ref. [56].
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3.6

4.1

4.2

4.3

4.4

4.5

4.6

Left: Energy dependence of gauge field configurations with respect to
the Chern-Simons number. Each minimum represents a valid pertur-
bative vacuum state, while the instanton configuration determines the
probability of tunneling between adjacent vacua. Sphalerons corre-
spond to the potential’s maxima (saddle points). Inspired by Ref. [68].
Right: Sphaleron transition conserving (B — L). Figure adapted from

Scalar-to-tensor ratio versus spectral index for several values of the
nonminimal coupling &, varied around the parameters of models 1 (left)
and 2 (right) given in Table 4.1. The pivot scale is k, = 0.002 Mpc~? for
comparison with the Planck 10 and 2o allowed regions. The number
of e-foldings between horizon crossing and the end of inflation, N,, is
allowed to vary between 50 and 60, but the definite values shown by
the solid dots are predicted by making a specific choice of \’. The
dependence on A" is shown on the & = 0.07 curve for model 1.

Scatter plots from the MCMC search of parameter space. Left: cor-
relation of r with x. Right: correlation of r (evaluated at k., =
0.002Mpc™t) with n, (at k, = 0.05Mpc~t). Black versus red points
correspond to two different chains as described in the text. . . . . . .
Evolution of transfer matrix elements for the adiabatic and isocurva-
ture perturbations, versus number of e-foldings, for models 1 and 2
from Table 4.1. . . . . . . . ...
Inflaton trajectories in field space for the benchmark models. Horizon
crossing is indicated by the heavy dot. . . . . .. . .. .. ... ...
Scatter plot of isocurvature correlation |Tgrg| versus the total number
of e-foldings of inflation Ny from the MCMC. . . . . . .. ... ...
Baryon-to-inflaton ratio during inflation and shortly after its end, ver-
sus number of e-foldings N,, for benchmark model 1. Insets show the

evolution of the field components, ¢ = (X +iY)/v/2. . ... ... ..
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4.7 Baryon-to-inflaton ratio during inflation and shortly after its end, ver-

4.8

5.1

5.2

sus number of e-foldings N,, for several values of \'. Other potential
parameters are fixed at those of model 1. The curves are in the same
order as the key, from top to bottom at late times. Positive values of
A are shown with solid curves, negative with dashed. . . . . . . . ..
Inflaton trajectories X (V,) (solid) and Y (V,) (dashed) for four differ-
ent values of the baryon-violating coupling A’. Other parameters are

fixed to those of model 1. . . . . . . . . . . . . . ... ... ... ..

Contours of DM relic density Qn' = pn7/pais in the plane of DM mass
versus coupling to singlet, for three relations of singlet mass m, to
the DM mass mp+. Left: my; < mys, with N'N’ — ss annihilation.
Center: my = 2.6 mys with N'N’ — s* (virtual s) annihilation. Right:
like center, but with mgy = 2.8 mys. The heavy contour labeled 0.265
corresponds to the observed relic density. . . . . . . .. ... ... ..
Summary of constraints on HNL mixing with electron neutrinos, over
mass range of interest for our model (left: normal hierarchy, right:
inverted hierarchy). Solid and dot-dashed black and red curves show
the model’s predictions for U.y (Ue;) (solid curves) and U,z (Ues) (dot-
dashed) in the normal (inverted) mass hierarchy, for two choices of the
parameter fi, that determines the mixing through Egs. (5.24, 5.26).
U = 0 (Uesz = 0) for the normal (inverted) hierarchy since N; =
N’ (N3 = N’) denotes the dark matter HNL. Laboratory constraints
are taken from Ref. [16]. Although a more recent and comprehen-
sive analysis of these bounds in the MeV-GeV mass range was made
in Ref. [36], we noticed no appreciable difference for My > 0.1 GeV.
We also do not display the preliminary limit from the NA62 experi-
ment [37], which would be the strongest limit for My between 0.15

and 0.45 GeV if confirmed. Sensitivity regions of future experiments

FCC-ee [38], DUNE [39] and SHiP [40] are bounded by dashed curves.
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5.3

5.4

5.5

5.6

Left: minimum allowed mass scale i, (M), predicted by our model for
the normal mass hierarchy case, compatible with current constraints
on the HNL mixings to light neutrinos [16]. The shaded gray region
is excluded. Right: the ratio r showing how the maximum allowed
mixings (5.38) at My = 4.5 GeV are rescaled at lower My. . . . ..
Top: Minimum lifetime (left) and decay length (right) of the HNLs
Ny and Nj, for the case of normal mass hierarchy. Upper curves are
for mass My < mg, lower curves for My > m,, which determines
whether weak decays or N — v s dominates. Decay length assumes
energy E = 25GeV, appropriate for SHiP experiment. The shaded
regions are excluded. (The wiggles in the mass range 0.2 < My < 04
GeV come from the E949 bound [45] present in figure 4.11 of Ref. [16],
which also appear in Figure 5.3.) Bottom: branching ratios for N
(left) and N3 (right) into various final states involving photon, hadrons,
light neutrinos or charged leptons, for the case of weak decays, namely
My < Mg . o o e e
Diagrams leading to 4 — ey and g — 3e from mixing of HNL’s with
the light neutrinos. . . . . . . . .. ...
Constraints on a light singlet mediator, in the m,-60, plane for the case
ms < mpys. The four plots consider different values of the DM mass
my = 1.5, 2.5, 3.5, 4.5 GeV, for which the direct detection constraints
(black dotted line) differ; all other constraints are the same. The dark
blue regions are favored at 10 and 20 for the KOTO anomaly. The
red, cyan, green and brown regions are excluded by CHARM [65], E949
[66], LHCb [67] and BaBar experiments [68], respectively. The violet
and light-green regions are excluded by BBN [69] and supernova data
[70]. Sensitivity projection for the SHiP experiment is indicated by the
dashed blue-gray boundary. The experimental bounds, along with the

projected sensitivity, are taken from Ref. [70]. . . . . . . ... .. ..
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5.7

5.8

Constraints on a light singlet mediator, in the m-60, plane, for the case
ms = 2.6mps. The experimental bounds, along with the projected
sensitivity, are the same as in Figure 5.6 and taken from Ref. [70]. The
strongest direct detection constraint derived for our model comes from
CDMSlite IT experiment [78] and is shown with the black dotted line.
Predicted spin-independent cross section for DM scattering on nucleons
versus DM mass my, assuming approximately symmetric DM with a
self-interaction cross section of o/mys = 1cm?/g (left) or 0.1cm?/g
(right), for three choices of 05 (dashed, solid black, dotted) and the
envelope of experimental constraints (with the exception of DarkSide-
50) copied from Ref. [117] (solid red). Dash-dotted curve shows the

singlet mass mg versus mpys. . ... ...

6.4.1 Cosmological evolution of y, x and total abundances for Model 1 (left)

and Model 2 (right). The model parameter values are indicated in the
plots. We indicate the approximate time of BBN and CMB with faint
gray vertical lines. The ratio of dark to visible sector temperatures is

takentobe E=1. . . . . . ..

6.5.1 Left: density profiles for dwarf galaxy DDO 154. NFW and modi-

fied profiles from SIDM are from Ref. [42] (solid curves), while dot-
dashed curves are the predictions of Model 1 (Model 2) for different
indicated values of the vector mediator mass my (dark fine-structure
constant ). Right: corresponding results for galaxy cluster A2537,
where SIDM result is from Ref. [9]. Top row is for Model 1 (vector),
bottom for Model 2 (scalar). . . . . . ... .. ... ... .. ...

6.5.2 Left: x? per degree of freedom versus the vector mediator mass my in

Model 1, for fits to the circular velocities of dwarf spheroidals DDO
154 and 126, with DM mass m, = 65MeV. Right: similar to left, for
Model 2 with varying o/. In either model, acceptable joint fits can be

found by taking intermediate values of my or o/, respectively.
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6.5.3 lustration of how combining vector and scalar mediators could give
a good simultaneous fit for both dwarf spheroidals (left) and clusters
(right). Left: predicted circular velocities due to the DM component
alone from the same two models and from SIDM (Ref. [42]), and data
from Ref. [44]. In each case, one mediator dominates the coring effect
of the central profile in one system, while having little effect in the
other system. Right: stellar velocity dispersion along the line-of-sight
for cluster A2537, with predictions based on the DM density profile
from two of our models, from SIDM (Ref. [9]) and data from Ref. [29]. 232

6.6.1 Like Fig. 6.5.1, but including comparison with the N-body simulation
results. The latter are shown as solid lines surrounded by the 1o un-
certainty band, obtained by assuming that the number of particles in
each bin is Poisson-distributed. The black solid curve corresponds to
the original NFW profile, whereas the matched Hernquist profile is
shown with the red dashed line. The other dot-dashed curves are the
results of Fig. 6.5.1. The orange solid line is the SIDM prediction from
Ref. [42] for DDO 154 and from Ref. [9] for A2537. The dashed vertical
line shows the position of the gravitational softening length € used in

the simulations. . . . . . . . . . 234
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6.6.2 Comparison between our model predictions and observational data.
Left: circular velocity as a function of distance from the galactic cen-
ter of the dwarf DDO 154. The data points and the corresponding
error bars are taken from Ref. [44]. In particular, the grey dots show
the total effect of DM, gas and stars on the rotation curve, whereas
the white dots show just the DM contribution obtained after a care-
ful modelling of stars and gas components (see Ref. [44] for details).
Right: projected stellar velocity dispersion along the line-of-sight as a
function of radial distance for the cluster A2537. The data points and
the error bars are taken from Ref. [29]. In all panels, N-body simula-
tion results are shown as solid lines surrounded by the 1o uncertainty
band, obtained by assuming that the number of particles in each bin is
Poisson-distributed. The black dotted curve corresponds to the origi-
nal NFW profile, whereas the matched Hernquist profile is shown with
the red dashed line. The other dot-dashed curves are the results of
Fig. 6.5.1. The orange solid line is the SIDM prediction from Ref. [42]
for DDO 154 and from Ref. [9] for A2537. . . ... ... ... .. .. 236

6.6.3 Top: Radial density profile of the dwarf galaxy DDO 154 for Model
1 with my = 26 MeV (left) and for Model 2 with o/ = 0.01 (right)
from N-body simulations. The other model parameters are the same
as in Fig. 6.6.1. The contributions of DM scattering and DM annihi-
lation to the total profile are shown separately. The black solid curve
corresponds to the result with just collisionless cold DM and the Hern-
quist profile for the initial halo is shown with the red dashed line. The
gray dashed vertical line shows the position of the gravitational soft-
ening length € used in the simulations. Bottom: Corresponding radial
velocity dispersion of DDO 154 for the same Model 1 and Model 2
considered in the toprow. . . . . . . . .. ... ... .. 238

6.A.1Self-energy diagrams for the vector model . . . . . . ... ... ... 241
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6.C.1Ratio of the number of cube particles scattering (annihilating) in our
test simulations to the expected number of the same events given by
eq. (6.72), as a function of the scatter (annihilation) search radius h.
Points correspond to the results of simulations where only scattering
was turned on, whereas stars are used for simulations in which only an-
nihilation took place. Different color points represent different choices
of the simulation time step At, which is measured in units of ¢/vy with
¢ being the side of the cube. The left and right plots show the same
data with different axis scales, linear on the left and logarithmic on
the right. The solid (dashed) lines in the right panel show N o h?,
which is the result expected from “probability saturation,” as originally
noticed by Ref. [50]. The error bars show the 1o uncertainty assuming
N is Poisson distributed. . . . . . . . ..o
6.C.2Distributions of polar and azimuthal angles (top) and velocity magni-
tude (bottom) of scattered particles in one of our test simulations. The
expected results are the red dashed lines, and their 1o uncertainty re-
gions are shaded red, computed assuming that the number of particles

in each bin is Poisson distributed. . . . . . . . . .. ...
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6.C.3Top: Radial density profile of a DM halo with Hernquist mass M =
10* My, and radius a = 225 kpc as a function of the distance 7, in units
of pg = M/(2ma®) and a respectively. The black dashed line displays
the original density profile in eq. (6.74). The left panel shows the
halo stability across a time window of 10 Gyr. The right panel shows
how the density profile evolves with time assuming particle scattering
with constant o/m, = 1.0 cm?/g. Here we chose the scatter search
radius as hg = €. The solid lines correspond to the best-fit cored-
Hernquist profiles, given by eq. (6.75), where r. and § are left as free
parameters. The 1o error bar for each data point is computed assuming
that the number of particles in each bin is Poisson distributed. Bottom:
Extracted scattering rate per particle for the same Hernquist profile
DM halo after 3 Gyr, for different choices of the scatter search radius
hs, and its comparison with the theoretical expectation. Although the
simulations were run with o/m, = 1.0 cm?/g, the result is independent
of the scattering cross section since a ratio is considered. The colored
crosses along the analytical curve correspond to the radius equal to
hs. The 1o uncertainty for each colored line is computed assuming
that the number of particles in each bin is Poisson distributed and
displayed with a same-color shaded region. In all three panels, the
gray dot-dashed vertical line shows the position of the gravitational
softening length e used in all simulations for the considered halo. We
used a time-integration parameter of n = 0.005 and tree-force accuracy

of @« = 0.0012 in each simulation run. . . . . . . . . . . .. ... ...
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6.C.4Top left: Similar to the bottom panel of Fig. 6.C.3, but for the ex-
tracted annihilation rate per particle and different choices of the anni-
hilation search radius h 4. The simulations for the prototype Hernquist
halo were run with (Gamv)/m, = 100 cm?/g km/s. Top right: Ra-
dial density profile of the prototype Hernquist halo undergoing DM
annihilation for 10 Gyr, for different choices of h4. The black dashed
line displays the original density profile in eq. (6.74). The violet solid
line corresponds to the theoretical prediction given by eq. (6.80) at
(t — tin;) = 10 Gyr. Bottom: Similar to the right panel of Fig. 6.C.3,
but for particle annihilation with the same constant velocity-averaged
cross section considered above. Here we chose the annihilation search
radius as hy = €. Each colored solid curve shows the analytical expec-
tation given by eq. (6.80) at the time of the corresponding same-color
data points. The dotted lines represent the best-fit cored-Hernquist
profiles, given by eq. (6.75), where r. and 3 are left as free parameters. 261

7.4.190% C.L. upper limits on the v-DM scattering cross section at ref-
erence energy Fy = 290 TeV, for the six benchmark DM spike mod-
els. Previous constraints are shown for comparison, assuming energy-
independent cross section: (cyan) CMB and baryon acoustic oscilla-
tions [40]; (pink) Lyman-« preferred model [41]; (dark violet, blue) dif-
fuse supernova neutrinos [15]; (orange) stellar neutrinos [42]; (yellow)
supernova SN1987A [43]; (green) IceCube bound from TXS 0506+056
[17]. . 289
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7.5.1 Previous constraints on v-DM and e-DM scattering, rescaled to Ey =
290 TeV assuming o,,, x E,, compared to the least (BM3, BM3') and
most restrictive (BM1, BM1’) new limits of Fig. 7.4.1. The v-DM scat-
tering bounds are the same as in Fig. 7.4.1, while for e-DM scattering
they are labelled with x and are as follows: (slate blue) solar reflec-
tion [59], (brown) Super-K for DM boosted by cosmic-ray electrons,
(turquoise) blazar BL Lacertae for BM3 model [16], (gray) direct de-
tection for light DM interacting with electrons [60-63]. . . . . . . .. 290
7.6.1 Constraint on the dimensionless parameters defined in Eq. (7.11) in
the model with a Z’ mediator. . . . . . . ... ... ... .. ... .. 292
7.6.2 Upper limit on the product of the couplings g,g, versus myz in the
vector boson mediator model, for several choices of DM spike model
and mass m,, indicated in MeV units. Laboratory bound from Z — 4v

[106, 107] is shown for the case gy, = gp. . - . - . . . . . oL L. 293

8.0.1 Schematic picture of a radio galaxy producing neutrinos. Gas accreting
onto a supermassive black hole forms an accretion disk and hot corona
emitting optical, UV, and X-rays. This electromagnetic radiation is
obscured by the surrounding gas and dust. Infrared radiation comes
from a dusty torus. Winds and jets may also be launched. Figure
taken from Ref. [1]. . . . . . . . oo o 309
8.1.1 Normalized neutrino flux ®,, 5, (E,)/®es and IceCube effective area
A (E,) from the direction of NGC 1068. The flux, described by
Eq. (8.1), is shown in slate blue along with its 95% confidence re-
gion [33]. The orange curve is the effective area, which is taken from

Ref. [36]. . . . . 311
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8.3.1 DM density profile p,(r) for the galaxy NGC 1068 (left), given by
Eq. (8.8), and its corresponding accumulated DM column density (r)
(right), given by Eq. (8.14), as a function of the distance from the galac-
tic centre, for the different benchmark models considered in Table 8.3.1.
The DM mass is fixed to m, = 1 GeV. The gray dot-dashed curve rep-
resents the contribution of the NFW host-halo alone, described by the
density in Eq. (8.7). Its contribution to ¥(r) is negligible compared to
that of the spike. The blue shaded region delimits the region within
the galaxy where neutrinos are not likely to be emitted. Its right edge
corresponds to the value of Rey used in Eq. (8.14). . . . ... .. ..

8.4.1 Left: 90% C.L. upper limits on the v-DM scattering cross section,
assumed to be energy-independent, for the six benchmark DM spike
models of Table 8.3.1, compared to previous constraints. The latter
are: (cyan) CMB and baryon acoustic oscillations [7]; (pink) Lyman-«
preferred model [8]; (dark violet, blue) diffuse supernova neutrinos |20];
(orange) stellar neutrinos [17]; (yellow) supernova SN1987A [22]; (green,
light steel blue) least and most restrictive bounds, namely for BM3 and
BM1 respectively, from TXS 0506-+056 [32|. Right: Same, but assum-
ing linear energy-dependent »-DM and e-DM scattering cross-sections.
All the constraints are rescaled to the energy Ey = 10 TeV according to
the relation 0,, = 0¢(E,/Ep). Only the least (BM3, BM3’) and most
restrictive (BM1, BM1’) new limits are shown. The v-DM scattering
bounds are the same as those in the left panel, while for e-DM scatter-
ing they are labelled with x and are: (slate blue) solar reflection (93],
(brown) Super-K for DM boosted by cosmic-ray electrons, (turquoise)
blazar BL Lacertae for BM3 model [50], (gray) direct detection for
light DM interacting with electrons [94-97]. . . . .. ... ... ...
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8.4.2 Left: The initial neutrino fluxes ®, used in this paper and summa-
rized in Table 8.4.1. The corresponding models used to explain the
observational data are, in order of appearance: (slate blue) corona pp
scenario with gyrofactor n, = 30, which is the mean free path of a
particle in units of the gyroradius [80], (lime) stochastic scenario with
high cosmic ray (CR) pressure and with x-ray luminosity Ly = 10%3
erg/s [83], (hot pink) same with Ly = 10**% erg/s [83], (medium or-
chid) magnetic reconnection fast acceleration scenario with injected
CR power-law exponent s = 1, acceleration efficiency 7... = 300 and
maximum proton energy E3°° = 0.1 PeV [83], (deep sky blue) corona
plus starburst model [101], (crimson) minimal pp scenario [1], (gold)
minimal py scenario [1], (green) wind plus torus model with magnetic
field strength B = 1130 G and gyrofactor n, = 4 [102], (orange) same
with B = 510 G and 7, = 1. The slate blue curve is the IceCube
observed flux in Eq. (8.1) as shown in Fig. 8.1.1. Right: 90% C.L.
limits on the cross section og at energy FE, = 10 TeV in the linear
energy-dependent scattering scenario, for the spike model BM1 and
for different choices of the initial flux ®,. The black curve is the result
shown in the right panel of Fig. 8.4.1 using the IceCube observed flux
in Eq. (8.1) as the input spectrum. The rest of the color coding is the

same in both panels. . . . . . .. ... ... ... ..
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8.6.1 Left: Dashed lines are contours of log,(,/9,9y) = 10g;q gest correspond-
ing to the limit on the cross section from dark matter spike model BM1.
Horizontal red (diagonal black) lines indicate where the cross section
is approximately linear in (constant with) F,. Green region is that
allowed for U(1)" corresponding to B — L gauge symmetry. Right:
Constraints in the plane of gg_;, = g, versus m/,. Gray regions are ex-
cluded by laboratory and astrophysical probes taken from Ref. [113].
Colored lines are contours of constant dark matter mass such that the
NGC 1068 constraint is saturated, for the BM1 DM spike model, with
gy = 1. The green shaded region corresponds to the same as in the left
panel. . ..o 326

8.7.190% C.L. upper limits on the v-DM and e-DM scattering cross sections
at the reference energy Ey = 10 TeV, assuming they scale as o4, o< E),
with ¢ = v, e as shown in the right panel of Fig. 8.4.1. The regions
of parameter space where freeze-out (blue curve) and freeze-in (orange
curve) mechanisms can lead to the correct DM relic density are also
shown. In particular, models for which (m,, o) is above the blue or
below the orange curves can accommodate only a sub-dominant faction
of DM in the case of fully symmetric DM or leads to a suppression of

the symmetric component in the case of ADM. . ... ... ... .. 329
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Preface

The present manuscript-based thesis is a collection of most of the successful projects I
have worked on during my Ph.D. at McGill University. It consists of an introduction,
followed by five research articles already published in peer-reviewed journals, and a
conclusion.

More specifically, Chapters 1-3 provide an overview of the standard cosmological
model, focusing on its main ingredients and on the limitations that have convinced
the scientific community to search for extensions. Chapters 4-8 contain all the original
contributions to the field made by myself and my collaborators. Chapter 9 presents
the concluding remarks and future prospects.

As regards the original work, since it is common practice in theoretical high energy
physics to list authors in alphabetical order, I will identify my contributions below.

Following it, I will introduce the units and conventions used throughout the thesis.

Author contributions

Chapter 4: J. M. Cline, M. Puel and T. Toma, Affleck-Dine Inflation, Phys. Rev.
D 101, 043014 (2020), [arXiv:1909.12300].

The project was initiated by Jim Cline and I based on discussions we had during

the course Jim gave in the fall of 2019 at McGill University on particle cosmology,



whose material is covered in Ref. [1] and includes the Affleck-Dine baryogenesis sce-
nario. All three authors contributed to the conceptualization of the problem and
carried out the bulk of the analysis. In particular, I wrote an independent numerical
code to solve the adiabatic and isocurvature perturbations and to scan the param-
eter space via a Markov Chain Monte Carlo technique, which helped to cross check
each other results. The main text of the paper was written by Jim, with inputs from

Takashi Toma and I.

Chapter 5: J. M. Cline, M. Puel and T. Toma, A little theory of everything, with
heavy neutral leptons, J. High Energ. Phys. 2020, 39 (2020), [arXiv:2001.11505].

The project is an extension of the previous work, originated from a discussion
Jim had with Joachim Kopp during his CERN visit in the fall of 2019. All three
authors contributed equally to the conceptualization of the problem and everyone
cross checked each other computations in an independent manner. In particular, I
was in charge of deriving the electroweak precision data and laboratory constraints
(section 5.4.1), computing the heavy neutral lepton weak decays (section 5.4.3, in-
cluding the appendix), and taking care of the dark matter indirect detection bounds
(section 5.6.2). I helped in writing the manuscript, particularly the sections I mostly

worked on. I also produced all the figures except for one (Figure 5.2).

Chapter 6: J. M. Cline, G. Gambini, S. D. McDermott and M. Puel, Late-Time
Dark Matter Oscillations and the Core-Cusp Problem, J. High Energ. Phys. 2021,
223 (2021), [arXiv:2010.12583].

The project was conceived by Jim and Samuel McDermott during their visit to
CERN in the fall of 2020. The initial part of the work was started by Jim and
Guillermo Gambini, who developed the general oscillation formalism and applied it

to early-time cosmology (sections 6.2, 6.3, 6.4 and appendix 6.D). I joined the project



in May 2021 and I was in charge of developing the N-body galactic simulation to
test whether the model could solve the core-cusp problem. I modified the GADGET-2
code [2] by adding dark matter scattering and annihilation, and I tested the new
implementations with existing examples. Furthermore, I led the comparison between
our results with observational data, in terms of the galactic rotation curve for dwarf
galaxies and projected stellar velocity dispersion along the line of sight for galaxy
clusters. I wrote section 6.6 and appendix 6.C, and helped writing other sections of
the paper like section 6.5. T also produced all the figures of the manuscript except for

two (Figures 6.4.1 and 6.5.2) and took care of most of the referees’ comments.

Chapter 7: J. M. Cline, S. Gao, F. Guo, Z. Lin, S. Liu, M. Puel, P. Todd and T.
Xiao, Blazar constraints on neutrino-dark matter scattering, Phys. Rev. Lett. 130

(2023) 9, 091402, [arXiv:2209.02713].

The paper was the outcome of the summer 2022 project for Shan Gao, Fangyi Guo,
Zhongan Lin, Shiyan Liu, Phillip Todd and Tianzhuo Xiao, who are undergraduate
physics students in the honour program at the time of writing. With Jim’s help,
I led the work not only in terms of the physics content and underlying analysis,
but also as a mentor for the summer students. More specifically, I was responsible
for: literature review, collection of input information such as the neutrino flux and
IceCube data, modelling of the dark matter spike, and comparison of our results with
previous limits on dark matter scattering cross section with neutrinos and electrons.
The computation of the neutrino flux attenuation was independently carried out by
all the authors, and the application to a realistic particle physics model was led by
Jim, while I cross-checked his computation. I also produced all the plots of the paper.
Most of the original manuscript was written by Jim, whereas I wrote the remaining
parts (section 7.5 and parts of sections 7.2 and 7.3) and took care of all the referees’

comments.



Chapter 8: J. M. Cline and M. Puel, NGC 1068 constraints on neutrino-dark matter
scattering, JCAP 06 (2023) 004, [arXiv:2301.08756].

The project was conceived as a follow-up of the previous work and the idea came
after a discussion with Matthew Lundy and Samantha Wong during a lunch talk
I gave at the Trottier Space Institute at McGill. Both authors contributed to the
conceptualization and writing stage. In particular, I carried out the analysis in sec-
tions 8.2, 8.3, 8.4, 8.5, and wrote these sections and part of the conclusions. Jim took
care of the remaining sections. I cross-checked his results, produced all the plots of

the manuscript and addressed the referee’s comments.

Units and Conventions

In the thesis, I decided to adopt the so-called natural or high energy physics units, if
not otherwise stated, because of their wide use in particle physics, astrophysics and
cosmology. In this system, the fundamental constants A = ¢ = kg = 1 and there is
only one important dimension, the energy (expressed generally in some power of the

eV). In particular, one has
|[Energy| = [Mass| = [Temperature] = [Length| ' = [Time| ", (1)

and the numerical conversion factors with the International System of units are

Energy: eV =1.6022 x 107 J,
Mass: eV = 1.7827 x 107% kg,
Temperature: eV = 1.1605 x 10* K , (2)
Length: eV =5.0677 x 10 m™!,

Time: eV = 1.5193 x 10 s~ 1,



We also adopt the convention Mp, = G~1/2 = 1.22 x 10" GeV and mp, =
(87G)~Y/2 = 2.43 x 10'® GeV to refer to the Planck mass and the reduced Planck
mass, respectively, where G is the Newton’s gravitational constant.

The metric signature adopted throughout the thesis is the mostly minus conven-
tion (4, —, —, —), which is commonly used in the particle physics community. Greek
indices p,v = 0,1,2,3 will be devoted to space-time vector components, whereas

Latin indices 4,5 = 1, 2,3 will be used to indicate the spatial components only.
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Chapter

Our observable Universe

The standard model of cosmology, also known as either the Lambda-Cold-Dark-
Matter (ACDM) model, hot Big Bang model or simply concordance cosmological
model, stands as the prevailing framework for understanding the origin, evolution,
and composition of our vast Universe. Developed through decades of scientific re-
search and observations, this model provides a comprehensive explanation of the
Universe’s structure, dynamics, and fundamental properties. At its core, the ACDM
model embraces the concept of an expanding, large-scale homogeneous and isotropic
Universe, and incorporates the influence of dark matter, dark energy, and the rem-
nants of a hot Big Bang. By integrating diverse fields of study, such as astrophysics,
particle physics, and general relativity, this model offers a compelling narrative that
unveils the intricate tapestry of our cosmic existence.

Its remarkable success rests on several key observations, including: the Hubble di-
agram, which displays the velocity of galaxies as a function of their distance; the light
element abundances; the temperature and polarization anisotropies in the cosmic mi-
crowave background (CMB), and the large-scale structure (LSS) of the Universe. We
will briefly describe these observational pillars here, in addition to present evidences
of the two dominant components of the Universe, dark matter and dark energy. All
these ingredients will allow us to introduce the ACDM model in its full glory in chap-
ter 2 and its limitations in chapter 3. The content of this chapter, as well as the

next two, is heavily based on several standard cosmology textbooks and references



(e.g. Refs. [1-9]), with input from the more recent literature due to the fast-paced

development in the field of cosmology.

1.1 Hubble diagram

In his seminal paper of 1929 [10], Edwin Hubble showed that galaxies are receding
from us in all directions, with more distant galaxies moving away faster in proportion
to their distance. His famous plot, Fig. 1.1, shows a simple linear relationship between

a galaxy’s radial velocity v and its distance d from us
v~ Hyd, (1.1)

where the slope parameter Hj is called Hubble constant. Such an equation, known
today as the Hubble-Lemaitre law, is the first solid evidence that the Universe is
expanding.

In an expanding Universe, the distance separating galaxies from us was smaller in
the past compared to its current value. To quantify this evolution, we introduce the
scale factor a(t) as the ratio between the distance d(t) between two objects at a given
time t and their present-day distance dy. The scale factor a ranges between 0 and
1, with larger values corresponding to later cosmic times. Consequently, the distance
d(t), referred to as the proper or physical distance, evolves over time, whereas the
comoving distance dy remains constant. The latter distance can be understood as the
spatial separation on a cosmic grid between two coordinate points, where each point
corresponds to an observer at rest. A direct consequence of this expansion is the
stretching of the physical wavelength of light emitted by distant objects, proportional
to the scale factor, resulting in an observed wavelength that is greater than the one
at which the light was originally emitted. This stretching factor is commonly defined
as the redshift z

fpom o L , (1.2)

)\emit Qemit

which is used as a standard measure of distances in cosmology.
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Figure 1.1: Velocity-distance relation among extra-galactic "nebulae", equivalent to
today’s concept of galaxies, as found by Hubble in 1929. The radial velocities, ad-
justed for solar motion (although labeled incorrectly), are plotted against estimated
distances derived from the properties of Cepheid stars hosted in each galaxy consid-
ered in the analysis. The black discs and solid line represent the solution obtained
by considering each galaxy individually in accounting for solar motion, whereas the
circles and dashed line depict the solution derived from grouping the galaxies to-
gether. The cross denotes the average velocity corresponding to the mean distance of
22 galaxies for which individual distance estimations were not possible. Figure taken

from Ref. [10].

The Hubble law in Eq. (1.1) is exactly what is expected in an expanding Universe.
In fact, if d(t) = a(t) dp is the physical distance between two galaxies at time ¢, with

comoving distance dy, their relative velocity v(t) is given by
o(t) = —(a(t) do> —ady=H()dt), (v<o) (1.3)

where we assumed no comoving motion between the two galaxies so that dy =
d(dy)/dt = 0 (i.e. no peculiar velocity). Here, the over-dot indicates the deriva-

tive with respect to the physical time ¢ and we introduced the Hubble parameter
Hit) =2, (1.4)
a

which quantifies changes in the time-evolution of the scale factor and hence mea-



sures the expansion rate of the Universe. Equation (1.3) reduces to Eq. (1.1) at the
present time ¢y if H(y) is identified as the Hubble constant Hy (recall a(ty) = 1,
by definition). By dimensional analysis, H, has units of velocity per distance and
it is usually parameterized by a dimensionless number h (not related to the reduced

Planck’s constant h) via

Hy =100h kms™* Mpc™!
= h/(9.8 x 10° y1)
(1.5)
= h/(2998 Mpc)

=h(2.13 x 107* eV/h),

where Mpc =~ 3.086 x 10?2 m is the standard cosmological length scale.

Based on current measurements, the Hubble constant is estimated to be around
h ~ 0.7, although its precise value has been a subject of ongoing debate since Hubble’s
initial measurement of approximately h ~ 5.5 in 1929. This controversy persists to-
day, with deviations of about ~ 10% from different measurements. To mitigate the im-
pact of this uncertainty, cosmologists commonly adopt the unit of length as h~! Mpc.
Similarly, associated units such as h~' M, for masses (where My ~ 1.988 x 10%° kg is
the solar mass) are employed. This adoption allows cosmological computations to be
less dependent on the specific value of the Hubble constant. Throughout this thesis,
we will adhere to this convention, utilizing A~! Mpc and related units ensuring that
our calculations remain robust regardless of the exact value of the Hubble constant.

As a final remark, the redshift z in Eq. (1.2) is also used as a measure of velocities
in cosmology because a star’s or galaxy’s velocity v is linked to z via the Doppler
effect. In fact, the light emitted by a moving object will be observed with a shifted

wavelength according to

)\o s )\erni
%:#:Z, ('U<<C) (16)

assuming the object’s velocity is due only to the Universe expansion (i.e. no peculiar



motion) and it is much smaller than the speed of light ¢. Therefore, measuring the
redshift of known spectral lines in the spectrum of a galaxy allows one to estimate

the galaxy’s velocity.

1.2 Big Bang Nucleosynthesis

Just as a gas of particles confined in a box experiences a decrease in temperature and
density over time when allowed to expand, the Universe should have followed a similar
pattern if it has been expanding since its creation: it was considerably hotter and
denser at early times compared to its present state, comprising (at least) all known
particles.

Since the latter and their interactions are well-described within the framework
of the Standard Model (SM) of particle physics, which we will briefly summarize in
section 2.4.1, we can investigate phenomena that took place during early stages of the
Universe. In particular, until the temperature of the Universe exceeded approximately
the MeV scale, the formation of neutral atoms and bound nuclei was impeded by the
abundance of high-energy photons present at that time. As the Universe gradually
cooled below the typical energies required for nuclear binding, a process known as Big
Bang Nucleosynthesis (BBN) commenced, leading to the formation of light elements
such as deuterium, helium, and lithium.

The expected abundance of such elements can be precisely computed once the
rates of the relevant SM nuclear reactions are known (see e.g. Ref. [11]) and the
expansion of the Universe is properly taken into account. The results almost solely
depend on the baryon-to-photon ratio n = ny/n., where n;, and n., are the baryon
and photon number density at the time of BBN, respectively, in addition to the
effective number of relativistic species N, which will be defined in section 2.5.1. !
In principle, the parameter n could be predicted if a complete theory of baryogenesis,

the process through which the asymmetry between matter and antimatter we observe

!The baryon density is the combination of the densities of protons and neutrons since both species
have baryon number one and these were the only baryons present at that time.
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Figure 1.2: Primordial abundances (normalized by the hydrogen number density) of
“He, D, 3He and Li as a function of the baryon-to-photon ratio 1 and the baryon
density parameter €,h%2. The colored curves and associated shaded bands are the
95% C.L. predictions of the standard model of BBN [12|. The yellow boxes are the
observed light element abundances. The cyan vertical band indicates the 95% C.L.
inference of the baryon density from the Cosmic Microwave Background (see next
section), whereas the shaded magenta band indicates the 95% C.L. BBN concordance

range. Figure taken from Ref. [9].

today originated, was available. Since this is not the case, the baryon-to-photon ratio
is treated as a free parameter. Fig. 1.2 shows the BBN predictions as a function of n
for the abundances of *He, D, 3He and "Li, along with their measured values.
Determining the abundances of light elements as they were shortly after the BBN
era poses challenges due to subsequent changes caused by stellar nucleosynthesis.
For instance, the ubiquitous production of *He through hydrogen fusion in stars via

the pp-chain makes it necessary to search for regions of hot ionized gas in "metal-
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poor" galaxies known as extra galactic HII regions [13]. In contrast, deuterium (D)
primarily originates from BBN since, although it can also be produced in stars, it
rapidly undergoes processing onto heavier nuclei [14]. The most reliable indicator
of the primordial value of D is its measurement in the intergalactic medium at high
redshifts, achieved by examining subtle absorption features in the spectra of distant,
low-metallicity quasars. Extrapolating the primordial abundances of *He and "Li from
observations is more challenging due to several factors. Firstly, the measurements
for *He rely primarily on the Solar system and solar-metallicity HII regions in our
Galaxy, leading to limited data quality [15]. Secondly, estimating the abundance
of "Li requires studying metal-poor stars in the Galactic halo [16], which exhibit
properties that are still not fully understood [17, 18§].

The n ranges in Fig. 1.2, as described by the yellow boxes, are not fully overlapping
but are within a factor ~ 2 of each other. However, the lithium abundance disagrees
with the precise deuterium abundance and the less restrictive *“He abundance, indicat-
ing the presence of the so-called "lithium problem", whose past solutions have invoked
unknown systematics or new physics [9]. If one excludes the "Li constraint, the con-
cordant range of n from BBN is primarily determined by the deuterium abundance,
resulting in [9]

neBN ~ (6.143 £ 0.190) x 10717 (1.7)

Despite the lithium problem, it is remarkable to think we can accurately predict
the primordial light element abundances, spanning over nine orders of magnitude,
just using well-known microphysics. This inspires confidence in our extrapolation to
understand the Universe during its earliest stages.

The value of n in Eq. (1.7) can be translated into the baryon abundance €2 in the

Universe, which we will define appropriately in section 2.3, via

Qph? = " ~0.02244 £ 0.00069  (BBN), (1.8)

2.7x 10

where h is the dimensionless Hubble constant in Eq. (1.5). Taking h ~ 0.7, one
finds that ordinary matter contributes at most 5% of the total energy budget of the

12



Universe today, which we will see is insufficient to explain all the structures visible
in the Universe. BBN hence provides compelling evidence for the existence of a non-
baryonic form of matter, dubbed as dark matter (DM), which we will present in
sections 1.5 and 2.4.3 and amply study throughout the thesis.

Constraints on the value of Q,h?, and hence on 7, come also from precision mea-
surements of the Cosmic Microwave Background (CMB) temperature anisotropies [19],
which we will introduce in the next section. Although BBN (zpy ~ 10'°) and CMB
(zcmB ~ 10%) are two widely separated epochs in the history of the Universe, governed

by very different physics, the value of 1 found by the Planck CMB mission yields [20]
Qh? = 0.02230 +0.00021  (CMB), (1.9)

corresponding to

noms = (6.104 4 0.058) x 1071 (1.10)

in striking agreement with ngpn, as shown in Fig. 1.2. This is a crucial test of
the standard ACDM model, which predicts no change in the value of 1 between
BBN and CMB epochs. Once the CMB and BBN values are combined, one finds
n = (6.129 + 0.039) x 107! and Q,h* = 0.02239 + 0.00014.

1.3 Cosmic Microwave Background

The accidental discovery of a microwave background radiation, now known as the
CMB, was made by Arno Penzias and Robert Wilson in 1965 [21]|, who detected a
constant electromagnetic "noise" emanating from all directions in the sky.

The existence of the CMB can be well explained within the framework of an
expanding Universe, specifically as a result of the interaction between photons and
electrons via Thomson scattering. During the epoch when the temperature of the
Universe was approximately at the ~ eV scale, free electrons and protons started to
combine forming neutral hydrogen in a process known as recombination. From that

moment on, the Universe became transparent to electromagnetic radiation and the
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photons released from this "last scattering" surface, at a redshift of around ~ 1100,
make the CMB today.

Since the interaction between photons and electrons prior to the last scattering
kept the former in thermal equilibrium, the CMB photons should exhibit a black-body

spectrum given by
B 4mhy3 [
exp (2nhv/kpT) — 1

1,(T) (1.11)

where v is the photon frequency and kg is the Boltzmann’s constant. This is indeed
what is shown in the left panel of Fig. 1.3, where observations by the FIRAS instru-
ment aboard the COBE satellite are compared to the black-body spectrum, finding a
perfect agreement for a mean temperature 7' = 2.728 K [22]. Even more striking is the
evidence that the CMB provides the best black-body spectrum ever measured so far,
telling us that the early Universe was very smooth and isotropic. 2 Anisotropies were
also discovered by the same COBE satellite in 1992, showing fractional temperature
fluctuations of the order of 107° [23]. They were later validated and mapped with
remarkable precision by the WMAP mission in the early 2000s and, more recently, by
the Planck satellite which has provided additional insights into the CMB, revealing
subtle deviations from homogeneity also in terms of polarization and lensing effects.
Today, the temperature of the CMB is known to be T = (2.72548 + 0.00057) K [24].

