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Abstract

In this thesis, we present a thermal model for Quark-Gluon Plasma (QGP) freeze-out that

includes an effect which mixes contributions from freeze-out points with different rapidi-

ties in observed the final particle rapidity distribution, referred to as the smearing effect.

Using this model, we obtained the thermodynamic profile of the QGP freeze-out surface

by fitting particle yields from a hydrodynamic simulation. By comparing it with the stan-

dard thermal model and the hydrodynamic simulation, our study reveals significant un-

certainties in both thermal models when they are applied to large rapidity regions, while

for mid-rapidity they both agree well with the hydrodynamic simulation. By applying

it directly to experimental data, we also demonstrate the effectiveness of the smearing

thermal model in constraining particle yields and thermodynamics around mid-rapidity.

However, the model gives a lower temperature than the ones obtained from using ther-

mal models on yields from hydrodynamic simulations, highlighting the need to consider

feed-down effects in future studies.

i



Abrégé

Dans cette thèse, nous présentons un modèle thermique pour étudier le decouplace du

plasma quarks-gluon avec l’effet de brouillage thermique. Nous l’appliquons en ajus-

tant la production de particules et en comparant aux résultats de simulations hydrody-

namiques. Nous étudions ses caractéristiques en comparant la thermodynamique de la

surface de découplage obtenue à partir du modèle thermique brouillé, du modèle ther-

mique standard et de la simulation hydrodynamique. Notre étude révèle des incertitudes

importantes dans les deux modèles lorsqu’ils sont appliqués à des régions de grande ra-

pidité. En l’applicant directement aux données expérimentales, nous démontrons également

l’efficacité du modèle thermique brouillé pour contrôler les spectres de particules et la

thermodynamique autour de la rapidité moyenne. Cependant, le modèle révèle une

température inférieure à celle attendue, soulignant la nécessité de prendre en compte

l’effet des désintegrations successives dans les études futures.
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Chapter 1

Introduction

1.1 Two basic properties of QCD

Quantum chromodynamics (QCD) is a theory describing the strong interaction, whose

basic degrees of freedom are quarks and gluons. Quarks make up nucleons such as neu-

tron and proton, while gluons are responsible for the force between those quarks. In other

words, strong interaction is the force that holds quarks together to form nuclei, and the

subject of nuclear physics is to explore various properties of QCD.

The QCD Lagrangian is

L =
∑
f

ψ̄i
f (i /Dij −mfδab)ψ

j
f − tr

1

2
FµνF

µν . (1.1)

Here ψi
f is quark field whose elementary excitation is a fundamental particle called quark,

and it carries a colour i and a flavour f with mass mf . /Dij = δij /∂ − ig /Aij is the covariant

derivative in colour space, where g is the colour charge and Aij is the gluon field, to be

discussed later1. In the standard model (SM), there are 3 colours ”charges”: red, green

and blue. While there are 6 flavours of quarks listed in table 1.1, for the energy scale that

we are interested in2, only 3 of them with less masses are the effective degrees of free-

1We have also used the Feynman slash notation /a = aµγ
µ where γµ are the gamma matrices [1].

2Namely within ΛQCD ≈ 200 MeV, given in eq. (1.6)

1



Quark name up down strange charm bottom top
Symbol u d s c b t
Mass 2.2 MeV 4.6 MeV 96 MeV 1.28 GeV 4.18 GeV 173.1 GeV

Table 1.1: List of quarks in standard model with their symbols and masses. The masses

given here are only approximate and with relatively large uncertainties that are not dis-

played here.

dom, namely up, down and strange quarks. F µν is the gluon field strength tensor which

contains the electric and magnetic field as in the electromagnetic interaction. Therefore,

gluons are generally depicted as the force carrier between quarks.

Like the gluon field strength tensor Fµν discussed above, many concepts in QCD have

their analogy in Quantum electrodynamics (QED), the theory for electromagnetic (EM)

interaction. However, the most distinct and important difference of QCD from QED is

that it is a non-Abelian gauge theory. This terminology is derived from language of group

theory, where the group for the gauge symmetry in QCD, SU(3), is non-Abelian or non-

commutative, while for QED it is an Abelian group U(1). Thus, the gauge field in QED

Aµ takes a c-number value so commutativity holds trivially as AµAν = AνAµ.

For QCD, the gauge field Aµ representing the to gluon is matrix-valued, and can be

expanded using the 8 generators Ta of SU(3) as3

Aµ = Aa
µTa. (1.2)

Being matrices themselves, the non-commutativity of Ta’s are responsible for QCD be-

ing non-Abelian.We introduce the structure constants fabc to quantitatively describe non-

commutativity of the generators

[Ta, Tb] ≡ TaTb − TbTa = ifabcTc. (1.3)

3There is not a unique choice of Ta’s, as long as they form a complete basis of all 3×3 traceless Hermitian
matrices, and are normalized as trT aT b = 1

2δ
ab. In practice, they are generally chosen to be Gell-Mann

matrices [10].
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As a result of the non-commutativity, when constructing the field strength tensor Fµν in

eq. (1.1), instead of having Fµν = ∂µAν − ∂νAµ as it is in QED, we need to introduce a

quadratic term in Fµν so the gauge invariance in the Lagrangian is respected with

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν . (1.4)

Here g is the QCD coupling constant, discussed later. Such a quadratic term will prove

important later, as it introduces gluon self-interactions.

Deep-inelastic scattering experiments have revealed the inner structure of nucleons,

which are believed to be constituted by quarks and gluons [11]. However, one of the

important traits of QCD, forbids us to free any quark from nucleons. The reason can

be qualitatively understood as follows. Going back to the Abelian analog QED: when

one tries to pull two electrons apart, the potential energy between them decays as 1/r;

however in QCD, separating two quarks results in the potential energy between those

quarks growing almost linearly, and is described by the Cornell potential [12]

V (r) = −4

3

αs

r
+ σr, (1.5)

where αs is the QCD running coupling to be given in eq. (1.6), and σ ≈ 0.9 GeV/fm is

the QCD string constant, determined empirically. The linear term σr results in a very

large energy density in the spatial region between those two quarks, and there is one

point where the potential energy is so high that it is energetically favourable to create a

new pair of quark and anti-quark out of the vacuum. Therefore, the energy invested in

pulling two quarks inside a quark pair apart finally results in more quark pairs.

Another argument for the confinement comes from the running coupling constant of

QCD. In the language of quantum field theory (QFT), the coupling constant describes

the strength of interaction between fields4. In QED, the coupling constant is the electric

charge of a matter particle. The charge couples the matter particle to electromagnetic

4Or in some cases, self-interaction.
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fields, and allows it to participate in the EM interaction. In the non-Abelian gauge the-

ory QCD, the QCD coupling constant g encodes how strongly a quark interacts with a

gluon, as well as how gluons interact with themselves. One of the most interesting facts

in QFT, resulting from the renormalization group [1, 13], is that the couplings, and other

parameters like the particle mass, are actually not constants but they instead depend on

the energy scale in which we are interested in µ. For QED, e increases slowly as we go

to higher as higher energy, whereas for QCD, the coupling g is larger in the low-energy

region, described as [1, 14]

αs(µ) ≡
g2

4π
=

2πNc

(11Nc − 2Nf ) ln(µ/ΛQCD)
. (1.6)

Here Nc = 3 in standard SU(3) QCD, Nf is the quark flavour number which can be

Figure 1.1: Gluon self-energy in QCD. The first diagram (virtual quark pair) has its corre-

spondence in QED, while the rest of them are new from the non-commutativity of QCD.

Here, solid lines are fermions, wavy lines are gluons, and dotted lines represent ghost

particles. Figure taken from [1].

taken to be 3 when the energy scale µ is much less than charm quark mass mc ∼ 1 GeV,

and ΛQCD ∼ 200 MeV is the energy scale of QCD. The distinct differences from QED

are the non-Abelian nature of QCD that gives rise to the 3- and 4-gluon interaction as

earlier discussed, as well as the appearance of ghost particles5 [1, 14]. Therefore, when

computing gluon self-energy responsible for the correction to the coupling g, there are

three extra contributions shown in fig. 1.1.

5Since there are redundant degrees of freedom from gauge symmetry, when quantizing a gauge theory,
introducing a gauge fixing is necessary. For U(1) gauge theory, the gauge fixing doesn’t contribute to any
new particle nor any new interaction, while for non-Abelian gauge theory, the ghost particle is introduced
by the gauge fixing and it interacts to quarks.

4



Figure 1.2: The running of coupling of QCD and its experimental measurements. The

horizontal axis is for the energy scale denoted as µ in eq. (1.6). MZ = 91.2 GeV is the

Z-boson mass. The legends are for different experiments and NLO,NNLO,N3LO are the

order of perturbation theory used in extracting αs (e.g., NLO=next-leading-order, etc.).

Figure taken from [2].

Such an energy-decreasing αs in eq. (1.6) has been verified experimentally [2], as il-

lustrated in fig. 1.2. As αs increases when we move to the low energy region, the pertur-

bation methods that are widely used in standard QFT fall, and quarks must be confined

in mesons and hadrons; while in the high-energy region beyond ΛQCD, αs is small so

perturbative calculations are feasible. As a result, this high-energy region is also called

perturbative QCD (pQCD) region. As one goes to infinitely high energy, αs → 0 so the

strong interaction gradually disappears. This property, called asymptotic freedom (AF),

is another important property of QCD.
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Although the concepts of confinement and asymptotic freedom receive empirical sup-

port, rigorous mathematical proofs of these phenomena in QCD are still missing. Never-

theless, a large community is working on studying the macroscopic, many-body proper-

ties of QCD from an ensemble of quarks and gluons, with experimental and phenomeno-

logical methods. There are two ways to achieve this: going to high temperature or high

density [3,15]. For high density, let’s imagine we have a finite size box and gradually pop-

ulate it with more quarks inside. Initially when the quark number is small, those quarks

are energetically favoured to form a bound state, which is the hadron. However, as more

and more quarks are put in, the quark wavefunctions start to overlap, as we can no longer

tell one quark from another, a scenario very similar to superfluidity [16,17]. In fig. 1.3 we

show a cartoon description of this scenario. In our universe, this matter is suspected to

Figure 1.3: Nucleons at normal density (left) and high density (right). Figure taken from

[3].

exist in the core of neutron stars [17]. On the other hand, for high temperature, let us

imagine a finite-size box being heated up, quark–anti-quark (qq̄) pairs will be excited out

of the vacuum and again, when more and more quarks and anti-quarks are created their

wavefunctions start to overlap. We reach a new matter of state called quark-gluon plasma

(QGP). This was first predicted in the late 1970s, and a transition temperature from QGP

to hadronic phase Tc ∼ 150 MeV was proposed [18–20]. Such high temperature can be
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found when we collide two relativistic heavy-ions (heavy ion collision, HIC), or in the

very early universe when the temperature was still high enough to produce QGP [21].

1.2 QCD phase diagram

As we found that hadron matter behaves in a totally new way when the density (repre-

sented by the baryon chemical potential µB) or temperature T is large, we would expect

that there are phase transitions when we go from, for instance, deconfinement to confine-

ment state. A brief scheme of the different phases of QCD matter plotted on the (T, µB)

plane is the QCD phase diagram, and is qualitatively shown in fig. 1.4.

Figure 1.4: A schematic illustration of the QCD phase diagram on (T, µB) plane, where T

is the temperature (in unit of MeV) and µB is the baryon chemical potential. Figure taken

from [4].

In this section, we will discuss different regions on the phase diagram fig. 1.4.

1.2.1 Colour superconductivity

We start by briefly discussing the bottom-right region of the phase diagram, which is

called colour superconductivity (CSC), corresponding to a high density but low temper-
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ature phase. As it is suggested by its name, the idea of CSC is very similar to the electric

superconductivity. In electric superconductivity, an attractive interaction between two

electrons carried by a phonon lowers the free energy of the system if fermions around

the Fermi surface are paired up. The pairs then act like bosons and condense [22, 23]. A

similar mechanism takes place for hadron matter at low temperature but a large baryon

density, where the attractive force comes from gluon exchange. The precise values of nu-

clear densities where CSC sets in remain unknown, but it is suspected that densities are

beyond the reach of any terrestrial experiment. Therefore, the evidence of CSC has been

pursued deep inside neutron stars. From low-density hadronic phase to high-density

CSC phase, there is a first-order phase transition like the case for electric superconduc-

tivity, and a critical point for a higher CSC transition temperature is also speculated like

the case for electric superconductivity. However no direct evidence has been found so

far [17, 24].