The standard statistical tool to study small fluctuations over a homogeneous
and isotropic background is to Fourier transform the distribution describing the
anisotropies, which in the case of the CMB is the space-dependent temperature field
across the sky. In fact, in Fourier space, large and small scales completely decou-
ple from each other at linear order. For the CMB and the large-scale structure, the
latter of which will be presented in the next section, the most important statistic
is the two-point correlation function. When measured using Fourier-space fields, it
is called the power spectrum and its physical meaning is to describe the spread or

variance of the distribution: the larger is the amplitude of the power spectrum, the

2Smoothness, or homogeneity, in the context of the Universe implies that it exhibits uniformity
at every point, displaying translation invariance. Isotropy, on the other hand, signifies that the
Universe possesses uniformity in all directions, showcasing rotation invariance.
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Figure 1.3: Left: Intensity of the CMB radiation as a function of frequency from
the Far InfraRed Absolute Spectrophotometer (FIRAS), aboard the COBE satellite.
The line shows a black-body spectrum with T, = 2.728 K, as given by Eq. (1.11)
if converted in the appropriate units. The error-bars on the measurements are also
present but are smaller than the line width. Taken from Ref. [22]. Right: Power
spectrum of CMB temperature anisotropies. Data points as measured by the Planck
satellite are shown in red along with their associated 410 uncertainties. The blue line
is the best-fit prediction of the ACDM model, which involves only six free parameters.
Residuals between the data and the best-fit model are shown in the lower panel.
Figure taken from Ref. [20].

larger are the deviations from a smooth background. Since the CMB temperature is
a two-dimensional field depending only on the angular coordinates of a point in the
sky, instead of taking its Fourier transform one expands it in spherical harmonics.
Concretely, defining d7'(n) as the CMB temperature anisotropy in the unit direction

n, we can write

R T — T 4+oo  +4 A
8T (1) = % => Y amYu(n), (1.12)
=1 m=—¢

where Yy, (n) are the spherical harmonics and the coefficients ay,, encapsulate the
temperature fluctuations. Their correlation in two different directions n and 7’ in the

sky, averaged over the full sky, gives

(ST(R)OT(R')) =) - CIT Py(n - ), (1.13)

(=1

where P, are the Legendre polynomials, ¢ ~ 27 /6 for small polar angular separations

15



0, and the coefficients C}T are the angular power spectrum

. H
Cit = (lagm)?) = W1 > laem|® (1.14)
m=—/

If the temperature fluctuations 07" are Gaussian, as it appears to be the case, all
the information contained in the CMB maps can be compressed into C}7. The right
panel of Figure 1.3 shows the most recent Planck data of the CMB angular power
spectrum, expressed in terms of the quantity DI 7 = ¢(¢+ 1) CI'T /(27), as a function
of the angular scale ¢, and they are superimposed by the best-fit prediction of the
ACDM model. The agreement between the data points and the theoretical curve is
remarkable, particularly when considering that it is a six-parameter fit.

The distinctive peak structure observed in the CMB power spectrum at small
scales (i.e. large £) can be explained by the interplay between gravity and the pressure
of the primordial fluid |25, 26]. Before recombination, baryons and photons formed
a single fluid known as the photon-baryon fluid, which underwent compression and
expansion due to gravity and pressure variations. This led to acoustic oscillations,
similar to sound waves, and depending on the fluid’s phase during photon decoupling,
the emerging photons exhibited different temperatures. These fluctuations provide
valuable information about the abundance of baryons during recombination.

Through the lens of the ACDM model, we gain insight into the Universe by ex-
amining the structure of the CMB angular power spectrum |27, 28]. The first peak
reflects the abundance of baryonic matter, while the subsequent peaks carry signa-
tures of the non-baryonic mass density. Specifically, the position of the first peak and
the relative heights of the second and third acoustic peaks indicate that the Universe
is flat and predominantly composed of cold dark matter (CDM), with a density ratio

Q). about five times larger than that of ordinary baryonic matter €.
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Figure 1.4: SDSS-III redshift map of the galaxy distribution. It appears clumpy on
small scales, but it becomes more uniform on large scales, corresponding to early
times. Figure taken from Daniel Baumann’s lecture notes on Cosmology for Part 11
Mathematical Tripos in Cambridge (http://www.damtp.cam.ac.uk/user/db275/
cosmology.pdf). The extended version containing SDSS-IV data can be found in
Ref. [29].

1.4 Large-Scale Structure

The existence of inhomogeneities, often referred to as structure, within the Uni-
verse was recognized prior to the discovery of CMB anisotropies. This understanding
stemmed from redshift maps depicting the distribution of luminous galaxies in the
local Universe, obtained from surveys such as the Sloan Digital Sky Survey (SDSS)
and the Two Degree Field Galaxy Redshift Survey (2dFGRS). These maps, an exam-
ple of which is illustrated in Fig. 1.4, clearly demonstrate that galaxies are neither
homogeneously nor randomly distributed. Instead, the Universe exhibits structure
on large scales. The distribution of galaxies and matter on cosmological scales is
commonly referred to as large-scale structure (LSS).

Similar to the analysis of the CMB, the study of matter inhomogeneities involves

investigating their properties in Fourier space, which allows for a separation of large
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and small scales. In this context, the variable of interest is the density of galaxies
as a function of their three-dimensional positions in the sky, denoted as n,(Z). By
defining 7, as the mean number density across the entire galaxy survey, the matter
inhomogeneities can be characterized using the quantity 0,(%) = [n,(Z) — ng4]/n,, or
its Fourier transform Sg(lg) The galaxy power spectrum P, (k), which reveals the
distribution of matter in Fourier space, can be computed by evaluating the two-point

correlation function of 4, [2, 3]
(6, (k)OL(K)) = (21)*6@) (k — K') P, (k) , (1.15)

where 6®)(-) is the three-dimensional Dirac delta function, and the angular brack-
ets denote an average over the whole ensemble. The left panel of Fig. 1.5 presents
the galaxy power spectrum obtained from the SDSS/BOSS survey, showcasing its
remarkable agreement with the predictions of the concordance ACDM model.

The galaxy power spectrum P, (k) exhibits intriguing oscillations around k =~
0.1 Mpc™', known as Baryon Acoustic Oscillations (BAO), originating from the
epoch of recombination. During photon decoupling, the tightly coupled photon-
baryon fluid underwent acoustic oscillations in the primordial plasma before tran-
sitioning to a decoupled state. As the pressure within the fluid dissipated, it left
behind fixed ripples of baryonic matter at a characteristic radius of approximately
~ 147 Mpc, known as the sound horizon. The force of gravity then attracted more
baryons and DM toward these initial density perturbations, eventually giving rise
to the formation of galaxies and the observed LSS. This feature is imprinted in the
correlation function ¢ of galaxy number density in position space, as illustrated in the
left panel of Fig. 1.5. BAO serves as a "standard ruler" since the size of the bary-
onic ripples can be accurately measured without relying on any specific cosmological
model.

To facilitate the comparison between theory and observations, linear perturbation
theory around a smooth background is commonly employed, as shown in the left panel

of Fig. 1.5. This approach provides a semi-analytical framework, eliminating the need
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Figure 1.5: Left: The power spectrum P,(k), as measured from the CMASS sample of
the SDSS-IIT BOSS catalogue (points), compared to the theoretical prediction from
the best-fit ACDM model (solid line). The inset zooms in on the BAO feature, which
is used as a standard ruler. Figure taken from Ref. [30]. Right: The Baryon Acoustic
peak observed in the correlation function £(s), as inferred from the SDSS galaxy
sample. The peak’s amplitude is sensitive to the total matter density. The models
shown are with Q,,h? = (€, +Q.)h? = 0.12 (green line), 0.13 (red line) and 0.14 (blue
line), all with Qyh% = 0.024. The purple line corresponds to the case with Q, = 0.
Taken from Ref. [31].

of computationally intensive simulations. However, linear perturbation theory is ap-
plicable only to small perturbations, imposing limitations on the size range of matter
inhomogeneities that can be effectively studied using this method. Perturbations on
scales smaller than approximately ~ 10 Mpc have undergone significant growth in
the late Universe, leading to nonlinearity with fractional density fluctuations exceed-
ing unity. In contrast, large-scale matter perturbations remain small as they have
undergone less evolution. Thus, the Universe appears homogeneous and isotropic on
scales larger than about O(100 A~ Mpc) [32]. Similarly, the anisotropies in the CMB
are small due to their origin at early times and the fact that the photons comprising
the CMB did not cluster during their journey to us.

The CMB and LSS offer distinct views of the Universe, primarily due to the
amplitude of perturbations. The early Universe, as observed through the CMB,
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appeared remarkably smooth, while the present-day Universe observed through galaxy
surveys exhibits significant inhomogeneity. This transition is driven by the influence
of gravity, for which small-scale perturbations undergo nonlinear growth first and
then hierarchical assembly, contributing to the formation of larger structures. The
growth of structure is governed by the interplay between gravitational instability,
causing the collapse of overdense regions, and the outward pull from the expanding
background. Therefore, LSS is intricately linked to the underlying physics of the

background Universe, including its composition, evolution, and curvature.

1.5 Evidence of Dark Matter

Evidence for the existence of additional matter beyond what is observable, known as
dark matter (DM), has been observed across various scales in the Universe, ranging
from dwarf galaxies to the largest cosmological scales. While we will highlight some

notable examples of this evidence, a comprehensive review and historical account of

DM can be found in Refs. [33, 34].

1.5.1 Cluster scale

In 1933, astronomer Fritz Zwicky made a significant observation when he computed
the velocity dispersion of galaxies in the Coma cluster, located ~ 100 Mpc away
from Earth. He found that the apparent velocities of eight galaxies exhibited a large
scatter, surpassing thousands of km /s [35|. This observation was unexpected because,
according to the virial theorem, one would anticipate an average galaxy’s velocity v

in the Coma, cluster with mass M and mean galaxy separation r 3

|GM

3The virial theorem states that, for a steady, spherical and self-gravitating system of N objects
of average mass m and average orbital velocity v, the total average kinetic energy T is T = —U/2
where U is the potential energy. In particular, T = Nmv?/2 and U = —N(N —1)Gm?/(2r) [36]. In
the limit of N > 1, one derives Eq. (1.16).
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Figure 1.6: Observed and predicted rotation curves for the galaxy M33, also known as
the Triangulum Galaxy. Source: (€) M33 Image: NOAO, AURA, NSF, T. A. Rector.
https://www.learner.org/courses/physics/unit/text.html

to be around a few hundreds of km/s [35]. Zwicky confirmed this conclusion in
a subsequent 1937 paper, where he estimated the mass-to-light ratio of the Coma
cluster to be about ~ 500 (equivalent to ~ 8 with the present-day value of Hy [34]),
again employing the virial theorem [37]. * These findings led Zwicky to infer the
presence of significant amounts of non-luminous matter in the cluster, necessary to

hold galaxies together.

1.5.2 (Galactic scale

The existence of DM was rediscovered in the 1970s by Vera Rubin and her collabora-
tors, who analyzed the rotation curves of various galaxies, including the Andromeda
(M31) galaxy [38, 39].

The expectation was that, similar to the planets in our Solar System, stars within
a spiral galaxy should exhibit Keplerian motion. Assuming circular motion and that

the mass of the galaxy is concentrated in a disk of radius R, where M (r) ~ M for

4The mass-to-light ratio of an astrophysical object is the ratio between its stellar mass and its
stellar luminosity. Typically, it is measured in terms of the solar mass and solar luminosity.
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r > R, the velocity of the stars should follow a specific pattern. It should decrease

with increasing distance from the galactic center according to

or) = 1) e U(T)%\/G;Woc%, (1.17)

based on Newtonian gravity and the distribution of luminous matter.

However, Rubin’s results revealed a striking deviation from these predictions. The
optical data indicated that the rotation curves of stars remained nearly flat, meaning
that the velocities of stars continued to increase with distance from the galactic center
until reaching a limit (as depicted in Figure 1.6, for example). This constant velocity
contradicted the expected decrease based on luminous matter alone. To explain this
discrepancy, it is necessary to postulate the existence of an additional halo of invisible
matter surrounding the galaxy, extending far beyond the observed stellar disk. This
evidence strongly suggests the presence of DM in galaxies, contributing to the mass

distribution at large galactic radii.

1.5.3 Gravitational lensing

In the 1970s, gravitational lensing emerged as another method to investigate the
presence and distribution of DM. According to general relativity, mass causes the
surrounding space to curve, leading to the bending of light rays passing through
its vicinity. Gravitational lensing provides important information about the source,
the lensing object, and the large-scale geometry of the Universe when they are at
cosmological distances from each other.

One notable example is the 'Bullet cluster’, shown in Figure 1.7, where a sub-
cluster collided with a larger one. During this event, galaxies passed through each
other without interaction, as confirmed by the gravitational lensing map (blue in the
left panel or green contours in the right panel). However, the majority of a cluster’s
visible mass exists in the form of extremely hot gas emitting X-ray radiation (pink
or red in Figure 1.7). Comparing the X-ray emission with the gravitational lensing

map reveals a discrepancy: the regions of strong X-ray emission and the highest mass
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Figure 1.7: Left: Composite image of the colliding 'Bullet cluster’, obtained with grav-
itational lensing. The lensing mass map is shown in blue, and the X-ray observations
tracing the gas component are shown in pink. X-ray: NASA /CXC/CfA /Markevitch
et al. [40]; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/Clowe et
al. [41]; Optical: NASA /STScl; Magellan/U.Arizona/Clowe et al. [41]|. Right: Lens-
ing map, reconstructed using weak lensing data (green contours) and Chandra X-ray
emissivity image of the same cluster. The white bar indicates a distance of 200 kpc.
Figure taken from Ref. [41].

concentrations do not overlap, indicating that the dominant mass in the clusters is
non-baryonic. This observation implies that DM interacts weakly, if at all, with gas or
itself and behaves effectively as a collisionless entity. Additionally, if DM is described
by a particle, it should be electrically neutral.

1.5.4 Cosmic web

Our current understanding of the LSS (section 1.4) is still incomplete, as its evolution
from primordial density fluctuations is primarily driven by gravity, resulting in non-
linear growth at small scales. Additionally, theoretical predictions must be compared
with observations of the luminous Universe, where dissipative effects play a crucial
role [33]. N-body cosmological simulations, particularly based on the ACDM model,
have become a widely adopted approach to studying LSS formation.

Notably, the Millennium-XXL simulation [42], with its large number of DM-only
particles, provides a comprehensive representation of the Universe’s structure, in-
cluding filaments, superclusters, walls, and voids, as seen in the left panel of Fig. 1.8.

Comparisons between simulation outcomes and galaxy redshift survey data, such as
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Figure 1.8: Left: Mass density field in the Millennium-XXL, in a cubical region with
side ~ 4.1 Gpc containing ~ 0.3 x 102 DM-only particles, focusing on the most
massive halo present in the simulation at z = 0. Each inset zooms by a factor of eight
from the previous one. The mass and length resolutions are m,, = 8.456 x 10 M, and
e = 13.7 kpc, respectively. Figure taken from Ref. [42]. Right: Comparison between
the galaxy distributions from redshift surveys and the outcome of the Millennium
simulation. The top and left wedges are the result from the 2dFGRS and SDSS galaxy
surveys, whereas the bottom and right wedges are obtained by the N-body simulation
and are matched to the structures observed by the surveys. From Ref. [43].

SDSS and 2dFGRS, reveal remarkable agreement, as shown in the right panel of
Fig. 1.8.

The success of DM-only simulations in matching observational data suggests that
baryonic matter’s role in the overall evolution of the Universe is negligible and only
becomes significant at galactic scales. DM particles used in these simulations are
stable, collisionless, dissipationless, and "cold", meaning they are non-relativistic.
These properties imply that DM particles should be heavy and long-lived enough to
explain the structures and substructures observed today.

However, at galactic scales, numerical simulations have shown some discrepancies
between predictions of the ACDM model and observational data, which will be dis-
cussed further in chapter 3 after a more thorough understanding of DM is presented

in section 2.4.3.
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In addition to the DM evidence presented in this section, CMB (section 1.3) and
BBN (section 1.2) data provide strong and detailed information about the existence

of DM and its cosmological properties.

1.6 Late-time accelerated expansion

The discovery of the Hubble law, as expressed in Eq. (1.1), was made possible through
Henrietta Leavitt’s study of Cepheid variable stars in the early 20" century [44].
Cepheids are considered "standard candles" because their pulsation period is univer-
sally related to their intrinsic brightness (absolute magnitude), denoted by M [45, 46].

Using the apparent magnitude m, which is determined by directly measuring the
star’s flux F' at Earth, m = —(5/2)log,, F' 4 constant, the star’s luminosity distance

dy, can be inferred via [3]

p=m-—M
(1.18)
= 5logy (dr/10pc) + K,

where K represents a correction factor accounting for effects such as light absorption
by interstellar dust. The quantity u is commonly referred to as the distance modulus.
Equation (1.18) can be applied to various standard candles, including Cepheids, the
tip of the Red Giant branch (TRGB), and Type Ia Supernovae (SNe Ia), where
the absolute magnitude M or the luminosity L can be estimated based on physical
properties of the system or empirical observational relations. In the case of SNe Ia,
the characteristic time it takes for the luminosity to decay after the peak has been
found to be universal once the luminosity-decline rate relation, known as Phillips
relationship [47-49], is taken into account.

In the late 20" century, two groups measured the apparent magnitudes of numer-
ous SNe Ia and provided direct evidence for an accelerating Universe [51, 52]. This
acceleration is best explained by the presence of dark energy. Fig. 1.9 illustrates the
updated investigation of SNe Ia data using the ACDM model, which allows for the

determination of cosmological parameters. The two free parameters in question are
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Figure 1.9: 68% and 95% Confidence Level (C.L.) contours for the abundance of
non-relativistic matter €2, and dark energy 2, assuming the ACDM model, from
the Pantheon+ dataset as well as from CMB (Planck 2018) and BAO data-sets. Two
lines are included for reference: one for a flat Universe, where §2,, + Q4 = 1, and the
other indicating an accelerating Universe. Figure taken from Ref. [50].

the normalized matter density €2, and the abundance of dark energy 25, which is
assumed to be described by a cosmological constant A but is not limited to a flat
Universe. Notably, a Universe with 2y = 0 is inconsistent with observations and,
instead, SNe data suggest a concordance value of 25 ~ 0.7.

It is worth mentioning that another piece of evidence for dark energy arises from
the BAO standard ruler, discussed in section 1.4, which provides an independent
means to infer the abundance of dark energy. [3].

The abundance of DM and dark energy, as supported by multiple independent
lines of evidence, strongly validates the ACDM model. However, the question of why
the early Universe exhibited remarkable smoothness lies beyond the scope of this
model. To address this question, the theory of inflation has been extensively studied
because its predictions, such as the absence of spatial curvature, have been confirmed

by CMB measurements. In an upcoming chapter, we will delve into this theory, but
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not before introducing the concordance ACDM model, which will be the focus of the

next chapter.
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Chapter

Building the ACDM model

To unravel the complex evolution and history of the Universe, the theory of General
Relativity (GR) stands as an essential framework. GR can be conceptually divided
into two fundamental components that, when combined, provide a cohesive under-
standing of the cosmos. The first component is the metric, which characterizes the
geometry of spacetime, governing the kinematics of particles moving in it. The second
component encompasses the energy content, including matter, radiation, and other
forms of energy.

The distribution and behavior of this energy content directly influence the shape
of spacetime through the Einstein equations, establishing a profound interconnec-
tion between the Universe’s geometry and the distribution of energy within it. In
this chapter, we will initially introduce the metric for an expanding Universe and
explore particle kinematics. Subsequently, we will delve into the energy content and
its dynamic nature in section 2.3. The foundation of this chapter draws heavily from

standard cosmology textbooks. [1-8].

2.1 The FLRW metric

The metric in GR describes the actual distance between infinitesimally close points
in spacetime, and it depends on the chosen coordinate system. The distance, denoted

as ds?, is however invariant, ensuring the same measurement outcome regardless of
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the coordinate system used.

In GR, the metric takes on a deeper meaning by incorporating gravity, allowing
us to describe particles moving freely in a curved spacetime. This concept is based
on general covariance, where an observer in a uniform gravitational field makes iden-
tical measurements to one in an accelerated reference frame. In four-dimensional

spacetime, the metric includes time intervals as its zeroth component, represented by

3

ds® = Z G dxtdx” = g, dxtdz” . (2.1)
11,v=0

The metric g,, is symmetric, with four diagonal and six independent off-diagonal

components. The proper-time interval, described by ds?, measures the time elapsed

between two spacetime events when the observer is at rest with respect to them. If

ds® > 0, it is called timelike, indicating a spatial separation less than the distance

light can travel. For ds? < 0, it is called spacelike, and for ds? = 0, it is lightlike.

In special relativity, the metric of Minkowski spacetime is given by ¢, = 1.,
where 7, = diag(l,—1,—1,—1). In an expanding Universe that is isotropic and
homogeneous, the metric can be understood qualitatively by considering that points in
a cosmic grid move away from each other in proportion to the scale factor a(t). Thus,
in an Euclidean or "flat" Universe, the metric is similar to the Minkowski metric,
with spatial coordinates multiplied by the scale factor. This leads to the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric for an Euclidean Universe given by

1 0 0 0
0 —a2(t) 0 0
G = s (2.2)
0 0 —a’(t) 0
0 0 0 —a(t)

which can be generalized to include open or closed Universes, obtaining [1]

dr
1 —kr?

ds* = dt* — a*(t) + 72(d6* + sin® dyp?) | | (2.3)
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where (t,7,60,p) are comoving coordinates, and k is the curvature index taking the
values of +1,—1,0 for spaces of constant positive (close Universe), negative (open
Universe), or zero spatial curvature (flat Universe), respectively. !

The FLRW metric, known before the discovery of the CMB and galaxy surveys [9],
was initially proposed by Friedmann in 1922 as a possible solution to the Einstein
equations [10, 11]. It was further developed independently by Robertson [12, 13| and
Walker [14] in the 1930s based on geometrical considerations and the assumption
of a homogeneous and isotropic Universe. Lemaitre’s work was also influential in its
development [15, 16]. This metric embodies the cosmological principle, which assumes

no preferred direction or position in the cosmos.

2.2 Particle kinematics

Equipped with the FLRW metric (2.3), we can now explore particle motion within
this background. Throughout this thesis, we will primarily focus on a flat Universe
(k = 0) since precise observations of CMB temperature anisotropies (as discussed in
the previous chapter) strongly indicate the spatial curvature to be nearly zero.

In Minkowski spacetime, a particle moves along a straight line in the absence
of external forces. However, in curved spacetime, the concept of a straight line is
generalized to a geodesic, which represents the shortest path between two points. GR
states that a particle follows a geodesic when subject only to the force of gravity. To
derive the geodesic equation, we generalize Newton’s second law in four-dimensional
spacetime without any forces, yielding [17]

d?at 4 dz® dxP

o Tl =0 (2:4)

where A is an auxiliary parameter that increases monotonically along the particle’s

path, replacing the concept of time as one of our coordinates. The quantity I’Zﬁ

In Eq. (2.3), the coordinate r is dimensionless, meaning that a(¢) has to have dimensions of
length, and r ranges from 0 to 1 for k& = +1. Alternatively, a(t) can be dimensionless but the
curvature index k must have dimensions of an inverse length squared.

34



represents the Christoffel symbol and is defined in terms of the metric as

1
Fgg = §ng [8,5;9@” + 6aggy — 8Vga5] , (25)

which is symmetric in the lower indices. Here, g"” represents the inverse of the metric
Guv, satisfying ¢"*g., = n4. In the above expression, we have used the shorthand
notation 9, = 9/0x.

Applying the FLRW metric (2.2), Eq. (2.4) for the case of a massless particle, like

a photon, with energy E at time ¢ leads to [3]

E+%E=0, (2.6)
a
whose solution is
E(a) = E; (a—) , (2.7)
a

with F; the particle’s energy at time a;,. Hence, we find that the energy or momen-
tum of a massless particle decreases as the Universe expands. This implies that the
wavelength of light emitted by distant objects increases linearly with the scale factor,
confirming the earlier argument presented in the previous chapter when defining the
concept of redshift in Eq. (1.2). For massive particles, it is possible to show that
Eq. (2.7) holds true only for the magnitude of the three-momentum and not for the
particle’s energy [1].

In cosmology, understanding distances and horizons is a crucial aspect. By revis-
iting Eq. (2.3), we can express it in a simpler way using the conformal time 7, defined
by

dr = @ , (2.8)

yielding
dr?
1 — kr?

ds® = a*(7) |dT* — — r2(d6? + sin® Odp?) | . (2.9)

The name "conformal time" becomes evident from this expression: when expressed

in terms of 7, the flat FLRW metric becomes conformal to the Minkowski metric 7, .
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In other words, the line element is equal to the Minkowski line element multiplied by
the scale factor a(7), serving as a conformal factor. The conformal time 7 holds a
profound physical meaning as it defines the causal structure of the Universe. Due to
the isotropy of spacetime, we can choose a coordinate system where light travels only

radially (i.e. # = ¢ = constant). In this case, Eq. (2.9) reduces to
ds® = a®(7)[dm* — dr?], (2.10)

assuming a flat Universe for simplicity, although this assumption is not necessary |[8].
Since photons travel along null geodesics, ds? = 0, their path is defined by Ar = +AT,
where the plus sign corresponds to outgoing photons and the minus sign to incoming
photons. In other words, light rays in the r-7 plane correspond to straight lines at
a 45° angle, defining the light cone for any observer in the spacetime. We can then
define two distinct cosmological horizons based on the visual representation illustrated

in Fig. 2.1. These horizons are as follows:

e The (comoving) particle horizon represents the maximum comoving distance 7

that light could have traveled since t = t; (recall ¢ = 1)

t dt/
Xpn(T) =7 =7, =/ . (2.11)
t

S a(t)

If ¢; = 0, commonly associated with the Big Bang, then x,, = 7. As depicted
in Fig. 2.1, the size of the particle horizon at time 7 can be visualized as the
intersection of the past light cone of an observer p with the spacelike surface

7 = 7;. Causal influences must originate from within this region.

e The (comoving) event horizon gives the maximum distance from which an ob-
server at time ¢y can receive a signal emitted at any time later than ¢. It is

defined b
efined by .
Xen(T) =T — 7 = / o) (2.12)

t

In other words, the event horizon reveals the events that we will be able to

see or impact in the future, assuming light can travel undisturbed and without
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Figure 2.1: Illustration of horizons in a spacetime diagram. Dotted lines represent
the worldlines of comoving objects. The event horizon corresponds to the maximum
distance from which signals can be emitted by an observer located at p. Conversely,
the particle horizon represents the farthest distance in the past from which signals
can be received. Taken from Ref. [8].

interaction along its path.

The physical horizons at time ¢ can be obtained by multiplying the corresponding
comoving horizons by the scale factor a(t).

The introduction of the conformal time 7 in Eq. (2.8) provides an easy way to
define distances in a flat FLRW Universe. However, when dealing with non-zero
curvature, we need to start directly from the line element in Eq. (2.3) to define
distances, for which we refer interested readers to Refs. [3, 8]. Let’s consider the
comoving distance between us and a distant light source. In a small time interval dt,
light travels a comoving distance dx = dt/a. Therefore, the total comoving distance
traveled by light emitted from an object at time ¢ when the scale factor was a (or

redshift z = 1/a — 1) is given by

to gt ! da’ 2 dy
W= = @@ ~ )y 7 (2.13)

For small redshift z, the comoving distance can be approximated as x ~ z/Hy,
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which corresponds to the Hubble law discussed in the previous chapter (see Eqgs. (1.1)
and (1.6)). However, the comoving distance x is not directly observable. Instead, we
rely on two related quantities: the luminosity distance and the angular diameter
distance.

One method of determining distances in astronomy involves measuring the flux
from an object of known luminosity, often referred to as a "standard candle". In a
static Euclidean space, the flux F' (energy per second per receiving area) observed at

a distance d from a source with luminosity L (energy emitted per second) is given by

B L
 4md?

F (2.14)

However, in an expanding Universe described by the FLRW metric, three modifica-

tions are needed:

e The distance d between the observer and the source has changed between

the emission and detection times, as given by the comoving distance x(a) in

Eq. (2.13).

e The rate of photon arrival is lower than the rate of emission by a factor of a

due to the expansion.

e The energy of photons at detection is lower than at emission due to expansion,

as described by Eq. (2.7).

Thus, the observed flux from a source with luminosity L at a coordinate distance y

and redshift z is given by
La?

=

By comparing Eq. (2.15) with Eq. (2.14), we can define the luminosity distance in an

F (2.15)

expanding Fuclidean Universe as

dL:§:(1+z)X. (2.16)

Another approach to determine distances in astronomy involves measuring the an-
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gle 0 subtended by an object of known physical size [, often referred to as a "standard
ruler." For cosmological objects where 6 is small, the distance to the object is given
simply by

dy = - (2.17)

and it defines the angular diameter distance. In an expanding Universe, the comoving
size of the object is [/a, where a is the scale factor at the time of photon emission.
Using Eq. (2.13), we can infer the subtended angle in a flat Universe as 8 = (I/a)/x(a).
Therefore, comparing with Eq. (2.17), we find that

X
142

da=ax= (2.18)

It is important to note that the angular diameter distance measures the distance
between us and a source at the time of photon emission. We observe that the angular

diameter and luminosity distances are not independent but related by

dr

dy=a?d, = ———
A =0 af 1+2)2°

(2.19)

which holds true even for a curved Universe [3].

2.3 Particle dynamics

In the previous discussion, the dynamics of a FLRW Universe were implicitly present
through the time dependence of the scale factor a(t). To make this time dependence
explicit, one needs to solve for the evolution of the scale factor by employing the
Einstein equations 2

1
R, — §gw,R =G, =81G1T,,, (2.20)

2The left-hand side of the Einstein equation (2.20) is not uniquely defined. It is possible to
include a term —Ag,,, where A is a constant, without affecting the conservation of the stress
tensor described by Eq. (2.25). Einstein originally introduced such a term and referred to it as
the cosmological constant. However, in modern practice, this term is moved to the right-hand side

and treated as a contribution to the stress-energy tensor in the form TL(L[V\) = A9 /(87G) = pa G-
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where G, is the Einstein tensor, representing the "spacetime curvature", R,,, is the
Ricci tensor, R = ¢g"”R,,, is the Ricci scalar (contraction of the Ricci tensor), and the
energy-momentum (or stress-energy) tensor 7),, is a symmetric tensor describing the
matter and energy content of the Universe. The Ricci tensor is defined in terms of

the Christoffel symbols from Eq. (2.5) as
Ry = 0.1, — 0,00, + T80, —T5,T0, . (2.21)

For the stress-energy tensor 7),,,, the assumptions of isotropy and homogeneity lead

Nz

to the coarse-grained energy-momentum tensor taking the form of a perfect fluid [8]
T = (p+ P)uyu, — P g, (2.22)

where p(t) and P(t) represent the energy density and pressure of the fluid, and w,, is
its four-velocity. In the frame comoving with the fluid (where the fluid is at rest), we

have u, = (1,0,0,0), and thus

pt) 0 0 0
0 —P@{) 0 0
Tuz/ - g#aTau - (223)
0 0 —P@ 0
0 0 0 —P@)

The energy density and pressure of the fluid are generally related by an equation of
state, often assumed to follow that of a barotropic fluid, where the pressure depends
only on the density, P = P(p). A widely used parameterization is a linear relationship
between P and p, given by

P=wp, (2.24)

where w represents the equation of state parameter. This simple parameterization
effectively describes various species in the known Universe.

The evolution of energy density and pressure of a perfect fluid can be derived from
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the conservation of the stress-energy tensor, which in GR is expressed as
VMT'uV - aMTMl/ + FﬁaTay - ngTHa = O, (225)

for a non-interacting fluid, where V, denotes the covariant derivative. This equation
extends the conservation of energy and momentum for a non-interacting fluid in
special relativity, 0, 7", = 0, which gives rise to the continuity equation and the Euler
equation. Using the FLRW metric of Eq. (2.2), the v = 0 component of Eq. (2.25)

leads to the generalized continuity equation
p+3H(p+ P)=0, (2.26)

where we recall H = a/a is the Hubble parameter. A more useful form of this
expression can be derived for fluids with equation of state given by Eq. (2.24). In

fact, Eq. (2.26) becomes
dlnp
dlna

—3(1 4 w), (2.27)

whose solution for time-independent w scales as
pla) oc a=30Fw) (2.28)

Examples of particular interest include:

e Non-relativistic matter, characterized by P < p, resulting in p,, oc =3 that
reflects the expansion of volume V' o a®. Baryons and DM (at least the majority

of it) can be treated as non-relativistic matter.

e Radiation, representing relativistic particles with P = p/3, giving p, o a™%.

The dilution now includes the redshifting of energy, with £ oc a=!. Photons and

neutrinos (for most of their cosmological history) can be treated as radiation.

e Vacuum energy or dark energy, characterized by P = —p. The energy density
remains constant as py o< a’, meaning that the energy density does not dilute

with the expansion of the Universe.
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To determine the behavior of the scale factor over time, we have to solve the
Einstein equations given in Eq. (2.20) with the FLRW metric from Eq. (2.3) and
the energy-momentum tensor from Eq. (2.22). Although there are ten equations in
principle, corresponding to the ten independent components of the symmetric tensor
Juv, the symmetries of the metric lead to only two non-zero independent differential
equations. The latter are derived from the time-time and space-space components of

R,,,, resulting in the Friedmann equations

N
a &7G k
- =—p - — 2.2
and
a e
- —— 3P). 2.30
= T+ 3P) (2.30)

Here, p and P represent the total energy density and pressure of the Universe, re-
spectively, including all species contributions.

The second Friedmann equation, Eq. (2.30), reveals that in an expanding Universe
(a > 0) filled with ordinary species that satisfy the strong energy condition, p+ 3P >
0, we have @ < 0. This implies a singularity in the finite past known as the Big Bang,
where a(t;) = 0. However, this conclusion relies on the assumption that GR and
the Friedmann equations remain valid at arbitrarily high energies and that no exotic
forms of matter become dominant in such regimes.

By combining the first Friedmann equation, Eq. (2.29), with the result from the
continuity equation, Eq. (2.28), we can determine the time evolution of the scale factor
during different epochs, depending on which species dominate the energy density of

the Universe. Specifically, we find that

£2/13(14w)] w# -1,
a(t) o (2.31)

et w=—1,

where a(t) oc t¥/3, a(t) oc t'/2, and a(t) o exp(Ht) correspond to a flat Universe

dominated by non-relativistic matter (w = 0), radiation (w = 1/3), or vacuum energy
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Figure 2.2: Evolution of the scale factor with cosmic time. The present-day Universe
is located in the upper-right corner of the plot, where a(ty) = 1 and the temperature
is approximately T = Ty ~ 2.73 K. In the early Universe, radiation dominated,
causing the scale factor to increase as oc t'/2. At the marked point, the Universe
transitioned to matter domination, with a(t) oc #¥/3. More recently, the expansion
rate changed again due to the influence of dark energy, causing the scale factor to
evolve exponentially. Figure taken from Ref. [3].

(w = —1), respectively. Furthermore, if the scale factor a(t) follows a power law
a o 1", the conformal time 7 defined in Eq. (2.8) scales as a(7) oc 7%/~ The
different time dependencies of a(t) for the different species suggest that the evolution
of the Universe was initially driven by radiation, followed by a phase dominated by
non-relativistic matter, and eventually, dark energy became the dominant component
in driving the cosmic expansion. Fig. 2.2 illustrates the cosmic time evolution of the
scale factor based on our current understanding of the Universe.

The expansion rate of the Universe is described by the Hubble parameter H = a/a,
where a is the scale factor. As indicated by Eq. (2.31), it generally follows a ¢!
dependence. Its present value is the Hubble constant H,. For a flat Universe, the

current critical density is defined as [1§]

3H; —29 72 -3
Perit = = 1.87834 x 10" h* gcm
8¢ (2.32)

= 1.053672 x 107° h* (GeV)cem™®,
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To analyze the energy content of the Universe, we introduce dimensionless density

parameters

Pi
Q; : 2.33
Perit ( )

in terms of which Eq. (2.29) can be recast as

H?> Q. Q. W

B oo e et (2:34)
where Q; = —k/H? represents the curvature density parameter. The quantities €
in Eq. (2.34) should be considered as the present-day abundances of the respective
species and not as a-dependent quantities. Here ¢ = r,m, A stands for radiation,
matter and dark energy components.

Evaluating the equation above for the present time yields the golden rule of cos-

mology
Qi+ =1, (2.35)

which reveals that in a closed Universe (k = +1), the sum of the density parameters
exceeds one, while in an open Universe (k = —1), it is less than one. In a flat Universe,

the sum precisely equals one.

2.4 Concordance model and energy content

Observations from different probes, including the CMB, BBN, LSS, and supernovae,

provide strong evidence that the Universe is flat and composed of radiation ('r’),

Y

matter ('m’), and dark energy ("A’). Their present-day abundances, based on the

ACDM model, are approximately [19]

Q, ~94x107°,  Q,~032, Qy~068,  Q <0.001. (2.36)
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The matter component is further divided into ordinary matter (baryons, ’b’) and

(cold) dark matter (CDM, ’¢’), with approximate values
O, ~ 0.05, Q. ~0.27. (2.37)

However, the exact value of the Hubble constant Hj is still uncertain due to a dis-
crepancy between early and late-time probes, resulting in the Hubble tension, with
values ranging from =~ 67 km/s/Mpc to ~ 73 km/s/Mpc [20-23]. Dark energy is
consistent with having an equation of state similar to a cosmological constant, with
wp ~ —1. The curvature, on the other hand, contributes less than 1% to the total en-
ergy budget, making its effects negligible at earlier times when matter and radiation
dominate. Hence, for simplicity, we set €2, = 0 for the rest of the thesis. This model,
described by Egs. (2.36) and (2.37), is known as the ACDM model or the concordance
cosmological model due to its excellent agreement with various cosmological datasets.

In the following sections, we will briefly explore the species that constitute the
ACDM model, starting with the well-known visible sector that fits well within the
Standard Model (SM) of particle physics.

2.4.1 Standard Model of particle physics

The SM of particle physics is a gauge theory that incorporates the strong, weak, and
electromagnetic interactions within the framework of the SU(3)¢ ® SU(2), ® U(1)y
gauge group. It provides a comprehensive description of all known particles up to
energies of around O(1 TeV). Our aim here is to provide a brief introduction to the
SM in order to establish the foundational understanding necessary for the subsequent

chapters. For a more detailed review of the SM, we recommend referring to works

such as Refs. [18, 24-28].

2.4.1.1 Particle content and interactions

At the fundamental level, matter is composed of leptons and quarks. Leptons are

spin-1/2 particles that interact through the electromagnetic and weak interactions,
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forming pairs such as the electron (e™) and its neutrino (v,), the muon (™) and its
neutrino (v,), and the tau lepton (7) and its neutrino (v,). Quarks, also spin-1/2
particles, interact through the strong and electroweak interactions, and come in pairs:
up (u) and down (d), charm (c¢) and strange (s), and top (¢) and bottom (b). The
electric charge of the "up" version of each quark is +2/3, while the "down" version
has a charge of —1/3. Each quark type has three colors, analogous to electric charge,
resulting in color singlet combinations known as hadrons: baryons (quark triplets) and
mesons (quark-antiquark pairs). The absence of free colored states, a phenomenon
called confinement, is a fundamental aspect of nature. Each quark or lepton pair is
referred to as a generation and there is evidence for only three generations at the time
of writing.

The interactions of quarks and leptons are mediated by gauge bosons, which are
spin-1 particles. The photon () mediates the electromagnetic interaction, the W=
and Z° bosons mediate the weak interactions, and the eight gluons (G) mediate the
strong interaction. All these forces operate at the level of quarks and leptons. For
instance, the strong nuclear force, which binds nucleons together, is now understood
as a residual force between color-neutral objects composed of quarks.

The SM is described by Yang-Mills gauge theories, which implement symme-
tries that organize particle states and describe the dynamics of interactions. The
gauge theory for the strong, weak, and electromagnetic interactions in the SM is
SU(3)c ®SU(2), @ U(1)y. The SU(3)¢ part corresponds to quantum chromodynam-
ics (QCD) and describes the strong (color) interaction, while the SU(2), ® U(1)y part
describes the electroweak interaction. Here the subscript C' stands for color, L for
left-handedness, and Y for (weak) hypercharge, while SU(V) is the group of special
unitary transformations of N objects.

To illustrate gauge symmetry and gauge theory, consider the familiar U(1)gm
gauge theory of electromagnetism (quantum electrodynamics, or QED). Its Lagrangian
density is

. SO
Lapp = iy D") — mep — TF"Fy, (2.38)
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where 1) represents the electron spinor, m, is the electron mass, D, = 0, + igA,, is
the gauge-covariant derivative, F),, is the electromagnetic field-strength tensor, A, is
the electromagnetic potential (gauge field), and v, are the Dirac gamma matrices.
The Lagrangian exhibits gauge symmetry, as it remains invariant under position-

dependent gauge transformations of the form

v = expligx(z)],
| (2.39)
Ay — Au-— 58;»((@ )

where x(x) is a scalar function dependent on space-time coordinates. This local U(1)
(phase rotation) symmetry arises due to the fact that y(z) varies with space-time
coordinates. In contrast, global symmetries have position-independent transforma-
tions. The introduction of the gauge field is necessary to maintain gauge invariance,
a principle that requires all terms in the Lagrangian to respect the local symmetry.
The presence of the gauge field gives rise to a force mediated by it.

The multiplet structure of particles reflects the underlying symmetries of nature.
The gauge bosons reside in the adjoint representation of the SM gauge group: the
eight gluons correspond to the adjoint representation of SU(3)c, the W* and W?°
bosons form a triplet under SU(2),, and the B boson is a singlet under SU(2);,. The
photon and Z° boson are linear combinations of the W° and B bosons, as we will see
in the next subsection. Quarks, which are triplets under SU(3)¢, and leptons, which
are color singlets, follow the fundamental representation of the SM gauge group.

The electroweak part of the SM introduces an important concept known as chi-

rality or handedness. The left- and right-handed components of quarks and leptons 3

1—7 147
bp=Pp=—7"0,  Yp=Prp=-——0, b=trt+is,  (240)
participate differently in electroweak interactions. Here, 75 = iv9717273 = (? [1))

3In the ultrarelativistic limit, the fields 1, 1, have a simple physical interpretation: a left-handed
fermion is one whose spin is anti-parallel to its momentum vector (negative helicity), and a right-
handed fermion is one whose spin is parallel to its momentum vector (positive helicity).
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where ~; are the Dirac gamma matrices. In particular from Eq. (2.40), left-handed
components form doublets under SU(2) ., while right-handed components are singlets.
This distinction violates parity symmetry, ¥g <> ¥, as left- and right-handed com-
ponents transform differently under the electroweak gauge group. Quarks and leptons
also have different hypercharge assignments, further breaking parity symmetry.

Hypercharge (Y') in the context of the SU(3)¢c ® SU(2), ® U(1)y gauge group
is related to the third component of weak isospin (¢3) and electric charge (q) by
q = t3 + Y/2. The upper components of lepton and quark doublets have t3 = 1/2,
while the lower components have t3 = —1/2. On an important note, the right-handed
neutrino (vg) is a singlet under all interactions of the gauge group, characterized by
t3 =0,q =0, and Y = 0. Currently, it has not been observed in nature, although
ongoing searches aim to determine its presence, as its existence would suggest a
need to extend beyond the SM. The gauge bosons of SU(2)z, namely W= and W°,
also possess weak isospin and transform as a triplet with t3(W™) = 1, t3(W?) = 0,
and t3(W~) = —1. On the other hand, the gauge boson B° of U(1)y does not carry
hypercharge or weak isospin, which is a characteristic feature of Abelian gauge groups.

The Noether theorem reveals that every symmetry present in the Lagrangian
corresponds to a conservation law. Thus, the charges associated with the generators
of the SU(3)¢ ® SU(2), ® U(1)y gauge group, including color, weak isospin, and
hypercharge, are conserved quantities. In addition to these charges arising from
gauge symmetries (internal symmetries), the theory also possesses accidental global
symmetries that result in additional conserved quantities. Baryon number (B) and
the lepton flavor numbers (L., L,,, L;) are exact conserved quantities. *

On a final note, the SM encompasses a range of other fascinating phenomena,
including the Cabibbo-Kobayashi-Maskawa (CKM) mixing in the quark sector [29,
30|, where quark flavor eigenstates and mass eigenstates differ leading to transitions

among different quark generations.

4However, it should be noted that baryon number (B) conservation is violated by quantum
mechanical effects related to instantons, which arise from "triangle diagrams". While B is conserved
classically, its conservation is anomalous at the quantum level. See section 3.3 for further details.
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2.4.1.2 The Higgs sector

In the SM, if we only consider the particle content described so far, all fermions and
gauge bosons would be massless. However, experimental observations indicate that
the weak interaction is short-range, with the gauge bosons having mass My ~ 80
GeV and Mz ~ 91 GeV. The missing ingredient is the spontaneous symmetry breaking
(SSB) of the SU(2), ®U(1)y gauge group into the electromagnetic U(1)gy symmetry.
This SSB is achieved by a scalar field known as the Higgs field, whose quanta were
discovered in 2012 by both ATLAS and CMS Collaborations at CERN [31, 32]. The
Higgs field, denoted as H, is a complex scalar SU(2), doublet with hypercharge
Y = +1. Its Lagrangian is described by

Lriiges = (D"H)(D,H) = V(| H]), (2.41)

where V(|H|) is the Higgs or scalar potential. The latter can be expressed as

V(H|) = —m?|H|* + \H|*, (2.42)
where
1 (H*+iH-
H=— , (2.43)
V2 \ h4iH®
|H]?=H'H=(H?+H >+ 1+ H))2, (2.44)

with H*, H~, H° and h four real scalar fields and m and \ are arbitrary parameters.

Provided that —m? < 0 in Eq. (2.42), the scalar potential V(| H|) is minimized for
a non-zero vacuum expectation value (VEV) of the Higgs field, (|H|*) = m?/(2)) # 0,
breaking the SU(2),®U(1)y symmetry down to U(1)gy. As a result of this symmetry
breaking, some of the gauge bosons associated with SU(2); ® U(1)y acquire mass,
arising from the square of the covariant derivative

Ta

Y
S Wi +ig' 5 BH . (2.45)

D,H = 8,H +ig 5
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Here, g, g’ are the SU(2), and U(1)y coupling constants, respectively, W¢ are the three
gauge fields associated with SU(2)., B,, is the gauge field associated with U(1)y, and
7, are the Pauli matrices. The W= bosons gain a mass given by M3, = 1¢g*v?, while
the Z° boson acquires a mass M2 = 1(g?+¢'*)v?, where v = m/V/A = 246 GeV is the
VEV of the Higgs field. The photon (A*) remains massless. In terms of the original

neutral gauge fields Wi and B,,, A" and the Z° boson are given by

ZF = cos Oy W3 — sin Oy B* |
(2.46)
A" = sin Oy W3* + cos Oy B*

where 0y is the weak or Weinberg’s angle, whose value is sin® 0y, ~ 0.23 [18]. Through
the Higgs mechanism, the four original Higgs fields have become the longitudinal
components of the W* and Z° bosons and the neutral Higgs particle. The latter,
denoted by h, also appears with a mass of M, = v/2m, where m is the mass scale
associated with the Higgs potential.

The Higgs mechanism also provides a solution to the problem of fermion masses. In
the electroweak theory, a fermion mass term of the form myn) = m(Y g + ¥rir),
called Dirac mass term, is forbidden by gauge symmetry because right- and left-
handed components sit in different representations. However, the Higgs field enables

the formation of SU(2), gauge singlets, and a Yukawa coupling term of the form
L=~y b Hir (2.47)

can arise in the Lagrangian. When the Higgs field H acquires its VEV, this term
leads to a fermion mass m; = y/v/ V2. Thus, fermions acquire mass through their
interaction with the Higgs field. This is not possible for neutrinos, because there is
no right-handed neutrino vy included in the theory. We will give a closer look at

neutrinos next, because they will play a vital role throughout the thesis.
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2.4.2 Neutrinos

To introduce a mass term for neutrinos, it is necessary to go beyond the SM. In the
following discussion, we will refer to the neutrinos that are part of the lepton SU(2),
doublets and are singlets of the subgroup SU(3)¢ ® U(1)gm as "active" neutrinos,
denoted as vy. On the other hand, the neutrinos that do not possess any gauge
interactions within the SM and are singlets of the complete SM gauge group SU(3)¢®
SU(2), ® U(1)y are referred to as "sterile" neutrinos, denoted as vg. We will follow

closely Ref. [18].

2.4.2.1 Neutrino masses

Neutrino mass terms can be constructed in two ways within the framework of gauge-
invariant and renormalizable operators

1
_LMU = MD,ijDR,iVL,j + 5 N,ijDR,iyfz,j + h.c. s (248)

where ¢ is the neutrino charge-conjugated field, Mp is a complex matrix of dimension
n x 3 and My is a symmetric n X n matrix. Here we have also introduced the flavour
indices 7, j, and "h.c." denotes the Hermitian conjugated terms.

The first term, arising from electroweak symmetry breaking, is generated by a

Yukawa interaction

Yv,ij ﬂR,iﬁTLL,j - Mp; = v U (2.49)

yz] \/§ I

similarly to the one given in Eq. (2.47). Here we used the standard notation in which
L, = (v, £)1 represents the SU(2), lepton doublet for the lepton £, H is the Higgs
doublet and H = ioyH* = (h°*,—h~)T with oy is the Pauli matrix. The term in
Eq. (2.49) conserves total lepton number but can break lepton flavor symmetries.
The second term in Eq. (2.48), known as the Majorana mass term, involves two
sterile neutrino fields and breaks lepton number by two units. The form of My

depends on the model and we will see later one way to do it. Majorana mass terms
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are prohibited for charged fermions due to electric charge conservation.
The Lagrangian in Eq. (2.48) can be written more compactly as
1 _ 0 Mg ﬁL

—Lw, = 5 (%, Vr) +hee. = 7°M, 7 + hec. (2.50)
Mp My ) \7g

where 7/ = (71, 75)" is a (3 + n)-dimensional vector.
The matrix M, is complex and symmetric and can be diagonalized by a unitary

matrix V¥ of dimension (3 + n), such that
(VYT M, VY = diag(my, ma, ..., M) . (2.51)

The weak eigenstates v, can be expressed in terms of the resulting mass eigenstates

Vpr as
3+n

vpi = P Z VZ; VM,j (2.52)
J

with ¢ = 1,2,3 and Py, is the left-handed projection operator in Eq. (2.40). Unlike
charged fermions represented by four-component spinors, Majorana neutrinos are
described by two-component spinors, as they satisfy the Majorana condition vy, = v§;.

Two notable scenarios arise from Eq. (2.48):

1. If My = 0, only the Dirac mass term is allowed, resulting in the diagonalization

of Mp through two 3 x 3 unitary matrices
(VE)TMDVV = diag(mla mg, e ,m3+n) . (253)

The weak eigenstates vy, can be expressed in terms of the resulting mass eigen-

states vp as
3+n

vei = Pp Z V;l; VDj (2.54)
J

with ¢ = 1,2, 3. Because all leptons will acquire their mass via the same mech-

anism, this scenario can not explain why neutrinos are observed to be much
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lighter than the corresponding charged fermions.

2. If the mass eigenvalues of My are much larger than the electroweak scale v ~ 246
GeV, the diagonalization of M, leads to three light neutrinos v; and n heavy

neutrinos N

1 1
_*CML, = §I7leVl + §NMhN, (255)

with
My~ —VI (MM Mp)V;, My, ~ V;EMN (2.56)

and Vj, and V; are 3 x 3 and n X n unitary matrices respectively. The masses
of the heavy states are proportional to My, while the masses of the light states
are inversely proportional to My. This scenario is known as the see-saw mech-
anism [33-37]. Both heavy and light states are Majorana particles and the

former are mostly right-handed while the latter are mostly left-handed.

The Majorana mass term in Eq. (2.48) can be generated from new physics at a
scale Axp larger than the electroweak scale. The leading operator associated with

this new physics is the 5-dimensional Weinberg operator [38|

v

Os = =9 (Lo, H)YHATLS ) + hee. (2.57)
Axp ' ’

which violates lepton number by two units. After electroweak symmetry breaking,

this operator generates a Majorana mass term for the left-handed neutrino fields

vt
_EMV = 7A—NPI/L’7;VL7]~ + h.c. 5 (258)

02
Axp

resulting in a mass matrix (M, );; = z};1—. Compared to the Dirac mass matrix, this
Majorana mass term is suppressed by v/Axp, providing a natural explanation for the
smallness of neutrino masses compared to those of charged fermions.

Another important effect coming from Eq. (2.58) is that lepton flavour mixing and

C' P violation are expected in the absence of additional symmetries on the Yukawa-like

coefficients zz”J We will discuss these effects next.
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2.4.2.2 Lepton mixing

Let us denote the neutrino weak or interaction eigenstates as (v e, v, Ve, VRS - - -, VRp)
and their mass eigenstates as (v, Ve, V3, Uy, ..., Vptg). Similarly, we label the mass
and interaction eigenstates for charged leptons as ¢ = (e, u, 7) and ¢! = (ef, uf, 71),
respectively.

The interactions of neutrinos with themselves (neutral current, NC) and with their
corresponding charged leptons (charged current, CC) within the SM are dictated by

SU(2);, gauge invariance. The interaction Lagrangians are given by °

g _ I—11/+
—Lcc = ——= E v Y ;W 4+ hee.,
CC V2 g LYty Wy

g (2.59)
_E - J - ”w ZO .
NC 2 cos Oy %: VLV Voesy,
In the mass basis, the CC interaction takes the form
_'CCC = %(BL, ﬂL, 77'L)’7MU(I/1, Vo, V3 ..., Un+3)T W:_ + h.C. s (260)

where U is a 3 x (3 + n) matrix with UUT = I35 if n = 3, but in general UTU #
Ini3)x(n+3) [39-41]. The structure of the mixing matrix U can be obtained by com-
paring —Lcc in the mass and interaction bases, using Eqs. (2.54) and (2.52) for
neutrinos, and expressing the weak-doublet components of the charged lepton fields

as

3
(=P Vi (2.61)
j=1

The resulting form of U is given by [18§]
Uss = PeiiVii Vi (Pus) (2.62)

where Py, are diagonal 3 x 3 matrices absorbing unphysical phases. The matrix U

°The NC interactions determines the decay width of the Z boson into light (m, < Mz/2) left-
handed neutrino states. Thus, from the measurement of the total decay width of the Z one can infer
the number of such states. At the present, the measurement implies IV, = 2.984 + 0.008 [18].
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contains a total of 5n+4 (Dirac) or 6(n+1) (Majorana) real parameters, with 3(n+1)
angles and 2n + 1 (Dirac) or 3(n + 1) (Majorana) physical phases.
For the case of n = 0 (3 Majorana neutrinos), the mixing matrix U is similar to the

CKM matrix for quarks and has six independent parameters. It can be parameterized

as
1 0 0 i3 0 size9cr c2 sz 0\ fe™m 0 0
U= 0 Co3 So3 | ° 0 1 0 1 —S12 C12 01: 0 6”72 0
0 —S823 Co23 —Slge_iécP 0 C13 0 —S93 1 0 0 1
(2.63)

where ¢;; = cos6;;, s;; = sinb,;, 0;; € [0,7/2], and dcp,n; € [0, 27]. If the 3 neutrinos
are Dirac, the Majorana phases 7; and 7, can be absorbed, resulting in a matrix
similar to the CKM matrix with just one phase, often called the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix [42, 43]. When the charged leptons have no
other interactions besides the SM ones, their interaction eigenstates can be identified

with the corresponding mass eigenstates up to phase redefinition.

2.4.2.3 Neutrino oscillations

Neutrino masses and lepton flavor mixing lead to the non-conservation of lepton flavor
during neutrino propagation. This phenomenon is known as neutrino oscillations
and has been extensively studied [42, 44-46]. In this discussion, we focus on vacuum
oscillations, which are the simplest case, although matter effects become important
when neutrinos travel through dense media. For a comprehensive review, we refer the
reader to Ref. [18].

The concept of neutrino oscillations is based on the idea that a weak eigenstate
Vo, typically produced through a CC interaction with a charged lepton ¢, is actually

a linear combination of mass eigenstates v;

va) = Y Usi vi) (2.64)
i=1
where n here is the number of light neutrino species. After traveling a distance L ~ ct,
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the state evolves as

|val(t) Z L)) (2.65)

If this neutrino undergoes a CC interaction, producing a charged lepton (3 via

Vo(t)N' — (3N, the transition probability is given by

Pog = [(vplvaO) = 1D UsUsi(vilv; (1)) (2.66)

i=1 j=1

Assuming that |v;) is a plane wave, with |v;(t)) = e7*# |1;(0)), where m; is the mass
and E; = \/p? +m? ~ p+ m?/(2p) is the energy of the relativistic neutrino mass
eigenstate v; (using p; ~ p; = p ~ E), we can express Eq. (2.66) as [18]

P.jg =043 — 42 Re[Un: U, Uz, Us;) sin® X

1<j

(2.67)
+2 Z (U, Us,U%Us;) sin (2X5)
1<J
where we used the orthogonality of the mass eigenstates, <1/j|yz-> and
(m? —m?)L AmZ  LJ/E
Xy = ——2 =1.267 l 2.68
’ 4F eV? m/MeV (2.68)

is the oscillation phase. Notably, the first term in the right-hand-side of Eq. (2.67) is
C'P conserving, while the last term is C'P violating. If we started from an antineutrino
state, it is possible to show that we would have ended up with a similar expression
for P,s but with the exchange U — U*.

Equation (2.67) exhibits oscillatory behavior in distance, with oscillation lengths

osc A7 B
LSS = a2
ij

(2.69)

Therefore, neutrinos must have non-zero mass splittings (Am # 0) and non-vanishing
mixing elements (U,;Ug; # 0) in order to undergo flavor oscillations. Notably, the

Majorana phases cancel out in the oscillation probability, as expected due to the total
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lepton number conservation in flavor oscillations.

Observations of neutrino oscillations across various experiments have provided
compelling evidence that requires the mixing between the three flavor neutrinos in
three distinct mass eigenstates [18]. There are two possible orderings for the neutrino

mass spectrum:
e Normal ordering (NO), with m; < my < ms;
e Inverted ordering (I0) with ms < my < ma.

The data also indicate a hierarchy in the mass splittings, with Am32, < |Am3,| ~
|Am2,|. Based on the value of the lightest neutrino mass, the neutrino mass spectrum

can be classified as:

e Normal hierarchy (NH): m; < my < mg, with approximate values of my ~

8.6 x 1073 eV (~ \/AmZ,) and m3 ~ 0.05 eV (~ \/Am2, + Am3,).

e Inverted hierarchy (IH): m3 < m; < mg, with approximate values of m; ~

0.0492 eV (~ \/Am3, + Am2,) and my =~ 0.05 eV (~ \/|Am2,]).

e Quasi-degenerate spectrum: mj ~ my =~ ms > \/|Am3,|.

2.4.3 Dark matter

The multitude of evidence for DM, as discussed in section 1.5, supports the existence
of a non-baryonic matter species that is electromagnetically neutral, gravitationally
interacting, stable, and has negligible velocities for structure formation. This type of
matter is known as cold DM (CDM). In the framework of the ACDM model, CDM
contributes to approximately 27% of the critical density of the Universe, or about
85% of the total matter density. However, only a small fraction of DM, ranging from
at least around 0.5% (based on neutrino oscillations) to at most about 1.5% (from
combined cosmological constraints), is accounted by the three SM neutrinos [18],

whereas the fundamental nature of the majority of DM remains unknown.
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2.4.3.1 Popular candidates

Numerous beyond the SM (BSM) theories have been proposed to explain DM [18].
Some of these models are considered more motivated due to their potential solutions
to other particle physics problems or their ability to explain anomalous experimental
or observational signals.

One extensively studied class of DM candidates is Weakly Interacting Massive Par-
ticles (WIMPs), which arise in many BSM theories addressing the hierarchy problem ©
and provide a simple mechanism to explain the observed relic abundance via thermal
freeze-out, which we will describe in section 2.5.3. Perhaps the most notable example
of WIMP is the neutralino, which arises in the context of the minimal supersymmetric
extension of the SM (MSSM) and it is a mixture of the Higgses and electroweak gauge
bosons superpartners [49]. WIMPs were and are still very popular DM candidates
because their mass is predicted to lie close to the electroweak scale and hence they
might be produced in particle accelerators or colliders (see next subsection).

Another well-studied DM candidates are axions. Initially introduced to solve the
strong C'P problem in QCD [50], axions were found to be capable of accounting for
all of DM [51, 52| for masses in the range m, € [107%,1072] eV [53]. In addition to
the QCD axion, string theory predicts a range of axion-like particles (ALPs) with
exponentially suppressed masses, making them lighter but still viable as DM can-
didates [54]. A cosmologically interesting mass scale is around m, ~ 10722 €V, as
it corresponds to a de-Broglie wavelength comparable to the size of the smallest ob-
served gravitationally collapsed structures, which are on the order of a few kpc. These
ultra-light bosons, often referred to as wave or fuzzy DM candidates, typically ex-
hibit soliton-like cores in the density profile of galaxies. This feature offers a potential
solution to the small-scale structure problems encountered in the ACDM model [54]
(see section 3.1.5 for further explanation of these issues).

Sterile neutrinos have also been popular DM candidates [55, 56| due to their

connection with neutrino mass and mixing problems. The observation of a 3.5 keV X-

6The hierarchy problem relies on the question of why the electroweak scale, described by the
Higgs VEV v ~ 246 GeV, is much smaller than the Planck scale Mp; ~ 10 GeV [47, 48|.
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ray line in some galaxy clusters |57, 58| and the galactic center [59] sparked interest in
sterile neutrinos as DM candidates, but the absence of the signal in other clusters [60]
and dwarf galaxies [61, 62| has cast doubts on its origin.

Other extensively studied DM candidates include light vector bosons like "dark
photons" [63] and models with rich dark sectors like mirror DM [64, 65].

The search for DM can be divided into three categories based on the nature
and interactions of the DM candidate with SM particles: collider searches, direct

detection, and indirect detection. These strategies will be briefly described next.

2.4.3.2 Collider searches

Assuming that DM interacts with SM particles through additional interactions apart
from gravity and has a mass around the electroweak scale, it is possible for DM to be
produced in particle accelerators and colliders. Extensive searches for DM have been
conducted by the CMS and ATLAS collaborations at the LHC in pp collisions [66, 67].

The typical signature involves missing energy and momentum at the interaction
vertices, during particle reconstruction. This arises due to the feeble interaction
between SM and DM particles, allowing the latter to evade detection once produced.
Other signals may manifest as peaks in di-jet or di-lepton invariant mass distributions,
or excesses of events in the di-jet angular distribution caused by DM mediators [66].

So far, no significant signal for DM has been observed in the LHC experiments [18].
Instead, limits have been set on DM masses, couplings, and cross-sections. The
latter can be compared, usually in a model-dependent manner, with direct detection

experiments [68].

2.4.3.3 Direct detection

Direct detection experiments aim to observe the recoil energy resulting from elastic
or inelastic scattering of galactic DM particles with atomic nuclei or electrons in the
detector material [69, 70]. The predicted event rate depends on the DM mass m,,
scattering cross section o, and astrophysical parameters such as the local DM density

Po = po, velocity distribution f(7), circular speed vy, and escape velocity vese.
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The local DM density, denoted as py, is an average over a volume of a few hundred
parsecs in the Solar neighbourhood, distant r,, ~ 8.5 kpc from the Galactic centre

and it can be determined using two techniques [71]:
1. Local measures, which rely on the vertical motion of tracer stars near the Sun;

2. Global measures, which extrapolate py from the measured rotation curve, with

assumptions about the Galactic halo shape.

Recent determinations from global methods give py € (0.2 — 0.6) GeV/cm?, while
local techniques yield py € (0.3 — 1.5) GeV/cm?, considering the main uncertainty
due to the contribution of baryons to the local dynamical mass of our Galaxy [18|.

The circular speed of the Milky Way, denoted as v, is inferred from the Sun’s
velocity relative to the Galactic center and local radial force measurements. These
methods give veye € (218 — 246) km/s [18]. The escape velocity has been estimated
to be Ve = 53315 km/s [72].

The local velocity distribution, denoted as f(¥), of DM particles cannot be directly
measured. It is typically derived from simulations. In many experiments, the analysis
is based on the Standard Halo Model (SHM), which assumes an isotropic, isothermal
sphere of DM with a density profile of p(r) oc r=2. The velocity distribution in the
SHM is Maxwellian, with a velocity dispersion o, = v.y/2, and is truncated at the
escape velocity ves. [73]. Recent measurements from the Gaia satellite support the
SHM when additional anisotropies are included [74, 75].

The event rate for DM scattering off nuclei can be described by the differential

scattering rate R as a function of nuclear recoil energy Eg |76, 77|

do
dERr

d E t Vesc
dR(ER,t) :NT&/ o ] £ (7 + s (1))

2.70
dER my ( )

Umin

Here, N7 is the number of target nuclei with mass my, v represents the particle speed
in the experiment’s rest frame, and f(v 4+ U®(t)) is the velocity distribution in the
Earth’s frame. The quantity v, corresponds to the minimum DM velocity required

to produce a recoil energy Fr. For elastic scattering, it can be estimated as vy, =
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Figure 2.3: Upper limits on the SI DM-nucleon scattering cross section as a function
of the DM mass. The shaded gray region represents the currently excluded parameter
space, while the dashed curve represents the expected 90% C.L. exclusion sensitivity
of upcoming and future experiments. Note that 1,b = 1,barn = 102*, cm?. Figure
taken from [78|.

vVmnEgr/2m2, where m, = (mym,)/(my + m,) is the reduced mass. For inelastic
scattering, with nuclear excitation energy E*, it becomes vy, = /myEgr/2m2 +
E*/\/ 2mNER.

The differential cross section in Eq. (2.70) can be expressed as
dO' s (E R U) my

dEr  2m2v? [U(?IFS?I(ER) + USDFgD(ER)] ; (2.71)

where the first term represents the spin-independent (SI) contribution, associated with
the charge/mass coupling of the nucleus, and the second term represents the spin-
dependent (SD) contribution, related to the DM particle’s coupling to the nucleus
spin. The nuclear form factors F?(Er) account for the nucleus substructure and are
calculated in Refs. |79, 80|, while oy denotes the cross sections at zero momentum

transfer, ¢ = v2myERr ~ 0. The cross sections oy are often expressed in terms of
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single-nucleon cross sections and effective couplings of the DM particle to protons and
neutrons. Figure 2.3 illustrates recent limits on the SI DM-nucleon scattering cross
section.

Searches for DM-nucleus scattering become less sensitive for DM particle masses
below the GeV scale, due to energy thresholds typically in the range of a few hundred
eV to a few keV. An alternative approach is to search for DM scattering off bound
electrons, enabling the transfer of the entire kinetic energy to the material [81]. This
allows for deriving constraints on the DM-electron scattering cross section o., by

comparing observed counts to expected background ones [82].

2.4.3.4 Indirect detection

Indirect detection aims to detect the products of DM annihilation or decay, such as
photons, neutrinos, and antimatter particles.

The production rate of these particles depends on the annihilation cross section
(o4v) or decay rate 7,, the density of DM particles p, in the region of interest,
and the number of final-state particles Ny produced. For a final-state particle f, the

production rate per unit volume from DM annihilation F}? or decay F? is given by [18]

R Ay (2.72)
f 4mi a ) .
|
rp— P - N (2.73)
My Tx

where m,, is the DM mass. The thermally-averaged cross section for DM annihilation
times relative velocity is denoted by (o,v), which will be defined later in Eq. (2.97).
Equation (2.72) should be multiplied by a factor of 2 if the DM particle is its own
antiparticle.

The flux of photons and neutrinos from DM annihilation or decay is obtained by

integrating the production rate I'y over the appropriate angular region A2 along the
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line of sight 7

ANy dQ
Ir'y. 2.74
f dtdA /AQ 4 [o.s. df d ( ! )

Typically, this expression is divided into a particle physics factor, dependent on m,
and (o,v) or 7, and an astrophysical factor that only depends upon the observational
target. The astrophysical factor is often referred to as the J-factor and denoted as

Jaa(®), where 9 indicates the direction of the line of sight. It is defined as [84]

Jan() = /A ) /1 dedQ p2(¢,Q). (2.75)

Searches for DM annihilation or decay products focus on targets with large J-factors,
which correspond to regions expected to be DM-dominated with high p, and provide
a high signal-to-noise ratio. Examples include nearby dwarf galaxies and the inner
region of the Milky Way. By accurately modeling the astrophysical background,
constraints on the DM mass versus annihilation cross section or decay rate can be
derived if no excess observation is made.

As regards the DM density profile p,, its shape can be derived from numerical
simulations. N-body simulations containing only CDM particles, similar to those
discussed in section 1.5.4, have found that the DM density distribution inside galaxies
appears to be approximately universal and well-modeled by the Navarro-Frenk-White

(NFW) profile [85]

pNEw (1) = (2.76)

where r, is the scale radius and py is the scale density. Another frequently profile

used in literature is the Einasto profile [86]

PE(T) = ps eXp{ - 2 K;)a - 1] } : (2.77)

Although both the NFW (*cuspy’) and Einasto ('mild’) profiles are preferred by DM-

"The differential flux is obtained as d®;/dE, so the quantity N in Egs. (2.72) and (2.73) should
be replaced by the differential flux dNy/dE at the production site, considering the appropriate
redshift for cosmologically distant sources (see Ref. [83]).
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Figure 2.4: Left: Comparison of four DM density profiles for the Milky Way: cupsy
(NFW, Moore [88]), mild (Einasto), smooth (Isothermal, Burkert), and steeper
(EinastoB). Right: Table of scale radius r, and characteristic density p, values for
the six profiles depicted in the figure, describing the DM density distribution of the
Milky Way. Figure and values taken from Ref. [89].

only simulations, the inclusion of baryons can alter the inner slope of the profile,
resulting in smoother profiles like the Burkert [87] and the modified isothermal pro-
files |84]

P o7 Prso(r) = Lz
(o)l ) ()

These profiles are compared for the Milky Way in Figure 2.4. Importantly, they are

PBurk(7) = (2.78)

normalized to the same density py at the location of the Sun. This means that the
choice of DM halo profile does not impact constraints from direct detection experi-
ments, but it does affect indirect detection limits.

Although the slope of the DM density profile is expected to increase from the outer
regions to the center of a galaxy, the exact power-law index in the innermost regions
remains uncertain. This unknown is related to the so-called core-cusp problem, which

we will present in section 3.1.5.

2.4.4 Dark energy

As found in sections 1.6 and 2.4, current measurements support the idea that dark

energy can be described by a cosmological constant A. However, this is the simplest
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possibility and other options exist [90, 91].

One possibility is to treat A as a dynamical quantity by attributing its energy den-
sity to a scalar field potential V'(¢), known as quintessence [92, 93]. Another option is
to modify GR itself, altering the behavior of gravity to explain the Universe acceler-
ation [94]. Interestingly, many dark energy models in the literature can effectively be
described by a perfect fluid with a time-dependent equation of state wpg(a), as gen-
erally defined by Eq. (2.24) [3]. These models satisfy the continuity equation, whose
solution is given by Eq. (2.28), and can be characterized by the energy-momentum
tensor of a perfect fluid (see Eq. (2.22)).

For the cosmological constant case, Py = —pp o« A, resulting in wy = —1. In
dynamical dark energy scenarios like quintessence, wpg can exceed —1 but remains
significantly below zero. By measuring the dark energy density at different cosmic
times (redshifts), we can constrain wpg and distinguish between various dark energy

scenarios.

2.5 Thermodynamics in an expanding Universe

2.5.1 Basic definitions

In section 2.3, we discussed the energy density and pressure of cosmological species

modeled as perfect fluids without providing a formal definition of these quantities.
For a weakly interacting gas of particles ¢« with mass m; and internal degrees of

freedom g;, the number density n;, energy density p;, and pressure P; can be expressed

in terms of the phase-space distribution function f;(p) [1]

ng = (23;)3 /d3pf(ﬁ),

Gi 3
pi= s [ B 16, (2.79)
Y 3 W

where E; = \/|p]?> + m?. In the case of kinetic equilibrium, the phase-space distribu-
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Limit Particle type 7, Di P,
Bosons % ;T3 % ;T4 &
m, p; <L T
Fermions 8 Cﬂ_i) g;T3 I g—; g;T* &
Bosons gi(”;;T):s R m; n; T < p;
Fermions g; (%TT)?’/ 267% m; n; T < p;

Table 2.1: Solution for particle number density n;, energy density p;, and pressure
P, for species i in the relativistic (m;, u; < T') and non-relativistic (m; > T') limits.
In the non-relativistic regime, bosons and fermions behave similarly, following the
Maxwell-Boltzmann distribution for n;. ( is the Riemann Zeta function and ((3) =~
1.2.

tion f; follows either the Fermi-Dirac or Bose-Einstein distributions

1
exp [(E; — w)/T) £ 1"

fi(p) = (2.80)

with +1 for bosons and —1 for fermions. The chemical potential p; represents the
energy required to change the particle number by one unit. If the species is in chemical
equilibrium, the chemical potential y; is related to those of other participating species
in the interaction. For example, in the case of the reaction i+ j <> k+1(, the chemical
equilibrium condition is given by pu; + p; = pr + p.

The equilibrium distributions in Eq. (2.80) allow us to calculate the number den-
sity, energy density, and pressure of species ¢. Two important limits can be explic-
itly solved: the relativistic limit (m; < T') and the non-relativistic limit (m; >
T) |2, 4, 95]. The results are summarized in Table 2.1. Notably, relativistic particles
significantly contribute to the total number density, while non-relativistic particles
become cosmologically irrelevant as the Universe cools down. This confirms the dom-
inance of radiation in the early Universe, as discussed in section 2.3.

In the presence of multiple species with temperatures 7; in the thermal bath, it

is convenient to express the total energy density and pressure in terms of the photon
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Figure 2.5: Evolution of the relativistic degrees of freedom ¢, (7'), defined in Eq. (2.82),
assuming the SM particle content. At energies above the Higgs mass, we have g, =
> i besons Ji = 28, accounting for photons (2), W and Z bosons (3-3), gluons (8-2),
and the Higgs boson (1). Similarly, gf = > . ions 80 = 90 due to quarks (6 - 12),
charged leptons (3 - 4), and neutrinos (3 - 2). The total is given by g, = g, + Zg; =
106.75. The dotted line represents the number of effective degrees of freedom in
entropy, g.s(T") (see Eq (2.87)). Figure taken from [§].

temperature. Neglecting contributions from non-relativistic species, we have

7'('2

=9(T) T, Po=p/3, (2.81)

Pr=130

where g, is the total number of effectively massless degrees of freedom

a(T)= Y g (%>4+£ oo (%)4 (2.82)

i=Dbosons i=fermions

The temperature evolution of ¢,(7") is shown in Fig. 2.5 and depends on the number of
relativistic species in thermal equilibrium at temperature 7'. The Hubble parameter
during the early radiation-dominated epoch, when the total energy density of the
Universe was essentially p,, can be derived as [1]

T? 1
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Equation (2.81) can be conveniently written in terms of the photon contribution

plus other relativistic species, such as neutrinos [96, 97|

7/ 4 4/3
Pr = |:1 + g (ﬁ) Neff:| Py s (284)

where N.g represents the effective number of relativistic species in the thermal bath.
In the SM, with only 3 active neutrino species, Neg = 3.044 [98-100], in agreement
with the CMB measured value of NGMB = 2.99 4 0.17 [19].

In thermal equilibrium, the entropy per comoving volume s,

Z’i:species (pZ + PZ - :uZnZ)

S
=— = 2.85
S Vv T ) ( )
remains constant and is approximately given by
272
="0q,(TT3, 2.86
s = ZTgu(T) (256)

where ¢,5(T") is defined as

9T = > g (;):g Y (%)3 (2.87)

i=bosons i=fermions

It is worth noting that if T; = T for all relativistic particles i, then g, = g.s,
which is generally verified in the early Universe as shown in Fig. 2.5. Additionally,
the quantity s in Eq. (2.86) is related to the number density n of relativistic particles
(see Table 2.1) and one finds that s = 1.80 g.sn, so that today s = 7.04n,. 8

2.5.2 The Boltzmann equation

During the early stages of the Universe, a significant portion of its constituents were
in thermal equilibrium, allowing for an equilibrium description to be a valid approxi-

mation. However, there were notable departures from thermal equilibrium, including

8The baryon asymmetry of the Universe 7 is defined as the ratio between the difference in the
number density of baryons and anti-baryons and either the entropy density s or n,. The relation
between the two is s = 7.04n.,. See section 3.1.3.
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BBN and photon decoupling. These played a crucial role in the formation of impor-
tant relics such as the light elements and the CMB.

A rough criterion to determine the coupling or decoupling of a particle species
1 from the thermal bath relies on comparing its interaction rate per particle, I';,
with the expansion rate of the Universe, H(t). If I'; 2 H, the particle is frequently
interacting with the plasma and is considered thermally coupled. Conversely, if I'; <
H, the rapid expansion prevents the particle from encountering others, leading to its
decoupling.

While this criterion serves as a useful guideline, a proper treatment of decoupling
requires tracking the evolution of the particle’s phase-space distribution function,

fi(p, x#), governed by the Boltzmann equation

Lif:) = Clfi, (2.88)

where C[f;] is the collision operator and L is the Liouville operator. In the non-
relativistic regime, the Liouville operator for the phase-space density f;(¢,7) of a

particle species of mass m; subject to a force F = dp/dt takes the form [1]

—

A d d7 = dv - d - F -
Isk=—+—-V,+— -V, =—+4+7-V,+—-V,. 2.89
=t Vet g at TV Vet (2:89)
Its covariant relativistic generalization is
Lar = p*0 — D%, p"p"0a | (2.90)

where the gravitational effects enter through the Christoffel symbol, as we might
expect from section 2.2.

In a spatially homogeneous and isotropic Universe, the Boltzmann equation (2.88)
reduces to a familiar form when integrated over the particle momentum, resulting in

[P
R + 3Hn,; = #/ﬁc[ﬁ], (2.91)
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with n; the particle number density defined in Eq. (2.79), and the over-dot means
time-derivative.
The collision term for a simple process i + j <+ k + [ involving species ¢, j, k, and

[, is expressed by [6]

g [ dPp d*p d’p; d*py, d*py
3 | & Clfil =g9i959r9 3 3 3 3
(2m) E; (2m)32E; | (2m)32E; ) (2m)32E, ) (2m)32E,

20)* 63 (5 + §; — P — 7)O(E; + E; — By, — E))|M|?

efil £ fi)(A £ f3) — fifi(L£ f)(T £ )],

(2.92)

where | M|? is the square of the matrix element, averaged over initial and final spins,
and the four-dimensional delta function enforces energy and momentum conservation.
Moreover, the terms containing the =+ sign are called blocking and stimulated emission
factors and the + sign applies to bosons, whereas the — sign to fermions.

The terms in the collision term have distinct interpretations: the 3Hn; term rep-
resents the dilution effect due to cosmic expansion, while the right-hand side captures
interactions that alter the particle number density n;. In the absence of interactions,
the solution to the Boltzmann equation follows the expected behavior, with n; oc a2,
where a is the scale factor. The generalization to the collision term above in the case
of more than two initial and final state particles can be found in Ref. [1].

To account for the expansion of the Universe, it is useful to consider the dimen-
sionless comoving number density Y; = n;/s, where s is the entropy density defined
by Eq. (2.86). This scaling allows us to remove the effect of cosmic expansion. By
introducing the dimensionless rescaled time variable = m; /T, the Boltzmann equa-

tion (2.91) during the radiation-dominated era can be simplified as follows

av __o & / T o, (2.93)

dr ~ H(my)s 27)3 | E

where H(m;) = z?H(T'), and H(T) is given by Eq. (2.83).

With this formalism in place, we can now apply it to well-known examples, starting
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with the thermal decoupling of heavy particles, such as WIMPs, known as "thermal

freeze-out" mechanism.

2.5.3 Thermal freeze-out

Let us consider a heavy, stable particle x and its antiparticle , with mass m,,, both
subjected to thermal equilibrium governed by the annihilation and pair-production

processes

XX < ff, (2.94)

where f and f represent lighter SM particles with zero chemical potentials. We
assume a symmetric abundance between x and Y, denoted as n, and g, represents
the number of degrees of freedom for y ?. The Boltzmann equation (2.91) for the

number density takes the form [1, 101, 102]
i+ 3Hn = —(o.v)[n* —nZ ], (2.95)

whereas for the dimensionless comoving density Y = n/s is [1]

dy r5(0aV) o 9

— =———1Y" =Y. 2.96

R It (2.96)
Here, (o,v) is the annihilation cross-section multiplied by the relative velocity aver-
aged over the thermal distribution of x particles. The expression for (o,v) involves

the integral over the Mandelstam variable s = (p} + ph)?, if the annihilation process

in question is 1 +2 — 3 + 4. Its general form is [101]

(o0} = ! /4 " ds /(s — Am2)Ky(V3/T) 0uls). (2.97)

8m2T K3 (my,r) m3

where K; are the modified Bessel functions of the second kind, and the cross section
0, depends on the particle physics model describing the annihilation. See Ref. [103]

for some examples. For non-relativistic species, an approximate expression for (o,v)

9The number of degrees of freedom is g, = 1 for a real scalar, 2 for a complex scalar or a Weyl
fermion (like a Majorana fermion), or 4 for a Dirac fermion.
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Figure 2.6: Evolution of the co-moving number density Y of the DM particle y with
respect to the rescaled time variable x = m, /T during the epoch of DM thermal
decoupling/freeze-out. Figure adapted from Ref. [104].

can be used instead

~ f fd3p1d3p2 %!171 - 172| e B1/Te—E2/T
o) = [ [ d&pidPpy e~ Fr/Te=Fa/T ’

(2.98)

where we approximated the equilibrium number density n.q as the Maxwell-Boltzmann

distribution (see non-relativistic limit in Table 2.1). The quantity Y., is given by [103|

45 45
Yeo(z) = 4—7T2§—Xx2K2(m) ~ 27#1@%&”6”, (2.99)

where the last step is valid for x > 1.

Equation (2.96) is a Ricatti-type equation that does not have an exact closed-
form analytical solution. A numerical solution, depicted in Fig. 2.6, is obtained
with the initial condition Y ~ Y, at x ~ 1. Codes such as micrOMEGAs [105] and
DarkSUSY [106] provide numerical solutions for the Boltzmann equation in various
DM models, originally focusing on supersymmetric scenarios.