1.2.2 Quark-gluon plasma

We come to the discussion for the top-left region of the phase diagram fig. 1.4 where the

temperature is high. There, when the fireball produced in a HIC cools down, it goes from

a QGP phase to a hadronic phase. However, a phase transition does not always happen:

when the baryon chemical potential is low enough, the transition turns out to be a smooth

cross-over [25], as confirmed by lattice QCD calculations.

Here we briefly talk about some basic facts about lattice QCD. Lattice QCD discretizes

QCD on a grid and performs the path integral by summing up a large number of Monte-

Carlo samplings. Lattice QCD allows us to do ab-initio nonperturbative QCD calculations

to evaluate QCD thermodynamic properties. However, the notorious sign-problem [26,

27] prevents it from exploring the QCD phase diagram where baryon chemical potential

µB is finite. Some techniques such as a Taylor expansion in µB are used [28] to extend

lattice QCD to a small-µB region. Currently in the regions where lattice QCD currently

works, every thermodynamic quantity still turns out to be smooth, disfavouring a phase
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transition [25, 29, 30]. However, despite the lack of a genuine phase transition in lattice

QCD, we indeed see a large change in the degrees of freedom in the high-temperature

region, which suggests the deconfinement of nuclear matter at high energy. A pseudo-

critical temperature can be defined for such a smooth cross-over from QGP to hadronic

phase, which is found to be Tpc ≃ 156.5 MeV at µB = 0 [31].

At lower temperatures, a first order phase transition is evident in effective theories

such as is the Polyakov–Nambu–Jona-Lasinio (PNJL) model [32] for large µB. Therefore,

the presence of a critical point is speculated. Experimentally speaking, in order to search

for the critical point, one has to set the system to evolve on different paths on the phase

diagram (demonstrated by the dashed arrows on fig. 1.4). Efforts in varying beam en-

ergy and changing colliding nuclei have been made to set the system on different paths, a

strategy called beam-energy scan. However, since QGP produced in a HIC is not homo-

geneous, the system can evolve differently at different spatial position, so the system can

evolve along different paths on the phase diagram even for a single even of HIC, offering

us more opportunities in searching for the critical point. The search for a QCD critical

point is currently ongoing.

Finally before closing the section, it should be made clear that the phase diagram

sketched in fig. 1.4 is far from complete, especially for the large µB region. For example,

in the central area in fig. 1.4 marked with “Quarkyonic phase?” is another theoretically

proposed dense and confined phase of QCD matter, found in large Nc expansions [33].

The evidence of a CSC phase is also being pursued. Mapping out a detailed QCD phase

diagram is one of the main goals of nuclear physics.
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1.3 Evolution of a fireball: Stages of a heavy ion collision

Considering the QCD phase diagram, let’s move back to our discussion of the trajectories

in fig. 1.4 of HIC. In this section, we give a schematic description on how the system

evolves and what tools are used to describe the system at each stage.

We refer to the system produced by HIC as a ”fireball”, and the fireball evolution is

often called a ”little bang”, reminiscent of the big bang in cosmology [34]. This is due to

their similarities, which include not only their rapid expansion, but also many common

physical mechanisms that we will later explore [15].

Figure 1.5: Stages of the evolution of a fireball produced in HIC. From left to right: (a)

Initial state: two highly contracted nuclei collide with each other, (b) Pre-equilibrium: see

main text, (c) QGP: quark-gluon plasma behaves like a fluid, (d) Hadronization: hadrons

are formed from QGP, (e) Kinetic freeze-out: the system is dilute and particles fly freely

to the detectors. Figure adapted from [5].

An illustration for the little bang is fig. 1.5. Initially two nuclei deformed into flat

shapes because of the Lorentz contraction, as they are moving near the speed of light. At

the highest energy, because the parton distribution function is gluon-dominated, a large

number of far-from-equilibrium gluons are left in the region between the receeding nuclei.

This pre-equilibrium stage is called the colour glass condensate (CGC) state. [35, 36]. The

gluon field in CGC can be treated to be coherent, and study the evolution of CGC is

studied by solving the classical Yang-Mills equation derived from the QCD Lagrangian
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eq. (1.1). Such a model is called IP-Glasma [37]. Quarks and anti-quarks are created as

the fireball in this stage gradually moves towards thermalization.

At the end of CGC stage, the fireball is almost thermalized as the system is now close

to local equilibrium6. The system undergoes an expansion which is well described by

hydrodynamics, whose formalism will be reviewed in more detail in chapter 2. Along

with its rapid hydrodynamical expansion, the QGP also cools down as its temperature

approaches the QGP-hadron transition temperature Tpc discussed in section 1.2. At this

moment what happens is hadronization or chemical freeze-out, where quarks recombine

into hadrons. The chemical composition of the fireball remains almost stable after chemi-

cal freeze-out. However, the system is still close to a local equilibrium after the chemical

freeze-out as the mean-free-path of the particles remains small. Therefore, hydrodynamic

description remains applicable after the chemical freeze-out.

As the system continues to expand and cool, the mean-free-path of the particles will

soon become larger than the system size, rendering collisions between particles unlikely:

the kinetic freeze-out happens. The temperature for kinetic freeze-out to happen is found

to be slightly lower than chemical freeze-out. After the kinetic freeze-out, particles fly

freely to the detectors where final observables, such as the spectra and distributions of

the final-state particles, are measured. The phenomenological aspect of HIC physics is

therefore, mainly a study of inferring the properties of QGP from the final observables.

It is also worth mentioning that, apart from the final-state particles, electromagnetic

(EM) radiation also provides valuable information. As EM interaction is 2-order-of-magnitude

weaker than strong interaction (αEM/αs ∼ 1/100), EM probes (photons and dileptons)

which don’t participate in the strong interaction, remain almostly unscathed once pro-

duced, giving information about every stage of the fireball evolution [38–40].

In conclusion, the little bang happens in a HIC highly resembles to the big bang, in

both the sense of physical mechanisms and in the way data is analysed. The expanding

6An idealised thermalization and equilibrium can hardly be reached. In the practice of using a hydro-
dynamic description for the following stage, the deviation from equilibrium state manifests itself in the
viscous corrections.
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fireball goes through multiple stages until its final freeze-out when hadronic observables

are produced.

1.4 Thermal models

Thermal models are tools to extract the thermodynamic information of the chemical freeze-

out from the final spatial distribution of these hadrons. Intuitively, QGP chemical freeze-

out should be close to the phase-transition line, since chemical freeze-out is by-definition

where hadrons are formed out of the QGP. This is indeed true for small baryon density,

but for large baryon density, the chemical freeze-out happens at a temperature below the

the phase-transition line. A conclusive understanding of this feature is still lacking [41].

However the chemical freeze-out does happen very shortly after the system crosses the

phase-transition line in HICs [42]. It is argued that hadron multiplicities are established

very close to the phase boundary between hadronic and quark matter [43]. We would

thus like to understand more on QCD phase transition by studying the QGP freeze-out.

This thesis is devoted on exploring the thermodynamics of the freeze-out using different

models.

Generally when experimental data on the final state particle distributions is presented,

the freeze-out thermodynamics can be explored phenomenologically by running a mul-

tistage (3+1)D simulation where the QGP phase is described by relativistic hydrodynam-

ics [44]. The detail of relativistic hydrodynamics will be reviewed in chapter 2. With final

observables obtained in the experiment respected by the simulation, one can read out

the freeze-out thermodynamics from the hydrodynamic simulation where the freeze-out

takes place [7, 45].

However, running such a multistage simulation is costly in computation time. Ther-

mal models, on the other hand, link directly on the freeze-out thermodynamics with the

observed multiplicities (total number of a given species of particle in a little bang) and

is generally cheap in computation. In addition, compared to hydrodynamic simulations,
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thermal models are more physically intuitive, as their starting point is the assumption

that hadrons created in a HIC form a resonance gas in equilibrium, so multiplicities are

given by the equilibrium statistical distribution of a thermal source [46,47]. The history of

using thermal models in subatomic physics can be traced back to the works of Fermi [48]

and Landau [49] in 1950s. We will review more theoretical aspects of this approach in

section 3.2.2.

The standard use of thermal models only deals with only multiplicities7 instead of any

momentum or distribution of observed particles. It can only give the thermodynamics of

a single freeze-out point on the QCD phase diagram for one experiment. In order to probe

more freeze-out points using the thermal model, one must vary the collision energy or the

colliding nuclei. Such an effort is the beam-energy scan [50–53].

However, the fireball produced in HIC is inhomogeneous, which should exhibit aleardy

different freeze-out points at different spatial locations on the freeze-out surface. Such an

inhomogeneity manifest itself in the momentum distributions of the final-state particles,

which are measured experimentally as discussed. It is therefore intriguing to extent the

thermal model to describe an inhomogeneous freeze-out, which is one of the purposes of

this thesis.

A rapidity scan [54–56] is a widely used approach in exploring the freeze-out inho-

mogeneity in the beam (longitudinal) direction. Here, rapidity (y) is a quantity that re-

lates to the particle’s momentum along the beam direction, to be discussed in detailed

in section 3.3.1. The particle rapidity distributions dN
dy

are available from experiments like

NA49 [57] and BRAHMS [8,9]. In this approach, a thermal model is used on each rapidity

bin with a given width, which is ∆y = 0.5 in ref. [56] for example. Each rapidity bin is

treated individually to apply the thermal model used for the entire fireball.

This approach relies on the assumption that rapidity bins can be treated as indepen-

dent, which is questionable because of the presence of the thermal smearing effect. The

thermal smearing effect refers to the fact that a freeze-out point with a given rapidity y

7Or in some cases, deals with particle yields dN
dy at mid-rapidity y = 0 only.
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gives rise to not only final-state particles with the same rapidity y, but also a finite number

of particles with rapidities near, but not equal to y. The physics of the thermal smearing

effect is to be discussed in chapter 3, where we also set up a thermal model with smearing

effect being taken into consideration, referred as smearing thermal model.

It is both interesting and essential to check whether smearing effect gives a significant

correction in extracting freeze-out thermodynamics with rapidity scan. In addition, al-

though the thermal models are more economic to employ than a full multistage hydrody-

namic simulation, it is still necessary to check if they give consistent results. In chapter 4,

we compare results in extracting freeze-out thermodynamics from thermal models with

and without smearing, and also from a hydrodynamic simulation, using particle rapidity

distributions obtained from the same hydrodynamic simulation [7]. We lastly use our

smearing thermal model directly on the experimental data from the the BRAHMS exper-

iment [8, 9] using a Bayesian approach in chapter 5, where we report its performance on

extracting freeze-out thermodynamics with results and their uncertainties. A summary

and outlook are given in chapter 6.

14



Chapter 2

Hydrodynamic description of QGP

evolution and freeze-out

In this chapter, we give a brief review of the basic theory of viscous relativistic hydrody-

namics in section 2.1 followed by a synopsis of the Cooper-Frye prescription in section 2.2.

The reason of giving a review here is two-fold: first of all, relativistic hydrodynamics itself

receives huge success in modeling the fireball expansion; secondly, since we will later use

particle distributions that were produced by a multi-stage hydrodynamic simulation and

compare the performance of thermal models and the hydrodynamic model in chapter 4,

the review here is thus also for the completeness of this thesis.

2.1 Relativistic ideal and viscous hydrodynamics

Non-relativistic hydrodynamics has long been studied, and has many direct applications

to almost all branches of physics from astrophysics to condensed matter physics. Another

highlight of hydrodynamics is its successful engineering application, even if a thorough

understanding of the turbulence problem in Navier-Stokes (NS) equations is still lack-

ing. In modern theoretical physics, hydrodynamics is generally regarded as a low-energy

effective theory with microscopic degrees of freedom (with momentum of each particle
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integrated out), making macroscopic fields like fluid velocity v⃗(x⃗, t), density ρ(x⃗, t) and

pressure p(x⃗, t) the new degrees of freedom of the theory. It is usually constructed by

using the conservation law of particle number1, energy and momentum.

In order to utilise this idea to study QGP, a relativistic version of hydrodynamics must

be formulated. This can be done by the same philosophy of using conservation laws like

in the non-relativistic case. In relativity, energy and momentum are collectively encoded

in the energy-momentum tensor, or stress tensor T µν , which can be directly determined

from the microscopic field theory, as well as with kinetic theory. Generally, T µν is a sym-

metric tensor2.

Let’s review the construction of relativistic hydrodynamics in more detail. Through-

out this thesis, we use metric gµν = diag(1,−1,−1,−1). In a relativistic frame, one needs

to be careful about the definition of flow velocity uµ. Here we use the popular Landau

frame [60] where the flow follows energy density ϵ as

T µνuν = ϵuµ. (2.1)

Also, we required uµ to be normalized as uµuµ = 1. With uµ defined, we can then construct

a spatial projector

∆µν = gµν − uµuν , (2.2)

which satisfies ∆µνuν = 0. In the ideal limit, we assume T µν doesn’t contain any term

involving gradient, so the only rank-2 symmetric tensors we can use to construct T µν are

gµν and ∆µν . Using eq. (2.1), it is realized that

T µν
(0) = ϵuµuν − p∆µν . (2.3)

1For non-relativistic hydrodynamics only.
2It is worth noticing that it is recently realized that the anti-symmetry of Tµν encodes spin contribution,

and spin-hydrodynamics is constructed based on this fact [58, 59].
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By going back to the non-relativistic limit, the parameter p can be identified with the

pressure of the fluid. The subscript (0) here indicates the zeroth order in gradient, as one

has more available ingredients to construct T µν when we go higher and higher order in

flow gradient. In the fluid rest frame (frf), uµ = (1, 0⃗) and T µν
(0) = diag(ϵ, p, p, p).

Now we can proceed to implement the conservation law ∂µT
µν = 0. By applying uν

and ∆νλ on both sides, we arrive at the relativistic Euler equations

(ϵ+ p)Duµ −∇µp = 0; (2.4)

Dϵ+ (ϵ+ p)θ = 0. (2.5)

Here ∇µ = ∆µν∂ν is the spatial derivative, D = u · ∂ is the comoving derivative and

θ = ∂ · u is the scalar expansion rate of the fluid. Note that there are 5 equations in

eqs. (2.4) and (2.5) but they have one redundancy since it is derived from ∂µT
µν = 0 which

encodes 4 equations. While the unknown fields uµ, p, ϵ represent 5 degrees of freedom3,

eqs. (2.4) and (2.5) are not sufficient to determine the evolution of the fluid. Therefore

an additional equation is needed. The equation of state serves this purpose by relating

the pressure with energy density, i.e. p = p(ϵ), and it takes different forms for different

substances. Note that p(ϵ) can only be found via the underlying microscopic theory, or

be measured from experiments. In our practice of applying hydrodynamics to QGP, the

equation of state of QCD is needed, and for the low baryon density region in the QCD

phase diagram this is usually calculated with lattice QCD.

Viscous hydrodynamics involves the first order correction of eq. (2.3). Let’s write

T µν = T µν
(0) + T µν

(1) + O(∂2). Note that the Landau condition eq. (2.1) is already satisfied

by T µν
(0) , thus T µν

(1) needs to be transversal to uµ, i.e. T µν
(1)uν = 0. The only available ingre-

dients involving the first-order gradients are ∂µuν , uµDuν and θ. Let’s decompose T µν
(1) by

∆µν as

T µν
(1) = −Π∆µν + πµν , (2.6)

3Since uµ is normalized as uµuµ = 1, it has only 3 degrees of freedom.
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With eq. (2.6), the conservation law reads

∂νϵ−∆ν(p+Π) + (θ +D)(p+Π)uν + ∂µπ
µν = 0, (2.7)

which encodes the relativistic NS equations. Before going to the discussion on the rela-

tivistic NS equations, let’s first take a look into the viscous correction Π and πµν in more

details.

We first explore the possible tensor composition of Π and πµν . Based on the previous

discussion, they should contain and only contain the first-order derivatives of uµ, and

πµν should be perpendicular to both uµ and ∆µν . Let πµν ∝ 1
2
(∂µuν + ∂νuµ) + b

2
(uµDuν +

uνDuµ) + c∆µν with symmetric indices respected. Acting with uµ on both sides gives

b = −1 and acting with ∆µν yields c = −1/3. Also, since Π is a scalar and is of O(∂), it can

only depend linearly on θ. Therefore, we parameterize

Π = −ζθ, πµν = 2η∂⟨µuν⟩, (2.8)

where πµν∆µν = 0 and πµνuν = 0. The ⟨µν⟩ symbol is defined as

∇⟨µuν⟩ =
1

2
(∂µuν + ∂νuµ)− (uµDuν + uνDuµ)− 1

3
∆µνθ (2.9)

The way we parameterized Π and πµν can be rationalized by using an entropy analysis,

which also highlights the reason why we named them viscous corrections. The first law

of thermodynamics for a fluid cell is

dϵ = Tds, (2.10)

where T is the temperature and s is the entropy density. We recognize entropy flow as

sµ = suµ. The second law of thermodynamics requires that entropy is always increasing,
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so

∂µs
µ = θs+Ds ≥ 0, (2.11)

Using eq. (2.10), Ds = βDϵ. Here β = 1/T stands for the inverse temperature. Multiply-

ing uν on both sides of eq. (2.7) yields

Dϵ = −(p+ ϵ+Π)θ − uν∂µπ
µν = −(p+ ϵ+Π)θ + πµν∂µu

ν , (2.12)

inserting into eq. (2.11) yields

T∂µs
µ = (Ts− p− ϵ)θ − Πθ + πµν∂µuν ≥ 0. (2.13)

The first term (Ts − p − ϵ)θ is the contribution from ideal hydrodynamics and should be

zero since we assume ideal hydrodynamics is non-dissipative. This allows us to recognize

Ts = p + ϵ. The second term −Πθ is positive semi-definite if and only if Π = −ζθ with

ζ ≥ 0. Finally for the last term, using the fact that πµν is a symmetric tensor, we can

rewrite is as πµν∂(µuν). Then use the fact that πµνuµ and πµν∆µν = 0, we find that this

term can be also writeen as ∇⟨µuν⟩πµν . Since πµν = 2η∇⟨µuν⟩, this term is only positive

semi-definite if and only if η ≥ 0. Therefore, the parameterization in eq. (2.8) is justified.

Π and πµν contain the bulk and shear viscosity, ζ and η, respectively. The bulk viscosity

scalar Π serves as an additional part of the pressure p, which is the correction from fluid

expansion. Bulk viscosity can be related to microscopic nonequilibrium processes where

energies are transferred between translational motion and the inner structure of the fluid

particles, causing a correction to the macroscopic pressure [61].

On the other hand, shear viscosity can be understood as the friction between different

fluid layer, as momentum is transferred by particles diffusing in and out of each layer. See

fig.2.1 for an illustration. In detail, let’s explore a simple case where the fluid has velocity

field uµ = γ(z)(1, v(z), 0, 0) where γ(z) = 1√
1−v2(z)

. The entropy production rate for this
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fluid velocity is

ṡ = η

(
dv
dz

)2
1− v2

≃ η

(
dv

dz

)2

. (2.14)

In the language of thermodynamics, this is the entropy produced when there are different

fluid velocities for different fluid layers, and can thus be thought as friction between the

relative motion between two adjacent fluid layers.

Figure 2.1: A stationary flow when velocities in each layer are different. Exchanged mo-

mentum between nearby layers leads to a macroscopic friction known as shear viscosity.

Figure adapted from [6].

There are many attempts from both theory and phenomenology to find the coefficients

ζ and η for QGP. On the theoretical side, the approaches include pQCD and AdS/CFT cor-

respondence [62]. One of the most significant findings in QGP is its small shear viscosity.

In 2004, using AdS/CFT correspondence and Kubo formula, Kovtun, Son and Starinets

related the shear viscosity with the graviton absorption cross-section, and found a univer-

sal value for shear viscosity to entropy density ratio for a certain class of quantum field

theory [63] called N = 4 super Yang-Mills theory [64], which is

η

s
=

ℏ
4πkB

. (2.15)
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They further speculated that this value is a universal lower bound for shear viscosity of

any fluid, known as the KSS bound. Although QCD doesn’t fall into the class of N = 4

super Yang-Mills theory where the universal value holds, it was later confirmed in 2010

that QGP produced by Au+Au collision at 200 GeV almostly saturates the KSS bound [65],

where the authors found

1.0 ≤
(η
s

)
QGP

/
ℏ

4πkB
≤ 2.5, (2.16)

where, as a comparison, for water under daily condition, its η/s is ∼ 380 times greater

than the KSS bound. This suggests that the QGP is “the most ideal fluid” that is known.

Later studies constrain the η/s for QGP to be even closer to the KSS bound [66].

One should be aware of a common misconception that a small viscosity of a fluid indi-

cates a weak interaction of the underlying microscopic particles. The opposite is actually

true. From the kinetic theory of a dilute gas, η ∼ nlmfp⟨p⟩ where n is the particle num-

ber density, lmfp ∼ 1
nσ

is the mean-free-path of a particle, with σ being the cross section.

⟨p⟩ ∼ T is the mean momentum of a relativistic particle. For an ideal gas, the viscosity

is in fact very large due to a large lmfp. In relativistic cases where the mass of a particle is

negligible, s ∼ n ∼ T 3. We finally reach the estimation

η

s
∼ T lmfp. (2.17)

A small η/s thus tells a small lmfp, or equivalently a large cross-section σ [67]. Therefore,

such measured small η/s for QGP suggests that QGP is a strongly coupled system.

There is also a holographic study on bulk viscosity, where it is found that ζ/η = 2(1/3−

c2s) [68] with cs being the speed of sound. This value is much larger than pQCD calculation

[69] where ζ/η = 15(1/3 − c2s)
2. As c2s = 1/3 is the conformal limit, these results suggest

one nature of bulk viscosity is that QGP deviates being conformal due to microscopic

interactions [62].

Having discussed the physics of viscous term Π and πµν , we now go back to eq. (2.7)

and derive the relativistic NS equations. One of them, eq. (2.12), actually has already
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appeared when discussing entropy production rate. Another one can be obtained by

multiplying ∆µν on both sides of eq. (2.7), then

(ϵ+ p− ζθ)Duµ −∆µ(p− ζθ) + 2∆µ
ν∂ρ(η∂

⟨νuρ⟩) = 0. (2.18)

Eqs.(2.12) and (2.18) constitute relativistic NS equations. Relativistic viscous hydrody-

namics has enormous success in describing the expanding fireball. It is also worth notic-

ing that the first order viscous hydrodynamics suffers from the well-known causality

problem, where a superluminal (i.e., faster-than-light) propagation is found [70]. The

popular solution to this problem is to go to the second order, which gives Israel-Stewart

theory [71]. This is also the theory used later by the hydrodynamic simulation [7] related

to this thesis. It is also worth mentioning that because of the ambiguity in defining tem-

perature, velocity and chemical potential in first order hydrodynamics, adopting a frame

other than the Landau frame eq. (2.1) can also solve the causality problem [72].