However, we can gain qualitative insights into the numerical solution by rewriting
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Eq. (2.96) in the following suggestive form [1]

r dY r Y \?
a1} 4 2.1
Yeq da HKY) } (2100)

eq

where I'y = neq(o,v), with ne, being the equilibrium number density of the target
DM particles, and we have used H(T) = x~2H (m;).

In this form, we can see that the change in the comoving density Y is controlled
by the parameter I',/H. As long as I'; > H, thermal equilibrium is maintained
between x and the photon bath, resulting in Y (x) =~ Y., (z). However, since I'; o< neq
and decreases as the temperature 7' decreases (see Table 2.1), annihilations become
negligible when I', ~ H, typically occurring at x = z¢, = m,/Tt,., where T, is
the "freeze-out" temperature. Therefore, we expect Y (x 2 xt,) = Yeq(@to.). This
behavior is precisely illustrated in Figure 2.6.

The freeze-out temperature can be naively estimated by the condition I, (., ) ~
H(z¢,.). A more accurate approximation was derived in Refs. [1, 107, 108], resulting

in
1 g 45
Tro ~ Inyp, — 5 Inlnye,, , Yto = Q—;w / S_g*mXMPl(n + 1)og, (2.101)

where the annihilation cross-section is expanded in the low-temperature limit as

T n
(o4v) = 09 (—) = ooz ", (2.102)

My

corresponding to a velocity expansion since (v?) ~ T'/m,. The case n = 0 corresponds
to s-wave annihilation, n = 2 to p-wave annihilation, and so on [101] '°. Solving
Eq. (2.101) for n = 0, my ~ 100 GeV, and o¢ ~ a2, /m? with ay, ~ 1072, we find that

during the radiation-dominated era x¢, ~ 20.

10The s-wave or p-wave annihilations of DM are related to the orbital and total angular momentum
and spin properties of the initial and final states. In particular, Fermi statistics forces two identical
DM fermions (assuming the DM antiparticle is its own particle) with orbital angular momentum
L and total spin S to satisfy (—1)° = (=1)F. The total angular momentum of the s-wave state
(characterized by L = 0 by definition) is J = L + S = 0 and the CP quantum number is given by
CP = (—1)t+! = —1, while the p-wave state has CP = +1 [109)].
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Using Eq. (2.102), the Boltzmann equation (2.96) can be written as [1]

ay A

2 2
% = _$n+2 [Y - Y;q] ) (2103)
where )\ is defined as
z(o,0)s T Qs M (2.104)
= =,/ === My 0y - )
H(my) |, 45 /g, X0

The present-day relic abundance of the species x can be approximated by neglecting
the Y;fl term on the right-hand side and integrating the differential equation from

T = X, to x = 00, giving [1, 108§]

45g, (n 4+ 1) x’f”l
Yo=Y = Q- 2.105
0=Y(c0) =/ 2 Mo ( )

It is important to note from Eq. (2.105) that Y} is inversely proportional to the

annihilation cross-section and particle mass, indicating that a larger og corresponds

to a lower expected relic density. For a non-relativistic particle yx, the relic density

becomes
0, = Pr _ My _ Yosom,y - 45g2* so (n+ 1)zptt (2.106)
Pcrit Pecrit Perit T5xs Perit MPIUO

where sq is the entropy density (2.86) computed today. Remarkably, €2, is indepen-
dent of the value of m, and should be compared to the observed DM density today.

In section 2.4, we found that the CMB, BBN, and BAO data imply €2, ~ 0.27
for the present-day CDM abundance. By using Eq. (2.106), we can solve for the

cross-section and find
09~ 107" GeV 2 ~ 3 x 107% cm®s7 !, (2.107)

where we used sy ~ 2891 /cm?, n = 0, g, ~ 3.38, and g, ~ 3.94 (see Fig. 2.5). This

value of oy corresponds to a typical weak-scale cross-section, which is of the order
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oo ~ az,/m3 with a, ~ 1072 and m, ~ O(100 GeV). Thus, having new physics
near the weak scale appears to provide the correct DM relic density, a phenomenon
referred to as the WIMP miracle [76].

Although the calculation above does not impose a constraint on the DM mass m,,
unitarity arguments based on the cross-section and the present-day DM abundance
yield an upper limit on the cross-section, leading to the following model-independent

bound [110]
Qb 2 1.7 x 1075 /zpo [my /(1 TeV)] = m <126TeV. (2.108)

Furthermore, there exists a lower mass bound for WIMPs known as the Lee-Weinberg

limit, which sets m, 2 2 GeV to prevent overclosure of the Universe [111].

2.5.4 Asymmetric production

In the thermal freeze-out mechanism discussed earlier, we assumed the absence of
a particle-antiparticle asymmetry in the early Universe. However, if this condition
is not satisfied, the present-day relic abundance of DM could be generated through
a mechanism similar to the one responsible for the baryon asymmetry observed in
the Universe. This connection between the DM and baryon densities is known as
Asymmetric DM (ADM) production [112]|, which was originally proposed to address
the solar neutrino problem [113, 114].

In the following, we will present a general framework shared by many ADM models
without focusing on a specific one, and refer the reader to Ref. [115] for a compre-
hensive review. A key observation is that the DM density is approximately five times

higher than the baryonic density
QC ~5 Qb s (2109)

as discussed in section 2.4, suggesting a possible common origin. Defining np,; as the

asymmetry in the DM sector, if the present-day DM population is entirely asymmetric,
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this can explain Eq. (2.109) by tuning the DM mass mp); according to

Qc nB
= =]— 2.110
mpnm (Qb) P my, ( )

where m, ~ 1 GeV is the proton mass and we have taken Qpy = Qp +Q_ ~ Qy = Q,
(assuming npys > 0), where 2, and Q_ are the abundances of DM particles and
antiparticles, respectively. If npy ~ ng, Eq. (2.110) leads to mpy ~ 5 GeV.

The final DM abundance is made asymmetric by suppressing the conventional
symmetric component that arises from thermal freeze-out. This is typically achieved
in the literature through the introduction in the dark sector of strong couplings analo-
gous to QCD or the inclusion of new light states. These elements effectively lead to an
annihilation cross section large enough to suppress the thermal symmetric component
and avoid overclosure of the Universe [115].

Unlike the thermal freeze-out scenario, ADM models involve tracking the evolu-
tion of both the symmetric and asymmetric components of the relic number density.
However, the computation closely resembles that of freeze-out as it relies on the
Boltzmann transport equation, but with the presence of an asymmetry. ! The latter
addition implies that DM carries a chemical potential ppy, [107]. It is important to
note that this type of calculation assumes that DM is in thermal equilibrium with the
photon bath, for which the sum of the chemical potentials of the incoming particles
is equal to that of the outgoing particles [116]. While this assumption may not hold
if there is a weakly coupled mediator between the visible and dark sectors [117], we
simplify the analysis by assuming its validity in the following computation.

The DM relic density in ADM models is described in terms of the relic asymmetry,
denoted as the present anti-DM to DM ratio 7, = ©Q_/Q,. This parameter plays

a crucial role in determining the size of indirect signals from DM annihilation [115].

"In ADM models, a DM particle x must be stable, heavy, not self-adjoint with an asymmetric
abundance between particles and antiparticles, and subject to the annihilation process xx — ff
with a large cross-section.
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The absolute relic densities can be related to r,, as follow [118]

0, — L mpympuso 0 — Too  NIDM™MDMS0
+ = ) - — .
11— Too Perit 11— oo Perit

(2.111)

The total relic density Qpy = 24 + €2_ is primarily determined by the DM mass
mpy and its present asymmetry npy;.

Using Eq. (2.111), we have

1—re Q.\ 1B
= — | — 2.112
oM (1+Too)<9b)77DM e ( )

which reduces to Eq. (2.110) when r,, = 0, corresponding to pure asymmetric DM.

The case with ro, = 1 corresponds to pure symmetric DM and leads to the thermal
freeze-out scenario discussed in the previous section.
The number density of DM particles n, and antiparticles n_ is described by a set

of coupled Boltzmann equations, which can be written as '?

ny +3Hny = —(o,0)[nyn_ —nnl, (2.113)

where n! = neq e#2M/T with ne, is the usual Maxwell-Boltzmann distribution. These
equations can be simplified using the dimensionless quantities z = mpy, /7T and Yy =

n/s from the previous section, resulting in

dYy  ws{ogv)

A
V.Y —y?2 VY _y?2
dx —H(m)[ e eq]__W[ RENRCE (2.114)

" as

Here, A is given by Eq. (2.104), and the last step involves using (o,v) = ggx~
in Eq. (2.102). Notably, Eq. (2.114) resembles Eq. (2.103) derived in the thermal
freeze-out mechanism, with the addition of a term that accounts for the interaction
between particle and antiparticle densities.

Introducing the DM asymmetry as n = Y, — Y_ (the present value is npy; when

12The coupled Boltzmann equations in (2.113) are obtained under the following assumptions: (i)
our particle species were in equilibrium with a thermal bath; (ii) there is no mass degeneracy between
the two sectors; (iii) the dominant process that changes niy was annihilation; (iv) the annihilation
process occurred far from a resonant threshold.
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Figure 2.7: Evolution of Y, (x) (accounting for DM asymmetry npy > 0) and Y,
(without asymmetry) after freeze-out. ¥ = Y, — Y_ represents the sum of relative
co-moving number densities. Figure taken from Ref. [119].

x — 00), the above coupled Boltzmann equations can be solved numerically and an
example of solution is shown in Figure 2.7. The asymmetry 1 # 0 enhances the
depletion of the less abundant species (n_) compared to the symmetric case. At late
times, an approximate solution is obtained bu setting Y., ~ 0. The expression for

Y. (00) can be found to be

+
Y (00) & Ipat . (2.115)

1= 1T oar/ Ya (o)) exp [Fnomd gesgr 22 (n + 1)

where the freeze-out temperature x¢,, is derived in Ref. [118].

The present ratio ro, in ADM models can be estimated as

_Y(o0) | YVilmme) (__ MM Gas (2t.0.) ) _ (2.116)

9u(Tt.0.) ﬁ?jl(n +1)

The first factor computed at r¢ . is approximately equal to 1 and is derived numerically

but an approximate analytical solution exists [117]. The magnitude of the ADM cross
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section oy can be understood by comparing it to the symmetric cross section g sym

corresponding to r, = 1, obtaining

NDM Grs(Tf.0.) 0 ) (2.117)

T'oo ™~ €XP ( —
0:(070) Yo (0 + 1) 00.0ym

where Y, = Y, defined in Eq. (2.105), and we assumed for simplicity that both
masses of the symmetric and asymmetric components are the same. By expressing
Te in terms of op and 0¢ gym, We find that oy needs to be larger than g sym to
efficiently annihilate the symmetric DM component (i.e. ro S 1). A review on ADM

scenarios can be found in Ref. [120].

2.5.5 Freeze-in

The two discussed mechanisms for producing the current DM abundance share a
common feature: the production occurred through decoupling from a thermal bath
at temperature T', with or without the presence of an initial DM asymmetry. However,
it is possible for DM particles x with mass m, to have such weak interactions that they
never reached thermal equilibrium in the early Universe. This alternative mechanism,
known as freeze-in [121], involves the production of DM through feeble interactions.
The resulting particles are called Feebly-Interacting Massive Particles (FIMPs).

In the freeze-in scenario, due to the weak coupling between the primordial plasma
and DM particles, the initial comoving abundance is approximately ¥ ~ 0. The

Boltzmann equation, Eq. (2.96), can be simplified to

dY — xs(o.v)
— ~——Y 2.118
dx H(m,) ( )

which causes Y (z) to slowly approach Y, from below. Unlike thermal freeze-out,
the integration of Eq. (2.118) to estimate the relic abundance is dominated by the
regime with small  (high temperatures) [103]. Figure 2.9 illustrates an example of
the time evolution of the comoving density resulting from integrating Eq. (2.118).

The abundance of FIMP y "freezes-in" at a certain point when the interaction rate
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Figure 2.8: Annihilation process suppressed at high temperature, enabling freeze-in
to occur.

becomes smaller than the expansion rate. The yield of freeze-in increases with the
coupling strength between x and the thermal bath.

Considering the s-channel process ff — yx mediated by a light boson, as shown
in Fig. 2.8, with a coupling constant A between the mediator and particles f or Y,
the annihilation cross section is (o,v) ~ Az?/ mi. The present-day relic abundance

Y} is then approximately given by [103]
my Yo ~ 107\ Mp; ~ 4.3 x 107 GeV (2.119)

to match the observed DM density. Inverting this formula yields A ~ 1079, signif-
icantly smaller than the coupling constant required for thermal freeze-out, which is
on the order of a,, ~ 1072 (see Eq. (2.107)).

In order to compare thermal freeze-out and freeze-in processes, let us consider a
common annihilation process with (o,v) ~ A*/m?2 as T — 0, typically mediated by a

massive gauge boson. Denoting (o,v)o as the thermal freeze-out cross section, it can

be shown that [103|
2
(o4v) N (0.1 e\/) ' (2.120)

(o40)0 My,

Thus, for reasonably heavy DM particles, the freeze-in cross section is significantly
lower than that for freeze-out by several orders of magnitude. An interesting applica-
tion of the freeze-in mechanism is the production of ultra-heavy DM candidates (with

masses up to ~ 101 GeV) that interact only via gravity with SM particles in the ther-
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Figure 2.9: Evolution of DM relic abundance for freeze-out (solid curves) and freeze-
in via Yukawa interaction (dashed curves) as a function of the dimensionless time z =
m,/T. The black solid line represents the relic density in thermal equilibrium. The
black arrows indicate the impact of increasing coupling strength for both processes.
Freeze-in abundance dominates around x ~ 2 — 5, in contrast with freeze-out which
occur at x ~ 20. Figure taken from [121].

mal primordial plasma, as these interactions are present regardless of model-building

choices [122, 123].

2.6 Brief thermal history

The thermodynamics and particle physics in an expanding Universe, as described in

sections 2.4 and 2.5, can be summarized by two guiding principles:

1. Particle interactions freeze out when their rate becomes smaller than the ex-

pansion rate;

2. Spontaneous symmetry breaking leads to phase transitions, such as the elec-

troweak SSB discussed in section 2.4.1.2.

By considering these principles, we can reconstruct the thermal history of the Uni-
verse. Figure 2.10 provides a cartoon representation of this history, and Table 2.2

summarizes the main events. Notably, the events from approximately 1071° seconds
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Figure 2.10: History of the Universe. Credits: NASA, Planck, Caltech (https:
//www.nasa.gov/mission_pages/planck/multimedia/pial6876b.html)

until the present are based on well-established laws of physics, including nuclear and
atomic physics, in addition to gravity. We will now provide a brief overview of these
events first.

In the early Universe, a plasma of relativistic particles, including quarks, leptons,
gauge bosons, and the Higgs boson, prevailed. At temperatures above approximately
100 GeV, the electroweak symmetry was restored, resulting in massless weak gauge
bosons associated with the SU(2),®U(1)y symmetry of the SM. The interactions were
strong enough to maintain thermal equilibrium between quarks and leptons. As the
temperature dropped below about 100 GeV, the electroweak symmetry was broken,
and the W* and Z bosons acquired mass through the Higgs mechanism. This led to a
decrease in the cross-section of weak interactions and, as a result, neutrinos decoupled
from the rest of the matter at approximately 1 MeV. Shortly after, at around 1 second,
the temperature fell below the rest mass of electrons, causing efficient annihilation of
electrons and positrons. Only a small matter-antimatter asymmetry, about one part
in a billion, survived. The resulting photon-baryon fluid reached thermal equilibrium.
Around ~ 0.1 MeV, strong interactions became significant, and protons and neutrons
combined to form light elements (H, He, Li) during BBN at approximately ~ 200

seconds. At about 1 eV, or 10 seconds, the matter and radiation densities became
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equal. Charged matter particles and photons were strongly coupled in the plasma, and
density fluctuations propagated as cosmic sound waves. Around 0.1 eV, or 380,000
years after the Big Bang, protons and electrons combined to form neutral hydrogen
atoms. Photons decoupled, giving rise to the CMB radiation that we observe today.

CMB temperature anisotropies reveal primordial matter density fluctuations, which
grew through gravitational instability to form the observed LSS in the late Universe.
Clustering became more efficient as matter began to dominate the energy density of
the Universe, with small scales becoming non-linear first. This led to hierarchical
structure formation, where small-scale structures (e.g., stars and galaxies) formed
initially and subsequently merged into larger structures (clusters and superclusters
of galaxies). Around redshift z ~ 25, high-energy photons from the first stars ini-
tiated the ionization of hydrogen in the intergalactic medium, a process known as
"reionization", which completed at around z ~ 6. Concurrently, the most massive
stars depleted their nuclear fuel and underwent supernova explosions. At a redshift
of approximately z ~ 1, a dark energy component with negative pressure began to
dominate the evolution of the Universe.

As concerns events occurred within the first ~ 107! seconds of the Universe
history, the energy exceeds ~ 1 TeV, and direct experimental guidance is lacking. Our
understanding of this period is based on extrapolating our present knowledge of the
Universe and particle physics back to the Planck epoch, where quantum corrections
to GR become significant at energies of ~ 10'® GeV. The combination of electroweak
and strong interactions likely occurred during the grand unmification (GUT) phase
transition, expected to have taken place at energies ranging from 10 to 10¢ GeV,
based on the energy running of the SM couplings.

The fluctuations observed in the CMB temperature require the presence of primor-
dial seed perturbations. The prevailing explanation is inflation, which postulates that
these perturbations were generated during an early period around 1073* seconds after
the Big Bang. Inflation stretched small quantum fluctuations in the energy density
to macroscopic scales, larger than the horizon at that time. Once a perturbation ex-

ited the horizon, it remained frozen with a constant amplitude until it re-entered the
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Event Time Energy Redshift

Planck epoch? <107 s ~ 10'® GeV

Grand unification? ~ 10730 5 ~ 101 GeV
Inflation? > 1073 s < 105 GeV
Baryogenesis? <1079 > 1 TeV
Electroweak unification ~ 107" s ~ 1 TeV
Quark-hadron transition ~107*s ~ 100 MeV

Nucleon freeze-out ~ 0.0l s ~ 10 MeV

Neutrino decoupling ~1s ~ 1 MeV

BBN ~ 3 min ~ 0.1 MeV
Matter-radiation equality ~ 10* yrs 1eV ~ 10*
Recombination ~ 10° yrs 0.1 eV ~ 1100
Dark ages 10° — 10® yrs > 25
Reionization ~ 10% yrs 25 —6
Galaxy formation ~ 6 x 108 yrs ~ 10
Dark energy ~ 10% yrs ~ 2
Solar system ~ 8 x 10 yrs ~ 0.5
Today ~14x101%yrs ~1meV 0

Table 2.2: Main events in the history of the Universe. Reproduced from Ref. [124].

horizon during the subsequent expansion of the Universe. The resulting fluctuations
contributed to the acoustic peak structure observed in the CMB and the formation of
galaxies and clusters of galaxies. Observations of the late-time CMB and LSS allow
us to infer the primordial input spectrum by studying the evolution of perturbations
after they re-entered the horizon. This provides insights into the physical conditions
when the Universe was ~ 10734 seconds old.

Additionally, the presence of a baryon asymmetry in the Universe today suggests
the occurrence of an event known as baryogenesis, which generated this asymmetry
in the early Universe. Both inflation and baryogenesis will be the subjects of the next

chapter.
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Chapter

Problems in the Early and

Late-time Universe

The ACDM model, as discussed in the previous chapter, has proven to be remarkably
successful in explaining the history of the Universe from the time of BBN to the
present. It is a reliable and extensively tested description of the Universe, with no
definitive observational or experimental data contradicting its predictions.

However, similar to the SM of particle physics, the standard cosmological model
has its limitations. These limitations do not involve internal inconsistencies within
the theory but rather address questions that the model does not provide answers to,
asking for extensions.

In the following section, we will provide a brief overview of the main limitations of
the ACDM model and introduce two well-known solutions: inflation and baryogenesis.
The remaining part of this thesis will attempt to address other limitations and aim
to develop a comprehensive framework that can accommodate various shortcomings,

including those of the SM such as neutrino masses, DM, and more.
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3.1 Shortcomings of the ACDM model

3.1.1 Large-scale smoothness

CMB observations reveal that the Universe was highly uniform across the entire sky,
with temperature fluctuations of the order of one part in 10° [1-3]. One might as-
sume that if the entire observable Universe had been in causal contact at the time of
recombination (.. ~ 10° years or 2. ~ 1100), microphysical processes like Compton
scattering between photons and baryons would have resulted in a common tempera-
ture among all species, smoothing out any primordial temperature fluctuations.
However, within the standard cosmological model, this scenario is not feasible due
to the existence of the particle horizon. As defined in section 2.2, the particle horizon
represents the maximum distance a photon could have traveled since time t; until a

given time ¢. It can be expressed as

t dt/ a a(t) da,
dy(t) =a t)y=a | —F~=— ’ 31
u(t) Xph( ) /t a(t') H, /a(ti) VQ, + Qna + Qpa? (3.1)

i

where xpn is the comoving particle horizon defined in Eq. (2.11). Taking ¢; = a(t;) =
0, corresponding to the time of the Big Bang, the particle horizon dy(t) can be
interpreted as the maximum size of a causally connected region at time ¢, within
which one could expect homogeneity due to thermal equilibrium.

At the time of recombination, the radius of each causally connected region, rep-

resented by the particle horizon, was approximately

5% 107°

~0.15h ' M 3.2

dH (trec) ~

where we plugged in the values of €2,., £, and 2, given in section 2.4.

In contrast, the radius of the last scattering surface, which defines the observable
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=0 - :
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Figure 3.1: Conformal diagram illustrating the horizon problem in Big Bang cos-
mology. The orange circles represent causally disconnected regions of the CMB last-
scattering surface (at recombination), while the green dot represents the observer.
Figure from Ref. [4].

region of the CMB, was much larger

o ar ! da’ 3x10°7
Tls(trec) = a/ N o i\/ ¢ >~ x ~9 h_l 1\/IIZ)C7
tee 0(T)  Hy altrec) V& + Qna + Qpat Hy
(3.3)

where t( is the present time such that a(ty) = 1, and we used the fact that CMB

photons have been free-streaming from the surface of last scattering till today. This
implies that CMB photons from regions with angular separations larger than Af ~
1.3° have not been in causal contact since their release, as illustrated in Figure 3.1.
This discrepancy between the sizes of causally connected regions and of the observable

CMB region is known as the horizon problem.

3.1.2 Spatial flatness

The spatial flatness of the Universe is a puzzle in the ACDM model. As presented
in section 2.4, CMB data indicates a very small curvature parameter €, < 0.001

~

today [3|, which is remarkable considering its time dependence. In fact, the Friedmann
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equation in (2.34) can be re-written as

L t radiation domination,

Qtot(a/) _ 1 — 5 X (34)
(at) 2/3 matter domination ,

where Quot(a) = >, pi(a)/peis(a) is the sum of all the species abundances present
in the Universe, with peii(a) = 3H%(a)/(87G) [4]. In the last step of the previous
equation, we used Eq. (2.31).

In either cases, the difference between Q;.(a) and unity, as described by Eq. (3.4),
increases with time, making a flat geometry unstable. Thus, a Universe so close to
flatness today suggests an even closer proximity to flatness in the early Universe.

For instance, assuming the Einstein equations are valid since the Planck era (¢p; ~
107%3 s after the Big Bang), when the temperature of the Universe was Tp; ~ 10
GeV, it is possible to infer [, — 1] at ¢p; knowing its value at present time (¢y ~ 1017

s, To ~ 10713 GeV) as [4, 5]

2 2
|Qtot — 1|T2sz ~ (%) ~ <E) ~ 0(10764>. (35)

1ot — 1|7or, ag Tp

Similarly, at the time of BBN (¢tggn ~ 1 s, Tgpn ~ 1 MeV), we find

|Qt0t - 1|T’1TBBN ~ 0(10*16) ) (36)

|Qt0t - 1|T2T0

This unnatural fine-tuning of |Q(a) — 1| close to zero at early times is known as the

flatness problem in the ACDM model.

3.1.3 Baryon asymmetry

In section 1.2, we introduced the baryon-to-photon ratio n as a measure of how many
baryons over photons are present today. More precisely, the baryons here should be
interpreted as the difference between baryons and antibaryons, because if they were

present in the same amount in the early Universe we would expect they would have
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annihilated with each other and no baryonic matter should be visible. !
The asymmetry n between baryons and antibaryons is called the baryon asymme-

try of the Universe (BAU) and its value today can be summarized as [6]

ng—np _J[6.9-63]x107°  BBN,
[6.00 — 6.15] x 10-1° CMB,
or

np—np _ 7N
S 7.04°

(3.8)

where we used the entropy density as a reference, defined in section 2.5.1.
However, the standard cosmological model lacks a mechanism to generate the
BAU. The process responsible for producing the asymmetry, known as baryogenesis,

will be discussed in section 3.3.

3.1.4 Nature of dark matter and dark energy

As discussed extensively in the previous chapters, the origins and properties of two key
components of the Universe’s energy budget, DM and dark energy, remain a mystery.
While the standard cosmological model provides predictions for their abundance and
general characteristics, no specific model has been identified for DM and dark energy

within the framework of the ACDM model.

3.1.5 Small-scale structure

In addition to the evidence for DM from Large-Scale Structure (LSS) discussed in
section 1.5.4, N-body simulations have been conducted to study the behavior of colli-
sionless and dissipationless CDM particles at smaller scales, corresponding to the size
of galaxies. However, these simulations have revealed discrepancies when compared

to observational data. Some notable inconsistencies include [7, 8]:

e The simulated DM halos prefer cuspy profiles, such as the NFW profile described

'Today we observe only matter, except for rare antiparticles produced by cosmic rays.
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by Eq. (2.76). In contrast, observational data, particularly from dwarf galaxies,
suggest that cored DM profiles provide a better fit to galaxy rotation curves [9].

This discrepancy is known as the core-cusp problem.

e Simulated halos predict a large number of substructures, resulting from earlier
collapses on smaller scales. However, the observed number of satellite galaxies
in the Milky Way is much smaller than expected, leading to the missing satellite
problem [10, 11].

e Numerical simulations of CDM structure formation indicate an excessive amount
of mass in the central regions (a few kpc) of halos and subhalos. This conflict is
observed in satellites of our Galaxy and Andromeda galaxy [12] and is referred

to as the too-big-to-fail problem [13].

Including baryonic physics in simulations offers a potential solution to some of
the aforementioned challenges [14]. Analytical models combining supernova feedback
and low star formation efficiency have shown promise in explaining why many DM
subhalos around simulated Milky Way-like galaxies lack the visible component [7].
The Sloan Digital Sky Survey has identified some of these "invisible" satellite galaxies,
known as ultra-faint dwarfs, with luminosities between 10% and 10° times that of the
Sun [15]. Extrapolating these findings to the entire sky in the vicinity of the Milky
Way suggests the existence of several hundred faint dwarf satellites, consistent with
numerical simulations [16]. Thus, the missing satellite problem could potentially be
resolved by the inclusion of baryonic physics [17].

Additionally, the effects of star formation and supernova feedback have been ob-
served to flatten the central density of DM, transforming the cuspy profile predicted
by CDM-only simulations into one with a nearly constant density core [18|. This align-
ment with observations is particularly evident in dwarf galaxies with stellar masses
exceeding approximately 107 M, as determined from 21-cm measurements of nearby
galaxies [19]. However, for galaxies with stellar masses below this threshold, analyti-
cal models indicate that the energy from supernovae alone is insufficient not only to

create DM cores but also to resolve the too-big-to-fail problem |20, 21].
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Alternatively, the discrepancies observed at small scales could indicate the pres-
ence of more intricate physics within the dark sector itself [22]. One possible ex-
planation involves self-interacting DM (SIDM), where elastic scattering can modify
halo mass profiles, leading to the formation of isothermal cores with nearly constant
density [23]. In this scenario, particles in the outer regions exchange momentum
with those in the central region, causing the central particles to gain energy and
move outward [6, 24]. N-body simulations incorporating SIDM have supported this
mechanism [25, 26]. The challenge of the missing satellite problem potentially finds
a solution within the SIDM framework because SIDM tends to erase substructures
by amplifying the impact of tidal disruption. This effect arises due to the fact that
the SIDM density profiles are less concentrated than those in the standard ACDM
scenario 23, 27].

The significant self-interaction of DM particles not only has the potential to resolve
the core-cusp problem but also the too-big-to-fail and missing satellite problems, with

cross sections o on the order of |27]

O cm? barn
~(01—-1) — ~(0.2—-2 .
My ( ) g ( ) GeV

(3.9)

These cross sections are approximately 10 — 100 times smaller than those for nucleon-
nucleon scattering and are consistent with constraints from the Bullet Cluster of
os/my < 0.7 cm?/g [28].

In chapter 6, we will explore an alternative approach to addressing the core-cusp

problem by exploiting DM oscillations and annihilations.

3.2 Inflation

The concept of inflation, proposed by Alan Guth in 1980 [29], offers a potential
solution to the horizon and flatness problems in the early Universe. Here, we provide
a brief overview of inflation based primarily on Ref. [6], while recommending Refs. [4,

5, 30-38| for a more comprehensive discussion.
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Inflation involves a rapid expansion of the Universe before the era of radiation
domination. This expansion allows for the separation of two points that were previ-
ously causally connected but are now at a much larger distance. This distance must
exceed the size of the particle horizon at the end of inflation. Consequently, seemingly
disconnected points in the present Universe were actually in thermal contact in the
past, addressing the horizon problem. Similarly, the accelerated expansion during in-
flation stretches the fabric of space, resulting in an extremely small curvature for the
Universe if the inflationary period is sufficiently long, thereby resolving the flatness
problem.

More quantitatively and in its simplest incarnation, inflation is driven by a homo-
geneous scalar field ¢ called the inflaton, characterized by a flat potential V' (¢). The

flatness is measured by the potential slow-roll parameters € and 7 2

m2 V! 2 i
€= % (V) ) = m%z(v) ) (3.10)

where mp; = 2.44 x 10'® GeV is the reduced Planck mass, and the prime indicates
the derivative with respect to the field ¢.

The dynamics of the inflaton field, minimally-coupled to gravity, is governed by
the action

S = /d% V=g L= /d% \/—_g{mT%lR — %g‘” 00,6 — V() (3.11)

:SEH+S¢,

where L is the total Lagrangian, ¢ is the determinant of the metric ¢g*¥, Sgy is the
so-called Einstein-Hilbert action and Sy is the action of ¢. The energy-momentum
tensor for ¢ can be derived by varying its action with respect to the metric.

By assuming a homogeneous field ¢(t,Z) = ¢(t) and a FLRW metric (2.2), the

2The slow-roll parameters are more commonly defined via the Hubble parameter H as: e =
—H/H? ~¢€, e = €1/(Hey) ~ 4e — 21, €3 = €3/(Hez), and so on. Here the over-dot means time-
derivative. At leading order, the use of ¢ and 1 in Eq. (3.10) instead of the generalized slow-roll
parameters is essentially equivalent.
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Figure 3.2: Evolution of the inflaton ¢ depicted as a ball rolling down a hill in the
potential-energy plot V(¢) versus ¢. The acceleration phase, driven by the domi-
nance of V(¢) over the kinetic term (;5/ 2, ends at ¢onqg when the two terms reach a
comparable magnitude. Quantum perturbations d¢ at ¢cyvp generate the observed
CMB fluctuations. The energy stored in ¢ is later converted into radiation during
reheating. Figure from Ref. [4].

scalar stress-energy tensor takes the form of a perfect fluid (2.23) described by

po= 38 +V(9),
1.
P, = §¢2 —V(g), (3.12)

_ Py 30— V(9)
po 182+ V(e)

We

When the potential V' dominates over the kinetic energy term (b/ 2, an accelerated
expansion with wg ~ —1 similar to dark energy can be achieved. The Friedmann

equation (2.29) can then be solved, resulting in

a(t) ~ exp (/Hdt) =eV, (3.13)

where H ~ \/V/(3m3,) = H; ~ constant and N is the so-called number of e-foldings.
Here, we have assumed the inflaton ¢ dominates over the other components before the
radiation era and the curvature term o< £ is ignored because it will become negligible

once inflation starts.
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The dynamics of ¢ is governed by its equation of motion, obtained by varying the

action in Eq. (3.11) with respect to ¢
¢+3Hp+V'(¢)=0. (3.14)

Figure 3.2 illustrates the evolution of ¢ for a generic potential V' (¢). During the
slow-roll phase, characterized by €, < 1, the potential is sufficiently flat, and the

acceleration term gzﬁ can be neglected in the equation of motion. This leads to
3Ho~ —V'(¢), (3.15)

which is the slow-roll equation of motion and it allows inflation to occur, with the
kinetic term being subdominant compared to the potential.

As ¢ approaches the minimum of the potential, either € or  becomes larger than
unity, and neglecting qﬁ is no longer valid. Instead, the friction term oc H ® becomes

negligible, and ¢ undergoes oscillations around the minimum of V' since

o~ —-V'(p). (3.16)

These oscillations lead to particle production and reheating of the Universe.
The reheating temperature 7, can be estimated using the relation between time

and temperature [6]
1 L mp  mp

Ty H  Jps T3

where Iy is the decay rate of the inflaton. This estimation holds as long as T}y, remains

t (3.17)

below the energy scale of inflation, characterized by Vil/ 4, where V; represents the

magnitude of the potential during the slow-roll phase 39, 40].

3.2.1 Solution to horizon and flatness problems

With the previous picture in mind, it is easy to understand now why inflation solves

both the horizon and flatness problems.
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Regarding the flatness problem, during inflation the Hubble rate H; is constant,
and Eq. (3.4) simplifies to

|Quot(a) — 1] = % ~a?. (3.18)

To reproduce the observed value of Qi (ag) close to unity today, the condition in
Eq. (3.5) requires that |Q(a) — 1| at the beginning of the radiation era (identified

as the end of inflation at scale factor aenq) should be on the order of
|Qtot(aend> - 1| ~ 10_60- (319)

By relating it to |Qt(a;) — 1| at the beginning of inflation a; using Eq. (3.18), we

find )
|Qtot(aend> - 1| a; —2N
— = 3.20

Qe (@) — 1 ton < (3:20)

where N is the number of e-foldings defined in Eq. (3.13). Therefore, requiring N 2 60
is sufficient to naturally solve the flatness problem, even if |{2(a;) — 1| is of order
unity.

The horizon problem is resolved within the inflationary scenario by considering

the scale factor evolution given by Eq. (3.13), which can be re-written as

a(t) = a(0) 1 or a(t) = _HLIT' (3.21)

Unlike the standard Big Bang model where a(0) = 0 and ¢ = 0 represents the singu-
larity, inflation pushes the singularity to the infinite past (t,7 — —oco). This implies
that all points in the Universe were causally connected, as depicted in the top panel
of Fig. 3.3. The choice of t = —o0 as the time of the Big Bang is not necessary, and
it is based on the assumption that Eq. (3.21) holds true for any time ¢, although we
know it breaks down at the end of inflation.

The bottom panel of Fig. 3.3 provides an alternative understanding of how infla-

tion solves the horizon problem. It compares the evolution of comoving scales with
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Figure 3.3: Top: Conformal-time diagram illustrating the inflationary scenario, where
previously causally disconnected regions become in thermal contact in the past. In-
flation extends the conformal time to negative values, leading to an "apparent" Big
Bang at 7 = 0 corresponding to reheating, which is not a singularity. Figure taken
from Ref. [4]. Bottom: Solution to the horizon problem shown through the evolution
of comoving scales (green dashed curves) and the particle horizon (red solid curve)
with the scale factor. From Ref. [6].
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that of the particle horizon. In the standard Big Bang scenario, the current horizon
scale (labeled by "H, ' = 3000 Mpc") shrinks as we go backward in time and always
remains outside the particle horizon (red solid curve). However, if inflation lasted
sufficiently long, the current horizon scale was inside the horizon in the distant past,
allowing for causal processes to occur and make the Universe homogeneous.

Using the trigonometry of the aforementioned figure, we can estimate the mini-
mum number of e-foldings AN required to solve the horizon problem. By focusing on
the blue right triangle (labeled "triangle" in the figure) and assuming instantaneous

reheating, we can approximate AN as [6]

HinfTO
AN =1n ——— 3.22
n HOTrh Y ( )

where H;y = Hj, Ty is the present-day temperature, and Ty, is the temperature at
the time of reheating. Here, we have used the approximate relation between time ¢
(or scale factor a) and temperature, T~ a~!'. A more precise derivation shows that
the number of e-foldings NV, until the end of inflation, when a comoving wave number

scale k, crosses outside the horizon, is given by [41, 42]

k. 1 2 1, T4
+—1HL+—1n—rh, (3.23)

N, =~ 67 —1In
apHy 4 mﬁlalpend 12 pend

where penq is the value of V(¢) when inflation ends, and V; is the value of V" at horizon

crossing. The latter is defined by
—~=H — H~ ke 7 = ke™, (3.24)

where we have used Eq. (3.13) in the last step.

3.2.2 Connection with cosmological observables

Inflation not only solves the horizon and flatness problems but also provides a mech-
anism for generating the initial density perturbations required for the formation of

cosmic structures [43-46]. These perturbations originate from quantum fluctuations
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of the inflaton field ¢ during inflation, as illustrated in Fig. 3.2. When two regions
of the Universe have slightly different values of ¢, whose difference is d¢, inflation
ends at different times in each region, with a time difference of §t ~ d¢/ ¢. This leads
to local perturbations in the 3D curvature of a spatial slice at a fixed time. The

magnitude of these perturbations, denoted by Ry, can be estimated as [6]

J H?
Riy ~ = ~ Hbt ~ —— , (3.25)
a 2mo
where we have used that a(t) ~ ef!* during inflation. ® In the last step, we used the

fact that it is possible to show that the quantum fluctuation of a Fourier mode k of

the inflaton during inflation is [6, 48]

Sy, = /d%eik"’” dp(x) ~ 1 (3.26)

o
for any k, implying that the fluctuations are nearly scale invariant. This scale invari-
ance implies that Ry in Eq. (3.25) is also scale invariant, as H and ¢ change slowly

during inflation. Using the slow-roll equation of motion (3.15), we can connect Ry, to

the inflaton potential V' (¢) as [6]

H>  HP VAR(e) | _V(9)

Ry~ e = ,
“Torg  onHe  2m/3VI(9) | 24mPmbe

(3.27)

where € is the slow-roll parameter defined in Eq. (3.10). This expression is evaluated
at the moment when the scale k exits the horizon, namely at horizon crossing (3.24).

The correlation function of the 3D curvature is represented by the scalar power
spectrum P;, given by

£)2N V(o)

27 24m2mp, e

P, = / PPz ™ (R(O)R(z)) = |Ra|* ~ <

k‘ ns—1
= A —

3For power-law inflation instead of exponential one, Eq. (3.25) would be modified (see Ref. [47])
since the metric fluctuations play a crucial role.

(3.28)
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where n, represents the scalar spectral index and A, is the scalar amplitude. The
value of n, characterizes the deviation from the scale-invariant Harrison-Zeldovich
spectrum (ns = 1), and it affects the amplitude of temperature fluctuations in the
CMB angular power spectrum C77 defined in Eq. (1.14) [33, 49-51|. The Planck
2018 data provides the most recent measurements of n, and A, at 68% C.L., with

values of [3]

ns = 0.9649 £ 0.0042, A, = 3042001 5 1710 (3.29)

evaluated at the reference scale k, = 0.05 Mpc™.

The prediction of the scalar spectral index within the framework of slow-roll in-

flation can be obtained from the scalar power spectrum (3.28). Specifically, we have

(3.30)

ng —

_dlnP, _dlnP (V’ w>m

" dlnk ~— dN SV TRy ) aw

where we have used Eq. (3.24) and dN = H dt represents the change in the number
of e-foldings. Using the slow-roll equation of motion (3.15) and d¢/dN = ¢/H, we

arrive at the expression [6]
ng — 1= —6e+2n+ O(,en,n?) . (3.31)

In addition to scalar perturbations, gravity waves, also known as tensor perturba-
tions, acquire quantum fluctuations during inflation with an amplitude comparable

to that of the inflaton field, given by [6, 33|

H

S~ 5 (3.32)

The associated power spectrum, denoted as P;, can be expressed as

2 /H\? E\™!
P=-—"(=) =42 3.33
o (a) =) @39

where mp; is the reduced Planck mass. It is common to define the tensor-to-scalar
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Figure 3.4: 68% and 95% C.L. constraints on n, and 7 at & = 0.002 Mpc™* from
Planck 2018 data alone and in combination with additional datasets. Theoretical pre-
dictions of popular inflationary models are included for comparison. From Ref. [52].

ratio, r, as

A
r= A—z = 16¢, (3.34)

which roughly quantifies the relative contributions of tensor and scalar perturbations
to the angular power spectrum C7 7 at large scales. The absence of significant evidence

for tensor perturbations imposes an upper limit [3]

r < 0.06, (3.35)

evaluated at the reference scale k, = 0.002 Mpc_l.