2.2 The Cooper-Frye prescription for particle distribution

As the QGP expands, there will be a point where the system is so dilute that particles

are too far apart to interact. More quantitatively, the mean-free-paths of the particles are

comparable or even larger than the system size. This point is the so-called kinetic freeze-

out discussed in chapter 1. For simplicity, since we will only talk about kinetic freeze-out

in this section, we hereafter simply refer it by freeze-out. At the moment of freeze-out,

hydrodynamic description breaks down. After this, particles such as protons and pions

fly freely to the detectors, where particle distributions are measured. Therefore, it’s useful

to link the hydrodynamic description to the final particle distribution. Such a link was

made by Fred Cooper and Graham Frye [73].
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We now briefly summarize the Cooper-Frye prescription for freeze-out. Hydrody-

namic simulations usually use Milne (τ, x, y, η) coordinates, which are defined as

η =
1

2
ln
t+ z

t− z
, τ =

√
t2 − z2. (2.19)

Here, η is space-time rapidity, and τ is the proper time. Equivalently,

t = τ cosh η, z = τ sinh η. (2.20)

The freeze-out surface is formally a hyper-surface in 3+1D space-time. In terms of

Milne coordinates, the freeze-out surface can be written as [3]

σµ = (τf (x, y) cosh η, x, y, τf (x, y) sinh η), (2.21)

which gives

dσµ = (cosh η,−∂xτf , ∂yτf ,− sinh η)τfdxdydη. (2.22)

On the other hand, the current jµs of particle species s is related by its phase-space distri-

bution function fs(x, p) by

jµs (x) =

∫
1

Ep⃗

d3p⃗

(2π)3
fs(x, p)p

µ. (2.23)

Here 1
Ep⃗

d3p⃗
(2π)3

is the relativistic invariant measure in 3D momentum space. We can find the

particle number given by

Ns =

∫
dσµ

∫
1

Ep⃗

d3p⃗

(2π)3
fs(x, p)pµ, (2.24)

from which the particle momentum distribution at freeze-out can be obtained

d3Ns

d3p⃗
=

1

(2π)3

∫
1

Ep⃗

dσµpµfs(x, p). (2.25)
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In comparison with standard formula for particle distribution function in momentum

space d3Ns

d3p⃗
= 1

(2π)3

∫
d3x⃗fs(x⃗, p⃗), we recognise that d3x⃗ = 1

Ep⃗
dσµpµ. In other words, 1

Ep⃗
dσµpµ

plays the role of volume element. To see this more clearly, we parametrise pµ by transver-

sal mass mT and rapidity y defined in section 3.3.1 so pµ = mT (cosh y, ux, uy, sinh y)
4, we

have
1

Ep⃗

pµdσ
µ =

1

cosh y
(cosh(y − η)− ux∂xτf − uy∂yτf )τfdxdydη, (2.26)

which has the dimension of volume.

In general, fs(x, p) includes equilibrium distribution and viscous corrections, i.e.

fs(x, p) = fs,eq(
u(x) · p− µ(x)

T (x)
) + δf(x, p), (2.27)

where fs,eq is the Fermi-Dirac or Bose-Einstein distribution. In ideal hydrodynamics, lo-

cal equilibrium is well established so fs(x, p) = fs,eq(
u(x)·p−µ(x)

T (x)
). Therefore, δf ∼ O(∂) and

encodes viscous correction. The relation between Π, πµν and δf can be obtained by Grad’s

14 moments method or using the Chapman–Enskog expansion [74, 75]. The framework

of Cooper-Frye prescription thus provides us a bridge between hydrodynamic simula-

tion and the momentum distributions of final-state particles, which are measurable in

experiments.

4Normalized by u2
x + u2

y = 1.
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Chapter 3

Thermal Models

In this chapter, we present the theoretical foundation of thermal models used later. We

start by a brief review of the thermodynamics and particle distribution function in a grand

canonical ensemble in section 3.1, which later leads to the single source model (which is

generalized to the discrete thermal model in section 3.4). We then give also a review

of the relativistic kinematics with an emphasis on rapidity and its relevant concepts in

section 3.3, and finally how to use it to construct smearing thermal model in section 3.4.

3.1 Thermodynamics of a grand canonical ensemble

A grand canonical ensemble (GCE) describes a situation where the system is connected

to a bath from which the system can exchange both particles and energy. Note that for a

canonical ensemble, only energy is exchanged. The system is then described by a temper-

ature T , a chemical potential µ1, and a volume V . The GCE is therefore useful when the

particle number of the system changes naturally, like in a HIC where a large number of

quarks and gluons are created from the vacuum, or when quantum statistics are involved,

where the particle number is not a number but a operator without a specific pre-defined

value.
1If multiple particle species are involved, multiple chemical potentials µi are correspondingly needed.
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For a system with Hamiltonian Ĥ , and particle number operator N̂ , the grand parti-

tion function Z is defined as

Z = tr e−β(Ĥ−µN̂), (3.1)

where β = 1/T is the inverse temperature. It is clear that, from this definition, the expec-

tation of particle number is

⟨N̂⟩ = 1

Z
tr(N̂e−β(Ĥ−µN̂)) =

∂ lnZ
∂(βµ)

. (3.2)

Let’s now consider the statistics of a single energy level given by Hamiltonian Ĥ =

ωN̂ . Here N̂ is the particle number operator with eigenstates |n⟩. Given different natures

of the particles in the system, n ranges from 0 to infinity for bosons, and takes only 0 and

1 for fermions because of the Pauli exclusion principle. For a fermionic system, we can

easily compute eq. (3.1) as

Z = 1 + e−β(ω−µ), (3.3)

while a bosonic system requires a little algebra:

Z =
∞∑
n=0

e−nβ(ω−µ) =
1

1− e−β(ω−µ)
. (3.4)

One should notice that in order to make the series converge, we assumed ω > µ. Such

a converging condition is essential in the realisation of the Bose-Einstein condensation

happening when ω → µ [76].

With the results above, we can now determine the average particle number occupying

the energy level ω, using eq. (3.2). One finds,

⟨N⟩ =


fB(ω) ≡ 1

eβ(ω−µ)−1
, Boson;

fF (ω) ≡ 1
eβ(ω−µ)+1

, Fermion,
(3.5)
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where fB(ω) and fF (ω) are the Bose-Einstein (BE) and Fermi-Dirac (FD) distribution func-

tion respectively.

In the limit β(ω−µ) ≫ 1, the two distribution functions both reduce to the well-known

Maxwell-Boltzmann (MB) distribution of classical statistics

fC(ω) = e−β(ω−µ). (3.6)

Here the subscript C stands for classical. In the intermediate temperature region, a series

expansion can be used to replace fF/B = 1
eβ(ω−µ)+θ

. Here θ = 1 for fermion and −1 for

boson. Again, assuming ω − µ > 0, one has

fF/B(ω) =
e−β(ω−µ)

1 + θe−β(ω−µ)
=

∞∑
n=1

(−θ)n−1e−nβ(ω−µ), (3.7)

or

fF/B(ω) =
∞∑
n=1

(−θ)n−1f
T→T/n
C (ω). (3.8)

Since most thermodynamic quantities depends linearly on the distribution function f(ω),

this expansion allows us to write their quantum statistics as a summation of many inde-

pendent classical results with temperature replaced by T → T/n. It is also worth noticing

that this technique is not related to the Matsubara summation in finite-temperaure field

theory, nor the trace operation in eq. (3.1).

3.2 Particle numbers from a single source

3.2.1 Particle number of a relativistic ideal quantum gas

Classical statistics

For simplicity, we consider a box of non-interacting particles in the GCE. When tempera-

ture is high, the average kinetic energy of a particle becomes comparable with its mass so
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the non-relativistic dispersion E = p⃗2

2m
can no longer be used and must be replaced by the

relativistic dispersion

E =
√
p⃗2 +m2. (3.9)

For a particle in a box with size V = L3, we can impose periodic boundary condition

on the single particle wavefunction ψ ∼ eik⃗·x⃗, using ψ(x, y, z) = ψ(x + L, y, z). It can be

realised that

eikxL = 1 ⇒ kx =
2πnx

L
, nx = . . . ,−1, 0, 1, 2, . . . . (3.10)

In this case we say that the x-momentum kx is quantized by a quantum number nx. Same

condition is also to be imposed on ky and kz. Therefore, a particle in a non-interacting gas

has energy level given by

Ek⃗ =

√
k⃗2 +m2, k⃗ =

2π

L
n⃗. (3.11)

Recalling that eq. (3.6) gives the average number of particles occupying a quantum state

with energy ω in classical statistics, we find that the total particle number in the box is

NC(T, V, µ) =
∑
k⃗

gsfC(Ek⃗) = gse
βµ

∑
k⃗

e−β
√

k⃗2+m2
. (3.12)

Here, gs denotes the internal degree of freedom of the particle including spin, colour,

etc. To examine NC(T, V, µ) further, we work in the thermodynamic limit where L → ∞,

which allows us to replace the summation by an integral using

∑
k⃗

→
∫

d3k⃗

(2π/L)3
= V

∫
d3k⃗

(2π)3
. (3.13)

Here, d3k⃗ is the volume element in k⃗-space, and (2π/L)3 is the volume in k⃗-space occupied

by one quantum state given by the quantization condition eq. (3.11). Now eq. (3.12) can

be evaluated by using spherical coordinates

NC(T, V, µ) =
gsV

2π2
e−βµ

∫
dk k2e−β

√
k2+m2

=
gsV T

2π2
eβµm2K2(βm), (3.14)
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where K2(x) is the Bessel function of the second kind.

Quantum statistics

As we will see later that for some particles in the QGP freeze-out, MB approximation is

less valid and quantum statistics must be used, it is useful to also derive the equations for

particle numbers in quantum statistics.

Since the LHS of eq. (3.12) depends linearly on distribution function f , we can use

eq. (3.8) to write the particle number as a series of classical results. Namely, for fermions,

NF (T, V, µ) = V
∑
k⃗

fFD(

√
m2 + k⃗2) = V

∞∑
n=1

(−1)n−1
∑
k⃗

f
T→T/n
C (

√
m2 + k⃗2)

=
∞∑
n=1

(−1)n−1NC(T/n, V, µ),

(3.15)

substituting in eq. (3.14) yields

NF (T, V, µ) =
gsV T

2π2

∞∑
n=1

(−1)n−1

n
enβµm2K2(nβm). (3.16)

Similarly for bosons,

NB(T, V, µ) =
gsV T

2π2

∞∑
n=1

1

n
enβµm2K2(nβm). (3.17)

3.2.2 From particle numbers to thermodynamics

Our task is to infer the thermodynamic properties of a fireball produced in a heavy ion

collision from the particle numbers of different species. Pions, kaons and (net)-protons are

easily measured. For protons, their mass ismp = 937 MeV, which is much greater than the

typical freeze-out temperature of the QGP TFO ∼ 150 MeV, so a classical approximation

can be used. However mesons are generally lighter. For what we are interested in, pions
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have mass mπ = 139 MeV and for kaons mK = 498 MeV. As their masses are comparable

to the temperature, quantum statistics are required to ensure accuracy.

First, we notice that pions and kaons have zero baryon number so it has no baryon

density dependence. In this case Nπ and NK depends only on temperature and volume.

Especially, from eq. (3.17) the ratio Nπ/NK is uniquely determined by temperature2

π-K ratio(T ) =
Nπ(T, V )

NK(T, V )
=
m2

π

m2
K

∑∞
n=1(−1)n−1K2(nmπ/T )∑∞
n=1(−1)n−1K2(nmK/T )

. (3.18)

The functional dependence of the π-K ratio on T can be numerically determined from

eq. (3.18). Inverting it, we can get temperature as a function of the ratio as fig. 3.1.

Figure 3.1: Determining temperature from the π-K ratio

2To avoid confusion, in this thesis, we use N with a subscript for particle number to describe its
functional dependence on thermodynamics (T, µ, V ) given by eqs. (3.14), (3.16) and (3.17). For example,
Nπ(T, µ, V ) denotes the pion number in a GCE with (T, µ, V ) given. N with a superscript is reserved for
particle number as the model input without immediately knowing the thermodynamics of the system. For
example, Nπ represents the measured value of pion number in an experiment. In practice of this thesis, this
can be also obtained from hydrodynamic simulations.
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Once temperature is determined, using the fact that particle numbers are proportional

to the volume of the fireball V , which can be read out as

V =
Nπ

Nπ(T, V = 1 fm3)
fm3. (3.19)

Finally, let us discuss the determination of the baryon chemical potential µ. In experi-

ments, we usually only see the net proton number, which is

Np−p̄(T, V, µ) = Np(T, V, µ)−Np̄(T, V, µ) = Np(T, V, µ)−Np(T, V,−µ). (3.20)

Here, p̄ stands for anti-proton, and we used the fact that its chemical potential is opposite

to the proton chemical potential. Using the classical statistics eq. (3.14), we can rearrange

it into

Np−p̄(T, V, µ) = (eβµ − e−βµ)Np(T, V, µ = 0) = 2Np(T, V, µ = 0) sinh βµ. (3.21)

In the small chemical potential limit where βµ ≪ 1, the net proton number is roughly

proportional to µ, so baryon chemical potential and baryon density are sometimes used

interchangeably.

Eq. 3.21 can also be recast into a form involving Np−p̄ only

Np−p̄(T, V, µ) =
sinh βµ

sinh 1
Np−p̄(T, V, µ = T ), (3.22)

from which we can determine chemical potential directly as

µ = T sinh−1 Np−p̄ sinh 1

Np−p̄(T, V, µ = T )
. (3.23)
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3.3 Rapidity distribution

3.3.1 Rapidity

To introduce the concept of rapidity, we first have a quick review of relativistic kinematics.