3.2.2.1 Current experimental bounds

CMB data tightly constrains the inflationary parameters n, and r, as shown in
Fig. 3.4, along with a comparison to popular inflationary models.
One such model, known for its simplicity, is chaotic inflation [53]. It envisions

the Universe starting in a disordered state, far from the potential’s minimum, with
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energy density near the Planck scale. Inflation can initiate in any region, and once
started, inhomogeneities are quickly smoothed out, leading to a much larger inflating

region. The potential for chaotic inflation is given by

vio)=mb () (3.30)

mpy

where p > 0. In this scenario, it is possible to show that [6]

2 1 2 4
n_1=__p+2  (1+p/2) r=22

eN+p) - N (3:37)

where N is the number of e-folding defined in Eq. (3.13) and N, is that at horizon
crossing (3.24).
For an overview of the proposed inflationary models, refer to Refs. |6, 52, 54| and

especially Ref. [55].

3.2.3 Beyond the simplest inflationary model

Inflation, as discussed so far, assumes a single scalar field with minimal coupling to
gravity, driving the accelerated expansion and decaying into radiation, which starts
the radiation-dominated era.

To provide a broader context for the rest of the thesis, particularly chapter 4,
it is helpful to briefly mention additional technical aspects, including the generation
of isocurvature perturbations and scenarios involving non-minimal coupling of the

inflaton to gravity.

3.2.3.1 Isocurvature perturbations

Single-field inflation predicts the generation of adiabatic perturbations, where different
regions of the Universe have varying overdensities, but the fractional density pertur-

bations are consistent across all species (baryons, CDM, photons, neutrinos). This is
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Background trajectory

U
Figure 3.5: Decomposition of an arbitrary perturbation into adiabatic (do) and en-

tropy (0s) components, with the angle of the tangent to the background trajectory
denoted by «a. Figure adapted from Ref. [56].

expressed by the adiabatic condition

Opy _ 9pe _ 390y _ 30y

o pe Apy Adp

(3.38)

with similar relations for velocities. This arises because inflation is driven by a sin-
gle field, and each patch of the Universe during inflation is uniquely determined
by the field’s value, which governs a single temperature fluctuation controlling the
densities. This is the reason of the factor 3/4 since p,, ~ T* and p,. ~ mT?. Pre-
cise observations of the CMB confirm the adiabatic nature of perturbations, limiting
non-adiabatic contributions to be at most a percent-level fraction of the adiabatic
ones [52].

In scenarios involving multi-field inflation, it is possible to have fluctuations among
different particle species that violate Eq. (3.38). Additionally, particle number per-
turbations can occur between species, keeping the total dp equal to zero. These
fluctuations are known as isocurvature perturbations because they primarily affect
the entropy of the system. Graphically, considering two canonically-normalized inter-
acting fields U and V, the adiabatic perturbation do corresponds to the component
of the two-field perturbation vector aligned with the background fields’ evolution. On

the other hand, fluctuations perpendicular to the background classical trajectory rep-
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resent the isocurvature perturbations ds [56, 57|. Refer to Fig. 3.5 for an illustration.

3.2.3.2 Non-minimal coupling to gravity

The most favored inflationary models based on data have a non-minimal coupling
of the inflaton to gravity. In the Jordan frame, in which the gravitational constant

varies with time due to the evolution of the inflaton ¢, the Lagrangian is given by [6]

Ly = V703 | g Rolmy + 66°) + 500~ V(9)| (3.39)

To better understand the cosmology, we transition to the Einstein frame by per-

forming a Weyl rescaling of the metric

, gy
g = é , D2 =1+ /m3,. (3.40)

This transformation results in a complicated kinetic term for ¢, and the canonically

normalized inflaton y is related to ¢ by

d 02 2,42 /102
ax _ \/ + 6£2¢ /mPl _ (3.41)
do 04
In the Einstein frame, the Lagrangian takes the form
1, 1 , V
Le=V=ge| gmplle +50x)" — 57 | (3.42)

which leads to a convex potential V' favored by Planck data.

3.3 Baryogenesis

In the context of inflation, the presence of the baryon asymmetry of the Universe
(BAU) today (see section 3.1.3) suggests that the process responsible for its origin
occurred after inflation. This is because any preexisting asymmetry would have been

diluted by a factor of approximately e=®", where N is the number of e-foldings.
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There are three necessary conditions, known as the Sakharov conditions [58], for

creating the BAU (see also Refs. [59-61]). These conditions are:

1. Baryon number (B) violation;
2. Out-of-equilibrium decay;

3. Symmetry violation of charge conjugation (C') and charge conjugation combined

with parity (CP).

Let us briefly discuss the importance of satisfying these three requirements before

introducing one of the most popular models for generating the BAU: leptogenesis.

3.3.1 B violation

In section 2.4.1.1, we discovered that baryon and lepton numbers are accidental global

symmetries in the SM. These symmetries are defined by the quantities

B = / dx Jy(z), L= / d*z J) (1), (3.43)

where J%(z) and J?(z) are the zeroth components of the currents [62]

N
1 !

N, ‘ (3.44)
=% (ZLZ-'YMELZ- - émuegi) .
Here, Ny = 3 is the number of fermion generations, ¢, is the SU(2);, quark doublet,
while u§ and d§ refer to the right-handed quarks. Similarly, ¢, is the SU(2),, lepton
doublet and e is the right-handed charged lepton.

While B and L in Eq. (3.43) are conserved at tree-level, they are not quantum-
mechanically because of the Adler-Bell-Jackiw (ABJ) triangle anomaly (also known
as chiaral anomaly) [63, 64]. In fact, the divergences of the currents in Eq. (3.44) do
not vanish [65]

N
Oully = Oult = o 55 a e Wi, Wiy (3.45)
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in the presence of a background SU(2), gauge field with field strength W, and cou-
pling constant g. The quantity €**# is the Levi-Civita tensor. This equation reveals
that the combination (B — L) is a conserved charge, but (B+ L) is not. Although the
violation of the (B 4 L) symmetry is not observed in perturbative processes [66], it
has significant implications in the early Universe, where non-perturbative processes
could have occurred.

The violation of (B + L) can be understood by examining the vacuum structure
of the SU(2) gauge theory with spontaneously broken symmetries. Changes in B and
L numbers are related to changes in the topological charge of the gauge field W
between two pure-gauge configurations (i.e. with W, = 0 and zero energy) at initial

time ¢; and final time ¢ |62, 66]. This relationship can be expressed as

ty
B(tf)—B(ti)—/ dt/d?’xa#Jg
t;

= Nf [Ncs(tf) - NCS<t1>]

:NfANcsEn,

(3.46)

where n is an integer known as the winding number and N¢g represents the topological

charge or Chern-Simons number [67], defined by [66]

2

Nes = / Pk’ K= e (A Ten ALALAL) . (347)
The presence of different pure-gauge configurations with different Chern-Simons num-
ber implies the existence of infinitely many degenerate ground states characterized
by ANgg = +1,42,.... To transition between these vacua, one must pass through
configurations with non-vanishing field strength and energy, resulting in a potential
barrier between each vacuum state. This barrier, depicted in the left panel of Fig. 3.6,
has a height given by Eg,, ~ 87(H(T'))/g, where (H(T)) is the Higgs field VEV at
temperature 7', and (H(0)) = o with o = v/v/2 ~ 174 GeV [66].

At zero temperature, vacuum-to-vacuum transitions occur only through tunneling,

known as instanton configurations [65]. The tunneling rate per unit volume, estimated

117



Sphaleron qu
¢: v
/ b Sphaleron - Qe
Perturbation
\ Instanton theory .
\ w g'l: \
NCS L
3 q

Figure 3.6: Left: Energy dependence of gauge field configurations with respect to the
Chern-Simons number. Each minimum represents a valid perturbative vacuum state,
while the instanton configuration determines the probability of tunneling between
adjacent vacua. Sphalerons correspond to the potential’s maxima (saddle points).
Inspired by Ref. [68]. Right: Sphaleron transition conserving (B — L). Figure adapted
from Ref. [69].

as Tingt/V ~ v e 25 ~ ot e 167°/9% 107160 4 [6], is extremely small and unlikely to
occur within the age of the Universe.

However, in the early Universe when all species were in thermal equilibrium, tran-
sitions between gauge vacua could occur through thermal fluctuations over the energy
barrier instead of tunneling [70]. These transitions involve sphalerons, which are non-
perturbative static field configurations that correspond to unstable solutions to the
equation of motion [71]| (see left panel of Fig. 3.6). Sphalerons allow for (B + L)-
violating processes with a significant rate, as they are suppressed only by powers of
the weak gauge coupling g instead of exponential suppression.

During these transitions, the baryon and lepton numbers change by multiples of
Ny = 3 units within the SM, as suggested by Eq. (3.46), resulting in the spontaneous
production of 9 left-handed quarks (each quark has B = 1/3) and 3 left-handed
leptons (each lepton has L = 1), one per generation [62, 66]. The associated Feynman
diagram is displayed in the right panel of Fig. 3.6. The sphaleron rate per unit volume
for T < Tpw ~ O(100 GeV) is given by [72]

Psph Esph ’ MW(T) ! 4 —Egon/T
% _(9(1)< n ) T T%e ) (3.48)
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where My (T') is the temperature-dependent W boson mass. On the other hand, for
T 2 Tgw it is approximately |73]

L'spn _

7" ~107°7*. (3.49)
In a thermal volume V ~ 73, containing on average one particle of each type in the
early-Universe plasma, the sphaleron rate scales as ~ T', which should be compared
to the Hubble rate H ~ T?/mp;. As a result, sphalerons come into equilibrium for
T < 10" GeV and go out of equilibrium at the electroweak phase transition when
the exponential suppression becomes effective [66]. Therefore, one of the criteria
for baryogenesis, namely B violation, is already present in the SM if the reheating
temperature Ty, = Tew following inflation.

In addition to the source of B violation within the SM, beyond-SM theories can
naturally include interactions that violate baryon number. Grand Unified Theory
(GUT) models are a prominent example. In GUTs, where the strong and electroweak
interactions are unified, quarks and leptons often belong to the same irreducible
representation of the gauge group. This allows gauge bosons to mediate interactions

that transform quarks into leptons or antiquarks, leading to B violation [5].

3.3.2 Out-of-equilibrium decay

To generate and preserve the BAU, it is necessary to deviate from thermal equilib-
rium, because equilibrium processes have equal rates for their forward and backward
reactions.

As discussed in section 2.5.2, a rule-of-thumb criterion to determine whether a
particle physics process is in equilibrium in an expanding Universe is to compare
the Hubble rate H with the dominant particle interaction rate I'. In the context of
baryogenesis, I' corresponds to the decay rate, as decays typically regulate the relative
number of particles and antiparticles.

By solving the Boltzmann equations for the number densities of particle and an-
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tiparticle species, considering an asymmetry parameter e defined as 5]

_ PX = f)-TX = f)
E—zf:Bf FX s

(3.50)

where the sum runs over all final states f with baryon number By and I'x is the
total decay width of particle X, it can be shown that the net baryon abundance Yp
is directly proportional to €. Most importantly, it is non-negligible whenever I' < H,

indicating that the system is out of equilibrium [6].

3.3.3 (C and CP violation

The presence of B-violating interactions alone is not sufficient to generate a non-
zero baryon asymmetry e, unless both C' and C'P are violated. In particular, C'
violation ensures that the processes producing more baryons than anti-baryons are
not counterbalanced by those producing more anti-baryons than baryons. Similarly,
C'P violation is necessary to prevent the equal production of left-handed baryons
and right-handed anti-baryons, as well as left-handed anti-baryons and right-handed
baryons.

Although C and C'P violations are observed in the SM, particularly in the CKM
and possibly in the PMNS matrices |74] (see section 2.4.2.2), the amount of violation is
insufficient to explain the observed baryon asymmetry [75]. This requires the presence
of new physics processes beyond the SM.

Without delving into the specifics of any particular BSM model, there are three

fundamental requirements to ensure € # 0 [5]:

1. C' and C'P violations should arise from the interference of loop diagrams with

the tree-level diagram, necessitating the presence of complex coupling constants.

2. There must be at least two decaying particles that violate B, allowing for ad-
ditional interactions. This prevents the removal of all phases of the complex

couplings through field redefinitions.

120



3. The decaying particles must not be degenerate in mass to avoid complete can-
cellation of the baryon number produced by one particle with that produced by
the other.

For a concrete example illustrating these requirements, we refer to Ref. [6].

3.3.4 Leptogenesis

Leptogenesis is a popular scenario for explaining the BAU because it can also address
neutrino masses through the see-saw mechanism (see section 2.4.2.1).

The key elements involve introducing at least two families of heavy right-handed
neutrinos N, which are singlets under the SM gauge group. These neutrinos couple

to the lepton doublets and the Higgs field via Yukawa-like interactions described by
Yy, ijEiﬁNR,j + h.c.. (351)

Integrating out the heavy N; yields the Weinberg operator given by Eq. (2.57), with
2 [Axp = (Y, M ~1yI'),;, where M represents the Majorana mass matrix of the heavy
neutrinos. This leads to a mass term of the form %Mj]\_f JIN%, which violates lepton

number by two units. After electroweak symmetry breaking, the SM neutrinos acquire

small Majorana masses given by
mmj = UZ(yVM_lyZ)ij . (352)

The out-of-equilibrium decays of N; — L;H¢ can generate a lepton asymmetry,
which can be partially converted into the baryon asymmetry through sphaleron in-
teractions, with Yz ~ —Y7,/3 [6]. Despite its simplicity as a theory of baryogenesis,
leptogenesis suffers from a proliferation of free parameters, mainly associated with the

phases in the Yukawa couplings y, ;;, making it challenging to test experimentally.
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4.0 Prologue

In the previous chapter, we discussed inflation and baryogenesis as distinct events in
the Universe’s history. Notably, we emphasized that the BAU should have emerged
after the inflationary phase to avoid being washed out. In this chapter, we will explore

the intriguing possibility of a shared origin for these two events.

Abstract

The Affleck-Dine mechanism in its simplest form provides baryogenesis from the out-
of-equilibrium evolution of a complex scalar field with a simple renormalizable poten-
tial. We show that such a model, supplemented by nonminimal coupling to gravity

can also provide inflation, consistent with Planck constraints, simultaneously with the
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generation of the baryon asymmetry. The predictions of the model include significant
tensor-to-scalar ratio and possibly baryon isocurvature fluctuations. The reheating
temperature is calculable, making the model fully predictive. We require color triplet
scalars for reheating and transfering the primordial baryon asymmetry to quarks;
these could be observable at colliders. They can also be probed at higher scales by
searches for quark compositeness in dijet angular distributions, and flavor-changing

neutral current effects.

4.1 Introduction

Theoretical mechanisms for baryogenesis abound and take many very different forms,
but one common attribute is that they occur at some cosmological epoch following
inflation. This seems like a necessity, since exponential expansion should dilute any
preexisting baryon asymmetry. Warm inflation provides an exception; see Ref. [1].
In this work we show that it is possible to generate the baryon asymmetry of the
Universe (BAU) during the course of ordinary cold inflation, if the inflaton carries
baryon number.

One of the earliest proposed baryogenesis mechanisms was that of Affleck and
Dine (AD) [2] in which a complex scalar field carrying baryon number can sponta-
neously create the BAU starting from field values displaced from the minimum of the
potential. A baryon-violating coupling is required to satisfy Sakharov’s requirements
[3]. Although the AD mechanism is most commonly implemented in supersymmetric
models whose potentials have nearly flat directions, it was originally demonstrated

using a simple renormalizable potential of the form
Vi =m3|o] + Mg|* +iN (" — ¢*) (4.1)

in the seminal reference [2]. (We use the subscript to denote the Jordan frame since a
change of frames will be invoked below.) When X = 0, the potential has a U(1) global

symmetry, that we will identify with baryon number. A generic initial condition such
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that (¢) # 0 spontaneously breaks CP and thermal equilibrium, as also required by
Sakharov. The field winds around, at first generating baryon number, until Hubble
damping of (¢(t)) makes the A interaction negligible, and baryon number becomes
conserved.

The same kind of potential could be used for a two-field version of chaotic inflation
[4]. Constraints from the Planck experiment now disfavor chaotic inflation with ¢?
or ¢t potentials [5] since they predict too high tensor-to-scalar ratio r, given the
measured value of the scalar perturbation spectral index n, = 0.96540.004. However
this problem can be cured by adding a nonminimal coupling to gravity (we write 2
rather than & to agree with the usual convention for inflation along a single component

of the complex scalar),
2

Ly =ZLR (1+2¢)6P) (4.2)
where mp = 2.44 x 10'® GeV is the reduced Planck mass, that we set to 1 unless
explicitly shown. This introduces a noncanonical kinetic term for ¢ upon Weyl-
transforming to the Einstein frame, and it flattens the potential at large field values
to make the predictions of the model compatible with Planck observations, in the case
of a real scalar field inflaton [6, 7]. Our goal is to determine whether this can still hold
true for the two-field model, while at the same time generating the observed baryon
asymmetry. A potential issue is that isocurvature perturbations can be produced in
two-field models, and these are constrained by the Planck observations.

A similar idea was explored in Refs. [8, 9], using flat directions in supergravity
models as the inflaton. Models with simpler potentials, more similar to the one we
consider, were studied in Refs. [10, 11]|. All of these previous studies are in the context
of conventional chaotic inflation, and do not address the problem that the predictions
of r versus n, are excluded by Planck data. Isocurvature fluctuations are considered
in Refs. [8, 10]. We disagree with the predictions of Ref. [8], which do not take
into account the decay of the entropy perturbation between the horizon crossing and
late times. The predictions of Ref. [10] for the power in entropy perturbations are

consistent with ours, being below observable levels, but in the following we point out
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that the correlation between adiabatic and entropy modes can be large enough to be

observed in current and upcoming CMB experiments.

4.2 Model

Equations (4.1) and (4.2) are sufficient to determine the inflationary trajectory until
the epoch of reheating. It is convenient to make a Weyl rescaling of the metric,
G — PG, with Q* = 1/(1 + 2£|¢[*). The Lagrangian in the Einstein frame,

including gravity, is then

1 4 (109 2 22
Lp= 2R+Q o +38%(0]67)" =V, | . (4.3)
Writing the complex scalar as ¢ = (X 4 iY")/+/2 and ignoring spatial gradients, the

scalar kinetic term takes the form
1 ) ) . )
Liin = 592()(2 +Y?) 4+ 30 (XX +YY)? (4.4)

with 9% = 1/(1 + £(X? + Y?)). Thus X and Y are not canonically normalized
fields. Instead of reexpressing them in terms of such fields, we will numerically solve
the equations of motion for X and Y to determine the predictions for inflation and
baryogenesis. Details of deriving the first-order equations convenient for numerical
integration can be found for example in Ref. [12] [see Eqgs. (2.100-2.101)]. We choose
initial conditions close to the inflationary attractor solution, by setting the derivatives
of the canonical momenta Iy = d£/dX, Iy = d£/dY initially to zero.

More is needed in order to get reheating and transfer of the baryon asymmetry,
initially stored in ¢, into quarks. A natural option for reheating is the Higgs portal
coupling Ayp|¢|?| H|?. However since we also need a coupling to quarks, it is simpler to
use the same interactions both for reheating and for transfer of the baryon asymmetry.

This can be accomplished by introducing three QCD triplet scalars ®; carrying baryon
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number 2/3, with couplings

Vo = €apa (X" ¢ DTOLPE + 11 ] updy? + 1o @G updsy? + y3®5 dpdsy?) + Hee.  (4.5)
where a, b, d are color indices, the quarks are right-handed [SU(2); singlets| and d5,
denotes the conjugate down-type quark. For simplicity we omit generation indices
on the quarks and the Yukawa couplings y;. These interactions allow for the decay
¢ — uudddd via virtual ®; exchange, and imply that ¢ carries baryon number 2. The
same conclusion holds if we choose ®;%zu$, and @27362 rdS, couplings instead of (4.5).

For small values of the A" coupling, we can view reheating as occurring through
the perturbative decays ¢ — ®; 5 &3, which rapidly thermalize with the quarks and
thereby the rest of the standard model degrees of freedom. Assuming that ¢ is much
heavier than ®;, the decay rate is

3 )\//2

° = 25678 (4.6)

4.3 Inflation + baryogenesis

An interesting aspect of our model is that the same parameters that influence infla-
tionary observables can also affect the magnitude of the baryon asymmetry. Thus,
although we describe the two processes separately, a fully viable model depends upon

the interplay between the two.

4.3.1 Slow-roll parameters

Although we can solve for the inflaton trajectories without reference to the canonically
normalized fields, that we will denote by (U, V'), it is necessary to know them for

computing inflationary perturbations. It is straightforward to diagonalize the kinetic
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term (4.4) at a given point in field space to find
X _ (cs —Sg er O Cy Sy U
V) \sp c)\0 e)\=sy ¢)\V
U U
= /ZyR =2 - 4.7

with e; = Q711 + 602¢3(X2 + Y?)7 12 ey = Q71 0 = tan™}(Y/X). Then Ly, =
%(U - VQ) The matrix Z allows us to transform slow-roll parameters computed in

the original field basis (indices 4, j) to those in the canonical basis (indices m,n):

. (Zn0Vp)®
2V
E

where Vi = Q4V; is the Einstein frame potential.

The extra rotation Ry in Eq. (4.7) is not necessary for diagonalizing the kinetic
term, but it is required in order to be able to interpret Z as the Jacobian matrix
J(X,Y)/o(U,V). If we omit R, so that Z = Zj, such an interpretation is not

generally consistent since then the relations

Uyx = 0x(Zy )12 = 0v(Zy )11 = Uxy
Vyx = 0x(Z5 )22 = 0y (Z5 ) = Vixy (4.9)

may not be satisfied. We are free to set ¢» = 0 at a given point in field space, such as

the point of horizon crossing, but not its derivatives. Equations (4.9) with Zy — Zy R,

imply

(Zg N2tbx — (Zy by = (Zg ax — (Zy Dy

—(Zy D2 x + (Zg by = (Z5 azx — (Z5 Hary -
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This has the solution

Y x T ((Zo_l)m,x - (Zo_l)ll,Y)
=d
(WY) (%) (Z Na2x — (Zy Dary

€169 -Y
=P : 4.1
X2+ Y? ( X) (4.10)

The consistent identification of Z with a Jacobian matrix ensures that 7,,, is sym-
metric in mn, even though the second term in (4.8) is not explicitly symmetric. Then

we can write the second term in Eq. (4.8) as
0,2 = (0;20) Ry + 1,200y Ry, . (4.11)

To compute the adiabatic perturbation spectrum and the tensor-to-scalar ratio,
we use the slow-roll formalism of Ref. [13], evaluating the slow-roll parameters (4.8)
along the numerically determined inflationary solutions. This requires going from
the U, V basis of the canonical fields to the o, s basis of adiabatic/entropy directions,

defined by

do = c,dU + s, dV
ds = —s,dU + c,dV (4.12)

with o = tan~'(V/U). The rotated slow-roll parameters are given by [14]

€r = (caOu Vg + 5.0vVE)?/(2VE)
€, =0
Noo = Conuu + 2Casaluy + Savy
Nss = Saluu — 2CaSalluv + Callvy

Nos = Cozsa(nVV - 77UU) + (Ci - Si)nUV (413>

Then to leading order in the slow-roll expansion, the scalar spectral index and tensor-
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model mey/mp A N 13 N Xo Yo DNt N. N r Trs
1 6.43 x 1077 873 x 1072 689 x 107 596 x 1072 867 x 10> 184 6.63 65 53.1 0962 1.4x1072 9x 102
2 467 x 1077 3.49x 107" 6.68 x 10713 0.180 293 x 107> 23.7 0.91 146 52.0 0961 7.2x107% 4x107°

Table 4.1: Parameters and initial values for two benchmark models, including the total
number of e-foldings of inflation N,, number of e-foldings before horizon crossing
N., spectral index n, (evaluated at k, = 0.05Mpc™!), tensor-to-scalar ratio 7 and off-
diagonal transfer matrix element Txrg, which is a measure of the correlation between
adiabatic and isocurvature perturbations.

to-scalar ratio are [13]

ns=1—(6— 402)60 + 2527700 + 4SACAT,s + QCZAT]SS
r = 16¢, (4.14)

where ca = —2C1ys, SA = +y/1—c4, C =2 —1n2 — v = 0.73 (v is the Euler
constant), and the derivatives of Vg with respect to U and V' are computed similarly
to Eq. (4.8). Including the effect of isocurvature modes (Tgrg), which we will explain

below, the scalar amplitude is

Vi
As = — [1 — 260 + 2C (3 € — Noo — QnUSTRS)] (415)
2472 €,

with V, = Vg evaluated at horizon crossing and we have neglected terms of order
TZs.

We searched the parameter space via Markov Chain Monte Carlo (MCMC) to find
models in agreement with Planck constraints on Ay, ng, r and the baryon asymmetry
(discussed below). Two benchmark models are identified in Table 4.1. The correlation
of r with ng is shown over the interval N, = (50,60) e-foldings, for several values of
¢ and fixed values of the potential parameters corresponding to the two benchmark
models in Fig. 4.1.

On each curve a heavy dot is indicated to show the prediction of the model, for the
chosen value of \”, that determines the reheating temperature and thus the number

of e-foldings N, between horizon crossing and the end of inflation. The value of N,
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Figure 4.1: Scalar-to-tensor ratio versus spectral index for several values of the non-
minimal coupling ¢, varied around the parameters of models 1 (left) and 2 (right)
given in Table 4.1. The pivot scale is k, = 0.002Mpc~! for comparison with the
Planck 10 and 2 ¢ allowed regions. The number of e-foldings between horizon cross-
ing and the end of inflation, V,, is allowed to vary between 50 and 60, but the definite
values shown by the solid dots are predicted by making a specific choice of \”. The
dependence on \” is shown on the £ = 0.07 curve for model 1.

is determined by solving Eq. (47) of Ref. [5] (see also Ref. [15]),

k1 V2 ) 1 ( Deh )
N, =67—1n + —1In * + —1In 4.16
(HO > 4 (mzfl)pend 12 GxPend ( )

where Hj is the Hubble constant today, pe.q is the energy density at the end of

inflation, g, = 106.75 + 18 (counting the extra degrees of freedom from the colored
scalars), and the reference scale k, = 0.002Mpc™! for comparison with the Planck
preferred regions in the ng-r plane. The energy density at the time of reheating is
Prh = %Fim%, as explained below — see Eq. (4.24); this makes N, depend upon
N as N, ~ %ln A, Since V, appears in Eq. (4.16) but also depends upon N,, we
rescale the parameters of the potential while iteratively determining N,, keeping
Ay = 30111071 fixed to the observed central value [5]. To illustrate the dependence
on N’ we indicate two other horizon-crossing positions on the & = 0.07 curve of
model 1, for larger and smaller values of \”. The relation between \” and the reheat
temperature will be discussed in Sec. 4.3.3.

The strong correlation between the tensor ratio r and the nonminimal coupling &

is also clearly seen in the larger sample of models from two MCMC chains, Fig. 4.2
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Figure 4.2: Scatter plots from the MCMC search of parameter space. Left: correlation
of r with x. Right: correlation of r (evaluated at k., = 0.002Mpc™!) with n, (at
k. = 0.05Mpc™'). Black versus red points correspond to two different chains as
described in the text.

(left). The points shown have a total x* < 10, defining x? in the usual way in terms

of the observables r, n, and np,
=3 (2 =) (4.17)
dx? '

summed over observables x; with central value z; and experimental error dx;. The
black points come from a chain where the experimental limit on r was somewhat
relaxed. The correlation between r and n, within the chains is also notable, as shown
in Fig. 4.2 (right). In both plots, one can notice a population of models scattered
away from the main trends. These are special cases in which the total number of
e-foldings of inflation are not much greater than the minimum required, N, ~ 60. We

will discuss these cases in more detail below.

4.3.2 Isocurvature fluctuations

During inflation, the components of the canonically normalized fields U, V' can fluctu-
ate by order H/(2m), where H is the Hubble parameter. Fluctuations do normal to the
inflaton trajectory are entropy modes, and they could become observable isocurvature

fluctuations if they decay into different species than the adiabatic fluctuations, that
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are parallel to the trajectory. The relation between adiabatic/entropy perturbations
and the canonical field fluctuations is given in Eq. (4.12).

To find the observable entropy fluctuations, we need to compare (do,ds) to the
directions in field space that correspond to baryon number fluctuations dB, and the
orthogonal direction, that will be related to (dU, dV') through some different rotation
angle 8. Numerically we find that § = 0 during inflation, implying that the entropy
perturbations are purely in the baryon number (compensated by radiation) to a good
approximation, known as BDI (baryon density isocurvature). This can be seen start-
ing from the definition of baryon density from the zeroth component of the baryon

current carried by ¢,
np = J% = ~2i(6" — 66) = 2V X — XV) (4.18)
leading to the fluctuation
onp =2(X Y =Y 6X)+... (4.19)

where the omitted terms are subleading in the slow-roll approximation. The direction
of the fluctuation (4.19) turns out numerically to be very nearly orthogonal to the
inflaton trajectory in field space. Although both ¢ and s decay into quarks during
reheating, only s decays encode the baryon asymmetry, whereas o decays equally into
quarks and antiquarks, that thermalize with the rest of the SM degrees of freedom.
We closely follow the formalism of Ref. [13] (see also Ref. [14]) to compute the
power in isocurvature. The main task is to numerically solve the equations for the

evolution of the perturbations dU, dV between horizon crossing and the end of infla-
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tion,

dU" = —C1dU" — 3(fyydU + fyyvdV) + U'dC
+ (U?)dU + (U'V")dV
dV" = =CdV' = 3(fyydV + fuydU) + V'dC
+ (Vv + (U'V'YdU (4.20)

and to relate them to the adiabatic/isocurvature perturbations do, ds using Eq. 4.12).
Here primes denote d/dN,, C; =3+ H'/H, and dC = C(U'dU +V'dV'). The barred
parameters 7;; are defined as in Eq. (4.8), except that we divide by the total energy
density p = 3H? instead of Vj, so that the equations remain valid even when the
slow-roll approximation is not.

The transfer function for the curvature (adiabatic) and entropy perturbations is

Trr Trs )
4.21
< Tsr Tss (421)

that relates the amplitudes of (do,ds) at horizon crossing to those at a later time,

a matrix

after inflation. We can get the matrix elements by solving the system (4.20) from
the respective initial conditions (do,ds) = (1,0) and (0,1). The results are shown
for the two benchmark models in Fig. 4.3. The adiabatic perturbation is conserved,
resulting in Trr = 1, and the Tsg element is always very small, in accordance with
the slow-roll prediction Tsgr = 0 [13], meaning that there is negligible conversion of
entropy to adiabatic modes.

Numerically it is difficult to evolve the transfer matrix deep into the post-inflationary
phase, because of the fast oscillations of the fields. However since the solutions be-
come quite smooth at this point, it seems reasonable to extrapolate them into the
reheating era. Hence we have assumed that Trr and Trs continue to stay constant,
and that Tsr and Tsg remain negligibly small, as Fig. 4.3 suggests. Once the inflaton
decays, both adiabatic and entropy modes (which are approximately aligned with the

modulus and phase of ¢) will decay into quarks and antiquarks. The only difference
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Figure 4.3: Evolution of transfer matrix elements for the adiabatic and isocurvature
perturbations, versus number of e-foldings, for models 1 and 2 from Table 4.1.

between the two modes is that the isocurvature modes are also correlated with baryon
number, which is conserved by this time, so that the baryon asymmetry encoded in
s is preserved during the decays.

For all cases in our MCMC, the entropy autocorrelation Tsg < 0.1 is too small
to be observable, but in some cases like in model 1, the cross-correlation Tgrg is
significant. It is related to the correlation angle, which to leading order in slow-roll

parameters is given by [13]
Trs

which is constrained by Planck as |cos A| < 0.1-0.3, depending upon pivot scale k,

cos A = (4.22)

and which datasets are combined. (Reference 5] notes that the constraints on BDI
correlation are the same as for cold dark matter isocurvature.) Therefore model 1 is an
example where the predicted BDI correlation is close to the experimental sensitivity.

The models with large BDI require somewhat special initial conditions, in which
the total duration of inflation is not more than ~ 80 e-foldings. This is because sig-
nificant curvature of the inflaton path in field space is needed during horizon crossing
for generating isocurvature. Models with long periods of inflation tend to have such
curvature earlier than horizon crossing, subsequently becoming nearly linear and thus
resembling single-field inflation. This is illustrated for the two benchmark models in

Fig. 4.4, that shows the field trajectories and horizon crossing points. It is further
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Figure 4.4: Inflaton trajectories in field space for the benchmark models. Horizon
crossing is indicated by the heavy dot.

borne out by Fig. 4.5, showing the correlation between |Tgs| and total number of
e-foldings N, for models within an MCMC chain satisfying x? < 10. On the other
hand, models like our benchmark model 2, having longer periods of inflation, lead
to predictions that are relatively insensitive to the initial conditions, since the field

trajectory settles into a unique trough in the potential.

4.3.3 Baryogenesis and reheating

To compute the baryon asymmetry, we use the baryon density stored in ¢, Eq. (4.18).
It is convenient to compare this to the number density of ¢ particles, prior to reheat-
ing,

ng = T’;—i (4.23)

since the ratio n = np/ny reaches a constant value that we denote as 7. at the end
of inflation, during the period of ¢ oscillations around the minimum of the potential.
The time evolution of 7 is illustrated for model 1 in Fig. 4.6.

Reheating occurs at the time ¢,;, = 1/I" where I'y is the decay width of ¢. Defining
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Figure 4.5: Scatter plot of isocurvature correlation |Tgg| versus the total number of
e-foldings of inflation Ny, from the MCMC.

ng = Ny at the end of inflation (¢ = t.), n, at the time of reheating will be

3
Ngrh =N fe) = [g.e
¢,rh @.e . 3 (g - 2
1 _I_ 2 3m% (trh te)

4m2 T2
~ P ¢ (4.24)
3m¢

where we used the fact that the ¢ oscillations matter-dominate the Universe until
reheating, and ¢,, > t.. The value of ny,y is independent of 14, so long as the latter
is large enough to provide sufficient expansion of the Universe prior to reheating. This
will be true if the energy density at the end of inflation is much greater than that at
reheating.

The baryon-to-entropy ratio at reheating is given by

Ng rh
N = Ne q;’ (4.25)
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Figure 4.6: Baryon-to-inflaton ratio during inflation and shortly after its end, versus
number of e-foldings N,, for benchmark model 1. Insets show the evolution of the
field components, ¢ = (X + 1Y) /v/2.

with s = (272/45)g, T3 and reheat temperature [16]

90 1/4
Trh:( ) (Tymp)?

2 g,

N me/m 1/2
_ 14 @ P
= 1.7 x 10" GeV <102) (5 . 107) (4.26)

Including a factor of 36/111 [17] for the reduction of baryon number by redistribution

into lepton number by sphalerons, it follows that

~ —4 n [P 2
ng 26.1x 1074 N | -2 (4.27)

me

which is conserved into the late Universe. The measured value is ng = 8.6 x 107!
[18].

The coupling A’ should be small in order to justify the perturbative reheating
assumption, but from the point of view of technical naturalness, it need not be very
small. A three-loop diagram involving A\’ renormalizes the A|¢|* interaction, giving
the estimate

N < (167%)% 4 (N /36)* =2 0.05 (4.28)

to avoid destabilizing the inflationary potential by quantum corrections.
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Figure 4.7: Baryon-to-inflaton ratio during inflation and shortly after its end, versus
number of e-foldings N,, for several values of \'. Other potential parameters are fixed
at those of model 1. The curves are in the same order as the key, from top to bottom
at late times. Positive values of A" are shown with solid curves, negative with dashed.

The baryon asymmetry generated during inflation depends sensitively on the value
of the B-violating coupling \. In Fig. 4.7 we again show how 7p evolves with N,
from the beginning of inflation until shortly after it ends, but for a range of different
values of the baryon-violating coupling \'. The effect of the ¢ oscillations can be seen
briefly around N, = 65, but these are quickly Hubble-damped and np settles to a
constant value that we have identified as 7, in Eq. (4.25). The dependence of the
final baryon asymmetry is not monotonic. At first this may be surprising, since one

can derive the time-dependence of np from the inflaton field equations,
g = 2i(¢* 6 — ¢*¢) = —3Hnp + 4N (¢* + ¢*) (4.29)

However one finds that A’ has an important effect on the background inflaton trajec-
tory, which explains the nonlinear dependence. This is illustrated in Fig. 4.8. Hence
the processes of inflation and baryogenesis are nontrivially intertwined in our model:
adjusting X can affect not only 1z but also the inflationary observables.

The effects of B violation after inflation are negligible. At low energies, integrating
out ¢ and ®; leads to a dimension-36 operator involving 24 quarks. It could induce

conversion of four neutrons into their antiparticles in a neutron star, but the rate is
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Figure 4.8: Inflaton trajectories X (N,) (solid) and Y (NV,) (dashed) for four different
values of the baryon-violating coupling \. Other parameters are fixed to those of
model 1.

far too small to be significant. In the early Universe, we must check that the AB = 8§,

P12 operator induced by ¢ exchange is out of equilibrium, to avoid washing out the
B asymmetry. The rate can be estimated as

12\ 1817 2

VNCTY T

Pap=g ~ ——35—

4.30
S (430)

By demanding that the decoupling temperature exceed the reheat temperature T}y

in Eq. (4.26), we find a constraint

17/46

¢

which is more lenient than the consistency requirement (4.28).

4.4 Particle physics implications

The colored scalars ®; can have observable effects at low energies. If sufficiently light,
they can be pair-produced at LHC. The Yukawa interactions in Eq. (4.5) have the
same form as R-parity violating coupling of squarks to quarks in supersymmetric mod-

els, leading to various mass exclusions in the range 80-525GeV [19] or 100-600 GeV
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system KO-K° K%-K° B-B° BY-BY
coefficient  mq, Re[ys.aq ¥5.) > Mas Im[ysaa v5 o] 2 May Y30 Y501 M Y355 Y30l 72
limit 1.1 x 103 TeV 2.1 x 10* TeV 990 TeV 245 TeV

Table 4.2: Lower limits from meson-antimeson mixing on parameters entering the
Wilson coefficients of four-quark operators from integrating out the heavy color triplet
S

[20], depending upon the flavor structure of the couplings.

However heavier colored scalars can be probed indirectly, using an effective field
theory description where they are integrated out to give dimension-six, four-quark
operators. For baryogenesis, the flavor structure of the new Yukawa couplings was
not important, but at low energies it can have an observable effect on the angular
distributions of jets at LHC, or flavor-changing neutral-currents like meson-antimeson

oscillations. Using chiral Fierz identities [21], the effective Lagrangian is

ae YA, 'yjl,kl _a e
L=- Z Opd —T;Q (g VMPRUk,b)(dﬂMPRdl,d)

A=1,2 2 Qa4
Ys,iiY3. =
= T A Pad) (i, Padsyy) (4.32)
3

where a, b, d, e are color indices, 7, j, k, [ label flavor, and Py projects onto right-handed
chirality. In the bottom line we have specialized to the case where ¢ # j and the
operator contributes to meson-antimeson oscillations, since these combinations are
much more severely constrained than the flavor-diagonal ones, or those connecting
mesons of different masses.

From dijet angular distributions, the CMS Collaboration finds a limit of [22]

m2 1/2
( i) > 7TeV (4.33)
yy

for flavor-diagonal operators, presumably of the first generation (since the limit on
higher-generation quarks will be somewhat weakened by parton distribution func-
tions). However K°-K°, B°-B° and B% B’ mixing give more stringent constraints

[23], shown in Table 4.2.
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4.5 Conclusions

We have studied a new model of inflation with the novel feature that the inflaton
carries baryon number, and it can produce the baryon asymmetry via the Affleck-Dine
mechanism, mostly during inflation, with relatively small evolution over the few e-
foldings after inflation ends. It is a simple but complete model, including a calculable
perturbative reheating mechanism that allows one to make definite predictions for the
inflationary observables, given a set of input parameters. One testable prediction is
that the tensor-to-scalar ratio r is likely to be observable, depending upon the value
of the nonminimal coupling of the inflaton to gravity. For the values £ ~ 0.01 — 1
considered in this work, we have found r > 0.004, which is within the sensitivity
of upcoming CMB experiments. For example LiteBIRD will probe values down to
r~ 1073 [24].

Since ours is a two-field inflation model, another possible signal is correlated
baryon isocurvature-adiabatic fluctuations that have been constrained by the Planck
Collaboration. We have found that these can occur at an observable level if the to-
tal duration of inflation did not greatly exceed the canonical minimum number of
e-foldings, Ni,t ~ 60. In this case the inflaton trajectory can turn significantly in
field space around the time of horizon crossing. We are not aware of other models in
the literature that predict baryon isocurvature perturbations.

The model relies upon new colored scalar particles in order to transfer the baryon
asymmetry from the inflaton to the standard model quarks. These could have observ-
able effects in laboratory experiments if sufficiently light, even at the scale of 10* TeV
for K°-K° oscillations. The colored scalars could also mediate purely hadronic rare
flavor-changing decays, that we have not considered here. The new source of baryon
violation needed for baryogenesis is however hidden at the high scale the inflaton
mass ~ 10" mp, out of reach of laboratory probes.