For a particle with mass m, its energy is given by

Ep⃗ =
√
m2 + p⃗2, (3.24)

where p⃗ is its 3-momentum. We also use 4-momentum

pµ = (Ep⃗, p⃗), (3.25)

which is normalized as pµpµ = m2.

If we choose particle to be moving along z direction, i.e. p⃗ = pe⃗z, we can define rapidity

y such that

Ep⃗ = m cosh y, p = m sinh y. (3.26)

This parametrisation ensures the kinematicsE2−p2 = m2 by identity cosh2 y−sinh2 y = 1.

A particle at rest (p = 0) has y = 0. In the non-relativistic limit, y ≪ 1 must hold so p≪ m

is ensured, then, by comparing the non-relativistic expression p = mv where v is the

velocity of the particle, it can be realised that v ≃ y. Therefore, rapidity can be regarded

as a generalization of velocity in a relativistic setting.

In general, however, we would define z direction other than the direction in which the

particle is moving. For example, in HIC, a large number of final-state particles move in

different directions, while z is generally defined by the beam direction. Nevertheless a

rapidity y can still be defined in this case, along with another quantity called transverse

mass mT . More precisely, we define
√
p2x + p2y as the transverse momentum pT , then

mT =
√
m2 + p2T . (3.27)
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It is straight forward to show that the energy of this particle is given by

Ep⃗ =
√
m2 + p2T + p2z =

√
m2

T + p2z. (3.28)

Therefore, we can again define rapidity y by

Ep⃗ = mT cosh y, pz = mT sinh y. (3.29)

3.3.2 Rapidity addition

One important and useful property of rapidity is its additivity, which states that, if we

have an particle moving in frame S with a rapidity y and we observe it in another frame

S ′ where frame S is moving3 with rapidity η. Such change of frame is defined as boost.

After the boost, the rapidity of the particle will simply become y + η. One way to prove

this is to use the Lorentz formula of velocity superposition in special relativity. To prove

this, recall that if we have an object moving with a velocity v and its reference frame S is

moving in the same direction with a velocity of u relative to another frame S ′, then in S ′

the velocity of the particle is given by Lorentz transformation

v′ =
u+ v

1 + uv
. (3.30)

This formula ensures that the speed of the object cannot exceed speed of light in any

reference frame. Now, notice that the definition of rapidity eq. (3.26) can be written as

p

Ep

= tanh y. (3.31)

3Assume the particle’s velocity is parallel to the velocity of frame S viewed from S′, i.e., only motions
along the same axis are involved.
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We recongise the left hand side as the velocity of a particle. There, plugging in v = tanh y

and u = tanh η, we have

v′ =
tanh η + tanh y

1 + tanh y tanh η
= tanh(y + η), (3.32)

which states that the rapidity for v′ is nothing but y + η. This can be regared as a general-

isation of the Galilean transformation.

In the modern language of special relativity, such change of reference frame is called

boost, and η is its boost parameter. Thus, eq. (3.32) simply states that the rapidity of a par-

ticle after boosting is its initial rapidity plus boost parameter. In the sense of this addition

law eq. (3.32) and its low-speed limit y ≃ v, rapidity is the relativistic generalization of

the velocity as previously mentioned.

3.3.3 Space-time rapidity

In hydrodynamic simulations running on a space-time lattice, it is generally easier to deal

with space-time rapidity ηs, which is not defined by the particle’s momentum and energy

but by it’s coordinates (z, t) as defined in sect. 2.2. Also in hydrodynamic simulations,

coordinates (ηs, τ) are used while the thermal model with smearing effect (to be discuss

later) is formulated with rapidity y. Therefore, in order to relate two models, we need to

study the relation between a fluid cell’s4 y and ηs.

To formulating such a relation, we assume that information of τuη ≡ dηs
ds

, the ηs compo-

nent of a fluid cell’s velocity, can be obtained from hydrodynamic simulation as a function

of the fluid cell’s ηs coordinate. Physically, in a hydrodynamic simulation of the fireball,

τuη represents the longitudinal flow of a fluid cell.

4Here we only use the relation for fluid cells, but it generally applies for any object. In hydrodynamic
simulation, one fluid cell at the freeze-out is a freeze-out point.

34



From the definition of (ηs, τ) in terms of (z, t), we have

dt

dz

 =

cosh ηs τ sinh ηs

sinh ηs τ cosh ηs

 dτ

dηs

 . (3.33)

Then the invariant interval in (ηs, τ) coordinates can be written as

ds2 = dt2 − dz2 = dτ 2 − τ 2dη2s , (3.34)

and identifying ds2 as the proper time of the fluid cell, we have the normalization

uτ ≡ dτ

ds
=

√
1 + (τuη)2. (3.35)

We notice that rapidity y can be written in a similar way like ηs as

y =
1

2
ln
E + pz

E − pz
. (3.36)

Using the definition of vz = pz

E
, we have

y =
1

2
ln

1 + vz

1− vz
. (3.37)

By using vz defined in (z, t) coordinates vz = dz
dt

, from eq. (3.33) we recognize

vz =
tanh ηsdτ + τdηs
dτ + τ tanh ηsdηs

. (3.38)

Dividing both the numerator and denominator by ds and using eq. (3.35), we arrive at

vz =
tanh ηs

√
1 + (τuη)2 + τuη√

1 + (τuη)2 + τuη tanh ηs
. (3.39)
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Finally subsituting vz into eq. (3.37) yields

y(ηs) =
1

2
ln

(
√

1 + (τuη)2 + τuη)(1 + tanh ηs)

(
√

1 + (τuη)2 − τuη)(1− tanh ηs)
. (3.40)

If τuη as a function of ηs can be obtained from hydrodynamic simulation, we can use

eq. (3.40) to convert between y and ηs.

3.4 Smearing the thermal model

3.4.1 dN
dy from a source at rest

Let’s start with a thermal source at rest (i.e. y = 0) on the freeze-out surface, where it has

a temperature T , volume V and chemical potential µ. For simplicity, we consider classical

statistics first. This source will emit particles with different rapidities5. To obtain their

distribution dN
dy

, we start from the momentum space distribution in a GCE, i.e., eq. (3.14)

d3N

d3p⃗
=

gsV

(2π)3
eβ(µ−Ep⃗). (3.41)

Here, gs is the spin degeneracy, which is 1 for scalar bosons such as kaons and pions,

and 2 for spin-1/2 fermions such as protons and neutrons. Proceeding to determine dN
dy

,

we first notice that d3p⃗ = d2pTdpz, where d2pT = 2πpTdpT by rotational invariance in the

transversal plane. Thus, we have

d3N

d3p⃗
=

1

2π

d3N

pTdpTdpz
. (3.42)

Then using eq. (3.27), we can identify pTdpT = mTdmT . Finally we replace pz = mT sinh y

which gives a Jacobian dpzdmT = mT cosh ydmTdy. Therefore

dN

dy
= eβµ

gsV

(2π)2

∫ ∞

m

dmTm
2
T e

−βmT cosh y. (3.43)

5Not to be confused to the rapidity of the thermal source.
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The integral gives

dN

dy
=
gsV T

3

(2π)2
eβ(µ−m cosh y)2 + 2βm cosh y + (βm cosh y)2

cosh2 y
. (3.44)

We note that we have used the Boltzmann distribution in derivation above, which is only

valid when m ≫ T . As the typical freeze-out temperature of a QGP is ∼ 150 MeV and

bosons have comparable masses (140 MeV for pions and 493 MeV for kaons), in practice

it is an inaccurate approximation. As a result, we need to use quantum statistics. Using

eq. (3.8) and the fact that dN
dy

is linear in the distribution function f we started with, we

realised that for bosons,

KB(y;T, V, µ) ≡
(
dN

dy

)
boson

=
∞∑
n=1

K(y;T/n, V, µ), (3.45)

where as K(y;T, µ, V ) denotes dN
dy

in the classical case given by the eq. (3.44). Similarly

for fermions

KF (y;T, V, µ) ≡
(
dN

dy

)
fermion

=
∞∑
n=1

(−1)n−1K(y;T/n, V, µ). (3.46)

3.4.2 Convolution integral

Now we come to the case where we have a source with a rapidity y0. To obtain the rapidity

distribution in this case, we can use Lorentz transformation to boost this source back to

its rest frame. By the additivity of rapidity, the boost is simply achieved by replacement

y → y−y0. Precisely, in the boosted frame where the source is at rest, one can use eq. (3.44),

and to boost it back, we just replace y in eq. (3.44) by y − y0. Therefore in this case,

K(y − y0;T, µ, V ) ≡
(
dN

dy

)
source at y0

=
gsV T

3

(2π)2
eβ(µ−m cosh(y−y0))

2 + 2βm cosh(y − y0) + (βm cosh(y − y0))
2

cosh2(y − y0)
.

(3.47)
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Now if we have sources at every rapidity point y with all different thermodynamics

as T (y), µ(y), V (y), it is clear that the final distribution will be

dN

dy
=

∫
dy0K(y − y0;T (y0), µ(y0), V (y0)). (3.48)

Depending on the nature of the considered particle, in practice we need to change K

above by KB or KF . We try to reproduce the particle yields dN
dy

by 2 methods

1. Smearing model: This is new in this thesis and the related work [7]. We use some

ansatzs for T (y), V (y), µ(y) and tuning the parameters in the ansatzs so that the final

yields are reproduced by eq. (3.48). This method, however, can never give a perfect

fitting. In our practice, the fitting is stopped when only a little improvement can be

made, and the final global error is less than 10−3, discussed in chapter 4.

2. Discrete model: This is used in a number of papers on rapidity scan, see, e.g. [56].

In this model we treat dN
dy

at each y point independently as particle numbers given

by eqs. (3.14) and (3.17), so we can calculate (T, V, µ) at each point using fig. 3.1

and eqs. (3.19) and (3.23). This approach makes discrete model always gives ex-

act results for the thermodynamics (T, µ, V ) if particle numbers are given as exact.

However, as earlier discussed, the starting point of treating each y point indepen-

dently lacks justification, since particle numbers given by eqs. (3.14) and (3.17) are

not dN
dy

for a given rapidity, but actually
∫
dy dN

dy
, i.e., with y distribution integrated

out.

Therefore, also the discrete model is economic to use, one needs to be extra careful with its

assumptions, and it is necessary to check if smearing effect is non-negligible when extract-

ing freeze-out thermodynamics. Practically for the smearing model, inferring T (y), µ(y), V (y)

from yields dNπ

dy
, dN

K

dy
, dN

p−p̄

dy
requires doing a functional fitting, and to proceed, we take the
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following ansatz for the functional dependence:

T (y) = t0 + t2y
2 + t4y

4 + t6y
6 + . . . ; (3.49)

z(y) ≡ eµ(y)/T (y) − e−µ(y)/T (y) = z0 + z2y
2 + z4y

4 + . . . (3.50)

The reason of using a Taylor expansion for T is that HICs basically explore the top-left part

of the QCD phase-transition line where temperature drops rather slowly6. A previous

study [56] finds indeed that temperature doesn’t change significantly for y ≲ 3.5. For z

which is related to chemical potential µ and is roughly proportional to net-proton number,

due to the decreasing baryon-stopping power at higher beam energy, one also anticipates

that it is slowly varying with y. As we go to lower energies, some of these arguments will

become less valid. Nevertheless, we included more terms in the expansions so a good fit

can be achieved.

For the volume V (ys) we use a plateau with two half-Gaussian tails:

V (ys) = V0 exp

[
−(|ys| − yc)

2

2σ2
× θ(|ys| − yc)

]
, (3.51)

where V0, yc, σ are free parameters, controlling the overall scale, the plateau width and the

width of the tails.

With the predefined parametrizations, we can now tune the parameters to fit the yields

at different beam energies obtained from the hydrodynamic simulation in [7], in order to

study the thermodynamics on the freeze-out surface from the smearing thermal model.

6When the collision energy is high enough, the fireball doesn’t acquire a large baryon chemical potential
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Chapter 4

Results and Discussions

In this chapter, we compare the performances and results on extracting the thermody-

namics on the freeze-out surface in different models. The chapter starts with a discussion

on using the single source model for the beam energy scan. The differences between

discrete and smearing thermal models are then considered in section 4.2. We finally com-

pare the thermal models and hydrodynamics simulation in section 4.3. The data here

used is identical with ref. [7], which contains particle distribution for net protons, pions

and kaons in beam energies
√
s = 7.7, 19.6, 62.4 and 200 GeV per nucleon.