We have considered only the simplest scenario for reheating. It is possible that
sufficiently large values of \” could lead to more efficient reheating through parametric

resonance [16]. To our knowledge, this has not been previously studied for couplings
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of the form ¢®? such as are present in our model. Moreover we have ignored the Higgs
portal coupling |$|?| H|?* which could reduce the baryon asymmetry by producing extra

radiation. We leave these issues for future study.
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4.6 Note added

After publication, we realized that our initial claim of potentially large isocurvature
(DBI) perturbations for certain models was biased because we only considered one

BDI variable. ! In addition to the correlation angle cos A in Eq. (4.22) [13]

Prs Trs

= ~ T S
PrrPss  \/1+ T3 f

the amount of BDI fluctuations is also characterized by the primordial isocurvature

cos A = (4.34)

fraction [13]

Biso(k) — PSS<k) ~ Tgs

= ~ ~T2.. 4.35
Prr(k) + Pss(k) ~ 1+ T2g + Tag S5 (4.35)

Here, Prr o< (1 + T3¢) and Pss ox T2 are the auto-correlation power spectra for
the comoving curvature R = H do/d and isocurvature perturbation S = H ds/d,
respectively, and Prs o< TrsTss is the cross-correlation spectrum of R and S [14].
Moreover, do is the adiabatic and ds is the isocurvature perturbation related to those

for the canonically normalized fields by Eq. (4.12) (see also Fig. 3.5), and T}, are the

'We thank Jean-Samuel Roux for bringing this to our attention.
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transfer functions in Eq. (4.21). Both cos A and i, (k) need to be evaluated at late

times to compare them with the Planck constraints [5]
lcos A] < 0.1—0.3, Biso(kx = 0.05 Mpc™1) < 0.01 — 0.3. (4.36)

Since cos A and i, (k) defined in Eqgs. (4.34) and (4.35) are not independent, we
expect a degeneracy between their experimental constraints. For instance, if isocur-
vature fluctuations are absent, Trs and Tss both go to zero (and hence Prg — 0
and Pgs — 0), leading to cos A becoming indeterminate and fi, — 0. A similar
situation arises if only Tss — 0, independently of the value of Tgrg, as [, — 0 and
cos A remains indeterminate and can assume large values.

Our analysis indicates that the entropy auto-correlation Tsg << 0.1 is too small to
be observed in all cases considered in our MCMC, implying S, ~ 0 and negligible
DBI perturbations. This conclusion remains independent of the value of cos A, which
can still assume large values. Supporting evidence for this is presented in Table 14
of Ref. [5], where the Planck Collaboration fixes cos A = %1 in certain inflationary

models. While these scenarios are not ruled out, they yield tighter bounds on fi,.
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5.0 Prologue

The successful Affleck-Dine inflation mechanism in producing the observed baryon
asymmetry of the Universe, as discussed in the previous chapter, motivates us to
explore its potential to address other issues within the ACDM model (presented in
chapter 3) and the SM of particle physics. This chapter demonstrates that by in-
corporating additional ingredients, a generalized Affleck-Dine inflationary model can

naturally explain DM and neutrino masses, in addition to inflation and baryogenesis.
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In the following paper, three concepts were referred to without elaboration, since

they are well known in particle physics:

e The principle of minimal flavor violation (MFV) dictates that all flavor and
C P-violating interactions should be tied to the known structure of the Yukawa

couplings [1].

e A pseudo- or quasi-Dirac heavy neutral lepton (N, Ng)? is a pair of Majorana
heavy neutrinos, N;, = Nj and Nrp = Nj, with a small mass splitting and a
relative C' P-sign between the two states. Hence, N, # Ny, and Ny # Ny. In

the limit of mass degeneracy, it would correspond to a Dirac neutrino.

e The principle of naturalness, as defined by 't Hooft (or technical naturalness),
states that a quantity in nature should be small only if the underlying theory
becomes more symmetric as that quantity tends to zero [2]. This implies that

quantum corrections are less significant than tree-level contributions.

Abstract

Recently a new model of “Affleck-Dine inflation” was presented, that produces the
baryon asymmetry from a complex inflaton carrying baryon number, while being con-
sistent with constraints from the cosmic microwave background. We adapt this model
such that the inflaton carries lepton number, and communicates the lepton asymme-
try to the standard model baryons via quasi-Dirac heavy neutral leptons (HNLs) and
sphalerons. One of these HNLs, with mass < 4.5 GeV, can be (partially) asymmet-
ric dark matter (DM), whose asymmetry is determined by that of the baryons. Its
stability is directly related to the vanishing of the lightest neutrino mass. Neutrino
masses are generated by integrating out heavy sterile neutrinos whose mass is above
the inflation scale. The model provides an economical origin for all of the major in-
gredients missing from the standard model: inflation, baryogenesis, neutrino masses,
and dark matter. The HNLs can be probed in fixed-target experiments like SHiP,

possibly manifesting N-N oscillations. A light singlet scalar, needed for depleting
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the DM symmetric component, can be discovered in beam dump experiments and
searches for rare decays, possibly explaining anomalous events recently observed by
the KOTO collaboration. The DM HNL is strongly constrained by direct searches,

and could have a cosmologically interesting self-interaction cross section.

5.1 Introduction

The standard model (SM) of particle physics is noted for being incomplete in numer-
ous ways. It could be argued that the most urgently missing elements are an inflaton
(or other source of primordial density perturbations), a mechanism for baryogenesis,
dark matter (DM), and the origin of neutrino masses, since all of these relate to di-
rectly observed phenomena as opposed to problems of naturalness. It is tempting to
seek relatively simple new physics models that can simultaneously address several of
the missing pieces, or perhaps all.!

A notable example is the vYMSM [4, 5|, in which light sterile neutrinos can ac-
complish leptogenesis and provide a dark matter candidate while giving neutrino
masses. Higgs inflation [6] can be invoked in this framework without needing any
additional particles. A similar mechanism of getting an inflationary phase was also
implemented in the scotogenic model [7, 8] to simultaneously explain inflation, dark
matter, baryogenesis and neutrino masses, by introducing a scalar inert doublet cou-
pled non-minimally to gravity and three right-handed neutrinos. Another example
is the SMASH model [9] that assumes heavy right-handed neutrinos to explain neu-
trino mass and thermal leptogenesis, while introducing minimal extra matter content
to produce axions as dark matter and a solution to the strong CP problem. The
extra scalar field needed for breaking Peccei-Quinn symmetry can combine with the
Higgs to give two-field inflation in the early Universe. The idea of explaining neutrino
masses, baryon asymmetry, dark matter, inflation and solving the strong CP problem

using three right-handed neutrinos and the extra fields of the KSVZ axion model

'Ref. [3] provides a recent attempt in this direction, in which an inflaton-like field is present,
although the details of inflation are not yet worked out.
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[10] was originally presented in Ref. [11]. There, the Higgs field was identified as the
inflaton and the electroweak vacuum was shown to be stable for several choices of
the model parameters. The problem of Higgs inflation, which is known to reduce the
scale of perturbative unitarity breaking well below the Planck scale, was addressed
by coupling the Higgs field nonminimally to gravity [12].

In the present work we suggest another way of completing the standard model,
that does not rely upon leptogenesis as usually defined (through the CP-violating out-
of-equilibrium decays of heavy neutrinos). The starting point is a model of inflation
in which the Affleck-Dine mechanism [13| for creating a particle asymmetry occurs
during inflation [14]. The asymmetry is originally stored in a complex inflaton field,

that has the Lagrangian

2

L= %R (1+2¢]9%) + 109" = mglol* — No[' —iN(¢" — ™) (5.1)

(where mp is the reduced Planck scale) including a nonminimal coupling to gravity,
needed to flatten the potential at large |¢|, which makes the inflationary predictions
compatible with Planck constraints [15]. In Ref. [14] we assumed that ¢ carried
baryon number, which was transferred to the SM quarks through colored scalar me-
diators. Here we consider the case where ¢ carries lepton number, hence giving a new
mechanism of leptogenesis. As usual, the resulting lepton asymmetry is transmitted
to the baryons through the sphaleron interactions of the SM.

The challenge for such an approach is to find a way of transferring the lepton
asymmetry from ¢ to the SM without it being washed out by the lepton-violating
effects associated with neutrino mass generation. Indeed, if ¢ decays to heavy right-
handed neutrinos that have large Majorana masses, the asymmetry gets washed out
immediately and the situation reverts to standard leptogenesis being required. This
suggests that ¢ should decay into quasi-Dirac neutrino mediators NV;, that mix with
the SM neutrinos to transmit the asymmetry. Among the N; mediators, one can be
stable and constitute a species of asymmetric dark matter, getting its relic density

(partly) from the initial lepton asymmetry. The NNV; are an example of heavy neutral
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leptons (HNLs), a class of hypothetical particles that is being widely studied both
theoretically and by upcoming experiments such as SHiP [16], MATHUSLA [17],
FASER [18] and CODEX-b [19].

To deplete the symmetric component of the DM to a viable level, it is necessary to
introduce a light mediator, which we take to be a scalar singlet s, so that N; N; — ss
annihilations are sufficiently strong. The DM can be fully or partially asymmetric de-
pending on the coupling strength g,. We will show that this interaction has interesting
implications for direct detection, and for hints of anomalous rare K; — 7"+ invisible
decays that have recently been reported by the KOTO experimental collaboration
[20].

In our proposal, the HNLs do not explain the origin of light neutrino masses,
but we hypothesize that their couplings to the SM v’s are related to those of the
superheavy Majorana vg’s that generate seesaw masses, by a principle similar to
minimal flavor violation (MFV) [1]. The setup thereby also addresses the origin of
neutrino mass and relates the HNL couplings to it in an essential way. Moreover
a direct link is made between the stability of the dark matter candidate and the
masslessness of the lightest SM neutrino.

In section 5.2 we specify the structure of couplings of the HNLs to the inflaton
and SM particles, and its relation to neutrino mass generation. In section 5.3 we
discuss constraints on the couplings such that the lepton asymmetry from inflation
is transferred to the SM particles without being washed out. It is shown how the
resulting baryon asymmetry determines the dark matter asymmetry and its mass.
The relations between light v properties and the HNL couplings are presented in
section 5.4, and consequent predictions for the phenomenology of the HNLs. In
section 5.5 we compile the experimental limits on the light singlet s, and identify
a region of parameter space where the KOTO anomaly can be reconciled with DM
direct detection limits. The latter are considered in detail in section 5.6, where we also
treat the DM self-interactions and discuss possible DM indirect detection constraints.
The technical naturalness of our setup is demonstrated in section 5.7, followed by

conclusions in section 5.8. In appendix 5.A we derive the exact width for HNL decay
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into different-flavor charged leptons, which was given only in approximate form in

previous papers.

5.2 Model

We assume the inflaton carries lepton number 2 (more correctly, B — L = —2 since
B — L symmetry is not broken by electroweak sphalerons), and couples to Ny flavors

of quasi-Dirac HNLs as
gd)gﬁNL’iN[C/’i + g¢¢NR,iN]C%,i + H.c. (52)

Ny is a free parameter; hereafter we take Ny = 3, which is the minimal number
needed to get dark matter and the observed neutrino properties, through consistent
assumptions about the flavor structure of the neutrino sector that will be explained

presently. The HNLs couple to the SM lepton doublets as
Uu,ijNR,iHLj (5-3)

At energy scales relevant for inflation and below, it is consistent to assume that the
only source of lepton number violation is through a small Majorana mass €, for the
standard model neutrinos, which could be generated through the seesaw mechanism,
by integrating out very heavy right-handed neutrinos, with mass M, above the scale

of inflation. In the basis vy, Nj, Nr, the neutrino mass matrix is

U, v 0 MN (54)

where v = 174 GeV is the complex Higgs VEV. We assume that ¢, has a flavor

structure that is aligned with the couplings in (5.3) as

€y = [y 771:577V (5'5)
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where [i, is a scale that we will constrain below. This alignment ensures the stabil-
ity of dark matter against oscillations with its antiparticle, if 1, has one vanishing
eigenvalue. In order to justify the ansatz, we will show that it is radiatively stable,
due to an approximate SU(3) flavor symmetry for the NV; leptons, that is broken in
a minimal-flavor-violating (MFV) [1] manner, solely by the matrix 7,. For exam-
ple, the flavor-diagonal couplings of the inflaton to NV; could be perturbed by a term
proportional to 7,n1 without spoiling the viability of the framework.

By solving for the eigenvalues of (5.4), one finds that the light neutrino part €,

induces a small Majorana mass matrix for the V;’s of the form

1—}2

T
(SM = M—]2V77,/ €1, (56)

that leads to N;-IV; oscillations. These are mildly constrained by the need for approx-
imate lepton number conservation during the generation of the lepton asymmetry

(apart from electroweak sphalerons), as we consider below.

5.3 Nonstandard leptogenesis and DM relic density

During inflation ¢ gets an asymmetry determined mostly by the couplings in Eq. (5.1)
and to a smaller extent by the initial conditions of the inflaton, which provide the
source of CP violation in the Affleck-Dine mechanism [13]. The details of asymmetry
generation at the level of ¢ are exactly the same as discussed in Ref. [14]. The
difference in the present work is that the ¢ asymmetry is transferred to the HNLs by
the decays ¢ — NN from the interaction (5.2). Whether reheating is perturbative
or proceeds by parametric resonance is not crucial to the present discussion, where
we assume that the created asymmetry results in the observed baryon asymmetry.
This can always be achieved by appropriate choice of the L-violating parameter )\,

for example.?

2This observation is consistent with the results obtained by including the effects from nonlinear
preheating dynamics on the generation of matter-antimatter asymmetry in Affleck-Dine inflationary
scenarios [21].
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5.3.1 Sharing and preserving the asymmetry

For simplicity, consider the case where g, is sufficiently small so that perturbative

decays are the dominant mechanism for reheating, with reheat temperature of order
TR ~ g¢(m¢mp)1/2 ~ 10—3g¢ mp (57)

using the typical value my ~ 107 mp identified in Ref. [14]. Even for rather small
values g, < 0.01, this is well above the weak scale. Therefore it is easy for the HNLs to
equilibrate with the SM through the interaction (5.3), which transmits the primordial
B — L asymmetry to the SM. The dominant process is N; (inverse) decays, whose rate
is Ty = 107227 22| for T = 100 GeV. Demanding that this comes into equilibrium
before sphalerons freeze out, we find the lower bound |n,| = 4 x 1077 on the largest
elements of 7, ;;.

We demand that no L-violating effects from the operator N'¢* in Eq. (5.1) ever
come into equilibrium, since these would wash out the asymmetry. Above the scale
mg, this comes from ¢¢p — @*¢* scatterings with rate ~ N7, that comes into
equilibrium at T' ~ XN?mp ~ 10~**mp, using the typical value X ~ 10~*2 found in
Ref. [14]. This is far below my, hence it never comes into equilibrium. Instead the
principal effect of A’ is through the effective operator (N gé / mg)(N N¢)* generated by
integrating out the inflaton. This has a rate going as )\’2g§,m;16T 17 that goes out
of equilibrium at 7' ~ [m}/(X?g§m,)]"/15. Demanding that this remains below the

reheat temperature gives an upper bound on g4,

- 17/23 /4 \ 2/23
< | — — = 0. .
s (1) 7 (1) 200 o8

which is not prohibitive.

The only other L-violating process operative at scales below that of inflation is
N-N oscillations induced by the M matrix elements (5.6). These would wash out the
B and L asymmetries if they were in equilibrium before sphaleron freezeout. The rate

of L violation is not simply the same as the oscillation rate ~ 1/§M, because flavor-
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nondiagonal interactions of N with the plasma can measure the state of the oscillating
N-N system before it has time to oscillate significantly, damping the conversions of
N — N. The effective rate of L violation can be parametrized as |23, 24]

M25M?
MZM? 4+ T212, " ™

Lar (5.9)

where T, is the rate of processes that destroy the coherence of the N-N system. 3
For T > Tgw ~ 100 GeV, (inverse) decays are dominant, but these quickly go out of
equilibrium as T falls below the mass of the Higgs boson. At temperatures somewhat
below Tiw, the elastic (but flavor-violating) NL — N L scatterings mediated by Higgs
exchange dominate, with T, = Ty ~ n*T°/m}. On the other hand, sphalerons are
safely out of equilibrium since they are exponentially suppressed by the Boltzmann
factor involving the sphaleron energy, which is above the TeV scale. Therefore it is
sufficient to show that the rate (5.9) is out of equilibrium in this case, to establish
that the washout process is innocuous. In other words, the following relation must

be satisfied
FAL M]2\75M2 m;ll mp
H 773 Tgw

<1 (5.10)

In section 5.4 we will show that the light neutrino mass matrix m,, is approximately
equal to €,, which is generated by integrating out heavy neutrinos though the usual
seesaw mechanism. This allows us to rewrite the HNL Majorana mass matrix 6 M in
Eq. (5.6) as M ~ v?n2 m, /M% ~ U2 m,, where Uy; is the mixing angle between HNLs
and light neutrinos. Plugging the latter in Eq. (5.10), the 7,-dependence disappears
and we can get a lower bound on the HNL Dirac mass, My 2 4 MeV. For higher
values of My, the lepton-violating effects of M are therefore too small to affect the
baryon asymmetry, but they can be observable in collider experiments that we will
discuss in section 5.4.

DM-antiDM oscillations for asymmetric DM have been considered in Refs. |25, 26].

They can potentially regenerate the symmetric component of the DM and lead to its

3We will introduce an additional elastic scattering channel mediated by a singlet scalar s below.
These flavor-conserving interactions are not relevant for decohering the N-N oscillations [25].
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dilution through annihilations. We avoid these constraints by the relation (5.6) that
causes 0 M to vanish when acting on the N' DM state.

5.3.2 DM asymmetric abundance and maximum mass

The relic density for fully asymmetric DM is determined by its chemical potential,
which in our framework is related to the baryon asymmetry in a deterministic way,
since the DM initially has the same asymmetry as the remaining two HNLs. The
relation between the DM and baryon asymmetries can be found by solving the system
of equilibrium constraints, similarly to Ref. [27]. We generalize their network to

include the extra HNL species, that satisfy the equilibrium condition

IN = Hn + L (5.11)

from the 7, interactions. Eq. (5.11) only applies to the unstable HNL species since

N’ is conserved, and its chemical potential is fixed by the initial lepton asymmetry

The factor of 6 comes from having three HNL species, each with two chiralities. We
recall that Lg is determined by the inflationary dynamics, and is especially sensitive
to the value of the coupling \'. It is assumed that A\’ has been adjusted so that Lg
takes the value needed to yield the observed baryon asymmetry, which we relate to
Ly in the following.

Repeating the analysis of [27] we find the following equilibrium relations (setting
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the W boson potential uy = 0 since T' > Tgrw):

L= Fpu, + pn + 2w
= %/’LV + 2’[,LN/

B = —é,ul,
fhuy, = —glvs  Hh = 55/

[N = 31l (5.13)

where L, B are the respective total chemical potentials for lepton and baryon number,
1, is the sum of light neutrino chemical potentials, and py, is that of the Higgs. Since
B — L is conserved by sphalerons, we can relate these to the initial lepton asymmetry
Lo = 6un = (L — B): p, = %MN/, B = —%g,uN/. This allows us to determine the

maximum mass of N’ that gives the observed relic density:

B
Nt

Qe
—m, =4.5GeV (5.14)

my = My <
N N > Qb

using the values Q. = 0.265 and €, = 0.0493 from Ref. [28] and the nucleon mass m,.
The inequality (5.14) is only saturated if the symmetric DM component is sup-
pressed to a negligible level. Otherwise a smaller value of m - is needed to compensate

the presence of the symmetric component. We turn to the general case next.

5.3.3 Dark matter annihilation and relic density

In order to reduce the symmetric component of the DM to avoid overclosure of the
Universe, an additional annihilation channel is needed. The ¢-channel Higgs-mediated
annihilations N'N’ — LL are not strong enough, leading to {(ov) < 10732 cm?/s, in
light of the bound |n,| < 1073 to be derived in section 5.4 below. We need an

additional particle with sufficiently strong couplings to the DM.

The simplest possibility is to introduce a singlet scalar s, with interactions
GsSN;N; + }lks(sz — %) + A\psh?s? (5.15)
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that at tree level are diagonal in the N; flavors, and lead to mixing of s with the
Higgs h. We will consider two cases: (i) m, < mpys so that N'N’' — ss is allowed;
(ii) ms 2 2mps so that there can be mild resonant enhancement of the s-channel
cross section for N’ N’ annihilation to standard model particles, through the mixing
of s with the Higgs boson. For the nonresonant case, the s-channel amplitude for
N'N" — ff, where f is the most strongly coupled kinematically accessible final
state, is of the same order of magnitude as that for N’-nucleon scattering, which is
strongly constrained by direct detection (section 5.6), making this contribution too

small to be sufficient for annihilation. We will see that this limitation can be overcome

by resonant enhancement without requiring too much fine tuning of masses.

5.3.3.1 N'N’ — ss annihilation

We first consider the case when m, < mys. The cross section for N'N’ — ss is p-wave
suppressed. Parameterizing the Mandelstam variable as s = 4m%, (1 + €) we find in

the limit my; < mpys and Ay < g, that

3gs €

64 mA, (1 + €)?

o~

g

(5.16)

(this is an analytic approximation to the exact result, which is more complicated).

Carrying out the thermal average [29] with x = my/ /T gives

(o) = wi—iz?\ﬂF(m) (5.17)
x o e \¥?
F@) = o /0 de (1—+6) Ki(2evT T 6) (5.18)

>~ (.058 — 0.002x + 3.25 x 107°2%2 — 1.87 x 10~ "2*

which is a good numerical approximation in the region 15 < z < 70. For values
x ~ 20 typical for freezeout, F = 0.03.
To find the relic abundance including both symmetric and asymmetric compo-

nents, one can solve the Boltzmann equation for their ratio r given in Ref. [30], which
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Figure 5.1: Contours of DM relic density Qxn' = pnv/perie in the plane of DM mass
versus coupling to singlet, for three relations of singlet mass m, to the DM mass
mys. Left: my < mys, with NN’ — ss annihilation. Center: m, = 2.6 my with
N'N’ — s* (virtual s) annihilation. Right: like center, but with m, = 2.8 my,. The
heavy contour labeled 0.265 corresponds to the observed relic density.

depends upon (ov). Then as shown there, the fractional contribution of N’ to the

energy density of the Universe is

1
QN/ZE’I]BTI’LN/ i ( +T) (519)
Pait \1 — 7

where 7 = 8.8 x 107! is the observed baryon-to-entropy ratio, s is the entropy
density, and € = ny/np = 123/112 in our model (see below Eq. (5.13)). Using Ref.
[31], we checked whether the DM annihilation cross section might be Sommerfeld-
enhanced since mg < myr, but this was a negligible effect in the relevant parts of
parameter space that we will specify below. In Figure 5.1 (left) we plot contours of
Qpv, the fractional contribution of the DM to the energy density of the Universe,

2 0.14 the maximum value in Eq. (5.14) is

~Y

in the plane of my+ versus g,. For g
achieved, whereas for lower gy, the symmetric component abundance is increased
(while the asymmetric abundance remains fixed), corresponding to lower DM masses.

In the opposite regime A\, > g,, the annihilation NN’ — ss could in principle be
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dominated by the s-channel diagram, giving the cross section

(ov) = L <3A5”595)2 Fla), (5.20)

T\ 8m3,

in the case where my < my/, with

_ T 0o 63/2
F(z) = /o dEmKl(Zfﬂ\/l +€) (5.21)

For z ~ 20, F' = 0.01 leading to the requirement that g; must be significantly larger
than in the previous case to suppress the symmetric DM component. Such values are
excluded by direct DM search constraints to be discussed in section 5.6 below. Hence
there is no practical enlargement of the allowed parameter space from including the

s-channel contribution.

5.3.3.2 N’N’ — SM annihilation

In the other case where m, > my, the total annihilation cross section for N'N’ into
wrp~, wta~, etc., through the Higgs portal, does not depend upon the couplings
of s to the final state particles nor on the number of decay channels, in the limit
of the narrow-width approximation for the intermediate virtual s. In this limit we
can approximate the Breit-Wigner distribution for the s propagator as a ¢ function,
(7/T5)8(s—m?) |s is the Mandelstam variable|, and the couplings in the singlet decay
width I'; cancel against those in the annihilation amplitude. One can think of this as
the cross section for N’N’ — s, which one integrates over the § function when doing

the thermal average. In this way we find

g -1z
2m3%,  Ks(x)?

(ov) 2 K (2zy) (5.22)

where © = my//T as usual, and y = my/(2mpys). It turns on steeply above the
threshold y = 1 for resonant enhancement, and then quickly decays because of the
Boltzmann suppression for y > 1. Nevertheless we find that it can be large enough

for values of y < 1.3 — 1.4 that are not finely tuned to be close to 1, as we show in
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Figure 5.1 (center and right plots).

We will see that for such parameter values, the t-channel exchange of s for N’
scattering on nucleons can still be consistent with direct detection constraints. In
this process, the suppression by the small coupling of s to nucleons (through the
singlet-Higgs mixing angle ;) is not canceled by anything, in contrast to the s-channel

resonance.

5.4 Neutrino properties and HNL constraints

Below the scales of electroweak symmetry breaking and the HNL mass My, the light

neutrino mass matrix gets generated,

m, = e, — M’
v 5
oM = 272 e € (5.23)
N

However |n,|v/My < 1 is the magnitude of the mixing between the light neutrinos
and the HNLs, as we will discuss below, so that the correction 0M’' < €, can be
ignored. We reiterate that €, is generated by the usual seesaw mechanism, integrating
out sterile neutrinos whose mass is above all the other relevant scales in our model.

Recall that the stability of the dark matter N’ requires 7, to be a matrix with
one vanishing eigenvalue, which implies that the lightest neutrino is massless. This
is an exact statement, not relying upon the neglect of M’ since ¢, and M’ are
simultaneously diagonalizable by construction. This is a consequence of our MFV-
like assumption that 7, is the only source of flavor-breaking in the HNL /neutrino

sector.

5.4.1 Explicit n, and HNL mixings

Using Eq. (5.5) we can solve for 7, in terms of the neutrino masses and mixings,

D 1/2
m =0 (M_V> U1;1\14Ns (524)
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where D, is the diagonal matrix of light v mass eigenvalues, and Upyng is the 3 x 3
PMNS matrix. The orthogonal matrix O is undetermined since the N; are practically
degenerate; for simplicity we set it to 1 in the following. Since we have assumed that

one eigenvalue is vanishing, the other two are known,

Dyii =0, Dyg = \/ Am%p D,33 = \/ Am:zﬂ’ NH

D,,33 = O, DVQQ = Am§2, Dyll = \/Am§2 — Am%l, IH (525)

for the normal and inverted hierarchies, respectively.
The light neutrinos mix with N;, with mixing matrix elements given by

T —
nyfi v

Up =
14 MN

(5.26)

where ¢ = e, u, 7 and ¢ = 1,2,3. Constraints on Uy; arise from a variety of beam
dump experiments and rare decay searches, summarized in Refs. [16, 32|. As we now
discuss, the applicability of these limits depends upon whether the scalar singlet is
heavier or lighter than the HNL’s, since this determines the dominant decay modes

of the latter.

5.4.1.1 Unitarity constraints for m, < My case

If mg < My, then many of the beam-dump and other limits on the mixing angles
(5.26) versus my, shown in Figure 5.2, cannot be directly applied to our model
because they assume that N decays are mediated only by the weak interactions,
through N-r mixing, whereas we have a more efficient decay channel N — vs, from
the g,sN;N; coupling and mixing. All of the bounds that rely upon detecting visible
particles from the decay will now be sensitive to the singlet mass m, and mixing
angle 6, with the Higgs, and not just My. To modify these limits appropriately
would require a dedicated reanalysis of each experiment, which is beyond the scope
of our work.

However we can still make a definite statement about how weak the limit on N-v
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mixing could possibly be, even in the case where the singlet escapes the detector
unobserved, because electroweak precision data (EWPD) are only sensitive to the
reduction in the SM couplings caused by the mixing, that we can readily calculate.
This is most straightforward in the basis of the mass eigenstates, where 7, is diagonal.
Then the mass matrix (5.4) is block diagonal, and there is a mixing angle §; connecting
each pair of light and heavy mass eigenstates. The relation between the flavor states

(labeled by subscript a) and the mass eigentstates (labeled by i) is

Vo = (UPMNS)ai COS 61 Vv, = NM' v; (527)

In Refs. [33, 34|, the matrix N,; is introduced in this way to parametrize departures
from unitarity in the lepton mixing matrix, and the magnitudes of NNT are con-
strained by various precision electroweak data. The elements of such a matrix can be

written in our model as

0ap — Z(UPMNS)M' sin’ 6; (UPMNS);‘[ﬂ (5.28)

Wo— NG
NN = ‘ZNMNZ.B

Since most of the constraints on physical observables are often expressed in liter-
ature in terms of the Hermitian matrix e,4, defined in N = (1 — ¢) Upuns [34], we

have that the predicted e,5 turns out to be *

Z(UPMNS)M‘ sin” 6; (UPMNS)ZQ (5.29)

i

1
5&625

The most stringent limits on ,4 that can be applied to our model come from the

measurement of the W boson mass, which depends upon the combination [34]

SM 1 1 1/4 S?VM
My ~ MM [(NN)o(NNT) ] =
w

= MEM (14 0.20 (2 + €p1)) (5.30)

where the SM radiative corrections, parametrized by the variable Ar = 0.03672 [35],

4The matrix ¢ defined here is called 1 in Ref. [34].
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are included in the computation; they enter through the weak mixing angle [33],

1 2v2
== |1—4f1- \f”‘ju + AF) [(NN1) o (NNT) ] (5.31)
2 G, M2
Using the experimental and SM values of My, in Eq. (5.30), we obtain a 95% C.L.
upper bound on (g + £,,) < 2.64 x 1072,
In our framework, the mixing angles 6; in Eq. (5.29) can be computed explicitly,

from the eigenvalues of n,, up to multiplicative factors,

;U
0, = .32
My (53)

where 7; is the eigenvalue of 7, associated with the eigenvector that couples to IV;.
For the normal hierarchy, we label 7 = 0 for the massless state, while for inverted
hierarchy 73 = 0. Using (5.24), we can solve explicitly for n, in either mass scheme,
up to the overall proportionality controlled by the parameter p,. Comparing the
combination (ge. + €,,), computed from Egs. (5.29) and (5.32), to the upper limit
found above from My, yields lower bounds on the scale ji, in the two mass hierarchy
choices, and upper bounds on the corresponding matrices 7, and the mixing angles
between HNLs and the light neutrinos. Defining U, = (3, |Us|?)/2, we find for the

normal mass hierarchy

4. 2

fi, > 5.9 keV x (%ﬁ) : NH

0 0.66 —0.32 - 0.291

M
T 10—3 . . N
m, | < 0 0.72—0.05 2.14 “ = aov

0 —0.70 — 0.041 1.91

U, <0.031, U,<0.087, U, <0.078 (5.33)

The dependence on My cancels out in the bounds on Uy;. The corresponding results
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for inverted hierarchy are

4. 2
5 Ge\/) 7 H

My
1.57 1.06 0
M
T -3 . . N
<1073| _075 — _ _MN
n, | 0.75—0.177i 1.02—0.127i 0 |x (4.5 Gev>
0.75 —0.157 —1.23—0.10i 0

fi, > 13.6 keV x (

U, <0.073, U, <0.050, U, < 0.056 (5.34)

In each case the column of zeros corresponds to the absence of coupling to the DM
state N'; hence we identify N’ = N; for the normal hierarchy and N’ = N3 for the
inverted hierarchy.

We emphasize that the above bounds are robust, but might be strengthened,
depending on the choices of m, and 6,, by reanalyzing limits from other experiments
to take into account the observation of charged particles or neutral hadrons from
s decays following N — vs. Hence the true limits are expected to lie somewhere
between the (brown) EWPD line shown in Figure 5.2 for the normal (left) and inverted
(right) hierarchy cases, and the more stringent limits that may arise from the other
(typically beam dump) experiments.

The scale ji,, determines how the couplings y, = kn, of the light neutrinos to the
superheavy Majorana neutrinos vy (as restricted by our MFV-like assumption) are

172 Perturbativ-

enhanced relative to 1, by a proportionality factor, k = (M, ji, /0?)
ity of , limits & < 0.5 x 103, hence the scale of the heavy neutrinos is bounded by
M,, < 10 GeV for the value of ji, in Eq. (5.33). This is not restrictive, and can
be made consistent with our assumption that the heavy neutrinos do not play a role

during inflation or reheating, if the reheat temperature is sufficiently low.

5.4.1.2 Laboratory constraints for m, > My case

If mg > My, only three-body decays of HNL’s are available, and they are dominated
by weak interactions, induced by mixing of N; with the light v’s. There is also a

3-body decay N — vff by virtual s exchange, but this is highly suppressed by the

173



1072 . . . : : : : : 1072

10-0 L . EWPD 10-3

Belle 4
DELPHI

~
~

1074 4 1074

1075 ¢

1075 \

10—6 10—6

‘Um‘Q

1077 1077

10-% 108 Py

10~ 1079 L

1010 o) I Sx- I I I I I
. . 1 15 2 25 3 35 4 45 5
My [GeV] My [GeV]

10—10

Figure 5.2: Summary of constraints on HNL mixing with electron neutrinos, over mass
range of interest for our model (left: normal hierarchy, right: inverted hierarchy).
Solid and dot-dashed black and red curves show the model’s predictions for Ues (Ue1)
(solid curves) and U,z (Ue) (dot-dashed) in the normal (inverted) mass hierarchy,
for two choices of the parameter i, that determines the mixing through Eqs. (5.24,
5.26). U =0 (Ueg = 0) for the normal (inverted) hierarchy since Ny = N’ (N3 =
N’) denotes the dark matter HNL. Laboratory constraints are taken from Ref. [16].
Although a more recent and comprehensive analysis of these bounds in the MeV-GeV
mass range was made in Ref. [36], we noticed no appreciable difference for My > 0.1
GeV. We also do not display the preliminary limit from the NA62 experiment [37],
which would be the strongest limit for My between 0.15 and 0.45 GeV if confirmed.
Sensitivity regions of future experiments FCC-ce [38], DUNE [39] and SHiP [40] are
bounded by dashed curves.

small scalar mixing angle 6, and the couplings m/v to the Higgs. In this case, all of
the constraints on N-v mixing shown in Figure 5.2 unambiguously apply. For masses
My > 2 GeV, the most stringent limit comes from searches for Z — Nv decays by
the DELPHI Collaboration [41]. Defining again U, = (3, |Ux|?)/?, at our largest
allowed mass My = 4.5 GeV, the bound is

1/2
U= (Z Uf) < 0.0039, (5.35)
J4

since DELPHI was sensitive to the total rate of NV; production from Z — N;v, decays,
times the total (semi)leptonic rate of N; decays.

Using Eqgs. (5.24, 5.26), the bound (5.35) can be approximately saturated if i, =
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Figure 5.3: Left: minimum allowed mass scale fi,,(My), predicted by our model for
the normal mass hierarchy case, compatible with current constraints on the HNL
mixings to light neutrinos [16]. The shaded gray region is excluded. Right: the ratio
r showing how the maximum allowed mixings (5.38) at My = 4.5 GeV are rescaled
at lower M.

5.7(9.8) MeV for the normal (inverted) hierarchy. Taking the PDG central values of

the neutrino masses and mixings [35], we find

0 2.1 —1.0-0.94
=107 0 23-02i 6.9

0 —22-0.14 6.1
U, =0.00099, U, =0.0028, U, =0.0025 (5.36)

at My = 4.5 GeV for the normal hierarchy, and

58 3.9 0
nf 2107 | —28—-06i 38—04i 0
298 —0.6i —46-—04i 0

U, = 0.0027, U, =0.0019, U, =0.0021 (5.37)

for the inverted hierarchy. In each case the column of zeros corresponds to the absence
of coupling to the DM state N’; hence we identify N/ = N; for the normal hierarchy
and N’ = Nj for the inverted hierarchy.

175



For the lighter mass range My ~ (0.4 — 2) GeV, beam dump experiments such as
CHARM |[42] and NuTEV [43] give the strongest limits for electron and muon flavors,
roughly U, Uy < 6 x 1074(My/GeV) 114 The largest allowed magnitudes of the

~Y

HNL mixings Uy; can be expressed as a function of My,

0 0.00083 0.00054
[Usil 2 r(My) | 0 0.00090 0.0027 (5.38)
0 0.00087 0.0024

focusing on the normal hierarchy case. We determined the minimum allowed value of
fi,, for lower My, and the consequent scaling factor 7(My) = (5.7 MeV /min(f, ))"/?,
from the limits summarized in figures 4.10-4.12 of Ref. [16]. These limits were rescaled
and combined to account for the fact that our model has two HNLs, each of which
mixes with all of the light flavors rather than just one N; that can mix with only
one flavor at a time. The functions min(f,) and r(My) are plotted in Figure 5.3.
The various constraints on the HNL mixing with electron neutrinos in the mass range

relevant for our model are shown for two choices of pi,, in Figure 5.2, including future

constraints from FCC-ee, DUNE and SHiP.

5.4.2 N-N oscillations

As mentioned in section 5.3.1, the L-violating mass term dM causes N-N oscillations
at a rate that is too small to destroy the lepton asymmetry in the early Universe,
but fast enough to possibly be detected in laboratory searches. In the scenario where
ms < My, this effect cannot be observed because the decay products of N; — vt u~
and N; — vutp~ differ only by having a neutrino versus antineutrino in the final

states. However if m; > My, the situation is more interesting. For the values of i,
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and 7, in Eq. (5.36), the largest eigenvalue of 6M is given by °

2
SM =31 x10"%eV (2 Gev) ,

i (5.39)

It was recently shown by Ref. [44] that this is a promising value for inducing observable
N-N oscillations at the SHiP experiment. These would be seen by production of N¢+
in a hadronic collision, followed by semileptonic decays N — N — (*7 (where 7
represents a generic hadron). The smoking gun is the presence of like-sign leptons in

the decay chain, that can only occur if N oscillates to N within the detector.

5.4.3 Weak HNL decays

In the case where my, > My so that N; — vs decays are blocked, the lifetime of
the unstable N; leptons is determined by weak decays. These can be 2- or 3-body,
N; — ¢~ qq (with ¢qq hadronizing into a meson) and N; — v¢*¢~ by W and Z exchange,
due to mixing of N; with the active neutrinos with mixing angles U}, = —Uy,;. Then
the decay rate is of order S

Ty, ~ ZE: V[ G My Uei1|9§;§\4N (5.40)
This gives a lifetime of ~ 1073 — 107*s for My ~ 1GeV, making such N; decays
harmless for big bang nucleosynthesis (BBN) or the CMB.

More quantitatively, we have evaluated the partial widths for N; — vy, N; —
hPv, N; — ht¢=, N; — 3v, N; — v{t¢~, including the hadronic final states with
R =70 n, 0, p° bt =7, KT pt, DT as computed in Ref. [46] and [47]. © Focusing
on the normal hierarchy case, we use the mixing matrix given by Eq. (5.26) with [,

shown in Figure 5.3, that leads to different lifetimes for the two unstable HNLs N,

and N3. The lifetimes are plotted in Figure 5.4, along with decay lengths in the case

>The eigenvalue of dM computed in Eq. (5.39) is the maximum value allowed by current exper-
imental constraints because M o ji; ! from Egs. (5.6, 5.24) and the minimum of /i, is reached at
Mpy = 4.5 GeV as shown in Figure 5.3.

6The formula for the decay width of N; — v/ ¢; found in the literature (see Refs. [46, 48])
assumes that my, is negligible compared to my,. This is not as good an approximation for the case
b1 = p, by =7 as for {1 = e, lo = . We provide the exact formula in Appendix 5.A.
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Figure 5.4: Top: Minimum lifetime (left) and decay length (right) of the HNLs N, and
N3, for the case of normal mass hierarchy. Upper curves are for mass My < my, lower
curves for My > my, which determines whether weak decays or N — v s dominates.
Decay length assumes energy F = 25 GeV, appropriate for SHiP experiment. The
shaded regions are excluded. (The wiggles in the mass range 0.2 < My < 0.4 GeV
come from the E949 bound [45] present in figure 4.11 of Ref. [16], which also appear
in Figure 5.3.) Bottom: branching ratios for Ny (left) and N3 (right) into various
final states involving photon, hadrons, light neutrinos or charged leptons, for the case
of weak decays, namely My < ms.

of HNLs with energy E = 25GeV that would be relevant for the SHiP experiment.
For My < 0.3GeV, the lifetimes start to exceed 1s, which for generic models of HNLs
would come into conflict with nucleosynthesis. In our model, this need not be the case
since the HNL abundance is suppressed by N;N; — ss annihilations. Then it is the
singlet that should decay before BBN, which generally occurs as long as mg > 2m,.

In Figure 5.4 the branching ratios for Ny and N3 to decay into the various final
states (summing over flavors within each category) is also shown. Leptonic final states

dominate for My > 2 GeV, while hadronic ones dominate for lower My.
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5.4.4 Entropy and energy injection by late N decays

If the Dirac HNLs N, and N3 dominate the energy density of the Universe and
are sufficiently long-lived, which may happen if the two-body decay N;3 — vs is
kinematically forbidden, a large amount of entropy may be injected by the decay
of these particles after freezeout [49]. As a result, the produced dark matter relic
abundance and baryon asymmetry can be diluted. Moreover one should take care
that injected hadronic and electromagnetic energy does not disrupt the products of
BBN.