4.1 Single source model: Beam energy scan

Let’s first discuss the result from the using the single source model described in sec-

tion 3.2.2. Varying the collision energy in heavy ion collision, different freeze-out points

on the phase diagram can be reached. One then evaluate the multiplicity of for pions,

kaons and net protons in experiments.

In our practice, the particle multiplicities are obtained by integrating over rapidity in

the yields given in ref. [7], i.e., N s =
∫
dy dNs

dy
where s = π,K, p − p̄. We then follow the

procedure given in section 3.2.2, using eqs. (3.18), (3.19) and (3.23) to extract the temper-

ature, baryon chemical potential and volume of the entire fireball. In fig. 4.1, we show
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Figure 4.1: Beam energy scan for freeze-out points at different beam energy. Data is

from [7], which is identical for the data used later in this chapter. The size of each point is

proportional to the volume obtained by eq. (3.19)

the freeze-out points for collisions at
√
s = 7.7, 19.6, 62.4 and 200 GeV. Generally speak-

ing, we observe that when collision energy decreases, the freeze-out point moves to the

bottom-right position on the phase diagram. For
√
s = 62.4 and 19.6 GeV, their corre-

sponding points are closer to the freeze-out line used in the hydrodynamic simulation.

The increasing µB as we go to lower energy can be partly attributed to the increased

baryon stopping power in low-energy collisions [77, 78]. This is relates to the fact that

nucleons are “transparent” in ultra high energy collisions. In the ultra-relativistic cases

the collided nucleons mostly pass each other, leaving almost no nucleus, and thus little

µB in the fireball region. This transparency decreases as
√
s decreases, therefore more

nuclei are stopped and join the fireball, a phenomena referred to as baryon stopping [79].

As baryon charge is conserved, the stopped nuclei at the initial stage finally manifest

themselves as a larger µB on the freeze-out surface.
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4.2 Extracting freeze-out thermodynamics by discrete and

smearing thermal models

With beam energy scan discussed, we now turn to another strategy of mapping freeze-out

points on the phase diagram: rapidity scan. In this section, we compare the performance

from thermal models with and without smearing effect, whose frameworks are discussed

in section 3.4. Here hydrodynamic yields are from ref. [7] as the previous section.

4.2.1 19.6 GeV

Let’s first look at the collision at
√
s = 19.6 GeV. We implement both discrete and smear-

ing thermal models on the data. In fig. 4.2, we showed how well our smearing thermal

model can reproduce the yields. It is observed that our smearing thermal model repro-
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Figure 4.2: Hydrodynamic and smearing thermal model yields at
√
s = 19.6 GeV. The

panels are for net proton (p − p̄), pion (π) and kaon (K) yields, from left to right. In each

panel, the blue line is the yields form hydrodynamic simulation which is fitted by the

smearing thermal model showed by the orange line.

duces yields well around mid-rapidity, while for the tail (y ≳ 2), the matching is not

so optimal. As we will point out later, the disagreement at the tail is not a significant

shortcoming of the model. Because of the usage of parameterisation, this model never

gives a perfect fitting while for discrete thermal model, everything is determined ana-

lytical through eqs. (3.18), (3.19) and (3.23) so exact results are always given. Therefore,
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when compare these two models, one should always keep in mind that the discrepancy

between extracted (T, µ, V ) are from both:

• intrinsic nature: model differences between discrete and smearing thermal model;

• mismatch in fitting: the discrepancy between hydrodynamic and reproduced yields

by smearing thermal model.

If we just want to compare the two models, one way to eliminate the difference from

the mismatch is to use discrete thermal model again on reproduced yields from smearing

thermal model. In fig. 4.3, we demonstrate this by plotting the extracted thermodynamics

from using the discrete thermal model on original hydrodynamic yields (dashed blue

line), the smearing thermal model on original hydrodynamic yields (green line) and the

discrete thermal model on reproduced yields from smearing thermal model (orange line).
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Figure 4.3: Thermodynamic profiles from different thermal models at
√
s = 19.6 GeV.

The panels are for temperature T , baryon chemical potential µ and volume V as a function

of rapidity y respectively, from left to right. In each panel, the orange line corresponds to

the profiles extracted by the discrete source model using the particle yields given by the

smearing thermal model, i.e., the orange lines in fig. 4.2.

From fig. 4.3 it is shown that around mid rapidity (y ≲ 2), the orange and dashed blue

lines match well, indicating that the discrepancy between two models are mostly because

of the intrinsic difference between models. A lower temperature is indeed observed by

the smearing thermal model. The difference, however, is less than 5%, and the same is
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true of baryon chemical potential µ(y). The only significant difference between the two

models around mid-rapidity is the volume V (y), where smearing thermal model gives

a volume that is general ≳ 10% than the discrete thermal model. However, comparing

the green and orange line which are different thermal models for same yields, the over-

all system size is still preserved although the volume rapidity distributions are different

between two models.

Let’s now focus on the discrepancy near the tail. For temperature, the difference be-

tween the dashed blue line and the orange line is very significant, indicating a mismatch

between reproduced and original hydrodynamic yields in pions and kaons, as one sees

from fig. 4.2. On one hand, this is because of the usage of ansatz eqs. (3.49) and (3.51)

and is thus unavoidable. On the other hand, as one noticed that in fig. 4.2, the mismatch

in yields is not as significant as the discrepancy in temperature profile, this is due to the

nature of the discrete model. Let’s introduce a short-hand notation nπ, nK for dNπ

dy
, dN

K

dy
,

and δnπ, δnK as their error1 . Since temperature is uniquely determined by the π−K ratio,

the error in temperature extracted in discrete thermal model is given by

δT =
dT

drπ/K
δ

(
nπ

nK

)
=

dT

drπ/K

nKδnπ − nπδnK

(nK)2
. (4.1)

A numerical calculation for the first coefficient dT
drπ/K

is given by fig. 4.4, and is ofO(0.01 GeV)

in our range of interests. However, as we approach the tail, as nK → 0 for y ≳ 3, since δnπ

and δnK are still finite, δT grows unavoidably. In real experiments, since only a small set

of data points for dN
dy

is available, one has to do fitting to get a continuous curve for dN
dy

to

implement the discrete thermal model, an even larger uncertainty would be expected.

In short, at the tail, the discrete thermal model will be too sensitive to any kind of

uncertainties we introduced when analysing the data. Although such a quantitative error

analysis for smearing thermal model is difficult, given their similar nature, we shouldn’t

1Can be attributed to either the uncertainties in experimental measurements when using the model
directly to experimental data, or fitting error to the hydrodynamic yields as what we are currently focusing
on in this section.
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Figure 4.4: dT
drπ/K

as a function of temperature. As there is an enhancement for large tem-

perature, it’s generally of the order of 0.01 GeV.

expect neither the discrete or smearing thermal model to work well in the tail. In chap-

ter 5, we indeed find a similarly large uncertainty smearing thermal model at the tail

region by using a Bayesian analysis.

Finally let’s move on to the phase diagram. In fig. 4.5, we compare the freeze-out

points on the freeze-out surface (later referred as freeze-out point for short) extracted

from two thermal models, and compare them with the freeze-out line used in this hydro-

dynamic simulation2.

From the phase diagram, we can tell some other advantages of smearing thermal

model is that unphysical bottom-left region is avoided, while discrete model has points

in that region with a large volume. This can be partly explained by the predefined ansatz

in V (y) which requires the volume automatically approaches 0 as we go to larger rapid-

ity. What’s more, freeze-out points extracted form smearing thermal model are generally

2In ref. [7], the freeze-out in the hydrodynamic simulation is defined a constant energy density efo =
0.26 GeV/fm3, where hydrodynamic language is translated to particle language using the Cooper-Frye
prescription described in section 2.2. (T, µ) relation, which is the freeze-out line plotted in fig. 4.5 and other
phase diagrams in this chapter, is obtained by the QCD equation of state used in the simulation with this
given energy density.
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Figure 4.5: Freeze-out points on the phase diagram for
√
s = 19.6 GeV. The dashed blue

line is from the freeze-out condition used in hydrodynamic simulation, while the green,

orange points are obtained by smearing and discrete thermal models respectively. Here

the size of the points is proportional to volume V (y). The red star shows the result from

the single source model in fig. 4.1 for this energy.

closer to the freeze-out line used in the hydrodynamic simulation, suggesting a better

performance in extracting freeze-out thermodynamics when using the smearing thermal

model on data than the discrete model. This is partly because in hydrodynamic simula-

tions smearing effect is automatically taken care of by the Cooper-Frye prescription, and

smearing thermal model describes better what really happens on the freeze-out surface.

4.2.2 Lower energy: 7.7 GeV

In fig. 4.6 we compare the reproduced yields from the smearing thermal model and the

hydrodynamic simulation. As one can see the fitting is satisfactory. In fig. 4.7 we showed

the extracted (T, µ, V ) as a function of y. Similar to our 19.6 GeV case, a match between
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the orange line and dashed blue line indicates a good fitting is indeed reached by the

smearing thermal model around mid rapidity y ≲ 1.5. Again, in trustworthy region of

smearing thermal model, a lower temperature is given but the difference is less than ∼

5%. The creeping discrepancy for the tail verifies our statement that the discrete thermal

model is too sensitive to any level of uncertainty in dN
dy

.
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Figure 4.6: Hydrodynamic and smearing thermal model yields at
√
s = 7.7 GeV. The

panels are for net proton (p − p̄), pion (π) and kaon (K) yields, from left to right. In each

panel, the blue line is the yields form hydrodynamic simulation which is fitted by the

smearing thermal model showed by the orange line.
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Figure 4.7: Thermodynamic profiles from different thermal models at
√
s = 7.7 GeV. The

panels are for temperature T , baryon chemical potential µ and volume V as a function of

rapidity y respectively, from left to right. In each panel, the orange line corresponds to

the profiles extracted by the discrete source model using the particle yields given by the

smearing thermal model, i.e., the orange lines in fig. 4.6.

On the phase diagram fig. 4.8, it is shown that freeze-out points in both models gives

a wider distribution than what we have already seen for 19.6 GeV. This could be at-

tributed to the stronger baryon stopping power in low-energy collision, where a larger
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µB is reached in some spatial regions. Other facts such as discrete thermal model gives

points far from the freeze-out line and gives unphysical points with large volume in the

bottom-left region of the phase diagram, are still similar with what we have for 19.6 GeV.

Figure 4.8: Freeze-out points on the phase diagram for
√
s = 7.7 GeV. The dashed blue

line is from the freeze-out condition used in hydrodynamic simulation, while the green,

orange points are obtained by smearing and discrete thermal models respectively. Here

the size of the points is proportional to volume V (y). The red star shows the result from

the single source model in fig. 4.1 for this energy.

4.2.3 Higher energies: 62.4 and 200 GeV

Now we move ahead to the discussion on higher energies. Similarly we start with com-

paring the reproduced yields with the hydrodynamic simulation in figs. 4.9 and 4.10. As

we see good matches are reached for both energies, we compare the thermodynamics in

figs. 4.11 and 4.12.
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Figure 4.9: Hydrodynamic and smearing thermal model yields at
√
s = 62.4 GeV. The

panels are for net proton (p − p̄), pion (π) and kaon (K) yields, from left to right. In each

panel, the blue line is the yields form hydrodynamic simulation which is fitted by the

smearing thermal model showed by the orange line.
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Figure 4.10: Hydrodynamic and smearing thermal model yields at
√
s = 200 GeV. The

panels are for net proton (p − p̄), pion (π) and kaon (K) yields, from left to right. In each

panel, the blue line is the yields form hydrodynamic simulation which is fitted by the

smearing thermal model showed by the orange line.

One clear trend when beam energy increases is that the system tends to be more

isothermal. As the extreme case in 200 GeV, in the rapidity region that we are consid-

ering, 145 MeV < T < 155 MeV. Such a small variation in temperature gives a smaller

model difference between smearing and discrete thermal model, as one can prove that for

an exactly homogeneous system, two models give identical result. It is also worth notic-

ing that the unphysically large V (y) is automatically avoided for both 62.4 and 200 GeV.