In our model, since the freezeout of N, and N3 occurs when they are nonrela-
tivistic, the number density of these particles are highly suppressed. Therefore, the
entropy and energy produced by the N, 5 decays is negligible in terms of its cosmolog-
ical impact. We illustrate this with an example; consider My = 1 GeV, and take the
freezout temperature to be Ty ~ My /20 ~ 0.05 GeV, for which the number of degrees
of freedom in the plasma is g, = 10, and the decay rate is I' = 0.01s™!. The thermal
number density of the HNLs at T = T} is ny = 4 (MyTy/(27))3/? exp(—My /T}),
and its ratio to the entropy density at decoupling is denoted by ry = nx/s. Then
Ref. [49] shows that the entropy injected by HNL decays in this case is

3/4
o2 g, 1/3 4/3
S%<1+3( T g) (rav m) ~144x107° (5.41)

(MpT)2/3

where S = 1 corresponds to the limit of no entropy production. This example shows
that even when the lifetime is much longer than 1s, the abundance is too small to
create any cosmological problem.

Previous studies show that even for decays as late as 100s, GeV-scale particles
are only weakly constrained by BBN. Ref. [50] recently studied BBN constraints on
models with late-decaying light particles, of mass up to 1 GeV. It shows that there are
no constraints on electromagnetic injection for lifetimes less than 10*s, since nuclear
photodissociation processes are suppressed at earlier times. Similarly, Ref. [51] finds

no significant bounds from hadronic injections for GeV-scale particles decaying earlier
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Figure 5.5: Diagrams leading to y — ey and p — 3e from mixing of HNL’s with the
light neutrinos.

than 100s.

5.4.5 Lepton flavor violation bounds

The mixing between light neutrinos and HNL’s can lead to rare lepton-flavor violating
processes, analogous to the well-studied case where TeV-scale vg’s are responsible for
the seesaw mass generation [52-57|. The decays pu — ey and pu — 3e are induced by
the digrams shown in Figure 5.5. The most constraining process currently is p — e,

which has a branching ratio of [58]

M4
pe M4

3 0em
327

em

BR(p — e7) UMU; M2 INNT|? (5.42)

where e, is the electromagnetic fine structure constant and |[NNT|,. =|>. N, mNiU
with N,; defined in Eq. (5.27). For the case of normal neutrino mass hierarchy, our
least restrictive bound based on EWPD, Eq. (5.33), leads to | Y, U, U%5| <1x 1073,
and the prediction that BR(u — ey) < 2.2x 107, This is still well below the current
experimental bound of 4.2 x 107! set by the MEG experiment [59)].

From Ref. [60] we find the branching ratio for p — 3e in terms of x = M%/Mj, <

2
(0.6 In*z — 0.2 Inz +2.2)

BR(u = 3¢) = 15 o inT oy 167T2 sin? Oy ‘Z UiaUei

<1.6x107" (5.43)
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where the second line is the prediction using the value | Y, U,;U%| < 1 x 107° men-
tioned before. The experimental limit BR(u — 3e) < 1x 1072, set by the SINDRUM
experiment [61], is weaker than that of the radiative decay.

Although the lepton-flavor-violating processes currently do not constrain the model
better than EWPD constraints, experimental improvements could change this in the
coming years. For example the Mu3de experiment may eventually probe pu — 3e
down to the level of 107'® branching ratio [62]. Moreover the process of uN — eN

conversion in nuclei is expected to yield interesting limits in upcoming experiments,

including Mu2e [63] at Fermilab and COMET [64] at KEK.

5.5 Constraints on the singlet

In recent years there have been intensive efforts to constrain the possible existence of
light mediators connecting the SM to a hidden sector, the scalar singlet with Higgs
portal being a prime example. The parameter space of ms and 65 (the singlet-Higgs
mixing angle) is constrained by a variety of beam-dump, collider and rare decay
experiments, and by cosmology (big bang nucleosynthesis), astrophysics (supernova
cooling) and dark matter direct searches. A large region of parameter space with
0, < 1073 and m, < 10GeV remains open, and parts of this will be targeted by
the upcoming SHiP experiment [16]. In Figure 5.6 we show some of the existing
constraints, reproduced from Ref. [70].

Opv and set

The KOTO experiment has searched for the rare decay K, — w
a new stringent upper limit of 3 x 1072 on its branching ratio [71, 72]. Recently
four candidate events above expected backgrounds were reported [20], far in excess
of the standard model prediction (BR = 3 x 107 [35]). These could potentially
be explained by the exotic decay mode K — 7's, if s is sufficiently long-lived to
escape detection, or if it decays invisibly. Such an interpretation has been previously
considered in Refs. [73-76]. In Figure 5.6, the 1o and 20 regions estimated in Ref.

[74] for explaining the KOTO excess are shown in blue. Parts of these regions are

excluded by other experiments, notably NA62 77| and E949 [66], but a range around
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Figure 5.6: Constraints on a light singlet mediator, in the m4-6s plane for the case
ms < mys. The four plots consider different values of the DM mass my: = 1.5, 2.5,
3.5, 4.5 GeV, for which the direct detection constraints (black dotted line) differ; all
other constraints are the same. The dark blue regions are favored at 1o and 20
for the KOTO anomaly. The red, cyan, green and brown regions are excluded by
CHARM [65], E949 [66], LHCb [67] and BaBar experiments [68|, respectively. The
violet and light-green regions are excluded by BBN [69] and supernova data [70].
Sensitivity projection for the SHiP experiment is indicated by the dashed blue-gray
boundary. The experimental bounds, along with the projected sensitivity, are taken
from Ref. [70].

ms ~ (120 — 160) MeV and 0, ~ (2 — 9) x 10~* remains viable.

The four plots in Figure 5.6 pertain to different choices of the DM mass my,
for the purpose of showing constraints from direct detection, that we describe in the
following section. It can be seen that the region favored by the KOTO excess events

is excluded by DM direct searches except for light DM, with my: < 2.5 GeV.
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Figure 5.7: Constraints on a light singlet mediator, in the mg-6; plane, for the case
mg = 2.6 mps. The experimental bounds, along with the projected sensitivity, are
the same as in Figure 5.6 and taken from Ref. [70]. The strongest direct detection
constraint derived for our model comes from CDMSlite IT experiment [78| and is
shown with the black dotted line.

5.6 DM direct/indirect detection and self-interactions

In general, the interactions of DM with nucleons versus with other particles are inde-
pendent processes, whose cross sections need not be related. In our model however,
both are mediated by exchange of the singlet s, so it is natural to consider them

together.

5.6.1 DM-nucleon scattering

The mixing of s with the Higgs boson leads to spin-independent DM interactions with

nucleons. In particular, the cross section for scattering on nucleons is

: 2
o gim3,my sin® 20, f2 ( 1 1 ) | (5.44)

Oar = -
SI 2 2
4 (myr +my) 02 \mj,  m?2

where m,, = 0.938 GeV is the nucleon mass, f,, = 0.30 is the relative coupling of the

Higgs to nucleons [79, 80|, m;, = 125 GeV is the SM-like Higgs mass, my is the singlet

183



mass and 6 is the s-h mixing angle. (Recall that v = 174 GeV is the complex Higgs
field VEV.)

The strongest constraints from direct detection, in the mass range my» < 4.5 GeV
predicted in our model, come from the experiments CRESST II [81], CDMSlite II 78]
and LUX [82]. In the future these limits will be improved by SuperCDMS [83]. In all
cases the sensitivity rapidly drops with lower DM mass because of the threshold for
energy deposition. The DarkSide experiment [84] claims limits below those mentioned
above, but their validity has been questioned in Ref. [85], and we omit them from our
analysis.

Recently Ref. [86] cast doubts on the robustness of direct constraints on light
dark matter in light of astrophysical uncertainties, especially that of the local escape
velocity, that has been revisited using Gaia data [87]. It is claimed that the 2017 cross
section bound from XENONIT [88] at DM mass 4 GeV is uncertain by six orders of
magnitude. We checked their results using DDCalc [89], finding only two orders of
magnitude uncertainty. More importantly, the astrophysical uncertainty on the more
relevant newer constraints is only a few percent (due to the much lower thresholds of
those experiments), hence irrelevant.

For a given value of DM mass my+, we can use the relic density constraint shown
in Figure 5.1 to determine the coupling gs. Then the predicted direct detection cross
section (5.44) leads to a constraint in the mgs-6; plane, that we plot as a dashed curve
in Figure 5.6 for the case my, < mps. As mentioned above, for larger values of my: the
direct detection constraint is stronger, and the region favored by the KOTO anomaly
is excluded.

2 2myr, the direct

~Y

For mg > mp/, and particularly in the region where my
detection constraints are shown in Figure 5.7 for the case considered in the center
panel of Figure 5.1, namely for m; = 2.6 mps. These bounds are much weaker than
those in Figure 5.6 for any value of the DM mass my: because of the relatively larger

assumed value of my, as can be seen from Eq. (5.44).
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5.6.2 DM indirect detection

Light dark matter models are typically constrained by indirect signals, like annihi-
lation in the galaxy or the cosmic microwave background (CMB), enhanced by the
relative large abundance of light DM. These signals are suppressed for asymmetric
dark matter, by the absence of the symmetric component with which to annihilate,
but DM accumulation in stars can provide significant constraints in the asymmetric
case. Our model provides for a continuum of possibilities between the purely sym-
metric and asymmetric cases, depending on the strength of the coupling g, when
N'N’ — ss is the dominant process, or a combination of g, and m, when s-channel
annihilation dominates (recall Figure 5.1).

However in our scenario there are several reasons for annihilation signals to be
suppressed at late times, even in the symmetric regime. For the case where N'N’ — ss
dominates, the cross section is p-wave, which significantly relaxes indirect constraints
because of the low DM velocity at times much later than freezeout [90]. An exception
can occur if the DM particles annihilate to form a bound state [91], which is s-wave,
and leads to much stronger CMB constraints than the p-wave process. However this
only occurs for relatively heavy DM, with mass = 250 GeV.

In addition, the p-wave process we consider from N’N’ — ff targets parameter
space with mg > 2mpy/, such that m, is not too close to the threshold 2my-. In this
case the indirect signal is further suppressed, due to the low DM velocity in galaxies,
v ~ 1073 ¢, since the phase-space average of the annihilation cross section samples
the resonant region much less than in the early Universe during freezeout. Indeed,
following Refs. [90, 92|, it is possible to estimate that for the values of g5 and my/
contained in Figure 5.1 (center and right plots) the maximum ratio between the DM
annihilation cross section today and that at the time of freezeout, given by Eq. (5.22),
is of order of ~ 107, which leads today to (ov) < 10737 cm?®/s. Such a value is well
below the most stringent indirect detection constraint for p-wave annihilating DM of
mass my S 4.5 GeV [90].

Another possible signal that does not rely upon DM annihilation with itself, but
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rather on its interactions with standard model particles, is the effect of DM accu-
mulation within stars. The most promising sites for capturing DM are neutron stars
(NS’s) because of their high density, which enhances the probability for DM particles
to be captured and accumulate in the center of the NS during its lifetime.

For purely asymmetric DM, there is no DM annihilation in the NS core, and
its accumulation may start to increase the star mass, destabilizing the delicate bal-
ance between the gravitational attraction and the Fermi pressure, and leading to the
gravitational collapse of the NS into a black hole [93-96]. However, this effect is
only relevant in the case of bosonic DM, where there is no compensating increase in
the Fermi pressure, leading to severe constraints on the DM-nucleon and DM-lepton
scattering cross-sections based on the estimated age of the oldest NSs observed so far
[96, 97]. These bounds do not apply to the present model because of the fermionic
nature of our DM candidate, and its GeV mass scale. For fermionic asymmetric DM,
the destabilization can occur only for DM with mass larger than the PeV scale and
having attractive self-interactions [98].

In the case where DM is partially or purely symmetric, which occurs for smaller
values of my+ and g, in our model (recall Figure 5.1), the accumulated DM inside the
NS core can annihilate and the annihilation products might thermalize, heating up
the star and contributing to its luminosity [99, 100]. The latter is also increased by
DM kinetic heating from multiple DM scatterings with the NS constituents, namely
neutrons, electrons and muons, and this effect is independent of whether the DM is
symmetric or asymmetric [99, 101|. However, the expected NS surface temperature
generated only by DM annihilation and scattering is too low to be detected by current
infrared telescopes. A future detection by, for instance, the James Webb Space Tele-
scope, would set the strongest bound on the DM-nucleon and DM-lepton scattering
cross-sections for DM masses below the GeV scale, which would constrain our model
[101].

Other limits on DM-nucleon interaction can in principle be derived from DM
capture by white dwarfs (WD’s) [94]. Similarly to NS’s, asymmetric DM accumulating

in the WD core might destabilize the latter and spark fusion reactions that precede a
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Type Ia supernova explosion [102]. However, in models where DM interactions with
SM particles occur only via a light scalar mediator mixing with the Higgs boson,
destabilization effects become important only for fermionic DM masses above 10°
GeV [103].

On the other hand, DM scattering and annihilation can heat up WD’s and con-
tribute to their luminosity. The difference between the WD and the NS case is
that very old WD’s with low surface temperature have been observed, in particu-
lar within the M4 globular cluster [104, 105]. Such observations have been used
to claim very strong constraints on the DM-nucleon scattering cross section, og; <
107*2—107" c¢m? for DM masses in the range 1072 —107 GeV [106, 107|. These limits
were derived based on the assumption that the DM density within the M4 globular
cluster is as high as 10*> GeV/cm?, which can make the DM contribution to the WD
luminosities as high as the observed values. However, as pointed out by Ref. [106],
the value of the DM density in globular clusters is highly uncertain and under debate.
Although values of 10® GeV/cm? could be expected if globular clusters form within
DM subhalos before falling into galactic halos [108], tidal stripping by subsequent
mergers [109] provides a very efficient way of depleting DM in these systems, leaving
them dominated today by just the stellar component [110]. The observation that the
present-day dynamics of globular clusters can be explained without the need of DM
suggests that these systems might form in molecular clouds in the gaseous disk of the
galaxy instead of in DM overdensities [111-113]. It is therefore reasonable to assume
that the DM density in the M4 globular cluster, which is about 2 kpc away from us in
the direction towards the galactic center, could be as low as in the solar neighborhood,
~ 0.3 GeV/cm?. This lower value would reduce the saturated DM heating luminos-
ity by approximately three orders of magnitude, well below the observed one, and
lead to no bound on the DM-nucleon scattering cross section at all. More promising
WD candidates might be found in globular clusters in dwarf spheroidal galaxies of
the Milky Way, where a significant amount of DM may have survived tidal stripping
[114].
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5.6.3 DM self-interactions

Dark matter can also interact with itself by exchange of the s, which is of interest for
addressing small-scale structure problems of collisionless cold dark matter (see Ref.
[115] for a review). Ref. [116] showed that the self-interaction cross section can be
at an interesting level for solving these problems, while obtaining the right DM relic
density, if both my and m, are light,

mar \3/4
(0.55](V;ev) , o/my =1cm?/g

mys O\ 3/4
(0.251\(]}eV) , o/my =0.1 sz/g

ms =1 MeV x (5.45)

These relations, valid for approximately symmetric DM, correspond to self-interaction
cross section per mass in the range o/mpy» = 0.1 — 1cm?/g, that are relevant for
suppressing cusps in density profiles of dwarf spheroidal to Milky Way-sized galaxies.

Such light singlets in the MeV mass range are strongly constrained by direct
detection. The prediction (5.44) is modified by the fact that the momentum transfer
q is no longer negligible compared to my, hence m? — m?+ ¢* in Eq. (5.44). We take
q = myvy with DM velocity vy ~ 300 km/s to account for this. Figure 5.6 shows
that for low m, there is an allowed window for sin §, ~ 2 x (1075 — 10~%) between the
BBN and E949 constraints, which persists to smaller values of ms; 2 1 MeV before
being excluded by BBN as m, falls below the threshold for s — ete™ decay.

In Figure 5.8 we show the predicted spin-independent cross section versus my-
(black curves) for several choices of §; in the experimentally allowed range, fixing g,
as in Figure 5.1 to give the right relic density, and m; (orange dash-dotted curve) as a
function of my using (5.45). The plot on the left assumes the higher self-interaction
cross section o/m = 1cm?/g. In this case, it is necessary to take the singlet mass
ms < 0.7 MeV and the DM mass mys < 0.3 GeV to respect the direct detection limit.
This is ruled out by BBN since the decay s — ete™ are kinematically blocked, and
will lead to overclosure by the singlets as T falls below m,. However, by adopting a
lower self-interaction cross section o/m = 0.1 cm?/g (right plot of Figure 5.8), which

may still be relevant for some of the small-scale structure issues, the allowed range
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Figure 5.8: Predicted spin-independent cross section for DM scattering on nucleons
versus DM mass my, assuming approximately symmetric DM with a self-interaction
cross section of o/mpy = 1cm?/g (left) or 0.1cm?/g (right), for three choices of 6,
(dashed, solid black, dotted) and the envelope of experimental constraints (with the
exception of DarkSide-50) copied from Ref. [117] (solid red). Dash-dotted curve shows
the singlet mass mg versus my:.

of my and my is increased to somewhat larger values with m, > 2m,, which can be
compatible with BBN.

The previous determination holds in the region my < 3 GeV where the DM is to a
good approximation symmetric, corresponding to the linearly increasing branch of the
relic density contour in Figure 5.1 (left). For nearly asymmetric DM, the horizontal
branch with mpy = 4.5 GeV applies. Instead of Eq. (5.45), the desired self-interaction
cross section requires a roughly linear relation g5 = 0.754+4.43 m,/GeV (valid for mg ~
0.2—0.3 GeV), that we determine by applying a Sommerfeld enhancement factor [118§]
to the tree-level, phase-space averaged transport scattering cross section given in Ref.
[116], and requiring that the resulting cross section is o /my: = 1 b/GeV = 0.6 cm?/g
for a mean DM velocity of 10 km/s, corresponding to dwarf spheroidal galaxies. To
satisfy the CDMSLite IT constraint og; < 1 x 107* cm? at my = 4.5 GeV [119)], it
is necessary to take small mixing 0, < 6 x 1079, since g, ~ 2 for m, ~ 0.2 — 0.3 GeV,
from imposing the desired value of o/my:.

Hence we find two allowed regions for strong self-interactions, one marginal since
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ms 2 1 MeV close to BBN limits, with o/my: ~ 0.1 cm?/g at the low end of the
range desired for small scale structure, and my: ~ 0.35 GeV. The other allows for a
larger o/mys 2 0.6 cm? /g, with singlet parameters close to the SN1987A exclusion

curve and my = 4.5 GeV.

5.7 Naturalness

In our proposal, the flavor structure of neutrinos is controlled by the same matrix
1v,i; that governs the HNL couplings, up to a proportionality constant, in the spirit of
MFV. In order for DM to be stable, 7, ;; must have rank two. The HNL mass matrix
is proportional to the identity, up to corrections going as 2. We do not provide any
fundamental explanation of the origin of this structure; instead we content ourselves
with the feature that it is technically natural in the sense of 't Hooft: all radiative
corrections are consistent with our assumptions.

The stability of DM is most easily seen in the basis (5.36, 5.37), where N’ obviously
decouples from the SM leptons. We assume this coincides with the mass eigenbasis,
which is consistent since there are no interactions that can induce mass-mixing be-
tween N’ and the remaining N;’s. Self-energy corrections involving s exchange are
flavor-diagonal. Those involving Higgs and leptons in the loop leave m s unchanged,

while renormalizing the /N; mass matrix by
m
MN5z’j — MN(Sij + O(l) X Ny,ik Fﬁé 7717]6,]- (546)

where my, are the charged lepton masses. Given the smallness of 1, < 107*, these
corrections are unimportant. Similarly the one-loop corrections to 7, are negligible,

0(1)

o2 W (5.47)

My — M+

and cannot induce couplings to N’. The only particles to which N’ couples are
the singlet and the inflaton, Eqgs. (5.2, 5.15), and these interactions are assumed

to be flavor-conserving at tree level. Flavor-changing corrections to g, and g4 of
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O(n2/(16m2)) X gs 4 arise at the one-loop level and are negligible for our purposes.

There remains the infamous naturalness problem of the Higgs mass (weak scale
hierarchy). This problem was addressed in the context of the seesaw mechanism in
Ref. [120], where the weak scale was linked to that of the heavy Majorana neutrinos
by radiative generation of the Higgs potential. A low scale for their masses is needed,
M, <107 GeV [121], which would require a low reheat temperature in our scenario,
and consequently small coupling g5 < 107®. Although peculiarly small, this value
would still be compatible with the requirements of technical naturalness since it can
only be multiplicatively renormalized.

The very light singlet could pose an analogous problem of fine-tuning. The first
threshold encountered when running the renormalization scale up from low values
is that of N;, which contributes of order dmg ~ gsMy/(4m) to m,. This can easily
be compatible with the tree-level values of m, desired for large parts of the allowed
parameter space (see Figures 5.1 and 5.6).

Next one encounters the Higgs threshold, which further shifts m, through the
coupling A\ys. The correction is of order dm, ~ +/Apsmy/4m which is related to
the mixing angle by 0, ~ A\, vv, /m,%, where v and v, are the respective VEVs of
the Higgs and the singlet. In turn, v, depends upon the s self-coupling through
m? ~ A2, Using these and demanding that dm, < m, gives the constraint /A, <
1672m3v/(0smj). This can always be satisfied by choosing small enough )4, but the
latter has a minimum natural value given by its one-loop correction d\s ~ g?/(1672).”

Putting all of these together, we get a naturalness bound on the singlet mixing angle

drmy\° ( 1 )
6, < ~ 0.008 5.48
( mp ) VAL G2 (548)

(taking mg ~ 0.3 GeV and g, ~ 0.1) which is compatible with the regions of interest

for future discovery, including the anomalous KOTO events. Thus, somewhat sur-
prisingly, the light scalar does not introduce a new hierarchy problem analogous to

that of the Higgs mass, due to its relatively weak couplings.

"There is also a one-loop correction of order A?_ /1672, but this leads to a weaker bound on 6
than (5.48).

191



We do not address the smallness of gcp in our “theory of everything,” which was a
motivation for Refs. |9, 11] to choose the QCD axion as their dark matter candidate.
This neglect is consistent with our philosophy of focusing on technical naturalness
rather than aesthetic values of couplings, since 6gcp is known to be highly stable

against radiative corrections [122].

5.8 Conclusions

It is interesting to construct scenarios that link the different particle physics ingre-
dients known to be missing from the standard model, since it can lead to distinctive
predictions. Here we have constructed a minimal scenario that explains inflation,
baryogenesis, dark matter and neutrino masses, is highly predictive, and can be tested
in numerous experimental searches for heavy neutral leptons, light dark matter, and
light scalar mediators. At low energies, the only new particles are three quasi-Dirac
HNLs, one of which is DM (and exactly Dirac), and a light singlet scalar.

One prediction of the model is that no new source of CP-violation is required for
baryogenesis, which occurs through a novel form of leptogenesis here. In contrast to
ordinary leptogenesis, the asymmetry is formed during inflation, and the right-handed
neutrinos that generate light neutrino masses are too heavy to be produced during
reheating. CP is spontaneously broken by the inflaton VEV during inflation, and the
light HNLs transmit the lepton asymmetry from the inflaton to the SM. In Ref. [14]
it was shown that observable isocurvature perturbations can arise, depending on the
inflaton potential and initial conditions. In the present model, these would appear as
correlated dark matter isocurvature and adiabatic perturbations.

Another prediction is that the two unstable HNLs N; should be degenerate to very
high precision with the dark matter N’, split only by the correction (5.46) of order
1072 eV. Similarly, the N; are Dirac particles to a very good approximation, with a
lepton-violating Majorana mass of order 107% V. This is too small to be detectable in
neutrinoless double beta decay, but large enough to allow for a distinctive signature

of lepton violation through N-N oscillations. The two N; HNLs can mix strongly
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enough with SM neutrinos to be discoverable at upcoming experiments like SHiP.
The stability of N’ is directly linked to the masslessness of the lightest neutrino.
This connection could be relaxed by slightly modifying the assumption that the HNL
couplings are aligned with light neutrino masses through Eq. (5.5), without spoiling
other features of our model. We further showed that lepton-flavor-violating decays
like p — ey and p — 3e may be generated by HNL exchange in loops, at a level that
can be detected in future experiments.

In our framework, the dark matter N’ is partially asymmetric, and has a mass
bounded by mys < 4.5 GeV. The bound is saturated when N’ is purely asymmetric,
and its mass is determined by the observed value of the baryon asymmetry. Light
DM can be accommodated by taking small values of the coupling g, between N and
the singlet s, which controls N’N’ — ss annihilation; see Figure 5.1. In the mass
range (1—4.5) GeV, significant constraints are already placed by direct DM searches.

The light scalar singlet, whose mass must be less than my for efficient N'N’ — ss
annihilation, can lead to striking signatures. For example the decay K; — 7ms can
explain anomalous excess events recently observed by the KOTO experiment, but
only if my < 2.5 GeV; otherwise direct detection constraints rule out this mode
at the level suggested by the KOTO events, where mg ~ (100 — 200) MeV and s
mixes with the Higgs at the level 6, ~ 5 x 107%. (The preferred parameter region
for the KOTO anomaly is only a small part of the full allowed space of our model.)
In a different part of parameter space with mg; ~ (0.2 — 0.3) GeV, my: = 4.5 GeV
and 6, < 6 x 1079, the singlet mediates DM self-interactions with a cosmologically

interesting cross section, o/mpys ~ 0.6 cm?/g.
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5.9 Note added

The KOTO Collaboration reported that the four candidate events observed in the
signal region for the rare decay Kj — mv, previously announced in Ref. [20], were
found to be caused in reality by contamination from other SM decays. This finding
makes the signal fully consistent with the background expectation, setting an upper

limit of 4.9 x 107 on the branching ratio of K; — n%vi [123, 124].

Appendices

5.A Decay rate for N, — v{t(~

The matrix element for the process N; — V[Mgﬁ;, where o, 8 =€, u, 7, is

M= 5\}4—“’% a(pgz ) 7 (1 = ") u(pw,) UZ;} [a(pyﬁ) Yu(1=77) u(pgg)} (5.49)

whose square reduces to

GQ
2y _ YUF

|Um|2MZ-E5[ 5 ® — M;E; (5.50)

Mf + m% —m? ]
after averaging over the initial spin, summing over final spins and setting m,, = 0.
Here, G is the Fermi constant, Eg is the energy of E; and we have defined for
simplicity M; = My, mq = m,- and mg = My The decay rate I' can be obtained
by plugging Eq. (5.50) in the standard decay formula (see Ref. [35]) and computing
the three-body phase space integral. The common assumption made in the literature

is to consider mg = 0, which is well motivated for o = e, p and 8 = p, e. In these
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cases, the decay rate is [46, 48|

G%LM?
F'= Jogns Vil <1 — 8ag + 8z, — g — 127, log(wi)) (5.51)
where z, = my,/M;. Such a simplified formula does not hold for & = p, 7 and

B = 7, u, where the muon mass is not negligible compared to the tau mass. The

general expression reads

G2 M?
o vh+ g — (23 —22)® — [af — 23] V(1 — (25 — 20)*) (1 — (25 + 2a)?)
s 2x3 %4

1—2%2 —22 — /(1 — (x5 —x,)2)(1 — (x5 + 2,)?
_ 19 [xé+$i—2xél'3] log[ 8 a \/( ( B ))( ( B ))]

2x3%q

/(1 = (5 — 7)) (1 = (35 + 7)?)
[1 -7 <x% —l—xi) <1 +x%xi) -7 (JJ% —l—xi) + 12x%xi+x% —i—acg] }
(5.52)

where x, = mq/M; and z3 = mg/M,. It is easy to check that this formula reduces

to Eq. (5.51) in the limit mg — 0.
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6.0 Prologue

In the previous chapter, we proposed a "little theory of everything" to address infla-

tion, baryogenesis, neutrino masses, and (asymmetric) DM within a unified frame-
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work, filling the gaps in the ACDM model and in the SM of particle physics.

In this scenario, a small Majorana mass was induced for the heavy neutral leptons
(HNLs), which played a crucial role in transferring the primordial asymmetry from
the inflaton field to the SM particles, causing particle-antiparticle oscillations. Such
oscillations could be used also as a way of testing the model in laboratory searches.
However, the HNL acting as DM candidate avoided particle-antiparticle oscillations
due to the masslessness of one active SM neutrino.

Considering a small Majorana mass term dm # 0 also for DM particles, their
particle-antiparticle oscillations can potentially regenerate the symmetric component
of DM, leading to its dilution through annihilation. Depending on the value of dm,
DM annihilation may be reactivated at late times, offering a potential solution to the
core-cusp problem at galactic scales, a long-standing issue in the ACDM model (see

section 3.1.5). This chapter will explore this intriguing scenario.

Abstract

The core-cusp problem persists as an unresolved tension between the predictions of
ACDM cosmology and observations of dark matter (DM) profiles in dwarf spheroidal
and other galaxies. We present a novel scenario for converting cusps into cores through
reactivation of DM annihilation in galaxies at late times. This can happen in asym-
metric DM models when there is a very small DM-number violating mass term that
causes oscillations between DM and its antiparticle. Using analytic methods as well
as gravitational N-body simulations, we show that this mechanism can robustly elim-
inate cusps from galactic DM profiles for light fermionic DM of mass m, ~ (0.1 — 1)
GeV and a lighter mediator into which the DM can annihilate. We identify regions
of parameter space where annihilation of DM particles is more efficient than elas-
tic scattering at reducing the inner density of the DM profile. Dark matter anni-
hilation is therefore a qualitatively distinct alternative to the mechanism of elastic

self-interacting dark matter for addressing the cusp-core problem.
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6.1 Introduction

In many respects the standard ACDM paradigm of cosmology gives an extremely good
description of the observed Universe. But it has long been recognized that simulations
of structure formation that neglect the presence of baryons predict singular (cuspy)
density profiles of the dark matter (DM) toward the centers of galaxies, whereas
observations suggest flatter (cored) distributions [1]. More recent simulations include
the effects of baryonic feedback, which can expel material from denser regions and help
to ameliorate this discrepancy, but there is not yet any consensus that this provides
a complete solution. Moreover in systems like dwarf spheroidals, where baryons are
relatively scarce, one does not expect baryons to have a significant impact on the
small scale structure. These issues have been reviewed in Ref. [2].

Another proposed solution is self-interacting dark matter (SIDM) [3, 4], with a

scattering cross section at the level of

o Cm2

2 01— (6.1)

my g

that is close to upper bounds from colliding galaxy clusters, such as the Bullet Cluster
[5], even though it may be not so robust [6]. N-body simulations incorporating such
interactions have shown that cross sections consistent with eq. (6.1) can produce cored
DM profiles in a wide range of systems |7, 8]. However, more recent studies indicate
that a constant cross section is not the ideal solution, since then (ov) increases with
the size of the system, contrary to the observation that cores are less pronounced on
the scales of galactic clusters. A weak velocity dependence of the form o ~ 1/v is
found to give a better fit to the full range of structures [9).

The most common assumption is that the DM self-interaction is in the form of
elastic scattering, but a more exotic possibility was proposed in Ref. [10], in which
fusion of DM particles into bound objects is the interaction leading to cored pro-
files. Like other exothermic processes, this has the advantage of predicting a cross
section with ov remaining constant at low velocities, as desired for fitting the DM

profiles of both large and small galactic structures. Other interesting possibilities to
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achieve the correct velocity-dependence of SIDM have been studied, for instance in
the context of resonant SIDM [11-13], puffy DM [14], self-heating DM [15-18|, maxi-
mally SIDM [19] and DM bound states produced in the early Universe by three-body
recombination [20, 21].

Here we explore a different alternative, motivated by the fact that DM annihilation
is also an exothermic process with ov becoming constant as v — 0. The challenge
for such a scenario is to explain how annihilations could go out of equilibrium in the
early Universe, but then come back at late times [22]. In fact, a mechanism to do this
is well known in the context of asymmetric dark matter, where there is an asymmetry
between the DM y and its antiparticle y. By allowing for a small mass term that
violates the conservation of DM number, oscillations between x and y can reactivate
the annihilations at late times [23-26].

The reactivation of DM annihilation at late times is usually seen as a danger to
be avoided, since it is known that the DM density should not change appreciably
between the era of the CMB (redshift z ~ 1100) and structure formation |27, 28|, but
in the present work we demonstrate that this mechanism can efficiently produce cored
profiles in galaxies without changing the total DM density significantly. The reason
is that the efficiency of oscillations leading to regeneration of the anti-DM component
can depend strongly on density, so that annihilations are effective in the centers of
galaxies but not in the outer regions.

For a more quantitative investigation, one should integrate quantum Boltzmann
equations for the density matrix, that account for the coherence of states undergoing
oscillations, analogous to those used for the study of neutrino oscillations in a medium.
This formalism was initially worked out for DM in Ref. [25], and some important
corrections were realized in Ref. [26], which we follow closely in the present work.

We consider two models of quasi-Dirac fermionic DM x of mass m,. In the
first, the dark matter couples to a lighter vector boson V# (Model 1), with effective
Lagrangian

1
LD —Em%/VMQ —gdxVx. (6.2)
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In Model 1, the dark matter freeze-out and the late-time depletion are both allowed
by the annihilation process xx — VV. In the second model, dark matter couples to
a complex scalar ® = ¢ + ia (Model 2),

1 1 .
LoD —§m§)¢2 — §m§a2 — g'x(¢ +iays)x . (6.3)

Model 2 allows freeze-out and late-time depletion from xy — ¢a (which unlike yy —
¢¢ or xxX — aa is s-wave, hence not suppressed at low velocities). The coupling
between y and either kind of boson is denoted as ¢’, and its associated fine-structure

constant is o/ = ¢’?/4w. The DM-violating mass term is
1 _
L, = Eém (xx“+H.c.). (6.4)

The parameter om violates not only dark matter number, but also the gauge symme-
try of Model 1, which is additionally broken by the Stueckelberg mass term for the
vector. It would be possible to replace both of these explicit breakings by a Higgs
mechanism, but for simplicity we adopt the simpler effective theory.

We begin by making preliminary estimates to identify viable regions of the pa-
rameter space, in section 6.2. The essential details of the density matrix Boltzmann
equation formalism are reviewed in section 6.3. In section 6.4 we will show that, for
appropriate choices of the model parameters, integration of the Boltzmann equations
in the early Universe leads to the conventional freeze-out of DM annihilations, leaving
only the asymmetric component of the DM. This justifies the initial conditions for
the second step, described in section 6.5, where we re-solve the analogous Boltzmann
equations in the background of an already-formed galaxy and show how an initial cusp
gets erased by reactivated annihilation following x-y oscillations. This is a somewhat
crude approach since it considers formation of the galaxy to happen suddenly and
neglects the role of gravity in shaping the DM halo. In section 6.6, we improve on
this by carrying out a gravitational N-body simulation of galaxy evolution, in a code
adapted to properly account for the new physics effects. Conclusions are given in

section 6.7, and details of the quantum Boltzmann and N-body simulation methods
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are presented in the appendices.

6.2 Analytic estimates

Before embarking on a detailed analysis, we analytically estimate the regions of pa-
rameter space that are of interest for our mechanism. First, the annihilation cross

sections at threshold for the two models are

a2 (1—72)%2/(1 —7r2 /2)%, Model 1
= X

(6.5)
my (1—12/4), Model 2

where r,, is the ratio of the mediator to the DM mass, r,, = my/m, for xx = VV
(Model 1) or r,,, = mg/m, for xx — ¢a (Model 2). In the latter, we have assumed
for simplicity that m, < m,, and neglected the p-wave suppressed channels xyxy —
o0, aa.

To compare eq. (6.5) to the desired cross section (6.1), consider a reference velocity
vg = 100 km /s characteristic of DM in a Milky-Way-like galaxy, and the upper value
in the range (6.1), giving ocv/m, ~ 100cm?km/s/g ~ 0.2 x (100 MeV/m,) GeV~2.

Equating this to (ov), suggests the constraint

o 2207 (éfe’{/)g/z (6.6)

For example with m, = 100MeV, o = 0.02; we will adopt these as approximate
benchmark values. However nothing prevents us from taking somewhat heavier DM,
up to m, ~ 1GeV; above this, the theory starts to be strongly coupled.

It is impossible to avoid Yy elastic scattering mediated by the annihilation prod-
ucts, and we choose to constrain these cross sections so that they are below the level
that would change the DM density profile independently of the annihilation effect,

which is the focus of this work. The elastic scattering cross sections at low velocities
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are

—4
my . Model 1

oy = 4ma* m? v (6.7)
myt + (5/4)v*m,*, Model 2

where v = wv,/2 is the center-of-mass velocity. Here, all the relevant channels

contributing to the xx and yy scatterings are included and the cross sections for
these two processes turn out to be the same in the low-velocity limit. To avoid
that the scattering self-interactions play a leading role in the galactic dynamics,
we require that osv, < (o,v). This implies (mys/m,)* > 4v., which is most
stringent for large systems, galaxy clusters, that have the highest DM velocities.
For example, the cluster A2537 has velocity dispersion o, ~ 1000km/s [29], with
Vel = (4/4/7)0, (assuming the velocity is Maxwell-Boltzmann distributed), and de-

manding that osv,e < 0.3 (0,v) gives the constraints

0.6 <7, <0.94, Model 1

0.6 < 7 < 1.99, Model 2 (6.8)

where the upper limits come about because of phase space suppression of the annihi-
lation.t

The pseudoscalar mass m, should not be arbitrarily small, since its virtual con-
tributions can become Sommerfeld enhanced if m, < o'm,, vm, [30-32|. In the
present work we avoid these complications by considering m, ~ m, /10, which is
small enough to ignore it in phase space integrals and its d-wave suppressed contri-
bution to scattering in eq. (6.7), but large enough to avoid nonperturbative effects,
as well as cosmological problems in the era of Big Bang Nucleosynthesis.

The y-number violating mass dm must be small enough so that y-y oscillations
have not yet started at the time of DM freeze-out, T} s, ~ m, /20, where we allow for
a lower temperature

T =T <T (6.9)

in the dark sector, as discussed in more detail in Sec. 6.4.3. For annihilations to

!We assumed m, < my in the last limit, for the process xx — ¢a.
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recouple during structure formation, the oscillations should start before the epoch
of structure formation, t;~ 0.1 Gyr. On the other hand, we will show in Sect. 6.4
that too-early onset of recoupled annihilations tend to change the DM relic density
more than is allowed by CMB constraints [27, 28|. This leads to a window of allowed

values, whose upper limit depends upon details of the scenarios we will discuss,

16.365/2 mL/?
1 1/4@ (UZ>1/TZX3/2M5/27 MOdel 1
— ,S om 5 g+ 34; 61/2‘1 oM Mp (610)
ts 2 Model 2

91/2<‘7”>3 77123M Mz;;”
5x 10728eV, Model 1

— 1073 eV <om < )
3 x 1073%eV, Model 2

where npy is the DM asymmetry and 6, is the fractional change in npy allowed
by the CMB constraints. The numerical values are indicative, based on the limited
parameter choices we have investigated here. It is possible that the upper limits could
be relaxed in a wider search of parameter space. The analytic expressions in eq. (6.10)

are derived in Appendix 6.D.

6.3 Oscillation formalism

In the presence of DM oscillations, the distinction between particle and antiparticle

becomes time-dependent. If we define a basis

X) = (é) X) = <(1)> : (6.11)

then it is straightforward to show that the time dependence of a state that is initially
pure |x) is

() = et ( ) (6.12)

—1S,
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with ¢, = cosg, s, = sing, ¢ = dmt. To this state we can associate the density

matrix for a single-particle state,

m =y ol = (2 ). (6.13)

— 2
1CpSyp 8@

Naively it might seem like appreciable amounts of y appear as soon as ¢ ~ 1 and
xx annihilations could recommence, but this need not be true if all the particles in
the plasma are oscillating with the same phase. Ref. [26] showed that recoupling
of annihilation depends on the nature of the interactions. Interactions of fermionic
DM with vectors V' are called “flavor sensitive,” while interactions of y with scalars or
pseudoscalars are “flavor blind,” leading to very different behaviors of the annihilation
probabilities. In the collision of two particles with respective phases ¢ and ¢’, the

annihilation rates are modulated by the factors

XY — VV i sin?(p —¢) (flavor sensitive) , (6.14)

XX — ¢a: sin®(¢ +¢') (flavor blind). (6.15)

In the first case, a bath starting as pure |x) and maintaining phase coherence never
undergoes annihilations since ¢ — ¢’ remains zero, despite the oscillations. In the
second, the modulation factor averages to 1/2 for fast oscillations, and is therefore
effective even when the particles stay in phase with each other.

For a thermal bath, the matrix n; in eq. (6.13) is replaced by an integral over the

corresponding matrix distribution function F(k) for the states of momentum k,

n=(2s+1) / (gwl; F(k), (6.16)

where s = 1/2 for fermions as we consider. Then ny; (ng) represents the number
density of particles (antiparticles) defined with respect to the basis {|x),|x)} as in
(6.11); the off-diagonal elements keep track of the coherence between these two states.