This is partly because the kaon yields are finite for the whole rapidity region 0 < y < 4,

the uncertainty given by eq. (4.1) remains small. In other words, based on our experi-

ences with the other cases, unphysically large V (y) in the discrete thermal model only
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Figure 4.11: Thermodynamic profiles from different thermal models at
√
s = 62.4 GeV.

The panels are for temperature T , baryon chemical potential µ and volume V as a function

of rapidity y respectively, from left to right. In each panel, the orange line corresponds to

the profiles extracted by the discrete source model using the particle yields given by the

smearing thermal model, i.e., the orange lines in fig. 4.9.
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Figure 4.12: Thermodynamic profiles from different thermal models at
√
s = 200 GeV.

The panels are for temperature T , baryon chemical potential µ and volume V as a function

of rapidity y respectively, from left to right. In each panel, the orange line corresponds to

the profiles extracted by the discrete source model using the particle yields given by the

smearing thermal model, i.e., the orange lines in fig. 4.10.

potentially appears in the tail region, while the tail in this case is yet to be reached within

the rapidity interval that we are considering. As one goes to larger y which is not shown

here, it is expected that V (y) will still increase in the discrete thermal model. We also see

a decreasing baryon chemical potential µB for large beam energy. Plotting the freeze-out

points on the phase diagrams in figs. 4.13 and 4.14 also verifies our statements above.
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Figure 4.13: Freeze-out points on the phase diagram for
√
s = 62.4 GeV. The dashed blue

line is from the freeze-out condition used in hydrodynamic simulation, while the green,

orange points are obtained by smearing and discrete thermal models respectively. Here

the size of the points is proportional to volume V (y). The red star shows the result from

the single source model in fig. 4.1 for this energy.

4.2.4 General discussion for all beam energies

We wrap up this section by a general discussion on all beam energies based on the phase

diagram (fig. 4.15). In fig. 4.15 the error bars shows the median, and 25% and 75%

percentiles of (T, µ) distributions weighted by volume. To be precise, the p%-volume-

weighted percentile of a y-dependent quantity3 f(y) (denoted as fp) is obtained from

p% =

∫
y f(y)<fp

dyf(y)V (y)∫∞
y=−∞ dyf(y)V (y)

. (4.2)

3Here, T (y) or µ(y).
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Figure 4.14: Freeze-out points on the phase diagram for
√
s = 200 GeV. The dashed blue

line is from the freeze-out condition used in hydrodynamic simulation, while the green,

orange points are obtained by smearing and discrete thermal models respectively. Here

the size of the points is proportional to volume V (y).The red star shows the result from

the single source model in fig. 4.1 for this energy.

The vertical error bar then shows T25, T75 on its ends while T50 sits at the centre, and simi-

larly for the horizontal error bar. Thus, the length of the error bars at one energy describes

the overall distribution of (T, µ) for the freeze-out points extracted by two thermal mod-

els.

The reader may notice that in fig. 4.15, the vertical error bars for the discrete model

(coloured blue) which represent the distributions of the orange points are not as long as

one tells from figs. 4.5, 4.8, 4.13 and 4.14. This is true and is because we performed a

cutoff for both models at where volume starts to raise up at the tail in the discrete model

in order to avoid super large error bars in the discrete thermal model.

52



From fig. 4.15, it is clear that as we increase the beam energy, the overall temperature

of the freeze-out points goes up while chemical potential goes down, manifesting the
√
s-decreasing baryon stopping power as it is already discussed in section 4.1.

On the other hand, model dependence is observed for every beam energy, where the

smearing model typically gives a lower temperature as we’ve already seen in the dis-

cussion of 19.6 GeV. For every beam energy, freeze-out points extracted by the smearing

model is closer to the freeze-out line used in hydrodynamic simulation. However we find

the model difference decreases as we move to higher and higher energy. As it is already

discussed in section 4.2.3, this
√
s-decreasing model difference can be partly explained by

the fact that the freeze-out surface is more isothermal for higher beam energy, which is

also consistent with by the errors in fig. 4.15.
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Figure 4.15: Distributions of (T, µ) extracted by two thermal models for different beam

energies. The error bars show the median, and 25% and 75% percentiles of (T, µ) distri-

butions weighted by volume. A cutoff is performed to exclude the unphysically large

volume at the tails of
√
s = 19.6 and 7.7 GeV.
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4.3 Comparing thermal model and Cooper-Frye freeze-out

from hydrodynamics simulation

4.3.1 Effects from longitudinal boost

Before comparing on the freeze-out thermodynamic profiles extracted from the thermal

models and the hydrodynamic model, let’s first discuss how the longitudinal boost af-

fects yields and thermodynamic profiles. As it is mentioned earlier, in hydrodynamic

simulation, temperature and chemical potential profiles are built not on rapidity y but

space-time rapidity ηs, which is defined in section 3.3.3. Recall that the y − ηs conversion

eq. (3.40) we obtained there requires τuηs(ηs) to be known. In fig. 4.16, we showed τuηs(ηs)

for all four energies we used here, obtained from the corresponding hydrodynamic sim-

ulation [7]. In general, τuηs(ηs) tells the strength of longitudinal flow of a fluid cell with a

given space-time rapidity ηs. The τuηs profile is fitted by

Figure 4.16: τuηs(ηs) obtained from simulation. Each dot represents (ηs, τu
ηs) of a freeze-

out point, and the solid lines are the cubic fitting for those points. Figure taken from [7].

τuηs(ηs) = α(ηs + C)3θ(ηcuts − ηs). (4.3)
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Here θ is the Heaviside step function, α controls the magnitude of longitudinal flows. We

notice that, not only hydrodynamic simulation shows the presence of a longitudinal flow,

it also shows that there is an ηs cutoff for the freeze-out points, denoted as ηcuts in eq. (4.3).

This cutoff is however invisible in thermal models.

We hereby focus on
√
s = 19.6 GeV. With α = 0.04 from hydrodynamic simulation,

y(ηs) can be found by combining eq. (3.40) and eq. (4.3). Using the same thermodynamic

profile (T (y), µ(y), V (y)) in fig. 4.3 obtained earlier from fitting, we obtain the thermody-

namic profiles in space-time rapidity by identifying

(T (ηs), µ(ηs), V (ηs)) ≡ (T (y(ηs)), µ(y(ηs)), V (y(ηs)))× θ(ηcuts − ηs), (4.4)

with the cutoff ηcuts = 2.2 added. This allows us to compare thermal and hydrodynamic

models directly in the ηs formulation, which will be later presented in section 4.3.2.

To demonstrate the effects of the longitudinal flow in smearing thermal model, we

make α tunable to obtain a new set of (T (y), µ(y), V (y))α by

(T (y), µ(y), V (y))α ≡ (T (ηs(y;α), µ(ηs(y;α), V (ηs(y;α)). (4.5)

Here we explicitly spell out α-dependence of ηs(y;α) in the conversion, while quantities

on the right-hand-side in terms of ηs is given by eq. (4.4). For each α, we feed the new

thermodynamic profile (T (y), µ(y), V (y))α to smearing thermal model eq. (3.48) so a new

set of yields is obtained, which is showed in fig. 4.17. It is observed in fig. 4.17 that a

stronger longitudinal flow can significantly extend the tails in particle yields. As we ar-

gued earlier that smearing effects contributes greatly to the tail yields, here we see that

the longitudinal flow can be another factor that gives the same contribution. In hydrody-

namic simulations, these two factors are automatically taken care of by the Cooper-Frye

prescription eq. (2.26). Although the smearing effect can be incooperated into a thermal

model as we already did in chapter 3, a thermal model is always built purely on thermo-

dynamics without any information of the kinematics of the fireball. Therefore, although
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Figure 4.17: Yields from smearing thermal model for different magnitudes of longitudinal

flow.

we see from fig. 4.17 that the longitudinal flow can be another contribution for the yields

in the tail region, such a contribution, unlike the smearing effect that does the same task,

is not considered in any pure thermal model.

4.3.2 Comparing freeze-out thermodynamics between thermal and hy-

drodynamic models

With the discussion of longitudinal flow done, we are now ready to compare the freeze-

out thermodynamics extracted from thermal and hydrodynamic model in the ηs lan-

guage. We show the result in fig. 4.18, for temperature and chemical potential. Volume

profile V (ηs) is not extracted from the hydrodynamic simulation, so is not shown here. As

one can tell from fig. 4.18, both thermal models deviate from the hydrodynamic model,

smearing thermal model does agree better with what is extracted from the hydrodynamic

simulation. In general, the difference between the models are still within 10% for the

whole ηs range. The large uncertainties we witness before don’t show up here because of

the ηs cutoff which automatically discards the tail region.

In summary, since all of the three models give similar results in extracting (T, µ) of

QGP freeze-out surface with discrepancy ≲ 10%, we conclude that using thermal model

could be an less expensive but still effective way of performing this job instead of run-

ning the hydrodynamic simulation, which takes a much longer time to complete. More-

56



0.0 0.5 1.0 1.5 2.0
s

0.130

0.135

0.140

0.145

0.150

0.155
T(

Ge
V)

0.0 0.5 1.0 1.5 2.0
s

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

(G
eV

)

Thermal w/ smearing
Thermal w/o smearing
Hydro

Figure 4.18: Comparison between extracted thermodynamics from smearing thermal

model (blue dash-dot lines), discrete thermal model (orange dotted lines) and hydrody-

namic simulation (green solid lines).

over, discrete thermal model is also proven to be a simple, fast model for this task with

desirable performances at mid rapidity, where the model difference between discrete,

smearing thermal model and hydrodynamic simulation is generally within 10%. How-

ever, smearing thermal model does give a quantitatively better result, so we expect that

considering smearing effect would be still necessary if future experiments cover a wider

rapidity range with less errors.
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Chapter 5

Thermal model meets experimental data:

a Bayesian study on BRAHMS Au+Au

collisions at
√
s = 62.4 GeV

5.1 Bayesian parameter estimation

Bayesian analysis is a powerful tool to learn from data. It combines both our previous

knowledge of the parameters and the constrain from experimental data [80,81]. One of the

most important application of Bayesian analysis is the parameter estimation that is to be

discussed here and used in the rest of this chapter. It has been proven significantly useful

when we have a high-dimensional parameter space. Efforts have been made, for example,

to use Bayesian analysis to constrain QCD transport coefficients from experimental data

[82, 83], as well as in cosmology [84] and almost every other branch of physics. In this

section, we briefly summarize the basic ideas of Bayesian analysis and the techniques

of using a Markov Chain Monte Carlo (MCMC) to generate samples from the posterior

distribution given by the Bayesian analysis.
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The starting point of Bayesian analysis is Bayes’ theorem, which relates the conditional

probabilities P (A|B) and P (B|A) by

P (A|B) =
P (B|A)P (A)

P (B)
. (5.1)

Here, P (A|B) reads “the probability of event A given the fact that event B happened”. In

the content of a Bayesian parameter estimation, we take A = θ as the probability distri-

bution of the parameter θ1, B = D as our data set. In this case, the LHS of eq. (5.1) reads

P (θ|D). The probability distribution of the parameter θ given the data D, is generally

called posterior. On the RHS, the likelihood, P (D|θ) is the probability of having the data

to be D with the parameter given to be θ. An unique feature in Bayesian analysis is the

presence of the prior, P (θ), which encodes our previous knowledge about the parameter

θ without having the data D. In practice, P (D|θ) can be easily computed from the model,

while P (θ) can be a rough estimation about the range of θ given our previous knowledge.

For example, if our model requires θ to be positive and we can somehow estimate it to be

less than b, a feasible choice of prior can be

P (θ) =


1
b
, 0 < θ < b;

0, else.
(5.2)

Such a prior is called a flat prior. Later in our study, a modified flat prior on a chosen

region of the parameter space is also used.

The denominator P (D) in eq. (5.1) is usually regarded as a normalization and thus

ignored in most Bayesian studies. In other words, having prior P (θ) predefined and

likelihood P (D|θ) computed out, it is enough to compute the probability distribution

P (θ|D) without normalization. However, apart from the difficulty when trying to nor-

malize P (θ|D), in reality, because of the largeness of data set D, the high dimensional

1Here we only take the parameter space to be 1-dimensional for simplicity as an introductory illustration,
but the generalization to higher dimensional parameter space is straight forward.
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parameter space and finally the very complicated analytical expression of the likelihood

P (D|θ), it is unfeasible and usually even impossible to write down the posterior P (θ|D)

in a closed form. Therefore, an algorithm is required to draw samples from this compli-

cated, unnormalized distribution function P (θ|D) ∝ P (D|θ)P (θ). One of such sampling

algorithms, also the mostly used one, is MCMC with the Metropolis–Hastings (MH) algo-

rithm. Starting from an initial position in the parameter space, MH algorithm generates

a Markov Chain that finally converges to the given unnormalized distribution. Having

enough samples generated in this way finally allows us to a Monte-Carlo (MC) sampling,

which is to approximate the posterior P (θ|D) by the frequency of the samples.

In summary, the basic workflow of a Bayesian parameter estimation is to have a

prior defined based on the previous knowledge, and the likelihood worked out from the

model2. The posterior probability distribution of the parameter after learning from the

data is then worked out using eq. (5.1) with an unknown normalization factor. A MCMC

sampling with the MH algorithm can be used to generate samples for that posterior to

study the parameter.

5.2 Bayesian study on smearing thermal model

In this section, we perform a Bayesian analysis on extracting the freeze-out thermody-

namics by smearing thermal model. Notice that temperature and volume profile T (y), V (y)

are fully determined by pion and kaon yields, we first generate samples for T (y), V (y)

from measured dNπ

dy
and dNK

dy
from the BRAHMS experiment [8]. These samples are later

used to further generate samples for µ(y) profile by the net-proton yields dp−p̄

dy
measured

from the same experiment [9].

2In many cases this step is replaced by a Gaussian process emulator trained by the model, which intro-
duces additional uncertainty but greatly reduce the running time of the MC. We don’t use the emulator in
this thesis since the model running time is not long enough to make an emulator necessary.
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5.2.1 T (y) and V (y)

Let’s first focus on the temperature and volume as a function of rapidity. We inherit the

parametrization for T (y) and V (y) previously used as eqs. (3.49) and (3.51). We keep up

to y6 in the Taylor expansion in T (y) so there are 7 parameters in total, which we denote

as θ = (t0, t2, t4, t6, V0, yc, σV ).

Although it is hard to define a prior directly on t0, . . . , t6 as the coefficients for higher

order terms in the expansion lack a clear physical meaning, a prior can still be defined

using the global behaviour of T (y). As a temperature, it must be positive all the time,

and should also have an upper bound in the content of a heavy-ion collision, which we

conservatively set as 200 MeV. The coefficients should be constrained in such a way that

the expected global behaviour of T (y) is respected. Therefore, we define the prior for

them as

P (t0, . . . , t6) ∝


1, ∀y ∈ (0, 4), 0 < T (y; t0, . . . , t6) < 200 MeV;

0, else.
(5.3)

On the other hand, for 3 parameters in V (y), V0 is the volume at mid-rapidity and

based on the studies in chapter 4, conservatively it should fall in 103 − 104 fm3; yc is the

width of the plateau and should be positive but smaller than the tail observed in yields,

so we set 0 < yc < 4; σV describes how far the tail extends and we assume it is smaller

than 2yc. A flat prior is then built on these.

Now with the prior defined, let’s move on to the discussion of the likelihood P (D|θ).

In the BRAHMS experiment [8, 9], Au+Au collisions were performed at
√
s = 62.4 GeV.

Here, both dNπ

dy
and dNK

dy
are measured only for a few y-points around mid-rapidity and

at the tail, reported with their errors, demonstrated in fig. 5.2. To obtain the likelihood,

we assume that, with given parameters θ, at each rapidity point yi, the observed dN
dy

data

follows a Gaussian distribution. This allows us to write down the likelihood as

L({ns
i}; θ) =

∏
s=π,K

n∏
i=1

1√
2πϵ2s,i

e−(ns
i−ns(yi;θ))

2/2ϵ2s,i . (5.4)
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Here s = π,K refers to boson species, i refers to the index of the experimental data point,
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Figure 5.1: Distribution of T (y) and V (y) from the MCMC sampling. Here in each

panel, the green-shadowed area refers to the 95% credible interval (CI) while the orange-

shadowed for 50% CI. The blue line represents the median of the samples.

ns(yi; θ) ≡ dNs

dy
(yi; θ) is a short-hand notation for smearing thermal yields at yi given the

parameter θ and ns
i is the corresponding experimental measurement, with ϵs,i being its

error.
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Figure 5.2: Pion and kaon yields in BRAHMS experiment [8] and how they are repro-

duced by the samples.

An MCMC sampling is then performed to study the distribution of the parameters,

which then gives the functional distribution of T (y) and V (y) as we show in fig. 5.1.

As our expectation, the uncertainty of extracted temperature greatly increases in the tail
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region (y ≳ 3), similar to the nature of discrete model (eq. (4.1)). However, note that the

system size V (y) rapidly goes to zero, such uncertainty may also suggest that the system

is not well thermalized in the tail region.
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Figure 5.3: Distribution of µ(y) from the MCMC sampling. Here the green-shadowed

area refers to the 95% credible interval (CI) while the orange-shadowed for 50% CI. The

blue line represents the median of the samples.

In fig. 5.2, we demonstrate how the samples from the MCMC reproduce the yields

measured by the experiment. Despite the paucity of measured data points, it is shown

that with the smearing thermal model, the boson yields can be well fitted with little uncer-

tainty. This can be attributed to the usage of both the ansatz and the prior in the parameter

space, reflecting an advantage of Bayesian analysis – making use of previous knowledge.

We also notice that the large uncertainty in T (y) at the tail doesn’t give a significant error

in yields at the tail. Because of the vanishing volume in the tail region, sources there give

little contribution to yields. This also verifies the fact that yields at the tail are mainly

from the mid-rapidity due to the smearing effect.
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5.2.2 µ(y) and the phase diagram

With samples of temperature and volume found by bosons yields, we can now move on

to include the net proton yields to draw samples for baryon chemical potential µ(y). This

is done again by using the likelihood defined similarly to eq. (5.4) as

L({np−p̄
i }; θz;T (y), V (y)] =

n∏
i=1

1√
2πϵ2i

e−(n
p−p̄
i −np−p̄(yi;θz ;T (y),V (y)])

2
/2ϵ2i . (5.5)

Here, the square bracket in ({np−p̄
i }; θz;T (y), V (y)] emphasizes that the dependence of L
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Figure 5.4: Net proton yields in BRAHMS experiment [9] and how they are reproduced

by the samples.

and np−p̄ on T (y) and V (y) is functional, i.e. on the entire profiles of T and V as a function

of y. θz = (z0, z2, z4, z6) is the coefficients of the z(y) expansion in eq. (3.49) and are the pa-

rameters that we are sampling for with new information on the net-proton yields. Notice

that this likelihood requires that T (y) and V (y) are given, we have to draw samples for
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θz for every sample of T (y), V (y) found previously. Practically, we only randomly drew a

small subset of them in order to reduce the number of MCMCs.

On the other hand, unlike T, V , we are hardly able to provide constrains of z(y) from

our previous knowledge. Therefore, we simple generate samples using the likelihood

eq. (5.5) only, without any prior.

With this setup, we present our results from the MCMC running for the extraction of

µ(y) in fig. 5.3. We again tell that µ(y) is well constrained except at the tail region, despite

of the small number of dNp−p̄

dy
available. In fig. 5.4 we show how the samples cover the

given data points.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
(GeV)

0.120

0.125

0.130

0.135

0.140

0.145

T(
Ge

V)

median of T in  bins

Figure 5.5: Relative distribution of the samples for all freeze-out points with y < 3. The

darker bin refers to a denser volume-weighted distribution in the bin. The orange dashed

line refers to the median value of temperature at given µ.

Finally we turn to the distribution of the samples on the phase diagram. Weighted by

the volume V (y) for each point, we demonstrate their relative distribution in fig. 5.5. On

one hand, the phase diagram shows that freeze-out points are mainly distributed over
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the region of µ ≲ 0.25 GeV, meaning that although in fig. 5.3, samples for µ(y) go up to

µ ∼ 0.5 GeV as y increases, those large-rapidity (y ≳ 2) freeze-out points lack statistical

significance because of a rapidly decreasing volume V (y). On the other hand, we found

that the sampled temperatures in that dense region are lower than what we found in

chapter 4 using the data from hydrodynamic simulation.

One reason for this lower temperature is the final-state particle decay, known as the

feed-down effect. In HICs, heavier and unstable particles can decay even after their ther-

mal production at the chemical freeze out, and thus give extra contributions to the final

particle yields of lighter mesons and baryons measured experimentally. In a hydrody-

namic simulation, this is taken care of by coupling the hydrodynamic evolution with a

hadron transport model [66], for example, UrQMD [85]. This is, however, not included

in the data used in chapter 4, as the primary goal there is to test pure thermal models [7].

Generally, the feed-down effect creates more pions than kaons, making a π − K ratio in

the measured distribution higher than Cooper-Frye yields. According to fig. 3.1, such

high ratio leads to a lower temperature3. There are efforts to include feed-down effect

in thermal models, for example, sampling their momenta according to blast wave mod-

els [86] and finally letting the resonances decay through all decay chains until only the

stable hadrons remain. However, to the best of our knowledge, such efforts are based on

discrete (or single source) thermal model.

In summary, the smearing thermal model implemented with a Bayesian analysis shows

a good performance in extracting the freeze-out thermodynamics and reproducing the

whole profiles of the yields dN
dy

, even when the yields are only measured at a few points

at mid- and large-rapidities. The importance of incorporating feed-down effect into our

model is also shown by the lower-than-expected temperature found in our model. De-

veloping a model including both the feed-down effect and the smearing effect would be

challenging. We leave it for future work.

3Although fig. 3.1 is made based on the discrete thermal model, we expect it to work at least qualitatively
for the smearing thermal model we are using now.
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Chapter 6

Summary and Outlook

In this thesis, we reviewed the evolution of the fireball produced in a heavy-ion collision.

The hydrodynamic description of the fireball in its QGP stage and hadron gas stage before

chemical freeze out is also reviewed. We developed a thermal model with the smearing

effect to study the thermodynamics on the freeze-out surface, specifically for the temper-

ature T , baryon chemical potential µ and volume V as a function of the rapidity y of each

freeze-out point y.

We then used this model to fit rapidity distributions for three particle species, namely

net-protons, pions and kaons, which are obtained from a hydrodynamic simulation with-

out feed-down effect. By comparing it with a thermal model without smearing effect, we

found that, i) around mid rapidity, two models give quantitatively similar results, while

smearing effect slightly lowers the extracted temperature; ii) for large rapidity where par-

ticle yields are small, without considering the smearing effect, thermal model gives large

uncertainties and unphysical results, which is partly avoided with our smearing thermal

model; iii) evidently, particle yields at large rapidity (tail region) are mainly affected given

rise by the smearing effect from the mid-rapidity region.

When compared with the freeze-out thermodynamics obtained directly from the used

hydrodynamic simulation, results from both thermal models agree with hydrodynamic

simulation with error ≲ 10%, while smearing thermal model display a quantitatively
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better result. However, thermal models fail to find the limited system size in the rapidity

space as they are blind to any longitudinal dynamics of the freeze-out surface.

The smearing thermal model is then used directly on the data measured from BRAHMS

experiment. By performing a Bayesian analysis, we explored the uncertainties in both the

reproduced yields and the extracted thermodynamics. Even though the yields dN
dy

are

only measured for a few rapidity points, the smearing model performs well in repro-

ducing the complete profile of dN
dy

with little uncertainties. The uncertainties in extracted

freeze-out thermodynamics are found to be small around the mid-rapidity, but increase

as we approach the tail, which is qualitatively similar to the case when smearing effect is

not taken into account. Because of the prior and ansatz in the thermodynamic profiles,

errors in large rapidity region are less significant than thermal model without smearing

effect. On the other hand, these errors don’t manifest themselves in the reproduced yields,

which serves another evidence for the fact that tail yields are mainly own to the smearing

effect from the mid-rapidity.

Finally, we need to point out that our smearing thermal model is far from perfect. It

works with a predefined parametrization of thermodynamics, which prevents the yields

to reach a perfect fit. It also doesn’t consider the feed-down effect that changes the yields

differently for each particle species after the chemical freeze-out. As a result, the smearing

thermal model leads to a lower extracted temperature when applying the model to data

obtained from real-world experiments. It would be challenging but also interesting to see

how to include both the feed-down effect and smearing effect in the thermal model.
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