The Boltzmann equation for n reduces to the usual form when we consider only

the diagonal elements, but it has additional terms due to the off-diagonal elements,
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which depend on whether the interactions are flavor-sensitive or flavor-blind.

6.3.1 Model 1: vector mediator

We first consider the flavor-sensitive case, applicable to Model 1, for which the Boltz-

mann equation is

. . 3 0 T12
Hn = — — — I
n—|—3 n Z[Ho,n] <O'U>s( rn) <n21 )

— (o0)q (detn —nZ)) 1, (6.17)

where H is the Hubble parameter, the thermally averaged free Hamiltonian is

-0 (5 (2]

1
=my, 1+ dm <O ) : (6.18)

10

(ow)s is the yx or xx scattering cross section (that coincides at low energies), (ov), is
the xx — V'V annihilation cross section, and neq is the equilibrium number density.
The scattering term in eq. (6.17) is derived in appendix 6.A, while the other terms
can be found in Ref. [26].> Eq. (6.17) is the appropriate form for cosmology; in section
6.5 we will discuss how it can be applied in a galactic environment.

The scattering term in (6.17) has the effect of damping the off-diagonal elements
of n, which destroys the coherence of the quantum superpositions and effectively
measures the state of an oscillating system. The loss of coherence results in det n # 0,
which activates the annihilations. Since (ov) is proportional to the DM velocity, this
makes the effect stronger in systems with large velocity dispersions. We will see in
section 6.5 that this is contrary to observations, disfavoring Model 1 taken by itself.

The origin of the factor (6.14) can be heuristically understood from (6.17) by

2Ref. [26] derived the scattering term for x f — xf with f being a different particle in the plasma.
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interpreting the annihilation term det n 1 as the matrix |26]

1
detnl — E(nlagngag + nooani 05)

1 .
= 3 81n2(<p1 — o)1, (6.19)

where ny, ny represent the density matrices (6.13) of two particles, having respective
phases @1, 9, and oy is the Pauli matrix.3

Similarly, the effect of the scattering term can be understood by replacing n — n
everywhere except in the trace, where Trn — Trns, which does not depend on ¢,
and just represents the total density n of DM scattering on particle 1. Then the

off-diagonal parts of the Boltzmann equation determine the damping of ¢, as

d 3
E(C%S@m) ~ —§n<0'v>56§018¢1 ’ (6'20)

which has the solution c,s, ~ exp(—2It)(c,s,)0, where Iy = n{ov), is the elastic

scattering rate.

6.3.2 Model 2: scalar mediators

For scalar interactions, the Boltzmann equation simplifies, because elastic scattering
no longer has any effect on the density matrix. The form of the annihilation term is

also changed, in a way that makes it lead to decoherence by itself

fi+ 3Hn = —i[Ho, n] (6.21)
~ (o0 K ( det'n ““””12) a2 ]1} |

Trn)ng det'n

Here we define det’ n = ny1n92 4+ n21m91. In contrast to eq. (6.17) for the vector model,

there is no dependence on the DM velocity in (6.21), leading one to expect a more

3In the notation of Ref. [26], oynTo; = 7 and 03 = O_. Appendix 6.B implies that the actual
matrix structure is more complicated than (6.19), but this form is adequate for our application of
it in section 6.5, which can only account for coherence effects in an approximate way. In particular,
the off-diagonal elements are not exactly zero, but they average to zero over the ensemble.
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similar level of cusp erasure in both large and small galactic systems, independently
of the differences in their velocity dispersions.
The analogous reasoning that led to eq. (6.19) can be applied in the simpler case

where ¢ = 9 = @ since the annihilation term no longer vanishes in that limit, giving

1
det'n — 5 {n,omto}

1 1
=3 sin? 2 1 + 5 sin2p oy . (6.22)

The diagonal term goes to (6.15) when the two phases are different from each other.
The off-diagonal term leads to phase damping similarly to (6.20), but now with c,s, ~
exp(—Tat)(cy8,)0, where I, is the conventional annihilation rate, without the sin® 2¢p

modulation factor.

6.4 Early cosmology

For small values of dm < 1073% eV, oscillations are unimportant until the epoch when
structure formation begins. For larger values of dm they can cause annihilations
to temporarily recouple, further reducing the density of the asymmetric component,
before structure formation begins and annihilations are reactivated once again. In this
section we illustrate these possibilities by solving the Boltzmann equation at early
times. This is meant to provide the initial conditions before the effects of oscillations

on structure formation begin, that we will investigate in the following sections.

6.4.1 Model 1

Like for conventional freeze-out, it is convenient to use z = m, /T as the inde-
pendent variable, and the abundance Y = n/s as the dependent variable, where

s = 2m*g.sm? /(452°) is the entropy density and Y is now a matrix. The Boltzmann
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equation becomes

i 3{ov)ss (0 Yio
Yi=-— Y] -¢ TrY
o oY1= 8=y (Ym 0) '
= 53% (detY —¥2) 1. (6.23)

Here H = 1.66,/g,m> /(Mpyz?) is the Hubble parameter, and we have allowed for the
DM temperature to differ from that of the standard model by putting the appropriate

factors of { = T} /T. The averaged scattering cross section is

5 2 mi
(ov)s = oor[ =, oo = 8" —-, (6.24)
T mi,

and the equilibrium abundance is

4523 Ky(Ex)
2t g &2

I

Yeq (6.25)

in the Maxwell-Boltzmann approximation. It is the abundance of just the DM particle
X, not including the antiparticle.

There is an additional possible source of decoherence that is not captured by eq.
(6.23). The full Hamiltonian (6.18), before taking the non-relativistic limit, depends
on the momentum k of the state, which is neglected in (6.23). This causes states
of different momenta to oscillate at slightly different frequencies dw ~ dm (k?/2m?),
giving rise to thermal decoherence even in the absence of scattering. To fully inves-
tigate this effect would require solving for the full distribution function F(k), which
is numerically prohibitive. Instead we model it in an approximate way, by splitting
the integral over k in (6.16) into two bins of small and large momenta, Y = Y; + Y.
The averaged Hamiltonians H,,; for the respective bins are shown in eq. (6.57). The
resulting coupled Boltzmann equations are given in egs. (6.53). They have a more
complicated matrix structure than (6.23), but the sum of the two agrees with (6.23).
We found this additional source of decoherence to have a negligible effect, compared

to that due to the scatterings.
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Figure 6.4.1: Cosmological evolution of y, Y and total abundances for Model 1 (left)
and Model 2 (right). The model parameter values are indicated in the plots. We
indicate the approximate time of BBN and CMB with faint gray vertical lines. The
ratio of dark to visible sector temperatures is taken to be £ = 1.

The left panel of Fig. 6.4.1 shows the effect of thermal decoherence in the evolution
of the oscillating dark matter in the vector model at early, intermediate, and late
times. We see that after oscillations commence at late times (values of z ~ 107 — 10%
in the two models), annihilations recouple briefly before freezing out again. The dark
matter density, Y = Yy + Y, is reduced by < O(5%), which is roughly compatible
with observations of density perturbations in the CMB [27|. These constraints were
refined in Ref. [28], which limits the change in the DM abundance Y as a function of
the redshift of the transition as well as its duration, with respect to CMB data. We
have checked in detail that the examples shown in Fig. 6.4.1 are compatible with the
limits found there.

On the other hand, we observe that increasing dm has the effect of shifting the
recoupling of annihilation to earlier times, and also inducing much larger changes in
AY', that would be in conflict with the CMB. By varying dm and comparing to the
excluded regions from Ref. [28|, we arrive at the approximate upper bounds shown in
eq. (6.10). It is possible that models saturating these limits could ameliorate current
tensions in the different measurements of Hy [33] and og [34]. We leave further

exploration of these implications for future work.
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6.4.2 Model 2

The cosmological version of the Boltzmann equation (6.21) is

b
Y/ == — [Ho,Y] (6.26)

e (ov), s det'Y Y, TrY\ V21
xH Yoy TrY det'Y ca]

where scatterings no longer play any role. Its solution is shown in the right panel of
Fig. 6.4.1. The implications of the brief recoupling in dark matter annihilation are

similar as in Model 1.

6.4.3 Constraints on N

As usual for dark matter models coupled to light mediators, indirect detection con-
straints from X-ray and gamma-ray telescopes require the hidden sector to be largely
secluded from the Standard Model. Moreover, the force mediators like the vector V' of
Model 1 or the scalars ¢ and a of Model 2, which are the products of yy annihilation,
must decay into radiation of some sort to avoid dominating the energy density of the
Universe at low temperatures, for example at the time of BBN. The simplest solution
to these possible issues is to introduce a dark radiation species, such as massless ster-
ile neutrinos v/, that couple to the mediators and allow for the decays V, ¢,a — v'/'.
As long as these new species have a mass smaller than ~ eV, they will not come to
matter-dominate the Universe before the formation of the CMB.

Even this single light degree of freedom might be detected by precise probes of the
energy content of the early Universe at BBN [35, 36] and CMB [37|, which constrain
the number of new relativistic degrees of freedom. For single-parameter extensions of
ACDM, the constraints are of order AN.g < 0.2, but known parameter degeneracy
with the helium abundance Y, and possible hints of beyond-ACDM physics such as
neutrino masses or the Hy tension can partially relax these constraints to the level of

ANz < 0.5 [35-37].* In any case, these would robustly exclude the 1.75 (3.5) degrees

see Egs. 68-69 and 81 of Ref. [37] or Fig. 11 and Table 5 of Ref. [36].
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of freedom contributed by a fully thermalized Majorana (Dirac) fermion. This does
not occur in our setup because the two sectors are assumed to remain secluded.

If we allow for an initial discrepancy between the Standard Model and dark sector
temperatures, Ty = &1 0, the predicted contribution to the effective number of

relativistic species at any temperature within our framework is given by

_ 4/3
4 11 O0me=1) 9% Gus
ANes(Ty) = - 09! [(Z) gTSSOg -

d -1/3 d 4/3
gy Jego 106.75
= 043¢ | == == 2

0434 (7/2> ( 11 guso (6.27)

where g¢, g% and g.g, are the number of degrees of freedom in energy and entropy in
the dark sector and in entropy in the visible sector, respectively, and all of them are
evaluated at T’,. In going from the first to the second line, the Standard Model degrees
of freedom in entropy before and after ete™ freezeout cancel the change in neutrino
temperature, as expected. We normalize to the values appropriate for a dark sector
containing one light and one heavy Dirac fermion, a vector, and a complex scalar
(required to give the vector a mass), reflecting the field content of Model 1. In the
case of a dark sector with two heavy and one light Majorana fermion plus a complex
scalar, as in the minimal case to generate the phenomenology of Model 2, one obtains
the smaller result ANy ~ 0.31&; .

In either case, the CMB and BBN limits in single-parameter extensions of ACDM
are in tension with the models if £, = 1, but the most stringent BBN and CMB limits
are satisfied for & ~ 0.9, which requires only a moderate difference in inflationary
reheating efficiencies for the two sectors [38, 39]. Even if { = 1, either model is
compatible with CMB and BBN limits once uncertainties in Y, or other quantities
are more conservatively taken into account [35-37]. In the near future, high-resolution
studies of the CMB damping tail will improve these bounds by an order of magnitude
[40].
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6.5 Structure formation

We start with an approximate treatment of the effect of x-y oscillations on galactic

dynamics, by imagining that an NFW-shaped halo with

oo = Ps
O fro) (1 /ry)?

(6.28)

has already formed at some time ¢y, with the initial condition on the matrix density
that

r
nij(r; to) = piino—() 51'1(%'1 (629)

X
at each position r in the collapsed system: this corresponds to a pure x state, in
which oscillations have not yet had any effect.

To apply the Boltzmann equation (6.17) in a galactic environment that has sepa-
rated from the Hubble expansion, we drop the 3Hn term, and set ne, = 0, since the
annihilation products escape without further interactions. For example with fiducial
parameters o/ = 0.02, m, = 100MeV, and central densities p, ~ 1GeV/cm?, the
mean free path for ¢y — ¢x or Vx — Vx scattering is of order (oz’QpX/mf’()*l ~ 10
kpc. In principle, the Boltzmann equation in an inhomogeneous environment could

contain extra terms, coming from the Liouville operator

o

LIF] = ( 9 4 k. V + E(r) - %) F(t, z,k) (6.30)

acting on the density matrix F, where F (r) is the gravitational force at a given radius
in the halo. However in the approximation used in this section, we are assuming as
an initial condition an already-formed NFW halo in which the velocity distribution
is isotropic. Therefore in the integral of eq. (6.30) over d3k to convert F — n, all
terms average to zero except for n. Hence the diffusion of dark matter particles
that is modeled in N-body simulations is not captured in the Boltzmann equation
(6.17), although the quantum coherence effects are. We supplement this analysis by a

complementary N-body approach in section 6.6, which will corroborate the qualitative
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features found here.’

We evolve the initial density (6.29) at each radial position r, up to a final time ¢,
of order 10 Gyr. This leads to a modified density profile p, = (111 +ng) m,, that is to
be compared to present-day observations. In addition to knowing the initial density
profile, it is also necessary (for Model 1 only) to specify the DM velocity profile,
since the relative velocity enters into the scattering rate through (ov)s (whereas the
annihilation rate is insensitive to v.). We have adopted the analytic solution for
the radial velocity dispersion o,(r) from Ref. [41] (see eq. (14) of that reference),
derived by solving the Jeans equation for an NFW profile. This determines o, (r) for
given NFW parameters rs, ps. The latter can be related to the virial radius rygp,

concentration cggg, mass Moy and velocity V5o through

ps 200
E = 3 c%00 9(0200) )
7200 = C2007T's »
47 3
Mgy = ? 200 200 Pc 5
G M-
Vig = ——, (6.31)
200

where p, is the present critical density, and g(c) = [In(1 + ¢) — ¢/(1 + ¢)] 7%

6.5.1 Model 1

We applied this procedure first within Model 1 for a particular dwarf spheroidal
galaxy, DDO 154 [43], that has been discussed from the point of view of self-interacting
dark matter in Ref. [42]. There the NFW parameters were determined using data
from Ref. [44] and the mass-concentration relation from Ref. [45]. The resulting

NFW profile is shown in Fig. 6.5.1 (top left). This profile disagrees with the observed

5To model effects of anisotropic velocity distribution, one could for example assume that F
factorizes into spatial and k-dependent functions, F = n(r) f (ky, k), where k, and k, are the radial
and tangential momentum components, and take an additional moment [ d>k k, of the Boltzmann
equation to obtain coupled equations for n and f. We have checked that f is in fact isotropic in the
N-body simulations described below; hence we do not pursue such a more detailed investigation in
the present work.
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Figure 6.5.1: Left: density profiles for dwarf galaxy DDO 154. NFW and modified
profiles from SIDM are from Ref. [42] (solid curves), while dot-dashed curves are the
predictions of Model 1 (Model 2) for different indicated values of the vector mediator
mass my (dark fine-structure constant o’). Right: corresponding results for galaxy
cluster A2537, where SIDM result is from Ref. [9]. Top row is for Model 1 (vector),
bottom for Model 2 (scalar).

rotation curve in the inner part of the galaxy, whereas the solid “SIDM” curve, which
arises from elastic DM self-interactions adjusted to the appropriate cross section, gives
a good fit.

The dot-dashed curves show the results for our model, with m, = 100MeV,
o = 0.02, and several values of my. The profile is significantly cored, depending
on the value of my, and has a different shape from that predicted by SIDM. The
closest match between the SIDM profile and ours is produced for my, = 34 MeV,
which however is inconsistent with the constraint (6.8). It means that we should
not neglect the effects of elastic scattering by itself, which go into the usual SIDM
treatment. This problem can be overcome by simultaneously increasing my and o/;

for example my = 60 MeV and o = 0.1 gives a reasonable fit. However neither of
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Figure 6.5.2: Left: x? per degree of freedom versus the vector mediator mass my in
Model 1, for fits to the circular velocities of dwarf spheroidals DDO 154 and 126, with
DM mass m, = 65 MeV. Right: similar to left, for Model 2 with varying o/. In either
model, acceptable joint fits can be found by taking intermediate values of my or o/,
respectively.

these models are consistent with data from galaxy clusters, as we discuss next.

Ref. [9] presents evidence for the DM profiles of galaxy clusters also being cored, to
a somewhat lesser extent than dwarf spheroidal galaxies. These larger systems have
much higher velocity dispersions, which leads to a stronger reduction of the central
density by our mechanism, using Model 1. This is shown for the cluster A2537 in
Fig. 6.5.1 (top right), where for the same values m, = 100 MeV and o/ = 0.02 as
before, the best match to the SIDM curve is for my = 51 MeV; the lower value of
my = 34 MeV, favored by dwarf spheroidals, leads to unacceptably large suppression
of the central density to be compatible with measured stellar velocity profiles. More
detailed quantitative comparisons between the theory and data will be presented in
section 6.6, in terms of the predicted versus observed velocity profiles.

One may also wonder to what extent a given model can match the observed
properties of different spheroidal dwarf galaxies, whose density profiles can be diverse.
Although an exhaustive comparison is beyond the scope of the present work, we have
studied a contrasting example, DDO 126, whose DM density profile (like that of DDO
154) was estimated by Ref. [44]. The best fits to the circular velocity measurements
for the two galaxies occur at different values of the model parameters, as shown in

the left panel of Fig. 6.5.2, where we fixed m, = 65MeV, o/ = 0.015 and allowed my
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to vary. (Notice we have chosen a lower value of m, in this example; it is motivated
by the discussion in section 6.5.3.) However, an acceptable fit to both systems can be
found at an intermediate value my = 20.6 MeV, resulting in x?/d.o.f. = 0.8 for either
system. We have allowed for systematic uncertainty in the magnitude of the DM
density profiles, reflecting an estimated ~ 25% uncertainty in the baryonic content of
the galaxies [9]. Since the baryons comprise ~ 10% of these systems, this translates
to a 2.5% uncertainty in the overall DM densities, that we have marginalized over to

slightly improve the fits.

6.5.2 Model 2

In Model 2, the situation is the opposite, though with a smaller discrepancy. In this
case nothing depends on the scalar mass m,, as long as it satisfies the consistency
condition (6.8). For a fixed value of m, (here still at 100 MeV), only o matters.
The SIDM profile can be approximately matched by taking o/ = 0.01 in the DDO
154 dwarf galaxy, while for the same parameter choices, the predicted inner profile of
cluster A2537 lies somewhat above the SIDM fit, a factor of 1.7 higher as illustrated
in the density profiles shown in Fig. 6.5.1.

We have found that this qualitative difference between scalar and vector mediators
is generic: the velocity dependence of the decoherence mechanism in Model 1 makes
it more effective for cusp suppression in high-velocity systems (clusters), whereas the
lack of such dependence in Model 2 leads it to be more efficient in higher density
systems (dwarfs).

The mild tension in simultaneously explaining the density profiles of different
spheroidal dwarf galaxies, described for Model 1, is also present in model 2, as illus-
trated in the right panel of Fig. 6.5.2 for the case of m, = 65 MeV: the best fits occur
at different values of o for the DDO 154 and DDO 126 galaxies. Like for Model 1,
it is not a serious difficulty since an intermediate choice o/ = 0.0053 results in an
acceptable x?/d.o.f. = 0.72 for both systems. We leave a more exhaustive study,

both of the allowed parameter space and including more galaxies, for future work.
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6.5.3 Hybrid models

The previous results suggest that the challenges for Models 1 or 2 to simultaneously
fit the rotation curves of both dwarf galaxies and clusters could be overcome in a
model with both mediators present. Here we present an example that supports this
hypothesis, leaving for future work a more rigorous or detailed analysis.

Since it is technically difficult to implement both kinds of mediators simultane-
ously, we will be content here to give an example in which a vector mediator gives
a good fit to a cluster, while leaving a dwarf galaxy relatively unaffected, and at
the same time a scalar mediator that achieves the opposite. Since each model has a
relatively small effect on one of the systems, it seems likely that by combining them,
one can add the coring effects to both systems in a roughly linear fashion.

For example we find that for lighter DM with m, = 65MeV, and Model 1 pa-
rameters o' = 0.015, my = 44 MeV, we fit the observed stellar line-of-sight velocity
dispersion profile (described in more detail in the next section) for A2537 extremely
well, while leaving the predicted circular velocity Vii.(r) in DDO 154 too high from
not sufficiently reducing the central density in the dwarf system. On the other hand,
choosing a lower coupling o = 0.004 in Model 2 gives an excellent fit to the DDO
154 rotation curve, while having a small impact on the inner profile of A2537. These
outcomes are shown in Fig. 6.5.3, indicating that by combining the two mediators, it
is possible to get as good a fit as an elastic SIDM model with a velocity-dependent
cross section that is tuned to fit both systems. In elastic SIDM, a cross section of
o/m = 3cm?/g [42] is needed to agree with dwarf spheroidals, whereas a smaller

value ~ 0.1cm?/g is used to explain clusters [9].

6.6 N-body simulations

To more quantitatively predict the evolution of galactic structures in our scenario, we
have performed N-body simulations that take into account the peculiar interactions
described by the Boltzmann approach of the previous sections. The two approaches

should be viewed as complementary since each has its own limitations. The challenge
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Figure 6.5.3: Ilustration of how combining vector and scalar mediators could give
a good simultaneous fit for both dwarf spheroidals (left) and clusters (right). Left:
predicted circular velocities due to the DM component alone from the same two
models and from SIDM (Ref. [42]), and data from Ref. [44]. In each case, one mediator
dominates the coring effect of the central profile in one system, while having little
effect in the other system. Right: stellar velocity dispersion along the line-of-sight
for cluster A2537, with predictions based on the DM density profile from two of our
models, from SIDM (Ref. [9]) and data from Ref. [29].

for N-body simulations, even if modified to account for self-interactions, is that they
treat test particles classically, with scatterings occurring probabilistically rather than
quantum mechanically. For conventional self-interactions this is not a serious limi-
tation, but in the present context, the overall coherence of the DM ensemble is of
primary importance.

To address this, we have modified the public version of the GADGET-2 code [46, 47],
which is widely used to generate N-body cosmological simulations. ¢ The novel fea-
ture, apart from including DM scattering and annihilation (see appendix 6.C for
implementation details and code tests), is to keep track of the phase ¢ of each test
particle, that describes the oscillations as in eq. (6.12). We assume that all particles
in the halo are initially in phase with each other. Depending on whether the model
is flavor-sensitive (Model 1) or flavor-blind (Model 2), this phase plays different roles,
and evolves differently. In the absence of interactions, the phase of each particle
would evolve trivially as ¢ = dmt. To mock up the behavior predicted by the quan-

tum Boltzmann equations while still treating the particles classically, we implement

Shttps://wwwmpa.mpa-garching.mpg.de/gadget/
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scattering as follows.

Model 1. Elastic scatterings damp the quantum coherence, as described by the
off-diagonal elements of the collision term in (6.17). Integrating the off-diagonal
elements over a collision time At = 1/Ty = (n{ov),)~! leads to a phase change
Aln(c,s,) = —3/2, as shown in eq. (6.20). For strongly damped systems such that
I's > om, this can be modeled by replacing the phase of each particle undergoing
elastic scattering by

© — (¢ mod 2m) e 3/2 , (6.32)

leading to decoherence of the ensemble, that allows annihilations to occur. The
annihilation probability of two particles with respective phases ¢, and ¢y is reduced

relative to its usual value by the factor sin?(¢; — ), as derived in eq. (6.19).

Model 2. In this case, the scattering self-interactions have no effect on the phases,
and they play exactly the same role as in conventional SIDM. Instead, decoherence
is caused by the annihilation interactions themselves. The phase reduction described

1 each time an annihilation would have occurred,

above now becomes a factor of e~
for a fully decoherent mixture of y and y. The annihilation probability is modulated

by the different factor sin®(¢; + 2) as was explained below eq. (6.22).

As initial conditions for DM halos corresponding to the dwarf galaxy DDO 154
and the galaxy cluster A2537, we took Hernquist profiles [48|, which are described by
the total mass M and the scale radius a. Unlike NF'W | these profiles have finite mass
without any need of truncation and they are perfectly stable in time when evolved
with collisionless DM [49, 50|, as we show in appendix 6.C.

To match the initial N-body profiles to the ones assumed in section 6.5, we used
the procedure described in Ref. [49]. It consists of choosing the value of the Hernquist
mass M as the virial mass Mygg of the NFW profile and requiring the two density
profiles to coincide in the inner region where r < r909. The latter condition gives a

relation between the Hernquist scale radius a and the NFW one r,, namely

a = 7“3\/2 [ln (1 + 6200) — CQOQ/(l + 0200)] , (633)
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Figure 6.6.1: Like Fig. 6.5.1, but including comparison with the N-body simulation
results. The latter are shown as solid lines surrounded by the 1o uncertainty band,
obtained by assuming that the number of particles in each bin is Poisson-distributed.
The black solid curve corresponds to the original NF'W profile, whereas the matched
Hernquist profile is shown with the red dashed line. The other dot-dashed curves are
the results of Fig. 6.5.1. The orange solid line is the SIDM prediction from Ref. [42]
for DDO 154 and from Ref. [9] for A2537. The dashed vertical line shows the position
of the gravitational softening length € used in the simulations.

where ¢cy0g = r900/7s is the concentration index. The values of cy99 we use for our
examples are displayed in Fig. 6.5.1. The comparison between the original NFW and
the matched Hernquist profile for our simulated halos is shown in Fig. 6.6.1. The
agreement between these two profiles is excellent in the inner halo regions of interest
for our study, suggesting that the simulation outcomes should model to a very good
approximation the same dynamics as in our complementary treatment of section 6.5,
on the subgalactic or subcluster scales where they are most relevant.

Fig. 6.6.1 shows the results of the N-body simulations for both Model 1 and
Model 2 and their comparison with those obtained previously in Fig. 6.5.1. The
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overall agreement observed for both DM models suggests that the N-body simulations
model reasonably well the physics encapsulated in the quantum Boltzmann equation,
where the coherence of DM particles plays a decisive role. Differences between the
simulation and the approximate approaches are perhaps more evident in the dwarf
galaxy because gravitational effects and DM dynamics have a relatively larger effect
in small systems than in large ones.

To compare our model predictions with existing data, we converted our results
for the DM density into observed quantities, namely the circular velocity for dwarf
systems and the projected stellar velocity along the line-of-sight for galaxy clusters.
The former is defined as Vee(r) = [G M(r)/r]'/?, where M (r) is the enclosed mass
at radius r. The left panels of Fig. 6.6.2 show our DM predictions for the rotation
curve of DDO 154 dwarf galaxy within the two classes of models considered in this
paper compared to current data. The grey points show the total circular velocity of
the dwarf as observed by the LITTLE THINGS survey [44], whereas the white points
represent just the DM contribution to Vi..(r), obtained by subtracting the gas and
star components after carefully modelling their distribution within the galaxy [44].
The vector model with my = 34 MeV provides the best fit to data among the models
displayed in the top panel of Fig. 6.6.2, with a x?/d.o.f. < 1, comparable to the SIDM
curve found in Ref. [42]. For the scalar case, a choice of o/ somewhat smaller than
0.01 would provide good agreement between our model and observations as shown in
the bottom left panel of the same figure.

For relaxed clusters dominated by a central early-type galaxy, such as in A2537, it
is possible to measure the stellar line-of-sight velocity dispersion profiles o7 g(r) with
spatially-resolved spectroscopy |29, 51]. In order to convert our model predictions into
0t os(r), we used the procedure outlined in appendix A of Ref. [52] combined with
the information for A2537 cluster contained in Ref. [29]. In particular, as done in the
latter reference, we modeled the stellar luminosity density v, (r) with a dual pseudo
isothermal elliptical profile (dPIE) [53] and converted it into a baryonic density via

the relation

pu(1) = Yo vi(r) . (6.34)
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Figure 6.6.2: Comparison between our model predictions and observational data.
Left: circular velocity as a function of distance from the galactic center of the dwarf
DDO 154. The data points and the corresponding error bars are taken from Ref. [44].
In particular, the grey dots show the total effect of DM, gas and stars on the rotation
curve, whereas the white dots show just the DM contribution obtained after a careful
modelling of stars and gas components (see Ref. [44] for details). Right: projected
stellar velocity dispersion along the line-of-sight as a function of radial distance for
the cluster A2537. The data points and the error bars are taken from Ref. [29]. In
all panels, N-body simulation results are shown as solid lines surrounded by the 1o
uncertainty band, obtained by assuming that the number of particles in each bin is
Poisson-distributed. The black dotted curve corresponds to the original NFW profile,
whereas the matched Hernquist profile is shown with the red dashed line. The other
dot-dashed curves are the results of Fig. 6.5.1. The orange solid line is the SIDM
prediction from Ref. [42] for DDO 154 and from Ref. [9] for A2537.

Here Y,y = M, /Ly is the stellar mass-to-light ratio in the V-luminosity band, which
is usually assumed to be spatially-independent across the cluster [29, 52]. The value of
T,y could be inferred from the stellar population synthesis (SPS) up to an unknown
initial mass function (IMF) and therefore one usually parametrizes this ignorance

with the free parameter log (Y,//T5V5), where T5VS is the SPS predicted mass-to-
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light ratio for a given IMF. We considered a Chabrier IMF [54] as done in Ref. [29]
and fixed the value of log (Y, /T55) for the A2537 cluster by matching the baryonic
density computed by eq. (6.34) with that obtained in Ref. [9]. The results of this
procedure are shown in the right panels of Fig. 6.6.2 for both the vector and scalar
models. Good agreement between them and the existing data is obtained for a wide
set of parameters in both classes of models because of the large error bars in the
observational data.

The N-body approach allows us to distinguish between the complementary effects
of ordinary self-interactions by scattering, versus the novel one from annihilations,
which we have investigated in both Models 1 and 2. To estimate the annihilation
contribution to the total profile, we turned off the elastic scattering processes. Sim-
ilarly, the scattering contribution can be estimated by turning off the annihilations.
The top panels of Fig. 6.6.3 show that the major effect in shaping the halo density
profile is given by DM annihilation for the choices of parameters both in Model 1
and Model 2 considered in this paper. This verifies that the annihilation mechanism,
investigated here for the first time in quantitative detail, has the capacity to alleviate
the small-scale structure problems of CDM in the way originally suggested by [22].

The comparison between annihilation and scattering is more evident by looking
at their effect on the velocity dispersion of DM particles within the halo. As well-
known in standard SIDM, particle scatterings lead to a net energy transfer between
the outer and inner parts of the halo, causing an increase in the velocity dispersion
in the central region with respect to the collisionless cold DM case |3, 8]. However,
such an effect is absent in the DM annihilation scenario if the annihilation products
are not reabsorbed within the halo, as occurs for the choice of parameters for both
Model 1 and Model 2 considered in this paper (see discussion at the beginning of
section 6.5). On the contrary, the halo is expected to become overall colder than
that in the collisionless cold DM scenario because high-velocity particles have higher
chance to find a partner to annihilate with than low-velocity particles. This is nicely
displayed in the bottom panels of Fig. 6.6.3, where the velocity dispersion of DDO

154 shows a net decrease at intermediate distances from the galactic center because
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Figure 6.6.3: Top: Radial density profile of the dwarf galaxy DDO 154 for Model 1
with my = 26 MeV (left) and for Model 2 with o/ = 0.01 (right) from N-body simu-
lations. The other model parameters are the same as in Fig. 6.6.1. The contributions
of DM scattering and DM annihilation to the total profile are shown separately. The
black solid curve corresponds to the result with just collisionless cold DM and the
Hernquist profile for the initial halo is shown with the red dashed line. The gray
dashed vertical line shows the position of the gravitational softening length € used in
the simulations. Bottom: Corresponding radial velocity dispersion of DDO 154 for
the same Model 1 and Model 2 considered in the top row.

particles there have normally a larger radial velocity.

Using dark matter annihilation to solve the core-cusp problem naturally gives
a roughly constant value of the rate of core formation [10], as is suggested by fits
to astrophysical objects spanning five decades in mass [9]. Relying on dark matter
dynamics to resolve these issues is potentially under some tension from the measure-
ment of cusps in the centers of classical dwarf spheroidal galaxies [55, 56] and from
recently discovered ultrafaint galaxies [57], although out-of-equilibrium dynamics like
tidal effects of the host galaxy may play a role in contributing to the diversity of these

systems [58-62|. Doing self-consistent fits to the observational data across many dif-
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ferent systems will be critical for determining if the mechanism we investigate in this
paper is as quantitatively successful as the elastic SIDM mechanism has been. Explor-
ing this model in cosmological N-body simulations to compare against the subhalo

abundance, for instance, will also be an important route for future work.

6.7 Conclusions

The long-standing discrepancies between gravitational N-body simulations of struc-
ture formation in the ACDM paradigm and observations of cored density profiles con-
tinue to motivate exploration of alternative dark matter models and mechanisms. In
this work we have revived one of the earliest such proposals [22] by showing that dark
matter annihilations in galactic structures can be responsible for erasure of the cusps,
using distinctive properties of asymmetric dark matter (ADM). The key idea is that
very strong annihilations would freeze out early in cosmic history, solving the problem
of removing the “symmetric” ADM relic density, and are reactivated at late times rele-
vant for structure formation by oscillations of DM into its antiparticle. The preferred
annihilation rate per unit mass ocv/m, ~ 100cm?/g km/s can be fit in our model
by dark matter and mediator masses of order 30 MeV ~ my,, S m, ~ 100MeV, a
perturbative self-coupling as given in Eq. (6.6), and a Majorana mass term dm within
the range (1073 — 1072%) eV.

To obtain a large-enough annihilation cross section while respecting perturbativity
of couplings constrains the DM and the mediator of the strong hidden force to be light,
typically below 100 MeV. We have illustrated the mechanism in two representative
models, with vector or scalar mediators respectively, and using two complementary
approaches to model the structure formation dynamics. A fully consistent simulation
is challenging because it must incorporate the quantum coherence of the oscillating
dark matter while tracking the spatially-dependent annihilation rates within a DM
halo. Our N-body simulations, which treat the coherence in an approximate way, give
relatively close results to a quantum Boltzmann equation approach, which models the

structure formation less rigorously. We have tested the scenario on two representa-
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tive dwarf spheroidal galaxies, as well as a galactic cluster. Both methods lead to
significant coring of the density profile, qualitatively similar to the effects of elastic
SIDM scattering that have been widely used to address the cusp-core problem.

Like the elastic SIDM paradigm, the new mechanism we propose here does not,
in its simplest forms, address the diversity of halo profiles on all scales. In elastic
SIDM this is accomplished by assuming velocity-dependent scattering, with a cross
section that goes down at larger DM speeds. Within our mechanism, scalar medi-
ators generically have a relatively stronger coring effect on small halos than larger
(less dense) ones, while vector mediators have the opposite behavior. We presented
evidence that the combination of both mediators could provide a good universal fit,

leaving a detailed investigation for future study.

Acknowledgment

We thank A. Benson, S. Tulin and A. Robertson for very helpful correspondence.
JC and SDM thank the CERN Department of Theoretical Physics for its hospital-
ity and stimulating environment during the inception of this work. We acknowledge
Calcul Quebéc (https://www.calculquebec.ca) and Compute Canada (https://
www . computecanada. ca) for supercomputing resources. JC and GG are supported by
NSERC (Natural Sciences and Engineering Research Council, Canada). GG acknowl-
edges support from CNPq grant No.141699/2016-7, FAEPEX grant No. 2039/20, and
FAPESP grant No. 2014/19164-6, as well as the support from Global Affairs Canada
and McGill Space Institute. MP is supported by the Arthur B. McDonald Institute
for Canadian astroparticle physics research. Fermilab is operated by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States De-
partment of Energy.

240



k k! k [ k
Figure 6.A.1: Self-energy diagrams for the vector model

Appendices

6.A Scattering term in Model 1

In this appendix we derive the collision term for elastic scattering of yy or xx through
exchange of the vector boson, needed for the quantum Boltzmann equations. The
diagrams in Fig. 6.A.1 are the analog of Fig. 4b in Ref. [26]. We can read off the
imaginary part of the self-energies ¥~'<, in analogy to their eq. (A26) of Ref. [26],

14

>><(k) = z’% / dk'dp'dp (2 )* 6 W (k +p — K — p)

1 v
[((k — K2 —m2)2 O_"Sg=0-~"Tr (5577 0-7,5,~0-)

— wa>,< vQ<,> >,<
(= )2 —m2 ) (e —mi 07507757 0-Sm0-w |

(6.35)
where dp = d?p/(27)* and the Green’s functions are given by
S = =2m(k = m?) (f + my) [0 Fi — 0o (1 = Fi)]
ST = +2m0(k* — m*)(F +m,) [QkO(l — Fr) — e—koﬁk} . (6.36)

Here F is the matrix with the diagonal entries interchanged, as in (11) of [26], and
O_ = diag(1,—1). The trace is over both Dirac and flavor indices. We also define

F=0_FO_, F=0_FO_. (6.37)
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This has the effect of reversing the signs of the off-diagonal elements.

Considering the relevant physical processes, it is not necessary to take account
of all eight of the terms that arise from each diagram, from the products of the
S>< functions. First, since annihilation diagrams are suppressed while k° > 0, we
can ignore k° < 0, which would give the s-channel diagram. Second, by energy
conservation, we must have either p® > 0 and p® > 0, representing yx scattering, or
p° < 0 and p < 0, representing Y scattering. Let us first write the terms that arise
from the middle line of (6.35), apart from the factors of 27d(...)

«k_H;_W@Pv%ﬁ+mQVTM@+mwhAﬁ+mQ%)x
57 (U= Fe) |00 Tr (=F)(1 = F) ) + 000 o Tr (1 %»y
NS ~ Fu [epoep,o Tr ((1 - fp)(—ﬁp,)> 0000 T ( ))] .
(6.38)

Similarly the last line of (6.35) contributes

’Yw_kw—m@i@—py_m%°”ﬁ+mvf@+mvw%%wwwux
570 (U= F) By ()1 = Fi)) + 000 (1= F)(=Fi))] -
I - j—p’ [9p09p/0 <(1 - ]:p)(_]:—k/)) + 0_potl_po ((_ )(1 - ]:k’ )]

The collision term comes from ¥~>< by

eo=i [ 2E G [(EEm) (55 570 - 57,55 (6.40)
(2n) m

X

where unlike Tr above, tr denotes only the trace over Dirac matrices. Since we are

interested in low densities, we can neglect terms of order F2, which means that we
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need only keep terms of order
YT O(F?), S7:0(1), N7:O(F), S5:0(F). (6.41)

After carrying out the Dirac traces and combining like terms, we find that the re-

spective contributions from the two diagrams are

(2m)* oW (k+p— K —p)
(CETIETa
x [(k-p) (K" -p) + (k-p)(K -p) —mi(k -k +p-p)+2m]]

X ekoek,o{ 00,70 []—"k/ v %y ]—"kTrf] +0_ 000 [Fk/ T F, — F, Tr F, ]}
(2m)* oWk +p— K —p)

T ((k—K2=m¥)((p—p)2—mi)

[(k; p)(K p)——m (k-K+p-p+k-p+tk-p+K -p+k -p)+ m4}

C, = —4g" / 11, dTT dIL,d11,,

X
X ekoekm{ 00,0 [J—" Fo — %{fp,ﬁ}} +0_00_ 0 [J?“p/ﬁp - %{fk/,ﬂﬂ } :

(6.42)

where dIl, = d*pd(p* —m2)/(27)>.

In the non-relativistic limit, it further simplifies since the squared matrix element
in brackets is equal to me< for Cy, while for C, it depends on which of the theta
functions are taken: [...] = —mi for positive energies and +m;‘< for negative energies.

The resulting collision term is

21 .
CS:_W/dzsk...di’rp/a(ﬁl)(,..) [4 (,Fk/Trfp/—fkTrfp>
\%

. 1 . 1 =
= FyFi+ AT P+ By Fy = AT, R} (6.43)

Here, we used the identities Tr fp =TrF, = Tr .7:-"p = Tr F,, as well as the fact
that any terms with negative energies can be transformed to the corresponding phase

space integrals with positive energy by changing p <> p/.
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The next step is to make the ansatz
n
Fp= e Por — (6.44)

where wy & m, + k*/2m, = m, + E,

ni n
n= ( H 12) ) (6.45)
21 T22
and neq is the equilibrium number density. Then the momentum integrals can be

carried out to get collision terms as a function of the density matrix n

I SRR P CTRRNRER T [4(7 — n) Ten — 2?4 n?
= Tt J A A AV [P () Ten 5 )

+ e PEAE) i — o= BER+E) {n n}] (6.46)

The integrals are all equal to (m,T)%?2/T times a dimensionless number, and there
are only two different possibilities, depending upon whether the two energies in the
Boltzmann factors are both initial/final state, or one initial and one final. We get

14 3/2T1/2 1 -
C, = _gmx—4 [IS (4(ﬁ —n)Trn —n* + nz) + 1 (’fm — §{ﬁ7 ”}) ] ,(6.47)

167 my,

where the two dimensionless integrals are

I, = 871r4 PPpdPkd®y d*K 6D (p+k —p — k) e @2
814 dPpd’kd®p §(F- k) e~ P /2= (F+7)%/2 22 9 96
I = @/d‘gpdgk‘ &Py 3K SV (p+ k—p — k) e P2
814 dPpd’kd